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Résumé :

A l'ere numérique actuelle, caractérisée par
une augmentation exponentielle de la puissance
de calcul et de la capacité de mémoire, nous
sommes confrontés a un défi pressant : la consom-
mation d'énergie croissante de la technologie de
linformation. La demande croissante de services
intensifs en données, notamment l'intelligence ar-
tificielle (IA) et le cloud computing, souligne la né-
cessité de calculs respectueux de I'environnement
et propices a linnovation. Cette these explore le
potentiel des memristors pour le calcul neuromor-
phique afin de réaliser une IA basse énergie.

Nous avons d'abord étudié des neurones com-
posés de memristors volatils NbOx, offrant une
alternative attrayante aux dispositifs CMOS clas-
siques par leur scalabilité et leur dynamique.
Ces dispositifs ont été caractérisés et présentent
de nombreux comportements avec impulsions et
bursting, tels que l'intégration et tir avec fuite ou le
« phasic bursting ». Nous avons modélisé ces com-
portements a I'aide de dynamique non linéaire. En
particulier, I'origine du « phasic bursting » a pu étre
élucidée : elle émerge d'une bifurcation de Hopf
entre les régimes de cycle limite et de point fixe.
Ce modele peut s'avérer utile lors de la conception
de puces neuromorphiques a impulsions. Du c6té
des algorithmes, nous avons adapté la Propaga-
tion a 'Equilibre (EqProp) aux systémes physiques.
EgProp, ancré dans la physique plutét que dans
le calcul, offre une perspective intéressante: ex-
ploiter la physique inhérente des systémes réels
pour I'apprentissage sur puce. Ce travail a porté
sur l'adaptation des gradients continus aux mem-
ristors, ou la programmation se fait sous forme
d'impulsions. Pour cela, nous avons exploré di-
verses approches de discrétisation des gradients.
La premiere méthode, la discrétisation ternaire, a
démontré des taux de précision comparables a ceux
de EqProp. Dans ce contexte, nous avons exam-
iné le role des hyperparameétres et leur influence

sur les performances du réseau. Nous avons en-
suite introduit des mise-a-jours probabilistes, ce qui
a amélioré les performances et a permis d'obtenir
une distribution de mises-a-jours similaire au cas
non discrétisé. Une autre approche avec davan-
tage d'états quantifiés a été étudiée. Bien que
cette derniere approche surpasse l'approche ter-
naire non probabiliste en termes de performances,
elle a aussi des désavantages - une distribution
plus large des impulsions et une consommation
d'énergie plus élevée que l'approche ternaire prob-
abiliste. Nous avons ensuite testé la résilience de
la version discrétisée de EqProp en remplagant les
synapses idéales par des mesures de memristors
HfOx. A cette fin, nous avons utilisé une plate-
forme oU les memristors étaient accessibles indi-
viduellement. Nous avons d'abord effectué des sim-
ulations de contréle : un perceptron a une seule
couche et un réseau a deux couches avec premiere
couche gelée. Ces expériences ontdonné un apercu
du potentiel des synapses memristives, avec des
précisions atteignant 78,1 % et 70,8 %, respective-
ment. Ensuite, nous avons étudié un réseau a une
couche cachée. Deux définitions de poids ont été
utilisées - les différences linéaire et logarithmique
des conductances. La définition linéaire s'est avérée
étre la meilleure, avec une précision de 91 % com-
paré a 89,5 % obtenu par la version logarithmique.
Pour améliorer ces résultats, nous avons limité la
valeur de la conductance au dessus d'un seuil afin
d'atténuer l'effet du régime bruité et non linéaire
des memristors. Ainsi, les définitions linéaires et
logarithmiques des poids ont respectivement at-
teint des précisions de 91,75 % et 92,14 %. Ces
résultats constituent une étape importante pour
la mise en ceuvre pratique de l'apprentissage sur
puce. En résumé, cette thése explore le poten-
tiel des memristors pour le calcul neuromorphique
afin de réaliser une |A basse énergie. Ce domaine
promet des avancées innovantes a l'intersection de
la physique et de I'lA, offrant au calcul un futur plus
durable et puissant.
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Abstract:

In our digital era, marked by an exponential
growth in computational power and memory capac-
ity, we are confronted with a pressing challenge: the
escalating energy consumption of information tech-
nology. The increasing demand for data-intensive
services, notably artificial intelligence and cloud
computing, underscores the urgent necessity for
energy-efficient computing solutions that are envi-
ronmentally sustainable and foster innovation. This
thesis explores the potential of memristors for neu-
romorphic computing to achieve energy-efficient Al.
Because Spiking Neural Networks could offer the
promise of low-energy learning, we first focused on
hardware neurons composed of volatile NbOx fil-
amentary memristors. These components emerge
as appealing alternatives to conventional CMOS de-
vices because of their scalability and spiking be-
haviors. These devices were characterized and re-
produced numerous neuronal spiking and bursting
behaviors, such as Leaky-Integrate-and-Fire char-
acteristics and phasic bursting. These behaviors
were modeled with non-linear dynamics equations,
which accurately reproduced the experiments. In
particular, the origin of the phasic bursting phe-
nomenon could be investigated and was shown to
emerge from a Hopf bifurcation between the limit
cycle and the fixed point regimes. This model could
be beneficial when designing spiking neuromorphic
chips. We then focused on the algorithmic side
and tackled the challenge of adapting the Equilib-
rium Propagation (EqProp) algorithm to physical
systems. EqProp, rooted in physics rather than cal-
culus, offers an attractive prospect—harnessing the
inherent physics of hardware systems for on-chip
learning. This work revolved around addressing
the challenges posed by continuous-valued gradi-
ents in a memristor-based environment, where the
mode of programming is a series of pulses. We ex-
plored various approaches to gradient discretiza-

tion. The first method, called ternary discretiza-
tion, demonstrated accuracy rates nearly matching
those of conventional EqProp. In this context, we
explored the role of hyperparameters and their in-
fluence on network performance. We then intro-
duced probabilistic updates, which enhanced per-
formance and gave a pulse distribution that closely
mirrored the non-discretized scenario. Introduc-
ing more quantized states in gradient discretiza-
tion outperformed the non-probabilistic ternary ap-
proach in terms of performance, but came with a
trade-off—a broader pulse spread and increased
energy consumption compared to the probabilistic
ternary approach. Next, we tested the resilience of
the discretized version of EqProp by replacing the
ideal software synapses with HfOx memristor data.
For this, we used a hardware platform with indi-
vidually accessible memristors. We first performed
control simulations: a single-layer perceptron and
a two-layer network with a frozen first layer. These
initial experiments provided a glimpse into the po-
tential of memristor-based synapses, with accuracy
rates reaching 78.1% and 70.8%, respectively. Next,
we trained a one-hidden-layer network. Two dis-
tinct weight definitions were analyzed—the linear
and logarithmic differences of conductances. The
linear definition emerged as the best method, with
91% accuracy compared to the 89.5% achieved by
the logarithmic one. To improve the results, we lim-
ited the conductance value if it fell below a thresh-
old to mitigate the high-noise and non-linear regime
of memristors. With this approach, the linear and
logarithmic weight definitions achieved respectively
91.75% and 92.14% accuracy. These results consti-
tute a milestone on the journey towards practical
on-chip. In summary, this thesis explores the poten-
tial of memristors for neuromorphic computing to
realize energy-efficient Al. This field promises break-
throughs at the intersection of physics and Al, of-
fering a more sustainable and powerful future for
computing.
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2 INTRODUCTION

As we navigate through the 21st century, the urgency of addressing climate change is in-
creasingly evident. Rising global temperatures, melting ice caps, and extreme weather events
serve as stark reminders of the environmental crisis we face. The Intergovernmental Panel on
Climate Change (IPCC) warns that we have a limited window of opportunity to prevent catas-
trophic global warming. This pressing issue calls for immediate and coordinated action across
all sectors of society, including the field of information technology (IT). The IT sector, while
instrumental in driving global progress, is also a significant contributor to global energy con-
sumption. Data centers, the backbone of our increasingly digital world, are estimated to ac-
count for about 1% of global electricity use [21]. Furthermore, the energy consumption of IT is
projected to increase with the growing demand for data-intensive services such as cloud com-
puting, artificial intelligence, and high-performance computing [22]. This escalating energy
demand underscores the need for developing energy-efficient computing solutions. The pur-
suit of such solutions not only aligns with the global climate goals but also presents an oppor-

tunity for innovation and advancement in computing technologies.

The trajectory of human advancement is strikingly illustrated by the fact that while it took
us approximately 4000 years to progress from the creation of the wheel to the first successful
airplane flight, a mere 66 years elapsed between that inaugural flight and Neil Armstrong’s his-
toric moon landing. This accelerated pace of development was significantly enabled by the ad-
vent of computing technology, which provided us with the tools to automate intricate tasks and
execute large-scale calculations with unprecedented speed. The computer, now an indispens-
able instrument in our daily lives, is the culmination of centuries of technological evolution
spanning various scientific fields such as physics, mathematics, electronics, and computer sci-
ence. Each new generation of computing technology has broadened our capabilities, unlocking
possibilities that were previously beyond our reach. This cycle of necessity and invention has
fueled growth at an exponential rate, leading to an ever-increasing demand for computational
power and memory. The development of computers did not occur in isolation. It required si-
multaneous advancements in multiple fields of science, including the crucial area of memory
technology. In this context, memory refers to the data that a calculation requires to be exe-
cuted. At its core, a computer is made up of two key components: the memory unit, which
stores data, and the arithmetic-logic unit, which carries out operations on that data. The com-

plexity of a task is closely tied to the memory it requires for computation.

The journey towards modern computing began with mechanical calculators such as the
abacus and the Pascal calculator. However, these devices, while capable of efficiently perform-
ing arithmetic operations, were not programmable and thus unsuitable for automation. The
first design of a general-purpose computer, albeit mechanical, was proposed by Charles Bab-
bage in 1837 [23]. Named the Analytical Engine, it was the first computer to have integrated

memory in the form of counter wheels, a dedicated arithmetic logic unit, a control flow that
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enabled loops and conditional branching, an input system with punched cards, and even a
printer for producing the output. The first digital, electronic, programmable computer, the
Electronic Numerical Integrator and Computer (ENIAC), was completed in 1945 [24]. The con-
struction of this computer was enabled by developments in electronics in the earlier half of the
twentieth century, particularly the invention of the thermionic vacuum tube [25]. A technolog-
ical successor to ENIAC was EDVAC (Electronic Discrete Variable Automatic Computer), which
was completed in 1949 [26]. The celebrated engineer John von Neumann was involved with
this project as a consultant, and he proposed the architecture-level organization of a computer
[27], which came to be known as the von Neumann architecture. The following decades saw
the development of transistors and integrated circuits, replacing vacuum tubes entirely. These
rapidly decreased the computer’s cost and size and culminated in the invention of the first per-
sonal desktop computer, IBM-PC, in 1966 [28, 29]. However, as we continue to push the bound-
aries of what computers can do, we are also confronted with new challenges. One of the most
pressing of these is the escalating energy demand of modern computing systems. The history of
computing has been marked by an exponential increase in memory and computational needs,
also highlighted by Moore’s law which states that the number of transistors on a microchip dou-
bles every two years [30, 31]. However, as transistor sizes approach the atomic scale, quantum
effects and other physical phenomena become significant challenges. Current silicon-based
technologies are approaching these physical limits, making it increasingly difficult to continue
shrinking transistors at the pace predicted by Moore’s Law. In contrast, the computational de-
mands of Artificial Intelligence (Al), especially deep learning, have been growing at a pace that
outstrips the predictions of Moore’s Law, doubling every 5 to 6 months [32], far outpacing the
transistor density increase predicted by Moore’s Law. If current trends continue, we may soon
reach a point where traditional computing hardware is unable to efficiently support the train-
ing and deployment of advanced Al models. This could stifle innovation and slow the pace of

Al advancements.

In response to this challenge, the field of artificial intelligence (Al) is undergoing a signif-
icant shift. Traditionally, Al models were trained and deployed on powerful servers in data
centers, a practice that is increasingly giving way to a new trend known as Edge Al. This shift
towards Edge Al is not only a response to the evolving dynamics of our digital world but also
a crucial step towards addressing the pressing issue of climate change. The proliferation of
Internet of Things (IoT) devices, such as smart home appliances, wearable devices, and con-
nected vehicles, has led to an explosion in the amount of data being generated at the edge
of the network. This surge in data has highlighted the inefficiencies of processing it in the
cloud due to latency and bandwidth constraints of network connections. Edge Al addresses
this challenge by moving the Al closer to where the data is generated and used, thereby reduc-
ing latency and bandwidth usage but also reducing the energy consumed in data transmission.

At the same time, privacy and security have become paramount concerns in our increasingly
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interconnected world. Edge Al offers a solution to these concerns by processing data locally
on the device, rather than sending it to the cloud [33]. This approach ensures that sensitive
information remains private and secure, addressing a key concern in today’s digital landscape.
Moreover, advances in hardware technology have opened up new possibilities for Edge Al. The
development of specialized Al chips and efficient model compression techniques have made it
possible to run complex Al models on devices with limited computational resources. This has
enabled powerful Al capabilities to be embedded in small, low-power devices, extending the
reach of Al to new areas and applications [34]. The rise of Edge Al has significant implications
for a wide range of applications. From autonomous vehicles and drones that require real-time
decision-making, to healthcare devices that need to process sensitive patient data, to smart
home devices that aim to provide personalized experiences while respecting user privacy, Edge
Al is poised to revolutionize these fields. Importantly, by enabling energy-efficient Al, Edge Al
also plays a crucial role in our collective efforts to combat climate change. However, the shift
toward Edge Al also presents new challenges. These include the need for adapted hardware, ef-
ficient algorithms that can run on resource-constrained devices and the design of new learning
paradigms that can adapt to the unique characteristics of edge devices and networks.

This thesis will focus on bridging the gap between hardware and algorithms to realize learn-
ing with real devices. In particular, Chapter 1 will introduce key concepts that will be used in
this work, starting with a broad explanation of deep learning and recent breakthroughs, before
diving into the typical architecture used on computers used for such tasks. Then, I present a
source of inspiration to perform adapted hardware: the brain. After a general introduction to
neurons and synapses, I present different neuronal behaviors and models used to reproduce
them. Then I show different algorithms that are bio-plausible and may be a clue as to how
the brain actually learns. In the last section, I present emerging hardware technologies, both
synapse and neuron-like, and a few different architectures used in this context.

Chapter 2 presents a spiking neuron based on niobium oxide. This work first explores the
quasistatic I-V characteristics of such a device, before diving into the computational properties.
This type of neuron is shown to reproduce different types of neural behaviors such as tonic
spiking, leaky-integrate and fire, all-or-nothing firing, stochastic firing, and phasic bursting.
This last behavior is observed statistically, and a simple model based on non-linear dynam-
ics is able to reproduce all the behaviors shown above. This paves the way to spiking neural
networks.

Chapter 3 presents and explains the Equilibrium Propagation algorithm. It then explains
why adapting this algorithm to perform on-chip learning is necessary, and proposes ways to
discretize the gradient in order to both have a good accuracy but also to not have too many
pulses applied during learning. Indeed, this is key to good energy efficiency.

Chapter 4 presents the realization of the algorithm presented in Chapter 3 with memris-
tors. Experimental data is used in simulations to explore the resilience of the EqProp algorithm

with imperfect synapses. Control simulations on perceptron and two-layer networks with first
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frozen layer are performed. A one-hidden layer network is then optimized, and two different

definitions of the synaptic weights are explored.
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8 CHAPTER 1: STATE OF THE ART

( : omputers are now able to realize challenging tasks, in particular Artificial Intelligence (AI)
tasks. However, the classical computer architecture consumption is large compared to
the brain, which has similar functionalities. This is where neuromorphic computing is born,

which aims at producing new hardware able to compute the same tasks but at very low energy.

1.1 Deep Learning and Artificial Intelligence

Understanding and creating an intelligent system that can produce cognitive tasks is a problem
that has been tackled in many ways, either by starting from the task and trying to find a formal
way to express the reasoning of the brain, or by starting from understanding how the brain
works to get to the tasks [35]. In this section, we will focus on the emergence of the second
approach.

If initially neural networks research was motivated by understanding and reproducing the
functionalities of the brain, it is now a tool that is very loosely inspired by the architecture of
the brain [36]. It is a set of different algorithms, which perform a non-linear transformation of
an input to match to an output. This input can be an image, an audio file, a text in order to be

used for image classification, text prediction, and so on.

1.1.1 First Neural Networks

1.1.1.1 First artificial neuron and network

In 1943, McCulloch and Pitts presented one of the first attempts at modeling a biological neu-
ral network [37]. In this work, the neurons are functional logic devices with a binary response,
in order to capture their "all-or-nothing" behavior. First, a neuron’s output is a function of its
input. Secondly, if a neuron’s input is higher than a threshold, the neuron will output a one (cor-
responding to a maximum frequency firing), and else it will output a zero (not firing). Moreover,
in this model, the neuron receives as input a weighted sum of the other connected neurons. The
weights, by which another neuron’s output is multiplied, correspond to the synapses’ strength.
These synapses can be either excitatory (corresponding to a positive weight) or inhibitory (cor-
responding to a negative weight). This model was shown to perform logical operations such
as AND, OR, or NOT. This model of a neuron is shown in orange in Fig. 1.1. However, in this
model, no algorithm is used to tune the synapses’ strengths, which are then fully static. This
work introduced fundamental concepts which paved the way for artificial intelligence research

but also introduced computational neuroscience.

In 1949 Hebb suggested that when two neurons are repeatedly activated simultaneously,
the connection between them strengthens [38]. This concept is often summarized by the phrase
"cells that fire together, wire together." In particular, this introduces the concept that the strength

of the synapses is variable. Hebb’s theory laid the foundation for understanding how synaptic
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connections in the brain are modified through experience and learning.
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Figure 1.1: Perceptron with a McCulloch and Pitts neuron.

1.1.1.2 Perceptron

An important step in the history of deep learning is the perceptron, a model published in 1957
by Rosenblatt [39]. Taking inspiration from the visual cortex, he designed a machine for pattern
classification. The perceptron is intended to mimic the behavior of a single neuron in the brain,
which receives multiple inputs, processes them, and produces an output based on certain ac-
tivation rules, as presented in Fig. 1.1. Based on McCulloch and Pitts’ work, all neurons are
considered all-or-nothing neurons, and synapse strengths, referred also as weights, are vari-
able. Rosenblatt proposes to train the weights to get good accuracy. The learning rule is not
explicitly described in the original paper but suggests an iterative adjustment of the weights
based on input-output associations to improve the perceptron’s performance.

In follow-up work [40], the perceptron model is more formally described. Given an input
X = x1, ..., Xp, and given a set of weights Wi, ..., W, the output is

o=HQCEW;x;+Db), (1.1
where H is the Heaviside step function and b is a bias term.
The perceptron learning rule (PRL) gives:
AW; =a(t—-o0)-x;, (1.2)

where t is the target associated with the input X. In this work, Rosenblatt proves the conver-
gence of a learning algorithm in a simple one-layer perceptron, using an iterative tuning of
the weights to reach the desired computation. With the perceptron convergence theorem, this

model is shown to only solve linearly separable tasks [41].
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The limitations of the single-layer perceptron appear clearly in 1969, thanks to the work of
Minsky and Papert [42]. In particular, the XOR problem cannot be solved. In 1986, Rumelhart,
Hinton and Williams introduced the concept of multi-layer perceptrons (also known as feed-
forward neural networks) as a way to overcome the limitations of single-layer perceptrons [43].
They demonstrate that by introducing additional layers and nonlinear activation functions, it

becomes possible to learn and represent more complex patterns.

1.1.1.3 Hopfield Networks

In 1982, Hopfield introduced a new kind of network, based on the idea that a physical system
could store information and could be addressed to retrieve it even with a corrupt or incomplete
query [44]. His idea is based on the intrinsic minimization of energy in a physical system.

More precisely, his neurons are all-or-nothing neurons inspired by McCulloch and Pitts’
work [37] which take as input a weighted sum of other neurons and synapses. However, the
originality lies in the fact that contrary to the perceptron that is organized in layers (feed-
forward), the Hopfield network’s connections can be completely random, as shown in Fig. 1.2a.
Moreover, taking inspiration from Ising spin systems, the neurons’ states are not updated in a
synchronous manner, but dynamically updated by being randomly drawn and updated one by
one.

Considering the patterns P¥ that have to be stored, the neurons o;, and W; j (with W;; = 0)

the strengths of the tunable synapses follow the equation:

Wij =Y @Pf-1)2P} -1), (1.3)
k

reminiscent of the Hebbian learning rule [38]. Hopfield proposes an energy-based framework
that would govern the system under the condition that the matrix W is symmetric (W;; = Wj; ),

which takes deep inspiration from Ising spin systems’ Hamiltonians:

E=—%Z‘Z.W,~ja,-aj (1.4)
Ji#i

where W is akin to the exchange coupling, and o is comparable to spins. If the pattern P pre-
sented is altered, the energy will relax to the closest local minimum, which will correspond to
the uncorrupted information. A typical example of an energy landscape is presented in Fig.
1.2b and d. The number of patterns that can be stored obviously depends on the number of
neurons, and Hopfield found in his original paper that this critical number is equal to 0.15 N
where N is the number of neurons. If the stored pattern number is not too large and the pattern
is uncorrelated, it is possible to add a new pattern to the collection of memories by using the

Hebbian learning rule. The memory feature of this network emerges from the very high num-
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Figure 1.2: Hopfield network with graded neurons, adapted from Ref. [1].

ber of connections between the different neurons, but it is not very dependent on the precise
characteristics of these neurons. For example, Hebb later introduced graded neurons in this
type of network, whose output is a sigmoid of its input [45].

By introducing an energy function whose minimum corresponds to the best solution of an
optimization problem, a Hopfield network is capable of solving this type of problem [46].

1.1.2 Training Neural Networks

Because it was shown in 1969, that the single-layer perceptron could only learn linearly separa-
ble tasks [42], and because of a lack of methods to train deeper networks, research considerably
slowed in the 70s, until the emergence of the backpropagation training algorithm [47]. Even if
earlier instances of this training method seem to exist [48-50], it is the work of Rumelhart, Hin-
ton, and Williams in 1985 that introduced the backpropagation formalism to solve multi-layer
fully connected networks and popularized this concept [43, 51]. Hinted in the work of Ref. [42],
this paper shows that adding intermediary "hidden" neurons is crucial to learning non-linearly

separable tasks, for example, when solving the XOR problem.
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Later work, published in 1989, shows that a one-hidden layer network can approximate any
continuous function [52]. However, this theoretical guarantee does not give any hint about how
hard it is to train such a network, or how many neurons there must be. In practice, "deeper”
networks (i.e. with more hidden layers) need to be used with fewer neurons on each layer in

order to train with ease more complex functions.

1.1.2.1 Supervised, unsupervised

Numerous different criteria can be used to categorize learning algorithms. One commonly
used criterion is the type of learning employed. In the field of machine learning, learning al-
gorithms are traditionally classified into two main categories: supervised learning and unsu-
pervised learning [53]. Other categories are also emerging and will be briefly presented in the
following text.

Supervised learning is a technique where every input x in the training dataset has a corre-
sponding label t. The goal of the learning procedure is for the neural network to approximate
the mapping function f defined as f(x) = t. This framework can be used either in regression
tasks where the target is continuous or in classification tasks where the target is categorical.
Usually, a huge number of data needs to be available for training in order to obtain the best
performance possible.

Unfortunately, labeled data can be scarce, expensive to obtain, or simply unavailable. For
this reason, being able to train a network without knowing a target can be very useful. Unsuper-
vised learning algorithms operate on unlabeled data, where no explicit target labels are avail-
able. The objective of unsupervised learning is to discover patterns, structures, or relationships
in the data without any predefined notion of what the output should be [54]. Unsupervised
learning algorithms can uncover hidden structures, group similar instances together, or reduce
the dimensionality of the data. Common techniques in unsupervised learning include clus-
tering, where instances are grouped based on similarity, and dimensionality reduction, which
aims to represent the data in a lower-dimensional space [55-57].

Semi-supervised learning mixes a bit of both worlds [58, 59]. It uses a large number of
unlabelled data which are easy to collect but hard to classify and improves the overall accuracy
by also using labeled data to build better classifiers [60].

Self-supervised learning can be considered a type of unsupervised learning as no explicit
label is used. However, contrary to unsupervised learning that aims at finding patterns in the
data, self-supervised learning creates pseudo-labels by solving a pretext task. Instead of relying
on explicit human annotations, the model creates artificial labels from the input data itself and
learns to predict or reconstruct the original data [61, 62].

Reinforcement learning is another type of algorithm that, similarly to unsupervised learn-
ing, does not rely on labeled data. However, contrary to unsupervised learning, its goal is not to
find structure and similarities in the data, but the learning agent learns from its environment

by maximizing a reward signal [63, 64]. It takes deep inspiration from the way a human learns
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by interacting with its environment, as an action has an impact, and the agent learns from the
consequence.
In this thesis, we will focus exclusively on supervised learning, and we will always consider

this particular case in the following text.

1.1.2.2 Structure of a typical fully connected network and forward pass

The overall architecture is inspired by the brain, but neurons do not spike: they operate using
continuous-valued activations to perform a non-linear transformation of their input. A typical
fully connected network is composed of layers of neurons connected by synapses. The input
signals encoding the training data are fed into the input neurons, and then they are processed
layer by layer through the hidden layers until reaching the output layer. The activations of
the neurons in each layer are computed based on the weighted sum of the activations from
the previous layer, followed by the application of an activation function. Several non-linear
functions can be chosen such as Rectified Linear Unit (ReLu, corresponding to the function
x — max(0,x)), sigmoids, tanh, and so on. The choice of the activation function depends on
the specific requirements and characteristics of the task being addressed.

Synapses are connections between neurons. Positive-valued weights correspond to exci-
tatory synapses, whereas negative-valued ones encode inhibitory synapses. The strengths of
the synapses vary depending on the task at hand. Biases are additional parameters associated
with each neuron. They introduce a shift or offset in the computation of the neuron’s activa-
tion. Biases allow the network to have preferences for certain values and influence how easily a
neuron gets activated or responds to different input patterns. Mathematically, biases are sepa-
rate parameters added to the weighted sum of inputs before applying the activation function.
They contribute to the network’s flexibility in modeling complex relationships and capturing
patterns in the data.

We will describe the network in a more formal way. Let us name pre-activation neurons as
a]lC =) j hj._lelk where h;‘l =f (aj._l) is the post-activation neuron, with activation function
f- The weights are W;; the biases b;. Let us also call the inputs vector x; = a? and the output as
vi. Let’s name L the total number of layers, while | designates any layer between 0 and L.

We get the forward propagation or inference equation illustrated in Fig. 1.3a:

vi=flap) = fQ_ R Wi+ b (1.5)
J

1.1.2.3 Backpropagation algorithm

During training, the strengths of the synapses, i.e., the weights associated with the connec-
tions, are adjusted iteratively using the backpropagation algorithm. This algorithm calculates
the gradients of the network’s error with respect to the weights and updates the weights accord-

ingly. The backpropagation algorithm enables the network to learn and adjust its parameters
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to minimize the discrepancy between the predicted outputs and the desired outputs.

More precisely, this loss function is computed during the forward pass, or inference. The
value computed gives an error, which is then backpropagated through the network. This con-
stitutes the backward pass.

Let us consider a set of training examples X, with corresponding labels t. The parameters of
the network, which includes both weights and biases, are represented as 0 in a d-dimensional
real space. Aloss function allows the definition of how well the network performs by comparing
output and label for specific examples. It is defined as £ (y, t,0) where y is the output of the
neural network. To evaluate the performance of the network on a specific set, an objective
function J(0) is defined by summing the loss function over all the examples present in the set.
Learning, therefore, means minimizing this objective function. The way to train the network is
by using gradient descent to minimize J.

Gradient descent is a method used to minimize any objective function by adjusting the
parameters 0 in the direction opposite to the gradient of that function (with respect to these
parameters) symbolized as Ay J(6) [65]. The magnitude of the adjustments is controlled by a
factor known as the learning rate, denoted as 7). This factor influences the size of the steps taken
towards a (local) minimum. Essentially, this process is akin to descending a hill by moving in

the direction of the steepest slope until reaching a valley, or minimum point [66, 67]:

0 —60-1hgJ©). (1.6)

The question is now how to compute AyJ(0). Backpropagation is an algorithm used to
compute the gradient of the loss function with respect to the weights of the network. The name
"backpropagation" comes from the fact that the computation starts at the output layer of the
network and works its way backward, layer by layer, to the input layer. This is done by applying
the chain rule of calculus to compute the derivatives.

Taking the same notations as the previous section, we get:

0L
I+1
owls

= hlot =l (el f'(al™)) = ] [(; 5§C+2Wj’k) f’(aj.“)] (L.7)
where ey = ).;0;Wjy, as shown in Fig. 1.3b.

Typical loss functions used include Mean Squared Error (MSE), which is commonly used
in regression problems. MSE calculates the average squared difference between the predicted
and actual values. Cross-Entropy Loss is mostly used in classification problems, especially in
tasks where the output can be one of many classes. This function measures the dissimilarity

between the predicted probability distribution and the actual distribution.
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Figure 1.3: Above: Forward propagation. Below: Back Propagation from Ref. [2]

1.1.2.4 Training a network

The data used in the training process is divided into three distinct sets: the training set, the val-
idation set, and the test set. The training set is the primary source for adjusting the weights and
biases of the network through the forward and backward passes. The validation set serves a
different purpose; it is used during the training phase to evaluate the model’s performance and
to fine-tune the hyperparameters. Hyperparameters are variables that are not learned from the
training process itself but are set prior to training. These are often tuned using the validation
set to find the values that produce the best model performance [68, 69]. Examples of hyperpa-
rameters (described below) include the number of epochs, batch size, and learning rate, among
others. Finally, the test set is used post-training to provide an unbiased evaluation of the final
model’s performance.

The training process is organized into epochs, each representing a complete pass through
the entire training dataset. During each epoch, the model’s weights and biases are iteratively
adjusted to minimize the loss function. Data is often divided into smaller subsets known as
minibatches for each epoch. This approach, known as mini-batch gradient descent, strikes a
balance between the computational efficiency of batch gradient descent (which uses the en-
tire dataset) and the stochastic nature of stochastic gradient descent (which uses a single data

point). The learning rate determines the size of the steps taken towards the loss (local) mini-
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mum. Initialization is also a determining hyperparametric element to ensure that a minimum
is reached [70].

Training neural networks involves navigating complex, high-dimensional loss surfaces to
find optimal parameter values. While local minima can trap traditional optimization methods,
leading to suboptimal solutions, previous work indicates that as the number of parameters in
a neural network increases, the loss surface becomes less likely to have non-convex character-
istics and local minima [71]. This suggests that larger networks, despite their complexity, may
be easier to optimize due to the structure of their loss surfaces, which guide the optimization
process towards many equivalent global minima.

However, the increased computational requirements and risk of overfitting necessitate care-
ful model design and regularization techniques to ensure good performance. Overfitting is a
common issue in neural network training [72]. It occurs when the model learns the training
data too well, to the point where it captures not only the underlying patterns but also the noise
or outliers in the data. As a result, the model performs well on the training data but poorly
on unseen data, demonstrating a lack of generalization. To mitigate overfitting, we can em-
ploy techniques such as early stopping and regularization. Early stopping is a form of cross-
validation approach where the training is halted as soon as the performance on the validation
set stops improving, indicating the model might be starting to overfit the training data [73],[74].
This helps to ensure that the model generalizes well and does not simply memorize the train-
ing data. Regularization techniques are another key tool in preventing overfitting. These tech-
niques add a penalty term to the loss function to constrain the complexity of the model. So-
called L; and L, regularizations are common methods that penalize the absolute and square
values of the weights, respectively. Another popular regularization technique is dropout [75],
where random neurons are "dropped out" or deactivated during training, forcing the network

to learn redundant representations and improving generalization.

1.1.3 The deep learning revolution

Other types of neural networks emerged in the 80s. The Neocognitron, introduced by Fukushima
in 1982, provided a model for hierarchical, multilayered artificial neural networks [76]. How-
ever, it wasn't until 1989 that LeCun et al. proposed a way to train such networks using back-
propagation, paving the way for the development of modern Convolutionnal Neural Networks
(CNNs)[77]. In essence, a CNN processes an image through a series of hierarchical layers. The
initial layers, typically composed of convolutional and ReLU layers, are designed to recognize
simple, low-level features such as edges and textures. As the image progresses through the net-
work, subsequent layers combine these low-level features to recognize more complex, high-
level features, such as shapes or specific parts of objects.

Despite these early advancements, the development of CNNs was relatively slow for sev-
eral decades. This was due in part to the lack of computational resources and data necessary

for training these networks, as well as a general waning of interest in the field. However, with
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the advent of more powerful computing systems and the availability of large-scale datasets,
CNNs have experienced a resurgence and are now a cornerstone of modern machine learning

and artificial intelligence research.

The onset of the 21st century marked a pivotal shift in Al, transitioning from conventional
machine learning techniques to neural networks. This shift was catalyzed in 2006 when Ge-
offrey Hinton and his colleagues proposed a novel training methodology for neural networks,
termed "deep learning”. The launch of the ImageNet database in 2009, a large-scale repository
of annotated images, significantly propelled advancements in computer vision. The efficacy of
deep learning was underscored in 2012 when Hinton’s team, employing their deep Convolu-
tional Neural Network (CNN) known as AlexNet, clinched victory in the ImageNet competition
[78]. The mid-2010s witnessed further groundbreaking developments, including the introduc-
tion of Generative Adversarial Networks (GANs) [79, 80] and the development of the Resid-
ual Network (ResNet) [81], a variant of CNNs designed for effective training of deep networks.
Around the same time, Google’s DeepMind demonstrated the potential of deep reinforcement
learning with an algorithm that could play Atari games at superhuman levels [82]. This was fol-
lowed by another significant achievement by DeepMind in 2016, the development of AlphaGo,
a program capable of mastering the complex board game Go [83]. The latter half of the decade
saw significant advancements in natural language processing. In 2017, the Transformer model
was introduced [84], followed by Google’s BERT in 2018 [85], both setting new performance
benchmarks. In 2020, two major milestones were reached. OpenAl unveiled GPT-3, a highly
advanced language model [86], and DeepMind introduced AlphaFold, a system that accurately
predicts protein structures [87]. In 2023, a significant leap forward in the field of Al was marked
by the introduction of GPT-4, which, according to Bubeck et al. [88], began to show the first
sparks of general artificial intelligence. As we continue into the 21st century, Al research is
evolving rapidly, focusing on areas such as self-supervised learning, large-scale multimodal

models, and the ethical and societal implications of Al.

This rise has been accompanied by an exponential increase in the size and complexity of
neural networks. Models like GPT-3 [86], with its 175 billion parameters, and Google PaLM
[89], with 540 billion parameters, are emblematic of this trend. This growth in model size has
been driven by the need to capture increasingly complex patterns in data and to improve per-
formance on challenging tasks. However, training these large models requires vast amounts
of data and computational resources [90], which has significant implications for energy con-

sumption and environmental impact.

Different software or algorithmic practices can be used to reduce the number of parameters
to train, and therefore reduce the energy consumption of the model. Some of these strategies

are listed below.
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Feature Selection: This involves selecting the most relevant features (input variables) to use
in model training. Techniques for feature selection include filter methods (based on the cor-
relation of each feature with the output), wrapper methods (which try different combinations
of features), and embedded methods (which perform feature selection as part of the model
training process) [91, 92].

Dimensionality Reduction: Techniques like Principal Component Analysis (PCA) [93] or
t-Distributed Stochastic Neighbor Embedding (t-SNE) [94] can be used to reduce the number
of dimensions in the data, which effectively reduces the number of parameters in the model.

Model Selection: Choosing a simpler model with fewer parameters can also help to reduce
the number of parameters [95]. For example, a linear regression model has fewer parameters
than a polynomial regression model.

Use of Pre-trained Models: In deep learning, it's common to use pre-trained models (like
ResNet, or BERT) that have been trained on large datasets and then fine-tune them on a spe-
cific task. This allows the model to leverage the pre-trained parameters and only learn a small
number of task-specific parameters [96].

Pruning: In the context of neural networks, pruning involves removing the connections
(and thus parameters) that contribute the least to the model’s predictions [97, 98]. This can
significantly reduce the number of parameters in the model without a substantial loss in per-
formance.

The goal of reducing parameters is to create a model that can generalize well to unseen
data, and does not consume as much energy. It’s a balance between making the model sim-
ple enough to not overfit the training data, while keeping it complex enough to capture the

underlying patterns in the data.

1.1.4 The challenge of Al energy consumption

Artificial neural networks are now mostly trained on standard CMOS hardware. The architec-
ture of classical computers typically follows the von Neumann paradigm which is characterized
by a physical separation of the memory and processing units. Two main processing units are

typically used in modern computers. A brief presentation of these two will be developed below.

1.1.4.1 CPU

The Central Processing Unit (CPU) is the computational core of a computer, responsible for
executing instructions in the form of threads, which are sequences of operations. A simplified
architecture of this unit is presented in Fig. 1.4a. When executing instructions, the CPU fetches
instructions and data from memory through this bus, one instruction at a time. The fetched
instructions are then decoded, executed, and the results are stored back in memory. However,
CPUs face a few key challenges. One significant hurdle is managing latency, especially during

memory access operations. This latency emerges from the time delay between requesting and
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receiving data, slowing down overall system performance. Another challenge is heat manage-
ment, given that a CPU’s high operational speed generates substantial heat. Power consump-
tion, particularly in mobile devices or servers, poses yet another challenge, as efficient energy
use is crucial for prolonging battery life and reducing operational costs.

Addressing these challenges involves various strategies. To combat latency, CPUs employ
hierarchical memory organization and sophisticated control flow methods. This involves us-
ing different types of memory, like volatile DRAM and SRAM for faster access and non-volatile
memory for persistent storage. Cache memory, closest to the CPU, provides the fastest access

times, helping mitigate latency issues.
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Figure 1.4: a: Simplified architecture of a CPU. b: Simplified architecture from a GPU. Both
adapted from the NVIDIA documentation [3].

1.1.4.2 GPU

The Graphics Processing Unit (GPU), presented in Fig. 1.4b, is an essential component in
modern computing systems, originally designed to accelerate the creation of images in frame
buffers intended for output to a display. The objective was to improve the speed and efficiency
of rendering two- and three-dimensional graphics, taking advantage of the inherently parallel
nature of the graphics rendering process where each pixel can be computed independently.
Around the mid-2000s, the potential of GPUs for general-purpose computing started to be ex-
plored. This transformation was catalyzed by the recognition that the same characteristics that
make GPUs suitable for graphics rendering, namely high throughput and parallelism, can also
be harnessed for tasks outside the realm of image rendering. One such field that has signifi-

cantly benefited from this transition is machine learning, particularly the training of deep neu-
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ral networks, a process that involves performing a vast number of mathematical operations
that can be executed concurrently.

Compared to CPUs, GPUs are equipped with a greater number of cores, albeit simpler ones.
While CPUs are designed for general-purpose computing and can handle a wide variety of tasks
efficiently, GPUs are specifically built for performing a large number of similar computations
simultaneously. This makes GPUs significantly faster than CPUs for tasks like matrix opera-
tions that are integral to neural network training. However, despite the significant advantages,
there are still limitations to GPU usage. One key limitation is memory bandwidth. Even though
GPUs have high-speed memory, the sheer amount of data processed in tasks like deep learn-
ing can result in a bottleneck. Another issue is latency. While individual operations are faster,
the time taken to begin the operation can be longer, an aspect known as GPU kernel launch
latency. Moreover, data transfer times between the GPU and the main system memory can also

introduce delays.

1.1.4.3 Requirement for Computing Deep learning

Types of operations performed during learning The computational demands of deep learn-
ing are multifaceted, encompassing a variety of operations that require specialized hardware
capabilities. At the heart of deep learning algorithms are matrix multiplications and vector
additions, operations that are efficiently executed on Graphics Processing Units (GPUs) due
to their inherent parallelism [99]. Central Processing Units (CPUs), on the other hand, are
typically responsible for data loading and preprocessing, task scheduling, and handling in-
put/output operations. The interplay between these different types of hardware is crucial for
the efficient execution of deep learning tasks.

Memory access is another critical aspect of deep learning computation. The model’s pa-
rameters, such as weights and biases, along with input data and intermediate computations,
are stored in memory. The processor fetches these elements for computation, making effi-
cient memory access patterns and caching mechanisms vital for reducing memory latency and
maximizing data throughput. However, the rate at which data can be transferred between the
processing unit and the memory unit, often referred to as the "memory wall," represents a
fundamental limitation of modern computers [100]. In fact, for many computing tasks, the
majority of energy consumption and time are attributed to data movement rather than to the

computation itself [101].

Von Neumann bottleneck Most Al models rely on large datasets for training, which often
surpass the memory capacity of even the most advanced GPUs. Furthermore, the size of the Al
models can be so large that they exceed the available GPU memory, necessitating flash storage
and clever scheduling of training batches to mitigate latency issues. However, these solutions
do not address the high energy cost associated with constant data movement between mem-

ory and processors, a challenge often referred to as the von Neumann bottleneck, see Fig. 1.5a.
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Each iteration of the training process involves reading the model parameters from memory to
compute the gradient of the loss function, and then writing the updated parameters back to
memory. This constant data transfer accounts for a significant portion of the total energy con-

sumption of deep learning training, as shown in Fig. 1.5b.
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Figure 1.5: a: Von Neumann bottleneck. b: Energy per operation, adapted from [4].

In conclusion, the rise of Al and deep learning has brought forth significant challenges for
traditional computing architectures. The high power consumption, scalability issues, and the
inherent inefficiencies of the von Neumann architecture have become increasingly apparent.
However, a promising alternative lies in Neuromorphic Computing, a concept introduced by
Carver Mead [102]. Neuromorphic computing, inspired by the structure and function of the
human brain, offers a potential solution to these challenges. These systems are designed to
mimic the brain’s efficient, adaptive, and speedy processing capabilities, making them well-
suited for implementing complex neural network architectures and learning algorithms. Re-
cent developments in neuromorphic hardware, such as IBM’s TrueNorth [103] and Intel’s Loihi
1 [104] and 2 [105], as well as the Spinnaker project [106], have demonstrated the potential of

this approach, which we detail now.

1.2 Taking Inspiration from the brain to realize efficient
hardware

The human brain, with its intricate structure and exceptional capabilities, provides a com-
pelling blueprint for the development of artificial intelligence, computing, and efficient hard-
ware. One of the brain standout features include the brain’s proficiency in pattern recogni-
tion. It seamlessly identifies or classify patterns and establishes connections between diverse

pieces of information. This capability underpins many of our daily tasks, from facial recogni-
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tion to language comprehension and abstract problem-solving. Another key characteristic of
the brain is its capacity to learn and adapt from experience, a process known as neuroplastic-
ity. This involves the formation and reinforcement of new neural connections in response to
new information, demonstrating the brain’s dynamic and adaptable nature. In contrast to tra-
ditional computers that process tasks sequentially, the brain also exhibits a capacity for parallel
processing, allowing for the simultaneous handling of multiple tasks [107]. Despite its complex
structure and ability to handle tasks, the brain exemplifies energy efficiency, with a usage of
approximately 20 W of power (accounting for about 20% of the body’s energy, and 2% of the
body’s weight) [108]. Therefore, studying the brain to get an inkling about what makes it so

efficient is a natural first step to building neuromorphic hardware.

1.2.1 The elements of the brain

The brain is composed of about 50 to 100 billion neurons and between 100 to 1,000 trillion
synapses [109, 110]. Another type of cell is also present in the brain, the glial cells, in about the
same number as neurons. These last cells will not be described in this thesis, but are thought
to contribute to numerous processes such as synaptic strength influence [111]. Neurons and

synapses will be described more in-depth in this section.

1.2.1.1 Neurons and synapses

Neurons Neurons, the key cellular units of the brain’s nervous system, are central to its op-
eration [112]. Each neuron has a body, known as the soma, which houses the cell nucleus, as
shown in Fig. 1.6a. This nucleus oversees standard cellular activities, such as protein synthesis.
Typically, a neuron has an input section and an output section. The input is usually managed
by the dendrites, which are branching tree-like extensions sprouting from the soma receiving
incoming signals. Conversely, the output is handled by the axon, a long projection that car-
ries electrical signals away from the neuron. These signals, known as action potentials, exhibit
a spiking behavior. The soma plays a crucial role in integrating the information received by
the dendrites. If the soma experiences a high enough level of depolarization, it triggers action
potentials, as shown in Fig. 1.6b.

A simplified version of how the spike happens is presented here. At rest, the neuron main-
tains a negative membrane potential (around -70 mV) [113], which is defined as the difference
between the electric potential within a cell and its surroundings. Sodium channels and most
potassium channels are closed, but some potassium channels are open, allowing a slow leak of
potassium ions out of the cell. This helps maintain the resting potential. When the neuron re-
ceives a signal that brings the membrane potential to a certain threshold, voltage-gated sodium
channels open. Sodium ions, which are in a higher concentration outside the cell, rush into the
cell due to the electrochemical gradient. This influx of positive charges rapidly depolarizes the

membrane, causing the membrane potential to become positive. This is the depolarization
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Figure 1.6: a: Simplified architecture of a neuron (credits to Jack Shuai Li). b: Shape of an action
potential with the resting phase, followed by the depolarization, repolarization, and
hyperpolarization phases (reproduced from Ref. [5]).

phase. After a brief delay, the voltage-gated sodium channels close, and voltage-gated potas-
sium channels open. Potassium ions, which are in higher concentration inside the cell, rush
out of the cell, again due to the electrochemical gradient. This efflux of positive charges repo-
larizes the membrane, causing the membrane potential to return to a negative value. This is
the repolarization phase. The voltage-gated potassium channels close slowly, causing a brief
period of hyperpolarization where the membrane potential is more negative than the resting
potential. The membrane potential then returns to the resting state, aided by the activity of the
sodium-potassium pump, which restores the original ion concentrations. After an action po-
tential, the neuron enters a refractory period during which it is less likely to fire another action
potential. This period allows the neuron to reset before it can generate another action poten-
tial. These action potentials are always of the same size and shape, regardless of the strength of
the stimulus that triggered it. This is called the all-or-nothing behavior.

It is important to note that neurons can display a wide range of spiking behaviors, a topic

we will delve into in the next section.
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Figure 1.7: Synapse drawing reproduced from Ref. [6].
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Synapses In the brain, information flows from one neuron to another through connections
known as synapses, presented in Fig. 1.7 [114]. The journey of a signal begins with an action
potential reaching the axon terminal of the presynaptic neuron. This event triggers the opening
of voltage-gated calcium channels in the terminal’s membrane, leading to an influx of calcium
ions. These ions prompt synaptic vesicles, which are small sacs filled with neurotransmitters,
to fuse with the axon terminal’s membrane. This fusion releases neurotransmitters into the
synaptic cleft, the small gap of only a few micrometers between the presynaptic and postsy-
naptic neurons [115]. The neurotransmitters then embark on a short journey across the synap-
tic cleft, eventually binding to specific receptors on the membrane of the postsynaptic neuron.
This binding can cause ion channels on the postsynaptic membrane to open or close, altering
the neuron’s membrane potential. Depending on the type of neurotransmitter and receptor,
this can either excite the postsynaptic neuron, making it more likely to fire an action potential,
or inhibit it, making it less likely to fire. Finally, the neurotransmitters in the synaptic cleft are
cleared away. They may be taken back up into the presynaptic neuron, a process known as
reuptake, broken down by enzymes, or simply diffuse away. This ends the signal, resetting the

synapse for the next wave of communication [116].

1.2.1.2 Neuronal behaviors observation and modeling

Neuronal behaviors The behavior of a neuron can be influenced by a multitude of factors
such as its type, location within the brain, the nature of the stimulus it receives, and the pres-
ence of any modulatory signals. In this context, we will explore various neuronal behaviors,
drawing on the work of Izhikevich [7].

Consider tonic firing, a behavior characterized by a steady, uninterrupted firing pattern de-
void of distinct bursting behavior. Here, neurons generate action potentials at a consistent
rate, typically in response to sustained depolarization (refer to Fig. 1.8 (A)). Contrastingly, pha-
sic spiking involves a neuron firing a single spike at the onset of a stimulus, failing to fire again
despite continued stimulation (Fig. 1.8 (B)). Tonic bursting, akin to tonic spiking, involves the
neuron firing bursts of spikes at a regular frequency instead of individual spikes (Fig. 1.8 (C)).
Phasic bursting, on the other hand, sees a neuron firing a burst of spikes at the stimulus onset,
but not firing again despite continued stimulation (Fig. 1.8 (D)). In mixed mode behavior, a
neuron alternates between firing individual spikes and bursts of spikes (Fig. 1.8 (E)). In spike
[frequency adaptation, the neuron initially fires spikes at a high frequency, which decreases over
time despite a constant stimulus (Fig. 1.8 (F)). Class I excitability is characterized by a neuron
firing spikes at a frequency that smoothly increases as the stimulus intensity rises (Fig. 1.8 (G)).
In contrast, class 2 excitability sees the neuron firing spikes at a frequency that abruptly jumps
to a high value as the stimulus intensity crosses a certain threshold (Fig. 1.8 (H)). In spike la-
tency behavior, the neuron remains silent for a period after the stimulus onset, fires a single
spike or burst, and then returns to silence (Fig. 1.8 (I)). Subthreshold oscillations refer to os-

cillations in a neuron’s membrane potential that do not reach the threshold for triggering an



1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 25

{A) tonic spiking (B} phasic spiking (C} tonic bursting (D) phasiz bursting
b
inpu do-curent = = =
Bhms
(E) mived mode {F) gﬁ!ﬁ;rlﬁl&ﬂw (G) Class 1 excitable iH) Class 2 excitabla
o # AAJV _-FJA/IJV‘/“JJJ J/“JJJU”
(I} gplke latancy ) gfslgfllarﬁﬁglﬂ B (K} regonator (L} irtegrator
\_—M‘I—
| I i = ] in " M= i

Figure 1.8: Twelve distinct firing patterns observed in individual neurons within the mam-
malian cortex [7]

action potential (Fig. 1.8 (])). A resonator neuron responds more strongly to oscillatory inputs
at certain frequencies (Fig. 1.8 (K)), while an integrator neuron responds equally to inputs at all
frequencies, integrating the inputs and firing if these inputs are above a threshold (Fig. 1.8 (L)).

Lastly, stochastic spiking is a type of neuronal firing where the timing of action potentials is
not strictly deterministic but has a random component, as shown in Fig. 1.9. This randomness
can be attributed to various factors, including inherent noise in the biochemical processes in-
volved in generating action potentials, the random arrival times of inputs to the neuron, and

the complex, nonlinear dynamics of the neuron’s membrane potential.

Neuronal models The development of accurate neuronal models holds significant impor-
tance in the fields of neuroscience and neuromorphic computing. These models serve as a
fundamental tool for deciphering the intricate workings of neurons, elucidating how they pro-
cess, transmit, and interact with information. This understanding can subsequently shed light
on the complex orchestration of higher-level brain functions. Moreover, neuronal models act
as a compass for scientific research. They assist in interpreting experimental data, providing

a theoretical framework to make sense of observed results. In terms of practical applications,
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Figure 1.9: Stochastic firing in rodent trigeminal neurons [8]. Cells were progressively depolar-
ized to potentials near and above the spike threshold (-45 mV). TIntermittent dis-
charges occurred near the threshold. Stochastic bursting occurred when neurons
were biased to suprathreshold potentials (-39 mV holding current, top trace).

neuronal models can predict neuronal responses under varying conditions or stimuli. This
predictive power has far-reaching implications, from advancing our basic understanding of the
brain to paving the way for novel treatments for neurological disorders.

Lastly, the importance of neuronal models extends to the development of neuromorphic
systems. Robust and simple neuronal models are instrumental in refining the design and en-
hancing the performance of these systems.

Leaky Integrate-and-Fire The Leaky Integrate-and-Fire (LIF) model was first introduced
by Lapicque in 1907, making it one of the earliest models of neuronal behavior [117]. Despite its
simplicity, it captures the essential behavior of a neuron: the integration of inputs and the gen-
eration of action potentials, or spikes, when the membrane potential reaches a certain thresh-
old. In the LIF model, a neuron is represented as an electrical circuit with a resistor R and a
capacitor C in parallel. The resistor represents the leakiness of the neuron’s membrane, which
allows ions to flow in and out, while the capacitor represents the membrane’s ability to store
electrical charge. The model is described by a single differential equation, which represents
the balance between the input I to the neuron, the leakage of charge through the membrane,

and the change in the neuron’s membrane potential u over time.

du 1
91" RC (= [u(t) — urest] + RI(1)) (1.8)
When the membrane potential u reaches a certain threshold u;j, the neuron is said to fire
an action potential, and the membrane potential is then reset to a resting value u,s;.
In accordance with the Izhikevich and Hodgkin neuron classification system [7, 118], a
Leaky Integrate-and-Fire (LIF) neuron typically falls within the category known as Class 1 neu-

rons. Class 1 neurons are distinguished by their continuous membrane potential dynamics,
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which do not involve spiking until a specific threshold is attained. Once this threshold is reached,
these neurons generate a spike and subsequently reset their membrane potential.

The LIF model is computationally efficient and easy to analyze, making it a popular choice
for large-scale simulations of neural networks. However, it is a highly simplified model that
does not capture many aspects of real neuronal behavior, such as the detailed dynamics of ac-
tion potentials or the effects of different types of ion channels. Despite these limitations, the
LIF model provides a valuable tool for understanding the basic principles of neuronal compu-

tation.

Hodgkin-Huxley model The Hodgkin-Huxley model, developed in the 1950s, is a mathemat-
ical framework that describes how neurons generate and propagate electrical signals, or action
potentials [119]. This model was groundbreaking in its representation of the neuron’s mem-
brane as an electrical circuit, with key components that mirror the biological structures of
the neuron. It reproduces all the Izhikevich behaviors mentioned in this section.The model
includes a capacitance, which symbolizes the neuron membrane’s ability to store electrical
charge. It also features resistors, which represent the ion channels that allow sodium and
potassium ions to flow in and out of the neuron, which are responsible for the electrical signal.
Additionally, batteries in the model represent the driving force for these ions to move across
the membrane, known as the electrochemical gradient. The Hodgkin-Huxley model uses a
set of four differential equations to describe the changes in the conductances of the sodium
and potassium channels over time, and how these changes influence the membrane potential.
These equations rely on several parameters, such as the maximum conductances of the ion
channels and the membrane capacitance, which can be determined through experiments.
While the Hodgkin-Huxley model has been instrumental in our understanding of neuronal
activity, it is also complex and computationally demanding. As a result, simpler models are
often used for neural networks, such as the FitzHugh-Nagumo model which will be presented

below.

FitzHugh-Nagumo model The FitzHugh-Nagumo model is a simplified mathematical model
of neuronal activity that was developed as a more computationally tractable alternative to the
Hodgkin-Huxley model. Introduced independently by FitzHugh in 1961 [120] and by Nagumo
and his colleagues in 1962 [121], this model reduces the complex dynamics of a neuron to
a two-dimensional system, making it easier to analyze and simulate. The FitzHugh-Nagumo
model captures the essential features of action potential generation and propagation in neu-
rons. It consists of two variables: one representing the membrane potential of the neuron, and
the other representing a recovery variable, which accounts for the activation and inactivation
of the ion channels that help generate the action potential. The model is described by a pair
of nonlinear differential equations [122]. The first equation represents the fast dynamics of the

membrane potential, including the rapid upstroke and downstroke of the action potential. The
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second equation represents the slower dynamics of the recovery variable. While the FitzHugh-
Nagumo model is much simpler than the Hodgkin-Huxley model, it still captures the key fea-
ture of neuronal excitability: the generation of action potentials in response to inputs above a
certain threshold. This makes it a useful tool for studying the behavior of individual neurons
and the dynamics of neural networks. The FitzHugh-Nagumo model can reproduce behaviors
associated with Class 1 and Class 2 neurons in the Izhikevich classification system, depending
on the parameters used. Class 1-like behaviors have been described in the LIF model section.
Class 2 neurons are characterized by the repetitive firing of action potentials in response to a

sustained input, as well as bursting behaviors or irregular spiking.

Learning Mechanisms in the Brain The process by which the brain learns is a complex
and multifaceted phenomenon, and it remains an active area of research. Although the output
amplitude of individual neurons is entirely digital due to their all-or-nothing behavior, most
scientists believe that the brain encodes information through the precise timing and pattern
of spikes across large groups of neurons. However, the exact learning algorithm employed by
the brain is not yet fully understood. Recent studies in neuroscience have suggested that deep
networks trained using back-propagation can more accurately represent the inferior tempo-
ral cortex found in actual neural tissues than models trained using other methods [123-125].
This suggests that the brain might employ some form of gradient-based learning. However, the
mechanism by which the brain would execute this optimization remains unclear. This chal-
lenge is known as the ’credit assignment’ problem, which involves determining how changes
to hidden neurons should be made to drive the output neurons in the desired direction. This
problem is particularly complex because each hidden neuron influences the output in a highly
intricate manner [125].

Both backpropagation and BackPropagation Through Time (BPTT, standard algorithm for
training RNNs) [126] offer a solution to this problem, but they do so in a way that is not con-
sidered biologically plausible for two main reasons. Firstly, an artificial neural network trained
with backpropagation performs two types of computation: a forward pass that propagates neu-
ral activation, and a backward pass that propagates error vectors. This is problematic because
the quantities propagated during the backward pass, denoted as §, can be signed and poten-
tially extreme-valued, either very small or very large. Moreover, the computing graph of the
backward pass does not align with the typical model of neural computation, as the non-linear
activation function is replaced by a linear element-wise product of point-wise derivatives of
forward activations. This necessitates the storage of information about the forward pass. Sec-
ondly, the backpropagation of error gradients requires the use of the transposed version of the
forward synaptic weights. This issue, known as the 'weight transport’ problem, implies that an
efficient hardware implementation of back-propagation would need to use the same physical
devices to perform two different computations [127, 128]. Moreover, BackProp is non-local as

each weight update takes into account the collective influence of the entire network’s struc-
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ture and connections. It necessitates the storing of information during both the forward and
the backward passes rather than being solely determined by local information near the spe-
cific weight being updated, which is a hindrance to on-chip learning. In the following section,
we will explore biologically plausible learning algorithms that could potentially be used by the

brain.

1.2.2 Bio-plausible learning

The pursuit of understanding the brain’s learning mechanisms unifies the fields of computa-
tional neuroscience and deep learning, despite their differing methodologies and approaches.
Deep learning, heavily influenced by statistical learning theory, primarily employs rate-based
neurons that perform continuous non-linear mappings of their inputs, often interpreted as
firing rates. This approach has led to the development of powerful learning algorithms such
as backpropagation, which has been instrumental in the success of deep learning. However,
we have seen that backpropagation’s reliance on symmetric weight matrices for forward and
backward passes (known as the weight transport problem), its non-local nature, and the syn-
chronous nature of its updates render it biologically implausible. On the other hand, com-
putational neuroscience aims to model the brain’s functions more faithfully. It often employs
spiking neural networks, where neurons communicate through discrete spikes, more closely
mimicking biological neurons. This field’s focus is on understanding and replicating the brain’s
dynamics, which are event-driven and fundamentally different from the static architectures
commonly used in deep learning [2]. Because of the substrate and nature of the processing,
the brain is inherently noisy, and the information is propagated at low precision, which is very
different from the highly accurate precision of computers [129]. In this section, we introduce
learning algorithms that draw inspiration from both the biological plausibility of computa-
tional neuroscience and the practical effectiveness of deep learning. We adopt a broad inter-
pretation of bio-plausibility. An algorithm is considered more bio-plausible than BackPropa-
gation if it meets one or more of the following criteria: it is local (weight updates depend only
on information available to the neuron); it requires similar operations or circuitry for both in-
ference and learning (making them suitable for implementation on neuromorphic hardware);

or it allows for different forward and backward weights.

1.2.2.1 Rate-based algorithms

In this section, we first focus on rate-based biologically plausible algorithms.

Local learning rules but symmetric weights Introduced in 1985 Contrastive Hebbian Learn-
ing (CHL) is a learning algorithm that computes weight updates based on neural activations
[130], and was initially used to train Boltzmann machines, which are probabilistic energy-based

models and stochastic in nature. The weight update is computed as:



30 CHAPTER 1: STATE OF THE ART

AWij:n(U;rU}r—Ui_U;), (1.9)

where o and o denote respectively the activations of neuron i in the positive and negative
phases. During the negative phase, inputs are clamped but other neurons evolve freely accord-
ing to their dynamics until an equilibrium point is reached. During the negative phase, output
units are also clamped, but to the corresponding targets. The system evolves until a new equi-
librium point is reached. The weight update can then be split into a negative part whose goal is
to increase the energy of the pattern one wants to unlearn, and into a positive part whose goal
is to decrease the energy of the correct pattern. CHL was adapted to deterministic networks
[131-133] and is considered a more biologically plausible alternative to back-propagation as
the update is computed only with one type of neural computation.

From then on, several algorithms related to CHL have been introduced, such as Recircula-
tion [134] and General Recirculation [135]. In 2003, Xie et al. showed that backpropagation and
CHL were equivalent in the case of feedback connections expect from a small scalar prefactor
[136].

In 2015, Bengio and Fischer showed that when the output is slightly nudged in the second
phase, the early change in neural activation corresponds to the propagation of error derivatives
[137].

This idea is taken even further by Scellier and Bengio in 2017 with their learning algorithm
Equilibrium Propagation (EqProp or EP) [138], EqProp is based on the principle of energy min-
imization. It operates in two phases: a free phase and a weakly-clamped phase. In the free
phase, the network is left to reach a stable state or equilibrium where the total energy of the
system is minimized. This is achieved by allowing the neurons in the network to update their
states iteratively until the change in the states becomes negligibly small. The energy function
is defined in terms of the states of the neurons and the weights of the connections between
them. In the weakly-clamped phase, a small external force is applied to the output neurons to
nudge the network towards the desired output. The network then adjusts its states to reach a
new equilibrium. The change in the states of the neurons from the free phase to the weakly-
clamped phase is used to update the weights of the network. The key advantage of EqProp is
that it only requires local information for weight updates, making it more biologically plausible
than backpropagation. A more detailed explanation of Equilibrium Propagation will be given
in Chapter 3, as this algorithm will be at the heart of this PhD thesis.

Forward weights do not have to match backward weights for learning rules to be local Tar-
get Propagation (TP) is alearning algorithm proposed by Bengio in 2014 as a biologically plausi-
ble alternative to backpropagation for training deep neural networks, as the the weight updates
are based on local neural activation, and no symmetry between the forward and backward con-
nections is needed [139]. The key idea of target propagation is to define a "target" state for each

layer in the network, and then update the weights in each layer to make the actual state of that
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layer closer to its target state. This is done in a top-down manner, starting from the output
layer and moving towards the input layer. However, to define the target state for each layer,
we need to invert the operation performed by the layer. This can be challenging, especially
when the number of neurons (i.e., the dimension) changes from one layer to the next. To over-
come this challenge, target propagation introduces trainable feedback weights, which are used
to learn approximate inverse functions for each layer. These inverse functions are then used
to compute the target states. In the original version of target propagation, the target for the
second-to-last layer is computed by backpropagating the global loss (i.e., the difference be-
tween the actual output of the network and the desired output). The targets for the remaining
layers are computed by applying the approximate inverses to the already computed targets.
Once all the targets are computed, the forward and backward weights are updated by minimiz-
ing layer-wise, local losses. The forward loss is the difference between the actual output of a
layer and its target state, while the backward loss is related to the accuracy of the approximate
inverse function.

However, the original target propagation algorithm’s reliance on approximating inverse op-
erations to compute the target states for each layer can lead to poor targets and, consequently,
poor learning performance [139]. To mitigate this, Lee et al. introduced a variant of target prop-
agation called "difference target propagation" [140]. The key idea is to add a linear correction
term to the targets to compensate for the errors introduced by the imperfect inversion. With
this modification, difference target propagation has been shown to successfully train multi-
layer perceptrons (MLPs) on the MNIST dataset, a popular benchmark for machine learning
algorithms. Its performance closely matches that of backpropagation. However, the problem
of imperfect inversions becomes especially noticeable in the final layer for classification tasks
that involve a small number of classes, such as the 10 classes found in datasets like MNIST [141]
and CIFAR-10 [142].

Feedback Alignment (FA) is a learning algorithm proposed by Lillicrap et al. in 2016 as an
alternative to backpropagation for training artificial neural networks [143]. The key innovation
of FA is that it eliminates the need for weight symmetry between the forward and backward
passes and also uses a local update rule. FA uses a fixed, random feedback weights to propagate
the error signal from the output layer to the hidden layers during the backward pass. Despite
this randomness, the network is still able to learn useful representations and perform well on
various tasks. The advantage of FA is that it only requires local information for weight updates,
making it more biologically plausible than backpropagation. Another version of this algorithm,
called Direct Feedback Alignment (DFA), was proposed by Nekland in 2016 [144]. DFA, like FA,
is designed to be a more biologically plausible alternative to backpropagation. DFA directly
propagates the error signal from the output layer to all preceding layers, bypassing the need
for sequential computation of the error signal. This direct propagation is achieved by using a
fixed, random matrix for each layer, which is used to project the error signal from the output

layer to that layer. Despite the randomness, the network is still able to learn and perform well



32 CHAPTER 1: STATE OF THE ART

on various tasks. The advantage of DFA is that it simplifies the learning process by eliminating
the need for sequential error propagation, making it more biologically plausible and potentially
more efficient than backpropagation. However, as with FA, the performance of DFA can be less
robust than backpropagation for deeper networks or more complex tasks, and understanding
its strengths and limitations is an ongoing area of research.

Bartunov et al. demonstrated that feedback alignment and difference target propagation
closely match back propagation on MNIST and CIFAR-10 on MLPs and ’locally connected’
architectures, which are biologically more plausible convolutional layers without sharing the
kernel weights across space [145]. However, these algorithms do not match back-propagation
on ImageNet, indicating that their performance can be less robust than backpropagation for

deeper networks or more complex tasks.

Eliminating the need for weight symmetry by having two forward passes In an invited talk
presented at NeurIPS 2022 [146], Hinton introduced the "forward-forward algorithm" (FF), a
new learning algorithm for artificial neural networks that draws inspiration from our under-
standing of neural activations in the brain. This algorithm aims to replace the forward and
backward passes of backpropagation with two forward passes. These two passes are similar
but work on different data and have opposite objectives. The "positive pass" operates on real
data and adjusts the network’s weights to increase a function called the "goodness" of each
layer. The "negative pass" operates on negative data and adjusts the weights to reduce good-
ness. This process works well for a neural network with a single hidden layer. For a multi-layer
deep learning model, the output of each hidden layer is normalized before being passed on
to the next one. The FF algorithm proves that knowing precisely the non-linearities present in
the forward computation is not necessary, which is more bio-plausible in that sense than back-

propagation which requires an exact knowledge of the operation and their derivatives.

One of the main differences between the algorithms aforementionned and the function-
ning of the brain is first and foremost the use of continuous-valued neurons instead of spiking

neurons. The following section will present spike-base learning algorithms.

1.2.2.2 Spike-based algorithms

In recent years, there has been a surge of interest in developing algorithms for training spik-
ing neural networks, where the latency between spikes is not fixed but varies in a way that
is computationally significant, much like the functioning of the brain. These algorithms are
typically adaptations of gradient-based techniques that have been successful in training rate-
based deep networks. They can be broadly divided into two categories [147]. The first category
is spike-timing based representation, where the exact spiking times of neurons, which are real-
valued, are optimized using gradient descent. The second category is activity-based represen-

tation, where the network’s time step is discrete, akin to RNNs. This makes the spiking times
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non-differentiable, and surrogate gradients are used for optimization [148, 149].

STDP The mostwell-known spike-based learning algorithm is Spike-Timing-Dependent Plas-
ticity (STDP), believed to be a key mechanism for synaptic learning and adaptation. Introduced
in the late 1990s and early 2000s through experimental neuroscience [150, 151], STDP is a form
of Hebbian learning that takes into account the precise timing of spikes. In STDP, the change
in synaptic weight depends on the relative timing of the pre-synaptic and post-synaptic spikes.
If the pre-synaptic neuron fires just before the post-synaptic neuron (causal order), the synap-
tic weight is increased. Conversely, if the pre-synaptic neuron fires just after the post-synaptic
neuron (anti-causal order), the synaptic weight is decreased. This rule is sometimes summa-
rized by the phrase "fire together, wire together; fire out of sync, lose your link". STDP provides
a biologically plausible learning rule for spiking neural networks, which are models of neural
networks that aim to more closely mimic the behavior of biological neurons. However, trans-
lating STDP into an effective learning algorithm for artificial neural networks is a challenging
task and an active area of research, as STDP has been primarily studied in the context of single-
layer networks or small-scale multi-layer networks. It is not clear how to effectively use STDP
to train deep networks, which have been shown to be highly effective for many deep learning

tasks.

Alternatives to STDP Eligibility Propagation (e-prop) is a learning algorithm introduced by
Bellec et al. in 2020 as a biologically plausible method for training recurrent neural networks
(RNNs) [152]. The e-prop algorithm is inspired by the concept of eligibility traces in reinforce-
ment learning and the spike-timing-dependent plasticity (STDP) observed in biological neu-
rons. In e-prop, each synapse in the network maintains an eligibility trace, which is a record of
the recent pre- and post-synaptic neuronal activity. The eligibility trace captures the informa-
tion necessary for weight updates and is updated locally at each time step based on the current
neuronal activities. The learning signal, which is equivalent to the error term in backpropa-
gation, is a global signal that is broadcast to all neurons in the network. The weight updates
are then computed as the product of the learning signal and the eligibility trace. This allows
the network to perform credit assignments and learn temporal dependencies in the input data.
The key advantage of e-prop is that it only requires local information for updating the eligi-
bility traces and can be implemented efficiently in spiking neural networks. This makes it a
promising candidate for implementation in neuromorphic hardware.

The EqSpike algorithm is a spike-based version of EqProp, introduced in 2021 by Martin et
al. [153]. The neurons are leaky-integrate and fire neurons. The first layer receives a constant
input current (the values of the pixels of the MNIST image to classify),all other neurons receive
input which is the weighted sum of the spiking output of other neurons, and some constant
current, either a bias or the nudging term (for the nudge phase). The learning rule is the follow-

ing dW;; = pip;j+ pipi, where p is the firing rate of the neuron. Here, the firing rate is either 0
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if the neuron does not spike or 1 if it does. The derivative p has to be smoothed out with a low
pass filter. The key advantage of EqSpike is that it performs all these computations locally in
space, meaning that each neuron only needs information about its own state and the states of
the neurons it’s directly connected to. But it is also local in time, as no value needs to be stored
during learning.

In 2021, Payeur introduced a variant of EqProp known as BurstProp [154]. This novel ap-
proach is grounded in the concept of burst multiplexing, where single spikes and high-frequency
bursts carry different types of information, effectively creating two distinct communication
channels within each neuron. This allows for the simultaneous transmission of feedforward
data and feedback errors. BurstProp is designed to be biologically plausible, incorporating
features such as dendritic compartments, short-term plasticity, inhibitory microcircuits, and
burst-dependent plasticity. The authors demonstrated the effectiveness of a simplified version
of their model by achieving competitive results on large-scale machine learning benchmarks,

including ImageNet.

Conclusion of the section The brain, with its remarkable learning efficiency and low energy
consumption, serves as a profound inspiration for the development of learning algorithms and
energy-efficient hardware. It is this biological marvel that neuromorphic computing seeks to
emulate, necessitating the optimization of both learning algorithms and hardware devices and
circuitry. As we transition from understanding the brain’s mechanisms and bio-plausible algo-
rithms, we now turn our attention to the hardware aspect. The goal is to harness the principles
that make the brain so efficient and translate them into practical, energy-efficient hardware
designs for learning. This endeavor forms the next focus of our exploration, as we delve into

the realm of neuromorphic computing.

1.3 Hardware adapted for Al

Definition and purpose Neuromorphic computing refers to the design and development of
computational systems inspired by the structure, function, and efficiency of the biological
brain. These systems aim to mimic the brain’s ability to process and learn from information in
a highly parallel and energy-efficient manner, offering promising solutions for a range of com-
plex, real-world applications. Even if inference-only neuromorphic hardware is very common,
a key goal of neuromorphic computing is the ability to perform both inference and training di-
rectly on the chip. Performing these operations on-chip, rather than transferring data back and
forth between the chip and an external computer, can significantly increase speed, reduce en-
ergy consumption, and enhance privacy and security. The ability to perform training on-chip
can be particularly important for edge Al applications, where some devices need to be able to
learn and adapt in real time, often in resource-constrained environments. On-chip training al-

lows these devices to learn from new data as it becomes available, without needing to send the
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data to a central server for processing.

Currently, most neuromorphic hardware is based on CMOS (Complementary Metal-Oxide-
Semiconductor) technology, which has been the industry standard for several decades. The
"More than Moore" paradigm recognizes that continuing the miniaturization of transistors (as
predicted by Moore’s Law [155]) is not sufficient to meet the growing demands for computa-
tional power and energy efficiency. It suggests that we need to explore new types of devices,
materials, and architectures. However, as we push the boundaries of what is possible with
neuromorphic computing, there is a growing need to explore beyond CMOS and investigate
emerging devices and technologies [12]. Indeed, CMOS technology is ill-suited for neuromor-
phic computing due to its digital nature, limited parallelism, absence of non-volatile memory,
lack of fault tolerance, and constraints on custom, compact designs required for neuromorphic

systems.

1.3.1 Emerging devices

1.3.1.1 What makes a good hardware synapse or a good hardware neuron candi-
date?

In the field of neuromorphic computing, the design of hardware neurons and synapses is guided
by several key principles. Firstly, low power consumption is paramount, as one of the primary
advantages of neuromorphic computing is its potential for energy efficiency. This means that
an ideal hardware candidate should consume minimal power, not only during operation but
also in standby mode. Secondly, scalability is crucial. The hardware should be designed in
such a way that it can be manufactured at small scales, while also allowing for easy integra-
tion into larger systems. This scalability is essential for supporting large networks of neurons
and synapses. Thirdly, reliability and durability are important considerations. The hardware
should be robust, capable of withstanding a wide range of operating conditions and maintain-
ing its performance over time. Compatibility with CMOS technology is another key factor, as
this allows for leveraging existing manufacturing infrastructure and integrating with other elec-
tronic components. Lastly, the hardware should be capable of operating at sufficient speeds to
support real-time processing requirements.

In the pursuit of designing artificial synapses for neuromorphic computing, whether in
digital or analog frameworks, several key requirements emerge. These requirements are in-
spired by the functional characteristics of biological synapses and the practical constraints
of hardware implementation, forming a bridge between the worlds of neuroscience and en-
gineering. Biological synapses are characterized by their capacity at adapting their strength
depending on the pre and post-synaptic neurons, a feature that allows for complex and nu-
anced network behaviors. This is mirrored in the design of artificial synapses, which should

be capable of evolving between multi-level states under external stimuli, see Fig. 1.10b and c.
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This characteristic is a reflection of synaptic plasticity, a key feature of biological learning and
memory. Hardware analog synapses, which can be used for realizing any kind of ANNs, can
have many different states [156], and the more the better. Hardware binary synapses only have
two states, and can only be used for realizing Binarized Neural Networks (BNN) [157]. Non-
volatility, the ability of a synapse to retain its state even when power is not supplied, is another
crucial feature [158, 159], as illustrated in Fig. 1.10g. This mirrors the long-term memory stor-
age capability of biological systems and is particularly important for certain applications where
power supply may be intermittent or constrained. The control of the synaptic device with an
external parameter is essential for the precise modulation of synaptic strength during learning.
This control should ideally exhibit a linear relationship with the synaptic weight as presented
in Fig. 1.10d, allowing for precise changes during learning, much like the precise modulation
of synaptic strength that occurs during biological learning [160].

Hardware neurons are expected to reproduce the most neuronal behaviors to allow the
network to have the complexity necessary to mimic the brain.

For both hardware neurons and synapses, having simple mathematical models that appro-
priately describe the behaviors of the physical components is crucial. Indeed, being able to
predict the behaviors when integrating into an array or when subject to different conditions of
voltage, current, but also of temperature is an important step into the development of efficient

neuromorphic hardware.

1.3.1.2 Memristor synapses and neurons

A memristor, a term derived from "memory resistor", is a type of passive circuit element that
maintains a relationship between the time integrals of current and voltage across a two-terminal
element. Chua first postulated it in 1971 based on symmetry arguments in the relationships
between fundamental circuit variables (here electric charge and magnetic flux) [161]. The key
characteristic of a memristor is that its resistance can be adjusted and that it "remembers" this
resistance even when power is turned off. However, it was not until 2008 that a team from HP
Labs led by Williams reported the development of a switching memristor based on a thin film
of titanium dioxide [162]. Critics opposed that this was not the fundamental circuit element
described by Chua, but a device with a particular non-linear current-voltage characteristic.
However, a broader definition of memristive devices is usually used, which encompasses all
two-terminal devices showing a pinched hysteresis loop in the I-V plane, and can be either
non-volatile or volatile [163, 164]. This definition allows for numerous different families of de-

vices to be classified as memristive devices [165].
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Figure 1.10:

a: A comparison of the qualitative device requirements for three potential applica-
tions. The red line indicates experimental NVM data from previous studies. b-h:
Conceptual representations of device requirements for computing: analog states
(b), on/off ratio (c), linearity (d), symmetry (e), endurance (f), retention (g), and
yield (h). The dashed and solid curves in b—e show the conductance adjustment of
an analog NVM device. The conductance modifications of an NVM device during
the training process typically occur within a partial scope rather than across the full
range of the conductance window (f). After NVM devices are adjusted to various
conductance levels, the conductance of the devices can vary over time, potentially
leading to overlap between two levels (g). NVM devices that fail to reach the target
conductance level are considered unsuccessful (h).Reproduced from Ref. [9]
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Resistive memristors Before the proclaimed discovery of the resistive memristor, resistive
materials had already been widely used in Resistive Random Access Memories (ReRAM). Today
ReRAM and "nonvolatile memristors" are used as synonyms in most of the literature. Their
storage function is based on a physical mechanism called resistive switching, which is respon-
sible for the transition from a High Resistive State (HRS, or 'OFF’ state) to a Low Resistive State
(LRS or ’ON’ state) under the application of a specific voltage value [165]. The transition from
HRS to LRS is called the SET process when, whereas the transition from LRS to HRS is named
RESET. Usually, a compliance current I.. is applied during the SET process to the device to
avoid excessive current which would cause an irreversible hard breakdown [166].

Two different switching modes exist: the bipolar and the unipolar mode. Unipolar switch-
ing characterizes a switching that is independent of the voltage or current polarity. In contrast,
for bipolar switching, two different polarities are required for the SET and the RESET processes.

The two different cases are presented in Fig. 1.11.

Unipolar switching Bipolar switching

SET? ‘ \Y) : V

RESET A

= LRS = HRS ==+ Switching

Figure 1.11: Adapted from [10]

Most memristors require an electro-forming process, where a high current or a high voltage
is first applied to the pristine HRS material in order to initiate the first LRS state (a compliance
current is most often used during this process as well). This can be an issue for integration.
That is why a part of the research focuses on designing forming-free devices.

Two different types of memristors exist: the original non-volatile memristors which are
good candidates for synapses and volatile memristors which are good candidates for neurons.
Their typical I-V characteristics are shown in Fig. 1.12.

Four major types of resistive devices for which the switching mechanism is due to redox

reactions, nanionic transport process or insulator-metal transitions [167, 168].

Electrochemical metallization ECM bipolar switching mechanism is based on the elec-

trochemical dissolution and deposition of an active electrode metal. Typically, an ECM cell,
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Figure 1.12: Left: Typical I-V characteristic of a resistive switching non-volatile memristor.
Right: Typical I-V characteristic of a voltage-controlled threshold switching (TS)
volatile memristor. Adapted from [11]

also called conductive bridging random access memory (CBRAM), is made of an active elec-
trode of metal M such as Ag, Cu, or Ni, an electrochemically inert electrode such as Pt, with
a thin film of solid electrolyte in between, which is an M** ion conductor [169]. In the initial
HRS, no electrodeposit of the metal M is present on the inert electrode. When sufficiently high
positive voltage V is applied to the active electrode, the metal M of the active electrode under-
goes an anodic dissolution, giving rise to metal cations in the solid electrolyte thin film. Under
a high electric field, these cations drift across the film, reaching the inert electrode. There, they
undergo a reduction and electro-crystallization on the surface, therefore, a metallic filament
connects both electrodes, leading to a LRS. Under sufficient a negative voltage, the electro-
chemical dissolution of the metallic filament leads to a HRS.
ECM-based spiking neurons also exist [170, 171].

Thermochemical Inthe context of resistive memories, a unipolar thermochemical mech-
anism, or thermochemical memory effect (TCM), is a process that leverages heat to control the
state of the memory [172]. This mechanism is also often referred to as a fuse-antifuse mech-
anism [173]. The structure required to achieve thermochemical switching is symmetric, in-
volving two inert electrode contrary to VCM. However, the same materials and systems can
be used, simply by rendering the structure symmetric, with two inert electrodes. The forming
and SET mechanisms are identical in both cases, with the creation of a filament of oxygen va-
cancies. However, the RESET process differs. Here, the current in the 'on’ state increases to a
point where it generates enough heat to locally destroy the filament. This effectively resets’ the
memory, returning it to its initial HRS state. This switching is therefore unipolar, and a typical
I-V characteristic can be found in Fig. 1.11 However, this process often involves high reset cur-
rents and has a limited endurance, typically ranging from a few tens to a few hundred cycles.

As aresult, the focus in recent years has shifted towards valence change-based concepts, which
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tend to offer better performance and longevity [174], and which will be presented below.

Mott memristors Mott memristors leverage this Mott transition to achieve their memris-
tive behavior. By applying a voltage across the device, it is possible to induce a Mott transition
and change the device’s resistance state. This change in resistance can then be read out as a
change in the device’s conductance, allowing it to be used as a spiking neuron when a capac-
itance is put in parallel. One of the most commonly studied materials for Mott memristors is
vanadium dioxide (VO,) [175, 176]. VO2 undergoes a Mott transition near room temperature,
which makes it a convenient material for these devices. By applying a voltage across a thin film
of VO,, it’s possible to induce a Mott transition and change the film’s resistance state [177].
Another type of volatile memristor used as a neuron is based on Nb0,, and is sometimes clas-
sified as Mott memristor [178]. However the physical mechanism is debated but most believe
it is not due to an insulator-metal transition, but caused by an increase in the oxide electrical

conductivity due to local Joule heating [179].

Valence change memristors Valence Change Mechanism (VCM) memristors, a type of
resistive memory, typically employ a Metal-Insulator-Metal (MIM) structure where the insula-
tor, often a dielectric, serves as the switching layer. These devices can utilize a variety of oxide
materials such as titanium oxide (TiO2), hafnium oxide (HfO2), or aluminum oxide (Al203)
[180]. Most VCM memristors are filamentary, as they form an oxygen vacancy conductive fil-
ament in the dielectric layer to switch between high and low resistance states, as shown in
Fig. 1.13a with the corresponding I-V characteristic in Fig. 1.13b. An electroforming process is
usually needed to initiate the oxygen ion migration. The switching is bipolar(a typical I-V char-
acteristic can be found in Fig. 1.11) and attributed to redox reactions and nanoionic transport
[181]. The structure for VCM needs to have a built-in asymmetry with respect to the oxygen
concentration in the film, typically with an inert electrode on one side and an active electrode
on the other [174]. The electron transport in a MIM structure takes place via a series of mecha-
nisms. Some of these conduction mechanisms rely on the electrical property at the electrode-
dielectric interface, such as the energy barrier height of the interface and conduction carriers in
dielectric films. Others depend on the properties of the dielectrics itself, such as Poole-Frenkel
(P-F) emission; Ohmic conduction; ionic conduction; hopping conduction; and trap-assisted
tunneling (TAT)[166].

One of the challenges of these filamentary ReRAM devices is that the change in resistance
is often non-linear, which can make it difficult to precisely control the resistance state of the
device. This non-linearity can be a significant issue for applications like neuromorphic com-
puting, where the ability to finely tune the resistance state of a memristor is crucial for mim-
icking the behavior of biological synapses. One of the main axes of research is then to choose
adequate materials to obtain the most linear synapse possible. For example, the study by Chan-

drasekaran et al. [182] suggests that introducing aluminum (Al) into HfO2 can improve the lin-
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earity of the resistance change in these devices. The addition of Al can modify the distribution
and movement of oxygen vacancies within the HfO2, leading to a more linear and controllable
change in resistance when a voltage is applied.

These devices are the most commonly used for neuromorphic synapses in the literature.
Different models exist for reproducing the resistive switching of these devices [183], [184]. The
ability to simulate an algorithm or an electronic circuit using these models serves as an invalu-
able tool for predicting system performance. By accurately modeling the resistive switching,
researchers and engineers can anticipate how these devices will behave in different scenarios,

enabling them to optimize their designs and algorithms before physical implementation.
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Figure 1.13: Different memory devices. a: Filamentary resistive switching RAM structure. b:
Corresponding current-voltage characteristic of a bipolar RRAM switching de-
vice. c: Phase change memory structure. d: Corresponding resistance-voltage
characteristic. e: Magnetic tunnel junction (MT]) structure. f: Corresponding
resistance-voltage characteristic of an STT-MRAM. g: Ferroelectric random ac-
cess memory (FeRAM) structure. h: Corresponding polarization—voltage hysteretic
characteristic (h). The orientation of electrical dipoles causes permanent polariza-
tion of the ferroelectric layer. From [12]

On the most used material to relize VCM memristor synapses is H f O,. This material can

however also be sed to implement volatile spiking neurons [185, 186].

1.3.1.3 Other emerging devices

Spintronicdevices To create spintronic synapses, magnetic tunneling junctions (MT]s), which
are the basic cells of MRAMs, are utilized as fundamental building blocks. An MTJ consists of
two metallic ferromagnetic layers separated by a tunnel barrier, as depicted in Fig. 1.13e. The
resistance of the MTJ depends on the relative orientation of the magnetization directions of
the two ferromagnetic layers. The pinned layer (PL) , has a fixed spin polarization direction. In
contrast, the free layer (FL) can alter its magnetization direction. This dynamic magnetization
change in the FL can be achieved through current injection. When the magnetization direc-

tions of the two layers are in parallel alignment (P state), there is a higher probability of electron
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tunneling through the barrier, resulting in a lower resistance state (LRS), as presented in Fig.
1.13f. Conversely, when the magnetization directions are in antiparallel alignment (AP state),
there is a lower probability of electron tunneling, leading to a higher resistance state (HRS)
[187]. In addition to the spin-transfer torque (STT)-MT]Js, spin-orbit torque (SOT) cells have
emerged as an alternative for achieving magnetization switching in spintronic synapses. Bipo-
lar SOT-induced magnetization switching is realized under an in-plane magnetic field collinear
with an applied current within multilayers of ferromagnetic (FM) and nonmagnetic (NM) met-
als. The spin Hall effect (SHE) and Rashba effects, originating from spin-orbit coupling within
the NM layer and at the FM-NM interfaces, respectively, play a crucial role in the switching
mechanism. All of these synapses are binary in nature, which can be an issue for encoding ana-
log weights in ANNs. This has led to an increased interest in other types of spintronic synapses
[188], such as spintronic memristors [189], operating based on the displacement of a magnetic
domain wall [190] in a spin-valve, resulting in lower or higher resistance states depending on
the domain wall position. This memristive functionality through domain wall motion in mag-
netic tunnel junctions has been experimentally demonstrated by Chanthbouala et al.[191] and
Lequeux et al. [192].

Spintronic neurons in neuromorphic computing can be realized through different tech-
niques. Spin-torque nano-oscillators are specific magnetic tunnel junctions driven into spon-
taneous microwave oscillations by injecting current [193-195]. They exhibit memory, stable be-
havior, and nonlinearity, and can synchronize with other oscillators. Superparamagnetic tun-
nel junctions, with low-energy barriers, emulate stochastic behavior and serve as low-energy
artificial neurons [196]. Magnetic solitons like domain walls and skyrmions can be manipu-

lated to emulate leaky integrate-and-fire neurons [188].

FeRAM Ferroelectric materials, discovered nearly a century ago, have recently re-emerged as
a promising candidate for neuromorphic computing applications. Initially used in ferroelectric
random-access memories (FeERAMs), these materials exhibit spontaneous electric polarization
that can be reversed by an external electric field, leading to changes in conductivity as shown
in Figs. 1.13g and h. However, early FeRAMs faced scalability issues due to the large thickness
of the ferroelectric layer. Recent advancements in material fabrication technology have en-
abled the production of nanometer-thin ferroelectric layers, reigniting interest in ferroelectric
devices [187]. New ferroelectric materials such as strained SrTiO3 and AlScN have been dis-
covered, and the observation of ferroelectric properties in doped HfO2 has further expanded
the range of potential applications [197]. For instance, ferroelectric tunnel junctions (FTJs) and
ferroelectric field-effect transistors (FeFETs) have been explored for their potential in neuro-
morphic computing. FTJs, characterized by non-volatility, analog switching capability, high
endurance, energy efficiency, and scalability, are particularly desirable for neuromorphic ap-
plications [198]. FeFETs, based on ferroelectric HfO2, are also gaining attention due to their

low-voltage and fast switching, good data retention, and compatibility with CMOS fabrication.
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The non-volatile memory operation of FeFETs relies on the two stable polarization configura-
tions in HfO2, corresponding to high and low conduction states, making them suitable for use
as artificial synapses [198].

Furthermore, FeFETs can also serve as artificial neurons, emulating real neurons at various

abstraction levels, from complex biophysical models to basic integrate-and-fire circuits [198].

PCM Phase Change Memory (PCM) is a type of non-volatile random-access memory that
exploits the unique behavior of chalcogenide glass, a material that can undergo a unipolar
switching mechanism between two states through Joule heating: amorphous and crystalline,
presented in Figs. 1.13c and d. [199]. The most common phase change material is an alloy of
germanium, antimony, and tellurium (Ge2Sb2Te5 or GST). In its amorphous (disordered) state,
GST has high electrical resistance, while in its crystalline (ordered) state, it has low resistance.
By applying a voltage, the material can be heated and rapidly cooled to transition between
these states. The key advantages of PCM include its fast read and write times, high endurance,
and excellent scalability. It also retains data even when power is turned off, making it a type of
non-volatile memory. PCM is considered a promising technology for future memory and stor-
age applications, and it has also been explored for use in neuromorphic computing due to its
ability to support multiple resistance levels, which can be used to emulate the synaptic weights
in a neural network. However, PCM also has some challenges. Its susceptibility to rapid crystal-
lization can lead to an abrupt drop in resistance [200]. The high programming current required
to change the phase of the material can lead to high power consumption. The resistance drift
over time can also affect the reliability of the stored data.

An intriguing development in the field of phase change memory (PCM) based neural de-
vices was made by Tuma et al.[201]. They constructed a device by placing a nanometer-scale

layer of Ge, Sh, Tes (a common material used in PCM) between two electrodes [200].

1.3.2 Integrating emerging memory devices in hardware

In neural networks, one of the fundamental computations is the multiply and accumulate oper-
ation (MAC), or more generally, matrix-vector multiplication. This operation lies at the heart of
propagating information through the layers of a neural network. The MAC operation involves
multiplying input data by associated weights and summing the results. When implementing
these computations in hardware, particularly for large-scale neural networks, efficiency, and
speed become crucial factors.

In an effort to address these needs, certain architectures turn to the laws of physics, specifi-
cally Ohm’s Law and Kirchhoff’s Current Law. By expressing weights as conductances in a well-
arranged architecture, the product of each weight and its associated input can be calculated
simultaneously by measuring the current through each path. In addition, Kirchhoft’s Current
Law states that the sum of currents entering a node must equal the sum leaving it, as shown

in Fig. 1.15a. This law can be exploited to accumulate the results from multiple paths, thus
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completing the summation part of the MAC operation. By taking advantage of these physical
laws, the MAC operation, which constitutes the core computation of a neural network, can be
performed in an analog and massively parallel manner.

Resistances and conductances are positive values, whereas to perform neural network train-
ing (see Fig. 1.15b), we need both positive and negative weights. A common way is to use two
different devices to implement the positive and negative parts of the weight and subtract both

currents to get the final output, as explained in Fig. 1.15c.
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Figure 1.14: a: 1R architecture with memristor devices. b: Corresponding neural network, with
in orange the input (corresponding to the voltages V), and in blue the output, cor-
responding to the current I.

1R architecture The 1R memristor crossbar array is a classic architecture used in neuromor-
phic computing and ReRAM systems. Each memory cell in the array consists of a single mem-
ristor located at the intersection of wordlines and bitlines. In this architecture, the wordlines act
as the inputs, while the bitlines serve as the outputs. When performing read or write operations
on this 1R crossbar array, a voltage is applied across a selected wordline and bitline, targeting
the cell at their intersection, the so-called full-selected cell. However, due to the interconnected
nature of the array, other cells sharing the same wordline or bitline— the half-selected cells—
also experience a partial voltage when programming one cell. This can result in an undesired

leakage of current, or 'sneak current’, which can cause errors in the operation of the memory ar-
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ray. Mitigating this challenge is key to optimizing the design and performance of 1R memristor
crossbar arrays. A common strategy for reducing sneak current during programming opera-
tions involves biasing non-selected wordlines and bitlines at V/2, or half the full voltage. This
restricts the voltage drop across the half-selected cells, which in turn, limits the likelihood of

unwanted current leakage [202].
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Figure 1.15: a: 1T1R architecture with memristor devices. b: 1S1R architecture with memristor
devices. Adapted from Ref [13].

1T1Rarchitecture One easier approach to implementing large-scale neural networks in hard-
ware involves the use of 1T1R cells, a combination of a memristor (1R) and a MOS transistor
(1T). Each transistor acts as a controllable switch. With the transistor in series with each mem-
ristor, the current flow through unselected cells is effectively suppressed. This ensures accurate
reading and programming of memristors, an advantage that helps address some of the chal-
lenges associated with pure memristor architectures. The transistor’s gate allows for additional
control, facilitating the linear and symmetric updating of synaptic weights during the training
of neural networks. Furthermore, the ability to control each gate voltage individually enables
semi-parallel programming of the array, thereby improving the efficiency of the training pro-

cess. During the execution of the neural network’s computations, all transistors in the array



46 CHAPTER 1: STATE OF THE ART

are turned ON to minimize the influence of channel resistance. Meanwhile, during weight up-
dating or training, the transistors are partially turned ON, which provides precise control over
weight adjustments [203].

However, this architecture presents its own challenges. The integration of transistors in-
creases circuit complexity and area, affecting the array’s packing density and potentially raising
manufacturing costs. Additionally, there is an energy overhead associated with the transistors
due to their gate capacitance, which results in increased power consumption, especially during
the training phase. Careful selection of transistor types—balancing between depletion-mode
transistors favored for inference and the increased power consumption during training—thus

becomes a critical aspect of optimizing these systems.

1S1R architecture In the quest for a more compact and effective solution to the sneak path
problem in memristor crossbar arrays, the 1S1R (One Selector-One Resistor) architecture presents
a promising approach. This architecture employs a selector device, functioning much like a
diode, connected in series with the memory unit. This selector is designed not to permit the
flow of current until a specified voltage difference is achieved, thus efficiently preventing sneak
paths in half-selected cells. Selector devices need to have a bidirectional non-linearity. Two
types are commonly worked on: exponential I-V such as Ni/TiO2/Ni, or threshold switching
such as Mott memristors (NbO2) [204]. Noting that in this architecture, it is possible to cre-
ate 1S1R devices, stacking selector and memristor together, considered as the most preferable
scheme for high-density 3D integration of RRAM [205]. However, optimizing both the 1R and

1S properties of such devices is very challenging [203].

With their inherent capacity to emulate both synaptic and neuronal behaviors, memristors
present a promising foundation for constructing efficient, densely packed neural network ar-
chitectures, well-suited for neuromorphic computing applications. However, translating this
potential into fully realized, practical memristive systems presents obstacles. One of the ma-
jor challenges is the imperfect behavior of memristors, as they exhibit inter-device and intra-
device variabilities inconsistencies and are subject to drift and aging. These factors can de-
teriorate the precision of memristor conductance control, a crucial aspect of synaptic weight
updates in learning algorithms. Moreover, because of their filamentary nature, these devices
are intrinsically noisy, which can introduce further unpredictability in their operation. Non-
linearity and asymmetry are additional factors complicating the implementation of memris-
tors in neural networks as both of these characteristics prevent precise control of the memris-

tor state.

In this chapter, we explored the complexity of how neurons behave and the various mod-
els used to understand them. Implementing such devices on hardware is a promising lead to

implement Spiking Neural Networks. Chapter 2 will focus on NbOx volatile memristors, which
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exhibit spiking and bursting behaviors. They hold the promise of scalable and low-energy neu-
ron devices for neuromorphic applications. We also saw that employing bio-plausible or locally
inspired learning algorithms is a promising lead to realize energy-efficient hardware capable of
learning. Chapter 3 will explain how we adapt the Equilibrium Propagation algorithm to work
in real-world physical systems. In Chapter 4, we shift focus to test the resilience of the Equilib-
rium Propagation algorithm when it is implemented with HfOx memristor devices as synapses.
This step is vital in translating our research from theory to practical applications, as these fila-

mentary devices exhibit intra and inter-device variability.
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CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN
50 EXPERIMENTAL NBOX NEURON

AS the interest in Artificial Intelligence (AI) grows, spiking neural networks offer an energy-
efficient, hardware-compatible, and event-driven alternative to conventional artificial
neural networks [206], particularly adapted for processing sensory and dynamical data. Hard-
ware spiking neurons can be realized solely using complementary metal oxide semiconductor
(CMOS) technology, but this type of implementation suffers from a lack of scalability [207]. This
limitation explains the growing interest in the realization of new devices that feature neuronal
behavior and that can be scaled easily [208, 209] (see section 1.3). However, researchers face the
choice between single, scalable nanodevices that exhibit a limited range of neuronal responses
and more complex neurons that offer more diverse behavior but limited scalability. Having
more diverse behavior provides the potential of reproducing the brain’s computational power
to its full extent. Biological neurons may indeed exhibit different types of spiking responses, as
well as bursting responses, where a neuron produces multiple spikes in response to an input
pulse. A neuron implementing a highly simplified response will fail to provide the complexity
required to emulate neurobiology. For example, the bursting response is believed to be of im-
portance for ensuring reliable communication and synchronization between neurons [7, 154].
Therefore, considerable effort has been devoted to realizing new scalable devices with diverse

neuronal characteristics [7, 11, 175, 210-213].

A leading idea to engineer this new type of devices is to exploit the intrinsic physics of
nanoscale materials to implement neurons [214-218]. A large number of devices have been
studied for their neuronal applications [219-221] (see section 1.3.1): phase change neuron
[201], valence change neuron [185, 186], electrochemical metallization neuron [222], diffusive
neuron [223], Mott insulator neuron [224], and spintronic neuron [188]. Within these exam-
ples, metal/insulator/metal structures based on transition metal oxides such as VO, and NbOy
are particularly promising candidates, as they exhibit reliable threshold switching and current-
controlled negative differential resistance (NDR) characteristics. NbOx memristor neurons fea-
ture high endurance [225] and have been shown to be capable of leaky integrate-and-fire, all-
or-nothing spiking and chaotic oscillations [226]. This type of device has also been used to
implement dynamic, logic, and multiplicative gain modulation [227]. However, the behavior
of a single device is nowhere near as complex as a real biological neuron. To obtain more so-
phisticated behavior, complex devices featuring multiple electrophysical processes have to be
created [210], which can be challenging to model and control precisely. Alternatively, several

neuronal devices can be used together in appropriately engineered circuits [175].

In this work, we fabricate and characterize memristor neurons based on a simple Pt/Nb,Os/
Ti/Pt stack with current inputs and output voltage shapes that are close to the shape of a biolog-
ical action potential, thanks to the effect of an inductance. These devices are straightforward
to model with physics equations, and simultaneously, feature multiple computational prop-

erties such as tonic spiking, stochastic spiking, spike latency, leaky-and-fire integration (LIF),
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all-or-nothing firing, and phasic bursting. These neuron-like dynamics can be modelled and

understood through physical equations and standard non-linear dynamics.

This chapter is adapted from Ref. [228].

2.1 Fabrication and method

2.1.1 Fabrication

NbOyx memristors, comprising 5 um x 5um cross-point structures, were fabricated by succes-

sive film deposition and patterning, which will be detailed below.

A 4-nm Ti adhesion layer and a 25-nm thick Pt layer were first deposited on a SiO,/Si sub-
strate by electron-beam evaporation. Electron beam evaporation, often abbreviated as E-beam
evaporation, is a type of physical vapor deposition (PVD) process in which a target anode ma-
terial is bombarded with an electron beam given off by a charged tungsten filament under high
vacuum. The electron beam causes material from the target to transform into the gaseous
phase. These atoms then precipitate into solid form, coating everything in the vacuum cham-
ber (within line of sight) with a thin layer of the anode material. The process starts by creating a
high vacuum inside a deposition chamber. This is necessary to minimize the presence of air or
other gaseous molecules that can interfere with the evaporation process. An electron beam is
then generated using a filament, often composed of tungsten. When a high voltage is applied,
electrons are emitted from the filament, creating the electron beam. This beam is directed and
focused using magnetic fields onto the material that is to be evaporated. The high-energy elec-
tron beam heats the target material. The energy transferred from the beam to the target is so
intense that it causes the target material to heat up and eventually evaporate. The evaporated
atoms or molecules travel in a straight line from the source to the substrate in the vacuum
chamber. As they reach the substrate, they cool and condense, forming a thin layer or film on
the substrate’s surface. The film’s characteristics can be controlled by adjusting the process pa-

rameters such as beam current, deposition rate, and substrate temperature.

The wafer was first dried for 5 minutes at 100°, then spin-coated with SPR700 photoresist,
then soft baked for 1 minute at 95°C, before being patterned using optical lithography with a
digital mask. A hard bale step of 1 minute at 115°C follows before development in acetone and
isopropanol. Ion-beam etching was then used to define the bottom electrodes. The milling
step was done at a temperature of 4 Celsius degrees and a 30-degree angle to lower the odds
of redeposition. This step was done with secondary-ion mass spectrometry (SIMS) to ensure
that no platinum or titanium was left. Ion Beam Etching (IBE) is a form of dry etching, a critical

technique utilized for precise, controlled material removal from a substrate. In IBE, a high-
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energy ion beam is directed at the substrate, sputtering or ejecting surface atoms by collisional
energy transfer. Unlike some other etching techniques, IBE does not depend on chemical reac-
tions to remove material; rather, it employs a physical process, which grants the advantage of
material selectivity. By adjusting the ion beam parameters such as energy, angle of incidence,

and ion species, a high degree of etch control and anisotropy can be achieved.

If the previous steps (fabrication of the platinum bottom electrodes) had been done for
more than a month, the application of an oxygen plasma was needed to ensure that the spin-
coating stuck to the samples. The same optical lithography steps were repeated, and the new
digital mask was manually aligned with the previous layer to ensure the superposition of the

result.

Figure 2.1: Top view of devices taken with an optical white light microscope.

A 30 nm Nb,O5 layer was then deposited onto the bottom electrodes using radio-frequency
(RF) sputtering from a Nb,O5 target at room temperature in an Ar ambient. During the process,
an RF power source is used to generate a plasma in a chamber filled with a gas such as argon.
The gas atoms are ionized, and the resulting ions are accelerated towards a target material, typ-
ically a metal or ceramic, which is placed in the same chamber. The ions collide with the target

material, causing atoms to be ejected or "sputtered" from the surface.
The metal-oxide-metal device was completed by adding a top electrode (10 nm Ti - 25 nm

Pt) deposited by electron beam evaporation. The top view of resulting devices is presented in,

figure 2.1.

2.1.2 FElectrical measurements
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2.1.2.1 DC measurements

For electrical measurements, the bottom electrode was connected to ground and the source
applied to the top electrode. I-V characteristics were measured with a Keysight B1500A Semi-
conductor Device Analyzer after current-controlled electroforming with a positive polarity. Be-
fore the electroforming process, the resistance of the device was about 4 MQ at 0.3 V. Electro-
forming was achieved by the application of a current ramp from 0 to 0.5 mA to the device, see
figure 2.2. After this step, the device resistance was reduced to 93 kQ2 at 0.3 V.

Current (mA)
o o o o o
O T

o
o
1

T T T T T T

o 1 2 3 4
Voltage (V)

Figure 2.2: Positive current-controlled electroforming with input current going from 0 to 0.5
mA.

Several I-V sweeps were needed to stabilize the characteristics of the device. If this step
were not done, the I-V curve would either shift for each run, or the NDR could even be absent.
Sometimes, the devices would become a memory, and a big voltage would be needed to reach

the threshold switching regime again.

2.1.2.2 Spike measurements

Current-controlled pulse measurements were performed using an Agilent 81160A pulse gen-
erator and the voltage-pulse to current-pulse converter presented in figure 2.3. The spiking
behavior was monitored on a 2 GHz-bandwidth Keysight MSOS204A oscilloscope. All mea-

surements were performed with a DC probe station.

For the voltage-controlled measurement, the setup was identical but the voltage-pulse to

current-pulse converter was not needed.



CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

54 EXPERIMENTAL NBOX NEURON

Figure 2.3: Schematics of the voltage pulse to current pulse converter used in the experiments.

Here, Ry = R3 =1 kQ, R» = R4 =100 Q, Rs = Rg =400 Q. The operational amplifier
has the following reference: BB OPA 356A 846LV.

2.2 Results

2.2.1 Quasistatic properties
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Figure 2.4: Measured (dashed lines) and simulated (dotted line) I-V characteristics. The V
sweep and I sweep correspond respectively to the voltage-controlled and current-
controlled I-V characteristics. The hold point H is indicated in green and the thresh-
old switching point TS in red. The inset shows a sketch of the structure of the device.

The quasistatic I-V characteristics of our device are shown in figure 2.4, highlighting the
current-controlled S-shaped Negative Differential Resistance (NDR) response, characteristic of
a voltage-controlled Threshold Switching (TS). Two characteristic values are included on the
graph. The first one is the Threshold Switching point (called TS in figure 2.4), where the slope
of the current-controlled I-V characteristic goes from positive to negative. This point also co-

incides with the abrupt transition from a high-resistance state to a low-resistance state under
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voltage controlled transitions. The second is the hold point H, where the differential resistance
becomes positive again. It is worth noting that unlike typical memristors (as in 'memory’ and
resistor’), this device loses information about its previously set state when the power is turned

off. Therefore, it cannot be used as a memory.

The slight cycle-to-cycle variations of the I-V characteristics of the device are shown in fig-
ure 2.5. A hundred repetitions have been realized for the voltage-controlled characteristics,
and ten measurements have been done for the current-controlled ones. The characteristics

can shift from cycle to cycle, but this does not impact the overall behavior of the neuron.
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Figure 2.5: a: Voltage-controlled I-V characteristic repeated 100 times. b: Current-controlled
I-V characteristic repeated 10 times.

The physical basis of this behavior has been under debate but is generally understood to
arise from an increase in the oxide electrical conductivity due to local Joule heating. Indeed,
Gibson [229] has shown that the NDR response can arise from any mechanism that gives rise
to a superlinear increase in conductivity with temperature. In the case of NbOyx, some authors
initially attributed it to a characteristic insulator-to-metal transition (IMT) in NbO; [230], but
it is now generally accepted that it arises from a trap-assisted transport mechanism, such as
Poole-Frenkel conduction [231, 232].

In the case of the Poole-Frenkel effect, a filament of oxygen vacancies connects both elec-
trodes after electroforming. The oxygen vacancies act as potential traps for electrons. If an

electric field is applied to the device, the energy profile of the conduction band in the oxide
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around the traps becomes asymmetric. Trapped electrons are then able to be thermally in-
jected into the conduction band, leading to the traditional Poole-Frenkel equation for the de-
vice resistance Ry as a function of the temperature T,; and the voltage V; across the device:
qVa
Eqa—q mege,d
kg T,

R; = Roexp ) 2.1)

where E, is the activation energy associated with the carrier trap level, € the vacuum permit-
tivity, €, the relative permittivity of NbOy, g the elementary charge, and d the thickness of the
oxide film. Vj is the device voltage and T} is the temperature of the active device volume [231].
The occurrence of electrical current through the filament results in a positive feedback, where
Joule heating raises the local temperature T, reducing the device resistance further [233, 234].
This phenomenon can be modeled from a lumped element model of the device, where the

Newton’s Cooling Law is used to describe the evolution of the temperature,

2
dTa _ Ya _ Ta—Tamb
dt  RaCip  CipRyp

(2.2)

where Ty is the room temperature, and Cy, and Ry, are respectively the thermal capacitor and
resistor. We simulated the I-V curve of our device using these equations (see methods). The
simulation results presented with a dotted line in figure 2.4 show that the model reproduces
the experimental data.

2.2.2 Spiking behavior: Origin and shape

2.2.2.1 Voltage-controlled spiking

This chapter focuses on the phenomenon of current-induced spiking, which can be a complex
topic to understand. To aid in comprehension, we first provide an explanation of the voltage-
controlled behavior. To facilitate this understanding, we conduct an experiment where a volt-
age source is connected to a load resistor of 4000 Ohms, and then connected to the device
under test (DUT), as shown in the circuit presented in figure 2.6a. The DUT can be seen as a
capacitor in parallel to the Poole-Frenkel (PF) resistance of equation (2.1).

Initially, the PF resistance is in a high resistance state, and the capacitor is discharged. As
the voltage is applied, the capacitor begins to charge, leading to an increase in voltage across
the DUT. If the applied voltage is sufficient, the voltage across the device will reach the thresh-
old point (denoted as TS in figure 2.4), causing the PF resistance to drop and shortening the
capacitance. This leads to a discharge of the capacitor and a subsequent decrease in voltage
across the device. If the voltage across the DUT is below the hold voltage (denoted as H in
Figure 2.4) when the capacitor is fully discharged, the PF resistance abruptly increases once

again, and the capacitor starts to charge anew. This hysteresis then explains the spiking behav-



2.2 RESULTS 57

ior in such devices, which can be observed in figure 2.6b. This explanation is more of an image
than an accurate description of the current and voltage’s evolution in the device, as figure 2.4
presents the quasistatic values of I and V and not the dynamic, out-of-equilibrium values. This

dynamical behavior of this device is studied with more detail in section 2.2.5.

To conclude, the voltage-controlled spiking behavior originates from the current and volt-
age hysteresis, with each description of the cycle representing one spike. This voltage-controlled

hysteresis (TS) is equivalent to the current-controlled NDR.
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Figure 2.6: a: Circuit for voltage-controlled spiking neuron. b: Device current I; when a con-
stant voltage of 1.52 V is applied.

2.2.2.2 Current-controlled spiking

Figure 2.8b presents the simple experimental setup used to measure the current-controlled
spiking behavior of neurons. In this circuit, Rq is the device resistance described by equation 2.1
and Cq is the intrinsic device capacitance arising from its metal/insulator/metal structure. Cex;
and Ley; respectively account for parasitic capacitance and inductance of the measurement set-

up. Ryt is an external resistor of 25 Ohms across which the output voltage is measured.

The input of the circuit is a current, and the output is a voltage, in line with the biological
configuration. Figure 2.8c shows an experimentally measured spike, observed by applying a
constant 150 g A current input to the circuit. The shape of the output spike strongly resembles
that of a biological neuron, with an initial depolarization followed by hyperpolarization: start-
ing from a resting phase, the output voltage increases rapidly during the activation phase, and

then decreases to become negative before rising again to the resting phase.

To understand this behavior, figure 2.8b shows simulations of the current I4 flowing through

the device (dots) and the simulated temperature T4 of the active device volume (colored curve)
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Figure 2.7: Circuit diagram of the integrated NbOy spiking neuron where Cey; and Lex are re-
spectively a parasitic capacitance and inductance.

during a spike, using the LTSpice model of our experiment and a current input of 180 pA. The
simulations presented in figure 2.8 were computed with LTSpice using the electrical circuit pre-
sented in figure 2.7a based on the Newton law of cooling and the Poole-Frenkel effect (see equa-
tions (2.1) and (2.2) below), with a 5 ns time step. The values of all parameters used in these
simulations are listed in table 2.1. The temperature evolution was implemented in LTSpice
following guidelines described in the supporting information of [235].

The current I; and the temperature T, are clearly correlated, with both curves exhibiting a
rapid increase and a slower decrease, which can be explained as follows. The device is initially
in an insulating state. When a constant current is applied, the capacitance Cey charges and the
voltage across the device increases until it approaches the threshold voltage, at which point the
device resistance drops, producing the increase in current and temperature evident in figure
2.8b. This discharges the capacitor, reducing the device voltage to the point where the mem-
ristor reverts to its subthreshold resistance. The transition to a high resistance state causes a
reduction in current and temperature, ending the spike response. Note that without the ex-
ternal capacitance Cey; the neuron would not spike. In a hardware implementation involving

NbOy neurons, capacitors would have to be added.

The restoration part of the neuron-like voltage spike is seen in the output voltage but not
in the current and temperature curves; this is due to the presence of a parasitic inductance
(see figure 2.7). The device intrinsic capacitance Cq is small, and the current in that branch
is also small. Therefore, the current going through the inductance Ley and the output resis-
tor Royt (figure 2.8b), is close to that going through the neuron Ryq. Because the voltage across
the inductance opposes the variations of the current, it is first positive and then negative. The

output voltage is the sum of two terms, Vyy,r = Rouriour + Lext d;";": if the inductance is large

enough, the output voltage is first positive (during the activation part) and then decreases until

it becomes negative (during the cooling and restoration parts). This mechanism explains the
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Figure 2.8: a. Measurement of a single spike of a NbOx neuron, with the four stages of an action
potential indicated. b. Simulated spiking dynamics of the NbOyx neuron tempera-
ture T4(colored curve) and current I; (dots) for a constant input current of 180 pA.
c¢. Simulation of the output voltage shape with respect to the value of the circuit in-
ductance for a constant input current of 180 pA.

results shown in figure 2.8c, where the evolution of the shape of the pulse with respect to the
circuit inductance is simulated. When the inductance is smaller than 100 n H, it has a negligible

impact on the output voltage (shown in figure 2.8a); for higher inductance values, a restoration
phase is observed.

Variable Value
Coxt 200 pF
Lext 700 nH
Rout 25Q

Cyq 0.33 pF
Ry 190 Q
E, 0.215 eV
€ 45
d 31 nm
Cin 2e-15J-K!
Rip 2040816 K- W!

Table 2.1: Table of the parameters used in the simulations. These parameters where obtained
by fitting the I-V characteristics and estimated by fitting the shape of the spikes.

The energy consumption was estimated by integrating the power over a period of time and
dividing the resulting energy by the number of corresponding spikes. We derive a value of
about 80 pJ/spike, which is comparable to the value found in other papers for NbOy devices
[236] [237]. In the future, reducing the external capacitance (here parasitic) could drastically
reduce the energy consumption. Simulations using a model detailed below indeed show that

with a parasitic of 10 pF the energy is close to 8 pJ/spike whereas for the 200 pF capacitance,
the results are close to 80 pJ/spike.
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Three different batches of samples have been realized, all showing devices with the same
type of behaviors as the one reported in this work, with a significant device-to-device variation.
This variability both impacts the shape of the I-V characteristics, but also the amplitude of the
spikes.

2.2.3 Computational properties
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Figure 2.9: a: NbOy neuron output as a function of input current amplitude. A 99 us current
ramp from 0 to 0.46 mA and 1 us fall time is applied to the device. b: Simulation
of NbOy neuron output as a function of input current amplitude. A 100 us current
ramp from 0 to 680 pA and 100 ns fall time is applied to the device. This simulation
is realized in LTSpice, using the circuit shown in figure 2.7 and the parameters of
table 2.1.

Having analyzed the NbOy neuron spike shape (see section 2.2.2.2), we now explore its
computational properties. Figure 2.9a shows the neuron behavior when a current ramp is ap-
plied at its input. For low currents the neuron does not spike, as the NDR behavior needed for
spike generation does not appear until the current reaches the TS point in figure 2.4. Above this
threshold current, the neuron spikes with increasing frequency until the current exceeds the
hold value (H) of figure 2.4, above which the NDR disappears as well as the related spiking be-
havior. This characteristic is reproduced in simulations in figure 2.9b. The behavior described
above is also found in the simulated figure. However, a major difference between the experi-
mental results (figure 2.9a) and the simulations (figure 2.9b) is the evolution of the amplitude.
Over all the devices measured, the amplitude tends to increase with frequency, but this increase
is not monotonous. In contrast, the simulations show a very regular increase, which is almost
linear.

When the input is constant and lies between the threshold current and the hold current, the
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Figure 2.10: a: Tonic spiking. The neuron receives a constant input current of 0.2 mA. b: Sim-
ulation of tonic spiking. The neuron receives a constant input current of 335 pA.
This simulation is realized in LTSpice, using the circuit shown in figure 2.7 and the
parameters of table 2.1.

neuron spikes with a constant frequency, a behavior called tonic spiking for biological neurons,
as shown in figure 2.10a, and reproduced in simulations in figure 2.10b. The behavior is similar,
with a constant frequency. However, the amplitude of the spikes is more than two times bigger.

The spikes amplitude have be found to differ a lot from device to device.
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Figure 2.11: Stochastic spiking obtained with a current of 0.109 mA.

Close to the threshold current, the behavior is stochastic, as shown in figure 2.11a, as can

be expected from a thermally-driven process, but with a non-random occurrence of spiking
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events, that can be described by quiet periods followed by bursts of spikes with constant fre-
quency. Due to input current noise, the neuron output indeed fluctuates between its below-
threshold behavior (no spikes) and its above-threshold behaviors (spikes with a constant fre-
quency). This stochastic bursting behavior is reminiscent of biological neuron bursting and
could be exploited for computations and learning in hardware circuits [154]. No simulations
have been provided for this figure. Indeed, when the input current is close to the hold current, a

stochastic-like behavior can be observed in simulation, but is caused by a numerical instability.
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Figure 2.12: a: Spike latency. A pulse with a duration of 1 us, a rise time and fall time of both
100 ns and an amplitude of 0.131 mA is applied to the neuron. b: Simulation of
spike latency. A pulse of duration of 1 us and value 193 pyA with a rise time and fall
time of both 100 ns is applied to the neuron. This simulation is realized in LTSpice,
using the circuit shown in figure 2.7 and the parameters of table 2.1.

The neuron also exhibits spike latency, as evidenced in figure 2.12a for a 1 ps-duration pulse
applied to the device. During the whole duration of the input, the output voltage does not show
any significant response. However, once the pulse is back to zero, the neuron spikes. This ef-
fect can be explained naturally within the context of the above model. Indeed, when the current
pulse is applied long enough for the temperature to activate the Poole-Frenkel effect, the posi-
tive feedback mechanism starts and the temperature keeps increasing even as the source stops,
giving rise to spike latency. This behavior is simulated in figure 2.12b, and agrees quite well with

the experiment. However, the simulation result is lacking the oscillations seen after the spike.

Moreover, the neuron may exhibit all-or-nothing behavior. In figure 2.13, two pulses with
the same duration of 1 us are applied to the neuron with different current input values: 0.13 mA
for the left figure and 0.17 mA for the right one. The first pulse is not sufficient to make the neu-
ron spike, but a slight variation of the output voltage can be observed. The second pulse is high

enough to make the neuron spike, as the value of the current has been increased. In the context
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Figure 2.13: a: Spatial integration. Comparison between two figures where a pulse of duration
of 1 us with a rise time and fall time of both 100 ns are applied to the neuron. The
input current value is 0.13 mA on the left and 0.17 mA on the right. b: Simulation of
spatial integration. Comparison between two figures where a pulse of duration of
1 us with a rise time and fall time of both 100 ns are applied to the neuron. On the
left, the value of the current is 150 pA. On the right, the input current value is 200
UA. These simulations are realized in LTSpice, using the circuit shown in figure 2.7
and the parameters of table 2.1.

of a spiking neural network, this all-or-nothing behavior allows triggering a neuron only when
a sufficient number of spikes (with below-threshold amplitude) arrives simultaneously at its
input, thus filtering meaningful signal only, a behavior akin to spatial summation. Indeed, in a
biological neuron, spatial summation corresponds to the possible trigger of an action potential
when multiple inputs arrive simultaneously. Therefore, the spatial information can be encoded
in the current amplitude. This all-or-nothing behavior is reproduced with simulations in fig-
ure 2.13b.

Finally, figure 2.14 displays a different situation where three pulses of identical duration
(1us) and peak current (0.11 mA) are applied. On the left, the input frequency of 0.35 MHz is
not high enough for the neuron to spike, contrary to the right panel in which the frequency

is increased to 0.7 MHz, allowing it to spike. This behavior indicates a frequency-dependent
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Figure 2.14: a: Temporal integration. Three pulses of duration of 1 us with a rise time and fall
time of both 100 ns and of amplitude 0.110 mA are applied to the neuron. The fre-
quency is 0.35 MHz on the left and 0.7 MHz on the right. b: Simulation of temporal
integration. Three pulses of duration of 1 us with a rise time and fall time of both
100 ns and of value 100 uA are applied to the neuron. On the left, the time period
is 2.86 us (frequency of about 0.35 MHz). On the right, the time period is 1.43 us
(frequency of about 0.7 MHz). These simulations are realized in LTSpice, using the
circuit shown in figure 2.7 and the parameters of table 2.1.

temporal summation by the neuron, reproduced with simulations in figure 2.14b. This typi-
cal leaky-integrate-and-fire behavior is particularly adapted for spiking neural networks where

frequency encodes the information.

2.2.4 Experimental demonstration of phasic bursting

While most of the spiking features presented in figures 2.9, 2.10, 2.11, 2.12 2.13 and 2.14 have
been reported for various types of solid-state neurons [185, 210, 222, 224], figure 2.15 shows that
our simple NbOx neuron exhibits a behavior observed in biological neurons and scarcely inves-
tigated in memristive systems, named phasic bursting [210]. In this case, for a constant input
current just above the hold point (see figure 2.4a), the neuron starts to spike before stopping

abruptly, as shown in figure 2.15. This situation differs from figure 2.9a, where a current ramp



2.2 RESULTS 65

was applied. In figure 2.9a, the neuron stopped spiking near the end of the input ramp, because
the input current ended well above the Hold current (H point in figure 2.4). In figure 2.15, the
input is now constant and the neuron still spikes before stopping abruptly. The amplitude of
the spikes appears constant, before sharply decreasing until completely disappearing. Once
the neuron stops spiking, it does not start spiking again if the input does not change. Our
measurements indicate that, if pulses of the right current values are applied successively, the
neuron will start spiking each time before eventually stopping. However, the duration of phasic

bursting is not always the same even if the input is identical.
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Figure 2.15: Example of phasic bursting of the output voltage as a function of time. A current
input of amplitude 0.47 mA is applied. The right panel zooms on the end of the
phasic bursting.

In order to quantify the effect, a statistical study of phasic bursting as a function of in-
put current is presented in figure 2.16. A current pulse is applied to the neuron, its output
is recorded on the oscilloscope, and the average frequency during the pulse duration is then
computed for each point. When the phenomenon of phasic bursting occurs, spikes stop dur-
ing a fraction of the total duration of the pulse, which decreases the average frequency. Despite
the apparent stochastic behavior, a clear trend in the mean frequency evolution as a function
of input emerges. For low currents, there is at first almost no phasic bursting, and the median
frequency is almost equal to the maximum frequencies observed. Then as the input current
increases, the proportion of phasic events increases and the median frequency decreases until

no phasic bursting occurs.
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Figure 2.16: Variation of the average frequency as a function of the input current. Right: Zoom
on the phasic bursting regime, in order to get a statistical understanding of the
phenomenon. In blue, the median frequency computed from the different average
frequencies (grey dots) is plotted.

2.2.5 Understanding phasic bursting with non-linear dynamics sim-

ulations

We now present a theoretical analysis to determine the origin of the experimentally-observed
phasic bursting. We model our system with the circuit of figure 2.7, neglecting the parasitic
inductance and the intrinsic capacitance, that do not impact the qualitative neuron dynamics,
in order to gain in simplicity and generality. The system is then simplified to two coupled first-
order differential equations that link the voltage V4 across the device and the temperature Ty

inside the active volume of the device. The first equation reads

vy I vy
dt Cext Rdcext,

where I is the input current and Ry is the Poole-Frenkel resistance defined in equation 2.1. The

(2.3)

second equation is the Newton Law of Cooling (equation 2.2).

Equations 2.2 and 2.3 can be solved numerically. The simulations shown in this section
were executed in Python with a Runge-Kutta solver of order 5 and a timestep of 50 ps using
equations (2.1) and (2.2). These simulations result in the different trajectories plotted in blue
in figures 2.17a,b,c for the input current values I5 of 0.9, 0.96702 and 1.A mA respectively. The

system nullclines are also shown in dotted lines. These curves correspond to the zero values of
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the right-hand side of equations 2.3 and 2.2. Their intersection in the two-dimensional phase
space (T4,Vq) corresponds to points for which the derivatives of T4 and V4 are zero, and there-
fore gives the fixed point of the system for each input current.

Consistent with equation 2.2, the temperature nullcline does not depend on the input cur-
rent I and is therefore identical in figures 2.17a,b,c (orange curve). On the other hand, increas-
ing the input current vertically shifts the voltage nullcline to the top of the phase space. The
current-dependent fixed points can therefore be obtained by following the temperature null-
cline. For each of these points the Poole-Frenkel resistance can be computed, and by plotting
the input current I as the function of the voltage V4 (thanks to the equilibrium relation I = X—‘;‘)
the simulated quasistatic curve of figure 2.4 is obtained.
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Figure 2.17: a, b, c: simulation of the trajectory (in blue) and the nullclines (in orange for T=0
and in green for V = 0) for different input currents Ig of value 0.9, 0.96702 and 1.1
mA for each figure. The y-axis corresponds to the temperature T4 in the active
volume of the device while the x-axis represents the voltage of the device V4. The
black arrows indicate the direction of the gradient at each point.

The analysis of figure 2.17 shows that phasic bursting is a particular situation that occurs
around the hold point. The occurrence of this behavior is simply controlled by the constant
source current applied to the device. Below the hold point, the fixed point is not stable, and
the trajectory therefore reaches a limit cycle: this is what happens in figure 2.17a. At the hold

point, the system undergoes a supercritical Hopf bifurcation, where the limit cycle becomes a
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stable equilibrium point (as seen in figure 2.17c). Just above the transition (figure 2.17b), the
system reaches a stable equilibrium point, but the convergence of the trajectory is quite slow
(see figure 2.17b).

0 2 4
Time (us)

Figure 2.18: Simulations of the device current oscillations as a function of time for a current
input I5 of 0.96702 mA .

This dynamic naturally gives rise to the phasic bursting phenomenon of figure 2.18, where

an apparently stable train of spike unexpectedly fades out then stops.

2.2.6 Discussion and limitations of this model

In this chapter, we have demonstrated that the spiking memristor neurons we fabricated ex-
hibit a range of both static and dynamic properties. Our work also shows that a simple model
based on a one-dimensional Poole-Frenkel resistance is sufficient to replicate these properties,
and provides deeper insights into the different behaviors observed. It is worth noting that the
purpose of this model is not to provide a perfect understanding of the physics and mechanisms
involved, but rather to have a set of simple equations that accurately describe the system. This
is particularly important for neuromorphic computing, where simulating a physics-based neu-
ral network is a crucial first step towards on-chip learning, even though it can be computation-
ally demanding. As a result, some discrepancies exist between the physics and the simulations,

which we will address in this section.
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2.2.6.1 Phasic bursting range

Interestingly, in the experiments as shown in figure 2.16, the current input range where the
phasic bursting happens (AI = 0.04 mA) is about ten times larger than in the simulations (A =
0.003 mA). The noise inherent to physical devices and to the input current (close to 0.018 mA
in our experiments) explains the experimentally observed stochasticity of phasic bursting and
expands the phasic bursting range. Indeed, even if the bias conditions of the device are set out-
side of the narrow range where phasic bursting is predicted in the absence of noise, fluctuations
will enable the system to reach it and initiate the bifurcation, a phenomenon akin to stochastic
resonance observed in biological neurons [238]. Other factors can also impact the details of the
phasic bursting behavior. Simulations indicate that its corresponding current range Al could
be increased for possible applications by lowering the value of the external capacitance, see
figure 2.19.

0.00 ~

50 100 150 200 250 300
Capacitance (pF)

Figure 2.19: Evolution of the phasic bursting range with respect to the external capacitance.
The parameters can be found in table 1.

An experimental study would be needed to confirm this trend. In the model, the thermal
resistance is considered constant for simplicity, but this is not true in a real device, as shown in
reference [239]. However, both measurements and adequate models are still lacking for tem-

peratures higher than 450 K to include this dependency in the phasic bursting simulations.

2.2.6.2 Temperature in the filament

The Poole-Frenkel resistance model provides insights into the switching behavior of NbOx
memristors, where the oxygen vacancy filament serves as the switching volume. However,
the model’s predictions of the temperature rise during the spike events, as seen in Figure 2.8

and Figure 2.17a,b,c, may seem implausible at first glance. The observed temperatures during
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spikes are approximately 2500°C and 6500°C, respectively, which raises concerns about the va-
lidity of the model.

Several factors must be considered when interpreting the model’s temperature predictions.
Firstly, the switching volume has been assumed to be the entire NbOx layer, which is not nec-
essarily accurate. It could be a much smaller portion of the layer. The filament is actually com-
posed of just a few atoms, and its position and size may not be uniform throughout the device.
Therefore, the concept of a well-defined temperature may not be applicable in this context.
Moreover, the Poole-Frenkel model does not account for heat dissipation in the filament. The
Joule heating effect caused by the current passing through the filament results in a localized
temperature increase. However, since the model uses a simplified expression of heat dissipa-
tion in the filament, which does not take into account all the detailed thermal transfers inside
the nanodevice, its temperature predictions are higher than the actual temperature.

In summary, while the Poole-Frenkel model provides a useful framework for modeling and
understanding the switching behavior of NbOx memristors, its temperature predictions must

be interpreted with caution.

2.3 Conclusion

Volatile NbOy memristors are excellent neuron candidates as they are scalable, present reli-
able threshold switching, and are compatible with memristive synapses such as HfO, Metal-
Insulator-Metal structures. We have shown that the Pt/Nb,05/Ti/Pt stack presents well-suited
I-V characteristics: a current-controlled S-shaped Negative Differential Resistance, which can
be modeled by assuming Poole-Frenkel conduction. This type of device is able to spike and the
resulting shape is very close to the one of a biological neuron with initial depolarization fol-
lowed by hyperpolarization due to an inductance. We demonstrated that this device presents
multiple computational properties such as Leaky-Integrate-and-Fire (LIF) characteristics, all-
or-nothing-firing, and phasic bursting. We also investigated the origin of phasic bursting through
the analysis of the physical equations of the devices. This phenomenon comes from the bi-
furcation between an unstable fixed point (limit cycle) and a stable fixed point (equilibrium)
driven by Poole-Frenkel dynamics. These results pave the way to easily-scalable neurons that
can be easily modelled and simulated but still show a complex behavior in order to mimic bio-

logical computations.
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As discussed in Chapter 1, on-chip-learning requires hardware and software co-design.
This also means adapting algorithms for hardware, which are ideally local in space. This chap-
ter discusses ways to adapt Equilibrium Propagation, a spatially local algorithm, to make it

highly implementable in hardware.

3.1 Context

As we saw in Chapter 1, the BackPropagation algorithm, with its highly non-local updates, is
difficult to implement on-chip. An alternative is then to take inspiration from biology and think
about biologically plausible algorithms, as presented in Chapter 1, section 2.2. However, the
physical nature of a system can also be exploited. This idea is not new, as in certain instances,
the fundamental principles of physical systems have inspired learning algorithms. Notable
examples of this include Hopfield networks [44] and Boltzmann machines, both of which are
inspired by Ising spin systems. Numerous other methods have been suggested, leveraging the
effects of nonlinear dynamics, such as bifurcations and chaos, for computation [240], [241],
[242].

The existence of these works leads to the idea of using energy-based models for neuromor-
phic computing. These models use the minimization of an energy function to learn a task. This
is particularly interesting because a physical system will minimize its energy function by na-
ture. Using this intrinsic learning property with a local learning rule seems to be a promising
path for neuromorphic computing. However, traditional energy-based models do not imple-
ment the supervised learning of a global objective function, and these models suffer from low
accuracy, especially compared to BackPropagation.

In fact, in a network based on an energy model, neurons typically gravitate towards the
lowest energy state that is nearest to the system’s initial state, which corresponds to the input.
The energy function of the network is parameterized, and by appropriately tweaking these pa-
rameters, we can establish minima that correspond to the various patterns we aim to store.
Hopfield networks are often referred to as self-associative because they map an input (or ini-
tial state) to an equilibrium state that matches the size of the input. Limitations of Hopfield
networks include notably the lack of emergent hierarchy in these networks due to the unsuper-

vised learning and self-associative nature.

3.2 Equilibrium Propagation algorithm

Equilibrium Propagation (EqProp) is a learning algorithm introduced by Scellier and Bengio
[138] based on gradient descent. However, contrary to BackPropagation, both the inference
phase (free phase) and the learning phase (nudge phase) use the same operations. This is a
considerable advantage for hardware implementation.

EqProp is an energy-based model that can be used for any connected networks (layered or
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not), as long as the weights are symmetric (W;; = Wj;), meaning that the weight W;; will both
evolve upon the variations of the rate-based neurons i and j. The most common architecture is
to arrange the neurons in layers, with input on one side and output on the other, as presented
for a MLP in chapter 1. EqProp takes inspiration from Contrastive Hebbian learning presented

in Chapter 1 section 2, but use a weakly clamped second phase instead.

EqProp is a convergent recurrent neural network In a Recurrent Neural Network (RNN),
some neurons take their own previous outputs as part of their input. This creates a kind of
loop in the network, which allows it to maintain a form of 'memory’ about previous inputs.
This is what gives RNNs their temporal dynamic behavior, as the state of a neuron at time 't’
is dependent not just on the current input at time 't but also on its own state at the previous
time step ’'t-1’. This makes RNNs particularly useful for tasks involving sequential data, where
the order and context of inputs are important, such as language modeling, speech recognition,
and time series prediction.

EqProp belongs to a subclass of RNNs, called convergent RNNs with a static input. This
means that this type of RNNs is fed by a static input x and reach an equilibrium state. It is

worth noting that EqProp is equivalent to Back Propagation Through Time (BPTT) [243].

Learning procedure The system considered follows a certain energy function E, which will be
naturally optimized. This energy depends on the states of neurons called s, on the symmetric
synaptic weights called W, and on the biases called b. Here, we will refer to the weights and
biases as the parameters 6 of the network. Therefore, the energy function can be written as:
E(x,s,0).

The first phase, the inference phase, is called the free phase. Given some input x, its corre-
sponding target t, and some parameters 0, the states of the neurons will evolve to minimize the

energy function according to the formula:
ds  OE
dt  0s

The states eventually reach an equilibrium state, referred to as s*, which is stored. The

3.1

output neurons, called y, will give a first result that has no reason to be close to the target t.
A cost function C is therefore defined to determine the error between the target and the real
output of the network. The higher the cost function, the further away the output from the
target is.

The learning phase, called the nudging phase, uses a new energy, the total energy func-
tion F = E + BC where £ is a non-zero real-valued parameter. The neurons, therefore, evolve

according to the new equation:

ds  OF OE ,0C

ai- o oas Pas (5:2)
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Figure 3.1: a: Free phase. b: Nudge phase.

This is similar to applying a force proportional to § to the output units y to nudge them
towards the target t (see Fig. 3.1), while waiting for a new equilibrium to be reached. This
equilibrium state is called s*”#. On the notation point of view, the equilibrium reached at the
end of the free phase can be noted s*, as it corresponds to a dynamic evolution where 8 = 0.

One of the strengths of Scellier and Bengio’s original work is the following theoretical guar-

antee:
OF

00

oj . 1 (6F
00

7 _ |7 *,0 *,0
5 ﬁlir(l)ﬁ (B,x,ﬁ,s ) 6,x,B,s )), (3.3)

where ] is the objective function the network aims to minimize. Its expression is the same
as the cost function C, but when C is defined for a single example, J is defined over the whole
training set. In practice, the parameter update is:
_ 1(0F «p)_OF .0
AQ——nB (@(B,x,ﬂ,s )—g(e,x,ﬁ,s )) (3.4)
Note Scellier and Bengio reported that using a § with a random sign yielded better results
that keeping the sign of § constant [138].

Energy choice The initial energy function proposed by Scellier and Bengio is [138]:

1 1
B =23 u; =2 Y Wijp(up()) =3 bip(uy). (3.5)
i iZ]j i

where p is the activation function of the neurons, akin to a firing rate. The original EqProp work
defined p as a hard sigmoid function, but other functions have been used such as a sigmoid or a

tanh [244]. This energy function has first been studied by [137], [245] , [246] and[247]. It differs

from the original Hopfield energy, as the quadratic term %ulz was not present.

In this particular framework, the neurons evolve during the free phase according to the
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equation:

e Y AC)

dsl- OE
dt 0s;

ZW,]p(u])+b) (3.6)
i#]

The derivative of the energy function gg can be computed and gives:

OF OE ocC

= + 3.7
oW, oW, ﬁan] p(u )p(uj) ﬁOW,] 3.7
0F OE ocC
o s+ 3.8
Gb ab :B p(u;) 'Babi (3.8)
If the cost function partial derivative with regards to the weights and biases is zero a?/g =
g—g =0, then the parameter updates derived from equations (3.4), (3.7) and (3.8) yield:
_n *,p *,0 *,0 *,0
AVVij—B(P(ui Jpu; ™) —plu;")p(u; )), 3.9)
Ab; :%(p(ui*'ﬁ)—p(ui*"’)). (3.10)

Note that these equations still hold true for any cost function, as long as this cost function does

not depend on any of the parameters (weights and biases).

The first work to apply EqProp to a real system is the work of Kendall et al. [248], which pro-
poses a learning framework where synapses are memristive devices and neurons’ non-linearities
are created by diodes. This work shows that this kind of system naturally evolves to minimize
a quantity which is called the pseudo-power of the system, defined in the case of a linear resis-

tance network (neurons connected by linear resistors) as:

P(V4,...., VN) = Z gij(Vi-V? (3.11)
l< j
where the pseudo-voltage P is defined for any configuration of voltages V;, even for the ones
not compatible with Kirchhoff’s laws.

This definition of pseudo power leads to the following weight updates:

_n BV _(Av0)?
AW, = B((Avij) (AVl.j) (3.12)

Itis technically possible to use the true energy of a physical system for learning with EqProp.
For electrical circuits, this may not be the optimal choice, and for our work we choose to use

the energy function defined in Eq. 3.5.

Cost function choice As we have seen, the update equations presented above hold true for

any cost function C as long as C does not depend on any trainable parameters. In the original
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EqProp paper, the mean square loss (MSE) was used with [138]:
1 2
C=liy-1l (3.13)

However, other cost functions can be used, such as the cross-entropy loss used in the work
of Laborieux et al. [244].

Variants of Equilibrium Propagation

» The initial EqProp work proposed a time-dynamic evolution of neurons. It is worth men-
tioning that a discrete-time version of EqpProp also exists, introduced by Ernoult et al.
[243]. This framework proposes to find the fixed point by iteration until convergence,

instead of resolving the time-dynamic differential equation.

* EqgProp is local in space, as a weight update only depends on the two neurons which are
connected to that particular synapse. However, it is not local in time as the equilibrium
state of the free phase has to be stored in order to enact the weight update at the end of
the nudging phase. This is not ideal for hardware, and that is the issue solved by Con-
tinual EqProp [249]. In this algorithm, the weight updates happen continuously during
the nudging phase, removing the need to store the equilibrium point. Basically the idea
comes from the fact that AW; ; = p(sf)p(sf) - p(s?)p(s?) = %fOT (p(s,-)p(sj) + p(si)p(sj)).

The update can then happen continuously during the nudging phase.

» The weights are symmetric, which can be an obstacle to hardware implementation. The

work of Scellier et al. solves the weight transport issue with a vector-field approach [250].

e Initially, the EqProp algorithm didn’t scale well, and difficult tasks like CIFAR 10 were
hard to solve because of the length of computation times and degraded performance.
Laborieux et al. proposed to use EqProp in CNNs, and instored three phases instead of
one, by having a free phase at = 0, then a first nudge phase at +(, and then a second
nudge phase at —f [244]. This improved the approximation of the derivative of the loss
compared to the parameter, overall helping the performance. Laborieux and Zenke then
proposed a complex version of EqProp, called Holomorphic EqProp, where SC is a slow-
ing oscillating nudging force [251]. It can be noticed that this second work meets the first
one in the case N =2. In particular, this means that there is no need for three phases in

[244], two phases with a positive and a negative §§ are enough.

» Laydevant et al. also introduced a Binary version of EqProp with either binary neurons

and full precision weights or with binary weights and binary neurons [252].

e Martin et al. also introduced a spiking version of EqProp, based on Continual EqProp’s
ideas [153]. The weight updates are p(s;)p(s;) + p(s;)p(s;) as we have seen. However,

the definition of the firing rate and its derivative are ambiguous for a spiking neuron.
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In this learning rule, Martin et al. have decided to binarize p, meaning that if neuron
i spikes, p(s;) =1, and if it doesn’t spike, p(s;) = 0. This greatly simplifies the learning
rule. However, the computation of p is not obvious. In this case, the authors choose to
compute this value by first using an integrator to compute the value V;; ~ § where 7y is
the leak factor. Then a delay 7 is introduced to compute p = y% = w This

value p has to be smoothed with a low pass filter to use in the learning rule.

e In EqProp, only neurons evolve according to some dynamics. Agnostic EqProp, intro-
duced in 2022 by Scellier et. al. [253] also incorporate the synapses in the energy function,
and a control knob enables the trainable parameters to remain fixed in the free phase,

while enabling them to evolve freely in the nudge phase.

Hardware realizations of Equilibrium Propagation A few hardware realizations of training a
dynamical system in-situ exist; firstly in the work of Dillavou et al . [254]. They realized a small
resistive neural network based on digital variable resistances of 128 values, deeply inspired by
Kendall’s work [248]. To palliate the need to store the states of the free and nudged phases,
the authors proposed to realize two identical neural networks, one for each phase. At the end
of the simultaneous phases, both networks are updated. More precisely, they use a variant of
EqProp, called Coupled Learning [255]. This training algorithm is an in-between between CHL
and EqProp. During the nudging phase, the output units are completely clamped and don’t
move, unlike in EqProp. However, contrarily to CHL, the clamped state is not equal to the tar-
get, but simply closer to the target than the free phase result was. The update of the resistors
is simplified, as only binary updates are applied to the resistors. Training on the iris dataset is
successfully realized. However, this task is the largest one that can be realized on their hard-
ware system. Scalability could be an issue with this approach due to the lack of non-linearity

in the system.

Activity-difference energy minimization (MADEM) is a learning framework on a memristor
crossbar array [256]. This implementation is realized on a chip that integrates complementary
metal-oxide-semiconductor (CMOS) digital control circuitry with two 64 x 64 analogue mem-
ristor crossbar arrays made of tantalum oxide. In this system, the free phase is denoted as A ¢,
which is a column vector representing the activities of all neurons in the network, including the
input, hidden, and output neurons. During the nudge phase of the operation, a bias is intro-
duced at the end of the network while the activities of the input neurons are held constant.
This setup utilizes a binary activation function in a discrete-time context, with a linear nudge
term. The energy of the system is designed to only accommodate an Ising-like term. It shows
Braille’s word pattern recognition. Both the free phase and the nudge phase equilibrium points

are obtained by iteration, no time dynamics is involved.

A recent study of Laydevant et al. implements the Binary EqProp algorithm on a physical
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system [257]. More precisely, the authors use the binary version of the learning algorithm to
train an Ising machine, in this case D-Wave. The application of biases for the nudging phase
was not enough, as the system was stuck in its ground state following the initial free phase. To
solve this particular issue, either simulated annealing or quantum annealing was used to ob-

tain the nudge phase state.

3.3 Need for gradient discretization

3.3.1 Ideal synapse definition and physical constraints

As we saw in the first chapter, an ideal hardware synapse has to follow some requirements. Its
strength should move linearly compared to a control parameter that will be tuned during learn-
ing. In our particular case, we want to use this algorithm with memristors. The strength of the
synapse will therefore be either the resistance or the conductance of a device. Implementing
both positive and negative weights can be done in two ways. Either the SET and RESET are sym-
metric, and the zero is considered to be between the ON and the OFF states; or two different
devices can be used to implement either the positive (excitatory) and the negative (inhibitory)

parts of the synapses.

Equilibrium Propagation gives a real continuous-valued update that has to be applied to
a synapse. Updating the weights during learning can also be done in several ways. A voltage
pulse whose amplitude is proportional to the update can be applied to a synapse, or several
pulses of the same amplitude, proportional to the gradient, can be applied. In hardware real-
izations, it is much easier to apply several pulses of identical amplitude rather than to apply

one pulse of variable amplitude. That explains why this option is favored in this work.

Energy efficiency is a constraint implying a limitation of the total number of pulses applied
over the whole chip. In addition, the more pulses are applied to a single memristor, the less
linear the conductance or resistance of this specific device is. So ideally, we also want to limit
the number of pulses applied per memristor.

Different discretization strategies will be discussed in this chapter.

3.3.2 Methods

The results in this chapter are obtained using the time-dynamic EqProp framework presented
above, in section 3.2. The algorithm is implemented in Python, using the numba just-in-time

compilation framework to accelerate the computation time on CPU. The Modified National In-
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stitute of Standards and Technology (MNIST) database is used, composed of 28x28 images of
digits and their corresponding labels, ranging from 0 to 9. In this case, the pixel values, ranging
from 0 to 255 are scaled between 0 and 1. The labels are one-hot encoded. The MNIST database
is imported using the sklearn library, before being shuffled with a seed equal to 20. Then, the
dataset is split into three different sets: the training set of size 56000, and the validation and
test sets each of size 7000. The network used is a fully connected network with one hidden
layer and dimensions: 784-512-10. If nothing is specified, the mini-batch size is 50. The free
phase is made of 30 iterations, the nudge phase of 10 iterations, with a time step of 0.5. The
nudging factor S is fixed at 0.4, and its sign varies randomly as suggested in Scellier’s and Ben-
gio’s initial work [138]. The activation function is the hard sigmoid, with neuron states clamped
between 0 and 1, as in the initial EqProp work. The weights are initialized uniformly using
Xavier’s formula: W;; ~ U [—\/Lﬁ, \/Lﬁ] [70]. The biases are initialized at 0. Each result consists in
an average over ten runs, and the standard deviation is also shown as a lighter area around the

mean value.

3.4 Continuous-valued EqProp study

Before diving into different discretization strategies, we first study how the conventional Equi-
librium Propagation algorithm behaves, by presenting an example of learning with this algo-

rithm.
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Figure 3.2: Accuracies obtained in the conventional EqProp case with parameters: n; =
0.15, 2 = 0.001.

Figure 3.2 shows an example of accuracy obtained, which corresponds to 98.46 % for the

validation accuracy and 98.13 % for the test accuracy.
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Figure 3.3: Histogram of the accumulated weight updates over 10 runs. a: Accumulated weight
updates during learning for the first layer: AW/°’. b: Accumulated gradients during
learning for the second layer: AW,/°! with parameters 7, = 0.15 and 72 = 0.001.

To better understand the training process, it is possible to look at the distribution of accu-
mulated gradients over learning. Figure 3.3 presents the update values AW = %% where
Nparch is the batch size used (in our case 50, as written in the method section). On the left, the
distribution of the accumulated gradient AW/°’ during learning is plotted, corresponding to
the weights of the first layer W;. The right part shows the accumulated AW,/°" during learning,

corresponding to the weights of the second layer W.

Both figures show a peak around dW = 0. However, the shapes of the distributions are
different in both cases, as the AW/° distribution presents a high peak, whereas the AW,/*! dis-
tribution presents a much smaller peak around AW ?°" = 0. This means that the weight matrix
W is more sparse than the weight matrix W,. This is due to the dataset used, the MNIST one,
where pixels in the border of the picture are equal to zero (black edge). Therefore the weights
connected to these specific neurons are never updated. By comparison, the second weight ma-

trix updates are distributed along a Gaussian, with a prominent peak at dW = 0.

This observation does not give any information on how many positive updates or negative
updates have happened during learning. As a reference for future discretization techniques,
it is interesting to accumulate separately all positive gradient values and all negative gradients
over training. That way, it becomes possible to determine synapses that have never been up-
dated. It also enables the comparison of positive accumulated gradients with negative ones.
For a weight matrix W;, we first computed the value dW; g1 = max(0,dW;) (fori=1and 2) and
accumulated over learning. Similarly, we then accumulated the value dW; 13, = min(0,dW;).

The results of the positive and negative contributions are presented in Fig. 3.4.

Figure 3.4a shows the distribution of the accumulated positive d W gy, at the end of learn-

ing, whereas Figure 3.4b shows the negative ones d W prj. A similar trend is observed in both
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Figure 3.4: Histogram of the positive and negative weight updates. a: Accumulated positive

weight updates for the first layer: AWI“"’B L b: Accumulated negative weight up-
vvfoLBLb
1

dates for the first layer (absolute value): A

. ¢: Accumulated positive weight

updates for the second layer: AWZW’B L d: Accumulated negative weight updates
for the second layer (absolute value): AWZM'B”’ . With parameters: etal = 0.15

eta2 =0.001.

graphs with a peak at dW = 0, which steeply goes down at about dW = 0.25. The distribu-

tion then reaches a plateau before decreasing to reach approximately 0 at d W = 3. Overall both

distribution evolutions are monotonous: they decrease when the value of the accumulated gra-

dient increases.

Figures 3.4c and d display respectively the distributions of dW, gy and dW, prp. They both

show a peak at dW = 0. However, the distribution evolution is this time not monotonous: the

distributions increase before decreasing again to reach near-zero values at dW = 0.16. Sim-
ilarly to the first layer (Figs 3.4a and b), the negative and positive contributions presented in
Figs. 3.4 c and d have canceling effects that reduce the overall range of weights, shown in 3.3b.
Note that contrarily to the first layer (Fig. 3.3a), this results in a Gaussian-like distribution.

Ideally, we want the discretization techniques to reproduce this type of distribution.
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3.5 Discretization strategies

Discretizing the gradient necessarily introduces an error in the computation, as discretiza-
tion necessarily implies that some synapses do not receive the exact gradient update that they
should have had. The goal in designing a discretization strategy is, therefore, to minimize that
error to obtain the best performance possible.

3.5.1 Ternary gradient

3.5.1.1 Definition

The first discretization strategy that we discuss is a simple ternary discretization of the gradi-
ent. In this specific case, the continuous-valued gradient is turned into -1, 0 or 1 "pulses", i.e.
gradient steps: given a gradient AW computed by the EqProp algorithm, we would like to ei-
ther apply one pulse to increase the weight, one pulse to decrease the weight, or no pulse at all.
Therefore, a simple approach consists in defining a threshold 6;;,. The weight update used is
not directly the gradient but:

a PuIsesJ b Awapplied
+17T T ®
—Otn . .
1 1
0 Bun AWtot -1 0 +1 Pulses
- 1 [ ) <+ -v

Figure 3.5: Ternary discretization a: Schematic representing the pulses as a function of the
continuous-valued gradient, with threshold 6,;,. b: Effective weight update as a
function of the number of pulses.

Awtot — ﬂ AW
ﬁ Nbatch

which will be discretized. For all gradient values above the threshold 6, a positive step

(3.14)

is taken, and for all values below the opposite of the threshold —60,, a negative step is taken.
Figure 3.5 evidences how the gradient is discretized.
For a real device, these pulses are directly applied to it. Let us first assume that the weight

update after one step is determined by the "device speed"” v:

Wyl = W, + AW, (3.15)



3.5 DISCRETIZATION STRATEGIES

where

and where ¢ is the number of pulses obtained with the discretization method. The speed v is

a hyperparameter that would only be partially tunable in an experiment, as it would largely be

AWreqr =v-t,

determined by the devices’ behaviors.

It is worth mentioning that the learning rate n has an influence on the number of pulses
to apply. For instance, if 17 is large, the applications of pulses are favored as AW > 6, and will

occur more easily. Note that the weight update step remains fixed at a value v and does not

depend on the learning rate.

3.5.1.2 Results
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Figure 3.6: Performance of the ternary gradient method with parameters: n; = 0.15,7, =

Epoch

0.005,0 = 0.00005, v = 0.00001.

(3.16)
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Figure 3.7: Cumulated update pulses distribution at the end of learning for the ternary gra-
dient method. a: Cumulated pulses during learning for the first layer. b: Cumu-
lated pulses during learning for the second layer. With parameters: n; = 0.15, 12 =

Pulses summed

0.005, 6 = 0.00005, t,ax = 2.

Figure 3.6 shows an example of accuracy obtained with this discretization technique. Sur-

prisingly, the accuracy is only slightly degraded compared to the previous case (98.13%, see
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Fig. 3.2) as we get 98.06 % accuracy. We follow a similar process to what was presented for the
Eqprop algorithm. The accumulated pulses value f;,,;,meq is computed at the end of learning
by summing the total number of -1 pulses t5;; and +1 pulses tp; applied to a given synapse

(tsummed = tBL — taLp). The results are shown in figure 3.7 a and b.

The accumulated weight updates of the first layer show a peak at zero values. This is rem-
iniscent of the Eqprop algorithm previously presented in figure 3.3, even though the peak is
more prominent in the current case. The accumulated weight updates of the second layer do
not seem to follow a Gaussian-like distribution, which differs from the classical EqProp case

(see Fig 3.3b).
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Figure 3.8: Cumulated positive or negative pulses distribution at the end of learning for the
ternary gradient method. a: Cumulated positive pulses for the first layer. b: Cu-
mulated negative pulses for the first layer. c: Cumulated positive pulses for the sec-
ond layer. d: Cumulated negative pulses for the second layer. With parameters:
11 =0.15, 72 =0.005, 8 = 0.00005, t,,4x = 2.

Figure 3.8 shows how the positive pulses and negative pulses are spread. The first layer
(Figs. 3.8a and b) displays a monotonous repartition similar to the conventional EqProp case
with a very high peak around #;,;,meq = 0. The second layer differs again from the previous

conventional EqProp case as it demonstrates a monotonous evolution of the updates.
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3.5.1.3 Variation of the threshold parameter

The threshold parameter 6 is the key parameter that governs the discretization step, which

requires tuning as finely as possible to obtain the best possible performances.
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Figure 3.9: Performance of the ternary gradient method when the parameter 6 varies with pa-
rameters: 171 = 0.15,72 = 0.005, v = 0.0001.

Figure 3.9 shows the training and validation accuracy for three different values of the thresh-
old 6, all averaged over ten different runs. The curve corresponding to # = 5.107° (in orange)
was previously shown in Fig. 3.6 and corresponds to the best performance. Higher 6 values do
not allow us to reach better accuracies (green), and the curve corresponding to 6 = 2.5-107°
(blue) shows a degradation of training accuracy after 50 epochs.

These results can be interpreted in a straightforward fashion. If a high threshold is set, nu-
merous synapses are never updated and the learning procedure relies only on a few synapses.
On the contrary, if the threshold 6 is too low, a large part of the synapses is updated, which
deteriorates learning. To obtain an appropriate behavior corresponding to the proper balance

between the two previous cases, it is thus necessary to tune the threshold value.

3.5.1.4 Variation of the learning rate of the second layer independently from the
first layer

In this section, the learning rate of the first layer is considered fixed at ; = 0.15, and both the
threshold 6 and the learning rate of the second layer 7, are allowed to vary. Modifying those
two parameters allows us to explore the full parameter space. Indeed, the threshold and the
two learning rates are related. For instance, if 12 < 1;, the threshold value can be chosen to
obtain a +1 pulse update in the first layer but not in the second one for an identical gradient.
Results for four different values of 1, are presented in Fig. 3.10. The green curve for i, =
0.005 corresponds to the result presented in Fig. 3.6. When 7, is high, the second layer is often
updated, whereas if it is low, the second layer is scarcely updated. Similarly to the threshold
parameter, a compromise has to be found here as well, as 2 = 0.001 (blue) and 1, = 0.0075
(red) result in a worse accuracy than the optimum value (green). Similarly as in the conven-

tional EqProp case, the learning rate of the second layer 7, is smaller than the one of the first
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