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Abstract

This manuscript focuses on the application of mathematical theories to music.
In particular, we explore three closely related musical components: pattern, struc-
ture and performance, which can be associated with the following questions: How
to discover musical patterns? How are these patterns organized within the musical
structure? And finally, how are these patterns interpreted during musical perfor-
mance?

First, this manuscript deals with the musical pattern discovery task. Previous
works identify two different approaches: the sequential and the multidimensional
approaches. We propose a method for developing the multidimensional approach.
In particular, we demonstrate that the theory of mathematical morphology fits into
this context. This makes it possible to obtain mathematical results for the discovery
of musical patterns, and to provide answers to some of the open questions in the
field.

In the second part, we focus on the musical segmentation task, and propose to
generate hierarchical segmentations. We develop a method based on homogeneity
and novelty, and one based on repetition, which are the main features to be studied in
order to discover the segmentation of a piece. The homogeneity-based method uses
morphological filters to detect blocks on the diagonal of the self-similarity matrix,
while the repetition-based method discovers almost repetitions without overlaps to
obtain the hierarchical segmentations of a musical piece.

The third part is dedicated to the computational models for musical perfor-
mances. We focus on the MazurkaBL dataset, which contains annotations of over
2000 recorded performances of 46 Chopin Mazurkas. To analyze this dataset, we
propose to represent a musical performance in a 2-simplex, allowing us to character-
ize and interpret the expressivity of a performance. Then, we show that the theory
of unbalanced optimal transport provides a tolerance to compare musical perfor-
mances in order to identify similarities and differences between interpretations of
the same piece.

Finally, we conclude this manuscript with a section presenting a scientific out-
reach activity on the links between mathematics and music, and a discussion of the
application of mathematical theories to music.

Keywords: Musical pattern discovery, mathematical morphology, music struc-
ture, music segmentation, musical performance





Résumé

Ce manuscrit se focalise sur l’application de théories mathématiques à la
musique. En particulier, nous étudions trois composantes musicales étroitement
liées : les motifs, la structure et la performance, qui peuvent être associées aux
problématiques suivantes. Comment découvrir les motifs musicaux ? Comment ces
motifs sont-ils organisés au sein de la structure musicale ? Et enfin, comment ces
motifs sont-ils interprétés lors de la performance musicale ?

La première partie est consacrée à la tâche de découverte de motifs musicaux.
Les travaux antérieurs permettent de distinguer deux approches : l’approche séquen-
tielle et l’approche multidimensionnelle. Nous proposons une méthode pour dévelop-
per l’approche multidimensionnelle. En particulier, nous montrons que la théorie
de la morphologie mathématique s’inscrit très bien dans ce contexte. Cela per-
met d’obtenir des résultats mathématiques pour découvrir des motifs musicaux, et
d’apporter des réponses à certaines questions ouvertes dans ce domaine.

En seconde partie, nous nous intéressons à la tâche de segmentation musicale
en proposant de générer des segmentations hiérarchiques. Nous y développons deux
méthodes, l’une basée sur l’homogénéité et la nouveauté, et l’autre sur la répétition,
qui sont les principales caractéristiques à étudier pour découvrir la segmentation
d’une pièce. La méthode basée sur l’homogénéité utilise les filtres morphologiques
pour détecter les blocs sur la diagonale de la matrice d’auto-similarité. Alors que
la méthode basée sur la répétition identifie les répétitions sans intersection pour
obtenir les segmentations hiérarchiques d’une pièce.

La troisième partie est dédiée à l’analyse de la performance musicale avec des
outils informatiques. Nous nous focalisons sur la base de données MazurkaBL qui
contient les annotations de plus de 2000 performances de 46 Mazurkas de Chopin.
Pour analyser cette base de données, nous proposons de représenter une perfor-
mance musicale dans un 2-simplexe, ce qui permet de caractériser et d’interpréter
l’expressivité musicale d’une performance. Nous montrons, ensuite, comment la
théorie du transport optimal non-équilibré permet de comparer des performances
musicales afin d’identifier les similitudes et les différences entre les interprétations
d’une même pièce.

Nous concluons ce manuscrit par un chapitre présentant une activité de médi-
ation scientifique basée sur les liens entre les mathématiques et la musique, suivi
d’une discussion sur l’application de théories mathématiques à la musique.

Mots clés : Découverte de motifs musicaux, morphologie mathématique, struc-
ture musicale, segmentation musicale, performance musicale
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Introduction

“Music is math” is a statement I heard a lot over the last few years. This state-
ment always intrigued me because it is less common to hear “cinema is math” or
“literature is math”. This raises the question of why music is an art that can easily
be associated with mathematics. There are indeed many links between mathemat-
ics and music, and they are not new. For example, in 1739, the mathematician
Euler proposed the Tonnetz, a geometrical representation of musical notes as a
graph [Euler 1739]. Numerous other mathematical representations and characteri-
zations were developed in the early 2000s to provide a better understanding of cer-
tain musical concepts [Cohn 1997, Douthett 1998, Toussaint 2005, Tymoczko 2010].
Based on these previous works, this manuscript explores some of the links between
mathematics and music, focusing on the application of mathematical theories to
music. In particular, we explore three closely related musical components: pattern,
structure and performance; which can be associated with the following questions:

Musical patterns: What are the patterns in a piece of music?

Musical structure: How are these patterns organized?

Musical performance: How are these patterns interpreted in performance?

To provide answers to these questions using mathematical and computational ap-
proaches, we use a symbolic representation of music. As opposed to the signal
representations, symbolic representations of music can describe a musical score and
produce data that are easily encoded and modeled, which is pertinent for mathemat-
ical applications. In particular, we use a multidimensional representation of music
to discover patterns (in Part I), a string representation of music for structure (in
Part II), and tempo and loudness information to analyze performance (in Part III).
These different applications exemplify the why and how of employing mathematical
theories to music.

Why? The application of mathematical theories to music first provides a deeper
understanding of music, such as the organization of patterns in a piece of music or the
expressivity of musical performances. Moreover, we then demonstrate the potential
for developing certain research domains, such as the discovery of musical patterns by
generalizing fundamental concepts. Finally, and perhaps most importantly, apply
a mathematical approach to music leads to mathematical results developed from a
musical motivation, like the many lemmas and theorems in this manuscript, which
may also develop and enrich certain mathematical theories.



4 Introduction

How? To illustrate how to apply mathematical theories to music, we propose
original applications of mathematical theories to music, particularly those rarely ap-
plied to music, such as mathematical morphology (with the binary and grayscale
framework) and unbalanced optimal transport (with the discrete case). In addi-
tion, we introduce various relevant musical representations that can be modeled by
mathematical objects. These representations include onsets (the starting points of
musical events), chord contours (the shape of chord sequences), adapted correlative
matrix (representing non-overlapping patterns), rhythm and loudness simplices (a
2-dimensional representation of rhythm or loudness data) and boundary credence
(illustrating segmentation probabilistically).

In the remainder of this introduction, we detail the three main parts of this
manuscript. For each part, we introduce the problem and the motivations, situ-
ating this in relation to existing research, and present our contributions. There is
also a short independent part in this manuscript, Part IV, which presents a science
outreach activity on the links between mathematics and music realized during this
PhD.

Part I. Musical Pattern Discovery

The first part of this manuscript focuses on the discovery of musical patterns from
a multidimensional representation of music. The problematic of this part is sum-
marized as follows.

How to discover patterns from a multidimensional representation of music?

Previous works related to this question rely on the SIA algorithm, which consists in
discovering the maximal translatable patterns [Meredith 2002a]. Many variants of
this algorithm exist and are reviewed in this part. We propose to develop some of
the ideas present in these algorithms to improve the discovery of musical patterns
from a multidimensional representation of music. In particular, we present a gen-
eralization of certain fundamental concepts, such as maximal translatable patterns,
and provide answers to some of the open questions of this domain. The originality of
our contributions results from the use of mathematical morphology, a theory mostly
used in image processing with few applications to music. In particular, we demon-
strate that the principal operators of binary mathematical morphology fit perfectly
into the framework of musical pattern discovery, and that this mathematical theory
provides relevant results for this task.

This part is divided into three chapters. Chapter 1 defines the main operators
of mathematical morphology and proposes an application of this theory to various
symbolic representations of music. Chapter 2 establishes the links between mathe-
matical morphology and existing algorithms for the discovery of musical patterns.
Finally, Chapter 3 proposes original mathematical results for the discovery of musi-
cal patterns using mathematical morphology.



5

Part II. Musical Structure

The second part of this manuscript explores the discovery of hierarchical musical
segmentations, which is a particular case of musical structure. The segmentation
task consists in covering the piece with a union of non-overlapping segments. We
propose here to generate several segmentations of a piece in a hierarchical way,
based on a symbolic representation of music. This hierarchy provides several levels
of detail, with boundaries of different strengths. Therefore, the problematic of this
part is stated as follows.

How to discover hierarchical segmentations from symbolic representations?

Previous works on the discovery of musical segmentation have identified three major
components for this task: repetition, homogeneity and novelty [Paulus 2010]. The
repetition criterion is based on the fact that the repetition of musical elements has
a strong impact on the segmentation of a piece. In particular, Cambouropoulos
asserted that “the beginning and ending points of significant repeating musical pat-
terns influence the segmentation of a musical surface” [Cambouropoulos 2006]. The
homogeneity criterion is based on the fact that a change in the nature of the musical
elements has an impact on the segmentation of a piece. For example, if the instru-
ments change at a given moment, this gives us information about a segmentation
boundary. Finally, the novelty criterion is based on the fact that a new element
produces information on a segmentation boundary. The homogeneity criterion is
therefore closely related to the novelty criterion. In this part, we propose two meth-
ods, the first is based on homogeneity and novelty, and the second on repetition. In
this way, this part fits into the context of previous works. However, since most of
the works on segmentation discovery are based on audio, our approach is original
because it uses a symbolic representation of music.

This part is divided into two chapters. Chapter 4 demonstrates the relevance
of grayscale mathematical morphology for the homogenization step, where a small
morphological filter homogenizes small sections, while a large filter homogenizes the
global parts of a musical piece. Chapter 5 generalizes the correlative matrix to
discover non overlapping repeated patterns and propose to extract the information
contained in this matrix to generate hierarchical segmentations.

Part III. Musical Performance

The third part of this manuscript focuses on the analysis of musical performance us-
ing computational models. Cancino-Chacón et al. [Cancino-Chacón 2018] describe
three main components of the performance process: interpretation (the act of under-
standing the structure, such as grouping and segmentation of sequences); planning
(the performer decides how to communicate the musical structure, for example,
through the use of tempo archs); movement (physical movement which has an im-
pact on the way humans perform and perceive music). In this part, we focus on the
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first two components: interpretation and planning. In addition, we choose to design
models for solo piano performances. This choice is due to the databases, which
are mostly composed of solo piano performances, and to the simplicity of modeling,
because the analysis can be restricted to tempo and loudness variations without
losing too much information. Therefore, the problematic of this part is formulated
as follows.

How to analyze musical performance using tempo and loudness information?

To do this, we focus on the MazurkaBL dataset, which is currently the largest
database of solo piano performances [Kosta 2018]. It contains beat-level tempo
and loudness data from over 2000 performances of 46 Mazurkas, which is highly
appropriate for our purposes of comparison and performance analysis.

This part is divided into two chapters. Chapter 6 proposes an original visu-
alization of the expressivity of musical performance using the rhythm or loudness
simplex. Chapter 7 presents a method for discovering and comparing segmentations
induced by musical performance, based on tempo or loudness variations.
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In this chapter, we introduce binary mathematical morphology, a theory mainly
applied to image processing. We present the principal operators: dilation, erosion,
opening and closing. For each operator, we list the properties that are useful in
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the next chapters and provide an interpretation of the results applied to an image.
The originality of this chapter resides in the application of this theory to symbolic
representations of music. We propose various applications to different musical data:
chords, rhythms and musical pieces. This is a new and original approach to an
algebraic formalism applied to music.

Section 1.1 presents the context and related works of mathematical morphol-
ogy applied to music. Section 1.2 introduces the main definitions and properties of
binary mathematical morphology theory. Section 1.3 proposes to apply mathemat-
ical morphology to symbolic representations of music, where the relevance of each
morphological operator is reviewed.

Some of the ideas presented in this chapter are from the article “Analyse de
représentations spatiales de la musique par des opérateurs simples de morphologie
mathématique” [Lascabettes 2020].

1.1 Context for Mathematical Morphology Applied to
Music

Developed in the 1960s by Matheron and Serra at the École des Mines de Paris,
mathematical morphology has become a research area of growing interest in the in-
ternational scientific community [Matheron 2002]. This is an algebraic theory that
analyzes shapes and is mostly used in image analysis and understanding. However,
this theory is not very common yet in the Mathematics and Music community. The
fundamental idea of this theory is to modify the shape, the size or the topological
properties of objects with non-linear and non-reversible transformations. Among the
few existing applications of mathematical morphology to symbolic representations of
music, automatic methods have been developed to detect approximate occurrences
of musical patterns in symbolic musical databases [Karvonen 2008, Karvonen 2010].
In this case, mathematical morphology enables to match almost identical patterns.
Moreover, mathematical morphology has been used to analyze concept lattices based
on musical intervals [Agon 2018], and to obtain the musical structure by filter self-
similarity matrices with morphological operators [Lascabettes 2022a]. Finally, mor-
phology has also been applied to analyze and generate musical data. In this context,
principal operators of mathematical morphology have been adapted to find a musical
meaning, allowing for example extracting harmonic components or to obtain musical
transformations [Lascabettes 2019, Lascabettes 2020, Romero-García 2022a]. This
chapter is a continuation of this work, with the aim of better understanding how to
apply the principal operators to symbolic representations of music.

1.2 Binary Mathematical Morphology

In this section, we briefly recall the concepts of mathematical morphology that
are useful in the following chapters. In particular, only the fundamental notions
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of binary mathematical morphology are introduced here; further information in a
more general setting can be found in [Heijmans 1990, Ronse 1991, Heijmans 1994,
Bloch 2007, Najman 2010].

1.2.1 Dilation and Erosion

1.2.1.1 Definitions

Most deterministic morphological transformations derive from two basic operations:
dilation and erosion. In general, in a complete lattice, a dilation is defined as
an operator that commutes with the supremum, and an erosion as an operator
that commutes with the infimum (in the sense of the partial order defined on the
lattice). These abstract definitions are often specified in a concrete form involving a
structuring element, representing a binary relationship. We consider here the simple
case of the lattice of parts of a set E, where E is Rn, Zn or Zn provided with the
inclusion relation, i.e. (P(E),⊆), and the usual addition of E. First of all, some
basic notions are required. Let X ∈ P(E) (i.e. X ⊆ E), recall that:

• The complement of X is Xc = {x ∈ E | x /∈ X}.

• The translation of X by t ∈ E is Xt = {x+ t | x ∈ X}.

• The symmetrical of X is X̌ = {−x | x ∈ X}.

This allows us to define the principal operators of mathematical morphology.

Definition 1.1: Dilation and Erosion

Let S ∈ P(E), the dilation δS and erosion εS by S are defined by:

δS : P(E) −→ P(E)

X 7−→ X ⊕ S = {x+ s | x ∈ X, s ∈ S}
= {x ∈ E | Šx ∩X ̸= ∅}

εS : P(E) −→ P(E)

X 7−→ X ⊖ S = {x ∈ E | Sx ⊆ X}

Where ⊕ and ⊖ are respectively the Minkowski addition [Minkowski 1903] and sub-
traction [Hadwiger 1950]. In addition, S is called a structuring element. Note that
the structuring element is defined with an origin OE which has a direct impact on
Minkowski addition and subtraction, and therefore modifies the result of dilation
and erosion.
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1.2.1.2 Properties

Dilation and erosion satisfy several mathematical properties, but it is first impor-
tant to note that these operations are non-reversible and non-linear. We list the
fundamental properties that are useful in the following, but other properties can be
found in the cited literature. In all the properties stated below, it is assumed that
X,X ′, S, S′ ∈ P(E).

• These two operations are dual by complementation:

X ⊕ S = (Xc ⊖ Š)c, X ⊖ S = (Xc ⊕ Š)c

• If and only if the origin is included in the structuring element, dilation is
extensive while erosion is anti-extensive:

OE ∈ S ⇐⇒ X ⊆ δS(X), OE ∈ S ⇐⇒ εS(X) ⊆ X

• An important property is that these operations are increasing :

X ⊆ X ′ ⇒ δS(X) ⊆ δS(X
′), X ⊆ X ′ ⇒ εS(X) ⊆ εS(X

′)

• The dilation is increasing according to the structuring element while the ero-
sion is decreasing according to the structuring element :

S ⊆ S′ ⇒ δS(X) ⊆ δS′(X), S ⊆ S′ ⇒ εS′(X) ⊆ εS(X)

• These two operations also verify the adjunction property:

δS(X) ⊆ X ′ ⇔ X ⊆ εS(X
′)

• It is easy to check that the dilation is commutative:

δS(S
′) = δS′(S)

• Finally, these operations satisfies also the iteration property :

δS(δS′(X)) = δS⊕S′(X), εS(εS′(X)) = εS⊕S′(X)

1.2.1.3 Interpretations

To illustrate these concepts, a set X and a structuring element S are illustrated in
Figure 1.1. By default, the origin may be located in the center of the structuring
element, but in our example, the origin is located in the lower corner of the triangle.
To understand the shape obtained after a dilation, consider that the origin of the
structuring element moves along X. In this case, the dilation is composed of all the
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(a) X

Origin

(b) Structuring element S

Figure 1.1: Example of a set X in light grey (left) and a structuring element S

(right) represented with its origin.
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"S(X)

(b) Erosion

Figure 1.2: Dilation and erosion of X by S (as defined in Figure 1.1) represented
by dotted red lines.

points covered by the structuring element. Figure 1.2(a) illustrates the transforma-
tion produced by a dilation where the boundary of the dilated set is displayed by a
dotted red line. Regarding the morphological erosion, there are two approaches to
interpret the result. First, this can be interpreted as the set of points in X where
the structuring element is included in X when its origin is placed on these points. It
is also possible to use the property of duality by complementation with the dilation
to interpret the erosion, i.e. consider an erosion as a dilation of the complementary
of X by the symmetrical of the structuring element. The origin of the structuring
element moves along the boundary of X, but the structuring element is reversed
and the boundary of the eroded set is the set of points that the structuring element
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cannot cover. The boundary of the erosion is displayed by a dotted red line in Fig-
ure 1.2(b). In both cases, the shape of X has changed and the transformations are
not just homotheties. Therefore, a dilation fills holes smaller than the structuring
element (in the sense of inclusion), welds components that are topologically close
and expands shapes. By contrast, erosion eliminates connected components smaller
than the structuring element, enlarges holes and reduces object size.

1.2.2 Opening and Closing

1.2.2.1 Definitions

The other two fundamental operations result from the composition of the two pre-
vious ones. The opening γS is the composition of an erosion and a dilation, and the
closing φS is a dilation followed by an erosion.

Definition 1.2: Opening and Closing

Let S ∈ P(E) , the opening γS and the closing φS by S are defined by:

γS : P(E) −→ P(E)

X 7−→ X ◦ S = (X ⊖ S)⊕ S

φS : P(E) −→ P(E)

X 7−→ X • S = (X ⊕ S)⊖ S

The opening can be described simply [Serra 1982]. Let X,S ∈ P(E), we have:

γS(X) =
⋃
{Sx | x ∈ E ∧ Sx ⊆ X}

Note that the origin of the structuring element is no longer important for these two
operations, only the shape is involved.

1.2.2.2 Properties

As with dilation and erosion, we list some important mathematical properties satis-
fied by the opening and closing, with X,X ′, S, S′ ∈ P(E). As before, it is important
to specify that these operations are non-linear and non-reversible.

• These operations are dual by complementation:

X ◦ S = (Xc • Š)c, X • S = (Xc ◦ Š)c

• One of the most important properties of the opening and closing operators is
that they are both idempotent :

γS ◦ γS(X) = γS(X), φS ◦ φS(X) = φS(X)
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• Unlike dilation and erosion, which require the origin to be included in the
structuring element, in all cases the opening is anti-extensive and the closing
is extensive:

γS(X) ⊆ X, X ⊆ φS(X)

• The opening is decreasing according to the structuring element while the clos-
ing is increasing according to the structuring element :

S ⊆ S′ ⇒ γS′(X) ⊆ γS(X), S ⊆ S′ ⇒ φS(X) ⊆ φS′(X)

• These two operations are increasing (as compositions of increasing operations):

X ⊆ X ′ ⇒ γS(X) ⊆ γS(X
′), X ⊆ X ′ ⇒ φS(X) ⊆ φS(X

′)

Table 1.1 summarizes the main properties that satisfy each of the four principal
operations of mathematical morphology (dilation, erosion, opening, closing).

Table 1.1: Summary of the main properties of the four principal operators of mathe-
matical morphology, where ✓∗ assumes that the origin is included in the structuring
element.

Properties δ ε φ γ

Dual by complementation ✓ ✓ ✓ ✓
Extensive ✓∗ ✓

Anti-extensive ✓∗ ✓
Increasing ✓ ✓ ✓ ✓

Increasing according to S ✓ ✓
Decreasing according to S ✓ ✓

Iteration ✓ ✓
Idempotent ✓ ✓

Commutative ✓
Analysis operator ✓ ✓

Generative operator ✓ ✓

In addition to the basic properties just described, we characterize erosion and
opening as analysis operators, in the sense that they are anti-extensive operators
(or most of the time for erosion) and are therefore relevant to musical analysis. In
contrast, we characterize dilation and closing as generative operators, in the sense
that they are extensive operators (or most of the time for dilation), i.e. they generate
musical data from the dataset and the structuring element.

By successively composing opening and closing with the same structuring ele-
ment, we can obtain four new filters: opening followed by closing, closing followed
by opening, opening followed by closing and opening, closing followed by opening
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and closing. These four operations are idempotent, and no other operator can be
obtained by additional composition [Serra 1988]. Finally, Figure 1.3 illustrates some
of the links between the four principal operations of mathematical morphology.

X

Xc

δS(X) ϕS(X)

γŠ(X
c)εŠ(X

c)

closing
opening

com
plem

ent

com
plem

ent

com
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dilation erosion

erosion dilation

Figure 1.3: Illustrations of the links between the four principal operators of mathe-
matical morphology.

1.2.2.3 Interpretations

The opening of X can be interpreted as the set of points covered by the struc-
turing element when it is included in X. By duality, the closing of X consists in
adding points to X where the symmetrical of the structuring element cannot cover
by remaining in the complementary of X. The boundaries of the results of these
operations are represented by dotted red lines in Figure 1.4 using the same set X

and structuring element S as in Figure 1.1. An opening regularizes shapes, removes
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Figure 1.4: Opening and closing of X by S (as defined in Figure 1.1) represented
by dotted red lines.
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connected components smaller than the structuring element, does not (always) pre-
serve topology and reduces the object. Whereas a closing fills holes smaller than
the structuring element, does not (always) preserve topology, welds shapes together
and enlarges the object.

To summarize, here is the interpretation of the four basic operations of the
mathematical morphology of the set X by the structuring element S.

• Dilation: Union of all translations of S to positions in X.

• Erosion: All positions at which S occur in X.

• Opening: Union of all occurences of S in X.

• Closing: All positions at which S occurs in the union of all translations of S
to positions in X.

1.3 Applications of the Principal Morphological Opera-
tors to Symbolic Representations of Music

In this section, we propose to apply the principal morphological operators to sym-
bolic representations of music. We demonstrate the possibility of interpreting mor-
phological operators musically. To do this, the set X represents the musical data,
while the structuring element is a musical property that is applied to X, where
the different operations yield different results. These simple examples, initially
described in [Lascabettes 2019, Lascabettes 2020, Romero-García 2022a], introduce
an original approach, combining mathematical (essentially algebraic) formulations
with musical data. We demonstrate that morphological operators can be applied
to several types of musical data covering different representations, from pitch sets
(E = Z), musical rhythms (E = Zn) or musical scores (E = Rn).

1.3.1 Application of the Principal Morphological Operators to a
Major Chord

Before applying mathematical morphology to musical pieces, we need to understand
the transformations that can be achieved with a chord. The temporal dimension is
not considered, which reduces complexity but also potential applications of math-
ematical morphology. However, it is possible to obtain some results from the four
principal operations of binary morphology. In this case, we consider the set of pitches
with E = Z, where subsets of E are sets of pitches that can be interpreted as chords.
For example, we define C maj = {C4, E4, G4}, where C4, E4, G4 are respectively the
pitches corresponding to C,E,G of the fourth octave. To match each pitch to an
element of Z, we arbitrarily choose C0 as the origin, C♯

0 as 1 and so on, such that
each element a semitone away is one away in Z. This defines each chord as a subset
of E = Z. Therefore, the aim is to use morphological operators to obtain a musical
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result from a chord and a musical property, which is the structuring element. For
this, we define the following structuring elements:

maj = {0, 4, 7}, min = {0, 3, 7}, fifth = {0, 7}, semitone = {1}

In the remainder of this section, we present the relevance of each of the four principal
operations of mathematical morphology applied to the C maj chord. The results
are illustrated in Figure 1.5 where the pitch is represented vertically to refer to a
piano roll representation. In this representation, the vertical axis refers to the pitch
of the notes, while the horizontal axis indicates time, which is not used here as the
elements are pitch sets. Finally, these results are not limited to the C maj chord
and can be generalized to other pitch sets.
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Figure 1.5: Principal morphological operators applied to a major chord (a), where
the structuring element is on the left and the result on the right. The origin of the
structuring element for dilation and erosion is indicated by a circle.
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• Dilation enriches or creates a chord. For example, it is possible to obtain C
maj from C4 and the maj property with dilation:

{C4} ⊕maj = C maj

In the same way, we can obtain other chords with the other structuring ele-
ments:

{C4} ⊕min = C min, {C4} ⊕ fifth = C5

Where C min = {C4, E
♭
4, G4} and C5 = {C4, G4}. In addition, it is also pos-

sible to combine several structuring elements, where the order is not impor-
tant because dilation is commutative. For example, if the structuring element
contains a single element which is different from the origin, the dilation is
equivalent to a translation, i.e. in musical terms to a transposition. Combin-
ing the previous equation with the semitone structuring element, we obtain
additionally a transposition of a semitone:

{C4} ⊕maj⊕ semitone = C♯ maj

As a general rule, the number of semitones in the transposition is equal to the
difference between the position of the structuring element and its origin.

• Erosion extracts specific characteristics from the chord. For example, with
the structuring elements maj and min, erosion extracts only the fundamental
of major and minor chords. Consequently, the erosion of C maj by maj is the
fundamental C4, whereas the erosion by min is the empty set, as C maj is not
composed of minor chords:

C maj⊖maj = {C4}, C maj⊖min = ∅

More generally, by selecting intervals as structuring elements, erosion extracts
a single picth in relation to these intervals. This pitch corresponds to the
position of the origin in the structuring element. In the previous examples,
erosion extracts the fundamental, but it is possible to adapt the position of
the origin to extract other characteristics.

• Opening extracts musical intervals and simplifies the chord. For example,
the opening of C maj by maj has no effect, but with fifth as the structuring
element, the opening extracts only the fifth intervals from the initial chord,
thus simplifying it by removing the third E4:

C maj ◦maj = C maj, C maj ◦ fifth = C5

As a general rule, only patterns similar to the structuring element are parts
of the opening result. By applying this operation to a musical piece with the
fifth as structuring element, it is possible to extract all the fifth intervals of
the piece, which can be relevant for simplifying musical data.
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• Closing enriches the initial chord because this operation is extensive, but
this is the least intuitive morphological operation. For example, with the
structuring element whole-tone = {0, 2, 4, 6, 8, 10}, which corresponds to the
whole-tone scale, closing adds the pitch D4 to the C maj chord:

C maj • whole-tone = {C4, D4, G4, E4}

This is because there is exactly one tone away between D4 and C4 and be-
tween D4 and G4. However, it is not possible to add just any pitch to the
chord, which makes this operation more complicated to use. Indeed, in the
example of a C maj chord, it is not possible to add a B4 to form a C maj7
chord, which is very common. Nevertheless, it is possible to obtain this re-
sult with other morphological operations (in particular with the hit-or-miss
operation [Serra 1982]).

1.3.2 Application of the Principal Morphological Operators to
Rhythms

In this section, we demonstrate that morphological operators can also be applied
to musical rhythms. To do this, we use another data representation: the cir-
cular representation with E = Zn. In this case, each subset of E is a musi-
cal rhythm. We propose here to analyze the six distinguished rhythms consid-
ered by Toussaint [Toussaint 2019]. These six rhythms have been selected be-
cause they are considered as the most significant rhythms in the music of the
world among the rhythms with 5 note onsets and 16 pulses. Because all these
rhythms contain 16 pulses, the morphological operators are applied in E =

Z16. They are composed of: Shiko = {0, 4, 6, 10, 12}, Son = {0, 3, 6, 10, 12},
Soukous = {0, 3, 6, 10, 11}, Rumba = {0, 3, 7, 10, 12}, Bossa-Nova = {0, 3, 6, 10, 13}
and Gahu = {0, 3, 6, 10, 14}. The notation x indicates that x ∈ Z is a representative
of the equivalence class x ∈ Z16. These rhythms are all illustrated in Figure 1.6
using a circular representation. To analyze these rhythms, we use morphological
analysis operators, i.e. erosion and opening. The other two operators, dilation and
closing, enrich the rhythm, which is not the purpose here.

We chose the Tresillo = {0, 6, 12} ∈ P(E) as a structuring element, with the
origin naturally positioned on the 0. This is a very common rhythmic pattern and
it may be interesting to explore its relationship with the six distinguished rhythms.
Morphological operators reveal the inclusion relationships between the Tresillo and
the six distinguished rhythms. For example, the erosion and opening of the Shiko
by the Tresillo provide:

Shiko ⊖ Tresillo = Tresillo + 4, Shiko ◦ Tresillo = Shiko

Where Tresillo+ 4 = {0, 4, 10} is a Tresillo shifted from 4. In this way, the opening
of the Shiko with the Tresillo makes it clear that the Shiko is a rhythm composed
of Tresillos. Moreover, by examining with erosion when the Tresillo appear in the
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Figure 1.6: The six distinguished rhythms with 5 note onsets and 16 pulses analyzed
by Toussaint [Toussaint 2019]. Colored polygons indicate the inclusions of Tresillos
in these rhythms, which is useful for understanding morphological results.

Shiko, we surprisingly also get a Tresillo but time-shifted. These results are illus-
trated in Figure 1.6(a), where the Tresillos inclusions in the Shiko are visualized by
three colored polygons. The positions 0, 4 and 10 are highlighted because they are
the origins of the three Tresillos included in the Shiko, which is the result of the
erosion of the Shiko by the Tresillo.

Next, Rumba is the only rhythm of the six distinguished rhythms that does not
contain the Tresillo:

Rumba ◦ Tresillo = ∅
In addition, there is only one inclusion of Tresillo in Soukous, Bossa-Nova and Gahu,
and it is in the same position:

Soukous ⊖ Tresillo = Bossa-Nova ⊖ Tresillo = Gahu ⊖ Tresillo

Finally, with the exception of Rumba, all the rhythms of the six distin-
guished rhythms contain a Tresillo that starts at 10. Formally, ∀ Rhythm ∈
{Shiko, Son, Soukous, Bossa-Nova, Gahu}:

10 ∈ Rhythm ⊖ Tresillo
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This is indicated by the light blue triangle included in the rhythms in Figure 1.6.
These simple examples illustrate how morphological operators can be used to analyze
rhythmic data from the cyclic group E = Zn, but other morphological operators may
be used to modify and generate rhythms.

1.3.3 Analysing Musical Data Using Mathematical Morphology

After proposing to apply the principal morphological operators to a chord in Sec-
tion 1.3.1 (with E = Z) and to a rhythm in Section 1.3.2 (with E = Zn), we focus
on the analysis of a musical piece using mathematical morphology operators. In
this situation, the set E = Rn represents the set of musical notes, where each char-
acteristic of the musical notes is a component of the space. Subsets of E are sets
of notes that can be interpreted as musical pieces. We have chosen here to restrict
ourselves to the case where a note is represented by three elements: (note onset,
pitch, duration), but the results presented here can be generalized to other situa-
tions. Consequently, a musical piece is represented here by a subset of E = R3.
Since erosion and opening are analysis operators (unlike dilation and closure, which
are generative operators), it is these two operations that are useful for analyzing a
piece of music. To illustrate the results these operations can produce, the introduc-
tion of Hey Jude by The Beatles is analyzed. In order to simplify understanding,
this is not the official version, but a piano adaptation, which is shown in Figure 1.7
using a piano roll representation (to avoid representing data in R3).

Figure 1.7: Example of a set X illustrated using a piano roll representation, where
X is an adapted version of the introduction of Hey Jude (The Beatles).

The melody is present at the top of the piano roll because of its high notes,
while the bass is located below. The chords played in this example are in the middle
part of the piano roll. This example is based on major chords, so it is natural to
choose major chords as structuring elements in order to extract the chords. As a
major chord is composed of three notes: the root, the major third and the fifth, it
can be represented in three different ways if the order is maintained, as illustrated
in Figure 1.8.

By setting the origin on the root of the chord, we define the three structuring
elements maj1, maj2 and maj3 illustrated in Figure 1.8, which represent the three
possibilities of obtaining a major chord, with:
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Figure 1.8: Three different representations of a major chord in the piano roll, con-
sidered as three structuring elements. The origin is chosen on the root.

• maj1 = ((0, 0, 0), (0, 4, 0), (0, 7, 0)) which corresponds to the permutation
root/third/fifth, where the fundamental is the lowest note,

• maj2 = ((0,−5, 0), (0, 0, 0), (0, 4, 0)) which corresponds to fifth/root/third,

• maj3 = ((0,−8, 0), (0,−5, 0), (0, 0, 0)) which corresponds to third/fifth/root.

The 0 value on the first and last coordinates does not indicate that the discovered
notes are those where the note onset is 0 and the duration is 0. In particular,
an opening or erosion by these structuring elements handles notes played at the
same time (the first coordinate does not change) and of the same duration (the
last coordinate does not change). Nevertheless, it is possible to have structuring
elements where the chord is spread out over time, like arpeggios or with different
durations.

Certain morphological concepts can be generalized to several structuring ele-
ments:

εS1,...,Sn(X) =
⋃

i∈{1,..,n}

εSi(X), γS1,...,Sn(X) =
⋃

i∈{1,..,n}

γSi(X)

Note that a union of openings is also an opening in an algebraic sense, i.e. an
increasing, anti-extensive and idempotent operation. This is not the case for the
erosion but that does not prevent us from using the proposed generalization.

As described in Section 1.3.1, erosion extracts only the root of each chord, be-
cause the origin is chosen on the root. The result of erosion by the three structuring
elements maj1, maj2 and maj3 is illustrated in Figure 1.9(a). This reveals that the
introduction to this adaptation of Hey Jude is composed of the following major
chords: F / C / B♭ / F / B♭ / F / C / F, each of which is repeated four times.

Then, the opening by the three structuring elements maj1, maj2 and maj3 ex-
tracts the major chords of the piece. The result of this operation is displayed in
Figure 1.9(b), where the melody and bass have been removed after this transforma-
tion.
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(a) Erosion of musical data by major chords
to extract the root of the chords

(b) Opening of musical data by major chords
to extract the chords

Figure 1.9: Erosion and opening applied to the introduction of Hey Jude by major
chords as structuring elements to extract musical information.

These two examples illustrate the potential of morphological tools for extracting
information and analyzing a piece of music. To extend the possibilities, it is also
possible to combine morphological operations to obtain other results. For example,
it is possible to remove the chords from the musical piece in order to extract the
melody or bass. This can be achieved with the morphological operation white top-
hat, which consists in subtracting the opening from the musical piece.

1.4 Conclusion and Future Work

In this chapter, we first introduced the basic definitions of mathematical morphol-
ogy, which is also useful for the following chapters, and then proposed new methods
of musical analysis and generation using mathematical morphology operators. The
four main operations of morphology have been considered, and the relevance of each
operation has been presented. In particular, we differentiate analysis operators, with
erosion and opening, from generative operators, with dilation and closing. We have
demonstrated that these morphological operators can be applied to different sym-
bolic representations of music with pitch sets (E = Z), musical rhythms (E = Zn)
and musical pieces (E = Rn). One of the advantages of using mathematical mor-
phology is to apply a musical property to musical data. In particular, the structuring
element represents the property to be applied, such as major or minor if applied to
a chord. This first approach reveals an original application of mathematical mor-
phology, associating mathematical formulations (essentially algebraic) with musical
data.

In this chapter, we have mainly demonstrated the relevance of morphological
operators for musical analysis, i.e. erosion and opening. In particular, the erosion
extracts specific musical characteristics, such as the root of a chord, the decomposi-
tion of a musical rhythm or the identification of chords in a piece of music, while the
opening simplifies musical data, such as retaining only certain musical intervals of
a chord, reducing a musical rhythm or removing some musical components from a
piece. We also mentioned that generative morphological operators create or enrich
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musical data. Dilation is a good example, as it generates a chord from the root
and a musical property, for example. In addition, several musical properties can be
applied in any order, as dilation is commutative. Closing enriches musical data, but
is more complicated to apply, as it is a less intuitive, and we believe it is preferable
to apply other operations to enrich data.

This chapter is limited to the basic operations of binary mathematical morphol-
ogy, but there are plenty of other morphological operations (some of which have
already been partially covered in this chapter). Therefore, a future work is to ex-
tend this research to find a musical meaning to other morphological operations. In
addition, the theory of binary morphology can be generalized to grayscale morphol-
ogy. Next, we demonstrate how to apply this generalization to similarity matrices
in Chapter 4. In this situation, morphological filters help detect the main blocks
of the similarity matrix, which is useful for discovering the structure of the musical
piece.

While we have demonstrated in this chapter that morphological operators can be
applied to musical data, we would like to point out that the results obtained are still
very elementary. While this approach is original, these results can also be obtained
without using mathematical morphology. However, we demonstrate in Chapter 2
and Chapter 3 that morphology can be used to obtain new results for the discovery
of musical patterns. In particular, the use of known morphology results allows us to
better understand and develop musical pattern discovery research. If this approach
is successful, it is because the theory of mathematical morphology fits perfectly into
the framework of musical pattern discovery, as we demonstrate in the next chapter.
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In this chapter, we review the main point-set algorithms for discovering and
matching patterns in musical data. In particular, we demonstrate that mathematical
morphology fits perfectly into this context, since the algorithms and definitions in-
troduced can be easily described using morphological operators. Finally, we present
how morphology can be used to better understand and develop point-set algorithms
in music.

Section 2.1 presents the advantages of point-set algorithms in music. Section 2.2
reviews 9 point-set algorithms and provides links to mathematical morphology. Sec-
tion 2.3 demonstrates that morphological erosion can generalize the maximal trans-
latable pattern concept that is the foundation of point-set algorithms in music.
Finally, Section 2.4 summarizes the main results presented in this chapter.

2.1 Introduction to Point-Set Algorithms in Music

Pattern discovery research in symbolic representation of music can be divided into
two categories: methods based on a string representation and methods based on a
multidimensional representation of music [Janssen 2013]. In this section we present
the advantages and inconvenients of these two approaches, which sets the context
for the next chapters.

2.1.1 String Representation of Music

The first attempts to discover repeating patterns in music were based on a string
representation of music. In this case, music is represented as a string of sym-
bols. From this representation, the goal is to find subsequences that repeat iden-
tically or nearly identically. This is usually achieved by defining a similarity be-
tween the elements of the string in order for the algorithm to extract the subse-
quences [Hsu 1998, Smith 2001]. Some methods for this were inspired by techniques
developed in computational biology to compare gene sequences [Gusfield 1997]. The
string representation is adapted for monophonic music or polyphonic music where
each voice can be represented by a string, such as Bach’s Fugues. In the case
of Bach’s Fugues, several algorithms have already been developed to discover the
subject or the counter-subject (sometimes present, usually following the subject)
[Giraud 2012b], the episodes (modulatory sections) [Giraud 2012a], the stream seg-
ments (small numbers of tones grouped together) [Rafailidis 2008], or the global
structure [Giraud 2015]. However, string-based approaches present several weak-
nesses. First of all, converting music to a string representation is not always rele-
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vant. For example, with a string-based approach, it can be very difficult to discover
patterns in unvoiced polyphonic music (such as piano music). Then, when a pattern
is embellished, with an extra note in the middle of the pattern for instance, the sub-
sequence is divided in two and therefore remains undiscovered. Also, computation
time can be very long unless some parameters are imposed, such as the maximum
and minimum length of a pattern, which cannot be generalized directly to other mu-
sical data. For these three reasons, we have decided to focus on a multidimensional
representation of music in the following.

2.1.2 Multidimensional Representation of Music

To avoid the problems associated with string-based approaches to discover musical
patterns, Meredith et al. have developed a method for discovering patterns using
a multidimensional representation of music [Meredith 2002a]. In this case, musical
data are represented in Rn, where each point corresponds to a musical note and
each component of the space corresponds to a characteristic of the note (such as its
note onset, its pitch, its duration, etc.). Based on this representation, a number of
algorithms have been developed, called point-set algorithms, which are reviewed in
Section 2.2. These algorithms are all inspired by the SIA algorithm, which computes
the vectors between notes to obtain the largest translatable patterns in the musical
data. In this way, these methods solve the problems associated with string-based
approaches. However, the main weakness of these methods is to interpret the dis-
covered patterns, as it produces too many repeating patterns, of which the majority
are not musically interesting.

In the following we present some ideas that have been proposed to develop and
improve the discovery of patterns using a multidimensional representation of music.
In addition, we propose the use of mathematical morphology to describe and better
understand some of these concepts. We will not recall the useful definitions and
propositions of mathematical morphology in this chapter, as they have already been
presented in the previous chapter in Section 1.2.

2.2 Links Between Point-Set Algorithms for Pattern
Discovery and Pattern Matching in Music and
Mathematical Morphology

In this section, we review the main point-set algorithms for the discovery and match-
ing of musical patterns and make connections with mathematical morphology. In
particular, we demonstrate that these algorithms can be simply described using the
principal operators of mathematical morphology. Geoffray Boras Delattre helped
develop some of the results presented here during a 3-week internship that I super-
vised.
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2.2.1 The SIA Algorithm

The “Structure Induction Algorithm” (SIA) is the basis of point-set algorithms for
discovering musical patterns. This algorithm was first proposed by Meredith et
al. [Meredith 2001, Meredith 2002a]. The task of this algorithm is to discover the
largest translated patterns, called the Maximal Translatable Patterns (MTPs), in a
multidimensional dataset X. Here, the datasets are referred to by the letter X, as
opposed to D used by Meredith et al., we choose this to better match the mathe-
matical definitions of morphology.

Definition 2.1: Maximal Translatable Pattern (MTP)

Given a vector v ∈ E, the MTP for v in X is defined as follows:

MTP (v,X) = {x ∈ X | x+ v ∈ X}

Instead of computing MTP (v,X) for all v ∈ E, it is possible to optimize the
MTP computations. Meredith et al. noticed that MTP (v,X) is non-empty if and
only if there are two points x1, x2 ∈ X such that v = x2 − x1. Therefore, it is
sufficient to compute the MTPs for the vectors v = x2−x1 with x1, x2 ∈ X. In this
case, v can be seen as the vector going from x1 to x2. So −v is the vector from x2
to x1 and we do not need to compute MTP (−v,X) as it is equal to MTP (v,X)

translated by v. Consequently, to avoid redundancy and compute MTP (−v,X) as
well, we only need to compute MTPs of the form:

MTP (x2 − x1, X) such that x1, x2 ∈ X ∧ x1 ≤ x2,

where x1 ≤ x2 means that the lexicographic order of x1 is lower than that of x2. An
example of MTP (v,X) is displayed in Figure 2.1, where v = x2 − x1 is also shown
in the figure with x1, x2 ∈ X.

For x1, x2 ∈ X, it is possible to express MTP (x2−x1, X) in a very simple form
with the morphological erosion using the following lemma.

Lemma 2.1: MTP (x2 − x1, X)

Let x1, x2 ∈ X and {x1, x2} the structuring element with its origin set on x1,
we have:

MTP (x2 − x1, X) = ε{x1,x2}(X)
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MTP(v,X)

Figure 2.1: Illustration of the result of a MTP for a certain vector v = x2− x1 with
x1, x2 ∈ X. The set X is represented by the dots.

Proof of Lemma 2.1. Under the assumptions of the lemma, we have:

MTP (x2 − x1, X) = {x ∈ X | x+ (x2 − x1) ∈ X}
= {x ∈ X | x ∈ X ∧ x+ (x2 − x1) ∈ X}
= {x ∈ E | x ∈ X ∧ x+ (x2 − x1) ∈ X}
= {x ∈ E | (x1 − x1) + x ∈ X ∧ (x2 − x1) + x ∈ X}
= {x ∈ E | {x1, x2}x ⊆ X}
= ε{x1,x2}(X)

Finally, for a given dataset X, the SIA algorithm computes all the translations
(i.e. x2−x1 with x1, x2 ∈ X) and all the translated points (i.e. MTP (x2−x1, X)).
In other words, SIA computes the set:

SIA : {< x2 − x1,MTP (x2 − x1, X) >| x1, x2 ∈ X ∧ x1 ≤ x2}

which can be expressed using morphological operations:

SIA : {< x2 − x1, ε{x1,x2}(X) >| x1, x2 ∈ X ∧ x1 ≤ x2}

2.2.2 The SIATEC Algorithm

SIA discovers the largest translated patterns given a translation, but provides no
information on the other transposed occurrences of the discovered pattern. For
example, in Figure 2.1, the pattern discovered by MTP (v,X) is repeated on the
right of the figure, and SIA does not indicate this. It would be useful if, in addition to
discovering patterns, the algorithm could also reveal the repetitions of this pattern
in the dataset. To obtain this information, Meredith et al. proposed the SIATEC
algorithm [Meredith 2001, Meredith 2002a, Meredith 2006].

First, they defined the Translation Equivalence Class (TEC) of a pattern P by
the set of patterns from X that are equal to P up to a translation.
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Definition 2.2: Translation Equivalence Class (TEC)

Let P ∈ P(E), the TEC for P in X is defined as follows:

TEC(P,X) = {Q ∈ P(E) | ∃t ∈ E ∧ Pt = Q ∧Q ⊆ X}

As before, this definition can be expressed using morphological operators.

Lemma 2.2: TEC(P,X)

Let P,X ∈ P(E), we have:

TEC(P,X) = {δt(P ) ∈ P(E) | t ∈ εP (X)}

Proof of Lemma 2.2. Under the assumptions of the lemma, we have:

TEC(P,X) = {Q ∈ P(E) | t ∈ E ∧ Pt = Q ∧Q ⊆ X}
= {Pt ∈ P(E) | t ∈ E ∧ Pt ⊆ X}
= {δt(P ) ∈ P(E) | t ∈ E ∧ Pt ⊆ X}
= {δt(P ) ∈ P(E) | t ∈ εP (X)}

Moreover, the TEC of a pattern P in X can also be expressed as a pair
< P, T (P,X) > consisting of the pattern P and its translators T (P,X) defined as
follows.

Definition 2.3: Translators T (P,X)

Let P,X ∈ P(E), the set of translators of P in X is defined as follows:

T (P,X) = {t ∈ E | Pt ⊆ X}

Thus, the TEC of a pattern can be obtained by translating P by its translators
t ∈ T (P,X). For example, Figure 2.2 displays the TEC and the set of translators
of the pattern discovered in Figure 2.1. Once again, there is a direct link with the
morphological erosion.
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P TEC(P,X)

T(P,X)

Figure 2.2: Illustration of the TEC and the set of translators of the pattern discov-
ered in Figure 2.1. Note that the P pattern is included in the TEC. The set X is
represented by the dots.

Lemma 2.3: T (P,X)

Let P,X ∈ P(E), we have by definition:

T (P,X) = εP (X)

Therefore, SIATEC uses all the patterns discovered with SIA and computes the
TECs associated with these patterns. TECs can be summarized as a pattern and
all its translators. Finally, for a given dataset X, SIATEC computes the largest
translatable patterns P in X (i.e. the MTPs) and the set of translators of P in X

(i.e. the T (P,X)). As with the SIA algorithm, this needs not be computed for all
translations v ∈ E, but only those of the form x2−x1 with x1, x1 ∈ X and x1 ≤ x2.

SIATEC : {< MTP (x2−x1, X), T (MTP (x2−x1, X), X) >| x1, x2 ∈ X ∧x1 ≤ x2}

Which can also be expressed using morphological operations:

SIATEC : {< ε{x1,x2}(X), εε{x1,x2}(X)(X) >| x1, x2 ∈ X ∧ x1 ≤ x2}

2.2.3 The SIACT Algorithm

The aim of the SIACT algorithm is to avoid having a pattern P ′ ⊆ P that is musi-
cally more important than P . For example, by adding two points v apart to the X

dataset defined in Figure 2.1, we obtain the set MTP (v,X) with an additional point
as shown in Figure 2.3. In this figure, MTP (v,X) is made up of the four points
on the left, as in Figure 2.1, and an additional point on the right. In particular,
this point is isolated temporally from the rest of the pattern (note that the same
reasoning can be applied to dimensions other than time). Thus, this new discovered
MTP is not musically interesting, as it is perceived as the previous MTP to which
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v

P = MTP(v,X)

C(P,X) = 5/13

Figure 2.3: Illustration of low compactness value of a pattern discovered by a MTP.
However, by selecting only the first four notes of the MTP, we obtain a pattern with
a maximum compactness value equal to 4/4 = 1.

an unrelated and completely detached note has been added. This example reveals
that a MTP discovered by SIA can be broken down into several sub-patterns that
are musically more meaningful. Collins et al. named this situation the “problem
of isolated membership” [Collins 2010]. To solve this problem, they proposed the
SIACT algorithm, which consists in computing SIA and then applying a “Compact-
ness Trawler” for each MTP discovered, thus extracting sub-patterns from the MTPs
that are more interesting from a musical point of view. The compactness trawler
computes the compactness of MTP sub-patterns. The Compactness C(P,X) of a
pattern P in X is defined as the ratio of the number of points of P to the number
of points of X in the region of P [Meredith 2002a]. For example, the compactness
value for MTP (v,X), shown in Figure 2.3, is 5/13 because MTP (v,X) contains 5
points while there are 13 points of X in the region defined by MTP (v,X). In this
case, the compactness value is too low and MTP (v,X) is not considered a pattern
in its entirety. To determine whether a sub-pattern of a MTP is considered as a
pattern, Collins et al. stated that it must contain at least b notes (which they set
equal to 3), and have a compactness value equal to at least a (which they set equal
to 2/3). They therefore defined two threshold values: compactness threshold a and
point threshold b. Sub-patterns not satisfying these two threshold conditions are
then deleted. Consequently, the SIACT algorithm provides musically interesting
patterns from the MTPs discovered by SIA.

2.2.4 The SIAR Algorithm

With the aim of improving the precision and efficiency of SIA, Collins proposed
the “Structure Induction Algorithm for r subdiagonals” (SIAR) [Collins 2011]. This
algorithm only computes a subset of the MTPs produced by SIA. Collins consid-
ers SIAR to be equivalent to using a sliding window of size r in SIA [Collins 2010,
Collins 2011]. Therefore, the additional condition x2 − x1 ≤ r in SIA is sufficient
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to obtain SIAR, where x2 − x1 ≤ r means that r is the maximum allowed differ-
ence between the positions of x1 and x2 in a lexicographic order. Therefore, SIAR
computes the set:

SIAR : {< x2 − x1, ε{x1,x2}(X) >| x1, x2 ∈ X ∧ 0 ≤ x2 − x1 ≤ r}

Finally, SIAR can be used instead of SIA in the SIACT algorithm to obtain SIARCT.

2.2.5 The COSIATEC Algorithm

The aim of the COSIATEC algorithm, which stands for “COmpression with
SIATEC”, is to cover the entire dataset with a set of relevant non-overlapping TECs.
As a reminder, a TEC T = TEC(P,X) is composed of the patterns of X that are
equal to P up to a translation. The original version of the COSIATEC algorithm
was described by Meredith et al. [Meredith 2002a, Meredith 2006]. Before present-
ing this algorithm, we first define a few concepts to characterize the relevance of
a TEC in a dataset, which is useful for COSIATEC. Once again, these concepts
can be expressed with the basic operators of mathematical morphology. First, we
define the Covered Set COV (T,X) of T in X by the set of notes that T covers
in X [Meredith 2013].

Definition 2.4: Covered set COV (T,X)

Let P,X ∈ P(E) and T = TEC(P,X), the covered set COV (T,X) of T

in X is defined as follows:

COV (T,X) =
⋃

P∈T P

This can be expressed using the morphological opening, one of the four other
basic operators of mathematical morphology.

Lemma 2.4: COV (T,X)

Let P,X ∈ P(E) and T = TEC(P,X), we have by definition:

COV (T,X) = γP (X)

Then, the Coverage of T = TEC(P,X) in X is defined by the number of points
in X that are part of the occurrences of T in X [Meredith 2002a]. That is, the
coverage of T in X is equal to |COV (T,X)|, or |γP (X)| in morphological terms. In
addition, we also define the Compression Ratio CR(T,X) of T = TEC(P,X) in X,
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which measures how relevant a pattern P is in X, in the sense that P occurrences
do not overlap and are repetitive in X [Meredith 2013].

Definition 2.5: Compression Ratio CR(T,X)

Let P,X ∈ P(E) and T = TEC(P,X), the compression ratio CR(T,X) of
T in X is defined as follows:

CR(T,X) = |COV (T,X)|
|P |+|T (P,X)|−1

Using Lemma 2.3 and Lemma 2.4, we can deduce that the compression ration
can also be expressed with morphological operators with the following lemma.

Lemma 2.5: CR(T,X)

Let P,X ∈ P(E) and T = TEC(P,X), we have by definition:

CR(T,X) = |γP (X)|
|P |+|εP (X)|−1

The compression ratio emphasizes pattern occurrences of a TEC that do not
overlap in the dataset. Because the more P occurrences do not overlap in X, the
greater |COV (T,X)| is, |P | and |T (P,X)| do not change, so CR(T,X) is greater if P
occurrences do not overlap in X. In addition, the compression ratio also emphasizes
patterns that repeat a lot in X, because the more occurrences of P in X, the greater
|COV (T,X)| and |T (P,X)| are. Assuming that the occurrences of P in X overlap
only slightly or not at all, |COV (T,X)| increases faster than |T (P,X)| when there
are more occurrences of P in X. Thus, CR(T,X) is greater when there are more
occurrences of P in X. In this way, the compression ratio emphasizes patterns that
do not overlap and that repeat a lot in X, which is the case for musically relevant
patterns.

With these definitions, we can now describe the main steps in the COSIATEC
algorithm. First, the SIATEC algorithm is applied to obtain the set of all TECs
of X. The algorithm then selects the “best” TEC. The criterion for choosing the best
TEC is defined in terms of the highest compression ratio (compactness or coverage
can also be used). Next, all the points covered by the “best” TEC are removed from
the dataset, i.e. X becomes equal to X \COV (T,X). From then on, as long as there
are still points in X, we repeat the algorithm loop: apply SIATEC to X, select the
“best” TEC and remove the covered set of the “best” TEC. The algorithm stops
when X is empty. In this way, COSIATEC produces a family of TEC F = (Ti)i∈I
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that cover the dataset X without overlap, i.e.:

X =
⋃

Ti∈F
COV (Ti, X) such that i ̸= j ⇒ COV (Ti, X) ∩ COV (Tj , X) = ∅

In morphological terms, with Ti = TEC(Pi, X) ∈ F , this can be translated as:

X =
⋃

Ti∈F
γPi(X) such that i ̸= j ⇒ γPi(X) ∩ γPj (X) = ∅

2.2.6 The SIATECCompress Algorithm

The aim of the SIATECCompress algorithm is to produce a set of TECs that covers
the X dataset, but unlike COSIATEC, the covered sets of the TECs may overlap.
Since COSIATEC runs SIATEC at each new iteration of the algorithm loop, this
can be time-consuming on large datasets. To solve this problem, SIATECCom-
press runs SIATEC just once and selects all the best TECs sufficient to cover the
dataset [Meredith 2013, Meredith 2015]. The selection criteria used to classify the
best TECs are the same as for the COSIATEC algorithm (compression ratio, com-
pactness or coverage). The difference is that the TECs are not computed again in
the algorithm loop, so the ranking of the TECs according to the selection criterion
always remains the same. Since the best TECs may have shared points, and the
ranking of the best TECs is not updated, it is possible for a point to belong to sev-
eral TECs covering the dataset. Therefore, unlike COSIATEC, overlaps are allowed,
which means that SIATECCompress does not produce an encoding as compact as
COSIATEC. Basically, SIATECCompress results are not as good as COSIATEC,
but faster. Finally, like COSIATEC, the SIATECCompress algorithm ends when the
entire dataset is covered by selected TECs. Thus, SIATECCompress produces a fam-
ily of TECs F = (Ti)i∈I that covers the dataset, formally: X =

⋃
Ti∈F COV (Ti, X),

or in morphological terms with Ti = TEC(Pi, X): X =
⋃

Ti∈F γPi(X).

2.2.7 Forth’s Algorithm

Forth’s algorithm produces a set of TECs that covers the dataset, but the cov-
ered sets of these TECs may overlap and they may not completely cover the en-
tire dataset, unlike the COSIATEC and SIATECCompress algorithms [Forth 2009,
Forth 2012]. First, Forth’s algorithm computes SIATEC to obtain all the TECs
of the dataset. As with SIATECCompress, SIATEC is computed just once. Next,
Forth assigns a weight to each TEC to determine its relevance. Unlike COSIATEC
or SIATECCompress, it uses not just compression ratio or compactness separately,
but mixes the two to define the weight W (T ) of a TEC T , which is useful for defining
the “best” TEC:

W (T ) = WCR(T )×WComp(T ),

where WCR(T ) is the normalized compression ration of T and WComp(T ) is the max-
imum value of the within-voice segment compactness of all the patterns in T , also
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normalized. In the case where the dataset does not have separate voices, Mered-
ith pointed out that within-voice segment compactness is almost equivalent to the
bounding-box compactness [Meredith 2015]. Bounding-box compactness consists in
calculating the compactness of a pattern on the smallest rectangular region that con-
tains the pattern (for data in R2) and does not require the dataset to have separate
voices.

Therefore, the algorithm iteratively selects the “best” TEC T by choosing the
one that maximizes:

c×W (T ),

where c is the number of new points that T adds to the covered set of TECs already
selected. In addition, to avoid having covered sets with too many overlaps, it is
required that c > cmin with cmin a threshold value which ensures that the new
TEC adds at least cmin new points to the covered set of TECs already selected.
Finally, if there are no new TECs to add, even if the covered set of TECs already
selected does not completely cover the dataset, the algorithm ends. As a result,
the Forth algorithm produces a family of TEC F = (Ti)i∈I that partially covers
the dataset, formally: X ⊇

⋃
Ti∈F COV (Ti, X), or in morphological terms with

Ti = TEC(Pi, X): X ⊇
⋃

Ti∈F γPi(X).

2.2.8 The SIAM Algorithm

In addition to producing the foundations of point-set algorithms for discovering
musical patterns, Meredith et al. also proposed the “SIA Matching” algorithm
(SIAM), a pattern-matching algorithm based on SIA [Meredith 2001, Wiggins 2002,
Meredith 2002a]1. This algorithm can also be described with mathematical mor-
phology operators, as we are about to demonstrate. The aim of this algo-
rithm is to find the maximal matches of a pattern P in a multidimensional
dataset X [Meredith 2002b], which is defined as follows.

Definition 2.6: Maximal match MM(v, P,X)

Let P,X ∈ P(E) and v ∈ E, the maximal match MM(v, P,X) of P in X

under translation v is defined as follows:

MM(v, P,X) = {x ∈ P | x+ v ∈ X}

It is not necessary to compute MM(v, P,X) for all v ∈ E, in particular it is
sufficient to consider translations from a point of P to a point of X, i.e. v = x2−x1

1Note that there is some confusion in the definitions of the SIAM, SIAME and SIAMESE algo-
rithms and we have chosen here, in consultation with David Meredith, not to make any differences
between these algorithms and to retain the main idea under the name of the SIAM algorithm.
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with x1 ∈ P and x2 ∈ X. In this way, SIAM returns the set of all maximal matches
of P in X:

SIAM : {< x2 − x1,MM(x2 − x1, P,X) >| x1 ∈ P ∧ x2 ∈ X}

Ukkoven has already noted that maximal matches consist of a translation fol-
lowed by an intersection [Ukkonen 2003], which can be seen as a morphological
dilation by a vector followed by an intersection.

Lemma 2.6: MM(x2 − x1, P,X)

Let P,X ∈ P(E), x1 ∈ P , x2 ∈ X and {x2, x1} the structuring element with
its origin set on x2, we have:

MM(x2 − x1, P,X) = P ∩ δ{x2,x1}(X)

Meredith et al. pointed out that an MTP can be viewed as a special case of a
maximal match where P = X, i.e. MTP (v,X) = MM(v,X,X), which leads to
the morphological equality ε{x1,x2}(X) = X ∩ δ{x2,x1}(X). Finally, SIAM can be
rewritten with the morphological dilation as follows:

SIAM : {< x2 − x1, P ∩ δ{x2,x1}(X) >| x1 ∈ P ∧ x2 ∈ X}

The result of the SIAM algorithm is illustrated in Figure 2.4, for P displayed
in Figure 2.4(a), and X in Figure 2.4(b). The different lines, of different colors and
textures, indicate complete or partial matching between P and X. For example, the
solid red line is the complete matching (i.e. when P ′ = P ).

(a) Pattern P (b) Dataset X

Figure 2.4: Illustration of the SIAM algorithm for finding the exact and partial
matching of P in X, both represented by the dots. Each colored dotted line indicates
a sub-pattern of P of at least two points that has been matched in X without
redundancy (adapted from Meredith et al. [Meredith 2002a]).
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2.3 Maximal Translational Equivalence Classes

In this section, we analyze some definitions and theorems developed by Collins
and Meredith to better understand the patterns discovered by point-set algo-
rithms [Collins 2013]. In particular, we prove that these results can be understood
and developed using basic morphological operators.

2.3.1 Definition of Maximal Translational Equivalence Classes

Collins and Meredith introduced another type of maximal repeating pattern called
Maximal Translational Equivalence Class (MTEC) [Collins 2013].

Definition 2.7: Maximal TEC (MTEC)

Let P,X ∈ P(E) such that |TEC(P,X)| = m. P is defined as MTEC if:

∀P ′ ∈ P(E), P ⊊ P ′ ⇒ |TEC(P ′, X)| < m

In other words, if the pattern is enriched with new points, then the num-
ber of new pattern occurrences necessarily decreases. This is why the pattern is
called “maximal”. For example, in Figure 2.5, the pattern P is not MTEC because
|TEC(P,X)| = 3 and it is possible to add the point on the left and still have three
occurrences of the pattern in the dataset. By adding the point on the left, the
pattern becomes MTEC.

P is not MTEC

This point 
can be added

Figure 2.5: Illustration of a pattern P that is not MTEC, it is possible to add the
point on the left without changing the number of three occurrences in X. The set X
is represented by the dots.
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2.3.2 MTEC Characterization Using Mathematical Morphology

The definition of an MTEC can be directly expressed with morphological erosion
with the following:

∀P ′ ∈ P(E), P ⊊ P ′ ⇒ |εP ′(X)| < m

However, we can obtain a much better characterization of the notion of MTEC
with morphological operators. Collins and Meredith have successfully characterized
MTECs by an intersection of MTPs [Collins 2013]. Formally, for P,X ∈ P(E), they
proved the following equivalence:

P ⊆ X is MTEC ⇐⇒ P =
⋂

v∈T (P,X)

MTP (v,X)

However, if P ⊊ X this equivalence is no longer true. For example, the pattern P

can be included in X up to a translation. Musically, this means defining the pattern
up to one harmonic or temporal transposition. Mathematically, this is equivalent to
changing the origin of the pattern. Inspired by the previous equivalence, we propose
to characterize an MTEC pattern in a simple way with Theorem 2.7.

Theorem 2.7: MTEC

Let P,X ∈ P(E), we have:

P is MTEC ⇐⇒ P = εεP (X)(X)

Proof of Theorem 2.7. Let P,X ∈ P(E) and m ∈ N such that |εP (X)| = m. This
proof uses Lemma 3.1 and Theorem 3.5 (their proofs are given in the next chapter)
which provide the following results:

Lemma 3.1 : P ⊆ εεP (X)(X), Theorem 3.5 : εP (X) = εεεP (X)(X)(X)

⇐ We prove this implication by contraposition, i.e. we have to prove that: P is
not MTEC ⇒ P ̸= εεP (X)(X). Therefore, suppose that P is not MTEC. So there
exists P ′ ∈ P(E) such that P ⊊ P ′ and |εP ′(X)| ≥ m. Setting that “decreasingness
s.e.” signifies decreasingness with respect to the structuring element, we have:

P ⊆ P ′

⇒ εP ′(X) ⊆ εP (X) (decreasingness s.e. of ε)

⇒ εP ′(X) = εP (X) (|εP (X)| = m and |εP ′(X)| ≥ m)
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This allows us to conclude with the following implications:

P ′ \ P ⊆ P ′

⇒ εP ′(X) ⊆ εP ′\P (X) (decreasingness s.e of ε)

⇒ εP (X) ⊆ εP ′\P (X) (εP ′(X) = εP (X))

⇒ εεP ′\P (X)(X) ⊆ εεP (X)(X) (decreasingness s.e of ε)

⇒ P ′ \ P ⊆ εεP (X)(X) (P ′ \ P ⊆ εεP ′\P (X)(X) Lemma 3.1)

⇒ P ̸= εεP (X)(X) (∃p′ ∈ P ′ : p′ /∈ P ∧ p′ ∈ εεP (X)(X))

⇒ We reason again by contraposition, i.e. we have to prove: P ̸= εεP (X)(X)⇒ P

is not MTEC. Thus, suppose that: P ̸= εεP (X)(X). Because Lemma 3.1 implies
P ⊆ εεP (X)(X), we have P ⊊ εεP (X)(X). Setting P ′ = εεP (X)(X), we then have
P ⊊ P ′ and the following equalities:

|εP ′(X)| = |εεεP (X)(X)(X)|

= |εP (X)| (εεεP (X)(X)(X) = εP (X) Theorem 3.5)

= m

Therefore, we conclude that P is not MTEC because there exists P ′ = εεP (X)(X)

such that P ⊊ P ′ and |εP ′(X)| = m.

2.3.3 Generalization of MTPs using Morphological Erosion

Figure 2.6 illustrates the equivalence proved by Collins and Meredith where the
MTEC pattern P is equal to an intersection of MTPs. In this figure, some points
have been added to the set X defined in Figure 2.2, where the P pattern remains
the same. We have already seen in Figure 2.5 that P is MTEC (if composed of
four points). In this case, there are two non-zero translations v and v′ from P

into X, which are displayed in Figure 2.6. It can be observed that MTP (v,X)

and MTP (v′, X) are not equal to P because they have some extra points, as in
the “problem of isolated membership” discussed in Section 2.2.3. However, with the
intersection, we obtain:

P = MTP (v,X) ∩MTP (v′, X)

Thus, intersections of MTPs seem to be a good solution to the “problem of isolated
membership”. This would avoid the computation of the compactness and provide
MTECs patterns. However, without knowing T (P,X), it is not possible to know
which MTPs to intersect.

It is important to mention that Collins and Meredith made an interesting obser-
vation which connects the concepts of MTP and MTEC [Collins 2013]. They proved
that:

∀x1, x2 ∈ X,MTP (x2 − x1, X) is MTEC
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v

MTP(v,X)

v’

MTP(v’,X)

Figure 2.6: Illustration of an MTEC pattern P obtained with an intersection of
MTPs, as P = MTP (v,X)∩MTP (v′, X). The intersection removes isolated points
and could be a solution to the “problem of isolated membership”.

However they pointed out that the other way is not true. That is, a pattern P can
be MTEC but without having two points x1, x2 ∈ X which allow obtaining P with
the MTP operation, formally:

∃P MTEC : ∄x1, x2 ∈ X such that P = MTP (x2 − x1, X)

Thanks to Theorem 2.7, we can understand this better. If the pattern P can not
be obtained by two points x1, x2 ∈ X with the MTP operation, this means that
several points x1, . . . , xm ∈ X are required. But the MTP operation is not defined
for several points x1, . . . , xm ∈ X. This is why the morphological erosion of X by
x1, . . . , xm ∈ X is required, rather than the MTP operation. We already proved that
with two points x1, x2 ∈ X, we have: MTP (x2−x1, X) = ε{x1,x2}(X) (Lemma 2.1).
We then demonstrate that the erosion can be used to generalize the MTP concept,
which is fundamental to point set algorithms as they are based on the discovery of
MTPs with the SIA algorithm. Therefore, we have:

∀P MTEC ,∃x1, . . . , xm ∈ X such that P = ε{x1,...,xm}(X)

Moreover, Theorem 2.7 reveals how to obtain these points: {x1, . . . , xm} = εP (X).
In this way, Corollary 2.8 reveals that a pattern is MTEC if and only if it is discovered
by a morphological erosion.

Corollary 2.8: MTECs are patterns discovered by erosion

Let P,X ∈ P(E), we have:

P is MTEC ⇐⇒ ∃S ∈ P(E) : P = εS(X)
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Proof of Corollary 2.8. Let P,X ∈ P(E). We prove this corollary by double impli-
cation.
⇒ Suppose that P is MTEC, using Theorem 2.7 this means that P = εεP (X)(X).
By setting S = εP (X), we have the existence of S ∈ P(E) such that: P = εS(X).
⇐ Let S ∈ P(E) such that P = εS(X). Using Theorem 2.7, it is sufficient to
prove that P = εεP (X)(X).

εεP (X)(X) = εεεS(X)(X)(X)

= εS(X) (εεεS(X)(X)(X) = εS(X) Theorem 3.5)

= P

x1
x2

x3

Figure 2.7: Illustration of an MTEC pattern P obtained with an erosion, as P =

ε{x1,x2,x3}(X). Therefore, erosion is equivalent to intersecting MTPs, as illustrated
in Figure 2.6, and directly yields MTEC patterns.

This result is illustrated in Figure 2.7. Instead of interpreting the pattern P

as the intersection of MTP (v,X) and MTP (v′, X), as in Figure 2.6, Corollary 2.8
demonstrates that P can be interpreted as the erosion of X by {x1, x2, x3}, where
{x1, x2, x3} = εP (X). Therefore, we have:

P = ε{x1,x2,x3}(X)

Since the points {x1, x2, x3} are defined by εP (X), it is a priori necessary to iden-
tify P in order to obtain them. This is the subject of the next chapter, where we
propose a method of obtaining these points without having to know P . This the-
ory reveals an original method of discovering musical patterns using morphological
operators, and proposes mathematical results to support its effectiveness.
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2.4 Summary

In Section 2.2, we reviewed the main point-set algorithms for pattern discovery
and pattern matching in music. For an overview and links between these algo-
rithms, Figure 2.8 summarizes the 9 algorithms described above. We have differen-
tiated three different objectives of these algorithms: discover all repeating patterns
(SIA/SIATEC/SIACT/SIAR/SIARCT), discover the most important patterns to
describe the dataset (SIATECCompress/COSIATEC/Forth), find maximal matches
for a pattern (SIAM).

SIA

SIATEC SIACT

SIAR

SIARCT

Maximal translatable patterns

Transposed occurrences of patterns

SIAM
Maximal matches

Pattern matching 
algorithms

COSIATEC ForthSIATECCompress
Cover the dataset 
without overlaps

Cover the dataset 
with overlaps

Cover not the entire 
dataset with overlaps

Algorithms that discover the most interesting
patterns to describe the dataset

Sliding window

Window + trawlerCompactness trawler

Pattern discovery algorithms

Figure 2.8: Summary of the links between the main point-set algorithms.

Some of these algorithms can be easily expressed using morphological oper-
ators. In particular, we summarize this in Table 2.1 with the first four algo-
rithms originally developed by Meredith et al: SIA, SIATEC, COSIATEC and
SIAM [Meredith 2002a].

Table 2.1: Principal algorithms for discovering repeated patterns in multidimen-
sional dataset described with mathematical morphology operators.

Algorithms Description using mathematical morphology

SIA {< x2 − x1, ε{x1,x2}(X) >| x1, x2 ∈ X ∧ x1 ≤ x2}

SIATEC {< ε{x1,x2}(X), εε{x1,x2}(X)(X) >| x1, x2 ∈ X ∧ x1 ≤ x2}

COSIATEC X =
⋃

i γPi(X) such that i ̸= j ⇒ γPi(X) ∩ γPj (X) = ∅

SIAM {< x2 − x1, P ∩ δ{x2,x1}(X) >| x1 ∈ P ∧ x2 ∈ X}
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In addition to expressing some point-set algorithms with morphological opera-
tors, Table 2.2 shows that the majority of definitions used to discover patterns with
point-set algorithms can also be expressed in terms of morphological operators.

Table 2.2: Principal definitions used for point-set algorithms for discovering patterns
described with mathematical morphology operators.

Definition using mathematical morphology

MTP (x2 − x1, X) = ε{x1,x2}(X)

TEC(P,X) = {δt(P ) ∈ P(E) | t ∈ εP (X)}

T (P,X) = εP (X)

COV (T,X) = γP (X)

CR(T,X) = |γP (X)|
|P |+|εP (X)|−1

MM(x2 − x1, P,X) = P ∩ δ{x2,x1}(X)

P is MTEC ⇐⇒ P = εεP (X)(X)

However, the entire theory of point-set algorithms cannot be expressed exclu-
sively in terms of morphological operators either. For example, the weight W (T )

of Forth’s algorithm or the compactness of a pattern C(P,X) cannot easily be ex-
pressed in morphological terms, or at least there is no point in doing so because it
does not shorten the expression. Nevertheless, we believe that this characterization
in morphological terms of Table 2.1 and Table 2.2 allows us to better understand
some results and to extend the theory using the morphological result, as demon-
strated in the next chapter.

2.5 Conclusion

In this chapter, we have reviewed the main point-set algorithms for pattern discov-
ery and matching in music. In addition, we have demonstrated that mathematical
morphology can describe these algorithms, and allows us to understand and develop
some concepts related to repeating patterns in musical data. For example, we have
revealed that morphological erosion generalizes the principle of MTP, which is the
foundation of point-set algorithms. Furthermore, we have proven that MTEC pat-
terns can be expressed very simply using mathematical morphology. Finally, since
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we have proved that morphological erosion provides MTEC patterns, this might be
a solution to a problem posed by Collins and Meredith when they stated that:

“We need to gain a better understanding of how to discover MTEC
patterns” [Collins 2013]

To do this, all we need to do is discover patterns using erosion, not MTPs. However,
finding an appropriate structuring element to discover a musically interesting pattern
is not an easy task. In the next chapter, we propose a method for discovering
patterns from morphological erosion, focusing only on specific structuring elements.
The originality of this approach lies in the musical interpretation of the discovered
patterns and the chosen structuring elements. This avoids computing all the MTECs
and focuses on those of musical interest only. Therefore, the next chapter responds
to the request of Collins and Meredith for an algorithm that discovers the most
relevant MTEC patterns in musical data:

“Generating all the MTEC patterns for even a modestly sized piece of
music would be impractical [...]. Designing a practical algorithm for
generating only the perceptually salient MTEC patterns is therefore an
interesting problem for future research. Once such an algorithm has
been developed, it will be possible to explore more rigorously whether
perceptually salient musical patterns correspond more closely to MTEC
patterns or MTPs” [Collins 2013]

Finally, having established links between mathematical morphology and point-set
algorithms provides a better understanding and development of research on musical
pattern discovery, as well as mathematical results inspired by musical problems, as
presented in the next chapter.
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This chapter deals with the discovery of repeated patterns in symbolic repre-
sentations of music using the theory of mathematical morphology. The main idea
proposed here is to use the onsets to discover musical patterns. By definition, the
morphological erosion of musical data by a musical pattern corresponds to its on-
sets. However, the erosion of musical data by the onsets is not always equal to the
musical pattern. We propose a theorem which guarantees the equality if the musical
pattern satisfies a topological condition. This condition is met when the patterns
do not intersect, or only slightly, which is coherent in a musical context. Due to
the importance of repetition in music, this idea proves to be relevant for the music
pattern discovery task.

Section 3.1 presents the originality of the method proposed in this chapter and
describes the context to discover musical patterns using the mathematical morphol-
ogy theory. Section 3.2 provides the main result of this chapter with the proof that
the morphological erosion of the onsets is equal to the musical pattern if it satisfies a
specific topological condition which is coherent in a musical context. We then prove
in Section 3.3 that if the pattern does not respect this condition, the erosion by its
onsets completes the missing notes of the pattern required to obtain the equality
between the pattern and the erosion by its onsets. Since there are usually several
possible pairs of patterns and their onsets in musical data, we define a simple crite-
rion in Section 3.4 to determine the pair that best represents the musical notions of
a pattern and its onsets. Section 3.5 is dedicated to the application of the proposed
method to symbolic representations of music, where the main musical patterns are
discovered and result in a description of the musical piece by a union of morpholog-
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ical dilation between patterns and their onsets. Finally, Section 3.6 concludes this
chapter and proposes future work to apply this method in other musical situations.

3.1 Introduction

In this section, we describe the originality and the context of the method proposed in
this chapter. In particular, we show that this approach is a continuation of existing
musical pattern discovery algorithms.

3.1.1 Introduction to the Proposed Method

In this chapter, we propose to use the theory of mathematical morphology to discover
repeated patterns in discrete sets of points. Even if we focus on symbolic represen-
tations of music, the developed results can be applied to other types of discrete set
data composed of repeated patterns, defined as sets of discrete points starting at
points interpreted as onsets in a musical context. While mathematical morphology
has been widely applied to image processing, analysis and understanding, there are
only few direct applications of this theory, in particular in its algebraic setting, to
symbolic representations of music. This is partly due to the different nature of the
patterns. On the one hand, the objects associated with digital image processing
are defined on a discrete grid, endowed with a discrete connectivity, and are of-
ten defined as connected sets. On the other hand, those associated with symbolic
music are sparse, in the sense that they are often not connected, according to the
underlying connectivity of the space of representation. It is therefore necessary to
adapt the morphological tools and the expected results when applying this theory
to symbolic representations of music. This has been started by adapting the basic
operators of mathematical morphology to obtain a musical meaning. In particular,
we detailed in Chapter 1 how mathematical morphology can be applied to music for
both analysis and generation. We also demonstrated in Chapter 2 that the theory of
mathematical morphology fits perfectly into the framework of musical pattern dis-
covery. In particular, morphological operators can describe and generalize existing
concepts related to the discovery of repetitive patterns in musical data. Following
these previous works, we advocate in this chapter that mathematical morphology
can provide relevant tools for the discovery of repeated patterns in symbolic repre-
sentations of music. In particular, we provide various mathematical results related
to musical problems. These results optimize the discovery of musical patterns, and
are the foundation for a new approach to discover musical patterns. The originality
of this approach comes from the use of a musical meaning to discover patterns by
distinguishing the role of onsets or musical pattern. Finally, the results developed
in this chapter provide answers to problems arising from musical pattern discovery
tasks, such as the development of an algorithm that discovers MTEC patterns, or on
the musical interpretations and salience of patterns discovered by such an algorithm.
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3.1.2 Context of the Proposed Method

In this chapter, mathematical morphology is applied to discover musical patterns.
In particular, we consider here the simple case of binary mathematical morphol-
ogy. We refer to Chapter 1 for definitions and properties of the principal operators
of mathematical morphology, and to Chapter 2 for a review of the main musical
pattern discovery algorithms. The method we propose here belongs to the cate-
gory of algorithms that discover patterns in order to describe musical data, such as
COSIATEC [Meredith 2002a], SIATECCompress [Meredith 2013] or Forth’s algo-
rithm [Forth 2009]. Therefore, in this chapter, the set E is equal to Rn, the musical
data X is a subset of E (i.e. X ∈ P(E)), and the objective is to discover a family
F = (Pi)i∈I of musical patterns that describes X in the sense that:

γF (X) ≈ X

where the relation ≈ can be interpreted by a relatively high proportion of common
points between γF (X) and X, patterns Pi ∈ P(E) are not singletons, I is an index
set, and the opening by F is the union of the openings by the elements of F (as
already described in Section 1.3.3), i.e.:

γF (X) =
⋃

Pi∈F
γPi(X)

But how do we obtain the elements of F? We propose here to exploit the
property of morphological erosion as a generalization of MTPs, as described in Sec-
tion 2.3.3. We demonstrate that, by selecting the appropriate structuring elements
of the erosion, this operation discovers salient musical patterns. But how do we
select the appropriate structuring elements to discover such musical patterns with
the erosion? The results developed in this chapter prove that the structuring el-
ements have to be the onsets of the patterns to be discovered. Since it can be
easier to discover the onsets than the musical patterns from a computational point
of view, this is an original approach for discovering musical patterns. In addition, as
patterns are discovered with morphological erosion, this method discovers MTEC
patterns and is therefore a solution to the problem identified by Collins and Mered-
ith [Collins 2013], which is finding a method to discover salient MTEC patterns
as described in Section 2.5. Consequently, based on the results of the theorems
presented in this chapter, we propose an original method for discovering musical
patterns using morphological erosion by the onsets.

3.2 Discovering the Musical Pattern From the Onsets

In this section, we propose a theorem that demonstrates that musical patterns can
be discovered from their onsets if they satisfy a topological condition. This theorem
reveals an original approach for discovering musical patterns in a multidimensional
representation of music.
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3.2.1 Presentation of the Problem of Discovering the Musical Pat-
tern From its Onsets

We present here the problem of discovering the musical pattern from its onsets. We
define the onsets of a pattern as the origins of its appearances in musical data. This
makes the connection with the morphological erosion as described in Definition 3.1.

Definition 3.1: Onsets

Let P,X ∈ P(E). The onsets O of P in X are defined by:

O = εP (X)

The onsets of a pattern can be interpreted as the beginnings of this pattern in
the musical data if the origin of the pattern is placed on its first note, assuming
that the dimensions of space are oriented. For example, in Figure 3.1(a), musical
data are represented by dots, which can be seen as a pattern repeated four times.
Repeats of the pattern are indicated in the figure by dotted lines. The onsets of this
pattern are therefore composed of four dots, which correspond to the beginnings of
the repeated pattern. The interesting result is illustrated in Figure 3.1(b) by now
considering the onsets as a pattern: the onsets of the onsets of the pattern are equal
to the pattern. In other words, by computing the points where the onsets occur,
we discover the pattern (the repetitions of the onsets are indicated by the dotted
lines in the figure). This result is quite surprising, and we can formalize it with
morphological operators in Definition 3.2.

Definition 3.2: Discovering the musical pattern from its onsets

Let P,O,X ∈ P(E), where O = εP (X). The problem of discovering the mu-
sical pattern from its onsets is to understand when the following equation
is true:

P = εO(X)

Let P,O,X ∈ P(E) such that O = εP (X). This can be interpreted as X the
musical data, P a musical pattern and O its onsets. First of all, the problem of
discovering the musical pattern from its onsets, i.e. the equality P = εO(X), is not
always true as shown in Figure 3.2. However, Lemma 3.1 allows us to state that
the inclusion P ⊆ εO(X) is always true. Therefore, P is always included in the
onsets of O. This implies that taking the onsets of the onsets of a pattern enlarges
it, as can be seen in Figure 3.2 where P , represented in Figure 3.2(b), is included
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Pattern

OnsetsOrigin of 
the pattern

(a) Representation of the pattern and its onsets, which are interpreted as the
points where the pattern begins. Pattern repeats are indicated by the dotted-
line border. The origin of the pattern is chosen at the starting point of the
pattern (assuming that the time axis is from left to right).

Onsets of the onsets

OnsetsOrigin of 
the onsets

(b) The onsets of the onsets are equal to the pattern. Onsets repeats are indi-
cated by the dotted-line border. That is, the dots corresponding to where the
onsets begin are the same as the pattern dots. As before, the origin of the onsets
is chosen at its starting point.

Figure 3.1: Presentation of the problem of discovering the pattern from its onsets.
In this example, the onsets of the onsets of the pattern are equal to the pattern,
which shows that it is sufficient to know the onsets to discover the pattern.

in εO(X), represented in Figure 3.2(d). Note that the figures are 2D examples, for
the sake of clarity, but all theoretical results apply for any finite dimension.

Lemma 3.1: P ⊆ εO(X)

Let P,O,X ∈ P(E), such that O = εP (X) and O ̸= ∅. We have:

P ⊆ εO(X)

Proof of Lemma 3.1. Let p ∈ P and o ∈ O. Because O = εP (X) and O ̸= ∅,
∃x ∈ X : p + o = x. This is true for all o ∈ O, consequently Op ⊆ X, which leads
to p ∈ εO(X).
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(a) X (b) P (not full in X)

(c) O = εP (X) (d) P ̸= εO(X)

Figure 3.2: Example where P is not full in X (Definition 3.3) and P ̸= εO(X),
however the inclusion P ⊆ εO(X) is satisfied (the origin is the first point on the
left).

In the remainder of Section 3.2, we provide additional relations between P and O

using morphological operators. In particular, we prove that the problem of discover-
ing the musical pattern from its onsets can be solved under some assumptions that
are musically interpretable.

3.2.2 Main Results

Because the equality P = εO(X) is not always true, we need to add an additional
condition on P and X to ensure this equality. We already know from Theorem 2.7
that this equality is satisfied if and only if P is MTEC. However, we propose another
condition that could be interpreted musically and that would ensure this equality
without using the MTEC property. To do this, we introduce a new definition,
illustrated in Figure 3.3, that is, to some extent, the counterpart of the connectivity
(without holes) used in image processing. For P ∈ P(E), let us note Ch(P ) the
convex hull1 of P .

Definition 3.3: P full in X

Let P,X ∈ P(E). P is full in X if Pt ⊆ X for any t implies that Ch(Pt) does
not contain any point of X other than Pt, i.e.:

∀t ∈ E,Pt ⊆ X ⇒ Ch(Pt) ∩X = Pt

1Defined as: Ch(P ) = {
∑k

i=1 λipi | k ∈ N∗ ∧
∑k

i=1 λi = 1 ∧ ∀1 ≤ i ≤ k : pi ∈ P ∧ λi ≥ 0}.
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(a) P (b) Ch(P )

(c) P is full in X (d) P is not full in X

Figure 3.3: Musical pattern P (a) and its convex hull (b). P is full in X (set of
dots) in (c) because there are no dots inside the convex hull where it is included
in X. However, this is not the case for (d).

Moreover, we consider the particular case where the data X is composed of pat-
terns P which are repeated with translations, that is to say γP (X) = X. Under the
condition that P is full in X and X is composed of solely of P patterns, Theorem 3.2
provides the equality P = εO(X). Therefore, it is possible, under the assumptions
of the theorem, to discover the pattern P from its onsets O.

Theorem 3.2: P = εO(X)

Let P,X ∈ P(E) such that:

• γP (X) = X,

• P is full in X,

• X is bounded.

Then, by defining O = εP (X), we have:

P = εO(X)

We provide another link between P and O using morphological operators with
the following lemma, which is useful for the proof of Theorem 3.2.
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Lemma 3.3: εO(X) = φO(P )

Let P,O,X ∈ P(E), such that O = εP (X) and γP (X) = X. We have:

εO(X) = φO(P )

Proof of Lemma 3.3. Under the assumptions of the lemma, we have:

γP (X) = X

⇒ δP (εP (X)) = X (definition of γP )

⇒ δP (O) = X (definition of O)

⇒ δO(P ) = X (commutativity of ⊕)
⇒ εO(δO(P )) = εO(X) (composing by εO)

⇒ φO(P ) = εO(X) (definition of φO)

Proof of Theorem 3.2. Under the assumptions of the theorem, we can use
Lemma 3.3 and Lemma 3.1. We prove that P = εO(X) with two inclusions.
⊆ The first inclusion comes directly from Lemma 3.1.
⊇ It has been proved by Serra that for every C ∈ P(E) convex and S ∈ P(E)

bounded, we have: φS(C) = C (proposition IV-4 in [Serra 1982]). Since X is
bounded, O = εP (X) is also bounded and Ch(P ) is convex by definition. Conse-
quently, we have:

φO(Ch(P )) = Ch(P )

Let t ∈ E such that Pt ⊆ X (such t exists because γP (X) = X), therefore t ∈ O

and we have the following implications:

P ⊆ Ch(P )

⇒ φO(P ) ⊆ φO(Ch(P )) (φO is increasing)

⇒ φO(P ) ⊆ Ch(P ) (φO(Ch(P )) = Ch(P ))

⇒ εO(X) ⊆ Ch(P ) (φO(P ) = εO(X) Lemma 3.3)

⇒ εO(X)t ⊆ Ch(P )t (translation by t)

⇒ εO(X)t ⊆ Ch(Pt) (Ch(P )t = Ch(Pt))

⇒ εO−t(X) ⊆ Ch(Pt) (εO(X)t = εO−t(X))

⇒ εO−t(X) ∩X ⊆ Ch(Pt) ∩X (intersection with X)

⇒ εO−t(X) ⊆ Ch(Pt) ∩X (εO−t(X) ⊆ X because OE ∈ O−t)

⇒ εO−t(X) ⊆ Pt (Ch(Pt) ∩X = Pt because P is full)

⇒ εO(X) ⊆ P (translation by − t)



60
Chapter 3. Using Mathematical Morphology to Discover Repeated

Patterns in Music

3.2.3 Musical Interpretations of the Theorem

Theorem 3.2 is illustrated in Figure 3.4 with a piece of music X composed of a
musical pattern P repeated several times (therefore γP (X) = X). This figure uses
a piano roll representation, where the x-axis represents the time and the y-axis
the pitch of the notes. The assumptions of Theorem 3.2 are satisfied because X

is bounded and P is full in X. The morphological erosion of X by the musical
pattern P is equal to the onsets O. Moreover, the theorem ensures that the other
way around is true: we can obtain the pattern P by applying the erosion by the
onsets O. All these morphological links between the piece X, the pattern P and its
onsets O are summarized in Figure 3.4. In this case, we can describe the piece of
music X by a morphological dilation between the pattern and its onsets:

X = P ⊕O

This last equality increases the relevance of the use of morphological operators ap-
plied to music.

Erosion by:

Erosion by:

Dilation by:

Dilation by:

Figure 3.4: Illustration using morphological operators of the relations between the
musical pattern P , which is full in X, and its onsets O.

Remark (About the assumptions in Theorem 3.2). In Theorem 3.2, there are three
assumptions which are: P is full in X, γP (X) = X and X is bounded.

• P is full in X: This assumption is coherent in a musical context. In the Gen-
erative Theory of Tonal Music (GTTM), the authors state several rules about
overlaps in music [Lerdahl 1985]. In particular, the Grouping Well-Formedness



3.2. Discovering the Musical Pattern From the Onsets 61

Rules 4 asserts:

“If a group G1 contains part of a group G2, it must contain all of G2”

This proves that it is very rare for patterns to intersect in music. However,
later in GTTM, in Section 3.4 Grouping Overlaps, it is mentioned that this
rule is not always true and that patterns can overlap in a specific case: if
patterns overlap, it is only the first or last note of the pattern that can be part
of two patterns. Therefore, if we assume that a pattern P satisfies the GTTM
rules (i.e. patterns do not intersect or only share their first or last note)
and that the data X is composed of P which is repeated with translations
(i.e. γP (X) = X), this leads to having a pattern P that is full in X. This
reasoning shows that the property that a pattern is full is perfectly coherent in
a musical context. Moreover, this property allows us to obtain a fundamental
result with the Theorem 3.2, and if we remove this assumption, the theorem
is not always true, as shown in Figure 3.2.

• γP (X) = X: In general, there are several musical patterns in a piece of music
and we cannot always have γP (X) = X. However, to ensure this equality,
we can consider the discovery of each pattern Pi separately and restrict X to
γPi(X). This case will be covered in Section 3.5.

• X is bounded: In our analysis, the case where X is not bounded never hap-
pens because X represents a piece of music which is by definition bounded.
There are not an infinite numbers of notes, nor an infinite value for duration,
pitch or onset. Therefore, this assumption is necessary to ensure that Serra’s
proposition is true but is not a restriction for the musical applications.

3.2.4 Learning the Structuring Elements

Remark (Notations). In the following, we arbitrarily choose the first coordinate of
x ∈ E as the temporal component of x, we define [[a, b]] as the set of integers from
a to b included, and |A| the cardinality of the set A.

The objective of algorithms that discover patterns to describe musical data is to
obtain a family F of structuring elements that verifies γF (X) ≈ X, which can also
be expressed as follows |γF (X)| ≈ |X|. In this chapter, we propose the novelty of
having two methods for learning the elements of F : one can learn either the musical
pattern P or its onsets O. Using Theorem 3.2, it is enough to identify only one of
the two to obtain the other one (if P is full in X which is usually the case in music).
In each case, it is necessary to proceed differently, but the main idea is to use X to
learn the structuring element. The following lemma indicates that musical patterns
or the onsets must be composed of sub-patterns in X, i.e. if a sub-pattern P ′ does
not appear in X then it cannot be contained in musical patterns or the onsets.
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Lemma 3.4: γP∪P ′(X) = ∅

Let P, P ′, X ∈ P(E). If γP (X) = ∅ then γP∪P ′(X) = ∅.

Proof of Lemma 3.4. This is due to the decreasingness of the opening with respect
to the structuring element, i.e: P ⊆ P ∪ P ′ ⇒ γP∪P ′(X) ⊆ γP (X) = ∅.

From the previous lemma, we can deduce that the points of the structuring
elements must belong to the set:

{x2 − x1 | x1, x2 ∈ X ∧ x1 ≤ x2},

where x1 ≤ x2 means that the lexicographic order of x1 is lower than that of x2.
In other words, we can restrict ourselves to this set, rather than trying to cover the
whole E set to discover structuring elements. This observation has already been
made by Meredith et al. with the the SIA algorithm to optimize the discovery
of musical patterns [Meredith 2002a], as described in Section 2.2.1. However, we
propose here to give a musical meaning to the discovered patterns, distinguishing
the role of pattern P and onsets O. Because many elements of this set are not
musically interesting, additional conditions have to be added to find the appropriate
structuring elements. Depending on whether we want to learn P or O, we then add
different constraints.

3.2.4.1 Learning the Musical Patterns P

To reduce the possibilities to be tested to discover musical patterns P , we need to
add more constraints that remove false candidates. For example, Collins proposed
the SIAR algorithm, which discovers patterns whose points are not distant from the
lexicographic order [Collins 2011]. This limits computations by discovering a subset
of the patterns discovered by the SIA algorithm, as explained in Section 2.2.4.
However, the possibilities remains very large and we propose another approach to
discover musical patterns using the onsets.

3.2.4.2 Learning the Onsets O

One of the most important results of this article is the possibility of discovering
musical patterns from the onsets. Under the assumptions mentioned in Theorem 3.2,
it is possible to discover the musical pattern from the onsets with the morphological
erosion. The major usefulness of this result arises from the algorithmic complexity
reduction: it might be faster to discover the onsets than the patterns because there
are far fewer possible choices.

In order to discover exact repetitive patterns, it is possible to consider structuring
elements that represent time-periodic onsets. For example, if we are looking for
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musical patterns P that repeat in time at regular intervals of length L > 0, the
structuring element O associated with the onsets is:

{(iL, 0, . . . , 0) | i ∈ [[0,m− 1]]}

In this case, we are looking for at least m exact repetitions of the musical pattern P .
As a result, only one parameter L is required to discover patterns that repeat exactly
at regular intervals. However, in the case where the patterns are not repeated
exactly with a time translation, they can also be discovered with transpositions,
which means that a pitch translation is also allowed. For example, we can first
restrict ourselves to an up or down octave transposition, i.e. a pitch translation in
[[−12, 12]]. Representing the pitch by the second coordinate, the onsets O are part
of the set:

{(iL, pi, 0, . . . , 0) | i ∈ [[0,m− 1]] ∧ pi ∈ [[−12, 12]]}

We can search for the values of L and pi that are in the set defined in Section 3.2.4,
choosing those that maximize the number of notes after an opening by these struc-
turing elements. Therefore, only a few parameters L and pi are required to discover
patterns that repeat at regular intervals with transpositions, where each parameter
has a limited number of values.

3.2.5 Links With Point-Set Algorithms to Discover Musical Pat-
terns

The concept of onsets of a musical pattern has already been considered in
point-set algorithms for discovering musical patterns with the SIATEC algo-
rithm [Meredith 2001, Meredith 2002a, Meredith 2006]. In particular, we described
in Section 2.2.2 that this algorithm produces the largest translatable patterns and
their onsets. This is named differently, because what we call “onsets” here is re-
ferred to as “the set of translators” in the SIATEC algorithm. We have chosen the
term “onsets” rather than “set of translators”, as this facilitates understanding and
interpretation of the discovered patterns by differentiating the role of patterns and
onsets in a musical context. Therefore, although the discovery of pairs of musical
patterns and onsets is not new, the mathematical results we propose are. To our
knowledge, it has never been proven that it is possible to discover musical patterns
from their onsets (or set of translators using the previous terminology), even though
Collins had already discussed the idea of discovering a pattern from its conjugate
(pp. 281-282) [Collins 2011]. Moreover, this approach generalizes the one developed
by Meredith et al. with algorithms of the SIA family that discover MTP patterns,
since these patterns can be interpreted as patterns discovered by onsets of two points
x1, x2, because: MTP (x2 − x2, X) = ε{x1,x2}(X). This is why we propose to dis-
cover patterns using additional points x1, . . . , xm using ε{x1,...,xm}(X) which is not
possible with the MTP operation.
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3.3 MTEC Conjugate Pair of Pattern/Onsets

In this section, we focus on pairs of musical patterns and their onsets which can be
deduced from each other. We propose a theorem that proves the existence of such
pairs in musical data.

3.3.1 Definition and Existence of an MTEC Conjugate Pair

In the following, we define the musical patterns P and their onsets O which verify
the equality P = εO(X) as MTEC conjugate patterns, and the pair (P,O) is a
MTEC conjugate pair.

Definition 3.4: MTEC conjugate pair

Let P,O,X ∈ P(E). The pair (P,O) is a MTEC conjugate pair if it satifies:

P = εO(X) and O = εP (X)

Since the equation P = εO(X) is not always true, it is in principle not always
possible to discover an MTEC conjugate pair (P,O) of a musical pattern and its
onsets. Therefore, given a musical pattern P , it cannot always be obtained from its
onsets O with an erosion. This can be confirmed because several different patterns
can have the same onsets. But the erosion of these onsets can only be equal to one
of these patterns at most. With this in mind, Theorem 3.5 assures that given a
pattern P , there exists an MTEC conjugate pair (P ′, O) such that the onsets of P ′

are the same as the onsets of P . Also, Lemma 3.1 ensures that: P ⊆ P ′. Therefore,
P ′ can be seen as P which has been enriched with the missing notes to obtain an
MTEC conjugate pair.

Theorem 3.5: O = εP ′(X)

Let P,O,X ∈ P(E), such that O = εP (X) and O ̸= ∅. By defining P ′ =

εO(X), we have:
O = εP ′(X)

Proof of Theorem 3.5. We prove the lemma with two inclusions.
⊆ The first inclusion comes from Lemma 3.1 by exchanging the role of P and O

by O and P ′.
⊇ Using Lemma 3.1 we obtain: P ⊆ εO(X). Because the erosion is decreasing
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according to the structuring element we have:

P ⊆ εO(X)⇒ εεO(X)(X) ⊆ εP (X)

Since O = εP (X) and P ′ = εO(X) by definition, this implies εP ′(X) ⊆ O which
proves the other inclusion.

Therefore, Theorem 3.5 can be reformulated with Corollary 3.6, which states
that given the onsets O from a pattern P , there always exists a unique pattern P ′

containing P such that P ′ and O are MTEC conjugate patterns.

Corollary 3.6: P ′ and O are MTEC conjugate patterns

Let P,O,X ∈ P(E), such that O = εP (X) and O ̸= ∅. We have:

∃!P ′ ∈ P(E) : P ⊆ P ′ ∧ P ′ and O are MTEC conjugate patterns

Proof of Corollary 3.6. Let P ′ = εεP (X)(X), we have P ⊆ P ′ (Lemma 3.1), P ′

and O are MTEC conjugate patterns (Theorem 3.5), and uniqueness results from O

having at most one MTEC conjugate.

3.3.2 Musical Interpretations of an MTEC Conjugate Pair

In the example of Figure 3.2, we have seen that (P,O) is not an MTEC conjugate
pair because P ̸= εO(X). Yet, according to Theorem 3.5, by defining P ′ = εO(X),
we obtain an MTEC conjugate pair with (P ′, O) where O is the onsets of P and P ′ is
the pattern P which has been completed by the missing notes. This is illustrated in
Figure 3.5 where the morphological erosion yields the MTEC conjugate pair (P ′, O)

from P , and we can confirm that: P ⊆ P ′.

Remark (Relation between the pattern P and its onsets O). Under the assumptions
of Theorem 3.2, we can switch from P to O with erosion:

P O

εP (X)

εO(X)

In this case, it is sufficient to know P (resp. O) to determine O (resp. P ).
However, when the assumptions are not met, Theorem 3.5 states that it is enough

to apply an erosion to get into a pattern/onsets cycle:

P O P ′εP (X)

εO(X)

εP ′ (X)
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(a) X (b) Relations between P , O and P ′

Figure 3.5: Using the example of Figure 3.2, (P,O) is not an MTEC conjugate pair
because P ̸= εO(X). However, the morphological erosion by O provides the pattern
P ′, by adding notes to P , such that (P ′, O) is an MTEC conjugate pair because
P ′ = εO(X) and εP ′(X) = O.

Therefore, in any case, we can always obtain an MTEC conjugate pair of a pattern
and its onsets from a musical pattern P . If it respects some properties, such as
those of Theorem 3.2, this pair is trivial because it consists of the pattern and its
onsets. Otherwise, we obtain the MTEC conjugate pair by completing the musical
pattern with additional notes with a morphological erosion of the musical data as
stated in Theorem 3.5.

3.3.3 Notes Covered With the Opening of an MTEC Conjugate
Pair

The following lemma states that if we have an MTEC conjugate pair (P,O), then
the notes covered with an opening by P are the same as the ones covered with an
opening by O. This lemma is very useful in our situation because it demonstrates
that the choice of P or O does not have any importance when we are interested in
the notes covered with an opening.

Lemma 3.7: γP (X) = γO(X)

Let P,O,X ∈ P(E), such that P = εO(X) and O = εP (X). We have:

γP (X) = γO(X)
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Proof of Lemma 3.7. Under the assumptions of the lemma, we directly prove the
equality: γP (X) = δP (εP (X)) = δP (O) = δO(P ) = δO(εO(X)) = γO(X).

This can be visualized in Figure 3.1, where the set of notes covered by the pattern
opening is the same as the set of notes covered by the onsets opening. Therefore,
Lemma 3.7 confirms the idea that it can be sufficient to focus on the onsets in
the task of discovering musical patterns. In particular, it demonstrates that for
algorithms that focus on pattern discovery to describe musical data, i.e. discover
F such that γF (X) ≈ X, that F can be composed of onsets only without changing
the set of notes covered by the expected result of the algorithm.

3.3.4 Links With Point-Set Algorithms to Discover Musical Pat-
terns

Collins and Meredith have also proposed a definition of conjugate pat-
terns [Collins 2011, Collins 2013, Meredith 2016]. It may seem different, but there
is a resemblance between this definition and the one introduced in this chapter.

Let P ∈ P(E), and TEC(P,X) = {P1, . . . , Pm} with Pi = {pi,1, . . . , pi,l} (see
Section 2.2.2 for the TEC definition). Collins and Meredith started by defining the
conjugacy array JP,X , where each row of JP,X is an element of TEC(P,X), formally:

JP,X =

p1,1 . . . p1,l ← P1
...

...
...

pm,1 . . . pm,l ← Pm


By setting O = {p1,1, . . . , pm,1}, the columns of JP,X constitute the elements of
TEC(O,X). Collins and Meredith define P and O as conjugate patterns, and added
that TEC(P,X) and TEC(O,X) are conjugate TECs.

We demonstrate here that this is related to the definition introduced in this
chapter. Using Lemma 2.2, we have: TEC(P,X) = {Pt1 , . . . , Ptm} with εP (X) =

{t1, . . . , tm}. Thus, by setting P = {p1, . . . , pl}, we have:

JP,X =

p1 + t1 . . . pl + t1
...

...
p1 + tm . . . pl + tm


Therefore, the columns of JP,X are εP (X)p1 , . . . , εP (X)pl , which reveals that con-
jugate patterns (in the sense of Collins and Meredith) are linked by erosion. Their
definition can be expressed using morphological terms:

P is conjugate with O ⇐⇒ ∃t ∈ E : Ot = εP (X)

However, this relation is not symmetric (P is conjugate with O does not imply
that O is conjugate with P ) and is not unique (there are several conjugates of P ),
so we have opted to revise this definition. To ensure that a pattern has at most
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one conjugate, we impose that t is zero (i.e. O = εP (X)). Moreover, to have
a symmetrical relation (P is conjugate with O implies O is conjugate with P ), we
added the condition that P can also be obtained by O with erosion (i.e. P = εO(X)).
This explains Definition 3.4 used in this chapter for MTEC conjugate patterns.

3.4 Non-Redundant Pair of Pattern/Onsets

When we have musical data X, there are generally several MTEC conjugate pairs
(P,O), i.e. which satisfy: P = εO(X) and O = εP (X). In this section, we define
a criterion to determine which pair best represents the musical notions of musical
patterns and onsets for P and O.

3.4.1 Definition of a Non-Redundant Pair

Figure 3.6 illustrates the three MTEC conjugate pairs (P,O) of a musical pattern P

and its onsets O for X illustrated in Figure 3.5(a). In this case, it is not possible to
find other MTEC conjugate pairs (P,O), with P or O different from a singleton. We
might wonder which pair best represents the notion of musical patterns and onsets?
To solve this problem, we want the musical pattern to be non-periodic to condense
the information. Thus, the pair that best represents the musical pattern and its
onsets is the one represented in Figure 3.6(c). In the other pairs, the pattern P is
periodic and the information is redundant.
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(a) |P | × |O| = 12× 2 = 24
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(b) |P |× |O| = 8×3 = 24 = 24
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(c) |P | × |O| = 4× 4 = 16

Figure 3.6: The three different MTEC conjugate pairs (P,O), i.e. with the property
P = εO(X) and O = εP (X), of the set X represented in Figure 3.5(a). The (c) pair
is non-redundant because it satisfies |X| = |P | × |O|.

We use the following inequality to quantify this redundancy:

|γP (X)| = |P ⊕O| ≤ |P | × |O|,

where the equality ensures that each note x ∈ X is uniquely expressed as x = p+ o

with p ∈ P and o ∈ O. In the case where the equality is not satisfied, there is at
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least a note x ∈ X such that x = p + o = p′ + o′ with p, p′ ∈ P , o, o′ ∈ O and
p ̸= p′, o ̸= o′, which means that the information is redundant. Therefore, we define
(P,O) as non-redundant when the equality is met.

Definition 3.5: Non-redundant pair

Let P,O,X ∈ P(E), where (P,O) is an MTEC conjugate pair. The pair (P,O)

is non-redundant if it satisfies:

|γP (X)| = |P | × |O|

Note that from Lemma 3.7, we know that γP (X) = γO(X) because (P,O) is an
MTEC conjugate pair. Consequently, the choice of P or O has no importance in
Definition 3.5 and we could change γP (X) by γO(X).

For example, in Figure 3.6, we have |γP (X)| = |X| = 16 for the three pairs.
When we compute the cardinalities, we obtain |P | × |O| = 12 × 2 = 24 for the (a)
pair, |P | × |O| = 8× 3 = 24 for the (b) pair and |P | × |O| = 4× 4 = 16 for the (c)
pair. This allows us to conclude that the (c) pair is the one that best represents the
musical pattern and its onsets.

3.4.2 Existence and Uniqueness of Non-Redundant Pairs

If we assume that there are several MTEC conjugate pairs (P,O) for given musical
data X, we can wonder whether there is always exactly one non-redundant pair. In
other words, is there existence and uniqueness of a non-redundant pair?

With respect to the existence, the set X, illustrated in Figure 3.7(a), includes
several MTEC conjugate pairs like the one illustrated in Figure 3.7(b) and Fig-
ure 3.7(c). However, there is no non-redundant pair because |X| = 11 is a prime
number. So X cannot be decomposed into a dilation of a musical pattern and its
onsets without redundancy. This example demonstrates that there is not always a
non-redundant pair.

(a) X (b) P (c) O

Figure 3.7: Example of a set X where we cannot find a pair (P,O) such that |X| =
|P |× |O|. Here, |X| = 11 and with the (b)/(c) pair, we have |P |× |O| = 3× 5 = 15.

With respect to uniqueness, in Figure 3.8, two different pairs are non-redundant,
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which shows that uniqueness is not always true either. Therefore, there is not always
existence and uniqueness of a non-redundant pair. However, this does not prevent
the practical use of the proposed approach.

(a) X (b) P (c) O (d) P ′ (e) O′

Figure 3.8: Example of a set X where there are multiple pairs (P,O) such that
|X| = |P | × |O|. Here we have |X| = 8, |P | × |O| = 4× 2 and |P ′| × |O′| = 2× 4.

3.4.3 Links With Point-Set Algorithms to Discover Musical Pat-
terns

To select the pair that best represents the concept of a musical pattern and its on-
sets, we used the non-redundancy criterion presented in Definition 3.5. However,
other criteria have already been mentioned in point-set algorithms for selecting
salient pairs from the many discovered ones. In particular, Meredith et al. have
used the “compression ratio” to select the best pair (P,O) (which is called a TEC
in their method) in the COSIATEC algorithm [Meredith 2002a, Meredith 2006,
Meredith 2013] presented in Section 2.2.5, and which consists in maximizing the
quantity:

|γP (X)|
|P |+ |O| − 1

∈ [0,∞[

Because it has no upper bound, to select the pair with the highest compression
ratio, we need to compute the value of all discovered pairs and choose the one with
the maximum value. In addition, in this formula, there is no guarantee that there
are no intersections between occurrences of the pattern P in the musical data X.
We therefore proposed to maximize the non-redundancy instead of the compression
ratio with the following formula:

|γP (X)|
|P | × |O|

∈ [0, 1]

This formula does not compute the compression ratio, but it does have a few ad-
vantages with respect to the method we use to discover musical patterns. If the
value 1 is reached, this means that |γP (X)| = |P | × |O|, i.e. the occurrences of P
do not intersect in X. It is therefore not necessary to compute the redundacy of all
possible pairs to obtain non-redondant pairs, which are considered salient. This is
why we have chosen to restrict ourselves to discover MTEC conjugate pairs that are
non-redundant to describe the musical data.
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3.4.4 Existence of a Non-Redundant MTEC Conjugate Pair With
a Non-Periodic Pattern

We consider in this section the particular case of a non-periodic pattern P repeated
at a period L. This situation, although it seems simple, is very common due to the
importance of repetition in music [Janssen 2013]. In this case, Theorem 3.8 assures
that because of its non-periodicity, the pattern P does not appear elsewhere than
at distance L. Consequently, this theorem proves the existence of a non-redundant
MTEC conjugate pair with P and the onsets {kL | k ∈ [[0, N − 1]]}, that can be
interpreted as points separated by a distance L.

Theorem 3.8: MTEC conjugate pair with a non-periodic pattern

Let X = P ⊕O with P,O ∈ P(E) such that:

• L = (tL, 0, . . . , 0) ∈ E with tL > 0,

• P is of temporal length less than tL,

• O = {kL = (ktL, 0, . . . , 0) | k ∈ [[0, N − 1]]} with N ∈ N∗,

• P is non-periodic in all directions (meaning ∄S ∈ P(E) such that S ⊊ P ,
S is not a singleton and γS(P ) = P ).

With these assumptions, we have:

(P,O) is a non-redundant MTEC conjugate pair

In the assumptions of this theorem, P is of temporal length less than tL signifies
that max

x,y∈P
|tx − ty| < tL, where tx and ty are the temporal components of x and y.

Remark. Compared to Theorem 3.2, we do not have the condition εP (X) = O in
the assumptions. However, it is satisfied due to the non-periodicity of P .

This theorem reveals another application of the definitions introduced in this
chapter. In particular, it demonstrates that the discovery of specific onsets can
produce non-redundant MTEC conjugate pairs (P,O) where the pattern P is non-
periodic. In the assumptions of the theorem, if the pattern P is temporally periodic,
for example by considering P ∪ PL instead of P and O = {2kL}k instead of O =

{kL}k (because P ∪PL is of temporal length less than 2tL), the result is false and no
MTEC conjugate pair is obtained, since εP∪PL

(X) ̸= {2kL}k. Moreover, the MTEC
conjugate pair (P ∪ PL, εP∪PL

(X)) is not non-redundant, which demonstrates that
the discovery of non-periodic patterns is related to the discovery of non-redundant
MTEC conjugate pairs. Finally, the proof of Theorem 3.8 is in the Appendix A.
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3.5 Applications of the Proposed Method to Symbolic
Representations of Music

In this section, we apply the method proposed in this chapter to discover patterns
in musical data. According to the GTTM [Lerdahl 1985], we can assume that the
musical patterns are full because they do not intersect in music, or at worst they just
share the first and last note. This allows us to use one of the main theorems of this
chapter, Theorem 3.2, to first learn the onsets and then deduce the musical patterns
with an erosion in order to obtain MTEC conjugate pairs of musical pattern and
onsets. The learning process of the structuring element, here the onsets, is obtained
by maximizing the number of notes after an opening and then selecting a non-
redundant pair of musical pattern and its onsets as described in Section 3.4. We
therefore demonstrate that musical patterns can be discovered from their onsets
and show that a musical piece can be approximated as a union of dilations between
patterns and onsets.

3.5.1 Symbolic Representations of Music to Apply Mathematical
Morphology

The first thing to consider when applying mathematical morphology tools is how
to represent musical data. As we described in Section 1.2, the musical data must
belong to E = Rn, Zn or Zn because this is the context of binary mathematical
morphology. This is well adapted to symbolic representation of music because each
note can be defined by an n-uplet as it has been done before by Meredith et al. to
discover musical patterns [Meredith 2002a]. We propose here to work in R3, where
each note is a unique point defined by (o, p, d), where O is the note onset (i.e. when
the note appears in time), P is the pitch of the note and d its duration. It is also
possible to add other dimensions such as velocity. However, this representation
in R3 by the onset, the pitch and the duration of each note is a correct compromise
to obtain a good description of a piece of music without being too costly from a
computational point of view. Moreover, this representation ensures that the number
of notes of a musical piece X is given by |X|. Previous works using mathematical
morphology applied to music have represented musical data in R2 with a piano
roll representation. This is the most intuitive one and therefore the one used in
our illustrations. Karvonen et al. [Karvonen 2008, Karvonen 2010] have chosen to
represent the duration in the piano roll. In this case, each note is no longer a
single point but a segment of length proportional to the duration of the note. From
a computational point of view, this increases the computation time considerably
because |X| is much larger than the number of notes in X, which is why we did
not choose to follow this path. However, this idea would be particularly well suited
for pattern discovery in music performance because it would allow for a temporal
approximation when learning the structuring elements.

Therefore, in the rest of this chapter, the musical data belong to R3, where
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each note of X is represented by (o, p, d), respectively its note onset, pitch and
duration. Thereafter, the morphological operators are applied in R3. However, to
avoid having figures in R3 that are difficult to interpret, we project the result in a
piano roll representation to simplify understanding.

3.5.2 Discover the Patterns from the Onsets and Summarize the
Musical Data With Morphological Operators

We apply here the proposed method to a musical example in order to discover the
main musical patterns and to approximate the musical data with a union of dilations
between patterns and onsets.

Regarding the musical data X, we choose here the guitar part of the musical
piece Deserted Dunes Welcome Weary Feet of the band King Gizzard and the Lizard
Wizard. This song is copyright free and the midi files are freely available2, which
makes it a good candidate for music information retrieval research. The musical
example X is illustrated in Figure 3.9 using a piano roll representation.

Figure 3.9: Representation of the musical data X from the midi file of the piece
Deserted Dunes Welcome Weary Feet (guitar voice). X is composed of 366 notes,
γOL=1.75

(X), γOL=7
(X) and γOoctave(X) discover respectively 112, 144 and 60 notes

of X. In any cases, the morphological openings can be decomposed as a dilation of
a musical pattern by its onsets.

In this case, X is composed of 366 notes, i.e. |X| = 366, and we aim to discover a
family of structuring elements F which represents musical patterns, with the criteria

2The whole album is available as midi files where the tracks are separated at: https:
//kglw8-bit.bandcamp.com/album/polygondwanaland-8-bit-w-tabs

https://kglw8-bit.bandcamp.com/album/polygondwanaland-8-bit-w-tabs
https://kglw8-bit.bandcamp.com/album/polygondwanaland-8-bit-w-tabs
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set out in Section 3.4, such that |γF (X)| is as close as possible to |X|.
First, we can discover exact repetitions on a large scale, i.e. if sections repeat.

To do this, we must look for structuring elements that preserve as many notes as
possible after an opening of X in the form A = {(0, 0, 0), (L, 0, 0)}, with L large
enough. Let Lmax be the temporal length of X. We notice that the structuring
element A = {(0, 0, 0), (Lmax/2, 0, 0)} satisfies: γA(X) = X. This implies that
X can be divided into two identical parts with respect to time. Therefore, it is
enough to study X only on its first half, i.e. it is enough to study X on εA(X).
Since |εA(X)| = |X|

2 = 183, this allows the data to be reduced considerably. In the
following, we define the first half of X as X0, which is equal to εA(X), to simplify
notations and we learn the structuring elements using X0. Similar reasoning can be
used to discover repeating sections, even if X is not divided exactly into two equal
parts. In the following, we set the temporal axis so that 1.0 is the duration of a
quarter note.

According to Section 3.2.4.2, we know the shape of the onsets O if we want to
discover musical patterns P that repeat exactly or with transposition. We can then
start by discovering the musical patterns P that repeat exactly 4 times in X by
looking for the structuring elements in the form:

OL = {(0, 0, 0), (L, 0, 0), (2L, 0, 0), (3L, 0, 0)},

where L belongs to R because the musical data X belong to R3, so L is not necessar-
ily an integer. By varying L, we can learn the onsets OL that maximize |γOL

(X)|.
From the previous paragraph, it is equivalent to maximizing |γOL

(X0)|, i.e. just pro-
cessing the first half of X. Thus, the value of L that maximizes |γOL

(X0)| is reached
for L = 7 with |γOL=7

(X0)| = 72. This means that 72 × 2 = 144 notes, among the
366 of X, are part of a musical pattern that is repeated with a period of L = 7 (the
factor 2 in 72× 2 comes from the fact that we used X0 which is the first half of X).
According to Theorem 3.2, we can then use an erosion of X0 by the structuring ele-
ment OL=7 to discover the corresponding musical pattern P . The onsets OL=7 and
its associate musical pattern P = εOL=7

(X0) are represented in Figure 3.10(a) using
a piano roll representation. Because |P | × |OL=7| = |γOL=7

(X0)| we can conclude
that (P,OL=7) is a non-redundant pair, based on Section 3.4, in the sense that it
best interprets the notions of musical pattern and its onsets without redundancy
of information. The set γOL=7

(X) is represented in red and framed by long dotted
lines in Figure 3.9. We have just discovered the first structuring element OL=7 of
the family F which allows to describe X as closely as possible. To identify other
structuring elements using the same process, the set γOL=7

(X0) is removed from X0

with the top hat transform operation, which is another morphological operator that
removes the results of the opening from the initial set: TOL=7

(X0) = X0\γOL=7
(X0),

and the discovery of other structuring elements is done with X1 = TOL=7
(X0).

Continuing the process, the value of L that maximizes |γOL
(X1)| is reached for

L = 1.75. In this case, we have |γOL=1.75
(X1)| = 56, which means that 56× 2 = 112

notes of X are part of a pattern that repeats with a period of L = 1.75. The onsets
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(a) (P,OL=7) pair where the pattern P is discovered using the erosion by OL=7

(b) γOL=7(X0) = OL=7 ⊕ P

Figure 3.10: Discovery of repeated patterns by learning the onsets with the exact
repetition constraint when L = 7. Because |γOL=7

(X0)| = |P |× |OL=7|, we conclude
that (P,OL=7) is a non-redundant pair.

OL=1.75 and its corresponding musical pattern P , obtained by the erosion of X1 by
OL=1.75, are represented in Figure 3.11(a) using a piano roll representation. How-
ever, since |OL=1.75| × |P | = 140 ̸= 56, the pair (P,OL=1.75) is not non-redundant
according to Section 3.4. By looking for 8 but not 4 exact repetitions of a musi-
cal pattern with O′

L=1.75 = {(1.75i, 0, 0) | i ∈ [[0, 7]]}, we get a non-redundant pair
because |O′

L=1.75| × |P ′| = 56, with P ′ = εO′
L=1.75

(X1). This non-redundant pair
(P ′, O′

L=1.75) is shown in Figure 3.11(b). Unlike P , it can be seen that P ′ is not
periodic and therefore better corresponds to what we expect from a musical pattern.
The result obtained with the morphological filter γOL=1.75

(X) is shown in Figure 3.9
in blue and framed by small dotted lines. As before, we remove γOL=1.75

(X1) from
X1 by defining X2 = TOL=1.75

(X1) to discover the next structuring elements.

Then, we can also consider repetitions with respect to the pitch. For exam-
ple, octave intervals can be discovered with the structuring element Ooctave =

{(0, 0, 0), (0, 12, 0)}. As explained in Section 1.3.3, the first coordinate of the el-
ements of Ooctave is 0 to discover notes that appear at the same time, and the last
coordinate is 0 to discover notes that have the same duration. With this structur-
ing element, we obtain |γOoctave(X2)| = 30. Thus, at least 30 × 2 = 60 notes of X
are part of an octave interval. By setting P = εOoctave(X2), we obtain the musical
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(a) (P,OL=1.75) pair where the pattern P is discovered using the erosion by
OL=1.75

(b) (P ′, O′
L=1.75) pair where the pattern P is discovered using the erosion by

O′
L=1.75

(c) γOL=1.75(X1) = OL=1.75 ⊕ P = O′
L=1.75 ⊕ P ′

Figure 3.11: Discovery of repeated patterns by learning the onsets with the exact
repetition constraint when L = 1.75. Because |γOL=1.75

(X1)| = |P ′| × |O′
L=1.75|, we

conclude that (P ′, O′
L=1.75) is a non-redundant pair.

pattern that is repeated at the octave. Since |Ooctave| × |P | = 30, we can deduce
that (Ooctave, P ) is non-redundant. The two structuring elements Ooctave and P are
represented in Figure 3.12(a). Moreover, the set γOoctave(X) is shown in Figure 3.9
in green and framed with double lines.

Finally, by setting F = {OL=7, O
′
L=1.75, Ooctave}, the set γF (X) is a fairly good

approximation of X in the sense that |γF (X)| = 316. Since |TF (X)| = 50, there
are only 50 notes out of 366 that have not been discovered by γF (X). We can then
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(a) (P,Ooctave) pair where the pattern P is
discovered using the erosion by Ooctave

(b) γOoctave(X2) = Ooctave ⊕ P

Figure 3.12: Discovery of repeated patterns by learning the onsets with octave
transposition constraint. Because |γOoctave(X2)| = |P | × |Ooctave|, we conclude that
(P,Ooctave) is a non-redundant pair.

describe X by morphological operations:

X ≈
⋃
O∈F

O ⊕ εO(X)

3.5.3 Other Applications: Using the Method to Discover Hidden
Patterns in Music

The method developed in this chapter can also be used to discover patterns that
are not full in X. In some cases, this may allow discovering patterns that were not
clearly discernible when listening. For example, let X be the main musical theme of
Piano Phase by Steve Reich, represented in Figure 3.13(a). In this case X is non-
periodic, in the sense that ∄S ⊊ X such that S is not a singleton and γS(X) = X.
However, the method based on mathematical morphology proposed in this chapter
allows us to better understand this musical theme.

By trying to learn a family of structuring elements that allows describing X with
morphological operations, we notice that the pairs of musical patterns and onsets
(P,O) and (P ′, O′) represented in Figure 3.13 satisfy:

X = γP (X) ∪ γP ′(X),

with the following links between the musical patterns and their onsets, meaning that
they are both MTEC conjugate pairs:

εP (X) = O, εO(X) = P, εP ′(X) = O′, εO′(X) = P ′

It is then possible to represent the theme of Piano Phase by the following equation:

X = (P ⊕O) ∪ (P ′ ⊕O′)

Thus, despite the lack of obvious patterns in X, it is still possible to discover
hidden patterns in X using mathematical morphology to simplify its description.
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(a) X

L = 6

P O
Erosion by P

Erosion by O

(b) (P,O) pair where εP (X) = O and
εO(X) = P

L = 4 L = 4

Erosion by P

Erosion by O

P O

(c) (P ′, O′) pair where εP ′(X) = O′ and
εO′(X) = P ′

Figure 3.13: Musical theme of Piano Phase (a) composed of two MTEC conjugate
pairs (P,O) and (P ′, O′) of musical patterns and their onsets. The musical theme
can be describe with morphological operations: X = (P ⊕O) ∪ (P ′ ⊕O′).

3.6 Summary, Future Work and Conclusion

In this section, we summarize the principal definitions and results introduced in
this chapter for discovering musical patterns using mathematical morphology. We
then propose some directions for future work to extend this approach and we finally
conclude this chapter.

3.6.1 Summary

In this chapter, we have proposed an original approach based on mathematical
morphology for discovering musical patterns using a multidimensional representation
of music. To do this, we have introduced several definitions which are summarized
in Table 3.1. The fundamental definition provided in this chapter is the definition
of onsets using morphological erosion, which allows us to distinguish the role of
patterns and onsets for the discovery of musical patterns. We then defined a pattern
as full as a convex set in the musical data (i.e. without holes), which makes the
link with the topology present in image processing, where morphological operators
are mostly applied. This definition makes it possible to apply some morphological
results to musical data, and is necessary because objects are fundamentally different
(objects are connected sets in image processing, while those associated with symbolic
representations of music are sparse and therefore never connected). In particular,
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we proved that with this definition, the problem of discovering a musical pattern
from its onsets is satisfied. Finally, we characterized the salient pairs of musical
patterns and their onsets as MTEC conjugate and non-redundant, which allows us
to discover relevant pairs without having to discover and analyze all the pairs in the
musical data.

Table 3.1: Summary of the principal definitions introduced in this chapter for dis-
covering musical patterns using mathematical morphology, where P,O,X ∈ P(E).

Definitions Description using morphology

Onsets of P in X O = εP (X)

Discovering pattern from its onsets P = εO(X)

P is full in X ∀t ∈ E,Pt ⊆ X ⇒ Ch(Pt) ∩X = Pt

MTEC conjugate pair (P,O) in X P = εO(X) and O = εP (X)

Non-redundant pair (P,O) in X |γP (X)| = |P | × |O|

The approach proposed in this chapter produces several mathematical results
which are summarized in Table 3.2. The majority of these results can be interpreted
musically and provide a better understanding of the task of discovering musical
patterns.

• Lemma 3.1: The onsets of the onsets of a pattern enlarge it.

• Theorem 3.2: A pattern that is full can be discovered from its onsets.

• Theorem 3.5: A pattern discovered with the erosion is always MTEC conjugate
with its onsets.

• Corollary 3.6: There always exists a unique pattern that is MTEC conjugate
with the onsets of a given pattern.

• Lemma 3.7: If MTEC conjugate, the notes covered by a pattern or its onsets
are the same.

• Theorem 3.8: A non-periodic pattern repeated at regular intervals produces a
non-redundant MTEC conjugate pair.
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Table 3.2: Mains results presented in this chapter that introduce an original
approach based on algebraic formalism for discovering musical patterns, where
P,X ∈ P(E).

Name Results expressed with mathematical morphology

Lemma 3.1 P ⊆ εεP (X)(X)

Theorem 3.2 P is full in X ⇒ P = εεP (X)(X)

Lemma 3.3 εεP (X)(X) = φεP (X)(P )

Theorem 3.5 εP (X) = εεεP (X)(X)(X)

Corollary 3.6 ∃!P ′ : P ′ and εP (X) are MTEC conjugate

Lemma 3.7 P and εP (X) MTEC conjugate ⇒ γP (X) = γεP (X)(X)

Theorem 3.8 P non-periodic ⇒ P and {kL}k MTEC conjugate non-redundant

3.6.2 Future Work

We propose here some directions for future work to develop the approach proposed in
this chapter for discovering musical patterns from a multidimensional representation
of music using mathematical morphology.

• Discover non-repeating patterns: Patterns discovered with the method
developed in this chapter are patterns that repeat up to a translation, for
example up to a harmonic or temporal translation. However, it is possible to
adapt this method to discover patterns that repeat up to a translation, but
with an approximation. For example, in Figure 3.14(a), a pattern is repeated
with a variation on the second point. Musically, this can be interpreted as a
note that is a semi-tone higher. To discover patterns with these variations,
we can use the main idea of Karnoven et al. [Karvonen 2008, Karvonen 2010],
which is to apply a morphological dilation to the musical data to match the
patterns with an approximation. In our case, we want to add a harmonic tol-
erance. This can be done by dilating the musical data with {(0, 0, 0), (0, 1, 0)}
as structuring element in order to obtain an approximation of one semi-tone
to discover the musical patterns (representing the data in R3, as explained in
Section 3.5.1, with the pitch as second coordinate). The dilation of the musical
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data in Figure 3.14(a) by this structuring element is shown in Figure 3.14(b),
where the gray dots are those added after this operation. We can then use
the method proposed in this chapter, i.e. apply morphological erosion by the
onsets to discover the musical patterns, as illustrated in Figure 3.14(c). The
result of the erosion, displayed in Figure 3.14(d), reveals the pattern and its
variations. However, there is still work to be done to correctly identify the
right method and the structuring elements to be applied according to the de-
sired approximations with reasonable computing time. Finally, this method
could also be used to discover patterns in performance, which can vary ac-
cording to the expressivity of the performance, by using a dilation to obtain
a temporal approximation.

Different
points

(a) Musical data composed of two
slightly different patterns.

(b) Dilation of the musical data
to obtain an approximation in the
discovery of musical patterns.

(c) Erosion of the musical data
that have been dilated.

Variations 
of the pattern

(d) Discovery of the pattern and
its variations from musical data.

Figure 3.14: Dilation of musical data before applying the method proposed in this
chapter to discover musical patterns with an approximation. This provides the
variations of musical patterns.

• Discover truncated patterns: Another situation in which patterns do not
repeat identically is when patterns are truncated in musical data. This tech-
nique is frequently used by specific musical artists [Pieslak 2007]. For example,
in Figure 3.15(a), the musical data X is composed of a pattern P that is re-
peated three times and truncated the fourth time. In this case, the pattern P

can not be simply discovered with just one erosion because there is no non-
redundant MTEC conjugate pair for this musical data, specifically, it is not
possible to apply Theorem 3.2 because γP (X) ̸= X. However, morphological
operators can still be used to reveal significant information. In particular, the
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morphological erosion εO2(X) provides the truncated version of the pattern
with O2 composed of four points as illustrated in Figure 3.15(b). Moreover,
the pattern P is discovered from two morphological erosions with:

P = εO1(X) \ εO2(X),

where O1 contains one less point than O2, as illustrated in Figure 3.15(c).
Therefore, it may be interesting to develop this idea to identify the appropriate
O1 and O2 and adapt the definition of non-redundant MTEC conjugate pair
to this situation to discover patterns and their truncated version.

Pattern Truncated
pattern

(a) Particular case where the last pattern re-
peat is truncated.

Origin

Origin

O1

O2

(b) The onsets that reveal the pattern and its
truncated version.

(c) Erosion of musical data to discover the pat-
tern from two erosions.

Figure 3.15: Illustration of musical data with a truncated pattern. In this case, the
pattern can be discovered from two erosions.

• Detection of the meter using discovered onsets: We believe that the
method developed in this chapter is relevant to the meter detection task,
which is a field of research that consists in detecting meter from a symbolic
representation of music [De Haas 2016, McLeod 2017]. Indeed, the discovery
of the onsets produces important information about the meter. For example,
we have seen in Figure 3.9 that the onsets are points separated by distances
L = 7 and L = 1.75, which leads to a meter equal to 7

4 or 7
8 for this musical data

(because 1.75× 4 = 7). The choice of 7
4 or 7

8 can also be decided and adjusted
according to the MTEC conjugate pattern of the onsets. The advantage of
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this approach is that it requires no prior training, and can therefore be used
for any type of meter, especially irregular meters where it is very difficult to
obtain annotated databases for training. We therefore believe that it would be
worthwhile to develop this idea to detect the meter from the discovered onsets
and patterns. An original project would be to test it on a database containing
a large number of irregular meters, such as the one set out in Section 3.5.2,
which is not often addressed in the meter detection task.

• Discover sections as a dilation of a pattern and its onsets for the seg-
mentation task: The discovery of pairs of patterns and their onsets can be
used to describe musical sections with the morphological dilation, as explained
in Section 3.2.3. For example, the three pairs discovered in Section 3.5.2 cover
the three different main sections, as illustrated in Figure 3.9. This is be-
cause musical patterns and their onsets influence the segmentation of musical
data [Cambouropoulos 2006]. We therefore expect that this approach for dis-
covering patterns and onsets could also be used for the segmentation task.
Because most approaches to obtain the segmentation from a symbolic repre-
sentation of music use a string representation of music, it would be original to
develop a new method based on a multidimensional representation of music.
This was started by Meredith [Meredith 2016], and we believe that some of
the ideas developed in this chapter (the discovery of non-redundant MTEC
conjugate pairs of patterns and onsets) may provide a deeper understanding
of discovering musical sections for the segmentation task using a multidimen-
sional representation of music.

3.6.3 Conclusion

In this chapter, we have developed an original application of mathematical morphol-
ogy to symbolic representations of music. Specifically, we focused on the discovery
of musical patterns and demonstrated the relevance of basic morphological opera-
tors for this task. We proved several mathematical results that demonstrate the
relevance of mathematical morphology for the discovery of musical patterns using
a multidimensional representation of music. The main result is that it is possible
to discover the musical pattern from its onsets with a morphological erosion if the
patterns do not intersect, which is coherent in a musical context. This result is per-
tinent because it is usually simpler to discover the onsets than the musical pattern
due to repetitions in the musical data. Therefore, the developed method is interest-
ing because it starts from musical problems as a main motivation, i.e. the results
and assumptions of the theorems are designed to be applied to musical data, and
produces mathematical theoretical results that can also be applied to other types
of discrete set data. Finally, we expect in future research that the use of mathe-
matical morphology to symbolic representations of music will be a tool developed
for both musical analysis and generation, while providing interesting and original
mathematical results.
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This chapter deals with the computational analysis of musical structures by
focusing on the use of mathematical morphology. In particular, the main contri-
bution of this chapter is to demonstrate that morphological filters can be used to
homogenize and detect regions in the self-distance matrix. Specifically, the opening
operation has been successfully applied to reveal the blocks around the diagonal be-
cause it removes small details such as high local values and reduces all blocks around
the diagonal to a zero value. Moreover, by varying the size of the morphological
filter, it is possible to detect musical structures at different scales. A large opening
filter identifies the main global parts of the piece, while a smaller one finds shorter
musical sections. We discuss some examples that demonstrate the usefulness of this
approach to detect the structures of a musical piece and its novelty within the field
of symbolic music information research.

Section 4.1 explains the novelty and context of this method. Section 4.2 intro-
duces the definitions of grayscale mathematical morphology that are useful in this
chapter. Section 4.3 presents the self-distance matrix and describes a method for
generating it from symbolic musical representations, proposing the chord contour as
a generalization of the melodic contour. Section 4.4 describes how to use morpho-
logical filters in order to extract musical structures from the self-distance matrix,
and illustrates how changing the size of the filters can be used to discover musical
structures at multiple levels of granularity.

This chapter is an extended version of the article “Computational Analysis of
Musical Structures based on Morphological Filters” [Lascabettes 2022a].

4.1 Introduction

In Part I, we have demonstrated that the theory of binary mathematical morphol-
ogy is relevant to symbolic representations of music. In particular, in Chapter 1,
we have described the relevance of basic morphological operators for music analy-
sis and generation. In Chapter 2 and Chapter 3, we have proved that this theory
provides a deeper understanding and generalization of previous works on musical
pattern discovery. However, we have so far restricted the scope of our work to binary
mathematical morphology. In this chapter, we propose an application of grayscale
mathematical morphology to music data, which is a generalization of binary math-
ematical morphology to functions. This enables morphological filters to be applied
to grayscale images where each pixel has a real value, unlike binary images. But
grayscale mathematical morphology is algorithmically more complex, which is why
it may not be used in exactly the same applications as in the previous chapters.
Therefore, we propose to work on self-distance matrices. This representation is fun-
damental to the analysis of musical structures because blocks around the diagonal
provide structural information on a musical piece.

The main contribution of this chapter is to propose a novel method, based on
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mathematical morphology, to extract hierarchical musical structures from the self-
distance matrix. This method can be applied to any type of similarity matrix and
to any type of data. In our case, the self-distance matrix is computed from symbolic
music representations, using a generalization of melodic contour to chord sequences.
The purpose of this method is to homogenize the different regions of the self-distance
matrix in order to identify the musical structures. Two basic morphological oper-
ations, the erosion and dilation, have already been successfully used to detect the
repeating patterns longer than a minimum length into a time-lag matrix (a similar
representation as the self-distance matrix) [Lu 2004]. However, rather than identi-
fying segments as in [Lu 2004], we demonstrate the usefulness of the morphological
opening operation in order to identify blocks in the self-distance matrix. This opera-
tion eliminates small details, while flatter and homogeneous regions are obtained. In
addition, it reduces all the blocks around the diagonal, which correspond to musical
sections, to a zero value. We discuss the form to choose when applying an opening
filter to extract information from the self-distance matrix: a constant square-shaped
filter. But the size can also be adjusted to detect different musical structures. A
large opening identify the global part of the piece while a smaller one reveal shorter
sections. This idea is illustrated by detecting different musical structures in Edvard
Grieg’s March of the Dwarfs and Mozart’s Piano Sonata Alla Turca.

4.2 Grayscale Mathematical Morphlogy

In this section, we define the principal operators of grayscale mathematical morphol-
ogy that are useful in this chapter. This section generalizes the notions of binary
mathematical morphology covered in Section 1.2.

4.2.1 Dilation and Erosion

In this chapter, we rely on mathematical morphology defined on functions, typically
used to analyze gray level images, making an analogy between self-distance matri-
ces and images. Only the useful notions are recalled here, and more details can
be found in [Serra 1982, Heijmans 1990, Ronse 1991, Heijmans 1994, Bloch 2007,
Najman 2010]. Let (F ,≤) be a lattice of functions (we consider here functions
from E = Zn into R+ to handle self-distance matrices, and the lattice is complete).
Therefore, let F ∈ F (i.e. F : E → R+), which can be considered as a grayscale im-
age, and S ∈ F the structuring element, also called the structuring function, which
respectively replace the sets X and S of Section 1.2. These functions have a −∞
value outside their bounded support. To illustrate principal operations of grayscale
mathematical morphology, we represent two functions F and S in Figure 4.1. In
this example, the structuring function S is flat with the origin defined in the middle,
which is a common choice for structuring functions.
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E
0

R+

(a) Grey-level function F

E
0

R+

(b) Structuring function S

Figure 4.1: Example of a function F (left) and a flat structuring element S (right).

Dilation ⊕ and erosion ⊖ in the complete lattice (F ,≤) are extensions of
Minkowski addition [Minkowski 1903] and subtraction [Hadwiger 1950] in the bi-
nary morphological case, and are defined in Definition 4.1.

Definition 4.1: Dilation and Erosion

Let F, S ∈ F , the dilation δS(F ) = F ⊕ S and erosion εS(F ) = F ⊖ S of F
by S are defined by:

∀x ∈ E, F ⊕ S(x) = sup
t∈E

(F (t) + S(x− t))

∀x ∈ E, F ⊖ S(x) = inf
t∈E

(F (t)− S(t− x))

With the conventions that ∀x ∈ R, x+∞ =∞ and x−∞ = −∞, which allows
us to give a value to F (t) + S(x− t) and F (t)− S(t− x) when outside the domains
of definition of the functions. Figure 4.2 illustrates these two operations by using
the examples of the two functions defined in Figure 4.1. Because the origin is in the
middle of the structuring function S, the following inequalities are satisfied:

∀x ∈ E, εS(F )(x) ≤ F (x) ≤ δS(F )(x)

Applied to grayscale images, dilation extends bright zones and reduces dark
ones, while erosion does the opposite (considering that bright pixels correspond to
high values). As with binary morphology, these operations are non-reversible and
non-linear. We do not mention any more properties, as this is not useful in the
rest of this chapter, but these operations also satisfy the properties defined for the
binary case in Section 1.2.
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E
0

R+

(a) Dilation

E
0

R+

(b) Erosion

Figure 4.2: Dilation and erosion of F by S (as defined in Figure 4.1) represented
by the solid lines. To facilitate the understanding of these transformations, the F

function is also represented by a dotted line.

4.2.2 Opening and Closing

As with binary mathematical morphology, the other two principal operations result
from the composition of these operators. The opening ◦ is the composition of an
erosion and a dilation and the closing • is a dilation followed by an erosion.

Definition 4.2: Opening and Closing

Let S ∈ F , the opening γS and the closing φS by S are defined by:

γS : F −→ F
F 7−→ F ◦ S = (F ⊖ S)⊕ S

φS : F −→ F
F 7−→ F • S = (F ⊕ S)⊖ S

The result of these two operations is illustrated in Figure 4.3 with the F and S

functions defined in Figure 4.1. Similarly to binary morphology, the following in-
equalities are always true:

∀x ∈ E, γG(F )(x) ≤ F (x) ≤ ϕG(F )(x)

Opening and closing are increasing and idempotent operators, hence morpho-
logical filters. They can be used to eliminate small details (having higher values
than their surrounding using opening, and smaller ones using closing) according to
the size and shape of the structuring element. Therefore, by using these filters,
some detailed information may be lost, while more flat and homogeneous regions
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are obtained. This property will be used to highlight homogeneous regions in the
self-distance matrix, in order to exhibit the main musical structures, as detailed in
the remainder of this chapter.

E
0

R+

(a) Opening

E
0

R+

(b) Closing

Figure 4.3: Opening and closing of F by S (as defined in Figure 4.1) represented
by the solid lines. To facilitate the understanding of these transformations, the F

function is also represented by a dotted line.

4.3 Self-Distance Matrix From Symbolic Music

In this section, we define self-distance matrices and self-similarity matrices. We pro-
pose to generalize the melodic contour with the chord contour, and define a distance
between chord contours to obtain self-distance matrices from symbolic representa-
tions of music.

4.3.1 Converting Symbolic Music to Sequence Using Chord Con-
tour

Whether for music perception [Trehub 1984, Dowling 1994], music analy-
sis [Adams 1976] or music theory [Buteau 2008], melodic contour has become a
fundamental tool in the music information research community. This tool applies
on monophonic structures, i.e., musical phrases or motives in which two notes never
sound at once. It is defined by the set of the directions between consecutive pitches
of a melody, +1 and -1 indicating respectively an ascending and a descending in-
terval. Figure 4.4(a) illustrates this idea by representing each note of a melody by
a circle in a time/pitch graph. Melodic contour summarizes intervallic information
and can be used to compare and classify melodic patterns or to help understand their
perception. Considering the importance of melodic contour, it is not surprising that
multiple extensions have been proposed. For example, two other contours were de-
fined in [Anagnostopoulou 2013]: the strong contour (melodic contour of only the
notes present on the beat) and the weak contour (strong contour with extra infor-
mation if there is a contour variation within the beat). Moreover, it was proposed
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in [Marvin 1987, Quinn 1999] to observe the directions at longer range, i.e., all the
directions between the ith and jth pitches, not only between the ith and (i + 1)th

pitches as for the usual melodic contour. To this purpose, both works used a matrix
representation: Morris’s comparison matrix (COM-matrix) in [Marvin 1987], and
combinatorial contour matrix in [Quinn 1999]. In the COM-matrix, the coefficient
at position (i, j) is the pitch direction between notes i and j, and for the combina-
torial contour matrix this coefficient is +1 if the jth note is higher in pitch than the
ith note or 0 otherwise. However, these generalizations remain in the monophonic
context, and they do not handle musical chords.

We propose a generalization of the melodic contour to chord sequences, i.e.,
not restricted to note sequences. In the proposed definition, the direction between
the pitches of two given chords is no longer a number but a matrix, called chord
contour. The coefficient (i, j) of the chord contour is the direction between the ith

note of the first chord and the jth note of the second chord, where the notes of the
chords are ordered in descending pitch order. Therefore, the chord contour from
an n-note chord to an m-note chord is of size n ×m. Figure 4.4(b) illustrates the
construction of the chord contour: in this example, the two chords have two notes,
so the corresponding chord contour is a 2× 2 matrix. The first row corresponds to
the directions from the highest note of the first chord to the notes of the next chord,
and so on.
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+
1
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(a) The melodic contour is {1,−1, 0, 1,−1}
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◦
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(
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Figure 4.4: Illustration of the melodic contour and the chord contour.

The chord contour sequence of the introduction of Edvard Grieg’s March of the
Dwarfs is graphically represented in Figure 4.5. It will be analyzed in the following
in order to identify the main passages or blocks of this sequence.

Figure 4.5: Representation of the chord contour sequence of the introduction of
March of the Dwarfs. Black, dark gray and light gray pixels map respectively to
values of 1, 0 and −1.
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4.3.2 Distance Between Chord Contours

We propose here to define a distance between two chord contours. The main diffi-
culty comes from the fact that chord contours, which are matrices, can have different
sizes. First, we consider two chord contours with the same size. In this case, the
Hamming distance is used. Let A = (ai,j) and B = (bi,j) be two chord contours of
sizes n×m, the Hamming distance d(A,B) between the matrices A and B is defined
as the number of coefficients which differ:

d(A,B) = |{(i, j) ∈ [1...n]× [1...m] | ai,j ̸= bi,j}|

If one of the two matrices has more rows (or columns) than the other matrix, one can
reduce it by deleting rows (or columns) in order to get two matrices of the same size
and use the previous formula, with the addition of the number of deleted rows (or
columns). The rows (or columns) to be deleted are those that minimize the distance
between the two matrices. Deleting a row (respectively a column) corresponds to
omitting a note in the first chord (respectively the second chord). Thus, if A and B

are two matrices of size n1 ×m1 and n2 ×m2, the distance D(A,B) between these
two matrices is defined as:

D(A,B) = min
A′,B′

(d(A′, B′)) + |n1 − n2|+ |m1 −m2|,

where A′ and B′ are two matrices of size min(n1, n2)×min(m1,m2) such that A′ (re-
spectively B′) is obtained by removing n1−min(n1, n2) rows and m1−min(m1,m2)

columns from A (respectively B). From a mathematical point of view, the first dis-
tance d respects symmetry, identity of indiscernibles, non-negativity and triangular
inequality. It is well defined as a metric on the space of matrices with the same
size. On the other hand, for the second distance D, the triangular inequality is lost;
hence, it is only a semi-metric in the mathematical sense. However, since we only
make pairwise comparisons, without looking for a path from one matrix to another
one in the space of matrices, the triangular inequality is not essential.

4.3.3 Self-Distance Matrix

In order to visualize the musical structures, the self-similarity matrix was proposed
by Foote [Foote 1999], as a two-dimensional representation defined by computing
the similarity between any two instants. Self-similarity matrices have become a fun-
damental concept in the study of musical structures [Paulus 2010]. In addition, the
dual of self-similarity matrices are self-distance matrices, similarity can be obtained
from a distance, and vice versa. Given an ordered sequence, the coefficient of the
line i and the column j of the self-distance matrix (respectively the self-similarity
matrix) is defined by the distance (respectively the similarity) between elements i

and j of this sequence. We focus here on self-distances matrices, but the same logic
can be transcribed to self-similarity matrices. Let ck be the kth chord contour of
the musical piece, i.e., from the kth chord to the (k + 1)th chord. Therefore, the
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coefficient of the line i and the column j of the self-distance matrix is defined by
D(ci, cj). Figure 4.6 displays the self-distance matrix corresponding to the example
of the introduction of March of the Dwarfs in Figure 4.5. Since D is symmetric, the
self-distance matrix is a symmetric matrix. The musical structures can be inferred
from the information near the diagonal: the different blocks around the diagonal
framed in red in Figure 4.6 represent the musical sections. It is possible to un-
derstand the shape of the self-distance matrix in comparison to the chord contour
sequence: blocks on the diagonal correspond to sections that are visually identifiable
in Figure 4.5.

Figure 4.6: Self-distance matrix of the introduction of March of the Dwarfs (black
= 0, i.e. low distance and high similarity, white = high distance values and low
similarity).

In this section, we have proposed a method for converting symbolic music data
into a self-distance matrix. Other solutions are possible without using the chord
contour. However, this method is sufficient to illustrate the important results of
this chapter on the advantages of morphological filters for homogenizing the regions
in the self-distance matrix.

4.4 Application of Mathematical Morphology to the
Self-Distance Matrix

In this section, we demonstrate the relevance of filtering the self-distance matrix
using a morphological opening with a constant square-shaped structuring element
to detect blocks around the diagonal. We also point out that these results can be
obtained on a self-similarity matrix, by applying morphological closing. Finally, we
demonstrate that changing the size of the morphological filter produces different
structures in a hierarchical way.
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4.4.1 Application of an Opening Filter to a Self-Distance Matrix

We propose here to use morphological filters to identify the main blocks of the
self-distance matrix. Blocks along the diagonal provide information on the musical
structure of the piece since low distance values of the self-distance matrix correspond
to passages with high similarity. In order to identify similar blocks, locally higher
distance values should be removed. The opening operation is particularly well suited
to this situation. To do this, the structuring element has to be constant and square-
shaped in order to preserve the general organization of the matrix, which exhibits
strong vertical and horizontal structures, as well as squared blocks. By using this
operation, it is possible to homogenize the regions of the self-distance matrix and to
reduce the blocks on the diagonal to a zero value (because the diagonal coefficients
are equal to zero due to the identity of indiscernibles of the metric).

The result of the opening operation on the self-distance matrix of Figure 4.6
with a square structuring element of size 12 × 12 is represented in Figure 4.7(a).
Blocks on the diagonal appear in black, which is the minimal value (equal to zero),
and we can easily detect them. To compare this method with simpler methods,
thresholding is shown in Figure 4.7(b). Here, each coefficient below half of the
maximum coefficient of the matrix is set to zero. Therefore, the thresholding does
not detect the main blocks of the self-distance matrix. The threshold operation
acts globally on the matrix, with the same threshold value applied everywhere. By
contrast, opening is an operator that acts locally on the coefficients of the matrix,
depending on local shape and size of the distance function, not on absolute values,
which fits our filtering objective better.

(a) Result of an opening filter (b) Result of a thresholding

Figure 4.7: Filtering of the self-distance matrix using a morphological opening (a).
As a comparison, a simple thresholding is shown in (b). The initial self-distance
matrix is displayed in Figure 4.6.
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4.4.2 Application of a Closing Filter to a Self-Similarity Matrix

The self-similarity matrix [Foote 1999], is also used in audio-based approaches to the
analysis of musical structures. In this case, the values of the self-similarity matrix
are inverted with respect to the self-distance matrix. The diagonal coefficients are
the highest values (equal to one) and the goal is to remove locally lower values
and to reduce the blocks around the diagonal to the highest value of the matrix.
This change can also be handled with the morphological tools because dilation
and erosion (respectively opening and closing) form pairs of dual operators. This
means concretely that applying an opening on a self-distance matrix is equivalent
to applying a closing on a self-similarity matrix, and vice versa.

For example, we generated a self-similarity matrix from the self-distance matrix
shown in Figure 4.6 by defining the coefficient (i, j) of the self-similarity matrix
as 1

1+D(ci,cj)
. Other transformations can be used between distance and similarity,

but this one is sufficient to illustrate the concept of duality between filtering a self-
distance matrix by a morphological opening and filtering a self-similarity matrix by
a morphological closing. With this definition, the self-similarity matrix is illustrated
in Figure 4.8(a) with the same color code as the previous figures. Using a filtering by
a morphological closing, we can then remove the low local values to isolate the blocks
around the diagonal as illustrated in Figure 4.8(b) with a closing by a structuring
element of size 12× 12. In this case, these blocks are reduced to the local maximum
value, in this case the one value, as this is the maximum similarity value on the
diagonal. Therefore, similar results presented in this chapter can also be obtained
on self-similarity matrices with closing filters.

(a) Self-similarity matrix (b) Result of an closing filter

Figure 4.8: Self-similarity matrix (a) and filtering by morphological closing (b). This
demonstrates the duality between filtering a self-distance matrix by a morphological
opening and filtering a self-similarity matrix by a morphological closing.
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4.4.3 Changing the Shape of the Morphological Filter to Detect
Different Musical Structures

The morphological operations provide new computational tools for the analysis and
identification of the overall structure of a musical piece. Moreover, it is possible to
detect musical structures at different scales, for example to refine the granularity of
the analysis and identify the bars of the piece. This can be done by changing the
size of the structuring element, in order to detect blocks of different sizes. With
a smaller structuring element, it is possible to detect smaller blocks around the
diagonal, representing for instance the bars of the piece, while a larger one discovers
the global musical structure at a bigger scale.

To illustrate the notion of filtering with different structuring elements, we con-
sider the third movement of the Piano Sonata No.11 in A Major, composed by Wolf-
gang Amadeus Mozart and commonly known as Alla Turca or Turkish Rondo. The
structures of the piece are represented in Figure 4.9(a), where each letter symbolizes
8 bars. This piece is divided into four main parts represented by red rectangles and
linked with blue rectangles. There are two levels of structure: the 7 colored rectan-
gles (global structure) or the 28 letters (detailed structure). As seen previously, the
structuring element has to be constant and square-shaped, the only parameter to
choose being the size. We applied an opening filter with a constant square-shaped
structuring element of size 3 × 3 and 6 × 6 to the self-distance matrix (computed
using the chord contour sequence). The result of these opening filters is displayed
in Figures 4.9(b) and 4.9(c). For a clearer understanding, only the diagonal blocks
(detected with the flood-fill algorithm) are shown in black in this figure, i.e., zero
value coefficients connected to the diagonal of the matrix. We computed the novelty
score, introduced by Foote [Foote 2000], of these two opening diagonals. The novelty
score N is the correlation along the diagonal of a matrix M with the checkerboard
kernel C:

N(t) =

L/2∑
i=−L/2

L/2∑
j=−L/2

C(i, j)M(i+ t, j + t),

where C is the 64× 64 symmetric matrix defined as:

C =



−1 · · · −1 1 · · · 1
...

. . .
...

...
. . .

...
−1 · · · −1 1 · · · 1

1 · · · 1 −1 · · · −1
...

. . .
...

...
. . .

...
1 · · · 1 −1 · · · −1


Notice that we use the opposite of the original checkerboard kernel [Foote 2000],
because we have a self-distance matrix instead of a self-similarity matrix. This nov-
elty score allows detecting changes, and therefore the limits of the blocks to identify.
The novelty scores of the two opening diagonals are represented in Figure 4.9(d) and
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(a) Musical structures of Alla Turca (W.A. Mozart)

(b) Opening diagonal with a 3× 3 constant
square-shaped structuring element

(c) Opening diagonal with a 6 × 6 constant
square-shaped structuring element
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(d) Novelty score of the opening diagonal with a constant square-shaped 3× 3

structuring element
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(e) Novelty score of the opening diagonal with a constant square-shaped 6× 6

structuring element

Figure 4.9: Filtering of the self-distance matrix at different scales by the morpho-
logical opening in order to obtain different musical structures in a hierarchical way.

Figure 4.9(e). We also add the boundaries of the musical structures shown in Fig-
ure 4.9(a) with thick dotted lines (boundaries between rectangles) and thin dotted
lines (boundaries between letters). The high value of the novelty score represents
the boundaries of the piece. The novelty score of the opening diagonal with a 3× 3

structuring element detects the boundaries between the D/D/E/D’/E/D’ and C’/C’
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sections. While the novelty score of the opening diagonal with a 6 × 6 structuring
element detects the boundaries between the rectangles and the A/A/B/A’/B/A’
sections. With these two diagonals blocks, it is possible to detect two different
structures of the piece.

Finally, we can adjust the size of the structuring element used to filter the self-
distance matrix depending on the granularity that we want in the analysis of the
musical structures (which enables for example to detect only few very long passages
or a greater number of short passages). By varying the size of the structuring ele-
ment, we can computationally grasp the segmentation process at multiple levels. In
fact, every time we increase the size of the structuring element we force some seg-
ments to merge and become a new bigger segment, starting from few notes segments
to the whole piece.

4.5 Conclusion

Mathematical morphology is a relatively uncommon theory in the music informa-
tion research community. However, we have already revealed in Part I that binary
mathematical morphology is relevant to symbolic representations of music whether
for analysis or generation. In addition, we have demonstrated in this chapter that
the grayscale framework of mathematical morphology can be successfully applied to
discover musical structures by filtering the self-distance matrix. In particular, these
morphological filters have been used to homogenize and identify well-defined regions
of the self-distance matrix corresponding to musical sections. The opening operation
has been applied to the analysis of the musical structures of a piece because it locally
removes the high values of the self-distance matrix. With a constant square-shaped
structuring element, it reveals the horizontal and vertical blocks of the self-distance
matrix. In addition, the blocks around the diagonal, which correspond to a well-
defined musical structure, all have a zero value. Moreover, by varying the size of
the filter, it is possible to have different filtering levels in the automatic detection of
the underlying structures of the musical piece. By filtering the self-distance matrix
with a large opening, one is able to identify the main global parts of the piece, while
using a smaller morphological filter reveals shorter musical sections. We have also
demonstrated that similar results can be obtained with self-similarity matrices using
morphological closing filters. Some promising results of applying this new method in
the field of music automatic segmentation have been obtained and discussed by pre-
senting a computational analysis of an excerpt of Edvard Grieg’s March of Dwarfs
and of Mozart’s Piano Sonata Alla Turca.

In this chapter, we demonstrated the usefulness of morphological filters to ho-
mogenize musical sections to detect the musical structure. However, homogeneity
is not the only criteria for music structure analysis, and the other main criterion is
repetition. Paulus et al. argue that a combined approach (based on homogeneity,
novelty and repetition) provides promising results [Paulus 2010]. Our method does
not handle repetition, because the goal of this chapter is to show the application of
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mathematical morphology for music structures analysis. Due to the the simplicity
yet powerful utility of morphological filters, we strongly believe that this method
can be reuse for future algorithms for the homogeneity step. Moreover, although
we have applied this method on symbolic music representations with a chord con-
tour sequence, this method can also be applied for audio-based analysis of musical
structures. For future research, we believe that it is relevant to test this method on
a large audio database with hierarchically annotated structures in order to validate
it experimentally. It may also be pertinent to combine this approach with the rep-
etition criterion, as stated by Paulus et al. [Paulus 2010], for example by using the
method proposed in the next chapter, which is based on repetition .
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In this chapter, we present an algorithm that can generate multiple hierarchical
segmentations of a musical sequence based on approximate repeated patterns. A
similarity between music objects defines this approximation to obtain an Adapted
Correlative Matrix, which reveals repeated patterns without overlaps. Based on this
representation, we propose an algorithm that extracts meaningful information to
identify segmentations in a hierarchical way. Finally, we demonstrate that changing
the relation produces different hierarchical segmentations of the same sequence and
provides a possible explanation of the obtained segmentations.

Section 5.2 generalizes the existing definition of the Correlative Matrix and in-
troduces the Adapted Correlative Matrix in order to work with non-overlapping
repeating patterns. Section 5.3 describes the proposed algorithm which extracts
meaningful information of the Adapted Correlative Matrix to generate hierarchical
segmentations. Section 5.4 illustrates this method with various music objects, start-
ing with a sequence of notes, then a sequence of chords, and finally with a sequence
of bars.

This chapter is an extended version of the article “Generating Multiple Hi-
erarchical Segmentations of Music Sequences using Adapted Correlative Matri-
ces” [Lascabettes 2022b].

5.1 Introduction

Segmentation is an important problem for music analysis, performance, perception,
and retrieval. It consists in dividing a musical sequence into non-overlapping seg-
ments. Music segmentation has been studied in the audio and symbolic domains.
However, compared to work on audio sources, there has been comparatively less
work on segmentation in the symbolic domain [Giraud 2016]. Segmentation tasks
with symbolic sources focus on the musical score. Lerdahl and Jackendoff proposed
the Generative Theory of Tonal Music (GTTM) [Lerdahl 1985], where they started
to model segmentations in a hierarchical way. This was expanded to include aspects
of harmonic tension in Tonal Pitch Space [Lerdahl 2001]. In parallel, computational
approaches based on the GTTM rules were developed [Temperley 2004]. Other al-
gorithms, such as Chew’s Boundary Search Algorithm, were based on tonality, using
key boundaries to create segmentations [Chew 2002]. More recently, the Correlative
Matrix was used to first discover and classify patterns, then determine the best
segmentation using a score function [Rafael 2010]. However, in the definition of the
Correlative Matrix, patterns may overlap, which is incoherent with the segmentation
task. Therefore, we propose to define the Adapted Correlative Matrix to discover
repeated patterns without overlaps in a musical sequence.

We develop in this chapter an algorithm that generates hierarchical segmenta-
tions of a musical sequence based on approximate repeated patterns. The chosen
approximation is defined by a relation between music objects which generates the
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Adapted Correlative Matrix. Our algorithm iteratively selects repeated patterns
based on their distinctiveness, that is to say if other repeated patterns begin at the
same time than the starting note (reinforcing the beginning boundary) or immedi-
ately after it (reinforcing the end boundary). The distinctiveness criterion exploits
the Adapted Correlative Matrix structure by ensuring that the selected pattern is
compatible with other repeated patterns in a hierarchical way. Assuming that the
beginning and the end of repeated patterns influence the segmentation of a musi-
cal sequence [Cambouropoulos 2006], our algorithm iteratively creates boundaries
to obtain hierarchical segmentations. We apply this method to different musical
genres and music objects: a sequence of notes, chords and bars. In each case, we
define several relations between music objects which yield different hierarchical seg-
mentations. Finally, we visualize the results obtained with a tree representation and
discuss the results.

5.2 Definition of the Adapted Correlative Matrix

In this section, we propose a definition of the Correlative Matrix that generalizes
previous applications, and we then introduce the Adapted Correlative Matrix for
discovering patterns in a musical sequence without overlaps.

5.2.1 Correlative Matrix

The Correlative Matrix was first introduced in music processing in order to discover
exact repeating patterns in a sequence of pitches [Hsu 1998, Hsu 2001]. For a given
sequence of pitches (p1, . . . , pn) of length n, the first definition of the Correlative
Matrix was an n × n matrix, where the coefficient of the ith row and the jth col-
umn is set to 1 if pi = pj . Moreover, if pi = pj and pi+1 = pj+1, meaning there
is one or more repeated patterns of length two, the coefficient of the i + 1th row
and the j + 1th column is set to 2. By by iteratively applying this process, the
value of each coefficient of the Correlative Matrix indicates the length of a repeating
pattern. Compared to the Self-Similarity Matrix used in audio-based music segmen-
tation [Foote 1999], the Correlative Matrix allows us to easily discover the longest
repeating patterns with the maximal coefficients. Later, the Correlative Matrix has
also been defined to allow for a sequence of intervals or a combination of pitch con-
tours and note durations [Rafael 2010]. Therefore, the coefficient of the Correlative
Matrix was modified to check if two elements of the sequence were equal (with regard
to pitch) [Hsu 1998, Hsu 2001] or below a similarity threshold (with regard to pitch,
contour and duration) [Rafael 2010]. This can be generalized with a symmetric and
reflexive relation1 in order to capture a wide variety of musical objects, indeed the
equality or the similarity threshold are both symmetric and reflexive relations. We
then propose to generalize the Correlative Matrix with the following definition:

1Let T = (t1, . . . , tn) be a sequence. A relation ≡ on T is symmetric if: ∀ti ∈ T, ti ≡ ti and
reflexive if: ∀ti, tj ∈ T, ti ≡ tj ⇔ tj ≡ ti.



106
Chapter 5. Repetition-Based Algorithm for Generating Hierarchical

Segmentations of Music

Definition 5.1: Correlative Matrix (CM)

Let T = (t1, . . . , tn) be a sequence and ≡ a symmetric and reflexive relation
on T . The Correlative Matrix (CM) is an n×n matrix where the coefficient
Ci,j of line i and column j is defined by:

Ci,j =

{
Ci−1,j−1 + 1, if ti ≡ tj ,

0, otherwise,

with the convention: Ci,j = 0 if i or j is negative.

For example, if T = (7, 8, 9, 7, 8, 9, 7, 8, 9) and ≡ is the usual equal-
ity = on R (i.e. 7 ≡ 7 and 7 ̸≡ 8), the Correlative Matrix is represented
in Figure 5.1. The following patterns are discovered: (7, 8, 9, 7, 8, 9, 7, 8, 9),
(7, 8, 9, 7, 8, 9) and (7, 8, 9). The first two patterns are discovered in the sequence
because overlaps are allowed. In order to use the idea of the Correlative Matrix
to identify contiguous segmentations of T , we need to adapt the definition of the
Correlative Matrix to disallow overlaps. Granted, in music, there exist cases where
the last note of a segment can be the first note of the next [Lerdahl 1985], but this
is very rare and therefore outside the scope of this work.

Figure 5.1: Correlative Matrix generated by the sequence T = (7, 8, 9, 7, 8, 9, 7, 8, 9).
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5.2.2 Adapted Correlative Matrix

Here, we define the Adapted Correlative Matrix where approximate repeated pat-
terns are discovered in a sequence T without overlaps.

Definition 5.2: Adapted Correlative Matrix (ACM)

Let T = (t1, . . . , tn) be a sequence and ≡ a symmetric and reflexive relation
on T . The Adapted Correlative Matrix (ACM) is an n × n matrix where
the coefficient Ci,j of line i and column j is defined by:

Ci,j =


Ci−1,j−1 + 1, if ti ≡ tj and Ci−1,j−1 + 1 ≤ |i− j|,
1, if ti ≡ tj and Ci−1,j−1 + 1 > |i− j|,
0, otherwise,

with the convention: Ci,j = 0 if i or j is negative.

When ti ≡ tj , the maximal length of the pattern without overlaps is |i−j|, as with
any longer pattern, the higher index would be in both occurrences of the pattern.
For example, if t3 ≡ t6, the maximum pattern length without overlaps is |3−6| = 3.
Therefore, if Ci,j = |i − j| and ti+1 ≡ tj+1, instead of continuing to increment the
value for Ci+1,j+1 and discovering overlapping patterns, in the ACM we restart at
Ci+1,j+1 = 1. For instance, the ACM for the sequence T = (7, 8, 9, 7, 8, 9, 7, 8, 9)

and ≡, the equality on T , is presented in Figure 5.2.

Figure 5.2: Adapted Correlative Matrix for the sequence T = (7, 8, 9, 7, 8, 9, 7, 8, 9).
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In Figure 5.2, the longest discovered pattern is now: (7, 8, 9). Unlike the case
with the Correlative Matrix, the pattern (7, 8, 9, 7, 8, 9) is not discovered because
this pattern is repeated with overlapping with (7, 8, 9). The Correlative Matrix was
successfully used to discover approximate repeated patterns in a musical sequence,
allowing for overlaps. However, by defining the Adapted Correlative Matrix we can
retain the fundamental idea of the Correlative Matrix while avoiding overlaps, which
is required for the music segmentation task.

5.3 Algorithm for Extracting Hierarchical Segmenta-
tions Using the Adapted Correlative Matrix

In this section, we propose an algorithm to extract information from the Adapted
Correlative Matrix in order to obtain hierarchical segmentations of a musical se-
quence.

5.3.1 Algorithm for Iteratively Discovering the Most Distinct Pat-
terns

Let ACM be the Adapted Correlative Matrix of a sequence T = (t1, . . . , tn) with ≡ a
symmetric and reflexive relation. We describe here an algorithm that extracts data
from the ACM in order to identify segmentations of T in a hierarchical way. This
algorithm has three steps: it first selects the longest approximate repeating patterns,
then the most distinct of these, before removing it from the data and repeating the
process. The resulting hierarchy of segmentations is a natural consequence of this
algorithm.

• Step 1: Select the longest approximate repeating patterns
The longest approximate repeating patterns are defined by all the pairs
((ti−Ci,j , . . . , ti), (tj−Ci,j , . . . , tj)), where Ci,j = max1≤k,l≤nCk,l (the value of
the maximal coefficients of the ACM). Often there will be more than one
pattern tied for longest.

• Step 2: Select the most distinct pair
Among all the discovered pairs from step 1, the most distinct one is the one
that maximizes the number of repeating patterns that begin at the same time
than the starting note (reinforcing the beginning boundary) or immediately
after the two patterns of the pair (reinforcing the ending boundary). That is
to say, we choose the pair that maximizes the number of coefficients equal to
1 in columns i−Ci,j and j−Ci,j as illustrated in Figure 5.3(a) (patterns that
start at the same times as the pair) and in columns i+1 and j +1 illustrated
in Figure 5.3(b) (patterns that start just after the pair).

• Step 3: Remove the most distinct pair from the ACM
We then update the ACM by removing the most distinct pair and add bound-
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aries to the segmentation at the beginning and end of the most distinct pat-
terns. All coefficients of the most distinct pair become equal to 0 except for
the first coefficient which remains equal to 1 (this is useful in step 2 for future
iterations). Moreover, in order to have hierarchical segmentations, if a coeffi-
cient Ci′,j′ > 1 is on the same column or line as the beginning or the end of a
pattern of the most distinct pair, this coefficient is equal to 1 and Ci′+k,j′+k

is 0, which is described in more detail in the next section. This creates a
boundary that remains for the next segmentations and we thus obtain hierar-
chical segmentations. Finally, we go back to step 1 until there is no coefficient
greater than 1 in the ACM.

(a) Discovery of patterns that start
at the same time as the pair.

(b) Discovery of patterns that start
just after the end of the pair.

Figure 5.3: Criteria for step 2 of the algorithm to choose the most distinct pair of
patterns among the longest ones in the ACM.

5.3.2 Avoid Discovering Redundant Patterns

We describe here the condition in step 3 to avoid discovering redundant patterns
that are not interesting for the segmentation task. To understand this condition,
let us consider the sequence T composed of 1, 2, 3 repeated eight times with ≡
as the equality on T . The ACM of this sequence is shown in Figure 5.4(a) with
(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3) (of length 12) as the longest repeating pattern because
the first half of the sequence matches the second half. If the coefficients are not
reset to 0, the second longest repeating pattern is (1, 2, 3, 1, 2, 3, 1, 2, 3) (of length
9). However, this is rediscovering a pattern that comes from a match between the
first and second half of the T sequence, and which is in fact a sub-pattern of the
first discovered pattern. To avoid discovering such redundant sub-patterns, we add
the condition in step 3 where some coefficitens are reset to 0 in the loop of the algo-
rithm. In other words, when the most distinct pair ((ti−Ci,j , . . . , ti), (tj−Ci,j , . . . , tj))

is discovered, we exclude the possibility of discovering sub-patterns resulting from a



110
Chapter 5. Repetition-Based Algorithm for Generating Hierarchical

Segmentations of Music

match between the two patterns of the most distinct pair. To do this, we reset the
coefficients Cp,q and Cq,p to 0 when i − Ci,j ≤ p ≤ i and j − Ci,j ≤ q ≤ j. These
correspond to the two square areas in the ACM that contain the most distinct pair,
as represented in Figure 5.4 by the dashed orange areas. Coefficients greater than 1
are set to 0, while coefficients equal to 1 (meaning the starting point of a pattern)
are unchanged as they are useful for step 2 of the algorithm (selecting the most dis-
tinct pair). This is illustrated in Figure 5.4(b) where some of the ACM coefficients
have been reset to 0 while removing the first most distinct pair from the ACM.

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
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(a) The most distinct pair has
length 12 (the first half of the se-
quence matches the second half).
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(b) Since some coefficients have
been reset, the second most distinct
pair is of length 6 (not 9).

Figure 5.4: Some coefficients are reset to avoid discovering sub-patterns that come
from an already discovered pattern.

5.3.3 Application and Visualization of the Results

Let us take an example with the sequence of real numbers:

T = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3),

with ≡ as the equality on T . The resulting ACM is illustrated in Figure 5.5(a). The
maximal coefficient is 8, and two pairs of longest repeating patterns are discovered
and represented in Figure 5.5(b) and Figure 5.5(c). The pair that maximizes the
number of patterns that start at the same time and right after the end of the pair
is shown in Figure 5.5(c).

Hierarchical segmentations of musical notes have been studied by Lerdahl and
Jackendoff based on different rules on the proximity between notes, repetitions and
strong/weak accent of the rhythm in the GTTM [Lerdahl 1985]. They have repre-
sented hierarchical segmentations using a tree visualization. However, the method
developed in this chapter handles music objects other than notes and is able to
propose multiple hierarchical segmentations based on the chosen relation between
these objects. Therefore, we also used a tree representation to visualize hierarchical
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(a) Step 1: Two pairs of patterns
of length 8 are discovered in the
ACM.

(b) Step 2: For the first pair, 10
patterns start at the same time and
1 pattern starts after the end of the
pair (total: 10+1=11).

(c) Step 2: For the second pair, 9
patterns start at the same time and
5 patterns start after the end of the
pair (total: 9+5=14). This is the
most distinct pair.

(d) Step 3: The most distinct pair
is removed and boundaries are cre-
ated at the dotted orange columns
and lines (changes in black).

Figure 5.5: Illustration of the first loop of the algorithm. These three steps are
iterated until the coefficients of the ACM are only 0 or 1.

segmentations. By representing the length of the discovered patterns (the most dis-
tinct pairs), the tree visualization of the previous sequence T (with ≡ the equality)
is shown in Figure 5.6. In this case, our algorithm discovers four segmentations
that are hierarchically structured. The first segmentation is the sequence itself, so
the length of T (here 21) is represented at the top of the tree. The three other
discovered segmentations of T are:

• (1,2,3,4,5),(1,2,3,4,5,1,2,3),(1,2,3,4,5,1,2,3) represented by the line 5/8/8;

• (1,2,3,4,5),(1,2,3,4,5),(1,2,3),(1,2,3,4,5),(1,2,3) represented by the line
5/5/3/5/3; and,
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• (1,2,3),(4,5),(1,2,3),(4,5),(1,2,3),(1,2,3),(4,5),(1,2,3) represented by the line
3/2/3/2/3/3/2/3.

(a) Tree visualization of the hierarchical segmentations
where the numbers indicate the length of each discovered
repeating pattern.

1  2  3  4  5  1  2  3  4  5  1  2  3  1  2  3  4  5  1  2  3

(b) Hierarchical segmentations represented by grouping elements of
the sequence T .

Figure 5.6: Visualization of the different segmentations in a hierarchical way of the
sequence T = (1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 5, 1, 2, 3).

5.4 Applications to Symbolic Music Representations

The algorithm presented in Section 5.3 generates hierarchical segmentations of a se-
quence with a relation which characterizes the chosen approximation for discovering
when two patterns are nearly the same. In this section, we apply this algorithm
to various symbolic music representations: a sequence of notes (Section 5.4.1), a
sequence of chords (Section 5.4.2) and a sequence of bars (Section 5.4.3). In each
case, we propose several relations which lead to multiple hierarchical segmentations
and we illustrate the results using a tree visualization.

5.4.1 When T is a Sequence of Notes

Let T be a sequence of musical notes. There are many ways to define a musical
note. For example, a note can be defined as a triplet (p, o, d), as in [Giraud 2012b],
where p is the pitch, o the onset and d the duration of the note. This can also
be enriched to five parameters (o, p,mp, d, v) [Meredith 2002a], where mp is the
morphetic pitch [Meredith 1999] and v the voice where the note occurs. It is also
possible to add other parameters such as the velocity, general pitch interval rep-
resentation [Cambouropoulos 1996], etc. Among all the different parameters, we
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first choose here to define a note by its interval ∆pi = pi+1 − pi (pi being the
pitch of the ith note), then we have T = (∆p1, . . . ,∆pn−1). For example, let T be
the sequence of intervals of the first 64 intervals of the Prelude in C major from
the Well-Tempered Clavier by Johann Sebastian Bach (BWV 846). In this case,
T = (4, 3, 5, ..., 5, 4,−16). A key advantage of this representation is that it is invari-
ant to transpositions. There are also different choices for the relation ≡, because
they are many ways to define similarity between intervals [Giraud 2015]. Here we
use a similarity threshold [Rafael 2010] and an "up/down" relation which defines the
melodic contour [Ghias 1995]. Let ∆pi and ∆pj be two intervals of T and λ ∈ N,
these two relations are defined as follows (note that they are both symmetric and
reflexive):

• Similarity Threshold Intervals Relation:

∆pi ≡sim ∆pj ⇔ |∆pi −∆pj | ≤ λ

• Melodic Contour Relation:

∆pi ≡mc ∆pj ⇔ sgn(∆pi) = sgn(∆pj),

where sgn is the sign function defined by sgn(x) = 1,−1 or 0 if x > 0, x < 0

or x = 0.

The results of our algorithm for these two relations are illustrated in Figure 5.7.
We chose λ = 4 for the similarity threshold intervals relation to capture wide varia-
tions between intervals. The different hierarchical segmentations are represented as
trees, and in the score where the different colors represent different segmentations.

Since we chose λ = 4, the tolerance for two intervals to be equivalent with the
similarity threshold intervals relation is set high, i.e. the patterns are discovered with
a large approximation. As for the melodic contour, the two intervals simply need to
have the same sign. This explains why the two hierarchical segmentations discovered
in Figure 5.7(a) and Figure 5.7(b) are almost similar. However, the relation result-
ing from the melodic contour produces an additional segmentation, framed in dotted
red in Figure 5.7(b) and on the score in Figure 5.7(c), which we can interpret. When
looking at the first eight intervals of the T sequence, (4, 3, 5, 4,−9, 5, 4,−16), the 5th
and 8th intervals (−9 and −16 respectively) do not match with the similarity thresh-
old intervals relation because |(−9)− (−16)| = 7 > 4. Since 4 is in relation to 5 and
3 is in relation to 4, patterns (4, 3) and (5, 4) are discovered. The similarity thresh-
old intervals relation therefore yields the segmentation (4, 3)(5, 4)(−9)(5, 4)(−16)
indicated by the last line 2/2/1/2/1 in Figure 5.7(a). But, for the melodic con-
tour relation, the two intervals −9 and −16 are in relation because they are both
descending intervals. As a result, the patterns (5, 4,−9) and (5, 4,−16) are discov-
ered, leading to the segmentation (4, 3)(5, 4,−9)(5, 4,−16) which is indicated by the
2/3/3 line in Figure 5.7(b). This reasoning applies to the whole T sequence, not just
the first eight intervals, and explains why the melodic contour reveals an additional
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(a) Tree representation of the results based on the similarity threshold intervals
relation for λ = 4.

(b) Tree representation of the results based on the melodic contour relation.

    
                               










  

(c) Discovered hierarchical segmentations marked in the score for the two relations, where the blue
color indicates common segmentations for both relations, while the dotted red color indicates the
segmentation obtained only with the melodic contour relation.

Figure 5.7: Different trees of the same sequence of notes T (BWV 846) when the
relation between intervals changes. The melodic contour relation provides an addi-
tional segmentation framed in dotted red.

segmentation. Moreover, these nearly repeated patterns discovered with the differ-
ent relations could also be interesting for performance. For example, the identified
patterns could be ones that might be highlighted through prosodic variations like
dynamic accents; because the patterns are repeated and distinctive, they could also
sound perceptually plausible.

5.4.2 When T is a Sequence of Chords

Let T = (c1, . . . , cn) be a sequence of chords where chords of root C are labelled
from the set Ĉ = {C, C6, C7, C7

M , Cm, C6
m, C7

m, CM7
m ,C+,C+7,Co,Co7,Cø} and

similarly for other roots. We could define the relation between two chords by strict
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equality (ci ≡st cj ⇔ ci = cj) to have a strong constraint between chords, but this
runs the risk of being overly sensitive to small ornamental changes.

Let us instead define the ChordType function of a chord ci ∈ Ĉ (and similarly
for other roots) by:

ChordType(ci) =


Cmaj if ci = C,C6,C7,C7

M ,

Cmin if ci = Cm,C6
m,C7

m,CM7
m ,

Caug if ci = C+,C+7, and
Cdim if ci = Co,Co7,Cø

For example ChordType(C7
m) = Cmin or ChordType(F♯7) = F♯maj . Let ci and cj

be two chords of T , we can then define the ChordType relation ≡ct on T by:

ci ≡ct cj ⇔ ChordType(ci) = ChordType(cj)

Some other relations, which we will not develop here, could include threshold rela-
tions based on the distance of chords within the Tonnetz [Krumhansl 1998] or one
of the parsimonious relations defined by Douthett and Steinbach [Douthett 1998].

Let us take as example the song In My Life from The Beatles, released in 1965.
All the songs from The Beatles are annotated at http://isophonics.net with:
structural segmentation, key changes, chords, and beats. According to this database,
the chords of the song are: T = (A, E, A, E, A, E, Fm♯, A7, D, Dm, A, A, E, Fm♯,
A7, D, Dm, A, Fm♯, D, G, A, Fm♯, B, Dm, A, A, E, A, E, Fm♯, A7, D, Dm, A, A,
E, Fm♯, A7, D, Dm, A, Fm♯, D, G, A, Fm♯, B, Dm, A, A, E, Fm♯, A7, D, Dm, A, A,
E, Fm♯, A7, D, Dm, A, Fm♯, D, G, A, Fm♯, B, Dm, A, A, E, Dm, A, E, A).

The results of the algorithm applied to this sequence T with the relation ≡ct are
represented in Figure 5.9. We can compare the hierarchical segmentations obtained
by our algorithm with the annotated structure from the database represented in
Figure 5.8.

0.000   0.416   :   silence
0.416   9.616   :   intro
9.616   28.302  :   verse
28.302  46.719  :   bridge
46.719  51.438  :   half-intro
51.438  70.206  :   verse
70.206  88.700  :   bridge
88.700  107.253 :   verse_(instrumental)
107.253 125.659 :   bridge
125.659 143.715 :   outro
143.715 147.973 :   silence

Figure 5.8: Annotated segmentation of In My Life from The Beatles where the three
section of the piece are framed in dotted red.

http://isophonics.net
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Figure 5.9: Hierarchical segmentations of The Beatles’ In My Life based on the
chord sequence where the three main sections framed in dotted red are correctly
discovered.

We can observe that the second line (2/2/22/2/22/22/6) contains three main
sections of length 22 framed in dotted red. Each of these sections corresponds to
Verse/Bridge and the remaining sections of length 2 and 6 map to the Intro,
Half-intro and Outro. In the third line, i.e. (2/2/7/7/8/2/7/7/8/7/7/8/6), the
Verse section is subdivided into two sequences of 7 chords and the Bridge is a
sequence of 8 chords. In this example, the algorithm correctly identifies the different
segmentations because repetition is enough to discover the main sections.

5.4.3 When T is a Sequence of Bars

Let T = (b1, . . . , bn) be a sequence of musical bars. Each bar contains a set of notes
where the number of notes can be different from one bar to the next. One way to
define a relation ≡ between two bars bi and bj is to consider the number of common
notes between bi and bj . For example, bi and bj can be considered in relation if they
share at least a certain proportion of their notes, that is to say:

bi ≡ bj ⇔
2|bi ∩ bj |
|bi|+ |bj |

≥ λ,

where |bi| is equal to the number of notes of the bar bi and 0 ≤ λ ≤ 1.
With this definition, we compute the hierarchical segmentations of the song

as in the previous section, In My Life from The Beatles, by choosing λ = 0.5,
which ensures that two bars are equivalent if they share at least half the notes. The
results, represented in Figure 5.10, are similar to Figure 5.9 with three main sections
of equal length for the second line which correspond to the Verse/Bridge section.
The Intro, Half-intro and Outro are also represented on this line. Note that some
bars contain more than one chord, e.g. in the Verse and Outro, which is why there
are more chords in Figure 5.9 than bars in Figure 5.10.

It is possible to change the relation ≡ between two bars bi and bj by adapt-
ing the λ threshold. For example, to allow greater flexibility for two bars to be
equivalent, we can choose λ = 0.3, which means that two bars are equivalent if
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Figure 5.10: Hierarchical segmentations of In My Life from The Beatles based on a
sequence of bars where the three main sections framed in dotted red are correctly
discovered.

they share at least 30% of common note. We used this value to discover the hier-
archical segmentations of some of Chopin’s Mazurkas, making it possible to iden-
tify bars as similar even with musical variations (such as the one at the end of
Mazurka 6-2). Chopin composed Mazurkas throughout his career (with a total of at
least 59 Mazurkas), and Witkowska-Zaremba explains that his compositional style
has evolved over time [Witkowska-Zaremba 2000]. The first Mazurkas he composed,
Op.6, 7, 17 and 24, have a simple segmentation and make extensive use of repeti-
tion. A ground truth is given by Witkowska-Zaremba on the segmentation of seven
of these Mazurkas: 6-1, 6-2, 7-1, 7-2, 17-3, 24-1, 24-3, which is displayed in Fig-
ure 5.11. Other Mazurkas composed later have a more complicated segmentation.
These seven Mazurkas are therefore a good study material for academic purposes
and for applying our algorithm developed in this chapter. The results are displayed
in Figure 5.11 with a tree representation and are commented in Table 5.1. When the
Mazurka includes an anacrusis (i.e. a note or set of notes, which can be considered
as an incomplete bar, that precedes the first bar of a piece) this is interpreted as a
bar by our algorithm. In the case of Mazurkas, this is usually just one note, which
is correctly discovered by the algorithm and indicated by a “1” on the far left in the
tree representation in Figure 5.11 for Mazurkas 6-1, 7-2, 17-3 and 24-1. However, it
is important to point out that even though the results are good overall, these seven
mazurkas have a very simple structure that can be detected based essentially on
repetition. We believe that this method would not work as well for discovering the
segmentations of Chopin’s other Mazurkas.

Finally, it is also possible to define the relation between two bars without con-
sidering the number of common notes. For instance, by determining the musical
chord or key of a bar using a key-finding function, Key, which can be based on
the Krumhansl-Schmuckler Key-Finding Algorithm [Temperley 1999] or the Spiral
Array Model [Chew 2001]. Then, we can define the Key relation ≡key between two
bars bi and bj by:

bi ≡key bj ⇔ Key(bi) = Key(bj)



118
Chapter 5. Repetition-Based Algorithm for Generating Hierarchical

Segmentations of Music

(a) Mazurka 6-1 (a + A16A16B8A16B8A16C16A16).

(b) Mazurka 6-2 (i8A8A8B8A8B8A8C16i8A8A
′
8).

(c) Mazurka 7-1 (A12A12B8A12B8A12C8A12).

(d) Mazurka 7-2 (a + A16A16B8A
′
8B8A

′
8C8D8C8D8C8A16).

(e) Mazurka 17-3 (a + A16B8A16B8A16C16D8C16D8C16A16B8A16).

(f) Mazurka 24-1 (a + A16B16A16B16C16A16).

(g) Mazurka 24-3 (A12A12B12A12B12A12K8).

Figure 5.11: Results of the algorithm visualized with a tree representation on seven
of Chopin’s Mazurkas. The ground truth is shown in parentheses, where “a +”
indicates an anacrusis.
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Table 5.1: Commented algorithm results on Chopin’s Mazurkas.
M Results
6-1 Good results on the third line of the tree. The anacrusis is isolated.

The A16B8 sections are interpreted as a large section on the second line
because they are repeated.

6-2 Good results on the third line of the tree. The i8A8A8 and B8A8

sections are interpreted as a large section on the second line because
they are repeated (the repetition is detected even with the A′

8 variation).
7-1 Good results on the third line of the tree. The A12B8 sections are inter-

preted as a large section on the second line because they are repeated.
7-2 Acceptable results on the third line of the tree, but the A16 section

is divided into two parts. The anacrusis is isolated. The second line
merges the second half of A16 with B8.

17-3 Acceptable results on the fourth line of the tree. The anacrusis is iso-
lated. The sections A16B8A16 (respectively A16B8) are interpreted as
a large section on the second line (respectively third line) because they
are repeated.

24-1 Acceptable results. The anacrusis is isolated. Sections A16 and B16

are divided into two because they are composed of two identical parts.
Sections A16B16 are interpreted as a large section on the second line
because they are repeated.

24-3 Good results on the third line of the tree. The A12B12 sections are
interpreted as a large section on the second line because they are re-
peated.

5.5 Conclusion

In this chapter, we have further expanded the generalization of Correlative Matrices
that began with their parametric extension to accept a wide family of relations
that define the degree of approximation of repeated patterns. In order to avoid
overlapping patterns, we have proposed the Adapted Correlative Matrix, a data
structure which represents the repeated patterns of a musical sequence without
overlaps. We then defined the novel distinctiveness criterion, which characterizes
the number of repeated patterns that starts at the same time or at the end of a
pattern, and proposed an algorithm that iteratively selects patterns based on their
distinctiveness to generate hierarchical segmentations. We have demonstrated the
usefulness of the proposed method with various music objects from symbolic music
representations. Several such relations that are musically relevant have also been
presented, but many more can be conceived, including relations that would apply
to audio-based objects, for instance, between two frames of a spectrogram. By
adjusting which relation to focus on, it is possible to access a much broader meaning
of what constitutes a repeated pattern, allowing this approach to be applied to music
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genres which do not typically exhibit the strong repetitions that are usually required,
while preserving the algorithm lightweight advantage.

However, it is important to mention that the proposed method in this chapter has
some limitations. First of all, since the algorithm iteratively detects segmentations,
a poor choice at the early stages of the algorithm causes a boundary that remains
unchanged for the others discovered segmentations. Secondly, this algorithm is based
exclusively on repetition to obtain hierarchical segmentations, but other criteria
must also be taken into account to discover musical sections, such as homogeneity,
as covered in Chapter 4. Lastly, we have not tested this method on a large database
to evaluate it properly which would provide a better understanding of its weaknesses.

Finally, the representation and algorithms proposed in this chapter can be easily
adapted to large datasets without requiring data training. However, at the moment,
human knowledge or feedback are still very important in order to pick a represen-
tation and relation that is appropriate for the piece and the desired outcome. We
expect that the Adapted Correlative Matrix representation would be a powerful tool
for machine learning methods that can tailor relation operators to specific music in-
put and find explanatory models for music segmentation.
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This chapter presents a novel approach to represent the expressivity of recorded
performances using a 2-simplex, a graphical representation used to visualize three-
interval rhythms. We analyze the MazurkaBL dataset, which contains beat-level
tempo and loudness data of over 2000 recorded performances of 46 Chopin Mazurkas.
Mazurkas’ triple time lends themselves well to the 2-simplex; the expressive features
of each three-beat bar map directly to unique points in the 2-simplex.

Section 6.1 reviews the existing computational methods for music performance
analysis. Section 6.2 introduces the rhythm simplex and reviews related work. Sec-
tion 6.3 presents the dataset we used and explains why the 2-simplex representation
is relevant to this dataset. Section 6.4 describes the proposed method, by first pro-
viding a transformation to convert a three-interval information into the 2-simplex,
then proving that the choices of inter-beat intervals or tempo data are equivalent
when timing variation are small, and explaining the impact of smoothing the data in
the 2-simplex representation. Section 6.5 presents analyses and interpretations that
can be made with the simplices, such as visualizing time suspensions, characterizing
the notion of regularity of a performance, and identifying the bars with notable
expressive variations. Section 6.6 provides other applications for the 2-simplex rep-
resentation, and Section 6.7 concludes this chapter.

This chapter is an extended version of the article “Characterizing
and Interpreting Music Expressivity through Rhythm and Loudness Sim-
plices” [Lascabettes 2023].

6.1 Computational Models for Music Performances

Characterizing and interpreting expressivity in performed music is a fundamental
problem in fields such as musicology, music perception, and music analysis. More-
over, the emergence of computational models has produced significant advances in
expressive music research [Widmer 2004]. Computational modeling of expressive
music performance requires large-scale databases; to create such databases, it is
more expedient to focus on piano music. We focus on the piano pieces of the ro-
mantic period, which allow for greater expressive variations. A significant amount
of this repertoire has been written for solo instruments, which makes comparative
analysis of performances more straightforward. Furthermore, with the existence
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of computer-controlled pianos such as the Bösendorfer Enspire PRO and Steinway
Spirio, realistic piano performances can be readily captured with accuracy, which
is not the case with other instruments. Therefore, the majority of performance
research focuses on piano music.

Due to the resources amassed for and made available by the Mazurka Project1,
numerous studies have been based on Chopin’s Mazurkas. A main purpose of
the initial studies was to identify correlations between performed tempo and be-
tween performed loudness features [Cook 2007, Sapp 2007, Sapp 2011, Cook 2014].
These analyses were based on selected Mazurka recordings. More recently,
beat level tempo and loudness information of 2000 recorded Mazurkas have
been extracted and made available for research [Kosta 2018]. Other studies
have focused on generating Mazurka performances using machine learning mod-
els [Shi 2021]. The two main expressive parameters considered are tempo and
loudness variations [Cancino-Chacón 2018]. Using these two parameters, trajec-
tories in tempo-loudness space [Langner 2003] were traced to represent the perfor-
mance. Another representation of tempo and loudness curves for analysis is the arc
model [Gabrielsson 1987, Todd 1992]. Arc models have been successfully used to
determine the segmentation of a piece based only on the loudness and tempo curves
versus time [Widmer 2003, Chuan 2007, Stowell 2013].

In this chapter, we propose to represent beat-level tempo and loudness infor-
mation of a Mazurka performance in tempo and loudness simplices, a graphical
representation used in music to analyze the perception of three-interval rhythms.
This is the first time these simplices are applied to visualize Mazurka performances.
This representation makes it straightforward to determine performance characteris-
tics such as the accented beat in a bar or the regularity of a performance.

6.2 The Rhythm Simplex

In this section, we introduce the rhythm simplex, a graphical representation used
to visualize three-interval rhythms, and related work.

6.2.1 Presentation of the Rhythm Simplex

The rhythm simplex, also known as a rhythm chart or chronotopological map, is a
graphical representation developed for visualizing three-interval rhythms. The idea
of the rhythm simplex is that any three-interval rhythm can be represented in a
2-dimensional plot if the total duration of the rhythm is fixed (usually normalized
to 1). For example, A = [0.50, 0.25, 0.25] and B = [0.33, 0.33, 0.33]. By fixing the
total duration, it is sufficient to know the first two intervals to deduce the third
one. So a 2-dimensional plot can be used to visualize the rhythm. Thus, a three-
interval rhythm is mapped to a unique point in the rhythm simplex. As illustrated
in Figure 6.1(a), this 2-dimensional plot is a 2-simplex, i.e. a triangle. Figure 6.1(b)

1http://www.mazurka.org.uk/

http://www.mazurka.org.uk/
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represents the rhythm simplex where each side of the triangle corresponds to one
of the three intervals. In this figure, each three-interval rhythm is represented by a
unique point. The rhythm A is located by the light blue arrows, while the rhythm
B is in the middle of the rhythm simplex.

0

1

Interval 1

Interval 3

Interval 2
1

1

Rhythm 
Simplex

(a) The space of three-interval rhythms in the 2-simplex.

A : [0.50, 0.25, 0.25]

B : [0.33, 0.33, 0.33]

C : [0.25, 0.50, 0.25]A
B

C

0 0.50 0.75 1

0 0.33 0.66 1

0 0.25 0.75 1

(b) Rhythm simplex where the three-interval rhythms A, B, and C are repre-
sented by unique points in the 2-simplex.

Figure 6.1: Three-interval rhythms in the rhythm simplex (adapted from Desain &
Honing [Desain 2003]).

6.2.2 Previous Works Related to the Rhythm Simplex

The use of the simplex representation in music was introduced by Desain and
Honing [Honing 2002, Desain 2003] to understand how listeners perceive rhythm
categories. They asked the listeners to identify three-interval rhythms on a con-
tinuous scale to determine areas in the rhythm simplex representing equivalence
classes. These rhythm equivalence classes can evolve according to parameters such
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as tempo [Handel 1993], loudness or melodic structure [Tekman 1997]. Vaquero and
Honing [Patricio 2014] created paths within these areas to generate performances.
Based on a type of formal grammar called Lindenmayer systems [Lindenmayer 1968],
they defined paths in the rhythm simplex to generated expressivity in music. Bååth
et al. [Bååth 2014] implemented a dynamical systems model to reproduce the cat-
egorical choices of listeners to retrieve these areas in the rhythm simplex. More
recently, Jacoby and McDermott [Jacoby 2017] ran a study where random rhythms
in the rhythm simplex had to be reproduced by participants. Participants converged
to rhythms having integer ratios after five iterations. They showed that the areas
defined in [Desain 2003] have little dependence on musical training but are highly
dependent on cultural biases. For instance, listeners in the United States had dif-
ferent results than native Amazonian listeners. Nave et al. [Nave 2021] conducted
a similar experiment to the one in [Jacoby 2017] with iterative reproductive tasks
based on random rhythms in the rhythm simplex, but with children. They demon-
strated the existence of rhythm priors in children, also related to cultural biases,
which would develop in middle childhood.

Finally, these different studies used the rhythm simplex to understand the per-
ception of three-interval rhythms, whether in populations of different cultures or of
different ages. Only Vaquero and Honing have applied it to musical performances,
but for generation rather than analysis. Here, we propose a new approach to use
the rhythm simplex to represent musical performances in order to characterize and
interpret music expressivity.

6.3 Mazurka Performances

In this section, we present the dataset that we use in this chapter and explain how
the rhythm simplex can be used to represent the essential expressive features of
Mazurka performances.

6.3.1 The Dataset

To map a large number of Mazurka performances to the rhythm simplex for analysis,
we used the MazurkaBL dataset [Kosta 2018]. This is currently by far the largest
database of annotated performed classical music having multiple performances of
each piece. The MazurkaBL contains beat level duration and loudness annotations
for over 2000 recorded performances of 46 Chopin Mazurkas. There are, on average,
more than 40 distinct performances per Mazurka.

This dataset was made by manually annotating the beats of one recording of
a Mazurka and automatically transferring these annotations to other recordings of
the same piece through audio alignment. It is important to note that we used
a smoothed version of the loudness data. Kosta et al. [Kosta 2018] filtered the
loudness annotations by local regression using a weighted linear least squares and a
2nd degree polynomial model (the LOESS method of MATLAB’s smooth function)
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with window sizes that are 1/30-th of the length of the recorded Mazurka while the
tempo annotations are raw. It is therefore essential to take this into account, as
it has an impact on the position of points in the 2-simplex and therefore on their
interpretation, as explained in the following sections.

6.3.2 Representing Mazurka Performances in 2-Simplices

As described in Section 6.2.1, the rhythm simplex represents a three-interval rhythm
as a unique point in a 2-dimensional plot. The use of the rhythm 2-simplex must
therefore be applied to rhythm data that can be split into groups of three intervals,
which is not the case for any general temporal data. However, Chopin’s Mazurkas
is particularly well suited to rhythm simplex representation because Mazurkas are
folk dances mostly in triple meter, i.e., they are mostly pieces with three beats in
each bar. On very rare occasions, some of Chopin’s Mazurkas may contain bars
that are not in triple meter, in which case these bars are removed from the analysis.
Otherwise, the three beats can be seen as three intervals which have equal duration
in the score but whose time is rendered differently in performance. Therefore, a bar
of a performed Mazurka can be mapped into the rhythm simplex as a single point.
By viewing the recording of a Mazurka as a sequence of performed three-beat bars,
we can represent the recording by a set of points in the rhythm simplex. The rhythm
simplex can show not only the timing variations in each bar, it can also display the
beat accentuation because the loudness data of each beat of a three-beat bar can
also be represented in a 2-simplex. For Mazurkas beginning with an anacrusis, we
ignore the notes that come before the first full bar of music. Therefore, the essential
expressive features of the musical performance of the Mazurkas can be visualized
using 2-simplices because most of bars have three beats.

6.4 The Method to Represent Mazurka Performances in
2-Simplices

In this section, we give the transformation that we use to convert three-interval
information into points in the 2-simplex. For the information related to rhythm, we
prove that using inter-beat intervals or using tempo are equivalent in the 2-simplex
representation. For the information related to loudness, we introduce the loudness
simplex and explain how smoothing the data impacts the coordinates in the simplex.

6.4.1 Computing Points in the 2-Simplex

Previous articles on the rhythm simplex (see Section 6.2.2) have not explicitly pro-
vided the transformation to map a three-interval rhythm to a point in the rhythm
simplex. Here, we provide the transformation we use to convert three-interval in-
formation to a point in 2-simplex.
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First, we fix the vertices of the 2-simplex on the unit circle, i.e. the vertices are
(0, 1), (

√
3
2 ,−1

2), and (−
√
3
2 ,−1

2) (which are represented in Figure 6.1(b) by the top
vertex, the bottom right vertex, and the bottom left vertex, respectively). In this
case, the middle of the triangle is at the origin (0, 0) (represented by point B in
Figure 6.1(b)).

Let B = (b1, b2, b3) represent some properties of a three-beat bar such that
b1+ b2+ b3 = 1, where b1, b2, and b3 are three positive numbers. The corresponding
point (x, y) in the 2-simplex is defined by:

x =

√
3

2
−
√
3

2
b3 −

√
3b1 (6.1)

y =
3

2
b3 −

1

2
(6.2)

Reciprocally, given a point (x, y) in the 2-simplex, the corresponding bar B =

(b1, b2, b3) is defined by:

b1 =
1

3
− 1√

3
x− 1

3
y (6.3)

b2 =
1

3
+

1√
3
x− 1

3
y (6.4)

b3 =
1

3
+

2

3
y (6.5)

This defines a bijection between the 2-simplex and a normalized feature of the three-
beat bars.

6.4.2 Inter-Beat Intervals and Tempo Data in the 2-Simplex

To represent a recorded Mazurka performance (or any performed piece in triple
time) in the rhythm simplex, we compute inter-beat intervals from the beat onset
information in the MazurkaBL. This gives us the duration of each beat, (d1, d2, d3),
in a bar. We scale this vector so that the elements sum to one to get (b1, b2, b3),
where bi =

di
d1+d2+d3

for i = 1, 2, 3. The normalized durations in that bar then map
to a point in the rhythm simplex according to Equations 6.1 and 6.2. In this way, we
map the performed beat durations of all bars to the rhythm simplex. For example,
in Figure 6.2, the different interpretations of the first four bars of Mazurka 6-1,
obtained from the MazurkaBL dataset, are represented in the rhythm simplex. In
this case, the first note is not considered, as Mazurka 6-1 begins with an anacrusis.
Each point in a rhythm simplex corresponds to an interpretation of a bar, where
the temporal deformation of the three beats (d1, d2, d3) can be visualized. We can
notice that all the performers follow a similar path. For instance, for the first bar,
all points tend to be on the left in the simplex (meaning a long first beat and a short
second beat). Whereas on the second and fourth bars, the points are on the right
in the simplex (meaning a short first beat and a long second beat). Finally, for the
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Figure 6.2: Visualization of different interpretations of the first four bars of Mazurka
6-1 in the rhythm simplex. Each point in a rhythm simplex corresponds to the
interpretation of a bar by a performer, where the temporal deformation of the three
beats of the bar is visualized.

third bar, interpretations are on average more regular as the points are concentrated
in the middle of the simplex.

Previous studies on Mazurkas use tempo data rather than duration data. To
generate comparable results, we can also compute the respective beat-to-beat tempo
of a bar (t1, t2, t3) with ti = 60/di for i = 1, 2, 3, and normalize the values for
mapping to a 2-simplex. However, which data should we choose: inter-beat intervals
or tempo? We show with the following proposition that the points in the 2-simplex
based on inter-beat intervals or tempo data have approximately the same coordinates
up to one symmetry with respect to the origin. This proposition shows that the
choice of tempo or duration does not matter in the 2-simplex representation.

Proposition 6.1: Inter-beat intervals or tempo?

Let (d1, d2, d3) denote three inter-beat intervals of a bar and (x, y) the cor-
responding point in the 2-simplex. When (x, y) is close to the origin, the
2-simplex mapping of the beat-to-beat tempo of the same bar (t1, t2, t3) is
approximately (−x,−y).

Proof. Let d = d1 + d2 + d3 and bi =
di
d for i = 1, 2, 3. Now, normalize the vector

(t1, t2, t3) and find its coordinates (xT , yT ) in the 2-simplex.
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with (b1, b2, b3) expressed with x and y as shown in Equations 6.3, 6.4 and 6.5. The
vector (d1, d2, d3) represents the duration of each beat of a bar. In a performance
without large timing variations, the bi’s are close to 1

3 and (x, y) is close to (0, 0)

in the 2-simplex (i.e. close to point B shown in Figure 6.1(b)). When x and y are
close to zero, x2, y2, and xy are negligible. In this case, we get:

b1b2 ≈
1

9
(−2y + 1), b1b3 ≈

1

9
(y −

√
3x+ 1),

b2b3 ≈
1

9
(y +

√
3x+ 1), b2b3 + b1b3 + b1b2 ≈

1

3

Applying the transformation in Equations 6.1 and 6.2 to the vector (t1, t2, t3) nor-
malized with the approximations (i.e. x2, y2, and xy are negligible), we have:
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√
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2
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3
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3
(y +

√
3x+ 1)) = −x,

and
yT ≈

3

2
(
1

3
(−2y + 1))− 1

2
= −y

To illustrate this result, Mazurka 6-1 performed by Luisada is represented in a
2-simplex in Figure 6.3(a) based on inter-beat intervals, and in Figure 6.3(b) based
on beat-to-beat tempo. We can see that the point sets are similar in both figures
up to one symmetry with respect to the origin.

6.4.3 The Loudness Data in the 2-Simplex

Because loudness data are also available in the MazurkaBL dataset, we extend the
rhythm simplex to the representation of loudness. We define the loudness simplex
by considering the relative proportion of loudness for each beat in a three-beat
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(a) Representation of Mazurka 6-1 performed
by Luisada in the 2-simplex based on beat-to-
beat duration.
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(b) Representation of Mazurka 6-1 performed
by Luisada in the 2-simplex based on inter-beat
intervals.

Figure 6.3: Inter-beat intervals and tempo data represented in a 2-simplex to illus-
trate the symmetry with respect to the origin between the two sets of points.

bar. This is exactly the same idea as for rhythm; as we shall see later, it provides
additional insights.

Because the loudness data have been smoothed with a LOESS filter by Kosta
et al. [Kosta 2018], the loudness curves as a function of time tend to be smoother,
involving fewer local maxima or minima. This has a direct consequence on the
coordinates of the points in the loudness simplex. Figure 6.4 shows the triangle of
the 2-simplex split into four regions: two areas, in blue, located at the top right and
bottom left of the simplex; and, two areas, in red, located at the top left and bottom
right. The two blue areas correspond to points in the simplex where the loudness
increases or decreases with time within a bar. At the top right of the simplex, the
elements are increasing, while at the bottom left they are decreasing. Musically,
these areas translate to bars where the performer has an ascending (top right) or
descending (bottom left) movement within that expressive property. Conversely,
the points in the simplex are located in the red zone if the second beat is a local
minimum or maximum, which is more seldom seen with loudness data because the
data have been smoothed. Thus, as can be seen in Figures 6.6(a) and 6.6(b), when
representing the loudness data in the 2-simplex, the points tend to stay in the
blue area because the data have been smoothed. However, this does not exclude
performance information as we will see in the rest of this chapter. Note that this
reasoning applies to any type of smoothed data projected into a 2-simplex.
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Figure 6.4: Area in the loudness simplex characterized by an increasing loudness
curve (in blue) or local maxima or minima (in red) in the bar.

6.5 Analysis and Interpretation of Musical Expressivity
Using the Simplices Representation

In this section, we present analyses and interpretations that can be derived from
the simplices representation. This includes visualizing tipping points (here real-
ized as time suspensions) introduced by the performer, defining the regularity of a
performance, and identifying bars that exhibit notable expressivity.

6.5.1 Visualize Time Suspensions in the Simplex

Some recorded Mazurkas display musical tipping points [Chew 2016] which present
as significant temporal suspensions. These time elongations may be indicated in the
score as fermatas or may simply be inserted by the performer. Representing these
Mazurka performances in the rhythm simplex allows these temporal deformations
to be visible. For example, in Mazurka 24-3, bars 10, 22, 46, and 70 are identical
and have a fermata marked and executed on the second beat. Thus, the duration
of the second beat of these bars is significantly longer than others, making them
more important. Therefore, the points corresponding to these bars are situated at
the bottom right of the rhythm simplex. For example, by representing Uninsky’s
interpretation of Mazurka 24-3 in the rhythm simplex, we can easily extract these
bars as shown in Figure 6.5(a). These temporal suspensions are present in most
interpretations of Mazurka 24-3, so these four points in the bottom right of the
simplex are seen in other interpretations as well. For example, they are also found in
the Biret and Kushner interpretations shown in the rhythm simplex in Figures 6.5(b)
and 6.5(c). These tipping points [Chew 2016] allow performers to pause to highlight
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certain notes or harmonies to create tension and anticipation [Herremans 2016]; in
the case of Figure 6.5, it is the highest note of the bar on the second beat.

(a) Uninsky’s interpretation of Mazurka 24-3.
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(b) Biret’s interpretation of Mazurka 24-3.
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(c) Kushner’s interpretation of Mazurka 24-3.

Figure 6.5: Temporal suspensions of the second beat of bar 10, 22, 46, and 70 of
Mazurka 24-3 indicated as fermatas in the score and visualized by isolated points in
the bottom right of the rhythm simplex.

6.5.2 Characterizing the Regularity of a Performance Using the
Simplices Representation

During a musical performance, some performers allow themselves greater latitude in
their temporal and loudness variations than others. However, quantifying these vari-
ations to define the regularity of a performance is not easy [Cancino-Chacón 2018].
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If a performer chooses to always accentuate the first beat of each bar, the per-
formance could be described as regular, even though the differences in tempo and
volume per beat can be large during the piece. Therefore, it is not sufficient to
characterize the regularity of a performance by the sum of the deviations per beat
from the average of tempo and loudness. Hence, we propose to quantify the reg-
ularity of a performance using the 2-simplices. To get an intuition about this, see
Figure 6.6(a) where the points are very dense in the loudness simplex meaning that
the loudness variations are very regular. On the other hand, in Figure 6.6(b), the
points are more spread out because the loudness varies less regularly.
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(a) Small area of the ellipse in the loudness sim-
plex from Kapell’s interpretation of Mazurka
6-2 indicating an interpretation with regular
loudness.
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(b) Large area of the ellipse in the loud-
ness simplex from Ohlsson’s interpretation of
Mazurka 6-2 indicating an interpretation with
non-regular loudness.

Figure 6.6: Example of regular and non-regular performed loudness shown by a
small and a large ellipse area in the loudness simplex. Kapell’s ellipse area is three
times smaller than Ohlsson’s, pointing to greater loudness regularity.

We propose to define the regularity of a performance from the covariance matrix
of the points in the 2-simplex as follows. Let (xi, yi)1≤i≤n denote the points in the
simplex and Σ their covariance matrix:

Σ =

(
Cov(X,X) Cov(X,Y )

Cov(Y,X) Cov(Y, Y )

)
,

where X = (xi)1≤i≤n, Y = (yi)1≤i≤n,

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, and Cov(X,Y ) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

Let λ1 and λ2 denote the eigenvalues of Σ. They define an ellipse2, whose semi-axes
lengths are

√
λ1 and

√
λ2. The orientation is derived from Σ as well, but not involved

2We used the matplotlib package https://matplotlib.org/stable/gallery/statistics/
confidence_ellipse.html, with the default setting n_std=3.0, for the ellipses in Figure 6.6.

https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html
https://matplotlib.org/stable/gallery/statistics/confidence_ellipse.html
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in the regularity computation. We define the regularity value of a performance as
the inverse of the area of that ellipse.

Since the area of an ellipse is equal to the multiplication of π by the length
of the semi-major and the semi-minor axes, it is easy to compare the regularity
of two performances in the 2-simplex. Using the example in Figure 5, Kappel (λ1

and λ2 as eigenvalues) is 2.995 times more regular than Ohlsson (λ′
1 and λ′

2 as
eigenvalues) because

√
λ′
1λ

′
2/
√
λ1λ2 = 2.995. This reasoning can be applied across

interpretations to other expressive features like beat-level tempo and duration.

6.5.3 The Most Distant Points in the Simplex Indicate Bars With
Notable Musical Expressivity

The ellipses described in the previous section correspond to points having the same
Mahalanobis distance to the center [Mahalanobis 1936]. Distinct from Euclidean
distance, the Mahalanobis distance takes into account the distribution of points in
the simplex. Given two points (x1, y1) and (x2, y2) in the 2-simplex, the Mahalanobis
distance is defined by:

d

((
x1
y1

)
,

(
x2
y2

))
=

√√√√(
x1 − x2
y1 − y2

)T

Σ−1

(
x1 − x2
y1 − y2

)

This distance is useful in our case because there is often a correlation between
the coordinates of the points in the simplex, in particular, for points in the loudness
simplex, the x coordinate increases when the y coordinate increases (but the reason-
ing is also correct for the rhythm simplex). For example, in Figure 6.6, the points
are aligned in the simplex because the loudness data have been smoothed, as de-
tailed in Section 6.4.3. In this case, the Mahalanobis distance allows us to give more
importance to the points that do not follow this alignment. Thus, the points with
a high distance value compared to the average are the bars that present a strongly
divergent musical expressivity according to the simplex feature. For instance, we
can identify the temporal elasticity in the interpretations of Mazurka 24-3 which are
represented in the rhythm simplex in Figure 6.5. We computed the Mahalanobis
distance between each simplex point and the mean for these three interpretations
and plotted the result in Figure 6.7. Bars that have an extreme time elongation on
the second beat, i.e. bars 10, 22, 46, and 70 of Mazurka 24-3 represented by the four
points at the bottom right of the rhythm simplex in Figure 6.5, are located almost
at the end of each A section and have a high distance value due to their divergent
interpretation as compared to other bars, indicated by local maxima in Figure 6.7.
Thus, by considering the maximum values of the Mahalanobis distance between the
simplex points and their mean, we can detect the bars that have a notable expres-
sive variation. For example, in Figure 6.7, bar 34 also has a high distance value in
all three interpretations because the first beat is considerably longer than the other
two, which can be seen in the top corner of the rhythm simplices in Figure 6.5.
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(a) Uninsky’s interpretation of Mazurka 24-3.
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(b) Biret’s interpretation of Mazurka 24-3.
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(c) Kushner’s interpretation of Mazurka 24-3.

Figure 6.7: Mahalanobis distance between the points of the interpretations of
Mazurka 24-3 in the rhythm simplex shown in Figure 6.5. High distance values
are bars with notable expressive variations. For example, bars 10, 22, 46, and 70
have high distance values because their second beats are elongated, while bar 34 has
its first beat elongated.
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6.6 Other Applications of the Rhythm Simplex

In this section, we present further applications of the rhythmic simplex; we demon-
strate that it can also be used to visualize speech-voice rhythms and irregularities
in electrocardiograph data.

6.6.1 Application to Speech Voice Rhythms

We employed the rhythm simplex to demonstrate the connection between the
rhythm of a spoken sentence and its linguistic content, specifically the words within
the sentence. To do this, we conducted research with the Att-HACK database, which
contains 20 speakers interpreting 100 French utterances in four different social at-
titudes with 3-5 repetitions each per attitude [Le Moine 2020]. The four attitudes,
which are friendly, seductive, dominant, and distant, make it possible to obtain a
variety of pronunciations for each utterance. We therefore assume that the different
speakers (male and female), together with the different attitudes repeated several
times, cover a wide prosodic range that accounts for real-life pronunciations of those
sentences.

To visualize utterances in 2-simplices, we restricted ourselves to utterances of
3 syllables, in order to have three-interval data. There are 11 different utterances
from the Att-HACK database that have exactly three syllables. For each of these
utterances, there are over 300 different recordings (with different actors and atti-
tudes) for a total of 3972 recordings of utterances with 3 syllables. These utterances
and their occurrences are presented in Table 6.1.

Table 6.1: The various three-syllable utterances in the Att-HACK database and
their occurrences.

Utterances Occurrences
par ici 361
au revoir 365
à demain 353
impossible 367
volontiers 358
j’ai toussé 360
peu importe 356
nous partons 364
bonne journée 352
bonsoir jeanne 363
faites leur signe 373

Speech-to-text alignment algorithms provide the duration of each syllable in a
recorded utterance [Teytaut 2022]. We have therefore represented the 3972 voice
rhythms in the rhythm simplex in Figure 6.8, where each color corresponds to an
utterance. This visualization reveals that, despite the differences in pronunciation
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that are linked to the speaker (extra-linguistic) and those that are expressive, such
as attitude (para-linguistic), each utterance can be found in a certain area of the 2-
simplex. That is to say, in the context of this study, where the utterance rhythm can
be impacted by different factors (speaker, attitude, linguistic content), we observe
that the determining factor is linguistic. The rhythm varies relatively little with
fixed linguistic content for different attitudes and different speakers. However, we
cannot say that all occurrences of the same linguistic content have the same rhythm
either: clusters are not so small and can intersect. For example, the utterance “par
ici” (represented by blue points) is located to the right of the 2-simplex because
the first syllable is always shorter than the other two. On the other hand, the
utterance “faites leur signe” (represented by orange points) is in the upper corner
of the 2-simplex, because the second syllable is always pronounced longer than the
other two. This first result shows that the rhythm of the spoken word is strongly
correlated with its content. A deeper analysis could be done in future work.
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impossible
volontiers
j'ai toussé
peu importe
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faites leur signe

Figure 6.8: Three-syllable utterances from the Att-HACK database represented in
the rhythm simplex to visualize that the rhythm of a spoken phrase is related to its
content.



142
Chapter 6. Characterizing and Interpreting Music Expressivity

Through Rhythm and Loudness Simplices

6.6.2 Application to Electrocardiograph Data

Finally, we also analyzed electrocardiographic (ECG) data with the rhythm simplex
by focusing on RR intervals, which refer to the time intervals between successive R
waves on an ECG. They are used to assess heart rate variability and overall car-
diovascular health. Previously, integer ratios between two consecutive RR interval
have been observed [Chew 2021]. Similarities have been established with musical
rhythms, which are also based on integer ratios (at least in Western culture). How-
ever, in this study, only two-interval rhythms were studied, so we extend the study to
three-interval rhythms, using the rhythm simplex. To do this, we followed the same
method as Jacoby and McDermott [Jacoby 2017]. They demonstrated that partici-
pants from United States converged on integer ratio rhythms when they reproduced
random rhythms. This can be visualized in the rhythm simplex as points condense
to rhythms with integer ratios that can be expressed as i-j-k where 1 ≤ i, j, k ≤ 3.
We therefore analyzed the same ECG data as in Chew’s study, which include over
72,000 consecutive RR intervals. To visualize them in the rhythm simplex, we di-
vided the ECG data into series of three consecutive RR intervals with overlaps to
obtain 72,000 points in the rhythm simplex. We have displayed these ECG data
in the rhythm simplex in Figure 6.9 by adding the rhythms with integer ratios
expressed as i-j-k where 1 ≤ i, j, k ≤ 3 as in Jacoby and McDermott’s study.

First, we can observe that the points do not strongly converge towards rhythms
with integer ratios, with the exception of the 1-1-1 rhythm, which signifies a regular
heartbeat. However, the points are not randomly distributed in the 2-simplex and
seem to be organized in a very particular shape. Note that this shape is not nec-
essarily invariant to a 120-degree rotation. This means that, if there are points in
one corner of the 2-simplex, this does not imply that there will also be points in the
other corners of the simplex. For example, with the interval series 1-1-3-3-2-1, the
corresponding point of the first rhythm 1-1-3 is in the upper corner of the 2-simplex
because the third interval is predominant, whereas the other rhythms 1-3-3, 3-3-2,
3-2-1 are not in a corner of the simplex. Therefore, the result obtained in this section
demonstrates the difficulty of converting RR intervals into musical rhythms, as we
have already tried to do using rhythm simplex [Romero-García 2022b]. However,
given the shape obtained in the rhythm simplex from RR intervals, we therefore
believe that this representation can be used to characterize specific irregularities in
ECG data.

6.7 Conclusion and Future Work

In this chapter, we proposed a novel method to represent performed music using beat
duration, tempo and loudness simplices. We analyzed the MazurkaBL dataset using
these simplices. MazurkaBL contains more than 2000 recorded performances of 46
of Chopin’s Mazurkas with annotations of beat level tempo and loudness values.
We provided the equations to map any bounded three-interval information into the
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Figure 6.9: ECG data of consecutive RR intervals visualized in rhythm simplex.
These data, interpreted as 3-interval rhythms, do not appear to converge towards
rhythms with integer ratios.

2-simplex. We proved that the choices of inter-beat intervals or tempo are nearly
equivalent in the 2-simplex up to one symmetry with respect to the origin. We
also explained the impact of smoothed data in the 2-simplex. Finally, we showed
that the simplices facilitate the analysis and interpretation of musical expressivity
features. For example, by using the Mahalanobis distance, it is possible to identify
bars with notable expressive variations such as temporal tipping points or to specify
the regularity of a performance.

However, this method has some limitations. First, the duration or loudness of
each bar is normalized. As a result, information on the total duration or loudness
of each bar is not available, i.e. only the proportional distribution of durations and
loudness are shown. This means that two points with the same coordinates in the
simplex might be two bars of completely different overall loudness or duration. For
example, if the three beats of a bar are played equally fast or slow, the corresponding
point is at the center of the rhythm simplex. Thus, this method is more appropriate
for analyzing performance expressivity at the bar level. Nevertheless, we believe
that variations on the scale of a musical phrase should also be considered. The
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bars corresponding to the beginning and end of the phrase are points distant from
the center of the simplex, as they have increasing or decreasing tempo or loudness
values. Whereas the bars in the middle of the phrase are bars with small variations in
loudness or tempo, i.e. points in the center of the simplex. Another limitation of this
method is that it can only be applied to three-interval data. While this approach is
appropriate for the MazurkaBL dataset, which comprises of musical pieces in triple
time, it may not be suitable for more general types of data. However, since the
MazurkaBL is the largest existing annotated dataset of performed music, we believe
that developing tools like the 2-simplex, even if these methods are not applicable
to all types of data, is crucial for analyzing and gaining a better understanding of
musical performances.

For future research, it would be valuable to study the movement of points within
the simplex over time, in order to identify the trajectories of a section of music within
the simplex and to capture the variation in interpretations amongst several perform-
ers. This would be useful to generate or modify performances by moving points in
the 2-simplex and to identify the musical structure of a piece by knowing the trajec-
tory patterns corresponding to the interpretation of sections. Future research using
the rhythm simplex in other fields is also possible, for example, to demonstrate that
the rhythm of the spoken word is strongly correlated with its content and to discover
irregularities in electrocardiograph data. Finally, we expect that the development
of methods based on formal mathematical representations, such as the 2-simplex in
this chapter, holds great promise for facilitating a more comprehensive analysis and
understanding of rhythm in different fields such as spoken voice, electrocardiograph
data and musical performance.
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In this chapter, we propose a method for discovering and comparing segmenta-
tions induced by musical performances. We use a Bayesian model based only on
musical prosody data, i.e. tempo or loudness information, to obtain the segmenta-
tion of a performance, which is original because we are not using information from
the score. In order to discover the similarities between segmentations derived from
interpretations of the same piece, we develop a method based on unbalanced optimal
transport, and demonstrate on several examples that this approach can be used to
analyze and understand particular aspects of musical performance.

This chapter is the result of a joint work with Corentin Guichaoua, a post-
doctoral researcher at Ircam during my PhD, who developed the Bayesian model,
which is detailed in Appendix B and not in this chapter.

Section 7.1 introduces this chapter by developing the motivations for discovering
the segmentations of a musical performance based on musical prosody. Section 7.2
presents the Bayesian model we use to obtain the boundary credence of a perfor-
mance, shows the different representations our model can generate, and shares some
insights from direct examination of the results. Section 7.3 proposes the use of
unbalanced optimal transport to reveal similarities and differences between segmen-
tations from different interpretations of the same piece. Finally, we provide some
concluding remarks, and point for future developments of this method.

This chapter is an extended version of the article “End-To-End Bayesian Seg-
mentation and Similarity Assessment of Performed Music Tempo and Dynamics
With No Score Information” [?].

7.1 Introduction

In this section, we explain that a musical performance induces segmentations
through musical prosody, i.e. variations of tempo and loudness. We explain that it
is possible to discover the induced segmentations of a performance from the musical
prosody data alone.

7.1.1 Introduction to Segmentation in Music Performance

When performing a piece, musicians not only have in mind the notes they are about
to play, but also some intuitions as to how the musical material, such as notes, group
together into coherent ideas, how they relate to each other, and which ideas could
be made more prominent during performance. Some of these intuitions may derive
from experience, some may be formulated in real-time during performance, parts of
it may coalesce into some mental conceptions of the music. All these notions serve
to guide the performer’s expressive choices which in turn influence how the listener
hears the music [Rink 1995]. Using the tools at their disposal, within the constraints
of the physical properties of their instrument, the performance conventions they wish
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to adopt or reject, and their own technical abilities, performers manipulate timing,
articulation and dynamics to shape the music to convey segmentation, prominence,
and affect the audience [Palmer 2006]. In particular, a well-documented practice
is the arching of tempo and loudness to mark phrases, i.e., performers tend to
convey phrases through patterns of accelerando or deccelerando and crescendo or
decrescendo [Gabrielsson 1987, Todd 1992]. Such acoustic variations are referred
to as musical prosody, which also serve as cues for how the performer or listener
segments the musical material. The phrases that performers highlight in this way
are approximately non-overlapping and covering the whole piece, hence defining a
segmentation. In this chapter, we focus on the problem of discovering and comparing
such segmentations from the prosody of recorded musical performances.

7.1.2 Previous Works Related to Segmentation in Music Perfor-
mance

Segmentation is an important part of perception [Zacks 2007], and it is no surprise
that it is widely studied in multimedia research, including for images [Haralick 1985],
video [Koprinska 2001], or audio [Sakran 2017]. In particular, music segmentation
has received a lot of attention [Paulus 2010, Nieto 2020], with most automatic ap-
proaches partitioning the music according to criteria of repetition (Chapter 5) and
homogeneity (Chapter 4), as described in Part II. Relatively few methods have fo-
cused on musical prosody only as data for discovering segmentation. Widmer and
Tobudic fit quadratic models to performance features (instantaneous tempo and
loudness)1 given a known multilevel segmentation [Widmer 2003]. While their aim
was not to segment the music, this work highlighted the correspondence between
phrase arcs and segmentation boundaries. Chuan and Chew turned the approach
around by introducing joint estimation of segmentation boundaries and parameters
for an arc model [Chuan 2007], which yields a segmentation solution rather than
requiring one. This was later refined by Stowell and Chew who added a Bayesian
prior to steer the estimation towards more plausible solutions [Stowell 2013]. Based
on this previous work, we choose to focus exclusively on loudness and instantaneous
tempo data, discarding all direct score information. This operates a deeper shift
than what is immediately obvious: by focusing on musical prosody alone, what is
being segmented is no longer the piece as written in the score, but the performance
as realized by the musician. Although, as we can observe in our results, the score
structure can be partially transferred to the performance, but the extracted struc-
ture is of a different nature, barring direct comparisons. Another characteristic
which sets apart this work from the existing literature, including that on perfor-
mance segmentation, is that unlike the above methodologies, we use an end-to-end
Bayesian approach, aiming for a credence-based, multiple solution output rather
than a single solution.

1Instantaneous tempo being the inverse of the time between two beats, and loudness a percep-
tually adjusted measure of sound pressure [Fastl 2005].
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We explain here the motivation for choosing multiple segmentations over the
“best” one. Research shows that listeners, when asked to judge the segmentation of
a piece of music, sometimes disagree about the exact placement of the boundaries
and their existence or relevance [Smith 2014, Nieto 2020]. This indicates that the
segmentations that performers project may not be perceived universally the same
way. Since part of the disagreement can be traced to listeners focusing on different
aspects of the music like rhythm, melody, harmony, or timbre, it seems illusory
to expect to recover a sole best projected segmentation based on only one or two
features [Smith 2014, Smith 2017]. This calls for a representation of segmentation
results that allows for multiple plausible solutions. In short, prior work on music
segmentation typically attempts to output a final best guess of the segmentation;
even those adopting a Bayesian approach ultimately only output a best answer.
By contrast, we aim to provide a more nuanced representation of the segmentation
solution in which multiple segmentation hypotheses can co-exist. Such an approach
has proven useful in cases where insufficient data are available, as for computer
vision [Rupprecht 2017]. These segmentation hypotheses can then be refined, either
based on a manual complementary analysis or by using additional sources of data.

To test the algorithm and demonstrate its use on real data, we use the Mazurk-
aBL dataset [Kosta 2018]. This dataset, already described and used in the previous
chapter, contains about 2000 performances across Chopin’s 46 Mazurkas and the
corresponding loudness and instantaneous tempo data.

7.2 Boundary Credence Estimation

In this section, we present the model for boundary credence estimation, its outputs,
and its interpretation. We show how the complexity of nuanced probabilistic results
can be exploited with a few transformations and appropriate visualizations. We then
present a few examples to demonstrate how these results can be used to provide a
deeper understanding of musical performance.

7.2.1 Model for Boundary Credence Estimation

We have assumed that a performance is driven in part by the performer’s segmen-
tation of the piece. However, this segmentation is not directly accessible, as it
resides in the performer’s mind: it can only be inferred from the data that it has
influenced, in particular the tempo and loudness of the performed music, which are
easily quantifiable. Therefore, we use Bayesian inference to obtain a model of the
plausible segmentations using observed data. To do this, we also need a model of
how the segmentation perceived by the interpret is going to drive the data. Thus,
the model that we use comprises of two parts: an overall theory of the behavior of
segments (i.e. their sizes), and a model of how segmentation decisions affect the
prosody (i.e. the arc model of tempo and loudness).

First, we need an overall model of likely segmentations before observing any
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data. Sargent et al. used a similar method [Sargent 2017] in popular music. Using
their overall model, a segmentation that would divide a piece into a few very short
segments and a very long one seems unlikely to be correct. Whereas a segmentation
with similar segment sizes or phrase lengths is much more plausible, before even
considering the data.

Secondly, a specific model describing how a given segmentation affects the
performance data is also required. In the case of loudness or tempo, which
exhibit arched shapes delimiting phrases in the context of romantic era mu-
sic [Gabrielsson 1987, Todd 1992], a piece-wise concave quadratic model appears
to be a good compromise between model complexity and modeling error. This
specific model drives the data and the kinds of arcs that we are likely to see.

In this chapter, we shall assume that arcs are independent from each other, i.e.
that modulations in one arc do not affect those in others, and that the plausibility
of an arc depends only on its beginning and end. The two-level model proposed
here is similar to the one used by Stowell and Chew, with minor changes to the
priors [Stowell 2013]. The main difference is the aim of the computation. Our
objective is to discover the posterior credence of all segmentations, summarized
through credence values on boundaries, rather than the segmentation of maximal
credence.

We detail the model in Appendix B. In this appendix, we first introduce the
notation that we used; next, we demonstrate that the output can be efficiently
computed from the segmentation prior and the segment-wise data likelihood; then,
we describe the arc model we use to compute these likelihoods; we conclude by
providing the priors applied in this model.

7.2.2 Visual Representations of the Output

We present here different representations, illustrated in Figure 7.1, which are all de-
rived from the results of our method. In particular, these representations visualize
the segment credence outputs of the algorithm. To understand these visualiza-
tions, we define p([i, j] ∈ S | D) as the probabilities of having the segment [i, j] in
the induced performance segmentation given D which represent data from musical
prosody, which is detailed in Appendix B.

(a) Segment credence matrix: A naive representation of the raw credence val-
ues for all possible segments is the segment credence matrix, where the (i, j) coeffi-
cient is defined by:

Ai,j = p([i, j] ∈ S | D)

Which can be interpreted as: “the probability that a segment starts at i and ends at
j”. However, this is simple but inefficient, as all non-zero values will be located close
to the diagonal, with most of the matrix representing impossible segments. See the
bottom left of Figure 7.1 for an example.



150
Chapter 7. Discovering and Comparing Segmentations in Music

Performance Using Tempo and Loudness Information

d) Expanded credence map

e) Segmentation graphc) Segment credence map

a) Segment credence matrix

b) Boundary credence

&

Figure 7.1: Different representations of segment credence for Csalog’s interpretation
of Mazurka 6-2. a) Raw segment credence matrix. b) Boundary credence. c)
Segment credence map. d) Expanded segment credence map. e) Segmentation
graph which is a manual conversion superimposed on the expanded credence map,
with bolder transitions being more credible. A candidate segment is highlighted
throughout the different representations.

(b) Boundary credence: This is a temporal curve that illustrates the credence
of each boundary. This yields one real value per beat, similar to the input data, and
therefore can be plotted sequentially on the same graph, as in Figure 7.2. For each
beat, the boundary credence is defined by:

yi =
∑
j≥i

Ai,j

Which can be interpreted as: “the probability of having a boundary at i”. This is
probably the most intuitive visualization we provide, and therefore the representa-
tion we use in the following.

(c) Segment credence map: The segment credence map is a first step towards
an efficient representation by transforming the indexing from start and end positions
to start position and length of a segment, i.e.:

Bi,k = p([i, i+ k] ∈ S | D)

Which can be interpreted as: “the probability that a segment starts at i and has a
duration of k”. An advantage of this transformation is that the values need only to
be computed for acceptable segments. However, it may still be hard to see where
each hypothetical segment ends. In addition, many values will still be practically
null. See the middle representation in Figure 7.1.
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(d) Expanded segment credence map: We can take advantage of the sparsity
of the segment credence map by “spreading” each data point over its represented
length to obtain the expanded segment credence map:

Ck,j =

j∑
k′=0

Bk−j+k′,j

Which can be interpreted as: “the probability that k belongs to a segment of length
j”. An example of this expanded segment credence map is the background repre-
sentation on the right in Figure 7.1. One can think of each non-zero region as a
possible segment, the greater the region’s vertical span, the more uncertain its ex-
act boundaries. Vertical region edges indicate sharp boundaries; sloped region edges
mark uncertain boundaries.

(e) Segmentation graph: The expanded segment credence map can be manually
abstracted as a segmentation graph, as shown superimposed on the representation on
the right in Figure 7.1. The edges of the graph links pairs of segments that end and
begin on successive beats. It provides an overview of the alternative segmentations,
but discards information about the precise location of boundaries. Although the
segmentation graph was manually created, its construction could be automated.

7.2.3 Musical Meaning of Outputs

Here, we discuss two sets of results of the segmentation extraction method. The
first shows differences in interpretations of the same musical piece, and the second
highlights the detection of expressive gestures in recorded performances.

7.2.3.1 Differences in Interpretations of the Same Musical Piece

Figure 7.2 shows the instantaneous tempo values and their derived boundary cre-
dence for Gábor Csalog’s and Arthur Schoonderwoerd’s interpretations of Chopin’s
Mazurka 6-2. The immediate observation is that, in both cases, boundaries are re-
covered where section changes occur; the remaining boundaries occur in the middle
of sections, where a reference segmentation at a finer scale could have put bound-
aries. It is not surprising that the performance segmentations align well with a
score-based segmentation, as the score structure plays a large role in determining
which patterns or groupings can be emphasised. There are nonetheless many differ-
ences between the segmentations of each performer.

In this instance, based on tempo, the model suggests that Csalog’s performance
mostly emphasizes 4-bar groupings as seen in Figure 7.2(a), in contrast for example
to Schoonderwoerd’s performance, where there are 8-bar groupings as shown in Fig-
ure 7.2(b). In the broader scheme, Schoonderwoerd also uses loudness to demarcate
4-bars subsections, as shown in Figure 7.2(d), which is picked up by the algorithm
when run on loudness.
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(a) Csalog’s interpretation based on tempo
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(b) Schoonderwoerd’s interpretation based on tempo
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(c) Csalog’s interpretation based on loudness
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(d) Schoonderwoerd’s interpretation based on loudness

Figure 7.2: Computed boundary credence applied to interpretations of Mazurka 6-2
of Chopin (in black, the bottom curve). The tempo or loudness raw data are also
represented (in red, the top curve). Csalog makes more tempo boundaries than
Schoonderwoerd. Csalog’s extra boundaries tend to be in the middle of sections;
Schoonderwoerd also marks these boundaries but through loudness.
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The output also shows that some boundaries are more precisely located than
others. For instance, the position of the boundary around beat 168 is sharply defined
to within a beat; whereas the next boundary, while still strongly detected overall,
is spread out with a loosely defined location. This difference in boundary sharpness
can also be observed between the tempo-based and loudness-based segmentations of
Schoonderwoerd’s performance, mainly due to the smoother nature of the loudness
data. With smoother data, the Gaussian noise accounts for less of the variation,
leading to tighter fits and thus more confident arc boundaries.

Another interesting feature of Csalog’s performance is the weaker boundaries
around beats 84, 132 and 156, none of which sum close to 1, reflecting some ambi-
guity in the structure. Indeed, Csalog weakly marks the 4-bar groupings at these
points, but the much higher prominence of the 8-bar arcs could justify skipping the
lower-scale boundaries. This is very visible in the segmentation graph on the right
in Figure 7.1, where the predominant path uses short segments for the A sections
(except the one from beats 144 to 168) and long segments for the other sections,
while still showing the alternative long and short sections respectively.

7.2.3.2 Music Expressivity Visualized with Boundary Credence

Figure 7.3 displays the tempo-based output for two performances of Mazurka 24-3
which are Rubinstein’s 1966 recording and Fiorentino’s recording. Interestingly,
the resulting segmentations diverge from expert annotations while largely agreeing
with each other2. The explanation lies in the presence of tipping points in the A
sections, i.e. elongations of time for expressive effect [Herremans 2016]. Where
boundaries are detected correspond to mid-phrase fermata in the score. Indeed,
there are tempo arcs starting and ending on these notes, but they arguably do not
constitute phrase boundaries, and are in effect temporal tipping points. This result
shows that the discovery of the interpreter’s segmentation only works so long as the
mapping between tempo (or loudness) arcs and musical groupings is not disrupted
by other expressive effects. In this case, swapping out the arc model for another
which would map correctly to the groupings could be envisioned. Nevertheless, it
is interesting to recover expressive gestures like tipping points, which are a form of
musical thresholds.

Manual comparison of posterior boundary and segment credences, as we have
been doing in this section, is useful and can be enlightening, but it is unscalable to
large databases like MazurkaBL and its 2000 recordings for which tens of thousands
of pairwise comparisons could be drawn, before even considering cross-piece and
cross-feature comparisons. In the next section, we show how we can automatically
grade the similarity between performed structures and identify where and how they
differ.

2This is also the case with other performances of this Mazurka.
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Figure 7.3: Temporal tipping points (suspensions of time flow for expressive ef-
fect) found in most performances of Mazurka 24-3 detected as peaks. Exam-
ples by Rubinstein 1966 (top) and Fiorentino (bottom). Reference annotation by
[Witkowska-Zaremba 2000] (section C is a codetta rather than a proper section).

7.3 Distance Based on Unbalanced Optimal Transport
to Compare Boundary Credences

In this section, we propose a model to obtain similarities and differences between
boundary credences. More precisely, we use unbalanced optimal transport to com-
pute the proximity between the projected segmentations of two performances of the
same piece. We then illustrate this method, first by applying it to one of the earlier
examples, then systematically to large subsets of the MazurkaBL dataset.
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7.3.1 Unbalanced Optimal Transport-Based Distance Model

7.3.1.1 Motivation

With respect to the boundary credence of a given performance, a musician creat-
ing another performance may choose to make boundary credence peaks at different
locations and with different shapes. For example, compared to Csalog’s interpreta-
tion in Figure 7.2, Schoonderwoerd chose to create about half as many boundary
credence peaks through tempo modulations, marking 8 bar long phrases instead of
4 for Csalog. In addition, the peaks in Schoonderwoerd’s interpretation have differ-
ent shape from those in Csalog’s interpretation. Therefore, we propose to quantify
the distance between two credence profiles by taking into account the possibility
of having a different number of peaks and different shapes for each peak. The two
different costs to be accounted for in the distance are:

• Cost of deforming one peak into another: When peaks from bound-
ary credence of two different interpretations are found at almost the same
locations, they may be of different shapes, eliciting different perceptions from
listeners. For example, the perception of a peak can change with a longer or
shorter pause between two musical phrases.

• Cost of destroying or creating peaks: When a peak is not matched in the
comparative performance, this indicates different ways of grouping the music
material. The presence or absence of peaks changes the locations and lengths
of the musical phrases projected by the performer.

Consequently, each peak is deformed or destroyed and we choose to compute
the distance between two boundary credences as the sum of the deformations of the
matched peaks into one another and the unmatched peaks that are destroyed or
created.

These deformations are computed based on unbalanced optimal transport
which is a mathematical theory related to optimal transport [Monge 1781,
Kantorovich 1942, Villani 2009]. Optimal transport studies how to transform points
from a starting set to an ending set, while minimizing the total cost of transport,
where the quantities of the starting and ending set are the same. Unbalanced op-
timal transport, refers to a situation in which the quantities to be transported and
the costs of transport are not balanced among the different sources and destinations.
In our case, we are interested in moving the area under a boundary credence to the
area under another boundary credence with minimal effort. However, we add the
condition that the area under each peak can be transformed to at most one peak.
This condition allows us to determine which peaks are similar or different between
two boundary credences, which indicate the choices in the way the music is seg-
mented through performance. This method based on unbalanced optimal transport
is illustrated in Figure 7.4, and we mathematically formalize this distance in the
next subsection.
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Figure 7.4: Illustration of the unbalanced optimal transport-based distance between
two boundary credences f and g. Red rectangles indicate matched peaks; dotted
blue rectangles mark unmatched peaks.

7.3.1.2 Mathematical Formulation

Let f and g be two boundary credences as represented in Figure 7.4. Each boundary
credence normally comprises of a series of peaks, i.e. f = {fi}i∈I and g = {gj}j∈J ,
where I and J are indices of a set. We isolate the peaks within each boundary
credence using a threshold set at 0.01 – values above 0.01 are part of some peak, and
those below are not. We have found this value to be sufficient to isolate distinct peaks
while discarding only negligible parts of the result. Regions above the threshold
give the isolated peaks as illustrated in Figure 7.4 with f = {f1, f2, f3, f4} and
g = {g1, g2, g3}. Given fi a peak (which is a discrete function), recall that the
distribution function Fi of fi, and the area under the peak ∥fi∥1 of fi are defined
by:

Fi(n) =
n∑

k=−∞
fi(k), ∥fi∥1 =

∞∑
k=−∞

|fi(k)|. (7.1)

Let fi and gj be two peaks such that ∥fi∥1 = ∥gj∥1. The distance associated
with discrete optimal transport3 dOT [Werman 1985] between fi and gj , in the one-
dimensional case, is simply written as:

dOT (fi, gj) =
∞∑

n=−∞
|Fi(n)−Gj(n)|. (7.2)

From an algorithmic point of view, distribution functions can be readily computed,
so it is straightforward to obtain the optimal transport distance between two peaks.

3Also known as Wasserstein’s distance, or the Earth mover’s distance.
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The two peaks may be temporally very distant, in which case it is preferable to
destroy the area rather than move it. To do this, we use the unbalanced optimal
transport [Chizat 2018]. Let fi and gj be two peaks such that ∥fi∥1 = ∥gj∥1, we
propose to define the distance associated with unbalanced optimal transport in the
case where the peaks have the same area by:

dUOT (fi, gj) = min(
2

3
dOT (fi, gj), ∥fi∥1 + ∥gj∥1)

According to this definition, if the minimum is 2
3dOT (fi, gj), it means that it is

less costly to transform the area of one peak into another, but if the minimum is
∥fi∥1 + ∥gj∥1, it means that it is less costly to destroy the area of both peaks. We
now explain the 2/3 factor. Because creating or removing a peak translates to a
larger musical change than modifying the shape of a peak, we choose to reduce the
modification cost between two peaks by a factor of 2

3 . This factor means that it is as
costly to match two identical peaks three beats apart with optimal transport as it is
to destroy each of the peaks. In other words, the limit for deforming peaks is three
beats, i.e. one bar in case of Mazurkas. Mathematically, if fi = δi′ and gj = δj′

where δ is the discrete dirac function (i.e. δi′(k) = 1 if k = i′ and 0 elsewhere),
then: dUOT (fi, gj) = min(23 |i

′ − j′|, 2). Therefore, if |i′ − j′| > 3, i.e. the two peaks
are separated by more than 3 beats, then dUOT (fi, gj) = 2 = ∥fi∥1 + ∥gj∥1, so it
costs less to destroy both peaks than to deform one into the other. On the other
hand, if |i′− j′| < 3, i.e. both peaks are less than 3 beats away, then dUOT (fi, gj) =
2
3 |i

′−j′| = 2
3dOT (fi, gj) and the cost of transforming one peak into the other is lower

than destroying the peaks.
Finally, when two peaks, fi and gj , do not have the same area, for example

with ∥fi∥1 ≤ ∥gj∥1, we scale the area of gj with the factor ∥fi∥1
∥gj∥1 so that the two

peaks have the same area and we add a term to signify the cost of the area lost,
∥gj∥1 − ∥fi∥1, as already proposed by Gromov for the optimal transport formula
when areas are different [Gromov 1999] (chapter 3 1/2, section B, page 117). We
then propose to define a distance based on unbalanced optimal transport when two
peaks have different areas with Definition 7.1.

Definition 7.1: Unbalanced optimal transport-based distance

Let fi and gj be two peaks such that ∥fi∥1 ≤ ∥gj∥1, we define the unbalanced
optimal transport-based distance between fi and gj by:

dUOT (fi, gj) = min(23dOT (fi,
∥fi∥1
∥gj∥1 gj), 2∥fi∥1) + ∥gj∥1 − ∥fi∥1

Referring back to Figure 7.4, some f peaks are matched and moved to g peaks
(red rectangles) and others are destroyed (dotted blue rectangle). Recall that each
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peak can only be matched once. We use a dynamic time warping algorithm to deter-
mine which peaks of f should be matched, or not, with those of g by allowing peaks
to be matched with the zero-value function, which is equivalent to peak destruction.
In Figure 7.4, the first peak f1 of f is slightly shifted toward the first peak g1 of
g, the second peak f2 is deformed because it does not have the same shape as g2,
and the third peak f3 is destroyed because it does not match with any peak of g.
In the end, the distance between two boundary credences is the sum of the cost of
transforming or destroying each peak.

7.3.2 Revealing Similarities and Differences in Segmentations of
Different Interpretations

We illustrate the distance based on unbalanced optimal transport using the Csalog’s
and Schoonderwoerd’s interpretations of the Mazurka 6-2 shown in Figure 7.2. The
comparison result is shown in Figure 7.5.

Figure 7.5: Unbalanced optimal transport-based distance between the interpreta-
tions of the Mazurka 6-2 by Csalog and Schoonderwoerd. Note that the red rect-
angles indicating agreement tend to align with the annotated section boundaries,
while dotted blue rectangles mark more unusual boundaries.

In Figure 7.5, we can understand which peaks are matched (marked by red rect-
angles) between the two performances and which peaks are removed (delineated
with dotted blue rectangles). This can be useful for understanding the similarities
and differences between two recorded performances. Because there are peaks be-
tween two successives sections in both performances (i.e. every 8 bars), they are
deformed into each other through unbalanced optimal transport. By contrary, most
of the additional peaks of Csalog compared to Schoonderwoerd are destroyed. It is
also interesting to notice that even if the second to last peaks of each performances
are almost at the same time, they do not match. The algorithm prefers destroy-
ing them rather than deforming them because their shapes are too different. Also,
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with respect to the last peak, the two curves are overlapped, so they cannot be
distinguished in the figure and the peaks are matched with the unbalanced optimal
transport-based distance (indicated by a red rectangle).

7.3.3 Detecting Similarities on a Large Scale

Cook investigated the tempo variations of different performances of the
Mazurka 68-3 [Cook 2007]. He computed correlations between the raw tempo curves
of the different performances and manually represented those that are highly cor-
related by a correlation network, illustrated in Figure 7.6(a). He identified three
clusters, thus three main different ways of playing Mazurka 68-3 that he explained
partially by geographical location or teacher/pupil relationships between the differ-
ent pianists. We then automated the computation of this correlation network of the
same performances (except for Tsong who is not in our database).

We first computed the credence boundaries and then the distance between them
based on the unbalanced optimal transport as described in the previous section. Fi-
nally, we automatically represent the result with a similarity map in Figure 7.6(b)
using the Python package manifold from the scikit-learn module [Pedregosa 2011].
We assigned a color to each of the three clusters established by Cook. The result
presented in Figure 7.6(b) is consistent with the analysis of [Cook 2007]. For exam-
ple, we can observe that Rubinstein’s interpretations are far from the average. In
addition, there are other interpretations that are far from the average, as Cook had
mentioned, namely Ashkenazy, Biret, François and Cortot.

(a) Manually created correlation net-
work by Cook [Cook 2007]

Chiu

Rubinstein(1939)

Indjic

Smith

Luisada

Ashkenazy

Rubinstein(1966)

Brailowsky

Uninsky

Biret Fliere

Block

Cortot

Clidat

Cohen

Francois

Shebanova

Magaloff

Rubinstein(1952)

Average

(b) Automatically generated similarity
map based on our method

Figure 7.6: Relation between different interpretations of Mazurka 68-3.

We then tried to obtain further results on the relations between interpretations of
other Mazurkas. For this, we focused on Arthur Rubinstein, because in the Mazurk-
aBL database, he stands out as by far the performer with the most recordings. He
recorded three sets of Mazurka performances: in 1939, 1952, and 1966. All three
covered most, if not all, of the Mazurkas. Although his style evolved over the years,
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his performances remained on average closer to his own than to others’, according to
our distance measure, as can be observed in Figure 7.6(b). Re-scaling the distance
such that the closest performance pair on a piece is 0 and the farthest is 1, the
average distance between Rubinstein’s recordings of the same piece is 0.28, whereas
that between Rubinstein’s recording and another performer’s is 0.52.

Extending this idea, it would seem reasonable to hypothesize that trends of
proximity between artists can persist across pieces, perhaps due to similar grouping
preferences or other similarities in their structural perception. To test this hypoth-
esis, we focused on the subset of performers who recorded all of the Mazurkas that
Rubinstein recorded on all of his three sets (overall 30 Mazurkas and 10 perform-
ers in addition to Rubinstein’s three versions). We then looked at the 30 distance
matrices for each Mazurka, and proceeded to perform a Mantel test [Mantel 1967]
on each pair of Mazurkas. However, only 39 of the 435 pairs showed significant
correlation at the 5% level, which is higher than would be expected by chance, but
far below what might result from a sizeable trend.

7.4 Conclusion and Future Work

In this chapter, we have described a method aimed at discovering the implicit seg-
mentation conveyed through a musical performance. To achieve this, we have relied
on a Bayesian framework, which has led to a nuanced output in which many segmen-
tation hypotheses can co-exist. The method works on extracted prosodic features of
an audio recording of a performance, without the need for score information. The
nuance implies that with limited features and segmentation ambiguity, it may not be
possible nor desirable to have precise localization of boundaries, and also that more
than one segmentation can be a valid explanation for the observed data. We have
demonstrated on a selection of examples that this method discovers segmentations
reflecting differences between performances.

We have also proposed a method based on unbalanced optimal transport which
yields a distance between performed structures and highlights their similarities and
dissimilarities. Interestingly, this distance revealed that Rubinstein’s performed
structures across the years were more similar to each other than to other pianists’.
By contrast, we have found no significant correlation between two performers’ dis-
tance in one piece and their distance in another. This means that agreeing on
performed structures in one piece may not imply agreement in another piece. How-
ever, it is important to recall that the comparisons mentioned have been based only
on tempo or loudness segmentations. Indeed, two performances can be similar in
these aspects but may be different on other counts like overall tempo or timbre.

In future work, it would be desirable to apply this method to a larger database
of performances, preferably annotated with perceived structures. For example, the
ASAP dataset [Foscarin 2020] has a broader composer and piece range than the
MazurkaBL dataset [Kosta 2018] we used, at the cost of a shallower range in per-
formers. This broader range likely includes some pieces for which conventional
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interpretations do not exhibit the arching patterns we rely on, requiring a different
segment model. Unfortunately, it still does not include performance structure anno-
tations, and to our knowledge, neither does any currently available database. Also,
there is some qualitative evidence that performance structure could be used as an
approximation of score structure, which encourages further research.

We believe that, beyond the specifics of the model and algorithm presented,
one of the key takeaways of this chapter is the choice of credence on boundaries or
segments as outputs of segmentation. It has the potential to give deeper insights
into music, for example the distinction between certain or optional boundaries, and
between strongly and weakly localized boundaries. In order to make full use of this
rich output, new visualizations, tools and methodologies are critical. This is what
we have aimed to achieve in this chapter with new musical representations and
by adapting some mathematical theory to better model and understand musical
performance.





Part IV

Science Outreach





Chapter 8

Science Outreach for
“Mathémusique”

Contents
8.1 Temporal Hierarchies of Music Represented as Rhythmic

Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.1.1 Introduction to Hierarchical Temporal Representations of Music166

8.1.2 Advantage 1 of Rhythmic Trees: Groupings and Overall Du-
ration on the Same Representation . . . . . . . . . . . . . . . 168

8.1.3 Advantage 2 of Rhythmic Trees: Provides Information on a
Hierarchical Level Above the Bar . . . . . . . . . . . . . . . . 169

8.1.4 Advantage 3 of Rhythmic Trees: Musical Transformations of
Each Hierarchical Level are Visualized . . . . . . . . . . . . . 169

8.1.5 Advantage 4 of Rhythmic Trees: Visualize Truncated Patterns 170

8.2 Interactive Software Developed to Generate Rhythms Us-
ing a Circular Representation . . . . . . . . . . . . . . . . . . 171

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

In addition to my PhD, I have developed a science outreach activity to ex-
plain mathematical concepts applied to music. I mainly realized this activity
on YouTube with the “Mathémusique” channel available via the link: https:
//www.youtube.com/@mathemusique. This chapter focuses exclusively on the two

https://www.youtube.com/@mathemusique
https://www.youtube.com/@mathemusique
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major representations used in this science outreach activity: the rhythmic tree rep-
resentation, developed to visualize the structure of a musical theme in a hierarchical
way, and the circular representation, mainly used to analyze the properties of mu-
sical rhythms.

Section 8.1 presents the advantages and novelties of the rhythmic tree repre-
sentation and how it relates to existing representations of musical structure and
meter. Section 8.2 describes an open-access interactive website developed to gener-
ate rhythms using a circular representation.

8.1 Temporal Hierarchies of Music Represented as
Rhythmic Trees

This section presents the rhythmic tree representation for visualizing the hierar-
chical structure of a musical theme. Starting with an introduction to hierarchical
temporal representations of music and demonstrating the originality of this visual-
ization. Then, describing the advantages of this representation and how it has been
used in our science outreach activity.

8.1.1 Introduction to Hierarchical Temporal Representations of
Music

In the book Generative Theory of Tonal Music (GTTM), Lerdahl and Jackendoff
proposed a tree representations, time span tree and prolongation tree, to illustrate
the hierarchical structure of a musical theme [Lerdahl 1985]. The time span tree
representation is based on metrical structure (smallest levels) and grouping structure
(larger levels), defined through Lerdahl and Jackendoff’s generative rules. It is
illustrated with Mozart’s K. 331 theme in Figure 8.1.
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Figure 8.1: Example of Lerdahl and Jackendoff’s tree representation of Mozart’s K.
331 theme. (Source: [Lerdahl 1985], 172.)

On the other hand, the prolongation tree is based on the structure of tension and
relaxation in the piece of music. The representation is similar to the time span tree
representation, with the exception of nodes indicating strong prolongation, weak
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prolongation or a progression. These representations are a first attempt to visualize
the structure of musical themes in a hierarchical way.

However, we believe that these GTTM tree representations could be more intu-
itive, due to the large number of branches and their different directions. We have
therefore proposed a visualization of the hierarchical structure of a musical theme,
inspired by the different existing hierarchical representations of meter illustrated in
Figure 8.2. These representations are equivalent, but have different visualization ad-
vantages. The metrical structure detailed in the GTTM, makes it easy to visualize
the strong and weak beats of a musical bar [Lerdahl 1985]. The cyclical representa-
tion helps us understand the cyclical nature of meter [London 2012]. The maximal
outplanar graph representation is similar to the cyclical representation redraw with
straight line [Yust 2018]. The nested brackets are the most condensed represen-
tation of this hierarchy [Gotham 2015]. Finally, the tree structure [Gotham 2015]
or tree diagram [Hanenberg 2018] representation is the closest to the GTTM tree
representation.
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(a) Cyclical representation (b) Tree structure or tree diagram

(c) Metrical structure (d) Maximal outplanar graph

((2,2),(2,2))
(e) Nested Brackets

Figure 8.2: Different hierarchical representations of the 4
4 meter.

Therefore, to represent the hierarchical structure of a musical theme, we adapt
the tree structure representation in Figure 8.2(b) to the duration of a musical theme,
using the Lerdahl and Jackendoff rules described in the GTTM to produce the
time span tree. The resulting representation, called a rhythmic tree1, is shown in
Figure 8.3. As with the time span tree representation, the smallest hierarchical levels
are based on the metrical structure, while the largest ones are based on the grouping

1This representation is also called “arbre rythmique” (french translation).
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structure. However, unlike the GTTM tree representations, a number indicates the
duration for each node in the tree, and each hierarchical level is clearly represented
by a line of the rhythmic tree (which is not true for other representations such as
cyclical, maximal outplanar graph and nested bracket representations). Moreover,
the advantage of the rhythmic tree representation for an outreach activity is that
it uses very elementary symbols (numbers and lines) rather than musical symbols
which may be more complicated to understand for an unfamiliar public.

Metrical level

Tatum level

Grouping level

Overall duration

Figure 8.3: Rhythmic tree representation of Entertain Me by Tigran Hamasyan
with four hierarchical levels.

The difference with the tree structure representation is that we apply it not
just to the meter, but to a musical theme. As a result, the visualization has to be
adapted, which is not trivial, as Gotham points out that to build metric hierarchical
structures, groups of 2 or 3 have to be formed [Gotham 2015]. However, this is not
what we have done in Figure 8.3, as the metric evolves in the musical theme, so we
have groups of 3 and 5 in the last line of the tree. This is why we use the rules
of the GTTM, with the difference that we remove some hierarchical levels from the
tree (i.e. we remove some lines) to avoid having too much information. Because
with too many hierarchical levels (with more than 4 or 5, judging by ourselves), we
lose visual interest and it is no longer intuitive. As a result, the most important
hierarchical levels are represented to ensure the best possible understanding when
visualizing the rhythmic tree. In the following sections, we present the advantages
of this representation for intuitively visualizing certain characteristics of a musical
theme.

8.1.2 Advantage 1 of Rhythmic Trees: Groupings and Overall Du-
ration on the Same Representation

One of the main advantages of the rhythmic tree representation is that the overall
duration and the durations of the note groups are clearly indicated on this represen-
tation. The overall duration is naturally displayed at the top of the tree, while the
durations of the note groups are indicated by the numbers on the lower lines. For
example, in Figure 8.3, the overall duration is indicated by the number 35, and we
understand that this theme can be divided in two by a group of duration 20 (which
is itself divided into blocks of duration 5) and by a group of duration 15 (which is
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itself divided into blocks of 3). It may seem essential to have overall duration and
group durations on the same representation, but this is not the case for the previous
representations presented in Figure 8.1 and Figure 8.2, with the exception of the
tree structure representation, from which we mainly took our inspiration.

8.1.3 Advantage 2 of Rhythmic Trees: Provides Information on a
Hierarchical Level Above the Bar

Another advantage of the rhythmic tree representation is that it produces informa-
tion above the bar, unlike the representations presented in Figure 8.2, which are
designed for metric representation only. This is relevant when describing a musical
theme, as it is often composed of several bars. In particular, it makes it easy to
visualize the number and type of bars contained in the theme. For example, themes
composed of 3 bars or 5 bars of 4 beats are easily identifiable, as shown in Figure 8.4.
In addition, if the type of bar changes, for example by composing 3- and 4-beat bars,
this is displayed very clearly on the rhythmic tree representation.

(a) 3-bar theme (b) 5-bar theme

Figure 8.4: The rhythmic tree representation provides information on a hierarchical
level above the bar, which is relevant for themes of 3 or 5 bars long.

8.1.4 Advantage 3 of Rhythmic Trees: Musical Transformations of
Each Hierarchical Level are Visualized

The rhythmic tree representation also makes it possible to visualize certain musical
transformations, since changes can be seen on each line of the tree. For example,
Figure 8.5 illustrates tactus changes in the song Lights Out by Car Bomb, resulting
in a modification of the note groups on the middle line. In this song, there are first
groups of 6, then 5, 4 and finally 3 tatum pulsations. The overall duration does not
change, so only the middle line is modified. Therefore, this transformation is easily
illustrated with the rhythmic tree representation.

It is also possible to visualize tatum changes, as shown in Figure 8.6 with the song
Story 2 by Clipping. In this case, the middle line is still made up of 4 groups, but the
numbers have changed because the tatum has changed. Another transformation in
this song, which is also very easy to visualize with the rhythmic tree representation,
is the change of metric from 3

8, then 4
8, 5

8, 6
8, 7

8 up to 8
8. The visualization of this song
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with the rhythmic tree representation is available via the link: https://youtu.be/
Hyvv1oJAaSI?si=fs64lW30BHYJDI34.

Tatum = 428 bpm

Tactus = 71.3 bpm

(a) Groups of 6 tatum pulses (at 0:08)

Tatum = 428 bpm

Tactus = 85.6 bpm

(b) Groups of 5 tatum pulses (at 0:12)

Tatum = 428 bpm

Tactus = 107 bpm

(c) Groups of 4 tatum pulses (at 0:16)

Tatum = 428 bpm

Tactus = 142.6 bpm

(d) Groups of 3 tatum pulses (at 0:21)

Figure 8.5: Musical transformation in the introduction of Lights Out by Car Bomb
visualized with the rhythmic tree representation. Only one of the three hierarchical
levels is modified (the tactus).

Tatum = 220 bpm

Tactus = 110 bpm

(a) Tatum before 1:15

Tatum = 330 bpm

Tactus = 110 bpm

(b) Tatum after 1:15 (3/2 faster)

Figure 8.6: Musical transformation of Story 2 by Clipping (at 1:15) visualized with
the rhythmic tree representation. Only one of the three hierarchical levels is modified
(the tatum).

8.1.5 Advantage 4 of Rhythmic Trees: Visualize Truncated Pat-
terns

Since the time axis is present in the rhythmic tree representation, i.e. the
tree is interpreted from left to right, it is simple to represent truncated ver-
sions of the musical theme. This technique is frequently used by some musi-
cians [Pieslak 2007]. For example, Figure 8.7, illustrates two truncated versions
of the theme from the song Entertain Me by Tigran Hamasyan. The visualiza-
tion of this song with the rhythmic tree representation is available via the link:
https://youtu.be/EidE2ETpCnU?si=TbtJK7rV3mQFZT42.

https://youtu.be/Hyvv1oJAaSI?si=fs64lW30BHYJDI34
https://youtu.be/Hyvv1oJAaSI?si=fs64lW30BHYJDI34
https://youtu.be/EidE2ETpCnU?si=TbtJK7rV3mQFZT42
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(a) First truncated theme (at 0:28) (b) Second truncated theme (at 1:10)

Figure 8.7: Visualization of truncated themes of Entertain Me by Tigran Hamasyan
using the rhythmic tree representation (the complete theme is represented Fig-
ure 8.3).

8.2 Interactive Software Developed to Generate
Rhythms Using a Circular Representation

Circular representation is a powerful method of making direct links between musical
and geometric objects. Specifically, Toussaint analyzed the properties of musical
rhythms by considering the properties of the corresponding polygons when these
rhythms are represented within a circle [Toussaint 2005, Toussaint 2019]. Many of
these ideas have been incorporated into our science outreach activities.

After introducing the circular representation, I received numerous messages from
teachers of both mathematics and music, asking me if there was any user-friendly,
free software they could use to create projects based on the circular representation
with their students. I therefore decided to start a project to create a free interactive
website that would enable the general public to use this representation. I was then
selected by the French Musicology Society (SFM) and the French Association of
Computer Music (AFIM) for the call for projects of the French Ministry of Culture
“Research in Music: Collaborations between Young Researchers and Artists” to
develop the project “Articulation between Theoretical Research and Algorithmic
Composition”. This allowed me, in part, to develop in collaboration the interactive
website illustrated by a screenshot in Figure 8.8(a).

This website is available via the link: https://mathemusique.gitlab.io/
rhythm-circle/. There is also a version of a midi effect for Ableton Live that
has been developed for musicians which is also illustrated by a screenshot in Fig-
ure 8.8(b). These software incorporate the six distinguished rhythms considered by
Toussaint [Toussaint 2019] presented in Section 1.3.2. The most interesting feature
of these interactive software is that you can choose any subdivision of the circle. For
example, you can combine a subdivision of 12 with 8 as in Figure 8.8, but also other
more complex subdivisions such as between 11 and 7. In addition, known rhythms
can be immersed in unusual divisions, for example the six distinguished rhythms
can be dropped into a subdivision of the circle of 17 to create an unnatural and
artificial groove.

https://mathemusique.gitlab.io/rhythm-circle/
https://mathemusique.gitlab.io/rhythm-circle/
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Credits

THE RHYTHM CIRCLE
Play  

Tempo (mpm): 30

Reset rhythms

Tresillo
Son ✔✔✔✔

Shiko
Soukous
Rumba
Bossa Nova
Gahu
Samba
Bembé
Steve Reich
Stromae
Pyramid Song
Basic 1
Basic 2
Basic 3 ✔✔✔✔

Basic 4

Export

Snare Drum  

Subdivisions: 16

Rotation: - +

Kick Drum  

Subdivisions: 6

Rotation: - +

Hi Hat  

Subdivisions: 16

Rotation: - +

en
fr

(a) Interactive website

(b) Midi effect in Ableton

Figure 8.8: Interactive software called “The Rhythm Circle” developed to generate
rhythms using a circular representation.

8.3 Conclusion

I learned a lot from this science outreach activity. This led me to develop my
curiosity in many subjects of mathematics and music, and to synthesize information
to transmit it to the general public. I would like to point out that I did this in
my spare time, mostly at weekends. Given the interest shown by people, I intend
to continue doing this in the years to come, as long as I remain in the academic
domain. Finally, I would like to list the three videos that have reached over 300,000
views on YouTube, which are: What Are Euclidean Rhythms? 2, Minimalist Music,
an Intellectual Art Form? 3, and Meshuggah and Algorithmic Music4. These three
videos are in my native language, in French, and I recommend watching them for a
better understanding of this science outreach activity.

2https://youtu.be/8G8qko7NZdE?si=gkudTeJs6mn3Ka63
3https://youtu.be/47agCNyxfOE?si=f0kZEmHdHQmk72-Q
4https://youtu.be/euSki63c-SQ?si=IsZRciltMrnbiHwc

https://youtu.be/8G8qko7NZdE?si=gkudTeJs6mn3Ka63
https://youtu.be/47agCNyxfOE?si=f0kZEmHdHQmk72-Q
https://youtu.be/euSki63c-SQ?si=IsZRciltMrnbiHwc
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To conclude, we develop a discussion on all three parts of this manuscript in relation
to our contributions and detail the perspectives of this research. Finally, we propose
a response to the relevance of applying mathematical theories to music.

Part I. Musical Pattern Discovery

The first part of this manuscript proposes a method to discover musical patterns
from a multidimensional representation of music. The originality of this method
comes from the use of mathematical morphology, a theory rarely applied to mu-
sic. Therefore, before presenting our method to discover musical patterns, we first
chose to introduce mathematical morphology and previous works on musical pattern
discovery from a multidimensional representation of music.

Chapter 1 introduced the theory of mathematical morphology. We have consid-
ered only the binary framework, which is the simplest case, and presented the main
operators and some of their properties. The contributions of this chapter are the
multiple applications to symbolic representations of music that we have suggested.
In particular, we have demonstrated that the principal operators can produce mu-
sically relevant results on musical chords (with Z), musical rhythms (with Zn) or
musical pieces (with Rn). The remainder of this part is based on the application of
mathematical morphology to musical pieces.

Chapter 2 presented previous works on the discovery of musical patterns from
a multidimensional representation of music. Our contributions have demonstrated
that mathematical morphology fits perfectly into this context. In particular, we
have proved that the principal operators of mathematical morphology generalize
and provide a deeper understanding of certain fundamental concepts of the musical
pattern discovery task. Therefore, these first two chapters of this part set the context
for our method, which is presented in the next chapter.

Chapter 3 described our method for discovering musical patterns from a mul-
tidimensional representation of music using mathematical morphology. The con-
tributions of this chapter are the various mathematical results that are useful for
the musical pattern discovery task. We have shown that these results can optimize
the discovery of musical patterns and provide a response to some of the open ques-
tions in this field such as the discovery of MTEC patterns or the “problem of isolated
membership”. In addition, these results are original because they come from musical
problems and can be applied to other types of data.

In my opinion, this is the most accomplished part of this manuscript. This is
the part I most enjoyed working on and the part that I am most proud of. For
future work, Chapter 1 can be extended as we have only considered the principal
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operators of mathematical morphology, but we believe that other morphological
operators should be considered for possible application to music. In Chapter 2, the
majority of existing algorithms for the discovery of musical patterns have already
been reviewed, so it seems complicated to produce new links between morphology
and these algorithms. Finally, we are convinced that Chapter 3 is the chapter to
be developed in this manuscript. Since this chapter proposes a new approach for
discovering musical patterns, it provides multiple perspectives for future work, such
as those suggested in Section 3.6.2 (with the discovery of non-repeating patterns,
truncated patterns, meter, or musical sections). Addressing these questions opens up
the possibility of generating additional mathematical results from musical problems.
More generally, the results developed in this chapter can also be applied to other
types of data, such as a signal-type representation by using a spectrogram and
adapting the results, or simply to discover repetitions in a discrete set of points.

Finally, to answer the original question stated in the introduction of this
manuscript: How to discover patterns from a multidimensional representation of
music? The short answer is to use the onsets. The long answer is that it is possible
to give a musical meaning to the operations used and the patterns discovered by
distinguishing the role of onsets and musical patterns. This reveals that the onsets
and musical patterns are MTEC conjugated and therefore form pairs. This implies
that it is possible to discover the musical patterns from the onsets. We then pro-
posed to focus on non-redundant pairs, as they can describe musical sections, and
several such pairs can provide a good approximation of a musical piece.

Part II. Musical Structure

The second part of this manuscript deals with the generation of hierarchical segmen-
tations from a symbolic representation of music. Based on previous works, the main
criteria to consider are: homogeneity, novelty and repetition. We then proposed a
method based on homogeneity and novelty, which are closely related criteria, and
another based on repetition.

Chapter 4 focused on the homogeneity and novelty criteria for generating seg-
mentations in a hierarchical way. Our contributions have shown the relevance of
morphological filters in the grayscale framework for homogenizing data. In particu-
lar, we have illustrated that these filters can homogenize regions in self-distance or
self-similarity matrices, and that the size of the filter changes the level of homoge-
nization.

Chapter 5 proposed the generation of hierarchical segmentations based on rep-
etition. The contributions of this chapter are first the generalization of an existing
representation (the correlative matrix) to discover almost repeating patterns with-
out overlaps in a musical sequence, and then develop a method that extracts data
from it to produce hierarchical segmentations.
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In my opinion, this part is original because it uses a symbolic representation
of music and offers new tools for generating segmentations in a hierarchical way.
However, the main weakness of this part is that it is based on a string representation
of music. This representation is useful for generating the self-similarity matrix, for
example, but is not robust, in the sense that a slight change in the data can lead
to a large change in the obtained result. Therefore, in future work, we believe
that it is important to work with a multidimensional representation of music, as
in Part I, and to consider homogeneity and repetition criteria together in the same
method. Additional work remains to be done for the homogeneity criterion, but for
the repetition criterion, the results developed in Part I can be used, which would
constitute an original approach to discovering the structure of a musical piece.

Finally, to answer the original question stated in the introduction of this
manuscript: How to discover hierarchical segmentations from symbolic represen-
tations? The criteria to be considered are homogeneity, novelty and repetition. We
have extended some previous works that use a string representation of music and
have validated that these criteria are useful for the discovery of hierarchical seg-
mentations. However, with a symbolic representation of music, we believe that a
method based on a multidimensional representation of music is required, and that
this method should take into account all these criteria together and not just one of
them.

Part III. Musical Performance

The third part of this manuscript analyzes musical performance. Since this is a very
complex subject, we have chosen to focus on tempo and loudness variations in solo
piano performances from the MazurkaBL dataset. This choice is original because
we are not using information from the score. In this part, we propose to analyze
these performances in two different ways.

Chapter 6 proposed a new representation of musical performance. Our con-
tributions have demonstrated the relevance of the rhythm or loudness simplex to
represent the performances of the MazurkaBL dataset. With this representation,
we have shown how to obtain bars with a high expressivity, or how to compute the
regularity of a performance.

Chapter 7 analyzed and compared segmentations derived from musical per-
formances. As this work comes from a collaboration, I have mainly detailed my
contribution, which proposes to use unbalanced optimal transport to compare two
musical interpretations of the same piece. This method reveals similarities and
differences between two interpretations.

In my opinion, the analytical approaches to musical performance developed in
this part are innovative. I am satisfied to have represented the performance in a
2-simplex, and to have found an original musical application for unbalanced optimal
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transport. However, the process of musical performance is still far from being fully
understood, and much work remains to be done. An interesting extension to this
part would be to establish links between the patterns and structure discovered in
the score, and the segmentation induced by interpretations of the same piece. We
therefore believe that it would be relevant to use the results developed in Part I and
Part II and to compare them with those of Part III of this manuscript.

Finally, to answer the original question stated in the introduction of this
manuscript: How to analyze musical performance using tempo and loudness infor-
mation? We first proposed to represent the data in the rhythm simplex (for tempo
data) or loudness simplex (for loudness data). We have shown that the isolated
points in this representation correspond to bars with high expressivity. We then
developed a method for recovering the segmentation induced by a performance by
considering variations in tempo and loudness data. This can be used, for example,
to display musical phrases or temporal suspensions from an interpretation. Finally,
we have shown in this part that many of the expressive choices made in a musical
performance are reflected in tempo or loudness data.

Final Remark

In this manuscript, we have applied many different mathematical theories to mu-
sic. In particular, we have shown that it is possible to give a musical meaning to
mathematical operations, and reciprocally, that it is possible to characterize musi-
cal objects with mathematics. If we were able to do this, we might first think that
it is because “music is math”, and therefore it is completely obvious to explain all
musical concepts using mathematical language. However, this is not true. Whether
it is timbre, emotions, production, improvisation, social interaction, or political and
cultural context, there are many musical properties that we have not covered in this
manuscript because mathematics may not always be the most appropriate approach.
What can we conclude from this? We can therefore conclude that the statement
“music is math” is a bit simplistic, but this manuscript is not 200 pages long just to
conclude that “music is music, and math is math”. If there is a deep connection be-
tween mathematics and music, it is partly because many musical objects can easily
be described by symbols. In particular, there is a whole musical heritage that comes
from writing music using a score, where symbols can easily be described in a math-
ematical framework. This makes it possible, for example, to describe a musical note
by a point in Rn as we have done in Chapter 1, Chapter 2, Chapter 3, Chapter 4,
and Chapter 5 of this manuscript. But symbols are not limited to notes: they can
also describe structure, rhythm, chords, meter, texture, tonality and many other
fundamental musical concepts. With this abstract description, it is then possible to
use a mathematical formalism and discover links between mathematics and music.
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Appendix A

Theorem and Proof of the
Existence of a Conjugate Pair
With a Non-Periodic Pattern

We prove here Theorem 3.8 recalled below, which assures the existence of a non-
redundant MTEC conjugate pair when a non-periodic pattern is repeated at regular
intervals.
Remark (Notation). In the following, we represent the first coordinate of x ∈ E by
tx, which refers to the temporal component and for S ∈ P(E), we define S[a,b] =

S ∩ {p ∈ E | ta ≤ tp ≤ tb}.

Theorem 3.8: MTEC conjugate pair with a non-periodic pattern

Let X = P ⊕O with P,O ∈ P(E) such that:

• L = (tL, 0, . . . , 0) ∈ E with tL > 0,

• P is of temporal length less than tL (i.e. max
x,y∈P

|tx − ty| < tL),

• O = {kL = (ktL, 0, . . . , 0) | k ∈ [[0, N − 1]]} with N ∈ N∗,

• P is non-periodic in all directions (meaning ∄S ∈ P(E) such that S ⊊ P ,
S is not a singleton and γS(P ) = P ).

With these assumptions, we have:

(P,O) is a non-redundant MTEC conjugate pair

We first need to prove some lemmas before proving this theorem. First, we need
to study εP (X) only on [0, tL[ because εP (X) is “L-periodic” on [0, NtL[.

Lemma A.2 (L-periodicity of εP (X)). Under the assumptions of Theorem 3.8, if
x ∈ εP (X) with tx < (N − 2)tL, then (x+ L) ∈ εP (X).

Remark. The condition tx < (N − 2)tL is necessary to stay in the definition domain
of X when translating a point of εP (X) by L.
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With a Non-Periodic Pattern

Proof of Lemma A.2. Because x ∈ εP (X), we have:

Px ⊆ X

⇒ Px+L ⊆ XL (translation by L)

⇒ Px+L[0,NL[
⊆ XL[0,NL[

(by intersection)

⇒ Px+L ⊆ XL[0,NL[
(∀p ∈ P, tp + tx + tL < NtL)

⇒ Px+L ⊆ (P ⊕OL)[0,NL[ (definition of X)

⇒ Px+L ⊆ (P ⊕ {kL | k ∈ [[1, N ]]})[0,NL[ (translation of O by L)

⇒ Px+L ⊆ P ⊕ {kL | k ∈ [[1, N − 1]]} (with the intersection)

⇒ Px+L ⊆ X (definition of X)

Consequently (x+L) ∈ εP (X), i.e. it is sufficient to study εP (X) only in [0, tL[.

Lemma A.3 (Belonging to Px). Under the assumptions of Theorem 3.8 and with
x ∈ εP (X), tx ∈ [0, tL[, and p ∈ P , we have: tx ≤ tp ⇒ p ∈ Px, and tx > tp ⇒
p+ L ∈ Px.

Proof of Lemma A.3. Because x ∈ εP (X), we have:

Px ⊆ X

⇒ Px ⊆ X[x,x+L[

⇒ Px ⊆ X[x,L[ ∪X[L,x+L[

⇒ Px ⊆ P[x,L[ ∪ PL[L,x+L[

However,

|P[x,L[ ∪ PL[L,x+L[| = |P[x,L[|+ |PL[L,x+L[|
= |P[x,L[|+ |P[0,x[|
= |P |
= |Px|

Because Px ⊆ P[x,L[∪PL[L,x+L[ and |Px| = |P[x,L[∪PL[L,x+L[|, we can conclude that
Px = P[x,L[ ∪ PL[L,x+L[, i.e. Px[x,L[ = P[x,L[ and Px[L,x+L[ = PL[L,x+L[.
tx ≤ tp Let tx ≤ tp, therefore p ∈ P[x,L[. Because Px[x,L[ = P[x,L[, we have p ∈ Px.

tx > tp Let tx > tp, therefore p ∈ P[0,x[. Translating by L, we have p + L ∈
PL[L,x+L[. Because Px[L,x+L[ = PL[L,x+L[, we have p+ L ∈ Px.

According to the next lemma, it is enough to study εP (X) on [0, tL/2] because
there is a symmetry with respect to tL/2.

Lemma A.4 (Symmetry of εP (X) on [0, tL[ with respect to tL/2). Under the as-
sumptions of Theorem 3.8, let x ∈ εP (X) with tx ∈ [0, tL[, then (L− x) ∈ εP (X).
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Proof of Lemma A.4. Let p ∈ P , we distinguish two cases: tx ≤ tp and tx > tp.
tx ≤ tp According to Lemma A.3, we have :

p ∈ Px

⇒ (p− x) ∈ P (translation by − x)

⇒ (p− x) ∈ X (P ⊆ X)

⇒ (p+ L− x) ∈ X (L-periodicity of X = P ⊕O)

tx > tp According to Lemma A.3, we have:

(p+ L) ∈ Px

⇒ (p+ L− x) ∈ P (translation by − x)

⇒ (p+ L− x) ∈ X (P ⊆ X)

In all cases, ∀p ∈ P, (p + L − x) ∈ X from which we conclude that PL−x ⊆ X

therefore (L− x) ∈ εP (X).

Lemma A.5 ({0E , x} describes P ). Under the assumptions of Theorem 3.8, let
x ∈ εP (X) with tx ∈ [0, tL/2], then γ{0E ,x}(P ) = P , where 0E denotes the origin of
the set E.

Proof of Lemma A.5. Let p ∈ P , we again distinguish two cases: tx ≤ tp and tp < tx.
tx ≤ tp According to Lemma A.3, p ∈ Px. Thus (p− x) ∈ P .

tx > tp Because x ∈ εP (X), we have (p+x) ∈ X. However: 0 ≤ tp+ tx < 2tx, and
tx ∈ [0, tL/2], which leads to 0 ≤ tp + tx < tL. We can conclude that (p+ x) ∈ P .
Finally, (p+ x) ∈ P or (p− x) ∈ P , i.e. in any case: γ{0E ,x}(P ) = P .

This provides the proof of Theorem 3.8.

Proof of Theorem 3.8. To prove that (P,O) is a non-redundant MTEC conjugate
pair, we need to prove that εP (X) = O, εO(X) = P , and |γP (X)| = |P | × |O|.

εP (X) = O Let x ∈ εP (X). According to Lemma A.2, we can suppose that
tx ∈ [0, tL[ because εP (X) is “L-periodic” on [0, NtL[. Moreover, with Lemma A.4
we can further reduce the interval by assuming tx ∈ [0, tL/2] by symmetry of εP (X)

on [0, tL[ with respect to tL/2. In this case, Lemma A.5 allows us to conclude that
γ{0E ,x}(P ) = P . However, P is non-periodic, which leads to x = 0E . With the
symmetry and the L−periodicity of εP (X), this proves that εP (X) = O.

εO(X) = P We use Theorem 3.2. X is bounded by definition and γP (X) = X.
Moreover, ∀p ∈ E : Pp ⊆ X ⇒ p = kL with k ∈ [[0, N − 1]] because εP (X) = O. By
definition of X, Ch(PkL) ∩ X = PkL from which we conclude that P is full in X.
Applying Theorem 3.2, we obtain εO(X) = P .
|γP (X)| = |P | × |O| This equality is due to the fact that the occurrences of the

pattern P do not intersect in X because P is of temporal length less than tL.





Appendix B

Bayesian Model for Modeling
Boundary Credence in Music

Performance

We describe here the method for estimating boundary credences from tempo or
loudness data of a musical performance. We first introduce the notations employed
here, present our adaptation of the forward-backward algorithm, explain the arc
model, and describe the priors we have chosen for our model.

B.1 Problem Statement and Notations

The notations used are listed here. We consider that the performance segmenta-
tion consists of a succession of non-overlapping, consecutive intervals that can only
change on the beat.

• Prosodic feature D: extracted from the recorded performance as a sequence
of N instantaneous tempo or loudness values, each corresponding to the value
at a beat (this is coherent with the MazurkaBL dataset [Kosta 2018] as the
information is available at beat level).

• Sequence slice D [i, j]: musical prosody parameter values from indices i to and
including j (0-indexed).

• Performance segmentation S: set of integer intervals which represent the seg-
mentation as a succession of non-overlapping consecutive intervals.

• Arc [i, j] ∈ S: starting at index i and ending at index j, and the next arc (if
there is one) would start at index j + 1.

• Arc starting at i [i,∼] ∈ S: regardless of its other end (i.e. [i,∼] ∈ S ⇐⇒ ∃j :
[i, j] ∈ S), respectively an arc ending at j (i.e. [∼, j] ∈ S ⇐⇒ ∃i : [i, j] ∈ S).

• Posterior boundary credences p([∼, j] ∈ S | D) or posterior arc credences
p([i, j] ∈ S | D): Probability that a segment ends at j, or probability that a
segment starts at i and ends at j. The aim of the method is to compute them.

• Boundary credence profile and arc credence matrix : output of the method,
although the matrix will be further transformed for the sake of visualisation.
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The assumption of independence across arcs is formalized in two ways, one for
the data and one for the prior:

∀n, D [0, n] ⊥⊥ D [n+ 1, N − 1] | [∼, n] ∈ S (B.1)

∀k, l, i, j : k < l < i < j, p([i, j] ∈ S | [i,∼] ∈ S, [k, l] ∈ S) = λ (i, j) (B.2)

where λ (i, j) = p([i, j] ∈ S | [i,∼] ∈ S). In less formal terms, this means that the
data before a boundary has no effect on the data after that boundary and that the
prior on the end of a segment does not depend on previous segments.

Finally, we assume that the first and last beats are respectively the first and the
last beats of the corresponding arcs, i.e. [0,∼] ∈ S and [∼, N − 1] ∈ S. The λ func-
tion is then sufficient to define the entire prior on segmentations1 and operates as a
parameter for the method. We use functions that are translation invariant, meaning
they act as a prior on the length of any segment, but this is not a requirement.

B.2 Adapted Forward-Backward Algorithm

We demonstrate here that the posterior marginals can be computed efficiently, by
using a similar process to that of the forward-backward algorithm, which bears
resemblance to some Bayesian changepoint detection algorithms [Fearnhead 2011,
Rigaill 2012].

By applying Bayes’ formula, we have the following equation:

p([∼, n] ∈ S | D) = p(D | [∼, n] ∈ S)p([∼, n] ∈ S)

p(D)
(B.3)

None of these terms are trivial to compute. However, using the assumption that
data across arcs is independent, we can rewrite Equation B.3 using so-called forward
and backward quantities α(n) and β(n), defined as2:

∀n ∈ {0, . . . , N − 1}, α(n) = p(D [0, n] , [∼, n] ∈ S) (B.4)

∀n ∈ {−1, . . . , N − 2}, β(n) = p(D [n+ 1, N − 1] | [n+ 1,∼] ∈ S) (B.5)

∀n ∈ {0, . . . , N − 1}, p([∼, n] ∈ S | D) = α(n)β(n)

α(N − 1)
(B.6)

which in very rough terms split the probability of observing the overall data accord-
ing to a hypothetical boundary at n. An important difference is that α is a joint
probability while β is a conditional probability.

1It is possible to go from this λ function to the implied prior credence on boundaries and
segments by applying the same algorithm while neutralizing the data likelihood terms.

2Note that α(N − 1) = β(−1) = p(D). We also extend the definitions such that α(−1) =

β(N − 1) = 1 to handle boundary conditions.
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Recursive formulae can be derived for these new quantities, using κ (i, j) =

p(D [i, j] | [i, j] ∈ S):

α(n) =

n−1∑
i=0

α(i− 1)× λ (i, n)× κ (i, n) (B.7)

β(n) =
N−1∑
i=n+2

β(i)× λ (n+ 1, i)× κ (n+ 1, i) (B.8)

showing that both quantities can be computed respectively forward and backward
by summing, over possible arcs, their previously computed values, weighted by the
prior on that arc and the likelihood of the corresponding data slice. This can be
done efficiently using dynamic programming, especially if the prior is null for arcs
over a maximum length. Specifically, in O(NK) if K is the maximum arc length.

Additionally, we can once again use the independence of data across arcs to get
posterior marginals on each arc:

p([i, j] ∈ S | D) = α(i)κ (i, j)λ (i, j)β(j)

α(N − 1)
(B.9)

Provided we have a specific model and algorithm which can yield the κ (i, j) for
all relevant pairs, we can thus compute efficiently the posterior credences. The next
section describes one such model.

B.3 Arc Model

The arc-level model is a fairly standard Bayesian polynomial model, as can be found
in [Bishop 2006], from which notations are mostly borrowed. The main difference
in the approach is that we are not ultimately interested in the model parameters,
but in the likelihood of the data segment.

Throughout this section, we work under the assumption that there is an arc
from index i to index j, with j > i. To insulate the arc model from the global
considerations, we pose t = D [i, j] and we define x to be the normalized score time
within the arc, formally:

x =

(
k

j − i

)
k∈{0,...,j−i}

(B.10)

All variables defined in this section are then to be taken with respect to i and j,
apart from the prior parameters µ, Σ and η, which are constant across all arcs.

First we assume that there is an ideal tempo series y, representing the per-
former’s intended tempo curve for the phrase, from which the observed data t de-
viates by ε. This deviation term is meant to encapsulate a variety of sources, such
as finer-scale modulation (e.g. note-level rubato), beat annotation/extraction error,
execution error, etc. and is modelled as independent, centered Gaussian noise, with
a fixed variance η:

t = y + ε, ε ∼ N (0, ηI) (B.11)
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where I is the identity matrix of the appropriate size.
We then model the ideal tempo as a quadratic function of score time as described

in Section 7.2.1, with independent Gaussian priors on its parameters:

y = Φxw, w ∼ N (µ,Σ) , Φx :=

 x20 x0 1
...

...
...

x2N−1 xN−1 1

 , (B.12)

where the x0, . . . , xN−1 are the individual values of x, and µ and Σ hold respectively
the means and (diagonal) covariance matrix of the priors on the quadratic, linear
and constant coefficients (in that order). In sum, we have:

p(t | w) = N (t|Φxw, ηI) , (B.13)

which, marginalising against w, yields:

p(t) = N
(
t|Φxµ, ηI +ΦxΣΦx

T
)

(B.14)

B.4 Prior Setup

As always with Bayesian methods, the output is dependent on the priors. For the
method, we need to select priors for likely segment lengths, phrase arc parameters,
and noise.
Tempo and loudness arc priors: In order to set reasonable priors, tempo and
loudness arc boundaries were manually annotated for 37 performances across 4
pieces. Maximum likelihood estimates were then fitted to each arc in order to infer
the corresponding model parameters, whose mean and variance were then used to
construct the different priors. The resulting prior parameters were:

µtempo =

−181159

107

 , Σtempo =

932 0 0

0 1062 0

0 0 312

 , ηtempo = 18.1 (B.15)

µloud =

−0.730.68

0.41

 , Σloud =

0.552 0 0

0 0.602 0

0 0 0.192

 , ηloud = 0.039 (B.16)

Segment length priors: For the prior on segment length, we have used a dis-
cretised Gaussian distribution, cut off at 30 beats, with mean 14.7 and standard
deviation 5.95 (again set according to the 37 manual annotations).

These priors are wide, which is expected as the arcs can exhibit very different
shapes and expectations; priors that are too strict would likely result in poor seg-
mentations. Overall, this means that posterior credences are mainly driven by the
goodness of the arc fits.
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