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RÉSUMÉ EN FRANÇAIS

Motivations

Dans le contexte d’un climat en évolution, le suivi des changements de
notre environnement est un aspect critique de notre capacité à réagir et à nous
adapter. Les océans sont des systèmes physiques régis par des dynamiques
connues mais chaotiques, ce qui rend l’utilisation de données d’observation
essentielle pour surveiller leur état. Notre capacité de surveillance dépend donc
à la fois des systèmes d’observation déployés et de notre capacité à exploiter
les données d’observation.

Depuis plusieurs décennies, les altimètres NADIR satellitaires ont consid-
érablement amélioré nos capacités d’observation en fournissant une couverture
mondiale de la hauteur de la surface de la mer (SSH). Cependant, en raison du
prélèvement rare et irrégulier des constellations d’altimétrie, les produits opéra-
tionnels actuels ne fournissent que des informations limitées sur les phénomènes
aux petites échelles. La figure 1 montre les échelles approximatives des pro-
cessus d’intérêt en altimétrie et la limite des capacités d’observation d’une
seule constellation d’altimétrie. Ces processus liés à la dynamique méso et
sous-mésoéchelle de la surface de l’océan jouent un rôle important dans la
redistribution de la chaleur dans l’océan, ce qui a des implications pour la
surveillance du climat.
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Figure 1 – Échelles des processus océaniques. Crédits à Dudley B. Chelton.
Illustration de la variété des processus d’intérêt pour l’altimétrie, affichés en
fonction de leurs échelles spatiales et temporelles. Les lignes pointillées indiquent
les limites d’observation lors de l’utilisation de données altimétriques uniques.
(Phénomènes observés dans la section supérieure droite)

Cette thèse s’inscrit dans le contexte de la mission Surface Water Ocean
topography (SWOT)[1], qui présente des opportunités pour améliorer nos
capacités d’observation des océans. La figure 2 montre un exemple simulé pour
illustrer l’impact des observations de la mission SWOT. Le capteur Ka-band
Radar Interferometer (KaRIn) fournira les images bidimensionnelles de la
topographie de la surface de la mer comme illustré, mais introduira également
des défis d’étallonage [2] en raison d’erreurs jamais vues auparavant.

Ce manuscrit se concentre sur le développement de méthodes d’exploitation
d’observations de SSH satellitaires afin d’améliorer nos connaissances sur

6



Simulated daily SSH on 2013-01-12

Simulated Nadir altimetry data 
from 2013-01-10 to 2013-01-16

Simulated SWOT and Nadir altimetry data 
from 2013-01-10 to 2013-01-16

Figure 2 – Contexte de l’altimetrie. La figure du haut affiche un exemple
de SSH moyen sur l’Atlantique Nord issu de la simulation NATL60. La rangée
du bas illustre l’impact observation du satellite SWOT.

la dynamique de la surface de l’océan. Plus précisément, nous cherchons à
savoir comment les progrès en apprentissage profond peuvent être bénéfiques à
l’analyse de l’altimétrie océanique.

La recherche sur l’apprentissage profond fournit un ensemble d’outils en
évolution rapide qui ont été appliqués avec succès à une large gamme de
domaines, surpassant les méthodes existantes et réussissant dans des problèmes
auparavant non résolus.

Cette thèse vise à étudier le potentiel des outils apportés par le domaine
de l’apprentissage profond pour relever les défis de l’observation océanique.

En apprentissage profond, les architectures existantes utilisées pour l’incrustation
vidéo[3] et le débruitage d’images[4, 5, 6] résolvent des tâches formellement
similaires à la cartographie et à la calibration de l’altimétrie. L’universalité
de ces modèles peut potentiellement améliorer les méthodes existantes en
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capturant des processus liés à la dynamique océanique et aux observations qui
sont difficiles à formuler formellement.

L’application de ces modèles à l’altimétrie introduit cependant des défis liés
aux données. Le contexte altimétrique ne permet pas d’accéder à l’état SSH
que nous voulons estimer, ce qui pose des questions concernant l’entraînement
et l’évaluation du modèle. En effet, au début de ma thèse, le schéma de
cartographie neuronale 4dVarNet a surpassé les produits opérationnels pour
une utilisation dans la région du Gulf Stream[7]. Cependant, l’architecture
neuronale et les résultats ont été entraînés et évalués dans un environnement
simulé. Cela pose la question traitée dans ce manuscrit : Comment les approches
d’apprentissage profond peuvent-elles surmonter le manque de référence de
SSH pour une utilisation sur des données altimétriques réelles ? De plus, les
architectures de vision par ordinateur (CV) ont été, dans une certaine mesure,
validées et adaptées aux images naturelles. La transposition aux données
altimétriques et aux champs SSH n’est pas triviale. Le schéma d’échantillonnage
clairsemé et irrégulier des altimètres ainsi que la nature turbulente de la SSH
peuvent ne pas convenir aux architectures CV classiques.

En outre, un autre facteur qui différencie l’altimétrie des domaines précédem-
ment mentionnés est que des méthodes classiques existent déjà pour résoudre
les tâches considérées. Les méthodes existantes utilisent les connaissances
physiques disponibles sur la dynamique océanique et les systèmes d’observation.
Dans une certaine mesure, cela dépeint un environnement moins favorable pour
le potentiel des méthodes DL classiques et soulève un autre point abordé dans
cette recherche qui est : Comment intégrer des connaissances altimétriques
spécifiques dans la méthodologie d’apprentissage profond ?

Ces études démontrent que l’analyse altimétrique dépend fortement de
l’expertise du domaine pour les contextes de données et d’évaluation. Le
développement et l’évaluation de méthodes telles que 4dVarNet ont reposé
sur des efforts antérieurs de standardisation de cadre expérimentaux avec
données simulées et observationnelle sous la forme de data-challenge [8, 9].
Ces cas d’utilisation ont fourni un accès aux données pour les praticiens
de l’apprentissage automatique ainsi que des mesures pertinentes pour les
physiciens océaniques. Cela soulève le troisième et dernier point de ce manuscrit
: Que faut-il pour faciliter l’adoption de l’apprentissage profond dans les sciences
de l’observation océanique ?
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Contributions

La première contribution met en lumière l’application réussie de l’apprentissage
profond pour la correction des biais de données d’observation simulées par
SWOT. Alors que les architectures d’apprentissage profond standard peinaient
à différencier les signatures SSH fines des biais à grande amplitude, nous avons
montré que les méthodes d’apprentissage profond pouvaient être adaptées
aux caractéristiques uniques des données d’altimétrie. Nous avons utilisé les
spécifications d’erreurs de la mission SWOT pour créer une architecture person-
nalisée axée sur la calibration des erreurs corrélées de SWOT. Cette étude est
prometteuse, mais la méthode développée a été calibrée et évaluée à l’aide de
données simulées, soulevant des questions sur son applicabilité aux observations
réelles de SWOT.

Figure 3 – Étalonnage SWOT. La partie gauche illustre le domaine observé
en rouge tandis que la partie droite indique le domaine sur lequel nous visons
à estimer la SSH.

La deuxième étude s’intéresse à la façon dont les méthodes d’altimétrie
basées sur l’apprentissage, une fois calibrées sur des données simulées, peuvent
être appliquées à des données réelles. Nous avons évalué les schémas de car-
tographie 4dVarNet sur des données d’altimétrie réelles après calibration sur
des données simulées. Les résultats indiquent des capacités de généralisation
élevées même avec des simulations grossières, tandis que des simulations plus
précises améliorent les performances de cartographie. Les résultats introduisent
des avenues intéressantes dans l’exploration de l’utilisation de la simulation
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Figure 4 – Cartographie d’observation altimetrique Nadir. La partie
gauche illustre le domaine observé en rouge tandis que la partie droite indique
le domaine sur lequel nous visons à estimer la SSH.

numérique pour entraîner des modèles pour des applications du monde réel.
Les deux premières études mettent en lumière le potentiel de l’application

d’approches basées sur l’apprentissage aux défis d’observation en oceanologie.
Cependant, elles soulignent également les complexités de l’union de l’expertise
en observation, en données de simulation, en techniques d’apprentissage profond
et en méthodologies d’évaluation spécifiques au domaine. Cela a stimulé la créa-
tion de la trousse d’outils spécialisée, Oceanbench, visant à combler le fossé entre
les experts en apprentissage profond et les experts en oceanologie. Oceanbench
permet aux océanographes de concevoir de manière flexible des configurations
d’évaluation à l’aide de données et de métriques. Ces configurations sont ac-
compagnées des outils essentiels pour les praticiens de l’apprentissage profond
pour accéder et préparer les données en vue de la formation de leurs modèles.
La première iteration présentée dans cet ouvrage porte sur l’interpolation de
la hauteur de la surface de la mer, mais elle a été pensée pour être extensible à
d’autres défis d’observation de l’océan.

Objectifs et contenu

Une fois le contexte lié à l’altimétrie et l’apprentissage profond introduit
dans le Chapitre 1, le Chapitre 2 décrit les principales hypothèses et méth-
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odes formulées dans les méthodes actuelles de cartographie et d’étallonage
altimétriques. Ce chapitre vise à décrire les modèles et algorithmes d’étalonnage
existants disponibles dans l’analyse altimétrique ainsi que les travaux connexes
en apprentissage profond. Une description plus détaillée du cadre réseau neu-
ronal basé sur 4DVarNet et ses applications sera présentée car les contributions
de cette thèse font un usage intensif de cette architecture.

Le Chapitre 3 propose une architecture d’apprentissage profond pour
l’étalonnage des erreurs corrélées dans les données SWOT. D’un point de vue
applicatif, la flexibilité de la méthodologie de l’apprentissage profond ouvre la
possibilité de capturer des signaux difficiles à paramétrer explicitement. D’un
point de vue méthodologique, cette étude montre comment les architectures
d’apprentissage profond peuvent être adaptées aux hypothèses sur l’instrument
et ses mesures. Plus précisément, cela se fait en montrant comment les spéci-
ficités spectrales des erreurs peuvent être exploitées pour concevoir un schéma
de calibration neuronal efficace. Cette étude basée sur des donnée simulée ne
traite pas directement des défis posés par le manque de jeu de données de
référence, qui sont au centre du chapitre suivant.

Le Chapitre 4 aborde plus spécifiquement le problème de la disponibilité
des données. Il étudie comment les schémas de cartographie neuronaux peuvent
être appliqués aux données réelles malgré l’absence de jeu de données de
référence. Il s’intéresse plus particulièrement au cadre 4DVarNet qui a été
démontré dans un environnement simulé en utilisant des données SSH simulées
pour l’entraînement et l’évaluation. Ce chapitre examine les performances
sur des données réelles de modèles d’apprentissage profond entraînés sur des
données simulées. Il montre comment l’importante connaissance physique de
la dynamique océanique peut être exploitée pour pallier le manque de jeu de
données de référence en altimétrie par l’utilisation de simulations numériques
pour l’entraînement.

Le Chapitre 5 examine les obstacles à une meilleure synergie entre les
communautés de l’altimétrie océanique et de l’apprentissage profond. Les deux
domaines sont bien établis avec des connaissances accumulées et des meilleures
pratiques. Comme décrit dans ce chapitre, l’apprentissage profond apporte des
modèles et des algorithmes puissants. Cependant, les données de calibration et
d’évaluation ainsi que les métriques ne peuvent être rationnellement conçues
que par un expert du domaine. Nous proposons OceanBench, une interface
sous la forme d’un ensemble d’outils logiciels. Oceanbench vise à permettre
aux experts du domaine de concevoir facilement des problèmes altimétriques
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d’intérêt et à les qualifier avec des métriques pertinentes. Il fournit ensuite
aux praticiens de l’apprentissage automatique l’accès aux données nécessaires
ainsi qu’à des utilitaires adaptés à la formation et à l’évaluation des méthodes
d’apprentissage.

Le Chapitre 6 discute et conclut sur la recherche présentée dans ce
manuscrit. Nous résumons les principaux objectifs et résultats des chapitres
précédents ainsi que nous proposons quelques pistes de recherche futures.
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Chapter 1

INTRODUCTION

1.1 Broad Context

In the context of an evolving climate, monitoring the changes in our
environment is a critical aspect of our ability to react and adapt. The oceans
are physical systems ruled by known but chaotic dynamics which makes the use
of observational data essential to monitor their state. Our monitoring ability
thus depends on the observing systems deployed as well as our ability to exploit
the observation data.

In recent decades, satellite NADIR altimeters have greatly improved our
observational capabilities by providing a global coverage of the Sea Surface
height (SSH). However due to the scarce and irregular sampling of altimeter
constellations, current operational products provide limited insights into fine-
scale phenomena[1]. Figure 1.1 shows the approximate scales of the processes
of interest in altimetry and the limit of observational capabilities of a single
altimeter constellation. This thesis is situated within the context of the Surface
Water Ocean topography (SWOT)[2] mission, which presents opportunities for
enhancing our observational capabilities of the oceans. Figure 1.2 shows an
simulated example to illustrate the observational impact of the SWOT mission.
The Ka-band Radar Interferometer (KaRIn) sensor will provide the depicted
two dimensional images of the ocean surface topography but will also introduce
calibration challenges[3] due to previously unseen errors.

27



Introduction

Figure 1.1 – Scales of Ocean Processes. Credits to Dudley B. Chelton. Illus-
tration of the variety of processes of interest for altimetry displayed in function
of their spatial and temporal scales. The dashed lines indicate the observational
limitations when using a single altimeter data. (Observed phenomena in the
top-right section)

The research in this thesis focuses on the development of methods to
exploit satellite SSH observations for improving our knowledge of ocean surface
dynamics. More specifically we’re asking how advances in deep learning can
be beneficial to ocean altimetry analysis. Deep learning research provides a
rapidly evolving set of tools that have been successfully applied to a wide range
of domain, surpassing existing methods and succeeding in previously unsolved
problems.

In order to study the potentials of deep learning for tackling ocean observa-
tion problems, we’ll first introduce the necessary methodological components
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involved when addressing an observation problem by walking through the
illustrative example of a thermometer graduation procedure in section 1.2.
We will explicit the similarities between this example and the altimetry chal-
lenges studied in this thesis.1.3 This simplified problem will help illustrate and
contextualize the complementary roles of data and domain knowledge when
addressing this class of problem. In section 1.4, we will then describe how the
tools brought by the deep learning field fit in this methodological framework
and consider the opportunities and challenges that arise when applying them
to ocean altimetry analysis.

Simulated daily SSH on 2013-01-12

Simulated Nadir altimetry data 
from 2013-01-10 to 2013-01-16

Simulated SWOT and Nadir altimetry data 
from 2013-01-10 to 2013-01-16

Figure 1.2 – Altimetry context. The top figure display an example of average
SSH over the north Atlantic from the NATL60 simulation. The bottom row
illustrate the observational impact of the SWOT satellite.

Finally we’ll outline the structure of this manuscript. We’ll present the
altimetry use-cases and the deep learning methodological aspect considered in
the third and fourth chapter. Finally, we’ll introduce the scientific contribution
of the OceanBench project which aims at facilitating collaboration between
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the ocean altimetry and deep learning communities.

1.2 Key concepts: Graduating a thermometer

Estimating temperature from observations

Figure 1.3 – Thermometer Graduation problem illustration. Given a
simple liquid based thermometer, we aim at finding the matching between
height of the liquid within the glass tube and temperature.

Let us consider a standard liquid based thermometer that consists of a
liquid in a glass tube. When interested in knowing the temperature, we observe
the level of a thermometer. In order to do so, someone had to graduate the
thermometer. This seemingly simple action can be detailed in a two-step process,
which involves the construction of a theoretical model and its calibration using
real-world data.

The first step involves compiling theories and assumptions to construct a
model linking the observed level and the actual temperature. In this instance,
based on our knowledge of fluid dilation in response to temperature, assuming
the diameter of the tube is constant with height, we can propose the model that
the level is linearly related with the temperature. This model introduces two
parameters: the slope and offset of our linear model that need to be ascertained.

The second step involves determining these parameters. This step requires
some calibration data as inputs. They are traditionally obtained by immersing
the thermometer in icing and boiling water to acquire the levels corresponding
to 0°C and 100°C. Using those data points, a linear system can then be used
to solve for the parameters. Which finally gives use our level-to-temperature
relationship.

The model we chose can have more or less independent parameters that need
to be calibrated depending on the assumptions that were made. Interestingly,
this introduce a relationship between the assumptions made and the amount
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of data required for calibration. For instance, a model with fewer assumptions
demands more data. If we were to abandon the assumption of the thermometer
tube’s constant diameter, we would need to incorporate a parameterization
of the tube diameter in our model. This addition creates more parameters
and consequently demands additional data for calibration. Conversely, having
access to more data can allow us to work with fewer assumptions. Suppose
we possess a well-calibrated thermometer that can provide unlimited data
points. In that case, we could reduce our assumptions to a minimum and rely
heavily on empirical evidence, marking each thermometer graduation using
data directly from our well-calibrated thermometer.

With these carefully calibrated graduations now etched onto our thermome-
ter, we can use the liquid level as a convenient stand-in for the temperature.
However, an important question remains: How can we assess the accuracy of
our newly graduated thermometer?

Assumptions Model

Data Calibration

Figure 1.4 – Mapping thermometer level to temperature. The first
step consists in compiling theoretical knowledge to determine a model of
the level to temperature relationship. This model define the set of candidate
graduations. The second step consists in leveraging data to chose the best
candidate graduation through some calibration algorithm.
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Evaluation

Without evaluation the use of our calibrated instrument would solely rely in
the faith given to our mapping above. However one may prefer quantifying the
thermometers quality through metrics. In our case the most intuitive metric for
characterizing our thermometer’s quality is be the precision of the graduations.
Each tick of our thermometer has a precision value, different aggregations of
the individual values also constitute different metrics (bias versus variance for
example). In order to properly evaluate our calibrated instrument, we need
to test it in conditions corresponding to its intended use (testing it domestic
thermometer 5 kilometers underwater would not give a relevant evaluation).

To do so, let’s explicit some assumptions made on what we expect from our
thermometer. For example that it needs to "be accurate to the half of degree",
"have response time under 10 minutes", "work between -30°C and 200°C" "work
at a reasonable atmospheric pressure" etc...

Then we need data to measure the precision of our thermometer in a way
that is representative of how we want our thermometer to behave. Using a
trustworthy reference like a third-party well-graduated thermometer, we could
compare the measurements of the reference with the one given by our solution.
An example evaluation procedure could be to confront the measurements of
the two instruments at different temperatures such as: in a freezer, in a fridge,
at ambient room temperature and in an oven.

Using the procedure above, we can compute our precision metrics and
assess if the quality of our thermometer is acceptable. This exercise, raises some
critical points about evaluation. The process relies on two components that
require a deep understanding of the thermometer’s intended use: a suitable
choice of metrics and representative data. If the metrics do not align with the
intended use of the thermometer, the evaluation will be flawed. Similarly, if the
data are not representative of the thermometer’s intended use, the evaluation
will also be flawed. Furthermore, the reliability of the reference thermometer is
pivotal. If the reference thermometer is not well-graduated, the best of metrics
will not be able to correctly evaluate our thermometer.

It’s also crucial to differentiate between calibration data, which is used to
determine the graduation, and evaluation data, which is used to assess the
graduation’s quality. A well-functioning thermometer should provide accurate
temperature readings even for levels it wasn’t calibrated on. Thus, evaluation
data should differ from calibration data. If we only measure precision at 0°C
and 100°C, a thermometer that perfectly fits the calibration data would receive
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Figure 1.5 – Evaluation and errors. Given some evaluation data and choice
of metric, we can compute the errors associated with our graduation. T ◦

calib and
T ◦

ref are respectively the temperatures given by our graduation and a reference
well graduated thermometer

Model Data Algorithm

Figure 1.6 – Different sources of errors for the thermometer graduation.
From left to right: model errors result from erroneous assumptions about
the system. Data errors result from inaccuracies in the calibration data and
algorithmic errors result from a failure of the calibration algorithm to select
the best candidate from the model.

the highest metric, whatever the other graduation indicates.

Sources of errors

Given an evaluation procedure, the errors are the differences to the reference
and can be attributed to three sources: the model, the data and the calibration
algorithm. The model is a source of error if the assumptions made were
inaccurate. For example if the diameter of the tube is not constant with height
the linear relationship between level and temperature is not verified and will
induce errors when interpreting the level.

Even with perfect assumptions, noisy data can introduce errors in the
calibration. If we interpreted our 0°C and 100°C in icing and boiling water at
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the top of a mountain with lower atmospheric pressure, we will have calibrated
our parameters with erroneous measurements and the subsequent graduation
of our thermometer will be inaccurate.

Finally even with perfect assumptions and perfect data, the calibration
algorithm used to find the solution’s parameters can be a source of errors if it
fails to find the optimal parameters. For example if we solve for the parameters
with a gradient descent method, using a step size too big will prevent finding the
exact parameters which will also results errors in the subsequent measurements.

In order to develop a graduation procedure, we need to take those sources
of error into account. The graduation procedure choice will not only depend
on the level-temperature relationship but on the whole relationship between
calibration data to the final graduated thermometer. We therefore need to
incorporate in our reasoning how the calibration data was acquired, what is
the best model to map the level to the temperature, and what is the best
algorithm to find the optimal parameters of the model.

This example allows us to formulate a generic methodological framework.

Methodological framework

In the process of finding a level-temperature relationship, we chose a model,
a calibration algorithm, and had access to calibration data. Additionally, to
evaluate our solution, we defined a metric and had access to evaluation data.
Interestingly, these components can be specified at a higher level for finding
and evaluating the graduation procedure itself, essentially creating a meta-level
or "second order" problem.

The Model, in this second order scenario, combines different assumptions
to determine the parameters of potential graduation procedures.

The Calibration Algorithm is used to select the best graduation pro-
cedure. This could be as straightforward as testing different combinations
and choosing the most effective one, or it could involve complex numerical
optimization procedures to determine higher-level parameters.

The Calibration Data, at the second order, consists of graduation tasks
with a method to assess the performance of candidate procedures. This allows
the algorithm to select the best solution.

The Evaluation Metric should reflect the intended use of the graduation
procedure, including the range of thermometers we plan to use this procedure
for. A useful metric might be the precision of all the thermometers we aim to
graduate using the proposed solution.
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The Evaluation Data should be representative of the variety of intended
uses. This means it should contain graduation tasks for a range of thermometers
of interest. Additionally, we need a reference for these tasks to measure the
precision of our solution.

By leveraging these five components, we can select the best graduation
procedure, quantify its quality using the evaluation data, and use it to graduate
new thermometers with confidence in the resulting graduated instrument. This
parallels the problems of "Finding the level-temperature mapping" (which
we refer to as the first order problem) and "Finding the graduation proce-
dure" (the second order problem) and offers insights on where general purpose
methodological tools can find applications.

Note that second order metrics can extend beyond the scope of the first order
problem. These metrics could encompass aspects such as robustness to noise
or the computational complexity of the graduation procedure. This means our
evaluation of a graduation procedure not only includes how well it measures
temperature, but also how well it handles uncertainties or computational
burdens.

A second order solution takes first order calibration data as inputs, which
contain observations of a specific thermometer and their corresponding tem-
peratures, and outputs a first order solution: a tailored graduation for the
thermometer represented in the data.

The second order problem also involves making decisions on parameters
to select the best solution, which can take various forms. For instance, these
parameters can be discrete choices between different assumptions, like whether
to consider the thermometer’s tube diameter as constant or not. The parameters
can also denote choices between different first order algorithms like choosing a
direct linear system inversion or a iterative optimization procedure. Lastly, these
second order parameters can be constants in the level-temperature mappings
or parameters of an optimization procedure, like step size. This shows that the
parameters in the second order problem have a broad range of applicability,
affecting both the details of the graduation procedure and how the procedure
is chosen.

Finally, a critical note is that the data used to evaluate a solution at the
second order level should still be separate from the calibration data. This
principle holds true for the same reasons it applies to the first order problem
- using distinct data sets helps to ensure that our solutions generalize well
beyond the specific scenarios they were trained on.
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1.3 The case of ocean altimetry

Introducing space and time

Our previous example implicitly solved the estimation problem of the
liquid temperature within the thermometer at a single point in space and
time. However, we can extend the problem formulation to estimate a quantity
over a spatial and temporal domain. Given some observations y defined on a
spatio-temporal domain Ωy we want to estimate a quantity of interest u on a
domain Ωu. We are therefore looking for a mapping f that estimate u from y

The process of determining f can be detailed in two steps, first determining the
set F such that f ∈ F by making some assumptions on f . Then determining
the calibration algorithm c that will use the calibration data D to select f
from F The evaluation of the solution rests on the choice of metrics m and
evaluation data E

Solving this general problem requires considering the sampling pattern of the
observations with respect to the target estimation domain. Incomplete coverage
will require the model to account for temporal and spatial relationship between
y values and u as well as the spatio-temporal structure u. These additional
assumptions will require suitable calibration data and algorithm and
evaluation data and metrics to be calibrated and evaluated.

Satellite altimetry

The estimation of the sea surface height (SSH) given satellite altimetry
data enters nicely in the methodological presented above.

As illustrated in figure 1.7, the calibration problem considered in this
thesis consists in estimating the SSH measured by the KaRIN instrument by
removing correlated error signals, using calibrated nadir observations. The
target estimation domain here is fully observed, however, some observations
contains errors originating from the instrument acquisition process. The model
for this problem includes assumptions about the processes that produce the
errors. Assumptions about the spatio-temporal structure of the SSH are also
required here to relate the SSH on the KaRIN instrument to surrounding
NADIR altimeter measurements. The mapping problem below isolate this
challenge more specifically.

The altimetry mapping problem depicted in figure 1.8 focuses on the
spatial and temporal interpolation of NADIR altimetry data. Considering the
observation as direct measurements of SSH, we aim at estimating daily maps
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Figure 1.7 – SWOT calibration. The left part illustrate the observed domain
in red while the right part indicates the domain on which we aim at estimating
the SSH.

over a delimited domain. The model for such a problem needs to take into
account the dynamical structure of the ocean surface topography.

This manuscript, therefore, aims to explore the application of deep learning
to these two observation problems. The first is estimating SSH from noisy
SWOT observations, and the second is inferring the complete SSH field from
partial measurements which we detail in the following two sections. We give
an overview in the next chapter of different existing models and calibration
algorithm that have been developed for tackling these challenges.

In order to solve and evaluate solutions to these problems calibration
and evaluation data are necessary. However, the SSH we aim to estimate is
unknown on the target domain. Two separate experimental setups are used to
address this issue. Observing System Experiments (OSE) [4] constitute a frame-
work for working directly with observations for calibrating and evaluating new
methods. For altimetry mapping for example, some satellite observations may
be reserved for the interpolation process while others are employed to calibrate
and evaluate the resulting map. Observing System Simulation Experiments
(OSSE)[5] use ocean models as well as simulated observing systems to create
an controlled environment where simulated ocean quantities are known. For
SWOT calibration, this includes simulating processes of the satellite movement
such as roll oscillation that are sources of error signals[3]. This peculiar data
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Figure 1.8 – Nadir Altimetry mapping. The left part illustrate the observed
domain in red while the right part indicates the domain on which we aim at
estimating the SSH.

context is a critical factor when developing data-centric methods such as deep
learning.

1.4 Deep learning: opportunities and challenges

Success stories in computer vision (CV) and natural language
processing (NLP)

In regard to the framework described above, deep learning brings forth
models, such as neural networks, that are predicated on very weak assump-
tions. Their strength lies in the fact that, given sufficient parameters, they
can approximate any function[6]. This leads to deep learning models defining
vast parameter-space, consequently requiring substantial datasets and sophisti-
cated optimization procedures to identify a good solution. These optimization
procedures are akin to the calibration algorithms.

Deep learning models and calibration algorithms have advanced in tan-
dem over the last decades. Innovations in model architectures such as ResNet[7],
batch normalization[8], and in optimization procedures like Stochastic Gra-
dient Descent (SGD)[9], Adam[10], and various learning rate schedules have
consistently improved the calibration large models, therefore enabling the use
of even larger neural networks.
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However, the fact that deep learning models can in theory approximate
any function introduces a peculiar consideration which is that fitting exactly
the calibration data gives you no guarantee on how the model will behave
on unseen data. Addressing this problem have motivated many innovations
in regularization, architectures, initialization schemes and data augmentation
techniques. It has also standardized the practice of splitting the calibration
data in two sets: training and validation. The training set is used by the
optimization procedure to search for the parameters whereas the validation set
is used to assess the generalization on "unseen" data.

1.5 Thesis objectives and outline

The following chapters of this thesis are organized as follows:
Chapter 2 describes the main assumptions and methods that are formu-

lated in current methods for altimetry mapping and calibration. This chapter
aims at describing the existing models and calibration algorithms available
in altimetry analysis as well as the related work in deep learning. A more
detailed description of the neural network-based 4DVarNet framework and
its applications will be presented since the contributions of this thesis make
extensive use of this architecture.

Chapter 3 propose a deep learning architecture for the calibration of
correlated errors in SWOT data. From an applicative standpoint, the flexibility
of deep learning methodology opens the potential for capturing signals that
are tricky to explicitly parameterize. From a methodological perspective, this
study shows how deep learning architectures can be tailored with assumptions
on the instrument and its measurements. More specifically, this is done by
showing how the spectral specifities of the errors can be leveraged to design a
efficient neural calibration scheme. This OSSE study do not directly address
the challenges brought by the lack of ground-truthed dataset which are the
focus of the following chapter.

Chapter 4 tackles more specifically the data availability problem. It
studies how neural mapping schemes can be applied to real data despite the
lack of reference dataset. It looks more specifically at the 4DVarNet framework
which has been demonstrated in a simulated setup[11] using simulated SSH for
training and evaluation. This chapter looks at the performance on real data of
deep learning models trained on simulated data. It shows how the extensive
physical knowledge of the ocean dynamics can be leveraged to palliate the lack
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of ground-truthed dataset in altimetry through the use of numerical simulations
for training.

Chapter 5 considers the obstacles to better synergies between the ocean
altimetry and deep learning communities. Both fields are well established with
accumulated knowledge, and best practices. As described in this chapter, deep
learning brings powerful models and algorithms. However the calibration and
evaluation data as well as the metrics can only be sensibly designed by an
domain expert. We propose OceanBench, an interface in the form of a software
suite of tools. Oceanbench aims at empowering domain experts to easily design
altimetry problems of interests and qualifying them with relevant metrics. It
then provides machine learning practitioners access to the necessary data as
well as suited utilities for training and evaluating learning based methods.

Chapter 6 discusses and concludes on the research presented in this
manuscript. We summarize the main objectives and results in previous chapters
as well as proposing some future avenues of research.
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Chapter 2

MODELING AND SOLVING

ALTIMETRY PROBLEMS

This chapter discusses various existing methodologies for modeling and
solving tasks related to ocean altimetry.

Our attention is primarily directed towards techniques that are relevant
to the altimetry challenges explored in this study. Most existing methods are
geared towards altimetry mapping, as calibration of the Surface Water and
Ocean Topography (SWOT) mission is a relatively nascent area with fewer
established techniques. Nonetheless, both types of problems aim to estimate
the sea surface height u on a domain Ωu given observations y on a domain Ωy.

Therefore, the methods of interest f ∈ F are such that f(y) = û with û an
estimation of u. The high level problem can be stated as finding best candidate
f̂ ∈ F using a procedure c that relies on data D. Solving this problem rely on
the specification of F . We find that the following decomposition is useful to
better differentiate between the different approaches: f = fx→u ◦ fy→x. The
decomposition mainly introduces the choices of intermediate quantities x that
characterize the state of an SSH field and a prior distribution p(x). This implies
the definition of fx→u that provides the SSH estimate given a state x. Secondly,
this decomposition implies the choice of a state estimation procedure fy→x

that will determine the state values best suited given observations y. Those
components fit nicely in the first and second order formulation introduced in
the previous chapter as depicted in Figure 2.1.

This chapter describes existing approaches for formulating the different
components. Possible characterizations of the state x ∼ p(x) are detailed in
Section 2.1 while Section 2.2 depicts existing approaches for formulating fy→x.
Sections 2.3 and 2.4 focus respectively on the calibration c and evaluation
considerations. The final section 2.5 delves into the specific choices of the
4DVarNet framework, which serves as the backbone for the research presented
in this thesis.
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Figure 2.1 – Methodological formulation. This figure illustrate the organi-
zation of the different components described in this chapter

2.1 Priors on the Sea Surface Height (SSH)

The first distinguishing feature among various methods is the choice of
characterization of SSH fields. The characterization can be decomposed in two
parts. The first involves the choice of representation x for SSH fields u. This
representation essentially outlines the space of all possible SSH states. The
second aims to characterize the probability distribution p(x) of x, describing
which states are more likely a priori.

State representation

The choice of state representation defines the quantities x that characterizes
the estimated SSH field û. The choice of x implies the choice of the relationship
fy→x between the state values x and the estimated SSH field û.

Looking at existing methods, the SSH field can be characterized through
values sampled on a grid or mesh of the domain. These values can directly
quantify the SSH as represented by methods such as the DUACS optimal
interpolation [1] (OI), quasi-geostrophic back and forth nudging (BFN-QG) [2],
Kalman filtering in GLORYS12 reanalysis [3] or Dynamical Interpolation [4, 5].
Other methods choose more complex or indirect descriptions through large
and small scale components like in the 4DVarNet[6] or even projected values
on another basis like MIOST[7, 8] which uses a wavelet basis. The choices like
the mesh, basis or SSH decomposition used is a way to use prior knowledge to
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dimension the state space. A grid representations of the SSH can be propagated
to the whole domain Ωu using interpolation schemes which impose additional
choices.

Other methods, like the strong-constraint four dimensional variational
data assimilation (s4DVAR)[9], consider only SSH fields that are solutions
to differential equations characterizing the system. The state x then takes
the form of initial temporal conditions that are propagated in time using a
dynamical model numerical integration scheme. Note that parameters of the
model and integration scheme can be part of the state and estimated alongside
the initial conditions.

Deep learning has introduced new ways of representing the SSH. Notably,
Neural fields[10] consists in describing the SSH with the parameters of a
coordinate-based neural network. The neural network can then be used to
output the SSH value for any given coordinate of the domain. Neural networks
can also be used in tandem with previous concepts. For example they can
parameterize a latent space[11] and model the basis change. They can also be
used to parameterize the error of the dynamical model in s4DVAR[12].

Additionally the state can also contain ancillary quantities that are linked to
the SSH. In the GLORYS12[3] reanalysis, the data assimilation scheme considers
the state of the ocean beyond the SSH. In the case of the SWOT calibration,
estimating the SSH is equivalent to estimating the error signals. Operational
methods[13] approach the problem as defining a state representation of the
different error signals.

Prior on the state space

The representation of SSH x we chose defined the space of all possible states.
Additional assumptions can be made to specify which states are more likely
than others. This is the prior distribution of the states p(x). Some approaches
like existing work on Neural fields[10] do not define an explicit prior distribution
over the state space, which implies a uniform distribution. Others like OI and
s4DVAR define p(x) with a background state xb and an error covariance matrix
B with respect to the background. Under Gaussian assumptions, the prior
distribution becomes

p(x) = 1√
(2π)n|B|

exp
(

−1
2(x − xb)T B−1(x − xb)

)
(2.1)

Instead of considering the difference between the state and a background,
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Method State formulation SSH estimation Prior formulation
OI SSH Grid Grid Interpolation Background error
KF (∗), 3DVAR (∗) SSH Grid at time t Grid Interpolation Trajectory error
s4DVar Initial conditions Trajectory computation Initial background error
w4DVar SSH Grid Grid Interpolation Trajectory error
MIOST Wavelet components Basis change Background error
4DVarNet Scale components Sum + Grid interpolation Energy-based model
Neural field NN parameters NN inference None (Uniform)

Table 2.1 – Comparison of SSH models across various methods. The
columns indicate the type of state representation x, the method of obtaining
estimated SSH û, and the prior distribution p(x). Methods annotated with (∗)

consider the state of a single time step at a time.

other methods define the prior likelihood of a state based on its distance to the
trajectory of a dynamical model. Kalman filters, 3DVAR or weak-constraint
four dimensional variational data assimilation (w4DVAR)[9] are such methods.
Under Gaussian assumptions p(x) takes a similar formulation as Equation 2.1
but with xb replaced by a state-dependent quantity.

Deep learning also introduces tools for probabilistic and energy-based
modeling[14, 15] that can be used to characterize p(x). For example, 4DVarNet
employs a neural network (NN) ϕ to define the following quantity over the
state space E(x) = ∥x−ϕ(x)∥. Interpreting this as an energy function, a Gibbs
distribution can be defined over the state space, yielding the prior distribution:

p(x) =
exp(−E(x)

T )
Z

(2.2)

with Z =
∫

exp(−E(x)/T ) dx and T the temperature parameter.
We summarize in table 2.1 the different state characterization approaches.

2.2 Solvers: Estimating the state given some obser-
vations

Once all prior assumptions about the SSH field have been made (i.e. the
first order model), the methods differ by the choice of calibration procedure
fy→ x which estimate the state x̂ given observations y.

This problem is classically framed as an inverse problem by defining an
observation operator H that describe the relation from state to observations
(fy→x then becomes the inverse H). For altimetry observations that measure
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the quantity of interest u, the H operator can be decomposed as H(x) =
fx→u(x)Ωy + ϵ with ϵ an error term and fx→u(x)Ωy the estimated SSH field for
a given state x over the observed domain Ωy. The field of data assimilation in
geoscience propose a variety of methods to solve inverse problems.

Using a Bayesian inference formulation, the estimate of the posterior state
is done by assuming Gaussian distributions for observation errors and prior
states. For Optimal Interpolation, this can be mathematically expressed as:

fy→x(y) = xb + K(y − Hxb) (2.3)

with H a linear observation operator, xb the background state and K is the
Kalman gain (which depends on the linear observation operator H, B and
the covariance matrix of ϵ). Kalman filters use a similar expression which is
applied sequentially for each observation time step. The procedure fx→u then
becomes a sequence of sub-procedure f1

x→ut1, ..., f tn
x→u applied to observations

yt1, ..., ytn to estimate the states xt1, ..., xtn

fy→xt+ 1(yt+1) = xt + Kt+1(yt+1 − Ht+1Mt:t+1xt) (2.4)

with Mt:t+1 a linear forecast operator and Kt+1 the Kalman gain similarly
computed from the error and prediction covariance matrices.

Another formulation to solve inverse problems is used by variational meth-
ods. The estimation is framed as the minimization of a variational cost
fy→x(y) = arg minx J(x, y) that includes a observation term Jobs(x, y) and
a regularization term Jreg(x) related to the prior distribution. The formulation
is:

fy→x(y) = arg min
x

[Jreg(x) + Jobs(x, y)] (2.5)

The minimization procedure is classically performed using an iterative gradient
based algorithm[9]. The gradients can be computed using the adjoint method[3]
or automatic differentiation libraries[16]. This approach is used in variational
data assimilation such as 3DVAR, strong and weak 4DVAR, 4DVarNet and
can be used to solve the OI problem. Note that similarly to Kalman filters, the
3DVAR method also perform a sequential resolution of the estimation. The
calibration of neural fields is also framed as a the minimization of a training
objective. However in existing work [10], since no prior distribution is defined
over the states, the minimization objective contains only the observation term.

Deep learning offers alternative strategies outside of the inverse problem
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Methods Procedure f
3DVAR(∗), w4DVAR, OI, 4DVarNet Variational data assimilation

OI, Kalman filters(∗) Bayesian inference
Direct inversion, 4dVarNet NN inference

Neural fields Neural network training

Table 2.2 – Comparison of state estimation strategies for existing
altimetry methods. Methods annotated with (∗) use a sequential resolution
of successive time steps.

formulation coined as direct inversion. In such formulations a neural network
directly models the function fy→x. Example of this approach using classical
computer vision models have been applied to altimetry mapping in [17] and
we apply this method in Chapter 3 for SWOT calibration applications.

The different calibration procedures of different methods are summarized
in the table 2.2.

2.3 Calibrating the method

The choice of prior formulation and estimation procedure provide a method
with free parameters (i.e. second order model) that need to be calibrated.
Calibrating the method involves the fine-tuning of several parameters and model
factors. These include the background field, covariance matrices for observation
and background errors, as well as specifics for variational optimization or
numerical integration schemes. In the case of deep learning approaches like
direct inversion, the parameters of the neural network also become factors
requiring calibration.

The calibration process relies on datasets, typically comprising numerical
model outputs and pre-existing observations. These datasets serve for estimating
the aforementioned factors and for validating the performance of the state
estimation procedure. A widely adopted approach for this calibration is cross-
validation. In this technique, a subset of available data is utilized to configure the
model, which is then tested on the remaining data to evaluate its performance.
The exploration of possible configurations may range from manual adjustments
to automated parameter tuning algorithms, depending on the complexity of
the method being calibrated.

For methods incorporating neural architectures, advanced optimization
algorithms specific to deep learning are often employed. These algorithms
efficiently tune the weights and biases of the neural network, aligning them for
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better performance in the SSH estimation task. This is particularly advanta-
geous for direct inversion approaches, which depend entirely on the data for
calibration and do not require explicit prior models.

The lack of annotated data also motivated the design of training strategies
that rely less on a target reference and more focused on capturing the struc-
ture of the available data. In this regard unsupervised[18] and self-supervised
learning[19] approaches have seen an increase in popularity in earth observation.
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Figure 2.2 – Solving altimetry problems. This figure displays the different
methodological components at play when addressing an altimetry challenge.
The different approaches for each component are detailed. We highlight which
ones are physics or deep learning inspired.

2.4 Evaluation

So far, we have described the choices made in developing the methods. Yet,
a critical choice remains: selecting the criteria to assess the best method for
a given problem. To address this, we consider various evaluation data and
metrics.

Evaluation data can stem from two main sources, each with its unique
risks and benefits. Firstly, the estimated SSH can be compared directly with
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observation data. Termed as the Observing System Experiment (OSE), its
primary advantage lies in its close resemblance to real-world scenarios. However,
observational data presents its own challenges. Calibrated nadir altimeters are
filtered, unable to capture smaller processes - the same processes anticipated in
the new SWOT observations. This poses significant challenges when using nadir
altimeter data to assess SWOT calibration. It’s worth noting that while data
from other observations, such as sea surface temperature or in situ drifter data,
can be utilized, they present the challenge of discerning their relationship with
the estimated SSH. When mapping altimetry, evaluation using nadir tracks
means assessing the SSH over only a portion of the estimated domain. The
sampling pattern of nadir altimeters also restricts evaluation. Their sporadic
acquisition over time hinders the ability to compare the temporal evolution of
the estimation with a reference. Furthermore, the one-dimensional nature of
this acquisition precludes the evaluation of pertinent geophysical metrics like
the vorticity field.

The second source of evaluation data originates from numerical simulations.
Dynamical systems, spanning various complexity levels, can be modeled to pro-
duce a ’ground truth’ SSH field. Similarly, observing systems can be simulated
to produce pseudo-observations. Both types of simulations introduce errors
when juxtaposed with real-world scenarios. These errors must be carefully ac-
counted for when interpreting evaluations conducted in such settings. However,
this evaluation approach offers considerable flexibility due to the availability of
a ground truth.

In this thesis, both scenarios are employed. Chapter 3 examines the SWOT
calibration in an OSSE context, while Chapter 4 probes how the evaluation of
neural mapping schemes varies between OSSE and OSE contexts.

Several metrics are deliberated upon in this thesis. The primary one is
the root mean squared error (RMSE) of the estimated SSH compared to the
reference evaluation data. Although this metric provides an easily interpretable
value in centimeters, it overlooks some aspects. Since the SSH encompasses pro-
cesses spanning diverse scales and amplitudes, the normalized RMSE (nRMSE)
is also employed to better gauge errors relative to the SSH’s amplitude. Ad-
ditionally, oceanic processes of varying amplitudes possess distinctive spatial
and temporal scales. The more energetic processes exhibit broader spatial
and extended temporal scales. It’s imperative for domain experts to ascertain
if these processes are aptly depicted in the SSH estimation. Consequently,
spectral-based metrics are integral to this thesis to characterize at which scales
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the errors become important with respect to the SSH signal.
In closing, a substantial part of assessing an SSH estimation and deciding on

pertinent metrics hinges on qualitatively evaluating the field and its temporal
evolution, as well as derived geophysical metrics like geostrophic currents
and vorticity. Such qualitative evaluations necessitate profound geophysical
expertise. Chapter 5 is rooted in these considerations, elucidating and suggesting
tools to design appropriate experimental and evaluation frameworks for the
adept development and assessment of altimetry mapping methods.

2.5 A closer look on the 4dVarNet

Method overview

The 4dVarNet is a prominent framework frequently employed throughout
this thesis which is composed of the following key points. The SSH field is
characterized by values on a regular spatial and temporal grid x. The SSH
estimate û is then obtained using an interpolation scheme fx→u between the
grid points. The prior on the state space is formulated using a neural network ϕ
as ∥x−ϕ(x)∥l2. The 4dVarNet framework solves an inverse problem formulation
using a variational formulation through the minimization of the cost J(x, y) as
stated in Equation 2.6

J(x, y) = ∥fx→u(x)(Ωy) − y(Ωy)∥l2 + ∥x− ϕ(x)∥l2 (2.6)

The minimization procedure consists in an iterative gradient-based proce-
dure involving a neural network ψ which is described in Equation 2.7.

fy→x(y) = arg min
x

[J(x, y)]

= xN = xN−1 − ψ(∇xJ(xN−1, y))
(2.7)

The calibration of the neural network parameters of ϕ and ψ are performed
through the end-to-end training scheme minimizing a training objective L on
an OSSE dataset D as put in Equation 2.8.

f̂ = arg min
f

∑
(y,u)∈D

L(f(y), u) (2.8)
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Figure 2.3 – 4dVarNet Method. 4dvarnet components contextualized within
the methodological framework

In this section, we describe in more detail the different variations of the
4DVarNet in existing work. Introduced as a promising approach for mapping
altimetry data, 4DVarNet demonstrated robust performance in a study involv-
ing simulated SSH based on NATL60 simulation data[16]. Various regions [6]
and altimetry configurations were considered in these studies, including setups
with 4 nadir altimeters both with and without SWOT observations. Earlier
versions considered OI-based products as additional observational data for the
inversion [16].

The neural network ϕ employed for the prior formulation consists in bilinear
blocks as introduced in [20]. Earlier work [16] used a multiscale architecture
while a simpler single scale is used in Chapters 4 and 5. Outside of altimetry,
other ϕ have been experimented on Lorenz systems including using the true
system’s dynamics[21]

A Gaussian assumption for the observation errors is commonly adopted,
articulated through a quadratic norm in the observation cost. In a study that
incorporate Sea Surface Temperature (SST) observations ysst[22], convolutional
filters Hc1, Hc2 are used to formulate an additional observation cost that relates
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the state to SST ∥Hc1(x) −Hc2(ysst)∥.
The neural network ψ is inspired by meta-learning studies [23] that employ

a Long-Short-Term-Memory (LSTM) to compute state updates[16]. Earlier
works use a fixed-point algorithms which iteratively impose state values at
observed grid points and apply a forward pass of the neural network ϕ [24].

Apart from the cross validation and exploration of different architectures
and configurations, the training of the neural network’s parameters, both for
the solver and the prior, is achieved through the Adam optimization algorithm
[25]. The aim is to minimize both the mean squared error in SSH reconstruction
and its gradients. In order to constrain the estimated states to have low prior
costs, a supplementary term is added to ensure effective weightage in the neural
prior. This results in the training objective L described in Equation 2.9.

L(û, u) = α1∥û− u∥ + α2∥∇û− ∇u∥ + α3∥û− ϕ(û)∥ (2.9)

4DVarNet has emerged as a versatile and effective architecture for handling
altimetry data, with various advancements and optimizations over time. By
combining neural networks with traditional variational techniques, it opens
up promising avenues for state-of-the-art state estimation in oceanographic
applications.

53



BIBLIOGRAPHY

[1] G. Taburet, A. Sanchez-Roman, M. Ballarotta, M.-I. Pujol, J.-F. Legeais,
F. Fournier, Y. Faugere, and G. Dibarboure, “DUACS DT2018: 25 years
of reprocessed sea level altimetry products,” Ocean Science, vol. 15, no. 5,
pp. 1207–1224, Sep. 2019.

[2] F. L. Guillou, S. Metref, E. Cosme, C. Ubelmann, M. Ballarotta, J. L.
Sommer, and J. Verron, “Mapping Altimetry in the Forthcoming SWOT
Era by Back-and-Forth Nudging a One-Layer Quasigeostrophic Model,”
Journal of Atmospheric and Oceanic Technology, vol. 38, no. 4, pp. 697–710,
Apr. 2021.

[3] J.-M. Lellouche, E. Greiner, R. Bourdallé-Badie, G. Garric, A. Melet,
M. Drévillon, C. Bricaud, M. Hamon, O. Le Galloudec, C. Regnier, T. Can-
dela, C.-E. Testut, F. Gasparin, G. Ruggiero, M. Benkiran, Y. Drillet,
and P.-Y. Le Traon, “The Copernicus Global 1/12° Oceanic and Sea Ice
GLORYS12 Reanalysis,” Frontiers In Earth Science, vol. 9, Jul. 2021.

[4] C. Ubelmann, P. Klein, and L.-L. Fu, “Dynamic Interpolation of Sea
Surface Height and Potential Applications for Future High-Resolution
Altimetry Mapping,” Journal of Atmospheric and Oceanic Technology,
vol. 32, no. 1, pp. 177–184, Jan. 2015.

[5] M. Ballarotta, C. Ubelmann, M. Rogé, F. Fournier, Y. Faugère, G. Dibar-
boure, R. Morrow, and N. Picot, “Dynamic Mapping of Along-Track Ocean
Altimetry: Performance from Real Observations,” Journal of Atmospheric
and Oceanic Technology, vol. 37, no. 9, pp. 1593–1601, Sep. 2020.

[6] M. Beauchamp, Q. Febvre, H. Georgenthum, and R. Fablet, “4DVarNet-
SSH: End-to-end learning of variational interpolation schemes for nadir
and wide-swath satellite altimetry,” Geoscientific Model Development,
vol. 16, no. 8, pp. 2119–2147, Apr. 2023.

[7] C. Ubelmann, G. Dibarboure, L. Gaultier, A. Ponte, F. Ardhuin, M. Bal-
larotta, and Y. Faugère, “Reconstructing Ocean Surface Current Combin-
ing Altimetry and Future Spaceborne Doppler Data,” Journal of Geophys-
ical Research: Oceans, vol. 126, no. 3, p. e2020JC016560, 2021.

54



BIBLIOGRAPHY

[8] C. Ubelmann, L. Carrere, C. Durand, G. Dibarboure, Y. Faugère, M. Bal-
larotta, F. Briol, and F. Lyard, “Simultaneous estimation of ocean
mesoscale and coherent internal tide sea surface height signatures from
the global altimetry record,” Ocean Science, vol. 18, no. 2, pp. 469–481,
Apr. 2022.

[9] A. Carrassi, M. Bocquet, L. Bertino, and G. Evensen, “Data assimilation
in the geosciences: An overview of methods, issues, and perspectives,”
WIREs Climate Change, vol. 9, no. 5, p. e535, 2018.

[10] J. E. Johnson, R. Lguensat, R. Fablet, E. Cosme, and J. L. Sommer,
“Neural Fields for Fast and Scalable Interpolation of Geophysical Ocean
Variables,” Nov. 2022.

[11] S. Benaïchouche, C. L. Goff, B. Boussidi, F. Rousseau, and R. Fablet,
“Learnable Variational Models for the Reconstruction of Sea Surface Cur-
rents Using Ais Data Streams: A Case Study on the Sicily Channel,” in
IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing
Symposium, Jul. 2022, pp. 6821–6824.

[12] A. Farchi, M. Chrust, M. Bocquet, P. Laloyaux, and M. Bonavita, “Online
Model Error Correction With Neural Networks in the Incremental 4D-Var
Framework,” Journal of Advances in Modeling Earth Systems, vol. 15,
no. 9, p. e2022MS003474, 2023.

[13] G. Dibarboure, C. Ubelmann, B. Flamant, F. Briol, E. Peral, G. Bracher,
O. Vergara, Y. Faugère, F. Soulat, and N. Picot, “Data-Driven Calibra-
tion Algorithm and Pre-Launch Performance Simulations for the SWOT
Mission,” Remote Sensing, vol. 14, no. 23, p. 6070, Jan. 2022.

[14] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, “A tutorial
on energy-based learning,” Predicting structured data, vol. 1, no. 0, 2006.

[15] “A Practical Guide to Training Restricted Boltzmann Machines | Springer-
Link,” https://link.springer.com/chapter/10.1007/978-3-642-35289-8_32.

[16] R. Fablet, M. M. Amar, Q. Febvre, M. Beauchamp, and B. Chapron, “END-
TO-END PHYSICS-INFORMED REPRESENTATION LEARNING FOR
SATELLITE OCEAN REMOTE SENSING DATA: APPLICATIONS TO
SATELLITE ALTIMETRY AND SEA SURFACE CURRENTS,” ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. V-3-2021, pp. 295–302, Jun. 2021.

55



Part, BIBLIOGRAPHY

[17] G. E. Manucharyan, L. Siegelman, and P. Klein, “A Deep Learning Ap-
proach to Spatiotemporal Sea Surface Height Interpolation and Estimation
of Deep Currents in Geostrophic Ocean Turbulence,” Journal of Advances
in Modeling Earth Systems, vol. 13, no. 1, p. e2019MS001965, 2021.

[18] B. Hosseiny, M. Mahdianpari, M. Hemati, A. Radman, F. Mohammadi-
manesh, and J. Chanussot, “BEYOND SUPERVISED LEARNING IN
REMOTE SENSING: A SYSTEMATIC REVIEW OF DEEP LEARN-
ING APPROACHES,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, pp. 1–22, 2023.

[19] N. Harilal, B.-M. Hodge, A. Subramanian, and C. Monteleoni, “STint:
Self-supervised Temporal Interpolation for Geospatial Data,” Aug. 2023.

[20] R. Fablet, S. Ouala, and C. Herzet, “Bilinear Residual Neural Network
for the Identification and Forecasting of Geophysical Dynamics,” in 2018
26th European Signal Processing Conference (EUSIPCO), Sep. 2018, pp.
1477–1481.

[21] R. Fablet, B. Chapron, L. Drumetz, E. Mémin, O. Pannekoucke, and
F. Rousseau, “Learning Variational Data Assimilation Models and Solvers,”
Journal of Advances in Modeling Earth Systems, vol. 13, no. 10, p.
e2021MS002572, 2021.

[22] R. Fablet, Q. Febvre, and B. Chapron, “Multimodal 4DVarNets for the
Reconstruction of Sea Surface Dynamics From SST-SSH Synergies,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–14, 2023.

[23] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau, and
T. Schaul, “Learning to learn by gradient descent by gradient descent.”

[24] M. Beauchamp, r. fablet, C. Ubelmann, M. Ballarotta, and B. Chapron,
“Data-driven and learning-based interpolations of along-track Nadir and
wide-swath SWOT altimetry observations,” in Proceedings of the 10th
International Conference on Climate Informatics, ser. CI2020. New York,
NY, USA: Association for Computing Machinery, Jan. 2021, pp. 22–29.

[25] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
Jan. 2017.

56



Chapter 3

SCALE-AWARE NEURAL

CALIBRATION FOR WIDE SWATH

ALTIMETRY OBSERVATIONS

This chapter is based on a journal publication with the same name ongoing
review. The preprint is available here [1]

3.1 Introduction

Nadir altimeter satellites provide invaluable direct measurements of the
sea surface height (SSH) to monitor sea surface dynamics. They have played
a key role in better understanding ocean circulation and improving climate
monitoring. Altimeter-derived SSH data are also of key interest for offshore
activities, marine pollution monitoring or maritime traffic routing among
others.

However due to the sparse and irregular sampling associated with nadir
altimeter constellations, a wide range of ocean processes from the mesoscale to
the submesoscale range remains unresolved, typically for horizontal scales below
150 kilometers and time scales below 10 days. The recently launched SWOT
mission, with its Ka-band radar interferometer (KaRIn) sensor, provides for
the first time higher-resolution and two-dimensional snapshots of the SSH.
Once this data is adequately processed, it will likely strongly impact our ability
to observe and study upper ocean dynamics [2].

As reported in Figure 3.1, KaRIn data will be affected by instrument and
geophysical errors [3] and their exploitation requires to develop robust calibra-
tion schemes. We illustrate in Fig.3.2 the two main error sources: instrument
errors, especially roll errors, are expected to cause the dominant large-scale
signal in both across-swath and along-swath directions; and geophysical errors,
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Figure 3.1 – Observing System Simulation Experiment Cross-
Calibration data: Top left: Sea surface height (SSH) on October 26th
2012 from NATL60 simulation dataset. Top right: Calibrated NADIR pseudo-
observations sampled using realistic orbits from the SSH, they are used to
compute the gridded product for the cross-calibration.Bottom-left: NADIR +
noise-free-KaRIn pseudo-observations, the 2d sampled SSH is the target of the
cross-calibration.Bottom-right: NADIR + noisy-KaRIn pseudo-observations,
simulated errors added to the swath SSH constitute the uncalibrated input of
the cross-calibration problem

in particular due to wet-troposphere-induced delays 1. The amplitude of these
errors typically range from a few centimeters to a few meters in simulation,
when the variability of the SSH for scales below 150km typically amounts to
centimeters (See Fig. 3.6). This makes SWOT calibration a particularly chal-
lenging task in terms of signal-to-noise ratio. State-of-the calibration schemes
[4] rely on explicit spectral priors to address the calibration problem. The

1. We refer the reader to Section 3.3 for the description of these error signals in raw KaRIn
observations.

58



3.1. Introduction

underlying hypotheses that one can linearly separate the SSH and the different
error components may however impede the performance of such calibration
methods. This chapter aims to assess the potential of deep learning models in
addressing such altimetry challenges. This scenario serves as a compelling use
case for evaluating the potential of deep learning in altimetry data analysis since
it involves considerations related to both the ocean system and the observing
system.

The deep learning solution presented leverages existing mapping methods
to provide an initial estimate of SSH on the SWOT swath. It also incorporates
a neural network inspired by computer vision architectures to refine this
initial estimate using SWOT observation data. Our study demonstrates that
incorporating knowledge about error signals when designing the deep learning
model is crucial for improving the initial estimate.

This study does not directly address the challenges posed by the lack of
precise knowledge regarding SSH and error signals. Instead, we utilize data
from state-of-the-art ocean simulations and SWOT error models to calibrate
and assess the effectiveness of our method. This approach creates an idealized
setup for calibration and evaluation purposes, allowing us to focus on selecting
a deep learning architecture suited for the altimetry task. However, it also
raises questions about the transferability of deep learning techniques developed
in simulated environments to real altimetry data which are posed in the next
chapter.

The contributions of this chapter are as follows:
— We state the cross-calibration of KaRIn altimetry observations as a

learning problem using both raw KaRIn altimetry data and a gridded
altimetry product as inputs to the neural network.

— Our neural network architecture applies a scale-space decomposition
scheme in the geometry of the KaRIn swath to improve the separability
of the SSH and of the errors.

— Numerical experiments using an Observing System Simulation Experi-
ment (OSSE) demonstrate the relevance of the proposed approach and
highlight the impact of the quality of the gridded altimetry product to
retrieve finer-scale patterns in the calibrated KaRIn observations.

This chapter is organized as follows. Section 3.2 provides some background
on related work. We introduce the considered data and case-study in Section
3.3. Section 3.4 presents our method and we report numerical experiments in
Section 3.5. Section 3.6 discusses further our main contributions.
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(a) f (b) G200km(f) − G10km(f)

Figure 3.2 – 1000km segment of KaRIn observation components in
swath geometry:(a) Looking at the three signals we see that the large scale
instrument errors (middle) are predominant compared to the SSH (top) and
geophysical error (bottom). (b) Looking at the along-track scales between 10km
and 200km, we note that the SSH is dominant w.r.t the error signals.

3.2 Background

Satellite altimeters

In this chapter, we address the cross-calibration of KaRIn observations,
meaning that the proposed calibration scheme relies on external calibrated data.
More specifically, we consider a constellation of 4 nadir satellite altimeters.
We recall that nadir altimeters can provide calibrated measurements of the
SSH for medium to large scales along 1d profiles corresponding to satellites’
orbiting paths. Over the last decades the constellation counted typically from
4 to 7 satellites.

By contrast, according to the mission’s error budget specification [2] the
KaRIn instrument samples a two-dimensional swath of approximately 120km-
wide with a 2km×2km pixel resolution everywhere over the ocean.

In Figure 3.1, we report simulated altimetry observations for both nadir
altimeters and KaRIn along with the reference SSH issued from a numerical
simulation dataset (see the Section 3.3 for details). As an illustration of the
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complexity of calibration problem, the error signals completely occlude the
SSH signal in the uncalibrated KaRIn observation. Figure 3.2 illustrates further
this point in the swath geometry. When focusing on along-track scales between
10km and 200km, the SSH signal becomes the main signal (Fig. 3.2). This
supports both to consider a scale-space decomposition and to investigate a
cross-calibration approach with the exploitation of nadir-altimeter-derived
altimetry products, which typically resolve horizontal scales above 100 km.

Interpolation of satellite-derived altimetry data

As mentioned previously, flying nadir altimeter constellations naturally
advocate for considering the resulting interpolated SSH products as auxiliary
data of interest to address the calibration of KaRIn observations.

Regarding operational SSH products, we may distinguish the optimally-
interpolated altimetry-derived product (DUACS) [6] and reanalysis products us-
ing ocean general circulation models to assimilate various observation datasets,
including satellite altimetry and satellite-derived sea surface temperature data
[7]. Both types of products typically retrieve SSH dynamics on a global scale
for horizontal scales above 150km and 10 days.

Recently, a renewed interest has emerged in interpolation methods for ocean
remote sensing data [8][9]. Especially, deep learning schemes have emerged
as appealing approaches to make the most of available observation datasets.
Recent benchmarking experiments [10] point out significant potential gains
compared with the above-mentioned operational products.

Here, we aim at investigating the extent to which the quality of L4 nadir-
altimetry-derived SSH products may impact the calibration of KaRIn observa-
tions.

Scale-space theory

The scale-space theory provides a mathematically-sound framework to
decompose 2d signals at different spatial scales [5]. Gaussian scale-space meth-
ods are among the most widely used. They rely on applying Gaussian blur
transformations with different standard deviations. This approach has been
widely used in low-level image processing tasks [11, 12]. Recent studies have
used the scale-space theory in deep learning architectures [13, 14]. These neural
networks better deal with multi-scale patterns in the data. Here, we draw
inspiration from the scale-space framework to address the KaRIn calibration
problem. We design a scale-aware decomposition scheme as part of our learning

61



Part, Chapter 3 – Scale-aware neural calibration for wide swath altimetry observations

approach with a view to better accounting for the different characteristic scales
of the signals in play.

Deep Learning for earth observation

Convolutional neural networks are among the state-of-the-art neural architec-
tures for image processing applications, including image classification[15, 16], im-
age in-painting[17], object detection[18] and more. They have also led to break-
throughs in remote sensing problems such as SAR image segmentation[19, 20],
altimetry data interpolation [21] and even sensor calibration [22]. The problem
of multi-scale processing in neural networks has traditionally been tackled
through the use of pooling layers in architectures such as the UNet [23]. As
shown in the reported numerical experiments, these architectures do not reach a
state-of-the-art performance for our KaRIn calibration problem. This advocates
for the design of neural architectures better accounting for the key features of
KaRIn observations.

3.3 Data and Case-study

In this chapter, we run an Observing System Simulation Experiment (OSSE),
meaning that we rely on simulated data to apply and evaluate the proposed
neural approach. In this section, we present the different datasets considered
in this OSSE.

NATL60

The simulation of the sea surface height field is taken from the NATL60
[24] run of the NEMO ocean model. This simulation spans one year and covers
the North Atlantic basin with a 1/60° spatial resolution. We more specifically
use the data from a 12°×12° domain over the Gulfstream ranging from the
longitudes -66° to -54° and latitudes 32° to 44°.

Nadir observations

In order to generate realistic nadir-altimeter pseudo-observations, we con-
sider the real orbits of the years 2012 and 2013 of the four missions Topex-
Poseidon, Jason 1, Geosat Follow-On, Envisat, as well as the 21-day cycle phase
SWOT orbit from the SWOT simulator [3] project. The sampling of the nadir-
altimeter pseudo-observations relies on the interpolation of the hourly SSH
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fields of the NATL60 run at the orbit coordinates. We consider nearest-neighbor
interpolation in time and a bilinear interpolation in space.

KaRIn observations

The SWOT simulator also generates the swath coordinates on each side of
the SWOT nadir. The swath spans from 10km to 60km off nadir with a 2km by
2km resolution. The SSH is then sampled on those coordinates the same way
as the nadir observations. Additionally, we also use the SWOT simulator in its
"baseline" configuration to generate observation errors. Our simulation includes
the systematic instrument errors with the roll, phase, timing and baseline
dilation signals. Those signals have time-varying constant, linear or quadratic
shape in the across track dimension. We also consider the geophysical error
with the wet troposphere residual error as implemented in the simulator. We
refer the reader to [3] for a detailed presentation of the SWOT simulator.

Gridded Altimetry Products

As explained in section 3.2, we make use of interpolated SSH products based
on nadir altimetry data as inputs for our cross-calibration method. We consider
two interpolation schemes in our study:

— the operational state-of-the-art based on optimal interpolation as im-
plemented in the DUACS product [6].

— a state-of-the-art neural interpolation scheme, referred to as 4DVarNet
[21]. This method is based on a trainable adaptation of the 4DVAR [25]
variational data assimilation method, and out-performs concurrent ap-
proaches in the considered OSSE setup [10]. We consider two 4DVarNet
interpolation configurations, one using only nadir altimetry data [26],
one using jointly nadir altimetry and sea surface temperature data [27].
We also include the latter as it significantly improves the reconstruction
of the SSH at finer scales.

3.4 Proposed Methodology

This section presents the proposed methodology for the cross-calibration
of raw KaRIn observations. We design trainable neural architectures that
take as inputs the uncalibrated KaRIn observations and the nadir-altimeter-
derived gridded SSH products interpolated on the KaRIn swath. We train these
architectures in a supervised manner on the reconstruction of the SSH on the
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Figure 3.3 – Overview of the proposed architecture: From left to right:
The first step interpolates the nadir-based gridded product onto the swath
segment. Afterwards, both the nadir-based gridded product and KaRIn ob-
servation undergo the scale-space decomposition scheme outlined in 3.4. The
scale components are stacked as channels and processed through the neural
network. The blue color of the "Split Conv" indicates that each side of the
swath is processed independently by the convolution layer whereas the orange
coloring of the "Swath Mix" layer tells that the whole data is processed jointly
(more details in 3.4). The final convolution computes a correction to be added
to the gridded product for computing the calibrated KaRIn data

KaRIn swath. We first present an overview of the proposed neural architectures
(Section 3.4). We then detail two specific components, namely the scale-space
decomposition block (Section 3.4) and the swath-mixing layers (Section 3.4).

Proposed neural architecture

The overall architecture considered is shown in figure 3.3. The scale-space
decomposition block first decomposed independently the input L4 SSH products
and KaRIn observations into Ns-scale tensors, which we concatenate as the
channel dimension. This results into a tensor of shape (2Ns, Nal, Nac) where
Nal and Nac are respectively the along track and across track sizes of the
input swath section. The scale-space decomposition step is described in section
3.4 A linear 2d convolution layer follows. The data is then processed by a
series of residual convolutional blocks composed of a convolution layer, a ReLU
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non-linearity [28], a skip connection and a swath-mixing layer as described in
3.4. A last linear convolution layer outputs a residual field, which we sum with
the input gridded L4 SSH product to produce the calibrated KaRIn observation.
The interested reader can refer to our implementation 2.

Scale-space decomposition

We exploit a Gaussian scale-space to compute a scale-space decomposition of
the fields provided as inputs to our neural architecture. For given scales σ1 and
σ2, we extract the associated signal as the difference between filtered versions
of the input signal using two Gaussian filters with standard deviation σ1 and
σ2. We consider one-dimensional filters for the along-track direction. Formally,
denoting Gσ the 1-dimensional Gaussian blur operator with standard deviation
σ in the along track dimension, the considered scale-space decomposition of a
signal f given a sequence of increasing scales [σ1, σ1, ..., σS ] computes the follow-
ing S + 1 components: [Gσ1(f),Gσ2(f) − Gσ1(f), ...,GσS (f) − GσS−1(f), f − GσS ]
These different components are then considered as channels for the convolu-
tionnal networks. In our experiments, we consider 20 scales in the along-track
direction evenly spaced from 8km to 160km. We discuss in section 3.5 how
sensitive the proposed method is to the parameterization of the decomposi-
tion. To account for scale-dependent energy levels in the computed scale-space
representation (see fig. 3.4), we introduce a batch normalization layer [29]. It
re-scales each component to centered and unit-variance variables. We illustrate
in Fig.3.4 the impact of the batch normalization step on the relative variance
of the signal of each scale of the decomposition.

One may regard the proposed scale-scale decomposition as a convolutional
block. Learning such a decomposition from data would however require very
large convolutional filters, which does not seem realistic, or a deeper architecture
with pooling layers that would require very efficient optimization given the
quantity of data available.

Swath mixer block

As observed in Figure 3.2, the swath observed from the KaRIn sensor
is not contiguous in the across-track dimension. The observation errors are
however clearly correlated between the two sides of the swath. To exploit these

2. https://github.com/CIA-Oceanix/4dvarnet-core/releases/tag/
tgrs-calcnn-2023

65

https://github.com/CIA-Oceanix/4dvarnet-core/releases/tag/tgrs-calcnn-2023
https://github.com/CIA-Oceanix/4dvarnet-core/releases/tag/tgrs-calcnn-2023


Part, Chapter 3 – Scale-aware neural calibration for wide swath altimetry observations

Figure 3.4 – Explained variance of scale components before and after re-
scaling: Each bar indicates how much each scale component of the uncalibrated
KaRIn contributes to the total variance of the signal, we can see that before
re-scaling (blue) there is four orders of magnitude between largest scale and
the others. The learnt re-scaling allows for scale component to be spread within
a single order of magnitude (orange), which is more suited to the downstream
neural architecture.

correlations in our architecture, we design a swath-mixer block with two specific
layers.

To avoid convolution kernels to mix information from the two sides of the
swath which could result in some unwanted side effects, each side is processed
separately by each convolution layer noted "Split Conv" in Fig. 3.3. Additionally,
each convolution layer input is padded so that the height and width of the
input remain unchanged throughout the network.

Besides, to combine relevant features from the two sides of the swath,
we introduce a layer denoted as "Swath-mix" in Fig. 3.3. It implements a
convolution layer after transposing the across-track dimension as a channel
dimension. This idea of a mixer layer has been used in architectures such as the
MLP-Mixer [30], in which it has been shown to help with the expressiveness of
neural networks.
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RMSE (m) RMSE ||∇ssh||

CalCNN 1.39e-02 6.46e-03
UNet 2.34e-02 1.07e-02
4DVarNet-5nad 2.17e-02 9.57e-03

Table 3.1 – Residual error of the benchmarked calibration frameworks

We analyse in section 3.5 the contribution of the mixing layer.

3.5 Experimental results

Setup

The results of this section have been computed using the one year ocean
simulation NATL60, over the 12°x12° domain over the Gulfstream. The model
evaluation is done on forty days in the inner 10°x10° region. The training of
the mapping and calibration models are done on the remaining days. The
experimental setup used is the same as in [10] The base configuration for our
architecture uses three convolutional blocks with 128 channels as presented in
Figure 3.3. The supervised training loss is a weighted mean of the mean square
errors for the reconstruction of the SSH, its gradient and its Laplacian. The
default scale-space decomposition used is made of twenty 8 kilometers band.
The calibration model is trained for 250 epochs with a annealing triangular
cyclical learning rate [31].

Benchmarking experiments

We summarize our benchmarking experiments in Table 3.1. We compare
our approach, referred to as CalCNN, with a standard UNet [23] architecture.
The latter uses as inputs the gridded altimetry product and the uncalibrated
KaRIn observation stacked together as a 2d field with 2 channels. We consider
the same training configuration for this UNet model as for the CalCNN. As
baseline, we also consider the reconstruction performance for the KaRIn SSH
issued from the 4DVarNet method using nadir-altimeter-only data. We evaluate
all methods according to the following two metrics, the root mean squared error
(RMSE) of the SSH field, and the RMSE of the amplitude of the gradients of
the SSH field. Whereas the UNet fails to produce a better estimate than the
nadir-only interpolation baseline, our CalCNN improves the estimation of the
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RMSE (m) RMSE ||∇ssh||
xp
CalCNN 1.39e-02 6.46e-03
CalCNN w/o skip connection 2.17e-02 9.57e-03
CalCNN w/o gridded product 1.70e-01 2.47e-02
CalCNN w/o scale decomposition 2.17e-02 9.58e-03
CalCNN w/o mixing layer 1.94e-02 9.60e-03

Table 3.2 – Ablation results

SSH and its gradient by over 35% and brings the residual error below 1.4cm
(Table 3.1).

In Figure 3.5, we further decompose the calibration error of the CalCNN
w.r.t. the spatial scale using 1-dimensional Gaussian blurs as introduced in
3.4. We draw a comparison with the 4DVarNet interpolation baseline and
observation errors. The CalCNN reaches a lower error than both KaRIn
observations and the interpolation baseline across all scales. At larger scales
the error gets closer to the latter as instrument errors dominate the large-scale
components of KaRIn observations. Interestingly, at scales lower than 10km,
we still retrieve some improvement even though the observation error is quite
high. This can be explained by the fact that the high frequency errors on
the KaRIn observations is easily separable from the underlying SSH signal.
Between 10-100km, our method successfully exploits the lower observation
errors to improve the interpolation baseline.

Ablation Study

In this section we analyse further the contribution of the different compo-
nents of our neural architecture. In Table 3.2, we report the performance metrics
of the considered ablation study with the following models: a model without
skip connections, one without a gridded product as input, one without the
scale-space decomposition scheme (Sec. 3.4) and one without the swath-mixer
layers (Sec.3.4. Overall, these four models lead to a significantly lower perfor-
mance. The largest impact comes from the ablation of the nadir-altimetry-only
gridded product which provides large-scale information about the SSH. It leads
to a loss which amount to an order of magnitude in the calibration errors.
Moreover, we can see that without the skip connections or scale decomposition,
we fail to improve on the L4 gridded product. Finally, we can note that we still
get a 10% reduction of the RMSE w.r.t the L4 product without the mixing
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Figure 3.5 – Observation and reconstruction error for the SSH at
different spatial scales: The figure shows the relative error w.r.t to the SSH
at different along-track scales for the inputs (Uncalibrated KaRIn in orange
and nadir based interpolation in blue) and output (calibrated KaRIn in green)
of our method. The x axis indicates the standard deviation of the Gaussian
blur that was used to remove the high scale components of the different signals.
We can see the expected trend of the interpolation error that is concentrated
at fine scales. The uncalibrated KaRIn error on the other hand is lower than
the interpolation only in the 10km-100km range. We see the calibrated output
of our method achieves lower error across all scales.

layer, however sharing the information between each side of the swath improves
this gain three fold.

In Table 3.3, we show the sensitivity to the size of the network for the same
training configuration. We compare the base architecture 3x128 (3 convolution
blocks with 128 channels) with a linear operator, as well as a smaller network
1x32 and a bigger one 5x512. The linear version fails to extract geophysical
information from the uncalibrated information. This further points out how
challenging the considered calibration task is. Interestingly, our architecture
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RMSE (m) RMSE ||∇ssh||
xp
128x3 (Ref) 1.39e-02 6.46e-03
Linear 2.13e-02 1.02e-02
32x1 1.44e-02 6.22e-03
512x5 1.49e-02 7.19e-03

Table 3.3 – Impact of network size

leads to a similar performance for different complexity levels. The smaller and
larger architectures leads to a slight increase in the residual error but the
smaller model shows a slight improvement in the gradient reconstruction and
spatial resolution. Overall, these results support the robustness of the proposed
learning-based approaches and the conclusions we raise in section 3.5 are not
very sensitive to the hyper-parameters of our network architecture.

Gridded product sensitivity

We analyze further how the quality of nadir-altimetry-only gridded product
affects the calibration performance. In Figure 3.6, we display the improvement
in the RMSE of the SSH on the swath and of the gradients of the SSH obtained
by our CalCNN for the three gridded products introduced in Sec. 3.2.

For all three interpolated products, the proposed calibration method im-
proves the reconstruction of the SSH for the KaRIn swath from the joint
analysis of the interpolation product and raw KaRIn observations. We report
the larger improvement for DUACS product. This relates to the spectral over-
lap between the SSH information of the uncalibrated KaRIn and SWOT’s
NADIR. The associated calibration performance remains however significantly
worse than that of the two 4DVarNet products, which may relate to the worse
interpolation performance of DUACS product [9, 10]. When comparing the
impact of the two 4DVarNet products, the results are more nuanced. The
4DVarNet-SST product leads to better metrics. The difference of RMSE is
greatly reduced after calibraFKation whereas the gap in RMSE of the gradients
is conserved. This could be interpreted as the gain of RMSE we get from using
the SST can be obtained from the uncalibrated KaRIn. However some of the
gradients we reconstruct through the SST are not easily extracted from the
observations. Overall this shows interesting relations between the redundant
information in the uncalibrated KaRIn and the interpolated products.
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Figure 3.6 – Impact of the nadir-based gridded product on the CalCNN
output: The figure shows the RMSE and the RMSE of the ||∇ssh|| of the
calibrated observation (stars) and their associated nadir-based gridded products
(squares). The improvement brought by the CalCNN is illustrated by the arrows.
This improvement can be interpreted as the relevant information extracted
from the uncalibrated KaRIn by the CalCNN. Note that the biggest relative
improvement concerns the DUACS gridded product (blue) which doesn’t uses
the SWOT’s nadir altimeter.
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RMSE (m) RMSE ||∇ssh||
Nband δband

20 8 1.39e-02 6.46e-03
40 4 1.44e-02 6.64e-03
10 16 1.48e-02 6.75e-03
5 32 1.41e-02 6.65e-03
10 8 1.56e-02 6.81e-03
40 8 1.54e-02 6.88e-03

Table 3.4 – Calibration metrics in function of the scale decomposition

Sensitivity to the scale-space decomposition

In Table 3.4, we display the calibration metrics for different scale-space decom-
positions. We vary the number of scales considered and the spacing between two
consecutive scales. When considering the same scale range from 8km to 160km,
we retrieve the best performance with 20 scales. But, even with only 5 scales
evenly separated by 32 km, the performance decreases only by 3%. By contrast,
when considering a scale separation of 8km but varying the number of scales, we
note a more significant drop of performance (about 10% in the residual RMSE).
This suggests a greater sensitivity to the span of the scale-space decomposition
than to the number and spacing of the components. However we still achieve
less than 1.6cm residual error for any of the considered variations which is still
a competitive calibration outcome.

3.6 Conclusion

We have proposed in this chapter a neural calibration approach which com-
bines a scale-space decomposition of KaRIn observations and a convolutional
architecture. This approach proves to be robust with a residual error below
1.5cm which can be compared with the 2cm residual error of the expected
operational approaches performance although demonstrated globally using
a different ocean simulation [4]. While we can reach a satisfactory calibra-
tion performance using the operational nadir altimetry mapping product, our
experiments highlight the potential benefit of ongoing effort on neural SSH
interpolation schemes to further improve the retrieval of finer-scale features
from KaRIn observations. This naturally advocates for future work exploring
jointly calibration and mapping problems for nadir and wide-swath altime-
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ters, possibly combining our deep learning approach and variational mapping
formulations introduced in [32].

This chapter confirmed the potential of deep learning models as alternatives
for altimetry data analysis. To further validate this potential in real-world
scenarios, we aim to evaluate deep learning methodologies using actual data.
At the time of this study, SWOT data was not yet available. Nevertheless, we
can assess the mapping of altimetry tracks using real data which is the core of
the next chapter.
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Chapter 4

TRAINING NEURAL MAPPING

SCHEMES FOR SATELLITE

ALTIMETRY WITH SIMULATION

DATA

This chapter is based on an journal publication with the same name ongoing
review. The preprint is available here [1]

4.1 Introduction

The retrieval of mesoscale-to-submesoscale sea surface dynamics for horizon-
tal scales smaller than 150 km is a challenge for operational systems based on
optimal interpolation [2] and data assimilation [3] schemes. This has motivated
a wealth of research to develop novel mapping schemes [4, 5, 6].

In this context, data-driven and learning-based approaches [7, 8, 9, 10, 11]
appear as appealing alternatives to make the most of the available observation
and simulation datasets. Especially, Observing System Simulation Experiments
(OSSE) have stressed the potential of neural schemes trained through supervised
learning for the mapping of satellite-derived altimetry data [10, 12]. Their
applicability to real datasets has yet to be assessed and recent studies have
rather explored learning strategies from real gappy multi-year altimetry datasets
[11]. The scarce and irregular sampling of the nadir measurements presents a
challenge for training deep neural networks directly on observation data.Despite
promising results, schemes trained with unsupervised strategies do not reach the
relative improvement of the operational processing suggested by OSSE-based
studies.

Among the existing methods, the 4dVarNet neural mapping scheme has
demonstrated state-of-the-art performance when evaluated on simulated data.
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Consequently, it serves as a compelling case study for assessing the transfer-
ability of neural schemes from simulated to real data. This chapter explores a
specific strategy for applying these neural schemes to real data. Namely, we go
beyond using OSSEs as benchmarking-only testbeds. We explore their use for
the training of neural mapping schemes and address the space-time interpola-
tion of real satellite altimetry observations. Through numerical experiments
on a Gulf Stream case-study with a 5-nadir altimeter constellation, our main
contributions are three-fold.

— We demonstrate the relevance of the simulation-based learning of neural
mapping schemes and their generalization performance for real nadir
altimetry data.

— We benchmark the proposed approach with state-of-the-art operational
products as well as neural schemes trained from real altimetry datasets.

— We also assess how the characteristics of the training datasets, especially
in terms of resolved ocean processes, drives the mapping performance.

The content of this chapter is organized as follows. Section 4.2 offers
background information on related work, Section 4.3 presents our method,
Section 4.4 reports our numerical experiments, and Section 4.5 elaborates on
our main contributions.

4.2 Background

Gridded satellite altimetry products

The ability to produce gridded maps from scattered along-track nadir
altimeter measurements of sea surface height is key to the exploitation of
altimeter data in operational services and science studies [13]. As detailed
below, we can distinguish three categories of approaches to produce such maps:
reanalysis products [3] using data assimilation schemes, observation-based
products [2] and learning-based approaches [10].

Reanalysis products such as the GLORYS12 reanalysis [3] leverage the full
expressiveness of state-of-the-art ocean models. They aim at retrieving ocean
state trajectories close to observed quantities through data assimilation methods
including among others Kalman filters and variational schemes [14]. Such
reanalyses usually exploit satellite-derived and in situ data sources. For instance,
GLORYS12 reanalysis assimilates satellite altimetry data, but also satellite-
derived observations of the sea surface temperature, sea-ice concentration as
well as in situ ARGO data [15].
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The second category involves observation-based products. In contrast to
reanalyses, they only rely on altimetry data and address a space-time interpo-
lation problem. They usually rely on simplifying assumptions on sea surface
dynamics. In this category, optimal-interpolation-based product DUACS (Data
Unification and Altimeter Combination System) [2] exploits a covariance-based
prior, while recent studies involve quasi-geostrophic dynamics to guide the
interpolation scheme [6, 4].

Data-driven and learning-based approaches form a third category of SSH
mapping schemes. Similarly to observation-based methods, they are framed
as interpolation schemes. Especially deep learning schemes have gained some
attention. Recent studies have explored different neural architectures both
for real and OSSE altimetry datasets [16, 17, 11]. These studies investigate
both different training strategies as well as different neural architectures from
off-the-shelf computer vision ones such as convolutional LSTMs and UNets
[18] to data-assimilation-inspired ones [17, 19].

Ocean Modeling and OSSE

Advances in modeling and simulating ocean physics have largely contributed
to a better understanding of the processes involved in the earth system and to
the development of operational oceanography [20, 21]. High-resolution simula-
tions used in Observing System Simulation Experiments (OSSE) also provide
a great test-bed for the design and evaluation of new of ocean observation
systems [22]. The availability of numerical model outputs enables the com-
putation of interpretable metrics directly on the quantities of interest. This
avoids challenges met when working solely with observation data that may be
incomplete, noisy or indirectly related to the desired quantity. For example,
in the case of the recently launched SWOT mission, OSSEs combined ocean
and instrument simulations to address calibration issues and interpolation
performance for SWOT altimetry data [23]. Such OSSEs have also promoted
novel developments for the interpolation of satellite altimetry such as the
BFN-QG and 4DVarNet schemes [6, 12].

In OSSE settings, we can train learning-based mapping schemes in a super-
vised manner using model outputs as the "ground truth" during the training
phase. Nonetheless, these training methods cannot be straightforwardly applied
to Observing System Experiments (OSEs) due to a lack of comprehensive
groundtruthed observation datasets. Applied machine learning practitioners
often grapple with insufficient amount of labelled data during the training of

79



Part, Chapter 4 – Training neural mapping schemes for satellite altimetry with
simulation data

supervised learning schemes, as the collection of large annotated datasets for
a specific task can be costly or unattainable. Proposed solutions includes the
exploitation of large existing datasets (such as ImageNet [24]) to train general
purpose models [25]. Another approach involves the generation of synthetic
datasets to facilitate the creation of groundtruthed samples [26, 27]. OSSEs,
which combine ocean model outputs and observing system simulators [28], can
deliver such large synthetic groundtruthed datasets. We propose to investi-
gate how OSSE-based training strategies apply to the analysis of real satellite
altimetry datasets. Recent results of SSH super-resolution model trained on
simulation datasets and evaluated on real ones [29] support the relevance of
such strategies.

Physics-aware deep-learning

In the last decades, DL advances combined with the rise in computational
resources and amount of data have shown the power of extracting knowledge
from data in domains ranging from computer vision to language processing [30].
Yet, despite to the universality of DL architectures [31], a central challenge
persists in learning from data: the generalization performance beyond the
distribution of the training data. To tackle this problem, the literature includes
a variety of strategies such as data augmentation [32] and regularization
techniques, including dropout layers [33] and weight decay schemes [34]. This is
of critical importance for physical systems, where models trained on past data
will be challenged when the system evolves and reaches dynamics absent from
the training data. We can see evidence of this shortcoming in the instability
challenges faced by neural closures for climate models [35].

There have been a variety of approaches to harness physical priors within
learning schemes to address this issue. Some injects trainable components in
classical integration schemes of physical models [36], others leverage physical
priors within their learning setups which can been used in the training objective
[37, 38], as well as in the architecture [39, 40]. However most of these works
have focused on relatively simple physical models and it remains challenging to
combine current state-of-the-art ocean models with such methods. Obstacles
include the complexity and cost of running the physical models, the differences
in programming tools and the computing infrastructures used in each domain,
as well as the availability of automatic differentiation tools for state-of-the-art
ocean models.

The proposed simulation-based training strategy offers another way to
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benefit from the advances in high-resolution ocean modeling in the design of
deep neural models for ocean reanalysis problems.

4.3 Method

Overview

We designate our approach as "simulation-based", it consists in leveraging
ocean models and simulations of observing systems to design supervised training
environments. In this section, we describe the proposed method for assessing
the potential of simulation-based neural schemes for the mapping real altimetry
tracks. We describe the architecture considered in our study, as well as the
different datasets used for training purposes. We also detail our simulation-
based training setup and the proposed evaluation framework on real altimetry.

Figure 4.1 – Overview of the experimental setup. On the left side we
display the simulation-based training strategy based on an ocean simulation
which will be used for 1) generating synthetic observation and 2) computing
the training objective of the neural mapping scheme. On the right side we
show the evaluation principle of splitting the available satellite observations to
evaluate the method on data that were not used for the inference.
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Neural mapping scheme

The neural mapping scheme considered for this study is the 4DVarNet
framework[10]. We choose this scheme due to the performance shown in the
OSSE setup. Previous studies [12] report significant better performance than
the DUACS product [2] in the targeted Gulf stream region. 4DVarNet relies
on a variational data assimilation formulation. The reconstruction results from
the minimization of a variational cost. This cost encapsulates a data fidelity
term and a regularization term. It exploits a prior on the space-time dynamics
through a convolutional neural network inspired from [41], and an iterative
gradient-based minimization based on a recurrent neural network as introduced
for meta-learning purposes [42]. The overall architecture and components are
similar to those presented in existing work [12]. We adapt some implementation
details based on cross-validation experiments to improve the performance and
reduce the training time. We refer the reader to the code for more details [43].

SSH Data

Resolution Reanalysis Tide DAC
NATL60 [21] 1/60◦ No No No
eNATL60-t [44] 1/60◦ No Yes Yes
eNATL60-0 [44] 1/60◦ No No Yes
GLORYS12-r [3] 1/12◦ Yes No No
GLORYS12-f [3] 1/12◦ No No No
ORCA025 [20] 1/4◦ No No No

Table 4.1 – Summary table of the different synthetic SSH fields used
for training. The last column indicate whether the Dynamic Atmospheric
Correction was applied on the synthetic SSH. It justify the presence of both
eNATL60-0 and NATL60 to isolate the impacts of resolution and tide.

We use numerical simulations of ocean general circulation models (OGCM)
to build our reference SSH datasets. Such simulations involve a multitude of
decisions that affect the resulting simulated SSH. Here we consider NEMO
(Nucleus for European Modelling of the Ocean) [45] which is among the state-
of-the art OGCM in operational oceanography [21] as well as in climate studies
[46]. The selected SSH datasets reported in Table 4.1 focus on three main
aspects: the added-value of high-resolution eddy-rich simulations, the impact
of reanalysis datasets and the relevance of tide-resolving simulations.

In order to evaluate the impact of eddy-rich simulations, we consider
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NATL60, GLORYS12-f and ORCA025 free runs, respectively with a horizontal
grid resolution of 1/60◦, 1/12◦, and 1/4◦. Finer grids allow for more processes
to be simulated. We therefore expect higher-resolution simulations to exhibit
structures closer to the real ocean and the associated trained deep learning
model to perform better. Regarding the impact of reanalysis data, we compare
numerical experiments with the GLORYS12-r reanalysis and the associated
free run GLORYS12-f. This reanalysis dataset relies on the assimilation of
temperature, sea level and sea ice concentration observations. Besides, the
recent eNATL60 twin simulations eNATL60-t and eNATL60-0 allow us to
evaluate the impact of tide-resolving simulations. We summarize in Table 4.1
the characteristics of the different datasets.

OSSE-based training setup

We sketch the proposed OSSE-based training setup on the left side of the
Figure 4.1. In order to fairly evaluate the datasets’ quality as a training resource,
we standardize the training procedure. We regrid all simulations to the same
resolution (1/20°) and we use daily-averaged SSH fields as training targets. We
generate noise-free pseudo-observations by sampling values of the daily-averaged
fields corresponding to realistic orbits of a 5 altimeter-constellation. We train
all models from a one-year dataset in a Gulfstream domain from (66°W, 32°N)
to (54°W, 44°N) in which we keep the same two months for validation. The
hyper-parameters of the model and training procedure such as the number of
epoch, learning rate scheduler are the same for all the experiments. The detailed
configuration can be found by the reader in the available implementation. As
training objective, we combine the mean square errors for the SSH fields and
the amplitude of the gradients as well as a regularization loss for the prior
model.

OSE-based evaluation setup

As sketched on the right side of the Figure 4.1, the evaluation setup
relies on real altimetry data from the constellation of 6 satellites from 2017
(SARAL/Altika, Jason 2, Jason 3, Sentinel 3A, Haiyang-2A and Cryosat-2
). We apply the standardized setup presented in a data-challenge https://
github.com/ocean-data-challenges/2021a_SSH_mapping_OSE. We use the
data from the first five satellites as inputs for the mapping and the last one
(Cryosat-2) for computing the performance metrics. We compute these metrics
in the along-track geometry. The evaluation domain spans from (65°W, 33°N)
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to (55°W, 43°N) and the evaluation period from January 1st to December
31st 2017. Given ηc2 and η̂ the measured SSH and the reconstructed SSH
respectively, we compute the following two metrics:

— µssh is a score based on the normalized root mean squared (nRMSE)
error computed as 1 − RMS(η̂ − ηc2)

RMS(ηc2)
— λx is the wavelength at which the power spectrum density (PSD) score

1 − PSD(η̂ − ηc2)
PSD(ηc2) crosses the 0.5 threshold, which characterize the

scales resolved by the reconstruction (the error below that wavelength
makes up for more than half of the total signal)

In Table 4.3, we also consider the root mean square error (RMSE) as well as
the nRMSE score of the sea level anomaly µsla obtained by subtracting the mean
dynamic topography to the SSH. Lastly, we assess the performance degradation
resulting from the transition from simulated to real data by quantifying the
improvement relative to DUACS in the resolved scale λx on our OSE setup
as well as on the OSSE benchmarking setup proposed in related studies
[6]. This benchmarking setup relies on NATL60-CJM165 OSSE dataset. We
refer the reader to https://github.com/ocean-data-challenges/2020a_
SSH_mapping_NATL60 for a detailed description of this experimental setup.

4.4 Results

This section details our numerical experiments for the considered real
altimetry case-study for a Gulf Stream region as described in Section 4.3.
We first report the benchmarking experiments to assess the performance of
the proposed learning-based strategy with respect to (w.r.t.) state-of-the-art
mapping schemes. We then analyse how the characteristics of the training
datasets drive the mapping performance.

Benchmarking against the state of the art

We report in Table 4.2 the performance metrics of state-of-the-art ap-
proaches including both operational observation products [2, 5], deep-learning-
based schemes trained on observation data [16, 11] as well as methods using
explicitly a model-based prior on sea surface dynamics [6, 4, 3]. We compare
those methods with a 4DVarNet trained on eNATL60-0 OSSE dataset. The
latter outperforms all other methods on the two metrics considered (22% im-
provement in RMSE w.r.t. the DUACS product and 33% improvement in the
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resolved scale). We report a significantly worse performance for GLORYS12
reanalysis. This illustrates the challenge of combining large ocean general
circulation models and observation data for the mapping of the SSH.

The last column indicates that the 4DVarNet scheme leads to the best
mapping scores for both the OSE and OSSE setups. For the latter, the re-
ported improvement of 47% is twice greater than the second best at 22%.
The performance of the 4DVarNet drops by 11% when considering the former.
By contrast, other methods do not show such differences between the OSE
and OSSE case-studies. This suggests that the finer-scale structures that are
well reconstructed in the OSSE setup are not as beneficial in the OSE setup.
While one could question the representativeness of the OSSE datasets for the
fine-scale patterns in the true ocean, real nadir altimetry data may also involve
multiple processes which could impede the reconstruction and evaluation of
horizontal scales below 100km.

SSH Deep Calibrated on Physical rmse µssh λx 1 − λx
λref

Only Learning data from Model (cm) () (km) (% ose, osse)
(a) 4DVarNet Yes Yes Simulation – 5.9 0.91 100 33, 47
(b) MUSTI No Yes Satellite – 6.3 0.90 112 26, 22
(c) ConvLstm-SST No Yes Satellite – 6.7 0.90 108 28, –
(d) ConvLstm Yes Yes Satellite – 7.2 0.89 113 25, –
(e) DYMOST Yes No Satellite QG 6.7 0.90 131 13, 11
(f) MIOST Yes No Satellite – 6.8 0.90 135 11, 10
(g) BFN-QG Yes No Satellite QG 7.6 0.89 122 19, 21
(h) DUACS Yes No Satellite – 7.7 0.88 151 0, 0
(i) GLORYS12 No No Satellite NEMO 15.1 0.77 241 -60, –

Table 4.2 – SSH reconstruction performance of the benchmarked meth-
ods (a) 4DVarNet from this study trained on eNATL60-0 (b) Archambault et
al. (2023), (c and d) ConvLstm-SST and ConvLstm from Martin et al. (2023),
(e) DYMOST from Ballarotta et al. (2020), (f) MIOST from Ubelmann et al.
(2021), (g) BFN-QG from Guillou et al. (2021), (h) DUACS from Taburet et
al. (2019), (i) GLORYS12 from Lellouche et al. (2021. The columns indicate
from left to right: whether athe mapping schemes rely only on SSH data or
also exploit additional data such as gap free SST products; if the method uses
deep learning architectures; the data used to calibrate (or train) the mapping
scheme; the numerical model of the ocean used for the mapping if any (QG
stands for quasi-geostrophic); µ and λx are the metrics as described in Section
4.3
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Figure 4.2 – Kinetic energy and relative vorticity on January 6th of
training and reconstruction data. The first two columns (a) and (b) show
the training data while columns (c) and (d) show the associated 4DVarNet
reconstruction of the 2017 year. Columns ((a) and (c)) display the geostrophic
kinetic energy while ((b) and (d)) display the relative vorticity normalized
by the Coriolis parameter. Each row corresponds to the dataset: ORCA025
(I), GLORYS12-f (II), GLORYS12-r (III), NATL60 (IV), eNATL60-t (V) and
eNATL60-0 (VI)
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Figure 4.3 – Space-time spectral densities of the training datasets
(first row) and of their associated reconstruction (second row). Darker
blue in the lower left corner indicates higher energy at larger wavelength and
periods. The different SSH fields exhibit different energy cascades when moving
to finer temporal (upward) or spatial (rightward) scales.

Training Data RMSE µssh µsla λx 1 − λx
λref

(cm) (km) (% ose, osse)

NATL60 5.9 0.91 0.80 98 (35, –)
eNATL60-t 5.9 0.91 0.80 100 (33, 48)
eNATL60-0 5.9 0.91 0.80 100 (33, 47)
GLORYS12-r 6.3 0.90 0.78 106 (30, 28)
GLORYS12-f 6.7 0.90 0.77 119 (21, 23)
ORCA025 7.1 0.89 0.76 126 (17, 17)

Table 4.3 – Performance of 4DVarNet mapping schemes trained on
different simulated datasets. The first column shows the source of the
training dataset as described in Table 4.1; the subsequent columns indicate the
reconstruction metrics described in Section 4.3. Note that the NATL60 could
not be evaluated on the OSSE setup since the evaluation data were used for
validation during the training stage.
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Eddy-present datasets versus eddy-rich ones

Figure 4.4 – Spectral analysis of the training and reconstructed SSH
datasets. We display the PSD of the training dataset (left plot), reconstructed
SSH field (center plot) as well as the associated PSD score (right plot)

We analyse here in more detail the impact of the spatial resolution of
the training dataset onto the reconstruction performance. In Table 4.3, as
expected, the higher resolution grid in the ocean run simulation leads to a
better mapping with a 22% improvement in λx and a 17% improvement in
the RMSE score between the experiments with the coarsest (ORCA025) and
finest (NATL60) resolutions. We also observe qualitative differences in the
relative vorticity fields in Figure 4.2. Residual artifacts due to the altimetry
tracks appear (60°W, 39°N) for the two lower-resolution training datasets. They
are greatly diminished when considering the NATL60 dataset. Despite these
differences, the reconstructed vorticity and kinetic energy fields in Figure 4.2
look very similar for the different 4DVarNet schemes, whatever the training
datasets. By contrast, the vorticity and kinetic energy fields in the training
datasets clearly depict fewer fine-scale structures and weaker gradients for
the lower-resolution simulation datasets, namely ORCA025 and GLORYS12-f.
These results support the generalization skills of 4DVarNet schemes to map
real altimetry tracks despite being trained on SSH sensibly different from the
reconstruction.

We draw similar conclusions from the analysis of the spectral densities
shown in Figure 4.4. The differences in the energy distribution of the training
data significantly reduce in the reconstructions. 4DVarNet schemes trained
from higher-resolution datasets however result in more faithful reconstruction
at all scales. The patterns observed for the temporal PSD are slightly different
in Figure 4.3. We do not observe the same homogenization as for the spatial
PSD. Lower-resolution training datasets involve a significant drop of an order
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of magnitude for periods greater than 10 days and wavelength greater than
200km.

Forced simulation datasets versus reanalysis ones

Figure 4.5 – Spectral impact of model reanalysis. We display the PSD of
the training dataset (left plot), reconstructed SSH field (center plot) as well as
the associated PSD score (right plot)

Looking in more specifically at the effect of ocean reanalysis between the
two experiments GLORYS12-f and GLORYS12-r. We can first note the impact
of observation data assimilation in Figure 4.3 where we see how the power
spectrum of the reanalysis is significantly raised compared to the free run. The
spectrum is closer to ones of the higher resolution simulations. Visually we also
clearly see stronger gradients in the kinetic energy in Figure 4.2.

We can observe a similar behavior as in Section 4.4 in Figure 4.5 with
the gap of in spectral density being diminished between the training and
reconstruction data, and the PSD score indicating a lower energy of the error
at all scales for the reanalysis-based experiment.

Quantitatively in Table 4.1 we see an improvement of 11% in both the
RMSE and the scale resolved, besides training on a reanalysis increase the
relative gain w.r.t. DUACS significantly more on real data (+9%) than on
simulated data (+5%) as we can see in the right most column. This suggests
that the reanalysis dataset conveys information on real world observations
which improves the generalization performance.

Tide-free datasets versus tide-resolving ones

We assess here the impact of tide-resolving simulation used as training
data. We use the twin eNATL60 runs eNATL60-t and eNATL60-0. Contrary
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to other runs, those simulations contain barometric and wind forcing, we
therefore remove the Dynamic Atmospheric Correction [47] from the SSH fields.
Additionally since the barotropic tide signals are removed from real altimetry
tracks prior to interpolation, we also remove the signal from the training data
by subtracting the spatial mean over the training domain for each hourly
snapshot before calculating the daily averages.

Given those processing steps, the two training datasets exhibit very similar
wavenumber spectra as shown in Figures 4.3. We also find that training on those
two datasets produce little differences in the reconstructions both quantitatively
(see Table 4.3) and qualitatively (Fig. 4.2). The resulting performance is
comparable to that of the NATL60 experiment.

We identify two hypotheses for explaining why tide-resolving simulation do
not lead to better mapping schemes:

— The preprocessing applied on the training field remove the main tide
signals. We therefore effectively measure the impact of tide modeling
on other ocean processes that may be less significant;

— The evaluation procedure applied on altimetry tracks on which the
barotropic tide has been filtered may not be interpretable enough to
measure the reconstruction of residual tide signals. New instruments
like the KaRIN deployed in the SWOT mission may provide new ways
to better quantify those effects.

These findings provide motivation for carefully considering the purpose of
the learning-based model when making decisions about the training data. In our
case, explicitly modeling tide processes that are removed from the observations
in the evaluation setup added overheads in the computational cost of running
the simulation as well as in the preprocessing of the training data. Additionally
given the considered evaluation data and metrics, we were not able to quantify
any significant differences between the two trained mapping schemes.

4.5 Discussion

We have shown in this chapter that training machine learning models on
simulations datasets leads good performance on real altimetry data mapping
and outperforms current state of the art approaches. The model trained on
NATL60 reduces the RMSE by 18% compared neural schemes trained on
observation data and improves the scales resolved by 33% compared to the DU-
ACS operational product. Even the coarsest simulation considered ORCA025

90



4.5. Discussion

provides competitive results with current operational methods. We have shown
that using a more realistic SSH fields using reanalysis or higher resolution
simulations increases the performances of the trained model. This is an exciting
result that shows the potential for training operational products from ocean
simulations and how advances in ocean modeling in operational oceanography
can be beneficial. The results shown here are limited to the interpolation
problem on a regional domain but the robustness of the performance shown
are encouraging for further developing these results using a larger domain.

This study has been greatly facilitated by the standardized tasks and eval-
uation setups proposed in data-challenges https://ocean-data-challenges.
github.io/. Data-challenges are used to specify a targeted problem of interest
to domain experts through datasets and relevant evaluation metrics. This
preliminary work have been instrumental in constituting the comprehensive
benchmark and combining methods from different teams and institution around
the world. Additionally, it also constitutes a strong basis for a trans-disciplinary
collaboration between the ocean and machine learning research communities.

The results presented in this study introduce a use of ocean simulations
for developing altimetry products. This opens new ways for ocean physicist,
modelers and operational oceanographers to collaborate. In order to assess
the range of these new synergies, it would be interesting to explore if the
approach proposed here of training neural schemes using simulation data would
generalize to other tasks such as forecast or sensor calibration and to other
quantities like surface temperature, currents, salinity or biochemical tracers.

The next chapter paves the way to facilitate the exploration of new appli-
cation of learning based methods to ocean science questions.
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Chapter 5

OCEANBENCH: THE SEA

SURFACE HEIGHT EDITION

This chapter is based on an accepted international conference publication
with the same name. The preprint is available here [1]

5.1 Introduction

The ocean is vital to the Earth’s system [2]. It plays a significant role
in climate regulation regarding carbon [3] and heat uptake [4]. It is also a
primary driver of human activities (e.g., maritime traffic and world trade,
marine resources and services) [5, 6]. Satellite remote sensing is one of the
most effective ways of measuring essential sea surface quantities [7] such as
sea surface height (SSH) [8], sea surface temperature (SST) [9], and ocean
color [10]. While these variables characterize only a tiny portion of the ocean
ecosystem, they present a gateway to many other derived physical quantities [6].

Although we can access observable sea surface quantities, they can be noisy
and irregularly sampled like the altimetry data previously considered in this
thesis [8]. This makes the characterization of ocean processes highly challenging
for operational products and downstream tasks that depend on relevant gap-free
variables. As presented in previous chapters, deep learning schemes [11, 12, 13]
have become appealing solutions to benefit from existing large-scale observation
and simulation datasets and reach significant breakthroughs in the monitoring
of upper ocean dynamics from scarcely and irregularly sampled observations.
To ensure that these methods provide genuine value, evaluation criteria and
metrics must be defined with domain expertise by ocean experts. The quality
of SSH estimations, for instance, depends on factors such as geographical
region, season, physical plausibility of derived quantities. The choice of using
observational or simulated data for metric computation also yields different
assessments

101



Part, Chapter 5 – OceanBench: The Sea Surface Height Edition

Furthermore, the heterogeneity and characteristics of the observation data
present major challenges for effectively applying these methods beyond idealized
case studies. A data source can have different variables, geometries, and noise
levels, resulting in many domain-specific preprocessing procedures that can
vastly change the solution outcome. Accessibility to the data and the relevant
processing steps can significantly lower the entry barriers for aspiring machine
learning practitioners.

These considerations provide the motivation for OceanBench, a framework
for co-designing machine-learning-driven high-level experiments from ocean
observations. It consists of an end-to-end framework for piping data from its raw
form to an ML-ready state and from model outputs to interpretable quantities.
We regard OceanBench as a key facilitator for the uptake of MLOPs tools and
research [14, 15] for ocean-related datasets and case studies. This first edition
provides datasets and ML-ready benchmarking pipelines for SSH interpolation
problems, an essential topic for the space oceanography community, related to
ML communities dealing with issues like in-painting [16], denoising [17, 18],
and super-resolution [19]. We expect OceanBench to facilitate new challenges to
the applied machine learning community and contribute to meaningful ocean-
relevant breakthroughs. The remainder of the chapter is organized as follows: in
Section 2, we outline some related work that was inspirational for this work; in
Section 3, we formally outline OceanBench by highlighting the target audience,
code structure, and problem scope; in Section 4, we provide some insight into
different tasks related to SSH interpolation where OceanBench could provide
some helpful utility; and in Section 5 we outline current limitations of the
project and give some concluding remarks.

5.2 Related Work

Machine learning applied to geosciences is becoming increasingly popular,
but there are few examples of transparent pipelines involving observation data.
After a thorough literature review, we have divided the field into three camps
of ML applications that pertain to this work: 1) toy simulation datasets, 2)
reanalysis datasets, and 3) observation datasets. We outline the literature for
each of the three categories below.

Toy Simulation Data. One set of benchmarks focuses on learning sur-
rogate models for well-defined but chaotic dynamical systems in the form
of ordinary differential equations (ODEs) and partial differential equations
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(PDEs) and there are freely available code bases which implement different
ODEs/PDEs [20, 21, 22, 23, 24, 25, 26, 27]. This is a great testing ground
for simple toy problems that better mimic the structures we see in real-world
observations. Working with simulated data is excellent because it is logistically
simple and allows users to test their ideas on toy problems without increasing
the complexity when dealing with real-world data. However, these are ulti-
mately simple physical models that often do not reflect the authentic structures
we see in real-world, observed data.

Reanalysis Data. This is assimilated data of real observations and model
simulations. There are a few major platforms that host ocean reanalysis data
like the Copernicus Marine Data Store [28, 29, 30, 31], the Climate Data
Store [32], the BRAN2020 Model [33], and the NOAA platform [34]. However,
to our knowledge, there is no standard ML-specific ocean-related tasks to
accompany the data. On the atmospheric side, platforms like WeatherBench [35],
ClimateBench [36], ENS10 [37] were designed to assess short-term and medium-
term forecasting using ML techniques with recent success of ML [38, 39]
The clarity of the challenges set by the benchmark suites has inspired the
idea of OceanBench, where we directly focus on problems dealing with ocean
observation data.

Observation Data. These observation datasets (typically sparse) stem
from satellite observations that measure surface variables or in-situ measure-
ments that measure quantities within the water column. Some major plat-
forms to host data include the Marine Data Store [40, 41], the Climate Data
Store [42, 43, 44], ARGO [45], and the SOCAT platform [46]. However, it is
more difficult to assess the efficacy of operational ML methods that have been
trained only on observation data and, to our knowledge, there is no coherent
ML benchmarking system for ocean state estimation. There has been significant
effort by the Ocean-Data-Challenge Group 1 which provides an extensive suite
of datasets and metrics for SSH interpolation. Their efforts heavily inspired
our work, and we hope that OceanBench can build upon their work by adding
cohesion and facilitating the ease of use for ML research and providing a
high-level framework for providing ML-related data products.

1. Ocean Data Challenge group: Freely associated scientist for oceanographic algorithm
and product improvements (ocean-data-challenges.github.io)
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5.3 OceanBench

Why OceanBench?

There is a high barrier to entry in working with ocean observations for
researchers in applied machine learning as there are many processing steps
for both the observation data and the domain-specific evaluation procedures.
OceanBench aims to lower the barrier to entry cost for ML researchers to make
meaningful progress in the field of state prediction. We distribute a standardized,
transparent, and flexible procedure for defining data and evaluation pipelines
for data-intensive geoscience applications. Proposed examples and case studies
provide a plug-and-play framework to benchmark novel ML schemes w.r.t. state-
of-the-art, domain-specific ML baselines. In addition, we adopt a pedagogical
abstraction that allows users to customize and extend the pipelines for their
specific tasks. To our knowledge, no framework embeds processing steps for
earth observation data in a manner compatible with MLOps abstractions and
standards regarding reproducibility and evaluation procedures. Ultimately, we
aim to facilitate the uptake of ML schemes to address ocean observation
challenges and to bring new challenges to the ML community to extend
additional ML tools and methods for irregularly-sampled and partially-observed
high-dimensional space-time dynamics. The abstractions proposed here apply
beyond ocean sciences and SSH interpolation to other geosciences with similar
tasks that intersect with machine learning.

Code Structure

OceanBench is lightweight in terms of the core functionality. We keep the
code base simple and focus more on how the user can combine each piece. We
adopt a strict functional style because it is easier to maintain and combine
sequential transformations. There are five features we would like to highlight
about OceanBench: 1) Data availability and version control, 2) an agnostic suite
of geoprocessing tools for xarray datasets that were aggregated from different
sources, 3) Hydra integration to pipe sequential transformations, 4) a flexible
multi-dimensional array generator from xarray datasets that are compatible
with common deep learning (DL) frameworks, and 5) a JupyterBook [47] that
offers library tutorials and demonstrates use-cases. In the following section, we
highlight these components in more detail.

Data Availability. The most important aspect is the public availability
of the datasets. We aggregate all pre-curated datasets from other sources, e.g.
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the Ocean-Data-Challenge [48, 49], and organize them to be publicly available
from a single source 2. We also offer a few derived datasets which can be used
for demonstrations and evaluation. Data is never static in a pipeline setting, as
one can have many derived datasets which stem from numerous preprocessing
choices. In fact, in research, we often work with derived datasets that have
already been through some preliminary preprocessing methods. To facilitate the
ever-changing nature of data, we use the Data Version Control (DVC) tool [50],
which offers a git-like version control of the datasets.

Geoprocessing Tools. The core OceanBench library offers a suite of
functions specific to processing geo-centric data. While a few particular func-
tionalities vary from domain to domain, many operations are standard, e.g.,
data variable selections, filtering/smoothing, regridding, coordinate transforma-
tions, and standardization. We almost work exclusively with the xarray [51]
framework because it is a coordinate-aware, flexible data structure. In addition,
the geoscience community has an extensive suite of specialized packages that
operate in the xarray framework to accomplish many different tasks. Almost all
OceanBench toolsets are exclusively within the xarray framework to maintain
compatibility with a large suite of tools already available from the community.

Hydra Integration. As discussed above, many specific packages accom-
plish many different tasks. However, what needs to be added is the flexibility
to mix and match these operations as the users see fit. Hydra [52] provides a
configurable way to aggregate and pipe many sequential operations together. It
also maintains readability, robustness, and flexibility through the use of .yaml
files which explicitly highlights the function used, the function parameters cho-
sen, and the sequence of operations performed. In the ML software stack, Hydra
is often used to manage the model, optimizer, and loss configurations which
helps the user experiment with different options. We apply this same concept
in preprocessing, geoprocessing, and evaluation steps, often more important
than the model configuration in geoscience-related tasks.

XRPatcher 3. Every machine learning pipeline will inevitably require mov-
ing data from the geo-specific data structure to a multi-dimensional array
easily digestible for ML models. A rather underrated, yet critical, feature of
ML frameworks such as PyTorch [53] (Lightning [54]) and TensorFlow [55]
(Keras [56]) is the abstraction of the dataset, dataloader, datamodules, and
data pipelines. In applied ML in geosciences, the data pipelines are often more

2. Available at: oceanbench-data-registry.github.com
3. Available at: github.com/jejjohnson/xrpatcher
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important than the actual model [57]. The user can control the patch-size and
the stride-step, which can generate arbitrary coordinate-aware items directly
from the xarray data structure. In addition, XRPatcher provides a way to
reconstruct the fields from an arbitrary patch configuration. This robust recon-
struction step is convenient to extend the ML inference step where one can
reconstruct entire fields of arbitrary dimensions beyond the training configura-
tion, e.g., to account for the border effects within the field (see appendix 6.4)
or to reconstruct quantities in specific regions or globally.

JupyterBook. Building a set of tools is relatively straightforward; however,
ensuring that it sees a broader adoption across a multi-disciplinary community
is much more challenging. We invested heavily in showing use cases that appeal
to different users with the JupyterBook platform [47]. Code with context is
imperative for domain and ML experts as we need to explain and justify each
component and give many examples of how they can be used in other situations.
Thus, we have paid special attention to providing an extensive suite of tutorials,
and we also highlight use cases for how one can effectively use the tools.

Problem Scope

There are many problems that are of great interest the ocean community [58]
but we limit the scope to state estimation problems [59]. Under this scope,
there are research questions that are relevant to operational centers which are
responsible for generating the vast majority of global ocean state maps [28, 30,
29, 31] that are subsequently used for many downstream tasks [6]. For example:
how can we effectively use heterogeneous observations to predict the ocean state
on the sea surface [60, 61, 62, 63, 64, 9]; how can we incorporate prior physics
knowledge into our predictions of ocean state trajectories [60, 58, 6]; and how
can we use the current ocean state at time T to predict the future ocean state
at time T + τ [65, 35, 66]. In the same vain, there are more research questions
that are of interest to the academic modeling community. For example: is
simulated or reanalysis data more effective for learning ML emulators that
replace expensive ocean models [67, 68]; what metrics are more effective for
assessing our ability to mimic ocean dynamics [69, 70]; and how much model
error can we characterize when learning from observations [71, 72].

We have cited many potential applications of how ML can be applied to
tackle the state estimation problem. However, to our knowledge there is no
publicly available, standardized benchmark system that is caters to ML-research
standards. We believe that, irrespective of the questions posed above and the
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data we access, there are many logistical similarities for each of the problem
formulations where we can start to set standards for a subset of tasks like
interpolation or forecasting. On the front-end, we need a way to select regions,
periods, variables, and a valid train-test split (see sec. 6.3). On the back-end,
we need a way to transform the predictions into more meaningful variables
with appropriate metrics for validation (see sec. 6.3 and 6.3). OceanBench
was designed to be an agnostic tool that is extensible to the types of datasets,
processing techniques and metrics needed for working with a specific class
of Ocean-related datasets. We strongly feel that a suite like this is the first
step in designing task-specific benchmarks within the ocean community that
is compatible with ML standards. In the remainder of the chapter, we will
demonstrate how OceanBench can be configured for the sea surface height
interpolation use-case.

5.4 Sea Surface Height Edition

The OceanBench project is currently at a first iteration dedicated to SSH
interpolation. The previous chapter highlighted the potential of learning-based
methodologies for this task. Integrating and extending the corresponding
experimental setups in OceanBench is a natural first step. The next part of this
section details datasets, metrics and evaluation quantities made available by the
OceanBench platform. Finally we introduce four data challenges implemented
in this SSH Edition with examples of metrics and maps for different methods.

Data

The availability of multi-year simulation and observation datasets naturally
advocates for the design of synthetic (or twin) experiments, referred to as
observing system simulation experiments (OSSE), and of real-world experi-
ments, referred to as observing system experiments (OSE). We outline these
two experimental setups below followed by Table 5.1 which describe in detail
the data made available by OceanBench.

Observing System Simulation Experiments (OSSE). A staple and
groundtruthed experimental setup uses a reference simulation dataset to simu-
late the conditions we can expect from actual satellite observations. This setup
allows researchers and operational centers to create a fully-fledged pipeline
that mirrors the real-world experimental setting. An ocean model simulation is
deployed over a specified spatial domain and period, and a satellite observation
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simulator is deployed to simulate satellite observations over the same domain
and period. This OSSE setup has primarily been considered for performance
evaluation, as one can assess a reconstruction performance over the entire
space-time domain. It also provides the basis for the implementation of classic
supervised learning strategies [13, 12, 11]. The domain expert can vary the
experimental conditions depending on the research question. For example, one
could specify a region based on the expected dynamical regime [49] or add a
certain noise level to the observation tracks based on the satellite specifications.
The biggest downside to OSSE experiments is that we train models exclusively
with ocean simulations which could produce models that fail to generalize to
the actual ocean state. Furthermore, the simulations are often quite expensive,
which prevents the community from having high spatial resolution over very
long periods, which would be essential to capture as many dynamical regimes
as possible.

Observing System Experiments (OSE). As more observations have
become available over the past few decades, we can also design experiments
using real data. This involves aggregating as many observations from real ocean
altimetry satellites as possible with some specific independent subset left out
for evaluation purposes. A major downside to OSE experiments is that the
sparsity and spatial coverage of the observations narrow the possible scope
of performance metrics and make it very challenging to learn directly from
observation datasets. The current standard altimetry data are high resolution
but cover a tiny area. As such, it can only inform fine-scale SSH patterns in
the along-track satellite direction and cannot explicitly reveal two-dimensional
patterns. Despite these drawbacks, it provides a quantitative evaluation of the
generalizability of the ML methods concerning the true ocean state.
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Metrics

There are many metrics that are standard within the ML community but
unconvincing for many parts the geoscience community. Specifically, many of
these standard scores do not capture the important optimization criteria in
the scientific machine learning tasks. However, there is not consensus within
domain-specific communities about the perfect metric which captures every
aspect we are interested. Therefore, we should have a variety of scores from
different perspectives to really assess the pros and cons of each method we
wish to evaluate thoroughly. Below, we outline two sets of scores we use within
this framework: skill scores and spectral scores.

Skill Scores
We classify one set of metrics as skill scores. These are globally averaged

metrics which tend to operate within the real space. Some examples include the
root mean squared error (RMSE), the normalized root mean squared (nRMSE)
error, and the nRMSE score. The RMSE metric can also be calculated w.r.t.
the spatial domain, temporal domain or both. For example, figure 5.1 showcases
the nRMSE score calculated only on the spatial domain and visualized for each
time step.

RMSE : RMSE(η, η̂) = ||η − η̂||2 (5.1)

nRMSE : nRMSE(η, η̂) = RMSE(η, η̂)
||η||2

(5.2)

nRMSEscore : nRMSEscore(η, η̂) = 1 − nRMSE(η, η̂) (5.3)

However, we are not limited to just the standard MSE metrics. We can easily
incorporate more higher-order statistics like the Centered Kernel Alignment
(CKA) [74] or information theory metrics like mutual information (MI) [75, 76].
In addition, we could also utilize the same metrics in the frequency domain as
is done in [21].

Spectral Scores
Another class of scores that we use in OceanBench are the spectral scores.

These scores are calculated within the spectral space via the wavenumber power
spectral density (PSD). This provides a spatial-scale-dependent metric which is
useful for identifying the largest and smallest scales that were resolved by the
reconstruction map. In general, we use these to measure the expected energy
at different spatiotemporal scales and we can also construct custom score
functions which gives us a summary statistic for how well we reconstructed
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certain scales.

PSD : PSD(η) =
kmax∑
kmin

∥F(η)∥2 (5.4)

PSDscore : PSDscore(η, η̂) = 1 − PSD(η − η̂)
PSD(η) (5.5)

where F is the Fast Fourier Transformation (FFT). In our application, there are
various ways to construct the PSD which depend on the FFT transformation.
We denote the space-time PSD as λx which does the 2D FFT in the longitude
and time direction, then takes the average over the latitude. We denote the
space-time PSD as λt which does the 2D FFT in the longitude and latitude
direction, then takes the average over the time. We denote the isotropic PSD
as λr which assumes a radial relationship in the spatial domain and then
averages over the temporal domain. Lastly, we denote the standard PSD score
as λa which is the 1D FFT over a prescribed distance along the satellite track;
this is what is done for the OSE NADIR experiment. We recognize that the
FFT configurations are limited due to their global treatment of the spectral
domain and we need more specialized metrics to handle the local scales. This
opens the door to new metrics that handle such cases such as the Wavelet
transformation [77].

Physical Variables

Many machine learning methods are unconstrained so they may provide
solutions that are physically inconsistent and visualizing the field is a very
easy eye test to assess the validity. We have access to many physical quantities
which can be derived from sea surface height. This gives us a way to analyze
how effective and trustworthy are our reconstructions.

We are interested in the domain across the earth’s surface. let us define the
earth’s domain by some spatial coordinates, x = [longitude, latitude]⊤ ∈ Rds ,
and temporal coordinates, t = [time] ∈ R+, where ds is the dimensionality of
the coordinate vector. we can define some spatial (sub-)domain, Ω ⊆ Rds , and
a temporal (sub-)domain, T ⊆ R+. this domain could be the entire globe for
10 years or a small region within the north atlantic for 1 year.

spatial coordinates : x ∈ ω ⊆ Rds (5.6)

temporal coordinates : t ∈ T ⊆ R+. (5.7)
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in this case ds = 2 because we only have a two coordinates, however we can
do some coordinate transformations like spherical to cartesian. likewise, we
can do some coordinate transformation for the temporal coordinates like cyclic
transformations or sinusoidal embeddings [78].

Sea Surface Height is the deviation of the height of the ocean surface
from the geoid of the Earth. We can define it as:

Sea Surface Height [m] : η = η(x, t) Ω × T → R (5.8)

This quantity is the actual value that is given from the satellite altimeters and
is presented in the products for SSH maps [8]. An example can be seen in the
first row of figure 5.3.

Sea Surface Anomaly is the anomaly wrt to the spatial mean which is
defined by

Sea Level Anomaly [m] : η̄ = η(x, t) − η̄(t) Ω × T → R (5.9)

where η̄(t) is the spatial average of the field at each time step. An example can
be seen in the first row of figure 5.2.

Another important quantity is the geostrophic velocities in the zonal
and meridional directions. This is given by

Zonal Velocity[ms−2] : u = − g

f0

∂η

∂y
Ω × T → R (5.10)

Meridional Velocity[ms−2] : v = g

f0

∂η

∂x
Ω × T → R (5.11)

where g is the gravitational constant and f0 is the mean Coriolis parameter.
These quantities are important as they can be an related to the sea surface
current. The geostrophic assumption is a very strong assumption however it
can still be an important indicator variable. The kinetic energy is a way to
summarize the (geostrophic) velocities as the total energy of the system. This
is given by

KE = 1
2

(
u2 + v2

)
(5.12)

An example can be seen in the second row of figure 5.3.

Another very important quantity is the vorticity which measures the spin
and rotation of a fluid. In geophysical fluid dynamics, we use the relative
vorticity which is the vorticity observed within at rotating frame. This is
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given by
ζ = ∂v

∂x
− ∂u

∂y
(5.13)

An example can be seen in the third row of figure 5.3.
We can also use the Enstrophy to summarize the relative voriticty to

measure the total contribution which is given by

E = 1
2ζ

2 (5.14)

The Strain is a measure of deformation of a fluid flow.

σ =
√
σ2

n + σ2
s (5.15)

where σn is the shear strain (aka the shearing deformation) and σs is the
normal strain (aka stretching deformation). An example can be seen in the
fourth row of figure 5.3.

The Okubo-Weiss Parameter is high-order quantity which is a linear
combination of the strain and the relative vorticity.

σow = σ2
n + σ2

s − ζ2 (5.16)

This quantity is often used as a threshold for determining the location of
Eddies in sea surface height and sea surface current fields [79, 80, 81].

Data Challenges

We rely on existing OSSE and OSE experiments for SSH interpolation de-
signed by domain experts [48, 49] and recast them into OceanBench framework
to deliver a ML-ready benchmarking suites. The selected data challenges for
this first edition address SSH interpolation for a 1000km×1000km Gulfstream
region. We describe each of them below.

Experiment I (OSSE NADIR) addresses SSH interpolation using
NADIR altimetry tracks which are very fine, thin ocean satellite observations
(see Figure 5.2). It relies on an OSSE using high-resolution (1/60◦ resolution)
ocean simulations generated by the NEMO model over one year with a whole
field every day. The reference simulation is the NATL60 simulation based
on the NEMO model [73]. This particular simulation was run over an entire
year without any tidal forcing. The simulation provides the outputs of SSH,
SST, sea surface salinity (SSS) and the u,v velocities every 1 hour. For the
purposes of this data challenge, the spatial domain is over the Gulfstream
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with a spatial domain of [−65◦,−55◦] longitude and [33◦, 43◦] latitude. The
resolution of the original simulation is 1/60◦ resolution with hourly snapshots,
and we consider a daily downsampled trajectory at 1/20◦ for the data challenge
which results in a 365x200x200 spatio-temporal grid. This simulation resolves
finescale dynamical processes (∼15km) which makes it a good test bed for
creating an OSSE environment for mapping. The SSH observations include
simulations of ocean satellite NADIR tracks. In particular, they are simulations
of Topex-Poseidon, Jason 1, Geosat Follow-On, and Envisat. There is no
observation error considered within the challenge. We use a the entire period
from 2012-10-10 until 2013-09-30. A training period is only from 2013-01-02
to 2013-09-30 where the users can use the reference simulation as well as all
available simulated observations. The evaluation period is from 2012-10-22 to
2012-12-02 (i.e. 41 days) which is considered decorrelated from the training
period. During the evaluation period, the user cannot use the reference NATL60
simulation but they can use all available simulated observations. There is also
a spin-up period allowance from 2012-10-01 where the user can also use all
available simulated observations.

Experiment II (OSSE SWOT) addresses SSH interpolation using jointly
NADIR and SWOT altimetry data where we complement the OSSE NADIR
configuration with simulated SWOT observations. SWOT is a new satellite
altimetry mission with a much higher spatial coverage but a much lower
temporal resolution as illustrated in Figure 5.2. The higher spatial resolution
allows us to see structures at a smaller resolution but at the cost of a massive
influx of observations (over ×100).

Experiment III (OSSE SST) addresses SSH interpolation using altime-
try and SST satellite data jointly. We complement the OSSE SWOT challenge
with simulated SST observations. Satellite-derived SST observations are more
abundantly available in natural operational settings than SSH at a finer resolu-
tion, and structures have visible similarities [82, 60]. So this challenge allows
for methods to take advantage of multi-modal learning [63, 11].

For the OSSE SWOT and OSSE SST experiments, the reference simulation,
domain, and evaluation period is the same as the OSSE NADIR experiment.
However, the OSSE SWOT includes simulated observations of the novel KaRIN
sensor recently deployed during the SWOT mission, the pseudo-observations
were generated using the SWOT simulator [82]. This OSSE SST experiment
allows the users to utilize the full fields of SST as inputs to help reconstruct
the SSH field in conjunction with the NADIR and SWOT SSH observation.
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(a) Normalized RMSE (b) Isotropic Power Spectrum (c) Isotropic Power Spectrum Score

(d) NEMO Simulation (e) MIOST (f) BFN-QG (g) 4DVarNet

Figure 5.1 – Evaluation of the SSH field reconstructions for the OSSE
NADIR experiment.. Subfigure (a) showcases the normalized root mean
squared error (nRMSE), (b) showcases the isotropic power spectrum decompo-
sition (PSD), (c) showcases isotropic PSD scores. The bottom row showcases
the space-time PSD for the NEMO simulation (subfigure (d)) and the PSD
scores for three reconstruction models: (e) the MIOST model, (f) the BFN-QG
model, and (g) the 4DVarNet model.

Because the SST comes from the same NATL60 simulation, the geometry
characteristics SST and SSH are exactly the same.

Experiment IV (OSE NADIR) addresses SSH interpolation for real
NADIR altimetry data. In contrast to the three OSSE data challenges, it
only looks at actual observations aggregated from the currently available
ocean altimetry data from actual satellites. It involves a similar space-time
sampling as Experiment (OSSE NADIR) to evaluate the generalization of
ML methods trained in Experiment I to real altimetry data. The training
problem’s complexity increases significantly due to the reference dataset’s
sparsity compared with the OSSE NADIR dataset. One may also explore
transfer learning or fine-tuning strategies from the available OSSE dataset.

The OSE NADIR experiment only uses real observations aggregated from
different altimeters. These SSH observations include observations from the
SARAL/Altika, Jason 2, Jason 3, Sentinel 3A, Haiyang-2A and Cryosat-2
altimeters. The Cryosat-2 altimeter is used as the independent evaluation track
used to assess the performance of the reconstructed SSH field.
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NADIR Altimetry Tracks SWOT Altimetry Tracks Sea Surface Temperature

NEMO Simulation MIOST BFNQG 4DVarNet

(a) (b) (c) (d)
Figure 5.2 – 27th October, 2012 from the NEMO simulation for the
OSSE experiment outlined in section 5.4. The top row showcases the aggre-
gated NADIR altimetry tracks and the aggregated SWOT altimetry tracks
(12 hours before and 12 hours after) as well as the SST from the NEMO
simulation. Each subsequent row showcases the following physical variables
found in appendix 5.4: (a) Sea Level Anomaly, (b) Kinetic Energy, (c) Relative
Vorticity, and (d) Strain. Each column in the subsequent rows showcase the
following reconstructed field from the NEMO simulation found in columrn (a):
(b) MIOST, (c) BFN-QG, and (d) 4DVarNet.
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Task OSSE Task OSSE Task OSSE Task OSE
Nadir Nadir + SWOT Nadir + SST Nadir

(a) (b) (c) (d)
Figure 5.3 – Reconstructed quantities by the 4dVarNet method for
each of the four tasks. Each row showcases the following physical variables
found in section 5.4: (a) Sea Surface Height, (b) Kinetic Energy, (c) Relative
Vorticity, and (d) Strain. Each column showcase the reconstructed from the
tasks (a) OSSE using only Nadir tracks: (b) OSSE using Nadir tracks and
SWOT swath, (c) Multimodal using Nadir tracks and sea surface temperature,
and (d) Reconstruction using real nadir altimetry tracks.
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Results

We use OceanBench to generate maps of relevant quantities from the
4DVarNet method [64, 63]. Figure 5.3 showcases some demo maps for some key
physical variables outlined in section 5.4. We showcase the 4DVarNet method
because it is the SOTA method that was applied to each of the data challenges.
We can see that the addition of more information, i.e. NADIR -> SWOT ->
SST, results in maps look more similar to the NEMO simulation in the OSSE
challenges. It also produces sensible maps for the OSE challenge as well.

OceanBench also generated figure 5.4 which shows plots of the PSD and
PSD scores of SSH for the different challenges. Again, as we increase the efficacy
of the observations via SWOT and allow for more external factors like the
SST, we get an improvement in the isotropic and spacetime PSD scores. In
addition, we see that the PSD plots for the OSE task look very similar to the
OSE challenges.

Lastly, we used OceanBench to generate a leaderboard of metrics for a
diverse set of algorithms where the maps were available online. Table 5.2
displays all of the key metrics outlined in section 5.4 including the normalized
RMSE and various spectral scores which are appropriate for the challenge.
We see that as the complexity of the method increases, the metrics improve.
In addition, the methods that involve end-to-end learning perform the best
overall, i.e. 4DVarNet.
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Task OSSE Task OSSE Task OSSE Task OSE
Nadir Nadir + SWOT Nadir + SST Nadir

(a) (b) (c) (d)
Figure 5.4 – Power spectrum and associated scores of the 4dVarNet
method for the four experiments. The row display in order: (1) the
isotropic PSD, (2) the spatial PSD score (using the isotropic PSD for the first
three rows and along track PSD for the last row), (3) the space-time PSD, (4)
The spacetime PSD score available only in OSSE task.
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Experiment Algorithm nRMSE Score Effective Resolution
λa [km] λr [km] λx [km] λt [days]

OSSE NADIR OI 0.92 - 123 174 10.8
OSSE NADIR MIOST 0.93 - 100 157 10.1
OSSE NADIR BFNQG 0.93 - 88 139 10.4
OSSE NADIR 4DVarNet 0.94 - 65 117 7.7

OSSE SWOT OI 0.92 - 106 139 11.7
OSSE SWOT MIOST 0.94 - 88 131 10.1
OSSE SWOT BFNQG 0.94 - 64 118 36.5
OSSE SWOT 4DVarNet 0.96 - 47 77 5.6

OSSE SST Musti 0.95 - 46 138 4.1
OSSE SST 4DVarNet 0.96 - 46 87 3.7

OSE NADIR OI 0.88 151 - - -
OSE NADIR MIOST 0.90 135 - - -
OSE NADIR BFNQG 0.88 122 - - -
OSE NADIR ConvLSTM 0.89 113 - - -
OSE NADIR 4DVarNet 0.91 98 - - -

Table 5.2 – This table showcases all of the summary statistics for some methods
for each of the data challenges listed in section 5.4. The summary statistics
shown are the normalized RMSE and the effective resolution in the spectral
domain. The spectral metrics for the effective resolution that were outlined in
section 5.4 are: i) λa is the spatial score for the alongtrack PSD score, ii) λr is
the spatial score for the isotropic PSD, iii) λx is the spatial score for space-time
PSD score, and iv) λt is the temporal score for the space-time PSD score.

OceanBench Pipelines

For the four data challenges presented in the previous section, we used
OceanBench pipelines to deliver a ML-ready benchmarking framework. We used
the hydra and the geoprocessing tools outlined in section 5.3 with specialized
routines for regridding the ocean satellite data to a uniformly gridded product
and vice versa when necessary. Appendix 6.3 showcases an example of the hydra
integration for the preprocessing pipeline. A key feature is the creation of a
custom patcher for the appropriate geophysical variables using our XRPatcher
tool, which is later integrated into custom datasets and dataloaders for the
appropriate model architecture, e.g., coordinate-based or grid-based. We provide
an example snippet of how this can be done easily in section 6.4. OceanBench
also features some tools specific to the analysis of SSH. For example, physically-
interpretable variables like geostrophic currents and relative vorticity, which
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can be derived from first-order and second-order derivatives of the SSH, are
essential for assessing the quality of the reconstructions generated by the models.
Figure 5.2 showcases some fields of the most common physical variables used in
the oceanography literature for the SSH-based analysis of sea surface dynamics.

Regarding the evaluation framework, we include domain-relevant perfor-
mance metrics beyond the standard ML loss and accuracy functions. They
account for the sampling patterns of the evaluation data. Spectral analytics are
widely used in geoscience [60], and here, we consider spectral scores computed
as the minimum spatial and temporal scales resolved by the reconstruction
methods proposed in [60]. For example, figure 5.1 showcases how OceanBench
generated the isotropic power spectrum and score and the space-time power
spectrum decomposition and score. Table 5.2 outlines some standard and
domain-specific scores for the experiments outlined in section 5.4.

5.5 Discussion

Framework Limitations

While we have advertised OceanBench as a unifying framework that provides
standardized processing steps that comply with domain-expert standards, we
also highlight some potential limitations that could hinder its adoption for the
wider community.

Data Serving. We provide a few datasets but we omit some of the original
simulations. We found that the original simulations are terabytes/petabytes
of data which becomes infeasible for most modest users (even with adequate
CPU resources). This is very big problem and if we want to have a bigger
impact, we may need to do more close collaborations with specified platforms
like the Marine Data Store [28, 29, 30, 41, 31, 40, 83] or the Climate Data
Store [32, 42, 44, 43]. Furthermore, there are many people that will not be
able to do a lot of heavy duty research which indirectly favours institutions
with adequate resources and marginalizing others. This is also problematic as
those communities tend to be the ones who need the most support from the
products of such frameworks. We hope that leaving this open-source at least
ensure that the knowledge is public.

Framework Dependence. The user has to "buy-into" the hydra frame-
work to really take advantage of OceanBench. This adds a layer of abstraction
and a new tool to learn. However, we designed the project so that high level
usage does not require in-depth knowledge of the framework. In addition, we

121



Part, Chapter 5 – OceanBench: The Sea Surface Height Edition

hope that, despite the complexity of project, users will appreciate the flexibility
and extensibility of this framework.

Lack of Metrics. We do not provide the most exhaustive list of metrics
available with the ocean community. In fact, we also believe that many of
these metrics are often poor and do not effectively assess the goodness of our
reconstructions. However, we do provide a platform that will hopefully be useful
and easy to implement new and improved metrics. Furthermore, having a wide
range of metrics that are trusted across communities may help to improve the
overall assessment of the different model performances [84].

Limited ML Scope. The framework does not support nor promote any
machine learning methods and we lack any indication of comparing ML training
and inference performance. However, we argue that a benchmark framework
will allow us to effectively compare whichever ML methods are demonstratively
the best which is a necessary preliminary step which offers users more flexibility
in the long-run.

Broad Oceans Application Scope. We have targeted a broad ocean-
application scope of state estimation. However, there may be more urgent
applications such as maritime monitoring, object tracking, and general ocean
health. However, we feel that many downstream applications require high-
quality maps. In addition, those downstream applications tend to be very
complicated and are not always straightforward to apply ML under those
instances.

Full Pipeline Transparency. We use a lot of different xarray-specific
packages which have different design principles, assumptions and implemen-
tations. This may give the users an illusion of simplicity and transparency
to real-world use. However, there are many underlying assumptions within
each of the packages that may occlude a lot of design decisions. Despite this
limitation, we believe that being transparent about the processing steps and
being consistent with the evaluation procedure will be beneficial for the ML
research community.

Scalability. Scaling this to many terabytes or petabytes of data is easily
the biggest limitation of the framework. In addition, we have only showcased
demonstrations for 2D+T fields which are much less expensive than 3D+T
fields.

Deployability. MLOPs has many wheels and it is not easy to integrate
into existing systems. We offer no solutions to this. However, we believe that
our framework is fully transparent in the assumptions and use cases which will
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facilitate some adoption into operational systems where they can further modify
it for their use cases (see the evolution of WeatherBench and ClimateBench).

Visualization Tools. We do not incorporate a high quality visualization
tool that allows users to do pre- and post-analysis at a large scale. We do
provide some simple visualization steps that are ML-relevant (see the GitHub
repo) but it is very limited to ML standards. One solution is to interface our
pipeline with the source of many ocean datasets, e.g. Climate Data Store [32]
or Marine Data Store [28], then we can offset this task to them where they can
offer better quality visualization tools.

Conclusion

The ocean community faces technological and algorithmic challenges to
make the most of available observation and simulation datasets. In this context,
recent studies evidence the critical role of ML schemes in reaching breakthroughs
in our ability to monitor ocean dynamics for various space-time scales and
processes. Nevertheless, domain-specific preprocessing steps and evaluation
procedures slow down the uptake of ML toward real-world applications. The
application considered here is SSH mapping which facilities the production of
many crucial derived products that are used in many downstream tasks like
subsequent modeling [6], ocean health monitoring [85, 86, 87] and maritime
risk assessment [5].

We proposed four challenges towards a ML-ready benchmarking suite for
ocean observation challenges. We outlined the inner workings OceanBench and
demonstrated its usefulness by recreating some preprocessing and analysis
pipelines from a few data challenges involving SSH interpolation. We firmly
believe that the OceanBench platform is instrumental in fostering greater ML
method adoption by the ocean community, while also rallying a larger portion
of the ML community to tackle the ocean’s scientific complexities.
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Chapter 6

CONCLUSIONS AND

PERSPECTIVES

We review in this chapter the primary contributions outlined in this
manuscript and the future avenues of research they open.

6.1 Contributions Summary

This thesis is part of a broader movement towards developing deep learning
methods to address observation challenges in ocean science. It emphasizes
altimetry applications, especially in the context of the recent launch of the
SWOT mission.

The first contribution highlights the successful application of deep learning
for bias correction of simulated SWOT observation data. While standard
deep learning architectures struggled to differentiate fine SSH signatures from
high amplitude bias, we demonstrated that deep learning methods could be
tailored to suit the unique characteristics of altimetry data. We employed
SWOT mission’s error specifications to craft a custom architecture focused
on calibrating SWOT’s correlated errors. This study is promising, yet the
method developed was calibrated and assessed using simulated data, bringing
up questions about its applicability to actual SWOT observations.

The second study delves into how learning-based altimetry methods, once
calibrated on simulated data, can be applied to real data. We evaluated the
4dVarNet mapping schemes on real altimetry after calibration on simulated
data. The findings indicate strong generalization capabilities even with coarse
simulations, while more accurate simulations enhance the mapping performance.
The results introduce interesting avenues in exploring the use of numerical
simulation for training models for real-world applications.

The initial two studies shed light on the potential of applying learning-
based approaches to ocean science’s observational challenges. Yet, they also
spotlight the complexities in melding expertise in observation, simulation data,
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deep learning techniques, and domain-specific evaluation methodologies. This
spurred the creation of the specialized toolset, Oceanbench, aiming to narrow
the gap between deep learning and ocean science experts. Oceanbench enables
ocean scientists to flexibly design evaluation setups using data and metrics.
These setups come with the essential tools for deep learning practitioners to
access and prepare the data in view of training their models. The first iteration
presented in this manuscript focuses on sea surface height interpolation but
has been thought to be extensible to other ocean observation challenges.

6.2 Current Limitations and perspectives

Several avenues can be explored to further extend the work presented in
this thesis.

Global SSH Estimation. The research presented here pertains to par-
ticular region and periods over the Gulfstream which is not representative of
the different global regimes. This use-case contains a dynamical regime and a
well-studied area which has some importance for specific communities and is
small enough to mitigate the problems involving scale. However confirming the
robustness of deep learning schemes on the global ocean is a necessary step to
validate their potential. On this note, Beauchamp et al. (2023)[1] have made
promising strides by applying the 4dVarNet to other regions within the North
Atlantic.

Toward operational products. Real altimetry use-cases involve global
and/or high-resolution data. This involves dealing with very high-dimensional
spatio-temporal global state-space. In practice, the necessity for the scalability
of the method is of paramount importance. Transitioning the methods demon-
strated in this thesis to functional products would entail considerable scaling
challenges. These encompass both scientific aspects, such as dealing with earth
earth geometry [2], coastlines and varying ocean regimes, and engineering
concerns like handling large datasets for the training and assessment of the
models.

Beyond altimetry. This thesis centers on SSH, a surface field that is
relatively well-observed in the realm of ocean quantities. Exploring other
quantities, observed through different instruments, with different sampling
or not directly-observed would introduce many more challenges requiring
domain-informed problem specifications that deep learning could be applied to.
Therefore the work presented here is still far away from actual reanalysis[3] and
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forecasting goals of full state estimation. Achieving more ambitious estimation
challenge will require a lot of interdisciplinary work across communities and
we hope the work done with Oceanbench can help to that regard.

Deep learning interpretability. While deep learning methods offer
promising results, it’s understandable to remain cautious. Concerns regarding
the interpretability of deep learning models and their robustness compared to
physically descriptive systems are valid points of discussion. Two potential paths
forward can help address these concerns. First, emphasizing the importance
of quantifying the uncertainty [4, 5] associated with model estimations. Such
uncertainty quantification (UQ) is crucial when addressing ill-posed inverse
problems and can play a significant role in bolstering confidence in the results.
Second, exploring the realm of physics-informed deep learning and theory-
guided data-science, which marries our physical understanding of the ocean
with the adaptive nature of deep learning models. Existing studies have dabbled
in approaches involving dynamical systems[6, 7], which, while usually simpler
than the ocean, can provide valuable insights for ocean observation applications.
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APPENDIX

OceanBench: The Sea Surface Height Edition - Sup-
plementary Material

6.3 Use Case I: Hydra Recipes

This framework has drastically reduced the overhead for the ML researcher
while also enhancing the reprducibility and replicability of the preprocess-
ing steps. In this section we showcase a few examples for how one can use
oceanbench in conjunction with hydra to provide recipes for some standard
processes.

Task Recipe

In this example, we showcase how we define an interpolation task for the
OSE NADIR data challenge. We need to state the list of datasets available
and specify which datasets are to be using for training and testings. We also
specify the spatial region we would like to train on and the train-test period.
There are a few simple changes one could do here to extend this task provided
that one has uploaded standardized data that follows our set conventions. For
example, for this interpolation task, the test period is a complete subset of the
train period but one could imagine a forecasting task whereby the test period
is at a completely different time period. Similarly, for this task, the train-test
domain is the same but we could easily change the region of interest to see
how the models perform in a completely different domain.
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#@package _global_.task
outputs:

# name of data challenge
name: DC2021 OSE Gulfstream
# list of datasets and locations
data:

train: # train data list
alg: ${....data.outputs.alg}
h2g: ${....data.outputs.h2g}
j2g: ${....data.outputs.j2g}
j2n: ${....data.outputs.j2n}
j3: ${....data.outputs.j3}
s3a: ${....data.outputs.s3a}

test: # test data list
c2: ${....data.outputs.c2}

# spatial region specification
domain: {lat: [33, 43], lon: [-65, -55]}
# temporal period specification
splits: {

test: ['2017-01-01', '2017-12-31'],
train: ['2016-12-01', '2018-01-31']

}

Listing 1 – This is a .yaml which showcases how we can communicate with
Hydra framework to list a predefined set of specifications for the spatial region
and the temporal period. This is an interpolation task for the OSE NADIR
data challenge listed in section 5.4.

GeoProcessing Recipe

In this example, we showcase how one can pipe a sequential transformation
through the hydra framework. In this example, we open the dataset, validate
the coordinates to comply to our standards, select the region of interest, subset
the data, regrid the alongtrack data to a uniform grid, and save the data to a
netcdf file. See the listing 2 for more information.

Evaluation Recipe - OSSE

In this example, we showcase how one can use hydra to do the evaluation
procedure. This is the same evaluation procedure that is used to evaluate the
effectiveness of the OSSE NADIR experiment. From code snippet 2, we see that
we choose which target function to initialize and we choose the data directory
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# Target Function to initialize
_target_: "oceanbench._src.dataset.pipe"
# netcdf file to be loaded
inp: "${data_directory}/nadir_tracks.nc"
# sequential transformations to be applied
fns:

# Load Dataset
- {_target_: "xarray.open_dataset", _partial_: True}
# Validate LatLonTime Coordinates
- {_target_: "oceanbench.validate_latlon", _partial_: True}
- {_target_: "oceanbench.validate_time", _partial_: True}
# Select Specific Region (Spatial | Temporal)
- {_target_: "xarray.Dataset.sel", args: ${domain}, _partial_: True}
# Take Subset of Data
- {_target_: "oceanbench.subset", num_samples: 1500, _partial_: True}
# Regridding (AlongTrack -> Uniform Grid)
- {

_target_: "oceanbench.regrid",
target_grid: ${grid.high_res},
_partial_: True

}
# Save Dataset
- {

_target_: "xarray.Dataset.to_netcdf",
save_name: "demo.nc",
_partial_: True

}

Listing 2 – This is a .yaml which showcases how we can communicate with
Hydra framework to list a predefined set of transformations to be piped through
sequential. In this example, we showcase some standard pre-processing strategies
to be saved to another netcdf file.

where the .netcdf file is located. Then, we pipe some transformations for
the .netcdf file: 1) validate the spatiotemporal coordinates, 2) we select the
evaluation region, 3) we regrid it to the target get, 4) we fill in the nans with
a Gauss-Seidel procedure, 5) we rescale the coordinates to be in meters and
days, and 6) we perform the isotropic power spectrum transformation to get
the effective resolution outlined in section 5.4.

147



# Target Function to initialize
_target_: "oceanbench._src.dataset.pipe"
# netcdf file to be loaded
inp: "${data_directory}/ml_result.nc"
# sequential transformations to be applied
fns:

# Load Dataset
- {_target_: "xarray.open_dataset", _partial_: True}
# Validate LatLonTime Coordinates
- {_target_: "oceanbench.validate_latlon", _partial_: True}
- {_target_: "oceanbench.validate_time", _partial_: True}
# Select Specific Region (Spatial | Temporal)
- {_target_: "xarray.Dataset.sel", args: ${domain}, _partial_: True}
# Regridding (Uniform Grid -> Uniform Grid)
- {_target_: "oceanbench.regrid",

target_grid: ${grid.reference}, _partial_: True}
# Fill NANS (around the corners)
- {_target_: "oceanbench.fill_nans",

method: "gauss_seidel", _partial_: True}
# Coordinate Change (degree -> meters, ns -> days)
- {_target_: "oceanbench.latlon_deg2m", _partial_: True}
- {_target_: "oceanbench.time_rescale",

freq: 1, unit: "days", _partial_: True}
# Calculate Isotropic Power Spectrum
- {_target_: "oceanbench.power_spectrum_isotropic",

reference: ${grid.reference}, _partial_: True}
# Calculate Resolved Spatial Scale
- {_target_: "oceanbench.resolved_scale", _partial_: True}
# Save Dataset
- {_target_: "xarray.Dataset.to_netcdf",

save_name: "ml_result_psd.nc", _partial_: True}

Listing 3 – This is a .yaml which showcases how we can communicate with
Hydra framework to list a predefined set of transformations to be piped through
sequential. In this example, we showcase some standard pre-processing strategies
to be saved to another netcdf file.

6.4 Use Case II: XRPatcher

There are many usecases for the XRPatcher. For example, we can do 1D
Time chunking, 2D Spatial-Temporal Patches, or 3D Spatial-Temporal Cubes.
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import xarray as xr
import torch
import itertools
from oceanbench import XRPatcher
# Easy Integration with PyTorch Datasets (and DataLoaders)
class XRTorchDataset(torch.utils.data.Dataset):

def __init__(self, batcher: XRPatcher, item_postpro=None):
self.batcher = batcher
self.postpro = item_postpro

def __getitem__(self, idx: int) -> torch.Tensor:
item = self.batcher[idx].load().values
if self.postpro:

item = self.postpro(item)
return item

def reconstruct_from_batches(
self, batches: list(torch.Tensor), **rec_kws

) -> xr.Dataset:
return self.batcher.reconstruct(

[*itertools.chain(*batches)], **rec_kws
)

def __len__(self) -> int:
return len(self.batcher)

# load demo dataset
data = xr.tutorial.load_dataset("eraint_uvz")
# Instantiate the patching logic for training
patches = dict(longitude=30, latitude=30)
train_patcher = XRPatcher(

da=data,
patches=patches,
strides=patches, # No Overlap
check_full_scan=True # check no extra dimensions

)
# Instantiate the patching logic for testing
patches = dict(longitude=30, latitude=30)
strides = dict(longitude=5, latitude=5)
test_patcher = XRPatcher(

da=data,
patches=patches,
strides=strides, # Overlap
check_full_scan=True # check no extra dimensions

)
# instantiate PyTorch DataSet
train_ds = XRTorchDataset(train_patcher, item_postpro=TrainingItem._make)
test_ds = XRTorchDataset(test_patcher, item_postpro=TrainingItem._make)
# instantiate PyTorch DataLoader
train_dl = torch.utils.data.DataLoader(train_ds, batch_size=4, shuffle=False)
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=4, shuffle=False)

Listing 4 – XRPatcher integration in Pytorch. We define a PyTorch dataset
that handles the XRPatcher. We load an arbitrary dataset with xarray, then
we instantiate the XRPatcher with the patching logic, then we instantiate the
PyTorch dataset and dataloaders.
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Résumé : Cette thèse explore comment les avan-
cées en apprentissage profond peuvent aider à
l’analyse des mesures satellitaires de la hauteur
de surface de la mer (SSH). Les altimètres actuels
fournissent des données échantillonnées de ma-
nière irrégulière limitant l’observation des proces-
sus les plus fins. Repousser cette limite améliore-
rait nos capacités de surveillance du climat. D’exci-
tantes opportunités ont émergées avec la mission
SWOT. Les approches d’apprentissage ont démon-
tré des capacités remarquables dans de nombreux
domaines. Cette thèse aborde les considérations
spécifiques de l’application de l’apprentissage pro-
fond aux données altimétriques en trois parties.

Premièrement, à travers l’étalonnage du cap-
teur KaRIn, nous démontrons comment des

connaissances spécifiques du domaine peuvent
être intégrées dans les cadres d’apprentissage pro-
fond. Deuxièmement, nous abordons la rareté des
données de vérité terrain lors de l’apprentissage
de méthodes d’interpolation de données altimé-
triques. Nous illustrons comment les simulations
de modèles océaniques et de systèmes d’observa-
tion peuvent surmonter ce défi en fournissant des
environnements d’entraînement supervisés qui se
généralisent aux données réelles.Enfin, notre troi-
sième contribution traite des défis rencontrés pour
combler le fossé entre les communautés "océan" et
"apprentissage profond". Nous décrivons comment
nous avons abordé ces aspects lors du développe-
ment du projet OceanBench.

Title: Deep Learning for ocean satellite altimetry : specificities and practical implications
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Abstract: This thesis explores how advancements
in deep learning can aid in the analysis of satellite
measurements of sea surface height (SSH). Cur-
rent altimeters provide data sampled in an irreg-
ular manner, limiting the observation of finer pro-
cesses. Pushing this limit would enhance our cli-
mate monitoring capabilities. Exciting opportunities
have emerged with the SWOT mission. Learning
approaches have shown remarkable capabilities
in many areas. This thesis addresses the specific
considerations of applying deep learning to altime-
try data in three parts.

First, through the calibration of the KaRIn sen-

sor, we demonstrate how specific domain knowl-
edge can be integrated into deep learning frame-
works. Second, we address the scarcity of ground
truth data when learning altimetry data interpola-
tion methods. We illustrate how ocean model sim-
ulations and observation systems can overcome
this challenge by providing supervised training en-
vironments that generalize to real data. Lastly, our
third contribution discusses the challenges faced in
bridging the gap between the "ocean" and "deep
learning" communities. We describe how we ap-
proached these aspects during the development of
the OceanBench project.
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