
HAL Id: tel-04477502
https://theses.hal.science/tel-04477502

Submitted on 26 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physics-Grounded Neuromorphic Computing : From
Spiking Neurons to Learning Algorithms

Marie Drouhin

To cite this version:
Marie Drouhin. Physics-Grounded Neuromorphic Computing : From Spiking Neurons to Learning
Algorithms. Micro and nanotechnologies/Microelectronics. Université Paris-Saclay, 2023. English.
�NNT : 2023UPAST168�. �tel-04477502�

https://theses.hal.science/tel-04477502
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

023
UPA

ST1
68

Physics-Grounded NeuromorphicComputing: From Spiking Neuronsto Learning Algorithms
Calcul Neuromorphique basé sur la Physique :Des Neurones à Impulsions aux Algorithmes d’Apprentissage

Thèse de doctorat de l’université Paris-Saclay
École doctorale n◦ 575: Electrical, Optical, Bio-Physics and Engineering (EOBE)Spécialité de doctorat : Electronique, Photonique et Micro-NanotechnologiesGraduate School : Sciences de l’ingénierie et des systèmes. Référent : Faculté des Sciences d’Orsay

Thèse préparée au Centre de Nanosciences et de Nanotechnologies (UniversitéParis-Saclay, CNRS) et à l’Unité mixte de physique (Université Paris-Saclay, CNRS, Thales),sous la direction de Damien QUERLIOZ, directeur de recherche CNRS, et sous leco-encadrement de Julie GROLLIER, directrice de recherche CNRS.

Thèse soutenue à Paris-Saclay, le 22 novembre 2023, par

Marie DROUHIN

Composition du jury
Membres du jury avec voix délibérative
Laurent CARIO Président & RapporteurDirecteur de recherche CNRS, IMN, Nantes UniversitéDaniel BRUNNER Rapporteur & ExaminateurChargé de recherche CNRS (HDR), Institut FEMTO-STMarc BOCQUET ExaminateurProfesseur des universités, IM2NP, Aix-Marseille UniversitéAdrien VINCENT ExaminateurMaître de conférences, IMS Bordeaux, Université de Bordeaux

Titre : Calcul Neuromorphique basé sur la Physique: Des Neurones à Impulsions aux Algorithmesd’Apprentissage
Mots clés : Propagation de l’équilibre, Nanoélectronique, IA efficace en énergie, Memristor
Résumé :

À l’ère numérique actuelle, caractérisée parune augmentation exponentielle de la puissancede calcul et de la capacité de mémoire, noussommes confrontés à un défi pressant : la consom-mation d’énergie croissante de la technologie del’information. La demande croissante de servicesintensifs en données, notamment l’intelligence ar-tificielle (IA) et le cloud computing, souligne la né-cessité de calculs respectueux de l’environnementet propices à l’innovation. Cette thèse explore lepotentiel des memristors pour le calcul neuromor-phique afin de réaliser une IA basse énergie.Nous avons d’abord étudié des neurones com-posés de memristors volatils NbOx, offrant unealternative attrayante aux dispositifs CMOS clas-siques par leur scalabilité et leur dynamique.Ces dispositifs ont été caractérisés et présententde nombreux comportements avec impulsions etbursting, tels que l’intégration et tir avec fuite ou le« phasic bursting ». Nous avons modélisé ces com-portements à l’aide de dynamique non linéaire. Enparticulier, l’origine du « phasic bursting » a pu êtreélucidée : elle émerge d’une bifurcation de Hopfentre les régimes de cycle limite et de point fixe.Ce modèle peut s’avérer utile lors de la conceptionde puces neuromorphiques à impulsions. Du côtédes algorithmes, nous avons adapté la Propaga-tion à l’Équilibre (EqProp) aux systèmes physiques.EqProp, ancré dans la physique plutôt que dansle calcul, offre une perspective intéressante: ex-ploiter la physique inhérente des systèmes réelspour l’apprentissage sur puce. Ce travail a portésur l’adaptation des gradients continus aux mem-ristors, où la programmation se fait sous formed’impulsions. Pour cela, nous avons exploré di-verses approches de discrétisation des gradients.La première méthode, la discrétisation ternaire, adémontré des taux deprécision comparables à ceuxde EqProp. Dans ce contexte, nous avons exam-iné le rôle des hyperparamètres et leur influence

sur les performances du réseau. Nous avons en-suite introduit desmise-à-jours probabilistes, ce quia amélioré les performances et a permis d’obtenirune distribution de mises-à-jours similaire au casnon discrétisé. Une autre approche avec davan-tage d’états quantifiés a été étudiée. Bien quecette dernière approche surpasse l’approche ter-naire non probabiliste en termes de performances,elle a aussi des désavantages - une distributionplus large des impulsions et une consommationd’énergie plus élevée que l’approche ternaire prob-abiliste. Nous avons ensuite testé la résilience dela version discrétisée de EqProp en remplaçant lessynapses idéales par des mesures de memristorsHfOx. À cette fin, nous avons utilisé une plate-forme où les memristors étaient accessibles indi-viduellement. Nous avons d’abord effectué des sim-ulations de contrôle : un perceptron à une seulecouche et un réseau à deux couches avec premièrecouche gelée. Ces expériences ont donné un aperçudu potentiel des synapses memristives, avec desprécisions atteignant 78,1 % et 70,8 %, respective-ment. Ensuite, nous avons étudié un réseau à unecouche cachée. Deux définitions de poids ont étéutilisées - les différences linéaire et logarithmiquedes conductances. La définition linéaire s’est avéréeêtre la meilleure, avec une précision de 91 % com-paré à 89,5 % obtenu par la version logarithmique.Pour améliorer ces résultats, nous avons limité lavaleur de la conductance au dessus d’un seuil afind’atténuer l’effet du régime bruité et non linéairedes memristors. Ainsi, les définitions linéaires etlogarithmiques des poids ont respectivement at-teint des précisions de 91,75 % et 92,14 %. Cesrésultats constituent une étape importante pourla mise en œuvre pratique de l’apprentissage surpuce. En résumé, cette thèse explore le poten-tiel des memristors pour le calcul neuromorphiqueafin de réaliser une IA basse énergie. Ce domainepromet des avancées innovantes à l’intersection dela physique et de l’IA, offrant au calcul un futur plusdurable et puissant.

Title: Physics-Grounded Neuromorphic Computing: From Spiking Neurons to Learning Algorithms
Keywords: Equilibrium propagation, Memristor, energy-efficient AI, Nanoelectronics
Abstract:

In our digital era, marked by an exponentialgrowth in computational power andmemory capac-ity, we are confrontedwith a pressing challenge: theescalating energy consumption of information tech-nology. The increasing demand for data-intensiveservices, notably artificial intelligence and cloudcomputing, underscores the urgent necessity forenergy-efficient computing solutions that are envi-ronmentally sustainable and foster innovation. Thisthesis explores the potential of memristors for neu-romorphic computing to achieve energy-efficient AI.Because Spiking Neural Networks could offer thepromise of low-energy learning, we first focused onhardware neurons composed of volatile NbOx fil-amentary memristors. These components emergeas appealing alternatives to conventional CMOS de-vices because of their scalability and spiking be-haviors. These devices were characterized and re-produced numerous neuronal spiking and burstingbehaviors, such as Leaky-Integrate-and-Fire char-acteristics and phasic bursting. These behaviorswere modeled with non-linear dynamics equations,which accurately reproduced the experiments. Inparticular, the origin of the phasic bursting phe-nomenon could be investigated and was shown toemerge from a Hopf bifurcation between the limitcycle and the fixed point regimes. This model couldbe beneficial when designing spiking neuromorphicchips. We then focused on the algorithmic sideand tackled the challenge of adapting the Equilib-rium Propagation (EqProp) algorithm to physicalsystems. EqProp, rooted in physics rather than cal-culus, offers an attractive prospect—harnessing theinherent physics of hardware systems for on-chiplearning. This work revolved around addressingthe challenges posed by continuous-valued gradi-ents in a memristor-based environment, where themode of programming is a series of pulses. We ex-plored various approaches to gradient discretiza-

tion. The first method, called ternary discretiza-tion, demonstrated accuracy rates nearly matchingthose of conventional EqProp. In this context, weexplored the role of hyperparameters and their in-fluence on network performance. We then intro-duced probabilistic updates, which enhanced per-formance and gave a pulse distribution that closelymirrored the non-discretized scenario. Introduc-ing more quantized states in gradient discretiza-tion outperformed the non-probabilistic ternary ap-proach in terms of performance, but came with atrade-off—a broader pulse spread and increasedenergy consumption compared to the probabilisticternary approach. Next, we tested the resilience ofthe discretized version of EqProp by replacing theideal software synapses with HfOx memristor data.For this, we used a hardware platform with indi-vidually accessible memristors. We first performedcontrol simulations: a single-layer perceptron anda two-layer network with a frozen first layer. Theseinitial experiments provided a glimpse into the po-tential of memristor-based synapses, with accuracyrates reaching 78.1% and 70.8%, respectively. Next,we trained a one-hidden-layer network. Two dis-tinct weight definitions were analyzed—the linearand logarithmic differences of conductances. Thelinear definition emerged as the best method, with91% accuracy compared to the 89.5% achieved bythe logarithmic one. To improve the results, we lim-ited the conductance value if it fell below a thresh-old tomitigate the high-noise and non-linear regimeof memristors. With this approach, the linear andlogarithmic weight definitions achieved respectively91.75% and 92.14% accuracy. These results consti-tute a milestone on the journey towards practicalon-chip. In summary, this thesis explores the poten-tial of memristors for neuromorphic computing torealize energy-efficient AI. This field promises break-throughs at the intersection of physics and AI, of-fering a more sustainable and powerful future forcomputing.

Thèse effectuée au sein du Centre de Nanosciences et de Nanotechnologies

de l’Université Paris-Saclay

Centre de Nanosciences et Nanothechnolgies

91120 PALAISEAU cedex

FRANCE

vi

À ma famille et mes amis.

To my family and friends.

ACKNOWLEDGEMENTS vii

Acknowledgements

Je tiens à exprimer ma profonde gratitude envers toutes les personnes qui ont joué un rôle

essentiel dans la réalisation de cette thèse.

Tout d’abord, un grand merci à mes superviseurs de thèse, Damien et Julie, pour leur sou-

tien continu tout au long de ma thèse, malgré le contexte du COVID en début de thèse. Votre

encadrement, vos conseils avisés et votre expertise ont grandement contribué à mon épanouisse-

ment scientifique. Je souhaite remercier sincèrement les membres de mon jury de thèse : Lau-

rent Cario, Daniel Brunner, Marc Bocquet, Adrien Vincent et Elisa Vianello, pour le temps qu’ils

m’ont consacré et les échanges très constructifs que nous avons eus lors de ma soutenance.

De mon équipe du C2N, je souhaite tout d’abord remercier Clément qui a commencé sa

thèse le même jour que moi et soutenu à quelques jours d’intervalle. Je suis ravie d’avoir

partagé cette thèse avec toi, et j’en profite pour te féliciter d’être papa ! Kamel et Atreya, avec

qui j’ai passé la quasi intégralité de la thèse, votre gentillesse et votre patience a été un atout

majeur pour ce groupe. Je souhaiterais remercier en particulier Tanvi avec qui j’ai partagé un

bureau pendant deux ans, et dont les discussions de tout et de rien me manquent. Tu es une

personne formidable et je vous souhaite le meilleur, à toi, Patrick et Olliver. Je souhaite aussi

remercier les doctorants que l’on voit peu car ils sont de l’autre côté de la France : Bastien et

Djohan, les nouveaux thésards du groupe : Guillaume B. et Akib, mais aussi tous les anciens :

Axel, Xing, Tifenn, Guillaume H. et les stagiaires Adrien R., Théo, Thomas, Thibaut, Adrien P..

Un grand merci à mes collègues de l’équipe neuromorphique du laboratoire Albert Fert,

notamment aux permanents du groupe, Alice, Danjela, Dedalo. Je souhaite remercier partic-

ulièrement Jérémie pour ses discussions toujours très intéressantes sur EqProp, Nathan, et tous

ceux qui sont arrivés après eux. Je souhaite remercier l’ensemble des membres du laboratoire

Albert Fert pour leur accueil toujours très chaleureux. En particulier je tiens à remercier Yanis,

Diane et Aurélien pour les soirées jeux toujours très sympathiques. Merci aussi aux doctor-

ants de ma promotion, notamment Aya pour sa gentillesse, Kévin et Diana. Je souhaite aussi

remercier Laurette et Pauline pour leur bonne humeur. Vous avez tous et toutes grandement

participé à la très chaleureuse ambiance du labo. Merci aussi à la promotion suivante dont no-

tamment Sarah, Hugo... Je ne peux pas citer tout le monde car vous êtes très nombreux, mais

je pense à vous.

Gaétan, évidemment je ne t’ai pas oublié. On a parcouru tellement de route ensemble : de

l’ESPCI au master ICFP et maintenant aussi la thèse... C’est un vrai plaisir d’avoir partagé tout

cela avec toi, tu es un ami sur lequel on peut toujours compter. Ne t’inquiète pas, ta propre

soutenance arrive à grand pas !

viii ACKNOWLEDGEMENTS

Un énorme merci à la famille du Lam Son vo Dao (art martial vietnamien pour ceux qui ne

connaissent pas) : Alain, Amélie, Catherine, Liêm, Naïr, Rivo, Sylvain et à tous les autres. Vous

avez été d’un grand soutien et vous êtes des personnes formidables.

À mes nouveaux collègues et amis : Yanis (j’étais obligée de te mettre là aussi, Spin-Ion ne

serait pas pareil sans toi), Maïkane (la meilleure), mais aussi les managers Louis, Elmer, et les

chefs Dafiné et Corina. Merci beaucoup à vous tous, c’est un grand plaisir d’avoir achevé ma

thèse à vos côtés, et de commencé une nouvelle aventure ensemble.

Enfin, un immense merci à mes amis du lycée et d’avant : Jordane, Juliette, Alizée, Noémie,

et merci à celles qui ont pu venir à ma soutenance !

Ma reconnaissance va également à ma famille, en particulier à mes deux sœurs, mes deux

frères et mes parents, pour leur amour, leur soutien inconditionnel et leurs encouragements

constants.

La même école, le même master, une thèse à moitié au même endroit et maintenant em-

bauchés dans la même start-up... Merci à toi, Matthieu : ta présence constante et ton soutien

inébranlable ont fait de cette thèse une aventure partagée. Merci de m’avoir accompagnée tout

au long de ce parcours. Et surtout, merci d’être là.

Contents

Introduction 1

1 State of the Art 7

1.1 Deep Learning and Artificial Intelligence . 8

1.1.1 First Neural Networks . 8

1.1.2 Training Neural Networks . 11

1.1.3 The deep learning revolution . 16

1.1.4 The challenge of AI energy consumption . 18

1.2 Taking Inspiration from the brain to realize efficient hardware 21

1.2.1 The elements of the brain . 22

1.2.2 Bio-plausible learning . 29

1.3 Hardware adapted for AI . 34

1.3.1 Emerging devices . 35

1.3.2 Integrating emerging memory devices in hardware 43

2 Characterization and Modeling of Spiking and Bursting in Experimental NbOx Neu-

ron 49

2.1 Fabrication and method . 51

2.1.1 Fabrication . 51

2.1.2 Electrical measurements . 52

2.2 Results . 54

2.2.1 Quasistatic properties . 54

2.2.2 Spiking behavior: Origin and shape . 56

2.2.3 Computational properties . 60

2.2.4 Experimental demonstration of phasic bursting 64

2.2.5 Understanding phasic bursting with non-linear dynamics simulations . . 66

2.2.6 Discussion and limitations of this model . 68

2.3 Conclusion . 70

3 Adapting Equilibrium Propagation to Physical Systems 71

3.1 Context . 72

x CONTENTS

3.2 Equilibrium Propagation algorithm . 72

3.3 Need for gradient discretization . 78

3.3.1 Ideal synapse definition and physical constraints 78

3.3.2 Methods . 78

3.4 Continuous-valued EqProp study . 79

3.5 Discretization strategies . 82

3.5.1 Ternary gradient . 82

3.5.2 Ternary gradient with probabilistic updates 87

3.6 Increasing the number of quantized values of the gradient 90

3.6.1 Presentation of the discretization step . 90

3.6.2 Results . 90

3.7 Balancing pulse allocation for reliable physics-based computing 92

3.8 Conclusion . 93

4 Implementation of Equilibrium Propagation With Memristor Synapses 95

4.1 Context . 96

4.1.1 Non-linearity and asymmetry . 96

4.1.2 Intra-device and inter-device variability . 97

4.2 Hardware platform . 99

4.2.1 Presentation of the platform . 99

4.2.2 Memristors details . 101

4.2.3 Experimental setup . 102

4.2.4 Measurements . 103

4.3 Setting the problem . 104

4.3.1 What will be done in hardware, what will be done in software 104

4.3.2 Definition of the weights . 104

4.3.3 Discretization and learning procedure . 105

4.3.4 Methods . 106

4.3.5 Challenges . 106

4.4 Controls . 107

4.4.1 Perceptron . 107

4.4.2 One-hidden layer network with first layer frozen 108

4.5 Results for a one-hidden-layer network . 108

4.5.1 Accuracy obtained . 109

4.5.2 Hyperparameter tuning . 109

4.5.3 Comparison between different definitions of the weights 112

4.5.4 Improving the accuracy . 113

4.6 Conclusion . 114

List of publications 127

CONTENTS xi

Bibliography 150

Résumé étendu en français 151

xii CONTENTS

List of Figures

1 State of the Art 7

1.1 Perceptron with a McCulloch and Pitts neuron. 9

1.2 Hopfield network with graded neurons, adapted from Ref. [1]. 11

1.3 Above: Forward propagation. Below: Back Propagation from Ref. [2] 15

1.4 a: Simplified architecture of a CPU. b: Simplified architecture from a GPU. Both

adapted from the NVIDIA documentation [3]. 19

1.5 a: Von Neumann bottleneck. b: Energy per operation, adapted from [4]. 21

1.6 a: Simplified architecture of a neuron (credits to Jack Shuai Li). b: Shape of an

action potential with the resting phase, followed by the depolarization, repolar-

ization, and hyperpolarization phases (reproduced from Ref. [5]). 23

1.7 Synapse drawing reproduced from Ref. [6]. 23

1.8 Twelve distinct firing patterns observed in individual neurons within the mam-

malian cortex [7] . 25

1.9 Stochastic firing in rodent trigeminal neurons [8]. Cells were progressively depo-

larized to potentials near and above the spike threshold (-45 mV). TIntermittent

discharges occurred near the threshold. Stochastic bursting occurred when neu-

rons were biased to suprathreshold potentials (-39 mV holding current, top trace). 26

1.10 a: A comparison of the qualitative device requirements for three potential ap-

plications. The red line indicates experimental NVM data from previous studies.

b–h: Conceptual representations of device requirements for computing: analog

states (b), on/off ratio (c), linearity (d), symmetry (e), endurance (f), retention

(g), and yield (h). The dashed and solid curves in b–e show the conductance ad-

justment of an analog NVM device. The conductance modifications of an NVM

device during the training process typically occur within a partial scope rather

than across the full range of the conductance window (f). After NVM devices

are adjusted to various conductance levels, the conductance of the devices can

vary over time, potentially leading to overlap between two levels (g). NVM de-

vices that fail to reach the target conductance level are considered unsuccessful

(h).Reproduced from Ref. [9] . 37

xiv LIST OF FIGURES

1.11 Adapted from [10] . 38

1.12 Left: Typical I-V characteristic of a resistive switching non-volatile memristor.

Right: Typical I-V characteristic of a voltage-controlled threshold switching (TS)

volatile memristor. Adapted from [11] . 39

1.13 Different memory devices. a: Filamentary resistive switching RAM structure. b:

Corresponding current–voltage characteristic of a bipolar RRAM switching de-

vice. c: Phase change memory structure. d: Corresponding resistance-voltage

characteristic. e: Magnetic tunnel junction (MTJ) structure. f: Corresponding re-

sistance–voltage characteristic of an STT-MRAM. g: Ferroelectric random access

memory (FeRAM) structure. h: Corresponding polarization–voltage hysteretic

characteristic (h). The orientation of electrical dipoles causes permanent polar-

ization of the ferroelectric layer. From [12] . 41

1.14 a: 1R architecture with memristor devices. b: Corresponding neural network,

with in orange the input (corresponding to the voltages V), and in blue the out-

put, corresponding to the current I. 44

1.15 a: 1T1R architecture with memristor devices. b: 1S1R architecture with memris-

tor devices. Adapted from Ref [13]. 45

2 Characterization and Modeling of Spiking and Bursting in Experimental NbOx Neuron 49

2.1 Top view of devices taken with an optical white light microscope. 52

2.2 Positive current-controlled electroforming with input current going from 0 to 0.5

mA. 53

2.3 Schematics of the voltage pulse to current pulse converter used in the experi-

ments. Here, R1 = R3 = 1 kΩ, R2 = R4 = 100 Ω, RS = RS′ = 400 Ω. The operational

amplifier has the following reference: BB OPA 356A 846LV. 54

2.4 Measured (dashed lines) and simulated (dotted line) I-V characteristics. The V

sweep and I sweep correspond respectively to the voltage-controlled and current-

controlled I-V characteristics. The hold point H is indicated in green and the

threshold switching point TS in red. The inset shows a sketch of the structure

of the device. 54

2.5 a: Voltage-controlled I-V characteristic repeated 100 times. b: Current-controlled

I-V characteristic repeated 10 times. 55

2.6 a: Circuit for voltage-controlled spiking neuron. b: Device current Id when a

constant voltage of 1.52 V is applied. 57

2.7 Circuit diagram of the integrated NbOx spiking neuron where Cext and Lext are

respectively a parasitic capacitance and inductance. 58

LIST OF FIGURES xv

2.8 a. Measurement of a single spike of a NbOx neuron, with the four stages of an

action potential indicated. b. Simulated spiking dynamics of the NbOx neuron

temperature Td(colored curve) and current Id (dots) for a constant input current

of 180 µA. c. Simulation of the output voltage shape with respect to the value of

the circuit inductance for a constant input current of 180 µA. 59

2.9 a: NbOx neuron output as a function of input current amplitude. A 99 µs current

ramp from 0 to 0.46 mA and 1 µs fall time is applied to the device. b: Simulation

of NbOx neuron output as a function of input current amplitude. A 100 µs current

ramp from 0 to 680 µA and 100 ns fall time is applied to the device. This simula-

tion is realized in LTSpice, using the circuit shown in figure 2.7 and the parameters

of table 2.1. 60

2.10 a: Tonic spiking. The neuron receives a constant input current of 0.2 mA. b: Sim-

ulation of tonic spiking. The neuron receives a constant input current of 335 µA.

This simulation is realized in LTSpice, using the circuit shown in figure 2.7 and

the parameters of table 2.1. 61

2.11 Stochastic spiking obtained with a current of 0.109 mA. 61

2.12 a: Spike latency. A pulse with a duration of 1 µs, a rise time and fall time of both

100 ns and an amplitude of 0.131 mA is applied to the neuron. b: Simulation of

spike latency. A pulse of duration of 1 µs and value 193 µA with a rise time and

fall time of both 100 ns is applied to the neuron. This simulation is realized in

LTSpice, using the circuit shown in figure 2.7 and the parameters of table 2.1. . . 62

2.13 a: Spatial integration. Comparison between two figures where a pulse of duration

of 1 µs with a rise time and fall time of both 100 ns are applied to the neuron. The

input current value is 0.13 mA on the left and 0.17 mA on the right. b: Simulation

of spatial integration. Comparison between two figures where a pulse of duration

of 1 µs with a rise time and fall time of both 100 ns are applied to the neuron. On

the left, the value of the current is 150 µA. On the right, the input current value

is 200 µA. These simulations are realized in LTSpice, using the circuit shown in

figure 2.7 and the parameters of table 2.1. 63

2.14 a: Temporal integration. Three pulses of duration of 1 µs with a rise time and

fall time of both 100 ns and of amplitude 0.110 mA are applied to the neuron.

The frequency is 0.35 MHz on the left and 0.7 MHz on the right. b: Simulation

of temporal integration. Three pulses of duration of 1 µs with a rise time and fall

time of both 100 ns and of value 100 µA are applied to the neuron. On the left,

the time period is 2.86 µs (frequency of about 0.35 MHz). On the right, the time

period is 1.43 µs (frequency of about 0.7 MHz). These simulations are realized in

LTSpice, using the circuit shown in figure 2.7 and the parameters of table 2.1. . . 64

xvi LIST OF FIGURES

2.15 Example of phasic bursting of the output voltage as a function of time. A current

input of amplitude 0.47 mA is applied. The right panel zooms on the end of the

phasic bursting. 65

2.16 Variation of the average frequency as a function of the input current. Right: Zoom

on the phasic bursting regime, in order to get a statistical understanding of the

phenomenon. In blue, the median frequency computed from the different aver-

age frequencies (grey dots) is plotted. 66

2.17 a, b, c: simulation of the trajectory (in blue) and the nullclines (in orange for Ṫ = 0

and in green for V̇ = 0) for different input currents Is of value 0.9, 0.96702 and 1.1

mA for each figure. The y-axis corresponds to the temperature Td in the active

volume of the device while the x-axis represents the voltage of the device Vd. The

black arrows indicate the direction of the gradient at each point. 67

2.18 Simulations of the device current oscillations as a function of time for a current

input Is of 0.96702 mA . 68

69figure.caption.39

3 Adapting Equilibrium Propagation to Physical Systems 71

3.1 a: Free phase. b: Nudge phase. 74

3.2 Accuracies obtained in the conventional EqProp case with parameters: η1 = 0.15, η2 =
0.001. 79

3.3 Histogram of the accumulated weight updates over 10 runs. a: Accumulated

weight updates during learning for the first layer: ∆W tot
1 . b: Accumulated gra-

dients during learning for the second layer: ∆W tot
2 with parameters η1 = 0.15 and

η2 = 0.001. 80

3.4 Histogram of the positive and negative weight updates. a: Accumulated posi-

tive weight updates for the first layer: ∆W tot ,BL
1 . b: Accumulated negative weight

updates for the first layer (absolute value): ∆W tot ,BLb
1 . c: Accumulated posi-

tive weight updates for the second layer: ∆W tot ,BL
2 . d: Accumulated negative

weight updates for the second layer (absolute value): ∆W tot ,BLb
2 . With param-

eters: et a1 = 0.15 et a2 = 0.001. 81

3.5 Ternary discretization a: Schematic representing the pulses as a function of the

continuous-valued gradient, with threshold θth . b: Effective weight update as a

function of the number of pulses. 82

3.6 Performance of the ternary gradient method with parameters: η1 = 0.15,η2 =
0.005,θ = 0.00005, v = 0.00001. 83

3.7 Cumulated update pulses distribution at the end of learning for the ternary gradi-

ent method. a: Cumulated pulses during learning for the first layer. b: Cumulated

pulses during learning for the second layer. With parameters: η1 = 0.15, η2 =
0.005, θ = 0.00005, tmax = 2. 83

LIST OF FIGURES xvii

3.8 Cumulated positive or negative pulses distribution at the end of learning for the

ternary gradient method. a: Cumulated positive pulses for the first layer. b: Cu-

mulated negative pulses for the first layer. c: Cumulated positive pulses for the

second layer. d: Cumulated negative pulses for the second layer. With parame-

ters: η1 = 0.15, η2 = 0.005, θ = 0.00005, tmax = 2. 84

3.9 Performance of the ternary gradient method when the parameter θ varies with

parameters: η1 = 0.15,η2 = 0.005, v = 0.0001. 85

3.10 Performance of the ternary gradient method when the parameter η2 varies with

parameters: η1 = 0.15,θ = 0.00005, v = 0.0001. 86

3.11 Performance of the ternary gradient method when the speed v varies with param-

eters: η1 = 0.15,η2 = 0.005,θ = 0.00005. 86

3.12 Probability of obtaining a pulse as a function of the continuous-valued gradient,

with threshold θth . 87

3.13 Accuracies obtained for the ternary gradient method with probabilistic updates

with parameters: η1 = 0.15,η2 = 0.005,θ = 0.0002, v = 0.0004. 88

3.14 Cumulated update pulses distribution at the end of learning for the ternary gra-

dient method. a: Cumulated pulses during learning for the first layer. b: Cumu-

lated pulses during learning for the second layer. With parameters: η1 = 0.15,η2 =
0.005,θ = 0.0002, v = 0.0004. 88

3.15 Cumulated positive or negative pulses distribution at the end of learning for the

ternary gradient method. a: Cumulated positive pulses for the first layer. b: Cu-

mulated negative pulses for the first layer. c: Cumulated positive pulses for the

second layer. d: Cumulated negative pulses for the second layer.With parame-

ters: η1 = 0.15, η2 = 0.005, θ = 0.0002, v = 0.0004. 89

3.16 Quantized discretization. a: Schematic representing the pulses as a function of

the continuous-valued gradient, with threshold θth . b: Effective weight update as

a function of the number of pulses. 90

3.17 Accuracies obtained for the gradient method with a maximum of 9 pulses applied

per synapse per update. The parameters are: η1 = 0.15,η2 = 0.01,θ = 0.0015, v =
0.003. 91

3.18 Cumulated update pulses distribution at the end of learning for the ternary gradi-

ent method. a: Cumulated pulses during learning for the first layer. b: Cumulated

pulses during learning for the second layer. With parameters: η1 = 0.15, η2 =
0.01, θ = 0.0015, tmax = 9. 91

3.19 Cumulated positive or negative pulses distribution at the end of learning for the

quantized gradient method. a: Cumulated positive pulses for the first layer. b:

Cumulated negative pulses for the first layer. c: Cumulated positive pulses for the

second layer. d: Cumulated negative pulses for the second layer. With parame-

ters: η1 = 0.15,η2 = 0.01,θ = 0.0015, v = 0.003. 92

xviii LIST OF FIGURES

4 Implementation of Equilibrium Propagation With Memristor Synapses 95

4.1 Asymmetry and non-linearity. a: Multilevel I–V characteristics of 1T1R RRAM

TiN/HfO2/Ti/TiN device measured for increasing VG , reproduced from [14]. b:

Ten cycles programmed with 500 identical pulses of alternating depression and

potentiation operations for a TiN/HfO2/Ti/TiN device with conditions ∆V and

∆t are +0.9 V and 0.7 V. c: Evolution of the average conductance (straight line)

and associated standard deviation (in grey) against the number of pulses for the

data set in b. d: Distributions of the α parameter extracted from fit, where α is a

multiplicative parameter that determines the magnitude of modification induced

on the synaptic strength by a plasticity event. b,c,d reproduced from [15]. 97

4.2 Intra-device variability. a: Pink noise in a device reported from [16]. b: Random

Telegraphic Noise (RTN) in a device, reproduced from [16]. c: Cycle-to-cycle vari-

ability on a single device for different set currents, reproduced from [17]. 98

4.3 Intra-device variability. a: Variability of the conductance in the LRS measured on

16 384 devices under six different SET programming currents fitted with a normal

distribution (blue line), reproduced from [18]. b: Variability in the HRS for 100

devices fitted with a log-normal distribution, reproduced from [19]. 99

4.4 Fabricated Multimode Hybrid Memristor-CMOS Prototyping Platform. a simpli-

fied schematic of a 1T1R cell connected to analog multiplexers, illustrating the

concept of switching the access mode. b schematic of the hybrid Memristor-

CMOS die, consisting of two-mode circuitry: analog mode (orange color) sup-

plied by nominal voltage VDD5, and digital mode (blue color) supplied by VDD,

VDDC, and VDDR. 100

4.5 Fabricated Multimode Hybrid Memristor-CMOS Prototyping Platform. a layout

view, b Schematic of the analog mode circuitry, with shift registers selecting in-

puts via Multiplexers, which consist of analog MUXs connected to SL, BL, and

WL terminals. Each MUX is controlled by a shift register, to choose one of the two

analog inputs. c Optical microscopy photograph. 101

4.6 a Stack of the HfOx memristor used. b Scanning electron microscopy image of a

memristor in the back end of line of the hybrid memristor/CMOS process, repro-

duced from [20]. 102

4.7 Experimental setup. 102

4.8 Set and Reset configurations . 103

4.9 a: Example of synaptic plasticity in a memristor. b: Example of a non-linear

regime in a memristor c: Conductances of 314 devices. 104

4.10 Performance for a perceptron on the MNIST task, obtained for a network of size

784-10 and parameters η= 0.1, α= 2000, θ = 0.002. 107

4.11 Performance obtained with a random frozen first layer with parametersη1 = 0.0,

η2 = 0.001, θ = 0.5e −5, α1 = 4000, α1 = 3000. 108

LIST OF FIGURES xix

4.12 Best performance obtained with the weights defined as the linear difference of

conductances and parameters η1 = 0.2,η2 = 0,α1 = 5000,α2 = 5000,θ = 0.0002. . 109

4.13 Impact of the variation of the threshold θ on the performance. The weights are

defined as the linear difference of conductances and the parameters used are η1 =
0.2,η2 = 0,α1 = 5000,α2 = 5000. 110

4.14 Impact of the variation of the scale factor of the first layerα1 on the performance.

The weights are defined as the linear difference of conductances and the param-

eters used are η1 = 0.2,η2 = 0,α2 = 5000,θ = 0.0002. 110

4.15 Impact of the variation of the scale factor of the second layer α2 on the perfor-

mance. The weights are defined as the linear difference of conductances and the

parameters used are η1 = 0.2,η2 = 0.0α1 = 5000θ = 0.0002. 111

4.16 Comparison of the two different definitions of the weights. a: Best accuracy ob-

tained with a linear definition of the weights and parameters η1 = 0.2,η2 = 0,α1 =
5000,α2 = 5000,θ = 0.0002. b: Best accuracy obtained with a logarithmic defini-

tion of the weights and parameters η1 = 0.2,η2 = 0,α1 = 1.2,α2 = 1.0,θ = 0.0003. . 112

4.17 a: Plot of the 314 different conductances evolution. b: Plot of the logarithm of the

314 different conductances evolution. Both scales have been adjusted to align

with high conductance states. 113

4.18 Comparison of the two different definitions of the weights when a conductance

(or resistance) threshold is applied. a: Accuracies obtained with a linear defi-

nition of the weights and parameters η1 = 0.2,η2 = 0,α1 = 5000,α2 = 5000,θ =
0.0002. b: Accuracies obtained with a logarithmic definition of the weights and

parameters η1 = 0.2,η2 = 0,α1 = 1.2,α2 = 1.0,θ = 0.0003. 114

4.19 a: Schematic of the circuit used in these experiments.b: Example of result for

Vs,peak = 3.0 and an input frequency of 1 MHz. 121

4.20 Variation of the output frequency fout as a function of the input frequency fi n for

different peak-to-peak voltages.: Vs,peak = 3.0V b: Vs,peak = 3.25V c: Vs,peak = 3.5V

d: Vs,peak = 3.75V . 122

4.21 a: Simulations of the output frequency fout as a function of the input one fi n . b:

Simulations of the frequency ratio fout

fi n
as a function of the input frequency fi n .

The parameters used are: peak-to-peak voltage Vs,peak = 2.06 V, load resistance

RL = 4 kΩ, frequency averaged over a time of T f = 0.0001 s and with a number of

points of N = 1000001. All the parameters of the model are the one presented in

Table. 2.1. 123

xx LIST OF FIGURES

4.22 Simulations when the label is zero. a: Comparison between inference before a

learning step and after a learning step. b: Current in the output device during the

free and nudging phases. c: Frequency of the output device during the free and

nudging phases. d: Values of ρ̇ and ρ̇av g during the free and nudging phases. The

parameters used are x1 = 0.00034091, x2 = 0.00041204, W1 = 0.38711533, W2 =
−0.04242794, b = 0. 124

4.23 Simulations when the label is one. a: Comparison between inference before a

learning step and after a learning step. b: Current in the output device during the

free and nudging phases. c: Frequency of the output device during the free and

nudging phases. d: Values of ρ̇ and ρ̇av g during the free and nudging phases. The

parameters used are x1 = 0.00034091, x2 = 0.00041204, W1 = 0.38711533, W2 =
−0.04242794, b = 0, η= 10, ηb = 0.4e −9. 125

4.24 a : Caractéristiques I-V controlées en tension (vert) et en courant (orange). La

structure des neurones memristifs est présentée en insert. b: Trains d’impulsions

lors de l’application d’un courant constant. c: Illustration du phasic busrting lors

de l’application d’un courant constant : les impulsions s’arrêtent même sans vari-

ation du courant d’entére. 153

4.25 Précisions obtenues pour différentes méthodes de discrétisation du gradient. a

: Ternarisation du gradient. b : Ternarisation avec mises à jour probabilistes. c :

Quantification du gradient (dix-neuf états différents). 154

4.26 Performances obtenues pour un réseau de neurones à une couche cachée. a :

Performances obtenues avec une définition linéaire en conductance des poids. b

: Performances obtenues avec une définition logarithmique en conductance des

poids. c : Performances obtenues avec une définition linéaire en conductance

des poids avec seuil sur la conductance, pour trois différentes valeurs du seuil. d:

Performances obtenues avec une définition logarithmique en conductance des

poids avec seuil sur la conductance, pour trois différentes valeurs du seuil. 155

List of Tables

2.1 Table of the parameters used in the simulations. These parameters where ob-

tained by fitting the I-V characteristics and estimated by fitting the shape of the

spikes. 59

4.1 Parameters used during the measurements. 103

0 LIST OF TABLES

Introduction

2 INTRODUCTION

As we navigate through the 21st century, the urgency of addressing climate change is in-

creasingly evident. Rising global temperatures, melting ice caps, and extreme weather events

serve as stark reminders of the environmental crisis we face. The Intergovernmental Panel on

Climate Change (IPCC) warns that we have a limited window of opportunity to prevent catas-

trophic global warming. This pressing issue calls for immediate and coordinated action across

all sectors of society, including the field of information technology (IT). The IT sector, while

instrumental in driving global progress, is also a significant contributor to global energy con-

sumption. Data centers, the backbone of our increasingly digital world, are estimated to ac-

count for about 1% of global electricity use [21]. Furthermore, the energy consumption of IT is

projected to increase with the growing demand for data-intensive services such as cloud com-

puting, artificial intelligence, and high-performance computing [22]. This escalating energy

demand underscores the need for developing energy-efficient computing solutions. The pur-

suit of such solutions not only aligns with the global climate goals but also presents an oppor-

tunity for innovation and advancement in computing technologies.

The trajectory of human advancement is strikingly illustrated by the fact that while it took

us approximately 4000 years to progress from the creation of the wheel to the first successful

airplane flight, a mere 66 years elapsed between that inaugural flight and Neil Armstrong’s his-

toric moon landing. This accelerated pace of development was significantly enabled by the ad-

vent of computing technology, which provided us with the tools to automate intricate tasks and

execute large-scale calculations with unprecedented speed. The computer, now an indispens-

able instrument in our daily lives, is the culmination of centuries of technological evolution

spanning various scientific fields such as physics, mathematics, electronics, and computer sci-

ence. Each new generation of computing technology has broadened our capabilities, unlocking

possibilities that were previously beyond our reach. This cycle of necessity and invention has

fueled growth at an exponential rate, leading to an ever-increasing demand for computational

power and memory. The development of computers did not occur in isolation. It required si-

multaneous advancements in multiple fields of science, including the crucial area of memory

technology. In this context, memory refers to the data that a calculation requires to be exe-

cuted. At its core, a computer is made up of two key components: the memory unit, which

stores data, and the arithmetic-logic unit, which carries out operations on that data. The com-

plexity of a task is closely tied to the memory it requires for computation.

The journey towards modern computing began with mechanical calculators such as the

abacus and the Pascal calculator. However, these devices, while capable of efficiently perform-

ing arithmetic operations, were not programmable and thus unsuitable for automation. The

first design of a general-purpose computer, albeit mechanical, was proposed by Charles Bab-

bage in 1837 [23]. Named the Analytical Engine, it was the first computer to have integrated

memory in the form of counter wheels, a dedicated arithmetic logic unit, a control flow that

INTRODUCTION 3

enabled loops and conditional branching, an input system with punched cards, and even a

printer for producing the output. The first digital, electronic, programmable computer, the

Electronic Numerical Integrator and Computer (ENIAC), was completed in 1945 [24]. The con-

struction of this computer was enabled by developments in electronics in the earlier half of the

twentieth century, particularly the invention of the thermionic vacuum tube [25]. A technolog-

ical successor to ENIAC was EDVAC (Electronic Discrete Variable Automatic Computer), which

was completed in 1949 [26]. The celebrated engineer John von Neumann was involved with

this project as a consultant, and he proposed the architecture-level organization of a computer

[27], which came to be known as the von Neumann architecture. The following decades saw

the development of transistors and integrated circuits, replacing vacuum tubes entirely. These

rapidly decreased the computer’s cost and size and culminated in the invention of the first per-

sonal desktop computer, IBM-PC, in 1966 [28, 29]. However, as we continue to push the bound-

aries of what computers can do, we are also confronted with new challenges. One of the most

pressing of these is the escalating energy demand of modern computing systems. The history of

computing has been marked by an exponential increase in memory and computational needs,

also highlighted by Moore’s law which states that the number of transistors on a microchip dou-

bles every two years [30, 31]. However, as transistor sizes approach the atomic scale, quantum

effects and other physical phenomena become significant challenges. Current silicon-based

technologies are approaching these physical limits, making it increasingly difficult to continue

shrinking transistors at the pace predicted by Moore’s Law. In contrast, the computational de-

mands of Artificial Intelligence (AI), especially deep learning, have been growing at a pace that

outstrips the predictions of Moore’s Law, doubling every 5 to 6 months [32], far outpacing the

transistor density increase predicted by Moore’s Law. If current trends continue, we may soon

reach a point where traditional computing hardware is unable to efficiently support the train-

ing and deployment of advanced AI models. This could stifle innovation and slow the pace of

AI advancements.

In response to this challenge, the field of artificial intelligence (AI) is undergoing a signif-

icant shift. Traditionally, AI models were trained and deployed on powerful servers in data

centers, a practice that is increasingly giving way to a new trend known as Edge AI. This shift

towards Edge AI is not only a response to the evolving dynamics of our digital world but also

a crucial step towards addressing the pressing issue of climate change. The proliferation of

Internet of Things (IoT) devices, such as smart home appliances, wearable devices, and con-

nected vehicles, has led to an explosion in the amount of data being generated at the edge

of the network. This surge in data has highlighted the inefficiencies of processing it in the

cloud due to latency and bandwidth constraints of network connections. Edge AI addresses

this challenge by moving the AI closer to where the data is generated and used, thereby reduc-

ing latency and bandwidth usage but also reducing the energy consumed in data transmission.

At the same time, privacy and security have become paramount concerns in our increasingly

4 INTRODUCTION

interconnected world. Edge AI offers a solution to these concerns by processing data locally

on the device, rather than sending it to the cloud [33]. This approach ensures that sensitive

information remains private and secure, addressing a key concern in today’s digital landscape.

Moreover, advances in hardware technology have opened up new possibilities for Edge AI. The

development of specialized AI chips and efficient model compression techniques have made it

possible to run complex AI models on devices with limited computational resources. This has

enabled powerful AI capabilities to be embedded in small, low-power devices, extending the

reach of AI to new areas and applications [34]. The rise of Edge AI has significant implications

for a wide range of applications. From autonomous vehicles and drones that require real-time

decision-making, to healthcare devices that need to process sensitive patient data, to smart

home devices that aim to provide personalized experiences while respecting user privacy, Edge

AI is poised to revolutionize these fields. Importantly, by enabling energy-efficient AI, Edge AI

also plays a crucial role in our collective efforts to combat climate change. However, the shift

toward Edge AI also presents new challenges. These include the need for adapted hardware, ef-

ficient algorithms that can run on resource-constrained devices and the design of new learning

paradigms that can adapt to the unique characteristics of edge devices and networks.

This thesis will focus on bridging the gap between hardware and algorithms to realize learn-

ing with real devices. In particular, Chapter 1 will introduce key concepts that will be used in

this work, starting with a broad explanation of deep learning and recent breakthroughs, before

diving into the typical architecture used on computers used for such tasks. Then, I present a

source of inspiration to perform adapted hardware: the brain. After a general introduction to

neurons and synapses, I present different neuronal behaviors and models used to reproduce

them. Then I show different algorithms that are bio-plausible and may be a clue as to how

the brain actually learns. In the last section, I present emerging hardware technologies, both

synapse and neuron-like, and a few different architectures used in this context.

Chapter 2 presents a spiking neuron based on niobium oxide. This work first explores the

quasistatic I-V characteristics of such a device, before diving into the computational properties.

This type of neuron is shown to reproduce different types of neural behaviors such as tonic

spiking, leaky-integrate and fire, all-or-nothing firing, stochastic firing, and phasic bursting.

This last behavior is observed statistically, and a simple model based on non-linear dynam-

ics is able to reproduce all the behaviors shown above. This paves the way to spiking neural

networks.

Chapter 3 presents and explains the Equilibrium Propagation algorithm. It then explains

why adapting this algorithm to perform on-chip learning is necessary, and proposes ways to

discretize the gradient in order to both have a good accuracy but also to not have too many

pulses applied during learning. Indeed, this is key to good energy efficiency.

Chapter 4 presents the realization of the algorithm presented in Chapter 3 with memris-

tors. Experimental data is used in simulations to explore the resilience of the EqProp algorithm

with imperfect synapses. Control simulations on perceptron and two-layer networks with first

INTRODUCTION 5

frozen layer are performed. A one-hidden layer network is then optimized, and two different

definitions of the synaptic weights are explored.

6 INTRODUCTION

Chapter 1

State of the Art

8 CHAPTER 1: STATE OF THE ART

COmputers are now able to realize challenging tasks, in particular Artificial Intelligence (AI)

tasks. However, the classical computer architecture consumption is large compared to

the brain, which has similar functionalities. This is where neuromorphic computing is born,

which aims at producing new hardware able to compute the same tasks but at very low energy.

1.1 Deep Learning and Artificial Intelligence

Understanding and creating an intelligent system that can produce cognitive tasks is a problem

that has been tackled in many ways, either by starting from the task and trying to find a formal

way to express the reasoning of the brain, or by starting from understanding how the brain

works to get to the tasks [35]. In this section, we will focus on the emergence of the second

approach.

If initially neural networks research was motivated by understanding and reproducing the

functionalities of the brain, it is now a tool that is very loosely inspired by the architecture of

the brain [36]. It is a set of different algorithms, which perform a non-linear transformation of

an input to match to an output. This input can be an image, an audio file, a text in order to be

used for image classification, text prediction, and so on.

1.1.1 First Neural Networks

1.1.1.1 First artificial neuron and network

In 1943, McCulloch and Pitts presented one of the first attempts at modeling a biological neu-

ral network [37]. In this work, the neurons are functional logic devices with a binary response,

in order to capture their "all-or-nothing" behavior. First, a neuron’s output is a function of its

input. Secondly, if a neuron’s input is higher than a threshold, the neuron will output a one (cor-

responding to a maximum frequency firing), and else it will output a zero (not firing). Moreover,

in this model, the neuron receives as input a weighted sum of the other connected neurons. The

weights, by which another neuron’s output is multiplied, correspond to the synapses’ strength.

These synapses can be either excitatory (corresponding to a positive weight) or inhibitory (cor-

responding to a negative weight). This model was shown to perform logical operations such

as AND, OR, or NOT. This model of a neuron is shown in orange in Fig. 1.1. However, in this

model, no algorithm is used to tune the synapses’ strengths, which are then fully static. This

work introduced fundamental concepts which paved the way for artificial intelligence research

but also introduced computational neuroscience.

In 1949 Hebb suggested that when two neurons are repeatedly activated simultaneously,

the connection between them strengthens [38]. This concept is often summarized by the phrase

"cells that fire together, wire together." In particular, this introduces the concept that the strength

of the synapses is variable. Hebb’s theory laid the foundation for understanding how synaptic

1.1 DEEP LEARNING AND ARTIFICIAL INTELLIGENCE 9

connections in the brain are modified through experience and learning.

Figure 1.1: Perceptron with a McCulloch and Pitts neuron.

1.1.1.2 Perceptron

An important step in the history of deep learning is the perceptron, a model published in 1957

by Rosenblatt [39]. Taking inspiration from the visual cortex, he designed a machine for pattern

classification. The perceptron is intended to mimic the behavior of a single neuron in the brain,

which receives multiple inputs, processes them, and produces an output based on certain ac-

tivation rules, as presented in Fig. 1.1. Based on McCulloch and Pitts’ work, all neurons are

considered all-or-nothing neurons, and synapse strengths, referred also as weights, are vari-

able. Rosenblatt proposes to train the weights to get good accuracy. The learning rule is not

explicitly described in the original paper but suggests an iterative adjustment of the weights

based on input-output associations to improve the perceptron’s performance.

In follow-up work [40], the perceptron model is more formally described. Given an input

X = x1, ..., xn , and given a set of weights W1, ..., Wn , the output is

o = H (ΣWi xi +b) , (1.1)

where H is the Heaviside step function and b is a bias term.

The perceptron learning rule (PRL) gives:

∆Wi =α(t −o) · xi , (1.2)

where t is the target associated with the input X. In this work, Rosenblatt proves the conver-

gence of a learning algorithm in a simple one-layer perceptron, using an iterative tuning of

the weights to reach the desired computation. With the perceptron convergence theorem, this

model is shown to only solve linearly separable tasks [41].

10 CHAPTER 1: STATE OF THE ART

The limitations of the single-layer perceptron appear clearly in 1969, thanks to the work of

Minsky and Papert [42]. In particular, the XOR problem cannot be solved. In 1986, Rumelhart,

Hinton and Williams introduced the concept of multi-layer perceptrons (also known as feed-

forward neural networks) as a way to overcome the limitations of single-layer perceptrons [43].

They demonstrate that by introducing additional layers and nonlinear activation functions, it

becomes possible to learn and represent more complex patterns.

1.1.1.3 Hopfield Networks

In 1982, Hopfield introduced a new kind of network, based on the idea that a physical system

could store information and could be addressed to retrieve it even with a corrupt or incomplete

query [44]. His idea is based on the intrinsic minimization of energy in a physical system.

More precisely, his neurons are all-or-nothing neurons inspired by McCulloch and Pitts’

work [37] which take as input a weighted sum of other neurons and synapses. However, the

originality lies in the fact that contrary to the perceptron that is organized in layers (feed-

forward), the Hopfield network’s connections can be completely random, as shown in Fig. 1.2a.

Moreover, taking inspiration from Ising spin systems, the neurons’ states are not updated in a

synchronous manner, but dynamically updated by being randomly drawn and updated one by

one.

Considering the patterns P k that have to be stored, the neurons σi , and Wi j (with Wi i = 0)

the strengths of the tunable synapses follow the equation:

Wi j =
∑
k

(2P k
i −1)(2P k

j −1), (1.3)

reminiscent of the Hebbian learning rule [38]. Hopfield proposes an energy-based framework

that would govern the system under the condition that the matrix W is symmetric (Wi j =W j i),

which takes deep inspiration from Ising spin systems’ Hamiltonians:

E =−1

2

∑
j

∑
i ̸= j

Wi jσiσ j (1.4)

where W is akin to the exchange coupling, and σ is comparable to spins. If the pattern P pre-

sented is altered, the energy will relax to the closest local minimum, which will correspond to

the uncorrupted information. A typical example of an energy landscape is presented in Fig.

1.2b and d. The number of patterns that can be stored obviously depends on the number of

neurons, and Hopfield found in his original paper that this critical number is equal to 0.15 N

where N is the number of neurons. If the stored pattern number is not too large and the pattern

is uncorrelated, it is possible to add a new pattern to the collection of memories by using the

Hebbian learning rule. The memory feature of this network emerges from the very high num-

1.1 DEEP LEARNING AND ARTIFICIAL INTELLIGENCE 11

Figure 1.2: Hopfield network with graded neurons, adapted from Ref. [1].

ber of connections between the different neurons, but it is not very dependent on the precise

characteristics of these neurons. For example, Hebb later introduced graded neurons in this

type of network, whose output is a sigmoid of its input [45].

By introducing an energy function whose minimum corresponds to the best solution of an

optimization problem, a Hopfield network is capable of solving this type of problem [46].

1.1.2 Training Neural Networks

Because it was shown in 1969, that the single-layer perceptron could only learn linearly separa-

ble tasks [42], and because of a lack of methods to train deeper networks, research considerably

slowed in the 70s, until the emergence of the backpropagation training algorithm [47]. Even if

earlier instances of this training method seem to exist [48–50], it is the work of Rumelhart, Hin-

ton, and Williams in 1985 that introduced the backpropagation formalism to solve multi-layer

fully connected networks and popularized this concept [43, 51]. Hinted in the work of Ref. [42],

this paper shows that adding intermediary "hidden" neurons is crucial to learning non-linearly

separable tasks, for example, when solving the XOR problem.

12 CHAPTER 1: STATE OF THE ART

Later work, published in 1989, shows that a one-hidden layer network can approximate any

continuous function [52]. However, this theoretical guarantee does not give any hint about how

hard it is to train such a network, or how many neurons there must be. In practice, "deeper"

networks (i.e. with more hidden layers) need to be used with fewer neurons on each layer in

order to train with ease more complex functions.

1.1.2.1 Supervised, unsupervised

Numerous different criteria can be used to categorize learning algorithms. One commonly

used criterion is the type of learning employed. In the field of machine learning, learning al-

gorithms are traditionally classified into two main categories: supervised learning and unsu-

pervised learning [53]. Other categories are also emerging and will be briefly presented in the

following text.

Supervised learning is a technique where every input x in the training dataset has a corre-

sponding label t. The goal of the learning procedure is for the neural network to approximate

the mapping function f defined as f(x) = t. This framework can be used either in regression

tasks where the target is continuous or in classification tasks where the target is categorical.

Usually, a huge number of data needs to be available for training in order to obtain the best

performance possible.

Unfortunately, labeled data can be scarce, expensive to obtain, or simply unavailable. For

this reason, being able to train a network without knowing a target can be very useful. Unsuper-

vised learning algorithms operate on unlabeled data, where no explicit target labels are avail-

able. The objective of unsupervised learning is to discover patterns, structures, or relationships

in the data without any predefined notion of what the output should be [54]. Unsupervised

learning algorithms can uncover hidden structures, group similar instances together, or reduce

the dimensionality of the data. Common techniques in unsupervised learning include clus-

tering, where instances are grouped based on similarity, and dimensionality reduction, which

aims to represent the data in a lower-dimensional space [55–57].

Semi-supervised learning mixes a bit of both worlds [58, 59]. It uses a large number of

unlabelled data which are easy to collect but hard to classify and improves the overall accuracy

by also using labeled data to build better classifiers [60].

Self-supervised learning can be considered a type of unsupervised learning as no explicit

label is used. However, contrary to unsupervised learning that aims at finding patterns in the

data, self-supervised learning creates pseudo-labels by solving a pretext task. Instead of relying

on explicit human annotations, the model creates artificial labels from the input data itself and

learns to predict or reconstruct the original data [61, 62].

Reinforcement learning is another type of algorithm that, similarly to unsupervised learn-

ing, does not rely on labeled data. However, contrary to unsupervised learning, its goal is not to

find structure and similarities in the data, but the learning agent learns from its environment

by maximizing a reward signal [63, 64]. It takes deep inspiration from the way a human learns

1.1 DEEP LEARNING AND ARTIFICIAL INTELLIGENCE 13

by interacting with its environment, as an action has an impact, and the agent learns from the

consequence.

In this thesis, we will focus exclusively on supervised learning, and we will always consider

this particular case in the following text.

1.1.2.2 Structure of a typical fully connected network and forward pass

The overall architecture is inspired by the brain, but neurons do not spike: they operate using

continuous-valued activations to perform a non-linear transformation of their input. A typical

fully connected network is composed of layers of neurons connected by synapses. The input

signals encoding the training data are fed into the input neurons, and then they are processed

layer by layer through the hidden layers until reaching the output layer. The activations of

the neurons in each layer are computed based on the weighted sum of the activations from

the previous layer, followed by the application of an activation function. Several non-linear

functions can be chosen such as Rectified Linear Unit (ReLu, corresponding to the function

x → max(0, x)), sigmoids, tanh, and so on. The choice of the activation function depends on

the specific requirements and characteristics of the task being addressed.

Synapses are connections between neurons. Positive-valued weights correspond to exci-

tatory synapses, whereas negative-valued ones encode inhibitory synapses. The strengths of

the synapses vary depending on the task at hand. Biases are additional parameters associated

with each neuron. They introduce a shift or offset in the computation of the neuron’s activa-

tion. Biases allow the network to have preferences for certain values and influence how easily a

neuron gets activated or responds to different input patterns. Mathematically, biases are sepa-

rate parameters added to the weighted sum of inputs before applying the activation function.

They contribute to the network’s flexibility in modeling complex relationships and capturing

patterns in the data.

We will describe the network in a more formal way. Let us name pre-activation neurons as

al
k = ∑

j hl−1
j W l

j k where hl−1
j = f (al−1

j) is the post-activation neuron, with activation function

f . The weights are Wi j the biases bi . Let us also call the inputs vector xi = a0
i and the output as

yi . Let’s name L the total number of layers, while l designates any layer between 0 and L.

We get the forward propagation or inference equation illustrated in Fig. 1.3a:

yk = f (aL
k) = f (

∑
j

hL−1
j W L

j k +bL
k) (1.5)

1.1.2.3 Backpropagation algorithm

During training, the strengths of the synapses, i.e., the weights associated with the connec-

tions, are adjusted iteratively using the backpropagation algorithm. This algorithm calculates

the gradients of the network’s error with respect to the weights and updates the weights accord-

ingly. The backpropagation algorithm enables the network to learn and adjust its parameters

14 CHAPTER 1: STATE OF THE ART

to minimize the discrepancy between the predicted outputs and the desired outputs.

More precisely, this loss function is computed during the forward pass, or inference. The

value computed gives an error, which is then backpropagated through the network. This con-

stitutes the backward pass.

Let us consider a set of training examples X, with corresponding labels t. The parameters of

the network, which includes both weights and biases, are represented as θ in a d-dimensional

real space. A loss function allows the definition of how well the network performs by comparing

output and label for specific examples. It is defined as L (y, t ,θ) where y is the output of the

neural network. To evaluate the performance of the network on a specific set, an objective

function J (θ) is defined by summing the loss function over all the examples present in the set.

Learning, therefore, means minimizing this objective function. The way to train the network is

by using gradient descent to minimize J.

Gradient descent is a method used to minimize any objective function by adjusting the

parameters θ in the direction opposite to the gradient of that function (with respect to these

parameters) symbolized as ∆θ J (θ) [65]. The magnitude of the adjustments is controlled by a

factor known as the learning rate, denoted as η. This factor influences the size of the steps taken

towards a (local) minimum. Essentially, this process is akin to descending a hill by moving in

the direction of the steepest slope until reaching a valley, or minimum point [66, 67]:

θ← θ−η∆θ J (θ). (1.6)

The question is now how to compute ∆θ J (θ). Backpropagation is an algorithm used to

compute the gradient of the loss function with respect to the weights of the network. The name

"backpropagation" comes from the fact that the computation starts at the output layer of the

network and works its way backward, layer by layer, to the input layer. This is done by applying

the chain rule of calculus to compute the derivatives.

Taking the same notations as the previous section, we get:

∂L

∂W l+1
i j

= hl
iδ

l+1
j = hl

i

(
e l+1

j f ′(al+1
j)

)
= hl

i

[(∑
k
δl+2

k W l
j k

)
f ′(al+1

j)

]
(1.7)

where ek =∑
l δl Wlk , as shown in Fig. 1.3b.

Typical loss functions used include Mean Squared Error (MSE), which is commonly used

in regression problems. MSE calculates the average squared difference between the predicted

and actual values. Cross-Entropy Loss is mostly used in classification problems, especially in

tasks where the output can be one of many classes. This function measures the dissimilarity

between the predicted probability distribution and the actual distribution.

1.1 DEEP LEARNING AND ARTIFICIAL INTELLIGENCE 15

Figure 1.3: Above: Forward propagation. Below: Back Propagation from Ref. [2]

1.1.2.4 Training a network

The data used in the training process is divided into three distinct sets: the training set, the val-

idation set, and the test set. The training set is the primary source for adjusting the weights and

biases of the network through the forward and backward passes. The validation set serves a

different purpose; it is used during the training phase to evaluate the model’s performance and

to fine-tune the hyperparameters. Hyperparameters are variables that are not learned from the

training process itself but are set prior to training. These are often tuned using the validation

set to find the values that produce the best model performance [68, 69]. Examples of hyperpa-

rameters (described below) include the number of epochs, batch size, and learning rate, among

others. Finally, the test set is used post-training to provide an unbiased evaluation of the final

model’s performance.

The training process is organized into epochs, each representing a complete pass through

the entire training dataset. During each epoch, the model’s weights and biases are iteratively

adjusted to minimize the loss function. Data is often divided into smaller subsets known as

minibatches for each epoch. This approach, known as mini-batch gradient descent, strikes a

balance between the computational efficiency of batch gradient descent (which uses the en-

tire dataset) and the stochastic nature of stochastic gradient descent (which uses a single data

point). The learning rate determines the size of the steps taken towards the loss (local) mini-

16 CHAPTER 1: STATE OF THE ART

mum. Initialization is also a determining hyperparametric element to ensure that a minimum

is reached [70].

Training neural networks involves navigating complex, high-dimensional loss surfaces to

find optimal parameter values. While local minima can trap traditional optimization methods,

leading to suboptimal solutions, previous work indicates that as the number of parameters in

a neural network increases, the loss surface becomes less likely to have non-convex character-

istics and local minima [71]. This suggests that larger networks, despite their complexity, may

be easier to optimize due to the structure of their loss surfaces, which guide the optimization

process towards many equivalent global minima.

However, the increased computational requirements and risk of overfitting necessitate care-

ful model design and regularization techniques to ensure good performance. Overfitting is a

common issue in neural network training [72]. It occurs when the model learns the training

data too well, to the point where it captures not only the underlying patterns but also the noise

or outliers in the data. As a result, the model performs well on the training data but poorly

on unseen data, demonstrating a lack of generalization. To mitigate overfitting, we can em-

ploy techniques such as early stopping and regularization. Early stopping is a form of cross-

validation approach where the training is halted as soon as the performance on the validation

set stops improving, indicating the model might be starting to overfit the training data [73],[74].

This helps to ensure that the model generalizes well and does not simply memorize the train-

ing data. Regularization techniques are another key tool in preventing overfitting. These tech-

niques add a penalty term to the loss function to constrain the complexity of the model. So-

called L1 and L2 regularizations are common methods that penalize the absolute and square

values of the weights, respectively. Another popular regularization technique is dropout [75],

where random neurons are "dropped out" or deactivated during training, forcing the network

to learn redundant representations and improving generalization.

1.1.3 The deep learning revolution

Other types of neural networks emerged in the 80s. The Neocognitron, introduced by Fukushima

in 1982, provided a model for hierarchical, multilayered artificial neural networks [76]. How-

ever, it wasn’t until 1989 that LeCun et al. proposed a way to train such networks using back-

propagation, paving the way for the development of modern Convolutionnal Neural Networks

(CNNs)[77]. In essence, a CNN processes an image through a series of hierarchical layers. The

initial layers, typically composed of convolutional and ReLU layers, are designed to recognize

simple, low-level features such as edges and textures. As the image progresses through the net-

work, subsequent layers combine these low-level features to recognize more complex, high-

level features, such as shapes or specific parts of objects.

Despite these early advancements, the development of CNNs was relatively slow for sev-

eral decades. This was due in part to the lack of computational resources and data necessary

for training these networks, as well as a general waning of interest in the field. However, with

1.1 DEEP LEARNING AND ARTIFICIAL INTELLIGENCE 17

the advent of more powerful computing systems and the availability of large-scale datasets,

CNNs have experienced a resurgence and are now a cornerstone of modern machine learning

and artificial intelligence research.

The onset of the 21st century marked a pivotal shift in AI, transitioning from conventional

machine learning techniques to neural networks. This shift was catalyzed in 2006 when Ge-

offrey Hinton and his colleagues proposed a novel training methodology for neural networks,

termed "deep learning". The launch of the ImageNet database in 2009, a large-scale repository

of annotated images, significantly propelled advancements in computer vision. The efficacy of

deep learning was underscored in 2012 when Hinton’s team, employing their deep Convolu-

tional Neural Network (CNN) known as AlexNet, clinched victory in the ImageNet competition

[78]. The mid-2010s witnessed further groundbreaking developments, including the introduc-

tion of Generative Adversarial Networks (GANs) [79, 80] and the development of the Resid-

ual Network (ResNet) [81], a variant of CNNs designed for effective training of deep networks.

Around the same time, Google’s DeepMind demonstrated the potential of deep reinforcement

learning with an algorithm that could play Atari games at superhuman levels [82]. This was fol-

lowed by another significant achievement by DeepMind in 2016, the development of AlphaGo,

a program capable of mastering the complex board game Go [83]. The latter half of the decade

saw significant advancements in natural language processing. In 2017, the Transformer model

was introduced [84], followed by Google’s BERT in 2018 [85], both setting new performance

benchmarks. In 2020, two major milestones were reached. OpenAI unveiled GPT-3, a highly

advanced language model [86], and DeepMind introduced AlphaFold, a system that accurately

predicts protein structures [87]. In 2023, a significant leap forward in the field of AI was marked

by the introduction of GPT-4, which, according to Bubeck et al. [88], began to show the first

sparks of general artificial intelligence. As we continue into the 21st century, AI research is

evolving rapidly, focusing on areas such as self-supervised learning, large-scale multimodal

models, and the ethical and societal implications of AI.

This rise has been accompanied by an exponential increase in the size and complexity of

neural networks. Models like GPT-3 [86], with its 175 billion parameters, and Google PaLM

[89], with 540 billion parameters, are emblematic of this trend. This growth in model size has

been driven by the need to capture increasingly complex patterns in data and to improve per-

formance on challenging tasks. However, training these large models requires vast amounts

of data and computational resources [90], which has significant implications for energy con-

sumption and environmental impact.

Different software or algorithmic practices can be used to reduce the number of parameters

to train, and therefore reduce the energy consumption of the model. Some of these strategies

are listed below.

18 CHAPTER 1: STATE OF THE ART

Feature Selection: This involves selecting the most relevant features (input variables) to use

in model training. Techniques for feature selection include filter methods (based on the cor-

relation of each feature with the output), wrapper methods (which try different combinations

of features), and embedded methods (which perform feature selection as part of the model

training process) [91, 92].

Dimensionality Reduction: Techniques like Principal Component Analysis (PCA) [93] or

t-Distributed Stochastic Neighbor Embedding (t-SNE) [94] can be used to reduce the number

of dimensions in the data, which effectively reduces the number of parameters in the model.

Model Selection: Choosing a simpler model with fewer parameters can also help to reduce

the number of parameters [95]. For example, a linear regression model has fewer parameters

than a polynomial regression model.

Use of Pre-trained Models: In deep learning, it’s common to use pre-trained models (like

ResNet, or BERT) that have been trained on large datasets and then fine-tune them on a spe-

cific task. This allows the model to leverage the pre-trained parameters and only learn a small

number of task-specific parameters [96].

Pruning: In the context of neural networks, pruning involves removing the connections

(and thus parameters) that contribute the least to the model’s predictions [97, 98]. This can

significantly reduce the number of parameters in the model without a substantial loss in per-

formance.

The goal of reducing parameters is to create a model that can generalize well to unseen

data, and does not consume as much energy. It’s a balance between making the model sim-

ple enough to not overfit the training data, while keeping it complex enough to capture the

underlying patterns in the data.

1.1.4 The challenge of AI energy consumption

Artificial neural networks are now mostly trained on standard CMOS hardware. The architec-

ture of classical computers typically follows the von Neumann paradigm which is characterized

by a physical separation of the memory and processing units. Two main processing units are

typically used in modern computers. A brief presentation of these two will be developed below.

1.1.4.1 CPU

The Central Processing Unit (CPU) is the computational core of a computer, responsible for

executing instructions in the form of threads, which are sequences of operations. A simplified

architecture of this unit is presented in Fig. 1.4a. When executing instructions, the CPU fetches

instructions and data from memory through this bus, one instruction at a time. The fetched

instructions are then decoded, executed, and the results are stored back in memory. However,

CPUs face a few key challenges. One significant hurdle is managing latency, especially during

memory access operations. This latency emerges from the time delay between requesting and

1.1 DEEP LEARNING AND ARTIFICIAL INTELLIGENCE 19

receiving data, slowing down overall system performance. Another challenge is heat manage-

ment, given that a CPU’s high operational speed generates substantial heat. Power consump-

tion, particularly in mobile devices or servers, poses yet another challenge, as efficient energy

use is crucial for prolonging battery life and reducing operational costs.

Addressing these challenges involves various strategies. To combat latency, CPUs employ

hierarchical memory organization and sophisticated control flow methods. This involves us-

ing different types of memory, like volatile DRAM and SRAM for faster access and non-volatile

memory for persistent storage. Cache memory, closest to the CPU, provides the fastest access

times, helping mitigate latency issues.

Figure 1.4: a: Simplified architecture of a CPU. b: Simplified architecture from a GPU. Both
adapted from the NVIDIA documentation [3].

1.1.4.2 GPU

The Graphics Processing Unit (GPU), presented in Fig. 1.4b, is an essential component in

modern computing systems, originally designed to accelerate the creation of images in frame

buffers intended for output to a display. The objective was to improve the speed and efficiency

of rendering two- and three-dimensional graphics, taking advantage of the inherently parallel

nature of the graphics rendering process where each pixel can be computed independently.

Around the mid-2000s, the potential of GPUs for general-purpose computing started to be ex-

plored. This transformation was catalyzed by the recognition that the same characteristics that

make GPUs suitable for graphics rendering, namely high throughput and parallelism, can also

be harnessed for tasks outside the realm of image rendering. One such field that has signifi-

cantly benefited from this transition is machine learning, particularly the training of deep neu-

20 CHAPTER 1: STATE OF THE ART

ral networks, a process that involves performing a vast number of mathematical operations

that can be executed concurrently.

Compared to CPUs, GPUs are equipped with a greater number of cores, albeit simpler ones.

While CPUs are designed for general-purpose computing and can handle a wide variety of tasks

efficiently, GPUs are specifically built for performing a large number of similar computations

simultaneously. This makes GPUs significantly faster than CPUs for tasks like matrix opera-

tions that are integral to neural network training. However, despite the significant advantages,

there are still limitations to GPU usage. One key limitation is memory bandwidth. Even though

GPUs have high-speed memory, the sheer amount of data processed in tasks like deep learn-

ing can result in a bottleneck. Another issue is latency. While individual operations are faster,

the time taken to begin the operation can be longer, an aspect known as GPU kernel launch

latency. Moreover, data transfer times between the GPU and the main system memory can also

introduce delays.

1.1.4.3 Requirement for Computing Deep learning

Types of operations performed during learning The computational demands of deep learn-

ing are multifaceted, encompassing a variety of operations that require specialized hardware

capabilities. At the heart of deep learning algorithms are matrix multiplications and vector

additions, operations that are efficiently executed on Graphics Processing Units (GPUs) due

to their inherent parallelism [99]. Central Processing Units (CPUs), on the other hand, are

typically responsible for data loading and preprocessing, task scheduling, and handling in-

put/output operations. The interplay between these different types of hardware is crucial for

the efficient execution of deep learning tasks.

Memory access is another critical aspect of deep learning computation. The model’s pa-

rameters, such as weights and biases, along with input data and intermediate computations,

are stored in memory. The processor fetches these elements for computation, making effi-

cient memory access patterns and caching mechanisms vital for reducing memory latency and

maximizing data throughput. However, the rate at which data can be transferred between the

processing unit and the memory unit, often referred to as the "memory wall," represents a

fundamental limitation of modern computers [100]. In fact, for many computing tasks, the

majority of energy consumption and time are attributed to data movement rather than to the

computation itself [101].

Von Neumann bottleneck Most AI models rely on large datasets for training, which often

surpass the memory capacity of even the most advanced GPUs. Furthermore, the size of the AI

models can be so large that they exceed the available GPU memory, necessitating flash storage

and clever scheduling of training batches to mitigate latency issues. However, these solutions

do not address the high energy cost associated with constant data movement between mem-

ory and processors, a challenge often referred to as the von Neumann bottleneck, see Fig. 1.5a.

1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 21

Each iteration of the training process involves reading the model parameters from memory to

compute the gradient of the loss function, and then writing the updated parameters back to

memory. This constant data transfer accounts for a significant portion of the total energy con-

sumption of deep learning training, as shown in Fig. 1.5b.

Figure 1.5: a: Von Neumann bottleneck. b: Energy per operation, adapted from [4].

In conclusion, the rise of AI and deep learning has brought forth significant challenges for

traditional computing architectures. The high power consumption, scalability issues, and the

inherent inefficiencies of the von Neumann architecture have become increasingly apparent.

However, a promising alternative lies in Neuromorphic Computing, a concept introduced by

Carver Mead [102]. Neuromorphic computing, inspired by the structure and function of the

human brain, offers a potential solution to these challenges. These systems are designed to

mimic the brain’s efficient, adaptive, and speedy processing capabilities, making them well-

suited for implementing complex neural network architectures and learning algorithms. Re-

cent developments in neuromorphic hardware, such as IBM’s TrueNorth [103] and Intel’s Loihi

1 [104] and 2 [105], as well as the Spinnaker project [106], have demonstrated the potential of

this approach, which we detail now.

1.2 Taking Inspiration from the brain to realize efficient

hardware

The human brain, with its intricate structure and exceptional capabilities, provides a com-

pelling blueprint for the development of artificial intelligence, computing, and efficient hard-

ware. One of the brain standout features include the brain’s proficiency in pattern recogni-

tion. It seamlessly identifies or classify patterns and establishes connections between diverse

pieces of information. This capability underpins many of our daily tasks, from facial recogni-

22 CHAPTER 1: STATE OF THE ART

tion to language comprehension and abstract problem-solving. Another key characteristic of

the brain is its capacity to learn and adapt from experience, a process known as neuroplastic-

ity. This involves the formation and reinforcement of new neural connections in response to

new information, demonstrating the brain’s dynamic and adaptable nature. In contrast to tra-

ditional computers that process tasks sequentially, the brain also exhibits a capacity for parallel

processing, allowing for the simultaneous handling of multiple tasks [107]. Despite its complex

structure and ability to handle tasks, the brain exemplifies energy efficiency, with a usage of

approximately 20 W of power (accounting for about 20% of the body’s energy, and 2% of the

body’s weight) [108]. Therefore, studying the brain to get an inkling about what makes it so

efficient is a natural first step to building neuromorphic hardware.

1.2.1 The elements of the brain

The brain is composed of about 50 to 100 billion neurons and between 100 to 1,000 trillion

synapses [109, 110]. Another type of cell is also present in the brain, the glial cells, in about the

same number as neurons. These last cells will not be described in this thesis, but are thought

to contribute to numerous processes such as synaptic strength influence [111]. Neurons and

synapses will be described more in-depth in this section.

1.2.1.1 Neurons and synapses

Neurons Neurons, the key cellular units of the brain’s nervous system, are central to its op-

eration [112]. Each neuron has a body, known as the soma, which houses the cell nucleus, as

shown in Fig. 1.6a. This nucleus oversees standard cellular activities, such as protein synthesis.

Typically, a neuron has an input section and an output section. The input is usually managed

by the dendrites, which are branching tree-like extensions sprouting from the soma receiving

incoming signals. Conversely, the output is handled by the axon, a long projection that car-

ries electrical signals away from the neuron. These signals, known as action potentials, exhibit

a spiking behavior. The soma plays a crucial role in integrating the information received by

the dendrites. If the soma experiences a high enough level of depolarization, it triggers action

potentials, as shown in Fig. 1.6b.

A simplified version of how the spike happens is presented here. At rest, the neuron main-

tains a negative membrane potential (around -70 mV) [113], which is defined as the difference

between the electric potential within a cell and its surroundings. Sodium channels and most

potassium channels are closed, but some potassium channels are open, allowing a slow leak of

potassium ions out of the cell. This helps maintain the resting potential. When the neuron re-

ceives a signal that brings the membrane potential to a certain threshold, voltage-gated sodium

channels open. Sodium ions, which are in a higher concentration outside the cell, rush into the

cell due to the electrochemical gradient. This influx of positive charges rapidly depolarizes the

membrane, causing the membrane potential to become positive. This is the depolarization

1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 23

Figure 1.6: a: Simplified architecture of a neuron (credits to Jack Shuai Li). b: Shape of an action
potential with the resting phase, followed by the depolarization, repolarization, and
hyperpolarization phases (reproduced from Ref. [5]).

phase. After a brief delay, the voltage-gated sodium channels close, and voltage-gated potas-

sium channels open. Potassium ions, which are in higher concentration inside the cell, rush

out of the cell, again due to the electrochemical gradient. This efflux of positive charges repo-

larizes the membrane, causing the membrane potential to return to a negative value. This is

the repolarization phase. The voltage-gated potassium channels close slowly, causing a brief

period of hyperpolarization where the membrane potential is more negative than the resting

potential. The membrane potential then returns to the resting state, aided by the activity of the

sodium-potassium pump, which restores the original ion concentrations. After an action po-

tential, the neuron enters a refractory period during which it is less likely to fire another action

potential. This period allows the neuron to reset before it can generate another action poten-

tial. These action potentials are always of the same size and shape, regardless of the strength of

the stimulus that triggered it. This is called the all-or-nothing behavior.

It is important to note that neurons can display a wide range of spiking behaviors, a topic

we will delve into in the next section.

Figure 1.7: Synapse drawing reproduced from Ref. [6].

24 CHAPTER 1: STATE OF THE ART

Synapses In the brain, information flows from one neuron to another through connections

known as synapses, presented in Fig. 1.7 [114]. The journey of a signal begins with an action

potential reaching the axon terminal of the presynaptic neuron. This event triggers the opening

of voltage-gated calcium channels in the terminal’s membrane, leading to an influx of calcium

ions. These ions prompt synaptic vesicles, which are small sacs filled with neurotransmitters,

to fuse with the axon terminal’s membrane. This fusion releases neurotransmitters into the

synaptic cleft, the small gap of only a few micrometers between the presynaptic and postsy-

naptic neurons [115]. The neurotransmitters then embark on a short journey across the synap-

tic cleft, eventually binding to specific receptors on the membrane of the postsynaptic neuron.

This binding can cause ion channels on the postsynaptic membrane to open or close, altering

the neuron’s membrane potential. Depending on the type of neurotransmitter and receptor,

this can either excite the postsynaptic neuron, making it more likely to fire an action potential,

or inhibit it, making it less likely to fire. Finally, the neurotransmitters in the synaptic cleft are

cleared away. They may be taken back up into the presynaptic neuron, a process known as

reuptake, broken down by enzymes, or simply diffuse away. This ends the signal, resetting the

synapse for the next wave of communication [116].

1.2.1.2 Neuronal behaviors observation and modeling

Neuronal behaviors The behavior of a neuron can be influenced by a multitude of factors

such as its type, location within the brain, the nature of the stimulus it receives, and the pres-

ence of any modulatory signals. In this context, we will explore various neuronal behaviors,

drawing on the work of Izhikevich [7].

Consider tonic firing, a behavior characterized by a steady, uninterrupted firing pattern de-

void of distinct bursting behavior. Here, neurons generate action potentials at a consistent

rate, typically in response to sustained depolarization (refer to Fig. 1.8 (A)). Contrastingly, pha-

sic spiking involves a neuron firing a single spike at the onset of a stimulus, failing to fire again

despite continued stimulation (Fig. 1.8 (B)). Tonic bursting, akin to tonic spiking, involves the

neuron firing bursts of spikes at a regular frequency instead of individual spikes (Fig. 1.8 (C)).

Phasic bursting, on the other hand, sees a neuron firing a burst of spikes at the stimulus onset,

but not firing again despite continued stimulation (Fig. 1.8 (D)). In mixed mode behavior, a

neuron alternates between firing individual spikes and bursts of spikes (Fig. 1.8 (E)). In spike

frequency adaptation, the neuron initially fires spikes at a high frequency, which decreases over

time despite a constant stimulus (Fig. 1.8 (F)). Class 1 excitability is characterized by a neuron

firing spikes at a frequency that smoothly increases as the stimulus intensity rises (Fig. 1.8 (G)).

In contrast, class 2 excitability sees the neuron firing spikes at a frequency that abruptly jumps

to a high value as the stimulus intensity crosses a certain threshold (Fig. 1.8 (H)). In spike la-

tency behavior, the neuron remains silent for a period after the stimulus onset, fires a single

spike or burst, and then returns to silence (Fig. 1.8 (I)). Subthreshold oscillations refer to os-

cillations in a neuron’s membrane potential that do not reach the threshold for triggering an

1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 25

Figure 1.8: Twelve distinct firing patterns observed in individual neurons within the mam-
malian cortex [7]

action potential (Fig. 1.8 (J)). A resonator neuron responds more strongly to oscillatory inputs

at certain frequencies (Fig. 1.8 (K)), while an integrator neuron responds equally to inputs at all

frequencies, integrating the inputs and firing if these inputs are above a threshold (Fig. 1.8 (L)).

Lastly, stochastic spiking is a type of neuronal firing where the timing of action potentials is

not strictly deterministic but has a random component, as shown in Fig. 1.9. This randomness

can be attributed to various factors, including inherent noise in the biochemical processes in-

volved in generating action potentials, the random arrival times of inputs to the neuron, and

the complex, nonlinear dynamics of the neuron’s membrane potential.

Neuronal models The development of accurate neuronal models holds significant impor-

tance in the fields of neuroscience and neuromorphic computing. These models serve as a

fundamental tool for deciphering the intricate workings of neurons, elucidating how they pro-

cess, transmit, and interact with information. This understanding can subsequently shed light

on the complex orchestration of higher-level brain functions. Moreover, neuronal models act

as a compass for scientific research. They assist in interpreting experimental data, providing

a theoretical framework to make sense of observed results. In terms of practical applications,

26 CHAPTER 1: STATE OF THE ART

Figure 1.9: Stochastic firing in rodent trigeminal neurons [8]. Cells were progressively depolar-
ized to potentials near and above the spike threshold (-45 mV). TIntermittent dis-
charges occurred near the threshold. Stochastic bursting occurred when neurons
were biased to suprathreshold potentials (-39 mV holding current, top trace).

neuronal models can predict neuronal responses under varying conditions or stimuli. This

predictive power has far-reaching implications, from advancing our basic understanding of the

brain to paving the way for novel treatments for neurological disorders.

Lastly, the importance of neuronal models extends to the development of neuromorphic

systems. Robust and simple neuronal models are instrumental in refining the design and en-

hancing the performance of these systems.

Leaky Integrate-and-Fire The Leaky Integrate-and-Fire (LIF) model was first introduced

by Lapicque in 1907, making it one of the earliest models of neuronal behavior [117]. Despite its

simplicity, it captures the essential behavior of a neuron: the integration of inputs and the gen-

eration of action potentials, or spikes, when the membrane potential reaches a certain thresh-

old. In the LIF model, a neuron is represented as an electrical circuit with a resistor R and a

capacitor C in parallel. The resistor represents the leakiness of the neuron’s membrane, which

allows ions to flow in and out, while the capacitor represents the membrane’s ability to store

electrical charge. The model is described by a single differential equation, which represents

the balance between the input I to the neuron, the leakage of charge through the membrane,

and the change in the neuron’s membrane potential u over time.

du

d t
= 1

RC
(− [u(t)−ur est]+RI (t)) (1.8)

When the membrane potential u reaches a certain threshold uth , the neuron is said to fire

an action potential, and the membrane potential is then reset to a resting value ur est .

In accordance with the Izhikevich and Hodgkin neuron classification system [7, 118], a

Leaky Integrate-and-Fire (LIF) neuron typically falls within the category known as Class 1 neu-

rons. Class 1 neurons are distinguished by their continuous membrane potential dynamics,

1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 27

which do not involve spiking until a specific threshold is attained. Once this threshold is reached,

these neurons generate a spike and subsequently reset their membrane potential.

The LIF model is computationally efficient and easy to analyze, making it a popular choice

for large-scale simulations of neural networks. However, it is a highly simplified model that

does not capture many aspects of real neuronal behavior, such as the detailed dynamics of ac-

tion potentials or the effects of different types of ion channels. Despite these limitations, the

LIF model provides a valuable tool for understanding the basic principles of neuronal compu-

tation.

Hodgkin-Huxley model The Hodgkin-Huxley model, developed in the 1950s, is a mathemat-

ical framework that describes how neurons generate and propagate electrical signals, or action

potentials [119]. This model was groundbreaking in its representation of the neuron’s mem-

brane as an electrical circuit, with key components that mirror the biological structures of

the neuron. It reproduces all the Izhikevich behaviors mentioned in this section.The model

includes a capacitance, which symbolizes the neuron membrane’s ability to store electrical

charge. It also features resistors, which represent the ion channels that allow sodium and

potassium ions to flow in and out of the neuron, which are responsible for the electrical signal.

Additionally, batteries in the model represent the driving force for these ions to move across

the membrane, known as the electrochemical gradient. The Hodgkin-Huxley model uses a

set of four differential equations to describe the changes in the conductances of the sodium

and potassium channels over time, and how these changes influence the membrane potential.

These equations rely on several parameters, such as the maximum conductances of the ion

channels and the membrane capacitance, which can be determined through experiments.

While the Hodgkin-Huxley model has been instrumental in our understanding of neuronal

activity, it is also complex and computationally demanding. As a result, simpler models are

often used for neural networks, such as the FitzHugh-Nagumo model which will be presented

below.

FitzHugh-Nagumo model The FitzHugh-Nagumo model is a simplified mathematical model

of neuronal activity that was developed as a more computationally tractable alternative to the

Hodgkin-Huxley model. Introduced independently by FitzHugh in 1961 [120] and by Nagumo

and his colleagues in 1962 [121], this model reduces the complex dynamics of a neuron to

a two-dimensional system, making it easier to analyze and simulate. The FitzHugh-Nagumo

model captures the essential features of action potential generation and propagation in neu-

rons. It consists of two variables: one representing the membrane potential of the neuron, and

the other representing a recovery variable, which accounts for the activation and inactivation

of the ion channels that help generate the action potential. The model is described by a pair

of nonlinear differential equations [122]. The first equation represents the fast dynamics of the

membrane potential, including the rapid upstroke and downstroke of the action potential. The

28 CHAPTER 1: STATE OF THE ART

second equation represents the slower dynamics of the recovery variable. While the FitzHugh-

Nagumo model is much simpler than the Hodgkin-Huxley model, it still captures the key fea-

ture of neuronal excitability: the generation of action potentials in response to inputs above a

certain threshold. This makes it a useful tool for studying the behavior of individual neurons

and the dynamics of neural networks. The FitzHugh-Nagumo model can reproduce behaviors

associated with Class 1 and Class 2 neurons in the Izhikevich classification system, depending

on the parameters used. Class 1-like behaviors have been described in the LIF model section.

Class 2 neurons are characterized by the repetitive firing of action potentials in response to a

sustained input, as well as bursting behaviors or irregular spiking.

Learning Mechanisms in the Brain The process by which the brain learns is a complex

and multifaceted phenomenon, and it remains an active area of research. Although the output

amplitude of individual neurons is entirely digital due to their all-or-nothing behavior, most

scientists believe that the brain encodes information through the precise timing and pattern

of spikes across large groups of neurons. However, the exact learning algorithm employed by

the brain is not yet fully understood. Recent studies in neuroscience have suggested that deep

networks trained using back-propagation can more accurately represent the inferior tempo-

ral cortex found in actual neural tissues than models trained using other methods [123–125].

This suggests that the brain might employ some form of gradient-based learning. However, the

mechanism by which the brain would execute this optimization remains unclear. This chal-

lenge is known as the ’credit assignment’ problem, which involves determining how changes

to hidden neurons should be made to drive the output neurons in the desired direction. This

problem is particularly complex because each hidden neuron influences the output in a highly

intricate manner [125].

Both backpropagation and BackPropagation Through Time (BPTT, standard algorithm for

training RNNs) [126] offer a solution to this problem, but they do so in a way that is not con-

sidered biologically plausible for two main reasons. Firstly, an artificial neural network trained

with backpropagation performs two types of computation: a forward pass that propagates neu-

ral activation, and a backward pass that propagates error vectors. This is problematic because

the quantities propagated during the backward pass, denoted as δ, can be signed and poten-

tially extreme-valued, either very small or very large. Moreover, the computing graph of the

backward pass does not align with the typical model of neural computation, as the non-linear

activation function is replaced by a linear element-wise product of point-wise derivatives of

forward activations. This necessitates the storage of information about the forward pass. Sec-

ondly, the backpropagation of error gradients requires the use of the transposed version of the

forward synaptic weights. This issue, known as the ’weight transport’ problem, implies that an

efficient hardware implementation of back-propagation would need to use the same physical

devices to perform two different computations [127, 128]. Moreover, BackProp is non-local as

each weight update takes into account the collective influence of the entire network’s struc-

1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 29

ture and connections. It necessitates the storing of information during both the forward and

the backward passes rather than being solely determined by local information near the spe-

cific weight being updated, which is a hindrance to on-chip learning. In the following section,

we will explore biologically plausible learning algorithms that could potentially be used by the

brain.

1.2.2 Bio-plausible learning

The pursuit of understanding the brain’s learning mechanisms unifies the fields of computa-

tional neuroscience and deep learning, despite their differing methodologies and approaches.

Deep learning, heavily influenced by statistical learning theory, primarily employs rate-based

neurons that perform continuous non-linear mappings of their inputs, often interpreted as

firing rates. This approach has led to the development of powerful learning algorithms such

as backpropagation, which has been instrumental in the success of deep learning. However,

we have seen that backpropagation’s reliance on symmetric weight matrices for forward and

backward passes (known as the weight transport problem), its non-local nature, and the syn-

chronous nature of its updates render it biologically implausible. On the other hand, com-

putational neuroscience aims to model the brain’s functions more faithfully. It often employs

spiking neural networks, where neurons communicate through discrete spikes, more closely

mimicking biological neurons. This field’s focus is on understanding and replicating the brain’s

dynamics, which are event-driven and fundamentally different from the static architectures

commonly used in deep learning [2]. Because of the substrate and nature of the processing,

the brain is inherently noisy, and the information is propagated at low precision, which is very

different from the highly accurate precision of computers [129]. In this section, we introduce

learning algorithms that draw inspiration from both the biological plausibility of computa-

tional neuroscience and the practical effectiveness of deep learning. We adopt a broad inter-

pretation of bio-plausibility. An algorithm is considered more bio-plausible than BackPropa-

gation if it meets one or more of the following criteria: it is local (weight updates depend only

on information available to the neuron); it requires similar operations or circuitry for both in-

ference and learning (making them suitable for implementation on neuromorphic hardware);

or it allows for different forward and backward weights.

1.2.2.1 Rate-based algorithms

In this section, we first focus on rate-based biologically plausible algorithms.

Local learning rules but symmetric weights Introduced in 1985 Contrastive Hebbian Learn-

ing (CHL) is a learning algorithm that computes weight updates based on neural activations

[130], and was initially used to train Boltzmann machines, which are probabilistic energy-based

models and stochastic in nature. The weight update is computed as:

30 CHAPTER 1: STATE OF THE ART

∆Wi j = η
(
σ+

i σ
+
j −σ−

i σ
−
j

)
, (1.9)

where σ+
i and σ−

i denote respectively the activations of neuron i in the positive and negative

phases. During the negative phase, inputs are clamped but other neurons evolve freely accord-

ing to their dynamics until an equilibrium point is reached. During the negative phase, output

units are also clamped, but to the corresponding targets. The system evolves until a new equi-

librium point is reached. The weight update can then be split into a negative part whose goal is

to increase the energy of the pattern one wants to unlearn, and into a positive part whose goal

is to decrease the energy of the correct pattern. CHL was adapted to deterministic networks

[131–133] and is considered a more biologically plausible alternative to back-propagation as

the update is computed only with one type of neural computation.

From then on, several algorithms related to CHL have been introduced, such as Recircula-

tion [134] and General Recirculation [135]. In 2003, Xie et al. showed that backpropagation and

CHL were equivalent in the case of feedback connections expect from a small scalar prefactor

[136].

In 2015, Bengio and Fischer showed that when the output is slightly nudged in the second

phase, the early change in neural activation corresponds to the propagation of error derivatives

[137].

This idea is taken even further by Scellier and Bengio in 2017 with their learning algorithm

Equilibrium Propagation (EqProp or EP) [138], EqProp is based on the principle of energy min-

imization. It operates in two phases: a free phase and a weakly-clamped phase. In the free

phase, the network is left to reach a stable state or equilibrium where the total energy of the

system is minimized. This is achieved by allowing the neurons in the network to update their

states iteratively until the change in the states becomes negligibly small. The energy function

is defined in terms of the states of the neurons and the weights of the connections between

them. In the weakly-clamped phase, a small external force is applied to the output neurons to

nudge the network towards the desired output. The network then adjusts its states to reach a

new equilibrium. The change in the states of the neurons from the free phase to the weakly-

clamped phase is used to update the weights of the network. The key advantage of EqProp is

that it only requires local information for weight updates, making it more biologically plausible

than backpropagation. A more detailed explanation of Equilibrium Propagation will be given

in Chapter 3, as this algorithm will be at the heart of this PhD thesis.

Forward weights do not have to match backward weights for learning rules to be local Tar-

get Propagation (TP) is a learning algorithm proposed by Bengio in 2014 as a biologically plausi-

ble alternative to backpropagation for training deep neural networks, as the the weight updates

are based on local neural activation, and no symmetry between the forward and backward con-

nections is needed [139]. The key idea of target propagation is to define a "target" state for each

layer in the network, and then update the weights in each layer to make the actual state of that

1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 31

layer closer to its target state. This is done in a top-down manner, starting from the output

layer and moving towards the input layer. However, to define the target state for each layer,

we need to invert the operation performed by the layer. This can be challenging, especially

when the number of neurons (i.e., the dimension) changes from one layer to the next. To over-

come this challenge, target propagation introduces trainable feedback weights, which are used

to learn approximate inverse functions for each layer. These inverse functions are then used

to compute the target states. In the original version of target propagation, the target for the

second-to-last layer is computed by backpropagating the global loss (i.e., the difference be-

tween the actual output of the network and the desired output). The targets for the remaining

layers are computed by applying the approximate inverses to the already computed targets.

Once all the targets are computed, the forward and backward weights are updated by minimiz-

ing layer-wise, local losses. The forward loss is the difference between the actual output of a

layer and its target state, while the backward loss is related to the accuracy of the approximate

inverse function.

However, the original target propagation algorithm’s reliance on approximating inverse op-

erations to compute the target states for each layer can lead to poor targets and, consequently,

poor learning performance [139]. To mitigate this, Lee et al. introduced a variant of target prop-

agation called "difference target propagation" [140]. The key idea is to add a linear correction

term to the targets to compensate for the errors introduced by the imperfect inversion. With

this modification, difference target propagation has been shown to successfully train multi-

layer perceptrons (MLPs) on the MNIST dataset, a popular benchmark for machine learning

algorithms. Its performance closely matches that of backpropagation. However, the problem

of imperfect inversions becomes especially noticeable in the final layer for classification tasks

that involve a small number of classes, such as the 10 classes found in datasets like MNIST [141]

and CIFAR-10 [142].

Feedback Alignment (FA) is a learning algorithm proposed by Lillicrap et al. in 2016 as an

alternative to backpropagation for training artificial neural networks [143]. The key innovation

of FA is that it eliminates the need for weight symmetry between the forward and backward

passes and also uses a local update rule. FA uses a fixed, random feedback weights to propagate

the error signal from the output layer to the hidden layers during the backward pass. Despite

this randomness, the network is still able to learn useful representations and perform well on

various tasks. The advantage of FA is that it only requires local information for weight updates,

making it more biologically plausible than backpropagation. Another version of this algorithm,

called Direct Feedback Alignment (DFA), was proposed by Nøkland in 2016 [144]. DFA, like FA,

is designed to be a more biologically plausible alternative to backpropagation. DFA directly

propagates the error signal from the output layer to all preceding layers, bypassing the need

for sequential computation of the error signal. This direct propagation is achieved by using a

fixed, random matrix for each layer, which is used to project the error signal from the output

layer to that layer. Despite the randomness, the network is still able to learn and perform well

32 CHAPTER 1: STATE OF THE ART

on various tasks. The advantage of DFA is that it simplifies the learning process by eliminating

the need for sequential error propagation, making it more biologically plausible and potentially

more efficient than backpropagation. However, as with FA, the performance of DFA can be less

robust than backpropagation for deeper networks or more complex tasks, and understanding

its strengths and limitations is an ongoing area of research.

Bartunov et al. demonstrated that feedback alignment and difference target propagation

closely match back propagation on MNIST and CIFAR-10 on MLPs and ’locally connected’

architectures, which are biologically more plausible convolutional layers without sharing the

kernel weights across space [145]. However, these algorithms do not match back-propagation

on ImageNet, indicating that their performance can be less robust than backpropagation for

deeper networks or more complex tasks.

Eliminating the need for weight symmetry by having two forward passes In an invited talk

presented at NeurIPS 2022 [146], Hinton introduced the "forward-forward algorithm" (FF), a

new learning algorithm for artificial neural networks that draws inspiration from our under-

standing of neural activations in the brain. This algorithm aims to replace the forward and

backward passes of backpropagation with two forward passes. These two passes are similar

but work on different data and have opposite objectives. The "positive pass" operates on real

data and adjusts the network’s weights to increase a function called the "goodness" of each

layer. The "negative pass" operates on negative data and adjusts the weights to reduce good-

ness. This process works well for a neural network with a single hidden layer. For a multi-layer

deep learning model, the output of each hidden layer is normalized before being passed on

to the next one. The FF algorithm proves that knowing precisely the non-linearities present in

the forward computation is not necessary, which is more bio-plausible in that sense than back-

propagation which requires an exact knowledge of the operation and their derivatives.

One of the main differences between the algorithms aforementionned and the function-

ning of the brain is first and foremost the use of continuous-valued neurons instead of spiking

neurons. The following section will present spike-base learning algorithms.

1.2.2.2 Spike-based algorithms

In recent years, there has been a surge of interest in developing algorithms for training spik-

ing neural networks, where the latency between spikes is not fixed but varies in a way that

is computationally significant, much like the functioning of the brain. These algorithms are

typically adaptations of gradient-based techniques that have been successful in training rate-

based deep networks. They can be broadly divided into two categories [147]. The first category

is spike-timing based representation, where the exact spiking times of neurons, which are real-

valued, are optimized using gradient descent. The second category is activity-based represen-

tation, where the network’s time step is discrete, akin to RNNs. This makes the spiking times

1.2 TAKING INSPIRATION FROM THE BRAIN TO REALIZE EFFICIENT HARDWARE 33

non-differentiable, and surrogate gradients are used for optimization [148, 149].

STDP The most well-known spike-based learning algorithm is Spike-Timing-Dependent Plas-

ticity (STDP), believed to be a key mechanism for synaptic learning and adaptation. Introduced

in the late 1990s and early 2000s through experimental neuroscience [150, 151], STDP is a form

of Hebbian learning that takes into account the precise timing of spikes. In STDP, the change

in synaptic weight depends on the relative timing of the pre-synaptic and post-synaptic spikes.

If the pre-synaptic neuron fires just before the post-synaptic neuron (causal order), the synap-

tic weight is increased. Conversely, if the pre-synaptic neuron fires just after the post-synaptic

neuron (anti-causal order), the synaptic weight is decreased. This rule is sometimes summa-

rized by the phrase "fire together, wire together; fire out of sync, lose your link". STDP provides

a biologically plausible learning rule for spiking neural networks, which are models of neural

networks that aim to more closely mimic the behavior of biological neurons. However, trans-

lating STDP into an effective learning algorithm for artificial neural networks is a challenging

task and an active area of research, as STDP has been primarily studied in the context of single-

layer networks or small-scale multi-layer networks. It is not clear how to effectively use STDP

to train deep networks, which have been shown to be highly effective for many deep learning

tasks.

Alternatives to STDP Eligibility Propagation (e-prop) is a learning algorithm introduced by

Bellec et al. in 2020 as a biologically plausible method for training recurrent neural networks

(RNNs) [152]. The e-prop algorithm is inspired by the concept of eligibility traces in reinforce-

ment learning and the spike-timing-dependent plasticity (STDP) observed in biological neu-

rons. In e-prop, each synapse in the network maintains an eligibility trace, which is a record of

the recent pre- and post-synaptic neuronal activity. The eligibility trace captures the informa-

tion necessary for weight updates and is updated locally at each time step based on the current

neuronal activities. The learning signal, which is equivalent to the error term in backpropa-

gation, is a global signal that is broadcast to all neurons in the network. The weight updates

are then computed as the product of the learning signal and the eligibility trace. This allows

the network to perform credit assignments and learn temporal dependencies in the input data.

The key advantage of e-prop is that it only requires local information for updating the eligi-

bility traces and can be implemented efficiently in spiking neural networks. This makes it a

promising candidate for implementation in neuromorphic hardware.

The EqSpike algorithm is a spike-based version of EqProp, introduced in 2021 by Martin et

al. [153]. The neurons are leaky-integrate and fire neurons. The first layer receives a constant

input current (the values of the pixels of the MNIST image to classify),all other neurons receive

input which is the weighted sum of the spiking output of other neurons, and some constant

current, either a bias or the nudging term (for the nudge phase). The learning rule is the follow-

ing dWi j = ρ̇iρ j +ρi ρ̇i , where ρ is the firing rate of the neuron. Here, the firing rate is either 0

34 CHAPTER 1: STATE OF THE ART

if the neuron does not spike or 1 if it does. The derivative ρ̇ has to be smoothed out with a low

pass filter. The key advantage of EqSpike is that it performs all these computations locally in

space, meaning that each neuron only needs information about its own state and the states of

the neurons it’s directly connected to. But it is also local in time, as no value needs to be stored

during learning.

In 2021, Payeur introduced a variant of EqProp known as BurstProp [154]. This novel ap-

proach is grounded in the concept of burst multiplexing, where single spikes and high-frequency

bursts carry different types of information, effectively creating two distinct communication

channels within each neuron. This allows for the simultaneous transmission of feedforward

data and feedback errors. BurstProp is designed to be biologically plausible, incorporating

features such as dendritic compartments, short-term plasticity, inhibitory microcircuits, and

burst-dependent plasticity. The authors demonstrated the effectiveness of a simplified version

of their model by achieving competitive results on large-scale machine learning benchmarks,

including ImageNet.

Conclusion of the section The brain, with its remarkable learning efficiency and low energy

consumption, serves as a profound inspiration for the development of learning algorithms and

energy-efficient hardware. It is this biological marvel that neuromorphic computing seeks to

emulate, necessitating the optimization of both learning algorithms and hardware devices and

circuitry. As we transition from understanding the brain’s mechanisms and bio-plausible algo-

rithms, we now turn our attention to the hardware aspect. The goal is to harness the principles

that make the brain so efficient and translate them into practical, energy-efficient hardware

designs for learning. This endeavor forms the next focus of our exploration, as we delve into

the realm of neuromorphic computing.

1.3 Hardware adapted for AI

Definition and purpose Neuromorphic computing refers to the design and development of

computational systems inspired by the structure, function, and efficiency of the biological

brain. These systems aim to mimic the brain’s ability to process and learn from information in

a highly parallel and energy-efficient manner, offering promising solutions for a range of com-

plex, real-world applications. Even if inference-only neuromorphic hardware is very common,

a key goal of neuromorphic computing is the ability to perform both inference and training di-

rectly on the chip. Performing these operations on-chip, rather than transferring data back and

forth between the chip and an external computer, can significantly increase speed, reduce en-

ergy consumption, and enhance privacy and security. The ability to perform training on-chip

can be particularly important for edge AI applications, where some devices need to be able to

learn and adapt in real time, often in resource-constrained environments. On-chip training al-

lows these devices to learn from new data as it becomes available, without needing to send the

1.3 HARDWARE ADAPTED FOR AI 35

data to a central server for processing.

Currently, most neuromorphic hardware is based on CMOS (Complementary Metal-Oxide-

Semiconductor) technology, which has been the industry standard for several decades. The

"More than Moore" paradigm recognizes that continuing the miniaturization of transistors (as

predicted by Moore’s Law [155]) is not sufficient to meet the growing demands for computa-

tional power and energy efficiency. It suggests that we need to explore new types of devices,

materials, and architectures. However, as we push the boundaries of what is possible with

neuromorphic computing, there is a growing need to explore beyond CMOS and investigate

emerging devices and technologies [12]. Indeed, CMOS technology is ill-suited for neuromor-

phic computing due to its digital nature, limited parallelism, absence of non-volatile memory,

lack of fault tolerance, and constraints on custom, compact designs required for neuromorphic

systems.

1.3.1 Emerging devices

1.3.1.1 What makes a good hardware synapse or a good hardware neuron candi-

date?

In the field of neuromorphic computing, the design of hardware neurons and synapses is guided

by several key principles. Firstly, low power consumption is paramount, as one of the primary

advantages of neuromorphic computing is its potential for energy efficiency. This means that

an ideal hardware candidate should consume minimal power, not only during operation but

also in standby mode. Secondly, scalability is crucial. The hardware should be designed in

such a way that it can be manufactured at small scales, while also allowing for easy integra-

tion into larger systems. This scalability is essential for supporting large networks of neurons

and synapses. Thirdly, reliability and durability are important considerations. The hardware

should be robust, capable of withstanding a wide range of operating conditions and maintain-

ing its performance over time. Compatibility with CMOS technology is another key factor, as

this allows for leveraging existing manufacturing infrastructure and integrating with other elec-

tronic components. Lastly, the hardware should be capable of operating at sufficient speeds to

support real-time processing requirements.

In the pursuit of designing artificial synapses for neuromorphic computing, whether in

digital or analog frameworks, several key requirements emerge. These requirements are in-

spired by the functional characteristics of biological synapses and the practical constraints

of hardware implementation, forming a bridge between the worlds of neuroscience and en-

gineering. Biological synapses are characterized by their capacity at adapting their strength

depending on the pre and post-synaptic neurons, a feature that allows for complex and nu-

anced network behaviors. This is mirrored in the design of artificial synapses, which should

be capable of evolving between multi-level states under external stimuli, see Fig. 1.10b and c.

36 CHAPTER 1: STATE OF THE ART

This characteristic is a reflection of synaptic plasticity, a key feature of biological learning and

memory. Hardware analog synapses, which can be used for realizing any kind of ANNs, can

have many different states [156], and the more the better. Hardware binary synapses only have

two states, and can only be used for realizing Binarized Neural Networks (BNN) [157]. Non-

volatility, the ability of a synapse to retain its state even when power is not supplied, is another

crucial feature [158, 159], as illustrated in Fig. 1.10g. This mirrors the long-term memory stor-

age capability of biological systems and is particularly important for certain applications where

power supply may be intermittent or constrained. The control of the synaptic device with an

external parameter is essential for the precise modulation of synaptic strength during learning.

This control should ideally exhibit a linear relationship with the synaptic weight as presented

in Fig. 1.10d, allowing for precise changes during learning, much like the precise modulation

of synaptic strength that occurs during biological learning [160].

Hardware neurons are expected to reproduce the most neuronal behaviors to allow the

network to have the complexity necessary to mimic the brain.

For both hardware neurons and synapses, having simple mathematical models that appro-

priately describe the behaviors of the physical components is crucial. Indeed, being able to

predict the behaviors when integrating into an array or when subject to different conditions of

voltage, current, but also of temperature is an important step into the development of efficient

neuromorphic hardware.

1.3.1.2 Memristor synapses and neurons

A memristor, a term derived from "memory resistor", is a type of passive circuit element that

maintains a relationship between the time integrals of current and voltage across a two-terminal

element. Chua first postulated it in 1971 based on symmetry arguments in the relationships

between fundamental circuit variables (here electric charge and magnetic flux) [161]. The key

characteristic of a memristor is that its resistance can be adjusted and that it "remembers" this

resistance even when power is turned off. However, it was not until 2008 that a team from HP

Labs led by Williams reported the development of a switching memristor based on a thin film

of titanium dioxide [162]. Critics opposed that this was not the fundamental circuit element

described by Chua, but a device with a particular non-linear current-voltage characteristic.

However, a broader definition of memristive devices is usually used, which encompasses all

two-terminal devices showing a pinched hysteresis loop in the I-V plane, and can be either

non-volatile or volatile [163, 164]. This definition allows for numerous different families of de-

vices to be classified as memristive devices [165].

1.3 HARDWARE ADAPTED FOR AI 37

Figure 1.10: a: A comparison of the qualitative device requirements for three potential applica-
tions. The red line indicates experimental NVM data from previous studies. b–h:
Conceptual representations of device requirements for computing: analog states
(b), on/off ratio (c), linearity (d), symmetry (e), endurance (f), retention (g), and
yield (h). The dashed and solid curves in b–e show the conductance adjustment of
an analog NVM device. The conductance modifications of an NVM device during
the training process typically occur within a partial scope rather than across the full
range of the conductance window (f). After NVM devices are adjusted to various
conductance levels, the conductance of the devices can vary over time, potentially
leading to overlap between two levels (g). NVM devices that fail to reach the target
conductance level are considered unsuccessful (h).Reproduced from Ref. [9]

38 CHAPTER 1: STATE OF THE ART

Resistive memristors Before the proclaimed discovery of the resistive memristor, resistive

materials had already been widely used in Resistive Random Access Memories (ReRAM). Today

ReRAM and "nonvolatile memristors" are used as synonyms in most of the literature. Their

storage function is based on a physical mechanism called resistive switching, which is respon-

sible for the transition from a High Resistive State (HRS, or ’OFF’ state) to a Low Resistive State

(LRS or ’ON’ state) under the application of a specific voltage value [165]. The transition from

HRS to LRS is called the SET process when, whereas the transition from LRS to HRS is named

RESET. Usually, a compliance current Icc is applied during the SET process to the device to

avoid excessive current which would cause an irreversible hard breakdown [166].

Two different switching modes exist: the bipolar and the unipolar mode. Unipolar switch-

ing characterizes a switching that is independent of the voltage or current polarity. In contrast,

for bipolar switching, two different polarities are required for the SET and the RESET processes.

The two different cases are presented in Fig. 1.11.

Figure 1.11: Adapted from [10]

Most memristors require an electro-forming process, where a high current or a high voltage

is first applied to the pristine HRS material in order to initiate the first LRS state (a compliance

current is most often used during this process as well). This can be an issue for integration.

That is why a part of the research focuses on designing forming-free devices.

Two different types of memristors exist: the original non-volatile memristors which are

good candidates for synapses and volatile memristors which are good candidates for neurons.

Their typical I-V characteristics are shown in Fig. 1.12.

Four major types of resistive devices for which the switching mechanism is due to redox

reactions, nanionic transport process or insulator-metal transitions [167, 168].

Electrochemical metallization ECM bipolar switching mechanism is based on the elec-

trochemical dissolution and deposition of an active electrode metal. Typically, an ECM cell,

1.3 HARDWARE ADAPTED FOR AI 39

Figure 1.12: Left: Typical I-V characteristic of a resistive switching non-volatile memristor.
Right: Typical I-V characteristic of a voltage-controlled threshold switching (TS)
volatile memristor. Adapted from [11]

also called conductive bridging random access memory (CBRAM), is made of an active elec-

trode of metal M such as Ag, Cu, or Ni, an electrochemically inert electrode such as Pt, with

a thin film of solid electrolyte in between, which is an M z+ ion conductor [169]. In the initial

HRS, no electrodeposit of the metal M is present on the inert electrode. When sufficiently high

positive voltage V is applied to the active electrode, the metal M of the active electrode under-

goes an anodic dissolution, giving rise to metal cations in the solid electrolyte thin film. Under

a high electric field, these cations drift across the film, reaching the inert electrode. There, they

undergo a reduction and electro-crystallization on the surface, therefore, a metallic filament

connects both electrodes, leading to a LRS. Under sufficient a negative voltage, the electro-

chemical dissolution of the metallic filament leads to a HRS.

ECM-based spiking neurons also exist [170, 171].

Thermochemical In the context of resistive memories, a unipolar thermochemical mech-

anism, or thermochemical memory effect (TCM), is a process that leverages heat to control the

state of the memory [172]. This mechanism is also often referred to as a fuse-antifuse mech-

anism [173]. The structure required to achieve thermochemical switching is symmetric, in-

volving two inert electrode contrary to VCM. However, the same materials and systems can

be used, simply by rendering the structure symmetric, with two inert electrodes. The forming

and SET mechanisms are identical in both cases, with the creation of a filament of oxygen va-

cancies. However, the RESET process differs. Here, the current in the ’on’ state increases to a

point where it generates enough heat to locally destroy the filament. This effectively ’resets’ the

memory, returning it to its initial HRS state. This switching is therefore unipolar, and a typical

I-V characteristic can be found in Fig. 1.11 However, this process often involves high reset cur-

rents and has a limited endurance, typically ranging from a few tens to a few hundred cycles.

As a result, the focus in recent years has shifted towards valence change-based concepts, which

40 CHAPTER 1: STATE OF THE ART

tend to offer better performance and longevity [174], and which will be presented below.

Mott memristors Mott memristors leverage this Mott transition to achieve their memris-

tive behavior. By applying a voltage across the device, it is possible to induce a Mott transition

and change the device’s resistance state. This change in resistance can then be read out as a

change in the device’s conductance, allowing it to be used as a spiking neuron when a capac-

itance is put in parallel. One of the most commonly studied materials for Mott memristors is

vanadium dioxide (V O2) [175, 176]. VO2 undergoes a Mott transition near room temperature,

which makes it a convenient material for these devices. By applying a voltage across a thin film

of V O2, it’s possible to induce a Mott transition and change the film’s resistance state [177].

Another type of volatile memristor used as a neuron is based on N b0x , and is sometimes clas-

sified as Mott memristor [178]. However the physical mechanism is debated but most believe

it is not due to an insulator-metal transition, but caused by an increase in the oxide electrical

conductivity due to local Joule heating [179].

Valence change memristors Valence Change Mechanism (VCM) memristors, a type of

resistive memory, typically employ a Metal-Insulator-Metal (MIM) structure where the insula-

tor, often a dielectric, serves as the switching layer. These devices can utilize a variety of oxide

materials such as titanium oxide (TiO2), hafnium oxide (HfO2), or aluminum oxide (Al2O3)

[180]. Most VCM memristors are filamentary, as they form an oxygen vacancy conductive fil-

ament in the dielectric layer to switch between high and low resistance states, as shown in

Fig. 1.13a with the corresponding I-V characteristic in Fig. 1.13b. An electroforming process is

usually needed to initiate the oxygen ion migration. The switching is bipolar(a typical I-V char-

acteristic can be found in Fig. 1.11) and attributed to redox reactions and nanoionic transport

[181]. The structure for VCM needs to have a built-in asymmetry with respect to the oxygen

concentration in the film, typically with an inert electrode on one side and an active electrode

on the other [174]. The electron transport in a MIM structure takes place via a series of mecha-

nisms. Some of these conduction mechanisms rely on the electrical property at the electrode-

dielectric interface, such as the energy barrier height of the interface and conduction carriers in

dielectric films. Others depend on the properties of the dielectrics itself, such as Poole-Frenkel

(P-F) emission; Ohmic conduction; ionic conduction; hopping conduction; and trap-assisted

tunneling (TAT)[166].

One of the challenges of these filamentary ReRAM devices is that the change in resistance

is often non-linear, which can make it difficult to precisely control the resistance state of the

device. This non-linearity can be a significant issue for applications like neuromorphic com-

puting, where the ability to finely tune the resistance state of a memristor is crucial for mim-

icking the behavior of biological synapses. One of the main axes of research is then to choose

adequate materials to obtain the most linear synapse possible. For example, the study by Chan-

drasekaran et al. [182] suggests that introducing aluminum (Al) into HfO2 can improve the lin-

1.3 HARDWARE ADAPTED FOR AI 41

earity of the resistance change in these devices. The addition of Al can modify the distribution

and movement of oxygen vacancies within the HfO2, leading to a more linear and controllable

change in resistance when a voltage is applied.

These devices are the most commonly used for neuromorphic synapses in the literature.

Different models exist for reproducing the resistive switching of these devices [183], [184]. The

ability to simulate an algorithm or an electronic circuit using these models serves as an invalu-

able tool for predicting system performance. By accurately modeling the resistive switching,

researchers and engineers can anticipate how these devices will behave in different scenarios,

enabling them to optimize their designs and algorithms before physical implementation.

Figure 1.13: Different memory devices. a: Filamentary resistive switching RAM structure. b:
Corresponding current–voltage characteristic of a bipolar RRAM switching de-
vice. c: Phase change memory structure. d: Corresponding resistance-voltage
characteristic. e: Magnetic tunnel junction (MTJ) structure. f: Corresponding
resistance–voltage characteristic of an STT-MRAM. g: Ferroelectric random ac-
cess memory (FeRAM) structure. h: Corresponding polarization–voltage hysteretic
characteristic (h). The orientation of electrical dipoles causes permanent polariza-
tion of the ferroelectric layer. From [12]

On the most used material to relize VCM memristor synapses is H f Ox . This material can

however also be sed to implement volatile spiking neurons [185, 186].

1.3.1.3 Other emerging devices

Spintronic devices To create spintronic synapses, magnetic tunneling junctions (MTJs), which

are the basic cells of MRAMs, are utilized as fundamental building blocks. An MTJ consists of

two metallic ferromagnetic layers separated by a tunnel barrier, as depicted in Fig. 1.13e. The

resistance of the MTJ depends on the relative orientation of the magnetization directions of

the two ferromagnetic layers. The pinned layer (PL) , has a fixed spin polarization direction. In

contrast, the free layer (FL) can alter its magnetization direction. This dynamic magnetization

change in the FL can be achieved through current injection. When the magnetization direc-

tions of the two layers are in parallel alignment (P state), there is a higher probability of electron

42 CHAPTER 1: STATE OF THE ART

tunneling through the barrier, resulting in a lower resistance state (LRS), as presented in Fig.

1.13f. Conversely, when the magnetization directions are in antiparallel alignment (AP state),

there is a lower probability of electron tunneling, leading to a higher resistance state (HRS)

[187]. In addition to the spin-transfer torque (STT)-MTJs, spin-orbit torque (SOT) cells have

emerged as an alternative for achieving magnetization switching in spintronic synapses. Bipo-

lar SOT-induced magnetization switching is realized under an in-plane magnetic field collinear

with an applied current within multilayers of ferromagnetic (FM) and nonmagnetic (NM) met-

als. The spin Hall effect (SHE) and Rashba effects, originating from spin-orbit coupling within

the NM layer and at the FM-NM interfaces, respectively, play a crucial role in the switching

mechanism. All of these synapses are binary in nature, which can be an issue for encoding ana-

log weights in ANNs. This has led to an increased interest in other types of spintronic synapses

[188], such as spintronic memristors [189], operating based on the displacement of a magnetic

domain wall [190] in a spin-valve, resulting in lower or higher resistance states depending on

the domain wall position. This memristive functionality through domain wall motion in mag-

netic tunnel junctions has been experimentally demonstrated by Chanthbouala et al.[191] and

Lequeux et al. [192].

Spintronic neurons in neuromorphic computing can be realized through different tech-

niques. Spin-torque nano-oscillators are specific magnetic tunnel junctions driven into spon-

taneous microwave oscillations by injecting current [193–195]. They exhibit memory, stable be-

havior, and nonlinearity, and can synchronize with other oscillators. Superparamagnetic tun-

nel junctions, with low-energy barriers, emulate stochastic behavior and serve as low-energy

artificial neurons [196]. Magnetic solitons like domain walls and skyrmions can be manipu-

lated to emulate leaky integrate-and-fire neurons [188].

FeRAM Ferroelectric materials, discovered nearly a century ago, have recently re-emerged as

a promising candidate for neuromorphic computing applications. Initially used in ferroelectric

random-access memories (FeRAMs), these materials exhibit spontaneous electric polarization

that can be reversed by an external electric field, leading to changes in conductivity as shown

in Figs. 1.13g and h. However, early FeRAMs faced scalability issues due to the large thickness

of the ferroelectric layer. Recent advancements in material fabrication technology have en-

abled the production of nanometer-thin ferroelectric layers, reigniting interest in ferroelectric

devices [187]. New ferroelectric materials such as strained SrTiO3 and AlScN have been dis-

covered, and the observation of ferroelectric properties in doped HfO2 has further expanded

the range of potential applications [197]. For instance, ferroelectric tunnel junctions (FTJs) and

ferroelectric field-effect transistors (FeFETs) have been explored for their potential in neuro-

morphic computing. FTJs, characterized by non-volatility, analog switching capability, high

endurance, energy efficiency, and scalability, are particularly desirable for neuromorphic ap-

plications [198]. FeFETs, based on ferroelectric HfO2, are also gaining attention due to their

low-voltage and fast switching, good data retention, and compatibility with CMOS fabrication.

1.3 HARDWARE ADAPTED FOR AI 43

The non-volatile memory operation of FeFETs relies on the two stable polarization configura-

tions in HfO2, corresponding to high and low conduction states, making them suitable for use

as artificial synapses [198].

Furthermore, FeFETs can also serve as artificial neurons, emulating real neurons at various

abstraction levels, from complex biophysical models to basic integrate-and-fire circuits [198].

PCM Phase Change Memory (PCM) is a type of non-volatile random-access memory that

exploits the unique behavior of chalcogenide glass, a material that can undergo a unipolar

switching mechanism between two states through Joule heating: amorphous and crystalline,

presented in Figs. 1.13c and d. [199]. The most common phase change material is an alloy of

germanium, antimony, and tellurium (Ge2Sb2Te5 or GST). In its amorphous (disordered) state,

GST has high electrical resistance, while in its crystalline (ordered) state, it has low resistance.

By applying a voltage, the material can be heated and rapidly cooled to transition between

these states. The key advantages of PCM include its fast read and write times, high endurance,

and excellent scalability. It also retains data even when power is turned off, making it a type of

non-volatile memory. PCM is considered a promising technology for future memory and stor-

age applications, and it has also been explored for use in neuromorphic computing due to its

ability to support multiple resistance levels, which can be used to emulate the synaptic weights

in a neural network. However, PCM also has some challenges. Its susceptibility to rapid crystal-

lization can lead to an abrupt drop in resistance [200]. The high programming current required

to change the phase of the material can lead to high power consumption. The resistance drift

over time can also affect the reliability of the stored data.

An intriguing development in the field of phase change memory (PCM) based neural de-

vices was made by Tuma et al.[201]. They constructed a device by placing a nanometer-scale

layer of Ge2Sb2Te5 (a common material used in PCM) between two electrodes [200].

1.3.2 Integrating emerging memory devices in hardware

In neural networks, one of the fundamental computations is the multiply and accumulate oper-

ation (MAC), or more generally, matrix-vector multiplication. This operation lies at the heart of

propagating information through the layers of a neural network. The MAC operation involves

multiplying input data by associated weights and summing the results. When implementing

these computations in hardware, particularly for large-scale neural networks, efficiency, and

speed become crucial factors.

In an effort to address these needs, certain architectures turn to the laws of physics, specifi-

cally Ohm’s Law and Kirchhoff’s Current Law. By expressing weights as conductances in a well-

arranged architecture, the product of each weight and its associated input can be calculated

simultaneously by measuring the current through each path. In addition, Kirchhoff’s Current

Law states that the sum of currents entering a node must equal the sum leaving it, as shown

in Fig. 1.15a. This law can be exploited to accumulate the results from multiple paths, thus

44 CHAPTER 1: STATE OF THE ART

completing the summation part of the MAC operation. By taking advantage of these physical

laws, the MAC operation, which constitutes the core computation of a neural network, can be

performed in an analog and massively parallel manner.

Resistances and conductances are positive values, whereas to perform neural network train-

ing (see Fig. 1.15b), we need both positive and negative weights. A common way is to use two

different devices to implement the positive and negative parts of the weight and subtract both

currents to get the final output, as explained in Fig. 1.15c.

Figure 1.14: a: 1R architecture with memristor devices. b: Corresponding neural network, with
in orange the input (corresponding to the voltages V), and in blue the output, cor-
responding to the current I.

1R architecture The 1R memristor crossbar array is a classic architecture used in neuromor-

phic computing and ReRAM systems. Each memory cell in the array consists of a single mem-

ristor located at the intersection of wordlines and bitlines. In this architecture, the wordlines act

as the inputs, while the bitlines serve as the outputs. When performing read or write operations

on this 1R crossbar array, a voltage is applied across a selected wordline and bitline, targeting

the cell at their intersection, the so-called full-selected cell. However, due to the interconnected

nature of the array, other cells sharing the same wordline or bitline— the half-selected cells—

also experience a partial voltage when programming one cell. This can result in an undesired

leakage of current, or ’sneak current’, which can cause errors in the operation of the memory ar-

1.3 HARDWARE ADAPTED FOR AI 45

ray. Mitigating this challenge is key to optimizing the design and performance of 1R memristor

crossbar arrays. A common strategy for reducing sneak current during programming opera-

tions involves biasing non-selected wordlines and bitlines at V/2, or half the full voltage. This

restricts the voltage drop across the half-selected cells, which in turn, limits the likelihood of

unwanted current leakage [202].

Figure 1.15: a: 1T1R architecture with memristor devices. b: 1S1R architecture with memristor
devices. Adapted from Ref [13].

1T1R architecture One easier approach to implementing large-scale neural networks in hard-

ware involves the use of 1T1R cells, a combination of a memristor (1R) and a MOS transistor

(1T). Each transistor acts as a controllable switch. With the transistor in series with each mem-

ristor, the current flow through unselected cells is effectively suppressed. This ensures accurate

reading and programming of memristors, an advantage that helps address some of the chal-

lenges associated with pure memristor architectures. The transistor’s gate allows for additional

control, facilitating the linear and symmetric updating of synaptic weights during the training

of neural networks. Furthermore, the ability to control each gate voltage individually enables

semi-parallel programming of the array, thereby improving the efficiency of the training pro-

cess. During the execution of the neural network’s computations, all transistors in the array

46 CHAPTER 1: STATE OF THE ART

are turned ON to minimize the influence of channel resistance. Meanwhile, during weight up-

dating or training, the transistors are partially turned ON, which provides precise control over

weight adjustments [203].

However, this architecture presents its own challenges. The integration of transistors in-

creases circuit complexity and area, affecting the array’s packing density and potentially raising

manufacturing costs. Additionally, there is an energy overhead associated with the transistors

due to their gate capacitance, which results in increased power consumption, especially during

the training phase. Careful selection of transistor types—balancing between depletion-mode

transistors favored for inference and the increased power consumption during training—thus

becomes a critical aspect of optimizing these systems.

1S1R architecture In the quest for a more compact and effective solution to the sneak path

problem in memristor crossbar arrays, the 1S1R (One Selector-One Resistor) architecture presents

a promising approach. This architecture employs a selector device, functioning much like a

diode, connected in series with the memory unit. This selector is designed not to permit the

flow of current until a specified voltage difference is achieved, thus efficiently preventing sneak

paths in half-selected cells. Selector devices need to have a bidirectional non-linearity. Two

types are commonly worked on: exponential I-V such as Ni/TiO2/Ni, or threshold switching

such as Mott memristors (NbO2) [204]. Noting that in this architecture, it is possible to cre-

ate 1S1R devices, stacking selector and memristor together, considered as the most preferable

scheme for high-density 3D integration of RRAM [205]. However, optimizing both the 1R and

1S properties of such devices is very challenging [203].

With their inherent capacity to emulate both synaptic and neuronal behaviors, memristors

present a promising foundation for constructing efficient, densely packed neural network ar-

chitectures, well-suited for neuromorphic computing applications. However, translating this

potential into fully realized, practical memristive systems presents obstacles. One of the ma-

jor challenges is the imperfect behavior of memristors, as they exhibit inter-device and intra-

device variabilities inconsistencies and are subject to drift and aging. These factors can de-

teriorate the precision of memristor conductance control, a crucial aspect of synaptic weight

updates in learning algorithms. Moreover, because of their filamentary nature, these devices

are intrinsically noisy, which can introduce further unpredictability in their operation. Non-

linearity and asymmetry are additional factors complicating the implementation of memris-

tors in neural networks as both of these characteristics prevent precise control of the memris-

tor state.

In this chapter, we explored the complexity of how neurons behave and the various mod-

els used to understand them. Implementing such devices on hardware is a promising lead to

implement Spiking Neural Networks. Chapter 2 will focus on NbOx volatile memristors, which

1.3 HARDWARE ADAPTED FOR AI 47

exhibit spiking and bursting behaviors. They hold the promise of scalable and low-energy neu-

ron devices for neuromorphic applications. We also saw that employing bio-plausible or locally

inspired learning algorithms is a promising lead to realize energy-efficient hardware capable of

learning. Chapter 3 will explain how we adapt the Equilibrium Propagation algorithm to work

in real-world physical systems. In Chapter 4, we shift focus to test the resilience of the Equilib-

rium Propagation algorithm when it is implemented with HfOx memristor devices as synapses.

This step is vital in translating our research from theory to practical applications, as these fila-

mentary devices exhibit intra and inter-device variability.

48 CHAPTER 1: STATE OF THE ART

Chapter 2

Characterization and Modeling of

Spiking and Bursting in Experimental

NbOx Neuron

50
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

AS the interest in Artificial Intelligence (AI) grows, spiking neural networks offer an energy-

efficient, hardware-compatible, and event-driven alternative to conventional artificial

neural networks [206], particularly adapted for processing sensory and dynamical data. Hard-

ware spiking neurons can be realized solely using complementary metal oxide semiconductor

(CMOS) technology, but this type of implementation suffers from a lack of scalability [207]. This

limitation explains the growing interest in the realization of new devices that feature neuronal

behavior and that can be scaled easily [208, 209] (see section 1.3). However, researchers face the

choice between single, scalable nanodevices that exhibit a limited range of neuronal responses

and more complex neurons that offer more diverse behavior but limited scalability. Having

more diverse behavior provides the potential of reproducing the brain’s computational power

to its full extent. Biological neurons may indeed exhibit different types of spiking responses, as

well as bursting responses, where a neuron produces multiple spikes in response to an input

pulse. A neuron implementing a highly simplified response will fail to provide the complexity

required to emulate neurobiology. For example, the bursting response is believed to be of im-

portance for ensuring reliable communication and synchronization between neurons [7, 154].

Therefore, considerable effort has been devoted to realizing new scalable devices with diverse

neuronal characteristics [7, 11, 175, 210–213].

A leading idea to engineer this new type of devices is to exploit the intrinsic physics of

nanoscale materials to implement neurons [214–218]. A large number of devices have been

studied for their neuronal applications [219–221] (see section 1.3.1): phase change neuron

[201], valence change neuron [185, 186], electrochemical metallization neuron [222], diffusive

neuron [223], Mott insulator neuron [224], and spintronic neuron [188]. Within these exam-

ples, metal/insulator/metal structures based on transition metal oxides such as VOx and NbOx

are particularly promising candidates, as they exhibit reliable threshold switching and current-

controlled negative differential resistance (NDR) characteristics. NbOx memristor neurons fea-

ture high endurance [225] and have been shown to be capable of leaky integrate-and-fire, all-

or-nothing spiking and chaotic oscillations [226]. This type of device has also been used to

implement dynamic, logic, and multiplicative gain modulation [227]. However, the behavior

of a single device is nowhere near as complex as a real biological neuron. To obtain more so-

phisticated behavior, complex devices featuring multiple electrophysical processes have to be

created [210], which can be challenging to model and control precisely. Alternatively, several

neuronal devices can be used together in appropriately engineered circuits [175].

In this work, we fabricate and characterize memristor neurons based on a simple Pt/Nb2O5/

Ti/Pt stack with current inputs and output voltage shapes that are close to the shape of a biolog-

ical action potential, thanks to the effect of an inductance. These devices are straightforward

to model with physics equations, and simultaneously, feature multiple computational prop-

erties such as tonic spiking, stochastic spiking, spike latency, leaky-and-fire integration (LIF),

2.1 FABRICATION AND METHOD 51

all-or-nothing firing, and phasic bursting. These neuron-like dynamics can be modelled and

understood through physical equations and standard non-linear dynamics.

This chapter is adapted from Ref. [228].

2.1 Fabrication and method

2.1.1 Fabrication

NbOx memristors, comprising 5 µm ×5µm cross-point structures, were fabricated by succes-

sive film deposition and patterning, which will be detailed below.

A 4-nm Ti adhesion layer and a 25-nm thick Pt layer were first deposited on a SiO2/Si sub-

strate by electron-beam evaporation. Electron beam evaporation, often abbreviated as E-beam

evaporation, is a type of physical vapor deposition (PVD) process in which a target anode ma-

terial is bombarded with an electron beam given off by a charged tungsten filament under high

vacuum. The electron beam causes material from the target to transform into the gaseous

phase. These atoms then precipitate into solid form, coating everything in the vacuum cham-

ber (within line of sight) with a thin layer of the anode material. The process starts by creating a

high vacuum inside a deposition chamber. This is necessary to minimize the presence of air or

other gaseous molecules that can interfere with the evaporation process. An electron beam is

then generated using a filament, often composed of tungsten. When a high voltage is applied,

electrons are emitted from the filament, creating the electron beam. This beam is directed and

focused using magnetic fields onto the material that is to be evaporated. The high-energy elec-

tron beam heats the target material. The energy transferred from the beam to the target is so

intense that it causes the target material to heat up and eventually evaporate. The evaporated

atoms or molecules travel in a straight line from the source to the substrate in the vacuum

chamber. As they reach the substrate, they cool and condense, forming a thin layer or film on

the substrate’s surface. The film’s characteristics can be controlled by adjusting the process pa-

rameters such as beam current, deposition rate, and substrate temperature.

The wafer was first dried for 5 minutes at 100°, then spin-coated with SPR700 photoresist,

then soft baked for 1 minute at 95°C, before being patterned using optical lithography with a

digital mask. A hard bale step of 1 minute at 115°C follows before development in acetone and

isopropanol. Ion-beam etching was then used to define the bottom electrodes. The milling

step was done at a temperature of 4 Celsius degrees and a 30-degree angle to lower the odds

of redeposition. This step was done with secondary-ion mass spectrometry (SIMS) to ensure

that no platinum or titanium was left. Ion Beam Etching (IBE) is a form of dry etching, a critical

technique utilized for precise, controlled material removal from a substrate. In IBE, a high-

52
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

energy ion beam is directed at the substrate, sputtering or ejecting surface atoms by collisional

energy transfer. Unlike some other etching techniques, IBE does not depend on chemical reac-

tions to remove material; rather, it employs a physical process, which grants the advantage of

material selectivity. By adjusting the ion beam parameters such as energy, angle of incidence,

and ion species, a high degree of etch control and anisotropy can be achieved.

If the previous steps (fabrication of the platinum bottom electrodes) had been done for

more than a month, the application of an oxygen plasma was needed to ensure that the spin-

coating stuck to the samples. The same optical lithography steps were repeated, and the new

digital mask was manually aligned with the previous layer to ensure the superposition of the

result.

Figure 2.1: Top view of devices taken with an optical white light microscope.

A 30 nm Nb2O5 layer was then deposited onto the bottom electrodes using radio-frequency

(RF) sputtering from a Nb2O5 target at room temperature in an Ar ambient. During the process,

an RF power source is used to generate a plasma in a chamber filled with a gas such as argon.

The gas atoms are ionized, and the resulting ions are accelerated towards a target material, typ-

ically a metal or ceramic, which is placed in the same chamber. The ions collide with the target

material, causing atoms to be ejected or "sputtered" from the surface.

The metal-oxide-metal device was completed by adding a top electrode (10 nm Ti - 25 nm

Pt) deposited by electron beam evaporation. The top view of resulting devices is presented in ,

figure 2.1.

2.1.2 Electrical measurements

2.1 FABRICATION AND METHOD 53

2.1.2.1 DC measurements

For electrical measurements, the bottom electrode was connected to ground and the source

applied to the top electrode. I-V characteristics were measured with a Keysight B1500A Semi-

conductor Device Analyzer after current-controlled electroforming with a positive polarity. Be-

fore the electroforming process, the resistance of the device was about 4 MΩ at 0.3 V. Electro-

forming was achieved by the application of a current ramp from 0 to 0.5 mA to the device, see

figure 2.2. After this step, the device resistance was reduced to 93 kΩ at 0.3 V.

Figure 2.2: Positive current-controlled electroforming with input current going from 0 to 0.5
mA.

Several I-V sweeps were needed to stabilize the characteristics of the device. If this step

were not done, the I-V curve would either shift for each run, or the NDR could even be absent.

Sometimes, the devices would become a memory, and a big voltage would be needed to reach

the threshold switching regime again.

2.1.2.2 Spike measurements

Current-controlled pulse measurements were performed using an Agilent 81160A pulse gen-

erator and the voltage-pulse to current-pulse converter presented in figure 2.3. The spiking

behavior was monitored on a 2 GHz-bandwidth Keysight MSOS204A oscilloscope. All mea-

surements were performed with a DC probe station.

For the voltage-controlled measurement, the setup was identical but the voltage-pulse to

current-pulse converter was not needed.

54
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

Figure 2.3: Schematics of the voltage pulse to current pulse converter used in the experiments.
Here, R1 = R3 = 1 kΩ, R2 = R4 = 100 Ω, RS = RS′ = 400 Ω. The operational amplifier
has the following reference: BB OPA 356A 846LV.

2.2 Results

2.2.1 Quasistatic properties

Figure 2.4: Measured (dashed lines) and simulated (dotted line) I-V characteristics. The V
sweep and I sweep correspond respectively to the voltage-controlled and current-
controlled I-V characteristics. The hold point H is indicated in green and the thresh-
old switching point TS in red. The inset shows a sketch of the structure of the device.

The quasistatic I-V characteristics of our device are shown in figure 2.4, highlighting the

current-controlled S-shaped Negative Differential Resistance (NDR) response, characteristic of

a voltage-controlled Threshold Switching (TS). Two characteristic values are included on the

graph. The first one is the Threshold Switching point (called TS in figure 2.4), where the slope

of the current-controlled I-V characteristic goes from positive to negative. This point also co-

incides with the abrupt transition from a high-resistance state to a low-resistance state under

2.2 RESULTS 55

voltage controlled transitions. The second is the hold point H, where the differential resistance

becomes positive again. It is worth noting that unlike typical memristors (as in ’memory’ and

’resistor’), this device loses information about its previously set state when the power is turned

off. Therefore, it cannot be used as a memory.

The slight cycle-to-cycle variations of the I-V characteristics of the device are shown in fig-

ure 2.5. A hundred repetitions have been realized for the voltage-controlled characteristics,

and ten measurements have been done for the current-controlled ones. The characteristics

can shift from cycle to cycle, but this does not impact the overall behavior of the neuron.

Figure 2.5: a: Voltage-controlled I-V characteristic repeated 100 times. b: Current-controlled
I-V characteristic repeated 10 times.

The physical basis of this behavior has been under debate but is generally understood to

arise from an increase in the oxide electrical conductivity due to local Joule heating. Indeed,

Gibson [229] has shown that the NDR response can arise from any mechanism that gives rise

to a superlinear increase in conductivity with temperature. In the case of NbOx, some authors

initially attributed it to a characteristic insulator-to-metal transition (IMT) in NbO2 [230], but

it is now generally accepted that it arises from a trap-assisted transport mechanism, such as

Poole-Frenkel conduction [231, 232].

In the case of the Poole-Frenkel effect, a filament of oxygen vacancies connects both elec-

trodes after electroforming. The oxygen vacancies act as potential traps for electrons. If an

electric field is applied to the device, the energy profile of the conduction band in the oxide

56
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

around the traps becomes asymmetric. Trapped electrons are then able to be thermally in-

jected into the conduction band, leading to the traditional Poole-Frenkel equation for the de-

vice resistance Rd as a function of the temperature Td and the voltage Vd across the device:

Rd = R0exp

Ea −q
√

qVd

πϵ0ϵr d

kB Td

 , (2.1)

where Ea is the activation energy associated with the carrier trap level, ϵ0 the vacuum permit-

tivity, ϵr the relative permittivity of NbOx, q the elementary charge, and d the thickness of the

oxide film. Vd is the device voltage and Td is the temperature of the active device volume [231].

The occurrence of electrical current through the filament results in a positive feedback, where

Joule heating raises the local temperature Td , reducing the device resistance further [233, 234].

This phenomenon can be modeled from a lumped element model of the device, where the

Newton’s Cooling Law is used to describe the evolution of the temperature,

dTd

d t
= V 2

d

RdCth
− Td −Tamb

CthRth
(2.2)

where Tamb is the room temperature, and Cth and Rth are respectively the thermal capacitor and

resistor. We simulated the I-V curve of our device using these equations (see methods). The

simulation results presented with a dotted line in figure 2.4 show that the model reproduces

the experimental data.

2.2.2 Spiking behavior: Origin and shape

2.2.2.1 Voltage-controlled spiking

This chapter focuses on the phenomenon of current-induced spiking, which can be a complex

topic to understand. To aid in comprehension, we first provide an explanation of the voltage-

controlled behavior. To facilitate this understanding, we conduct an experiment where a volt-

age source is connected to a load resistor of 4000 Ohms, and then connected to the device

under test (DUT), as shown in the circuit presented in figure 2.6a. The DUT can be seen as a

capacitor in parallel to the Poole-Frenkel (PF) resistance of equation (2.1).

Initially, the PF resistance is in a high resistance state, and the capacitor is discharged. As

the voltage is applied, the capacitor begins to charge, leading to an increase in voltage across

the DUT. If the applied voltage is sufficient, the voltage across the device will reach the thresh-

old point (denoted as TS in figure 2.4), causing the PF resistance to drop and shortening the

capacitance. This leads to a discharge of the capacitor and a subsequent decrease in voltage

across the device. If the voltage across the DUT is below the hold voltage (denoted as H in

Figure 2.4) when the capacitor is fully discharged, the PF resistance abruptly increases once

again, and the capacitor starts to charge anew. This hysteresis then explains the spiking behav-

2.2 RESULTS 57

ior in such devices, which can be observed in figure 2.6b. This explanation is more of an image

than an accurate description of the current and voltage’s evolution in the device, as figure 2.4

presents the quasistatic values of I and V and not the dynamic, out-of-equilibrium values. This

dynamical behavior of this device is studied with more detail in section 2.2.5.

To conclude, the voltage-controlled spiking behavior originates from the current and volt-

age hysteresis, with each description of the cycle representing one spike. This voltage-controlled

hysteresis (TS) is equivalent to the current-controlled NDR.

Figure 2.6: a: Circuit for voltage-controlled spiking neuron. b: Device current Id when a con-
stant voltage of 1.52 V is applied.

2.2.2.2 Current-controlled spiking

Figure 2.8b presents the simple experimental setup used to measure the current-controlled

spiking behavior of neurons. In this circuit, Rd is the device resistance described by equation 2.1

and Cd is the intrinsic device capacitance arising from its metal/insulator/metal structure. Cext

and Lext respectively account for parasitic capacitance and inductance of the measurement set-

up. Rout is an external resistor of 25 Ohms across which the output voltage is measured.

The input of the circuit is a current, and the output is a voltage, in line with the biological

configuration. Figure 2.8c shows an experimentally measured spike, observed by applying a

constant 150 µA current input to the circuit. The shape of the output spike strongly resembles

that of a biological neuron, with an initial depolarization followed by hyperpolarization: start-

ing from a resting phase, the output voltage increases rapidly during the activation phase, and

then decreases to become negative before rising again to the resting phase.

To understand this behavior, figure 2.8b shows simulations of the current Id flowing through

the device (dots) and the simulated temperature Td of the active device volume (colored curve)

58
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

Figure 2.7: Circuit diagram of the integrated NbOx spiking neuron where Cext and Lext are re-
spectively a parasitic capacitance and inductance.

during a spike, using the LTSpice model of our experiment and a current input of 180 µA. The

simulations presented in figure 2.8 were computed with LTSpice using the electrical circuit pre-

sented in figure 2.7a based on the Newton law of cooling and the Poole-Frenkel effect (see equa-

tions (2.1) and (2.2) below), with a 5 ns time step. The values of all parameters used in these

simulations are listed in table 2.1. The temperature evolution was implemented in LTSpice

following guidelines described in the supporting information of [235].

The current Id and the temperature Td are clearly correlated, with both curves exhibiting a

rapid increase and a slower decrease, which can be explained as follows. The device is initially

in an insulating state. When a constant current is applied, the capacitance Cext charges and the

voltage across the device increases until it approaches the threshold voltage, at which point the

device resistance drops, producing the increase in current and temperature evident in figure

2.8b. This discharges the capacitor, reducing the device voltage to the point where the mem-

ristor reverts to its subthreshold resistance. The transition to a high resistance state causes a

reduction in current and temperature, ending the spike response. Note that without the ex-

ternal capacitance Cext the neuron would not spike. In a hardware implementation involving

NbOx neurons, capacitors would have to be added.

The restoration part of the neuron-like voltage spike is seen in the output voltage but not

in the current and temperature curves; this is due to the presence of a parasitic inductance

(see figure 2.7). The device intrinsic capacitance Cd is small, and the current in that branch

is also small. Therefore, the current going through the inductance Lext and the output resis-

tor Rout (figure 2.8b), is close to that going through the neuron Rd. Because the voltage across

the inductance opposes the variations of the current, it is first positive and then negative. The

output voltage is the sum of two terms, Vout = Rout iout +Lext
diout

d t : if the inductance is large

enough, the output voltage is first positive (during the activation part) and then decreases until

it becomes negative (during the cooling and restoration parts). This mechanism explains the

2.2 RESULTS 59

Figure 2.8: a. Measurement of a single spike of a NbOx neuron, with the four stages of an action
potential indicated. b. Simulated spiking dynamics of the NbOx neuron tempera-
ture Td(colored curve) and current Id (dots) for a constant input current of 180 µA.
c. Simulation of the output voltage shape with respect to the value of the circuit in-
ductance for a constant input current of 180 µA.

results shown in figure 2.8c, where the evolution of the shape of the pulse with respect to the

circuit inductance is simulated. When the inductance is smaller than 100 nH , it has a negligible

impact on the output voltage (shown in figure 2.8a); for higher inductance values, a restoration

phase is observed.

Variable Value
Cext 200 pF
Lext 700 nH
Rout 25 Ω
Cd 0.33 pF
R0 190Ω
Ea 0.215 eV
ϵr 45
d 31 nm

Cth 2e-15 J ·K −1

Rth 2040816 K ·W −1

Table 2.1: Table of the parameters used in the simulations. These parameters where obtained
by fitting the I-V characteristics and estimated by fitting the shape of the spikes.

The energy consumption was estimated by integrating the power over a period of time and

dividing the resulting energy by the number of corresponding spikes. We derive a value of

about 80 pJ/spike, which is comparable to the value found in other papers for NbOx devices

[236] [237]. In the future, reducing the external capacitance (here parasitic) could drastically

reduce the energy consumption. Simulations using a model detailed below indeed show that

with a parasitic of 10 pF the energy is close to 8 pJ/spike whereas for the 200 pF capacitance,

the results are close to 80 pJ/spike.

60
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

Three different batches of samples have been realized, all showing devices with the same

type of behaviors as the one reported in this work, with a significant device-to-device variation.

This variability both impacts the shape of the I-V characteristics, but also the amplitude of the

spikes.

2.2.3 Computational properties

Figure 2.9: a: NbOx neuron output as a function of input current amplitude. A 99 µs current
ramp from 0 to 0.46 mA and 1 µs fall time is applied to the device. b: Simulation
of NbOx neuron output as a function of input current amplitude. A 100 µs current
ramp from 0 to 680 µA and 100 ns fall time is applied to the device. This simulation
is realized in LTSpice, using the circuit shown in figure 2.7 and the parameters of
table 2.1.

Having analyzed the NbOx neuron spike shape (see section 2.2.2.2), we now explore its

computational properties. Figure 2.9a shows the neuron behavior when a current ramp is ap-

plied at its input. For low currents the neuron does not spike, as the NDR behavior needed for

spike generation does not appear until the current reaches the TS point in figure 2.4. Above this

threshold current, the neuron spikes with increasing frequency until the current exceeds the

hold value (H) of figure 2.4, above which the NDR disappears as well as the related spiking be-

havior. This characteristic is reproduced in simulations in figure 2.9b. The behavior described

above is also found in the simulated figure. However, a major difference between the experi-

mental results (figure 2.9a) and the simulations (figure 2.9b) is the evolution of the amplitude.

Over all the devices measured, the amplitude tends to increase with frequency, but this increase

is not monotonous. In contrast, the simulations show a very regular increase, which is almost

linear.

When the input is constant and lies between the threshold current and the hold current, the

2.2 RESULTS 61

Figure 2.10: a: Tonic spiking. The neuron receives a constant input current of 0.2 mA. b: Sim-
ulation of tonic spiking. The neuron receives a constant input current of 335 µA.
This simulation is realized in LTSpice, using the circuit shown in figure 2.7 and the
parameters of table 2.1.

neuron spikes with a constant frequency, a behavior called tonic spiking for biological neurons,

as shown in figure 2.10a, and reproduced in simulations in figure 2.10b. The behavior is similar,

with a constant frequency. However, the amplitude of the spikes is more than two times bigger.

The spikes amplitude have be found to differ a lot from device to device.

Figure 2.11: Stochastic spiking obtained with a current of 0.109 mA.

Close to the threshold current, the behavior is stochastic, as shown in figure 2.11a, as can

be expected from a thermally-driven process, but with a non-random occurrence of spiking

62
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

events, that can be described by quiet periods followed by bursts of spikes with constant fre-

quency. Due to input current noise, the neuron output indeed fluctuates between its below-

threshold behavior (no spikes) and its above-threshold behaviors (spikes with a constant fre-

quency). This stochastic bursting behavior is reminiscent of biological neuron bursting and

could be exploited for computations and learning in hardware circuits [154]. No simulations

have been provided for this figure. Indeed, when the input current is close to the hold current, a

stochastic-like behavior can be observed in simulation, but is caused by a numerical instability.

Figure 2.12: a: Spike latency. A pulse with a duration of 1 µs, a rise time and fall time of both
100 ns and an amplitude of 0.131 mA is applied to the neuron. b: Simulation of
spike latency. A pulse of duration of 1 µs and value 193 µA with a rise time and fall
time of both 100 ns is applied to the neuron. This simulation is realized in LTSpice,
using the circuit shown in figure 2.7 and the parameters of table 2.1.

The neuron also exhibits spike latency, as evidenced in figure 2.12a for a 1µs-duration pulse

applied to the device. During the whole duration of the input, the output voltage does not show

any significant response. However, once the pulse is back to zero, the neuron spikes. This ef-

fect can be explained naturally within the context of the above model. Indeed, when the current

pulse is applied long enough for the temperature to activate the Poole-Frenkel effect, the posi-

tive feedback mechanism starts and the temperature keeps increasing even as the source stops,

giving rise to spike latency. This behavior is simulated in figure 2.12b, and agrees quite well with

the experiment. However, the simulation result is lacking the oscillations seen after the spike.

Moreover, the neuron may exhibit all-or-nothing behavior. In figure 2.13, two pulses with

the same duration of 1µs are applied to the neuron with different current input values: 0.13 mA

for the left figure and 0.17 mA for the right one. The first pulse is not sufficient to make the neu-

ron spike, but a slight variation of the output voltage can be observed. The second pulse is high

enough to make the neuron spike, as the value of the current has been increased. In the context

2.2 RESULTS 63

Figure 2.13: a: Spatial integration. Comparison between two figures where a pulse of duration
of 1 µs with a rise time and fall time of both 100 ns are applied to the neuron. The
input current value is 0.13 mA on the left and 0.17 mA on the right. b: Simulation of
spatial integration. Comparison between two figures where a pulse of duration of
1 µs with a rise time and fall time of both 100 ns are applied to the neuron. On the
left, the value of the current is 150 µA. On the right, the input current value is 200
µA. These simulations are realized in LTSpice, using the circuit shown in figure 2.7
and the parameters of table 2.1.

of a spiking neural network, this all-or-nothing behavior allows triggering a neuron only when

a sufficient number of spikes (with below-threshold amplitude) arrives simultaneously at its

input, thus filtering meaningful signal only, a behavior akin to spatial summation. Indeed, in a

biological neuron, spatial summation corresponds to the possible trigger of an action potential

when multiple inputs arrive simultaneously. Therefore, the spatial information can be encoded

in the current amplitude. This all-or-nothing behavior is reproduced with simulations in fig-

ure 2.13b.

Finally, figure 2.14 displays a different situation where three pulses of identical duration

(1µs) and peak current (0.11 mA) are applied. On the left, the input frequency of 0.35 MHz is

not high enough for the neuron to spike, contrary to the right panel in which the frequency

is increased to 0.7 MHz, allowing it to spike. This behavior indicates a frequency-dependent

64
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

Figure 2.14: a: Temporal integration. Three pulses of duration of 1 µs with a rise time and fall
time of both 100 ns and of amplitude 0.110 mA are applied to the neuron. The fre-
quency is 0.35 MHz on the left and 0.7 MHz on the right. b: Simulation of temporal
integration. Three pulses of duration of 1 µs with a rise time and fall time of both
100 ns and of value 100 µA are applied to the neuron. On the left, the time period
is 2.86 µs (frequency of about 0.35 MHz). On the right, the time period is 1.43 µs
(frequency of about 0.7 MHz). These simulations are realized in LTSpice, using the
circuit shown in figure 2.7 and the parameters of table 2.1.

temporal summation by the neuron, reproduced with simulations in figure 2.14b. This typi-

cal leaky-integrate-and-fire behavior is particularly adapted for spiking neural networks where

frequency encodes the information.

2.2.4 Experimental demonstration of phasic bursting

While most of the spiking features presented in figures 2.9, 2.10, 2.11, 2.12 2.13 and 2.14 have

been reported for various types of solid-state neurons [185, 210, 222, 224], figure 2.15 shows that

our simple NbOx neuron exhibits a behavior observed in biological neurons and scarcely inves-

tigated in memristive systems, named phasic bursting [210]. In this case, for a constant input

current just above the hold point (see figure 2.4a), the neuron starts to spike before stopping

abruptly, as shown in figure 2.15. This situation differs from figure 2.9a, where a current ramp

2.2 RESULTS 65

was applied. In figure 2.9a, the neuron stopped spiking near the end of the input ramp, because

the input current ended well above the Hold current (H point in figure 2.4). In figure 2.15, the

input is now constant and the neuron still spikes before stopping abruptly. The amplitude of

the spikes appears constant, before sharply decreasing until completely disappearing. Once

the neuron stops spiking, it does not start spiking again if the input does not change. Our

measurements indicate that, if pulses of the right current values are applied successively, the

neuron will start spiking each time before eventually stopping. However, the duration of phasic

bursting is not always the same even if the input is identical.

Figure 2.15: Example of phasic bursting of the output voltage as a function of time. A current
input of amplitude 0.47 mA is applied. The right panel zooms on the end of the
phasic bursting.

In order to quantify the effect, a statistical study of phasic bursting as a function of in-

put current is presented in figure 2.16. A current pulse is applied to the neuron, its output

is recorded on the oscilloscope, and the average frequency during the pulse duration is then

computed for each point. When the phenomenon of phasic bursting occurs, spikes stop dur-

ing a fraction of the total duration of the pulse, which decreases the average frequency. Despite

the apparent stochastic behavior, a clear trend in the mean frequency evolution as a function

of input emerges. For low currents, there is at first almost no phasic bursting, and the median

frequency is almost equal to the maximum frequencies observed. Then as the input current

increases, the proportion of phasic events increases and the median frequency decreases until

no phasic bursting occurs.

66
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

Figure 2.16: Variation of the average frequency as a function of the input current. Right: Zoom
on the phasic bursting regime, in order to get a statistical understanding of the
phenomenon. In blue, the median frequency computed from the different average
frequencies (grey dots) is plotted.

2.2.5 Understanding phasic bursting with non-linear dynamics sim-

ulations

We now present a theoretical analysis to determine the origin of the experimentally-observed

phasic bursting. We model our system with the circuit of figure 2.7, neglecting the parasitic

inductance and the intrinsic capacitance, that do not impact the qualitative neuron dynamics,

in order to gain in simplicity and generality. The system is then simplified to two coupled first-

order differential equations that link the voltage Vd across the device and the temperature Td

inside the active volume of the device. The first equation reads

dVd

d t
= Is

Cext
− Vd

RdCext
, (2.3)

where Is is the input current and Rd is the Poole-Frenkel resistance defined in equation 2.1. The

second equation is the Newton Law of Cooling (equation 2.2).

Equations 2.2 and 2.3 can be solved numerically. The simulations shown in this section

were executed in Python with a Runge-Kutta solver of order 5 and a timestep of 50 ps using

equations (2.1) and (2.2). These simulations result in the different trajectories plotted in blue

in figures 2.17a,b,c for the input current values Is of 0.9, 0.96702 and 1.A mA respectively. The

system nullclines are also shown in dotted lines. These curves correspond to the zero values of

2.2 RESULTS 67

the right-hand side of equations 2.3 and 2.2. Their intersection in the two-dimensional phase

space (Td,Vd) corresponds to points for which the derivatives of Td and Vd are zero, and there-

fore gives the fixed point of the system for each input current.

Consistent with equation 2.2, the temperature nullcline does not depend on the input cur-

rent Is and is therefore identical in figures 2.17a,b,c (orange curve). On the other hand, increas-

ing the input current vertically shifts the voltage nullcline to the top of the phase space. The

current-dependent fixed points can therefore be obtained by following the temperature null-

cline. For each of these points the Poole-Frenkel resistance can be computed, and by plotting

the input current Is as the function of the voltage Vd (thanks to the equilibrium relation Is = Vd
Rd

)

the simulated quasistatic curve of figure 2.4 is obtained.

Figure 2.17: a, b, c: simulation of the trajectory (in blue) and the nullclines (in orange for Ṫ = 0
and in green for V̇ = 0) for different input currents Is of value 0.9, 0.96702 and 1.1
mA for each figure. The y-axis corresponds to the temperature Td in the active
volume of the device while the x-axis represents the voltage of the device Vd. The
black arrows indicate the direction of the gradient at each point.

The analysis of figure 2.17 shows that phasic bursting is a particular situation that occurs

around the hold point. The occurrence of this behavior is simply controlled by the constant

source current applied to the device. Below the hold point, the fixed point is not stable, and

the trajectory therefore reaches a limit cycle: this is what happens in figure 2.17a. At the hold

point, the system undergoes a supercritical Hopf bifurcation, where the limit cycle becomes a

68
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

stable equilibrium point (as seen in figure 2.17c). Just above the transition (figure 2.17b), the

system reaches a stable equilibrium point, but the convergence of the trajectory is quite slow

(see figure 2.17b).

Figure 2.18: Simulations of the device current oscillations as a function of time for a current
input Is of 0.96702 mA .

This dynamic naturally gives rise to the phasic bursting phenomenon of figure 2.18, where

an apparently stable train of spike unexpectedly fades out then stops.

2.2.6 Discussion and limitations of this model

In this chapter, we have demonstrated that the spiking memristor neurons we fabricated ex-

hibit a range of both static and dynamic properties. Our work also shows that a simple model

based on a one-dimensional Poole-Frenkel resistance is sufficient to replicate these properties,

and provides deeper insights into the different behaviors observed. It is worth noting that the

purpose of this model is not to provide a perfect understanding of the physics and mechanisms

involved, but rather to have a set of simple equations that accurately describe the system. This

is particularly important for neuromorphic computing, where simulating a physics-based neu-

ral network is a crucial first step towards on-chip learning, even though it can be computation-

ally demanding. As a result, some discrepancies exist between the physics and the simulations,

which we will address in this section.

2.2 RESULTS 69

2.2.6.1 Phasic bursting range

Interestingly, in the experiments as shown in figure 2.16, the current input range where the

phasic bursting happens (∆I = 0.04 mA) is about ten times larger than in the simulations (∆I =

0.003 mA). The noise inherent to physical devices and to the input current (close to 0.018 mA

in our experiments) explains the experimentally observed stochasticity of phasic bursting and

expands the phasic bursting range. Indeed, even if the bias conditions of the device are set out-

side of the narrow range where phasic bursting is predicted in the absence of noise, fluctuations

will enable the system to reach it and initiate the bifurcation, a phenomenon akin to stochastic

resonance observed in biological neurons [238]. Other factors can also impact the details of the

phasic bursting behavior. Simulations indicate that its corresponding current range ∆I could

be increased for possible applications by lowering the value of the external capacitance, see

figure 2.19.

Figure 2.19: Evolution of the phasic bursting range with respect to the external capacitance.
The parameters can be found in table 1.

An experimental study would be needed to confirm this trend. In the model, the thermal

resistance is considered constant for simplicity, but this is not true in a real device, as shown in

reference [239]. However, both measurements and adequate models are still lacking for tem-

peratures higher than 450 K to include this dependency in the phasic bursting simulations.

2.2.6.2 Temperature in the filament

The Poole-Frenkel resistance model provides insights into the switching behavior of NbOx

memristors, where the oxygen vacancy filament serves as the switching volume. However,

the model’s predictions of the temperature rise during the spike events, as seen in Figure 2.8

and Figure 2.17a,b,c, may seem implausible at first glance. The observed temperatures during

70
CHAPTER 2: CHARACTERIZATION AND MODELING OF SPIKING AND BURSTING IN

EXPERIMENTAL NBOX NEURON

spikes are approximately 2500°C and 6500°C, respectively, which raises concerns about the va-

lidity of the model.

Several factors must be considered when interpreting the model’s temperature predictions.

Firstly, the switching volume has been assumed to be the entire NbOx layer, which is not nec-

essarily accurate. It could be a much smaller portion of the layer. The filament is actually com-

posed of just a few atoms, and its position and size may not be uniform throughout the device.

Therefore, the concept of a well-defined temperature may not be applicable in this context.

Moreover, the Poole-Frenkel model does not account for heat dissipation in the filament. The

Joule heating effect caused by the current passing through the filament results in a localized

temperature increase. However, since the model uses a simplified expression of heat dissipa-

tion in the filament, which does not take into account all the detailed thermal transfers inside

the nanodevice, its temperature predictions are higher than the actual temperature.

In summary, while the Poole-Frenkel model provides a useful framework for modeling and

understanding the switching behavior of NbOx memristors, its temperature predictions must

be interpreted with caution.

2.3 Conclusion

Volatile NbOx memristors are excellent neuron candidates as they are scalable, present reli-

able threshold switching, and are compatible with memristive synapses such as HfO2 Metal-

Insulator-Metal structures. We have shown that the Pt/Nb205/Ti/Pt stack presents well-suited

I-V characteristics: a current-controlled S-shaped Negative Differential Resistance, which can

be modeled by assuming Poole-Frenkel conduction. This type of device is able to spike and the

resulting shape is very close to the one of a biological neuron with initial depolarization fol-

lowed by hyperpolarization due to an inductance. We demonstrated that this device presents

multiple computational properties such as Leaky-Integrate-and-Fire (LIF) characteristics, all-

or-nothing-firing, and phasic bursting. We also investigated the origin of phasic bursting through

the analysis of the physical equations of the devices. This phenomenon comes from the bi-

furcation between an unstable fixed point (limit cycle) and a stable fixed point (equilibrium)

driven by Poole-Frenkel dynamics. These results pave the way to easily-scalable neurons that

can be easily modelled and simulated but still show a complex behavior in order to mimic bio-

logical computations.

Chapter 3

Adapting Equilibrium Propagation to

Physical Systems

72 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

As discussed in Chapter 1, on-chip-learning requires hardware and software co-design.

This also means adapting algorithms for hardware, which are ideally local in space. This chap-

ter discusses ways to adapt Equilibrium Propagation, a spatially local algorithm, to make it

highly implementable in hardware.

3.1 Context

As we saw in Chapter 1, the BackPropagation algorithm, with its highly non-local updates, is

difficult to implement on-chip. An alternative is then to take inspiration from biology and think

about biologically plausible algorithms, as presented in Chapter 1, section 2.2. However, the

physical nature of a system can also be exploited. This idea is not new, as in certain instances,

the fundamental principles of physical systems have inspired learning algorithms. Notable

examples of this include Hopfield networks [44] and Boltzmann machines, both of which are

inspired by Ising spin systems. Numerous other methods have been suggested, leveraging the

effects of nonlinear dynamics, such as bifurcations and chaos, for computation [240], [241],

[242].

The existence of these works leads to the idea of using energy-based models for neuromor-

phic computing. These models use the minimization of an energy function to learn a task. This

is particularly interesting because a physical system will minimize its energy function by na-

ture. Using this intrinsic learning property with a local learning rule seems to be a promising

path for neuromorphic computing. However, traditional energy-based models do not imple-

ment the supervised learning of a global objective function, and these models suffer from low

accuracy, especially compared to BackPropagation.

In fact, in a network based on an energy model, neurons typically gravitate towards the

lowest energy state that is nearest to the system’s initial state, which corresponds to the input.

The energy function of the network is parameterized, and by appropriately tweaking these pa-

rameters, we can establish minima that correspond to the various patterns we aim to store.

Hopfield networks are often referred to as self-associative because they map an input (or ini-

tial state) to an equilibrium state that matches the size of the input. Limitations of Hopfield

networks include notably the lack of emergent hierarchy in these networks due to the unsuper-

vised learning and self-associative nature.

3.2 Equilibrium Propagation algorithm

Equilibrium Propagation (EqProp) is a learning algorithm introduced by Scellier and Bengio

[138] based on gradient descent. However, contrary to BackPropagation, both the inference

phase (free phase) and the learning phase (nudge phase) use the same operations. This is a

considerable advantage for hardware implementation.

EqProp is an energy-based model that can be used for any connected networks (layered or

3.2 EQUILIBRIUM PROPAGATION ALGORITHM 73

not), as long as the weights are symmetric (Wi j = W j i), meaning that the weight Wi j will both

evolve upon the variations of the rate-based neurons i and j. The most common architecture is

to arrange the neurons in layers, with input on one side and output on the other, as presented

for a MLP in chapter 1. EqProp takes inspiration from Contrastive Hebbian learning presented

in Chapter 1 section 2, but use a weakly clamped second phase instead.

EqProp is a convergent recurrent neural network In a Recurrent Neural Network (RNN),

some neurons take their own previous outputs as part of their input. This creates a kind of

loop in the network, which allows it to maintain a form of ’memory’ about previous inputs.

This is what gives RNNs their temporal dynamic behavior, as the state of a neuron at time ’t’

is dependent not just on the current input at time ’t’, but also on its own state at the previous

time step ’t-1’. This makes RNNs particularly useful for tasks involving sequential data, where

the order and context of inputs are important, such as language modeling, speech recognition,

and time series prediction.

EqProp belongs to a subclass of RNNs, called convergent RNNs with a static input. This

means that this type of RNNs is fed by a static input x and reach an equilibrium state. It is

worth noting that EqProp is equivalent to Back Propagation Through Time (BPTT) [243].

Learning procedure The system considered follows a certain energy function E, which will be

naturally optimized. This energy depends on the states of neurons called s, on the symmetric

synaptic weights called W, and on the biases called b. Here, we will refer to the weights and

biases as the parameters θ of the network. Therefore, the energy function can be written as:

E(x, s,θ).

The first phase, the inference phase, is called the free phase. Given some input x, its corre-

sponding target t, and some parameters θ, the states of the neurons will evolve to minimize the

energy function according to the formula:

d s

d t
=−∂E

∂s
(3.1)

The states eventually reach an equilibrium state, referred to as s⋆, which is stored. The

output neurons, called y, will give a first result that has no reason to be close to the target t.

A cost function C is therefore defined to determine the error between the target and the real

output of the network. The higher the cost function, the further away the output from the

target is.

The learning phase, called the nudging phase, uses a new energy, the total energy func-

tion F = E +βC where β is a non-zero real-valued parameter. The neurons, therefore, evolve

according to the new equation:

d s

d t
=−∂F

∂s
=−∂E

∂s
−β∂C

∂s
(3.2)

74 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

Figure 3.1: a: Free phase. b: Nudge phase.

This is similar to applying a force proportional to β to the output units y to nudge them

towards the target t (see Fig. 3.1), while waiting for a new equilibrium to be reached. This

equilibrium state is called s⋆,β. On the notation point of view, the equilibrium reached at the

end of the free phase can be noted s⋆,0, as it corresponds to a dynamic evolution where β= 0.

One of the strengths of Scellier and Bengio’s original work is the following theoretical guar-

antee:
∂J

∂θ
= lim
β→0

1

β

(
∂F

∂θ

(
θ, x,β, s⋆,β

)
− ∂F

∂θ

(
θ, x,β, s⋆,0)) , (3.3)

where J is the objective function the network aims to minimize. Its expression is the same

as the cost function C, but when C is defined for a single example, J is defined over the whole

training set. In practice, the parameter update is:

∆θ =−η 1

β

(
∂F

∂θ

(
θ, x,β, s⋆,β

)
− ∂F

∂θ

(
θ, x,β, s⋆,0)) (3.4)

Note Scellier and Bengio reported that using a β with a random sign yielded better results

that keeping the sign of β constant [138].

Energy choice The initial energy function proposed by Scellier and Bengio is [138]:

E(u) = 1

2

∑
i

u2
i −

1

2

∑
i ̸= j

Wi jρ(ui)ρ(u j)−∑
i

biρ(ui). (3.5)

where ρ is the activation function of the neurons, akin to a firing rate. The original EqProp work

defined ρ as a hard sigmoid function, but other functions have been used such as a sigmoid or a

tanh [244]. This energy function has first been studied by [137], [245] , [246] and[247]. It differs

from the original Hopfield energy, as the quadratic term 1
2 u2

i was not present.

In this particular framework, the neurons evolve during the free phase according to the

3.2 EQUILIBRIUM PROPAGATION ALGORITHM 75

equation:
d si

d t
=− ∂E

∂si
= ρ′(si)

(∑
i ̸= j

Wi jρ(u j)+bi

)
− si . (3.6)

The derivative of the energy function ∂F
∂θ can be computed and gives:

∂F

∂Wi j
= ∂E

∂Wi j
+β ∂C

∂Wi j
=−1

2
ρ(ui)ρ(u j)+β ∂C

∂Wi j
(3.7)

∂F

∂bi
= ∂E

∂bi
+β ∂C

∂bi
=−ρ(ui)+β ∂C

∂bi
(3.8)

If the cost function partial derivative with regards to the weights and biases is zero ∂C
∂Wi j

=
∂C
∂bi

= 0, then the parameter updates derived from equations (3.4), (3.7) and (3.8) yield:

∆Wi j = η

β

(
ρ(u⋆,β

i)ρ(u⋆,β
j)−ρ(u⋆,0

i)ρ(u⋆,0
j)

)
, (3.9)

∆bi = η

β

(
ρ(u⋆,β

i)−ρ(u⋆,0
i)

)
. (3.10)

Note that these equations still hold true for any cost function, as long as this cost function does

not depend on any of the parameters (weights and biases).

The first work to apply EqProp to a real system is the work of Kendall et al. [248], which pro-

poses a learning framework where synapses are memristive devices and neurons’ non-linearities

are created by diodes. This work shows that this kind of system naturally evolves to minimize

a quantity which is called the pseudo-power of the system, defined in the case of a linear resis-

tance network (neurons connected by linear resistors) as:

P (V1,,VN) = 1

2

∑
i< j

gi j (Vi −V j)2 (3.11)

where the pseudo-voltage P is defined for any configuration of voltages Vi , even for the ones

not compatible with Kirchhoff’s laws.

This definition of pseudo power leads to the following weight updates:

∆Wi j = η

β

((
∆V β

i j

)2 −
(
∆V 0

i j

)2
)

(3.12)

It is technically possible to use the true energy of a physical system for learning with EqProp.

For electrical circuits, this may not be the optimal choice, and for our work we choose to use

the energy function defined in Eq. 3.5.

Cost function choice As we have seen, the update equations presented above hold true for

any cost function C as long as C does not depend on any trainable parameters. In the original

76 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

EqProp paper, the mean square loss (MSE) was used with [138]:

C = 1

2
||y − t ||2 (3.13)

However, other cost functions can be used, such as the cross-entropy loss used in the work

of Laborieux et al. [244].

Variants of Equilibrium Propagation

• The initial EqProp work proposed a time-dynamic evolution of neurons. It is worth men-

tioning that a discrete-time version of EqpProp also exists, introduced by Ernoult et al.

[243]. This framework proposes to find the fixed point by iteration until convergence,

instead of resolving the time-dynamic differential equation.

• EqProp is local in space, as a weight update only depends on the two neurons which are

connected to that particular synapse. However, it is not local in time as the equilibrium

state of the free phase has to be stored in order to enact the weight update at the end of

the nudging phase. This is not ideal for hardware, and that is the issue solved by Con-

tinual EqProp [249]. In this algorithm, the weight updates happen continuously during

the nudging phase, removing the need to store the equilibrium point. Basically the idea

comes from the fact that ∆Wi , j = ρ(sβi)ρ(sβj)−ρ(s0
i)ρ(s0

j) = 1
T

∫ T
0

(
ρ(si)ρ̇(s j)+ ρ̇(si)ρ(s j)

)
.

The update can then happen continuously during the nudging phase.

• The weights are symmetric, which can be an obstacle to hardware implementation. The

work of Scellier et al. solves the weight transport issue with a vector-field approach [250].

• Initially, the EqProp algorithm didn’t scale well, and difficult tasks like CIFAR 10 were

hard to solve because of the length of computation times and degraded performance.

Laborieux et al. proposed to use EqProp in CNNs, and instored three phases instead of

one, by having a free phase at β = 0, then a first nudge phase at +β, and then a second

nudge phase at −β [244]. This improved the approximation of the derivative of the loss

compared to the parameter, overall helping the performance. Laborieux and Zenke then

proposed a complex version of EqProp, called Holomorphic EqProp, where βC is a slow-

ing oscillating nudging force [251]. It can be noticed that this second work meets the first

one in the case N =2. In particular, this means that there is no need for three phases in

[244], two phases with a positive and a negative β are enough.

• Laydevant et al. also introduced a Binary version of EqProp with either binary neurons

and full precision weights or with binary weights and binary neurons [252].

• Martin et al. also introduced a spiking version of EqProp, based on Continual EqProp’s

ideas [153]. The weight updates are ρ(si)ρ̇(s j)+ ρ̇(si)ρ(s j) as we have seen. However,

the definition of the firing rate and its derivative are ambiguous for a spiking neuron.

3.2 EQUILIBRIUM PROPAGATION ALGORITHM 77

In this learning rule, Martin et al. have decided to binarize ρ, meaning that if neuron

i spikes, ρ(si) = 1, and if it doesn’t spike, ρ(si) = 0. This greatly simplifies the learning

rule. However, the computation of ρ̇ is not obvious. In this case, the authors choose to

compute this value by first using an integrator to compute the value VLI ∼ ρ
γ where γ is

the leak factor. Then a delay τ is introduced to compute ρ̇ = γ∂VLI
∂t

∼= VLI (t)VLI (t−τ)
τ . This

value ρ̇ has to be smoothed with a low pass filter to use in the learning rule.

• In EqProp, only neurons evolve according to some dynamics. Agnostic EqProp, intro-

duced in 2022 by Scellier et. al. [253] also incorporate the synapses in the energy function,

and a control knob enables the trainable parameters to remain fixed in the free phase,

while enabling them to evolve freely in the nudge phase.

Hardware realizations of Equilibrium Propagation A few hardware realizations of training a

dynamical system in-situ exist; firstly in the work of Dillavou et al . [254]. They realized a small

resistive neural network based on digital variable resistances of 128 values, deeply inspired by

Kendall’s work [248]. To palliate the need to store the states of the free and nudged phases,

the authors proposed to realize two identical neural networks, one for each phase. At the end

of the simultaneous phases, both networks are updated. More precisely, they use a variant of

EqProp, called Coupled Learning [255]. This training algorithm is an in-between between CHL

and EqProp. During the nudging phase, the output units are completely clamped and don’t

move, unlike in EqProp. However, contrarily to CHL, the clamped state is not equal to the tar-

get, but simply closer to the target than the free phase result was. The update of the resistors

is simplified, as only binary updates are applied to the resistors. Training on the iris dataset is

successfully realized. However, this task is the largest one that can be realized on their hard-

ware system. Scalability could be an issue with this approach due to the lack of non-linearity

in the system.

Activity-difference energy minimization (MADEM) is a learning framework on a memristor

crossbar array [256]. This implementation is realized on a chip that integrates complementary

metal–oxide–semiconductor (CMOS) digital control circuitry with two 64 × 64 analogue mem-

ristor crossbar arrays made of tantalum oxide. In this system, the free phase is denoted as A f r ee ,

which is a column vector representing the activities of all neurons in the network, including the

input, hidden, and output neurons. During the nudge phase of the operation, a bias is intro-

duced at the end of the network while the activities of the input neurons are held constant.

This setup utilizes a binary activation function in a discrete-time context, with a linear nudge

term. The energy of the system is designed to only accommodate an Ising-like term. It shows

Braille’s word pattern recognition. Both the free phase and the nudge phase equilibrium points

are obtained by iteration, no time dynamics is involved.

A recent study of Laydevant et al. implements the Binary EqProp algorithm on a physical

78 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

system [257]. More precisely, the authors use the binary version of the learning algorithm to

train an Ising machine, in this case D-Wave. The application of biases for the nudging phase

was not enough, as the system was stuck in its ground state following the initial free phase. To

solve this particular issue, either simulated annealing or quantum annealing was used to ob-

tain the nudge phase state.

3.3 Need for gradient discretization

3.3.1 Ideal synapse definition and physical constraints

As we saw in the first chapter, an ideal hardware synapse has to follow some requirements. Its

strength should move linearly compared to a control parameter that will be tuned during learn-

ing. In our particular case, we want to use this algorithm with memristors. The strength of the

synapse will therefore be either the resistance or the conductance of a device. Implementing

both positive and negative weights can be done in two ways. Either the SET and RESET are sym-

metric, and the zero is considered to be between the ON and the OFF states; or two different

devices can be used to implement either the positive (excitatory) and the negative (inhibitory)

parts of the synapses.

Equilibrium Propagation gives a real continuous-valued update that has to be applied to

a synapse. Updating the weights during learning can also be done in several ways. A voltage

pulse whose amplitude is proportional to the update can be applied to a synapse, or several

pulses of the same amplitude, proportional to the gradient, can be applied. In hardware real-

izations, it is much easier to apply several pulses of identical amplitude rather than to apply

one pulse of variable amplitude. That explains why this option is favored in this work.

Energy efficiency is a constraint implying a limitation of the total number of pulses applied

over the whole chip. In addition, the more pulses are applied to a single memristor, the less

linear the conductance or resistance of this specific device is. So ideally, we also want to limit

the number of pulses applied per memristor.

Different discretization strategies will be discussed in this chapter.

3.3.2 Methods

The results in this chapter are obtained using the time-dynamic EqProp framework presented

above, in section 3.2. The algorithm is implemented in Python, using the numba just-in-time

compilation framework to accelerate the computation time on CPU. The Modified National In-

3.4 CONTINUOUS-VALUED EQPROP STUDY 79

stitute of Standards and Technology (MNIST) database is used, composed of 28x28 images of

digits and their corresponding labels, ranging from 0 to 9. In this case, the pixel values, ranging

from 0 to 255 are scaled between 0 and 1. The labels are one-hot encoded. The MNIST database

is imported using the sklearn library, before being shuffled with a seed equal to 20. Then, the

dataset is split into three different sets: the training set of size 56000, and the validation and

test sets each of size 7000. The network used is a fully connected network with one hidden

layer and dimensions: 784-512-10. If nothing is specified, the mini-batch size is 50. The free

phase is made of 30 iterations, the nudge phase of 10 iterations, with a time step of 0.5. The

nudging factor β is fixed at 0.4, and its sign varies randomly as suggested in Scellier’s and Ben-

gio’s initial work [138]. The activation function is the hard sigmoid, with neuron states clamped

between 0 and 1, as in the initial EqProp work. The weights are initialized uniformly using

Xavier’s formula: Wi j ∼U
[
− 1p

n
, 1p

n

]
[70]. The biases are initialized at 0. Each result consists in

an average over ten runs, and the standard deviation is also shown as a lighter area around the

mean value.

3.4 Continuous-valued EqProp study

Before diving into different discretization strategies, we first study how the conventional Equi-

librium Propagation algorithm behaves, by presenting an example of learning with this algo-

rithm.

Figure 3.2: Accuracies obtained in the conventional EqProp case with parameters: η1 =
0.15, η2 = 0.001.

Figure 3.2 shows an example of accuracy obtained, which corresponds to 98.46 % for the

validation accuracy and 98.13 % for the test accuracy.

80 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

Figure 3.3: Histogram of the accumulated weight updates over 10 runs. a: Accumulated weight
updates during learning for the first layer: ∆W tot

1 . b: Accumulated gradients during
learning for the second layer: ∆W tot

2 with parameters η1 = 0.15 and η2 = 0.001.

To better understand the training process, it is possible to look at the distribution of accu-

mulated gradients over learning. Figure 3.3 presents the update values ∆W tot = η
β

∆W
nbatch

where

nbatch is the batch size used (in our case 50, as written in the method section). On the left, the

distribution of the accumulated gradient ∆W tot
1 during learning is plotted, corresponding to

the weights of the first layer W1. The right part shows the accumulated ∆W tot
2 during learning,

corresponding to the weights of the second layer W2.

Both figures show a peak around dW = 0. However, the shapes of the distributions are

different in both cases, as the∆W tot
1 distribution presents a high peak, whereas the∆W tot

2 dis-

tribution presents a much smaller peak around ∆W tot = 0. This means that the weight matrix

W1 is more sparse than the weight matrix W2. This is due to the dataset used, the MNIST one,

where pixels in the border of the picture are equal to zero (black edge). Therefore the weights

connected to these specific neurons are never updated. By comparison, the second weight ma-

trix updates are distributed along a Gaussian, with a prominent peak at dW = 0.

This observation does not give any information on how many positive updates or negative

updates have happened during learning. As a reference for future discretization techniques,

it is interesting to accumulate separately all positive gradient values and all negative gradients

over training. That way, it becomes possible to determine synapses that have never been up-

dated. It also enables the comparison of positive accumulated gradients with negative ones.

For a weight matrix Wi , we first computed the value dWi ,BL = max(0,dWi) (for i = 1 and 2) and

accumulated over learning. Similarly, we then accumulated the value dWi ,BLb = mi n(0,dWi).

The results of the positive and negative contributions are presented in Fig. 3.4.

Figure 3.4a shows the distribution of the accumulated positive dW1,BL at the end of learn-

ing, whereas Figure 3.4b shows the negative ones dW1,BLb . A similar trend is observed in both

3.4 CONTINUOUS-VALUED EQPROP STUDY 81

Figure 3.4: Histogram of the positive and negative weight updates. a: Accumulated positive
weight updates for the first layer: ∆W tot ,BL

1 . b: Accumulated negative weight up-

dates for the first layer (absolute value): ∆W tot ,BLb
1 . c: Accumulated positive weight

updates for the second layer: ∆W tot ,BL
2 . d: Accumulated negative weight updates

for the second layer (absolute value): ∆W tot ,BLb
2 . With parameters: et a1 = 0.15

et a2 = 0.001.

graphs with a peak at dW = 0, which steeply goes down at about dW = 0.25. The distribu-

tion then reaches a plateau before decreasing to reach approximately 0 at dW = 3. Overall both

distribution evolutions are monotonous: they decrease when the value of the accumulated gra-

dient increases.

Figures 3.4c and d display respectively the distributions of dW2,BL and dW2,BLb . They both

show a peak at dW = 0. However, the distribution evolution is this time not monotonous: the

distributions increase before decreasing again to reach near-zero values at dW = 0.16. Sim-

ilarly to the first layer (Figs 3.4a and b), the negative and positive contributions presented in

Figs. 3.4 c and d have canceling effects that reduce the overall range of weights, shown in 3.3b.

Note that contrarily to the first layer (Fig. 3.3a), this results in a Gaussian-like distribution.

Ideally, we want the discretization techniques to reproduce this type of distribution.

82 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

3.5 Discretization strategies

Discretizing the gradient necessarily introduces an error in the computation, as discretiza-

tion necessarily implies that some synapses do not receive the exact gradient update that they

should have had. The goal in designing a discretization strategy is, therefore, to minimize that

error to obtain the best performance possible.

3.5.1 Ternary gradient

3.5.1.1 Definition

The first discretization strategy that we discuss is a simple ternary discretization of the gradi-

ent. In this specific case, the continuous-valued gradient is turned into -1, 0 or 1 "pulses", i.e.

gradient steps: given a gradient ∆W computed by the EqProp algorithm, we would like to ei-

ther apply one pulse to increase the weight, one pulse to decrease the weight, or no pulse at all.

Therefore, a simple approach consists in defining a threshold θth . The weight update used is

not directly the gradient but:

Figure 3.5: Ternary discretization a: Schematic representing the pulses as a function of the
continuous-valued gradient, with threshold θth . b: Effective weight update as a
function of the number of pulses.

∆W tot = η

β

∆W

nbatch
, (3.14)

which will be discretized. For all gradient values above the threshold θth , a positive step

is taken, and for all values below the opposite of the threshold −θth a negative step is taken.

Figure 3.5 evidences how the gradient is discretized.

For a real device, these pulses are directly applied to it. Let us first assume that the weight

update after one step is determined by the "device speed" v :

Wn+1 =Wn +∆W r eal , (3.15)

3.5 DISCRETIZATION STRATEGIES 83

where

∆Wr eal = v · t , (3.16)

and where t is the number of pulses obtained with the discretization method. The speed v is

a hyperparameter that would only be partially tunable in an experiment, as it would largely be

determined by the devices’ behaviors.

It is worth mentioning that the learning rate η has an influence on the number of pulses

to apply. For instance, if η is large, the applications of pulses are favored as ∆W > θth and will

occur more easily. Note that the weight update step remains fixed at a value v and does not

depend on the learning rate.

3.5.1.2 Results

Figure 3.6: Performance of the ternary gradient method with parameters: η1 = 0.15,η2 =
0.005,θ = 0.00005, v = 0.00001.

Figure 3.7: Cumulated update pulses distribution at the end of learning for the ternary gra-
dient method. a: Cumulated pulses during learning for the first layer. b: Cumu-
lated pulses during learning for the second layer. With parameters: η1 = 0.15, η2 =
0.005, θ = 0.00005, tmax = 2.

Figure 3.6 shows an example of accuracy obtained with this discretization technique. Sur-

prisingly, the accuracy is only slightly degraded compared to the previous case (98.13%, see

84 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

Fig. 3.2) as we get 98.06 % accuracy. We follow a similar process to what was presented for the

Eqprop algorithm. The accumulated pulses value tsummed is computed at the end of learning

by summing the total number of -1 pulses tBLb and +1 pulses tBL applied to a given synapse

(tsummed = tBL − tBLb). The results are shown in figure 3.7 a and b.

The accumulated weight updates of the first layer show a peak at zero values. This is rem-

iniscent of the Eqprop algorithm previously presented in figure 3.3, even though the peak is

more prominent in the current case. The accumulated weight updates of the second layer do

not seem to follow a Gaussian-like distribution, which differs from the classical EqProp case

(see Fig 3.3b).

Figure 3.8: Cumulated positive or negative pulses distribution at the end of learning for the
ternary gradient method. a: Cumulated positive pulses for the first layer. b: Cu-
mulated negative pulses for the first layer. c: Cumulated positive pulses for the sec-
ond layer. d: Cumulated negative pulses for the second layer. With parameters:
η1 = 0.15, η2 = 0.005, θ = 0.00005, tmax = 2.

Figure 3.8 shows how the positive pulses and negative pulses are spread. The first layer

(Figs. 3.8a and b) displays a monotonous repartition similar to the conventional EqProp case

with a very high peak around tsummed = 0. The second layer differs again from the previous

conventional EqProp case as it demonstrates a monotonous evolution of the updates.

3.5 DISCRETIZATION STRATEGIES 85

3.5.1.3 Variation of the threshold parameter

The threshold parameter θ is the key parameter that governs the discretization step, which

requires tuning as finely as possible to obtain the best possible performances.

Figure 3.9: Performance of the ternary gradient method when the parameter θ varies with pa-
rameters: η1 = 0.15,η2 = 0.005, v = 0.0001.

Figure 3.9 shows the training and validation accuracy for three different values of the thresh-

old θ, all averaged over ten different runs. The curve corresponding to θ = 5.10−5 (in orange)

was previously shown in Fig. 3.6 and corresponds to the best performance. Higher θ values do

not allow us to reach better accuracies (green), and the curve corresponding to θ = 2.5 · 10−5

(blue) shows a degradation of training accuracy after 50 epochs.

These results can be interpreted in a straightforward fashion. If a high threshold is set, nu-

merous synapses are never updated and the learning procedure relies only on a few synapses.

On the contrary, if the threshold θ is too low, a large part of the synapses is updated, which

deteriorates learning. To obtain an appropriate behavior corresponding to the proper balance

between the two previous cases, it is thus necessary to tune the threshold value.

3.5.1.4 Variation of the learning rate of the second layer independently from the

first layer

In this section, the learning rate of the first layer is considered fixed at η1 = 0.15, and both the

threshold θ and the learning rate of the second layer η2 are allowed to vary. Modifying those

two parameters allows us to explore the full parameter space. Indeed, the threshold and the

two learning rates are related. For instance, if η2 < η1, the threshold value can be chosen to

obtain a +1 pulse update in the first layer but not in the second one for an identical gradient.

Results for four different values of η2 are presented in Fig. 3.10. The green curve for η2 =
0.005 corresponds to the result presented in Fig. 3.6. When η2 is high, the second layer is often

updated, whereas if it is low, the second layer is scarcely updated. Similarly to the threshold

parameter, a compromise has to be found here as well, as η2 = 0.001 (blue) and η2 = 0.0075

(red) result in a worse accuracy than the optimum value (green). Similarly as in the conven-

tional EqProp case, the learning rate of the second layer η2 is smaller than the one of the first

86 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

Figure 3.10: Performance of the ternary gradient method when the parameter η2 varies with
parameters: η1 = 0.15,θ = 0.00005, v = 0.0001.

layer η1. This was already the case in the original EqProp paper [138], and corresponds to an

amplification of the error gradients for layers further away from the output layer.

3.5.1.5 Variation of the speed v

Since we have decided to link the threshold parameter θ to the speed v , for completeness of

the study we will analyze the impact varying v has on the overall performance.

Figure 3.11: Performance of the ternary gradient method when the speed v varies with param-
eters: η1 = 0.15,η2 = 0.005,θ = 0.00005.

The results presented in Fig. 3.11 where obtained with a threshold parameter θ = 5.10−5

(parameter used in Fig. 3.6). The orange curve shows the case where v = 2θ = 10−4, which

corresponds to the results presented in Fig. 3.6. The green curve shows the case v = 3θ =
1.5 · 10−4 whereas the blue curve presents the accuracy for v = θ = 0.5 · 10−4. From both the

training accuracy and the validation accuracy, we can observe that the higher v is, the faster

the increase in accuracy is. This was expected, as when v is high, the weight increase after one

update is consequently large. However, the validation accuracy at the end of training is similar

in all three cases.

3.5 DISCRETIZATION STRATEGIES 87

3.5.2 Ternary gradient with probabilistic updates

We saw in the previous section that the ternary gradient updates decreased the performance of

the network. The distribution of pulses did not match the conventional EqProp case and spread

along an important range of pulses. This degradation comes in part from the hard threshold

that was put in place. All gradients above the threshold θth corresponded to an update, and all

the others to none. To improve this result, another type of discretization is studied here, which

we call the ternary gradient with probabilistic updates.

3.5.2.1 Definition of the discretization

To minimize the threshold effect, an idea is to introduce a probability of update instead of hav-

ing a hard threshold.

Instead of only comparing the total gradient update ∆Wtot with θth , we will now define a

probability p of having an update. This probability p is defined as follows.

I f |∆W tot | >= θth , then p = si g n
(
∆W tot) . (3.17)

I f |∆W tot | < θth , p = ∆W tot

θth
. (3.18)

In these notations, the negative probability p < 0 corresponds to the probability of having

a negative pulse.

Figure 3.12: Probability of obtaining a pulse as a function of the continuous-valued gradient,
with threshold θth .

The function p is plotted in Fig. 3.12. With the exception of the plateaux at ±1 above the

threshold, it yields a linear evolution between - 1 and + 1 for ∆W between −θ and +θ respec-

tively.

88 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

3.5.2.2 Results

In this section, the same definition of the parameters is used compared to the previous section.

Figure 3.13: Accuracies obtained for the ternary gradient method with probabilistic updates
with parameters: η1 = 0.15,η2 = 0.005,θ = 0.0002, v = 0.0004.

Figure 3.14: Cumulated update pulses distribution at the end of learning for the ternary gra-
dient method. a: Cumulated pulses during learning for the first layer. b: Cumu-
lated pulses during learning for the second layer. With parameters: η1 = 0.15,η2 =
0.005,θ = 0.0002, v = 0.0004.

The results obtained with the probabilistic updates presented in figure 3.13 reach better ac-

curacies than the non-probabilistic case: 98.47 for the validation accuracy and 98.15 % for the

test accuracy. It is a very good performance for a one-hidden layer network, comparable to the

full precision gradient one (see Fig. 3.2).

To continue our comparison between the full precision method and the different discretiza-

tion techniques, the same graphs as the ones plotted in sections 3.4 and 3.5.1.2 are presented.

3.5 DISCRETIZATION STRATEGIES 89

In figure 3.15, the distributions of the total number of pulses for the first weight matrix (a) and

the second weight matrix (b) are shown. The overall shapes are much closer to the original

EqProp case rather than the hard threshold discretization one. In particular, the distribution

of the second weight matrix (Fig. 3.15b) is more Gaussian-like, even though it lacks the sharp

peak at t = 0 present in the classic EqProp case. The pulses are distributed between -200 and

200, which consists in a much lower range than in the non-probabilistic case (-700 to 700).

Figure 3.15: Cumulated positive or negative pulses distribution at the end of learning for the
ternary gradient method. a: Cumulated positive pulses for the first layer. b: Cu-
mulated negative pulses for the first layer. c: Cumulated positive pulses for the
second layer. d: Cumulated negative pulses for the second layer.With parameters:
η1 = 0.15, η2 = 0.005, θ = 0.0002, v = 0.0004.

Similarly, figure 3.15 shows the repartition of all the positive and negative pulses. This

repartition is much closer to the original Equilibrium propagation algorithm. In particular,

figures 3.15c and d show a non-monotonous repartition, which was not the case in the non-

probabilistic case (see Fig. 3.7b).

In conclusion, the process of gradient discretization into a ternary representation, com-

prising only three distinct values, might have initially raised concerns about potential accuracy

degradation. Nevertheless, it is noteworthy that while the discretization method without prob-

abilities does indeed yield results inferior to the full-precision counterpart (98.06 % and 98.13

% of test accuracies respectively), it still demonstrates a level of performance that deems it suit-

90 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

able for practical application within real-world physical systems. The probabilistic approach

gives better results (98.15 %), and the cumulated repartition of the updates is much closer to

the full-precision one. However, this particular approach could be harder to implement in a

physical system. The ideal implementation would be to use an intrinsic probabilistic property

of the system instead of having to design outside circuitry to implement random number gen-

eration and computation.

3.6 Increasing the number of quantized values of the gra-

dient

3.6.1 Presentation of the discretization step

Energy-wise, it might be more efficient to apply trains of pulses corresponding to higher preci-

sion gradients instead of single pulse sequences corresponding to ternary gradients. This can

be numerically reproduced by setting multiple thresholds which will trigger a given number of

pulses (see Fig. 3.16).

Figure 3.16: Quantized discretization. a: Schematic representing the pulses as a function of the
continuous-valued gradient, with threshold θth . b: Effective weight update as a
function of the number of pulses.

Because we have previously seen that the threshold effect could be an issue for learning, we

chose to make the width of all steps identical.

3.6.2 Results

This section presents the results obtained using multiple quantized values of the gradients. The

performance is shown in Fig. 3.17, highlighting an accuracy reaching 98.127 %, i.e an improve-

3.6 INCREASING THE NUMBER OF QUANTIZED VALUES OF THE GRADIENT 91

ment over the non-probabilistic ternary gradient performance (98.06 % of test accuracy).

Figure 3.17: Accuracies obtained for the gradient method with a maximum of 9 pulses applied
per synapse per update. The parameters are: η1 = 0.15,η2 = 0.01,θ = 0.0015, v =
0.003.

The distribution of the pulses shown in Fig. 3.18 shows the same behavior as for the case of

ternary discretization without probabilistic updates.

Figure 3.18: Cumulated update pulses distribution at the end of learning for the ternary gra-
dient method. a: Cumulated pulses during learning for the first layer. b: Cumu-
lated pulses during learning for the second layer. With parameters: η1 = 0.15, η2 =
0.01, θ = 0.0015, tmax = 9.

However, one difference is that the distribution is more spread: a range of pulses going from

-4000 to 4000 is necessary to observe the whole distribution (while -1000 to 1000 where enough

before, as seen in Fig. 3.8). This discrepancy arises from the higher number of pulses that can

be applied at each update.

92 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

The distribution of positive and negative pulses for both layers is presented in figure 3.19.

Figure 3.19: Cumulated positive or negative pulses distribution at the end of learning for the
quantized gradient method. a: Cumulated positive pulses for the first layer. b:
Cumulated negative pulses for the first layer. c: Cumulated positive pulses for the
second layer. d: Cumulated negative pulses for the second layer. With parameters:
η1 = 0.15,η2 = 0.01,θ = 0.0015, v = 0.003.

It can be observed on this figure that the distribution of the cumulated number of positive

or negative pulses applied per synapse is closer to the standard EqProp case (Fig. 3.4).

We can notice that the number of pulses has drastically increased when compared to the

ternary case. This increase allows us to improve the performance and brings the pulse dis-

tribution close to the ideal case. However, it’s important to note that this method demands

a substantial number of pulses, exceeding 25,000, to achieve improved accuracy compared to

the ternary case, which required more than 5,000 pulses. Interestingly, the ternary gradient

with probabilistic updates outperforms this method, delivering a test accuracy of 98.15 % with

just over 1,500 pulses.

3.7 Balancing pulse allocation for reliable physics-based

computing

We have seen the impact of different strategies on the accuracy and distribution of the updates.

It is also crucial to monitor the total pulse count and the maximum number of pulses applied

3.8 CONCLUSION 93

to individual devices. The objective is to minimize pulse usage while ensuring an even distri-

bution across synapses, thereby mitigating the risk associated with excessive pulse application

per device. This approach not only guards against potential device failure but also prevents

synapses from transitioning into noisy or non-linear regimes.

Let us look at the maximum number of pulses applied to one synapse in layers one and

two at the end of learning presented in three different cases: non-probabilistic ternary case,

probabilistic ternary case, and non-probabilistic quantized case.

• Ternary gradient: The test accuracy is 98.06 %. For ten different runs, the maximum

number of pulses at the end of learning for layer one averages 30,388, with 11,945 for layer

two. The mean total number of pulses across these runs is approximately 2,921,073,702.6.

• Ternary gradient with probabilistic updates: The test accuracy is 98.15 %. Across ten

runs, the maximum number of pulses for layer one averages 14,367, with 1,498 for layer

two. The mean total number of pulses over these runs is about 1,578,167,171.9.

• Quantized gradient: The test accuracy is 98.13 %. In ten different runs, the maximum

number of pulses for layer one averages 282,964, with 36,201 for layer two. The mean

total number of pulses across these runs is approximately 37,837,052,959.1.

In the probabilistic case, the maximum number of pulses is significantly lower for both

layers compared to the non-probabilistic ternary case. Specifically, it’s about twice as low for

layer one and almost eight times lower for layer two. On the other hand, the quantized case

exhibits a higher maximum number of pulses compared to the non-probabilistic ternary case.

Layer one has about nine times more pulses, and layer two has approximately three times more

pulses. This trend is also reflected in the total number of pulses after learning. Overall, the

probabilistic ternary case achieves the best accuracy with the fewest number of pulses.

3.8 Conclusion

In this chapter, we first presented the state of the art regarding Equilibrium Propagation and its

hardware implementation. We discussed the need to discretize the gradient updates to realize

a physics-based version of EqProp. Different strategies have been studied. Firstly, we chose to

examine the performances of two distinct scenarios: one involving a maximum of one pulse

per update and the other utilizing up to nine pulses. Our findings indicate a notable perfor-

mance enhancement when employing the nine-pulse approach compared to a ternary gradi-

ent update. However, this improvement comes at the expense of a significantly higher pulse

count—more than twelve times the amount of the ternary approach.

In the next chapter, we aim to implement Equilibrium Propagation with memristor synapses.

Therefore, we must find a tradeoff between accuracy and energy efficiency. Our goal is to min-

94 CHAPTER 3: ADAPTING EQUILIBRIUM PROPAGATION TO PHYSICAL SYSTEMS

imize both the energy consumption and the number of pulses applied to each device. With

these objectives, the ternary approach emerges as the preferred one. We also investigated an-

other strategy, consisting of introducing a probability of updating the synapses instead of hav-

ing a hard threshold. This approach demonstrated superior performance and yielded a pulse

distribution that closely resembled the gradients found in continuous-valued updates. This

discretization technique stands out as the most efficient. However, it is worth noting that its

hardware implementation is more resource-intensive and harder to realize due to the necessity

of random number generation. That is why, in the next chapter, we opt for a ternary discretiza-

tion method without probabilistic updates. This choice aligns with our objective of energy ef-

ficiency and minimizing the pulse count per device, striking a balance between computational

efficiency and hardware simplicity.

Chapter 4

Implementation of Equilibrium

Propagation With Memristor Synapses

96
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Chapter 3 focused on adapting the Equilibrium Propagation algorithm to physical systems

by discretizing the gradient. The effects were studied on ideal perfect synapses. This chapter

aims at getting a step closer to on-chip learning by applying this algorithm to real memristor

data.

4.1 Context

Memristors have gathered considerable attention due to their unique potential in neuromor-

phic computing. These nanoscale devices can mimic both data storage and processing func-

tions reminiscent of biological synapses in the human brain. An interesting feature of mem-

ristor crossbar arrays is that they naturally implement Multiply and Accumulate operations

thanks to Ohm and Kirchhoff’s laws, as presented in Chapter 1. This makes memristor cross-

bar arrays appealing candidates for the hardware implementation of inference tasks.

However, transitioning from inference to learning with memristor arrays is not a simple

task. Different challenges are involved. First, the lack of an adapted learning algorithm with

local learning rules is an issue for on-chip learning, as presented in the first chapter. Moreover,

if iterations of write and program cycles (called write and verify) are possible during inference

to alleviate the impact of memristor imperfections, they would not be efficient for learning, as

this would be detrimental to the spatial locality of the algorithm. This means that tackling the

device properties becomes crucial in this case. In this work, we look into this challenge and we

focus on oxygen-vacancy-filament-based metal-oxide-metal structures.

4.1.1 Non-linearity and asymmetry

One of the fundamental challenges of learning with memristors is an incomplete grasp of the

precise physical mechanisms governing filamentary memristors. While significant strides have

been made in elucidating their behavior, the exact details remain elusive. At a high-resistance

state (HRS), the oxygen-vacancy filament does not connect both metal electrodes. Therefore,

the conduction happens via quantum tunneling [258], which is highly non-linear. This results

in non-linear responses to applied voltages, as shown in Fig. 4.1a.

A source of asymmetry and non-linearity arises from the inherent dissimilarity between the

set and reset processes in filamentary memristors. During the set operation, filament forma-

tion is primarily controlled by a compliance current, which limits the formation of the filament

[259]. In the absence of current compliance, a Joule-induced positive feedback loop can either

burn the device or cause a permanent low resistance state (LRS) [260]. In contrast, a nega-

tive feedback loop during reset gives rise to a more gradual switching behavior [261]. The reset

operation is governed by voltage, and no compliance current is needed. These divergent mech-

anisms give rise to a pronounced asymmetry between the two processes, as shown in Fig. 4.1a

and d. There is no inherent reason for the voltages applied during set and reset to be equiva-

4.1 CONTEXT 97

lent, leading to operational disparities that must be managed, as shown in Fig. 4.1a and b. The

non-linearity is also quite apparent in Fig. 4.1b and c, which complicates programming during

learning. Furthermore, the stability of the HRS presents distinct challenges. The HRS tends to

exhibit greater noise compared to the LRS. The origin of this noise in the HRS, largely due to the

presence of traps and defects in the active region of the device, is not readily apparent, further

complicating efforts to maintain stable synaptic behavior.

Figure 4.1: Asymmetry and non-linearity. a: Multilevel I–V characteristics of 1T1R RRAM
TiN/HfO2/Ti/TiN device measured for increasing VG , reproduced from [14]. b: Ten
cycles programmed with 500 identical pulses of alternating depression and potenti-
ation operations for a TiN/HfO2/Ti/TiN device with conditions ∆V and ∆t are +0.9
V and 0.7 V. c: Evolution of the average conductance (straight line) and associated
standard deviation (in grey) against the number of pulses for the data set in b. d:
Distributions of the α parameter extracted from fit, where α is a multiplicative pa-
rameter that determines the magnitude of modification induced on the synaptic
strength by a plasticity event. b,c,d reproduced from [15].

Both the asymmetry and the non-linearity are particularly relevant challenges when aim-

ing at implementing memristor synapses that mimic the ideal synaptic devices, which was dis-

cussed in Chapter 1. The asymmetry prevents easy control of the increase and decrease of the

weights, whereas the non-linearity causes the device’s response to vary with its conductance.

4.1.2 Intra-device and inter-device variability

Variability is a common characteristic encountered in oxide-based memristors, constituting

another challenge. This variability comes in two main forms: intra-device and inter-device

variability, each with its distinct implications.

98
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Intra-device variability pertains to variations within a single memristor device. It manifests

in two primary ways: the noise in the resistance state and the cycle-to-cycle variability. The

first form of intra-device variability is associated with the resistance state of a memristor when

measuring current over time. This variation results from fluctuations in the charge near the fil-

ament inside the memristor. Here, figure 4.2a shows for example pink noise, characterized by

its power spectrum that varies inversely with the frequency. Another example of noise is called

Random Telegraphic Noise (RTN), illustrated in Fig. 4.2b, a random and abrupt fluctuation

of electrical states in devices, where charge carriers randomly switch between discrete energy

states due to localized defects or traps in the material [16]. The second aspect of intra-device

variability involves cycle-to-cycle variability. This means that if a memristor is subjected to the

same voltage pattern (whether it is a voltage sweep or a SET operation), the responses may dif-

fer across multiple cycles, as shown in Fig. 4.2c.

Figure 4.2: Intra-device variability. a: Pink noise in a device reported from [16]. b: Random
Telegraphic Noise (RTN) in a device, reproduced from [16]. c: Cycle-to-cycle vari-
ability on a single device for different set currents, reproduced from [17].

Inter-device variability concerns variations of conductance observed among different mem-

ristor devices, in both the LRS (see Fig. 4.2a) and the HRS (see Fig. 4.2b). This variability in-

cludes fabrication-related variations originating during manufacturing and intrinsic variabil-

ities inherent to the devices themselves, arising from their filamentary nature. Inter-device

variability can result from differences in material properties, device geometry, or other factors

that affect memristor behavior. Managing and mitigating inter-device variability is essential

for ensuring consistent and reliable performance in neuromorphic systems.

Asymmetry, non-linearity, intra-device and inter-device variabilities all pose significant chal-

4.2 HARDWARE PLATFORM 99

Figure 4.3: Intra-device variability. a: Variability of the conductance in the LRS measured on 16
384 devices under six different SET programming currents fitted with a normal dis-
tribution (blue line), reproduced from [18]. b: Variability in the HRS for 100 devices
fitted with a log-normal distribution, reproduced from [19].

lenges when implementing hardware-based neural networks that can learn. Traditional deep

learning algorithms rely on uniform and highly precise operations. The presence of variability,

whether within a single device or across multiple devices, can contradict these requirements.

As no model can reproduce all these different factors accurately, being able to test learning al-

gorithms on real data, with real memristors, is a big step towards on-chip learning. This chapter

will therefore focus on implementing the discretized version of Equilibrium Propagation pre-

sented in Chapter 3 with memristors.

4.2 Hardware platform

4.2.1 Presentation of the platform

This section presents the hardware platform designed by my colleagues Kamel-Eddine Harabi

and Clément Turck, which was used in our experiments. This section is adapted from [262].

The primary objective of this platform is to facilitate the exploration of memristor behavior

and support hardware-in-the-loop applications. To accomplish this, the platform can switch

between two distinct operating modes: a digital mode and an analog mode. The platform fea-

tures an array of 8k memristors, which were fabricated by LETI, and integrated in the backend

of line of CMOS circuitry designed by our team and manufactured by a global foundry.

Fig. 4.4a provides a simplified schematic representation of a 1T1R cell, showing the inte-

gration of analog multiplexers for mode-switching. Each cell within the array is controlled by

three mode-switching multiplexers: one for the source line, one for the bit line, and one for

the word line. Additionally, the integrated circuit includes peripheral circuitry that facilitates

memristor utilization in both digital and analog modes. Fig. 4.4b offers a simplified overview

100
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Figure 4.4: Fabricated Multimode Hybrid Memristor-CMOS Prototyping Platform. a simplified
schematic of a 1T1R cell connected to analog multiplexers, illustrating the concept
of switching the access mode. b schematic of the hybrid Memristor-CMOS die, con-
sisting of two-mode circuitry: analog mode (orange color) supplied by nominal volt-
age VDD5, and digital mode (blue color) supplied by VDD, VDDC, and VDDR.

of the complete circuit, highlighting crucial components.

The grey-colored blocks in the diagram denote shared circuitry between both modes. No-

tably, this includes the 128x64 1T1R memristor array, consisting of 8,192 individual memristor

devices, and the mode-switching multiplexers, designed using thick oxide transistors to ensure

compatibility with high voltages. Conversely, the blue-colored blocks represent digital-mode

circuits, designed using low-power, thin oxide transistors, and powered by digital nominal volt-

age (excluding level shifters). The orange-colored blocks represent analog-mode circuits, also

designed using thick oxide transistors.

This thesis predominantly revolves around the utilization of the analog mode, rendering

digital mode circuitry beyond the scope of this discussion. For comprehensive insights into the

digital mode’s functionalities, please refer to Kamel-Eddine Harabi’s work [262, 263].

The integrated circuit layout and the optical microscopy image are presented respectively

in Figs. 4.5a and c. Upon activation of the analog mode, the digital circuits are deactivated,

and the connections within the memristor array are switched to the analog circuitry. In this

mode, shift registers take on the role of configuring input multiplexers, enabling direct access

to the analog state of the memristors (see Fig. 4.5b). Each word line, bit line, and source line

is connected to one of two analog InOut Pads. In most cases, one of these analog InOuts re-

4.2 HARDWARE PLATFORM 101

Figure 4.5: Fabricated Multimode Hybrid Memristor-CMOS Prototyping Platform. a layout
view, b Schematic of the analog mode circuitry, with shift registers selecting inputs
via Multiplexers, which consist of analog MUXs connected to SL, BL, and WL ter-
minals. Each MUX is controlled by a shift register, to choose one of the two analog
inputs. c Optical microscopy photograph.

mains grounded. These connections offer the flexibility to link the platform to external equip-

ment, such as the Keysight B1530, a widely used pulse source and measurement unit, often

employed for memory device characterization. Fig. 4.5b illustrates a sample configuration that

enables the measurement of memristor conductance from the array. While operating in analog

mode, the platform leverages the 8,192 memristor devices to function as analog storage units.

However, due to the inherent limitation of having only two analog inputs, the array can exe-

cute analog Multiply-Accumulate (MAC) operations exclusively for Binarized Neural Networks

(BNN). Therefore, the implementation of multi-level analog MAC operations is achieved virtu-

ally through computer-in-the-loop experiments, relying on measurements from each device.

This analog mode represents an important hardware platform, enabling the exploration of

various aspects of memristor behavior and its potential applications, in particular for neuro-

morphic computing.

4.2.2 Memristors details

Memristors are fabricated on top of exposed vias and are composed of a TiN/HfOx/Ti/TiN

stack. The active HfOx is deposited by atomic layer deposition and is 10 nm thick. The Ti

layer is also 10 nm thick, and the memristor structure has a diameter of 300 nm. The structure

of the stack is represented in Fig.4.6a. The scanning electron microscopy image of such a stack

is shown in Fig. 4.6b.

102
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Figure 4.6: a Stack of the HfOx memristor used. b Scanning electron microscopy image of a
memristor in the back end of line of the hybrid memristor/CMOS process, repro-
duced from [20].

4.2.3 Experimental setup

The experimental setup depicted in Fig. 4.7 is as follows: a PCB routes a microcontroller unit

(STM32 F747ZGT6 on a test card Nucleo F747ZG) and measurement equipment (two DC Sup-

ply Sources and Keysight B1530) with the packaged die.

The first DC source applies VDD5 (5V) to the chip, whereas the other DC source applies

VDD, VDDR, VDDC, all equal to 1.2 V. The WGFMUs of the Keysight B1530 is used as a voltage

pulse source, and a measurement equipment at the same time.

Figure 4.7: Experimental setup.

A code controls the microcontroller to program the set and reset configurations, presented

in Fig. 4.8.

The voltage Vin1_col is always connected to the ground. The voltage Vin2_row will be ref-

erenced as Vg , because it controls the transistor gate, whereas the other voltage Vin2_col is

4.2 HARDWARE PLATFORM 103

Figure 4.8: Set and Reset configurations

referenced as Vcol . Depending if a measurement is in set or reset mode and a device R or Rb is

selected, the microcontroller adapts the location of voltage applications.

4.2.4 Measurements

An electroforming step is necessary to induce the creation of an oxygen vacancy filament. After

forming, the conductances have decreased from the megaOhms range into a few kiloOhms

(typically 30 kΩ).

Ten cycles of hard set and hard reset are needed to stabilize the switching of the devices.

Parameter values are summarized in Table 4.1

Vcol (V) Vg (V) pulse length (µs)
Read 0.2 3 100
Forming 2.4 2.8 10
Set 2.0 2.5 50
Hard reset 2.0 4.5 1
Weak reset 0.9 4.5 0.6

Table 4.1: Parameters used during the measurements.

The weak RESET regime is characterized by a gradual decrease in the conductance of mem-

ristors when applying pulses. This phenomenon is shown in Fig. 4.9a, where the conductance

decreases almost linearly with the number of pulses. In this work, we will only focus on this

specific regime. However, not all memristors behave in such an ideal case. Figure 4.9b shows a

case were a memristor reaches a noisy non-linear regime, corresponding to low conductances.

The conductance evolution of 314 devices during weak reset is plotted in Fig. 4.9c. The variabil-

ity of the devices is apparent here. Some conductance curves show a slight decrease, whereas

others show a steeper slope. Low conductance regimes are very noisy, and would not be fit for

computing.

These measurements are used throughout this chapter. They are used in the learning pro-

cess to determine the evolution of the weights when pulses are applied to synapses.

104
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Figure 4.9: a: Example of synaptic plasticity in a memristor. b: Example of a non-linear regime
in a memristor c: Conductances of 314 devices.

4.3 Setting the problem

4.3.1 What will be done in hardware, what will be done in software

The hardware platform presented in the previous section cannot be used to perform inference

by taking advantage of Ohm’s and Kirchhoff’s laws as was explained in Chapter 1 section 1.3.2,

as each device has to be accessed individually.

Our choice is to measure devices, store the measurements, and then use the experimental

data to simulate the half-simulation-half-experiment learning process. In this process, neurons

are fully software, and their states are computed similarly to Chapter 3. Synapses, however, are

based on real experimental data, and gradient computations are made on a computer.

4.3.2 Definition of the weights

The weights in Equilibrium Propagation are fully software-based and have no dimension. When

implementing this algorithm with real devices, there exist multiple choices regarding the synapse

definition. As the weak set regime is complicated to obtain in our devices, only the weak reset

regime is used. That necessarily means that two different devices have to be used per synapse.

These two different memristors are named BL and BLb. Two different options are studied in

this manuscript.

4.3 SETTING THE PROBLEM 105

Linear difference of conductances:

W l =αl (GBLb −GBL) , (4.1)

where l refers to the layer, W the weight, G the conductance, and α is a strictly positive floating

number. In this case, the scale factor α has the same dimension as resistance and can com-

pensate for the small values of the conductances. This definition is the typical one chosen for

memristor crossbars.

Logarithmic difference of conductances:

W l =αl (
l og10 (GBLb)− log10 (GBL)

)
, (4.2)

where l refers to the layer, W the weight, G the conductance, and α is a strictly positive floating

number. Contrary to the previous, the scale factor α has no dimension here but can also scale

the amplitude of the weights. This definition is the one chosen in Ref. [264].

The hyperparameter α can be different for both layers. It scales at the same time the values

of the weights and the effect of a pulse on the weights’ values. In both cases, when a pulse is

applied to memristor BL, the weight increases, and when a pulse is applied to memristor BLb,

the weight decreases. The choice of solely relying on the RESET process also means that when

memristor BL or memristor BLb has reached its high resistance state, the value of the weight

can not be tuned freely anymore. This limits the number of pulses that can be applied to mem-

ristors during learning.

4.3.3 Discretization and learning procedure

To tune the conductance of memristor devices, voltage pulses of identical amplitude are ap-

plied. Specifically, we select a range of -1, 0, or 1 as the number of pulses to use. Here, a "pos-

itive" pulse corresponds to the application of a pulse to the device BL of the synapse, whereas

a "negative" pulse is applied to the BLb device of the same synapse. This choice necessitates

a gradient discretization step to convert the continuous updates into discrete ternary values.

This particular step has been discussed extensively in Chapter 3. A ternary approach without

probabilistic updates, presented in section 3.6.1.1, is chosen in the following work, as it would

be the easiest to implement in hardware. This approach in the case of ideal memristor devices

is studied in section 3.6.1.2.

To test our idea, we use the following methodology. Each synapse gets randomly assigned

two numbers between 1 and 314 (the number of memristors measured), representing the two

106
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

memristors and their corresponding experimental data. The weight initialization is determined

by different elements: the measurement data, the random numbers assigned to each synapse,

the scale factors α1 and α2 (corresponding to each layer), and the choice of weight definition

(linear of logarithmic). A pulse tracking variable, called t, is initialized to zero for all devices.

Examples of handwritten digits are presented to the network, and both the free phase and

the nudge phase are computed thanks to the weights based on real data. A continuous-valued

gradient is obtained with the EqProp algorithm. This gradient is discretized into a number

of pulses to apply. The pulse tracking variable t is updated by adding these new pulses. The

conductance of each device is then read in the measurement data as G(t), and all weights are

updated.

This process is repeated until the end of learning is reached.

4.3.4 Methods

The results in this chapter are obtained using the time-dynamic EqProp framework presented

in the previous chapter. The algorithm is implemented in Python, using the numba just-in-

time compilation framework to accelerate the computation time on CPU. The Modified Na-

tional Institute of Standards and Technology (MNIST) database is used, composed of 28x28

images of digits and their corresponding labels, ranging from 0 to 9. In this case, the pixel val-

ues, ranging from 0 to 255 are scaled between 0 and 1. The labels are one-hot encoded. The

MNIST database is imported using the sklearn Python library, before being shuffled with a seed

equal to 20. Then, the dataset is split into two different sets: the training set composed of the

first 56,000 images, and the validation set of the following 7,000 images.

If nothing is specified, the mini-batch size is 50. The free phase is made of 30 iterations, the

nudge phase of 10 iterations, with a time step of 0.5. The nudging factor β is fixed at 0.4, and

its sign varies randomly as in Scellier’s and Bengio’s initial work [138]. The activation function

is the hard sigmoid, with neuron states clamped between 0 and 1, as in the initial EqProp work.

Four random matrices D1
BL , D1

BLb of size 512x784 and D2
BL , D2

BLb of size 10x512 all composed

of integers ranging from 0 to 313 are created to assign each synapse with two real memristor

measurements. Biases are initialized at 0 and are not learned. Each result consists in an average

over ten runs, and the standard deviation is also shown as a lighter area around the mean value.

4.3.5 Challenges

Different points have to be taken into account. All the different hyperparameters have to be

tuned to reach the best accuracy possible, which is more challenging as more parameters exist

in discretized EqProp.

For all 314 devices, we only have 5,000 datapoints. If, during learning, a memristor reaches

4.4 CONTROLS 107

a number of pulses of 4,999, which corresponds to the last experimental data point, the device

is not updated anymore. We call this phenomenon saturation, but it does not correspond to

any physical mechanism. It is a simulation artifact that has to be avoided. During learning, this

saturation is checked at each epoch. If it becomes non-zero, the computation is truncated as

the following epochs are considered wrong.

4.4 Controls

First, different studies are performed to check the accuracy in the case where no error propa-

gation takes place: the single-layer perceptron and the 3-layer network with a frozen first layer.

All these simulations are performed with the linear conductance difference definition of the

weights.

4.4.1 Perceptron

First, let us study the perceptron case. The network is a fully connected network of dimensions

784-10. The maximum purely software accuracy on MNIST for such a network is of 88 %. The

best results for the hardware-based version is presented in Fig. 4.10.

Figure 4.10: Performance for a perceptron on the MNIST task, obtained for a network of size
784-10 and parameters η= 0.1, α= 2000, θ = 0.002.

The best accuracy is then 78.1 %. This is worse than the ideal version, and this accuracy

degradation is caused by inter-device variability and also arises from the noisy behavior of the

memristors as a function of the number of pulses.

108
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

4.4.2 One-hidden layer network with first layer frozen

The network used is now a fully connected two-layer network with layers of dimensions: 784-

512-10. All the weights are initialized as presented in the Method section (4.3.4), with experi-

mental data. The learning rate of the first layer is zero, but the scale factorα1 can be tuned. The

result is shown in Fig. 4.11.

Figure 4.11: Performance obtained with a random frozen first layer with parametersη1 = 0.0,
η2 = 0.001, θ = 0.5e −5, α1 = 4000, α1 = 3000.

The best accuracy obtained is now 70.8 %, which is worse than in the perceptron case. This

might be caused in parts because of the lower number of tunable synapses in this case than

in the perceptron case. Contrary to the software case, the training accuracy does not always

increase, as starting from epoch 5 both accuracies start to decrease. This is caused by some

devices reaching the noisy or non-linear regime. After too many epochs, the learning can be

considerably degraded because of this reason.

4.5 Results for a one-hidden-layer network

The network used is a fully connected one-hidden-layer network with layers of dimensions:

784-512-10. In this section, we set the learning rate η2 to zero for the second layer. In this con-

figuration, learning is still driven by error propagation, and the task of hyperparameter tuning

is simplified. Specifically, modifying the scale factor of the second layer, denoted as α2, solely

influences the weight initialization of the second layer. Notably, this configuration yields the

best results. Unless mentioned, the definition of the weights is the linear difference of conduc-

tances.

4.5 RESULTS FOR A ONE-HIDDEN-LAYER NETWORK 109

4.5.1 Accuracy obtained

The resulting accuracy, presented in Fig. 4.12 reaches 91 % accuracy, which is a clear improve-

ment compared to the perceptron, and frozen first layer cases presented in the previous sec-

tion.

Figure 4.12: Best performance obtained with the weights defined as the linear difference of
conductances and parameters η1 = 0.2,η2 = 0,α1 = 5000,α2 = 5000,θ = 0.0002.

This presents a significant achievement as memristors are very noisy and show a big inter

and intra-device variability. Moreover, the non-linearity presents a hindrance to learning.

4.5.2 Hyperparameter tuning

To reach such an accuracy, hyperparameter tuning was necessary. The different roles and ef-

fects of the hyperparameters are presented in this section.

4.5.2.1 Threshold

The discretization parameter, the threshold θ, plays an important role in hyperparameter tun-

ing. Figure 4.13 presents four different validation accuracies for different threshold parameters,

corresponding to the range of thresholds that give good results. The results shown in Fig. 4.12,

presenting the best performance, correspond to the orange curve θ = 0.0002 in Fig. 4.13.

When the threshold is high (green curve, θ = 0.00025), fewer devices are updated, and the

devices updated are often the same ones. As a consequence, the validation accuracy does not

reach a high value before the saturation issue comes up. However, because the same devices

are always updated, the non-linear noisy regime limits the performance and the accuracy is

110
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Figure 4.13: Impact of the variation of the threshold θ on the performance. The weights are
defined as the linear difference of conductances and the parameters used are η1 =
0.2,η2 = 0,α1 = 5000,α2 = 5000.

not as good as for θ = 0.0002.

When the threshold is low (blue curve, θ = 0.00015), more devices are updated at the same

time with a single pulse. As most devices undergo the same update, the information of the free

and nudge phases is not optimally learned by the network. As more epochs occur, numerous

devices enter the non-linear and noisy regime, and the performance gets degraded. This ex-

plains the decrease in accuracy that can be observed starting from epoch 13.

4.5.2.2 Scale factors of the first layer

One of the differences between Chapter 3 and Chapter 4 is the introduction of scale factors in

the definition of the weights. These are hyperparameters that need to be tuned. In this section,

we study the influence of the scale factor α1 on the performance of the network.

Figure 4.14: Impact of the variation of the scale factor of the first layer α1 on the performance.
The weights are defined as the linear difference of conductances and the parame-
ters used are η1 = 0.2,η2 = 0,α2 = 5000,θ = 0.0002.

4.5 RESULTS FOR A ONE-HIDDEN-LAYER NETWORK 111

The parameter α1 scales the amplitude of the weights of the first layer. By doing so, it also

changes the effect one pulse has on the weight value (this is referred to as the speed v in Chapter

3). In Chapter 3, the speed v was linked to the threshold parameter θ. Here, the speed between

pulse t and pulse t +1 would be v1(t) =α1 · (G(t +1)−G(t)).

The results are shown in Fig. 4.14, presenting the range of α1 giving good accuracies. The

optimized scale factor α1 corresponding to Fig. 4.12 is α1 = 5000 shown with the orange curve.

For a fixed threshold θ, if the scale factorα1 is high, then the weights have a big amplitude. This

means that the continuous-valued gradients ∂L
∂Wi j

get smaller, and after discretization, fewer

pulses are applied. This leads to a smaller accuracy, as shown by the red curve corresponding

toα1 = 9000. If the scale factorα1 is too low, then the continuous-valued gradients ∂L
∂Wi j

get big-

ger and this leads to a higher number of updates. If updates are applied to too many synapses,

the network does not learn as much as in the previous case. This is shown by the blue curve

corresponding to α1 = 3000.

4.5.2.3 Scale factor of the second layer

We previously fixed the learning rate of the second layer to zero. This makes tuning the scale

factor of the second layer α2 easier, as this parameter will only impact the initialization of the

weights, which remain fixed during learning.

Figure 4.15: Impact of the variation of the scale factor of the second layer α2 on the perfor-
mance. The weights are defined as the linear difference of conductances and the
parameters used are η1 = 0.2,η2 = 0.0α1 = 5000θ = 0.0002.

The results are presented in Fig. 4.15, showing the range of α2 that gives good accuracies.

The result corresponding to the best accuracy presented in Fig. 4.12 is plotted here as the or-

ange curve with α2 = 5000. When α2 is low, the weights of layer two are small, and the error

signal does not back-propagate as well (blue curve corresponding to α2 = 4000). This leads to

a lower performance. When the scale factor α2 is big, the weights of the first layer are updated

more often, pushing them to the non-linear noisy regime. This explains the lower accuracy that

112
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

can be observed with the blue curve(α2 = 6000).

4.5.3 Comparison between different definitions of the weights

Two different definitions of the weights have been presented in section 4.3.2: the linear differ-

ence of conductances and the logarithmic difference of conductances. Until this point of the

study, only the linear difference of conductances has been considered. In this section, we com-

pare the results of both definitions.

Figure 4.16: Comparison of the two different definitions of the weights. a: Best accuracy ob-
tained with a linear definition of the weights and parameters η1 = 0.2,η2 = 0,α1 =
5000,α2 = 5000,θ = 0.0002. b: Best accuracy obtained with a logarithmic definition
of the weights and parameters η1 = 0.2,η2 = 0,α1 = 1.2,α2 = 1.0,θ = 0.0003.

Figure 4.16a shows the previous result of Fig. 4.12 based on the linear difference of conduc-

tances. The accuracy reaches 91%. The results obtained for the logarithmic difference of the

conductances are presented in Fig. 4.16b. The accuracy reaches 89.7 % which is significantly

worse than in the linear difference case. This can be explained by considering that the unde-

sired noisy non-linear regime, which we aim to avoid due to its negative impact on learning,

primarily occurs at low conductance levels. Consequently, the use of a logarithmic weight defi-

nition tends to accentuate the distinction between memristors that remain outside this regime

and those that enter it (for pulses less than 5000).

The experimental data of the non-volatile memristors used in our simulations is plotted in

two different ways in Fig. 4.17 in order to highlight the point discussed above. Figure 4.17a

presents the conductance G as a function of the number of pulses, whereas Figure 4.17b dis-

plays the logarithm of the conductance log10(G). When we examine the conductances follow-

ing the application of 4999 pulses in both graphs, distinct behaviors emerge. When conduc-

tances exit the linear regime, their corresponding curves are notably closer to the bottom when

4.5 RESULTS FOR A ONE-HIDDEN-LAYER NETWORK 113

Figure 4.17: a: Plot of the 314 different conductances evolution. b: Plot of the logarithm of the
314 different conductances evolution. Both scales have been adjusted to align with
high conductance states.

represented using log10(G) as opposed to the conductance G . These two scenarios show that

the logarithmic representation amplifies the contrast in conductance behaviors.

4.5.4 Improving the accuracy

One challenge affecting performance is that devices enter a highly non-linear and noisy regime

at low conductances. To enhance the accuracy, we propose the following strategy: if the algo-

rithm has determined that one pulse has to be applied, the conductance of the corresponding

memristor is read. If its value is higher than a certain threshold Gth , a pulse is indeed applied.

If the conductance falls below this threshold Gth , no pulse is applied.

Results are shown in Fig. 4.18 for both the linear difference of weights (Fig. 4.18a) and log-

arithmic difference of weights (Fig. 4.18b) for three different thresholds: Gth = 1
16000 S (green),

Gth = 1
18000 S (red) and Gth = 1

20000 S (purple). Both results are obtained with the same condi-

tions as in Fig.4.16 but yield different accuracies.

Let us first consider Fig. 4.18a. The threshold Gth = 1
20000 gives a test accuracy of 91.5 %.

The two other conductance thresholds Gth = 1
16000 S and Gth = 1

18000 S give almost the same

accuracy: respectively 91.7% and 91.75%. For all three cases, introducing a threshold on the

conductance value yields better results than in the case without a threshold where the accu-

racy was 91% (see Fig. 4.16a). However, changing the value of the threshold does not have a

114
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Figure 4.18: Comparison of the two different definitions of the weights when a conductance (or
resistance) threshold is applied. a: Accuracies obtained with a linear definition of
the weights and parameters η1 = 0.2,η2 = 0,α1 = 5000,α2 = 5000,θ = 0.0002. b:
Accuracies obtained with a logarithmic definition of the weights and parameters
η1 = 0.2,η2 = 0,α1 = 1.2,α2 = 1.0,θ = 0.0003.

very significant impact on the resulting accuracy.

Let us now consider Fig. 4.18b, where the logarithmic difference of conductance is used.

The accuracy with the same parameters was 89.5 % when no threshold was introduced (see

Fig. 4.16b). Applying a threshold has a an important impact on the accuracy as with Gth = 1
20000

the accuracy already reaches 91.14 % accuracy (green curve). Moreover, reducing the threshold

improves even more the accuracy, as shown when the threshold is reduced to Gth = 1
18000 (red

curve) and the accuracy reaches 91.53 %. Further reducing the threshold keeps increasing the

accuracy, as when Gth = 1
16000 the accuracy reaches 92.16%, the highest accuracy obtained in

our experiments.

Whereas the linear difference of weights gave better results when no threshold was applied,

this is no longer the case when a conductance threshold is used.

4.6 Conclusion

In this chapter, we studied a realization of Equilibrium Propagation (EqProp) using memris-

tor data. EqProp, a learning algorithm that takes advantage of the principles of physics, has

emerged as a promising candidate for hardware implementation, as it solves the non-locality

issue of BackPropagation. The challenge we addressed in Chapter 3 was the need to discretize

gradient updates to suit hardware applications. This step is vital to bridge the gap between

theory and practical implementation.

4.6 CONCLUSION 115

In this chapter, we demonstrated that thanks to an adapted hardware platform enabling

individual access to memristors, we could exceed 91% on the MNIST dataset after hyperpa-

rameter tuning. The fact that learning was possible with very noisy devices showing a high

variability and non-linearity underscores the viability of memristors as essential components

in the pursuit of neuromorphic computing hardware. Two studies were performed to verify

the benefits of error propagation in these networks: a single-layer perceptron which obtained

78.1 % accuracy and a two-layers network with a frozen first layer which gave 70.8 % accuracy.

We have studied two different definitions of the weights called the linear difference of conduc-

tances and the logarithmic difference of conductances. We have found that the linear definition

yields better results than the logarithmic one. To improve the previous results, we investigated

the impact of limiting maximum resistance. We observed that such limitations exerted a more

substantial influence on linear conductance differences compared to logarithmic ones. This

observation paves the way for future optimizations in the design and utilization of memristive

devices.

To further improve the results, different paths could be looked upon. The memristor tech-

nology used in this work has not been optimized for analog use. In particular, the linearity of

the devices could be improved, which would give better performance. A linear weak set regime

could also be optimized, which would mean only one device per synapse would be necessary,

improving the scalability. Another approach would be to modify the EqProp algorithm to ren-

der it more robust against variability and noise. In sum, this work emphasizes the importance

of a comprehensive hardware-software co-design approach for optimal performance.

116
CHAPTER 4: IMPLEMENTATION OF EQUILIBRIUM PROPAGATION WITH MEMRISTOR

SYNAPSES

Conclusions and Future Work

118 CONCLUSIONS AND FUTURE WORK

Summary

In our digital age, information technology has been a driver of global progress. Yet, it comes at

a significant energy cost. The increasing demand for data-intensive services, such as artificial

intelligence and cloud computing, has highlighted the urgent need for energy-efficient com-

puting solutions that align with climate goals while fostering innovation in the field. Comput-

ers, the result of centuries of scientific evolution, have propelled us into an era of exponential

growth in computational power and memory. However, new challenges are now present, in

particular the soaring energy demands associated with the rise of deep learning.

Neuromorphic computing, drawing inspiration from the human brain, holds promise as an

avenue for energy-efficient hardware. Learning algorithms and hardware neurons and synapses

have to be co-designed to obtain the most efficient systems. Memristors, which exhibit com-

patibility with CMOS technology, offer efficiency, speed, non-volatility for synapses, and spik-

ing behavior for neurons. The investigation of such emerging technologies and their compati-

bility with learning algorithms is an important step to realizing on-chip learning. In this work,

we pursued diverse approaches:

• Device Modeling and Characterization: As Spiking Neural Networks offer the promise

of low-energy learning, we explored emerging neuron devices as alternatives to CMOS.

Scalable devices that replicate biological behaviors offer the potential to create intricate

systems that mimic the brain. Spiking memristor neurons based on NbOx have been

studied in Chapter 2.

• Adapting Learning Algorithms for Hardware Implementation: Back-Propagation is not

an adapted algorithm for learning in hardware because of the non-locality of the up-

dates. Equilibrium Propagation, an algorithm rooted in physics rather than calculus,

opens the door to harnessing the inherent physics of hardware systems for on-chip learn-

ing. Adapting a pure software algorithm for future hardware implementation is a pivotal

step toward on-chip learning, and is studied in Chapter 3.

• Training Learning Algorithms with Real Hardware Data: Real devices are characterized

by noise, variability, non-linearity, and behavior that theoretical models often fail to cap-

ture. Thus, we emphasize the importance of working with experimental data to train

neural networks, particularly when targeting on-chip applications. Chapter 4 aims at

training a neural network where synapses are based on real devices, to pave the road for

on-chip learning.

Chapter 2 focuses on the characterization and modeling of memristor neurons consist-

ing of volatile NbOx filamentary memristors. These memristors emerge as promising neu-

ron candidates for several reasons, such as their scalability and their compatibility with non-

volatile memristors and Complementary Metal-Oxide-Semiconductor (CMOS) technologies.

CONCLUSIONS AND FUTURE WORK 119

The Pt/Nb205/Ti/Pt stack demonstrates I-V characteristics corresponding to a current-controlled

S-shaped Negative Differential Resistance and to voltage-controlled threshold switching, phe-

nomena that can be effectively modeled by considering the Poole-Frenkel conduction. The

dynamic properties of such devices are particularly interesting, as their spiking behavior is

reminiscent of biological neurons. The shape of the spikes is characterized by an initial de-

polarization followed by hyperpolarization due to the presence of an inductance. These de-

vices show behaviors such as Leaky-Integrate-and-Fire (LIF) characteristics, all-or-nothing-

firing, and phasic bursting. We investigate the origin of this last behavior with a non-linear

dynamics model. It emerges as a complex interplay between an unstable fixed point (limit cy-

cle) and a stable fixed point (equilibrium), originating from the Poole-Frenkel effect. In this

Chapter, we have both fabricated and characterized these neurons, and we have developed a

simple model based on non-linear dynamics that accurately reproduces the neural behaviors

mentioned above. This is a particularly interesting tool when designing spiking neuromorphic

computing systems.

Chapter 3 takes a different approach to neuromorphic computing, this time exploring the

adaptation of a learning algorithm, Equilibrium Propagation (EqProp), to physical systems. In

particular, we focus on the challenge of handling continuous-valued gradients in a memristor-

based environment, more adapted to trains of pulses. To tackle this challenge, we study dif-

ferent approaches to gradient discretization. We first choose to explore ternary discretiza-

tion, where all synapses above or below a threshold are updated. This approach gives accu-

racies closely resembling those of the conventional EqProp algorithm (99.06 %). During this

exploration, we examine the role of hyperparameters and their impact on the network’s per-

formance. Another approach we explore involved introducing probabilities into the update

process. This modification not only enhances performance but also results in a pulse distribu-

tion similar to the ideal non-discretized scenario. To further analyze the impact of discretiza-

tion, another approach is taken consisting in more quantized states for gradient discretization.

While this path shows potential and surpasses the non-probabilistic ternary approach in per-

formance, it comes with a trade-off – a wider pulse spread and ultimately, more energy con-

sumption than the probabilistic ternary approach.

In Chapter 4, we now focus on hardware synapses for learning. To do so, we use a hardware

platform consisting of HfOx filamentary memristors. These devices, which can be individu-

ally accessed, serve as the foundation for experiment-based learning, whereas neurons remain

purely software-based. Firstly, control simulations are performed, beginning with the evalua-

tion of a single-layer perceptron and a two-layer network with frozen weights in the first layer.

These initial experiments yielded accuracy rates of 78.1% and 70.8%, respectively. In a second

time, we train a one-hidden-layer fully connected network. Two distinct weight definitions

are studied: the linear difference of conductances and the logarithmic difference of conduc-

tances. We obtain that the linear definition outshines its logarithmic counterpart, with 91%

accuracy rate compared to the latter’s 89.5% respectively. To improve these results, memristors

120 CONCLUSIONS AND FUTURE WORK

are then only written when their conductances falls is above a threshold, to prevent memristors

from reaching a low-conductance high-noise non-linear regime. With this method, the linear

weight definition reaches 91.75% accuracy, while the logarithmic version soars to an impressive

92.14%, constituting our best result.

Perspectives

While EqProp demonstrates spatial locality, there is a need to consider the temporal aspect,

particularly in storing the states of the network during different phases and nudging phases.

This is a significant challenge when implementing EqProp in hardware. In Chapter 4, we showed

the possibility of implementing EqProp with real memristor synapses, a critical step towards

hardware realization. However, it is important to note that in this implementation, neurons

were still software-based. A potential avenue for further research is to explore a fully hardware-

based implementation that includes both memristor synapses and neurons. Another intrigu-

ing prospect is the EqSpike algorithm already mentioned in this thesis (sections 1.2.2.2 and

3.2) [153]. EqSpike offers the advantage of being both temporally and spatially local, making

it an appealing variant of EqProp. This algorithm requires spiking neurons for a full hardware

implementation. Chapter 2 presented a memristor-neuron capable of numerous spiking be-

haviors, and it introduced a simple model that could exhaustively reproduce the real physical

behaviors. Therefore, it would be valuable to explore the integration of EqSpike with mem-

ristor neurons using this model. This would mean first exploring the frequency response of

memristors, which could provide insights into their dynamic behavior, further enhancing our

understanding of these devices and their potential for neuromorphic computing applications.

Frequency response of a memristor neuron

This section provides work on the same NbOx neurons as described in Chapter 2, but the fre-

quency response of these memristors is here studied. The experiments presented here have

been realized by an intern, Thomas Bersani–Veroni.

Method

In this section, memristors are voltage-controlled utilizing a triangular voltage input generated

through with an Agilent instrument.

Figure 4.19a shows the circuit used. The load resistance Rload is 4kΩ. To accurately deter-

mine the current passing through the memristor, we use an oscilloscope of impedance Rout =
50Ω to measure the voltage. Furthermore, to ensure precise interpretation of the results, we

took measures to eliminate any inductance components from our setup, therefore removing

the hyperpolarization-like characteristic of the spike shape.

An example of measurement is presented in Fig. 4.19b. It is worth noting that the slope

CONCLUSIONS AND FUTURE WORK 121

Figure 4.19: a: Schematic of the circuit used in these experiments.b: Example of result for
Vs,peak = 3.0 and an input frequency of 1 MHz.

of the triangular waveforms was deliberately constrained due to the DC setup’s limitations in

handling extremely rapid voltage variations. The rise and fall times of the triangles have been

fixed to 0.5µs, hence limiting the maximum frequency of the input to 1 MHz.

Experimental results

In this section, we present the outcomes of our experiments designed to investigate the rela-

tionship between input and output frequencies in our memristor-based system.

We examine how the output frequency fout varies as a function of the input frequency fi n

for different peak-to-peak voltages. The results are presented in Figure 4.20. This analysis is

crucial to understanding the behavior of our memristor-based system when subjected to dif-

ferent input conditions. Initially, for low input frequencies and for all voltage conditions, the

device does not spike. As the frequency increases, the device frequency becomes non-zero

and increases. Because of the limitation in frequencies (due to the shape of the input), both

curves in Figs 4.20a and b seem truncated. On the other hand, for higher voltages as the ones

presented in Figs. 4.20c and d, the output frequencies ends by matching the input one. An in-

teresting feature can be observed in Fig. 4.20c, where between 0.45 and 0.6 MHz for z voltage of

V = 3.5 V, the slope is of 0.5. This means that for every two input pulses, an output pulse occurs.

This phase locking behavior is the one displayed in Fig 4.19b.

122 CONCLUSIONS AND FUTURE WORK

Figure 4.20: Variation of the output frequency fout as a function of the input frequency
fi n for different peak-to-peak voltages.: Vs,peak = 3.0V b: Vs,peak = 3.25V c:
Vs,peak = 3.5V d: Vs,peak = 3.75V

Simulations

To better understand the phenomenon presented in Fig. 4.20, simulations are performed us-

ing the model presented in Chapter 2 and the parameters presented in Table 2.1. A triangular

input voltage of amplitude Vmax is applied with a frequency fi n called the input frequency. The

output frequency is measured for each different input frequency. The results are plotted in Fig.

4.21. Figure 4.21a shows the output frequency as a function of the input frequency, whereas

4.21b shows the frequency ratio fout

fi n
.

The resulting curve is akin to a devil’s staircase which can be found both in oscillator or

neuron models [265] [266] [194] , in electronics [267] or condensed matter physics [268]. The

plateaus correspond here to fractional numbers 1
3 , 1

2 , 2
3 , 3

4 , 4
5 , 5

6 , 6
7 , 7

8 , 8
9 , and demonstrate a fre-

quency lock-in of the output frequency depending on the input frequency.

The output frequency increases with the input frequency, and different modes or phase

locks-in can be observed. These results show that our nanoscale neuron is capable of exhibiting

sophisticated spiking neuron behaviors when using spiking inputs. This suggests that it is a

viable choice for implementing advanced spiking neural network concepts, such as EqSpike.

The next step towards a fully memristive implementation of EqSpike would then be to try to

learn using our memristor model.

CONCLUSIONS AND FUTURE WORK 123

Figure 4.21: a: Simulations of the output frequency fout as a function of the input one fi n . b:

Simulations of the frequency ratio fout

fi n
as a function of the input frequency fi n .

The parameters used are: peak-to-peak voltage Vs,peak = 2.06 V, load resistance
RL = 4 kΩ, frequency averaged over a time of T f = 0.0001 s and with a number of
points of N = 1000001. All the parameters of the model are the one presented in
Table. 2.1.

EqSpike preliminary results

EqSpike, introduced in both Chapters 1 and 3, stands out for its local updates in both time

and space, a characteristic that aligns with the spatial-temporal dynamics of biological neural

systems [153]. A promising future to bridge the gap between hardware and algorithmic ap-

proaches is to achieve a fully memristive-based implementation of EqSpike, by incorporating

memristor neurons and synapses. EqSpike has been designed with Leaky Integrate-and-Fire

neurons and has yet to be tested with other types of models or devices. As discussed in Chap-

ters 1 and 2, emerging technologies offer promising neuron candidates, and the devices ob-

tained show complex behaviors that can mimic neuronal behaviors. Therefore, to bridge the

gap between all chapters of this thesis, studying an implementation of EqSpike with the neu-

ron model developed in Chapter 2 is a promising lead to realize biomimetic neuromorphic

computing at low energy costs. The EqSpike algorithm is dimensionless, which implies that all

parameters must be adapted to real physical systems for practical implementation, and this is

a first challenge we aim to bring some answers to.

Simulations: methods

In our simulations, the state of each neuron is determined by two critical parameters: the volt-

age, denoted as V, and the temperature, denoted as T. To calculate these states accurately at a

given time point t, we employ the Runge-Kutta method of order 4.

Notably, memristor neurons within our simulation framework are computed using a current-

controlled framework, in the same context as the one studied in Chapter 2. In this context,

these neurons receive an input current and produce an output current as a result. To replicate

124 CONCLUSIONS AND FUTURE WORK

the application of a bias, we employ a modeling approach where a current is incorporated into

a neuron’s input.

All devices parameters are identical, and are the ones presented in Table 2.1. The parame-

ters of EqSpike used here are the following. The free phase and the nudge phase are obtained

using K f r ee = 60000 and Knud g e = 300000 points respectively, with a time step of d t = 0.67 ns.

The nudging factor β is chosen to be β = 5 · 10−10 V.s, and the learning rate for the weight is

η = 10 and the one for the bias is ηb = 0.4 · 10−9. The maximum target frequency is fixed to

fmax = 10 MHz. The output frequency ρ is computed over T = 10000 time steps. To compute ρ,

the current is binarized and fed to a leaky integrateor (VLI), with a leak factor of γLI = 1000000.

To obtain the derivative ρ̇, we delay the signal VLI by τ = 5000 time steps. To obtain the av-

erage of this derivative ρ̇av g , a low pass filter is implemented by computing the average over

N f i l t = 10000 time steps.

First results

Figure 4.22: Simulations when the label is zero. a: Comparison between inference before a
learning step and after a learning step. b: Current in the output device during
the free and nudging phases. c: Frequency of the output device during the free
and nudging phases. d: Values of ρ̇ and ρ̇av g during the free and nudging phases.
The parameters used are x1 = 0.00034091, x2 = 0.00041204, W1 = 0.38711533, W2 =
−0.04242794, b = 0.

To determine all the accurate parameters, a first step is to control that in a two-input neu-

rons, one-output neuron setup, the system can learn when an example is presented. Here, the

input is the same:x1 = 0.00034091A, and x2 = 0.00041204A. Figures 4.22 and 4.23 have all the

same parameters, inputs and weights, but in Fig. 4.22 the target is set to zero whereas for Fig.

CONCLUSIONS AND FUTURE WORK 125

4.23 the target is set to one.

Figure 4.22 corresponds to a target zero, which means that between the inference before

learning and the inference after learning,the frequency should have decreased. This is indeed

the case, as presented in Fig. 4.22a. Figure 4.22b shows the ouput device current, which has

a decrease in frequency in the nudge phase when the nudge factor β is applied, as shown in

Fig. 4.22c where the output frequency is plotted. Figure 4.22d shows ρ̇ and ρ̇av g , which are

negative because of the decrease in frequency needed.

Figure 4.23: Simulations when the label is one. a: Comparison between inference before a
learning step and after a learning step. b: Current in the output device during
the free and nudging phases. c: Frequency of the output device during the free
and nudging phases. d: Values of ρ̇ and ρ̇av g during the free and nudging phases.
The parameters used are x1 = 0.00034091, x2 = 0.00041204, W1 = 0.38711533,
W2 =−0.04242794, b = 0, η= 10, ηb = 0.4e −9.

Figure 4.23 shows the exact same plots but for a target of 1. This means that the output

frequency after learning is higher than the one before, as shown in Fig 4.23a.

In this section, we have explored implementation possibilities of the EqSpike algorithm

with memristor neurons, further in-depth studies are needed to train networks and assess the

robustness of this approach. Additionally, extending the research to integrate memristor neu-

rons and synapses, akin to Chapter 4’s study, presents a valuable future direction.

There are also broader research avenues to consider. At the device level, improving mem-

ristor devices for analog use, with linear set and reset characteristics and reduced variability,

can significantly improve network performance. From an algorithmic perspective, as outlined

126 CONCLUSIONS AND FUTURE WORK

in Chapter 4, adapting the Equilibrium algorithm to mitigate intra and inter-device variabil-

ities holds potential. Moreover, while this thesis has primarily focused on supervised learn-

ing with labeled datasets, future work could explore unsupervised or semi-supervised learning

with Equilibrium Propagation, addressing scenarios with limited or unlabeled data.

In conclusion, the convergence of highly parametrizable computing systems, especially

neuromorphic computing, with physics-grounded algorithms offers great potential for the ad-

vancement of ultra-low power AI. Investigating the implementation of Equilibrium, of EqSpike,

and enhancing algorithm robustness align with the increasing demand for efficient AI, promis-

ing innovative breakthroughs at the intersection of physics and artificial intelligence.

List of publications

Peer-Reviewed Journal Articles

✠ MARIE DROUHIN, SHUAI LI, MATTHIEU GRELIER, SOPHIE COLLIN, FLORIAN GODEL, ROBERT

G ELLIMAN, BRUNO DLUBAK, JUAN TRASTOY, DAMIEN QUERLIOZ and JULIE GROLLIER , “Char-

acterization and modeling of spiking and bursting in experimental NbOx neuron.” , Neuromor-

phic Computing and Engineering. p. 044008, 2023. doi:10.1145/3566097.3567944

Peer-Reviewed Conference Proceedings

✠

KAMEL-EDDINE HARABI, CLÉMENT TURCK , MARIE DROUHIN, ADRIEN RENAUDINEAU , THOMAS

BERSANI-VERONI, TIFENN HIRTZLIN, ELISA VIANELLO , MARC BOCQUET , JEAN-MICHEL POR-

TAL and DAMIEN QUERLIOZ , “A Multimode Hybrid Memristor-CMOS Prototyping Platform

Supporting Digital and Analog Projects” , Proceedings of the 28th Asia and South Pacific Design

Automation Conference, p. 184–185, 2023. doi:10.1088/2634-4386/ac969a

Conferences Without Proceedings

✠ MARIE DROUHIN, CLÉMENT TURCK, KAMEL-EDDINE HARABI, ADRIEN RENAUDINEAU, THOMAS

BERSANI-VERONI, ELISA VIANELLO, JEAN-MICHEL PORTAL, JULIE GROLLIER and DAMIEN QUER-

LIOZ, “Nanoelectronic implementation of Equilibrium Propagation” , Emerging Topics in Arti-

ficial Intelligence (ETAI).. 2023. Oral presentation.

✠ MARIE DROUHIN, CLÉMENT TURCK, KAMEL-EDDINE HARABI, ADRIEN RENAUDINEAU, THOMAS

BERSANI-VERONI, ELISA VIANELLO, JEAN-MICHEL PORTAL, JULIE GROLLIER and DAMIEN QUER-

LIOZ, “Adapting Equilibrium Propagation to physical systems” , Spintronics XVI 2023.. 2023.

Oral presentation.

✠ MARIE DROUHIN, SHUAI LI, MATTHIEU GRELIER, SOPHIE COLLIN, FLORIAN GODEL, ROBERT

G. ELLIMAN, BRUNO DLUBAK, JUAN TRASTOY, DAMIEN QUERLIOZ and JULIE GROLLIER, “Neu-

http://dx.doi.org/10.1145/3566097.3567944
http://dx.doi.org/10.1088/2634-4386/ac969a

128 LIST OF PUBLICATIONS

ronal behaviors in niobium oxide memristors” , AI, Neuroscience and Hardware: From Neural

to Artificial Systems and Back Again., 2022. Poster presentation.

✠ MARIE DROUHIN, SHUAI LI, MATTHIEU GRELIER, SOPHIE COLLIN, FLORIAN GODEL, ROBERT

G. ELLIMAN, BRUNO DLUBAK, JUAN TRASTOY, DAMIEN QUERLIOZ and JULIE GROLLIER, “Neu-

ronal behaviors in niobium oxide memristors” , MEMRISYS, 2022. Poster presentation.

Bibliography

[1] Ke Yang, Qingxi Duan, Yanghao Wang, Teng Zhang, Yuchao Yang, and Ru Huang. Tran-

siently chaotic simulated annealing based on intrinsic nonlinearity of memristors for

efficient solution of optimization problems. Science advances, 6(33):eaba9901, 2020.

[2] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton.

Backpropagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

[3] GPU devotes more transistors to data processing. https://www.moleculardevices.com/

applications/patch-clamp-electrophysiology/what-action-potential.

[4] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014

IEEE international solid-state circuits conference digest of technical papers (ISSCC), pages

10–14. IEEE, 2014.

[5] Action potential. https://www.moleculardevices.com/applications/patch-clamp-

electrophysiology/what-action-potential.

[6] Wikipedia: Excitatory synapse. https://en.wikipedia.org/wiki/Excitatory_synapse.

[7] Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

[8] Christopher A Del Negro, Chie-Fang Hsiao, Scott H Chandler, and Alan Garfinkel. Evi-

dence for a novel bursting mechanism in rodent trigeminal neurons. Biophysical journal,

75(1):174–182, 1998.

[9] Wenqiang Zhang, Bin Gao, Jianshi Tang, Peng Yao, Shimeng Yu, Meng-Fan Chang, Hoi-

Jun Yoo, He Qian, and Huaqiang Wu. Neuro-inspired computing chips. Nature electron-

ics, 3(7):371–382, 2020.

[10] Zongjie Shen, Chun Zhao, Yanfei Qi, Wangying Xu, Yina Liu, Ivona Z Mitrovic, Li Yang,

and Cezhou Zhao. Advances of rram devices: Resistive switching mechanisms, materials

and bionic synaptic application. Nanomaterials, 10(8):1437, 2020.

[11] Suhas Kumar, Xinxin Wang, John Paul Strachan, Yuchao Yang, and Wei D Lu. Dynamical

memristors for higher-complexity neuromorphic computing. Nature Reviews Materials,

pages 1–17, 2022.

https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential
https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential
https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential
https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential
https://en.wikipedia.org/wiki/Excitatory_synapse

130 BIBLIOGRAPHY

[12] Daniele Ielmini and H-S Philip Wong. In-memory computing with resistive switching

devices. Nature electronics, 1(6):333–343, 2018.

[13] Rui Liu, Debayan Mahalanabis, Hugh J Barnaby, and Shimeng Yu. Investigation of single-

bit and multiple-bit upsets in oxide RRAM-based 1t1r and crossbar memory arrays. IEEE

Transactions on Nuclear Science, 62(5):2294–2301, 2015.

[14] Valerio Milo, Artem Glukhov, Eduardo Pérez, Cristian Zambelli, Nicola Lepri, Mamath-

amba Kalishettyhalli Mahadevaiah, Emilio Pérez-Bosch Quesada, Piero Olivo, Christian

Wenger, and Daniele Ielmini. Accurate program/verify schemes of resistive switching

memory (RRAM) for in-memory neural network circuits. IEEE Transactions on Electron

Devices, 68(8):3832–3837, 2021.

[15] Jacopo Frascaroli, Stefano Brivio, Erika Covi, and Sabina Spiga. Evidence of soft bound

behaviour in analogue memristive devices for neuromorphic computing. Scientific re-

ports, 8(1):7178, 2018.

[16] Stefano Ambrogio, Simone Balatti, Vincent McCaffrey, Daniel C Wang, and Daniele

Ielmini. Noise-induced resistance broadening in resistive switching memory—part I:

Intrinsic cell behavior. IEEE Transactions on Electron Devices, 62(11):3805–3811, 2015.

[17] Thomas Dalgaty, Eduardo Esmanhotto, Niccolo Castellani, Damien Querlioz, and Elisa

Vianello. Ex situ transfer of bayesian neural networks to resistive memory-based infer-

ence hardware. Advanced Intelligent Systems, 3(8):2000103, 2021.

[18] Eduardo Esmanhotto, Tifenn Hirtzlin, Djohan Bonnet, Niccolo Castellani, Jean-Michel

Portal, Damien Querlioz, and Elisa Vianello. Experimental demonstration of multilevel

resistive random access memory programming for up to two months stable neural net-

works inference accuracy. Advanced Intelligent Systems, 4(11):2200145, 2022.

[19] Jiyong Woo, Tien Van Nguyen, Jeong Hun Kim, Jong-Pil Im, Solyee Im, Yeriaron Kim,

Kyeong-Sik Min, and Seung Eon Moon. Exploiting defective rram array as synapses of

htm spatial pooler with boost-factor adjustment scheme for defect-tolerant neuromor-

phic systems. Scientific Reports, 10(1):11703, 2020.

[20] Kamel-Eddine Harabi, Tifenn Hirtzlin, Clément Turck, Elisa Vianello, Raphaël Laurent,

Jacques Droulez, Pierre Bessière, Jean-Michel Portal, Marc Bocquet, and Damien Quer-

lioz. A memristor-based bayesian machine. Nature Electronics, 6(1):52–63, 2023.

[21] Data centres and data transmission networks. https://www.iea.org/energy-system/

buildings/data-centres-and-data-transmission-networks.

[22] Avita Katal, Susheela Dahiya, and Tanupriya Choudhury. Energy efficiency in cloud com-

puting data centers: a survey on software technologies. Cluster Computing, 26(3):1845–

1875, 2023.

https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks

BIBLIOGRAPHY 131

[23] Allan G Bromley. Charles Babbage’s analytical engine, 1838. Annals of the History of

Computing, 4(3):196–217, 1982.

[24] Scott McCartney. ENIAC: The triumphs and tragedies of the world’s first computer. Walker

& Company, 1999.

[25] PA Redhead. The birth of electronics: Thermionic emission and vacuum. Journal of

Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16(3):1394–1401, 1998.

[26] Michael R Williams. The origins, uses, and fate of the edvac. IEEE Annals of the History

of Computing, 15(1):22–38, 1993.

[27] John Von Neumann. First draft of a report on the EDVAC. IEEE Annals of the History of

Computing, 15(4):27–75, 1993.

[28] Charles J Bashe, Lyle R Johnson, John H Palmer, and Emerson W Pugh. IBM’s early com-

puters. MIT press, 1986.

[29] Nallur S Prasad. IBM mainframes: architecture and design. McGraw-Hill, Inc., 1989.

[30] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):52–59,

1997.

[31] Ethan Mollick. Establishing Moore’s law. IEEE Annals of the History of Computing,

28(3):62–75, 2006.

[32] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo

Villalobos. Compute trends across three eras of machine learning. In 2022 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.

[33] Raghubir Singh and Sukhpal Singh Gill. Edge AI: a survey. Internet of Things and Cyber-

Physical Systems, 2023.

[34] Yuanming Shi, Kai Yang, Tao Jiang, Jun Zhang, and Khaled B Letaief. Communication-

efficient edge AI: Algorithms and systems. IEEE Communications Surveys & Tutorials,

22(4):2167–2191, 2020.

[35] Michael Haenlein and Andreas Kaplan. A brief history of artificial intelligence: On the

past, present, and future of artificial intelligence. California management review, 61(4):5–

14, 2019.

[36] Anders Krogh. What are artificial neural networks? Nature biotechnology, 26(2):195–197,

2008.

[37] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5:115–133, 1943.

132 BIBLIOGRAPHY

[38] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psy-

chology press, 2005.

[39] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

[40] Frank Rosenblatt. Principles of neurodynamics: Perceptrons and the theory of brain mech-

anisms. Spartan books, 1962.

[41] Hans-Dieter Block. The perceptron: A model for brain functioning. i. Reviews of Modern

Physics, 34(1):123, 1962.

[42] Marvin Minsky and Seymour Papert. An introduction to computational geometry. Cam-

bridge tiass., HIT, 479:480, 1969.

[43] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations

by back-propagating errors. nature, 323(6088):533–536, 1986.

[44] John J Hopfield. Neural networks and physical systems with emergent collective compu-

tational abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[45] John J Hopfield. Neurons with graded response have collective computational prop-

erties like those of two-state neurons. Proceedings of the national academy of sciences,

81(10):3088–3092, 1984.

[46] John J Hopfield and David W Tank. “Neural” computation of decisions in optimization

problems. Biological cybernetics, 52(3):141–152, 1985.

[47] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural net-

works for perception, pages 65–93. Elsevier, 1992.

[48] Paul Werbos. Beyond regression: New tools for prediction and analysis in the behav-

ioral sciences. PhD thesis, Committee on Applied Mathematics, Harvard University, Cam-

bridge, MA, 1974.

[49] Werbos. Backpropagation: Past and future. In IEEE 1988 International Conference on

Neural Networks, pages 343–353. IEEE, 1988.

[50] David B Parker. Learning-logic. Tech. Rep., 47, 1985.

[51] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal repre-

sentations by error propagation, 1985.

[52] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks

are universal approximators. Neural networks, 2(5):359–366, 1989.

BIBLIOGRAPHY 133

[53] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learn-

ing, volume 4. Springer, 2006.

[54] Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

[55] Zoubin Ghahramani. Unsupervised learning. In Summer school on machine learning,

pages 72–112. Springer, 2003.

[56] M Emre Celebi and Kemal Aydin. Unsupervised learning algorithms, volume 9. Springer,

2016.

[57] Trevor Hastie, Robert Tibshirani, Jerome Friedman, Trevor Hastie, Robert Tibshirani, and

Jerome Friedman. Unsupervised learning. The elements of statistical learning: Data min-

ing, inference, and prediction, pages 485–585, 2009.

[58] O Chapelle, B Schölkopf, and A Zien. Semi-supervised learning. 2006.

[59] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. 2005.

[60] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine

learning, 109(2):373–440, 2020.

[61] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and

Fillia Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2,

2020.

[62] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang.

Self-supervised learning: Generative or contrastive. IEEE transactions on knowledge and

data engineering, 35(1):857–876, 2021.

[63] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:

A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[64] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[65] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747, 2016.

[66] Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations

simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[67] Haskell B Curry. The method of steepest descent for non-linear minimization problems.

Quarterly of Applied Mathematics, 2(3):258–261, 1944.

[68] Radwa Elshawi, Mohamed Maher, and Sherif Sakr. Automated machine learning: State-

of-the-art and open challenges. arXiv preprint arXiv:1906.02287, 2019.

134 BIBLIOGRAPHY

[69] Li Yang and Abdallah Shami. On hyperparameter optimization of machine learning al-

gorithms: Theory and practice. Neurocomputing, 415:295–316, 2020.

[70] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference Pro-

ceedings, 2010.

[71] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann Le-

Cun. The loss surfaces of multilayer networks. In Artificial intelligence and statistics,

pages 192–204. PMLR, 2015.

[72] Xue Ying. An overview of overfitting and its solutions. In Journal of physics: Conference

series, volume 1168, page 022022. IOP Publishing, 2019.

[73] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pages

55–69. Springer, 2002.

[74] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient de-

scent learning. Constructive Approximation, 26:289–315, 2007.

[75] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal

of machine learning research, 15(1):1929–1958, 2014.

[76] Kunihiko Fukushima and Sei Miyake. Neocognitron: A new algorithm for pattern recog-

nition tolerant of deformations and shifts in position. Pattern recognition, 15(6):455–469,

1982.

[77] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip

code recognition. Neural computation, 1(4):541–551, 1989.

[78] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25,

2012.

[79] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and

Anil A Bharath. Generative adversarial networks: An overview. IEEE signal processing

magazine, 35(1):53–65, 2018.

[80] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communi-

cations of the ACM, 63(11):139–144, 2020.

BIBLIOGRAPHY 135

[81] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[82] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.

arXiv preprint arXiv:1312.5602, 2013.

[83] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search. na-

ture, 529(7587):484–489, 2016.

[84] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural

information processing systems, 30, 2017.

[85] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[86] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-

guage models are few-shot learners. Advances in neural information processing systems,

33:1877–1901, 2020.

[87] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.

Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583–589,

2021.

[88] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,

Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial

general intelligence: Early experiments with GPT-4. arXiv preprint arXiv:2303.12712,

2023.

[89] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,

Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,

et al. Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311,

2022.

[90] Xue-Wen Chen and Xiaotong Lin. Big data deep learning: challenges and perspectives.

IEEE access, 2:514–525, 2014.

136 BIBLIOGRAPHY

[91] Yvan Saeys, Inaki Inza, and Pedro Larranaga. A review of feature selection techniques in

bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[92] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Comput-

ers & Electrical Engineering, 40(1):16–28, 2014.

[93] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent de-

velopments. Philosophical transactions of the royal society A: Mathematical, Physical and

Engineering Sciences, 374(2065):20150202, 2016.

[94] Laurens vd Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of ma-

chine learning research, 9(Nov):2579–2605, 2008.

[95] Jie Ding, Vahid Tarokh, and Yuhong Yang. Model selection techniques: An overview. IEEE

Signal Processing Magazine, 35(6):16–34, 2018.

[96] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan

Yao, Ao Zhang, Liang Zhang, et al. Pre-trained models: Past, present and future. AI Open,

2:225–250, 2021.

[97] Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks,

4(5):740–747, 1993.

[98] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-

tions for efficient neural network. Advances in neural information processing systems, 28,

2015.

[99] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking TPU, GPU, and CPU

platforms for deep learning. arXiv preprint arXiv:1907.10701, 2019.

[100] Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications of the obvious.

ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

[101] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural networks. IEEE journal

of solid-state circuits, 52(1):127–138, 2016.

[102] Carver Mead. How we created neuromorphic engineering. Nature Electronics, 3(7):434–

435, 2020.

[103] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul

Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: De-

sign and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE

transactions on computer-aided design of integrated circuits and systems, 34(10):1537–

1557, 2015.

BIBLIOGRAPHY 137

[104] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,

Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A

neuromorphic manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[105] Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam

Shrestha, Friedrich T Sommer, and Mike Davies. Efficient neuromorphic signal process-

ing with Loihi 2. In 2021 IEEE Workshop on Signal Processing Systems (SiPS), pages 254–

259. IEEE, 2021.

[106] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker

project. Proceedings of the IEEE, 102(5):652–665, 2014.

[107] Garrett E Alexander and Michael D Crutcher. Functional architecture of basal ganglia

circuits: neural substrates of parallel processing. Trends in neurosciences, 13(7):266–271,

1990.

[108] Marcus E Raichle and Debra A Gusnard. Appraising the brain’s energy budget. Proceed-

ings of the National Academy of Sciences, 99(16):10237–10239, 2002.

[109] Christopher S Von Bartheld, Jami Bahney, and Suzana Herculano-Houzel. The search for

true numbers of neurons and glial cells in the human brain: A review of 150 years of cell

counting. Journal of Comparative Neurology, 524(18):3865–3895, 2016.

[110] Jiawei Zhang. Basic neural units of the brain: neurons, synapses and action potential.

arXiv preprint arXiv:1906.01703, 2019.

[111] Suzana Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate

brain. Frontiers in human neuroscience, page 31, 2009.

[112] Robert Sylwester. A celebration of neurons: An educator’s guide to the human brain. ERIC,

1995.

[113] Michael H Grider, Rishita Jessu, and Rian Kabir. Physiology, action potential. 2019.

[114] Thomas C Südhof and Robert C Malenka. Understanding synapses: past, present, and

future. Neuron, 60(3):469–476, 2008.

[115] Thomas Trappenberg. Fundamentals of computational neuroscience. OUP Oxford, 2009.

[116] John Carew Eccles. The physiology of synapses. Academic Press, 2013.

[117] Larry F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron (1907).

Brain research bulletin, 50(5-6):303–304, 1999.

[118] Alan L Hodgkin. The local electric changes associated with repetitive action in a non-

medullated axon. The Journal of physiology, 107(2):165, 1948.

138 BIBLIOGRAPHY

[119] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. The Journal of physiology,

117(4):500, 1952.

[120] Richard FitzHugh. Impulses and physiological states in theoretical models of nerve

membrane. Biophysical journal, 1(6):445–466, 1961.

[121] Jinichi Nagumo, Suguru Arimoto, and Shuji Yoshizawa. An active pulse transmission line

simulating nerve axon. Proceedings of the IRE, 50(10):2061–2070, 1962.

[122] Eugene M Izhikevich and Richard FitzHugh. Fitzhugh-Nagumo model. Scholarpedia,

1(9):1349, 2006.

[123] Charles F Cadieu, Ha Hong, Daniel LK Yamins, Nicolas Pinto, Diego Ardila, Ethan A

Solomon, Najib J Majaj, and James J DiCarlo. Deep neural networks rival the representa-

tion of primate it cortex for core visual object recognition. PLoS computational biology,

10(12):e1003963, 2014.

[124] Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not un-

supervised, models may explain it cortical representation. PLoS computational biology,

10(11):e1003915, 2014.

[125] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,

Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli,

et al. A deep learning framework for neuroscience. Nature neuroscience, 22(11):1761–

1770, 2019.

[126] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings

of the IEEE, 78(10):1550–1560, 1990.

[127] Pritish Narayanan, Alessandro Fumarola, Lucas L Sanches, Kohji Hosokawa, Scott C

Lewis, Robert M Shelby, and Geoffrey W Burr. Toward on-chip acceleration of the back-

propagation algorithm using nonvolatile memory. IBM Journal of Research and Develop-

ment, 61(4/5):11–1, 2017.

[128] Alessandro Fumarola, Pritish Narayanan, Lucas L Sanches, Severin Sidler, Junwoo Jang,

Kibong Moon, Robert M Shelby, Hyunsang Hwang, and Geoffrey W Burr. Accelerat-

ing machine learning with non-volatile memory: Exploring device and circuit tradeoffs.

In 2016 IEEE International Conference on Rebooting Computing (ICRC), pages 1–8. Ieee,

2016.

[129] James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain.

Trends in cognitive sciences, 23(3):235–250, 2019.

BIBLIOGRAPHY 139

[130] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for

boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[131] Geoffrey E Hinton. Deterministic Boltzmann learning performs steepest descent in

weight-space. Neural computation, 1(1):143–150, 1989.

[132] Javier R Movellan. Contrastive hebbian learning in the continuous hopfield model. In

Connectionist models, pages 10–17. Elsevier, 1991.

[133] Pierre Baldi and Fernando Pineda. Contrastive learning and neural oscillations. Neural

computation, 3(4):526–545, 1991.

[134] Geoffrey E Hinton and James McClelland. Learning representations by recirculation. In

Neural information processing systems, 1987.

[135] Randall C O’Reilly. Biologically plausible error-driven learning using local activation dif-

ferences: The generalized recirculation algorithm. Neural computation, 8(5):895–938,

1996.

[136] Xiaohui Xie and H Sebastian Seung. Equivalence of backpropagation and contrastive

hebbian learning in a layered network. Neural computation, 15(2):441–454, 2003.

[137] Yoshua Bengio and Asja Fischer. Early inference in energy-based models approximates

back-propagation. arXiv preprint arXiv:1510.02777, 2015.

[138] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap be-

tween energy-based models and backpropagation. Frontiers in computational neuro-

science, 11:24, 2017.

[139] Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks

via target propagation. arXiv preprint arXiv:1407.7906, 2014.

[140] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target

propagation. In Machine Learning and Knowledge Discovery in Databases: European

Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I

15, pages 498–515. Springer, 2015.

[141] Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.

[142] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. online:

http://www. cs. toronto. edu/kriz/cifar. html, 55(5), 2014.

[143] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Ran-

dom synaptic feedback weights support error backpropagation for deep learning. Nature

communications, 7(1):13276, 2016.

140 BIBLIOGRAPHY

[144] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks.

Advances in neural information processing systems, 29, 2016.

[145] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and

Timothy Lillicrap. Assessing the scalability of biologically-motivated deep learning algo-

rithms and architectures. Advances in neural information processing systems, 31, 2018.

[146] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations.

arXiv preprint arXiv:2212.13345, 2022.

[147] Friedemann Zenke, Sander M Bohté, Claudia Clopath, Iulia M Comşa, Julian Göltz, Wolf-

gang Maass, Timothée Masquelier, Richard Naud, Emre O Neftci, Mihai A Petrovici,

et al. Visualizing a joint future of neuroscience and neuromorphic engineering. Neu-

ron, 109(4):571–575, 2021.

[148] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in

spiking neural networks: Bringing the power of gradient-based optimization to spiking

neural networks. IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[149] Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient

learning for instilling complex function in spiking neural networks. Neural computation,

33(4):899–925, 2021.

[150] Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. A history of spike-timing-

dependent plasticity. Frontiers in synaptic neuroscience, 3:4, 2011.

[151] Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. Spike-timing-dependent

plasticity: a comprehensive overview. Frontiers in synaptic neuroscience, 4:2, 2012.

[152] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert

Legenstein, and Wolfgang Maass. A solution to the learning dilemma for recurrent net-

works of spiking neurons. Nature communications, 11(1):3625, 2020.

[153] Erwann Martin, Maxence Ernoult, Jérémie Laydevant, Shuai Li, Damien Querlioz,

Teodora Petrisor, and Julie Grollier. Eqspike: spike-driven equilibrium propagation for

neuromorphic implementations. Iscience, 24(3), 2021.

[154] Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A Richards, and Richard

Naud. Burst-dependent synaptic plasticity can coordinate learning in hierarchical cir-

cuits. Nature neuroscience, 24(7):1010–1019, 2021.

[155] Gordon E Moore et al. Progress in digital integrated electronics. In Electron devices meet-

ing, volume 21, pages 11–13. Washington, DC, 1975.

BIBLIOGRAPHY 141

[156] Mingyi Rao, Hao Tang, Jiangbin Wu, Wenhao Song, Max Zhang, Wenbo Yin, Ye Zhuo,

Fatemeh Kiani, Benjamin Chen, Xiangqi Jiang, et al. Thousands of conductance levels in

memristors integrated on CMOS. Nature, 615(7954):823–829, 2023.

[157] Taylor Simons and Dah-Jye Lee. A review of binarized neural networks. Electronics,

8(6):661, 2019.

[158] Paul Hasler, Chris Diorio, Bradley A Minch, and Carver Mead. Single transistor learning

synapse with long term storage. In Proceedings of ISCAS’95-International Symposium on

Circuits and Systems, volume 3, pages 1660–1663. IEEE, 1995.

[159] Chris Diorio, Paul Hasler, A Minch, and Carver A Mead. A single-transistor silicon

synapse. IEEE transactions on Electron Devices, 43(11):1972–1980, 1996.

[160] Jingrui Wang and Fei Zhuge. Memristive synapses for brain-inspired computing. Ad-

vanced Materials Technologies, 4(3):1800544, 2019.

[161] Leon Chua. Memristor-the missing circuit element. IEEE Transactions on circuit theory,

18(5):507–519, 1971.

[162] R Stanley Williams. How we found the missing memristor. IEEE spectrum, 45(12):28–35,

2008.

[163] Leon O Chua and Sung Mo Kang. Memristive devices and systems. Proceedings of the

IEEE, 64(2):209–223, 1976.

[164] Leon Chua. If it’s pinched it’s a memristor. Semiconductor Science and Technology,

29(10):104001, 2014.

[165] Lei Wang, CiHui Yang, Jing Wen, Shan Gai, and YuanXiu Peng. Overview of emerging

memristor families from resistive memristor to spintronic memristor. Journal of Materi-

als Science: Materials in Electronics, 26:4618–4628, 2015.

[166] Ee Wah Lim and Razali Ismail. Conduction mechanism of valence change resistive

switching memory: A survey. Electronics, 4(3):586–613, 2015.

[167] Rainer Waser and Masakazu Aono. Nanoionics-based resistive switching memories. Na-

ture materials, 6(11):833–840, 2007.

[168] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot. Redox-based resistive

switching memories–nanoionic mechanisms, prospects, and challenges. Advanced ma-

terials, 21(25-26):2632–2663, 2009.

[169] Ilia Valov, Rainer Waser, John R Jameson, and Michael N Kozicki. Electrochemi-

cal metallization memories—fundamentals, applications, prospects. Nanotechnology,

22(25):254003, 2011.

142 BIBLIOGRAPHY

[170] Taehyun Kim, Seung-Hwan Kim, Jae-Hyeun Park, June Park, Euyjin Park, Seung-Geun

Kim, and Hyun-Yong Yu. An artificial neuron using a bipolar electrochemical metal-

lization switch and its enhanced spiking properties through filament confinement. Ad-

vanced Electronic Materials, 7(1):2000410, 2021.

[171] Yihao Chen, Yu Wang, Yuhao Luo, Xinwei Liu, Yuqi Wang, Fei Gao, Jianguang Xu, Ertao

Hu, Subhranu Samanta, Xiang Wan, et al. Realization of artificial neuron using mxene

bi-directional threshold switching memristors. IEEE Electron Device Letters, 40(10):1686–

1689, 2019.

[172] Daniele Ielmini, Rainer Bruchhaus, and Rainer Waser. Thermochemical resistive switch-

ing: materials, mechanisms, and scaling projections. Phase Transitions, 84(7):570–602,

2011.

[173] Daniele Ielmini, F Nardi, and C Cagli. Physical models of size-dependent nanofil-

ament formation and rupture in nio resistive switching memories. Nanotechnology,

22(25):254022, 2011.

[174] Stefan Slesazeck and Thomas Mikolajick. Nanoscale resistive switching memory devices:

a review. Nanotechnology, 30(35):352003, 2019.

[175] Wei Yi, Kenneth K Tsang, Stephen K Lam, Xiwei Bai, Jack A Crowell, and Elias A Flores. Bi-

ological plausibility and stochasticity in scalable VO2 active memristor neurons. Nature

communications, 9(1):1–10, 2018.

[176] Rui Yuan, Qingxi Duan, Pek Jun Tiw, Ge Li, Zhuojian Xiao, Zhaokun Jing, Ke Yang, Chang

Liu, Chen Ge, Ru Huang, et al. A calibratable sensory neuron based on epitaxial VO2 for

spike-based neuromorphic multisensory system. Nature Communications, 13(1):3973,

2022.

[177] Parker Schofield, Adelaide Bradicich, Rebeca M Gurrola, Yuwei Zhang, Timothy D Brown,

Matt Pharr, Patrick J Shamberger, and Sarbajit Banerjee. Harnessing the metal–insulator

transition of VO2 in neuromorphic computing. Advanced Materials, page 2205294, 2022.

[178] Xinyi Li, Yanan Zhong, Hang Chen, Jianshi Tang, Xiaojian Zheng, Wen Sun, Yang Li, Dong

Wu, Bin Gao, Xiaolin Hu, et al. A memristors-based dendritic neuron for high-efficiency

spatial-temporal information processing. Advanced Materials, page 2203684, 2022.

[179] Shimul Kanti Nath. Filamentary Threshold SwitchinIg in Niobium Oxides. PhD thesis,

The Australian National University (Australia), 2021.

[180] Yibo Li, Zhongrui Wang, Rivu Midya, Qiangfei Xia, and J Joshua Yang. Review of mem-

ristor devices in neuromorphic computing: materials sciences and device challenges.

Journal of Physics D: Applied Physics, 51(50):503002, 2018.

BIBLIOGRAPHY 143

[181] Ilia Valov. Redox-based resistive switching memories (rerams): Electrochemical systems

at the atomic scale. ChemElectroChem, 1(1):26–36, 2014.

[182] Sridhar Chandrasekaran, Firman Mangasa Simanjuntak, R Saminathan, Debashis Panda,

and Tseung-Yuen Tseng. Improving linearity by introducing al in HfO2 as a memristor

synapse device. Nanotechnology, 30(44):445205, 2019.

[183] Ximeng Guan, Shimeng Yu, and H-S Philip Wong. A SPICE compact model of metal ox-

ide resistive switching memory with variations. IEEE electron device letters, 33(10):1405–

1407, 2012.

[184] Peng Huang, Dongbin Zhu, Sijie Chen, Zheng Zhou, Zhe Chen, Bin Gao, Lifeng Liu, Xi-

aoyan Liu, and Jinfeng Kang. Compact model of HfOx-based electronic synaptic de-

vices for neuromorphic computing. IEEE Transactions on Electron Devices, 64(2):614–

621, 2017.

[185] Jiyong Woo, Dongwook Lee, Yunmo Koo, and Hyunsang Hwang. Dual functionality

of threshold and multilevel resistive switching characteristics in nanoscale HfO2-based

RRAM devices for artificial neuron and synapse elements. Microelectronic Engineering,

182:42–45, 2017.

[186] JJ Wang, SG Hu, XT Zhan, Q Yu, Z Liu, Tu Pei Chen, Y Yin, Sumio Hosaka, and Y Liu.

Handwritten-digit recognition by hybrid convolutional neural network based on HfO2

memristive spiking-neuron. Scientific reports, 8(1):1–7, 2018.

[187] Jiadi Zhu, Teng Zhang, Yuchao Yang, and Ru Huang. A comprehensive review on emerg-

ing artificial neuromorphic devices. Applied Physics Reviews, 7(1), 2020.

[188] Julie Grollier, Damien Querlioz, KY Camsari, Karin Everschor-Sitte, Shunsuke Fukami,

and Mark D Stiles. Neuromorphic spintronics. Nature electronics, 3(7):360–370, 2020.

[189] Xiaobin Wang, Yiran Chen, Haiwen Xi, Hai Li, and Dimitar Dimitrov. Spintronic mem-

ristor through spin-torque-induced magnetization motion. IEEE electron device letters,

30(3):294–297, 2009.

[190] Akinobu Yamaguchi, Teruo Ono, Saburo Nasu, Kousaku Miyake, Ko Mibu, and Teruya

Shinjo. Real-space observation of current-driven domain wall motion in submicron

magnetic wires. Physical review letters, 92(7):077205, 2004.

[191] A Chanthbouala, R Matsumoto, J Grollier, V Cros, A Anane, A Fert, AV Khvalkovskiy,

KA Zvezdin, K Nishimura, Y Nagamine, et al. Vertical-current-induced domain-wall mo-

tion in mgo-based magnetic tunnel junctions with low current densities. Nature Physics,

7(8):626–630, 2011.

144 BIBLIOGRAPHY

[192] Steven Lequeux, Joao Sampaio, Vincent Cros, Kay Yakushiji, Akio Fukushima, Rie Mat-

sumoto, Hitoshi Kubota, Shinji Yuasa, and Julie Grollier. A magnetic synapse: multi-

level spin-torque memristor with perpendicular anisotropy. Scientific reports, 6(1):31510,

2016.

[193] Shehzaad Kaka, Matthew R Pufall, William H Rippard, Thomas J Silva, Stephen E Russek,

and Jordan A Katine. Mutual phase-locking of microwave spin torque nano-oscillators.

Nature, 437(7057):389–392, 2005.

[194] Sergei Urazhdin, Phillip Tabor, Vasil Tiberkevich, and Andrei Slavin. Fractional synchro-

nization of spin-torque nano-oscillators. Physical review letters, 105(10):104101, 2010.

[195] Nicolas Locatelli, Vincent Cros, and Julie Grollier. Spin-torque building blocks. Nature

materials, 13(1):11–20, 2014.

[196] Tingsu Chen, Randy K Dumas, Anders Eklund, Pranaba K Muduli, Afshin Houshang, Ah-

mad A Awad, Philipp Dürrenfeld, B Gunnar Malm, Ana Rusu, and Johan Åkerman. Spin-

torque and spin-hall nano-oscillators. Proceedings of the IEEE, 104(10):1919–1945, 2016.

[197] Uwe Schroeder, Min Hyuk Park, Thomas Mikolajick, and Cheol Seong Hwang. The fun-

damentals and applications of ferroelectric HfO2. Nature Reviews Materials, 7(8):653–

669, 2022.

[198] Erika Covi, Halid Mulaosmanovic, Benjamin Max, Stefan Slesazeck, and Thomas Miko-

lajick. Ferroelectric-based synapses and neurons for neuromorphic computing. Neuro-

morphic Computing and Engineering, 2(1):012002, 2022.

[199] Abu Sebastian, Manuel Le Gallo, Geoffrey W Burr, Sangbum Kim, Matthew BrightSky, and

Evangelos Eleftheriou. Tutorial: Brain-inspired computing using phase-change memory

devices. Journal of Applied Physics, 124(11), 2018.

[200] Ming Xu, Xianliang Mai, Jun Lin, Wei Zhang, Yi Li, Yuhui He, Hao Tong, Xiang Hou, Peng

Zhou, and Xiangshui Miao. Recent advances on neuromorphic devices based on chalco-

genide phase-change materials. Advanced Functional Materials, 30(50):2003419, 2020.

[201] Tomas Tuma, Angeliki Pantazi, Manuel Le Gallo, Abu Sebastian, and Evangelos Elefthe-

riou. Stochastic phase-change neurons. Nature nanotechnology, 11(8):693–699, 2016.

[202] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao Zhang, Shi-

meng Yu, and Yuan Xie. Overcoming the challenges of crossbar resistive memory ar-

chitectures. In 2015 IEEE 21st international symposium on high performance computer

architecture (HPCA), pages 476–488. IEEE, 2015.

[203] Qiangfei Xia and J Joshua Yang. Memristive crossbar arrays for brain-inspired comput-

ing. Nature materials, 18(4):309–323, 2019.

BIBLIOGRAPHY 145

[204] Shimeng Yu and Pai-Yu Chen. Emerging memory technologies: Recent trends and

prospects. IEEE Solid-State Circuits Magazine, 8(2):43–56, 2016.

[205] Huihan Li, Shaocong Wang, Xumeng Zhang, Wei Wang, Rui Yang, Zhong Sun, Wanxiang

Feng, Peng Lin, Zhongrui Wang, Linfeng Sun, et al. Memristive crossbar arrays for storage

and computing applications. Advanced Intelligent Systems, 3(9):2100017, 2021.

[206] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities

and challenges. Frontiers in neuroscience, 12:774, 2018.

[207] Chetan Singh Thakur, Jamal Lottier Molin, Gert Cauwenberghs, Giacomo Indiveri, Kun-

dan Kumar, Ning Qiao, Johannes Schemmel, Runchun Wang, Elisabetta Chicca, Jennifer

Olson Hasler, et al. Large-scale neuromorphic spiking array processors: A quest to mimic

the brain. Frontiers in neuroscience, page 891, 2018.

[208] Jack D Kendall and Suhas Kumar. The building blocks of a brain-inspired computer.

Applied Physics Reviews, 7(1):011305, 2020.

[209] Mohammed A Zidan, John Paul Strachan, and Wei D Lu. The future of electronics based

on memristive systems. Nature electronics, 1(1):22–29, 2018.

[210] Suhas Kumar, R Stanley Williams, and Ziwen Wang. Third-order nanocircuit elements

for neuromorphic engineering. Nature, 585(7826):518–523, 2020.

[211] Yuting Wu, Xinxin Wang, and Wei Lu. Dynamic resistive switching devices for neuromor-

phic computing. Semiconductor Science and Technology, 2021.

[212] Dahye Kim, Beomki Jeon, Yunseok Lee, Doohyung Kim, Youngboo Cho, and Sungjun

Kim. Prospects and applications of volatile memristors. Applied Physics Letters,

121(1):010501, 2022.

[213] Joon-Kyu Han, Seong-Yun Yun, Sang-Won Lee, Ji-Man Yu, and Yang-Kyu Choi. A review of

artificial spiking neuron devices for neural processing and sensing. Advanced Functional

Materials, page 2204102, 2022.

[214] Danijela Marković, Alice Mizrahi, Damien Querlioz, and Julie Grollier. Physics for neuro-

morphic computing. Nature Reviews Physics, 2(9):499–510, 2020.

[215] D Ielmini, Z Wang, and Y Liu. Brain-inspired computing via memory device physics. APL

Materials, 9(5), 2021.

[216] Zhongrui Wang, Huaqiang Wu, Geoffrey W Burr, Cheol Seong Hwang, Kang L Wang,

Qiangfei Xia, and J Joshua Yang. Resistive switching materials for information process-

ing. Nature Reviews Materials, 5(3):173–195, 2020.

146 BIBLIOGRAPHY

[217] Seung Hwan Lee, Xiaojian Zhu, and Wei D Lu. Nanoscale resistive switching devices for

memory and computing applications. Nano Research, 13(5):1228–1243, 2020.

[218] Yue Xi, Bin Gao, Jianshi Tang, An Chen, Meng-Fan Chang, Xiaobo Sharon Hu, Jan Van

Der Spiegel, He Qian, and Huaqiang Wu. In-memory learning with analog resistive

switching memory: A review and perspective. Proceedings of the IEEE, 109(1):14–42,

2020.

[219] Sanghyeon Choi, Jehyeon Yang, and Gunuk Wang. Emerging memristive artificial

synapses and neurons for energy-efficient neuromorphic computing. Advanced Mate-

rials, 32(51):2004659, 2020.

[220] Rui Yang, He-Ming Huang, and Xin Guo. Memristive synapses and neurons for bioin-

spired computing. Advanced Electronic Materials, 5(9):1900287, 2019.

[221] Ke Yang, J Joshua Yang, Ru Huang, and Yuchao Yang. Nonlinearity in memristors for

neuromorphic dynamic systems. Small Science, page 2100049, 2021.

[222] Xumeng Zhang, Wei Wang, Qi Liu, Xiaolong Zhao, Jinsong Wei, Rongrong Cao, Zhihong

Yao, Xiaoli Zhu, Feng Zhang, Hangbing Lv, et al. An artificial neuron based on a threshold

switching memristor. IEEE Electron Device Letters, 39(2):308–311, 2017.

[223] Zhongrui Wang, Saumil Joshi, Sergey Savel’Ev, Wenhao Song, Rivu Midya, Yunning Li,

Mingyi Rao, Peng Yan, Shiva Asapu, Ye Zhuo, et al. Fully memristive neural networks for

pattern classification with unsupervised learning. Nature Electronics, 1(2):137–145, 2018.

[224] Pablo Stoliar, Julien Tranchant, Benoit Corraze, Etienne Janod, Marie-Paule Besland, Fed-

erico Tesler, Marcelo Rozenberg, and Laurent Cario. A leaky-integrate-and-fire neuron

analog realized with a Mott insulator. Advanced Functional Materials, 27(11):1604740,

2017.

[225] Shuai Li, Xinjun Liu, Sanjoy Kumar Nandi, Dinesh Kumar Venkatachalam, and

Robert Glen Elliman. High-endurance megahertz electrical self-oscillation in Ti/NbOx

bilayer structures. Applied Physics Letters, 106(21):212902, 2015.

[226] Suhas Kumar, John Paul Strachan, and R Stanley Williams. Chaotic dynamics in

nanoscale NbO2 Mott memristors for analogue computing. Nature, 548(7667):318–321,

2017.

[227] Qingxi Duan, Zhaokun Jing, Xiaolong Zou, Yanghao Wang, Ke Yang, Teng Zhang, Si Wu,

Ru Huang, and Yuchao Yang. Spiking neurons with spatiotemporal dynamics and gain

modulation for monolithically integrated memristive neural networks. 11(1):1–13, 2020.

BIBLIOGRAPHY 147

[228] Marie Drouhin, Shuai Li, Matthieu Grelier, Sophie Collin, Florian Godel, Robert G El-

liman, Bruno Dlubak, Juan Trastoy, Damien Querlioz, and Julie Grollier. Characteriza-

tion and modeling of spiking and bursting in experimental nbo x neuron. Neuromorphic

Computing and Engineering, 2(4):044008, 2022.

[229] Gary A Gibson. Designing negative differential resistance devices based on self-heating.

Advanced Functional Materials, 28(22):1704175, 2018.

[230] Matthew D Pickett and R Stanley Williams. Sub-100 fJ and sub-nanosecond thermally

driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology,

23(21):215202, 2012.

[231] Stefan Slesazeck, Hannes Mähne, Helge Wylezich, Andre Wachowiak, Janaki Radhakrish-

nan, Alon Ascoli, Ronald Tetzlaff, and Thomas Mikolajick. Physical model of threshold

switching in NbO2 based memristors. RSC advances, 5(124):102318–102322, 2015.

[232] Ziwen Wang, Suhas Kumar, Yoshio Nishi, and H-S Philip Wong. Transient dynamics of

NbOx threshold switches explained by Poole-Frenkel based thermal feedback mecha-

nism. Applied Physics Letters, 112(19):193503, 2018.

[233] HH Poole. Viii. on the dielectric constant and electrical conductivity of mica in intense

fields. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-

ence, 32(187):112–129, 1916.

[234] J Frenkel. On pre-breakdown phenomena in insulators and electronic semi-conductors.

Physical Review, 54(8):647, 1938.

[235] Shuai Li, Xinjun Liu, Sanjoy Kumar Nandi, Shimul Kanti Nath, and Robert Glen Elli-

man. Origin of current-controlled negative differential resistance modes and the emer-

gence of composite characteristics with high complexity. Advanced Functional Materials,

29(44):1905060, 2019.

[236] Yaxin Ding, Peng Yuan, Jie Yu, Yuting Chen, Pengfei Jiang, Yuan Wang, Yannan Xu, Shux-

ian Lv, Zhiwei Dang, Boping Wang, et al. Forming-free NbOx-based memristor enabling

low-energy-consumption artificial spiking afferent nerves. IEEE Transactions on Electron

Devices, 2022.

[237] Xumeng Zhang, Ye Zhuo, Qing Luo, Zuheng Wu, Rivu Midya, Zhongrui Wang, Wenhao

Song, Rui Wang, Navnidhi K Upadhyay, Yilin Fang, et al. An artificial spiking afferent

nerve based on Mott memristors for neurorobotics. Nature communications, 11(1):1–9,

2020.

[238] Mark D McDonnell and Derek Abbott. What is stochastic resonance? definitions,

misconceptions, debates, and its relevance to biology. PLoS computational biology,

5(5):e1000348, 2009.

148 BIBLIOGRAPHY

[239] Sanjoy Kumar Nandi, Sujan Kumar Das, Yubo Cui, Assaad El Helou, Shimul Kanti Nath,

Thomas Ratcliff, Peter Raad, and Robert G Elliman. Thermal conductivity of amorphous

NbOxs thin films and its effect on volatile memristive switching. ACS Applied Materials

& Interfaces, 2022.

[240] Frank C Hoppensteadt and Eugene M Izhikevich. Oscillatory neurocomputers with dy-

namic connectivity. Physical Review Letters, 82(14):2983, 1999.

[241] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems

and saving energy in wireless communication. science, 304(5667):78–80, 2004.

[242] Rodrigo Laje and Dean V Buonomano. Robust timing and motor patterns by taming

chaos in recurrent neural networks. Nature neuroscience, 16(7):925–933, 2013.

[243] Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin Scellier.

Updates of equilibrium prop match gradients of backprop through time in an rnn with

static input. Advances in neural information processing systems, 32, 2019.

[244] Axel Laborieux, Maxence Ernoult, Benjamin Scellier, Yoshua Bengio, Julie Grollier, and

Damien Querlioz. Scaling equilibrium propagation to deep convnets by drastically re-

ducing its gradient estimator bias. Frontiers in neuroscience, 15:633674, 2021.

[245] Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, and Zhouhan Lin.

Towards biologically plausible deep learning. arXiv preprint arXiv:1502.04156, 2015.

[246] Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and Yuhuai Wu. STDP

as presynaptic activity times rate of change of postsynaptic activity. arXiv preprint

arXiv:1509.05936, 2015.

[247] Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and Yuhuai Wu. STDP

as presynaptic activity times rate of change of postsynaptic activity approximates back-

propagation. Neural Computation, 10, 2017.

[248] Jack Kendall, Ross Pantone, Kalpana Manickavasagam, Yoshua Bengio, and Benjamin

Scellier. Training end-to-end analog neural networks with equilibrium propagation.

arXiv preprint arXiv:2006.01981, 2020.

[249] Maxence Ernoult, Julie Grollier, Damien Querlioz, Yoshua Bengio, and Benjamin

Scellier. Equilibrium propagation with continual weight updates. arXiv preprint

arXiv:2005.04168, 2020.

[250] Benjamin Scellier, Anirudh Goyal, Jonathan Binas, Thomas Mesnard, and Yoshua Ben-

gio. Generalization of equilibrium propagation to vector field dynamics. arXiv preprint

arXiv:1808.04873, 2018.

BIBLIOGRAPHY 149

[251] Axel Laborieux and Friedemann Zenke. Holomorphic equilibrium propagation com-

putes exact gradients through finite size oscillations. Advances in Neural Information

Processing Systems, 35:12950–12963, 2022.

[252] Jérémie Laydevant, Maxence Ernoult, Damien Querlioz, and Julie Grollier. Training dy-

namical binary neural networks with equilibrium propagation. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 4640–4649, 2021.

[253] Benjamin Scellier, Siddhartha Mishra, Yoshua Bengio, and Yann Ollivier. Agnostic

physics-driven deep learning. arXiv preprint arXiv:2205.15021, 2022.

[254] Sam Dillavou, Menachem Stern, Andrea J Liu, and Douglas J Durian. Demonstration of

decentralized physics-driven learning. Physical Review Applied, 18(1):014040, 2022.

[255] Menachem Stern, Daniel Hexner, Jason W Rocks, and Andrea J Liu. Supervised learning

in physical networks: From machine learning to learning machines. Physical Review X,

11(2):021045, 2021.

[256] Su-in Yi, Jack D Kendall, R Stanley Williams, and Suhas Kumar. Activity-difference train-

ing of deep neural networks using memristor crossbars. Nature Electronics, 6(1):45–51,

2023.

[257] Jérémie Laydevant, Danijela Markovic, and Julie Grollier. Training an ising machine with

equilibrium propagation. arXiv preprint arXiv:2305.18321, 2023.

[258] G Bersuker, DC Gilmer, D Veksler, P Kirsch, LUCA Vandelli, ANDREA Padovani, Luca

Larcher, K McKenna, A Shluger, V Iglesias, et al. Metal oxide resistive memory switch-

ing mechanism based on conductive filament properties. Journal of Applied Physics,

110(12):124518, 2011.

[259] Stefano Brivio, Sabina Spiga, and Daniele Ielmini. HfO2-based resistive switching mem-

orydevices for neuromorphic computing. Neuromorphic Computing and Engineering,

2022.

[260] S Brivio and S Spiga. Stochastic circuit breaker network model for bipolar resistance

switching memories. Journal of Computational Electronics, 16(4):1154–1166, 2017.

[261] Karsten Fleck, Camilla La Torre, Nabeel Aslam, Susanne Hoffmann-Eifert, Ulrich Böttger,

and Stephan Menzel. Uniting gradual and abrupt set processes in resistive switching

oxides. Physical review applied, 6(6):064015, 2016.

[262] K-E Harabi, Clement Turck, Marie Drouhin, Adrien Renaudineau, T Bersani-Veroni,

D Querlioz, T Hirtzlin, E Vianello, M Bocquet, and J-M Portal. A multimode hybrid

150 BIBLIOGRAPHY

memristor-CMOS prototyping platform supporting digital and analog projects. In Pro-

ceedings of the 28th Asia and South Pacific Design Automation Conference, pages 184–185,

2023.

[263] Kamel-Eddine Harabi. Energy Efficient Memristor-Based Artificial Intelligence Accelera-

tors using In/NearMemory Computing. PhD thesis, Université Paris Saclay, 2023.

[264] T Hirtzlin, Marc Bocquet, M Ernoult, J-O Klein, E Nowak, E Vianello, J-M Portal, and

D Querlioz. Hybrid analog-digital learning with differential rram synapses. In 2019 IEEE

International Electron Devices Meeting (IEDM), pages 22–6. IEEE, 2019.

[265] Preben Alstrøm and Mogens T Levinsen. Phase-locking structure of “integrate-and-fire”

models with threshold modulation. Physics Letters A, 128(3-4):187–192, 1988.

[266] Thomas Nowotny, Ramon Huerta, and Mikhail I Rabinovich. Neuronal synchrony: pe-

culiarity and generality. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3),

2008.

[267] Leon O Chua, Y Yao, and Q Yang. Devil’s staircase route to chaos in a non-linear circuit.

International Journal of Circuit Theory and Applications, 14(4):315–329, 1986.

[268] Per Bak. Commensurate phases, incommensurate phases and the devil’s staircase. Re-

ports on Progress in Physics, 45(6):587, 1982.

Résumé en Français

Introduction et contexte

À l’ère numérique actuelle, la technologie de l’information a été un moteur du progrès mon-

dial. Cependant, cela s’accompagne d’un coût énergétique significatif. La demande croissante

de services intensifs en données, tels que l’intelligence artificielle et le "cloud computing", a

souligné le besoin urgent de solutions informatiques économes en énergie tout en favorisant

l’innovation. Les ordinateurs nous ont propulsés dans une ère de croissance exponentielle en

puissance de calcul et en mémoire. Cependant, de nouveaux défis sont présents, en particulier

les demandes énergétiques croissantes liées à l’avènement de l’apprentissage profond.

Le calcul neuromorphique, inspiré du cerveau humain, offre des perspectives en tant que

solution matérielle écoénergétique. Les algorithmes d’apprentissage et les neurones ou synapses

hardware doivent être co-conçus pour obtenir les systèmes les plus efficaces possibles. Les

memristors, compatibles avec la technologie CMOS, offrent efficacité, rapidité, mais aussi une

non-volatilité pour les synapses et un comportement impulsionnel pour les neurones. L’étude

de ces technologies émergentes et de leur compatibilité avec les algorithmes d’apprentissage

est une étape importante vers la réalisation de l’apprentissage sur puce. Dans ce travail, nous

avons suivi diverses approches :

• Modélisation et Caractérisation de Dispositifs : Comme les réseaux neuronaux impul-

sionnels offrent la promesse d’un apprentissage à faible consommation d’énergie, nous

avons exploré des dispositifs neuronaux émergents en tant qu’alternatives au CMOS. Ces

dispositifs évolutifs reproduisant des comportements biologiques offrent le potentiel de

créer des systèmes complexes imitant le cerveau. Les neurones memristifs basés sur de

l’oxyde de niobium ont été étudiés dans le chapitre 2.

• Adaptation des Algorithmes d’Apprentissage pour l’Implémentation Matérielle : La

rétropropagation du gradient, appelée Back Propagation en anglais, n’est pas un algo-

rithme adapté à l’apprentissage dans un système physique en raison de la non-localité

des mises à jour. La propagation de l’équilibre ou Equilibrium Propagation est un al-

gorithme basé sur la physique plutôt que le calcul. Il ouvre la voie à l’utilisation de la

physique inhérente à ces systèmes matériels pour l’apprentissage sur puce. Adapter un

152 RÉSUMÉ

algorithme purement mathématique pour une future implémentation matérielle est une

étape cruciale vers l’apprentissage sur puce, et cela est étudié dans le chapitre 3.

• Formation des Algorithmes d’Apprentissage avec des Mesures de Vrais Dispositifs : Les

dispositifs réels sont caractérisés par du bruit, de la variabilité, de la non-linéarité et

des comportements que les modèles théoriques ont souvent du mal à capturer. Ainsi,

nous soulignons l’importance de travailler avec des données expérimentales pour en-

traîner des réseaux de neurones, en particulier lorsqu’il s’agit d’applications sur puce.

Le chapitre 4 vise à former un réseau de neurones où les synapses sont basées sur des

dispositifs réels, ouvrant la voie à l’apprentissage sur puce.

Résultats

Chapitre 2

Le chapitre 2 se concentre sur la caractérisation et la modélisation de neurones composés de

memristors volatils filamenteraires à base de NbOx. Ces memristors se révèlent être des can-

didats prometteurs en raison de leur scalabilité et de leur compatibilité avec les memristors

non volatils et les technologies CMOS. L’empilement Pt/Nb205/Ti/Pt présente des caractéris-

tiques I-V correspondant à une résistance différentielle négative en forme de S contrôlée en

courant et à une hystérèse ("threshold switching") contrôlée en tension, des phénomènes qui

peuvent être efficacement modélisés en considérant la conduction de Poole-Frenkel. Les pro-

priétés dynamiques de ces dispositifs sont particulièrement intéressantes, car leur comporte-

ment impulsionnel rappelle celui des neurones biologiques. La forme des impulsions est car-

actérisée par une dépolarisation initiale suivie d’une hyperpolarisation due à la présence d’une

inductance. Ces dispositifs présentent des comportements tels que des caractéristiques leaky-

integrate-and-fire (LIF), des impulsions tout-ou-rien et du "phasic bursting". Nous explorons

l’origine de ce dernier comportement avec un modèle de dynamique non linéaire. Il émerge

comme une interaction complexe entre un point fixe instable (cycle limite) et un point fixe

stable (équilibre), provenant de l’effet Poole-Frenkel. Dans ce chapitre, nous décrivons la fab-

rication et la caractérisation ces neurones, et nous développons un modèle simple basé sur la

dynamique non linéaire qui reproduit avec précision les comportements neuronaux mention-

nés ci-dessus. Il s’agit d’un outil particulièrement intéressant pour la conception de systèmes

informatiques neuromorphiques à impulsions.

Cette figure présente en a les caractéristiques I-V des neurones, en b un exemple de train

d’impulsions et en c le phénomène de "phasic bursting".

RÉSUMÉ 153

Figure 4.24: a : Caractéristiques I-V controlées en tension (vert) et en courant (orange). La
structure des neurones memristifs est présentée en insert. b: Trains d’impulsions
lors de l’application d’un courant constant. c: Illustration du phasic busrting lors
de l’application d’un courant constant : les impulsions s’arrêtent même sans vari-
ation du courant d’entére.

Chapitre 3

Le chapitre 3 adopte une approche différente du calcul neuromorphique, explorant cette fois-

ci l’adaptation d’un algorithme d’apprentissage, Equilibrium Propagation (EqProp), à des sys-

tèmes physiques. En particulier, nous nous concentrons sur le défi de manipuler des gradients

à valeurs réelles dans un environnement basé sur des memristors, plus adapté à une écriture

basée sur un nombre entier d’impulsions. Pour relever ce défi, nous étudions différentes ap-

proches de discrétisation du gradient. Nous choisissons d’abord d’explorer la discrétisation

ternaire, où toutes les synapses au-dessus ou en dessous d’un seuil sont mises à jour. Cette ap-

proche donne des précisions très proches de celles de l’algorithme EqProp conventionnel (qui

correspond à 99,06 % de précision). Au cours de cette exploration, nous examinons le rôle des

hyperparamètres et leur impact sur les performances du réseau. Une autre approche que nous

explorons consiste à introduire des probabilités dans le processus de mise à jour. Cette mod-

ification améliore non seulement les performances, mais donne également une distribution

d’impulsions similaire au scénario idéal non discrétisé. Pour analyser davantage l’impact de la

discrétisation, une autre approche consiste à quantifier en davantage d’états pour la discrétisa-

tion du gradient. Bien que cette voie montre du potentiel et surpasse l’approche ternaire non

probabiliste en termes de performances, elle implique un compromis - une plus grande disper-

sion des impulsions et, finalement, une consommation d’énergie plus élevée que l’approche

ternaire probabiliste.

La figure suivante présente les performances obtenues dans les trois scénarios: en a le cas

ternaire non probabiliste, en b le cas ternaire probabiliste et en c le cas d’une quantification à

19 états.

154 RÉSUMÉ

Figure 4.25: Précisions obtenues pour différentes méthodes de discrétisation du gradient. a :
Ternarisation du gradient. b : Ternarisation avec mises à jour probabilistes. c :
Quantification du gradient (dix-neuf états différents).

Chapitre 4

Le chapitre 4 présente une plateforme hardware composée de memristors filamentaires à base

de HfOx. Ces dispositifs peuvent être adressés individuellement, et les mesures dans le régime

de "weak reset" sont utilisées pour effectuer l’apprentissage avec de vrais dispositifs. Les neu-

rones sont émulés grâce à un ordinateur, mais les synapses sont basées sur des dispositifs réels.

Des contrôles sont d’abord effectués, plus précisément un perceptron à couche unique et un

réseau à 2 couches avec la première couche gelée. La précision était respectivement de 75 %

et 70 %. Ensuite, un réseau entièrement connecté à une couche cachée a été formé. Deux

définitions de poids différentes ont été explorées : la différence linéaire de conductances et la

différence logarithmique de conductances. La première a donné de meilleurs résultats (préci-

sion de 91 %) que la seconde (précision de 89,5 %). En introduisant un seuil de conductance

pour limiter le régime de bruit élevé, la performance a pu être augmentée à 91,75 % pour la

définition linéaire et à 92,14 % pour la définition logarithmique.

La figure suivante présente en a et b les performances obtenues respectivement pour la

définition linéraire en conductance des poids, et celle logarithmique dans le cas où aucun seuil

de conductance n’est imposé. Les figures b) et c présentent les résultats obtenus dans les cas

où des seuils sont mis en place pour la définition linéaire ou logarithmique des poids respec-

tivement.

RÉSUMÉ 155

Figure 4.26: Performances obtenues pour un réseau de neurones à une couche cachée. a :
Performances obtenues avec une définition linéaire en conductance des poids. b
: Performances obtenues avec une définition logarithmique en conductance des
poids. c : Performances obtenues avec une définition linéaire en conductance des
poids avec seuil sur la conductance, pour trois différentes valeurs du seuil. d: Per-
formances obtenues avec une définition logarithmique en conductance des poids
avec seuil sur la conductance, pour trois différentes valeurs du seuil.

En résumé, notre étude a révélé les promesses du calcul neuromorphique et des mem-

ristors. Atteindre l’efficacité énergétique et débloquer de nouvelles possibilités computation-

nelles nécessite une synergie harmonieuse entre le hardawre et le software. En regardant vers

le futur, notre quête d’un avenir numérique plus vert et plus innovant se poursuit.

156 RÉSUMÉ

Conclusion

Plusieurs grands axes de recherches pourraient être explorés. Au niveau des composants, l’amélioration

des dispositifs memristifs pour une utilisation analogique, avec des évolutions linéaires et une

variabilité réduite, peut significativement améliorer les performances du réseau. D’un point

de vue algorithmique, comme mentionné dans le chapitre 4, l’adaptation de l’algorithme Equi-

librium Propagation pour atténuer les variabilités intra et inter-dispositifs offre un grand po-

tentiel. De plus, bien que cette thèse se soit principalement concentrée sur l’apprentissage

supervisé avec des ensembles de données étiquetés, les travaux futurs pourraient explorer

l’apprentissage non supervisé ou semi-supervisé avec l’Équilibrium Propagation, abordant des

scénarios avec des données limitées ou non étiquetées.

En conclusion, la convergence de systèmes informatiques hautement paramétrables, en

particulier le calcul neuromorphique, avec des algorithmes ancrés dans la physique offre un

grand potentiel pour l’avancement de l’IA ultra-basse consommation. L’investigation de la

mise en œuvre d’Equilibrium Propagation et l’amélioration de la robustesse de l’algorithme

sont en phase avec la demande croissante d’une IA efficace, promettant des percées innovantes

à l’intersection de la physique et de l’intelligence artificielle.

	Introduction
	State of the Art
	Deep Learning and Artificial Intelligence
	First Neural Networks
	Training Neural Networks
	The deep learning revolution
	The challenge of AI energy consumption

	Taking Inspiration from the brain to realize efficient hardware
	The elements of the brain
	Bio-plausible learning

	Hardware adapted for AI
	Emerging devices
	Integrating emerging memory devices in hardware

	Characterization and Modeling of Spiking and Bursting in Experimental NbOx Neuron
	Fabrication and method
	Fabrication
	Electrical measurements

	Results
	Quasistatic properties
	Spiking behavior: Origin and shape
	Computational properties
	Experimental demonstration of phasic bursting
	Understanding phasic bursting with non-linear dynamics simulations
	Discussion and limitations of this model

	Conclusion

	Adapting Equilibrium Propagation to Physical Systems
	Context
	Equilibrium Propagation algorithm
	Need for gradient discretization
	Ideal synapse definition and physical constraints
	Methods

	Continuous-valued EqProp study
	Discretization strategies
	Ternary gradient
	Ternary gradient with probabilistic updates

	Increasing the number of quantized values of the gradient
	Presentation of the discretization step
	Results

	Balancing pulse allocation for reliable physics-based computing
	Conclusion

	Implementation of Equilibrium Propagation With Memristor Synapses
	Context
	Non-linearity and asymmetry
	Intra-device and inter-device variability

	Hardware platform
	Presentation of the platform
	Memristors details
	Experimental setup
	Measurements

	Setting the problem
	What will be done in hardware, what will be done in software
	Definition of the weights
	Discretization and learning procedure
	Methods
	Challenges

	Controls
	Perceptron
	One-hidden layer network with first layer frozen

	Results for a one-hidden-layer network
	Accuracy obtained
	Hyperparameter tuning
	Comparison between different definitions of the weights
	Improving the accuracy

	Conclusion

	List of publications
	Bibliography
	Résumé étendu en français

