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SUMMARY
The process of protein production can be described as a two-step procedure.
In the first step, polymerases, macro-molecules, generate RNA molecules from
DNA genes. This process is known as transcription. The second step, called
translation, involves the synthesis of proteins from messenger RNA (mRNA)
molecules using ribosomes, which are large molecular complexes.

Protein production holds immense significance within the cell as it not only
facilitates its growth but also consumes a significant portion of its resources. Un-
derstanding the mechanisms and regulation of gene expression is a fundamental
and complex research topic in the field of biology.

In this thesis, our focus narrows down to two specific regulatory mechanisms.
First, there is a transcriptional regulation mechanism that involves a significant
macro molecule called 6S RNA. This molecule essentially acts like a regulator,
binding to polymerases and inhibiting transcription. Then, we have a transla-
tional regulation mechanism, which is governed by a particular nucleotide se-
quence called (p)ppGpp. inhibits the production of ribosomal RNAs (rRNAs),
which are essential components of the ribosomes responsible for protein syn-
thesis. This reduction in ribosomal RNA production limits the availability of
functional ribosomes in the cell, leading to a slowdown in protein synthesis, what
helps in conserving energy and resources under nutrient-limiting conditions.

Our objective is to develop mathematical models that help us explore these
regulation mechanisms. Our main goal here is to create stochastic models that
capture both stages of protein synthesis: Transcription and Translation. We are
looking to understand some specific regulatory mechanisms and figure out how
they impact the activity in the cell. To do this, we have got to create models
that not only represent each phase in a reasonably accurate manner but also
that give a mathematical interpretation.

Our analysis involves looking at how different macro molecules are dis-
tributed during each phase, whether it’s transcription or translation, depending
on the availability of resources within the cell. Through this analysis, we assess
the impact of the regulatory mechanisms on cellular activity.

In order to do all of this, we use scaling methods and given the coexistence
of slow and fast processes in our models, e employ the averaging principle using
occupation measures as the main mathematical tool. Additionally, a variety of
coupling methods are integrated into our approach.
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RÉSUMÉ
Le processus de production des protéines peut être décrit comme une procédure
en deux étapes. Dans la première étape, les polymérases, de grandes molécules,
génèrent des molécules d’ARN à partir des gènes d’ADN. Ce processus est connu
sous le nom de transcription. La deuxième étape, appelée traduction, implique
la synthèse des protéines à partir des molécules d’ARN messager (ARNm) en
utilisant des ribosomes, qui sont de grands complexes moléculaires. La produc-
tion de protéines revêt une importance immense au sein de la cellule, car elle
facilite non seulement sa croissance, mais elle consomme également une part
significative de ses ressources. Comprendre les mécanismes et la régulation de
l’expression génique est un sujet de recherche fondamental et complexe dans le
domaine de la biologie.

Dans cette thèse, notre attention se porte sur deux mécanismes de régula-
tion spécifiques. Tout d’abord, il existe un mécanisme de régulation transcrip-
tionnelle qui implique une macro-molécule significative appelée ARN 6S. Cette
molécule agit essentiellement comme un régulateur, se liant aux polymérases
et inhibant la transcription. Ensuite, nous avons un mécanisme de régulation
translationnelle, qui est gouverné par une séquence nucléotidique particulière
appelée (p)ppGpp. Il inhibe la production des ARN ribosomiques (ARNr),
qui sont des composants essentiels des ribosomes responsables de la synthèse
des protéines. Cette réduction de la production d’ARN ribosomique limite la
disponibilité des ribosomes fonctionnels dans la cellule, entraînant un ralen-
tissement de la synthèse des protéines, contribuant ainsi à la conservation de
l’énergie et des ressources en conditions de limitation des nutriments.

Notre objectif est de développer des modèles mathématiques qui nous aident
à explorer ces mécanismes de régulation. Notre objectif principal ici est de créer
des modèles stochastiques qui capturent les deux étapes de la synthèse des pro-
téines : la transcription et la traduction. Nous cherchons à comprendre certains
mécanismes de régulation spécifiques et à déterminer leur impact sur l’activité
de la cellule. Pour ce faire, nous devons créer des modèles qui représentent
non seulement chaque phase de manière raisonnablement précise, mais aussi qui
donnent une interprétation mathématique.

Notre analyse implique d’examiner comment différentes macro-molécules
sont distribuées pendant chaque phase, que ce soit la transcription ou la tra-
duction, en fonction de la disponibilité des ressources à l’intérieur de la cellule.
À travers cette analyse, nous évaluons l’impact des mécanismes de régulation
sur l’activité cellulaire. Pour réaliser tout cela, nous utilisons des méthodes de
renormalisation, et compte tenu de la coexistence de processus lents et rapi-
des dans nos modèles, nous utilisons le principe d’homogénéisation en utilisant
les mesures d’occupation comme principal outil mathématique. De plus, une
variété de méthodes de couplage sont intégrées dans notre approche.

4



Contents

1 Introduction 7
1.1 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 A Bacterial Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Exponential and Stationary Phases . . . . . . . . . . . . . . . . . 10
1.4 Mechanisms of Regulation . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Transcriptional Regulation . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Translational Regulation . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Probabilistic Models . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Regulation Of Transcription 36
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Sub-critical Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Super-critical Case . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Exponential Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6 Stationary Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.7 Sub-critical Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.8 Super-critical Case . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Pairing Mechanisms 72
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Fixed Number of Agents . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 Dynamical Arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6 Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Regulation Of Translation 105
4.1 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.5 Models with 1 amino acid . . . . . . . . . . . . . . . . . . . . . . 120
4.6 Adequate supply of amino acids . . . . . . . . . . . . . . . . . . . 121

5



4.7 Maximal Sequestration in the Deficiency of Amino Acids . . . . . 126
4.8 Partial Sequestration in the Deficiency of Amino Acids . . . . . . 134
4.9 Regulation-independent deficiency of amino acids . . . . . . . . . 137
4.10 Generalizing Results to a Model with Multiple Amino Acids . . . 139

6



Chapter 1

Introduction

1.1 Gene Expression
Gene expression refers to the process of converting genetic information encoded
in genes into functional proteins or RNA molecules/non coding RNA molecules.
This process involves the transcription of DNA into RNA. When the produced
RNA is coding, this first step is followed by a second process called translation.
This process translates the coding sequence carried by the coding RNA, called
mRNA, into an amino acid polypeptide. In general, after some folding, this
polypeptide becomes a protein. Protein production holds immense significance
within the cell as it not only facilitates its growth but also consumes a significant
portion of its resources. Understanding the mechanisms and regulation of gene
expression is a fundamental and complex research topic in the field of biology.

The process of protein production can be described as a two-step procedure.
In the first step, polymerases, macro-molecules, generate RNA molecules from
DNA genes. This process is known as transcription. The second step, called
translation, involves the synthesis of proteins from messenger RNA (mRNA)
molecules using ribosomes, which are large molecular complexes.
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1.2 A Bacterial Cell

A bacterial cell is a prokaryotic cell, which means it lacks a nucleus and other
membrane-bound organelles found in eukaryotic cells. All macro-molecules are
colliding with each other in the cytoplasm what gives the process a stochastic
aspect.

Let us first recall the three main categories of RNAs contained in a bacterial
cell:

a. rRNAs, ribosomal RNAs, used for the building of ribosomes. A ribosome
is a complex assembly of around 50 proteins and, also, of several rRNAs.
An rRNA is a long chain of several thousands of nucleotides, it is in
particular a costly macro-molecule to produce. Reducing or speeding-
up the production of ribosomes, in particular of rRNAs, has therefore a
critical impact on resource management of the cell;

b. mRNAs, messenger RNAs, used by the translation step (see description
below) to produce a protein from mRNAs coding sequences;

c. A large set of RNAs that do not belong to the two previous categories,
such as transfer RNAs, tRNAs, or Bacterial small RNAs, sRNAs, often
associated to regulation mechanisms.
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The production of protein in eukaryotic and bacterial cells involves similar basic
steps, transcription and translation. However there are several key differences
between these two processes.

For example, in eukaryotic cells, the transcription of DNA into mRNA may
take place in the nucleus, while in bacterial cells, in the whole cytoplasm. An-
other difference is that the transcription and translation take place in the same
time, in the sense that mRNA is translated into protein as soon as it is tran-
scribed. This occurs because bacteria do not have a distinct nucleus that sepa-
rates DNA from ribosomes, so there is no barrier to immediate translation. In
addition, unlike eukaryotic cells, in which different types of polymerases exist
and each of them is responsible of transcribing a certain type of RNA, in bacte-
rial cells an unique type of polymerase is responsible of the synthesis of mRNA,
rRNA and tRNA.

1.2.1 Transcription
During transcription, the DNA is first unwound and a section of it is copied
into a complementary DNA strand by the RNA polymerase enzyme. In further
detail, it can be described through the three fundamental steps:

a. Initiation: the polymerase binds to one of the specificity factors σ to
form a holoenzyme in order to bind to a specific region on the DNA called
the promoter. In our case we focus on the “housekeeping” σ-factor σ70

for E. Coli and σA for B. Subtilis. This holoenzyme binds to a large set
of gene promoters to initialize the transcription. This is the initiation
phase.This phase is complex at the molecular level and depends on the
specific characteristics of the nucleotide sequence defining the promoter
region on DNA. This sequence mainly defines the affinity of the polymerase
to the promoter (in particular allows to select of a polymerase associated
with right sigma factor). In addition, this sequence modulates the specific
properties of the initiation, i.e. its rate of success in initiating and the
speed of initiation. If this step is successful, the protein σ70 is detached
and the polymerase completes the elongation of the corresponding RNA.

b. Elongation: as RNA polymerase moves along the DNA template, it adds
nucleotides to the growing RNA molecule in order to synthesize a com-
plementary RNA sequence strand using the exposed DNA template as a
guide.

c. Termination: once the RNA polymerase reaches the end of the gene,
it encounters a termination signal, which signals the end of transcrip-
tion. The termination signal causes the RNA polymerase to release the
synthesized RNA molecule and dissociate from the DNA template. This
termination is organized by a series of specific molecular actors, allowing
to modulate and regulate this specific step.

9



1.2.2 Translation
The mRNA molecule then undergoes translation. It carries the genetic infor-
mation from the DNA to the ribosomes, where translation takes place.

In bacterial cells, ribosomes are large molec-
ular complex composed of two subunits, the
small 30S subunit and the large 50S subunit,
which combine to form the complete 70S ri-
bosome, which is responsible for the transla-
tion of mRNA into proteins in bacterial cells.
Both subunits contain several number of ribo-
somal RNAs (rRNAs) and around 52 proteins,
what makes of the ribosome the most demand-
ing macro-molecule to produce in terms of re-
sources.

Figure 1.1: Ribosome during
translation phase

a. Initiation: The translation phase starts with the binding of the small
ribosomal subunit to the mRNA molecule. The ribosome then scans the
mRNA searching for a specific start codon (in general AUG).

b. Elongation: Once the start codon is located, the ribosome recruits the
large ribosomal subunit and starts the elongation step. During elongation,
the ribosome reads the mRNA sequence using the genetic code which is a
sequence of 3 letter combinations called codons, each of them corresponds
to a specific amino-acid. The amino acids are carried to the complex
ribosome and mRNA by a macro-molecule called transfer RNA (tRNA).

c. Termination: The process of elongation continues until the ribosome
reaches a stop codon. But sometimes, it can either release the messenger
RNA or proceed with the translation of the next gene.

The resulting protein is then folded into its proper shape and can perform its
specific function within the bacterium. Overall, the translation phase of protein
production in bacterial cells is a highly regulated and sophisticated process
that requires the coordinated interaction of many molecular components. The
accuracy and efficiency of this process are essential for the proper function of
bacterial cells.

Figure 1.2: Protein production: two-step process

1.3 Exponential and Stationary Phases
Bacterial cells experience different regimes during their growth (see Alberts et
al. [3] for details). Within the scope of this thesis, our attention will be di-
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rected toward the individual cell scale. We will focus on two main regimes: the
exponential phase and the stationary phase. The exponential phase with large
growth rate is characterized by an abundance of nutrients (resources) and favor-
able environmental conditions, allowing the bacterium to grow and reproduce
quickly (the production rate of proteins is large for example). However, the
stationary phase is when resources become depleted and bacterial growth slows
or stops entirely. In this phase, the bacterium enters a state of low metabolic
activity because of the environmental conditions.

When the concentrations of different resources in the medium are large
enough for some time, the bacterium has the ability to use them efficiently,
via its complex regulatory system, to reach a stable exponential growth regime
with a fixed growth rate. The growth of a bacterial population in a given
medium leads therefore to an active consumption of resources necessary all the
molecular components to duplicate the cell.

When resources are scarce, for example when some amino acids are missing, a
bacterial cell can adapt, to either exploit differently the available resources or to
do without some of them. For E. coli or B. subtilis, these bacteria use in priority
resources maximizing their growth rate. In the context of this adaptation, and
for reasons related to the decay of resources, each bacterial cell has to decrease
its growth rate, and finally to ultimately stop its growth.

The regulatory network involved in the management of the growth rate to
adapt to the environment is complex. In general, the bacterium modifies the
concentration of agents in charge of protein production: number of ribosomes,
concentrations of proteins in the metabolic network, transporters, . . .

In simple terms, when a bacterium needs to survive in a resource-scarce
environment, it has to rely on alternative solutions. This, however, means taking
away some of the resources it used to use for its growth and making these
machines. Because a large part of the system is designed to generate enough
spare parts for "copying" the bacterium, this shift in focus reduces the flow of
these spare parts that used to be available for everyone. As a result, it reduces
the number of each machine that can be made within a certain time frame and
decreases the overall quantities of each machine that can produce all the spare
parts.

In a first, simplified, description, the decay of a specific resource in the
environment leads to a move to a state of the cell where concentrations of
several components have been adapted. To study the transition between growth
phases, we have chosen to focus on the action of a small RNA, 6S RNA, which
plays an important, even essential, role in this domain. Note that, even if
this mechanism is central, this description of the transition between growth
regimes is nevertheless a simplification in our approach, since the bacterial cell
has different ways to modify the steady-state level of its components.
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1.4 Mechanisms of Regulation
Regulatory mechanisms are critical for bacterial cells to adapt to changing envi-
ronments (in terms of availability of resources) and maintain an efficient cellular
function. Many studies have been conducted on this topic, such as in Agustino
and Collado-Vides [1] where the focus is on examining regulation in E. coli.

It is not an overstatement to claim that the intricate biological processes
involved in protein synthesis, starting from its DNA sequence, can be precisely
regulated to control protein levels. Attempting to provide a comprehensive and
concise overview of all potential mechanisms for gene expression regulation is
an impractical task. One way the cell regulates its transcriptional processes
involves the action of transcription factors, which have the ability to either
accelerate or inhibit the cell’s activity. This mechanism was investigated by
David J. Lee and colleagues (as documented in the study by David J. Lee et al.
[18]).

In addition to transcriptional regulation, gene expression control encom-
passes translational regulation, to modulate protein synthesis. The regulation
of gene expression not only controls transcription but also governs translation
processes. Translational regulation involves impeding access to the initiation
site of mRNA. See Claudio O. Gualerzi [16], thereby influencing the efficiency
and timing of protein production.Regulatory mechanisms are critical for bacte-
rial cells to adapt to changing environments (in terms of availability of resources)
and maintain an efficient cellular function. Many studies have been conducted
on this topic, such as in Agustino and Collado-Vides [1] where the focus is on
examining regulation in E. coli.

Overall, the complex regulatory mechanisms in bacterial cells ensure that
gene expression is tightly controlled and coordinated, allowing the cell to re-
spond to environmental cues and carry out essential functions for survival.

1.5 Transcriptional Regulation
In bacterial cells, transcriptional regulation occurs primarily at the level of

initiation, where RNA polymerase binds to the promoter region of a gene and
begins the process of transcription. An important mechanism of transcriptional
regulation is the use of alternative sigma factors, which can direct RNA poly-
merase to different sets of genes in response to specific environmental signals.
One of the major post-transcriptional regulators of gene expression is a macro-
molecule called small RNA (sRNA). The sRNAs are non-coding RNA molecules
typically ranging from 50-500 nucleotides in length, that act by base pairing with
target mRNAs or proteins to modulate gene expression. Thereby, they influ-
ence various cellular processes including metabolism and stress response (see
[52]). Numerous sRNAs have been identified and characterized: for example,
more than ten sRNAs are known to be encoded in the E. coli (represented in
Montzka Wassarman et al. [51] ) in bacterial genomes, nevertheless the exact
number of sRNAs is still not known for other several bacterial cells (see [34]).
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The study of sRNAs has led to a greater understanding of bacterial gene regu-
lation and has been used in the development of novel antibiotics and biotechno-
logical tools. This topic has become an important subject to study and analyze,
so they started to test the use of sRNAs in the regulation using mathematical
models (see for example [23]).

1.5.1 6S RNA: A global regulator of transcription
We will focus on the 6SRNA regulatory mechanism. 6S RNA is a small RNA
discovered in the late 1960s in E. coli (see Wassarman and Storz [68] for refer-
ence) because of its large number during the stationary phase.

Its function had been unknown for a long time until its role is to bind to
σ70-RNA polymerase has been shown. The findings of Wassarman and Storz
[68] indicate that the association between 6S RNA and RNA polymerase occurs
in a precise and effective manner. An observation of 6S RNA making direct
contact with the σ70 subunit of the polymerase has been done. In addition to
that, it was also observed that the stable association between σ and core RNA
polymerase only occurs when 6S RNA is present.

In order to understand how the binding of 6S RNA to RNA polymerase is
done, the 3D structure of 6S RNA has been investigated. In Chen et al. [15], it
was shown that a 6S RNA imitates a DNA promoter, enabling the regulation
of transcription by binding and therefore sequestering a free polymerase(see
scheme below).

Figure 1.3: Shown is just the promoter
DNA. Taken from Chen et al. [15]

Figure 1.4: Shown is just the model of
6S RNA. Taken from Chen et al. [15]

This is what makes it able to bind to a free polymerase and prevent it from
binding to a gene promoter (see scheme).
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Figure 1.5: σ70-RNA polymerase bound
to a 6S RNA. Adapted from Chen et al.
[15]

We call this mechanism, Sequestration
of free polymerases by 6S RNAs

It plays a crucial role in regulating gene expression during the transition
from exponential to stationary phase. During the exponential phase, bacterial
cell grows rapidly, and it requires a high level of gene expression to support its
growth, the production rate of proteins is therefore large. However, as the cell
enters the stationary phase, the availability of nutrients decreases, and the cell
begins to experience stress. In response to this stress, 6S RNA accumulates
and attains a peak concentration of around 10000 copies per cell and are pre-
dominantly bound to σ70-polymerases (detailed by Nitzan et al. [54] and KM
[43]). The binding of 6S RNA to RNA polymerase prevents the enzyme from
binding to DNA and transcribing genes, leading to a global down-regulation of
gene expression.

This mechanism has important consequences on the activity of the cell, as it
preserves energy and resources that would otherwise be used for gene expression.
In addition, it allows the bacterium to switch its metabolism to alternative
conditions in order to be convenient to the stationary phase.

The transition from exponential to stationary phase is not really well un-
derstood and many studies have been done in order to characterize it. The
simulations shown in the figures below demonstrate that the regulatory mecha-
nism controlled by 6S RNA can endure moderate changes in the affinity between
6S RNA and RNA polymerase.
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Figure 1.6: The dynamics of the 6S RNA regulation system components at the
transition from stationary to exponential phase. Shown are the dynamics anal-
ysis results by number of molecules for 6S RNA (A), and free RNA polymerases
(B). Adapted from Nitzan et al. [54].

Figure 1.7: The dynamics of the 6S RNA regulation system components at the
transition from exponential to stationary phase. Shown are the dynamics anal-
ysis results by number of molecules for 6S RNA (A), and free RNA polymerases
(B). Adapted from Nitzan et al. [54].

In summary, the 6S RNA regulation in a bacterium is a critical mechanism
modulating gene expression during the transition from exponential to stationary
phase. It highlights the sophisticated and complex molecular machinery that a
bacterial cell uses to survive stressful conditions and challenging environments.

1.6 Translational Regulation
The initiation of mRNA translation is a crucial step in controlling the quantity
and accuracy of protein synthesis. It serves as a key point of regulation for
gene expression through various post-transcriptional mechanisms. The process
starts with the creation of an unstable 30S pre-initiation complex comprising
initiation factors (IFs) IF1, IF2, and IF3, along with the translation initiation
region of an mRNA and initiator fMet-tRNA. This complex then binds with the
50S subunit, forming a 70S complex (detailed in Gualerzi CO [35]).
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1.6.1 The Stringent Response: A regulatory mechanism
in bacterial translation

The stringent response has been extensively studied in the model bacterium E.
coli since the late 1960s. A notable observation in recent years is that although
the stringent response has been extensively studied in E. coli, the molecular
elements involved in its implementation are specific to this bacterium. In reality,
in the majority of sequenced and annotated bacteria, the molecular players
participating in and defining the stringent response are slightly different from
those in E. coli.

Although the molecular players may differ, indicating specific biological im-
plementation, the general principles and major actions integrated into our study
are conserved across bacteria. Specifically, we refer to the research and results
concerning the stringent response in another model bacterium, Bacillus subtilis,
which belongs to the Gram-positive group (while E. coli is a model bacterium
for Gram-negative bacteria). For B. subtilis and for most bacteria, the molecu-
lar organization of the stringent response and its actions on the bacterium vary
slightly (which we will discuss further in the final parts of the chapter).

As we will discuss later, the primary objective of the regulatory system
that generates the stringent response in bacteria is to ensure a proper balance
between the availability of each amino acid and the demand associated with the
production of proteins. However, evolution has also exploited this mechanism to
address other issues, which we will not consider here. These additional aspects
often involve the production or degradation of ppGpp and are directly related to
growth rate management rather than amino acid level control during translation.

This regulation is mediated by one protein in B. subtilis or two proteins in
E. coli. The first protein is capable of producing a specific metabolite called
pppGpp or ppGpp (referred to as (p)ppGpp hereafter). When the availability
of amino acids falls below the bacterium’s current protein production needs,
this first protein, called RelA in E. coli, is complemented by a second protein
named SpoT. The second protein degrades (p)ppGpp under specific conditions
that activate its degradation. Generally, in most bacteria, the first protein
that produces (p)ppGpp (RelA in E. coli) also possesses a secondary function
to degrade it. Therefore, this protein operates in a dual manner: when it is
not activated to produce (p)ppGpp, it can degrade it. Lastly, although this
protein is structurally similar to E. coli ’s RelA, it has recently been named Rel,
highlighting its differences from RelA, the protein in E. coli.

The presence of (p)ppGpp in the cell triggers a series of downstream effects.
It inhibits the production of ribosomal RNAs (rRNAs), which are essential com-
ponents of the ribosomes responsible for protein synthesis. This reduction in
ribosomal RNA production limits the availability of functional ribosomes in the
cell, leading to a slowdown in protein synthesis, what helps in conserving energy
and resources under nutrient-limiting conditions. In addition, (p)ppGpp inter-
acts with the initiation phase of translation, specifically targeting the formation
of the initiation complex. By inhibiting the initiation of translation, (p)ppGpp
prevents the binding of aminoacyl-tRNAs to the ribosome, disrupting the in-
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corporation of amino acids into growing polypeptide chains. Therefore, it slows
down or halts the translation process, leading to a decrease in the overall rate
of protein production.

The stringent response, mediated by (p)ppGpp, allows bacterial cells to
adapt and respond to adverse environmental conditions by adjusting the rate
of protein production in response to environmental conditions, nutrient avail-
ability, and other cellular signals. Amino acid starvation poses also a significant
risk as it can lead to an increased error rate during protein synthesis. This high-
lights the critical importance of translational regulation in bacterial cells. By
modulating the initiation of translation, bacteria can effectively manage protein
synthesis, ensuring accuracy and efficiency, even under conditions of amino acid
scarcity.

In E. coli, SpoT plays a pivotal role in cellular metabolism and stress re-
sponse. Also known as (p)ppGpp synthetase/hydrolase, SpoT is an enzyme
involved in the stringent response, a regulatory mechanism enabling bacteria to
adapt to nutrient scarcity and environmental stressors. SpoT assumes the re-
sponsibility of synthesizing and degrading (p)ppGpp signaling molecules, which
function as global regulators of gene expression. Through its modulation of
(p)ppGpp levels, SpoT exerts influence over diverse cellular processes such as
transcription, translation, and metabolism. This capability aids the bacterium
in surviving adverse conditions. Conversely, in B. subtilis, it is Rel that carries
out the production and degradation of (p)ppGpp.
However, the models presented in this thesis are applicable to various bacterial
cell types, transcending their inherent differences.
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Figure 1.8: Effects of RelA and SpoT mutations and Amino Acid starvation on
the rates of Methionine (•) and Uridine (�) incorporation in E. Coli. Adapted
from O’Farrell [55].

The experiment represented in the figure 1 aims to distinguish the cell’s
state and activity under three distinct conditions. The first condition represents
normal cellular functioning, while the second condition simulates amino acid
starvation. Lastly, the third condition represents the state after readdition of
the deficient amino acid. The specific amino acid of interest in this experiment
is isoleucine, as it is commonly utilized in protein formation. Throughout these
conditions, the availability of methionine and uridine in the medium is adequate,
ensuring that the two quantities measured in the experiment are not generally
affected by their availability during the course of the experiment. However, their
incorporation levels are measured.

The figure represented in this experiment illustrates the impact of amino acid
withdrawal and subsequent readdition on the strains rel- spoT-, rel+ spoT+ and
rel+ spoT- 1. Specifically, it is observed that only the rel+ strains accumulate
ppGpp in response to starvation, while the spoT- strains exhibit heightened
stability of ppGpp, knowing that spoT is not degrading ppGpp.

1The + and - symbols associated with gene names identify different strains. A strain name
with the gene name associated with a + contains the gene, while a strain name with the gene
name associated with a - no longer contains this functional gene. This convention is used
in biological articles where manipulated strain-names have a name that explains their main
characteristic
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This experiment provides valuable insights into the role of ppGpp in cellular
activity. Firstly, in terms of the Transcription phase (RNA synthesis), uridine
incorporation is measured as a proxy. It is evident that RNA synthesis is inhib-
ited during amino acid starvation solely in rel+ strains that accumulate ppGpp.
Hence, ppGpp acts as an inhibitor of stable RNA synthesis in the absence of
amino acids.

Following the readdition of the deficient amino acid, the rate of uridine in-
corporation swiftly recovers in rel+ spoT+ strains, where ppGpp degradation
occurs due to the presence of spoT. Conversely, in rel+ spoT- strains, the in-
crease in uridine incorporation transpires at a slower pace since ppGpp remains
active, thereby sustaining the inhibition of transcription.

Regarding the impact of ppGpp on the Translation phase (protein synthe-
sis), protein synthesis rate is measured by methionine incorporation, considering
that methionine is the initial amino acid incorporated into the ribosome during
protein synthesis. It is noteworthy that amino acid starvation inhibits protein
synthesis in both rel+ and rel- cells, which is logical since proteins are com-
posed of amino acid sequences, leading to decreased production regardless of
ppGpp presence. Upon the readdition of the deficient amino acid, the rate of
protein synthesis experiences a gradual increase in rel+ spoT- strains due to the
accumulation of ppGpp without spoT-mediated degradation. This highlights
that the accumulated levels of ppGpp play a substantial role in the substantial
reduction of protein synthesis, resulting in an 86% inhibition.

The regulatory mechanism varies across different bacterial types with regards
to how (p)ppGpp influences both transcription and translation phases of protein
production. For instance, in E. coli, ppGpp binds to the polymerase, leading to
the inhibition of ribosomal RNA transcription. Conversely, in B. subtilis, GTP
governs the polymerases, and ppGpp, in turn, regulates GTP. This implies that
in B. subtilis, ppGpp indirectly inhibits transcription by controlling GTP levels.

However, the pivotal observation is that the inhibitory effect of ppGpp on
translation remains consistent across all bacterial species. This effect is primar-
ily manifested through its impact on IF2, the initiation factor of translation.
Consequently, despite the differences in regulatory mechanisms, the variations
observed do not undermine the applicability of our model in this chapter. As
our study focuses on the influence of ppGpp on the translation phase, our model
remains pertinent for diverse bacterial types. (see al. [2] for further details.)

1.7 Probabilistic Models
In this section, we present the mathematical models used to investigate reg-
ulation mechanisms introduced in the previous sections. Overall, designing a
sufficiently rich class of mathematical models, but still tractable, has been chal-
lenging, especially for the translation step.

We give an overview of our models in a simplified manner. We will also
introduce the mathematical tools used to analyze these models and discuss the
challenges we encountered along the way.
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1.7.1 Stochastic Modeling
The objective of the thesis is the development of stochastic models to depict the
two stages of protein synthesis: Transcription and Translation. Specifically, we
aim to understand some particular regulatory mechanisms, detailed in Sections
1.5.1 and 1.6.1, and to analyze their impact on the activity of the cell. To achieve
this, we must design models that not only portray each phase in a reasonably
accurate manner but also that give a mathematical interpretation.

1.7.1.1 Averaging Principle

For a given phenomenon, it is convenient to classify stochastic processes into
two main types: Fast processes and Slow processes.

Fast processes evolve rapidly over time, the transition rates between differ-
ent states are large by definition. Fast processes are in general integer-valued
stochastic processes in our analyses. By contrast, The dynamic of the evolution
of the state of slow processes is O(1), in general.

Occupation measures are an important mathematical object in the averaging
principle. It can be described roughly as follows. For a slow process (XN (t))
and a fast process (YN (t)), the occupation measure (µN ) associated to (YN (t))
is given by

〈µN , g〉 =

∫
g (s, YN (s)) ds.

The averaging principle consists in proving the convergence in distribution of
(µN ) and the representation of its limit is given by Kurtz [45]

lim
N→+∞

(〈µN , g〉) =

(∫
g (s, y)πs(dy)ds

)
where (πs) is a process with values in the space of probability measures. (XN (t))
can be expressed in the form of a differential equation involving the occupation
measure of (YN (t)).

Occupation measures will be used throughout our upcoming chapters, as
it will be seen in Sections 1.7.2.4,1.7.3.4 and 1.7.4.4. However, our approach
differs from the traditional one because the slow processes were included into
the occupation measures for tightness reasons.
See Kurtz [45], Papanicolaou et al. [56] and Freidlin and Wentzell [29] on this
topic.

1.7.2 Chapter 2: Regulation Of Transcription
1.7.2.1 Context

In this chapter, our objective is to analyze the impact of a regulatory process
of the Transcription phase. This process involves the 6S RNA macromolecule
described in Section 1.5.1, and only polymerases associated with a specific sigma
factor: the σ70 factor for E. Coli (or σA for B. subtilis). In the following, we will
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only mention the polymerase for the sake of simplicity instead of the polymerase
associated with this single sigma factor .This regulation mechanism is illustrated
by the sequestration process of polymerases by 6S RNAs in our model. It is
clear that the polymerase plays a pivotal role in the transcription process, thus
forming the central focus of our investigation. Throughout this chapter, we will
present a mathematical model designed to effectively capture the distribution
of polymerases across various states: free, sequestered (bound to a 6S RNA) or
in transcription phase. The details of this model will be explored further.

Our starting assumption is that the total number of polymerases remains
constant, N . Additionally, we assume that there are CNm ≈ cmN different types
of mRNAs, and that there are J distinct types of rRNAs. And lastly, we assume
that the maximal number of polymerases in elongation phase of an rRNA of type
j, CNr,j , is of the order of N .

To understand the allocation of polymerases in this context, we have intro-
duced a Markovian model (dynamics represented in relations (2.8), (2.9) and
(2.10)).

(FN (t), SN (t),MN (t), ZN (t), ((Uj,N (t), Rj,N (t)) , 1 ≤ j ≤ J))

where

— FN (t), the number of free polymerases.

— SN (t), number of sequestered polymerases.

— MN (t), number of polymerases in mRNA transcription.

— ZN (t), number of free 6S RNAs.

— Uj,N (t) ∈ {0, 1}, to indicate if a polymerase is bound to the promoter of
the rRNA of type j or not.

— Rj,N (t) ∈
{

0, . . . , CNr,j
}
, number of polymerases in elongation phase of an

rRNA of type j.

With these notations, the conservation of mass for the ribosomes gives the
relation:

FN (t) + SN (t) +MN (t) +

N∑
j=1

(Uj,N (t) +Rj,N (t)) = N, ∀t ≥ 0

The figure below shows the model with the distinct states of polymerases along
with their corresponding transition rates.

We will now give a brief explanation of the model.
Starting with the transcription process of rRNAs. As mentioned earlier,

there are J distinct types of rRNAs, each associated with its own promoter.
The transcription of rRNAs occurs through a two-step process. The initial step,
referred to as initiation, involves a polymerase binding to a specific promoter.
Following this, the elongation phase begins. Once a polymerase is bound to the
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Figure 1.9: Polymerases: Transcription of mRNAs/rRNAs and Sequestration

promoter of an rRNA of type j, it initiates the elongation phase at rate αr,j .
During this phase, the polymerase actively collects nucleotides at rate βr,j . This
process leads to the formation of an mRNA and subsequently, the polymerase
is released from the gene and becomes free again.

It is assumed that there are CNm different types of mRNAs as mentioned
earlier. A polymerase starts transcribing an mRNA at rate αm and an mRNA is
released at rate βm and the corresponding polymerase is released at that instant.
The process of transcribing mRNA appears simpler in our model compared to
the transcription of rRNA. This simplicity arises from the fact that we have
combined the initiation and elongation phases into a single step for mRNA
transcription. Our primary focus, discussed in Section 1.7.2.2, is to examine the
influence of sequestration on rRNA transcription.

A 6S RNA is created at rate β6 > 0 and it is in a free state when it’s not
bound to a polymerase. A given free 6S RNA is degraded at rate δ6 ≥ 0. Only
a free 6S RNA can be degraded.

A polymerase is free when it is not bound to a gene or to a 6S RNA. A free
polymerase is bound to a given 6S RNA at rate λ. A complex polymerase-6S
RNA breaks into a free polymerase and a free 6S RNA at rate η.

1.7.2.2 Objective

In this chapter, we aim to analyze the efficiency of the transcriptional regulatory
mechanism outlined in section 1.5.1.

Throughout our study, we work with a large number of polymerases denoted
as N (between 2000 and 10000 in E. Coli). In the context of transcription,
the purpose is to understand how the bacterium manages its resources (poly-

22



merases). This involves analyzing how the activity of polymerases between free,
actively transcribing (mRNA or rRNA), and sequestered. Our analysis takes
into account two key regimes of the bacterial life cycle: the exponential phase
and the stationary phase, presented in Section 1.3.

During the stationary phase, defined by a shortage of resources, free poly-
merases become inactive by the sequestration of free polymerases by macro-
molecules called 6S RNAs. Therefore, in order to measure the efficiency of this
regulatory mechanism, we focus on analyzing the rate of sequestration in each
phase, and more specifically the time evolution of the process of the number of
sequestered polymerases (SN (t)).

Through this analysis, we have proved the importance of certain parameters
and evaluated their impact. Among these parameters, the rate of initiation of
transcription of an rRNA of type j, (αr,j), holds a significant role. This is be-
cause altering the rate of rRNA transcription has an influence on the activity of
the cell. As it is showed earlier in figure 1.2.2, ribosomes are the most resource
intensive macromolecules, composed of around 52 proteins and numerous ribo-
somal RNAs (several thousands of nucleotides). Their production occurs when
a large number of resources is available in the environment, which corresponds
to the exponential phase. Hence, modifying the rate of initiation of rRNA tran-
scription, αr,j , plays a pivotal role in transitioning the cell from exponential
growth to the stationary phase. Thus, it essentially dictates the phase in which
the cell operates.

1.7.2.3 Contributions

We introduce two sets of conditions on the parameters of our model, which
define the exponential regime and stationary regime. And we present in this
section the outcomes obtained in our study.

a. Exponential Regime. It is defined by the condition

min
1≤j≤J

αr,j
βr,j

> 1.

The initiation rate αr,j of the transcription of an rRNA of type j is greater
than its production rate.
We proved the convergence in distribution

lim
N→+∞

(
‖RN (t)‖

N
,
MN (t)

N

)
= (cr, 1−cr)

where ‖RN (t)‖ def=
J∑
j=1

Rj,N (t).

In this regime, most of the polymerases are actively engaged in the tran-
scription phase, primarily synthesizing rRNAs (‖RN (t)‖) or mRNAs (MN (t)).
There are relatively few polymerases that are either free or sequestered by
a 6S RNA molecule.
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b. Stationary Regime. It is defined by the condition

max
1≤j≤J

αr,j
βr,j

< 1.

The initiation rate αr,j of the transcription of an rRNA of type j is less
than its production rate.
We proved the convergence in distribution

lim
N→+∞

(
MN (Nt)

N
,
FN (Nt)

N
,
SN (Nt)

N

)
=
(
cm, f(t), 1−cm−f(t)

)
where

(
f(t)

)
is the solution of an ODE.

In this regime, limited number of polymerases engaged in the transcription
of rRNAs, in the sense that ‖RN (t)‖ is of the order of O(1). Interestingly,
a fraction of these polymerases remains free, indicating that the seques-
tration process does not control all of these seemingly "idle" polymerases.
sequestration process does not control all "useless" polymerases.
The fact that sequestration phenomenon of a fraction of N polymerases
occurs on the time scale t 7→ Nt is intuitive, given that the rate of creation
of 6S RNAs, β6, is constant.

1.7.2.4 Methods and Technical Difficulties

In a probabilistic context, using a Markovian model, and with the total num-
ber of polymerases denoted as N as our scaling factor, we investigate how the
number of polymerases in each state evolves over time when N is large.

We derive functional limiting results, with respect to the scaling parameter,
of the time evolution of several stochastic processes. The slow and fast processes
are dependent on varying parameter conditions.
An important feature of our model is that the transition rates of the main
Markov process exhibit a quadratic dependence on the state of the process, due
to the use of the law of mass action for the dynamic of our model.

We will now outline the slow and fast processes within each of the scenarios
discussed in section 1.7.2.3.

In Scenario (a), the slow processes are the scaled number of polymerases in
rRNA(resp. mRNA) transcription phase (Rj,N (t)/N) for all 1 ≤ j ≤ J (resp.
(MN (t)/N) ). The fast processes are the number of free polymerases (FN (t)),
the number of sequestered polymerases (SN (t)) and the number of free 6S RNAs
(ZN (t)).
In order to prove our results in this regime, we introduce a coupling to study the
occupancy of the places for transcription of rRNAs. We then prove an averaging
principle. The corresponding occupation measure is given by

〈µN , g〉 =

∫
R+

g (s, FN (s)) ds.

In Scenario (b), the slow processes are the scaled number of free, sequestered,
and in mRNA transcription (FN (t)/N), (SN (t)/N) and (MN (t)/N). And the
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fast processes are the number of polymerases in rRNA transcription (Rj,N (t))
for all 1 ≤ j ≤ J and the number of free 6S RNAs (ZN (t)).
In this scenario, we employ a coupling method and an averaging principle. The
key component in this context is the associated occupation measure, which is
expressed as:

〈µN , g〉 =

∫
R+

g

(
s,
FN (Ns)

N
,GN (Ns), ZN (Ns)

)
ds

where GN (t)
def
= CNm − (N−FN (t)−SN (t)).

What is quite unusual, is that, in the definition of the occupation measure, we
include the slow process (FN (Nt)/N) as well. The reason behind this choice lies
in the fact that proving the tightness of (FN (Nt)/N) is not straightforward. Due
to the fast time scale, proving that the martingale component of (FN (Nt)/N)
converges to zero is not clear.

1.7.3 Chapter 3: Pairing Mechanisms
1.7.3.1 Context

Regulation mechanisms, in essence, function by engaging with the macro-molecules
of the cell. We refer to this interaction between macro-molecules as Pairing
Mechanisms within the context of our study. These Pairing Mechanisms play a
crucial role in the cell as they control the growth rate based on the environment
of the cell. They can either decrease the usage of specific macro-molecules or
accelerate their activity. Small RNAs (sRNAs) are the global regulators, as they
have various effects on the functions of the cell, depending on its surroundings
(resources availability). They can reduce the usage of specific macro-molecules,
a phenomenon termed Sequestration in Chapter 1.7.2, or they can enhance ac-
tivity. The binding between these molecules eventually breaks due to thermal
noise after a certain period of time. The cell produces agents on a regular basis
and when the cell environment is normal and does not require regulation, free
agents are degraded quickly resulting in only a few of them remaining. Agents
that are paired with particles cannot be degraded.

In the previous chapter 1.7.2, a sequestration process, which acts as a pair-
ing mechanism, has been investigated. However, in this chapter we analyze it
differently. Essentially, we separate it from the transcription processes outlined
earlier and we focus only on the sequestration process. The key distinction here
is that we approach this topic from a more general perspective. Unlike Chapter
1.7.2, where we primarily dealt with a single type of particles which were the
polymerases and agents 6S RNAs, in this chapter, a total of J different types
of particles is considered.
Assuming that the environment has limited resources, the efficiency of the reg-
ulation is measured by the number of paired particles (sequestered in Chapter
1.7.2).

To do this, we introduce a mathematical model describing the interaction
between different types of particles and specific particles, denoted as agents.

25



We assume that there are a constant total number of particles, N . Among
these particles, there are J different types of particles and a total number,
Cj,N ≈ cjN , of particles of type j. Thus N = C1,N + · · ·+ CJ,N .
There is just one type of agent in our model.

To investigate the sequestration process in a general context, a Markovian
model has been introduced (with dynamics represented in relations (3.7) and
(3.8)),

(XN (t))
def
= (FN (t), ZN (t))

def
= ((Fj,N (t), j = 1, . . . , J) , ZN (t))

where

— Fj,N (t), j ∈ {1, . . . , J}, the number of free particles of type j.

— ZN (t), number of free agents.

And we denote by Sj,N (t)
def
= Cj,N − Fj,N (t) the number of paired particles of

type j.
With these notations, the conservation of mass for the particles gives the

relation:
Fj,N (t) + Sj,N (t) = Cj,N , ∀t ≥ 0, ∀j ∈ {1, . . . , J}

Fj Sj

Free Paired

λjfjz

ηjsj

Z ∅

(δ+λ1f1+ . . .+λJfJ) z

β+η1s1+ . . .+ηJsJ

Free agents

Figure 1.10: Transitions of Pairing Mechanisms

We will now provide a brief overview of the model depicted in the figure.

— A couple of free particle of type j and free agent binds at rate λj to form
a pair. And since there are fjz possible combinations of free particle/free
agent, this process exhibits a quadratic dependence, resulting in a rate of
λjfjz.

— A pair of particles of type j and an agent split at rate ηj and gives a free
particle of type j and a free agent.

— An agent is created at rate β and a free agent is degraded at rate δ. An
agent paired with a particle cannot die.

26



1.7.3.2 Objective

In this chapter, our goal is to explore the process (XN (t)) involving the interac-
tion of various types of particles and agents within a cell’s environment. These
interactions are highly dependent on the specific conditions present in the cell.

Throughout our study, we work with a large number of particles, N , which
is the scaling parameter. Our goal is to examine the impact of the creation and
degradation of agents on the activity of the cell, as described in Section 1.7.3.3.

The efficiency of a pairing mechanism is discussed in this chapter in a general
way. We focus on analyzing the rate of pairing, more specifically, we investigate
the time evolution of the number of paired particles (Sj,N (t)) of type j for all
j ∈ {1, . . . , J}, knowing that the goal of regulation mechanism is to maximize
this number.

1.7.3.3 Contributions

Investigating the efficiency of these pairing mechanisms led us to examine two
distinct situations. First, we looked at a situation where there is a fixed number
of agents, of the order of N , and there is no creation or degradation of agents.
Second, we explored a scenario where agents can be created and degraded.

In the scenario with a fixed number of agents, we studied two cases. One
where the number of agents, rN, r < 1, is strictly less than the total number
of particles, N . Therefore we analyzed three different scenarios in our model.
Each is characterized by a specific condition regarding the number of agents
present.

a. No creation nor degradation of agents: Fixed total number of agents of
the order of rN, 0 < r ≤ 1:

(a) r < 1: In the scenario where there are less agents than particles, the
number of free particles of type j, (Fj,N (t)) is of the order of N , for
all j ∈ {1, . . . , J}. The convergence in distribution

lim
N→+∞

(
Fj,N (t)

N

)
= (fj(t)) , ∀j ∈ {1, . . . , J}

holds, with (fj(t)) is the solution of an ODE.

(b) r = 1 In the scenario where the number of agents is equal to the
number of particles, it is shown that the number of free particles of
type j is of the order of

√
N for all j ∈ {1, . . . , J}. We proved the

convergence in distribution

lim
N→+∞

(
Fj,N (t/

√
N)√

N

)
= (fj(t)) , ∀j ∈ {1, . . . , J}

where (fj(t)) is the solution of an ODE.
And a central limit theorem is proved. The convergence in distribu-
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tion

lim
N→+∞

Fj,N
(
t/
√
N
)
−
√
Nfj(t)

4
√
N

 =
(
F̂N (t)

)
where

(
F̂N (t)

)
is the solution of a SDE. This shows that the fluctu-

ations are of the order of 4
√
N .

b. With creation and degradation of agents: Agents are created at rate β
and degraded at rate δ. We start initially with few agents in the medium.
An agent creates is paired right away with a particle via the successive
steps of pairing and splitting mechanisms, as long as the number of free
particles is large enough in order to have the pairing that happens before
the degradation of agents.
In order to study the time evolution of the number of free/paired particles
in the cell, a timescale t 7→ Nt must be employed due to the rate of
creation of agents β which is bounded.
In this context, the number of free particles remains of the order of N .
Unlike Scenarios (aa) and (ab), it turns out in this case that the sequence of
processes (Fj,N (Nt)/N) converges in distribution but only in a weak form,
via occupation measures. Only the scaled process of the total number of

free particles (‖FN (Nt)‖/N), (where ‖FN (t)‖ =
J∑
j=1

Fj,N (t)), converges in

distribution to a continuous process,

lim
N→+∞

(
‖FN (Nt)‖

N

)
= (H(t))

where H(t) ∈ (0, 1) is the unique solution of an equation presented in
Chapter 4. And the equilibrium point of (H(t)) is strictly positive.

Scenarios (aa) and (ab) are employed to explore situations where the environ-
ment remains relatively stable and when there is already a significant number
of agents in the system. And the Scenario (b) is used to understand the impact
of creation and degradation of agents.
We first notice the existence of three different timescales, illustrating the speed
at which the pairing mechanism operates in each scenario.
The difference between Scenario (ab) and Scenario (b) shows the impact of the
dynamical arrivals and departures of agents. The difference between the results
of these two scenarios, in addition to the employed timescale is that in Scenario
(b), the fraction of paired particles is strictly less than 1. This indicates that in
this case, there is a maximal pairing rate and that the number of free particles
is large of the order of N .
In biological terms, the Scenario (b) is more realistic, and our results shed light
on the transition between the exponential and stationary phase. Therefore,
based on our results, despite the existence of the regulation mechanism, the
number of free/useless particles remains large in the medium. In addition, this
transition happens at a timescale proportional to N .
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1.7.3.4 Methods and Technical Difficulties

In a stochastic context, using a Markovian model, our focus here is on under-
standing the asymptotic evolution of the number of paired particles in different
states, with the total number of particles denoted as N serving as a scaling
factor.

In all situations, we establish a first order theorem supported by an aver-
aging principle. The slow and fast processes are dependent on the scenario.
Naturally, our methodology involves averaging principles proving convergences
in distribution of occupation measures. We also employ coupling methods in
our analysis.

The main difficulty was proving convergence in distribution results through
the averaging principle, dealing with occupation measures, especially in Sce-
nario (b). This was tricky because we had to include the slow processes in the
occupation measure as we were unable to prove its tightness.

We will now outline the slow and fast processes for each scenario discussed
in section 1.7.3.3. Additionally, we will present the associated occupation mea-
sures.

a. In Scenario (aa), the slow processes are the scaled number of free particles
of type j, (Fj,N (t)/N) for all j ∈ {1, . . . , J}, and the fast process is the
number of free agents, (ZN (t)). The associated occupation measure is,
classically, given by

〈µN , g〉 =

∫
g (s, ZN (s)) ds.

b. In Scenario (ab), the slow processes are
(
Fj,N (t/

√
N)/
√
N
)

for all j ∈
{1, . . . , J}. A coupling is proved in this case

FN,j(t) ≤ Fj,N (0) +XN
j (t)

where
(
XN
j (t)

)
is solution of SDE.

c. In Scenario (b), the slow processes are (FN,j(Nt)/N) for all j ∈ {1, . . . , J},
and the fast process is (ZN (Nt)). The associated occupation measure is
given by

〈µN , g〉 =

∫
g

(
s,
Fj,N (Ns)

N
,ZN (Ns)

)
ds.

In this case, the definition of occupation measure is extended to include
the slow processes in order to overcome the lack of tightness properties of
(Fj,N (Nt)/N).

1.7.4 Chapter 4: Regulation Of Translation
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1.7.4.1 Context

The final chapter is dedicated to the translation phase, a critical stage in the
protein production. The ribosome plays a central role in this particular phase.
Within this chapter, we introduce a mathematical model that effectively cap-
tures how ribosomes are distributed among various states, which will be detailed
further.

To simplify things, our model is devised to illustrate the translation of a
protein composed of just a single amino acid. However, within the chapter, we
also present a model with two different amino acids. In fact, the existence of
four different regimes, listed in Section 1.7.4.3, does not depend on the number
of amino acids in the model. Adding amino acids in our model, surely will give
a more realistic description from a biological point of view but does not seem to
have an impact from a mathematical point of view. For this reason, the chapter
is essentially devoted to the study of a model with just one amino acid.

We make the assumption that the overall number of ribosomes remains con-
stant, denoted as N , alongside a total number of tRNAs denoted by CNq ≈ cqN
and a total number of messenger RNAs denoted by CNm ≈ cmN

In order to study the state of ribosomes in this case, a Markovian model of
dimension 5 has been introduced,(

RFN (t), RMN (t), REN (t), RSN (t), QN (t)
)

where

— RFN (t), the number of free ribosomes.

— RMN (t), number of ribosomes in the initiation step.

— REN (t), number of ribosomes in the elongation step.

— RSN (t), number of sequestered ribosomes.

— QN (t), the number of charged tRNAs, i.e. carrying an amino acid.

With these notations, the conservation of mass for the ribosomes gives the
relation:

RFN (t) +RMN (t) +REN (t) +RSN (t) = N, ∀t ≥ 0

The figure below illustrates the model featuring distinct states along with their
corresponding transition rates.

30



RS RF RM RE

Free Initiation ElongationSequestered

δRF (CNm−RM ) λRM

αREQ
γ
(
CNq −Q

)
RF

ηRS

Q ∅

αREQ

βN1{Q<CNq }

Charged tRNAs

Figure 1.11: Ribosomes: Translation and Sequestration with 1 amino acid

We will now provide a brief overview of the model depicted in the figure (details
in Chapter 4).

The initiation step represents the binding of the ribosome to an mRNA. It
is assumed that there are CNm different types of mRNAs, but all of these vari-
ous types share the same rate of binding with a ribosome, denoted as δ. The
initiation step happens at rate δ

(
CNm −RM

)
. And once an mRNA is bound to

a ribosome, the ribosome initiates the elongation step at rate λ and a protein
is formed at rate αQ, marking the point when the ribosome detaches from the
mRNA.
An empty tRNA carries an amino acid at rate βN and it becomes discharged
(empty) when it transfers the amino acid it carries to a ribosome awaiting it in
the elongation phase. Therefore, this discharging event occurs at rate αRE .
Finally concerning the sequestration of free ribosomes, it represents the regu-
latory mechanism that occurs during amino acid starvation. Hence, the rate
of sequestration is proportional to the number of empty tRNAs, denoted as
CNq − Q. The sequestration happens at rate γ

(
CNq −Q

)
and a ribosome is

released and becomes free again at rate η.

1.7.4.2 Objective

In this chapter, we analyze the efficiency of the regulatory mechanism outlined
in Section 1.6.1.

Throughout our study, we work with a large number of ribosomes denoted
as N (between 10000 and 30000 in E. Coli). Our goal is to understand how
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the bacterium manages its resources. In the context of translation, this involves
analyzing how the state of ribosomes between free, initiation, elongation and
sequestration phase, is affected by the flow of amino acids.

When there are variations in the flow of amino acids, it directly impacts
the rate of proteins production. In the situation where there is a shortage of
amino acids, ribosomes get blocked in the translation process (elongation more
specifically). This prolonged delay can eventually result in selecting incorrect
amino acids and thus introducing errors during protein elongation. To avoid
errors, ribosomes become inactive (as described in Section 1.6.1). This process
is represented as a sequestration process in our model.

In order to analyze the efficiency of the regulatory mechanism, the most
important criterion is the rate of sequestration. Therefore, we study the time
evolution of the number of sequestered ribosomes

(
RSN (t)

)
depending on the cell

environment. By doing that, we showed the importance of certain parameters
and assessed their impact, among which the rate of loading tRNAs with amino
acids (β) certainly plays a significant part. And so under certain conditions
on the parameter β we get four different regimes. These regimes and their
implications will be detailed in Section 1.7.4.3.

1.7.4.3 Contributions

Identifying the conditions that influence each state we observed led our study
into two distinct situations: one where there is a lack of amino acids and another
where there is an adequate supply of them. What is driving these situations is
how quickly tRNAs are loaded with amino acids, what means that the rate of
the charging process of tRNAs with amino acids, β, is the pivotal parameter.

In the case of a shortage of amino acids, the scenario is defined by a certain
relationship: β < λ, where λ can be thought of as the rate at which proteins are
being produced. On the other side, when there are enough amino acids around,
the situation is defined by β > λ.

In the amino acid shortage scenario, we actually proved the existence of
two distinct regimes within it. One involved a maximal rate of sequestration,
while in the other the sequestration is not fully activated. Therefore, we proved
the existence of four different regimes in our model. Each of these patterns is
defined by specific conditions related to the availability of resources as well as
a condition concerning the maximal sequestration rate.

It should be noted that we have only partial results in this chapter. The
scaling results associated to each of the four regimes described below depend
on a technical result on some hitting time. Basically it states that, on a “small”
time interval, the order of magnitude of the coordinates of the coordinates state
variable do not change for some specific class of initial states. This is achieved
completely in Section 4.6 for the first regime. The key result is Lemma 51
which relies on a not completely trivial coupling idea. For the other regimes,
the corresponding lemma is stated but as a conjecture. These are Lemma 58 of
Section 4.7, Lemma 68 of Section 4.8 and Conjecture 74 of Section 4.9.
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a. In the scenario where there’s a sufficient amount of amino acids available,
a large fraction of ribosomes is in the Translation phase, specifically in the
Initiation step (whose number is denoted as

(
RMN (t)

)
), while the tRNAs

( (QN (t)) ) become saturated. Mathematically, we have shown that there
exists T > 0 such that the convergence in distribution

lim
N→+∞

((
RMN (t)

N
,
QN (t)

N

)
, t ≥ T

)
= (1, cq)

holds.
To interpret this, when there’s an ample supply of amino acids, it means
that ribosomes possess the necessary resources to synthesize proteins ef-
fectively. This explains why they’re all actively engaged, particularly in
the Initiation step of the Translation phase. Additionally, the saturation
of tRNAs suggests that there are enough "carriers" for amino acids, rein-
forcing the productive protein synthesis process.

b. In the scenario where amino acids are lacking and the sequestration mech-
anism is not active, we have shown that ribosomes predominantly exist
in two states: initiation, denoted as

(
RMN (t)

)
, and elongation, denoted as(

REN (t)
)
. Other states contain only a limited number of ribosomes, and

the number of charged tRNAs (QN (t)) is also relatively low. We proved
that for the convergence in distribution

lim
N→+∞

(
RMN (t)

N
,
REN (t)

N

)
=
(
rM (t), 1− rM (t)

)
where

(
rM (t)

)
is the solution of an ODE.

This outcome is due to the shortage of resources, which results in ri-
bosomes being essentially stuck at the elongation stage, waiting for the
necessary amino acids to proceed.

c. In the scenario where the sequestration is present but not fully active, we
proved that most of the ribosomes are essentially distributed among three
states: initiation

(
RMN (t)

)
, elongation

(
REN (t)

)
and sequestration

(
RSN (t)

)
.

The remaining states contain only a limited number of ribosomes, and the
number of charged tRNAs (QN (t)) is relatively low. We proved that for
the convergence in distribution

lim
N→+∞

(
RMN (t)

N
,
REN (t)

N
,
RSN (t)

N

)
=
(
rM (t), rE(t), 1−rMN (t)−rEN (t)

)
where

(
rM (t)

)
and

(
rE(t)

)
are the solutions of two ODEs.

Therefore in this case, ribosomes exist in either the initiation or elongation
phase, waiting for an amino acid. However, we also get sequestered ribo-
somes, which lowers the amount of blocked ribosomes during translation.

33



d. In this scenario where the sequestration is fully activated, the majority
of ribosomes is present in two states: initiation

(
RMN (t)

)
and sequestra-

tion
(
RSN (t)

)
. In addition, in this case we have a considerable number of

charged tRNAs (QN (t)). We prove the convergence in distribution

lim
N→+∞

(
RMN (t)

N
,
RSN (t)

N
,
QN (t)

N

)
=
(
rM (t), 1−rMN (t), q(t)

)
where

(
rM (t)

)
and (q(t)) are the solutions of two ODEs.

Under these conditions of maximal sequestration, the majority of ribo-
somes are either engaged in the initiation phase or sequestered, while only
a small fraction remains unoccupied or awaiting amino acids. And a sub-
stantial number of charged tRNAs, roughly of the order of N , is detected.

The situations described as Scenarios (c) and (d) are actually determined
by a specific condition related to the total number CNq of tRNAs. This par-
ticular condition will be elaborated upon in detail in Chapter 4, and it will be
interpreted as the criterion for the maximal sequestration rate.

1.7.4.4 Methods and Technical Difficulties

In a stochastic context, using a Markovian model, and by taking the total num-
ber of ribosomes, N , as a scaling parameter, we study the asymptotic behavior
of the time evolution of the number of ribosomes in each state. In all situations,
we establish a first order theorem supported by an averaging principle. The slow
and fast processes are dependent on varying parameter conditions. Naturally,
our methodology involves proving convergences in distribution of occupation
measures and representing their limits by using Kurtz [45] as a reference point.

We will now outline the slow and fast processes within each of the scenar-
ios discussed in section 1.7.4.3. Additionally, we will present the associated
occupation measures.

Regardless of the scenario, the process of the number of free ribosomes(
RFN (t)

)
is always a fast process while the scaled process of the number of

ribosomes in initiation phase
(
RMN (t)/N

)
is a slow process. The other fast and

slow processes depend on the specific scenario.
In Scenario (a) and (d), the other fast process is the number of ribosomes in
the elongation phase

(
REN (t)

)
and the slow processes are the scaled number

of sequestered ribosomes
(
RSN (t)/N

)
and the scaled number of charged tRNAs

(QN (t)/N).
The occupation measure considered in this case is given by

〈µN , g〉 =

∫
R+

g
(
s,REN (s), RFN (s)

)
ds.

In Scenario (b) and (c), the other fast process is the number of charged tRNAs
(QN (t)). In both situations,

(
REN (t)/N

)
is a slow process. However, in scenario

34



(c),
(
RSN (t)/N

)
is an additional slow process.

The occupation measure is

〈µN , g〉 =

∫
R+

g
(
s,QN (s), RFN (s)

)
ds.

First, working with a model of dimension five and proving the previously
reported convergence results were the technical obstacles in this chapter. Lastly,
the other challenge was to interpret the results paying particular attention to the
existence of two regimes under the condition β < λ where there is a shortage of
amino acids: one regime with maximal sequestration and the other with partial
sequestration.
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Chapter 2

Regulation Of Transcription

2.1 Introduction
The central dogma of molecular biology asserts for biological cells that genetic
information flows mainly in one direction, from DNA to RNAs, and to proteins.
For the two most studied bacteria Escherichia coli and Bacillus subtilis, produc-
tion of proteins is a central process which can be described as a process in two
main steps. In the first step, macro-molecules polymerases produce RNAs with
genes of DNA. This is the transcription step. The second step, translation, is the
production of proteins from mRNAs, messenger RNAs, with macro-molecules
ribosomes. See Watson et al. [70].

In bacterial cells, protein production uses essentially most of cell resources:
a large number of its macro-molecules such as polymerases and ribosomes, bi-
ological bricks of proteins, i.e., amino acids, and the energy necessary to build
proteins during the translation step, such as GTP.

In this paper we study an important regulation mechanism of transcription
using specific RNA macro-molecules, 6S RNAs, common to a large number of
bacteria. See Wassarman [67] for example. The functional property of this RNA
is of blocking/sequestering free polymerases from producing RNAs. The general
context of this regulation is related to complex mechanisms of the cell to finely
tune the production of a large set of RNAs. Let us first recall the three main
categories of RNAs:

a. rRNAs, ribosomal RNAs, used for the building of ribosomes. A ribosome
is a complex assembly of around 50 proteins and, also, of several rRNAs.
An rRNA is a long chain of several thousands of nucleotides, it is in
particular a costly macro-molecule to produce. Reducing or speeding-
up the production of ribosomes, in particular of rRNAs, has therefore a
critical impact on resource management of the cell;

b. mRNAs, messenger RNAs, used by the translation step to produce a pro-
tein from mRNAs coding sequences;
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c. A large set of RNAs that do not belong to the two previous categories,
such as transfer RNAs, tRNAs, or Bacterial small RNAs, sRNAs, often
associated to regulation mechanisms. This class includes 6S RNAs.

When the concentrations of different resources in the medium are high enough
for some time, the bacterium has the ability to use them efficiently, via its
complex regulatory system, to reach a stable exponential growth regime with
a fixed growth rate. The growth of a bacterial population in a given medium
leads therefore to an active consumption of resources necessary to produce new
cells.

When resources are scarce, each bacterium of the population can adapt, to
either exploit differently the available resources, or to do without some of them,
as for example when some amino-acids are missing. For E. coli or B. subtilis,
these bacteria use in priority resources maximizing their growth rate. In the
context of this adaptation, and for reasons related to the decay of resources,
each bacterial cell has to decrease its growth rate, and finally to ultimately stop
its growth.

The regulatory network involved in the management of the growth rate to
adapt to the environment is complex. The important point in this domain is that
the bacterium has to modify the concentration of most of the agents in charge
of it: number of ribosomes, concentrations of proteins in the metabolic network,
transporters, . . . In a first, simplified, description, the decay of a specific resource
in the environment leads to a move to a state of the cell where concentrations
of several components have been adapted. To study the transition between
growth phases, we have chosen to focus on the action of a small RNA, 6S RNA,
which plays an important, even essential, role in this domain. Note that, even
if this mechanism is central, this description of the transition between growth
regimes is nevertheless a simplification in our approach, since the bacterial cell
has different ways to modify the steady-state level of its components.

In this article, we investigate a simplified scenario where transitions occur
between two phases: an exponential growth phase and the stationary phase,
where the growth rate is equal to 0. The first interest of this scenario lies in
the sharp transition of the polymerase management by the cell, via the strong
effect of the stringent response on the production of rRNAs: the transcription
of rRNAs is completely stopped. This is where the action of 6S RNAs is crucial.
See Gottesman et al. [33]. Its second interest is experimental since it is possible
in practice to create this transition by the addition of a convenient product in the
medium of cell populations to induce a stringent response. Our general goal is to
investigate if, with this simplified framework, the regulatory system organized
around 6S RNA has the desired qualitative properties to ensure a convenient
transition between these regimes. In this paper, we analyze the efficiency of the
regulation by 6S RNAs with stochastic models. We investigate in particular the
time evolution of the activity of polymerases in the cell under different regimes.
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2.1.1 A Simple Description as a Particle System
In order to explain the basic principle of the regulation mechanism investigated
in this paper, we describe a simplified version in terms of a particle system.
Section 2.1.2 describes in more depth and detail the biological context of this
class of models.

We consider two types of particles P and 6S. There is a fixed number
of particles of type P and there are random arrivals of particles of type 6S. A
particle of type P can be in three states: busy, idle, or paired with a 6S particle.
Similarly, a 6S particle is either idle or paired. The possible events are:

— an idle, resp. busy, P particle becomes busy, resp. idle;

— a couple of an idle P and an idle 6S is paired;

— a pair P−6S is broken giving two idle P and 6S;

— an idle 6S arrives/dies.

Note that only an idle 6S can die. A statistical assumption is that each couple
of free P particle and free 6S particle is paired at some fixed rate and each free
6S dies at a fixed rate too.

We present a heuristic description of the phenomena we are interested in:

a. If the parameters of the P particles are such that, on average, most of
particles of type P are busy. Therefore, few of them are idle, the arriving
6S particles will very likely die before they can be paired with a P particle.
In this case there will be few 6S particles in the system.

b. Otherwise, if, on average, a significant fraction of particles of type P are
idle, the arriving 6S particles will very likely pair with one of them. In
particular, as long as there are many idle P particles, 6S will be quickly
paired so that few of them will die. In this manner, the dynamic arrivals
of 6S progressively decrease the number of idle P particles.

A pair P−6S is seen as a sequestration of a P particle, the purpose of 6S parti-
cles is of storing “useless” P particles. The case a) corresponds to the case when
most of P particles are efficient so that no regulation is required. This corre-
sponds to the exponential growth phase of our biological process. The case b)
is when there is a need of sequestration of P particles, this is the stationary
growth phase of our model.

The nice feature of this mechanism is its adaptive property due to the dy-
namic arrivals of 6S: if they are useless, they disappear after some time. Oth-
erwise, as it will be seen, their number builds up until some threshold of seques-
tration is reached.

The main goal of the paper is of understanding under which conditions on
the parameters the cases a) or b) may occur. To assess the efficiency of the
regulation mechanism in the case a), we study the time evolution of the number

38



of 6S particles. In the case b), we investigate the number of sequestered P
particles to determine the maximal sequestration rate of the regulation.

The model investigated in the paper is in fact a little more complicated in the
sense that P particles can be “busy” in two ways: either it remains busy during
a random amount of time before being idle again. The other busy state is that
it joins a queue where only the particle at the head of the queue becomes idle
again after a random amount of time. In our model, this is related to mRNAs
and rRNAs production. The next section gives a detailed description of these
aspects.

2.1.2 Biological Background
Transcription

In a bacterial cell, a polymerase may be associated to several specific proteins,
called σ-factor to form a holoenzyme Eσ. In our case we focus on the “house-
keeping” σ-factor σ70. This holoenzyme binds to a large set of gene promoters to
initialize the transcription. This is the initiation phase. If this step is successful,
the protein σ70 is detached and the polymerase completes the elongation of the
corresponding RNA.

This is a simplified description of course. The precise description of the
mechanisms are dependent on the bacterium, it is nevertheless sufficiently ac-
curate from our modeling perspective. Throughout the paper we do the slight
abuse of using the term polymerase instead of the more biologically correct
term holoenzyme. Another important aspect is that the initiation phase may
fail due to random fluctuations within the cell, or to a low level of nucleotides
needed for the initiation of transcription, i.e. ATP, GTP, UTP, CTP, . . .When
this happens the transcription is aborted. The level of GTP, for example, has
an impact on the modulation of initiation of transcription with respect to the
growth rate for bacterium B. subtilis, and, similarly, the level of ppGPpp for
bacterium Escherichia coli. See Geißen et al. [32] in the case of an rRNA.

Regulation by small RNAs

A subset of RNAs whose sizes in nucleotides is less than 100, small RNAs or
sRNAs has been shown to play an important role to regulate gene expression.
The first such sRNAs were identified in the late 1960’s. See Britten and David-
son [13] and Zamore and Haley [72]. They were shown to turn in or turn off
specific genes under convenient conditions.

Among them the sRNA 6S RNA was first discovered because of its abun-
dance in E. coli in some circumstances. See Hindley [37]. This has been one
of the first sRNAs to be sequenced. Nevertheless, it took three decades to
understand its role in the regulation of transcription.

Experimental studies have shown that 6S RNA acts in fact as a global reg-
ulator of transcription and not only for the regulation of a reduced subset of
genes as most of small RNAs. A 6S RNA has a three-dimensional structure
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similar to a DNA promoter, so that the holoenzyme” Eσ70 may be bound to
it and is, in some way, sequestered by it. See Cavanagh and Wassarman [14]
and Nitzan et al. [54]. It has been shown that during stationary phases, when
the growth rate is null, the 6S RNAs accumulate to a high level, with more
than 10000 copies. During an exponential phase, when the growth is steady, the
average duration time of cell division is around 40min for E. coli, there are less
than 1000 copies. See Wassarman [67] and Steuten et al. [66].

The fluctuations of the number of copies of 6S RNAs is therefore an im-
portant indicator of the growth rate of the cell. An important question is to
assess the efficiency of the regulation mechanism operated by the 6S RNAs. The
impact of several parameters of the cell are investigated: The total number of
polymerases, the production rate of 6S RNA and their degradation rate, initi-
ation rates of polymerases for rRNAs and mRNAs and the sequestration rate,
i.e. the binding rate of a couple 6S RNA and polymerase.

2.1.3 Mathematical Models
Regulation of gene expression has been analyzed with mathematical models for
some time now. See Mackey et al. [46] and also Chapter 6 of Bressloff [12],
and the references therein. The lac operon model is one of the most popular
mathematical models in this domain, for its bistability properties in particular.
See also Dessalles et al. [21].

Specific stochastic models of regulation by RNAs are more scarce. The reg-
ulation of mRNAs by sRNAs in a stochastic framework has been the subject
of several studies recently. In Kumar et al. [44], Mehta et al. [47], and Platini
et al. [59], the authors study regulation mechanisms of mRNAs by sRNAs with
a two-dimensional Markov chain for the time evolution of the number of sRNAs
and mRNAs. Some limiting regimes of the corresponding Fokker-Planck evo-
lution equations are investigated and discussed. The difficulty is the quadratic
dependence on the number of mRNAs and sRNAs. See also Baker et al. [6]
and Mitarai et al. [50]. These studies can be seen as extensions of the early
works on stochastic models of gene expression, see Berg [9], Elowitz et al. [22]
and Rigney and Schieve [60]. See also Fromion et al. [30].

2.1.4 The Main Results
In this paper, we will study the efficiency of the sequestration of polymerases
by 6S RNAs. Recall that this is in fact the holoenzyme which is sequestered.
We investigate the behavior of several variables associated to the regulation of
the transcription phase: Number of free/sequestered polymerases and number
of polymerases in the elongation phase of mRNAs and rRNAs.

Technical Challenges
We assume that there are N polymerases with N large. We derive functional
limiting results, with respect to this scaling parameter, of the time evolution
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of several stochastic processes. An important feature of our model is that the
main Markov process exhibits a quadratic dependence of the state of the pro-
cess, due to the use of the law of mass action for the dynamic of our model.
One of the main technical difficulties is in the proof of Theorem 15 of an av-
eraging principle. Several preliminary results have to be established as well as
a convenient definition of occupation measures. This is due to the (very) fast
underlying timescale, t 7→N2t, used. Formally, the diffusion component is of the
order of N but should vanish for this first order result. For this reason, in a first
step, the “slow” processes are included in the definition of occupation measures
and not only the “fast” processes as it is done in general. In our proofs we use
several coupling arguments, estimates of hitting times of rare events, stochastic
calculus for stochastic differential equations driven by Poisson processes, and
the framework of averaging principles.

A Chemical Reaction Network Description
For simplicity, the number of total polymerases is assumed to be constant. There
is also a production of 6S RNAs which we will distinguish from the production
of other RNAs. From the point of view of our model, polymerases can be in
several states

— Free. The polymerase may bind to a gene of an mRNA, or of an rRNA, or
be sequestered by a 6S RNA, (FN (t)) denotes the process of the number
of free polymerases.

— Transcription of an mRNA. A chain of nucleotides is produced, (MN (t))
is the number of such polymerases. There is a large number of types of
mRNAs.

— Transcription of an rRNA. A long chain of nucleotides is produced. As it
will be seen, it is described by a process ((UNj (t), RNj (t)), 1≤j≤J). The
number J of types of rRNAs is usually small, less than ten. We denote by
‖R(t)‖ the total number of polymerases in this situation.

— Sequestered by a 6S RNA. The associated process is (SN (t)).

Similarly a 6S RNA can be either free or paired with a polymerases, (ZN (t))
denotes the process of the number of free 6S RNAs. See Section 2.2.1 for more
details.

With these notations, the assumption on the conservation of mass for the
polymerases gives the relation

FN (t)+MN (t)+SN (t)+‖RN‖(t)=N, ∀t≥0.

The dynamic of this stochastic system is governed by the analogue of the law
of the mass action in this context. See Anderson and Kurtz [5]. The rate of
creation of sequestered polymerases is in particular quadratic with respect to
the state, it is proportional to FNZN . This is one of the important features of
this stochastic model.
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Two Limiting Regimes
Our mathematical results can be described as follows. See the formal statements
in Section 2.5 and 2.6. In Definition 1, we introduce two sets of conditions on the
parameters of our model, which define the exponential regime and the stationary
regime, our cases a) and b) above. We do not detail them here. Assuming that
the maximum number of polymerases simultaneously in transcription of rRNAs,
resp. mRNAs, is of the order of crN , resp. cmN , under some scaling conditions
and appropriate initial conditions, we have:

1) Exponential Phase.
For the convergence in distribution

lim
N→+∞

(
‖RN‖(t)

N
,
MN (t)

N

)
= (cr, 1−cr),

and, for any t0>0, the random variable (FN (t0)) converges in distribution
to a Poisson distribution and the sequence of process (SN (t), ZN (t)) is
converging in distribution to a positive recurrent Markov process. See
Theorem 19.

In this case, the polymerases are mostly doing transcription of rRNAs or
mRNAs, few of them are free or sequestered by a 6S RNA.

2) Stationary Phase.
For the convergence in distribution

lim
N→+∞

(
MN (Nt)

N
,
FN (Nt)

N
,
SN (Nt)

N

)
= (cm, f(t), 1−cm−f(t)),

where (f(t)) is the solution of an ODE, such that

lim
t→+∞

f(t) = f(∞) > 0.

The process (‖RN (t)‖) is stochastically upper-bounded by a positive re-
current Markov process. See Theorem 22.

In the stationary phase there are few polymerases doing transcription of
rRNAs. A fraction of them remains free, asymptotically f(∞), i.e. the
sequestration process does not control all “useless” polymerases. This is
in fact a non-trivial consequence of the dynamic creation and destruction
of 6S RNAs, even if an 6S RNA paired with a polymerase cannot be
degraded. The fact that sequestration phenomenon of a fraction of the N
polymerases occurs on the time scale t 7→Nt is intuitive given that the rate
of creation of 6S RNAs is constant.

In all cases the process (ZN (t)) is stochastically upper-bounded by a positive
recurrent Markov processes.
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2.1.5 Outline of the Paper
Section 2.2 introduces in detail the complete model of transcription and also
an important model, the auxiliary process. The exponential/stationary phases
corresponds to super/sub critical condition for this auxiliary process. They are
investigated respectively in Section 2.3 and 2.4. The last sections 2.5 and 2.6
are devoted to the exponential/stationary regimes of our model.

2.2 Stochastic Model
The chemical species involved in the regulation process are the genes of different
types of mRNAs and rRNAs and of 6S RNA, and polymerases. The products
are different types of mRNAs and of rRNAs and also 6S RNAs. We first describe
our main assumptions of our stochastic model.

2.2.1 Modeling Assumptions
— Transcription of rRNAs.

There are J types of rRNAs and there is a promoter (binding site for
polymerases) for each of them. The transcription of an rRNA of type j,
1≤j≤J , is in two steps. Promoters of rRNAs are assumed to have a high
affinity during the growth phase: If one of these promoters is empty and if
there is at least one free polymerase, then the promoter is occupied right
away by a polymerase.

Once a polymerase is bound to the promoter of an rRNA of type 1≤j≤J , it
starts elongation at rate αr,j if there are strictly less than CNr,j polymerases
in the elongation phase of this rRNA. At a given moment there cannot be
more than CNr,j polymerases in elongation of an rRNA of type j.

For each polymerase in elongation, nucleotides are collected at rate βr,j .
The simplification of the model is that the polymerases in elongation are
moving closely on the gene so that the duration of time to get the last
nucleotide for the oldest polymerase in elongation is enough to describe the
time evolution of the number of polymerases producing rRNA of type j.
The polymerases associated to an rRNA of type j∈{1, . . . , J} can then be
represented as a couple (uj , Rj), where uj∈{0, 1} indicates if a polymerase
is on the promoter or not, and Rj∈N is the number of polymerases in
elongation: If Rj≥1, an rRNA of type j is therefore created at rate βr,j .

The assumption is reasonable in the exponential phase, since in this case
the number of polymerases producing rRNA of type j is maximal, of the
order of CNr,j . See Section 2.5. The rRNA part of the system is therefore
saturated. In the stationary phase, this assumption has little impact since,
as we shall see, the total number of polymerases in the elongation phase
of rRNAs is small with high probability and, therefore, negligible for our
scaling analysis.
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— Transcription of mRNAs.
It is assumed that there are CNm different types of mRNAs and that at
a given time, for any 1≤i≤CNm there is at most one polymerase in the
elongation phase of an mRNA of type i. When the promoter of an mRNA
of type i is free, a free polymerase may bind to this promoter at a rate
αm. If the promoter of an mRNA of type i is occupied, an mRNA is
released at rate βm and the corresponding polymerase leaves the promoter
at that instant. The production of mRNAs have simplified in the sense
that the initiation phase and the elongation phase are merged into one
step. The results obtained in this paper could be obtained without too
much difficulty for a model distinguishing them, but at the expense of a
more complicated state variable.

The main difference in our model between the rRNAs and the mRNAs is
on the number of polymerases in elongation of the corresponding gene. At
a given moment, under favorable growth conditions, there will be many
polymerases in the elongation phase of an rRNA, due in particular to
the high initiation rate of these genes. For the mRNAs, the number of
polymerases in elongation phase of a given mRNA type should be small in
general. Indeed, there are in each cell few copies of each messenger (from 1
to 100). Furthermore, the rate of production of each messenger is such that
its small number remains on average constant during growth or stationary
phases and despite the regular degradation (average of 2 minutes half-life
in high-growth rate phase) of each of them. See Section 2.2.3. In our model
we have set the maximal number of polymerases in elongation phase of a
given mRNA type to 1 for simplicity, but it is not difficult to adapt our
results with a maximum number D. Similarly, the initiation rates and
production rate, αm and βm are taken equal for all species of mRNA,
also for the sake of simplicity. We have simplified the description of the
production of mRNAs to focus mainly on the sequestration mechanisms
that regulate the transcription. From our point of view, the production
of mRNAs holds/stores a subset of polymerases and releases each of them
after some random amount of time. It should be noted that this is in
fact the usual mathematical setting to investigate the fluctuations of the
production of mRNAs and proteins. See Berg [9] and Rigney and Schieve
[60], see also Paulsson [57] for a review of these models.

— Creation/Degradation of 6S RNAs.
The creation of 6S RNAs involves, of course, polymerase. As in the case of
mRNAs, it is assumed that there is at most one polymerase in elongation
phase of this sRNA. A 6S RNA is created at rate β6>0. A 6S RNA is free
when it is not bound to a polymerase. A given free 6S RNA is degraded
at rate δ6≥0. Only a free 6S RNA can be degraded.
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— Sequestration/de-Sequestration of Polymerases.
A polymerase is free when it is not bound to a gene or to a 6S RNA. In our
study the total number of polymerases is assumed to be constant equal to
N . A free polymerase is bound to a free 6S RNA at rate λ. A complex
polymerase-6S RNA breaks into a free polymerase and a free 6S RNA at
rate η.

2.2.2 The Markov Process and its Q-Matrix
The vector (αr,j) introduced is the vector of initiation rates of transcription of
the different types of rRNAs. The difference between a slow growth (stationary
phase) and a steady growth (exponential phase) will be expressed in terms of
the comparison, coordinate by coordinate, of the vectors (αr,j) and (βr,j). We
now give a Markovian description of our system. Convenient limiting results
will be obtained for the associated Markov process in both phases.

F Free Poly.

U1

UJ

R1

RJ

rRNA Transcription

αr,1

αr,J

βr,1

βr,J

M

αm(CNm−M)F

βmMmRNA Transcription

S

λFZ

ηS

Sequestered Poly.

Figure 2.1: Polymerases: Transcription of mRNAs/rRNAs and Sequestration

State Space
All transitions described in the last section occurs after a random amount of
time with an exponential distribution. With this assumption, there is a natural
Markov process to investigate the regulation of transcription. The state space
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is given by

SN
def.
=

x=(f, s, z, (uj , rj))∈N3×
J∏
j=1

(
{0, 1}×{0, . . . , CNr,j}

)
:

f+s+

J∑
j=1

(uj+rj) ≤ N and if f>0, then uj=1,∀1≤j≤J

 ,

if the state of the system is x=(f, s, z, (u, r))∈SN , then

— f is the number of free polymerases;

— s, the number of sequestered polymerases;

— z, the number of free 6S RNAs;

(u, r)=((uj , rj), 1≤j≤J),

— uj∈{0, 1} to indicate if a polymerase is bound to the promoter of the
rRNA of type j or not;

— 0≤rj≤CNr,j , number of polymerases in elongation phase of an rRNA of
type j.

— In state x, the number of polymerases in elongation phase of an mRNA is
given by

Ψ(x)
def.
= N−f−s−

J∑
j=1

(uj+rj). (2.1)

The associated Markov process is denoted by

(XN (t))
def.
= (FN (t), SN (t), ZN (t), (UN (t), RN (t))) ,

with (UN (t), RN (t))=((UNj (t), RNj (t)), 1≤j≤J). The number of polymerases at
time t in elongation phase of an mRNA is defined by MN (t)=Ψ(XN (t)).

If w=(wj)∈NJ , we define ‖w‖=w1+ · · ·+wJ and, for 1≤j≤J , ej denotes the
jth unit vector of NJ . It is easily checked that (XN (t)) is an irreducible Markov
process on SN . Its transition rates are given by

— Transcription of rRNAs. For 1≤i, j≤J ,

(f, s, z, (u, r)) −→



(f−1, s, z, (u, r+ej)) αr,j1{f>0,rj<CNr,j},
(0, s, z, (u−ej , r+ej)) αr,j1{uj=1,rj<CNr,j ,f=0},
(f+1, s, z, (u, r−ej)) βr,j1{rj>0,uk>0,∀1≤k≤J},

(0, s, z, (u+ ei, r − ej))
βr,j

J−‖u‖
1{rj>0,ui=0}.
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— Transcription of mRNAs.

(f, s, z, (u, r)) −→

{
(f−1, s, z, (u, r)) αmf

(
CNm−Ψ(x)

)
,

(f+1, s, z, (u, r)) βmΨ(x).

— Creation/Degradation of 6S RNAs.

(f, s, z, (u, r)) −→

{
(f, s, z+1, (u, r)) β6,

(f, s, z−1, (u, r)) δ6z.

— Sequestration/de-Sequestration of Polymerases.

(f, s, z, (u, r)) −→

{
(f−1, s+1, z−1, (u, r)) λfz,

(f + 1, s−1, z+1, (u, r)) ηs.

2.2.3 Orders of Magnitude and Scaling Assumptions
We now discuss the orders of magnitude of the main parameters of the biological
process.

— The scaling variable used in our analysis is N , the total number of poly-
merases in the cell. It is assumed that this number is constant during the
growth phase investigated, this quantity is quite large, between 2000 and
10000 for E. coli, depending of the environment. See Bakshi et al. [7].

— The number J of different types of rRNA is small, of the order of 10.
See Bremer and Dennis [11].

— We shall assume that the maximal number of polymerases in transcription
of an rRNA of type j, CNr,j , is of the order of N , the total number of
polymerases. Indeed, in a steady growth phase a given rRNA gene can
accommodate a significant number of polymerases. Recall that the length
in nucleotides of an rRNA is large, of the order of 5000.

— Similarly, the total number of different types of mRNAs is also of the order
of N , several thousands, of the order of 3500 for E. coli.

See also Milo et al. [49], Karp et al. [42] and Neidhardt and Umbarger [53] for
the estimation of the numerical values of these quantities in various contexts.

Due to the modeling assumptions of Section 2.2.1, we assume that the rela-
tions

lim
N→+∞

CNr,j
N

= cr,j > 0, 1≤j≤J, and lim
N→+∞

CNm
N

= cm, (2.2)

hold and that, in order to cope with the production of rRNAs during a steady
growth phase, the total number of polymerases N is larger than the total maxi-
mal number of polymerases in elongation phase of rRNAs, i.e. that CNr,1+ · · ·+CNr,J
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and, also that there are not too many polymerases for the transcription, i.e.

max

CNm , J∑
j=1

CNr,j

 < N < CNm+

J∑
j=1

CNr,j .

In view of (2.2), these assumptions are expressed by the following conditions on
the scaled parameters (cr,j) and cm,

max

cm, J∑
j=1

cr,j

 < 1 <

J∑
j=1

cr,j+cm. (2.3)

We can now introduce the two regimes of interest in our paper.

Definition 1.

a. The Exponential Phase is defined by the relation

min
1≤j≤J

αr,j
βr,j

> 1. (2.4)

The initiation rate αr,j of type j rRNAs is greater than its production rate.

b. The stationary phase is defined by the relation

max
1≤j≤J

αr,j
βr,j

< 1. (2.5)

The initiation rate αr,j of type j rRNAs is less than its production rate.

It should be noted that Relations (2.4) and (2.5) are not complementary
but this is not a concern for the following reason. If there exists a subset S of
{1, . . . , J} such that

max
j 6∈S

αr,j
βr,j

< 1 < min
j∈S

αr,j
βr,j

,

we will express it as a model for which the rRNAs are defined by the subset S
and the remaining nodes Sc={1, . . . , J}\S are included in the mRNAs. It can
be shown that the addition of a finite number of nodes to the mRNA does not
change the first order in N of the number of polymerases in transcription of an
mRNA. See Section 2.6. With this change and if Condition (2.3) holds for this
modified system, this is still an exponential phase.

2.2.4 An Auxiliary Model
In Sections 2.3 and 2.4, we study a process which can be interpreted as a model
similar to (XN (t)) but with only transcription of mRNAs and sequestration by
6S RNAs but without rRNAs. The reasons to study this case are two-fold:
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a. Exponential Phase. If Condition (2.4) holds, as we shall see, “most” of
the J+CNr,1+CNr,2+· · ·+CNr,J available places for transcriptions of rRNAs
will be occupied by polymerases. Provided that this situation holds on a
sufficiently large time scale, under Condition (2.3), there are AN available
polymerases for sequestration and transcription of mRNAs, with

AN
def.
= N−J−

∑
j=1

CNr,j ∼ γN<CNm . (2.6)

The system works as if there were AN polymerases available for the tran-
scription of mRNAs. With Condition (2.3), we have AN<CNm .

b. Stationary Phase. When Condition (2.5) holds, then, roughly speaking,
the total number of polymerases in the elongation phase of rRNAs is O(1),
so that this part of the system is in some way negligible. In this case
the total number of polymerases available for transcription of mRNAs is
essentially N and thus greater than CNm under Condition (2.3).

The precise definition of exponential phase, resp. stationary phase, is in Sec-
tion 2.5, resp. Section 2.6.

We denote (X0
N (t))=(F 0

N (t), S0
N (t), Z0

N (t)) the system defined in Section 2.2.2
but without the part of the model for rRNAs. From a state (f, s, z), the tran-
sition rates are:

(f−1, s, z) αm
(
CNm−(N−f−s)

)
f,

(f+1, s, z) βm(N−f−s),
(f, s, z+1) β6,


(f, s, z−1) δ6z,

(f−1, s+1, z−1) λfz,

(f + 1, s−1, z+1) ηs.

(2.7)

Using the classical formulation in terms of a martingale problem, see Theo-
rem (20.6) in Section IV of Rogers and Williams [63] for example, the Markov
process (X0

N (t)) whoseQ-matrix is given by Relation (2.7), as (F 0
N (t), S0

N (t), Z0
N (t)),

the solution of the SDEs,

dF 0
N (t) = P1

((
0, ηS0

N (t−
)
,dt
)
−P3

((
0, λF 0

N (t−)Z0
N (t−)

)
,dt
)

(2.8)

+P2

((
0, βm

(
N−F 0

N (t−)−S0
N (t−)

)
,dt
))

−P4

((
0, αmF

0
N (t−)

(
CNm−

(
N−F 0

N (t−)−S0
N (t−)

)))
,dt
)

dS0
N (t) = −P1

((
0, ηS0

N (t−
)
,dt
)

+P3

((
0, λF 0

N (t−)Z0
N (t−)

)
,dt
)

(2.9)

dZ0
N (t) = P5 ((0, β6) ,dt)−P6

((
0, δ6Z

0
N (t−)

)
,dt
)

(2.10)

+P1

((
0, ηS0

N (t−
)
,dt
)
−P3

((
0, λF 0

N (t−)Z0
N (t−)

)
,dt
)
,

with the convenient initial conditions, where Pi, i∈{1, 2, 3, 4} are independent
Poisson processes on R2

+ with intensity ds⊗dt.
We will study two regimes of this stochastic model:

— Sub-critical case, when cm>1, i.e. N<CNm for N sufficiently large.

— Super-critical case, when cm<1.

As it will be seen these two regimes are respectively associated to the exponential
and stationary phases.
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Notations
We define a common filtration common to all our processes, as follows, for t≥0

Ft = σ (Pi(A×[0, s]) : A∈B(R+), i∈{1, · · · , 6}, s ≤ t) . (2.11)

From now on, all notions of stopping time, adapted process, martingale, refer
to this (completed) filtration. A càdlàg process is an adapted process such
that with probability one, it is right-continuous process with left limits at any
positive real number.

If H is a locally compact metric space, we denote by Cc(H) the set of con-
tinuous functions with compact support on H. It is endowed with the topology
of the uniform norm. The set P(H) is the space of Borelian probability distri-
butions on H.

2.3 Sub-critical Case
It is assumed throughout this section that cm>1 holds, the total number of
possible sites for transcription of mRNAs is much larger than the total number
of polymerases.

Definition 2 (Occupation measure of (F 0
N (t))). For g∈Cc (R+×N)

〈µN , g〉
def.
=

∫ +∞

0

g
(
u, F 0

N (u)
)

du. (2.12)

We start with a technical result on a birth and death process.

Lemma 3. For κi>0 and κo>0, let (Y (t)) be a birth and death process on N
whose Q-matrix is given by

q(x, x+1) = κi and q(x, x−1) = κox, x∈N,

a. if Y (0)=N and
HN
Y

def.
= inf{t>0 : Y (t)=0},

then (HN
Y / lnN) is converging in distribution to a constant.

b. if Y (0)=0, then for any δ>0, the convergence in distribution

lim
N→+∞

(
Y
(
Nδt

)
ln(N)2

)
= 0

holds.

The process (Y (t)) can be thought as a kind of discrete Ornstein-Uhlenbeck
process on N. In a queueing context, this is the process of the number of jobs
of an M/M/∞ queue. See Chapter 6 of Robert [61] for example. Its invariant
distribution is Poisson with parameter κi/κo.

50



Proof. The first assertion comes directly from Proposition 6.8 of [61]. If Y (0)=0
and, for p≥1,

Tp = inf{t>0 : Y (t) > p},

Proposition 6.10 [61] gives that, if ρdef.
= κi/κo, the sequence(
ρp
Tp
p!

)
is converging in distribution to an exponential distribution. In particular for
any K>0,

lim
N→+∞

P
(
Tln(N)2 < KN δ

)
= 0,

since, by Stirling’s Formula,

lim
N→+∞

(ln(N)2)!

ρln(N)2Nδ
= +∞.

The lemma is proved.

We begin with a lemma showing that the initial state of (X0
N (t)) can be

taken with few free polymerases.

Lemma 4. If cm>1 and (F 0
N (0), S0

N (0), Z0
N (0))=(fN , sN , zN ), such that

lim
1

N
(fN , sN , zN ) = ((f0, s0, z0)∈R3

+,

with f0+s0<1, and, if

τ0N
def.
= inf

{
t : F 0

N (t) = 0
}
,

then the sequence (τ0N/(lnN)2) is converging in distribution to 0.

The Condition f0+s0<1 is to take into account the fact that F 0
N (0)+S0

N (0)≤N .

Proof. Because of the assumption cm>1, for N sufficiently large, there exists
ε0>0 such that CNm−N>ε0N , the relations (2.7) for the transition rates show
that one can construct a coupling (F 0

N (t), Y (t)) such that Y (0)=F 0
N (0) and the

relation
F 0
N (t) ≤ Y (Nt), ∀t≥0, (2.13)

holds almost surely for all t≥0, where (Y (t)) is a process as defined in Lemma 3
with κi=η+βm and κo=αmε0. We conclude the proof by using Lemma 3.

We can now state the main result of this section. It shows that for the
asymptotic system, when N is large, all polymerases are eventually in the tran-
scription phase of mRNAs, i.e. the fraction of sequestered polymerases is close
to 0. A sketch of the proof is given in Section 2.7.1.
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Proposition 5 (Starting from a Congested State). Under the condition cm>1
and if the initial state is (F 0

N (0), S0
N (0), Z0

N (0))=(0, sN , zN ) and

lim
1

N
(sN , zN ) = (s0, z0) ∈ R2

+,

such that s0+z0<1, then, for the convergence in distribution

lim
N→+∞

(
S0
N (t)

N
,
Z0
N (t)

N

)
= (s(t), z(t)),

where (s(t), z(t)) is the unique solution of the system of ODEs,

ṡ(t) = −ηs(t)+λz(t) βm− (βm−η) s(t)

αm(cm−1+s(t)) + λz(t)
, ṡ(t)+ż(t) = −δ6z(t),

with (s(0), z(0)) = (s0, z0).

It is not difficult to see that the function (s(t), z(t)) is converging to (0, 0)
at infinity.

To study the asymptotic behavior of the model in the exponential regime,
we investigate the occupation measure associated to free polymerases when the
initial state is “small”. In this case, contrary to the last proposition, the processes
(S0
N (t), Z0

N (t)) should be “slow”, i.e. their transition rate are of the order of O(1),
only (F 0

N (t)) is “fast”.

Proposition 6 (Fixed Initial Point). Under the condition cm>1 and the initial
state is such that (F 0

N (0), S0
N (0), Z0

N (0))=(f0, s0, z0)∈N3, then, for the conver-
gence in distribution

lim
N→+∞

〈µN , g〉 =

∫ +∞

0

E (g (u,N1 (0, ρm))) du,

for any g∈Cc (R+×N), where ρm=βm/(αm(cm − 1)), µN is the occupation mea-
sure defined by Relation (2.12), and N1 is a Poisson process with rate 1.

The sequence of processes (S0
N (t), Z0

N (t)) converges in distribution for the
Skorohod topology to a jump process (Y (t)) on N2 whose transition rates are
given by

(s, z) −→ (s, z)+

{
(1,−1) λρmz,

(−1, 1) ηs,

{
(0, 1) β6,

(0,−1) δ6z.

See Section 2.7.2.

2.4 Super-critical Case
In this section we study the auxiliary process under the condition cm<1, so
that CNm<N for N sufficiently large. In this case the places for transcription of
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mRNAs are likely to be saturated quickly. Consequently, there should remain
many free polymerases and the sequestration mechanism has to play a role.

If there are no 6S RNAs initially, since the creation of 6S RNAs is constant,
the sequestration of a significant fraction of these polymerases will occur after
a duration of time at least of the order of N . In this case, when a 6S RNA
is created, it is right away paired with a free polymerase and will paired again
and again that after the successive steps of sequestration/desequestration, as
long as the number of free polymerases is sufficiently “large”. The sequestration
occurs always before a possible degradation of the 6S RNAs takes place. The
precise result is in fact more subtle than that. It will be shown that, on the
fast time scale t 7→Nt, the sequestration of polymerases increases but, due to the
degradation of 6S RNAs there remains a positive fraction of free polymerases.

The goal of this section is of proving an averaging principle for the process
(F 0
N (t), Z0

N (t)). A coupling and a technical lemma are presented in Section 2.4.1,
tightness properties of occupations measures are proved in Section 2.4.2, finally
the main convergence results are proved in Section2.4.3.

Definition 7. For N>0 and t≥0, we define

G0
N (t)

def.
= CNm−

(
N−F 0

N (t)−S0
N (t)

)
,

the number of “empty” places for transcription of mRNAs at time t.
The scaled process is defined by(
X

0

N (t)
)

=
(
F

0

N (t), G0
N (Nt), Z0

N (Nt)
)

with
(
F

0

N (t)
)

def.
=

(
F 0
N (Nt)

N

)
.

(2.14)
If g is non-negative Borelian function on R2

+×N2, we define the occupation
measure 〈

Λ
0

N , g
〉

def.
=

∫
R+

g
(
s,X

0

N (s)
)

ds. (2.15)

Note that the, a priori, slow process (FN (t)) is also included in the definition
of the occupation measure Λ

0

N . The reason is that the proof of the tightness of
(FN (t)) (for the topology of the uniform norm on càdlàg functions) is not clear.
Due to the fast time scale, the proof that the martingale component of (FN (t))
vanishes does not seem to be straightforward.

The following initial conditions will be assumed,

lim
N→+∞

F 0
N (0)

N
=f0∈(0, 1−cm), G0

N (0)=m0, and Z0
N (0)=z0, (2.16)

with m0 z0∈N. A fraction f0 of the polymerases are initially free and there are
z0 6S RNAs and CNm−m polymerases in the transcription phase of mRNAs and
the number of sequestered polymerases S0

N (0) is therefore such that

lim
N→+∞

S0
N (0)

N
=1−f0−cm.
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As it will be seen in Section 2.4.1 there is no loss of generality to consider these
initial conditions.

Before proving the convergence of the sequence of processes (X
0

N (t)), we
analyze the convergence of a “stopped” version of it. In several technical argu-
ments we will need that the fraction of free polymerases is not too small. A
second step is of showing that, essentially, the stopped process does not differ
from the original process.

Definition 8. For a>0, the stopping time τN (a) is defined by

τN (a)
def.
= inf

{
t>0 : F 0

N (Nt) ≤ aN
}
, (2.17)

and

a. if (W (t)) is a càdlàg process, we denote (W a
N (t))=(W (N(t∧τN (a))));

b. The “stopped” occupation measure Λ
0,a

N is defined by, if g is non-negative
Borelian function on R2

+×N2,

〈
Λ
0,a

N , g
〉

def.
=

∫ τN (a)

0

g
(
s,X

0

N (s)
)

ds.

With a slight abuse, the notation (F
a

N (t))=(F 0
N (N(t∧τN (a)))/N) will be

used in the following.

2.4.1 Technical Lemmas
The two processes (G0

N (t) and (Z0
N (t)) are in fact in a neighborhood of 0 quickly.

They will be the fast processes (on the timescale t 7→Nt) of our averaging princi-
ple. In state F 0

N=f , G0
N=g and Z0

N=z, f , g, z∈N, the jump rates of the process
(G0

N (t) and (Z0
N (t)) are respectively{

+1, βm(CNm−g),

−1, αmfg,
and

{
+1,

(
β6+η(N−f − CNm + g)

)
,

−1, (λf+δ6) z.

If η0>η and η1>βmcm, and N sufficiently large, up to time τN (a), a simple
coupling shows that there exist independent processes (YG(t)) and (YZ(t)) such
that

G0
N (Nt) ≤ YG(N2t) and Z0

N (Nt) ≤ YZ(N2t), (2.18)

holds for all t∈(0, τN (a)). The process (YG(t)), resp. the process (YZ(t)), is as
in Lemma 3 with κi,G=η1 and κo,G=αma (resp. κi,Z=η0 and κo,Z=λa), and
YG(0)=G0

N (0), resp. YZ(0)=Z0
N (0). It is not difficult, using again Lemma 3, as

in Section 2.3, that the hitting time of (0, 0) by (YG(t), YZ(t)) is of the order of
lnN so that Condition (2.16) for the initial state can be assumed.
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Lemma 9. Under Conditions (2.16) and cm<1, and if a∈(0, f0), then

lim
N→+∞

P (τN (a)<ta0) = 0,

with ta0=(f0−a)/β6, and the relation

lim
N→+∞

(
G0,a
N (Nt)

ln(N)2
,
Z0,a
N (Nt)

ln(N)2

)
= (0).

holds for the convergence in distribution.

In the following, we will use the notation ta0 , where a∈(0, f0) is fixed.

Proof. The first relation is clear since, for x≤1 and t>0, on the event {F 0

N (t)<x}
there are at least F 0

N (0)−bNxc−z0 new 6S RNAs which have been created up
to time t. The rest of the proof follows from the coupling with (YG(t), YZ(t)),
Relation (2.18), and Lemma 3.

2.4.2 Tightness Properties
Proposition 10. Under Conditions (2.16) and cm<1, the sequence of measure-
valued processes (Λ

0,a

N ) on the state space [0, ta0)×R+×N2 is tight for the con-
vergence in distribution and any limiting point Λ

0,a

∞ can be expressed as,〈
Λ
0,a

∞ , f
〉

=

∫
[0,ta0 )×R+×N2

f (s, x, p)πas (dx,dp) ds, (2.19)

for any function f with compact support on [0, ta0)×R+×N2, where ta0=(f0−a)/β6
and (πas ) is an optional process with values in P(R+×N2).

For an introduction to the convergence in distribution of measure-valued
processes, see Dawson [19]. The optional property is just used to have convenient
measurability properties to define random variables as integrals with respect to
(πas , s>0). See Section VI.4 of Rogers and Williams [62].

Proof. Note that, for K>0 and t<ta0 , since∫ t

0

1{Z0
N (Ns)≥K} ds =

∫ t

0

1{Z0,a
N (s)≥K} ds

holds on the event {τN (a)≥ta0}, then

E
(

Λ
0,a

N ([0, ta0 ]×[0, 1]×N×[K,+∞])
)

≤ E

(
1{τN (a)>ta0}

∫ ta0

0

1{Z0,a
N (s)≥K} ds

)
+ta0P (τN (a)<ta0) ,
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and, with Relation (2.18) and Lemma 9, we have

E

(
1{τN (a)>ta0}

∫ ta0

0

1{Z0,a
N (s)≥K} ds

)

≤
∫ ta0

0

P(YZ(N2s) ≥ K) ds =
1

N2

∫ N2ta0

0

P(YZ(s) ≥ K) ds,

since the Markov process (YZ(t)) converges in distribution to a Poisson distri-
bution with parameter κi,Z/κo,Z , the ergodic theorem for Markov processes and
Lemma 9 give therefore the inequality

lim sup
N→+∞

E
(

Λ
0,a

N ([0, ta0 ]×[0, 1]×N×[K,+∞])
)
≤ ta0P(N1(0, η/(λa))≥K),

where N1 is a Poisson process on R+ with rate 1. One can choose K suffi-
ciently large such that E

(
Λ
0,a

N ([0, ta0 ]×[0, 1]×N×[K,+∞])
)
is arbitrarily small

uniformly in N . Similarly, by replacing (Z0
N , YZ) by (G0

N , YG) the same property
can be proved for E

(
Λ
0,a

N ([0, ta0 ]×[0, 1]×[K,+∞]×N
)
for K and N sufficiently

large. For any ε>0, there exists some K0 such that

sup
N

E
(

Λ
0,a

N ([0, ta0 ]×[0, 1]×[0,K0]2
)
≥ (1−ε)ta0 .

Lemma 1.3 of Kurtz [45] shows that the sequence (Λ
0,a

N ) is tight, and Lemma 1.4
of the same reference gives the representation (2.19).

Proposition 10 has established tightness properties (Λ
0,a

N ). The following
simple lemma extends this result in terms of the convergence of stochastic pro-
cesses. It will be used repeatedly, in particular to identify the possible limits of
(Λ

0,a

N ). See Dawson [19] for example.

Lemma 11. Under Conditions (2.16) and cm<1, if (Λ
0,a

Nk
) is a subsequence

converging to Λ
0,a

∞ satisfying Relation (2.19), then for any g∈Cc(R+×N2), for
the convergence in distribution of processes associated to the uniform norm,

lim
k→+∞

(∫ t

0

g
(
X

0

Nk
(s)
)

ds

)
=

(∫ t

0

∫
R+×N2

g (x, p)πas (dx, dp) ds

)
.

Proof. The tightness of the sequence of stochastic processes is obtained by the
use of the criterion of the modulus of continuity. See Theorem 7.3 of Billingsley
[10]. The identification of the limit is a straightforward consequence of the
convergence of (Λ

0,a

Nk
)
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If we divide by N2 Relation (2.40), we get that, on the event {τN (a)>t}, the
relation

1

N2
f
(
X

0

N (t)
)

=
1

N2
f
(
X

0

N (0)
)

+
Mf,N (t)

N2
(2.20)

+ λ

∫ t

0

∇− e1N −e3(f)
(
X

0

N (s)
)
F

0

N (Ns)Z0
N (Ns) ds

+η

∫ t

0

∇ e1
N +e3(f)

(
X

0

N (s)
)(

1−C
N
m

N
+
G0
N (Ns)

N
−F 0

N (Ns)

)
ds

+ αm

∫ t

0

∇− e1N −e2(f)
(
X

0

N (s)
)
G0
N (Ns)F

0

N (Ns) ds

+ βm

∫ t

0

∇ e1
N +e2(f)

(
X

0

N (s)
)(CNm

N
−G

0
N (Ns)

N

)
ds

+
β6
N

∫ t

0

∇e3(f)
(
X

0

N (s)
)

ds+
δ6
N

∫ t

0

∇−e3(f)
(
X

0

N (s)
)
Z0
N (Ns) ds

holds. Recall that, for i∈{1, 2, 3}, ei is the ith unit vector of R3.

Lemma 12. Under Conditions (2.16) and cm<1, if f is a continuous bounded
function on R+×N, then the martingale (Mf,N (t)/N2, t<ta0) of Relation (2.20)
converges in distribution to 0.

Proof. We take care of one of the six terms of (
〈
Mf,N/N

2
〉

(t)) of Relation (2.41),
the arguments are similar for the others, even easier.

A1,N (t)
def.
=

λ

N2

∫ t

0

[
∇− e1N −e3(f)

(
X

0

N (s)
)]2

F
0

N (s)Z0
N (Ns) ds

We note that for t≥0, 0≤Z0
N (t)≤N+P5((0, β6)×(0, t]). Consequently, Doob’s

Inequality shows the convergence of (Mf,N (t)/N2) to 0. The lemma is proved.

Proposition 13. Under Conditions (2.16) and cm<1, and if Λ
0,a

∞ is a lim-
iting point of Λ

0,a

n with the representation (2.19) of Proposition 10, then, if
π1,a
t =π0,a

t (·,N2), for any t<ta0 and any continuous function g on R+×N2 we
have∫ t

0

∫
g(x, p)πas (dx,dp) ds

=

∫ t

0

∫
R+

E
[
g

(
x,N1

([
0, ρm

cm
x

])
,N2

([
0, ρ1

1−cm−x
x

]))]
π1,a
s (dx) ds,

(2.21)

where N1 and N2 are two independent Poisson processes on R+ with rate 1 and

ρ1=
η

λ
and ρm=

βm
αm

. (2.22)
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Relation (2.21) states that, for almost all t<ta0 , πt conditioned on the first
coordinate x is a product of two Poisson distributions with respective parameters
ρmcm/x and ρ1(1−cm−x)/x.

Proof. Let (Λ
0

Nk
) be a subsequence of (Λ

0

N ) converging to some Λ
0

∞ of the
form (2.19). By letting k go to infinity in Relation (2.20), with Lemmas 9,
11 and 12, we obtain that there exists an event E1 with P(E1)=1 on which the
relation∫ t

0

∫
R+×N2

(η (1−cm−x)∇e3(f)(x, p)+λxp2∇−e3(f)(x, p))πas (dx, dp) ds

+

∫ t

0

∫
R+×N2

(βmcm∇e2(f)(x, p)+αm∇−e2(f)(x, p)p1x)πas (dx, dp) ds = 0,

holds for all t≤T and for all functions f∈Cc(R+×N2), by using the separability
property of this space of functions for the uniform norm. If f(x, p)=f1(x)f2(p),
this relation can be rewritten as∫ t

0

∫
R+×N2

f1(x)Ω[x](f2)(p)πas (dx, dp) ds = 0

where, for h : N2→R+ and p=(p1, p2)∈N2,

Ω[x](h)(p) = βmcm∇e1(h)(p)+αmp1x∇−e1(h)(p)

+η(1−cm−x)∇e2(h)(p)+λxp2∇−e2(h)(p).

Ω[x] is the jump matrix of two independent birth and death processes (Y1(t))
and (Y2(t)) as in Lemma 3 with parameters κi=βmcm, κo=αmx for (Y1(t)) and
κi=η(1−cm−x), κo=λx for (Y2(t)).

Consequently, for almost all t≤T , the relation∫
R+×N2

f1(x)Ω[x](f2)(p)πat dx, dp) = 0

holds. Hence, if π̃at (·|x) is the conditional probability on N2 of πat (dx,dp) given
x, we have ∫

R+

f1(x)

∫
N2

Ω[x](f2)(p)π̃at (dp|x)π1,a(dx) = 0,

we deduce that the relation∫
N2

Ω[x](f2)(p)π̃at (dp|x) = 0

holds π1,a
t (dx) almost surely, for all functions f2 with finite support on N2.

Consequently, π1,a(dx) almost surely, π̃at (dp|x) is the invariant distribution as-
sociated to the Q-matrix Ω[x]. The proposition is proved.

We fix (Nk) an increasing sequence such the sequence (Λ
0,a

Nk
) is converging in

distribution to the law of Λ
0,a

∞ with a representation given by Relations (2.19)
and (2.21).
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2.4.3 Averaging Principle
We define, for t≥0,

Z̃0
N (t) = S0

N (t)+Z0
N (t),

Z̃0
N (t) is in fact the total number of 6S RNAs (free or paired) of the system at

time t. Using the SDEs (2.9) and (2.10), we have

Z̃0
N (Nt)

N
= MZ,N (t)+

Z̃0
N (0)

N
+β6t−δ6

∫ t

0

Z0
N (Ns) ds, (2.23)

where (MZ,N (t)) is a local martingale whose previsible increasing process is
given by

(〈MZ,N 〉 (t)) =

(
1

N

(
β6t+δ6

∫ t

0

Z0
N (Ns) ds

))
. (2.24)

Proposition 14. Under Conditions (2.16) and cm<1, for the convergence in
distribution

lim
k→+∞

(∫ t

0

ZNk(Nks) ds, t < ta0

)
=

(
ρ1

∫ t

0

∫
R+

1−cm−x
x

π1
s(dx) ds, t < ta0

)
,

with ta0=(f0−a)/β6 and ρ1=η/λ. Furthermore, (MZ,N (t), t<ta0) is converging
to 0.

Proof. The convergence of the sequence of stochastic processes (MZ,N (t), t<ta0)
to 0 is a consequence of Relations (2.23) and (2.24), and of Doob’s Inequality.
For 0≤s≤t, the coupling (2.18) and Cauchy-Schwartz’ Inequality give

E

((
1{τN (a)>t}

∫ t

s

ZNk(Ns) ds

)2
)
≤ (t− s)E

(
1{τN (a)>t}

∫ t

s

ZaNk(s)2 ds

)
≤ (t−s)E

(∫ t

s

YZ(Ns)2 ds

)
≤ (t−s)2 sup

u≥0
E
(
YZ(u)2

)
.

We now use the Kolmogorov-Čentsov’s criterion, see Theorem 2.8 and Prob-
lem 4.11, page 64 of Karatzas and Shreve [41] and Lemma 9 to show that the
sequence of stochastic processes(∫ t

0

ZNk(Ns) ds, t < ta0

)
is tight for the convergence in distribution.

Lemma 11 gives the convergence in distribution

lim
k→+∞

(∫ t

0

ZNk(Nks)∧K ds, t < ta0

)
=

(∫ t

0

∫
R+

E
(
N1

(
0, ρ1

1−cm−x
x

)
∧K

)
π1
s(dx) ds, t < ta0

)
.
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By using again Relation (2.18), we have

E

(∫ ta0

0

ZNk(Nks)1{ZNk (Nks)≥K} ds

)
≤ E

(∫ ta0

0

YZ(Nk
2s)1{YZ(N2

ks)≥K} ds

)

and the convergence in distribution of (YZ(t)), as t goes to infinity, to YZ(∞) a
random variable with a Poisson distribution with parameter ρZ=κi,Z/κo,Z give

lim
k→+∞

E

(∫ ta0

0

YZ(N2
ks)1{YZ(N2

ks)≥K} ds

)
= ta0E

(
YZ(∞)1{YZ(∞)≥K}

)
.

It is then easy to obtain the first convergence by letting K go to infinity.
The proposition is proved.

Relation (2.23) therefore shows that, on the time interval Ia=[0, ta0), the
sequence of processes (

Z̃0
Nk

(Nkt)

Nk

)
is converging in distribution. Since(

Z̃0
Nk

(Nkt)

Nk

)
=

(
1−

F 0
Nk

(Nkt)

Nk
−C

Nk
m

Nk
+
G0
Nk

(Nkt)

Nk
+
Z0
Nk

(Nkt)

Nk

)

with Lemma 9, we therefore obtain that the sequence of processes (FNk(Nkt)/Nk)
is converging in distribution to some process (f(t)) on Ia. In particular, for t<ta0
and g∈Cc(R+), we have∫ t

0

∫
g(x)π1

s(dx) ds =

∫ t

0

g
(
f(s)

)
ds,

hence, π1
s is in fact the Dirac measure at f(s) for s<ta0 .

Relation (2.23) gives that, on the time interval Ia and under the initial condi-
tions (2.16), then the sequence of processes (FNk(t)) is converging in distribution
to (f(t)) such that

1−f(t) = 1−f0+β6t−δ6ρ1
∫ t

0

∫
R+

1−cm−x
x

π1
s(dx) ds

= 1−f0+β6t−δ6ρ1
∫ t

0

1−cm−f(s)

f(s)
ds (2.25)

with Proposition 14 and Notation (2.22).
Hence, by uniqueness of the solution of the integral equation,

f(t) = f0−δ6(ρ6+ρ1)t+δ6ρ1(1−cm)

∫ t

0

1

f(s)
ds
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holds on Ia, for the convergence in distribution, we thus have

lim
N→+∞

(
FN (t), t∈Ia

)
=
(
f(t), t∈Ia

)
.

The equilibrium point of (f(t)) is f∞=ρ1(1−cm)/(ρ6+ρ1), if f0<f∞, then
f(t)≥f0 for all t≥0, and otherwise f(t)≥f∞. By induction, this implies that
the convergence in distribution of (FN (t)) can be extended on time intervals
(0, nta0), for all n≥1 and, consequently, on R+. We summarize our results.

Theorem 15 (Law of Large Numbers). If

lim
N→+∞

F 0
N (0)

N
= f0∈(0, 1−cm),

and (GN (0)=, ZN (0)=(m0, z0), then, for the convergence in distribution,

lim
N→+∞

(
F 0
N (Nt)

N

)
= (f(t)),

where (f(t)) is the solution of the ODE

df

dt
(t) = −δ6 (ρ6+ρ1) +δ6ρ1(1−cm)

1

f(t)
, (2.26)

where ρ6 and ρ1 are defined by Relation (2.22).

We summarize the results obtained for the convergence in distribution of the
occupation measures (Λ

0

N ). This is an extension of Proposition 13.

Corollary 16. Under the conditions of Theorem 15, the sequence of empirical
distributions (Λ

0

N ) converge in distribution to the measure Λ
0
such that〈

Λ
0
, g
〉

=

∫
R+

E
(
g

(
s, f(s),N1

([
0, ρm

cm

f(s)

])
,N2

([
0, ρ1

1−cm−f(s)

f(s)

])))
ds,

for any continuous function g on R2
+×N2, where N1 and N2 are two independent

Poisson processes on R+ with rate 1 and (f(t)) is the solution of Relation (2.26)
with f(0)=f0.

2.5 Exponential Phase
Throughout this section, Conditions (2.3) and of exponential phase of Defini-
tion 1 hold. Heuristically, if there are sufficiently many polymerases, there will
be an accumulation of them in the elongation phase of rRNAs and, therefore,
the output rate of all types of rRNAs is maximal. The goal of this section is to
prove precise results for this assertion.

Under this condition, for any 1≤j≤J , the initiation rate αr,j of rRNA of
type j, is larger than βr,j , the rate at which an rRNA of type j grows.
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A coupling
We introduce a coupling to study the occupancy of the places for transcription
of rRNAs. The idea is quite simple: for 1≤j≤J , as long as RNj (t) is strictly less
than CNr,j , when UNj (t)=1, a new polymerase is added for transcription after
an exponential with parameter αr,j and if at that time FN (t) is positive, then
the variable UNj (t) remains at 1. See the part of transcription of rRNAs in the
Q-Matrix of our process in Section 2.2.2.

Otherwise, if FN (t)=0, there is a total of at leastAN
def.
= N−CNr,1− · · ·−CNr,J−J

polymerases either in transcription of mRNAs or sequestered. If δ= min(η, βm),
the duration of time after which there will be a free polymerase which can be
accommodated by the jth promoter of rRNAs, with probability at least 1/J ,
is stochastically bounded by an exponential random variable with parameter
2δAN . Hence, if FN (t)=0 and UNj (t)=0, then Uj(t) returns to 1 after a du-
ration whose distribution is stochastically bounded by an exponential random
variable with parameter 2δAN/J .

We choose N0 sufficiently large, so that

1

αr,j
+

J

δN0
<

1

βr,j
, ∀1≤j≤J with δ= min(η, βm). (2.27)

We are interested in the behavior of (QNj (t))
def.
= (CNr,j(t)−RNj (t)), 1≤j≤J , which

measures the congestion of the transcription of the rRNAs. The above coupling
shows that if N≥N0, it can be stochastically bounded by independent queueing
processes (Qj(t)), 1≤j≤J characterized as follows: for 1≤j≤J ,

— the arrivals of customers is a Poisson process with rate βr,j .

— The distribution of the service of a customer is the distribution of the sum
of two independent exponential random variables with respective param-
eters αr,j and δN0/J . The service will be seen as the sum of the duration
of a phase αr,j and a phase δN0/J .

This is an M/G/1 queue, see Chapter 2 of Robert [61]. It has a Markovian
representation as (Ij(t), Qj(t)) where Ij(t)∈{1, 2}, Ij(t)=1 indicates that the
customer being served is in phase αr,j and Ij(t)=2 when it is in the phase
δN0/J .

Under Condition (2.27), (Q(t))=((Ij(t), Qj(t)), 1≤j≤J) is a positive recur-
rent Markov process, since the coordinates are independent positive recurrent
Markov processes. In particular if Q(0)∈({0, 1}×N)J , then

inf
{
t>0 : Q(t)=((1, 0), j=1, . . . , J)

}
is almost surely finite and integrable and for any ε>0 and T>0, there exists K
such that

P
(

sup
0≤t≤T

max
1≤j≤J

Qj(t) ≥ K
)
≤ ε.
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Furthermore if

τNj = inf{t>0 : Qj(t)=0}, with Qj(0)=CNr,j ,

then it is not difficult to show, with the classical law of large numbers, that, if
i∈{0, 1},

lim
K→+∞

E(i,K)(τ
N
j )

N
= cr,j

/(
1

1/αr,j + J/(δN0)
−βr,j

)
.

We have thus proved the following proposition which shows that in the expo-
nential phase, the transcription of rRNAs is essentially congested.

Theorem 17 (Saturation of Transcription of rRNAs). If Conditions (2.3)
and (2.4) hold and if FN (0)=N , ZN (0)=0 and (UN (0), RN (0))=(0, 0), i.e. all
polymerases are initially free, then the variable τeN defined by

τeN
def.
= inf{t>0 : RN,j(t)=C

N
r,j ,∀1≤j≤J}, (2.28)

is almost surely finite and

sup
N

E(τeN )

N
< +∞.

For any ε>0 and T>0, there exists K such that

P((1,0))

(
sup

0≤t≤T
max
1≤j≤J

CNr,j−RNj (t) ≥ K
)
≤ ε (2.29)

The variable τeN is the first time when all places for transcription of rRNAs
are occupied, i.e. the first instant when this part of the system is saturated.
Our proposition gives an upper bound linear in N for the average value of this
random variable when Condition (2.4) holds.

Now we investigate the asymptotic behavior of the remaining part of the
system after time τeN . We introduce〈

ΛFN , g
〉 def.

=

∫
g (s, FN (s))) ds and

〈
Λ0,F
N , g

〉
def.
=

∫
g
(
s, F 0

AN (s))
)

ds,

if g is a continuous function with compact support on R+×N, where AN defined
by Relation (2.6) is the number of polymerases available when transcription of
rRNA is saturated. The process (F 0

AN
(t)) is the solution of Relation (2.8) whose

initial condition is the same as the process (FN (t), SN (t), ZN (t)).

Lemma 18 (Coupling with the Auxiliary Process).
If (FN (0), SN (0), ZN (0))=(f, s, z)∈N3 and if (UN (0), RN (0))=((1, CNr,j)), then
for any g∈Cc(R+×N),

lim
N→+∞

∣∣∣E(〈Λ0,F
AN
, g
〉)
−E

(〈
ΛFN , g

〉)∣∣∣ = 0.
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Proof. From Relation (2.29), we know that for K sufficiently large, the proba-
bility of the event

EK
def.
=

{
sup
t≤T

AN −

(
N −

J∑
1

UNj (t)+RNj (t)

)
≤ K

}

is close to 1.
Given our initial state, at time 0 there areAN polymerases either sequestered,

free or in transcription of an mRNA. On the event EK , on the time interval [0, T ],
there may be at most K additional polymerases. Since they enter this part of
the system as free, at rate at least CNm−(N−CNr,1 · · · −CNr,J), they go into tran-
scription of an mRNA. Note that, almost surely, any of these K polymerases
may return a finite number of times as free on [0, T ]. Hence, with high prob-
ability, their contribution to the integral defining the occupation measure is
arbitrarily small as N gets large, and so is their impact on the random variable
(FN (t), SN (t), ZN (t)).

We can now state convergence results for the number of free and sequestered
polymerases. It is a direct consequence of the arguments of the proof of the last
lemma and Proposition 5. It shows that in this case, basically, the number
of free polymerases has a Poisson distribution and the process of the number
of sequestered polymerases and free 6S RNAs is a positive recurrent Markov
process on N2.

Theorem 19 (Free/Sequestered Polymerases and 6S RNAs). Under Condi-
tions (2.3) and (2.4) and if (FN (0), SN (0), ZN (0))=(f, s, z)∈N3 and (UN (0), RN (0))=((1, CNr,j)),
then, for the convergence in distribution,

lim
N→+∞

∫
g (s, FN (s))) ds =

∫ +∞

0

E (g (u,N1 (0, ρm))) du,

for any g∈Cc (R+×N), where N1 is a Poisson process with rate 1 and

ρm=
βm(1−cr)

αm(cm+cr−1)
, cr

def.
=

J∑
j=1

cr,j .

Furthermore, the sequence of processes (SN (t), ZN (t)) converges in distribution
for the Skorohod topology to a jump process (S(t), Z(t)) on N2 whose transition
rates are given by

(s, z) −→ (s, z)+

{
(1,−1) λρmz,

(−1, 1) ηs,

{
(0, 1) β6,

(0,−1) δ6z.

Note that the process (S(t), Z(t)) is a positive recurrent Markov process.
Indeed, if, for a>0,

Ha(s, z)
def.
= as+z,
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then it is easily seen that Ha is a Lyapunov function for this Markov process if
a∈R+ is chosen so that

1 < a < 1+
δ6
λρm

,

see Proposition 8.14 of Robert [61].

2.6 Stationary Phase
Conditions (2.3) and of stationary phase of Definition 1 now hold. For any type
j of rRNA, the initiation rate αr,j is less than its production rate.

A coupling
As in Section 2.5 we introduce a simple coupling to study the occupancy of the
slots for transcription of rRNAs. Since a polymerase enters in elongation phase
of an rRNA of type j∈{1, . . . , J} at rate at most αr,j , it is easy to construct
a coupling with J independent M/M/1 processes (Qj(t)) with respective input
rate αr,j and service rate βr,j , so that the relations

RNj (t) ≤ QNj (t), ∀t≥0, 1≤j≤J,

hold. See Chapter 5 of Robert [61] for example. The following proposition is
a direct consequence of this coupling and the fact that, for the convergence in
distribution, the hitting time of p starting from a fixed initial state is exponential
with respect to p, for p large. See Proposition 5.16 of [61]

Proposition 20. Under Conditions (2.3) and (2.5), and if FN (0)=N , ZN (0)=0
and (UN (0), RN (0))=(0, 0), all polymerases are initially free, then the variable
τsN defined by

τsN
def.
= inf{t>0 : RN,j(t) = 0,∀1≤j≤J}, (2.30)

is almost surely finite and

sup
N

E(τsN )

N
< +∞.

Lemma 21. Under Condition (2.5) then, for any K>0,

lim
N→+∞

P(u,r)

(
sup
t≤NT

RNj (t)

ln(N)2
> K

)
= 0.

Proof. This is a simple consequence of the independence of the (Qj(t)) and of
Proposition 5.11 of Robert [61].

The above result shows that few polymerases are in transcription of an
rRNA, hence the results of Section 2.4 on the auxiliary process can be used,
in particular Theorem 15.
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Theorem 22 (Asymptotic Behavior in Stationary Phase). Under Conditions (2.3)
and (2.5), and the initial state such that

lim
N→+∞

(
FN (0)

N
,
SN (0)

N

)
=
(
f, s
)
∈ [0, 1]2, with f+s=1− cm,

and (UN (0), RN (0))=(u, r)∈({0, 1}×N)J then, for the convergence the sequence
of processes

lim
N→+∞

(
FN (t)

N
,
SN (t)

N
)

)
=
(
f(t), 1−cm−f(t)

)
,

where (f(t)) is the solution of the ODE

df

dt
(t) = −δ6 (ρ6+ρ1) +δ6ρ1(1−cm)

1

f(t)
, (2.31)

with ρ1=η/λ and ρ6=β6/δ6.
If g∈Cc(R+×N) then, for the convergence in distribution,

lim
N→+∞

(∫
R+

g(t, ZN (t)) dt

)
=

∫
R+

E
[
g

(
t,N1

([
0, ρ1

1−cm−f(t)

f(t)

]))]
dt,

where N1 is a Poisson processes on R+ with rate 1.

In particular, the asymptotic fraction of free polymerases is
ρ1

ρ6+ρ1
(1−cm),

and, in this state, the number of free 6S RNAs has a Poisson distribution with
parameter ρ6.

2.7 Sub-critical Case
It is assumed throughout this section that cm>1 holds. We give a sketch of the
proof of the averaging principle at the basis of the proof of Proposition 5 for the
sake of completeness. The analogue of this result in the super-critical case in
Section 2.4 is quite different and more challenging. The corresponding tightness
property is less clear in this case, in particular the definition of occupation
measures has to include the slow processes. The arguments of the proofs of
Section 2.4 can be used in the same way. As it will be seen, it is easy to show
that the sequences of “slow” processes (S0

N (t)/N) and (Z0
N (t)/N) are tight.

Recall that µN is the occupation measure defined by Relation (2.12). For
K>0, with the same notations as in the proof of Lemma 4, Relation (2.13) gives
the inequality

E (〈µN , [0, t]×[0,K]〉) ≥
∫ t

0

P(Y (Ns) ≤ K) ds =
1

N

∫ Nt

0

P(Y (s) ≤ K) ds.
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Since (Y (t)) is converging in distribution to a Poisson distribution with param-
eter a/b, for any ε>0 and t>0, there exists K0 and N0 such that if K≥K0 and
N≥N0, then E (〈µN , [0, t]×[0,K]〉)>(1−ε)t. Lemma 1.3 and 1.4 of Kurtz [45]
show that the sequence (µN ) of random measures is tight and any limiting point
µ∞ can be expressed as

〈µ∞, g〉 =

∫
R+×N

g (u, x)πu(dx) du

where (πu) is a previsible process with values in the state space of probability
distributions on N.

2.7.1 Proof of Proposition 5
By integrating Relations (2.9) and (2.10), we obtain the identities, for t≥0,

S0
N (t) = S0

N (0)+MN
6 (t)−η

∫ t

0

S0
N (s) ds+λ

∫ t

0

F 0
N (s)Z0

N (s) ds, (2.32)

Z0
N (t) = Z0

N (0)+MN
Z (t)+β6t−δ6

∫ t

0

Z0
N (s) ds (2.33)

+η

∫ t

0

S0
N (s) ds−λ

∫ t

0

F 0
N (s)Z0

N (s) ds,

where (MN
6 (t)) and (MN

Z (t)) are martingales whose previsible increasing pro-
cesses are given by

〈
MN

6

〉
(t) = η

∫ t

0

S0
N (s) ds+λ

∫ t

0

F 0
N (s)Z0

N (s) ds, (2.34)

〈
MN
Z

〉
(t) = β6t+δ6

∫ t

0

Z0
N (s) ds+η

∫ t

0

S0
N (s) ds+λ

∫ t

0

F 0
N (s)Z0

N (s) ds. (2.35)

Relations (2.34) and (2.35), Relation (2.13), and Doob’s Inequality show
that, for convergence in distribution, then

lim
N→+∞

(
MN

6 (t)

N

)
= lim
N→+∞

(
MN
Z (t)

N

)
= 0.

We note that, for t≥0, S0
N (t)∈[0, N ] and 0≤Z0

N (t)≤N+P5((0, β6)×(0, t]) by Re-
lation (2.10). Relations (2.32) and (2.33), and the criterion of the modulus of
continuity, see Billingsley [10], give that the sequence of processes

(
S0
N (t)/N,Z0

N (t)/N
)

is tight for the convergence in distribution associated to the uniform norm on
compact sets of R+.

We can therefore take a subsequence of
(
µN ,

(
S0
N (t)/N

)
,
(
Z0
N (t)/N

))
with

indices (Nk) converging in distribution to (µ∞, (s(t)), (z(t))), where (s(t)) and
(z(t)) are continuous processes.

67



If f∈Cc
(
N×R2

+

)
, Relation (2.8) gives the identity

f

(
F 0
Nk

(t),
S0
Nk

(t)

Nk
,
Z0
Nk

(t)

Nk

)
= f (fNk , sNk , zNk) +MNk

f (t)

+ βm

∫ t

0

∇e1(f)
(
X0
Nk

(s)
) (
Nk−F 0

Nk
(s)−S0

Nk
(s)
)

ds

+ αm

∫ t

0

∇−e1(f)
(
X0
Nk

(s)
) (
CNkm −Nk+F 0

Nk
(s)+S0

Nk
(s)
)
F 0
Nk

(s) ds

+ λ

∫ t

0

∇−e1+ e2
Nk
− e3
Nk

(f)
(
X0
Nk

(s)
)
F 0
Nk

(s)Z0
Nk

(s) ds

+ η

∫ t

0

∇e1− e2
Nk

+
e3
Nk

(f)
(
X0
Nk

(s)
)
S0
Nk

(s) ds

+ β6

∫ t

0

∇ e3
Nk

(f)
(
X0
Nk

(s)
)

ds+ δ6

∫ t

0

∇− e3
Nk

(f)
(
X0
Nk

(s)
)
Z0
Nk

(s) ds,

with the notation ∇a(f)(x)=f(x+a)−f(x), for a and x∈N×R2
+.

With the same arguments as for the martingales (MNk
S (t)) and (MNk

Z (t)),
the process (MNk

f (t)) is converging in distribution to 0. By dividing by Nk the
last relation, and by letting k go to infinity, we get∫ t

0

∇e1(f)(x, s(u), z(u)) (βm− (βm − η) s(u))πu(dx) du

+

∫ t

0

∇−e1(f)(x, s(u), z(u)) (αm(cm−1+s(u))+λz(u))xπu(dx) du = 0,

and therefore ∫ t

0

∫
N

Ωs(u),z(u)(g)(x)πu(dx) du = 0, (2.36)

with, for s, z≥0, s+z<1 and x∈N,

Ωs,z(g)(x) =
(
βm− (βm−η) s

)
(g(x+1)−g(x))

+
(
αm(cm−1+s)+λz

)
(g(x−1)−g(x)),

Ωs,z is the infinitesimal generator of the Markov process (Y (t)) of Lemma 3
with a=a(s, z)= (βm− (βm−η) s) and b=b(s, z)=αm(cm−1+s)+λz). From Re-
lation (2.36) and with the same methods as in Section 2.4, we obtain that,
almost surely,∫ t

0

∫
N
g(x)πu(dx) du =

∫ t

0

∫
N
g(x)πu(dx) du =

∫ t

0

E (g (Pu)) du

holds for all t>0 and all functions g with finite support on N, where Pu is a
Poisson random variable with parameter a(s(u), z(u))/b(s(u), z(u)), u≥0.
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Hence, with similar arguments as in Section 2.4, for T≥0 such that s(t)+z(t)<1
holds for all t≤T , we obtain that the identities

s(t) = s0−η
∫ t

0

s(u) du+λ

∫ t

0

z(u)
βm− (βm − η) s(u)

αm(cm−1+s(u))+λz(u)
du, (2.37)

s(t)+z(t) = s0+z0−δ6
∫ t

0

z(u) du., (2.38)

hold almost surely, for t≤T . From Relation (2.38) we obtain that (s(t)+z(t)) is
a non-increasing function, hence s(t)+z(t)≤s0+z0<1, for t≥0, the above system
has therefore a unique solution defined on R+. Since the function (s(t)+z(t))
is converging at infinity, Equation (2.38) shows that (s(t)) converges at infinity
too. By dividing both sides of Relations (2.37) and (2.38) by t and by letting t
got to infinity, we deduce that both limits are zero. Proposition 5 is proved.

2.7.2 Proof of Proposition 6
The first assertion on the convergence of the occupation is obtained in the same
way but with (s, z)=(0, 0), hence for u≥0, s(u)=z(u)=0, and the operator is

Ω(s(u),z(u))(g)(x) = βm(g(x+1)−g(x))+αm(cm−1)(g(x−1)−g(x)).

Therefore Pu is a Poisson random variable with parameter ρm.
Let, for k≥1, tNk be the kth jump of (YN (t))

def.
= (SN (t), ZN (t)) when the

initial state is (s, z), there are four random variables Ai, i∈{1, 2, 3, 4}, to trigger
a change of state of (YN (t)),

a. AN1 is a random variable such that, for t≥0,

P
(
AN1 ≥t | (F 0

N (s))
)

= exp

(
−λz

∫ t

0

F 0
N (s) ds

)
; (2.39)

b. A2, A3, A4 are independent exponential random variables with respective
parameters ηs, β6 and δ6z,

and, conditionally on (F 0
N (t)), the random variables AN1 , Ai, i∈{2, 3, 4} are

independent.
Relation (2.39) and the convergence of the sequence (µN ) of occupation

measure of (F 0
N (t)) given that AN1 is converging in distribution to an exponential

distribution with parameter λzρm.
For t≥0, we have

P(s,z)

(
YN
(
tN1
)

= (s+1, z−1), tN1 ≥ t
)

= P
(
AN1 ≥ t, AN1 ≤ A2∧A3∧A4

)
= E

(
1{AN1 ≥t} exp

(
−(ηs+β6+δ6z)A

N
1

))
,
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hence,

lim
N→+∞

P(s,z)

(
YN
(
tN1
)

= (s+1, z−1), tN1 ≥t
)

=
λρmz

(λρmz+ηs+β6+δ6z)
e−(λρmz+β6+δ6z+ηs)t,

and this last quantity is P(s,z)(Y (t1) = (s+1, z−1), t1 ≥ t), where (Y (t)) is the
jump process defined in Proposition 6 and (ti) is the non-decreasing sequence
of its instants of jumps. A similar convergence result is obtained in the same
manner for the other possibilities for the first jump of (YN (t)). By induction,
one can show that for k≥1 and any sequence (ai)∈N2,

lim
N→+∞

P
(
YN (tNi ) = ai, 1≤i≤k

)
= P(Y (ti) = ai, 1≤i≤k).

We conclude the proof of the convergence by using directly the very definition
of the Skorohod topology. See Billingsley [10].

2.8 Super-critical Case
The assumption cm<1 holds throughout this section. Technical results used in
Section 2.4 are presented here.

Recall that (X
0

N (t))=(F
0

N (t), G0
N (Nt), Z0

N (Nt)), with

G0
N (t)

def.
= CNm−

(
N−F 0

N (t)−S0
N (t)

)
.

If f be a non-negative Borelian function on R+×N2, the SDEs (2.8), (2.9),
and (2.10) give directly the relations

f
(
X

0

N (t)
)

= f
(
X

0

N (0)
)

+Mf,N (t) (2.40)

+ λN

∫ t

0

∇− e1N −e3(f)
(
X

0

N (s)
)
F 0
N (Ns)Z0

N (Ns) ds

+ηN

∫ t

0

∇ e1
N +e3(f)

(
X

0

N (s)
) (
N−CNm+G0

N (Ns)−F 0
N (Ns)

)
ds

+ αmN

∫ t

0

∇− e1N −e2(f)
(
X

0

N (s)
)
G0
N (Ns)F 0

N (Ns) ds

+ βmN

∫ t

0

∇ e1
N +e2(f)

(
X

0

N (s)
) (
CNm−G0

N (Ns)
)

ds

+ β6N

∫ t

0

∇e3(f)
(
X

0

N (s)
)

ds+ δ6N

∫ t

0

∇−e3(f)
(
X

0

N (s)
)
Z0
N (Ns) ds,

where, for i∈{1, 2, 3}, ei is the ith unit vector of R3, and (Mf,N (t)) is a local
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martingale and its previsible increasing process is given by

〈Mf,N 〉 (t) = λN

∫ t

0

∇− e1N −e3(f)
(
X

0

N (s)
)2
F 0
N (Ns)Z0

N (Ns) ds (2.41)

+ ηN

∫ t

0

∇ e1
N +e3(f)

(
X

0

N (s)
)2

(N−CNm+G0
N (Ns)−F 0

N (Ns)) ds

+ αmN

∫ t

0

∇− e1N −e2(f)
(
X

0

N (s)
)2
G0
N (Ns)F 0

N (Ns) ds

+ βmN

∫ t

0

∇ e1
N +e2(f)

(
X

0

N (s)
)2 (

CNm−G0
N (Ns)

)
ds

+ β6N

∫ t

0

∇e3(f)
(
X

0

N (s)
)2

ds

+ δ6N

∫ t

0

∇−e3(f)
(
X

0

N (s)
)2
Z0
N (Ns) ds.

71



Chapter 3

Pairing Mechanisms

3.1 Introduction
In this paper we investigate a general mechanism of interaction between different
populations of particles and specific particles, agents, in some environment.
Assuming that each of the particles follows a random path in the medium,
when a particle and an agent meet, they may form a pair which has a specific
functional property in the medium. Such a pair is also subject to random
events, it splits after some random amount of time. The efficiency of the pairing
mechanism is analyzed with the time evolution of the number of paired particles
of each type.

3.1.1 Motivation
The initial motivation comes from molecular biology where this is an almost
ubiquitous phenomenon occurring in biological cells. It can be (roughly) de-
scribed as follows: different types of macro-molecules (ribosomes, or polymerases
for example), referred to as particles, are in charge of producing some of the
functional components necessary to the development of the cell (mRNAs, pro-
teins). Specific macro-molecules, referred to as agents in the paper, like small
RNAs, have a regulation role in the cell. Agents can pair/bind with particles to
block, or to speed-up, their activity. Due to thermal noise, a pair agent-particle
splits after some time. The dynamic behavior of the systems investigated are
described in terms of binding/unbinding operations of agents and particles. See
Section 3.5 for a more detailed presentation of these aspects.

3.1.2 Literature
A typical representation of pairing mechanisms in the literature, written as a
chemical reaction, is of the type,

Z+Fj −⇀↽− ZFj ⇀ Gj+Z (3.1)
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where the chemical species are as follows: Z is associated to what we call agents
(enzymes, small RNAs, . . . ), Fj is for particles of type j∈{1, . . . , J} (RNAs,
polymerases, . . . ). The species ZF j is for pairs of Z and Fj and Gj is for a
“product” of type j, it can be Fj . In a deterministic setting the leads to a set
of ODEs for a dynamical system (XA(t), (A∈Z) , Fj , ZFj , Gj), for example, for
(XZFj

(t)) it gives

d

dt
XZFj

(t) = κ+j XZ(t)XFj
(t)− κ−j XXFj

(t) (3.2)

for some constants κ±j ≥0. Note the quadratic term on the right hand side. Inves-
tigations are generally on the stability of these dynamical systems. See Petrides
and Vinnicombe [58], Del Giudice et al. [20] and Jayaprakash and Das [40]. See
Section 3.2 for a brief presentation of this formalism.

In a stochastic context, this is represented as a Markov process whose state
descriptor is the vector of the number of copies of the different chemical species.
Simulations and numerical analysis of the associated Fokker-Planck equations
have been used to study these phenomena, see Petrides and Vinnicombe [58].

The technical context is related to the celebrated Michaelis-Menten kinet-
ics. These chemical reactions involve enzyme, substrate and product macro-
molecules, whose associated chemical species are denoted respectively as E , S
and P. The chemical reaction

E+S −⇀↽− ES ⇀ P+E ,

has been investigated for some time now. The basic assumption for these models
is that there are few copies of chemical species E but a large number of copies
of substrate, so that the reaction rate is large (for the chemical reaction on the
left). In a deterministic setting it leads to a system of non-polynomial ODEs. In
a stochastic context, these ODEs can be obtained via the proof of an averaging
principle. See Michaelis and Menten [48] and for a general overview Sanft et al.
[65] and Cornish-Bowden [17].

Averaging principles also play an important role in our paper. For the math-
ematical point of view, agents may be seen as playing the role of enzymes in
our model. Nevertheless our framework is not really that of Michaelis-Menten.
Their number is nevertheless not fixed in our main model of Section 3.4. As
we will see, the production of agents has a strong impact on the qualitative
behavior of the system. As it can be expected, the quadratic expressions due to
pairing mechanisms, like in Relation (3.2), are at the origin of some technical
difficulties in the proof of limit theorems.

3.1.3 Stochastic Model
There are J types of particles. For 1≤j≤J , Nj is the total number of particles
of type j, this quantity is assumed to be fixed. The total number of particles
is N=N1+· · ·NJ , it is our scaling parameter. A Markovian stochastic model
is considered, each event occurs after an amount of time with an exponential
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distribution and the corresponding random variables are assumed to be inde-
pendent.

There is only type of agent. An agent and a particle of type j∈{1, . . . , J}
bind/pair at rate λj , and, in a reverse operation, such a pair split into an agent
and a particle of type j at rate ηj . An agent or a particle which is not paired is
said to be free.

The variables of interest are

(FN (t), ZN (t))
def.
= ((FN,j(t), j=1, . . . , J) , ZN (t))

where, for 1≤j≤J and t≥0, FN,j(t) is the number of free particles of type j,
i.e. not paired with an agent, and (ZN (t)) is the process for the number of free
agents. When the goal of pairing mechanism is of reducing the activity of the
particles, this will be referred to as sequestration of particles, the objective is of
minimizing  J∑

j=1

FN,j(t)

N


the process of the fraction of the number of free particles. We analyze the
asymptotic behavior, when N goes to infinity, of the time evolution of the J-
dimensional process (Fj,N (t)/N) associated to the free particles. An appropriate
timescale for a non-trivial asymptotic evolution when N goes to infinity has to
be determined.

In Fromion et al. [31], a related model of sequestration has been analyzed,
to study the regulation of transcription. It also includes additional variables
which are not considered in this paper. A component of the stochastic model
is a related Markov process but in dimension 1, i.e. for J=1. As it will be
seen, compared to the case J=1, the multi-dimensional aspect of our model
has a significant impact on the scaling properties of the associated stochastic
processes.

Two types of models for agents are analyzed.

a. Agents are neither created nor removed: the number of agents is fixed, of
the order of N .

b. An agent is created at rate β and, only when it is not paired with a
particle, it dies at rate δ.

Case a) is used to investigate the case when the environment does not change
significantly and when there is already a large number of agents to regulate the
system. Two cases are considered. In Section 3.3.1 the total number of agents is
of the order of rN with r∈(0, 1), there are much more particles than agents. It is
shown that the process (Fj,N (t)/N) is converging in distribution to the solution
of an ODE. The equilibrium point of this ODE is unique and its coordinates
are positive. For this system the number of free particles of type j∈{1, . . . , J}
is, of course, of the order of N .
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In Section 3.3.2 the total number of agents is N the same as the total number
of particles. It is shown that with, appropriate initial conditions, the process
(Fj,N (t/

√
N)/
√
N) is converging in distribution to the solution of an ODE and

a central limit theorem is proved, it shows that the fluctuations are of the order
of 4
√
N . In this case the impact of stochasticity on the pairing mechanism is

minimal since there is a fraction of the order of 1/
√
N of free particles.

Case b) is investigated in Section 3.4 for the case when, initially, there few
agents (free or paired) are in the system, the goal is of investigate the growth
of the number of paired particles. The proof of an averaging principle in this
context is challenging for several reasons.

Since a paired agent does not die (it is not degraded), one can expect an
asymptotic situation as in Section 3.3.2 with a negligible fraction of free parti-
cles. We show that this is not the case, in fact, formally, the behavior is similar
to that of Section 3.3.1, but on a faster time scale and with important qualitative
and technical differences.

If the system starts with few agents, in this case most of N particles are
initially “free”, all agents created will pair with a free particle right away and
will keep doing that, via the successive steps of pairing/splitting, as long the
number of free particles is “large” so that, with high probability, pairing occurs
before degradation for agents. Given the rate of creation of agents, the natural
timescale to study this problem is (Nt).

It can be expected that the multi-dimensional process(
(
FN (Nt)

N

)
=

(
Fj,N (Nt)

N

)
converges in distribution to a continuous process reflecting the asymptotic de-
gree of pairing of the system. Due to their large transition rates, the integer-
valued processes (ZN (Nt)) and (FN (Nt)) are “fast” processes. Because of the
space scaling, (FN (Nt)/N) is an a priori “slow” process. Following the classical
approach in this domain, see Papanicolaou et al. [56] in a stochastic calculus
context and Kurtz [45] for its formulation for jump process. For T>0, one has
to consider the occupation measure associated to (ZN (Nt)), i.e. this is the
functional on non-negative Borelian functions on [0, T ]×N,

g −→
∫ T

0

g(s, ZN (Ns)) ds.

If this approach allows us to derive the results of Section 3.3.1 for case a), where
an averaging principle is proved, it does not work for case b). The sequence
of processes (Fj,N (Nt)/N, j=1, . . . , J) does not converge in distribution in fact.
It is not tight for the topology associated to uniform convergence if the initial
state does not converge to some one-dimensional curve of [0, 1]J . The main
convergence result of this case is Theorem 35 of Section 3.4. It shows that the
process associated to the total number of free particles,

(‖FN (Nt)‖) def.
=

 J∑
j=1

FN,j(Nt)

N

 ,
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converges in distribution to a continuous process. The sequence of [0, 1]J -valued
processes (Fj,N (Nt)/N, 1≤j≤J) converges in distribution, but in a weak form,
via its associated occupation measure. It turns out that the process (‖FN (Nt)‖)
determines, in some way, the behavior of the coordinates of (FN (Nt)). For N
large (FN,j(Nt)) can in fact be represented as a curve of [0, 1]J determined by
‖FN (Nt)‖. In Fromion et al. [31], no such difficulty shows up since J=1.

Intuitively, it is shown that, in the limit, the number of free particles is of
the order of N , as in case a) but for some specific r<1. These results stress
the impact of dynamical arrivals and departures of agents. In particular the
fraction of paired particles is asymptotically strictly less than 1.

Technical difficulties are related to the lack of tightness properties of the
process (Fj,N (Nt)/N). For this reason the definition of the occupation measure
is extended to include also “slow” processes and not only the fast processes as
it is classical in the context of averaging principles. As a functional on Borelian
functions on [0, T ]×[0, 1]J×N, the occupation measure is expressed as

g −→
∫ T

0

g

(
s,
FN (Ns)

N
,ZN (Ns)

)
ds.

The investigation of the limiting behavior of this sequence of occupation mea-
sures is the main topic of Section 3.4, including the identification of possible
limiting points.

The reason of this behavior is essentially due to the interaction of several
fast time scales. At the normal time scale (t), if the components of the vector
FN (t) are already of the order of N , the pairing/splitting events occur at a
rate proportional to N . Since the natural time scaling for case b) is sped-up as
(Nt), roughly speaking, the pairing/splitting events will be instantaneously at
equilibrium, at the first order, at any “time” t for the current “mass” ‖FN (Nt)‖.
In particular, if the initial point FN (0) does not converge to the equilibrium as-
sociated to the mass ‖FN (0)‖, there cannot be a convergence in a neighborhood
of t=0, this is the one-dimensional curve mentioned above.

Outline of the Paper
Section 3.2 introduces notations and the Markovian process used to investigate
pairing mechanisms. Section 3.3 analyzes the static case when the number of
agents is fixed and in Section 3.4 a stochastic averaging principle is proved when
agents are created and degraded. To motivate the design of such stochastic mod-
els, Section 3.5 presents several examples of regulation mechanisms in biological
cells. Section 3.6 is a quick reminder of classical limit results for M/M/1 and
M/M/∞ queues. These queues play an important role in the design of couplings
used in the proofs of our limit theorems.
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3.2 Stochastic Model

Definitions and Notations
IfH is a locally compact metric space, Cc(H) is the space of continuous functions
with compact support endowed with the topology of uniform convergence. We
denote byM+(H) the set of non-negative Radon measures on H andM1(H),
the set of probability distributions on H, both spaces are endowed with the
weak topology. See Rudin [64]. Throughout the paper convergence in distribu-
tion of a sequence of jump processes (UN (t)) to a process (U(t)) is understood
with respect to the topology of uniform convergence on compact sets for càdlàg
functions. See Chapter 2 of Billingsley [10] for example.

For J∈N, if x=(xi), y=(yi)∈RJ , define

‖x‖ def.
= |x1|+ · · ·+|xJ |, 〈x, y〉 = x1y1+ · · ·+xJyJ , (3.3)

and,
x= max(xj , 1≤j≤J) and x= inf(xj , 1≤j≤J). (3.4)

We now introduce the main definitions for our stochastic model. There are J
different types of particles. The total number of particles of type j∈{1, . . . , J} is
Cj,N , and N=C1,N+ · · ·+CJ,N , the total number of particles is a fixed number,
it is also our scaling parameter. It is assumed that,

lim
N→+∞

(
Cj,N
N

)
= c=(cj) (3.5)

holds, for some c∈(0, 1)J such that c1+c2+ · · ·+cJ=1.

State Space
The state space is

SN=
{
x = (f, z) = ((fj), z)∈NJ+1 : fj≤Cj,N ,∀1≤j≤J

}
,

and, if t≥0,

— for 1≤j≤J , Fj,N (t) denotes the number of free particles of type j at time
t and FN (t)=(Fj,N (t), 1≤j≤J);

— The number of free agents at time t is ZN (t);

— The state of the process at time t is XN (t)=(FN (t), ZN (t))∈SN .

The number of agents paired with a particle of type j at time t is therefore
Sj,N (t)=Cj,N−Fj,N (t). In state (FN (t), ZN (t)), the total number of free parti-
cles is ‖FN (t)‖.
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Transitions
The dynamical behavior of (XN (t)) is driven by several types of transitions.

a. A given particle of type j and a given agent are paired at rate λj ;

b. A pair (particle of type j, agent) is split at rate ηj>0 to give a particle of
type j and a free agent;

c. Agents are created at rate β≥0 and a free agent dies, is degraded, at rate
δ>0. An agent paired to a particle cannot die.

The state process (XN (t))=(FN (t), ZN (t)) is almost surely a càdlàg function,
i.e. a right-continuous function with left limits at any point of (0,+∞). It is
described as an irreducible Markov process on SN whose Q-matrix QF is given
by

(f, z)=((fj), z) −→ (f, z)+


(−ej ,−1) λjfjz,

(+ej ,+1) ηj(Cj,N−fj),
(0,+1) β,

(0,−1) δz,

where ej is the jth unit vector of NJ .
Note that the pairing mechanism induces quadratic transition rates in the

Q-matrix.

Definition 23.

c=(cj), η=(ηj), λ=(λj), ρ0=
β

δ
and ρj=

ηj
λj
, j=1, . . . , J.

For y∈(0, 1), φ(y) is defined as the unique solution of the equation

J∑
j=1

ρj
ρj+φ(y)

cj = y. (3.6)

Fj ZFj Z ∅

λjfjz

ηjsj

(δ+〈λ,f〉)

β+〈η,s〉

Figure 3.1: Transitions of Pairing Mechanism, with s=(sj)
def.
= (Cj,N−fj).

78



Stochastic Differential Equations
The process (XN (t))=(FN (t), ZN (t)) is represented as the solution of a system
of SDEs (Stochastic Differential Equations). On the probability space there are
2(J+1) independent Poisson processes on R2

+ with intensity measure dx⊗dt,
P+
z , P−z , P+

j , P
−
j , j=1, . . . , J}. See Rogers and Williams [62] for example. The

underlying filtration (Ft) is defined by, for t>0,

Ft = σ
〈
P±j/z([a, b]×[0, s], j=1, . . . , J}, a ≤ b, s≤t

〉
.

In the following, measurability properties are assumed to be with respect to this
filtration.

Let (FN (t), ZN (t)) be the solution of the SDE, for j=1, . . . , J ,

dFj,N (t) = P+
j ((0, ηj(Cj,N−Fj,N (t−))),dt)−P−j ((0, λjFj,N (t−)ZN (t−)),dt),

(3.7)

dZN (t) = P+
z ((0, β),dt)−P−z ((0, δZN (t−)),dt)+

J∑
j=1

dFj,N (t), (3.8)

where U(t−) denotes the left-limit of the càdlàg process (U(s)) at t>0 and with
the usual notation, if A≥0 and P is a Poisson point process on R2

+,

P((0, A),dt) =

∫
1{x≤A}P(dx, dt). (3.9)

By integrating these relations, we obtain, for j=1, . . . , J ,

Fj,N (t) = Fj,N (0)+Mj,N (t)

+ηj

∫ t

0

(Cj,N−Fj,N (s)) ds−λj
∫ t

0

Fj,N (s)ZN (s) ds, (3.10)

and

ZN (t) = ZN (0)+Mz,N (t)+βt−δ
∫ t

0

ZN (s) ds

+

J∑
j=1

ηj

∫ t

0

(Cj,N−Fj,N (s) ds−λj
∫ t

0

Fj,N (s)ZN (s) ds, (3.11)

where (Mj,N (t)) and (Mz,N (t)) are square integrable martingales whose previs-
ible increasing processes are given by

(〈Mj,N 〉 (t)) =

(
ηj

∫ t

0

(Cj,N−Fj,N (s)) ds+λj

∫ t

0

Fj,N (s)ZN (s) ds

)
, (3.12)

(〈Mz,N 〉 (t)) =

βt+δ ∫ t

0

ZN (s) ds+

J∑
j=1

〈Mj,N 〉 (t)

 . (3.13)
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Invariant Distribution
As explained in the introduction, our model can be expressed in the framework
of chemical reaction networks (CRN). Since we are mainly interested in the
transient behavior of our system, we just give a quick sketch. It is only men-
tioned as an interesting aspect of our system. See Feinberg [25] for a general
introduction on CRNs.

The corresponding chemical reactions are represented as

∅
β−⇀↽−
δ
Z, Z + Fj

λj−⇀↽−
ηj
FZ|, 1≤j≤J. (3.14)

The associated dynamical system ((fj(t), gj(t)), z(t)) is defined by the ODEs
ḟj(t) = λjfj(t)z(t)−ηjgj(t), 1≤j≤J,

ḟj(t)+ġj(t) = 0, 1≤j≤J,

ż(t) = β−δz(t).

Its fixed point is given by ((uj , vj), w) with

w = ρ0, uj =
CNj

1+ρ0ρj
= CNj −vj , 1≤j≤J, (3.15)

with ρ0=β/δ and ρj=λj/ηj , for 1≤j≤J .
The characteristics of this CRN are:

— m=2J+2 chemical species: Z, Fj , FZ|, j=1, . . . , J ;

— `=J+1 cycles, these are the single linkage classes of the CRN;

— The range, the dimension of the stochiometric space, is s=J+1.

This is a CRN with deficiency δ=m−`−s=0. A standard result, see Anderson
et al. [4], gives an explicit expression of the invariant distribution πN of (XN (t))
on SN .

Proposition 24. The invariant distribution of (XN (t)) on SN is given by,

π(f, s) =
1

ZN

wz

z!

J∏
j=1

u
fj
j

fj !

v
CNj −fj
j

(CNj −fj)!
, (f, z)=((fj), z)∈SN ,

where ZN is the normalization constant and (uj) and (vj) are defined by Rela-
tion (3.15).
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3.3 Fixed Number of Agents
Throughout this section the number of agents CNZ is fixed, of the order of rN ,
with r<1 in Section 3.3.1, and is exactly N , the total number of particles, in
Section 3.3.2. There are no creations or degradation of agents. Only pairing and
splitting mechanisms operate in these cases. As explained in the introduction,
the purpose is of understanding the behavior of the system when the total
number of agents does not change. Section 3.4 investigate a much more dynamic
version of the system.

The state space of the system is SN
def.
=
∏J
j=1{0, . . . , CNj }. For a state x=(xj)∈SN ,

the total number of paired particles with an agent is N−x1− · · ·−xJ . The asso-
ciated process in SN is denoted as (F rN (t)) has the Markov property, itsQ-matrix
is given by, for x∈SN ,

x→

{
x+ej ηj

(
CNj −xj

)
,

x−ej λjxj
(
CNZ −(N−x1− · · ·−xJ)

)
,

where ej is the jth unit vector of NJ .

3.3.1 Overloaded Case
In this section the total number of agents if of the order of rN , with r<1,

lim
N→+∞

CNZ
N

= r. (3.16)

Since there are not enough agents to handle all particles, it is clear that the
number of free particles of type j, 1≤j≤J , should be of the order of N . The
SDE (3.10) for (F rN (t)) becomes, for 1≤j≤J ,

dF rN,j(t) = PSj ((0, ηj(CNj −FN,j(t−))),dt)

−PFj ((0, λjF rN,j(t−)ZrN (t−)),dt), (3.17)

where (ZrN (t)) is the process of free agents,

(ZrN (t)) =

CNZ − J∑
j=1

(
CNj −F rN,j(t)

) =
(
CNZ +‖F rN (t)‖−N

)
. (3.18)

We assume that the initial conditions are such that ZN (0)=z0, for some fixed
z0∈N, and

lim
N→+∞

F rN (0)

N
= f0 = (f0,j)∈[0, 1]J , (3.19)

such that
J∑
j=1

f0,j = 1−r. (3.20)
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The last condition expresses simply that most of the agents are initially paired
with particles. We will see that the number of free agents remains a finite
random variable.

Definition 25. For N>0, the scaled process is defined as(
F
r

N (t)
)

def.
=

(
F rN,j(t)

N
, j=1, . . . , J

)
. (3.21)

If g is non-negative Borelian function on R+×N, we define the occupation mea-
sure

〈ΛrN , g〉
def.
=

∫
R+

g (s, ZrN (s)) ds. (3.22)

Since F rN,j(t)≤CNj ≤N , 1≤j≤J , for t≥0, the state space of the process
(F

r

N (t)) is included in [0, 1]J .

Lemma 26. If N is sufficiently large, there exists a coupling of the process
(ZrN (t)) with (L(Nt)), where (L(t)) is an M/M/∞ queue with input rate η and
service rate λr/2, with

η = max
j
ηj , and λ = min

j
λj ,

such that L(0)=z0 and ZrN (t)≤L(Nt) holds for all t≥0.

See Section 3.6.2 on the M/M/∞ queue.

Proof. This is a simple consequence of the fact that if ZrN (t)=z∈N, the rate at
which there is a jump of size +1, resp. −1, is

N∑
j=1

ηj
(
CNj −F rN,j(t)

)
≤ η

N∑
j=1

CNj = ηN,

resp.
N∑
j=1

λjF
r
N,j(t) ≥ λ(N−CNZ ) ≥ λ (1−ε)N,

for some ε∈(0, 1) if N is large enough. It is then straightforward to construct
the desired coupling.

The integration of the SDE (3.17) gives the relation

F
r

j,N (t) = F
r

j,N (0)+Mr
j,N (t)

− λj
∫ t

0

F
r

N,j(s)Z
r
N (s) ds+ηj

∫ t

0

(
CNj
N
−F rN,j(s)

)
ds, (3.23)
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The process (Mr
j,N (t)) is a martingale whose previsible increasing process is

(〈
Mr
j,N

〉
(t)
)

=

(
λj
N

∫ t

0

F
r

j,N (s)ZrN (s) ds+
ηj
N

∫ t

0

(
CNj
N
−F rN,j(s)

)
ds

)
.

(3.24)

Proposition 27. Under the assumptions (3.5), (3.19), and (3.20)for the initial
state, then for the convergence in distribution the relation

lim
N→+∞

(
F rN (t)

N

)
= (fr(t)) = (frj (t)),

holds, where (x(t)) is the solution of the ODEs, for 1≤j≤J and t>0,

d

dt
frj (t) = λjf

r
j (t)
〈η, c−fr(t)〉
〈λ, fr(t)〉

−ηj
(
cj−frj (t)

)
, (3.25)

with Definition 23.

Proof. By using the notations of Lemma 26 and the ergodic theorem for positive
recurrent Markov processes, it is not difficult to prove that the sequence of
processes (∫ t

0

L(Ns) ds

)
is tight with the criterion of the modulus of continuity, see Theorem 7.3 of Billings-
ley [10], and that its limiting point is necessary (η/λ · t).

Since F rN,j(t)≤CNj ≤N , for 1≤j≤J and t≥0, with Relation (3.24), we obtain
therefore that the process (

〈
Mr
j,N

〉
(t)) is converging in distribution to 0, Doobs’

Inequality gives that the same result holds for the martingale (Mr
j,N (t)).

For T>0, with Relation (3.23), the modulus of continuity of (F
r

j,N (t)) on
the time interval [0, T ] is

ωFN ,T (δ)
def.
= sup

s,t≤T
|s−t|≤δ

∣∣∣F rj,N (t))−F rj,N (s)
∣∣∣

≤ sup
s≤T
|Mr

j,N (s)|+ λj sup
s≤t≤T
|s−t|≤δ

∫ t

s

L(Nu) du+ δηj
CNj
N

.

Again with Theorem 7.3 of Billingsley [10], we deduce that the sequence of
processes (F

r

N,j(t)) is tight.
For K>0,

E(ΛrN ([0, T ]×[K,+∞))) ≤
∫ T

0

P (L(Ns)≥K) ds =
1

N

∫ NT

0

P(L(s)≥K) ds,

since (L(s)) converges in distribution to a Poisson distribution, see Section 3.6.2,
the last term can be made arbitrarily small for K sufficiently large. Lemma 1.3
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of Kurtz [45] gives the tightness of the sequence of random measures (ΛrN ) and
any of its limiting points Λr∞ can be represented as,

〈Λr∞, f〉 =

∫
R+×[0,1]J×N

f (s, x)µs(dx) ds,

if f is a non-negative Borelian function on [0, T ]×N, where (µs) is an optional
process onM1(N).

Hence the sequence of random variables ((F
r

N (t)),Λr∞) is tight, we denote
by ((fr(t)),Λr∞) one of its limiting points. Since Proposition 41 establishes a
similar result, but in a more difficult technical framework. The analogue of
the sequence of processes (F

r

N (t)) is not tight in this case. For this reason, we
skip the proof of the fact that, in the above representation of Λr∞, µs can be
expressed as a Poisson distribution with parameter

〈η, c−fr(s)〉
〈λ, fr(s)〉

,

and that (fr(t)) satisfies the ODE (3.25). The proposition is proved.

Corollary 28. With the notations of Proposition 27, the equilibrium point fr∞
of (fr(t)) is given by

fr∞ =

(
ηjcj

ηj+λjh∞

)
,

where h∞=φ(1−r) and φ is defined by Relation (3.6).

3.3.2 Critical Case
The number of agents is exactly N , the total number of particles and there are
still no creation or degradation of agents. We prove that the process of the
number of free particles of type j∈{1, . . .}, (F 1

N,j(t)), is of the order of
√
N ,

with fluctuations of the order of 4
√
N . See Theorems 31 and 32.

Note that, for t≥0, the total number of free agents at time t is

N −
J∑
j=1

(
CNj −F 1

N,j(t)
)

=

J∑
j=1

F 1
N,j(t) = ‖F 1

N (t)‖.

The Q-matrix Qf of (F 1
N,j(t)) is thus given by, for x∈SN ,

x→

{
x+ej ηj

(
CNj −xj

)
,

x−ej λjxj‖x‖.

Lemma 29. If, for η, λ>0 and N≥1, if (XN (t)) is the solution of the SDE,

dXN (t) = PS1((0, ηN),dt)−PF1

((
0, λXN (t−)2

)
,dt
)
,
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with X(0)=0, then for any T≥0, there exists K1>0 such that,

lim
N→+∞

P
(

sup
t≤NT

XN (t)√
N
≥ K1

)
= 0,

and
sup
t≥0

E
(
XN (t)2

)
< +∞.

Proof. We fix K0 such that λK2
0>η. If we define the process (Y (t)) by the SDE

dY (t) = PS1((0, η),dt)−1{Y (t−)>0}PF1((0, λK2
0 ),dt),

with Y (0)=0. As in the proof of Proposition 30, by induction on the successive
jumps of (XN (t)), it is easy to show that the relation

XN (t)≤K0

√
N+Y (Nt)

holds almost surely for all t>0. The process (Y (t)) is a reflected random walk
on N, it is usually associated to the M/M/1 queue. See Chapter 5 of Robert
[61]. Proposition 5.11 of this reference gives that if TA is the hitting time of A
by (Y (t)) then the random variable(

η

λK2
0

)A
TA

is converging in distribution to an exponential random variable when A goes to
infinity. This shows in particular that (TA/A

2) is converging in distribution to
infinity, hence, for any K>0,

lim
N→+∞

P
(

sup
t≤T

Y (tN)√
N
≥ 1

)
= lim
N→+∞

P
(
Td
√
Ne≤TN

)
= 0.

This gives the first part of the lemma. We conclude the proof by setting
K1=K0+1 and remarking that the invariant distribution of (Y (t)) is a geo-
metric distribution with parameter η/(λK2

0 ) and that, with a simple coupling
argument, the mapping t→E(Y (t)2) is non-decreasing.

The next result shows that all coordinates of (F 1
N (t)) are at most of the order

of
√
N very quickly independently of the initial point. Theorem 31 completes

this result by showing that the order of magnitude of its coordinates is exactly√
N .

Proposition 30 (Coupling). For all j∈{1, . . . , J},

F 1
N,j(t) ≤ F 1

N,j(0)+XN,j(t), t≥0, (3.26)

where the (XN,j(t)) are the solutions of the SDEs

dXN,j(t) = PSj ((0, ηN),dt)−PFj
((

0, λXN,j(t−)2
)
,dt
)
, 1≤j≤J, (3.27)
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with (Xj(0))=0 and η and λ are defined by Relation (3.4).
There exists `0>0 such that if

τN
def.
= inf

{
t>0 : F 1

N,j(t)≤
⌈
`0
√
N
⌉
,∀j∈{1, . . . , J}

}
,

then
sup
N≥1

sup
x∈SN

Ex(τN ) < +∞.

Proof. TheQ-matrixQX of the Markov process (XN,j(t)) defined by the SDEs (3.27)
is

x→

{
x+ej ηN,

x−ej λx2j ,

clearly qf (x, x+ej)≤qX(x, x+ej) and qf (x, x−ej)≥qX(x, x−ej).
A simple coupling, by induction on the successive jumps of (F 1

N,j(t)), gives
that the relation

F 1
N,j(t) ≤ F 1

N,j(0)+XN,j(t)

holds for all t≥0.
To prove the last assertion, in view of Relation (3.26), it is enough to prove it

for the “maximal” initial state, i.e. (F 1
N,j(0))=(CNj ). If, for A>0, ‖x‖>JA

√
N ,

then, if g(x)=‖x‖, for x∈NJ ,

Qf (g)(x) ≤ JηN−λJ2A2N.

If we choose `=JA such that γ=λ`2−Jη>0, by using Proposition 8.14 and
Theorem 8.13 of Robert [61], we obtain

E(τN ) ≤ g(F 1
N (0))

Nγ
=

1

γ
.

The proposition is proved.

Theorem 31 (Law of Large Numbers). If

lim
N→+∞

F 1
N (0)√
N

= f
1

0=
(
f
1

0,j

)
, and

(
FN (t)

) def.
=

F 1
N,j

(
t/
√
N
)

√
N

 ,

then the sequence of processes
(
FN (t)

)
is converging in distribution to the solu-

tion (f
1
(t))=(f

1

j (t)) of the ODE,(
f
1

j

)′
(t) = cjηj−λjf

1

j (t)
∥∥∥f1(t)

∥∥∥ , (3.28)

with f
1
(0)=f

1

0.
The equilibrium point of the ODE (3.28) is given by

f
1

j,∞ =
(
cjρj

/√
c1ρ1+ · · ·+cJρJ

)
, (3.29)

where (ρj) is given by Definition 23.
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Proof. By integration of Relation (3.34), we obtain, for t≥0,

FN,j(t) = FN,j(0)+M0
N,j(t)

+ηj

∫ t

0

(
CNj
N
−FN,j(s)√

N

)
ds−λj

∫ t

0

FN,j(s)

J∑
k=1

FN,k(s) ds, (3.30)

where (M0
N (t))=(M0

N,j(t), 1≤j≤J) is the martingale defined by, for 1≤j≤J ,

M0
N,j(t)

def.
=

1√
N

∫ t/
√
N

0

[
PSj ((0, ηj(CNj −F 1

N,j(s−))),ds)−ηj(CNj −F 1
N,j(s)) ds

]
− 1√

N

∫ t/
√
N

0

[
PFj

((
0, λjF

1
N,j(s−)

J∑
k=1

FN,k(s−)

)
,ds

)

−λjF 1
N,j(s)

J∑
k=1

FN,k(s) ds

]
. (3.31)

Its previsible increasing process is given by

(〈
M0
N,j

〉
(t)
)

=

(
ηj√
N

∫ t

0

(
CNj
N
−FN,j(s)√

N

)
ds

+
λj√
N

∫ t

0

FN,j(s)

J∑
k=1

FN,k(s) ds

)
, (3.32)

and
〈
M0
N,j ,M

0
N,k

〉
(t)=0, for 1≤j 6=k≤J . Lemma 29 shows the convergence

lim
N→+∞

(
E
(〈
M0
N,j(t),M

0
N,k

〉
(t)
)
, 1≤j, k≤J

)
= 0,

and, with Doob’s Inequality, the martingale (M0
N (t)) converges to 0, and also

that, for the convergence in distribution

lim
N→+∞

(
FN,j(t)√

N

)
= 0.

Standard arguments, using the criterion of the modulus of continuity, see Theo-
rem 7.3 Billingsley [10] for example, give that the sequence of processes (FN (t))

is tight and that any limiting point (f
1
(t))=(f

1

j (t)) satisfies the identity

f
1

j (t) = f
1

j (0)+ηjcjt−λj
∫ t

0

f
1

j (s)

J∑
k=1

f
1

k(s) ds. (3.33)

The theorem is proved.
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The fluctuations of (F 1
N (t)) on the timescale (t/

√
N) are now developed in

the following theorem.

Theorem 32 (Central Limit Theorem). Under the assumption on the initial
state of Theorem 31, if

(
F̂ 1
N (t)

)
=
(
F̂ 1
N,j(t)

)
def.
=

F 1
N,j

(
t/
√
N
)
−
√
N f

1

j (t)

4
√
N

 ,

where
(
f
1
(t)
)
is defined by Relation (3.28) and

lim
N→+∞

F̂ 1
N (0) = f̂10 ∈ RJ ,

then the sequence of processes (F̂ 1
N (t)) is converging in distribution to (F̂ 1(t)),

the solution of the SDE

dF̂ 1
j (t) =

√
−
(
f
1

j

)′
(t)+2ηjcj dBj(t)

−λj
(
F̂ 1
j (t)

∥∥∥f1(t)
∥∥∥+f

1

j (t)
∥∥∥F̂ 1(t)

∥∥∥)dt, (3.34)

with F̂ 1(0)=f̂10 , where (Bj(t)) is the standard Brownian motion in RJ .

Proof. Relations (3.34) and (3.33) give the identity,

F̂ 1
N,j(t) =

4
√
N
(
F

1

N,j(t)−f
1

j (t)
)

= F̂ 1
N,j(0)+

4
√
NM0

N,j(t)

+ηj
CNj −cjN
N3/4

t−ηj
∫ t

0

F
1

N,j(s)
4
√
N

ds

−λj
∫ t

0

F̂ 1
N,j(s)

J∑
k=1

F
1

N,k(s) ds−λj
∫ t

0

F
1

N,j(s)

J∑
k=1

F̂ 1
N,k(s) ds, (3.35)

and, with Relation (3.32), for 1≤j≤J ,

(〈
4
√
NM0

N,j

〉
(t)
)

=

(
ηj

∫ t

0

(
CNj
N
−
F

1

N,j(s)√
N

)
ds

+λj

∫ t

0

F
1

N,j(s)

J∑
k=1

F
1

N,k(s) ds

)
.

From Lemma 29 and Theorem 31, we obtain that, for the convergence in distri-
bution, the relation

lim
N→+∞

(〈
4
√
NM0

N,j

〉
(t)
)

=

(
ηjcjt+λj

∫ t

0

f
1

j (s)

J∑
k=1

f
1

k(s) ds

)
=
(
f
1

j (0)−f1j (t)+2ηjcjt
)
,
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holds, by Relation (3.33). Recall that(〈
4
√
NM0

N,j ,
4
√
NM0

N,k

〉
(t)
)

=0

holds for 1≤j 6=k≤J . Theorem 1.4 page 339 of Ethier and Kurtz [24] shows that
the sequence of martingales (M̂0

N (t)) converges in distribution to the distribution
of the process (∫ t

0

√
−(f

1

j )
′(s)+2ηjcjBj(ds)

)
,

where (Bj(t)) is a standard Brownian motion on RJ . Using again Lemma (29),
we have

lim
N→+∞

(∫ t

0

F
1

N,j(s)
4
√
N

ds

)
= (0).

The rest of the proof is standard, first by showing the tightness of (F̂ 1
N (t)) and

secondly by identifying it as the solution of an SDE. See the proof of Theo-
rem 6.14 of [61] for example. The theorem is proved.

The following proposition shows that the invariant distribution of the Markov
process (F 1

N (t)) has in fact a simple expression. This is a consequence of Propo-
sition 24, the reversibility property is in fact the additional (simple) result.

Proposition 33 (Invariant Distribution). The Markov process (F 1
N (t)) is re-

versible, and its invariant distribution πN

πN (x) =
1

ZN

1

‖x‖!

J∏
j=1

ρ
xj
j

CNj !

(CNj −xj)!xj !
, x∈SN , (3.36)

where ZN is a normalizing constant.

A version of Theorems (31) and (32) could probably be considered via a
saddle-point analysis of the constant ZN . This is not done in this paper.

3.4 Dynamical Arrivals
If the systems starts with few agents so that most of N particles are “free”,
when an agent created, it is paired with a free particle right away, at a rate
proportional to N . This will happen repeatedly, via the successive steps of
sequestration/de-sequestration, as long the number of free particles is sufficiently
“large” so that sequestration occurs always before the degradation/death of an
agent. The precise result is in fact a little more subtle than that. We show that,
in the limit, on the timescale t7→Nt, there remains a positive fraction of free
particles of the order of N .

The state descriptor of the pairing process is in this case

(XN (t))=(FN (t), ZN (t)) = ((Fj,N (t), j=1, . . . , J), ZN (t)).
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It can be expressed as the solution of the SDEs (3.7) and (3.8), the initial
conditions are assumed to satisfy the following scaling relations

lim
N→+∞

FN (0)

N
= f0 6= 0, f0=(f0,j)∈

J∏
j=1

[0, cj ]
J , and ZN (0)=z0∈N, (3.37)

where c=(cj) is defined by Relation (3.5).
Initially, a fraction f0,j of particles of type j∈{1, . . . , J} are free and there

are z0 free agents. Since the external input rate of agents is constant and equal
to β, in order to have a positive fraction in N of particles paired with an agent,
the natural time scale to consider is, at least, t 7→Nt.

The setting of the analysis will be that of averaging principles as presented
in Kurtz [45]. As it will be seen there are specific technical difficulties related
to the scaling framework which we introduce now.

Definition 34 (Scaled Processes). For N>0, (XN (t))
def.
= (FN (t), ZN (Nt)), with

(
FN (t)

) def.
=

(
FN (Nt)

N

)
=

(
Fj,N (Nt)

N
, j=1, . . . , J

)
∈

J∏
j=1

[
0,
Cj,N
N

]
. (3.38)

For t≥0, we have ‖FN (t)‖≤1 since Fj,N (t)≤CNj ,for all 1≤j≤J .
The occupation measure is the random measure on Hdef.

= R+×[0, 1]J×N de-
fined by

〈ΛN , g〉
def.
=

∫ +∞

0

g

(
s,

(
Fj,N (Ns)

N

)
, ZN (Ns)

)
ds, (3.39)

for a continuous function g with compact support on H,

Note that the “slow” process (FN (t)) is included in the definition of the
occupation measure ΛN . The reason is that the timescale is too fast, of the order
of N2 in fact, to get directly convenient tightness properties for the sequence of
processes (F j,N (t)).

We can have a glimpse of this problem as follows. If (M j,N (t)) is the mar-
tingale of Relation (3.10), it does not clearly converges in distribution to 0 as N
gets large as it could be expected if a “standard” averaging principle were true.
Indeed Relation (3.12) gives, for 1≤j≤J ,

(〈
M j,N

〉
(t)
)

=

(
ηj

∫ t

0

(
Cj,N
N
−F j,N (s)

)
ds+λj

∫ t

0

F j,N (s)ZN (Ns) ds

)
,

which does not seem to vanish.
We state the main result of this paper.

Theorem 35 (Averaging Principle). Under the scaling assumption (3.5) and
if (FN (0)/N) converges to f0 6=0, then the sequence of processes (‖FN (Nt)‖/N)
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converges in distribution to (H(t)), defined by, for t≥0, H(t)∈(0, 1) is the unique
solution of the relation ∫ H(t)

‖f0‖

1

δφ(u)−β
du = t, (3.40)

where φ is defined by Relation (3.6).
Furthermore the sequence (ΛN ) is converging in distribution to the measure

Λ∞ on H=R+×[0, 1]J×N, such that

〈Λ∞, g〉
def.
=

∫
R+×N

g (s, (fj(s)) , x)Pφ(H(s))(dx) ds, (3.41)

for a non-negative Borelian function g on H, where, for 1≤j≤J ,

fj(t) =
ρj

ρj+φ(H(t))
cj , (3.42)

and, for y>0, Py is a Poisson distribution with parameter y.

Note that we have a convergence in distribution (‖FN (Nt)‖/N), but not of
the processes (Fj,N (Nt)/N), j=1,. . . , J .. The convergence in distribution for
this J-dimensional process is weaker, it is expressed through the sequence of
occupation measures (ΛN ). See Dawson [19] for general definitions and results
for the convergence in distribution of random measures.

It is not difficult to see that, under Condition (3.37) for the initial conditions,
one cannot have a convergence in distribution of (Fj,N (Nt)/N). Otherwise, its
limit would be (fj(t)), but this would imply that the asymptotic initial point
(f0,j) would satisfy the relation

f0,j =
ρj

ρj+φ(f0)
cj ,

which is not the case a priori. Asymptotically the vector (Fj,N (Nt)/N) lives
in a one dimensional curve of the state space, this is due to the fast processes
which lead to a kind of state space collapse. See Propositions 44 and 45.

Corollary 36 (Equilibrium). Under the assumptions, and with the notations
of, Theorem (35), for 1≤j≤J ,

lim
t→+∞

H(t) = H∞ =

J∑
j=1

ρj
ρj+β/δ

cj ,

The quantity H∞ is the asymptotic fraction of free particles. The proof of
this theorem is achieved in several steps. The general picture is that nevertheless
a kind of averaging principle holds, the slow process being (FN (t)) and the “fast”
process is (ZN (Nt)). The general method in this domain is described in Kurtz
[45], see also Papanicolaou et al. [56] and Freidlin and Wentzell [29]. It turns
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out that, due to the very fast timescale mentioned above, the slow process has
to be included in the definition of the occupation measure, see Definition 34.
This situation leads to technical difficulties, to identify the invariant measures
of fast processes in particular.

Definition 37. For a>0, the stopping time τN (a) is defined by

τN (a)
def.
= inf

t>0 : ‖FN (Nt)‖=
J∑
j=1

Fj,N (Nt) ≤ aN

 . (3.43)

To prove convenient tightness properties of a scaled version of (XN (t)), we
first derive some technical results. In a first step, we fix some a0∈(0, ‖f0‖) and
we will work with a “stopped” occupation measure, it is the random measure on
H defined by〈

Λ0
N , g

〉 def.
=

∫ τN (a0)

0

g

(
s,

(
Fj,N (Ns)

N

)
, ZN (Ns)

)
ds, (3.44)

for a continuous function g with compact support on H. The motivation of the
stopped occupation is due to a technical argument used for the identification of
the invariant distributions of fast processes. See Proposition 45.

Lemma 38. If ‖f0‖>0, for a∈(0, ‖f0‖), we have

lim
N→+∞

P (τN (a) < `(a)) = 0,

with `(a)
def.
= ‖f0‖−a/(2β), and the relation

lim
N→+∞

(
ZN (Nt)√

N

)
= (0)

holds for the convergence in distribution.

Proof. For t>0 and N sufficiently large, on the event {‖FN (t)‖<aN} there are
at least (‖FN (0)‖−daNe−z0) new agents created up to time Nt. Consequently
for y>0,

{τN (a) ≤ y} ⊂
{
P+
z ((0, β)×(0, yN)}≥‖FN (0)‖−daNe−z0

}
,

by Relation (3.8). The first assertion follows from the law of large numbers for
Poisson processes.

We now show that there exists a coupling of (ZN (t)) with (L0(t)), the state
process of an M/M/∞ queue such that the relation ZN (t)≤(L0(N2t)) holds for
all t<τN (a). See Section 3.6.2 on the M/M/∞ queue.

In state z∈N, the jump rates of the process (ZN (t)) in state ((fj), z) at time
t are given by 

+1, β+

J∑
j=1

ηj
(
CNj −fj

)
,

−1, δz+

J∑
j=1

λjfjz.
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Let (L0(t)) the process of the M/M/∞ queue with input rate 2η and service
rate δ+aλ, with Definition (3.4), with L0(0)=ZN (0)=z0. We take N sufficiently
large so that β≤ηN . By comparing the jump rates, one can construct a version
of (ZN (t), L0(t)) such that the relation

ZN (Nt) ≤ L0(N2t) (3.45)

holds for all t<τN (a). For ε>0, let TN (ε)= inf
{
t : L0(t)≥ε

√
N
}
. Proposition 47

shows that the sequence of random variables((
2η

aλ

)dε√Ne
TN (ε)

(dε
√
Ne−1)!

)

converges in distribution to an exponential random variable. In particular, for
any t>0,

lim
N→+∞

P(TN (ε)≤N2t) = 0.

The proof of the lemma follows from the relation

P
(

sup
s≤t

ZN (N(s∧τN (a0)))√
N

> ε

)
≤ P

(
sup
s≤t

L0(N2s)√
N

> ε

)
=P
(
TN≤N2t

)
.

Proposition 39. The sequence of random measures (Λ0
N ) defined by Rela-

tion (3.44) is tight and any limiting point Λ0
∞ can be expressed as

〈
Λ0
∞, f

〉
=

∫
R+×[0,1]J×N

f (s, x, p)πs(dx, dp) ds, (3.46)

for any function f∈Cc(R+×[0, 1]J×N), where (πs) is an optional process with
values in the space of probability distributions on [0, 1]J×N.

If (Λ0
Nk

) is a sub-sequence of (Λ0
N ) converging to Λ0

∞, then with the conven-
tion of Relation (3.9), for the convergence in distribution of processes,

lim
k→+∞

(∫
g(x, z)zΛ0

Nk
([0, t],dx,dz)

)
=

(∫
g(x, z)zΛ0

∞([0, t],dx, dz)

)
,

(3.47)
for any bounded continuous function g on [0, 1]J×N) and the limit is integrable
for all t≥0.

Proof. For K>0, with Relation (3.45) in the proof of Lemma 38, and with the
same notations, the relation∫ t

0

1{ZN (Ns)≥K} ds ≤
∫ t

0

P(L0(N2s) ≥ K) ds
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holds on the event {τN (a0)≥t}. Consequently, for t<`(a0),

E
(
Λ0
N ([0, t]×[0, 1]J×[K,+∞])

)
= E

(∫ t∧τN (a0)

0

1{ZN (Ns)≥K} ds

)

≤ E
(
1{τN (a0)>t}

∫ t

0

1{L0(N2s)≥K} ds

)
≤ 1

N2

∫ N2t

0

P(L0(s) ≥ K) ds.

Since the Markov process (L0(t)) converges in distribution to a Poisson distri-
bution with parameter 2η/(λa0), see Section 3.6.2. With Lemma 38, we obtain
the relation

lim sup
N→+∞

E
(
Λ0
N ([0, t]×[0, 1]J×[K,+∞])

)
≤ P(N1(0, 2η/(λa0))≥K) t,

where N1 is a Poisson process on R+ with rate 1. In particular, one can choose
K sufficiently large such that

sup
N

E
(
Λ0
N ([0, t]×[0, 1]J×[K,+∞])

)
is arbitrarily small. Lemma 1.3 of Kurtz [45] shows that the sequence (Λ0

N ) is
tight, and Lemma 1.4 of the same reference gives the representation (3.46).

For the second part of the proposition, Relation (3.45) in the proof of
Lemma 38 and the Cauchy-Schwartz’ Inequality give, for s≤t,

E

((∫
g(x, z)zΛ0

N ([s, t],dx, dz)

)2
)

= E

(∫ t∧τN (a0)

s∧τN (a0)

g
(
XN (s)

)
ZN (Ns) ds

)2


≤ ‖g‖∞E

(∫ t∧τN (a0)

s∧τN (a0)

L0(N2s) ds

)2
 ≤ ‖g‖∞E

((∫ t

s

L0(N2s) ds

)2
)

≤ (t−s)‖g‖∞
∫ t

s

E
(
L0(N2s)2

)
ds ≤ (t−s)2‖g‖∞ sup

u≥0
E
(
L0(u)2

)
.

Kolmogorov-Čentsov’s criterion, implies that the sequence of processes(∫
g(x, z)z Λ0

N ([0, t],dx,dz)

)
is tight for the convergence in distribution and any of its limiting points is a
continuous process. See Theorem 2.8 and Problem 4.11, page 64 of Karatzas
and Shreve [41] for example.

For t>0 and C>0, for the convergence in distribution we have

lim
k→+∞

∫
g(x, z) (z∧C) Λ0

Nk
([0, t],dx,dz) =

∫
g(x, z) (z∧C) Λ0

∞([0, t],dx, dz).
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Using again Relation (3.45), with the same argument as before,

E
(∫

g(x, z) (z∧C) Λ0
Nk

([0, t],dx, dz)

)
≤ ‖g‖∞

∫ t

0

E
(
L0(N2u)∧C

)
du ≤ t‖g‖∞ sup

u≥0
E
(
L0(u)2

)
< +∞,

by letting first k and then C go to infinity, we obtain the relation

E
(∫

g(x, z)z Λ0
∞([0, t],dx,dz)

)
< +∞,

for all t≥0. Similarly, we have

E
(∫

g(x, z)z1{z≥C} Λ0
Nk

([0, t],dx, dz)

)
≤ ‖g‖∞

∫ t

0

E
(
L0(N2

ku)1{L0(N2
ku)≥C}

)
du ≤ t

C
‖g‖∞ sup

u≥0
E
(
L0(u)2

)
,

and therefore the convergence in distribution

lim
k→+∞

∫
g(x, z)z Λ0

Nk
([0, t],dx, dz) =

∫
g(x, z)z Λ0

∞([0, t],dx, dz),

for t>0. For p≥1 and 0≤t1≤ · · ·≤tp, this convergence also clearly holds for finite
marginals at (ti). The proposition is proved.

If f is a non-negative Borelian function on RJ+×N, the SDEs (3.7) and (3.8)
give directly the relations

f
(
FN (t), ZN (Nt)

)
= f

(
FN (0), ZN (0)

)
+Mf,N (t) (3.48)

+

J∑
j=1

λj

∫ t

0

N∆−ej/N,−1(f)
(
FN (s), ZN (Ns)

)
Fj,N (Ns)ZN (Ns) ds

+

J∑
j=1

ηj

∫ t

0

N∆ej/N,1(f)
(
FN (s), ZN (Ns)

)
(CNj −Fj,N (Ns)) ds

+βN

∫ t

0

∆0,1(f)
(
FN (s), ZN (Ns)

)
ds

+δN

∫ t

0

∆0,−1(f)
(
FN (s), ZN (Ns)

)
ZN (Ns) ds,

with the notation, for x, u∈RJ+ and y, b∈N,

∆u,v(f)(x, y)
def.
= f(x+u, y+v)−f(x, y),

and, for 1≤j≤J , ej is the jth unit vector of RJ .
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The process (Mf,N (t)) is a square integrable martingale whose previsible
increasing process is given by

〈Mf,N 〉 (t) = βN

∫ t

0

∆0,1(f)
(
FN (s), ZN (Ns)

)2
ds (3.49)

+δN

∫ t

0

∆0,−1(f)
(
FN (s), ZN (Ns)

)2
ZN (Ns) ds

+

J∑
j=1

λj

∫ t

0

N∆−ej/N,−1(f)
(
FN (s), ZN (Ns)

)2
Fj,N (Ns)ZN (Ns) ds

+

J∑
j=1

ηj

∫ t

0

N∆ej/N,1(f)
(
FN (s), ZN (Ns)

)2
(CNj −Fj,N (Ns)) ds.

If we divide by N Relation (3.48) taken at Nt, we get

1

N

(
f
(
FN (t), ZN (Nt)

)
− f

(
FN (0), ZN (0)

))
=

1

N
Mf,N (t) (3.50)

+

J∑
j=1

λj

∫ t

0

N∆−ej/N,−1(f)
(
FN (s), ZN (Ns)

)
F j,N (s)ZN (Ns) ds

+

J∑
j=1

ηj

∫ t

0

N∆ej/N,1(f)
(
FN (s), ZN (Ns)

)(CNj
N
−F j,N (s)

)
ds

+β

∫ t

0

∆0,1(f)
(
FN (s), ZN (Ns)

)
ds

+δ

∫ t

0

∆0,−1(f)
(
FN (s), ZN (s)

)
ZN (Ns) ds.

Lemma 40. If f is a bounded C1 function with compact support on RJ+×N, then
the sequence of martingales (Mf,N (t)/N, t<`(a0)) of Relation (3.50) converges
in distribution to 0.

Proof. We take care of the third term (AN (t)) of (〈Mf,N/N〉 (Nt)) in Rela-
tion (3.49), the arguments are similar for the others, even easier. For 1≤j≤J ,
denote by (Aj,N (t)) the jth term of (AN (t)), then

Aj,N (t)
def.
=

λj
N

∫ t

0

N∆−ej/N,1(f)
(
FN (s), ZN (Ns)

)2
F j,N (s)ZN (Ns) ds,

then, again with Relation (3.45) of the proof of Lemma 38, since (F j,N (t)) is
bounded by 1,

E(Aj,N (t)) ≤ λj
N

∥∥∥∥ ∂f∂xj
∥∥∥∥2
∞

(
E
(∫ t

0

L0(N2s) ds

)
+tP(τN (a0) ≤ `(a0))

)
,

since (E(L0(t)) is converging as t goes to infinity, we have

lim
N→+∞

E(Aj,N (t)) = 0.
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Doob’s Inequality shows the convergence of (Mf,N (t))/N, t<`(a0)) to 0.

Proposition 41. If Λ0
∞ is a limiting point of (Λ0

N ) with the representation (3.46)
of Proposition 39 then, for any continuous function g on RJ+×N, the relation(∫ t

0

∫
[0,1]J×N

g(x, p)πs(dx, dp) ds, t<`(a0)

)

=

(∫ t

0

∫
[0,1]J

E
(
g

(
x,N1

([
0,
〈η, c−x〉
〈λ, x〉

])))
π1
s(dx) ds, t<`(a0)

)
, (3.51)

holds almost surely, where π1
t is the marginal of πt on RJ+, λ, η and c∈RJ+ are

given by Definition 23 and `(a0) in Lemma 38, and N1 is a Poisson process on
R+ with rate 1.

Furthermore, almost surely,∫ `(a0)

0

π1
s

x∈[0, 1]J :

J∑
j=1

xj < a0

ds = 0. (3.52)

Relation (3.51) states that, for almost all t<`(a0), πt conditioned on the first
coordinate x is a Poisson distribution with parameter 〈η, c−x〉 / 〈λ, x〉. Note
that Relation (3.52) shows that the denominator 〈λ, x〉 is lower bounded by λa0
almost surely for πt, for t<`(a0).

Proof. Let (Λ0
Nk

) be a subsequence of (Λ0
N ) converging to some Λ0

∞ of the
form (3.46). By letting k go to infinity in Relation (3.50), with Lemma 38,
Relation (3.47) of Proposition 39, and Lemma 40, for any continuous function
g with compact support on [0, 1]J×N,

∫ t

0

∫
[0,1]J×N

(g(x, p−1)−g(x, p))

 J∑
j=1

λjxj

 pπs(dx,dp) ds

+

∫ t

0

∫
[0,1]J×N

(g(x, p+1)−f(x, p))

 J∑
j=1

ηj(cj−xj)

πs(dx, dp) ds = 0,

holds almost surely for all t<`(a0). Hence we have∫
[0,1]J×N

λ(g(x, p−1)−g(x, p)) 〈λ, x〉 pπt(dx, dp)

+

∫
[0,1]J×N

η(g(x, p+1)−f(x, p)) 〈η, c−x〉πt(dx, dp) = 0,

almost everywhere on t∈R+, or if g(x, p)=g1(x)g2(p),∫
R+×N

g1(x)Ω[x](g2)(p)πt(dx, dp) = 0,
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where, for h : N→R+,

Ω[x](h)(p)
def.
= 〈η, c−x〉 (h(p+1)−h(p))+ 〈λ, x〉 p(h(p−1)−h(p)).

Let πt(· | x) be the conditional probability measure πt(dx,dp) given x∈R+, then
we have, πt(dx,N) almost everywhere∫

Ω[x](g2)(p)πt(dp | x) = 0,

for all functions g2 with finite support. Since, for x>0, Ω[x] is the Q-matrix of an
M/M/∞ queue, the last relation gives that πt(dp|x) is its invariant distribution,
i.e. it is a Poisson distribution with parameter 〈η, c−x〉 / 〈λ, x〉.

Relation (3.52) is simple a consequence of Lemma 38.
The proposition is proved.

From now on, we fix (Nk) an increasing sequence such the sequence (Λ0
Nk

)
is converging to Λ0

∞ with a representation given by Relations (3.46) and (3.51).
The following corollary is a direct consequence of Propositions 39 and 41.

Corollary 42. If g is a continuous bounded function on [0, 1]J , then, for the
convergence in distribution,

lim
k→+∞

(∫ t

0

g
(
FNk(s)

)
ZNk(Nks) ds, t<`(a0)

)
=

(∫ t

0

∫
[0,1]J

g(x)
〈η, c−x〉
〈λ, x〉

π1
s(dx) ds, t<`(a0)

)
. (3.53)

The following proposition is a convergence result for the scaled process
(FN (t)). It is weaker that the convergence stated in Theorem 35 clearly, but
this is a crucial ingredient to establish the theorem in fact.

Proposition 43. The sequence of processes (‖FNk(t)‖, t<`(a0)) is converging
in distribution to

(H(t), t<`(a0))
def.
=

(
‖f0‖+

∫ t

0

∫
[0,1]J

(
δ
〈η, c−x〉
〈λ, x〉

−β
)
π1
s(dx) ds, t<`(a0)

)
.

Proof. We define, for t≥0,

Z̃N (t) = ZN (t)+

J∑
j=1

(Nj−Fj,N (t)) = N−‖FN (t)‖+ZN (t), (3.54)

Z̃N (t) is the total number of agents (free or paired) of the system at time t.
Using the SDEs (3.10) and (3.11), we have

Z̃N (Nt)

N
= MZ,N (t)+

Z̃N (0)

N
+βt−δ

∫ t

0

ZN (Ns) ds, (3.55)
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where (MZ,N (t)) is a local martingale whose previsible increasing process is
given by

(〈MZ,N 〉 (t)) =

(
1

N

(
βt+δ

∫ t

0

ZN (Ns) ds

))
. (3.56)

Using again Doob’s Inequality, Lemma 38 and Relation (3.54), the proposition
is proved.

The next proposition gives a characterization of the process (π1
s) which will

be elucidated in Proposition 45.

Proposition 44. If g is a C1-function on [0, 1]J , then, almost surely,∫ t

0

∫
[0,1]J

J∑
j=1

∂g

∂xj
(x)

(
λjxj

〈η, c−x〉
〈λ, x〉

−ηj(cj−xj)
)
π1
s(dx) ds, t<`(a0)

=(0).

(3.57)

Proof. For t>0, let g be a C2-function on [0, 1]J , Relation (3.50) gives,

1

N
g
(
FN (t)

)
=

1

N
g
(
FN (0)

)
+Mg,N (t)

+

J∑
j=1

λj

∫ t

0

N∇−ej/N (g)
(
FN (s)

)
F j,N (s)ZN (Ns) ds

+

J∑
j=1

ηj

∫ t

0

N∇ej/N (g)
(
FN (s)

)(CNj
N
−F j,N (s)

)
ds, (3.58)

and, since

(〈Mg,N 〉 (t)) =

 1

N2

J∑
j=1

λj

∫ t

0

(
N∇−ej/N (g)

(
FN (s)

))2
F j,N (s)ZN (Ns) ds

+
1

N2

J∑
j=1

ηj

∫ t

0

(
N∇ej/N (g)

(
FN (s)

))2(CNj
N
−F j,N (s)

)
ds

 ,

Relation (3.47) shows that, for t<`(a0), E(〈Mg,Nk〉 (t)) is converging to 0, the
martingale (Mg,Nk(t)) converges therefore in distribution to 0 as k gets large.
By using again Relation 3.47 and the differentiability properties of g, it is easy
to conclude the proof of the proposition.

For 1≤j≤J , by taking a function g(x)=h(xj), x=(xi)∈[0, 1]J , where h is C2,
we obtain, that the relation(∫ t

0

∫
[0,1]J

h′(xj)

(
λjxj

〈η, c−x〉
〈λ, x〉

−ηj(cj−xj)
)
π1
s(dx) ds, t<`(a0)

)
= (0)
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holds almost surely. Hence, almost surely, for any f in a dense subset of Borelian
functions on [0, 1], the identity∫

[0,1]J
f(xj)

(
λjxj

〈η, c−x〉
〈λ, x〉

−ηj(cj−xj)
)
π1
t (dx)

holds almost everywhere for t∈R+, with respect to Lebesgue’s measure.
If U(t)=(Uj(t)) is a random variable with distribution π1

t , the last relation
can be translated in terms of conditional expectation, almost surely

λjUj(t)E
(
〈η, c−U(t)〉
〈λ,U(t)〉

∣∣∣∣Uj(t)) = ηj(cj−Uj(t)),

almost everywhere for t≥0. The following proposition is the key step to identify
completely the limit points of ((‖FN (t)‖),Λ0

N ).

Proposition 45. Let U=(Uj) be a random variable on
∏J

1 [0, cj ], such that ,
almost surely, ‖U‖≥η, for some η>0, and, for 1≤j≤J ,

λjUjE
(
〈η, c−U〉
〈λ,U〉

∣∣∣∣Uj) = ηj(cj−Uj), (3.59)

then, almost surely,
Uj =

ρjcj
φ(‖U‖)+ρj

,

where for y∈(0, 1), φ(y) is the unique solution of the equation

J∑
j=1

ρj
ρj+φ(y)

cj = y,

and (ρj) is given by Definition 23 and φ in Theorem 35.

Proof. Define, for 1≤j≤J ,

Aj
def.
=

ηj(cj−Uj)
λjUj

, Bj
def.
= λjUj ,

and Fj is the σ-field associated to Uj . Note that, because of the assumptions
the variables Aj and Bj are bounded by Relation (3.59), this identity can be
re-written as

E
(∑

k AkBk∑
k Bk

∣∣∣∣Fj) = Aj ,

or, since Aj and Bj are Fj-measurable

E
(∑

k(Ak−Aj)AjBjBk∑
k Bk

∣∣∣∣Fj) = 0,
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this identity gives therefore the relation

E

(∑
j,k(Aj−Ak)2BjBk∑

k Bk

)
= 2

J∑
j=1

E
(∑

k(Aj−Ak)AjBjBk∑
k Bk

)
= 0,

since the variables Bj , j=1,. . . ,J are almost surely positive, this implies that,
almost surely, Aj=A1 for j=1,. . . ,J , and therefore

Uj =
ρjcj
A1+ρj

,

the proposition is proved.

Proof of Theorem 34. We have only to gather all the results obtained up to
now. Proposition 43 shows that, on the time interval [0, `(a0)), the sequence of
processes (‖FNk(t)‖) converges in distribution to (H(t)) given by

(H(t)) =

(
‖f0‖+

∫ t

0

∫
[0,1]J

(
δ
〈η, c−x〉
〈λ, x〉

−β
)
π1
s(dx) ds

)

=

(
‖f0‖+

∫ t

0

(δφ(H(s))−β) ds

)
, (3.60)

by Proposition 45. This determines completely (H(t)) as the solution of Re-
lation (3.40), and therefore the convergence of the sequence (‖FN (t)‖). Rela-
tion (3.57) of Proposition 44 and Proposition 45 gives the desired expression.
Relation (3.41) for the limit of the sequence (Λ0

N ) of occupation measures.
It is easily seen that the solution of Relation (3.40) satisfies Corollary 36,

in particular, if H(0)>0, there exists w>0 such that H(t)≥w for all t≥0. The
convergence in distribution obtained can be therefore extended to any finite
interval of R+. The theorem is proved.

3.5 Biological Background
In bacterial cells, protein production uses an important number of cell resources:
macro-molecules such as polymerases and ribosomes, biological bricks of pro-
teins, i.e., amino acids, and the energy necessary to build proteins, such as
GTP. The two main steps associated with protein and RNA production are

— Transcription. When an RNA polymerase is bound to an active gene,
it starts to make a copy of this gene. The product which is a sequence
of nucleotides is an RNA. If the gene is associated to a protein, it is
a messenger RNA, an mRNA. When the full sequence of nucleotides of
the RNA has been successively assembled, the RNA is released in the
cytoplasm.
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— Translation. The step is achieved through another large macro-molecule:
a ribosome. When a ribosome is bound to an mRNA, it builds a chain of
amino-acids using the mRNA as a template to produce a linked chain of
amino-acids, a protein.

There are several types of RNAs, outside mRNAs, tRNAs to carry amino-acids
for the translation phase, rRNAs which are (large) building blocks of ribosomes.
The average size of an mRNA is of the order of 300 nucleotids (nt), the size of
an rRNA is of the order of 5000nt. Another class of RNAs, the small RNAs, or
sRNAs, has been discovered in the 1970’s, the 6S sRNAs in particular. The size
of a sRNA is of the order of 50-100nt and their functional role of regulation has
been identified around 2000, quite recently in fact. See Hindley [37] and Beisel
and Storz [8].

In a biological context, the internal dynamics of cells can be, essentially,
expressed in terms of pairing mechanisms of various couples of macro-molecules.
The quite recent discovery of the existence of small RNAs and of their functional
role in the regulation of the protein production has shed a new light on pairing
mechanisms as a general tool to control gene expression. Pairing mechanisms
are to regulate the growth of cells in order to adapt to a varying environment.
Depending on external conditions, it may be desirable to reduce or speed-up the
growth of the cell, and so the use of these macro-molecules. A specific regulation
mechanism relies on a type of macro-molecules, sRNAs, small RNAs, which we
will refer to as agents in the following. Their functional role has been discovered
only recently in fact, at the end of the 20th century. They may bind/pair with
one of these macro-molecules and the pairing may have several effect, depending
on the type of sRNA: it can sequester a macro-molecule/particle and, therefore,
reduce significantly its interactions with other components of the cell. Or it
may speed-up the activity of the macro-molecule by increasing its interaction
rate (affinity) with other components of the cell.

Due to thermal noise inside the cell, a particle/agent pair will split after a
certain time. These separation mechanisms are as important as binding events
are. The quantity of agents presents within the cell is also highly variable, and
their quantity is actively regulated by the cell through a variety of regulatory
mechanisms. In most prokaryotes, when a cell grows, its size increases. With-
out any action, the concentrations of agents/particles inside the cell begin to
decrease by dilution. In the case of a limited number of agents, the cell has spe-
cific means of degrading agents to rapidly reduce their quantity if dilution is not
enough. When the cell environment changes, the number of active agents may
have to increase to adapt. It can be done by either generating new agents and
particles or, more rapidly, by altering the quantity of active agents, i.e., agents
bound to particles, by enhancing couplings. The duration of these transitions
is an important characteristic of the control mechanism under consideration.
In general it has two terms. The first term is linked to the production of new
agents (and is therefore rather slow), while the second term is linked to a (quick)
change in the number of active machines via bindings of agents with particles.
The rate of adaptation depends on the combination of these two mechanisms,
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and is therefore a crucial issue in the case of cells. Assuming that the envi-
ronment is such that regulation is necessary, the fraction of particles that are
bound to an agent is a measure of the efficiency of these mechanisms. We refer
to Section 3.5 for references and further details on the biological context.

We describe several examples of regulation via pairing mechanisms. For
the sake of simplicity, we give a rough description, not all macro-molecules,
mechanisms involved are not mentioned. The main goal is of showing that
pairing mechanisms play a major role concerning the regulation of the cell.
References with much more details are mentioned.

Regulation of Transcription
The 6S sRNA is in charge of regulating the transcription phase, via a pairing
with a σ-factor, a macromolecule necessary to the initiation of transcription.
See Fromion et al. [31] for more details. With a slight abuse, by ignoring the
σ-factor, the mechanism can be represented as a chemical reaction with three
chemical species particles,

RNAP+sRNA −⇀↽− RNAP−sRNA,

where RNAP stands for RNA polymerase. In such a context the pairing of
RNAP and sRNA is seen as a sequestration of polymerases. See Waters and
Storz [69], Wassarman and Storz [68] and Felden and Augagneur [26]. See Nitzan
et al. [54].

Regulation of Translation
There is a similar regulation mechanism for ribosomes. The pairing of a macro-
molecule denoted as (p)ppGpp with the ribosome has the main effect of interfer-
ing with the initiation phase of translation and leading to abort the operation.
See Yang et al. [71], Fer et al. [27] and Hauryliuk et al. [36] for more details.

Regulation of mRNAs by sRNAs
The translation can be also controlled via the mRNAs in the following way.
The pairing of an sRNA and an mRNA modifies the translation efficiency of
the mRNA. It can repress or enhance its activity. The pairing of an sRNA
and mRNA . See Waters and Storz [69], Jagodnik et al. [38] and Beisel and
Storz [8] for prokaryotic cells, and Flynt and Lai [28] for eukaryotic cells, with
micro RNAs, miRNAs, acting on mRNAs. The references Jayaprakash and
Das [40], Baker et al. [6] and Del Giudice et al. [20] study the Fokker-Planck
equations for Markovian models of this mechanism.

3.6 Technical Results
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3.6.1 The M/M/1 queue
We introduce a birth and death process on N which is in fact a reflected random
walk on N. An M/M/1 queue with input rate γ and service rate µ on N is a
Markov process (L1(t)) with Q-matrix matrix given by

z 7→

{
z+1, γ,

z−1, µ1{z≥1}.

If γ<µ, its invariant distribution is a geometric distribution with parameter
γ/µ. Define

TK = inf {t : L∞(t)≥K} ,

Proposition 5.11 of Chapter 5 of Robert [61] gives the asymptotic behavior of
TK when K is large.

Proposition 46. If γ<µ and L(0)=z0, then, as K goes to infinity, the random
variable (

γ

µ

)K
TK

converges in distribution to an exponential random variable.

3.6.2 The M/M/∞ queue
This is another classical birth and death process on N. AnM/M/∞ queue with
input rate γ and service rate µ on N is a Markov process with Q-matrix given
by

z 7→

{
z+1, γ,

z−1, µz.

Its invariant distribution is a Poisson distribution with parameter γ/µ.
It can be seen in fact as a discrete Ornstein-Uhlenbeck process. See Chapter 6

of Robert [61] for example. For K∈N, the hitting time of level K by the process
(L(t)) of an M/M/∞ input rate γ and service rate µ is defined by

TK = inf {t : L∞(t)≥K} .

The following result, see Proposition 6.10 of [61] for example, is used to establish
several tightness results.

Proposition 47. If L(0)=z0, as K goes to infinity, the random variable(
γ

µ

)K
TK

(K−1)!

converges in distribution to an exponential random variable.
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Chapter 4

Regulation Of Translation

4.1 Gene Expression
Gene expression refers to the process of converting genetic information encoded
in genes into functional proteins or RNA molecules/non coding RNA molecules.
This process involves the transcription of DNA into RNA. When the produced
RNA is coding, this first step is followed by a second process called translation.
This process translates the coding sequence carried by the coding RNA, called
mRNA, into an amino acid polypeptide. In general, after some folding, this
polypeptide becomes a protein. Protein production holds immense significance
within the cell as it not only facilitates its growth but also utilizes a significant
portion of its resources. Understanding the mechanisms and regulation of gene
expression has been a fundamental and complex pursuit in the field of biology,
with substantial progress made recently.

This chapter will specifically focus on the translation phase. The mRNA
molecule carries genetic information from DNA to the ribosomes, where trans-
lation takes place. In bacterial cells, ribosomes are composed of two sub-units:
the small 30S sub-unit and the large 50S sub-unit. These sub-units combine
to form a complete 70S ribosome, responsible for translating mRNA into pro-
teins. Ribosomes consist of multiple ribosomal RNAs (rRNAs) and around 50
proteins (52 in Bacillus subtilis), making them the most resource-demanding
macro-molecules to produce.

a. Initiation: The translation phase starts with the small ribosomal sub-
unit binding to the mRNA molecule. The ribosome then scans the mRNA
for a specific start codon (AUG), which marks the beginning of translation.

b. Elongation: Once the start codon is identified, the ribosome recruits
the large ribosomal sub-unit and initiates the elongation step. During
elongation, the ribosome reads the mRNA sequence using the genetic code,
which consists of three-letter combinations known as codons. Each codon
corresponds to a specific amino acid. Transfer RNA (tRNA) molecules
carry the corresponding amino acids to the ribosome-mRNA complex.
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c. Termination: Elongation continues until the ribosome encounters a stop
codon. At this point, the ribosome releases the synthesized protein chain
and dissociates from the mRNA molecule.

In summary, gene expression involves the transcription of DNA into RNA and
the subsequent translation of RNA into proteins. The translation phase com-
prises initiation, elongation, and termination steps, where ribosomes read the
mRNA sequence, synthesize proteins, and release them upon encountering stop
codons.

4.2 Biological Background
Regulatory mechanisms are critical for bacterial cells to adapt to changing envi-
ronments (in terms of availability of resources) and maintain an efficient cellular
function. Many studies have been conducted on this topic, such as in Agustino
and Collado-Vides [1] where the focus is on examining regulation in E. coli.

It is not an overstatement to claim that the intricate biological processes
involved in protein synthesis, starting from its DNA sequence, can be precisely
regulated to control protein levels. Attempting to provide a comprehensive and
concise overview of all potential mechanisms for gene expression regulation is
an impractical task. One way the cell regulates its transcriptional processes
involves the action of transcription factors, which have the ability to either
accelerate or inhibit the cell’s activity. This mechanism was investigated by
David J. Lee and colleagues (as documented in the study by David J. Lee et al.
[18]).

In addition to transcriptional regulation, gene expression control encom-
passes translational regulation, to modulate protein synthesis. The regulation
of gene expression not only controls transcription but also governs translation
processes. Translational regulation involves impeding access to the initiation
site of mRNA. See Claudio O. Gualerzi [16], thereby influencing the efficiency
and timing of protein production.

This chapter focuses on the translational regulation associated with the uti-
lization of a stringent response, which is a mechanism that happens when a cell
encounters an unusual situation, such as a shortage of amino acids (defined and
elaborated upon in section 4.2.1).

Overall, the complex regulatory mechanisms in bacterial cells ensure that
gene expression is tightly controlled and coordinated, allowing the cell to re-
spond to environmental cues and carry out essential functions for survival.

The goal of this chapter is to examine the influence of a regulatory mecha-
nism that operates during the Translation phase, involving the sequestration of
ribosomes in response to amino acid scarcity. Thus, our aim is to construct a
stochastic model that captures the diverse ribosome states in relation to amino
acid arrivals. This model will enable us to analyze how the distribution of
ribosomes evolves over time under various environmental conditions.
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4.2.1 The Stringent Response: A regulatory mechanism
in bacterial translation

The stringent response has been extensively studied in the model bacterium E.
coli since the late 1960s. Even though the stringent response has been exten-
sively studied recently in E. coli, the molecular elements involved in its imple-
mentation are specific to this bacterium. In reality, in the majority of sequenced
and annotated bacteria, the molecular players participating in and defining the
stringent response are slightly different from those in E. coli.

Although the molecular players may differ, indicating specific biological im-
plementation, the general principles and major actions integrated into our study
are similar for most bacteria. Specifically, we refer to the research and results
concerning the stringent response in another model bacterium. For B. subtilis
and most bacteria, the molecular organization of the stringent response and its
actions on the bacterium varies slightly.

As we will discuss later, the primary objective of the regulatory system
that generates the stringent response in bacteria is to ensure a proper balance
between the availability of each amino acid and the demand associated with the
production of proteins. Evolution has exploited this mechanism to address other
issues, which we will not consider here. These additional aspects often involve
the production or degradation of a small nucleotide molecule called (p)ppGpp,
and are directly related to growth rate management rather than amino acid
level control during translation.

This regulation is mediated by one protein in B. subtilis or two proteins in
E. coli. The first protein is capable of producing a specific metabolite called
pppGpp or ppGpp (referred to as (p)ppGpp hereafter). When the availability of
amino acids falls below some threshold, this first protein, called RelA in E. coli,
is complemented by a second protein named SpoT. The second protein degrades
(p)ppGpp under specific conditions that activate its degradation. Generally, in
most bacteria, the first protein that produces (p)ppGpp (RelA in E. coli) also
possesses a secondary function to degrade it. Therefore, this protein operates
in a dual manner: when it is not activated to produce (p)ppGpp, it can degrade
it. Lastly, although this protein is structurally similar to E. coli ’s RelA, it has
recently been named Rel, highlighting its differences from RelA, the protein in
E. coli.

The presence of (p)ppGpp in the cell triggers a series of downstream effects.
It inhibits the production of ribosomal RNAs (rRNAs), which are essential com-
ponents of the ribosomes responsible for protein synthesis. This reduction in
ribosomal RNA production limits the availability of functional ribosomes in the
cell, leading to a slowdown in protein synthesis, what helps in conserving energy
and resources under nutrient-limiting conditions. In addition, (p)ppGpp inter-
feres with the initiation phase of translation, specifically targeting the formation
of the initiation complex. By inhibiting the initiation of translation, (p)ppGpp
prevents the binding of aminoacyl-tRNAs to the ribosome, disrupting the in-
corporation of amino acids into growing polypeptide chains. Therefore, it slows
down or halts the translation process, leading to a decrease in the overall rate
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of protein production.
The stringent response, mediated by (p)ppGpp, allows bacterial cells to

adapt and respond to adverse environmental conditions by adjusting the rate of
protein production in response to environmental conditions, nutrient availabil-
ity, and other cellular signals. Amino acid starvation poses a significant risk as it
can lead to an increased error rate during protein synthesis. This highlights the
critical importance of translational regulation in bacterial cells. By modulating
the initiation of translation, bacteria can effectively manage protein synthesis,
ensuring accuracy and efficiency, even under conditions of amino acid scarcity.

In E. coli, SpoT plays an important role in cellular metabolism and stress
response. Also known as (p)ppGpp synthetase/hydrolase, SpoT is an enzyme
involved in the stringent response, a regulatory mechanism enabling bacteria
to adapt to nutrient scarcity and environmental stress. SpoT assumes the re-
sponsibility of synthesizing and degrading (p)ppGpp signaling molecules, which
function as global regulators of gene expression. Through its modulation of
(p)ppGpp levels, SpoT exerts influence over diverse cellular processes such as
transcription, translation, and metabolism. This capability helps the bacterium
in surviving adverse conditions. Conversely, in B. subtilis, it is Rel that carries
out the production and degradation of (p)ppGpp.

However, the models presented in this chapter are applicable to various bac-
terial cell types, transcending their inherent differences.
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Figure 4.1: Effects of RelA and SpoT mutations and Amino Acid starvation on
the rates of Methionine (•) and Uridine (�) incorporation in E. Coli. Adapted
from O’Farrell [55].

The experiment represented in Figure 4.1 distinguishes the cell state and
activity under three distinct conditions. The first condition represents normal
cellular functioning, while the second condition simulates an amino acid star-
vation. Lastly, the third condition represents the state after addition of the
deficient amino acid. The specific amino acid of interest in this experiment is
isoleucine, as it is commonly utilized in protein formation. Throughout these
conditions, the availability of methionine and uridine in the medium is adequate,
ensuring that the two quantities measured in the experiment are not generally
affected by their availability during the course of the experiment. However, their
incorporation levels are measured.

The figure represented in this experiment illustrates the impact of amino acid
withdrawal and subsequent addition on the strains rel- spoT-, rel+ spoT+ and
rel+ spoT-. Specifically, it is observed that only the rel+ strains accumulate
ppGpp in response to starvation, while the spoT- strains exhibit heightened
stability of ppGpp, knowing that spoT is not degrading ppGpp.

This experiment provides valuable insights into the role of ppGpp in cellular
activity. Firstly, in terms of the Transcription phase (RNA synthesis), uridine
incorporation is measured as a proxy. It is evident that RNA synthesis is inhib-
ited during amino acid starvation solely in rel+ strains that accumulate ppGpp.
Hence, ppGpp acts as an inhibitor of stable RNA synthesis in the absence of
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amino acids.
Following the addition of the deficient amino acid, the rate of uridine in-

corporation swiftly recovers in rel+ spoT+ strains, where ppGpp degradation
occurs due to the presence of spoT. Conversely, in rel+ spoT- strains, the in-
crease in uridine incorporation transpires at a slower pace since ppGpp remains
undegraded, thereby sustaining the inhibition of transcription.

Regarding the impact of ppGpp on the Translation phase (protein synthe-
sis), protein synthesis rate is measured by methionine incorporation, considering
that methionine is the initial amino acid incorporated into the ribosome during
protein synthesis. It is noteworthy that amino acid starvation inhibits protein
synthesis in both rel+ and rel- cells, which is logical since proteins are com-
posed of amino acid sequences, leading to decreased production regardless of
ppGpp presence. Upon the addition of the deficient amino acid, the rate of
protein synthesis experiences a gradual increase in rel+ spoT- strains due to the
accumulation of ppGpp without spoT-mediated degradation. This highlights
that the accumulated levels of ppGpp play a substantial role in the substantial
reduction of protein synthesis, resulting in an 86% inhibition.

The regulatory mechanism varies across different bacterial types with regards
to how (p)ppGpp influences both transcription and translation phases of protein
production. For instance, in E. coli, ppGpp binds to the polymerase, leading to
the inhibition of ribosomal RNA transcription. Conversely, in B. subtilis, GTP
governs the polymerases, and ppGpp, in turn, regulates GTP. This implies that
in B. subtilis, ppGpp indirectly inhibits transcription by controlling GTP levels.

However, the main observation is that the inhibitory effect of ppGpp on
translation remains consistent across all bacterial species. This effect is primar-
ily manifested through its impact on IF2, the initiation factor of translation.
Consequently, despite the differences in regulatory mechanisms, the variations
observed do not undermine the applicability of our model in this chapter. As
our study focuses on the influence of ppGpp on the translation phase, our model
remains pertinent for diverse bacterial types. See al. [2] for further details.

4.3 Mathematical Model
The objective of this chapter is to introduce a mathematical model that captures
the influence of ppGpp, a regulatory mechanism, on cellular activity. Due to the
intricate nature of bacterial cells and the multitude of activities they achieve,
selecting a specific cellular function to focus on presents a challenge. However,
given the significance and costly nature of ribosomes within the cell, we have
chosen to center our investigations on their activity. Consequently, we have
developed a model that characterizes the different states of ribosomes within
the cell under varying environmental conditions. By doing so, we aim to gain
insights into the broader implications of ppGpp regulation on cellular processes.
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4.3.1 Technical Challenges
We assume that there are N ribosomes with N typically large. We derive
functional limiting results, with respect to this scaling parameter, of the time
evolution of several stochastic processes. The primary challenges encountered
involved two key aspects. Firstly, designing a model that effectively describes
the intricate mechanism under investigation, encompassing protein production,
with diverse ribosome states, various amino acids and tRNAs. This is crucial to
obtain meaningful insights on the system. Additionally, another significant chal-
lenge involved formulating a mathematical characterization that differentiates
between two cases: one where amino acid starvation is absent, and the other
where amino acid starvation is present. The primary difficulty is the system’s
high dimensionality. Specifically, when dealing with two amino acids, the sys-
tem had seven dimensions, and when dealing with only one amino acid, it still
had five dimensions. This dimension added complexity to our analysis. Finally,
an important step involved providing a biological interpretation of the obtained
results. Addressing these challenges was crucial for gaining a comprehensive
understanding of the system’s dynamics and its implications.

4.3.2 Description
For simplicity, the number of ribosomes N is assumed to be constant.
In this model, we consider the diverse states of ribosomes. Two types of transfer
RNAs (tRNAs) are considered. By accounting for the various states of ribosomes
and distinguishing between the different types of tRNAs, our model offers a
more comprehensive representation of the complex dynamics involved in protein
synthesis. Employing a Markovian model, we were able to explore the interplay
between ribosome states, tRNA availability, and their impact on the overall
functioning of the cellular system.
From the point of view of our model, ribosomes can be in several states:

— Free. The ribosome may bind to a messenger RNA (mRNA), or be se-
questered, or in the translation phase (initiation/elongation).

(
RFN (t)

)
denotes the process of the number of free ribosomes.

— Initiation. The ribosome is bound to a mRNA,
(
RMN (t)

)
is the number of

such ribosomes.

— Elongation. During the elongation phase, the ribosome initiates protein
synthesis by awaiting an amino acid of either type 1

(
RE1,N (t)

)
or type 2(

RE2,N (t)
)
, depending on whether the protein chain starts with an amino

acid of type 1 or type 2, respectively.

— Sequestered. The associated process is
(
RSN (t)

)
.

With these notations, the conservation of mass for the ribosomes gives the
relation

RFN (t) +RMN (t) +RE1,N (t) +RE2,N (t) +RSN (t) = N, ∀t ≥ 0.
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Similarly, we also represent the number of charged tRNAs of type 1 (respectively
type 2) by (Q1,N (t)) (respectively (Q2,N (t))).
The dynamic of this stochastic system is governed by the analogue of the law
of the mass action in this context.

4.3.3 Orders of Magnitude and Scaling Assumptions
We now discuss the orders of magnitude of the main parameters of the biological
process.

— The scaling variable used in our study is N , the total number of ribosomes
in the cell. It is assumed that this number is constant during the growth
phase investigated. This number is quite large, between 10000 and 30000
for E. Coli, depending on the environment.

— The number CNm of different types of mRNAs is large, of the order of N ,
of the order of 40000.

— Similarly, the total number of each type of tRNA is also of the order of N ,
several thousands, with a mean value of 3200 for E. Coli (see Jakubowski
H [39]).

We assume that the relations

lim
N→+∞

CNm
N

= cm>1, lim
N→+∞

CNq,1
N

= cq,1>0 and lim
N→+∞

CNq,2
N

= cq,2>0

hold.
And since we have these assumptions, we can deduce that there exists a > 0

such that
CNm −RMN (t) ≥ aN ∀t ≥ 0 (4.1)

4.3.4 A sketch of the contributions: Four Limiting Regimes
In a probabilistic context, using a Markovian model, we investigate how the
number of ribosomes in each state evolves asymptotically when N goes to in-
finity. Each regime corresponds to a set of conditions specifically related to the
parameter β, which is the rate of production of amino acids, as will be detailed
in the chapters to follow.

Our mathematical analysis considered the existence of four distinct regimes,
each based upon specific parameter conditions. In our research, we put a condi-
tion on β2, representing the rate at which tRNAs of type 2 are charged, across
all four regimes. This condition serves to confirm that there is an ample supply
of amino acids of type 2. In all these four regimes, we proved identical outcomes
related to type 2 amino acids. Specifically that the charged tRNAs, referred to
as Q2, have reached a saturation point. As a result, our analysis will exclusively
concentrate on amino acids of type 1.
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For the moment we do not state the specific conditions and details of these
three regimes here (see Section 4.6, 4.9, 4.8 and 4.7), We provide a brief
overview of results obtained for each distinct regime.

Assuming that we have a constant total number of mRNAs
(
cNm ≈ cmN

)
,

tRNAs of type 1
(
cNq,1 ≈ cq,1N

)
and tRNAs of type 2

(
cNq,2 ≈ cq,2N

)
.

To assess the effectiveness of the regulatory mechanism, we focus on a crucial
criterion: the rate of sequestration. To do this, we examine how the time
evolution of the number of sequestered ribosomes, denoted as RSN (t), depending
on the cellular environment. Through this analysis, we showed the importance
of certain parameters and evaluated their impact. Notably, the rate at which
tRNAs are loaded with amino acids, represented as β, plays a crucial role in
this context. The driving factor behind these situations is the speed at which
tRNAs are loaded with amino acids, showing the role of the charging process
rate, denoted as β.

Under specific conditions on the parameter β along with certain scaling con-
ditions and appropriate initial conditions, we have the following classification.
It should be noted that we have only partial results in this chapter. The scal-
ing results associated to each of the four regimes described below depend on
a technical result on some hitting time. Basically it states that, on a “small”
time interval, the order of magnitude of the coordinates of the coordinates state
variable do not change for some specific class of initial states. This is achieved
completely in Section 4.6 for the first regime. The key result is Lemma 51
which relies on a not completely trivial coupling idea. For the other regimes,
the corresponding lemma is stated but as a conjecture. These are Lemma 58 of
Section 4.7, Lemma 68 of Section 4.8 and Conjecture 74 of Section 4.9.

a. Adequate supply of amino acids. The first regime corresponds to a normal
cellular state, where there is an adequate supply of amino acids. In this
regime, cellular processes operate without any constraints.
For the convergence in distribution

lim
N→∞

(
RMN (t)

N
,
Q1,N (t)

N
,
Q2,N (t)

N

)
= (1, cq,1, cq,2)

Under normal conditions within the cellular environment, the majority of
ribosomes are engaged in the initiation phase, while only a small fraction
of them remain free, either sequestered or awaiting amino acids.
In this context, we observe the saturation of charged tRNAs of type 1.
Crucially, all ribosomes are engaged in the initiation phase, signifying the
absence of ribosomes sequestered or obstructed in the elongation phase.
This configuration characterizes the cell’s typical operational state.

b. Regulation-independent deficiency of type 1 amino acids. The second
regime manifests when there is a lack of type 1 amino acids, but where
the regulatory mechanism of sequestration is absent.
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For the convergence in distribution

lim
N→∞

(
RMN (t)

N
,
RE1,N (t)

N
,
Q2,N (t)

N

)
= (rM (t), 1−rM (t), cq,2)

where
(
rM (t)

)
is the solution of an ODE, such that

lim
t→∞

rM (t) = rM∞ with 0 < rM∞ < 1

and for any t > 0, the random variables
(
RFN (t)

)
,
(
RE2,N (t)

)
and (Q1,N (t))

converge to Poisson distributions.

In this scenario, characterized by a deficiency of type 1 amino acids but the
absence of the regulatory mechanism (referred to as sequestration in our
model), most of the ribosomes exist in either the initiation or elongation
phase, awaiting an amino acid of type 1. Only few ribosomes are free or
awaiting an amino acid of type 2.
We deduce that a limited number of charged tRNAs of type 1 are available.
Notably, the count of ribosomes obstructed in the elongation phase while
awaiting type 1 amino acids is of the order of N . This observation shows
the abnormal behavior of the cell.

c. Partial Sequestration in the Deficiency of Type 1 Amino Acids. The
third regime occurs when there is a deficiency of amino acids of type 1,
but the maximal sequestration rate (represented in Definition 48 ) is not
attained due to the failure to satisfy certain conditions. Here, the cellular
system experiences a shortage of specific amino acids, yet the sequestration
mechanism does not reach its maximum capacity.
For the convergence in distribution

lim
N→∞

(
RMN (t)

N
,
RE1,N (t)

N
,
RSN (t)

N
,
Q2,N (t)

N

)
= (rM (t), rE1 (t), 1−rM (t)−rE1 (t), cq,2)

where
(
rM (t)

)
and

(
rE1 (t)

)
are the solutions of two ODEs, such that

lim
t→∞

rM (t) = rM∞ with 0 < rM∞ < 1

lim
t→∞

rE1 (t) = rE1,∞ with 0 < rE1,∞ < 1− rM∞

and for any t > 0, the random variables
(
RFN (t)

)
,
(
RE2,N (t)

)
and (Q1,N (t))

converge to Poisson distributions.

In this case, where there is a deficiency of type 1 amino acids and the reg-
ulatory mechanism partially interferes but does not reach its maximum
capacity, we observe similar outcomes as in the previous case. However,
the subsequent sections 4.9 and 4.8 will provide a detailed analysis of
the distinctions between these two situations.
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The model incorporating sequestration during amino acid deficiency, al-
though not fully activated at its maximum rate, Sections 4.8 and 4.9 reveal
the persistence of a small count of charged tRNAs of type 1. Additionally,
despite the ribosomes blocked in the elongation phase remaining of the
order of N level, the sequestered ribosomes now also are of the order of
N . This leads to a reduction in the quantity of blocked ribosomes com-
pared to the sequestration-free model. Consequently, this result outlines
the influence of sequestration on ribosome distribution.

d. Maximal Sequestration in the Deficiency of Type 1 Amino Acids. The
fourth regime arises when there is a scarcity of amino acids of type 1, and
the sequestration mechanism reaches its maximal rate. In this case, the
cellular system faces a pronounced lack of amino acids, and the sequestra-
tion process is fully activated.
For the convergence in distribution

lim
N→∞

(
RMN (t)

N
,
RSN (t)

N
,
Q1,N (t)

N
,
Q2,N (t)

N

)
= (rM (t), 1−rM (t), q1(t), cq,2)

where
(
rM (t)

)
and (q1(t)) are the solutions of two ODEs, such that

lim
t→∞

rM (t) = rM∞ with 0 < rM∞ < 1

lim
t→∞

q1(t) = q1,∞ with 0 < q1,∞ < cq,1

and for any t > 0, the random variables
(
RFN (t)

)
,
(
RE1,N (t)

)
and

(
RE2,N (t)

)
converge to Poisson distributions.

Under these conditions of maximal sequestration, the majority of ribo-
somes are either engaged in the initiation phase or sequestered, while only
a small fraction remains unoccupied or awaiting amino acids.

In this scenario where maximal sequestration is implemented, we have
two notable outcomes. Firstly, the presence of blocked ribosomes reduces
entirely, as these previously blocked ribosomes are now sequestered. Fur-
thermore, a substantial number of charged tRNAs of type 1, roughly of
the order of N , is detected. This indicates that maximal sequestration
not only reduces the number of blocked ribosomes but also increases the
number of charged amino acids, gradually returning the environmental
conditions back to normal.

Based on this classification, we have noticed that the primary objective of
sequestration is to decrease the number of blocked ribosomes in the elongation
phase. It follows that ribosomes, when blocked while awaiting an amino acid,
may ultimately select the wrong one, leading to errors in protein production
(see O’Farrell [55] for reference). Consequently, the sequestration has the effect
of reducing the rate of errors in protein production.
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4.4 Stochastic Model
In this section we introduce the state space description of the regulation of trans-
lation. We first describe our main assumptions in the design of the stochastic
model.

4.4.1 Modeling Assumptions
The chemical species involved in the regulation process are the ribosomes in
different states and the tRNAs.

Introducing the concept of ribosome dynamics, our model operates under
the assumption of a constant total number of ribosomes, denoted as N .

We will start by describing our model.

— INITIATION OF TRANSLATION.
The initiation step represents the binding of the ribosome to an mRNA. It
is assumed that there are CNm different types of mRNAs and that at a given
time, there is at most one ribosome is bound to a mRNA. When a mRNA
is free, a free ribosome may bind to this mRNA at rate δ

(
CNm −RM

)
, since(

CNm −RM
)
represents the free places (mRNAs) for initiation. In the case

where an mRNA is already bound to a ribosome, the ribosome initiates
the elongation step at a rate of λ1 if the protein chain it is constructing
begins with an amino acid of type 1. Similarly, if the protein chain starts
with an amino acid of type 2, the ribosome initiates elongation at a rate
of λ2.

— ELONGATION OF TRANSLATION.
Once the ribosome enters the elongation phase of a protein that begins
with an amino acid of type i ∈ {1, 2}, it transitions into a waiting state
for an amino acid of the same type i. Once the amino acid is being car-
ried by a tRNA, three possible scenarios can occur. Firstly, the ribosome
may continue to wait for another amino acid of type i, which transpires
at a rate of νi. Alternatively, it may switch its waiting state to anticipate
an amino acid of the other type, transpiring at a rate of ψi. Lastly, if
the protein is fully synthesized, the ribosome detaches from the mRNA,
reverting to a free state once again. This detachment occurs at a rate of
αi.
Concerning the amino acids part in this model: In order to simplify the
model, we consider the formation of a protein using two types of amino
acids, labeled as 1 and 2. However, it’s important to note that the out-
comes obtained can be generalized to a greater number, such as the typical
20 amino acids.

— CHARGING/DISCHARGING OF tRNAs BY AMINO ACIDS.
In our model, which considers proteins composed of two distinct types
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of amino acids, we have introduced two corresponding types of tRNAs.
We assume that the total number of tRNAs for each type, denoted as
CNq,i = cq,iN , is determined. The charging and discharging process of
tRNAs with amino acids directly involves ribosomes during the elongation
phase.
An empty tRNA of type i ∈ {1, 2} transports an amino acid of type i at
rate βiN . It becomes discharged (empty) when it transfers the amino acid
it carries to a ribosome awaiting it in the elongation phase. Therefore, this
discharging event occurs at a rate of αi+νi+ψi.

— SEQUESTRATION/DESEQUESTRATION OF RIBOSOMES.
In our model the sequestration part represents the regulatory mechanism
that occurs during amino acid starvation. Hence, it is crucial for the rate
of sequestration to be dependent on the number of empty tRNAs, denoted
as CNq,i−Qi for i ∈ {1, 2}. The sequestration occurs at rate γi when there
is a deficiency of amino acid of type i, and a ribosome is released and
becomes free again at rate η.

4.4.2 The Markov Process and Q-Matrix
In our model, the rate of amino acid production βi of type i ∈ {1, 2} emerges
as the pivotal parameter. This significance is attributed to our investigation of
the regulatory mechanism during amino acid starvation. The differences among
the regimes represented in section 4.3.4 will be characterized by conditions on
the parameter βi. We now give a Markovian description of our system.
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Figure 4.2: Ribosomes: Translation and Sequestration

State Space. All transitions described in the last section occur after a
random amount of time with an exponential distribution. With this assumption,
there is a natural Markov process to investigate the regulation of translation.
The state space is given by

SN
def
=

x = (rF , rM , rE1 , r
S , q1, q2) ∈ N4×

2∏
j=1

{
0, . . . , CNq,j

}
: rF+rM+rE1 +rS≤N


If the state of the system is x = (rF , rM , rE1 , r

S , q1, q2)∈SN , then

— rF is the number of free ribosomes;

— rM , the number of ribosomes in the initiation step of the translation phase;

— rE1 , the number of ribosomes in the elongation step waiting for an amino
acid of type 1;

— rS , the number of sequestered ribosomes;
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— q1, the number of tRNAs carrying an amino acid of type 1;

— q2, the number of tRNAs carrying an amino acid of type 2;

— In state x, the number of ribosomes in the elongation step waiting an
amino acid of type 2 is given by

Ψ(x)
def
= N−rF−rM−rE1 −rS

The associated Markov process is denoted by

XN (t)
def
=
(
RFN (t), RMN (t), RE1,N (t), RSN (t), Q1,N (t), Q2,N (t)

)
The number of ribosomes at time t in elongation phase waiting an amino acid
of type 1 is defined by RE2,N (t) = Ψ(XN (t)).

It is easily checked that (XN (t)) is an irreducible Markov process on SN . Its
transition rates are given by

— INITIATION OF TRANSLATION.

(rF , rM , rE1 , r
S , q1, q2) −→


(rF−1, rM+1, rE1 , r

S , q1, q2) δrF (CNm − rM ),

(rF , rM−1, rE1 +1, rS , q1, q2) λ1r
M ,

(rF , rM−1, rE1 , r
S , q1, q2) λ2r

M .

— ELONGATION OF TRANSLATION.

(rF , rM , rE1 , r
S , q1, q2) −→



(rF , rM , rE1 , r
S , q1−1, q2) ν1r

E
1 q1,

(rF , rM , rE1 −1, rS , q1−1, q2) ψ1r
E
1 q1,

(rF+1, rM , rE1 −1, rS , q1−1, q2) α1r
E
1 q1,

(rF , rM , rE1 , r
S , q1, q2−1) ν2r

E
2 q2,

(rF , rM , rE1 +1, rS , q1, q2−1) ψ2r
E
2 q2,

(rF+1, rM , rE1 , r
S , q1, q2−1) α2r

E
2 q2.

— CHARGING AND DISCHARGING OF tRNAs BY AMINO ACIDS.

(rF , rM , rE1 , r
S , q1, q2) −→

{
(rF , rM , rE1 , r

S , q1+1, q2) β1N1{q1<CNq,1},
(rF , rM , rE1 −1, rS , q1, q2+1) β2N1{q2<CNq,2}.

The discharging of tRNAs is represented in elongation of translation part.

— SEQUESTRATION/DESEQUESTRATION OF RIBOSOMES.

(rF , rM , rE1 , r
S , q1, q2) −→

{
(rF−1, rM , rE1 , r

S+1, q1, q2)
(
γ1
(
CNq,1 − q1

)
+ γ2(CNq,2 − q2)

)
rF ,

(rF+1, rM , rE1 , r
S−1, q1, q2) ηrS .
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Just to clarify, the transitions in the figure 4.4.2 represent simultaneous
changes happening in both the ribosome states and the charging and discharging
of tRNAs. These dynamics are represented in the two separate graphs within
the figure.

4.5 Models with 1 amino acid
To simplify things, our model is devised to illustrate the translation of a protein
composed of just a single amino acid. However, within the chapter, we also
present a model with two different amino acids. In fact, the existence of four
different regimes, listed in Section 1.7.4.3, does not depend on the number of
amino acids in the model. Adding amino acids in our model, surely will give a
more realistic description from a biological point of view but does not seem to
have an impact from a mathematical point of view. For this reason the chapter
is essentially devoted to the study of a model with just one amino acid.

RS RF RM RE

Free Initiation ElongationSequestered

δRF (CNm−RM ) λRM

αREQγ
(
CNq −Q

)
RF

ηRS

Q ∅

αREQ

βN1{Q<CNq }

Charged tRNAs

Figure 4.3: Ribosomes: Translation and Sequestration with 1 amino acid

Definition 48. — We introduce S as

S def
=

ηδ

βγ

(
cm −

β

λ

)(
1− β

λ

)
(4.2)

S interpreted as the maximal sequestration rate in this model with 1 amino
acid.
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We can now introduce the four regimes of interest in our study.

Definition 49. a. The regime of Adequate supply of amino acids is defined
by the relation

β > λ (4.3)

The production rate β of amino acids is greater than its consumption rate.

b. The regime of Regulation independent deficiency of amino acids is defined
by the relation

β < λ (4.4)

The production rate β of amino acids is less than its consumption rate.

c. The regime of Partial Sequestration in the deficiency of amino acids is
defined by the relations

β < λ , cq < S (4.5)

Same conditions 4.4 with the fraction of tRNAs of the lacking amino acid
less than the maximal sequestration rate.

d. The regime of Maximal Sequestration in the deficiency of amino acids is
defined by the relations

β < λ , cq > S (4.6)

Same conditions 4.4 with the fraction of tRNAs of the lacking amino acid
greater than the maximal sequestration rate.

4.6 Adequate supply of amino acids
In this section, we focus on the scenario where there is an adequate supply of
amino acids and all conditions are considered normal. Thus, our study centers on
the distribution of ribosomes under these standard conditions. The objective is
to establish a basis for comparison with the other sections, where we examined
the effects of amino acid deficiencies in various conditions. Throughout this
section, we will be operating under condition (4.3).

We will present a new variable, denoted as VN (t), which signifies the count of
unoccupied tRNAs. It is calculated as the difference between the total number
of tRNAs, denoted as CNq , and the number of tRNAs engaged in the translation
process, represented as QN (t). Thus, the formula for VN (t) is:

VN (t) = CNq −QN (t)

Definition 50. If g is non-negative Borelian function on R+×N2, we define
the occupation measure

〈µN , g〉
def
=

∫
R+

g
(
s,REN (s), RFN (s)

)
ds
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In this section, we maintain identical initial conditions as presented in Sec-
tion 4.7. Additionally, we use the same stopping time τNQ (c) and occupation
measure as in definition 57. Consequently, the couplings employed here remain
consistent with relation (4.17).

Lemma 51. Under conditions (4.3) and (4.15), there exist tc0 > 0 such that

P
N→+∞

(
τNQ (c) < tc0

)
= 0

Proof. We provide a detailed step-by-step explanation of the demonstration.
The Markov process considered here is

(
REN (t), QN (t)

)
, for x = (rE , q),

x −→ x


e1 λrM ,

−e1 − e2 αrEq,

e2 βN.

with initial state:

REN (0) = rE0 ∈ N and lim
N→+∞

QN (0)

N
= q0 > 0

For 0 < η1 < q0, we define the stopping time

τN = inf

{
t > 0 :

QN (t)

N
≥ η2

}
We introduce the auxiliary Markov process

(
R̃N (t), Q̃N (t)

)
with Q−matrix

x −→ x


+e1 λ,

−e1 − e2 αη1r̃,

−e2 α(η2 − η1)r̃,

+e2 β.

with the same initial state (rE0 , q0) and

τ̃N = inf

{
t > 0 :

Q̃N (Nt)

N
≤ η1

}

Since β > λ,
(
Q̃N (t)

)
represents a transient M/M/1 queue, thus we have:

If η1, η2 are chosen such that η1<q0<η2 with η2/η1 ≤ β/λ, then, for the con-
vergence in distribution

lim
N→+∞

(
Q̃N (Nt)

N
,

∫ t

0

R̃N (Ns)ds

)
=

(
q0 +

(
β − η2

η1
λ

)
t,

λ

αη1
t

)
(4.7)

and for any T ≥ 0
lim

N→+∞
P (τ̃N ≤ T ) = 0
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Therefore, we can prove the couplings

REN (t) ≤ R̃N (Nt) and Q̃N (Nt) ≤ QN (t) (4.8)

for all t ≤ T on the event {τ̃N ∧ τN > T}.
From all this, we prove the convergence in distribution

lim
N→+∞

(
QN (t)

N

)
= (q0 + (β − λ)t)

In fact, firstly, since (QN (t)) increases at rate at most βN , we can find t0< (η2 − q0) /β
such that

lim
N→+∞

P (τN ≤ t0) = 0

Now we define the occupation measure

〈µN , f〉 =

∫ t0

0

f
(
s,REN (s)

)
ds

(µN ) is tight for the convergence in distribution.
For K > 0, with Relation (4.8), we get∫ t0

0

P
(
REN (s) ≥ K

)
ds ≤ t0 (P (τN ≤ t0) + P (τ̃N ≤ t0)) +

∫ t0

0

P
(
REN (s) ≥ K, τN ∧ τ̃N ≥ t0

)
ds

≤ t0 (P (τN ≤ t0) + P (τ̃N ≤ t0)) +

∫ t0

0

P
(
R̃ (Ns) ≥ K

)
ds

We then prove the tightness of the sequence (QN (t)/N, t ≤ t0), actually,

QN (t)
def
=

QN (t)

N
=
QN (0)

N
+
MQ,N (t)

N
+ βt− α

∫ t

0

REN (s)
QN (s)

N
ds

wN (δ) = sup
0≤s≤t
|t−s|≤δ

∣∣QN (t)−QN (s)
∣∣

For η > 0, we take δ such that βδ < η/3, then the couplings in Relation (4.8),
give the relation

P (wN (δ) ≥ η) ≤ P (τN ≤ t0) + P (τ̃N ≤ t0)

+ P
(

sup
s≤t0
|MN (s)| ≥ η

6
, τN ∧ τ̃N ≥ t0

)
+ P

 sup
0≤s≤t
|t−s|≤δ

αη2

∫ t

s

R̃(Nu)du ≥ η

3


Relation (4.7) and the convergence of the martingale (MN (t ∧ τN ∧ τ̃N )/N), to
0 give the required tightness property.

From there, by looking at the choice of η1 and η2, we prove the desired
convergence in distribution on the time interval [0, 1/λ). One can proceed by
induction to establish the convergence on R+.
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4.6.1 Tightness Properties
Proposition 52. Under conditions (4.3) and (4.15), the sequence of processes(

R
M,c

N (t)
)
,
(
R
S,c

N (t)
)
and

(
V
c

N (t)
)

are tight for the convergence in distribution.

Proof. Same method as in the proof of proposition 59.

We denote their limits, resp.(
rM (t)

)
,
(
rS(t)

)
and (v(t))

Proposition 53. Under conditions (4.3) and (4.15), and if µc∞ is a limiting
point of µcN , then for any t < tc0 and any continuous function g on N2, we have

lim
N→+∞

(∫ t

0

g
(
REN (s), RFN (s)

)
ds

)
=

∫ t

0

E
(
g

(
N1

(
0,

λrM (s)

α(cq − v(s))

)
,N2

(
0,

(λ− η)rM (s)) + η

γv(s) + δ(cm − rM (s))

))
ds

)
(4.9)

where N1 and N2 are two Poisson processes on R+ with rate 1.

Proof. Same method as in the proof of proposition 63.

4.6.2 Saturation of Q
The objective of this section is to prove that under the conditions β > λ, the
charged tRNAs are saturated. We will prove that there exists T > 0 such that
for t ≥ T , (

QN (t)

N

)
D−→ (cq) (4.10)

Since our study is done on [0, τNQ (c)), there exists δ0 > 0 such that

VN (t)
def
= CNq −QN (t) < δ0N

where δ0 = cq−c.
We have,

= FN (t) +RN (t)

where

FN (t) =
V cN (0)

N
+
MN (t)

N
+ α

∫ t

0

CNq − V cN (s)

N
RE,cN (s)ds− βt

RN (t) = β

∫ t

0

1{V cN (s)=0}ds
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Referring to the convergence in distribution in Proposition 53, we have

(FN (t))
D−→ (f(t))

where

f(t) = v0 + λ

∫ t

0

rM (s)ds− βt

and v0 = lim
N→∞

ṼN (0)
N .

Since rM (s) < 1 ∀s and β > λ, we get

f(t) ≤ v0 + (λ− β)t

The couple
(
V cN (t)
N , RN (t)

)
is the solution of the Skorokhod problem associated

to the free process (FN (t)).
We have, the convergence of the process

(
V cN (t)
N , RN (t)

)
to (f(t)+, f(t)−) where

for a ∈ R, a+ = max(a, 0) and a− = max(−a, 0).
Thus,

lim
N→∞

ṼN (t)

N
≤ (v0 + (λ− β)t)+

and since β > λ, there exists T such that for all t ≥ T , (v0 + (λ− β)t)+ = 0.
Finally, Q is saturated.

As a consequence, we get the corollary.

Corollary 54. There exists T>0 such that for all t≥T , the convergence of
distribution below holds,

lim
N→+∞

(∫ t

0

g
(
REN (s), RFN (s)

)
ds

)
=

∫ t

0

E
(
g

(
N1

(
0,
λrM (s)

αcq

)
,N2

(
0,

(λ− η)rM (s)) + η

δ(cm − rM (s))

))
ds

)
(4.11)

where N1 and N2 are two Poisson processes on R+ with rate 1.

Theorem 55 (Law of Large Numbers). Under conditions (4.3), and (4.15),
this convergence in distribution holds.

lim
N→+∞

(
RMN (t)

N

)
=
(
rM (t)

)
where

(
rM (t)

)
) is the solution of the ODE

drM

dt
(t) = η − ηrM (t) (4.12)

Thus, we get the equilibrium point for
(
rM (t)

)
,

rM∞ = 1
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Proof. Same method as in the proof of theorem 65.

At equilibrium, all ribosomes are observed to be in the initiation phase,
signifying that under regular conditions, they are actively involved in the trans-
lation process. There is no sequestration or blocking of ribosomes in the elon-
gation phase. This state represents the normal activity of the cell without any
constraints. In other words, in the absence of external limitations, the cell’s
ribosomes are fully occupied and productively engaged in translation, reflecting
the standard functioning state of the cell.

4.7 Maximal Sequestration in the Deficiency of
Amino Acids

Throughout this section, conditions (4.6) hold. In the context of amino acid
starvation, a protein known as RelA is expected to initiate a stringent response
by producing (p)ppGpp, which leads to the inhibition of translation. This pro-
cess is implicitly represented in our model through the sequestration component,
resulting in a substantial number of sequestered ribosomes. However, we are in-
terested in understanding the effects of maximal sequestration on the quantity
of deficient amino acids, as represented in our model by the charged tRNAs,
and the number of ribosomes in the elongation phase awaiting these deficient
amino acids.

The objective of this section is twofold: first, to analyze the sequestration
process by focusing on the time evolution of the number of sequestered ribosomes(
RSN (t)

)
, and second, to address the question regarding the evolution of the

number of deficient amino acids under conditions of maximal sequestration by
investigating the time evolution of the process (QN (t)).

Definition 56. The scaled process is defined by(
XN (t)

)
=
(
RFN (t), R

N

M (t), R
S

N (t), QN (t)
)
, (4.13)

with

R
M

N (t) =
RMN (t)

N
, R

S

N (t) =
RSN (t)

N
, QN (t) =

QN (t)

N
.

If g is non-negative Borelian function on R+×N2, we define the occupation
measure

〈µN , g〉
def
=

∫
R+

g(s,REN (s), RFN (s))ds. (4.14)

The following initial conditions will be assumed,

REN (0) = rE0 ∈ N , RFN (0) = rF0 ∈ N,

lim
N→∞

RMN (0)

N
= rM0 , lim

N→∞

QN (0)

N
= q0,

(4.15)
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with rM0 < 1 and q0 ∈ (0, cq).
And the number of sequestered ribosomes RSN (0) is therefore such

lim
N→∞

RSN (0)

N
= 1− rM0 .

Before proving the convergence of the sequence of processes
(
XN (t)

)
, we

analyze the convergence of a "stopped" version of it. In several technical argu-
ments we will first need to have that the fraction of charged tRNAs is not too
small. A second step is of showing that, essentially, the stopped process does
not differ from the original process.

Definition 57. For c > 0, the stopping time τNQ (c) is defined by

τNQ (c)
def
= inf {t > 0;QN (t) ≤ cN} (4.16)

and

a. If (W (t)) is a càdlàg process, we denote (W c
N (t)) =

(
W
(
N
(
t ∧ τNQ (c)

)))
;

b. The "stopped" occupation measure µcN is defined by, if g is non-negative
Borelian function on R+×N2,

〈µcN , g〉
def
=

∫ τNQ (c)

0

g(s,RE,cN (s), RF,cN (s))ds

With a slight abuse, the notation
(
W

c

N (t)
)

=
(
W c
N (t)
N

)
will be used in the

following.

4.7.1 Technical Lemmas
The two processes

(
REN (t)

)
and

(
RFN (t)

)
are in fact in a neighborhood of 0

quickly. They will be the fast processes of our averaging principle. In state
REN = rE , RFN = rF , RMN = rM and QN = q, the jump rates of the processes(
REN (t)

)
and

(
RFN (t)

)
are respectively{

+1 λrM ,

−1 αrEq.{
+1 η(N−rF−rM−rE) + αrEq

−1
(
δ
(
CNm − rM

)
+ γ

(
CNq − q

))
rF .

For N sufficiently large and up to time τNQ (c), a simple coupling shows that
there exist independent processes (Y (t)) and (Z(t)) such that

REN (t) ≤ Y (Nt) and RFN (t) ≤ Z(Nt) (4.17)

holds.
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— The process (Y (t)) is a birth and death processes on N whose Q-matrix
is given by

q(y, y + 1) = λ and q(y, y − 1) = αc

— The process (Z(t)) is a birth and death processes on Nwhose Q-matrix is
given by

q(z, z + 1) = κ0 and q(z, z − 1) = δaz with κ0 > 0

It is not difficult to prove that the hitting time of (0, 0) by (Y (t), Z(t)) is of
the order of ln(N) so that conditions (4.15) can be assumed. See Chapter 6 of
Robert [61].

Conjecture 58. Under Conditions (4.6), and (4.15), there exist tc0 > 0 such
that

lim
N→+∞

P
(
τNQ (c) < tc0

)
= 0

We will adopt this assumption as it is essential for proving the tightness
properties of the processes as it will be seen in the next section.

4.7.2 Tightness Properties
Proposition 59. Under Conditions (4.6), and (4.15) and Conjecture 58, the
sequences of processes(

R
M,c

N (t)
)
,
(
R
S,c

N (t)
)
, and

(
Q
c

N (t)
)

are tight for the convergence in distribution.

Proof. (Modulus of continuity.) We will establish the tightness specifically for
the process

(
R
M,c

N (t)
)
, and the identical method will be employed to demon-

strate the tightness of the other processes.

RM,c
N (t)

N
=
RMN (0)

N
+
MN (t)

N
+ δ

∫ t

0

RF,cN (s)
CNm−R

M,c
N (s)

N
ds− λ

∫ t

0

RM,c
N (s)

N
ds

The increasing process is given by:〈
MN (t)

N

〉
= δ

∫ t

0

RF,cN (s)
CNm −R

M,c
N (s)

N2
ds+ λ

∫ t

0

RM,c
N (s)

N2
ds

By using the coupling (4.17), and since (E(Z(u))) converges as u goes to infinity,
we have

lim
N→∞

E
(〈

MN (t)

N

〉)
= 0
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Doob’s Inequality shows then the convergence of
(
MN (t)
N

)
to 0. Thus we have

this inequality of the modulus of continuity:

wN (δ0)
def
= sup

0≤u,v≤t
|u−v|≤δ0

∣∣∣∣∣RM,c
N (u)−RM,c

N (v)

N

∣∣∣∣∣ ≤ sup
0≤u,v≤t
|u−v|≤δ0

∣∣∣∣MN (u)−MN (v)

N

∣∣∣∣
+ δ sup

0≤u,v≤t
|u−v|≤δ0

∣∣∣∣∣
∫ v

u

RF,cN (s)
CNm −R

M,c
N (s)

N
ds

∣∣∣∣∣
+ λ sup

0≤u,v≤t
|u−v|≤δ0

∣∣∣∣∣
∫ v

u

RM,c
N (s)

N
ds

∣∣∣∣∣
By using the couplings (4.17) and the convergence in distribution of the martin-
gale, we get for all η > 0, ε > 0, there exists δ0 such that P(wN (δ0) ≥ η) ≤ ε for
N sufficiently large. As a result, we observe the convergence of sub-sequences,
and due to the uniqueness of the limit, this proposition is proved.

We denote their limits, resp.(
rM (t)

)
,
(
rS(t)

)
=
(
1− rM (t)

)
and (q(t))

Proposition 60. Under the conditions of Proposition 59, the sequence of measure-
valued processes (µcN ) on the state space [0, tc0)×N2 is tight for the convergence
in distribution and any limiting point µc∞ can be expressed as,

〈µc∞, f〉 =

∫
[0,tc0)×N2

f(s, y, z)πcs(dy, dz)ds, (4.18)

for any function f with compact support on [0, tc0)×N2, where (πcs) is an optional
process with values in P

(
N2
)
.

Proof. Note that, for K > 0 and t < tc0, since∫ t

0

1{RFN (s)≥K}ds =

∫ t

0

1{RF,c,dN (s)≥K}ds

holds on the event
{
τNQ (c) ≥ tc0

}
, then

E (µcN ([0, tc0]×N×[K,+∞[))

≤ E

(
1{τNQ (c)≥tc0}

∫ tc0

0

1{RF,cN (s)≥K}ds

)
+ tc0P

(
τNQ (c) < tc0

)
,

and with Relation (4.17) and Conjecture 58, we have

E

(
1{τNQ (c)≥t0}

∫ tc0

0

1{RF,cN (s)≥K}ds

)

≤
∫ tc0

0

P (Z(s) ≥ K) ds =
1

N

∫ Ntc0

0

P (Z(s) ≥ K) ds,
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since the Markov process (Z(t)) converges in distribution to a Poisson distri-
bution with parameter δa/κ0, the ergodic theorem for Markov processes and
Conjecture 58 give therefore the inequality

lim sup
N→+∞

E (µcN ([0, tc0]×N×[K,+∞[)) ≤ tc0P (N1 (0, δa/κ0) ≥ K)

where N1 is a Poisson process on R+ with rate 1. One can choose K sufficiently
large such that E (µcN ([0, tc0]×N×[K,+∞[)) is arbitrarily small uniformly in N .
Similarly, by replacing

(
RFN , Z

)
by
(
RE , Y

)
, the same property can be proved

for E (µcN ([0, tc0]×[K,+∞[×N)) for K and N sufficiently large. Therefore, for
any ε > 0, there exists some K0 such that

sup
N

E
(
µcN
(
[0, tc0]×[0,K0]2

))
≥ (1− ε)tc0

Lemma 1.3 of Kurtz [45] shows that the sequence (µcN ) is tight, and Lemma 1.4
of the same reference give the representation (4.18).

Proposition 60 has established tightness properties of (µcN ). The following
lemma extends this result in terms of the convergence of stochastic processes.
It will be used repeatedly, in particular to identify the possible limits of (µcN ).

Lemma 61. Under the conditions of Proposition 59, if
(
µcNk

)
is a subsequence

converging to µc∞ satisfying relation (4.18), then for any g ∈ Cc
(
N2
)
, for the

convergence in distribution of processes associated to the uniform norm,

lim
k→+∞

∫ t

0

(
g
(
RE,cN (s), RF,cN (s)

)
ds
)

=

(∫ t

0

∫
N2

g(y, z)πs(dy, dz)ds

)
Proof. The tightness of the sequence of stochastic processes is obtained by the
use of the criterion of the modulus of continuity. See Theorem 7.3 of Billings-
ley [10]. The identification if the limit is straightforward consequence of the
convergence of (µcN ).

In the following, we will denote by (WN (s)) the sequence
(
REN (s), RFN (s)

)
.

We have
1

N
f (WN (t)) =

f (WN (0))

N
+
Mf,N (t)

N

+ λ

∫ t

0

∇e1(f) (WN (s))
RMN (s)

N
ds

+ α

∫ t

0

∇−e1+e2(f) (WN (s))REN (s)
QN (s)

N
ds

+ δ

∫ t

0

∇−e2(f) (WN (s))
CNm −RMN (s)

N
RFN (s)ds

+ γ

∫ t

0

∇−e2(f) (WN (s))
CNq −QN (s)

N
RFN (s)ds

+ η

∫ t

0

∇e2(f) (WN (s))
RSN (s)

N
ds

(4.19)
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with the notation, for (y, z) ∈ N2, and u, v ∈ N

∇u,v(f)(y, z)
def
= f(y + u, z + v)− f(y, z)

and for 1 ≤ j ≤ 2, ej is the jth unit vector of R2.
And

(
Mf,N (t)

N

)
is a local martingale and its previsible increasing process is

given by〈
Mf,N

N

〉
(t) =

λ

N

∫ t

0

∇e1(f) (WN (s))
2 R

M
N (s)

N
ds

+
α

N

∫ t

0

∇−e1+e2(f) (WN (s))
2
REN (s)

QN (s)

N
ds

+
δ

N

∫ t

0

∇−e2(f) (WN (s))
2 C

N
m −RMN (s)

N
RFN (s)ds

+
γ

N

∫ t

0

∇−e2(f) (WN (s))
2 C

N
q −QN (s)

N
RFN (s)ds

+
η

N

∫ t

0

∇e2(f) (WN (s))
2 R

S
N (s)

N
ds

(4.20)

Lemma 62. Under the conditions of Proposition 59, if f is a continuous
bounded function on N2, then the martingale

(
Mf,N (t)

N , t<tc0

)
of Relation (4.19)

converges in distribution to 0.

Proof. We take care of one of the five terms of (〈Mf,N/N〉 (t)) of Relation (4.20),
the arguments are similar for the others, even easier.

AN (t)
def
=

α

N

∫ t

0

∇−e1+e2(f) (WN (s))
2
REN (s)ds

QN (s)

N
ds

By using the coupling (4.17), and since (E(Y (u))) converges as u goes to infinity,
we have

lim
N→∞

E
(〈

Mf,N

N

〉
(t)

)
= 0

Doob’s Inequality shows then the convergence of (Mf,N (t)/N, t<tc0) to 0. The
lemma is proved.

Proposition 63. Under the conditions of Proposition 59, and if µc∞ is a limit-
ing point of µcN with the representation (4.18) of Proposition 60, then, for any
t<tc0 and any continuous function g on N2, we have∫ t

0

∫
N2

g(y, z)πs(dy, dz)ds

=

∫ t

0

E
(
g

(
N1

(
0,
λ

α

rM (s)

q(s)

)
,N2

(
0,

(λ− η)rM (s) + η

δ (cm − rM (s)) + γ (cq − q(s))

)))
ds

(4.21)
where N1, N2 and N3 are three independent Poisson processes on R+ with rate
1.
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Proof. Referring to relation (4.19), and by using Lemmas 61 and 62 and Relation
(4.17) and the convergence of the martingale to 0, we get:∫ t

0

∫
N2

λrM (s)∇e1(f)(y, z) + α∇−e1+e2(f)(y, z)q1(s)y

+∇−e2(f)(y, z)
(
δ(cm − rM (s)) + γ(cq − q(s))

)
z

+ η∇e2(f)(y, z)(1− rM (s))πs(dx, dy, dz)ds = 0

Consequently, for almost all t, the relation∫
N2

Ω(f)(y, z)πt(dy, dz) = 0

holds.
Thus, πt(dy, dz) is the invariant distribution associated to the Q−matrix Ω.
However, Ω is the jump matrix of two birth and death processes (U1(t)) and
(U2(t)) with parameters λ

α
rM (s)
q1(s)

for (U1(t)) and

(λ− η)rM (s) + η

δ (cm − rM (s)) + γ (cq − q(s))

for (U2(t)). The proposition is proved.

Proposition 64. Under the conditions of Proposition 59, for the convergence
in distribution

lim
k→+∞

(∫ t

0

RENk(s)ds, t < tc0

)
=

(∫ t

0

λ

α

rM (s)

q(s)
ds, t < tc0

)
lim

k→+∞

(∫ t

0

RFNk(s)ds, t < tc0

)
=

(∫ t

0

(λ− η)rM (s) + η

δ(cm − rM (s)) + γ(cq − q(s))
ds, t < tc0

)
Proof. For 0 ≤ s ≤ t, the coupling (4.17) and Cauchy-Schwartz’ Inequality give

E

((
1{τNQ (c)>t}

∫ t

s

RE,cNk
(s)ds

)2
)
≤ (t− s)E

(
1{τNQ (c)>t}

∫ t

s

RE,cNk
(s)2ds

)
≤ (t− s)E

(∫ t

s

Y (Ns)2ds

)
≤ (t− s)2sup

u≥0
E
(
Y (u)2

)
.

Therefore, according to the Kolmogorov-Centsov’s criterion, the sequence of
stochastic processes (∫ t

0

RENk(s)ds, t < tc0

)
is tight for the convergence in distribution.
For K > 0, proposition 63 gives the convergence in distribution

lim
k→+∞

(∫ t

0

RENk(s)∧Kds, t < tc0

)
=

(∫ t

0

E
(
N1

(
0,
λ

α

rM (s)

q(s)

)
∧K

)
ds, t < tc0

)
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By using Relation (4.17), we have

E

(∫ tc0

0

RFNk(s)1{
RFNk

(s)≥K
}ds
)
≤ E

(∫ tc0

0

Y (Nks)1{Y (Nks)≥K}ds

)

and the convergence in distribution of (Y (t)), as t goes to infinity, to Y (∞) a
random variable with a Poisson distribution with parameter λ

αc give

lim
k→+∞

E

(∫ tc0

0

Y (Nks)1{Y (Nks)≥K}ds

)
= tc0E

(
Y (∞)1{Y (∞)≥K}

)
.

It is then easy to obtain the first convergence by letting K go to infinity. And
same method for

(∫ t
0
RFNk(s)ds, t < tc0

)
.

The proposition is proved.

Theorem 65 (Law of Large Numbers). Under the conditions of Proposition 59,
the following convergence in distribution holds,

lim
N→+∞

(
QN (t)

N
,
RMN (t)

N

)
=
(
q(t), rM (t)

)
,

where (q(t)) (resp.
(
rM (t)

)
) is the solution of the ODE

dq1
dt

(t) = β − λrM (t) (4.22)

drM

dt
(t) = −λrM (t)

+
δ(cm − rM (t))

δ(cm − rM (t)) + γ (cq − q(t))
(
η + rM (t)(λ− η)

) (4.23)

Using relation (4.22), we get the equilibrium point for
(
rM (t)

)
,

rM∞ =
β

λ

If rM0 <rM∞ then rM (t)≥rM0 for all t≥0, and if rM0 ≥rM∞ then rM (t)≥rM∞ for all
t≥0. Hence, we can extend our analysis for all t≥0.

We observe that the equilibrium point of
(
rS(t)

)
in this model coincides

with the equilibrium point of
(
rE(t)

)
in the section 4.9 where sequestration was

not present. As a result, the maximal sequestration has effectively relocated all
ribosomes that were blocked in elongation phase to become sequestered ribo-
somes.

And by replacing rM∞ in relation (4.23) by its value, we get

q∞ = cq − S > 0
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where S defined by relation (4.2).
That means, that the role of maximum sequestration is not only about "unblock-
ing" ribosomes in Elongation phase but also to control the number of charged
tRNAs and to keep it as large as possible.

This indicates that maximal sequestration reduces the number of ribosomes
blocked during translation, leading to a decrease in potential errors in protein
production (see O’Farrell [55]). Moreover, it regulates the quantity of empty
tRNAs, facilitating a gradual return of cellular activity to its usual state.

4.8 Partial Sequestration in the Deficiency of Amino
Acids

Conditions (4.5) now hold. In this section, all propositions are demonstrated
using the same approach as in the preceding section 4.7.

Definition 66. The scaled process is defined by(
XN (t)

)
=
(
R
N

M (t), R
E

N (t), R
S

N (t), QN (t)
)
. (4.24)

If g is non-negative Borelian function on R+×N2, we define the occupation
measure

〈µN , g〉
def
=

∫
R+

g(s,QN (s), RFN (s))ds. (4.25)

The following initial conditions will be assumed,

QN (0) = q0 ∈ N , RFN (0) = rF0 ∈ N,

lim
N→∞

RMN (0)

N
= rM0 , lim

N→∞

REN (0)

N
= rE0 .

(4.26)

with rM0 +rE0 < 1 and q0 ∈ (0, cq).
And the number of sequestered ribosomes RSN (0) is therefore such

lim
N→∞

RSN (0)

N
= 1− rM0 − rE0 .

As it will be seen in Section 4.28, there is no loss of generality to consider
these initial conditions.

As in Section 4.7, before proving the convergence of the sequence of processes(
XN (t)

)
, we analyze the convergence of a "stopped" version of it. In several

technical arguments we will need that the number of ribosomes in the elongation
phase waiting an amino acid is not too small. A second step is of showing that,
essentially, the stopped process does not differ from the original process.

Definition 67. For b > 0, we define the stopping time τNRE (b) as

τNRE (b)
def
= inf

{
t > 0;REN (t) ≤ bN

}
(4.27)

and
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a. If (W (t)) is a càdlàg process, we denote
(
W b
N (t)

)
=
(
W
(
N
(
t ∧ τNRE (b)

)))
;

b. The "stopped" occupation measure µbN is defined by, if g is non-negative
Borelian function on R+×N2,

〈
µbN , g

〉 def
=

∫ τN
RE1

(b)

0

g(s,QbN (s), RF,bN (s))ds

With a slight abuse, the notation
(
W

b

N (t)
)

=
(
W b
N (t)
N

)
will be used in the

following.

4.8.1 Technical Lemmas
The two processes (QN (t)) and

(
RFN (t)

)
are in fact in a neighborhood of 0

quickly. They will be the fast processes of our averaging principle. In state
REN = rE , RFN = rF , RMN = rM and QN = q, the jump rates of the processes(
RFN (t)

)
are as represented in Section 4.7.1. And the jump rates of the process

(QN (t)) are {
+1 βN1{q<CNq },
−1 αrEq.

Same as in Section 4.7.1, for N sufficiently large and up to time τNRE (b), a
simple coupling shows that there exist birth and death processes (X(t)) and
(Z(t)) such that

Q1,N (t) ≤ X(Nt) and RFN (t) ≤ Z(Nt) (4.28)

holds.

Conjecture 68. Under Conditions (4.5), and (4.26), there exist tb0 such that

lim
N→+∞

P
(
τNRE (b) < tb0

)
= 0

4.8.2 Tightness Properties
Proposition 69. Under Conditions (4.5), and (4.26) and Conjecture 68, the
sequences of processes(

R
M,b

N (t)
)
,
(
R
E,b

N (t)
)
and

(
R
S,b,c

N (t)
)

are tight for the convergence in distribution.

Proof. Same method as in the proof of proposition 59.

We denote their limits, resp.(
rM (t)

)
,
(
rE(t)

)
, and

(
rS(t)

)
=
(
1− rM (t)− rE(t)

)
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We establish the tightness of the occupation measure and represent its limit
using the same arguments presented in the previous section. Additionally, we
prove the convergence in distribution of the sequence of processes in the following
propositions.

Proposition 70. Under the conditions of Proposition 69, the sequence of measure-
valued processes

(
µbN
)
on the state space [0, tb0)×N2 is tight for the convergence

in distribution and any limiting point µc∞ can be expressed as,〈
µb∞, f

〉
=

∫
[0,tb0)×N2

f(s, y, z)πbs(dy, dz)ds, (4.29)

for any function f with compact support on [0, tb0)×N2, where
(
πbs
)
is an optional

process with values in P
(
N2
)
.

Proof. Same method as in the proof of proposition 60.

Proposition 71. Under the conditions of Proposition 69, and if µb∞ is a lim-
iting point of µbN , then, for any t<tb0 and any continuous function g on N2, we
have

lim
N→+∞

(∫ t

0

g
(
QbN (s), RF,bN (s)

)
ds

)
=

∫ t

0

E
(
g

(
N1

(
0,

β

αrE(s)

)
,N2

(
0,
η(1− rM (s)− rE(s)) + β

δ(cm − rM (s)) + γcq

)))
ds

(4.30)
where N1 and N2 are three independent Poisson processes on R+ with rate 1.

Proof. Same method as in the proof of proposition 63.

Theorem 72 (Law of Large Numbers). Under the conditions of Proposition 69,
the following convergence in distribution holds,

lim
N→+∞

(
REN (t)

N
,
RMN (t)

N

)
=
(
rE(t), rM (t)

)
where

(
rE(t)

)
(resp.

(
rM (t)

)
) is the solution of the ODE

drE

dt
(t) = λrM (t)− β (4.31)

drM

dt
(t) = −λrM (t) + 1+δ

β + η(1− rM (t)− rE(t))

δ(cm − rM (t)) + γcq
(4.32)

Proof. Same method as in the proof of theorem 65.

Using relation (4.31), we get the equilibrium point for
(
rM (t)

)
,

rM∞ =
β

λ
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So it is the same equilibrium point as in the model without sequestration in
section 4.9.
And by replacing rM∞ in relation (4.32) by its value and using that rS∞ =
1− rM∞−rE∞, we can find the value of rS∞ > 0.
Finally, rE∞ = 1−rM∞−rS∞ < 1−rM∞ , we notice that it is smaller than the one
found in the model without sequestration represented in Section 4.9. What
shows that the regulation decreases the number of "blocked" ribosomes in elon-
gation.

4.9 Regulation-independent deficiency of amino
acids

In this section, our focus will be on investigating the model in the absence of
sequestration but with a deficiency of amino acids. This allows us to understand
the cellular behavior when the regulatory mechanism is not in effect. To achieve
this, we will first introduce the model representation, and then we will present
the results obtained using the same methodology as in the previous section 4.7.

4.9.1 Model

RF RM RE

Free Initiation Elongation

δRF (CNm−RM ) λRM

αREQ

Q ∅

αREQ

βN1{Q<CNq }

Charged tRNAs

Figure 4.4: Ribosomes: Translation without Sequestration

Conditions (4.4) hold throughout this section.

Definition 73. The scaled process is defined by(
XN (t)

)
=
(
R
N

M (t), R
E

N (t), QN (t)
)
. (4.33)
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If g is non-negative Borelian function on R+×N2, we define the occupation
measure

〈µN , g〉
def
=

∫
R+

g(s,QN (s), RFN (s))ds. (4.34)

The following initial conditions will be assumed,

QN (0) = q0 ∈ N , RFN (0) = rF0 ∈ N,

lim
N→∞

RMN (0)

N
= rM0 ,

(4.35)

with rM0 < 1 and q0 ∈ (0, cq).
And the number of ribosomes in elongation phase waiting an amino acid,

REN (0) is therefore such

lim
N→∞

REN (0)

N
= 1−rM0 .

Similar to section 4.8, we will examine the convergence of a "stopped" version
of the model. We will sketch the method used. By defining the same stopping
time used in section 4.8(Definition 67) and couplings of the type (4.28) are
proved, as well as an analog of Conjecture 68, with the same method, in this
section.

4.9.2 Tightness Properties
Conjecture 74. Under Conditions (4.4) and (4.35), the sequences of processes(

R
M,b

N (t)
)
and

(
R
E,b

N (t)
)

are tight for the convergence in distribution.

We denote their limits, resp.(
rM (t)

)
and

(
1− rM (t)

)
Additionally, we get the convergence in distribution of the sequence of pro-

cesses in the following proposition.

Proposition 75. Under Conjecture 74, and if µb∞ is a limiting point of µbN ,
then, for any t<tb0 and any continuous function g on N2, we have

lim
N→+∞

(∫ t

0

g
(
QbN (s), RF,bN (s)

)
ds

)
=

∫ t

0

E
(
g

(
N1

(
0,

β

α(1− rM (s))

)
,N2

(
0,

β

δ(cm − rM (s))

)))
ds

(4.36)
where N1 and N2 are three independent Poisson processes on R+ with rate 1.

Proof. Same method as in the proof of proposition 63.
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Theorem 76 (Law of Large Numbers). Under the conditions of Proposition 75,
the following convergence in distribution holds,

lim
N→+∞

(
RMN (t)

N

)
=
(
rM (t)

)
where

(
rM (t)

)
is the solution of the ODE

drM

dt
(t) = β − λrM (t) (4.37)

rM (t) =

(
rM0 −

β

λ

)
e−λt +

β

λ

Proof. Same method as in the proof of Theorem 65.

Using relation (4.37), we get the equilibrium point for
(
rM (t)

)
,

rM∞ =
β

λ

4.10 Generalizing Results to a Model with Mul-
tiple Amino Acids

In this chapter, we proved our results using a simplified model with only one
amino acid for clarity and ease of understanding. However, all the results ob-
tained from this one amino acid model can be extended to the more complex
model introduced in the beginning 4.4.2, which involves two types of amino
acids.
By doing so, the results discussed in the previous sections on the model with
one amino acid, along with their interpretation concerning the impact of seques-
tration on ribosome distribution, can be applied to the model with two amino
acids, with scenarios involving deficient amino acids. The same methods em-
ployed to prove the earlier results can be effectively used in this case in order
to prove the outcomes in Section 4.3.4 concerning the model with two types of
amino acids.

The only distinction lies in a few definitions that we are about to present.

Definition 77. — For i, j ∈ {1, 2}, with i6=j we define Bi as

Bi
def
=

(αi + ψi + νi)(λiαj + λiψj + λjψj)

αiαj + αiψj + αjψi

Bi interpreted as the maximal consumption rate of amino acids of type i.

— We also introduce C as

C def=
B1
β1

ηδ
(

1− β1

B1

)(
cm− β1

B1

)
γ1(λ1+λ2)

(4.38)

C interpreted as the maximal sequestration rate.
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In the model with 1 amino acid : B1 = λ.
We can now introduce the four regimes of interest in our study.

Definition 78. a. The regime of Adequate supply of amino acids is defined
by the relations

βi > Bi, ∀i ∈ {1, 2} (4.39)

The production rate βi of amino acids of type i is greater than its con-
sumption rate.

b. The regime of Regulation independent deficiency of type 1 amino acids is
defined by the relations

β1 < B1
β2 > B2

(4.40)

The production rate β1 of amino acids of type 1 is less than its consumption
rate and the production rate β2 of amino acids of type 2 is greater than
its consumption rate.

c. The regime of Partial Sequestration in the deficiency of type 1 amino acids
is defined by the relations

β1 < B1
β2 > B2
cq,1 < C

(4.41)

Same conditions (4.40) with the fraction of tRNAs of the lacking amino
acid less than the maximal sequestration rate.

d. The regime of Maximal Sequestration in the deficiency of type 1 amino
acids is defined by the relations

β1 < B1
β2 > B2
cq,1 > C

(4.42)

Same conditions (4.40) with the fraction of tRNAs of the lacking amino
acid less than the maximal sequestration rate.

The generalization of our results to this comprehensive model is a significant
step towards a more comprehensive understanding of the intricate dynamics
underlying a translational regulation mechanism and its implications for protein
synthesis.
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