
HAL Id: tel-04480229
https://theses.hal.science/tel-04480229v1

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multimodal deep learning for audiovisual production
Kaouther Ouenniche

To cite this version:
Kaouther Ouenniche. Multimodal deep learning for audiovisual production. Machine Learning
[stat.ML]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IPPAS020�. �tel-04480229�

https://theses.hal.science/tel-04480229v1
https://hal.archives-ouvertes.fr


 

   

 

Multimodal deep learning for 

audiovisual production 
 

Thèse de doctorat de l’Institut Polytechnique de Paris 

préparée à Télécom sud Paris 

 

 

École doctorale n°626 Institut Polytechnique de Paris (ED IP Paris) 

Spécialité de doctorat: Mathématiques et Informatique 

 

Thèse présentée et soutenue à Evry, le 19/12/2023, par 

 

 Kaouther OUENNICHE 

 

Composition du Jury : 

 

Jenny BENOIS-PINEAU 

Professeure, Université de Bordeaux (LABRI)    Présidente 

Mohamed DAOUDI 

Professeur, IMT Nord (CRIStAL)      Rapporteur 

Amel BENAZZA 

Professeure, Sup’Com (COSIM)      Rapporteur 

Andrei BURSUC 

Docteur, Senior Researcher, VALEO.AI     Examinateur 

Titus ZAHARIA 

Professeur, Télécom sud Paris (SAMOVAR)          Directeur de thèse 

Ruxandra TAPU 

Maître de conférences, Télécom sud Paris (SAMOVAR)  Co-Encadrante de thèse 

Matthieu PARMENTIER 

Senior Researcher, France TV       Invité

N
N

T
: 
2

0
2

3
IP

P
A

S
0

2
0
 



ii 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

   

Acknowledgment 

 
 

 

This Ph.D. journey has been a challenging and rewarding odyssey, and it is with immense gratitude that 

I recognize those who have been pivotal in making it possible. 

First and foremost, I would like to express my deepest appreciation to my supervisor Pr. Titus Zaharia. 

His ideas and judgment have not just guided but profoundly inspired me throughout this demanding 

expedition. His advice and support have been a constant source of wisdom during these formative years. 

I would also like to thank Dr. Ruxandra Tapu, my co-Supervisor, who has been a wellspring of insightful 

commentary and encouragement when I found myself entangled in the complexities of my research. Her 

foresight and profound knowledge in my research area have consistently breathed life into my work, 

and for that, I am immensely grateful. My warm thanks also go to Mathieu Parmentier who brought a 

real-world perspective and invaluable insights, enriching the practical dimensions of my research. His 

guidance has expanded the horizons of my work, and I deeply appreciate his contributions. 

I would like to extend my heartfelt appreciation to Pr. Mohamed DAOUDI, Pr. Amel BENAZZA, Pr. 

Jenny BENOIS PINEAU, and Dr. Andrei BURSU for graciously accepting to be members of the jury. 

Your willingness to share your feedback and valuable insights has been instrumental in shaping the 

outcome, and I am genuinely grateful for your dedication to advancing knowledge in this field.  

I extend my heartfelt thanks to professors Catalin Fetita, Marius Preda, and Nicolas Rougon who 

engaged me in exciting conversations and provided insights that have enriched my academic and 

personal journey. I would also like to express my gratitude to Evelyne Taroni for her exceptional 

administrative support that has lightened the logistical burden and allowed me to focus on my work. 

My academic pursuit would not have been the same without the camaraderie and friendship of my fellow 

colleagues in the ARTEMIS department. Abhaya-Dhathri Arige, Hugo Durchon, Antoine Didier, Traian 

Lavric, Zied Lahiani, Christian Tulvan, Minderis Krir, and Léa Saunier have shared this academic 

venture with me, offering not only their intellectual insights but also their friendliness and humor, which 

have made the journey all the more enjoyable. 

To my beloved partner, Nicolas, I owe a debt of gratitude for your unyielding support and for pushing 

me beyond what I believed I was capable of. Your kindness and encouragement have been a constant 

source of strength and motivation. 

Last but not least, I would like to express my heartfelt appreciation for my family and friends who have 

made my journey so much more meaningful. Even with miles that separate us, their unwavering 

presence in my life has been a constant source of comfort and strength. To my beloved nieces, your 

presence in my life has brought an abundance of joy and happiness. Your infectious laughter and zest 

for life have the power to light up even the darkest of days. To my dear sisters, you have delighted me 

in countless ways, offering a listening ear and a comforting shoulder to lean on when I have needed it 

most. To my parents, you hold a special place in my heart for making me the person I am today. Your 

love, guidance, and belief in me have been the driving force behind my growth and development. You 

have pushed me to be the best version of myself and instilled in me the values and principles that have 

guided my journey.  



iv 

 

   

 

Table of contents 

 

1 Introduction ..................................................................................................................................... 1 

1.1 Context .................................................................................................................................... 1 

1.2 Experimental setup .................................................................................................................. 2 

1.3 Contributions ........................................................................................................................... 2 

1.4 Thesis organization .................................................................................................................. 3 

2 Industrial use case ........................................................................................................................... 6 

2.1 Introduction ............................................................................................................................. 7 

2.2 Presentation of the study ......................................................................................................... 7 

2.2.1 In-Depth Interviews with Documentalists ....................................................................... 8 

2.2.2 Participation in the Club des Archives de l’Audiovisuel Public meetings ....................... 8 

2.2.3 Participation to the European Broadcasting Union ......................................................... 9 

2.3 Content management in the broadcast industry ..................................................................... 10 

2.3.1 Role of documentalists in content management ............................................................ 10 

2.3.2 Television sources ......................................................................................................... 11 

2.3.3 Tools for content management and organization .......................................................... 12 

2.3.4 Search process for efficient content discovery .............................................................. 12 

2.3.5 Overview of metadata for indexing ............................................................................... 14 

2.3.6 Types of metadata used for indexing ............................................................................. 15 

2.4 Automation techniques .......................................................................................................... 18 

2.4.1 Automatic solutions to assist the documentalists in archive management .................... 19 

2.4.2 Proposed solutions ......................................................................................................... 20 

2.5 Conclusion ............................................................................................................................. 21 

Part I: UNIMODAL, TASK-SPECIFIC models ................................................................................... 22 

3 Landmark recognition ................................................................................................................... 23 

3.1 Introduction ........................................................................................................................... 24 

3.2 Related work .......................................................................................................................... 24 

3.2.1 Challenges in landmark recognition .............................................................................. 24 

3.2.2 Content-based image retrieval ....................................................................................... 26 

3.2.2.1 Traditional methods ................................................................................................... 26 

3.2.2.2 Deep learning-based techniques ................................................................................ 27 

3.3 Constitution of a landmark dataset ........................................................................................ 28 

3.4 Proposed methodology .......................................................................................................... 31 



v 

 

   

3.4.1 Network architecture and image representation ............................................................ 31 

3.4.2 Siamese learning ............................................................................................................ 33 

3.4.3 Dimensionality reduction and whitening ....................................................................... 34 

3.4.4 Image retrieval ............................................................................................................... 35 

3.5 Experiments and results ......................................................................................................... 35 

3.5.1 Datasets ......................................................................................................................... 36 

3.5.2 Implementation details .................................................................................................. 36 

3.5.3 Model evaluation on our dataset .................................................................................... 36 

3.5.4 Comparison with state-of-the-art ................................................................................... 37 

3.5.5 Qualitative results .......................................................................................................... 37 

3.6 Conclusion and future works ................................................................................................. 41 

4 Contribution to the scene segmentation project ............................................................................ 42 

4.1 Introduction ........................................................................................................................... 43 

4.2 Scene segmentation overview ............................................................................................... 43 

4.3 Place recognition ................................................................................................................... 44 

4.3.1 Network architecture ..................................................................................................... 44 

4.3.2 Experimental setup ........................................................................................................ 45 

4.3.3 Model evaluation ........................................................................................................... 45 

4.4 Field of view shot detection .................................................................................................. 46 

4.4.1 Experimental setup ........................................................................................................ 47 

4.4.2 Model evaluation ........................................................................................................... 48 

4.5 Conclusion ............................................................................................................................. 50 

5 Camera motion categorization ....................................................................................................... 51 

5.1 Introduction ........................................................................................................................... 52 

5.2 Types of camera motion ........................................................................................................ 53 

5.3 Related work .......................................................................................................................... 54 

5.3.1 Estimation of motion vectors ......................................................................................... 54 

5.3.1.1 Feature-based approaches .......................................................................................... 54 

5.3.1.2 Appearance-based approaches ................................................................................... 54 

5.3.1.3 Discussion ................................................................................................................. 55 

5.3.2 CNNs for video action recognition ................................................................................ 55 

5.3.2.1 Two-stream networks ................................................................................................ 56 

5.3.2.2 3D Convolutional Neural Networks .......................................................................... 57 

5.3.2.3 Discussion ................................................................................................................. 58 

5.4 Proposed methodology .......................................................................................................... 58 

5.4.1 Network architecture ..................................................................................................... 58 

5.4.2 Camera motion datasets ................................................................................................. 60 



vi 

 

   

5.4.2.1 Semi-automatic learning dataset creation .................................................................. 60 

5.4.2.2 Creation of the test dataset ........................................................................................ 68 

5.5 Experimental results .............................................................................................................. 70 

5.6 Conclusion ............................................................................................................................. 73 

Part II: Multimodal models ................................................................................................................... 74 

6 Multimodal learning ...................................................................................................................... 75 

6.1 Introduction ........................................................................................................................... 76 

6.2 Applications of multimodal learning for TV broadcast ......................................................... 76 

6.3 Challenges in multimodal learning ........................................................................................ 77 

6.3.1 Data heterogeneity ......................................................................................................... 77 

6.3.2 Data fusion .................................................................................................................... 77 

6.3.3 Alignment ...................................................................................................................... 78 

6.3.4 Efficiency ...................................................................................................................... 78 

6.4 Transformer architecture for multimodal learning ................................................................ 79 

6.4.1 Mathematical formulation of the Vanilla transformer ................................................... 79 

6.4.1.1 Multi-Head Self Attention ......................................................................................... 80 

6.4.1.2 Position-wise Feed-Forward Networks ..................................................................... 80 

6.4.2 Advantages of the transformer architecture ................................................................... 82 

6.4.3 Challenges in transformers ............................................................................................ 82 

6.5 Landscape of multimodal datasets. ........................................................................................ 83 

6.6 Conclusion ............................................................................................................................. 84 

7 Video question answering ............................................................................................................. 86 

7.1 Introduction ........................................................................................................................... 87 

7.2 Application of Video Question Answering for archive indexing and retrieval ..................... 88 

7.3 Related work .......................................................................................................................... 88 

7.3.1 VideoQA datasets and evaluations metrics ................................................................... 88 

7.3.1.1 VideoQA datasets ...................................................................................................... 88 

7.3.1.2 Evaluation metrics ..................................................................................................... 91 

7.3.1.3 Discussion ................................................................................................................. 92 

7.3.2 State of the art VQA techniques .................................................................................... 93 

7.3.2.1 Monolithic models with attention .............................................................................. 94 

7.3.2.2 Memory-based models .............................................................................................. 94 

7.3.2.3 Graph-based models .................................................................................................. 95 

7.3.2.4 Transformer-based models ........................................................................................ 95 

7.3.3 Discussion ..................................................................................................................... 98 

7.4 Proposed network architecture .............................................................................................. 99 

7.4.1 Feature extraction ........................................................................................................ 100 



vii 

 

   

7.4.1.1 Video processing ..................................................................................................... 100 

7.4.1.2 Text processing ........................................................................................................ 101 

7.4.2 Cross-modal module .................................................................................................... 102 

7.4.3 Transformer-based multimodal fusion ........................................................................ 103 

7.5 Rephrasing attacks ............................................................................................................... 104 

7.5.1 Problem formulation .................................................................................................... 104 

7.5.2 Methodology ............................................................................................................... 105 

7.6 Experimental evaluation ...................................................................................................... 107 

7.6.1 Datasets ....................................................................................................................... 107 

7.6.2 Implementation details ................................................................................................ 107 

7.6.3 Ablation studies ........................................................................................................... 108 

7.6.3.1 Ablation studies on MSVD-QA .............................................................................. 108 

7.6.3.2 Effect of the transcript input .................................................................................... 111 

7.6.4 Comparison with state-of-the-art ................................................................................. 113 

7.7 Conclusion ........................................................................................................................... 113 

8 Video captionnig ......................................................................................................................... 115 

8.1 Introduction ......................................................................................................................... 116 

8.2 Application to TV archive indexing .................................................................................... 117 

8.3 Related work ........................................................................................................................ 117 

8.3.1 Template-based approaches ......................................................................................... 117 

8.3.2 Deep-learning based approaches ................................................................................. 118 

8.3.2.1 Visual-based approaches ......................................................................................... 119 

8.3.2.2 Multimodal approaches ........................................................................................... 119 

8.3.3 Evaluation metrics ....................................................................................................... 122 

8.3.3.1 BiLingual Evaluation Understudy (BLEU) ............................................................. 122 

8.3.3.2 Recall-Oriented Understudy for Gisting Evaluation (ROUGE) .............................. 122 

8.3.3.3 Metric for Evaluation of Translation with Explicit ORdering (METEOR)............. 123 

8.4 Proposed video captioning architecture ............................................................................... 124 

8.4.1 Feature extraction ........................................................................................................ 124 

8.4.1.1 Visual feature representation ................................................................................... 124 

8.4.1.2 Textual feature representation ................................................................................. 125 

8.4.2 Modality Attention module ......................................................................................... 126 

8.4.3 Transformer encoder ................................................................................................... 128 

8.4.4 Transformer decoder ................................................................................................... 129 

8.5 Training objectives .............................................................................................................. 132 

8.5.1 Masked Language Modeling ....................................................................................... 132 

8.5.2 Contrastive learning..................................................................................................... 133 



viii 

 

   

8.5.3 Caption generation....................................................................................................... 133 

8.6 Experiments and results ....................................................................................................... 133 

8.6.1 Dataset ......................................................................................................................... 134 

8.6.2 Implementation details ................................................................................................ 135 

8.6.3 Ablation study ............................................................................................................. 135 

8.6.4 Comparison with state of the art .................................................................................. 137 

8.6.5 Qualitative results ........................................................................................................ 138 

8.7 Conclusion ........................................................................................................................... 142 

9 Conclusion and perspectives ....................................................................................................... 144 

9.1 Conclusion ........................................................................................................................... 144 

9.2 Future work ......................................................................................................................... 145 

References ........................................................................................................................................... 148 

  



ix 

 

   

List of figures 

 

Figure 2.1. Distribution of the number of participants in the meeting with respect to their institution 

affiliation. ................................................................................................................................................ 9 
Figure 2.2. Main activities of the documentalists. ................................................................................. 11 
Figure 2.3. Overview of the DALET tool for content organization and management. ......................... 13 
Figure 2.4. Top search items conducted by documentalists. ................................................................. 13 
Figure 2.5.Top actions researched by documentalists. .......................................................................... 14 
Figure 2.6. Example of an archive file. Source: DALET. ..................................................................... 16 
Figure 2.7. Example of tagged-keywords in an archive file. Source: DALET. .................................... 17 
Figure 2.8. Index page for election candidates. Source: ELEC+. ......................................................... 18 
Figure 3.1. Variations in viewpoint, illumination and presence of distractors. ..................................... 25 
Figure 3.2. Three look-alike gothic churches. (a) Notre Dame, (b). Amiens, (c). Reims. .................... 25 
Figure 3.3. Overview of the image retrieval framework. ...................................................................... 26 
Figure 3.4. Siamese network architecture with contrastive loss. ........................................................... 28 
Figure 3.5. Examples from users’ pictures falsely tagged as a landmark. (a) Eiffel tower (b) Arch of 

Constantine (c) Empire state building (d) Statue of liberty ................................................................... 29 
Figure 3.6. Examples from the dataset. ................................................................................................. 30 
Figure 3.7. Network training using contrastive loss (offline). ............................................................... 32 
Figure 3.8. Feature aggregation using MAC technique......................................................................... 32 
Figure 3.9. Similarity learning task. The objective is to minimize the distance between positive samples 

and to maximize the distance between negative samples. ..................................................................... 33 
Figure 3.10. Example of batch-wise positive/negative mining. ............................................................ 34 
Figure 3.11. Overview of the image retrieval process. .......................................................................... 35 
Figure 3.12. Retrieval examples from our dataset. ................................................................................ 38 
Figure 3.13. Retrieval examples from Paris6k dataset. ......................................................................... 40 
Figure 4.1. The AI-TV ads insertion framework ................................................................................... 43 
Figure 4.2. Inception block. ................................................................................................................... 44 
Figure 4.3. Examples of the top-5 predictions from France TV content. The number beside indicates the 

prediction confidence. ........................................................................................................................... 46 
Figure 4.4. Basic field of view shot types. a) EWS; b) LS; c) MS; d) MCU; e) CU; f) ECU. .............. 47 
Figure 4.5. Confusion matrix of the test set .......................................................................................... 48 
Figure 4.6. Examples of field of view shot recognition on France TV content. Horizontal bars indicate 

the prediction confidence. ..................................................................................................................... 48 
Figure 4.7. Examples of Field of view shot type prediction. (GT: Ground Truth, P: Prediction) ......... 49 
Figure 5.1. Different types of camera movement .................................................................................. 53 
Figure 5.2. Workflow of two-stream network [64]. .............................................................................. 56 
Figure 5.3. Workflow of 3D CNN......................................................................................................... 57 
Figure 5.4. Illustration of the adopted 3D CNN. The notation F@H³ means F filters of size H×H×H. 59 
Figure 5.5. Skip connection employed in the network. ......................................................................... 59 
Figure 5.6. Examples from the videos of the dataset. (a) Pan Left, (b) Tilt Up, (c) Static .................... 61 
Figure 5.7. Grid of points in a frame. .................................................................................................... 61 
Figure 5.8. Correspondence between interest points in two successive frames. ................................... 62 
Figure 5.9. Dominant angle and distance across four regions in a frame. (a)Pan Right; (b) Pan Left; (c) 

Tilt-up; (d) Tilt Down; (e) Zoom In; (d) Zoom-out; (g) Static; and (h) Unknown. .............................. 65 
Figure 5.10. Examples from the Training dataset. ................................................................................ 67 
Figure 5.11. Examples from the test dataset. The videos includes high-resolution samples as well as 

hand-shake videos, blurry images and illumination variations. ............................................................ 69 



x 

 

   

Figure 5.12. Comparison of the different configurations: (a). The loss variation (b). The accuracy 

variation. (Blue: Resnet trained from scratch, Red: Resnet + reverse frames, Orange: Resnet + 

finetuning, Green: Resnet + finetuning + reverse frames) .................................................................... 70 
Figure 5.13. Confusion matrix of the validation dataset ....................................................................... 71 
Figure 5.14. Examples of recognition results on the test dataset........................................................... 72 
Figure 6.1. Architecture of the vanilla transformer [4]. ........................................................................ 81 
Figure 7.1. Video Question Answering task. ........................................................................................ 87 
Figure 7.2. Examples from different datasets. (a) MSRVTT-QA; (b) ActivityNet-QA; (c) KnowIT; (d) 

SocialIQ; (e) CLEVER; (f) MSVD-QA. ............................................................................................... 90 
Figure 7.3. Basic VideoQA Framework. ............................................................................................... 94 
Figure 7.4. Task-agnostic training paradigm. ........................................................................................ 96 
Figure 7.5. The proposed framework for Video Question Answering task. .......................................... 99 
Figure 7.6. The video transformer architecture. .................................................................................. 100 
Figure 7.7. Overview of text processing framework. .......................................................................... 101 
Figure 7.8. Cross-modal correlation module. ...................................................................................... 103 
Figure 7.9. Rephrasing attacks on Video Question Answering model. ............................................... 106 
Figure 7.10. Examples of results of our approach on the MSVD-QA dataset, with both original and 

rephrased questions. OQ: Original question; RQ: Rephrased Question; GT: Ground Truth; OP: 

Prediction of the model to the Original question; and RP: Prediction of the model to the rephrased 

question. .............................................................................................................................................. 110 
Figure 7.11. Examples of predictions on MSRVTT-QA dataset. ....................................................... 112 
Figure 8.1. Video captioning problem. ................................................................................................ 116 
Figure 8.2. An archive indexing page. The field « descriptif » represents the natural language description 

of the video content at the shot level. Source: DALET. ...................................................................... 117 
Figure 8.3. The paradigm of the encoder-decoder architecture. .......................................................... 118 
Figure 8.4. Various paradigms for video-text training. (a) Share-type; (b) Cross-type; and (c) Joint-type.

 ............................................................................................................................................................. 121 
Figure 8.5. Overview of the proposed multi-modal architecture. ....................................................... 124 
Figure 8.6. The modality attention module. ........................................................................................ 126 
Figure 8.7. Video samples from MSRVTT dataset for which the transcript and video data are not well-

aligned. ................................................................................................................................................ 127 
Figure 8.8. Overview of the encoder architecture. (left) Encoder block. (right) multi-head self-attention 

mechanism. .......................................................................................................................................... 129 
Figure 8.9. Overview of the decoder architecture. .............................................................................. 130 
Figure 8.10.Multi-head Cross Attention process. ................................................................................ 131 
Figure 8.11. (a) Sample requiring both transcript and visual modalities for caption generation. (b) 

Sample requiring visual cues only. ...................................................................................................... 134 
Figure 8.12. Qualitative results from MSRVTT dataset. Samples requiring both textual and visual 

modalities to generate the caption. ...................................................................................................... 140 
Figure 8.13.Qualitative results from MSRVTT dataset. The ASR is not aligned with the content of the 

video. ................................................................................................................................................... 141 
Figure 8.14. Qualitative results from MSRVTT dataset. Samples with no audio channel. ................. 142 
 

  



xi 

 

   

List of tables 

 

Table 2.1. Departments and people involved in the considered industrial case study at France TV. ..... 8 
Table 3.1. Geo-coordinates of five landmarks. ..................................................................................... 31 
Table 3.2. Comparison with state-of-the-art methods in landmark recognition and retrieval tasks on 

Paris6k dataset. ...................................................................................................................................... 37 
Table 5.1. The number of videos in each category in the train/val dataset ........................................... 66 
Table 5.2. The number of videos per category in the test dataset ......................................................... 68 
Table 7.1. Statistics of VideoQA datasets. ............................................................................................ 91 
Table 7.2. Examples of rephrased questions from MSVD-QA dataset. .............................................. 107 
Table 7.3.Ablation studies on MSVD-QA. Acc1 represents the performance on the original dataset. 

Acc2 represents the performance on the rephrased dataset. ................................................................ 109 
Table 7.4.Comparison of the effect if the transcript input on MSRVTT-QA dataset. ........................ 111 
Table 7.5. Comparison with state-of-the-art models on MSVD-QA and MSRVTT-QA ................... 113 
Table 8.1. Ablation studies on MSRVTT dataset ................................................................................ 135 
Table 8.2. Performance comparison (BLEU4) across models using different input modalities on two 

subsets ................................................................................................................................................. 136 
Table 8.3. Statistics of video captioning models. PT stands for Pre-Training. x stands for unknown .

 ............................................................................................................................................................. 137 
Table 8.4. Comparison with state of the art. ........................................................................................ 138 

 



1 

 

   

1 INTRODUCTION 
 

1.1 Context 

Television has long been a primary source of information and entertainment, shaping our understanding 

of the world and capturing significant moments in history. With the proliferation of television channels 

and the vast amount of content generated daily, the need for effective indexing and organization of 

television archives has become increasingly critical. This is the case for prominent broadcasters such as 

France Television (France TV), a leading French television network. France TV produces a diverse array 

of television content across a great variety of genres. From news programs that provide vital information 

to game shows that entertain audiences and television series that captivate viewers, the breadth and depth 

of content are vast. Managing such a diverse range of content presents unique challenges for France 

Television in effectively organizing and indexing their huge television archive. Each genre and format 

require specific considerations in terms of indexing criteria, metadata extraction, and retrieval methods. 

Within this framework, documentalists play a crucial role in the management of TV’s archive, ensuring 

the indexing and retrieval processes are carried out efficiently. Their primary responsibility is to index 

the diverse range of content, making it easily searchable and reusable for future purposes. 

Documentalists meticulously analyze the content, assigning relevant keywords and crafting natural 

language descriptions to capture the essence of each program. Once indexed, the data is sent to the 

Institut National de l’Audiovisuel (INA), where it is stored and preserved. When it comes to retrieving 

the data, documentalists rely on the keywords and natural language descriptions they previously tagged. 

It is crucial for the data to be well indexed, as this ensures effective retrieval and maximizes the 

reusability and accessibility of the content for researchers, journalists and general public. The diligence 

and expertise of documentalists in the indexing and retrieval process are pivotal in unlocking the value 

of France TV’s archive and enabling seamless access to its rich and diverse content. 

However, documentalists are often faced with limited resources and tight deadlines, leaving them with 

insufficient time to dedicate to the meticulous process of indexing. As a result, there is a greater emphasis 

on information retrieval rather than comprehensive indexing. Their primary focus becomes locating 

specific content requested by researchers or fulfilling immediate needs, leaving little room for the 

thorough indexing necessary to maximize the archives' long-term utility. 

Our doctoral research has been carried out within the framework of the AITV (Artificial Intelligence for 

TV) joint laboratory, established in 2019 between France TV and Télécom Sud Paris.  AI systems can 

automatically generate comprehensive metadata, enabling documentalists to shift their focus towards 

more critical tasks, such as curating and verifying the quality and relevance of information. Our 

objective is to leverage AI methods to alleviate the burden on documentalists and enhance the efficiency 

of their work. 

To achieve our objective, we have first performed an in-depth analysis of their job responsibilities and 

challenges. We have initiated a series of meetings and discussions with documentalists from various 

departments within France TV. Through these interactions, we have gained valuable insights into the 

intricacies of their daily tasks and the difficulties they encounter. This collaborative approach allowed 

us to foster a deep understanding of their specific needs. Based on this knowledge, we have engaged a 

joint brainstorming process to devise AI-empowered solutions specifically tailored to their 

requirements. The proposed solutions are not static but actively tested and refined based on continuous 

feedback from the documentalists. By aligning our work with their input, we aimed to develop practical 

tools and approaches that can effectively address their challenges and significantly improve their 

workflow. 
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In our research, we have undertaken a comprehensive analysis of the needs and research patterns 

commonly encountered by documentalists. We have identified several key topics that are manually 

indexed in the television audio-visual archive. Our ultimate goal is to develop a robust framework for 

multi-modal indexing of such content, with the help of deep learning techniques. In an initial phase of 

our work, we have focused on implementing task-specific, unimodal models which identify keywords 

and tags currently handled manually by documentalists. Such models encompass landmark recognition, 

place recognition, field of view shot type identification, and camera motion categorization. In the 

subsequent phase of our research, we have expanded our approach to incorporate comprehensive 

semantic analysis of the video through the examination of different modalities. To this purpose, we have 

developed various models for video question answering and video captioning, which provide a more 

holistic understanding of the content.  

 

1.2 Experimental setup 

The experimental setup for this research encompassed two distinct phases, each requiring specific 

hardware configurations. 

The initial phase of this Ph.D. research, focusing on task-specific unimodal models, has been conducted 

on the "Thanos" server located in our laboratory. This server is equipped with two NVIDIA GTX 1080 

GPUs.  

The subsequent phase of the PhD research was centered around the development of multimodal models. 

To meet the increased computational demands of combining information from multiple modalities 

effectively, we utilized a separate hardware configuration. Specifically, this phase was carried out on a 

system equipped with two NVIDIA GeForce RTX 2080 GPUs. The choice of these GPUs for 

multimodal learning was driven by the need for more powerful hardware to accommodate the increased 

complexity of processing multiple types of data simultaneously. Multimodal models involve the fusion 

of information from sources such as text, images, and audio, necessitating GPUs with greater 

computational capacity to expedite the convergence of these intricate models. 

Irrespectively of the hardware infrastructure used, all models in this research have been developed using 

Python3 programming language and the PyTorch framework. Our selection of the PyTorch framework 

for this research is rooted in its exceptional flexibility, vibrant ecosystem, and strong community 

support. PyTorch's dynamic computational graph offers us a crucial advantage by simplifying the 

development and modification of intricate neural network architectures, allowing us to adapt our models 

rapidly as needed. Python's versatility complements PyTorch seamlessly, enabling us to harness a vast 

array of open-source libraries and tools for deep learning, data manipulation, and visualization. This rich 

ecosystem empowers us to explore and integrate cutting-edge techniques and pre-existing solutions into 

our research pipeline efficiently. Furthermore, the extensive documentation and active community 

surrounding PyTorch provide valuable resources for troubleshooting, optimization, and knowledge-

sharing, enhancing the overall robustness of our work. 

 

1.3 Contributions 

This thesis focuses on leveraging deep learning techniques to improve the indexing of television 

archives. It deals with the generation of various keywords and tags from audiovisual archives and delves 

into the exploration of research challenges that can be approached through both unimodal and 

multimodal strategies. Our research was tested on television content as well as standard benchmark 

datasets, and we have validated its performance against previous state-of-the-art methods.  
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The first contribution concerns the classification of shots according to the camera motion type. We 

propose the first data-driven solution to address the problem. Specifically, we introduce a novel 

approach based on 3D convolutional neural networks with residual blocks, inspired by action 

recognition techniques. We apply transfer-learning technique to overcome the data scarcity issue for 

camera motion characterization. We initially train our model on the Kinetics [38] action recognition 

dataset. The Kinetics corpus has nothing to do with our purpose. However, we claim that the derived 

feature maps capture essential, salient spatio-temporal cues that can be exploited for our task. A fine-

tuning is then applied on a dedicated camera motion data set with a reduced number of items. 

Additionally, we propose a semi-automatic method that makes it possible to construct a reliable camera 

motion dataset from general public videos with a minimum amount of human intervention. Finally, the 

third contribution concerns the creation of a camera motion evaluation dataset. The corpus includes 

highly challenging videos, acquired in real-life conditions with professional cameras and at various 

resolutions. It allowed us to assess the robustness and power of generalization of the proposed technique, 

which yields an average accuracy rate of about 94%. 

The second contribution addresses the challenging task of Video Question Answering (VideoQA). Our 

objective is to explore the power of attention-based transformers, which have proven highly effective in 

natural language processing, for the purpose of grounded multimodal learning in the context of 

VideoQA. We first point out the challenges in developing an efficient, computationally feasible model 

due to the inherent differences between visual and textual modalities and the quadratic complexity of 

transformers. To overcome such limitations, a novel framework incorporating a lightweight transformer 

in conjunction with a cross-modality module is proposed. The latter uses cross-correlation to facilitate 

the reciprocal learning of text-conditioned visual features and video-conditioned textual features. To 

assess our model's robustness and real-world applicability, we introduce an adversarial testing scenario 

with rephrased questions. Additionally, we investigate the significance of the transcript modality in 

predicting accurate answers, conducting ablation studies on the MSRVTT-QA dataset [1], including 

subsets that require only visual information or both the transcript and video for answer generation. This 

comprehensive work offers insights into the vulnerability of VideoQA models to linguistic variations 

and the importance of the transcript modality. The experimental evaluation, carried out on the MSVD-

QA and MSRVTT-QA benchmark datasets, validates the proposed methodology with average accuracy 

scores of 44.96% and 41.88% respectively. When compared with state-of-the-art methods the proposed 

method yields gains in accuracy of more than 2%. 

The third contribution tackles the issue of multimodal video captioning. We introduce a novel 

framework including a modality-attention module that captures the relationships between visual and 

textual data using cross-correlation. Additionally, we integrate temporal attention to extract contextual 

information from a 3D CNN, enhancing the model's ability to produce meaningful captions. Notably, 

our work introduces an auxiliary task utilizing a contrastive loss function, promoting the generalization 

of the model and a deeper understanding of inter-modal relationships and underlying semantics. By 

comparing the multimodal representation of the video-transcript with the caption representation, we 

achieve improved performance and ensure knowledge transfer. The utilization of a transformer 

architecture for encoding and decoding effectively captures interdependencies between text and video 

information through attention mechanisms. The experimental evaluation, carried out on the MSRVTT 

benchmark [2], validates the proposed methodology, which achieves BLEU4, ROUGE, and METEOR 

scores of 0.4408, 0.6291 and 0.3082, respectively. When compared to the state-of-the-art methods, the 

proposed approach shows superior performance, with gains in performance ranging from 1.21% to 

1.52% across the three metrics considered. 

 

1.4 Thesis organization 

The rest of the manuscript is organized as follows. 
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In Chapter 2, we lay out the context and objectives of our work. This initial part explores the intricate 

process of archive indexing and retrieval within France TV. A significant attention is given to the critical 

role held by documentalists in this system, acknowledging the challenges they encounter in their daily 

responsibilities. The rationale underpinning the selection and design of specific solutions is thoroughly 

discussed.  

The rest of the manuscript is divided into two parts.  

Part I includes three chapters and is devoted to the design and development of task-specific, unimodal 

models. Such models are primarily engineered to label the variety of key metadata commonly found in 

an archive file.  

Chapter 3 provides a thorough examination of the issue of landmark recognition. As a crucial facet of 

French cultural heritage, landmarks feature prominently in archival indexing. The extensive literature 

dedicated to this subject is first presented and analyzed. The review of the state-of-the-art shows that 

existing publically available landmark datasets are not well-aligned to the specific requirements of 

France TV. However, the availability of an adapted landmark dataset that can be used for 

learning/training objectives within the recognition process, and that can cover landmarks of interest for 

France TV is a crucial prerequisite to the design of a successful landmark recognition solution. 

Consequently, we have first proposed an automatic dataset construction methodology that can be notably 

customized for the France TV requirements. This dataset, in our case, includes a set of significant 

landmarks listed in the archives. Subsequently, a landmark recognition method is proposed. We have 

adopted a recognition-by-retrieval approach, which offers the advantage of being able to cope with the 

dynamic, time-varying character of the landmark thesaurus, without needing any model retraining 

following each update of the considered thesaurus. The underlying similarity measure is obtained with 

the help of a Siamese network with contrastive loss. A dimensionality reduction technique is also applied 

to optimize the model’s efficiency. The performance of the proposed model is assessed in a zero-shot 

setting, both on the custom France TV dataset and on the Paris6k benchmark [3]. 

In chapter 4, we present our contribution to a larger project, carried out within the joint IATV laboratory, 

which concerns the automatic scene segmentation of TV content. The scene segmentation process is 

based on a shot clustering approach, and exploits the similarity between various visual components. Our 

contributions concern the automatic identification of visual cues that can be further exploited by the 

scene segmentation process. More precisely, we have considered place recognition (e.g. indoor, outdoor, 

studio, restaurant, park) and field of view shot type identification methodologies. The performances of 

the proposed solutions have been experimentally evaluated on both public datasets and on a FranceTV 

benchmark that we have specifically created to this purpose.  

Chapter 5 shifts focus to the issue of estimating the camera motion’s type. The camera motion’s type is 

an important feature, associated to individual shots and specified by documentalists during the indexing 

process. The literature review shows that prevalent state-of-the-art methods often rely on traditional 

techniques such as interest point estimation and tracking for predicting camera motion. In contrast, we 

propose a novel deep-learning based methodology, inspired from recent advancements in the field of 

action recognition, and based on a 3D CNN (Convolutional Neural Network) model specifically 

designed to this purpose. As the available datasets were not suitable for training our model, we have 

developed two distinct datasets. The first one involves a collection of random videos from YouTube, 

which have been indexed through automated processes derived from traditional techniques. In order to 

fully assess the validity of our approach, we have constructed a second dataset manually, employing 

multiple cameras of different types and characteristics. This second dataset presents significant 

challenges, including variations in illumination, hand-shake disturbances, diversity in resolution and 

frame rates. The experimental results obtained on both datasets demonstrate the pertinence of the 

proposed approach, with recognition rates of 97% and 94% on the first and second datasets, respectively. 
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Part  II of the manuscript delves into the exploration of multimodal models, which require the integration 

and fusion of various modalities, including video, text, image, and audio.  

An extensive state-of-the-art survey is first proposed (Chapter 6). Here, we present the key, pervasive 

challenges in multimodal learning such as data heterogeneity, fusion, alignment and scalability. 

Subsequently, we present the most recent and promising approach dedicated to this task, which is the 

transformer model [4]. We describe the mathematical formulation of the transformer and discuss its 

advantages and challenges in comparison to previous state-of-the-art models. The chapter concludes 

with a presentation of existing multimodal datasets, which are crucial for successful learning, and their 

progression over time. 

Chapter 7 introduces a first multimodal technique, which concerns a novel Video Question Answering 

(VideoQA) methodology. VideoQA consists in providing a coherent answer to a question related to the 

content of a given video. A comprehensive review of the state of the art is first presented, with 

identification of main families of methods and analysis of related strengths and limitations. 

Subsequently, the proposed methodology is described in details. The originality of the methods comes 

from the joint integration of a multimodal transformer model, conceived to solve the fusion problem, 

and of a cross-modal model, designed to address the alignment issue. In particular, the approach makes 

it possible to set up a lightweight transformer model, compatible with TV-related applications. The 

vulnerability of the composing elements of our pipeline is tested using black box attacks that represent 

automatically–generated, semantic-preserving rephrased questions. We demonstrate through ablation 

studies the effectiveness of each block in our framework to improve the performance and generalization 

of our approach. The experimental evaluation, carried out on the MSVD-QA and MSRVTT-QA 

benchmark datasets [1], validates the proposed methodology with average accuracy scores of 44.96% 

and 41.88% respectively. When compared with state-of-the-art methods the proposed method yields 

gains in accuracy of more than 2%. 

In natural continuity with the related VideoQA developments, Chapter 8 proposes a new multimodal 

video captioning method. The video captioning process aims at providing a short summary expressed in 

natural language that semantically summarizes the video content. A state of the art review is first 

presented. Let us underline that video captioning methodologies are closely related to VideoQA in many 

aspects. The major difference concerns the decoder part. For VideoQA, in most of the cases, it consists 

of a classification head implemented on a vocabulary of possible answers. For video captioning, the 

decoder is based on RNN or transformer architectures. The proposed network architecture is then 

detailed. We have considered a transformer model that takes as input both the visual and the subtitle 

textual representations. Similarly to the previous VideoQA approach introduced in Chapter 7, a cross-

modal module is also integrated here for modality alignment purposes. An additional contrastive loss 

function is introduced in order to optimize, during the learning process, the alignment between the video-

text multimodal representation and the corresponding caption. Finally, the caption is generated using a 

transformer decoder with a teacher-forcing method. The proposed approach is validated through various 

ablation studies and comparisons with recent state-of-the-art methods. 

Finally, Chapter 9 concludes the manuscript and summarizes the main contributions of this work. We 

also outline potential future research directions in terms of methodologies and related applications. 
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2 INDUSTRIAL USE CASE  
 

 

 

 

 

 

  

Abstract: In this chapter, we provide an overview of the context and objectives of our research. The 

foundation of our work is based on a series of interviews and meetings conducted with various 

stakeholders in the broadcast community. These interactions have provided valuable insights into 

the work of documentalists and the challenges they encounter in their daily operations. 

We start the chapter by presenting the details of our research study and our collaboration with France 

TV. We delve into the content management methods employed by France TV for their archives, 

highlighting their significance in the overall workflow. Furthermore, we emphasize the pivotal role 

played by documentalists in the process of indexing and highlight various types of metadata 

associated with the archived content. Next, we shed light on the complexities and intricacies 

involved in manual indexing, discussing the challenges documentalists face in this regard. 

Subsequently, we delve into the potential of automation techniques to enhance and expedite the 

indexing process while ensuring standardization across the board. In the final part of this chapter, 

we elaborate on the solutions proposed in this PhD research and we highlight the specific reasons 

that motivated their selection 

 

Keywords: Archive indexing, TV broadcast, documentalists, deep-learning. 
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2.1 Introduction 

We are amidst a technological revolution powered by advances in Artificial Intelligence (AI), which is 

reshaping numerous industries, including media and entertainment. France TV, along with other 

broadcasters, is racing to integrate advanced technologies to stay competitive, profitable, and meet 

market needs. The goal is to speed up product development, reduce resource consumption, and improve 

design quality. One crucial area where AI can make a substantial impact is related to the  management 

of audio-visual archives. 

The manual process of indexing such huge archives is inefficient and time-consuming. Documentalists 

traditionally perform indexing manually, spending countless hours on this tedious task. This is where 

our PhD research project comes in - to explore AI applications for improving archive management in 

TV broadcasting. 

This chapter provides an in-depth look into the initial PhD phase. In section 2.2, we detail the study 

conducted to establish the objectives of this PhD project. Our research approach included extensive 

engagement with various stakeholders from the broadcast community. We have conducted numerous 

interactions with documentalists working across different departments and regions. These interactions 

provided us with a thorough understanding of the present state of the archive management processes. 

Further enriching our perspective, we attended meetings with other broadcasters who are already 

leveraging AI solutions. In these forums, they shared their plans for future developments aimed at 

refining their broadcasting capabilities. This exposure offered us valuable insights into the possibilities 

and potential of AI in the broadcast industry, which significantly oriented our research directions and 

objectives.  

In the section 2.3, we examine the current state of content management in France TV. A particular 

emphasis is put on the indexing process, which prompted a detailed exploration of various sources that 

require indexing, including news segments, pool materials, and other relevant sources. Moreover, we 

delve into the specific indexing tools employed by documentalists, such as Dalet, and investigate the 

methodologies currently employed in the indexing process. 

The final section of this chapter discusses the challenges faced by these documentalists and the potential 

AI-powered solutions that can help overcome these issues. We present the AI solutions chosen for our 

research, with the rationale behind their selection. 

 

2.2 Presentation of the study 

The primary aim of the study was to gain a comprehensive understanding of the pivotal role played by 

documentalists at FranceTV and their significant contribution to the indexing and research process of 

the archives. This encompassed examining their involvement in meticulously organizing and 

categorizing the vast collection of archival materials, ensuring easy accessibility and retrieval of 

information. Furthermore, the study aimed to uncover the nuances of the indexing process employed by 

documentalists, shedding light on the techniques, methodologies, and tools utilized in their work. We 

sought to identify the challenges faced by documentalists, such as the time and effort required for manual 

indexing and the potential limitations or inefficiencies within the existing system. Moreover, the study 

aimed to explore the crucial relationship between documentalists and the broader broadcast community 

at FranceTV. This involved examining how documentalists collaborate with researchers, journalists, and 

other stakeholders to fulfill their information needs and support the production of high-quality content. 

The research aimed to uncover the dynamics of this collaboration, identifying any areas where 

improvements or synergies could be fostered. By gaining a comprehensive understanding of the 

documentalists' role, we aimed to identify potential areas for improvement and the application of 
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emerging technologies, such as artificial intelligence and machine learning. The ultimate objective was 

to enhance the efficiency, accuracy, and accessibility of the archive. 

 

2.2.1 In-Depth Interviews with Documentalists 

As a part of our research, we have conducted several in-depth interviews with documentalists from 

various departments within FranceTV, including News (at both national and regional levels), Overseas, 

Sports, and Politics. The details of the interviewees are presented in Table 2.1. 

Table 2.1. Departments and people involved in the considered industrial case study at France TV. 

Department Position 

News (National)  Documentalist and Manager 

Politics  Documentalist 

News (Regional)  Documentalist 

News (Overseas) two documentalists 

Sports Manager and team of documentalists 

 

The interviews have been conducted by a team comprising of myself, a Product Owner from the DAIA 

(Data and AI) department of France TV, and an AI Engineer from France TV.  

Each interview session lasted approximately three hours, providing ample time for comprehensive 

discussion and exploration. During these sessions, documentalists thoroughly explained the 

methodology of their work, demonstrated the tools they use, and expounded upon the metadata they 

index. These interactions offered us the opportunity to understand a typical day in the life of a 

documentalist at FranceTV, allowing for deeper insights into their responsibilities, tasks, and processes. 

Toward the end of each interview, we facilitated a discussion focusing on the challenges documentalists 

encounter in their daily work. These challenges were either openly expressed by the documentalists or 

surfaced through probing questions from the interviewers. We also conducted brainstorming sessions to 

generate ideas for potential improvements using AI tools.  

These interviews significantly enriched our understanding of the documentalists' role, their operational 

processes, the challenges they face, and the possible areas where the application of AI could enhance 

their work efficiency and output quality. The findings from these interviews have greatly contributed to 

the study, providing key insights that would help us in formulating AI-based solutions for archive 

indexing and information retrieval. 

 

2.2.2 Participation in the Club des Archives de l’Audiovisuel Public meetings 

Throughout the course of our research, we had the opportunity to actively participate in five meetings 

of the Club des Archives de l'Audiovisuel Public. These meetings, organized by the Institut National de 

l’Audio-visuel (INA), encompassed documentalists from various public broadcasters, providing a rich 

and diverse forum for discussion. The documentalists involved in these meetings represented a broad 

spectrum of institutions, including INA, Radio France, France TV, ARTE, and France 24. Figure 2.1 

provides a detailed list of the number of participants. 
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Figure 2.1. Distribution of the number of participants in the meeting with respect to their institution 

affiliation. 

The interviewing team was also present during these meetings, further strengthening the communication 

and interaction between the researchers and the documentalists. The primary objective of these 

gatherings was to discuss the evolution of the documentalist job within public broadcasters, and the 

introduction and adaptation of new tools and innovative ideas. From our research perspective, these 

meetings were instrumental in sharing the progress of our PhD project and receiving valuable feedback 

from industry experts. This interaction enabled us to refine and fine-tune our AI-based solutions in 

response to the constructive feedback received. 

As a part of our data collection strategy, we distributed a survey form among the documentalists 

participating in these meetings, requesting them to share it with their respective departmental colleagues. 

The survey, which resulted in 31 responses, aimed to assess the documentalists' exposure to AI tools, 

understand the frequent research tasks they perform, and the metadata they index. These insights would 

help prioritize our projects by aligning them more closely with the needs and challenges faced by 

documentalists.  

This approach provided us with a wealth of data that significantly contributed to our research. A detailed 

discussion of the key findings from the survey and their implications will be presented in the subsequent 

sections of this chapter. 

 

2.2.3 Participation to the European Broadcasting Union 

The European Broadcasting Union (EBU) is the world's preeminent alliance of public service media, 

incorporating 112 member organizations across 56 countries, and overseeing nearly 2,000 television, 

radio, and online channels and services. As part of our research, we actively participated in one of the 

EBU meetings, designed to explore the ongoing impact of artificial intelligence on the broadcasting 

business. 

During the meeting, several teams showcased AI-based solutions intended to augment various aspects 

of the audiovisual production. The goal was to illustrate the application of AI technology in optimizing 

diverse areas of broadcasting such as content creation, scheduling, data analysis, archive management 

and audience engagement. 

Apart from sharing our AI-based solutions, the EBU meeting provided an invaluable opportunity for 

brainstorming. Collective discussions, spurred by a spirit of collaboration and innovation, allowed all 

participants to share insights and potential AI strategies aimed at enhancing audiovisual production. 
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Three key outcomes resulted from our participation in the EBU meeting. Firstly, we received vital 

feedback on our AI solutions from a variety of industrial experts. This feedback has significantly assisted 

us in refining our tools to better align them with the needs of the broadcasting community. Secondly, 

exposure to other AI initiatives and developments within various broadcasting organizations offered 

insight into the current state of AI application in the industry, guiding our research towards more 

innovative AI tools and techniques. Lastly, the rich discussions and brainstorming sessions during the 

meeting sparked a plethora of ideas for future research projects, steering our research trajectory towards 

further exploration of AI's potential in transforming the broadcast industry. 

The insights derived from this study significantly influenced the trajectory of our research project, 

helping to articulate the primary goals and pinpoint the essential research areas to delve into. Let us now  

discuss these key findings in detail.  

 

2.3 Content management in the broadcast industry 

In this section, we will delve into the significant findings drawn from our collaborative interactions as 

outlined in section 2.2. We notably detail the process of content management within France TV, an 

integral understanding of which underpins the motivations driving our research. 

 

2.3.1 Role of documentalists in content management 

The documentalists are mainly responsible for the indexing of programs once they are transmitted. They 

review the subjects and provide necessary comments to enrich the audiovisual heritage and reuse the 

metadata, as requested by journalists. They are divided by territory and themes, with a focus on news 

and sports. Documentalists have an global view on the content and can anticipate or propose ideas for 

creating a topic. They can actively monitor identified or yet-to-be-identified subjects. The media library 

at the headquarters in Paris consists of approximately 40 documentalists distributed across five working 

units: central research, indexing, editorial services, photo library, and print media. The allocation of 

activities within the media library is roughly as follows: Indexing - 50% of the activity and Search and 

retrieval - 50% of the activity. As illustrated in Figure 2.2, the main activities of a documentalist include: 

 Enriching the documentary collections by selecting, indexing, and archiving documents. 

 Conducting document searches (both internal and external sources) for users and providing 

necessary documents (images, sounds) for content production (programs, shows, web 

publications, etc.). 

 Proposing and creating structured documentary files. 

 Associating copyright and distribution-related information with the documentary collections. 

 Performing ongoing documentary monitoring in their field of activity, particularly in the digital 

realm (e.g., Facebook, internet). The documentalists maintain constant digital monitoring 

throughout the day, including regional news websites, Twitter, Facebook, and other social media 

platforms.  
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Figure 2.2. Main activities of the documentalists.  

In our study, we have identified significant potential for AI solutions in the indexing process, which is 

particularly relevant considering the time-consuming nature of indexing. The primary objective for 

documentalists is to assist journalists in efficiently locating the relevant content through effective search 

methods, rather than dedicating excessive time to the indexing process. Therefore, our research 

emphasizes the need to streamline and automate indexing tasks using AI technologies, allowing 

documentalists to focus on their essential role of facilitating content discovery for journalists. 

 

2.3.2 Television sources  

In the process of indexing, various sources are to be considered for proper organization and accessibility. 

In terms of video content, the sources to be indexed include subjects broadcasted on the France TV 

network, content aired on television (antenna), video rushes compiled in a continuous sequence, a 

comprehensive image bank with traceable metadata from shooting, infographics and palettes, web 

modules, and internet subjects. Textual sources encompass press articles, PDF documents, internet links, 

and potentially contact information. For still images, the indexing process covers photographs, internet 

screenshots, title graphics (books, posters), as well as infographics, cartography, and iconography. The 

subjects to be indexed include those from the five national editions: 12/13h (France 3), 13h (France 2), 

19/20h (France3), 20h (France 2), 23h (France I)), special programs, EVN, video rushes, as well as 

POOL and VO (voyage officiel). 

Once the subjects are broadcasted, the INA (Institut National de l'Audiovisuel) retrieves them under a 

pre-existing convention between them. As per this agreement, after one year, the content is transferred 

to the INA and no longer belongs to France TV. Indexing of subjects and political interventions takes 

place one day after broadcast, while the indexing of pool and VO rushes is completed within one month 

by the respective services. The indexing of a TV news program takes approximately one day, with the 

8 p.m. edition requiring more time, around 5 hours, compared to the 12:30 p.m. edition. These indexing 

procedures are crucial for organizing and cataloging the extensive content produced by France TV, 

facilitating efficient retrieval and future utilization of the archived materials. 
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2.3.3 Tools for content management and organization 

France TV utilizes a diverse range of tools to effectively manage and organize content, adapting the tool 

selection based on specific regional requirements. In the Paris region, the primary tool employed for 

indexing is DALET. This advanced solution serves as an end-to-end, multiplatform news production 

and distribution tool, offering a comprehensive set of features tailored to the unique demands of the 

media industry. One of the notable advantages of DALET is its ability to seamlessly integrate new 

features, ensuring the smooth integration of our solutions and keeping pace with evolving needs. 

In other regions of the metropole, a different indexing tool, called Sierra, is preferred. For indexing in 

the overseas departments and territories (DOM-TOM), Warehouse is the chosen tool, while in some 

overseas regions, Spring is still utilized, albeit considered outdated. During the elections, the 

documentalists use ELEC+. It provides a comprehensive database containing information about 

candidates, politicians, their biographies, photos, mandates, election scores, and results for both national 

and overseas elections. This tool serves as a valuable resource for documentalists to access relevant and 

up-to-date information about political figures and election-related data. 

The indexing system's current structure comprises multiple local databases that are consolidated into a 

centralized national database. This setup facilitates comprehensive access to indexed content across 

different regions, ensuring efficient search and retrieval. By harnessing the capabilities of these tools 

and the integrated database, France TV streamlines content management and enhances organizational 

efficiency throughout its operations. 

The content management process encompasses two crucial elements: indexing and search. While 

indexing focuses on organizing and categorizing content, it is essential for documentalists to keep the 

ultimate objective in mind: facilitating efficient discovery of the media during the search phase. To 

achieve this, documentalists adopt a user-centric approach and ask themselves, "If I were the one 

searching, what would I look for?". This perspective highlights the significance of understanding the 

main research categories and prioritizing the most frequent research queries. In the subsequent section, 

we will delve into these key research categories and provide a comprehensive explanation of the top 

recurring research topics. 

 

2.3.4 Search process for efficient content discovery 

This section primarily centers on the search process as deployed in the Paris region, featuring the 

DALET tool. The primary reason behind this focus is the Paris region's pivotal role as the central hub 

of France TV's operations. With the main headquarters and a wealth of media resources located in this 

region, the documentalists in Paris bear the responsibility of managing and organizing a substantial 

volume of content that circulates throughout the network. 

The DALET tool provides documentalists with seamless access to the vast archives where all the content 

is stored. Within this tool, documentalists have the ability to conduct various types of research based on 

their specific needs. There are two main types of search options available. The first type, illustrated in 

Figure 2.3.a, revolves around keyword-based searches. The keywords are derived from a well-defined 

vocabulary, which is the INA thesaurus. It includes glossaries such as geographic locations, 

personalities, thematic keywords, image keywords, and speakers. The second type of search, shown in 

Figure 2.3.b, is based on free-form text, allowing documentalists to perform searches using criteria such 

as complete text, title, subtitle, and full description. This flexible search option enables documentalists 

to explore the archives using more open-ended and context-specific queries. 

 



13 

 

   

  
(a) (b) 

Figure 2.3. Overview of the DALET tool for content organization and management.  

Documentalists conduct search queries to access pertinent content across various topics. The most 

frequent research themes include crowd scenes, traffic conditions, weather updates, transportation hubs, 

educational settings, smoking areas, shopping scenarios, fitness facilities, delivery services, 

governmental institutions, Paris landmarks, healthcare and COVID-related subjects, environmental 

concerns, political figures, web and technology matters, as well as leisure and cultural activities. In our 

research, we have conducted a survey among documentalists from the Club des Archives de 

l'Audiovisuel du Public.  

 

Figure 2.4. Top search items conducted by documentalists. 
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One of the key questions we asked them was to suggest the most frequent research items and prioritize 

them. The results of this survey are presented in Figure 2.4.  Most of the research queries suggested by 

the documentalists involve a combination of multiple items such as Field of view shot type + place + 

landmark. An illustrative example of a query could be searching for "GP EXT PANO Notre Dame," 

which indicates a large shot capturing the exterior of Notre Dame Cathedral with a panoramic camera 

movement.  

As part of our survey, we also sought to understand the most frequent actions that documentalists search 

for, as this is an integral part of their information needs. In Figure 2.5, we present the results of this 

inquiry. One notable action that emerged is “handshake”, which exemplifies the type of action 

documentalists commonly seek. For instance, an illustrative query could be "Emmanuel Macron + shake 

+ Vladimir Putin," indicating a search for footage capturing a handshake between Emmanuel Macron 

and Vladimir Putin. These insights shed light on the specific inquiries documentalists prioritize in their 

research efforts and inform the development of effective indexing and retrieval mechanisms for audio-

visual content. 

 

Figure 2.5.Top actions researched by documentalists.  

The second element of content management is indexing. Documentalists play a crucial role in accurately 

indexing the subjects by utilizing a diverse range of metadata to capture and describe the intricate details 

of each shot and the overall subject. In the following section, we delve into the various types of metadata 

employed in this indexing process. 

 

2.3.5 Overview of metadata for indexing 

Metadata provides information on how, when, where, and by whom the data was collected, along with 

details about its availability, distribution method, projection system, coordinate system, tracking scale, 

resolution, precision, and reliability with respect to certain standards. 
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For example, when considering a news broadcast, metadata corresponds to the footage produced by 

journalists, which serves as the basis for creating news subjects. The main actors involved in the 

production of metadata are journalists and documentalists. Journalists handle the creation of news 

subjects, while documentalists qualify the metadata through indexing processes. 

Each subject is indexed using a combination of keywords from the INA thesaurus. The thesaurus is 

organized into nine thematic "facets" corresponding to nine sections, where each term within them is 

hierarchically organized. For example, the keyword "aircraft carrier" is a "child" of "warship," which is 

a "child" of "naval equipment," and so on, ultimately leading to the broader category of "French 

Politics." 

To classify each subject under a specific category, the thesaurus terms have been assimilated into a 

classification scheme, with each descriptor unequivocally associated with a particular category. This 

approach allows a correspondence table to be created between the thesaurus keywords and 14 predefined 

categories, ensuring that each subject is classified under the most relevant category. The INA's 

categories encompass a wide range of subjects, including Catastrophe, Culture and Leisure, Economy, 

Education, Environment, Crime and Accidents, History and Tribute, International, Justice, French 

Politics, Health, Science and Technology, Society, and Sports. 

 

2.3.6 Types of metadata used for indexing 

During the indexing process, a variety of metadata is used to categorize and describe each shot within a 

subject. In Figure 2.6, we show an example of an indexing page. The boundaries of each shot, indicated 

by the time code start (TC In) and time code end (TC Out), are pre-filled by the video editor and are 

specific to the source of the shot (e.g., France TV, INA archives, web). For each shot, documentalists 

define the following values:  

 Field of view shot type (e.g., Plan Moyen (PM):medium shot, Gros Plan (GP):wide shot) 

 Camera movement (e.g., zoom, traveling, panoramic),  

 Location (interior (INT)/exterior (EXT)) and specific places (kitchen, café, conference room),  

 Geographical location (e.g., Lyon, Paris, Bordeaux),  

 Personalities (e.g., Emmanuel Macron, Elisabeth Borne) and speakers,  

 Free-form text summary of the shot's content.  
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Figure 2.6. Example of an archive file. Source: DALET. 

Furthermore, documentalists tag additional keywords to provide a quick way to retrieve content, as 

illustrated in Figure 2.7. The "mots-clés images" correspond to the thesaurus keywords that describe 

each shot, such as origin-diversity (presence of people of color in the shot), woman, laboratory, and 

more. Additionally, "mots-clés thèmes" are assigned to each subject, providing keywords that describe 

the overall content, such as medical research and health, also part of the thesaurus. If landmarks are 

present in the shots, they are noted as well. This is particularly valuable for events like the “Tour de 

France” which contributes to the promotion of tourism in France. These metadata elements ensure a 

detailed and comprehensive indexing of each subject, facilitating efficient retrieval and categorization 

of the content.  
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Figure 2.7. Example of tagged-keywords in an archive file. Source: DALET. 

For official speeches by the president or other government representatives, it is important to provide the 

transcript of the speech as part of the indexing process. During elections, documentalists can also index 

additional metadata for each candidate, such as their political party affiliation, campaign promises, 

previous electoral performance, and public statements (see Figure 2.8). Furthermore, documentalists 

may be tasked with measuring the speaking time of each participant during debates, ensuring a fair 

representation and analysis of the discussions.  
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Figure 2.8. Index page for election candidates. Source: ELEC+. 

 

2.4 Automation techniques  

The task of indexing involves meticulously reviewing and categorizing vast amounts of content, 

identifying key elements, and assigning appropriate metadata. This manual process can be laborious, as 

it requires documentalists to carefully analyze each piece of media and make subjective decisions about 

the relevant tags and descriptors. Moreover, inconsistencies may arise among different documentalists, 

as their interpretations and perspectives may vary, despite the common INA thesaurus used. The 

resulting variations that appear during the indexing process can make the retrieval of specific content 

more difficult. Automating the indexing process in a comprehensive and objective manner can help 

standardize the indexing and ensure consistency. Additionally, the manual indexing process is 

susceptible to human errors and can be overwhelming, particularly during periods of high workload. 

Finding solutions to streamline and optimize this process is crucial for improving efficiency and 

enhancing the accessibility and retrieval of indexed content. We discuss in this section the possible 

solutions to streamline the documentalists’ work. 
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2.4.1 Automatic solutions to assist the documentalists in archive management 

Currently, for official speeches of government representatives, documentalists rely on searching for the 

streamed YouTube videos of these speeches and manually replicating the generated transcripts. 

However, this approach is not always available, as not all discourses are streamed or easily accessible. 

Furthermore, the manual replication process is prone to errors, which can lead to inaccurate indexing 

and hinder efficient retrieval of specific content. By leveraging speech-to-text technology, 

documentalists can automate the transcription process, converting spoken words into text with high 

accuracy. This not only saves time but also ensures the availability of reliable and searchable transcripts 

for indexing purposes. 

Another challenge faced by documentalists is the difficulty of identifying the original source of videos 

in the archives, especially when the metadata indicating the source is lost or incomplete. This poses a 

problem, particularly for media that may have been purged or removed from official channels. To 

address this issue and ensure compliance with copyright regulations, fingerprinting technology can be 

employed. By applying fingerprinting algorithms, documentalists can compare the visual characteristics 

of videos in the archives with known copyrighted content. This helps identify images that France TV 

does not have the right to use, preventing any potential copyright infringement. 

The utilization of Optical Character Recognition (OCR) techniques brings numerous advantages to the 

indexing and retrieval process. Documentalists can leverage OCR technology to extract text information 

from various sources, such as the publicity or news subject displayed in the lower corner of a video. By 

automatically capturing this text, documentalists can enhance the indexing process by including specific 

keywords and metadata related to the content. Additionally, OCR proves invaluable in digitizing press 

reviews and old archives that exist in scanned formats. The OCR algorithms can analyze the scanned 

documents, recognize the text within them, and convert it into editable and searchable digital text. This 

enables documentalists to perform comprehensive searches directly within the digitized press reviews, 

eliminating the need for manual classification or physical archiving. 

Thumbnail generation and shot boundary detection play a crucial role in the indexing and retrieval of 

video content, offering significant benefits to documentalists. Automating these processes can 

effectively address the challenges faced by documentalists who currently need to manually correct time 

codes provided by video editors. Thumbnail generation involves creating representative images that 

visually summarize the content of a video segment. The thumbnails serve as visual cues that aid in 

quickly identifying and navigating through videos, saving documentalists time and effort. Moreover, 

shot boundary detection automates the identification of scene transitions within a video, accurately 

marking the boundaries between shots. By automatically detecting shot boundaries, documentalists can 

rely on precise time codes, reducing errors and ensuring accurate indexing. 

Archive file indexing involves the categorization and tagging of various elements within the videos to 

enable efficient retrieval and analysis. Tags such as camera movement, places, and field of view shot 

type play a vital role in indexing the media subjects. These tags should be identified shot by shot. 

However, manually indexing such elements can be time-consuming and resource-intensive. Deep-

learning techniques have emerged as a valuable solution to streamline this process, significantly 

reducing the time and effort required. By leveraging these algorithms, archival file indexing can be 

expedited, allowing for faster and more accurate retrieval of specific shots and relevant information. 

Furthermore, the documentalists are tasked with providing a free-form natural-language text that 

summarizes the content of each shot. This process is time-consuming, resource-intensive, and often 

subjective, leading to inconsistencies and potential errors in the indexing process. However, the 

emergence of AI solutions, specifically automatic video captioning, presents a transformative 
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opportunity. By harnessing the power of advanced algorithms in computer vision and natural language 

processing, these systems can automatically generate accurate and detailed captions for each shot, 

alleviating the burden on documentalists. This not only streamlines the indexing process but also ensures 

a more standardized and reliable approach, enhancing the overall quality and efficiency of video content 

management. 

The Tour de France holds immense importance as it serves as a prominent platform for showcasing the 

diverse attractions, cultural heritage, and scenic landscapes of France. During this iconic cycling race, 

documentalists play a crucial role in capturing and indexing the footage. Currently, documentalists rely 

on a book that provides information about the landmarks in each region along the race route. 

Additionally, they have access to the dates on which the cyclists pass through these regions. The manual 

task of identifying and labeling shots based on the corresponding landmarks and dates in each region 

can be incredibly time-consuming, often requiring extensive research and meticulous attention to detail. 

However, leveraging automation and incorporating relevant landmarks from France can significantly 

alleviate this burden.  

Documentalists can also use video question answering techniques to enhance the indexing process by 

automatically assigning relevant tags, categories, and keywords to videos based on the extracted 

answers. This streamlines the indexing workflow and ensures that videos are accurately labeled and 

classified for easier retrieval. Moreover, video question answering techniques enable documentalists to 

perform more precise searches. Instead of relying solely on manual annotations or limited metadata, 

they can now input specific queries and receive relevant video segments as results. This saves time and 

effort by directly retrieving the desired content, enhancing the overall efficiency of the indexing and 

retrieval process. Additionally, video question answering techniques can assist documentalists in 

uncovering hidden or hard-to-reach information within videos. They can ask complex questions about 

specific events, objects, or actions occurring in the video, and the system will analyze the content to 

provide detailed answers. This allows documentalists to discover valuable insights and relevant 

moments in the video, enriching the indexing process with deeper context and information. 

 

2.4.2 Proposed solutions 

Our PhD research was conducted in close collaboration with the DAIA (Data and AI) department at 

France TV. As part of our efforts to develop a comprehensive framework for multimodal indexing of 

television audio-visual content, various solutions were proposed from different teams within the group. 

These solutions included implementing automatic speech-to-text, OCR detection, thumbnail generation, 

and shot boundary detection.  

Within this larger context, our specific focus was put on the indexing of the archival page, illustrated in 

Figure 2.6. We specifically aimed to align our work with the frequently expressed needs of 

documentalists (Figure 2.4). By understanding the challenges and priorities identified by documentalists 

in their day-to-day activities, we were able to tailor our efforts to address these needs effectively.  

To achieve this, we have first proposed a set of automatic techniques to identify relevant keywords such 

as landmarks, camera movement, field of view, and place recognition. In the subsequent phase, we 

integrated multiple analyzers, leveraging video question answering technique to enhance scene 

understanding, which is considered an AI-complete task. Lastly, we employed video captioning 

techniques to provide a natural language description of the semantic content for each shot, further 

enhancing the indexing process. 
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2.5 Conclusion 

In this chapter, we have provided a comprehensive overview of the context and objectives of our doctoral 

project. We have delved into the critical role that documentalists play in archive indexing and retrieval 

at France TV, offering an insightful look at their intricate and demanding responsibilities. 

Throughout our discussion, we have explored the manifold challenges that documentalists routinely face 

in their work. A crucial aspect of their tasks, the process of manual indexing and retrieval, proves to be 

time-consuming and labor-intensive. Moreover, the work is not immune to the pitfalls of subjectivity 

and human bias, often resulting in inconsistencies in the data. Additionally, they operate under the 

constraints of limited time and resources, further compounding the difficulty of their duties. To shed 

light on these issues, we conducted a comprehensive study comprising multiple interviews with a diverse 

range of stakeholders in the broadcast community at France TV and its associated partners. These 

interactions served to identify and evaluate potential solutions to mitigate the aforementioned 

challenges. 

In the next chapters, we detail the frameworks we have considered for each task. We have chosen to 

index the following metadata:  

- landmarks, which signify the cultural heritage of France;  

- camera motion and field of view shot types, which serve to classify shots according to the 

aesthetic and artistic choices made by the videographer;  

- video captioning, to generate a concise, free-form natural language text that encapsulates the 

content of each shot;  

- and finally, Video Question Answering to streamline the retrieval process without necessitating 

an exhaustive list of metadata during the indexing process  

We categorize the tasks based on the modalities used. Unimodal models, discussed in the first part of 

the manuscript, use a single modality like image, text, or video, and include the following tasks: 

landmark recognition, scene segmentation, and camera motion categorization. Conversely, multimodal 

models, covered in the second part, merge various modalities to gather information and are involved in 

the video question answering and video captioning tasks. 
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PART I: UNIMODAL, TASK-SPECIFIC MODELS  
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3 LANDMARK RECOGNITION 
 

 

 

  

Abstract: Landmark recognition and retrieval plays a pivotal role in the indexing of television 

archives, offering an effective mechanism to categorize and access vast volumes of visual data. In 

this chapter, we detail our work for landmark recognition, with specific application to the needs of 

France TV. We employ a recognition-by-retrieval approach to contend with several challenges, 

including dataset variance. Further, we introduce an automatic technique for the construction of a 

landmark database for France TV. This technique utilizes the organization's thesaurus, ensuring the 

database is well-tailored to its specific archival requirements. We test our approach in zero-shot 

setting on well-known benchmarks and achieve competitive results. 

Keywords: Landmark recognition, content-based retrieval, archive indexing. 



24 

 

   

 

3.1 Introduction 

Major events like “Tour de France” hold immense importance as they serve as prominent platforms for 

showcasing the diverse attractions, cultural heritage, and scenic landscapes of France. Currently, 

documentalists heavily rely on a reference book that provides information about the landmarks situated 

in each region through which the cyclists pass. This information, coupled with the dates of the race in 

these regions, assists documentalists in identifying and labeling shots based on the corresponding 

landmarks and dates.  

To streamline and automate this laborious task, we propose leveraging deep learning-based automation 

techniques for landmark recognition. By employing advanced computer vision algorithms, we aim to 

develop a system that can automatically identify landmarks and associate them with the corresponding 

regions and dates. The foundation of our landmark recognition system lies in the geographical thesaurus 

of INA, which encompasses 139 landmarks situated in different cities around the world. This 

comprehensive list of landmarks will form the core of our landmark dataset, as explained in detail in 

section 3.3. 

The remainder of the chapter is structured as follows. First, we review the latest developments in the 

area of landmark recognition and retrieval, emphasizing the related challenges and limitations. We then 

classify the existing methods into two groups: traditional strategies and deep learning-based techniques. 

Next, we present our approach to automatically generate a dataset specifically tailored for France TV 

applications. In section 3.4, we explain our approach for landmark retrieval delving into the network 

architecture, the learning procedures, and the processes used for image retrieval. Finally, we show the 

effectiveness of our method through tests and results from our dataset, as well as known benchmarks in 

a zero-shot setting. We compare our approach to previous state of the art methods. Finally, we conclude 

the chapter and present some possible future projects. 

 

3.2 Related work 

Landmark recognition in computer vision poses several challenges due to the inherent complexity and 

variability of landmarks. In this section, we explore the existing literature on landmark recognition, 

highlighting the difficulties faced in this domain. 

 

3.2.1 Challenges in landmark recognition 

Landmarks encompass a wide range of structures, including historical sites, natural landmarks, modern 

architectural marvels, and cultural artifacts. Unlike well-defined objects, landmarks do not have a 

formalized concept or a specific set of visual characteristics that universally define them. Instead, they 

exhibit significant variations across civilizations, regions, and historical periods. This diversity poses a 

considerable challenge in developing a generalized approach for landmark recognition. For instance, the 

architectural styles and cultural significance of landmarks can vary significantly between different 

countries or even within the same country. This variability requires landmark recognition systems to be 

adaptable and capable of capturing the unique visual characteristics of each landmark type. 
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Figure 3.1. Variations in viewpoint, illumination and presence of distractors. 

Landmark recognition is further complicated by variations in viewpoint, illumination conditions, image 

resolution, and the presence of distractors (Figure 3.1). When capturing landmarks from different angles 

or distances, the appearance and visual cues may change dramatically. Illumination conditions can 

introduce shadows, highlights, or occlusions, altering the appearance of the landmarks. Moreover, 

images obtained under adverse weather conditions or low-light environments can affect the visibility 

and quality of the captured landmarks. Additionally, the presence of distractors such as trees, people, or 

other structures in the vicinity of landmarks can impede the learning process. Distinguishing the 

landmark of interest from its surroundings becomes more challenging when such distractors partially 

occlude the landmark. 

On the counterpart, certain types of landmarks, particularly churches and other architectural structures, 

can exhibit great resemblance to one another. This leads to low inter-class variability, making it difficult 

for recognition algorithms to differentiate between similar landmarks. This problem becomes even more 

pronounced when landmarks share common architectural styles or have similar visual features.  Figure 

3.2 illustrates the challenges of low inter-class variability. In such cases, the discrimination between 

similar landmarks requires the utilization of subtle visual cues, contextual information, and a deep 

understanding of architectural nuances. 

 

   
(a) (b) (c) 

Figure 3.2. Three look-alike gothic churches. (a) Notre Dame, (b). Amiens, (c). Reims. 

In [5], the authors propose a recognition-by-retrieval technique, wherein the focus is shifted from 

directly predicting the class of a query image to applying a majority-voting scheme on the top-five 
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nearest extracted images. Inspired by this approach, we adopt a similar strategy in our work and treat 

landmark recognition as an instance retrieval task. 

 

3.2.2 Content-based image retrieval 

Addressing the problem of landmark recognition as an image retrieval task is beneficial for different 

reasons. One of the key benefits is the flexibility, since it becomes possible to add/remove classes 

without the need any retraining scheme. This allows for efficient and dynamic management of the 

landmark classes, accommodating changes and expansions in the thesaurus landmark database without 

significant computational overhead. Furthermore, applying a majority voting scheme on the top-k 

nearest neighbors in the recognition-by-retrieval approach helps to mitigate potential errors. By 

considering multiple nearest neighbors and their associated probabilities, we can account for situations 

where the probabilities of the first few images are close to each other (Figure 3.2). This approach helps 

us reduce the impact of misclassifications or uncertainties in the prediction process, thereby enhancing 

the robustness and reliability of the landmark recognition system. The incorporation of image retrieval 

techniques in this context allows us to leverage the collective knowledge of the nearest neighbors. An 

image retrieval framework involves the use of a query image to search for relevant or similar images 

within a database (Figure 3.3). Given a query image, the framework first processes this image through 

a set of procedures. A first stage involves the feature extraction process, used to describe/characterize 

the image. The features can include color and texture descriptors (section 0) or patterns directly learnt 

by convolutional neural networks (3.2.2.2), in the case of deep learning approaches. The features are 

compared with the help of a dedicated similarity measure, which most of the time is defined in terms of 

distances in the feature space. The retrieved images are finally ranked according to their similarity to 

the query. 

 

Figure 3.3. Overview of the image retrieval framework. 

 

3.2.2.1 Traditional methods 

Content-based image retrieval has been an active research area for decades, with early works focusing 

on extracting visual cues such as color [6], shape [7], texture [8], and spatial information [15]. Various 

algorithms have been proposed to address these aspects and improve retrieval performance. In his 

seminal work, Lowe introduced the so-called scale invariant feature transformation (SIFT) 

descriptor [9], which capture the local texture information around a set of interest points. By providing 
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local representations that are robust to changes in scale, rotation, and viewpoint, the SIFT approach 

paved the way for subsequent advancements in the field of image retrieval. 

Traditionally, image retrieval methods begin by extracting reliable interest points that are invariant to 

large viewpoint changes using local detectors such as the difference of Gaussians (DoG) [10], Harris-

Laplace [11], or Hessian-affine [12]. These interest points serve as key locations within the image that 

encapsulate distinctive visual information. The content of the local regions surrounding these interest 

points is then encoded using feature descriptors. 

In addition to SIFT, other notable descriptors have been proposed to enhance efficiency and 

performance. PCA-SIFT [13] combines principal component analysis with SIFT to reduce the 

dimensionality of the feature vector, improving computational efficiency while maintaining accuracy. 

RootSIFT [14] normalizes the SIFT descriptor to make it more robust to varying illumination conditions. 

SURF (Speeded-Up Robust Features) [15], an alternative to SIFT, integrates the Hessian-Laplacian 

detector to achieve comparable accuracy with reduced computational time. 

To aggregate the vector-based descriptors, various techniques have been introduced. Bag of words 

(BoW) [16] models the distribution of visual words in an image, treating it as a histogram-like 

representation. Fisher vectors (FV) [17] encode higher-order statistics to capture more fine-grained 

information. Vector of locally aggregated descriptors (VLAD) [18] aggregates the differences between 

descriptors and cluster centers, providing a more discriminative representation. 

It is worth noting that these traditional methods have shown effectiveness in content-based image 

retrieval. However, they often suffer from limitations in dealing with large-scale datasets, high-

dimensional feature spaces, and complex semantic understanding. Hence, the recent advancements in 

deep learning-based approaches have gained significant attention in addressing these challenges and 

pushing the boundaries of landmark recognition and image retrieval tasks. 

 

3.2.2.2 Deep learning-based techniques 

Since the introduction of AlexNet [19] in the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) 2012, convolutional neural network (CNN) models have surpassed hand-crafted features, 

demonstrating their effectiveness in extracting robust features from raw images. In [20], [21], the 

activations of fully connected layers are used as global descriptors, achieving promising performance 

under an Euclidean distance, which can be further improved using power normalization [17]. Moreover, 

in [22], [23], authors directly extract the output of intermediate convolutional layers as descriptors of 

image patches corresponding to receptive fields of the features. These convolutional kernels serve as 

local descriptors that are more resilient to occlusion, truncation, and clutter. While these descriptors can 

be used off-the-shelf, better results can be achieved through network initialization, domain adaptation, 

and transfer learning. The standard architecture for instance retrieval is the Siamese network, also known 

as a twin network, which learns semantic similarities between matching and non-matching pairs for 

model training. It has been demonstrated [24] that twin networks are more robust to class imbalance, a 

common characteristic of landmark datasets. Siamese networks consist of two or more branches, where 

each branch shares the same configuration and weights. The goal is to learn the similarities between a 

pair of images by comparing their corresponding feature vectors. This is accomplished by feeding the 

network a pair of images (i, j) and their corresponding class labels Y(i, j) ∈ {0, 1}, indicating whether 

the pair is non-matching (label 0) or matching (label 1), and training the model using a contrastive loss 

(Figure 3.4).  
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Figure 3.4. Siamese network architecture with contrastive loss.  

Another approach exploits the so-called the triplet loss, which utilizes a triplet of images to compute 

similarity rankings. Instead of comparing similar and different images, the triplet loss minimizes the 

distance between an anchor image (A) and a positive image (P) from the same class while maximizing 

the distance with a negative image (N): 

 𝐿(𝐴, 𝑃, 𝑁) = max(||𝑓(𝐴) − 𝑓(𝑃)||2 − ||𝑓(𝐴) − 𝑓(𝑁)||2 + 𝛼, 0) (3.1) 

where f  denotes the function that associates a feature to a given image and α is a margin between positive 

and negative pairs.  

The set of local features extracted from the convolutional layers is then aggregated into a global 

descriptor. Experimental results in [21], [25], [26] have shown that simple aggregation methods such as 

max pooling or sum pooling outperform traditional techniques like Vector of Locally Aggregated 

Descriptors (VLAD) or Fisher Vectors (FV). 

Our work draws inspiration from the success of Convolutional Neural Networks, specifically 

implementing the ResNet [27] model as a backbone architecture. We employ a training method that 

utilizes contrastive loss within a siamese network. To reduce the computational overhead, we apply 

Principal Component Analysis (PCA) to reduce the dimensions of the resultant feature vectors. 

Subsequently, we identify the most similar images to the query utilizing the K-Nearest Neighbors 

algorithm. During the evaluation of our model, we confronted challenges concerning existing 

benchmarks, primarily in relation to their scale and generalizability. To overcome such limitations, we 

have automatically constructed a dataset for validation, as described in the following section.  

 

3.3 Constitution of a landmark dataset 

Creating a suitable dataset is crucial for training and evaluating deep learning models for landmark 

recognition. While there are commonly used benchmarks like Paris6k [3], Oxford5k [28], and INRIA 

holidays [29], these datasets have limitations in terms of size and generalizability. On the other hand, 

the Google landmark dataset [30], with over 5 million images and 200,000 instances, is large but 

presents challenges such as noise, imbalance, and high computational requirements. Moreover, its 

coverage extends to cities not included in the geographic thesaurus of INA, making it less relevant for 

the indexing process of France TV archives. Therefore, to address these issues, we have generated a 

landmark dataset tailored to the specific requirements of documentalists.  



29 

 

   

Creating a custom dataset poses the challenge of avoiding bias in image selection and labeling. 

Subjective criteria such as specific viewpoints or occlusion should be minimized. To achieve this, we 

propose utilizing automatic techniques that leverage the metadata and geo-coordinate locations available 

from the Flickr API . [31]Our approach involves the following steps. First, we compile a list of cities 

and their corresponding landmarks from INA's geographic thesaurus. Next, we search for photos on 

Flickr that include the landmark name and city as tags, aiming to avoid confusion with landmarks of the 

same name in different cities. To filter out potentially inaccurate or irrelevant photos, we dismiss those 

with geotag precision scores below a threshold (13 in Flickr metadata), which corresponds to a precision 

superior to the one of a city block. However, it is important to note that these keywords available on 

Flickr images are user-generated and do not guarantee the presence of the landmark in the photo, which 

can introduce noise into the resulting database. Figure 3.5  illustrates some examples of falsely tagged 

landmarks.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.5. Examples from users’ pictures falsely tagged as a landmark. (a) Eiffel tower (b) Arch of 

Constantine (c) Empire state building (d) Statue of liberty 

To mitigate this problem, we begin by extracting the latitude and longitude coordinates, representing 

each landmark as a point on a two-dimensional plane. Subsequently, we employ mean-shift clustering 

[32] to discern the centroid of each cluster. By leveraging this technique, we effectively identify the 

central point around which the landmark's images are concentrated. Next, we retrieve images from 

Flickr, focusing on a radius of 500 meters around each centroid. These images are obtained in Flickr's 

medium resolution, ensuring a balance between image quality and computational efficiency. The 

resulting dataset encompasses a total of 139 landmarks, with an average of 200 images per landmark 

class. Figure 3.6 presents some examples from the dataset. In Table 1, we present the geo-coordinates 

of the centroids for five selected landmarks. 
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Sagrada Familia 

 
Empire State building 

 
Big Ben 

 
Arch of Constantine 

 
Sacre coeur 

 
Triomphe 

 
eiffel 

 
Colosseum 

Figure 3.6. Examples from the dataset. 
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Table 3.1. Geo-coordinates of five landmarks. 

Landmark Geo-coordinates Tags 

Eiffel tower 48.8583, 2.2942 ‘eiffeltower’, ‘paris’ 

Sacre coeur 48.8863, 2.3430 ‘sacrecoeur’, ‘paris’ 

Big Ben 51.5008, -0.1243 ‘bigben’, ‘london’ 

Sagrada familia 41.4036,2.1742 ‘sagradafamilia’, ‘barcelona’ 

Colosseum 41.8904, 12.4920 ‘colosseum’, ‘rome’ 

 

3.4 Proposed methodology 

Our approach consists of a three-step pipeline. Firstly, we present the network architecture for feature 

extraction and feature aggregation. Secondly, we train our model using contrastive loss with a siamese 

network. Lastly, we perform image recognition through a retrieval process, which will be detailed in 

section 3.4.4. 

3.4.1 Network architecture and image representation 

We have considered ResNet-101 [27] network pre-trained on ImageNet [19] as the backbone, enabling 

the generation of high-level feature representations. The architecture employs 2D convolutions and 

pooling operations. The CNN consists of 101 layers grouped into five blocks: conv1, conv2_x, conv3_x, 

conv4_x, and conv5_x. Each block involves successive convolution operations repeated x = 3, 4, 2, 3, 

and 3, respectively. In our framework, we remove the fully connected layer at the end. The convolutional 

kernels have a size of 3x3 except for conv1 with a kernel size of 7x7. Down sampling of inputs is 

accomplished by the conv2_1, conv3_1, conv4_1, and conv5_1 layers, employing a stride of 2. 

Following each convolutional layer, batch normalization and ReLU activation are applied. The output 

of the residual block is obtained by adding the input to the block with the output of the last convolutional 

layer of the block, forming a skip connection. The 2D-CNN receives an image pair as input, processes 

them, and extracts visual descriptors from the last convolutional layer (conv5_3). In Figure 3.7, we 

present an overview of the network architecture. Let 𝑥𝑖 ∈ ℝ
224×224×3 be the input image, we denote by 

𝛧𝑖 ∈ ℝ
𝐻×𝑊×𝐶 the feature map extracted from the conv5 layer where H ×W = 7 × 7 represents the 

spatial dimensions, and C = 2048 denotes the number of channels capturing various feature 

representations. 
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Figure 3.7. Network training using contrastive loss (offline). 

Let A𝑐 be the set of all H ×W activations for feature map 𝑐 ∈ {1, . . , 𝐶}. To aggregate the features, we 

use the Maximum Activations of Convolutions (MAC) [24] technique (Figure 3.8). The global feature 

vector is constructed by max-pooling over all dimensions per feature map. It is computed as:  

 𝒁𝒊 = [𝑍1,𝑖…𝑍𝑐,𝑖. . , 𝑍𝐶,𝑖]
𝑇
, 𝑤𝑖𝑡ℎ 𝑍𝑐,𝑖 = max

𝑎∈A𝑐
𝑎. 𝟙(𝑎 > 0) (3.2) 

where the indicator function 𝟙(𝑎 > 0) equals 1 when the value of 𝑎 is greater than zero, and 0 

otherwise. 

 

Figure 3.8. Feature aggregation using MAC technique. 
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3.4.2 Siamese learning 

We address the problem of landmark retrieval as similarity learning task. The main objective of the task 

is to ensure that positive samples are positioned closer together in the latent space according to a defined 

metric, while negative samples are positioned farther apart (see Figure 3.9). The goal is to maximize the 

distinguishability between positive and negative samples, enabling the model to learn meaningful 

representations that accurately capture the similarity and dissimilarity relationships within the data. 

 

Figure 3.9. Similarity learning task. The objective is to minimize the distance between positive samples 

and to maximize the distance between negative samples.  

For this purpose, we use Siamese network as illustrated in Figure 3.7. This network consists of two 

identical subnetworks, both utilizing the ResNet-101 architecture. The subnetworks extract features 

from the images 𝑥𝑖 and 𝑥𝑗 and map them into a high-dimensional feature space. A distance function is 

then employed to compute the similarity between the extracted features (𝚭𝑖 and 𝚭𝑗). Notably, the 

subnetworks share weights, ensuring that the two images are represented similarly in the feature space. 

During the training phase, we employ contrastive loss to optimize the model. By utilizing contrastive 

loss, we aim to bring similar images closer to each other in the feature space while pushing non-similar 

images further apart. The loss function takes as input the Euclidean distance between the features 

extracted from the two sub-networks. When the label of the two input images is 1 (indicating similarity), 

the loss function minimizes the Euclidean distance. Conversely, when the label is 0 (indicating non-

similarity), the loss function encourages an increase in the Euclidean distance between the features. This 

approach allows the network to effectively learn to distinguish between similar and non-similar images 

based on their feature representations. The contrastive loss is defined as follows:  

 ℒ(𝒁𝑖 , 𝒁𝑗, 𝑦𝑖𝑗) = (1 − 𝑦𝑖𝑗) ∗ 𝐷(𝒁𝑖, 𝒁𝑗)
2
+ 𝑦𝑖𝑗 ∗ max (𝛼 − 𝐷(𝒁𝑖 , 𝒁𝑗), 0)² 

(3.3) 

where 𝑦𝑖𝑗 = 1 if the images are similar (positive samples) and 𝑦𝑖𝑗 = 0 if the images are dissimilar 

(negative samples); 𝐷(𝒁𝑖 , 𝒁𝑗) represents the Euclidean distance between the feature vectors 𝒁𝑖 and 𝒁𝑗; 

and  𝛼 is a hyperparameter that controls the desired separation between similar and dissimilar image 

pairs.  
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Figure 3.10. Example of batch-wise positive/negative mining. 

To maximize the utilization of the dataset, a batch-wise positive/negative mining process is employed 

to construct all possible positive and negative training pairs within each batch. This process ensures that 

an equal number of images from each category are included in the batch. For each image in the batch, a 

miner is employed to construct training pairs. The miner randomly selects either an image from the same 

category as the positive sample or an image from a different category as the negative sample. This 

random selection process is repeated for all images in the batch, allowing the mining process to create 

all positive and negative pairs necessary for training. In Figure 3.10, we show an example of the mining 

process.  

 

3.4.3 Dimensionality reduction and whitening 

In this section, we present the post-processing of the global feature vector. The output of the CNN is a 

high-dimensional feature vector (2048 in this case) which is computationally expensive and may lead 

to the curse of dimensionality. For this purpose, we apply PCA to reduce the dimensionality while 

retraining the most important information. Besides, PCA helps in removing noisy or less informative 

information, allowing the retrieval process to focus on more discriminative features. We also apply PCA 

whitening to transform the feature vectors to have uncorrelated components with unit variance. This 

process can be beneficial in image retrieval as it removes any linear dependencies between features, 

enhancing the ability of subsequent algorithms (k-NN in this case) to measure similarity accurately. 

Formally, we normalize the feature vector Z using ℓ2 normalization. Our proposed approach is based 

on the work of [33]. The projection consists of two components: whitening and rotation. For the 

whitening part, we calculate the inverse square root of the intra-class (matching pairs) covariance matrix 

𝐶𝑠
−1/2

, with 

 𝐶𝑠 = ∑ (𝒁𝑖 − 𝒁𝑗)(𝒁𝑖 − 𝒁𝑗)
𝑇

𝑦𝑖𝑗=1

 
(3.4) 

The rotation part involves performing PCA on the interclass (non-matching) covariance matrix in the 

whitened space, denoted as 𝑒𝑖𝑔(𝐶𝑠
−1/2

𝐶𝐷𝐶𝑠
−1/2

), where 𝐶𝐷 is computed as follows: 

 𝐶𝐷 = ∑ (𝒁𝑖 − 𝒁𝑗)(𝒁𝑖 − 𝒁𝑗)
𝑇

𝑦𝑖𝑗=0

 
(3.5) 
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Then we apply the projection matrix 𝑃 = 𝐶𝑠
−1/2

𝑒𝑖𝑔(𝐶𝑠
−1/2

𝐶𝐷𝐶𝑠
−1/2

) as 𝑃𝑇(𝒁𝑖 − 𝜇), where 𝜇 represents 

the mean vector to perform centering. To achieve dimensionality reduction of the descriptors to 𝑑 

dimensions, we select only the eigenvectors associated with the d largest eigenvalues. The projected 

vectors obtained from this selection are then further processed by applying ℓ2-normalization. The 

resulting feature vector is denoted by �̃�. 

 

3.4.4 Image retrieval  

Given an image query 𝑥𝑞𝑢𝑒𝑟𝑦, the objective of the system is to classify the label of the image. Leveraging 

the recognition-by-retrieval technique, the image retrieval phase involves identifying the k-nearest 

images to the query in the index database and determining the class of the query through a majority 

voting scheme. To accomplish this, we begin by extracting the feature vector of the query, denoted as 

𝒁𝑞𝑢𝑒𝑟𝑦. This vector is obtained by applying ℓ2 normalization to the MAC global feature extracted from 

the last convolutional layer of the CNN network. Subsequently, we perform dimensionality reduction 

using PCA, as discussed in Section 3.4.3. The resulting reduced-dimensional vector is denoted as 

�̃�𝑞𝑢𝑒𝑟𝑦. 

To identify the k-nearest images to the query, we utilize the kNN algorithm. The distance metric 

employed (Euclidean distance) quantifies the similarity between feature vectors. Given the reduced-

dimensional feature vectors of the images in the index database, we compute the distances between the 

query and the images in the database. The k images with the smallest distances to the query are 

considered the k-nearest neighbors. Once the k-nearest images have been identified, a majority voting 

scheme is applied to determine the class of the query. Each neighbor contributes to the vote of its 

corresponding class label. The class with the highest number of votes is assigned as the predicted class 

for the query. Figure 3.11 illustrates the image retrieval process. 

 

Figure 3.11. Overview of the image retrieval process. 

 

3.5 Experiments and results 

In this section, we present the datasets we used for training and validation. Next, we provide 

implementation details of our framework. We highlight the model results on the selected datasets along 

with a comparison with state-of-the-art methods.  Finally, we present some qualitative results to further 

illustrate our findings. 
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3.5.1 Datasets 

In this section, we present the different datasets we used for training and testing. One important aspect 

is the validation of our model's performance against the landmark dataset presented in section 3.3. The 

dataset consists of 139 landmarks derived from the INA thesaurus. Each landmark class contains 

approximately 200 images. However, due to the dataset's limited size, it is not sufficient for both training 

and testing purposes. 

To address this limitation, we incorporate the Google landmark dataset, which is the most extensive 

dataset available to date, containing over 5 million images. To overcome computational constraints, we 

extract a subset from the Google landmark dataset, specifically selecting the landmark classes that align 

with the ones present in our constructed dataset (139 classes). The training set of the Google landmark 

dataset consists of approximately 400 images per class, providing a substantial amount of data for 

training our model. 

For the testing phase, we utilize our constructed dataset (cf. Section 3.3) as a benchmark. In addition, to 

compare our work against previous state-of-the-art methods, we also include the Paris6k [28] dataset. 

This dataset comprises 6,000 images of landmarks in Paris. 

While there is a domain shift between the training and test datasets, we are still able to conduct zero-

shot evaluation using a recognition-by-retrieval process without employing finetuning on the new 

classes. This approach allows us to evaluate the performance of our model on the benchmark datasets 

without explicitly adapting it to the specific test classes. 

 

3.5.2 Implementation details 

To train the model, we apply transfer learning on ResNet-101, which was pre-trained on the ImageNet 

dataset. We remove the final fully connected layer and employ this pre-trained network to improve 

efficiency. The model undergoes training for 20 epochs using the Adam optimizer. We set the learning 

rate to 1e-6 and the contrastive loss margin 𝛼 to 0.85. Post-processing involves reducing the 

dimensionality of the global descriptor to 𝑑 = 256, accomplished through PCA learned on the sample 

from the Google dataset. During training, all images are resized, to a size of 224 × 224. During retrieval, 

we set the number of k nearest neighbors to 10. 

 

3.5.3 Model evaluation on our dataset 

In this section, we provide a comprehensive evaluation of our model's performance on our dataset. To 

assess the effectiveness of our model, we employ two widely-used evaluation metrics: Mean Average 

Precision (MAP) for the image retrieval task and accuracy for the recognition task. 

MAP, or Mean Average Precision, is a commonly used metric in information retrieval. It measures the 

quality of ranked retrieval results by considering the precision and recall at various cut-off points. In the 

context of image retrieval, MAP evaluates the ability of our model to accurately rank and retrieve 

relevant images based on a given query. A higher MAP score indicates superior performance in 

retrieving relevant images. 

For the image retrieval task on our constructed dataset, our model achieves a MAP score of 87.65%. 

This suggests that our model effectively ranks and retrieves relevant images for a given landmark query, 

showcasing its proficiency in recognizing landmarks within our dataset.  
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Additionally, we evaluate the recognition task on our dataset using the accuracy metric, which measures 

the proportion of correctly classified images. Our model achieves an accuracy score of 89.84%, further 

confirming its strong recognition capabilities. 

 

3.5.4 Comparison with state-of-the-art 

In this section, we compare our approach to previous state-of-the-art models on the widely-used 

benchmark dataset, Paris6k [28]. It is important to highlight that our model leverages a zero-shot 

evaluation approach, which holds significance in terms of evaluating model performance across 

different data distributions. 

Zero-shot evaluation refers to assessing the performance of a model on a dataset without fine-tuning or 

adapting it specifically to that dataset. This approach ensures that the comparison between different 

models is unbiased, as it eliminates the possibility of models benefiting from specific dataset 

adaptations.  

To ensure a fair comparison, we only consider methods that do not perform fine-tuning on the Paris6k 

dataset. This criterion ensures that the models being compared have not gained an unfair advantage by 

specifically adapting to the characteristics of the Paris6k dataset. The results are presented in Table 3.2.  

 

Table 3.2. Comparison with state-of-the-art methods in landmark recognition and retrieval tasks on 

Paris6k dataset. 

Method MAP Accuracy 

VLAD-CNN [22] - 58.3% 

Crow [34] 79.7% 84.8% 

BLCF [35] 82.0% 84.8% 

R-MAC [23] 83.0% 86.5% 

Ours 90.34% 91.48% 

 

The selected models leverage pre-trained CNNs, typically trained on datasets like ImageNet, to enhance 

their performance in landmark recognition and retrieval tasks. Each model employs unique techniques 

to achieve this goal. Crow adopts a strategy of using cropped ROI images as input for the CNN. VLAD-

CNN and R-MAC extract local features from intermediate layers of CNNs (GoogleNet and ResNet, 

respectively) and apply compact encoding/pooling techniques. R-MAC incorporates a modified version 

of the MAC feature aggregation method. BLCF utilizes VLAD [18] for feature aggregation. However, 

our model stands out by employing additional methodologies to further enhance performance. Through 

Siamese learning with contrastive loss and PCA whitening and dimensionality reduction techniques, we 

were able to surpass previous state-of-the-art methods by 7.34% in terms of MAP and 4.98% in terms 

of accuracy. These improvements highlight the efficacy of our approach and contribute to advancing the 

field of landmark recognition and retrieval. 

3.5.5 Qualitative results 

In this section, we present the qualitative results of our landmark recognition and retrieval work on the 

dataset we constructed (Figure 3.12) and Paris6k dataset (Figure 3.13). By showcasing the top 10 nearest 

images to the selected query, we demonstrate the effectiveness of our model in accurately retrieving 

relevant images. 
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Figure 3.12. Retrieval examples from our dataset.  
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Our model exhibits robust performance in various scenarios, including accurate retrieval for both indoor 

and outdoor landmarks. Even in the presence of distractors, such as individuals in the images, our model 

successfully identifies the correct label of the landmark. This capability highlights the model's ability to 

focus on and recognize the main subject of interest amidst potential distractions. Furthermore, our model 

demonstrates its adaptability to different illumination situations. It successfully handles images captured 

in challenging conditions like cloudy or rainy days, as well as images taken at night. This capability 

showcases the model's robustness and effectiveness in dealing with varying lighting conditions 

commonly encountered in real-world scenarios. 

In certain cases, our model encounters challenges when dealing with close-up shots, particularly when 

distinguishing between similar images. For instance, when presented with a close-up of the top of the 

Louvre, as shown in Figure 3.13 example 5, the model may mistakenly identify it as the foot of the Eiffel 

Tower. This difficulty can be attributed to the limited contextual information available in close-up shots. 

The model relies heavily on visual cues and patterns to identify landmarks, and when the image lacks 

broader context, it becomes more challenging to accurately differentiate between similar details. This 

issue is not exclusive to the model; even for humans, discerning such subtle differences can be 

challenging, especially when the images share common materials or intricate details. Additionally, the 

model's performance can be influenced by the availability and quality of training data, as close-up shots 

are not sufficiently covered.  
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Figure 3.13. Retrieval examples from Paris6k dataset.  
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3.6 Conclusion and future works 

This chapter has presented a novel framework for landmark recognition, leveraging a recognition-by-

retrieval technique that allows us to handle dataset changes and conduct zero-shot evaluation without 

requiring additional model finetuning. The ResNet architecture serves as the foundation of our retrieval 

system, enabling us to extract local features and aggregate them using MAC feature aggregation. 

Training our model entails utilizing contrastive loss through a siamese network. Additionally, we 

incorporate dimensionality reduction and whitening techniques to learn more robust features. 

To evaluate the effectiveness of our model, we generated a landmark dataset tailored to the specific 

requirements of documentalists, using an automated technique that draws from the INA thesaurus for 

dataset class derivation. Due to computational limitations, we trained our model on a subset of the 

Google landmark dataset. 

The results obtained demonstrate the strong performance of our model on our dataset, achieving an MAP 

of 87.65% for the retrieval task and an accuracy of 89.8% for the recognition task. Furthermore, we 

conducted a comprehensive comparison with state-of-the-art methods using the Paris 6k dataset, 

surpassing them with a 7.34% higher MAP and 4.98% higher accuracy. 

For future work, we have identified several axes to explore. Firstly, we intend to further improve the 

performance of our model by expanding the training data and incorporating more diverse landmark 

images. Additionally, we plan to investigate the application of our framework to real-time landmark 

recognition scenarios. Furthermore, exploring transfer learning techniques and investigating the impact 

of different network architectures could provide valuable insights for enhancing the overall performance 

and scalability of our system. 
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4 CONTRIBUTION TO THE SCENE SEGMENTATION 

PROJECT 
 

 

 

 

 

 

  

Abstract: This chapter presents our contribution to the scene segmentation project by focusing on 

two essential tasks: indoor-outdoor place recognition and field of view shot type identification. 

These tasks provide highly useful cues that can be exploited for effectively clustering different shots 

into coherent scenes. Different other applications, such as video analysis, archive indexing, and TV 

program metadata indexing, can also benefit from such features. Throughout this chapter, we 

describe the methodologies employed for both tasks, including the selection of appropriate features, 

training of machine learning models, and the evaluation of their performances. The experimental 

results obtained on diverse datasets demonstrate the effectiveness and robustness of the proposed 

methods. 

 

Keywords: Scene classification, Field of view shot type, place recognition. 
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4.1 Introduction 

In this chapter, we present our contribution to the scene identification project, which is an integral part 

of a broader project dedicated to video segmentation purposes. In the TV broadcast community, video 

segmentation holds a significant importance for various reasons. One key aspect is archive indexing, 

where videos are indexed shot by shot. Traditionally, editors manually input time codes for each shot. 

However, manual shot boundary indexing is often unreliable and prone to errors, which can hinder 

efficient retrieval of content. Another application where video segmentation plays a crucial role is ad 

insertion. To enhance the viewer experience, advertisements need to be inserted at temporal locations 

that align with content discontinuity, such as the end or start points of action plots. This requires accurate 

segmentation of videos into shots and scenes, enabling precise identification of suitable insertion points. 

Figure 4.1 illustrates the ad insertion framework developed within the AI-TV joint laboratory, to which 

we have delivered our contributions for integration. For each shot, the framework identifies the type of 

environment: indoor/outdoor, the shot type (long-shot, close-up...) and the place category along with its 

estimated probability (restaurant, bar, office...). The related metadata are used for story identification as 

explained in the following section.  

 

 

Figure 4.1. The AI-TV ads insertion framework 

 

4.2 Scene segmentation overview 

Video segmentation involves dividing a video into distinct units called shots. Each shot represents a 

continuous sequence of frames captured by the camera without interruption. Once the shots are 

identified, the system cluster them into story units called scenes. The scene identification is based on 

various semantic and visual criteria. The complete methodology is described in details in [36]. One of 

the components considered is notably related to the contextual similarity between adjacent, successive 

shots (𝑠𝑛, 𝑠𝑛+1). The contextual similarity, denoted by 𝑆𝑖𝑚𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑠𝑛, 𝑠𝑛+1) takes into account the 

number of common places between the two successive video shots considered and their corresponding 

recognition probabilities, and is defined as: 

 

𝑆𝑖𝑚𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑠𝑛, 𝑠𝑛+1) =  
1

𝐿
∑𝛼(𝑠𝑛). 𝑝𝑖

𝑛 + 𝛽(𝑠𝑛+1). 𝑝𝑖
𝑛+1 

𝑘

𝑖=1

 

(4.1) 
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where 𝑝𝑖
𝑛 denote the ith place recognition probability in shot 𝑠𝑛, k is the total number of common 

locations recognized in shots 𝑠𝑛 and 𝑠𝑛+1, L is the number of shots, while parameters α and β control 

the influence of the video camera filming type. For wide, long and medium shots the values for α and β 

are fixed to 1, while for all the others shots the value for α and β is 0.5.  

 Our contributions to this project are notably related to the two different items involved in equation (4.1). 

A first one concerns the identification of both indoor and outdoor places that are present in the video 

scenes (section 4.3). The second one is related to the classification of the field of view of each shot 

(section 4.4). In both cases, existing state of the art techniques have been adopted. 

 

4.3 Place recognition 

Place recognition refers to the task of identifying and recognizing specific locations or places (e.g. 

restaurant, museum, studio) in an environment based on visual cues. Place recognition plays a vital role 

not only in scene identification but also serves as crucial metadata in the process of archive indexing, as 

detailed in Section 2.3.6. To this purpose, we have adopted the GoogLeNet architecture [37].  

 

4.3.1 Network architecture 

The GoogLeNet model introduce the concept of the inception module, which uses relatively dense 

components to approximate the optimal local sparse structure. Within this framework, the network 

consists of six convolution layers and one pooling layer, followed by six inception modules. Finally, the 

characteristic parameters are transferred through a fully connected layer.  A ReLU nonlinear activation 

function is added in each layer to reduce the probability of gradient disappearance and improve the speed 

of the backpropagation calculation. The maximum pooling layer can reduce the error of the estimated 

mean deviation caused by the parameter error of the convolution layer and retain more texture features.  

The Inception module (Figure 4.2) uses an asymmetric convolution kernel to replace the conventional 

convolution kernel and thus reduce the computational burden.  

 

Figure 4.2. Inception block. 
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4.3.2 Experimental setup 

We initialize the model with pre-trained weights on ImageNet. For finetuning, we have uses the Adam 

optimizer with a learning rate of 1e-3. We train the model for 20 epochs on Places365 [38] dataset which 

is specifically designed for scene recognition tasks. It consists of a vast collection of 10 million images, 

covering 434 different scene classes. The dataset offers two versions: Places365-Standard and 

Places365-Challenge2016. The Places365-Standard version comprises 1.8 million training images and 

36,000 validation images, representing 365 scene classes. On the other hand, the Places365-

Challenge2016 version expands the training set to 6.2 million additional images, including 69 new scene 

classes, resulting in a total of 8 million training images from the 434 scene classes. For the experiments 

conducted in this project, the Places365-Standard dataset has been utilized. 

  

4.3.3 Model evaluation  

For evaluation, we have considered the Top-1 and Top-5 (the percentage of images where the ground 

truth is among the top 5 predicted labels) accuracy rates. The reason behind this is that the scenes are 

inherently multi-labels in terms of their semantic description and the Top-1 accuracy can be an ill-

defined measure in this case. The learned model achieves 55,6% Top-1 accuracy and 85,66% Top-5 

accuracy on the validation dataset of Places365. Finally, we assign a label indoor/outdoor to each shot 

based on the majority of predicted places. We also evaluate our approach on random samples from 

programs of France TV to assess the capability of generalization of the model on unseen data. Figure 

4.3 presents some examples. The model showcases its ability to distinguish diverse scenes and 

categorize environments as indoor or outdoor accurately. However, the confidence levels of its 

predictions can vary widely based on the complexity of the image. While the model performs 

commendably, the lower confidence in some of the predictions implies room for improvement in model 

certainty, which could potentially enhance both Top-1 and Top-5 accuracies. Overall, the model's 

performance is promising, yet further refinement on specific France TV data may yield even better 

results. 

 

 

top-1 : television studio (0.350) 

top-2 : booth (0.049) 

top-3 : legislative chamber (0.048) 

top-4 : conference center (0.034) 

top-5 : arena/performance (0.03) 

 

Type of environment: indoor 

 

 

top-1 : booth (0.213) 

top-2 : reception (0.211) 

top-3 : legislative chamber (0.176) 

top-4 : beauty salon (0.131) 

top-5 : conference center (0.059) 

 

Type of environment: indoor 
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top-1 : street (0.262) 

top-2 : crosswalk (0.089) 

top-3 : highway (0.087) 

top-4 : embassy (0.076) 

top-5 : parking lot (0.06) 

 

Type of environment: outdoor 
 

Figure 4.3. Examples of the top-5 predictions from France TV content. The number beside indicates the 

prediction confidence.  

 

4.4 Field of view shot detection  

Within the context of video analysis, the shot type refers to the degree of visual proximity between the 

camera and the scene represented in a given frame. Different shot types provide different perspectives 

and convey different levels of detail or focus on the subject. In this section, we present an approach for 

categorizing video shots into six distinct shot types based on the proximity of the camera to the objects. 

These shot types are the following (Figure 4.4): 

 Extreme Wide Shot (EWS): In this case, the camera captures a wide view of the scene, showing 

a significant portion of the environment or location. The focus is on providing context and 

establishing the setting rather than specific details. 

 Large Shot (LS): The camera is positioned at a considerable distance from the subject, capturing 

a broader view compared to other shot types. While it includes more of the scene than close-up 

shots, it still maintains some distance, allowing for a wider perspective. 

 Medium Shot (MS): In a medium shot, the camera is closer to the subject, resulting in a framing 

that captures the subject from the waist up or from the knees up. It offers a moderate level of 

detail while maintaining a wider view of the surroundings. 

 Medium Close-Up (MCU): The camera is positioned closer to the subject in a medium close-up 

shot. This shot focuses on capturing the subject from the chest or shoulders up, providing a more 

detailed view while still maintaining some context of the surrounding environment. 

 Close-Up (CU): In a close-up shot, the camera is placed very close to the subject, emphasizing 

facial expressions, specific details, or objects of interest. It typically frames the subject from the 

neck or shoulders up, creating an intimate and focused view. 

 Extreme Close-Up (ECU): An extreme close-up shot involves the camera being extremely close 

to the subject, capturing only a small portion or detail of the subject. This shot type is often used 

to highlight specific features, emotions, or objects in great detail. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.4. Basic field of view shot types. a) EWS; b) LS; c) MS; d) MCU; e) CU; f) ECU. 

 

4.4.1 Experimental setup 

 

To train our model for shot type identification, we have utilized the publicly available Film-grab 

database [39], which consists of a total of 5,505 images for training and 600 images for validation. We 

employed the Resnet-50 [27] network architecture pre-trained on Imagenet. For finetuning, we  have 

employed the cyclical transfer learning technique [40]. Cyclical learning involves training the model in 

multiple cycles, with each cycle involving an adjustment to the training data or model parameters. In 

this experiment, we initially train the model with lower-resolution images and then progressively train 

on higher resolution. Training on lower-resolution images first can help the model learn more general 

and coarse-level features that are relevant across different resolutions. As the model becomes proficient 

at recognizing and extracting these features, it provides a solid foundation for subsequent training on 

higher-resolution images, where more fine-grained details and local features become important. This 

progressive learning approach can lead to improved performance in capturing both global and local 

characteristics of the data. At each stage, the network is first trained with a learning rate of 1e-3 using 

ADAM as optimizer and finetuned with a learning rate of 1e-6. 
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4.4.2 Model evaluation 

The model demonstrates a high accuracy rate of 91% on the validation set. To gain further insights and 

enhance the interpretability of the results, we analyze the confusion matrix, presented in Figure 4.5. 

From the matrix, we observe that the model performs exceptionally well in classifying extreme wide 

shots, close-ups, and extreme close-ups. However, some instances of confusion arise between long shots 

and medium shots. It is worth noting that the labeling process is subjective and performed manually, 

which could account for the disparity in predictions and occasional misclassifications. 

 

 

Figure 4.5. Confusion matrix of the test set 

 

 

 

 

Figure 4.6. Examples of field of view shot recognition on France TV content. Horizontal bars indicate 

the prediction confidence.  

Since the dataset was extracted from Hollywood movies we evaluate also the model’s performance 

against France TV content using a sample of 100 images (Figure 4.6). Some additional prediction 

examples are presented in Figure 4.7. The obtained error rate of 11% shows that the network detects 

fundamental features and can generalize well the results. 
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GT:MS, P:MS 

 
GT: CU, P: CU 

 
GT: EWS, P: LS 

 
GT: LS, P:LS 

 
GT: MS, P:MS  

GT: MCU, P: CU 

 
GT : CU, P : CU 

 
GT : EWS, P :EWS 

Figure 4.7. Examples of Field of view shot type prediction. (GT: Ground Truth, P: Prediction) 

 

 

  



50 

 

   

 

4.5 Conclusion 

In this chapter, we have presented our contribution for the scene identification project. We used state-

of-the-art techniques for place recognition and field of view shot detection. The models achieved high 

accuracy rates on the validation datasets from Places365 and FilmGrab respectively. Evaluation on 

France TV content demonstrated the model's ability to generalize well, with a low error rate of 11%. 

Overall, our contributions improve scene identification and enhance the efficiency of video 

segmentation tasks. 

For future work, we plan to employ the datasets that have been manually annotated by documentalists 

to construct a specialized dataset specifically for France TV. The rich archives of France TV are 

incredibly valuable due to their diverse range of genres, cinematographic styles, and cultural contexts. 

This diversity is a source of unique challenges that are tailored to the needs of the industry. Leveraging 

this comprehensive testing ground can facilitate key insights that further refine and enhance our 

methodologies. 
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5 CAMERA MOTION CATEGORIZATION 
 

 

 

  

Abstract: The automatic estimation of the various types of camera motion (e.g., traveling, panning, 

rolling, zoom…) that are present in videos represents an important challenge for automatic video 

indexing. Previous research works are mainly based on motion vectors/optical flow estimation and 

analysis. In this chapter, we propose a different, deep learning-based approach that makes it possible 

to classify the videos according to the type of camera motion. The proposed method is inspired from 

action recognition approaches and exploits 3D convolutional neural networks with residual blocks. 

The performances are objectively evaluated on challenging videos, involving blurry frames, 

fast/slow motion, poorly textured scenes. The accuracy rates obtained (with an average score of 

94%) demonstrate the robustness of the proposed model.  

 

Keywords: Camera motion classification, deep learning, Resnet, 3D CNN. 
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5.1 Introduction 

The camera motion pattern plays a crucial role in the field of TV broadcasting, serving various purposes 

within the video content production process. This process involves a diverse range of professionals, each 

contributing with their specific expertise. During video shooting, operators capture a vast array of shots, 

employing different types of camera motions to enhance the visual experience. Following the shooting 

phase, the selection of the most suitable shots falls upon the video editors, who employ aesthetic, artistic, 

and operational criteria. Here, the camera motion type emerges as a critical aspect that demands careful 

consideration.  

Unfortunately, the information regarding camera motion is often lost during the editing process, 

requiring video editors to manually search and identify the most appropriate shots. Consequently, the 

absence of an automated motion type classification tool significantly hinders the efficiency of the video 

editing workflow. 

Beyond video editing, camera motion classification also holds importance in archive indexing, 

browsing, and retrieval processes. Within these contexts, documentalists extensively engage in tagging 

key components of a video to ensure accurate classification within the archive and enable effective 

retrieval and re-use strategies. The camera motion type is thus a mandatory field to be specified by 

documentalists. 

In this chapter, we explore the use of a 3D CNN model for camera motion classification. Like any deep 

learning-based approach, the related constraint relies on the availability of an important volume of 

labeled samples, which are necessary for setting up a successful training process. However, currently 

there is no such publicly available data set in the literature, because of the tedious and expensive manual 

annotation process required to constitute such a corpus. 

The fundamental question that we have to solve is then the following: how can we learn a deep CNN 

model dedicated to camera motion categorization purposes, with a limited amount of training data? 

In order to solve this problem, the first contribution consists of a transfer learning-based camera motion 

classification method. The originality of the approach comes from the fact that the initial learning is 

performed on a data set that is completely different, in terms of targeted classes, from our camera motion 

categories. More precisely, we use for training the Kinetics [38] action corpus, which consists of 400 

action categories. Such a corpus has nothing to do with our purpose. However, we claim that the derived 

feature maps capture essential, salient spatio-temporal cues that can be exploited for camera motion 

classification. A fine-tuning is then applied on a dedicated camera motion data set with a reduced number 

of items. Our second contribution notably concerns a semi-automatic method that makes it possible to 

construct a reliable camera motion dataset from general public videos with a minimum amount of human 

intervention. 

Finally, the third contribution concerns the creation of a camera motion evaluation dataset. The corpus 

includes highly challenging videos, acquired in real-life conditions with professional cameras and at 

various resolutions. It allowed us to assess the robustness and power of generalization of the proposed 

technique, which yields an average accuracy rate of about 94%. To the very best of our knowledge, our 

work presents the first data-driven solution to characterize camera motion in videos using a deep 3D 

convolutional neural network. 

The remainder of this chapter is organized as follows. In Section 5.2, we present the various forms of 

camera motion employed in cinematography, aiming to establish a foundational understanding. We then 

proceed with a state of the art review. In Section 5.3.1, we notably consider and analyze existing camera 

motion estimation algorithms. As our research also derives inspiration from advances in the field of 

video action recognition, in Section 5.3.2 we analyze existing work on this subject. Section 5.4 details 

the proposed methodology, with retained architecture as well as training and validation datasets and 
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protocols. The experimental results obtained are presented and discussed in Section 5.5. Finally, we 

summarize our findings and draw our future perspectives in Section 5.6. 

 

5.2 Types of camera motion 

Camera movement refers to the intentional change in the position, orientation, or focal length of a 

camera during the process of capturing video footage. It adds a dynamic element to the visual 

presentation and significantly impacts the viewer's perception and engagement with the content. 

 

Track left 

Track right 

Boom up 

Boom down 

Dolly 

backward 

Dolly 

forward 

 

 

Pan right 

Pan left 

Tilt up 

Tilt down Roll 
 

Figure 5.1. Different types of camera movement 

The different types of camera movements (Figure 5.1) most often used in video production are the 

following: 

 Pan: A pan involves horizontally rotating the camera on its axis from a fixed position. It 

produces a sweeping motion across the scene, allowing the camera to cover a wider area. 

Panning is often used to follow a subject's movement or to reveal elements from one side of the 

frame to another. 

 Tilt: Tilt refers to the vertical rotation of the camera on its axis while maintaining a fixed 

position. It allows the camera to look up or down, capturing scenes from different angles. Tilt 

movements are often used to emphasize height, depth, or to follow the movement of subjects 

located at different vertical positions. 

 Tracking: Tracking involves smoothly moving the camera horizontally. This dynamic 

movement adds a sense of fluidity and perspective to a scene, allowing the audience to follow 

a subject's lateral movement or explore the environment with a seamless visual experience.  

 Dolly: Dolly involves physically moving the camera towards or away from the subject. It creates 

a smooth and fluid motion, enabling the camera to follow the subject's movement or change the 

perspective dynamically. Tracking shots are commonly used to add a sense of depth and 

immersion to the footage. 

 Zoom: Zooming is the adjustment of the camera's focal length, either by using an optical zoom 

lens or changing the zoom digitally. Zooming in increases the magnification, bringing the 

subject closer, while zooming out decreases the magnification, capturing a wider field of view. 

Zooming can be used to create a sense of intimacy, highlight details, or establish the context of 

a scene. 

 Crane or Boom: Crane or boom shots involve the camera being mounted on a crane or boom 

arm to achieve sweeping vertical or horizontal movements. These shots offer a broad range of 

motion possibilities, such as high-angle or low-angle shots, and are often used to create dramatic 

or visually striking effects. 

 



54 

 

   

The different camera movements offer a wide range of creative possibilities for capturing video footage. 

Skilled cinematographers and camera operators strategically employ these movements to enhance 

storytelling, create visual interest, and evoke specific emotions or moods in the audience. 

 

5.3 Related work 

Camera motion estimation is commonly employed as a key building block, contributing to the 

advancement of several fields including autonomous navigation, robotics, and augmented reality. 

Traditional approaches are based on the analysis of the motion vectors between successive frames, 

which serve to determine higher-level parametric motion models, such as affine [41], simplified affine 

[42], [43]  planar perspective or homographies [43] that can globally describe the camera motion. 

Concerning the motion vectors, which represent the essential feature to be considered, they can be 

determined by simple block matching techniques, dense optical flow approaches or tracking of interest 

points [44]. The camera motion type is then estimated by comparing the parameters, or corresponding 

motion vectors, to predefined thresholds.  

 

5.3.1 Estimation of motion vectors  

Existing motion vector estimation techniques can be categorized into two methodological families, 

including feature-based and appearance-based approaches. The former relies on the extraction and 

tracking of salient visual features, while the latter focuses on analyzing the appearance information 

directly from the image sequences. 

 

5.3.1.1 Feature-based approaches  

The feature-based approaches have been widely employed in camera motion estimation [45]–[50]. Most 

of the time, they rely on the extraction of a set of interest points, with the help of well-known techniques 

such as the Harris or Harris-affine corner detectors [51]. Such methods ensure a good repetability of the 

detection in successive frames. Furthermore, the detected interest points are described with the help of 

local invariant features such as SIFT (Scale-Invariant Feature Transform) [10], SURF (Speeded-Up 

Robust Features) [15] and FAST (Features from Accelerated Segment Test) [52] descriptors. Once the 

features are extracted for each pair of consecutive frames, the next step is to match or track these features 

in order to estimate the motion vectors. A direct way to determine matches is to compute the Euclidean 

distance between the corresponding descriptors and select as matches the features with smaller distances. 

The RANSAC (Random Sample Consensus) algorithm [53] can be also used in combination with such 

approaches in order to robustly estimate a global parametric motion model, minimizing the influence of 

outliers.  

 

5.3.1.2 Appearance-based approaches 

The appearance-based approaches, also known as optical flow techniques [54]–[57] focus on measuring 

changes in the appearance and image intensity values. The principle consists in estimating a motion field 

based on an assumption of conservation of the luminance signal between consecutive frames. 

There are two types of optical flow algorithms: dense and sparse. Dense optical flow algorithms, such 

as the Horn-Schunck algorithm [58] estimate the displacement at each pixel by incorporating global 

regularity constraints. On the other hand, sparse optical flow algorithms, such as the Lucas-Kanade 

method [59] calculate the displacement for a selected number of pixels in the image. 
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While dense optical flow algorithms eliminate the need of interest point extraction, they are more 

sensitive to noise when compared to sparse optical flow algorithms. Consequently, sparse optical flow 

algorithms are more adapted for applications where a robust displacement estimation is required. 

However, it is important to carefully choose the features, considering that pixels in regions with higher 

variance among neighbors will yield more reliable displacement estimation. 

 

5.3.1.3 Discussion  

The feature-based approach is commonly employed in textured environments such as rough and urban 

areas [57], [60]. However, this approach encounters challenges when dealing with texture-less or low-

textured environments characterized by a single pattern, such as such as blank walls, clear blue skies, 

and featureless water surfaces [61]. In such scenarios, the feature-based approach proves to be inefficient 

due to the limited number of salient features that can be detected and tracked [54]–[56]. In contrast, the 

appearance-based approach exhibits greater robustness and superiority over feature tracking methods in 

low-textured environments [54], [62]. By using larger templates during the matching process, the 

appearance-based approach achieves a higher probability of successful matching between consecutive 

image frames. In certain scenarios, a hybrid approach [63] that combines both feature-based and 

appearance-based techniques proves to be the most effective solution. Such hybrid approaches leverage 

the tracking of salient features across frames while utilizing pixel intensity information from the entire 

or batches of images. 

However, in real life videos the estimation of motion vectors faces various difficulties:  

 Lack of distinctive features: Without well-defined and recognizable points, the tracking process 

becomes challenging or even infeasible. 

 Complex camera trajectories: Advanced shots often involve complex camera trajectories, with 

varying speeds, angles, and directions of movement. Interest point tracking algorithms may 

struggle to accurately track points along such intricate trajectories due to the limitations of the 

tracking algorithm or the instability introduced by the camera movement itself. 

 Perspective changes: The perspective changes can cause significant distortions and variations in 

the appearance of interest points, making it difficult for tracking algorithms to maintain a 

consistent matching tracking across frames. 

 Inherent camera shake: The resulting vibrations or instability can introduce additional challenges 

for interest point tracking algorithms, leading to inaccurate or unstable tracking results. 

Due to such difficulties, in our work, we have considered the motion vector-based traditional techniques 

uniquely to the purpose of constituting in a semi-automatic manner a video corpus that can further serve 

as a training dataset for advanced deep learning camera categorization approaches. Notably, our work 

draws inspiration from video action recognition methodologies. 

Video action recognition has experienced a remarkable growth in the field of video understanding. Deep 

learning-based research has predominantly concentrated on this domain, with numerous techniques and 

methodologies developed to tackle the challenges of recognizing and interpreting human actions in 

videos. Most of the time, the video action recognition techniques rely on features extracted form 2D or 

3D CNNs. Such approaches are reviewed in the following section.  

 

5.3.2 CNNs for video action recognition 

The field of action recognition has witnessed significant progress in recent years, driven by 

advancements in deep learning techniques. In particular, Convolutional Neural Networks (CNNs) have 

emerged as a powerful tool for extracting discriminative features from video data, enabling accurate 
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recognition and understanding of human actions. The state-of-the-art reveals two main families of CNN-

based approaches.  

The first one originated from the influential paper on Two-Stream Networks introduced in [64]. It 

involves incorporating an additional pathway to train a convolutional neural network on the optical flow 

stream, thereby capturing temporal information within a video. The remarkable success of this approach 

has inspired a considerable number of subsequent papers, including TDD [65], LRCN [66], Fusion [67] 

or TSN [68].  

The second family of approaches revolves around the utilization of 3D convolutional kernels to 

effectively model temporal information in videos. Examples include I3D [69], R3D [70], S3D [71], 

Non-local [72], and SlowFast [73].  

 

5.3.2.1 Two-stream networks 

 

In the era of deep learning [74], there has been a growing interest among researchers to apply CNNs to 

video-related tasks. The DeepVideo technique [75] propose to employ a single 2D CNN model 

independently on each video frame. Authors explore various temporal connectivity patterns, including 

late fusion, early fusion, and slow fusion, to capture spatio-temporal features for video action 

recognition. However, it became evident that solely 2D CNNs lack the ability to effectively incorporate 

temporal information, rendering them insufficient for comprehensive video understanding. Thus, 

Simonyan et al. [64] introduced the concept of two-stream networks, illustrated in Figure 5.2, which 

includes two different analysis streams, temporal and spatial. The approach is inspired by the two-

streams hypothesis [76], which suggests that the human visual cortex includes two distinct pathways: 

the ventral stream for object recognition and the dorsal stream for motion perception. In line with this 

assumption, the spatial stream is responsible for processing raw video frames to extract visual 

appearance details. On the other hand, the temporal stream utilizes a stack of optical flow images as 

input to capture motion information between consecutive video frames.  

 

 

Figure 5.2. Workflow of two-stream network [64]. 

The fusion of spatial and temporal networks in a two-stream architecture presents a significant challenge 

known as spatio-temporal fusion. The late fusion, which involves a weighted average of predictions 

from both streams, is the simplest and most commonly used approach [64], [77]. However, researchers 

argue that early fusion, enabling earlier interactions between the networks, could benefit both streams 

during model learning. Among one of the first papers exploring early fusion techniques, let us mention 

the approach introduced in [67]. Here, authors investigate various spatial fusion methods (e.g., sum, 
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max, bilinear, convolution, concatenation), network layers for fusion, and temporal fusion approaches 

(e.g., 2D or 3D convolutional fusion in later stages of the network). Results showed that early fusion 

enhances both streams' ability to learn richer features, leading to improved performances when 

compared to late fusion.  

Expanding on this research, Feichtenhofer et al. [78] extended the ResNet model [27] to the 

spatiotemporal domain by introducing residual connections between the two streams. They also 

proposed a multiplicative gating function [79] to improve the learning of spatio-temporal features in 

residual networks. Concurrently, the approach introduced in [80] exploits a spatio-temporal pyramid to 

perform hierarchical early fusion between the two streams. 

Let us underline that optical flow is crucial in two-stream networks, but the pre-computation of optical 

flow is computationally demanding and resource-intensive, making it challenging for large-scale 

training and real-time deployment.  

As an alternative, videos can be conceptualized as 3D tensors with two spatial dimensions and one 

temporal dimension. This observation has led to the conception of 3D CNNs, described in the following 

section.  

 

5.3.2.2 3D Convolutional Neural Networks 

In their seminal work [81], Ji et al. introduce the concept of of 3D CNNs for action recognition. 

However, the initial approach was not sufficiently deep to fully exhibit its potential for action 

recognition purposes. Tran et al. [82] extended this work by proposing a deeper 3D network called C3D, 

following the modular design of [37], similar to a 3D version of the VGG16 network. Although the 

C3D's performance on standard benchmarks was not fully satisfactory, it demonstrated strong 

generalization capabilities and served as a versatile feature extractor for various video analysis 

tasks [83].  

Let us observe that training efficient 3D networks is challenging due to the need for large-scale datasets 

and the time-consuming nature of training, resulting in the dominance of 2D CNN-based two-stream 

networks for video action recognition during 2014-2017. 

 

 

Figure 5.3. Workflow of 3D CNN. 

The situation changed in 2017 with the introduction of the I3D model [69]. I3D employs stacked 3D 

convolutional layers to process video clips, typically consisting of 16 or 32 successive frames. Notably, 

I3D adapts mature image classification architectures for 3D CNNs and uses a method from [77] to 
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initialize model weights by inflating pre-trained 2D model weights. This approach allowed I3D to 

overcome the need of training 3D CNNs from scratch. This advancement propelled video action 

recognition to new heights, with 3D CNNs emerging as top performers across various benchmarks. 

In an analogous manner, the ResNet3D (also known as R3D) model [70] adopts the concept of 2D 

ResNet [27] by replacing all 2D convolutional filters with 3D kernels. The approach aims to leverage 

the success of 2D CNNs on ImageNet by utilizing deep 3D CNNs alongside large-scale datasets. 

Building upon the idea of ResNeXt [84], Chen et al. [85] introduced a multi-fiber architecture that 

divides a complex neural network into a set of lightweight networks (fibers). This design facilitates 

information exchange among the fibers, thereby reducing computational costs. Drawing inspiration from 

SENet [86], STCNet [87] proposed the integration of channel-wise information within a 3D block. This 

integration allows to capture the correlation between  spatial and temporal channels across the entire 

network. 

To simplify the training of 3D networks, P3D [88] and R2+1D [89] employ the concept of 3D 

factorization. Specifically, a 3D kernel, such as 3x3x3, can be decomposed into two separate operations: 

a 2D spatial convolution, like 1x3x3, and a 1D temporal convolution, like 3x1x1. The P3D and R2+1D 

approaches differ in the way they arrange the factorized operations and formulate each residual block. 

Another approach that follows this concept is the so-called trajectory convolution [90], which 

incorporates deformable convolution for the temporal component to better handle motion dynamics. 

 

5.3.2.3 Discussion 

Given these considerations, we have chosen to use 3D convolutional neural networks (CNNs) for camera 

motion estimation. While "factorized" networks like P3D or R2+1D offer elegant solutions to reduce 

complexity during both training and inference phases, they may not capture temporal dependencies as 

effectively as the R3D model. Furthermore, their performance tends to be lower when confronted with 

datasets containing challenging temporal variations [70], which is a crucial aspect of camera motion 

estimation. It is also worth noting that our solution is intended to be implemented offline rather than for 

real-time applications. Therefore, the slight ameliorations in efficiency achieved by "factorized" 

networks do not present a major problem in our specific case. Therefore, based on our observations and 

evaluations, we have decided to adopt the R3D model. 

 

5.4 Proposed methodology 

To the best of our knowledge, there is no publically available dataset accessible that can be used for 

training. Therefore, we have established a semi-automatic process to generate a custom dataset from 

YouTube videos. To assess our approach objectively, we have also created a validation dataset, gathered 

under various acquisition conditions. 

 

5.4.1 Network architecture 

For the camera motion estimation, we employ a 3D version of the Residual Network (ResNet) 

architecture, so-called 3D-ResNet [70]. The model incorporates shortcut connections between layers, 

which help in mitigating the issue of vanishing gradients during the training phase, particularly 

beneficial for deeper networks. Mathematically, it signifies that instead of learning an original mapping 

H(x), a Resnet layer approximates the residual mapping F(x) = H(x)–x. 

We have extended the ResNet-34 model by incorporating 3D convolutions into its architecture. This 

adjusted structure involves an initial convolutional layer of dimensionality 7x7x7, subsequently 

followed by a max-pooling layer (see Figure 5.4). This sequence enables the extraction of robust features 
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while significantly reducing the spatial dimensions of the input data, thereby improving computational 

efficiency. 

 

Figure 5.4. Illustration of the adopted 3D CNN. The notation F@H³ means F filters of size H×H×H. 

The next part of our architecture includes four residual units. We leverage the basic ResNet block 

characterized by type 'A' shortcut connections (Figure 5.5) [27]. This choice involves utilizing zero-

padding to ensure that the shortcut paths and the main paths have the same dimensions, permitting 

seamless addition. Inside these residual units, the blocks are constructed of a sequence of 3, 4, 6, and 

finally 3 convolutions respectively. The diverse composition of convolutional layers within each unit 

allows the network to learn a wide array of features at varying levels of complexity. We also spatially 

down-sample the input data within the third to fifth bottleneck. Here, we employ a stride of s=2, 

effectively reducing the size of the input. 

 

Figure 5.5. Skip connection employed in the network. 

Following the residual units, we employ a global average pooling layer. This layer simplifies the output 

by calculating the mean of each feature map, preserving the depth dimension but reducing spatial 

dimensions to 1x1. This process has the dual advantage of drastically reducing the number of parameters 

while also minimizing overfitting. Subsequently, a fully connected layer is considered to enable learning 

non-linear combinations of features. The network ends with a softmax activation function, which 
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provides a probabilistic distribution of the output classes, enabling us to identify the most probable class 

for the input video. 

 

5.4.2 Camera motion datasets 

Due to the lack of available camera motion datasets, we have constructed our dataset from scratch. We 

consider the following seven distinct categories: static, pan left (PL), pan right (PR), zoom in (ZI), zoom 

out (ZO), tilt-up (TU), and tilt down (TD). For training and validation, we have followed a semi-

automatic technique to annotate the videos, by leveraging traditional methods. For testing, we have 

acquired a dataset ourselves using different cameras.  

 

5.4.2.1 Semi-automatic learning dataset creation 

In a first step, we have collected a first video corpus which includes a number of 500 sequences, 

randomly gathered from YouTube [91]. We chose not to employ specific keywords like "camera", "pan", 

and “zoom" to refine our results because such videos are often shot with professional equipment and 

they tend to encapsulate cinematographic scenes. This could potentially inhibit the model's 

generalization ability.  

The examination of the initial collection, shows that the majority of shots from these random videos are 

static. We did encounter some panning and tilting shots, but zooming shots were notably sparse. This 

led to a significant skew in our dataset. Consequently, we have specifically searched for "zoom" on 

YouTube, despite the potential lack of diversity, in an effort to increase the number of samples for the 

zoom class. We have also removed some of the static videos to improve the dataset balance.  

The videos have been first segmented into shots, using the method introduced in [36]. This process has 

led to an approximate number of 3000 shots that needed to be categorized according to their 

corresponding camera motion type.   

Figure 5.6 shows some examples of shots in this corpus, with various camera motion types.  
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(a) 

 
(b) 

 
(c) 

Figure 5.6. Examples from the videos of the dataset. (a) Pan Left, (b) Tilt Up, (c) Static 

In order to perform the video shot categorization, we have adopted the method introduced in [41] and 

recalled in the following sections.  

 

5.4.2.1.1 Interest point extraction  

The first step in this annotation process involves the extraction of interest points from the videos. A 

regular grid sampling strategy is considered for this task, with a grid step size Γ =
𝑊.𝐻

𝑁
 (Figure 5.7). 

Here, W and H respectively represent the image’s width and height, while N signifies the maximum 

number of points. The parameter N plays a critical role as it strikes a balance between processing time 

and detection accuracy. To keep computational costs relatively low while ensuring a high degree of 

precision, the value of N was set to1000.  

 

Figure 5.7. Grid of points in a frame. 

5.4.2.1.2 Interest point tracking  

The next step in in the algorithm concerns tracking the considered interest points by calculating their 

displacement or motion vectors. To this purpose, the Lucas-Kanade algorithm [92] has been applied on 

each pair of consecutive frames in the video shot, starting from the initial one.  
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Let 𝑝1𝑖(𝑥1𝑖, 𝑦1𝑖) be the 𝑖th  keypoint in the current image and 𝑝2𝑖(𝑥2𝑖, 𝑦2𝑖) be its correspondent in the 

successive frame. The associated motion vectors (𝑣𝑖𝑥 , 𝑣𝑖𝑦), expressed in polar coordinates with 

magnitude (𝐷𝑖(1,2)) and angle of motion (𝜃𝑖(1,2)) are expressed as follows: 

 𝑣𝑖𝑥 = 𝑥2𝑖 − 𝑥1𝑖;  𝑣𝑖𝑦 = 𝑦2𝑖 − 𝑦1𝑖 (5.1) 

 
𝐷𝑖(1,2) = √𝑣𝑖𝑥  

2 + 𝑣𝑖𝑦 
2, 𝑖 = 1, 𝑛̅̅ ̅̅̅ 

(5.2) 

 𝜃𝑖(1,2) = arcos 
𝑣𝑖𝑥
𝐷𝑖(1,2)

, 𝜃 ∈ [0,2𝜋] (5.3) 

where 𝑛 is the total number of tracked points. 

Figure 5.8 illustrates an example of tracked interest points between consecutive frames, for a panning 

motion type.  

 

5.4.2.1.3 Background/ Foregound separation 

The tracked interest points to determine the overall geometric transformation between two consecutive 

frames, represented as a homographic motion model. The RANSAC (Random Sample Consensus) [93] 

algorithm is here used to identify the optimal homographic matrix H. 

 

Figure 5.8. Correspondence between interest points in two successive frames. 

Based on the matrix 𝐇, for a given point 𝑝1𝑖[𝑥1𝑖, 𝑦1𝑖 , 1]
𝑇 expressed in homogenous coordinates, its 

estimated position 𝑝2𝑖
𝑒𝑠𝑡[𝑥2𝑖

𝑒𝑠𝑡 , 𝑦2𝑖
𝑒𝑠𝑡 , 1]

𝑇
 is determined as: 

  

[
𝑥2𝑖

est 

𝑦2𝑖
est 

𝑤

] = [

ℎ00 ℎ01 ℎ02
ℎ10 ℎ11 ℎ12
ℎ20 ℎ21 ℎ22

] ⋅ [
𝑥1𝑖
𝑦1𝑖
1
] 

(5.4) 

where: 

 𝑤 = 1/(ℎ20 ⋅ 𝑥2𝑖
𝑒𝑠𝑡 + ℎ21 ⋅ 𝑦2𝑖

𝑒𝑠𝑡 + ℎ22) (5.5) 

The estimation error is defined as the difference between the estimated and the actual position of the 

considered interest point and is computed as:  

 𝑒(𝑝1𝑖, H) = ∥∥𝑝2𝑖
𝑒𝑠𝑡 − 𝑝2𝑖∥∥ (5.6) 

Key points with an estimation error e(𝑝1𝑖, H) below a threshold E (set to 2 pixels) are identified as part 

of the background (inliers). Conversely, those exceeding E are annotated as foreground objects 

(outliers). 
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5.4.2.1.4 Camera motion estimation 

The estimation of camera motion relies on the inliers interest points tracked across frames. To ensure 

the reliability of the results, each frame is segmented into four distinct regions. The analysis is then 

performed independently on each regions and finally the resulting outcomes are compared in order to 

take the final decision.  

Within each region, the dominant motion vector characteristics are determined by identifying the most 

common motion vector distances and angles (orientations). Let us denote by  𝐷𝑢𝑟, 𝐷𝑢𝑙, 𝐷𝑏𝑟, 𝐷𝑏𝑙  (resp. 

𝜃𝑢𝑟, 𝜃𝑢𝑙, 𝜃𝑏𝑟, 𝜃𝑏𝑙) the prevalent distances (resp. angles) in the upper-right, upper-left, bottom-right, and 

bottom-left regions. The measurement of these values is then compared to predefined thresholds to 

discern the camera motion type between each pair of two consecutive frames. The specified thresholds 

are specified in Algorithm1.  

 

  



64 

 

   

 

ALGORITHM1: ALGORITHM TO ESTIMATE CAMERA MOTION 

 
Input: Distance and angle estimation in the four regions, 𝐷𝑟𝑒𝑔𝑖𝑜𝑛, 𝜃𝑟𝑒𝑔𝑖𝑜𝑛 ∀𝑟𝑒𝑔𝑖𝑜𝑛 ∈
{𝑢𝑟, 𝑢𝑙, 𝑏𝑟, 𝑏𝑙} 

 Output: Camera motion estimation ℱ𝐶𝐴𝑀 

 if  ∀region (𝐷𝑟𝑒𝑔𝑖𝑜𝑛 < 4 𝑝𝑖𝑥) then  

 
 

ℱ𝐶𝐴𝑀 ← Static 

 elif  ∃𝑟𝑒𝑔𝑖𝑜𝑛 (𝐷𝑟𝑒𝑔𝑖𝑜𝑛 < 4 𝑝𝑖𝑥)  then 

 
 

ℱ𝐶𝐴𝑀 ← Unknown 

 elif  ∃𝑟𝑒𝑔𝑖𝑜𝑛1, 𝑟𝑒𝑔𝑖𝑜𝑛2 (|𝐷
𝑟𝑒𝑔𝑖𝑜𝑛1 −𝐷𝑟𝑒𝑔𝑖𝑜𝑛2| > 20)  then 

 
 

ℱ𝐶𝐴𝑀 ← Unknown 

 elif ∀region (−180° ≤ 𝜃𝑟𝑒𝑔𝑖𝑜𝑛 ≤ −135° or 135° ≤ 𝜃𝑟𝑒𝑔𝑖𝑜𝑛 ≤ 180°) then 

 
 

ℱ𝐶𝐴𝑀 ← Pan-Right 

 elif ∀region (45° ≤ 𝜃𝑟𝑒𝑔𝑖𝑜𝑛 ≤ 135° ) then 

 
 

ℱ𝐶𝐴𝑀 ← Tilt-Down 

 elif  ∀region (−135° ≤ 𝜃𝑟𝑒𝑔𝑖𝑜𝑛 ≤ −45° ) then 

 
 

ℱ𝐶𝐴𝑀 ← Tilt-Up 

 elif ∀region (−45° ≤ 𝜃𝑟𝑒𝑔𝑖𝑜𝑛 ≤ 45° ) then 

 
 

ℱ𝐶𝐴𝑀 ← Pan-Left 

 elif ∀region (𝐷𝑟𝑒𝑔𝑖𝑜𝑛 > 1 𝑝𝑖𝑥) then 

 
 if (90° ≤ 𝜃𝑢𝑟 ≤ 180° ) and  (0° ≤ 𝜃𝑢𝑙 ≤ 90°) and  (−90° ≤ 𝜃𝑏𝑟 ≤ 0° ) and  (−180° ≤

𝜃𝑏𝑙 ≤ −90° ) then 

 
 

 ℱ𝐶𝐴𝑀 ← Zoom-In 

 
 elif (−90° ≤ 𝜃𝑢𝑟 ≤ 0° ) and  (−180° ≤ 𝜃𝑢𝑙 ≤ −90° ) and  (90° ≤ 𝜃𝑏𝑟 ≤ 180°) and 

 (0° ≤ 𝜃𝑏𝑙 ≤ 90° )  then 

 
 

 ℱ𝐶𝐴𝑀 ← Zoom-Out 

 
 

end 

 else  

 
 

ℱ𝐶𝐴𝑀 ← Unknown 

 end 

The analysis has been performed for each video shot in the initial corpus. The shot is saved and stored 

in the final database if a uniform camera motion type is observed across a minimum number of 25 

consecutive frames (which means that the same motion type is detected throughout all these frame 

successions).  

Figure 5.9 presents some examples showcasing the dominant angle and distance across the four regions 

for eight classes: Static, Pan Left, Pan Right, Tilt-Up, Tilt-Down, Zoom In, Zoom Out, and Unknown. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 5.9. Dominant angle and distance across four regions in a frame. (a)Pan Right; (b) Pan Left; (c) 

Tilt-up; (d) Tilt Down; (e) Zoom In; (d) Zoom-out; (g) Static; and (h) Unknown. 
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5.4.2.1.5 Dataset cleaning 

The considered method presents some limitations. Some failures have been encountered in close-up 

shots, where the foreground object occupy an important area of the scene, and blurry shots, where is 

difficult to reliably detect the interest points. In such cases, the video is classified as unknown and is not 

included in the dataset. In addition, the Lukas-Kanade tracking system cannot make the difference 

between static and slow-motion video segments. As a consequence, the process requires some human 

intervention (for less than 5% of the videos) to delete the outliers. However, let us underline that the 

goal of this method is solely related to the construction of a reliable training set that can serve to learn 

the 3D ResNet network, and which includes only correctly categorized video segments. The statistics of 

the obtained dataset are reported in Table 5.1. Some examples of the dataset are illustrated in Figure 

5.10. 

 

Table 5.1. The number of videos in each category in the train/val dataset 

Category S PL PR TU TD ZI ZO 

No. of video 

segments 
897 547 555 544 441 272 292 
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Pan Left 

 
Pan Right 

 
Static 

 
Tilt Down 

 
Tilt Up 

 
Zoom In 

 
Zoom Out 

Figure 5.10. Examples from the Training dataset.  
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5.4.2.2 Creation of the test dataset 

In order to conduct a comprehensive evaluation of our methodology, a test dataset has been specifically 

gathered under diverse acquisition conditions. This dataset not only encompassed videos of varying 

quality, including those with challenges such as blur, camera shake and changes in illumination or 

shadowing, but it also included a wide variety of scene types. This diversity in scene type ensured a 

robust representation of different shot types such as indoor and outdoor settings, close-ups and wide 

shots, as well as a variety of weather conditions, like sunny or rainy weather, and different times of day, 

covering both day and night scenarios. 

The data collection has been undertaken using high-quality professional cameras, namely the Canon 5D 

Mark II and Sony Z280, supported with tripods for stability and made available by our partners at France 

Télévisions. We have also purposefully incorporated shots taken with smartphones into our dataset, as 

this allowed us to include video samples exhibiting hand-shake, a common factor in many real-world 

video capture scenarios. Furthermore, we considered a broad range of video resolutions and frame rates 

to ensure the adaptability and robustness of our method across different video quality and speed 

parameters. The resolutions varied from (1280 × 720) to (3840 × 2160) pixels, while frame rates ranged 

between 25 to 50 frames per second. 

The videos included in our dataset generally last around 5 seconds each. These videos may contain 

several camera movements, which are interspersed with static sections. The distribution of video 

segments, defined as video intervals characterized by a singular camera motion, across the various 

categories is outlined in Table 5.2. 

 

Table 5.2. The number of videos per category in the test dataset 

Category S PL PR TU TD ZI ZO 

No. of video 

segments 
450 369 422 261 263 251 252 

 

Figure 5.11 illustrates some examples of video sequences from the test dataset. 
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Pan Right 

 
Pan Left 

 
Tilt Down 

 

 

 

Tilt Up 

 
Zoom Out 

 
Zoom In 

 
Static 

Figure 5.11. Examples from the test dataset. The videos includes high-resolution samples as well as 

hand-shake videos, blurry images and illumination variations. 
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5.5 Experimental results 

In a preliminary stage, we have pre-trained the proposed network model on the generic action 

recognition Kinetics dataset [14]. The backpropagation algorithm minimizes the cross-entropy error, 

considered as loss function. For optimization, we have adopted a stochastic gradient descent with 

momentum. The weight decay was set to 0.001 and the momentum to 0.9.The learning rate started from 

0.9 and was divided by 10 when the test loss saturated. 

Then, the model has been retrained starting from the 3𝑟𝑑 residual block with the training camera motion 

dataset extracted from Youtube videos(cf. Section 5.4.2.1). For fine-tuning, the learning rate has been 

set to 0.001 and the weight decay to 1e-5. The learning process has been carried out on an Nvidia GTX 

1080 GPU with batch size of 32. We randomly crop each video spatially and temporally to fit the 

network’s input size 10 ∗ 120 ∗120 ∗ 3.  

To increase scalability, we have also applied a data augmentation technique. To this purpose, we have 

reversed the order of the frames in each video and generate a new video sample with the opposite label 

(e.g., if we reverse the frames of a zoom-in video we generate a new zoom-out video). This technique 

makes it possible not only to double the size of the dataset but also to increase the generality of the 

model. 

Figure 5.12 shows the loss and accuracy curves obtained for four different conditions.  

  
Figure 5.12. Comparison of the different configurations: (a). The loss variation (b). The accuracy 

variation. (Blue: Resnet trained from scratch, Red: Resnet + reverse frames, Orange: Resnet + 

finetuning, Green: Resnet + finetuning + reverse frames)    

The baseline results are obtained by training Resnet-34 from scratch, without any preliminary training, 

and with our training dataset described in Section 5.4.1.  

Without surprise, this approach resulted in poor results due to the low number of training samples. 

Augmenting the data by reversing the frames slightly improves the results but does not exceed an 

accuracy rate of 40%. These results confirm our intuition that such limited datasets cannot ensure a 

successful learning process. Let us now analyze the performances obtained for the transfer learning 

approach, where the 3D Resnet is first pre-trained on the Kinetics dataset and then fine-tuned on the 

augmented training set.  

In the first time, we have examined the results obtained on the training data set derived from youtube 

videos. To this purpose, we have split the data into training and test sub-sets with a training/testing ratio 

of 80/20% and 5 cross-validation steps. In this case, the approach reaches 97% of accuracy.  
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Concerning the real-life test data set, since a given video may contain multiple camera motions, we have 

jointly performed segmentation and labeling. For this purpose, we have applied a sliding window 

technique with overlapping clips and stride 1, which means that the sliding window is successively slid 

by one frame. The size of the window is of intervals of 10 successive frames. At each frame position, 

the trained network estimates the class probabilities. As the video may contain several camera 

movements we use the static segments (a segment is a set of 2 clips or higher) to identify the end of a 

movement section. Then, we average the scores and the decision is taken based on a majority voting 

scheme over all frames of a movement section. The class with the highest probability is estimated as the 

correct camera motion. 

The resulting global, average accuracy rate obtained is 94%. These results, obtained on such challenging 

videos, fully demonstrate the pertinence of the proposed approach.  

In a finer analysis, Figure 5.13 presents the confusion matrix obtained on the test dataset.  

 

Figure 5.13. Confusion matrix of the validation dataset 

Figure 5.14 illustrates some results obtained on the test dataset. We can observe that some errors are 

occurring when the zooming is very slow. One explanation of this behavior may be the lack of diversity 

in the zoom class in the train dataset. 
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GT:ZI, P:ZI 

 
GT: TD, P:TD 

 
GT:PR, P:PR 

 
GT:ZO, P:ZO 

 
GT:TU, P:TU 

 
GT:PL, P:PL 

 
GT:ZO, P:S 

 

Figure 5.14. Examples of recognition results on the test dataset.  
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5.6 Conclusion  

In this chapter, we have introduced a data-driven camera motion classification method. The approach is 

based on a deep 3D Resnet model, under a transfer learning paradigm. In order to overcome the 

difficulties related to the poor availability of training/test camera motion data sets, we have proposed a 

transfer learning approach, which consist first in pre-training the model on a different purpose data set, 

related to action recognition, which is afterward fine-tuned on a lower scale, dedicated corpus. We have 

also introduced a semi-automatic technique for constructing such a corpus, starting from general-

purpose videos. Finally, in order to test and validate our approach, we have acquired a validation data 

set, acquired in real-life conditions with different cameras and involving highly challenging videos. The 

experimental results obtained fully validate the proposed method, with an average accuracy rate of 94%. 

Our perspectives of future work mainly concern the extension of our approach with the help of active 

learning techniques that can further speed-up the training process and enhance the related performances.  
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PART II: MULTIMODAL MODELS  
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6 MULTIMODAL LEARNING 
 

 

 

  

Abstract: The human perception is inherently multimodal, incorporating vision, hearing, touch, 

smell, and taste. A modality corresponds to the specific manner or channel through which data or 

experiences are captured or processed. Consequently, a research problem is classified as multimodal 

when it integrates several such modalities. In this chapter, we delve into multimodal learning, an 

expanding subfield of machine learning, which seeks to develop models capable of interpreting and 

learning from multimodal data. We review the key challenges in multimodal learning including data 

heterogenity, fusion, alignment, and efficiency. Central to our discussion is an in-depth exploration 

of the transformer model, the latest state-of-the-art model for multimodal learning. We provide a 

detailed mathematical formulation of the vanilla transformer and we elaborate on the advantages 

and challenges of the model compared to previous architectures. Finally, we present the evolution 

and current state of multimodal datasets, which are fundamental to the development and 

benchmarking of new models.  

 

Keywords: Multimodal learning, transformer. 
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6.1 Introduction 

Multimodal learning (MML) is an area of machine learning that involves the integration and analysis of 

data from multiple types of data, such as text, images, audio and video, in order to perform predictions 

or derive meaningful conclusions. The primary significance of multimodal learning lies in its potential 

to encapsulate a richer context and a more comprehensive understanding of real-world scenarios than 

can be provided by unimodal learning, which operates on a single data type. In the context of human 

cognition, we naturally integrate multiple sensory inputs to perceive and interact with the world, hence, 

it is intuitive to apply the same principles to machine learning. This is why multimodal learning has 

emerged as a vital and active area of research. Its applications are diverse and far-reaching, ranging from 

sentiment analysis, where text and audio-visual cues can be combined to better understand users' 

sentiments, to autonomous driving, where various sensor inputs are integrated to safely navigate the 

vehicle. By harnessing multiple data modalities, we can create models that better mimic human 

intelligence and offer enhanced performance in complex, real-world tasks. 

The initial part of this chapter is dedicated to a detailed discussion of the relevance of multimodal 

contexts within the domain of TV broadcasting, the primary application for our proposed methodologies. 

Subsequently, we turn our attention to the significant challenges encountered in the development of a 

multimodal deep learning model, covering critical considerations such as data heterogeneity, fusion, 

alignment and efficiency. We then delve into a thorough analysis of the prevailing multimodal 

architecture in contemporary literature - the transformer. This entails an examination of the 

mathematical underpinnings of the original transformer model, along with its advantages and challenges 

compared to previous methods. To conclude the chapter, we survey the current landscape of multimodal 

datasets, highlighting the intricate features they incorporate and how they have evolved over time. 

 

6.2 Applications of multimodal learning for TV broadcast 

Multimodal learning has found significant applications in the audiovisual broadcast community, 

Through the combination of text, video, and audio data, advanced algorithms can deliver more accurate 

video summarization and recommendation, enhancing viewer experience and providing personalized 

content that aligns with their preferences. Subtitle generation and translation, an essential aspect of 

international broadcasting, can also be significantly enhanced using multimodal learning, as context 

derived from audio and visual cues can provide more nuanced translations. Additionally, multimodal 

learning aids in advanced content analysis, enabling more precise categorization and tagging of shows 

or segments based on visual, auditory, and textual information. This could range from identifying key 

events in a sports broadcast to recognizing sentiment in a drama series. In the case of archive indexing, 

content such as JT (news), sports programs, and TV shows inherently comes in multiple modes. The 

indexing system, therefore, must be multimodal in order to effectively process, categorize, and archive 

such content. 

In our research work, we have started by creating separate analyzers for different modes of data—video, 

image, and so forth, as detailed in Part I of the manuscript. Our objective in this part is to combine the 

insights gleaned from these separate analyzers, with the objective of constructing a more comprehensive 

and robust framework designed explicitly for applications considered by France TV. 

We focus our development on two major axes. The first axis involves leveraging video question 

answering techniques. Video question answering systems are designed to respond to user queries about 

a specific video content. Applied to archive indexing, this technique allows users to ask specific 

questions about an archived content (examples: "Who appeared at the 15-minute mark of this news 

broadcast?" or "What was the score at halftime in this football match?") and retrieve precise answers.  
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The second axis revolves around the use of multimodal video captioning. Multimodal video captioning 

involves generating textual descriptions, expressed in natural language, using information from multiple 

modalities (typically audio and visual data). In the context of TV archive indexing, multimodal video 

captioning can facilitate a more accurate and nuanced understanding of archived content, supporting 

more precise search and retrieval capabilities. It goes beyond mere object identification or speech 

transcription. By combining visual, auditory, and possibly other sensory cues, the system can provide 

context-rich captions, effectively "summarizing" video content in a searchable text format. This could 

be incredibly useful for categorizing and retrieving relevant segments from archived footage based on 

viewer's or researcher's requirements. 

Let us first present and analyze the multiple methodological challenges that need to be addressed when 

performing multimodal learning.  

 

6.3 Challenges in multimodal learning 

Multimodal learning offers a richer understanding of data compared to unimodal learning by 

simultaneously harnessing information from multiple modalities. However, this increased richness and 

complexity also presents various challenges. These challenges, ranging from data heterogeneity to the 

intricacies of fusion and alignment, necessitate innovative methodologies to fully exploit the potential 

of multimodal data for various applications. In this section, we delve deeper into these challenges and 

explore the strategies employed to tackle them in the context of multimodal learning. 

 

6.3.1 Data heterogeneity 

Data heterogeneity arises from the fundamental differences between modalities. Textual data is typically 

represented as sequences of words or relative embeddings [94], which capture semantic relationships 

and contextual information. In contrast, images are composed of grids of pixels or deep features derived 

from convolutional neural networks [19], emphasizing spatial information and visual patterns. Audio 

data is characterized by waveforms or spectrograms [95], representing temporal aspects and acoustic 

properties. There are various levels of heterogeneity in the context of multimodal data. For instance, 

when dealing with two languages that convey the same semantic meaning, the heterogeneity is lower 

compared to combining highly distinct modalities like textual data and sensor data [96]. Understanding 

the level of heterogeneity between modalities is pivotal when developing multimodal models. It guides 

decisions regarding encoder architecture, fusion methods, and the overall model design. For instance, in 

cases of low heterogeneity, a shared encoder [97]–[101] may be viable, reducing model complexity. In 

contrast, severe heterogeneity necessitates careful consideration of modality-specific encoders and 

sophisticated fusion mechanisms [102], [103]. 

 

6.3.2 Data fusion 

The underlying integrative process, known as fusion, is a critical and multifaceted challenge in 

multimodal learning. It involves harmonizing information from different modalities to create a unified 

and coherent representation for decision-making or analysis. Fusion techniques determine how well a 

model can exploit the complementary information offered by different modalities. The goal is to 

leverage the strengths of each modality while mitigating their limitations. Effective fusion leads to 

improved performance, richer insights, and more accurate predictions in tasks such as video captioning 

and video question answering. 

Multimodal fusion can occur at different levels of the processing chain. Several fusion strategies have 

been devised to tackle this challenge: 
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 Early fusion: This approach involves merging raw data or feature representations from multiple 

modalities at the input level of the model [104]. Early fusion aims to capture cross-modal 

relationships from the outset, creating a single, unified input for subsequent processing. 

 Late fusion: Late fusion, conversely, maintains modality-specific processing until later stages 

of the model. Each modality is processed independently, and the results are combined at a higher 

level or during decision-making [105]. Late fusion provides flexibility in handling modality-

specific characteristics. 

 Hybrid fusion: Hybrid fusion combines elements of both early and late fusion to leverage the 

strengths of each approach. This strategy allows for multiple stages of fusion within a model, 

where early fusion might occur to capture certain cross-modal interactions, followed by late 

fusion to maintain the independence of modalities at later stages [106]. Hybrid fusion aims to 

strike a balance between preserving the unique information in each modality and exploiting 

cross-modal dependencies, making it suitable for complex tasks that involve a mix of correlated 

and distinct modalities.  

 Attention Mechanisms: Attention mechanisms enable the model to dynamically weigh the 

importance of information from different modalities based on context or relevance to the task 

[107], [108]. These mechanisms have proven valuable in capturing salient features from each 

modality, particularly in tasks with varying levels of modality importance. 

While fusion is central to multimodal learning, it is not without challenges. Selecting the appropriate 

fusion strategy depends on several factors, including the nature of the data, task requirements, and the 

degree of heterogeneity of the various modalities involved. Inadequate fusion strategies can hinder rather 

than enhance performance. 

 

6.3.3 Alignment 

In multimodal learning, alignment refers to the process of synchronizing or mapping data and 

information from different modalities in such a way that corresponding elements from each modality 

are related and matched appropriately [109]. The goal of alignment is to create a coherent and 

meaningful connection between the data sources, allowing for a better understanding, analysis, or joint 

processing of multimodal data. There are two fundamental approaches: explicit and implicit alignment. 

Explicit alignment refers to the precise synchronization or mapping of elements between different 

modalities. For instance, when aligning a video with its transcript, explicit alignment would involve 

matching specific video frames or segments with corresponding spoken words or subtitles, resulting in 

a clear and well-defined correspondence [110]. On the other hand, implicit alignment takes a more 

abstract or holistic approach, focusing on capturing underlying relationships and semantic connections 

between modalities without pinpointing exact correspondences [74]. Implicit alignment techniques often 

rely on advanced machine learning models, to learn complex patterns and associations between 

modalities, allowing for a more flexible and context-aware alignment that can adapt to variations and 

nuances in the data. Both explicit and implicit alignment have their unique strengths and applications, 

offering versatile tools for addressing alignment challenges in multimodal learning. 

 

6.3.4 Efficiency 

Multimodal learning  is in general more resource-intensive and computationally complex when 

compared to unimodal learning. Efficiency in multimodal learning encompasses various dimensions, 

each posing distinct challenges: 

 Model size and parameters: Multimodal models like CLIP [111] scale up significantly, 

surpassing 400 million parameters compared to unimodal models. 
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 Training data volume: Multimodal models require vast datasets, e.g., CLIP relies on 400GB of 

text and images, posing challenges in data collection and curation. 

 Computational infrastructure (hardware): Multimodal models demand specialized hardware like 

GPUs or TPUs for training due to increased computational load [111]. 

 Inference latency: Real-time applications with multimodal models can experience higher 

inference latency, impacting user experience with response times ranging from hundreds of 

milliseconds to seconds [111]. 

As the demand for multimodal models continues to surge, the efficiency challenge takes a central place. 

This challenge becomes particularly critical with the advent of large-scale multimodal training, which 

has been popularized through the introduction of the transformer architecture and its adaptation to 

multimodal settings. In the following section, we introduce the transformer architecture, which has 

become de facto the most popular model for multimodal learning. 

 

6.4 Transformer architecture for multimodal learning 

In the field of MultiModal Learning (MML), the past few years have witnessed a transformative shift in 

the architectural landscape of models used. While monolithic models like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) have been extensively employed, the arrival 

of transformer architectures [4] has sparked a major reorientation in research directions and techniques. 

These architectures have emerged as a beacon of promise due to their intrinsic advantages and immense 

scalability, offering a robust framework to model diverse modalities such as language, visual, auditory, 

and different tasks like language translation, image recognition, and speech recognition [100], [112]–

[114]. 

Monolithic models, characterized by a single, consistent architecture, were traditionally tailored to work 

best with a specific type of data or task [115]. They underlie on modality-specific architectural 

assumptions, such as translation invariance in vision tasks for CNNs or sequence dependency in 

language tasks for RNNs. While such models have brought significant advancements to their respective 

domains, their ability to accommodate and learn from different modalities simultaneously remains 

limited. 

On the other hand, transformer models stand out with their flexible and agnostic architecture [112]. 

Unlike their monolithic counterparts, transformers are designed to handle one or multiple sequences of 

tokens, irrespectively of the modality. This architecture, characterized by self-attention mechanisms, 

naturally lends itself to multimodal learning, without necessitating architectural modifications. Each 

sequence's attribute, such as the modality label or the sequential order, can be factored in, allowing 

transformers to comprehend per-modal specificity and inter-modal correlations effortlessly by merely 

controlling the input pattern of self-attention. Critically, this versatility and adaptability of transformer 

architectures have spurred a recent surge in research attempts across various disciplines. This has led to 

an explosive development of novel MML methods in recent years, paving the way for remarkable and 

diversified advancements in a multitude of areas.  

The Transformer architecture, initially designed for natural language processing tasks, has since evolved 

into a versatile framework for multimodal learning. To grasp its functioning, let us begin by revisiting 

the mathematical formulation of the vanilla transformer. 

6.4.1 Mathematical formulation of the Vanilla transformer 

The pioneering Vanilla Transformer [4] architecture  is fundamentally built on an encoder-decoder 

framework and utilizes tokenized input. It is composed of multiple layers or blocks of Transformers, as 

illustrated in Figure 6.1. These blocks incorporate two sub-components: a multi-head self-attention 

(MHSA) layer and a position-wise fully-connected feed-forward network (FFN). 
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6.4.1.1 Multi-Head Self Attention 

At the heart of the Transformer lies the self-attention mechanism, which enables the model to weigh the 

importance of different elements within a sequence. Let us denote the input sequence as 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑛 is the sequence length. The self-attention mechanism computes a new 

representation for each element 𝑥𝑖 based on the entire input sequence 𝑋. 

For each position 𝑖, the mechanism calculates an attention score 𝑎𝑖,𝑗 with respect to every other position 

𝑗 in the sequence. These scores are determined through a compatibility function, typically implemented 

as a dot product: 

 
𝑎𝑖,𝑗 = softmax (

𝑄(𝑥𝑖) ⋅ 𝐾(𝑥𝑗)

√𝑑𝑘
) 

(6.1) 

Here, 𝑄(𝑥𝑖) and 𝐾(𝑥𝑗) are linear projections of the input elements 𝑥𝑖 and 𝑥𝑗 using learned weight 

matrices. The scaling factor √𝑑𝑘 helps stabilize the gradients during training. The softmax function 

ensures that the attention scores across all positions sum to 1. 

With the attention scores established, the attention is computed as the weighted sum of values 𝑉(𝑥𝑗) at 

each position: 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋) =∑𝑎𝑖,𝑗

𝑛

𝑗=1

⋅ 𝑉(𝑥𝑗) 
(6.2) 

where the values 𝑉(𝑥𝑗) are linear projections of input elements 𝑥𝑗. 

This mechanism allows the model to give more weight to relevant positions in the input sequence while 

suppressing irrelevant ones. 

The Transformer architecture extends self-attention with multi-head attention, enabling the model to 

focus on different parts of the input sequence simultaneously. This is achieved by projecting the input 

into multiple subspaces, computing self-attention for each subspace, and then concatenating the results. 

Mathematically, for ℎ attention heads, the multi-head attention operation can be defined as: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ).𝑊𝑜 (6.3) 

Where ℎ𝑒𝑎𝑑𝑖 represents the output of the 𝑖-th attention head, and 𝑊𝑜 is a learned weight matrix. 

6.4.1.2 Position-wise Feed-Forward Networks 

In addition to self-attention, the Transformer architecture includes position-wise Feed-Forward 

Networks (FFN) at each position in the sequence. These networks consist of fully connected layers with 

ReLU activations: 

 𝐹𝐹𝑁(𝑋) = 𝑅𝑒𝐿𝑈(𝑋.𝑊1 + 𝑏1)𝑊2 + 𝑏2 (6.4) 

Here, 𝑊1, 𝑏1,𝑊2 and 𝑏2 are learned parameters.  
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Figure 6.1. Architecture of the vanilla transformer [4]. 
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6.4.2 Advantages of the transformer architecture  

Let us now discuss the factors that have propelled Transformers to surpass traditional monolithic models 

like CNNs and RNNs in performance and capability. 

Parallelization: Transformers can process sequences in parallel rather than sequentially, making them 

highly efficient for tasks that involve long sequences. This parallelization leads to faster training and 

inference times compared to RNNs, which process sequences one element at a time. 

Versatility: Monolithic models have fixed architectures optimized for specific modalities (e.g., images 

for CNNs, sequences for RNNs). Adapting them to handle multiple modalities requires significant 

architectural modifications. On the other hand, transformers are composed of layers and attention heads, 

providing a modular structure that can be adapted and extended for various tasks. This modularity 

simplifies architecture design and experimentation. 

Cross-modal interaction: Transformers employ attention mechanisms that inherently enable cross-

modal interaction. This is in contrast to CNNs, where incorporating cross-modal interaction often 

requires complex fusion layers and handcrafted architectures. Transformers' attention mechanisms allow 

them to naturally attend to and capture cross-modal dependencies, making it more straightforward to 

model interactions between different modalities. 

Long-range dependencies: Transformers excel in handling long-range dependencies compared to 

traditional monolithic models due to their fundamentally different architecture. The attention 

mechanism allows every element in a sequence to consider and weigh the importance of all other 

elements, regardless of their distance. As a result, transformers can efficiently capture both short-range 

and long-range dependencies in data, making them highly effective for tasks requiring extensive 

contextual understanding. This ability to maintain consistent gradients, parallelize computations, and 

incorporate positional encoding ensures that transformers can model complex relationships across 

extended sequences with ease, setting them apart as the preferred choice for tasks demanding the 

modeling of intricate long-range dependencies. 

Large-scale pre-training: While monolithic models have been adapted and extended for multimodal 

tasks, the transformative capabilities of unsupervised large-scale pre-training, as seen in transformers, 

were not initially present. Transformers can be scaled to handle massive amounts of data and large 

models with billions of parameters. When fine-tuned on specific downstream tasks, the pre-trained 

transformers consistently deliver state-of-the-art performance. This phenomenon has catalyzed the 

democratization of unsupervised large-scale pre-training, effectively liberating practitioners from the 

labor-intensive process of data labeling. By offering a powerful foundation of pre-learned features, these 

models reduce the manual burden, accelerate experimentation, and enable a more inclusive approach to 

advanced machine learning.  

 

6.4.3 Challenges in transformers 

The key challenges that have emerged with the widespread adoption of transformer models are the 

following.  

Fixed sequence length: Unlike RNNs, which can naturally handle variable-length sequences, 

transformers require input sequences of fixed length, limiting their applicability in tasks with varying 

context lengths. To overcome this limitation, researchers have proposed techniques such as segmenting 

long sequences into smaller chunks, employing hierarchical models, or padding shorter sequences with 

a special "[PAD]" token to match the length of the longest sequence in a batch [116]. These approaches 

aim to make transformers more flexible in handling data with diverse and dynamic context lengths, 

widening their scope of applicability beyond their original fixed-length constrain 
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Performance in data-constrained environment: Transformers, renowned for their exceptional 

performance in data-rich environments, can face challenges in data-constrained settings. Their reliance 

on large-scale pre-training and massive corpora can be a limitation when labeled data is scarce. In such 

scenarios, monolithic models that incorporate strong inductive biases may outperform 

transformers [117]. Monolithic models often have built-in structural assumptions tailored to specific 

modalities or tasks. These biases can help them excel with limited data, as they inherently encode prior 

knowledge about the data domain. In contrast, transformers rely more on learned representations and 

may struggle when the training data is sparse.  

Interpretability: Interpretability has been a recurring challenge in transformer models due to their 

complex architecture, particularly the self-attention mechanisms [118]. Understanding why a 

transformer makes a specific prediction or which parts of the input data it focuses on can be elusive. 

Addressing the interpretability problem involves various strategies. One approach is attention 

visualization [4], [108], where researchers visualize the attention weights of the model to gain insights 

into its decision-making process. Attention maps can help identify which tokens in the input sequence 

are most influential in making predictions. Additionally, techniques like attention probing and feature 

attribution methods aim to dissect the internal workings of transformers [119]–[121]. These methods 

can shed light on what information the model finds important for specific tasks. Ongoing research focus 

on making transformers more interpretable, which is crucial for their broader adoption in critical 

applications where model transparency is essential. 

Efficiency: The efficiency challenge in transformers encompasses several critical aspects that have 

garnered substantial attention from researchers. Transformers exhibit a quadratic increase in 

computational complexity with the length of input sequences, posing challenges in processing long 

sequences efficiently. Their resource requirements, including memory and high-capacity hardware like 

GPUs and TPUs, can strain computational infrastructure. This, in turn, contributes to higher 

computational complexity, slowing down both training and inference. In the context of multimodal 

learning, these efficiency concerns become even more crucial, given the inherent complexity of 

combining and processing diverse data modalities. State-of-the-art solutions have emerged to address 

such challenges, including knowledge distillation [122] to transfer knowledge from large models to 

smaller ones, model compression and pruning techniques [123], and sparse factorization of the attention 

matrix [124] to reduce computational demands. These innovations are pivotal in making transformer-

based models more practical and accessible in resource-constrained environments, facilitating their 

broader application across a wide range of domains.  

The transformative influence of transformer models on deep-learning methodologies cannot be 

overstated. Their resounding success is primarily attributed to their unique architecture that excels at 

capturing long-range dependencies and complex patterns in data through attention mechanism. This 

permits sophisticated understanding of contextual relationships in diverse data sets, thereby significantly 

boosting model performance [117]. In this context, the research community has invested considerable 

effort to enhance the scale and diversity of datasets to allow for better generalization of models. In the 

next section, we review the current landscape of multimodal datasets. 

6.5 Landscape of multimodal datasets. 

In the past decade, the boom in internet applications, particularly social media and online retail, has led 

to an explosion in the generation of vast multimodal datasets. Examples of these datasets are numerous 

and span a variety of contexts, from Conceptual Captions [125] and COCO [126] to VQA [127] and 

Visual Genome [128], among many others. 

Recently, we have observed the emergence of several new trends in these datasets that reflect the 

evolving landscape of multimodal machine learning: 
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Larger data scales: In response to the demands of increasingly complex machine learning models, we 

are witnessing the creation of datasets on an unprecedented scale. These include datasets such as 

Product1M [128] and Conceptual 12M [125] that comprise millions of data points. These large-scale 

datasets offer a wealth of information for training more robust and nuanced machine learning models 

such as transformers. 

More modalities: Beyond the traditional vision, text, and audio modalities, new diverse ones are being 

incorporated to reflect a broader spectrum of human experience and perception. For instance, Pano-

AVQA [129] and YT-360 [130] incorporate 360° videos, while AIST++ [131] combines 3D dance 

motion with music. These diverse modalities push the boundaries of current machine learning 

capabilities and offer exciting opportunities for future research and applications. 

More scenarios: Datasets are being tailored to explore a wider array of application contexts, moving 

beyond generic scenarios to more specific and niche applications. Examples of this include the use of 

real-life images in CIRR [132], financial data in M3A [133], and autonomous driving data in X-World 

[134]. Such highly specialized datasets facilitate the development of models with more targeted and 

nuanced capabilities. 

More complex tasks: To challenge and push the capabilities of current machine learning models, 

datasets are featuring more abstract and complex multimodal tasks. These include metaphor 

understanding in the MultiMET dataset [135] and hate speech detection in the Hateful Memes dataset 

[136]. These tasks compel models to delve into more complex forms of understanding and inference 

that are closer to human cognition. 

Instructional videos: There is an increasing popularity of instructional videos, such as YouCookII [110] 

and HowTo100M [137] where machine learning models are tasked with aligning a sequence of 

instructions with someone performing a task in a video [138]. This serves as a powerful pre-training 

task [100], as it forces models to understand temporal dynamics and causality in real-world actions, 

mirroring how humans learn from instructions and demonstrations. 

As with other deep learning architectures, Transformers are data-hungry. Their effectiveness in 

multimodal machine learning is due in part to the symbiosis between their high-capacity models and the 

availability of extensive multimodal data. This relationship has even enabled zero-shot learning 

capabilities in certain VLP (Video-Language Pre-training) Transformer models, demonstrating the 

potential of such models when trained with rich and diverse multimodal data. 

 

6.6 Conclusion 

This chapter provided a comprehensive examination of multimodal learning with a particular focus on 

deep-learning-based approaches. Central to the discussion was a detailed exploration of the primary 

challenges in multimodal learning, including data heterogeneity, fusion, alignment and efficiency. Our 

review highlighted the revolutionary role the transformer architecture has played in multimodal learning, 

firmly establishing itself as a fundamental network over the past five years. We presented the 

mathematical formulation of the vanilla transformer, providing an in-depth understanding of its 

theoretical framework. The latter part of the chapter extended the discussion towards the key advantages 

and difficulties when applying the transformer architecture to multimodal learning. Concluding this 

chapter, we presented the benchmark datasets in multimodal learning and the evolving features they 

encapsulate.  

In the next chapters, we will delve into two main tasks in multimodal learning: Video Question 

Answering and Video Captioning. We chose the video channel as it represents a rich source of 

information, fusing visual and auditory cues over time. This multimodal nature makes it an excellent 
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testing ground for advanced MML techniques. Throughout the chapters, our primary focus will be on 

visual-textual training, elucidating its pivotal role in bridging the boundaries between computer vision 

and natural language processing methodologies. We will also discuss the application of the transformer 

model as a universal architecture for the stated tasks.  
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7 VIDEO QUESTION ANSWERING 
 

  

Abstract: Video question answering (VideoQA) is the process that aims at providing a semantically 

pertinent answer to questions expressed in natural language, related to the content of a given video. 

VideoQA is a highly challenging task and requires a comprehensive understanding of the video 

document, including the recognition of the various objects, actions and activities involved together 

with the spatio-temporal relations between them. In this chapter, we introduce a novel VideoQA 

method, based on a conditional cross-correlation network that is able to learn a multimodal 

contextualization with reduced computational and memory requirements. At the core of our 

approach, we consider a cross-correlation module designed to learn reciprocally constrained visual 

and textual features combined with a lightweight transformer that fuses the intermodal 

contextualization between the two modalities. In addition, a video transformer with temporal 

attention is introduced to learn contextual features from the video. We also automatically extract the 

transcript of the video, which is considered as an additional modality, and investigate its impact on 

the model’s performance. The vulnerability of the composing elements of our framework is tested 

using black box attacks that represent automatically–generated, semantic-preserving rephrased 

questions. The experimental evaluation, carried out on the MSVD-QA and MSRVTT-QA 

benchmark datasets, validates the proposed methodology with average accuracy scores of 44.96% 

and 41.88% respectively. When compared with state-of-the-art methods the proposed method yields 

gains in accuracy of more than 2%. 

 

Keywords: Video Question Answering, multimodal learning, cross correlation. 
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7.1 Introduction 

Video Question Answering (VideoQA) involves predicting an accurate answer 𝑎∗ based on a question 

𝑞 and a corresponding video 𝑉 (Figure 7.1). There are primarily two categories of tasks within VideoQA: 

multi-choice QA and open-ended QA. In the case of Multi-Choice QA (MC), models are given several 

potential answers Α𝑚𝑐 per question, with the objective of identifying the correct one 𝑎∗ = 𝐹(𝑎|𝑞, 𝑉, 

Α𝑚𝑐). Open-Ended QA (OE), on the other hand, can take the form of classification (most common), 

generation (word-by-word), or regression (typically used for counting), each depending on the specific 

datasets. More frequently, open-ended QA is defined as a multi-class classification problem, requiring 

the models to assign a video-question pair to a predefined answer vocabulary set 𝐴𝑜𝑒 as follows:  𝑎∗ =

𝐹(𝑎|𝑞, 𝑉) where 𝑎 ∈ 𝐴𝑜𝑒. This task can also be formulated as a generation problem, which is gaining 

increasing attention due to its practical utility. Generally, the answer is represented as a vector 𝑎 =

(𝑎1, 𝑎2, … . , 𝑎𝑡 , … . 𝑎𝑀) of length 𝑀. The prediction of the tth word 𝑎𝑡
∗ is formulated as 𝑎𝑡

∗ =

𝐹(𝑎𝑡|𝑞, 𝑉, (𝑎1, . . , 𝑎𝑡−1 )).  

 

Figure 7.1. Video Question Answering task.  

The remainder of the chapter is organized as follows. 

In Section 7.2, we delve into the industrial application of video question answering, particularly 

reviewing its usage for the indexing and retrieval processes in the archives of France TV. 

Section 7.3 presents a detailed review of the current state of the art in the VideoQA task, including a 

discussion on benchmark datasets, related evaluation metrics, and various families of methodologies 

involved. We categorize these methodologies into monolithic models with attention, memory-based 

models, graph-based models, and transformer-based models, shedding light on the advantages and 

disadvantages of each approach.  

The analysis of the literature, with limitation of existing methods conducted us to propose our own 

approach, introduced in Section 7.4. We first detail the extraction of features from both visual and textual 

modalities. We then explore the correlation between these features using a cross-modal module designed 

to address the alignment issue, prevalent in multimodal learning. Lastly, we implement a transformer 

encoder to learn grounded visual-textual features through attention mechanisms, and predict the answer 

using a classification head over the answer vocabulary. 

In Section 7.5, we evaluate the robustness of our model against adversarial attacks, an important measure 

to assess the model's generalization to unseen data. This starts with an overview of the problem and 

current methodologies, followed by the explanation of our methodology for implementing rephrasing 

attacks on the model. 
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Section 7.6 provides an in-depth experimental evaluation on the considered datasets: MSRVTT-QA and 

MSVD-QA. We conduct extensive ablation studies to evaluate the significance of each building block 

of our framework, and subsequently compare our approach to previous state-of-the-art methods. 

Finally, in Section 7.7 we propose potential research areas that warrant further exploration in the future. 

 

7.2 Application of Video Question Answering for archive indexing and retrieval 

The application of video question answering techniques holds significant potential for enhancing archive 

indexing and retrieval processes. One of the challenges that documentalists face during the indexing 

process, is related to the subjective nature of determining the importance of events within a video. The 

relevance of certain information can vary from one individual to another based on their understanding 

and perspective. For instance, a documentalist with a keen interest in politics may highlight a subtle 

policy implication in a news broadcast that others might overlook. This subjectivity is further 

complicated by the temporal dimension. Events or details deemed inconsequential today may gain 

importance in the future due to evolving social, political, or cultural contexts. For instance, a casual 

comment about climate change in a decade-old newscast may assume greater significance today under 

the light of recent climate crises. 

One potential solution to this challenge is exhaustive indexing, capturing every bit of information within 

a TV program. However, this approach tends to generate an overwhelming amount of data, often 

including irrelevant information, making the retrieval process cumbersome and inefficient.  

An alternate and more promising solution is the application of video question answering techniques. In 

this setting, videos are encoded into compact feature vectors that encapsulate a comprehensive 

understanding of the video content. These vectors are derived from multimodal information—audio, 

visual, and possibly textual cues—allowing a depth of understanding beyond mere surface-level 

description. For instance, in a news broadcast about a political rally, a video question answering system 

could capture not just the who, what, and where, but also the sentiment, the context, and the implications. 

During the retrieval process, real-time queries can be rapidly searched within the dataset. For example, 

a user could ask, "Which broadcasts feature discussions on the impact of the recent tax reform?" or 

"Show me segments where the president addresses climate change." The system, having a rich 

understanding of the content, can then deliver precise, relevant results, making it an efficient tool for 

navigating vast video archives. Thus, video question answering techniques promise to revolutionize 

archive indexing and retrieval by overcoming subjectivity and temporal shifts in importance, thereby 

greatly enhancing the accessibility and usability of archival footage. 

 

7.3 Related work 

Let us first review the various datasets and evaluation metrics largely employed today for training 

VideoQA models.  

7.3.1 VideoQA datasets and evaluations metrics 

7.3.1.1 VideoQA datasets  

VideoQA datasets can be examined through various views, offering an array of perspectives from which 

these datasets may be assessed and categorized. One significant way to classify these datasets is based 

on the modalities used (visual-based, multimodal or knowledge-based). Another key dimension for 

classification concerns the complexity of the questions asked in the dataset (factoid or inference). 

Additional classifications can be made based on factors such as the length of the video (long-form or 

short videos) or type of the video (natural videos, GIFs, synthetic videos), and so forth. 
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In this section, we address two key taxonomies: Modality-based classification and Question-based 

classification. These areas of focus have been selected due to their fundamental role in shaping the 

structure, functionality, and evaluation of VideoQA datasets. In Table 7.1, we summarize the key 

statistics of video question answering datasets.  

 

7.3.1.1.1 Modality-based classification 

Video Question Answering (VideoQA) can be classified into distinct categories based on the data 

modality. These categories include visual-based VideoQA, multi-modal VideoQA (MM VideoQA), and 

knowledge-based VideoQA (KB VideoQA).  It is important to note that the VideoQA task is inherently 

multimodal, as the model is tasked with processing both video and question inputs. Through the 

application of multimodal and visual-based classification, our objective is to differentiate between the 

modalities engaged in video analysis - whether exclusively visual cues are used, or if additional 

modalities are incorporated. Figure 7.2 presents some examples from various datasets. 

Visual-based (VB) datasets [1], [139], [140] are characterized by the sole reliance on visual cues to 

comprehend the question and deduce the accurate answer. This category underscores the visual 

comprehension of video components and the reasoning of their interrelationships. In general, the videos 

employed in this category tend to be short and user-generated, notably from social platforms. 

Multi-Modal VideoQA [141]–[143] frequently integrates resources beyond visual content, such as 

subtitles or transcripts and textual plots of movies [142] and television shows [143]. The principal 

challenges posed by MM VideoQA revolve around the fusion of multi-modal information and the 

comprehension of extensive video narratives. 

Finally, knowledge-based (KB) VideoQA[NO_PRINTED_FORM] necessitates the distillation of 

external knowledge from explicit knowledge bases or the application of commonsense reasoning [144]. 

KB VideoQA requires a global knowledge base for the entire dataset, as opposed to supplying paired 

"knowledge" for each individual question.  

 

7.3.1.1.2 Question-based classification 

VideoQA datasets can be categorized into two distinct types based on the nature of the question or the 

challenges posed within the questions: factoid VideoQA and inference VideoQA. Factoid VideoQA 

(FQA) [1], [139], [141] involves questions that directly seek visual facts, such as queries about location 

("where is"), objects or attributes ("who/what (color) is"). These questions require minimal relational 

understanding to interpret the questions and generate the correct answers. Emphasis in Factoid QA is 

placed on a comprehensive understanding of the questions and the identification of the visual elements 

involved. 

On the other hand, Inference VideoQA (IQA) [145]–[147] is designed to examine the capacity for 

logical reasoning and knowledge application within dynamic scenarios. It features a variety of 

relationships between the visual facts such as temporal ("before/after") and causal ("why/how/what if") 

relationships.  
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(c) (d) 

  

(e)  (f) 

Figure 7.2. Examples from different datasets. (a) MSRVTT-QA; (b) ActivityNet-QA; (c) KnowIT; (d) 

SocialIQ; (e) CLEVER; (f) MSVD-QA. 

  

How many people are riding camels? 

Two 

Howard (jumping off game mat): Grab a napkin, homey, you 

just got served.  

Leonard: It's fine. You win. Howard: What's his problem? 

Sheldon: His imaginary girlfriend broke up with him. 
 

What girlfriend is Sheldon talking about? 

Oracle: Penny was angry at Leonard in this episode. 

a) Priya    b) Amy    c) Bernadette       d) Penny  

Why is the woman in the red dress cheering? 

a) She cheers because she answers a question correctly. 

b) She is very glad. 

c) She is upset that she lost. 

d) She is upset that she won.   

Well, this is the mother of all earthquake faults. It can pack 

wallop 30 times that of the San Andreas fault. So forget all the 

Hollywood hype about the San Andreas fault. We're talking 

about an earthquake a night. 

What is a man talking on tv about? 

Earthquake 

You said, green. Survey said. 

 

What is the shape of the object to collide with the purple 

object? 

Sphere 

What is eating a whole peanut? 

Squirrel  
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Table 7.1. Statistics of VideoQA datasets. 

Dataset VB MM  KB FQA IQA QA form Video 

length 

(s) 

#Clips #QA pairs 

MovieQA 

[142] 

     MC 200 6,771 14,944 

MSVD-QA 

[1] 

     OE 10 1,970 50,505 

MSRVTT-QA 

[1] 

     OE 15 1,970 50,505 

TGIF-QA 

[140] 

     MC 3 56,720 103,919 

MovieFIB 

[148] 

     OE - 128,085 348,998 

TVQA [143]      MC 76 21,793 152,545 

ActivityNet-

QA [139] 

     OE 180 5,800 58,000 

Social-IQ 

[147] 

     MC - 1,250 7,500 

CLEVER 

[149] 

     MC/OE 5 20,000 305,280 

KnowIT VQA 

[150] 

     MC 20 12,264 24,282 

HowToVQA 

[141] 

     OE 12.1 69,270,581 69,270,581 

iVQA [141]      MC 18.6 10,000 10,000 

 

7.3.1.2 Evaluation metrics 

Evaluating the semantic and syntactic correctness of computer-generated sentences is a notoriously 

challenging task because of their inherent ambiguity. There are several methods for evaluating text-

generated systems such as BLEU [151], ROUGE [152], and METEOR [153], all of which measure the 

word overlap between ground truth and prediction. However, these values do not correlate well with 

human judgement and exhibit well-known blind spots [154]. To overcome this problem, most VideoQA 

datasets limit the number of their response domains to single words or short sentences.   

Yu et al. [139] proposes two evaluation metrics to measure the performance of the models on their 

dataset.  

Accuracy: Commonly used for evaluating classification tasks, accuracy is simply the ratio of the correct 

predictions to the total number of input samples. It is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
 ∑𝟙[𝑎𝑖 = 𝑦𝑖] 

𝑁

𝑖=1

 

(7.1) 

where  𝑎𝑖 and 𝑦𝑖 are the predicted and ground truth answers respectively and 𝟙[.]  is an indicator function 

that is equal to one only if 𝑎𝑖  𝑎𝑛𝑑 𝑦𝑖 are identical. 

Yang et al. [141] collects for each question at least 2 ground truth answers from different human 

annotators and compare the predicted answer with the human-generated ones. They define the accuracy 

as: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑎𝑖) = 𝑚𝑖𝑛 (

#𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑎𝑛𝑠𝑤𝑒𝑟𝑠 = 𝑎

2
, 1) 

(7.2) 

The score assigns 1 if the predicted answer is confirmed by at least 2 annotators, 0.5 if it is confirmed 

by only one annotator and 0 otherwise. This accuracy is a reasonable metric for multi-choice datasets, 

but fails for open ended questions. For example, if the ground truth is “light green” the accuracy assigns 

0 to the answer “green”.  

WUPS: The Wu-Palmer similarity (WUPS) [155] accounts for word-level ambiguity and measures the 

similarity between the ground truth and the candidate answer by finding the longest common 

subsequence in the taxonomy tree. It is based on the WUP measure and considers WordNet [156] to 

calculate the distance in the semantic tree of words w and v contained in the predicted answer and ground 

truth, respectively. 

 

𝑊𝑈𝑃𝑆 = 
1

𝑁
 ∑{ ∏ 𝑚𝑎𝑥𝑣 𝜖 𝑦𝑖𝜇𝛾(𝑤, 𝑣)

𝑤 𝜀 𝑎𝑖

, ∏ 𝑚𝑎𝑥𝑤 𝜖 𝑎𝑖𝜇𝛾(𝑤, 𝑣)

𝑣 𝜀 𝑦𝑖

 }

𝑁

𝑖=1

 

(7.3) 

 𝜇𝛾(𝑤, 𝑣) =  {𝑊𝑈𝑃(𝑤, 𝑣) 𝑖𝑓 𝑊𝑈𝑃(𝑤, 𝑣) ≥ 𝛾 0.1 ×  𝑊𝑈𝑃(𝑤, 𝑣) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (7.4) 

 

The predicted answer is considered as correct only if the similarity between two words exceeds a pre-

defined threshold. Similarly to [157], the metric is evaluated against two thresholds 𝛾 = 0.0 and 𝛾 =

0.9 and (called WUPS@0.0 and WUPS@0.9 respectively).  

 

7.3.1.3 Discussion 

The choices made by the dataset creators affect the complexity of the model to develop in many ways 

and may lead to some limitations. 

As a main drawback let us first mention the limited size of the available datasets (Table 7.1). Without 

sufficient samples, the model under-fits during training, and test results unreliably reflect real-world 

performance. The problem is related to the techniques used to generate the question-answer pairs. On 

the one hand, human annotation is expensive, tedious, and difficult to scale. However, it provides more 

variety and level of abstraction. On the other hand, automatic techniques can generate larger datasets, 

but have significant limitations. Namely, the transcript data contains little information about the video, 

which leads to linguistic bias in training. In addition, the QA pairs collected are often redundant and 

lack variety, making the model subject to overfit. This technique might also generate incorrect 

predictions.  Automatic conversion of descriptions into free-form question-answer pairs is still an open 

research topic. The lack of large datasets with trustworthy labels weakens the adoption and successful 

use of VideoQA systems in real applications. 

Second, most benchmark datasets focus on short video content to facilitate semantic representation 

modeling (Table 7.1). However, the length of the video strongly correlates with the complexity of the 

answer prediction. The long-form videos often represent complex temporal interactions and causality 

through frames. Although models trained on short videos show promising performance, they may be 

ineffectively applied to long videos (e.g, TV shows and movies) due to the lack of representation of 

long-term semantic dependencies, making it difficult to distinguish the performance of different 

VideoQA approaches. 

Third, most datasets address factoid questions such as "what," "who," and "where." These questions are 

attractive because they can be answered with a single word or short phrase, which facilitates system 

evaluation. However, they require a low level of computer vision. Recently, there has been a new interest 

in promoting causal and counterfactual questions ("how," "why," "what if '') [144], [147], [149]. Such 
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questions are asked by users to identify reasons and explanations about certain events or objects and 

require challenging VQA systems. The same question can have different interpretations (multiple 

answers) and require answers ranging from one sentence to a whole paragraph. To facilitate the 

development of such models, current datasets provide answers in a multi-choice environment. It is 

important to note that there is an ongoing discussion about the validity of this setting. For example, it is 

difficult to confirm the performance of a model given that it may be correct by chance. In addition, we 

cannot use such a model in real life, where there is no possibility of multi-choice responses. Moreover, 

there is a strong correlation between the question formulation and the correct answer obtained. That is, 

if we randomly generate the distractors, it would be easy to "guess" the correct answer based on the 

semantic similarity between the question and the answer.  

Finally, existing datasets limit the number of words in the answers, by design, to facilitate evaluation of 

the model using simple metrics such as accuracy and WUPS. These metrics are useful for generating 

short sentences, but have serious drawbacks when it comes to comparing real-life responses. As research 

progresses, we expect to generate longer and more comprehensive sentences. For example, in Social-IQ 

[147] the average length of the answers is 10.46 words which is close to the average length of the 

captions in MS-COCO [158] (10.5 words). This is because the advanced questions lead to higher level 

concepts, such as object relationships, actions, etc., as opposed to factoid questions which only require 

a named entity (2 words). This should stimulate research to develop human-like scoring systems that 

can accurately assess the performance of VideoQA models. 

In our work, we have retained two well-known benchmarks, namely MSVD-QA and MSRVTT-QA [1]. 

The MSVD-QA dataset consists of visual-based data with open-ended factoid questions, while the 

MSRVTT-QA dataset is a multimodal dataset containing videos and subtitles. We specifically opted for 

these datasets because research in these areas is still evolving and has not yet reached a mature stage. 

Notably, state-of-the-art methods achieve accuracy levels ranging from 40% to 45% on these 

benchmarks, leaving ample room for improvement. We aimed to explore these areas further using our 

approach. Additionally, it is worth mentioning that most knowledge-based and inference-based datasets 

are presented in a multiple-choice format, which does not effectively evaluate the model's performance 

and lacks real-life applicability. 

 

7.3.2 State of the art VQA techniques 

Video question answering systems are models that infer the correct answer to a natural language 

question from the content of a video. The de facto paradigm to solve this problem is to extract visual 

features using pre-trained vision models, and textual features using pre-trained language models, and 

then merge these representations into a common embedding space using a multimodal fusion module 

(Figure 7.3). The encoders for video and text can either belong to the monolithic models group (CNNs 

and RNNs) or the transformer family, such as BERT [116], ViVit [159], or ViT [112].  

Within this context, we have identified three primary families of methodologies: Monolithic models 

(section 7.3.2.1), Memory-based approaches (section 7.3.2.2), Graph-based models (section 7.3.2.3), 

and Transformer-based approaches (section 7.3.2.4).  
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Figure 7.3. Basic VideoQA Framework. 

 

7.3.2.1 Monolithic models with attention 

In [160], Zeng et al. attempted to fuse global video and question representations for answer prediction 

using element-wise multiplication directly. The study highlighted the effectiveness of a straightforward 

temporal attention mechanism. This concept of attention was further investigated in more intricate 

scenarios, and was integrated with a variety of concepts, such as the multi-granularity ensemble [1] and 

hierarchical learning [161]. 

Specifically, Jang et al. [140] proposed a method based on dual-LSTM, employing both spatial and 

temporal attention mechanisms. Their approach showed the effectiveness of frame-guided attention and 

region-guided attention (using regions of interest ROI). Xu et al. [1] enhanced the attention mechanism 

over frame-level and clip-level visual features, guided by both the coarse-grained question feature and 

fine-grained word feature. Zhao et al. [162] introduced hierarchical dual-level attention networks 

(DLAN) designed to represent question-aware video representations, utilizing both word-level and 

question-level attention applied to appearance and motion. 

However, it is important to note that despite the capability of these approaches to attend to video frames 

and clips, they depend on RNNs for history information modeling. This approach has subsequently been 

found to be relatively inefficient in capturing long-term dependencies [163]. 

 

7.3.2.2 Memory-based models 

Memory-based networks have the capacity to store sequential inputs in designated memory slots and 

make explicit use of even distantly-preceded information. This approach has particularly been used in 

the context of long video story comprehension, such as in movies and television series.  
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Tapaswi et al. [142] were the first to adapt and modify a memory network [164] for application in 

VideoQA. They use the memory to store both video and text features. To facilitate memory read and 

write operations with enhanced capacity and versatility, Na et al. [165] conceptualized a memory 

network with multiple convolution layers. 

Considering the dual-modal information within movie stories, Kim et al. [166] incorporated a 

progressive attention mechanism. The irrelevant video and subtitle segments are first pruned-out using 

question-guided attention and further filtered using answer-guided attention. The process is repeated 

multiples times to achieve fine-grained extraction of high-level semantics. 

Gao et al. [167] proposed a dual-stream framework, so-called Co-Mem, to manage motion and 

appearance information with a co-memory attention module. The proposed multi-level contextual 

information allows for the generation of dynamic fact ensembles for a range of questions. Inspired by 

their work, Fan et al.[168] introduced a heterogeneous external memory module (HME) with attentional 

read and write operations. This was designed to integrate motion and appearance features and learn the 

spatio-temporal attention simultaneously. 

 

7.3.2.3 Graph-based models 

Recently, graph-structured techniques [169] have become increasingly popular for enhancing the 

reasoning capabilities of VideoQA models. Approaches like HGA [170], B2A [171], and DualVGR 

[172] construct graphs using coarse-grained video segments while incorporating intra- and inter-modal 

relationship learning, resulting in solid performance. 

To capture object-level details, Huang et al. [173] constructed a graph (LGCN) based on objects 

depicted by their appearance and location attributes, using a Graph Neural Network (GNN) to model 

the interaction between question-related objects. 

Acknowledging the hierarchical nature of video elements in the semantic space, works such as [174]–

[176] have integrated hierarchical learning into graph networks. Specifically, Liu et al. [177] introduced 

a graph memory mechanism for relational vision-semantic reasoning from the object level to the frame 

level. Peng et al. [176] progressively linked different-level graphs (object-level, frame-level, clip-level) 

to understand visual relations (PGAT). Xiao et al. [175] developed a hierarchical conditional graph 

model (HQGA) to merge visual facts from lower to higher-level video elements via graph aggregation 

and pooling, enabling multi-granular vision-text matching.  

 

7.3.2.4 Transformer-based models 

The transformer-based methods can be divided into two categories: task-agnostic and task-specific. 

Task-agnostic approaches use unsupervised pre-training on large datasets with universal loss functions 

then finetuning for tasks like video question answering or video captioning. Details of these strategies 

are discussed in 7.3.2.4.1. Task-specific techniques directly train models for video question answering. 

They are reviewed in Section 7.3.2.4.2 

7.3.2.4.1 Task-agnostic  

Task-agnostic pre-training involves two stages (Figure 7.4). In the first stage, the model is pre-trained 

on unlabeled large-scale datasets usually involving videos with their associated subtitles. These datasets 

are easy to acquire automatically from the internet.  The main objective of this stage is to learn grounded 

representations and correlations between visual and textual cues, which form a general-purpose 

knowledge foundation that can be effectively applied in various downstream tasks. In the second stage, 

the model is fine-tuned on the downstream task which can be VideoQA, video captioning or multimodal 

action recognition. More details about vision-language pre-training can be found in [178].  
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Figure 7.4. Task-agnostic training paradigm. 

In [179], the authors propose HERO, a model that leverages a hierarchical transformer architecture to 

encode multimodal inputs in contrast to the conventional flat BERT-like encoders. The proposed 

structure consists of a cross-modal Transformer that integrates subtitle sentences with corresponding 

local video frames and a temporal Transformer that sequentially contextualizes each video frame 

embedding using the surrounding frames as a global context. The authors introduce four pre-training 

tasks for HERO: Masked Language Modeling (MLM), Masked Frame Modeling (MFM), Video-

Subtitle Matching (VSM), and Frame Order Modeling (FOM). The novelty in this framework primarily 

lies in VSM and FOM tasks that foster explicit temporal alignment between multimodalities and exploit 

the sequential nature of video inputs fully. HERO is jointly trained on HowTo100M [137] (narrated 

instructional videos) and a large-scale TV dataset (comprising varied TV episodes). This combination 

makes the training dataset more representative of real-life scenarios. 

In [180], the authors present CLIPBERT, an efficient framework for end-to-end video-and-language 

learning, distinguished by two key characteristics. Firstly, in contrast to the dense extraction of video 

features by most existing methods, CLIPBERT sparsely samples a single or few short clips from full-

length videos during each training step. This methodology is based on the hypothesis that these sparse 

clips encapsulate critical visual and semantic information, as consecutive clips typically exhibit similar 

semantics from a continuous scene. This approach significantly diminishes memory and computational 

demands, enabling economic learning from raw video frame pixels and language tokens. The second 

key feature of CLIPBERT lies in its weight initialization, notably the transfer through pre-training. It 

adopts 2D architectures like ResNet-50 for video encoding, leveraging the power of image-text pre-

training for video-text understanding, along with benefits of low memory cost and runtime efficiency. 

Through an empirical study, the authors suggest that image-text pre-training indeed contributes 

positively to video-text tasks, enabling comparable or improved performance on text-to-video retrieval 

and video question answering tasks. For pre-training the authors use COCO Captions [158] and Visual 

Genome Captions [181]. Combined, these databases provide a substantial corpus of 5.6 million training 

instances comprising image-text pairs, derived from a set of 151,000 distinct images. 

In [182], authors design a novel dataset for vision-language pre-training called YT-temporal 180M. 

Unlike previous datasets like HowTo100M, which were limited to instructional videos, YT-temporal 

180M encompasses a wide variety of subjects and domains. For pre-training, the authors refine the 

Masked Language Modeling loss [110] by adding an attention mechanism to filter out unprimed words. 

They also introduce a novel contrastive frame-transcript matching loss by aligning the video captions 

with their associative frames. The third and last pre-training loss is temporal reordering of image frames 

within a video, which allowed the model to learn temporal reasoning. Randomly chosen video frames 
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are scrambled, and the model is required to reorder these frames based on their correct temporal 

sequence. The MERLOT-RESERVE approach [183] builds on this framework and adds the audio 

modality to enhance the performance.  

The VIOLET (VIdeO-LanguagE Transformer) model [184] is proposed  to improve video modeling for 

enhanced Video-Language learning. The key-modifications concern the model architecture and pre-

training task design. Regarding the model architecture, VIOLET incorporates a Video Swin-

Transformer [185], an improvement over the simplistic mean pooling or concatenation methods used on 

sequences of individual frame features. This transformer explicitly models the video temporality, 

enabling flexible video-language learning from both videos and static images due to its capacity to 

handle variable sequence lengths via spatial-temporal self-attention. Concerning the pre-training phase, 

authors introduce a new, dedicated task, so-called Masked Visual-token Modeling (MVM). The method 

tokenizes video frames into discrete visual tokens using a pre-trained discrete Variational Auto-Encoder 

from DALLE [186]. During pre-training, some portions of the video input are masked along both spatial 

and temporal dimensions, and the model learns to recover these masked patches' discrete visual tokens. 

The MVM provides an improved approach over Masked Frame/Region Modeling by predicting over a 

discrete space, avoiding issues of excessive feature dimensions. It also relies on latent visual tokens 

acquired from a self-reconstruction training procedure, rather than relying on a well-supervised visual 

backbone. Concerning the datasets, VIOLET is pre-trained using YT-Temporal-180M [182], WebVid-

2.5M [187] and ConceptualCAptions3M [125]. 

 

7.3.2.4.2 Task-specific models  

PSAC (Positional Self-Attention with Co-Attention) [174] is the first framework to apply transformer 

architecture for VideoQA task. PSAC is comprised of two positional self-attention blocks which 

substitute the traditional RNN networks for modeling data dependencies. Additionally, a video-question 

co-attention block (video-to-question and question-to-video attention) is employed. This mechanism 

enables the model to attend to both critical visual and textual features simultaneously. By doing so, it 

effectively removes irrelevant video and textual information, ensuring the generation of more accurate 

answers in the video question-answering tasks. Similarly, [188] apply directly the BERT architecture 

on multiple-choice VideoQA task by tokenizing the video frames using Faster R-CNN [189].  

Engin et al. [190] introduce a novel model for scene-based question answering (temporal localization 

of the answer in TV shows, using video and subtitles). The task requires an understanding of the input 

dialog and its correlation to the visual cues. The main contribution of this approach is the conversion all 

input modalities (video, subtitles) into plain text format. The authors employ a visual recognition 

pipeline to transform raw video data into textual descriptions. The process encompasses four key stages: 

character recognition, place recognition, object relation detection, and action recognition. The outputs 

from these stages are aggregated and subsequently compiled into a directed video scene graph. 

Concerning the subtitles, the authors use BART [191] and SentenceBERT [192] to generate a scene-

dialog summary and an episode-dialog summary. Finally, they apply multi-stream text QA techniques 

to predict the correct answer.  

SiaSamRea (self-driven Siamese Sampling and Reasoning) [193] refines the CLIPBERT’s [180] 

sampling strategy and designs a Siamese sampling technique that can generate sparse, yet multiple 

similar clips, which maintain a consistent global semantic perspective across different starting frames 

within the same video. Further, they introduce a reasoning strategy called self-driven multimodal 

learning, designed to fully utilize the Siamese clips. This strategy operates in three steps: firstly, they 

use sparse and Siamese sampling to obtain both anchor and Siamese clips. These clips are individually 

cooperated with the text and fed into the model to extract clip-text features. Secondly, an internal 

contextual interaction is calculated between the anchor clip-text feature and Siamese clip-text features 
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via a Siamese knowledge generation module. Lastly, they propose a Siamese knowledge reasoning 

module to reason out the refined soft label. The authors use the pre-trained weights from the CLIPBERT 

model and finetune it on five different VideoQA datasets. 

In [141], authors introduce a novel methodology to automatically generate a large-scale Video Question 

Answering (VideoQA) dataset, termed as HowToVQA69M. This approach leverages cross-modal 

supervision, employing transformers that have been trained on an existant text-only question-answering 

corpus. From this foundation, the system generates video-question-answer triplets using videos and 

transcribed narrations.  The videos are derived from HowTo100M which comprises instructional videos. 

They also present a new manually annotated open-ended VideoQA benchmark named iVQA. This 

benchmark is distinctive in that it excludes non-visual questions and provides multiple potential answers 

for each question, thus extending the richness and complexity of the dataset. The authors apply task-

specific pre-training on HowToVQA69M using contrastive learning between a multi-modal video 

question transformer and an answer transformer. Thanks to contrastive training, they introduce zero-

shot VideoQA task to assess the generalization of the model on different datasets. They also apply 

finetuning on four Factoid benchmarks which are MSRVTT-QA, MSVD-QA [1], ActivityNet-QA 

[139], and How2QA [179] and prove the effectiveness of task-specific pre-training on HowToVQA69M 

compared to unsupervised  task-agnostic pre-training on unlabeled dataset such as HowTo100M. 

 

7.3.3 Discussion 

In this section, we have reviewed different approaches for Video Question Answering task. Monolithic 

models (section7.3.2.1), established the fundamental groundwork due to their straightforward design 

and ease of optimization. These models traditionally leverage recurrence and convolution for processing 

sequences, but their effectiveness is questionable, as they often yielded sub-optimal results. The 

limitations of monolithic models, especially in handling long-term dependencies, prompted the 

incorporation of attention mechanisms. While attention mechanisms contribute towards pruning 

irrelevant visual and textual cues and enhance the performance to a degree, the reliance on recurrence 

and convolution in these models remained a setback. 

As an alternative, memory-based models (section 7.3.2.2) emerged, relying on an artificial memory to 

manage and recall past information. However, they still depended on recurrence, which presents the 

same limitations as with monolithic models. The design and implementation of memory components 

also adds a level of complexity to these models, creating a new challenge. 

We have also reviewed the graph-based models (section 7.3.2.3), which provide a flexible and scalable 

framework. These models, capable of handling different types of data and network configurations, 

offered a more intricate representation of relationships in data. However, the challenge lay in 

constructing graph structures from raw data, which is often computationally intensive. Furthermore, the 

performance of these models is penalized when the graph representation is not the optimal choice for 

the data structure. 

Given the limitations observed in the aforementioned architectures, our attention turned to transformer-

based models for multimodal fusion. Transformers are versatile, accepting any tokenized data type. 

Their attention mechanisms are particularly adapted for modeling long-range dependencies, enabling 

the model to attend to all elements in the input sequence. 

Task-agnostic pre-training of transformers (section 7.3.2.4.1) has achieved considerable success in the 

literature and set new performance benchmarks across various tasks. However, these models can be 

computationally heavy. For instance, the pre-training of the MERLOT model [182] requires 

approximately 30,000 TPU hours. On the other hand, task-specific models (Section 7.3.2.4.2) are trained 

directly on the VideoQA task, enabling more efficient capture of task-specific features. 
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Given these observations, our approach employs task-specific training using transformer-based models. 

The proposed model leverages the joint-type fusion using a transformer architecture with only two 

layers, which helps to address the limitations of quadratic complexity often associated with deeper 

transformers. The reduced depth of our model helps to mitigate computational overheads while still 

capturing relevant interactions between visual and textual modalities. Additionally, we propose a cross-

correlation technique to mitigate heterogeneity between visual and textual modalities, allowing for more 

effective fusion of information from both modalities. Furthermore, our model is pre-trained on a task-

specific dataset, HowToVQA69M [141], which provides it with domain-specific knowledge and 

improves its performance on video question answering tasks. This pre-training allows our model to 

better understand the nuances of video data and generate accurate answers to questions posed on video 

content. We make the hypothesis that our model represents grounding features by jointly learning each 

modality representation under the constraint of the other. 

 

7.4 Proposed network architecture 

The synoptic scheme of the proposed network architecture is presented in Figure 7.5.  

 

 

Figure 7.5. The proposed framework for Video Question Answering task. 

 

The various modules involved are the following:  

- Feature extraction, which  involves pre-processing and tokenization of the input video and text. 

This step is fundamental as it ensures that the raw video data is transformed into a format 

suitable for analysis and, likewise, the associated text is structured for effective comprehension 

by the model. 

- Cross-modal module, designed explicitly to minimize the heterogeneity gap between the 

different modalities inherent to this task. By mitigating this disparity, the model can effectively 

correlate the video data and the question, forming a more cohesive understanding of the task at 

hand.  
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- Multimodal fusion network: This network is based on the transformer architecture, to focus 

selectively on significant elements from both the video and text, thereby generating a richer and 

more comprehensive representation of the multimodal data. 

Finally, the output of the transformer is then passed to a Multilayer Perceptron (MLP) coupled with a 

classifier. This final step is dedicated to generating and predicting the most accurate answer to the given 

question, given the video content. 

Let us now detail the various modules considered.  

 

7.4.1 Feature extraction 

7.4.1.1 Video processing 

To extract the visual representations, the video is uniformly sampled in N fixed length clips of 32 frames. 

We feed each clip to a S3D model [71]. The idea behind S3D model is to factorize the traditional 3D 

convolution operation into a 2D spatial convolution operation followed by a 1D temporal convolution 

operation. The setup can be achieved by conducting two 3D convolutions, where the first (spatial) 

convolution possesses a filter shape of [1, k, k] and the temporal convolution has a filter of shape 

[k,1,1].This separates the learning of spatial and temporal features in video data, which can help improve 

the efficiency and performance of the model.  

The 3D model has been pre-trained on HowTo100M[137] using the MIL-NCE technique [194]. We 

retain the feature activations before the final fully connected layer and apply average pooling to obtain 

a 𝑑𝑣 = 1024-dimension vector. The obtained feature vector is denoted as 𝑉 = [𝑉1, . . , 𝑉𝑁] ∈ ℝ
𝑑𝑣∗𝑁 

where 𝑉𝑖 represents the visual descriptor of the ith video clip. During training, the S3D model weights 

are frozen to improve efficiency.  

 

 

Figure 7.6. The video transformer architecture. 

Next, we leverage a video transformer to effectively capture long-range dependencies in video clips. 

This approach allows us to learn the temporal dynamics of objects, actions and scenes that are inherent 

in videos. Besides, we can adaptively learn grounded visual features that are specifically optimized for 

video question answering task without being constrained by pre-extracted features from external models. 
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To model the dynamic dependencies between clips, we apply temporal attention on the feature vector 𝑉 

as illustrated in Figure 7.6. This approach is motivated by the insight that video data often contains 

redundant information, and only a limited set of clips contain discriminative information that is relevant 

for video question answering. To implement this, we apply multi-head temporal attention on the video 

descriptor 𝑉.  

For each attention head ℎ ∈ {1,… ,𝐻𝑉}, we first compute the corresponding 

𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝑖𝑑𝑒𝑜, 𝐾𝑒𝑦ℎ

𝑉𝑖𝑑𝑒𝑜, 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝑖𝑑𝑒𝑜 and  as follows: 

 𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝑖𝑑𝑒𝑜 = 𝑉𝑊ℎ

𝑄
, 𝐾𝑒𝑦ℎ

𝑉𝑖𝑑𝑒𝑜 = 𝑉𝑊ℎ
𝐾 , 𝑉𝑎𝑙𝑢𝑒ℎ

𝑉𝑖𝑑𝑒𝑜 = 𝑉𝑊ℎ
𝑉 (7.5) 

where, 𝑊ℎ
𝑄 ,𝑊ℎ

𝐾and 𝑊ℎ
𝑉  are three learnable matrices.  

The temporal attention for a given attention head is computed as: 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ

𝑇𝑒𝑚𝑝
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝑖𝑑𝑒𝑜(𝐾𝑒𝑦ℎ

𝑉𝑖𝑑𝑒𝑜)
𝑇

√𝑑𝑇𝑒𝑚𝑝
)𝑉𝑎𝑙𝑢𝑒ℎ

𝑉𝑖𝑑𝑒𝑜 
(7.6) 

The result of all attention heads are then concatenated and once again projected using a learnable matrix 

𝑊𝑂
𝑇𝑒𝑚𝑝

 as follows:  

 𝐹𝑎𝑡𝑡
𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1

𝑇𝑒𝑚𝑝
, … , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝐻𝑉
𝑇𝑒𝑚𝑝

)𝑊𝑂
𝑇𝑒𝑚𝑝

 (7.7) 

Finally, a feed forward network (FFN) with linear projection followed by GeLU activation function 

[195] and layer normalization is used to project the feature vector. The spatio-temporal features are 

denoted by 𝐹𝑣 = [𝐹1
𝑣 , … , 𝐹𝑁

𝑣] ∈ ℝ𝑑×𝑁, where 𝑑  is the dimension of the projection space.  

 

7.4.1.2 Text processing 

When audio is available in the dataset, we utilize an ASR (Automatic Speech Recognition) model to 

extract the associated transcript. In our implementation, we have retained the Whisper library [196], an 

end-to-end transformer-based model that exhibits human-level robustness in English speech recognition, 

even in the presence of background noise and reverberation. We pre-process the dataset offline to speed 

up the training process (Figure 7.7).  

 

 

Figure 7.7. Overview of text processing framework. 

The text input is first tokenized using the WordPieces tokenizer [197], a sub-word segmentation 

algorithm with a 30,000 token vocabulary. When the audio is available, we append the transcript to the 



102 

 

   

question as following: “[CLS] transcript. [SEP] question. [SEP]”, as suggested in [116] (Figure 7.7). 

The [CLS] token marks the beginning of the sentence and its final hidden state is used as a summary 

representation of the whole sequence. The [SEP] token serves as a boundary marker, allowing the model 

to distinguish between audio transcripts and textual questions and encode them independently. Each 

token is then fed to DistilBERT [198]. DistilBERT is an efficient, lightweight version of BERT, which 

is trained under low latency constraints. We use the activations of the last layer of DistilBERT to obtain 

a 768-dimensional feature vector which is then passed to a feed forward network, similarly to the video 

projection. The text embedding is denoted as 𝐹𝑞 = [𝐹1
𝑞
, … , 𝐹𝑇

𝑞
] ∈ ℝ𝑑∗𝑇, where 𝑇 is the number of tokens 

in the text. 

 

7.4.2 Cross-modal module 

Modeling video-text dynamics within and across modalities is an extremely challenging task. To 

mitigate this problem, we have developed a cross-modal correlation module that efficiently accounts 

both intra and inter-modal relationships between modalities. Figure 7.8  illustrates the architecture of 

the proposed module.  

We consider the cross-correlation matrix 𝜏 (Eq. (7.8)) that aims at modeling the relationships between 

the various visual and textual modalities involved: 

 𝜏 = 𝐹𝑞
𝑇
𝑊𝐹𝑣 (7.8) 

where 𝑊 ∈ ℝ𝑑∗𝑑 is a learnable matrix. 

A high coefficient of the cross-correlation matrix 𝜏 means that the corresponding video and text features 

are highly relevant. We generate the cross-correlation video-text (resp. text-video) weights by column-

wise softmax over 𝜏 and 𝜏𝑇 , respectively. This technique allows learning more discriminative 

representations for each individual modality, constrained by the other one. Formally, we compute the 

video-conditioned text features as:  

 𝐹𝑞−𝑣 = 𝐹𝑞 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜏𝑇) (7.9) 

Similarly, the text-conditioned video features are defined as: 

 𝐹𝑣−𝑞 = 𝐹𝑣𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜏) (7.10) 

To prevent information loss in the cross-correlation stage, we have adopted the dense skip connection 

technique. The reweighted features 𝐹𝑞−𝑣 and 𝐹𝑣−𝑞 are thus added to the original modality-specific 

representation. 

 𝐹𝑞−�̂� = tanh (𝐹𝑞−𝑣 + 𝐹𝑞) (7.11) 

 𝐹𝑣−�̂� = tanh (𝐹𝑣−𝑞 + 𝐹𝑣) (7.12) 

The obtained features are further exploited in the multi-modal fusion module, as described in the 

following section. 

 



103 

 

   

 

Figure 7.8. Cross-modal correlation module. 

 

7.4.3 Transformer-based multimodal fusion 

In contrast to recurrent neural networks, transformers are order-insensitive due to their self-attention 

mechanism. This means that the order of tokens in the input does not impact the model's ability to 

process them. To address this limitation, we have considered the positional encoding introduced in [4], 

as described in the following equations: 

 𝑝𝑜𝑠2𝑘 = sin (
𝑖

100002𝑘/𝑑
) (7.13) 

 
𝑝𝑜𝑠2𝑘+1 = cos (

𝑖

100002𝑘/𝑑
) 

(7.14) 

where i represents the position of the token in the input sequence, k represents the index of the 

positional encoding, and d  represents the dimensionality of the video-text embeddings. This encoding 

explicitly retains information about the token positions in the input sequence, allowing thus the 

transformer model to capture and take into account the positional information. 

Additionally, we incorporate a learned modality embedding layer to differentiate between the two 

modalities, video and text. The modality embedding is added to each token as an additional feature, and 

it is learned during the training process. The modality embedding is calculated as follows: 

 𝑚𝑜𝑑𝑚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑖𝑛𝑒𝑎𝑟(𝑜𝑛𝑒ℎ𝑜𝑡(𝑚))) (7.15) 

where m  represents the modality of the token (either video or text), 𝑜𝑛𝑒ℎ𝑜𝑡(𝑚) represents the one-hot 

encoding [199] of the modality (variables are represented as binary vectors where each vector has a 1 in 

the position of the corresponding category and 0 in all other positions). This modality embedding allows 

the model to explicitly differentiate between the two modalities and capture their distinct characteristics. 

The representations of the video and the text are computed as follows. 

 𝐹𝑘
𝑞−�̃�

= 𝑑𝑝(𝐹𝑞−�̂� + 𝑝𝑜𝑠𝑘 +𝑚𝑜𝑑𝑞) 
(7.16) 

 𝐹𝑘
𝑣−�̃�

= 𝑑𝑝(𝐹𝑣−�̂� + 𝑝𝑜𝑠𝑘 +𝑚𝑜𝑑𝑣) 
(7.17) 

 

where  𝑚𝑜𝑑𝑞 ∈ ℝ
𝑑 , 𝑚𝑜𝑑𝑣 ∈ ℝ

𝑑 represent the learnt modality embeddings; and [𝑝𝑜𝑠1, … , 𝑝𝑜𝑠𝑡+𝑐]  ∈

ℝ𝑑∗𝑇+𝑁 are positional encodings. 𝑑𝑝 is the dropout layer.  

The input to the transformer 𝐹𝑞𝑣 ∈ ℝ𝑑∗𝑇+𝑁 is the concatenation of 𝐹𝑘
𝑞−�̃�

 and𝐹𝑘
𝑣−�̃�

.  

The transformer layers consist of an attention sublayer followed by a position-wise feed-forward layer. 

The attention sublayers employ H attention heads. To obtain the sublayer output 𝑂 ∈
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ℝ𝑠𝑒𝑞𝑙𝑒𝑛𝑔𝑡ℎ∗𝑑  (𝑠𝑒𝑞𝑙𝑒𝑛𝑔𝑡ℎ = 𝑇 + 𝑁), we concatenate the results from each head and apply a linear 

projection. Each attention head operates on an input sequence 𝑋 ∈ ℝ𝐻∗𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ∗𝑑ℎ𝑒𝑎𝑑  and computes 

the attended feature 𝑍 ∈ ℝ𝐻∗𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ∗𝑑ℎ𝑒𝑎𝑑  as follows. 

 

𝑧𝑖 = ∑ 𝛼𝑖𝑗(𝑥𝑗𝑊
𝑉)

𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ

𝑗=1

 

(7.18) 

The weight coefficient 𝛼𝑖𝑗 is calculated using a softmax function. 

 
𝛼𝑖𝑗 =

𝑒𝑥𝑝 𝑒𝑖𝑗

∑ 𝑒𝑖𝑘
𝑡+𝑐
𝑘=1

 
(7.19) 

where , 

 
 𝑒𝑖𝑗 = 

(𝑥𝑖𝑊
𝑄)(𝑥𝑗𝑊

𝐾)𝑇

√𝑑ℎ𝑒𝑎𝑑
 

(7.20) 

with 𝑊𝑄, 𝑊𝐾, 𝑊𝑉 ∈ ℝ𝑑∗𝑑 learnable matrices and 𝑑ℎ𝑒𝑎𝑑 denoting a scaling factor. 

Finally, the fused video-text representation is obtained as: 

 𝐹 = 𝑊𝑣𝑞𝑑𝑝(𝑄1) + 𝑏𝑣𝑞 (7.21) 

where 𝑊𝑣𝑞 , 𝑏𝑣𝑞 are learnable parameters and 𝑄1 is the multimodal contextualized embedding of the 

[CLS] token in the input text as in [110]. We use the softmax function to predict the correct answer from 

the vocabulary of predefined answers.  

 

7.5 Rephrasing attacks  

7.5.1 Problem formulation 

The objective of adversarial attacks is to fool the learned model by manipulating the input provided to 

it. This is not only important to test the vulnerability of DL models to security threats but also to evaluate 

its robustness in real-world scenarios. Adversarial attacks have been first introduced in the image 

domain for object recognition [200]–[202], then attracted many follow-up efforts in other domains 

including natural language processing (NLP). Text attacks are more challenging due to different reasons: 

(1) Small changes in the image are unperceivable by humans while text changes can be easily identified; 

(2) The semantics of the image is not changed by small perturbations. In contrast, even minor text 

manipulations can affect the general meaning of a sentence.  

A successful attack should take such considerations into account, in order to be able to fool the DL 

model without changing the human judgement. Adversarial attacks can be categorized into two classes. 

A first one concerns the so-called white box attacks: in this setting, the attacker has access to the model 

information including input-output data, model architecture, parameters, loss functions and activation 

functions. The adversarial data is adjusted to maximize its influence on the classifier while keeping an 

imperceptible change. Most approaches use the gradient information of the loss with respect to the input 

to build the attack. In [203], authors use fast gradient sign method (FGSM) [201] by identifying the 

words with the most significant contribution to classification task. Specifically, they compute the cost 

gradient of training examples using backpropagation and assign the contribution of each item with 

respect to the magnitude of the cost gradient. Jacobian Saliency Map Adversary (JSMA)-based methods 

[204], [205] build adversarial perturbations using forward derivatives.  

In the case of the second family of methods, called black box attacks, the attacker has only access to 

input-output data. This approach uses heuristic methods or iterative queries to perform the attack. 
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In [206], authors distract the textual input by appending meaningless sentences at the end of the 

paragraph. Such perturbations are crafted by iteratively querying the model until the output changes. 

In [207], various strategies are applied to affect the model’s performance such as random swap 

(transposing neighbor words), random deletion, stop-word dropout, paraphrasing as well as grammar 

and keyboard errors. In [208], [209], the important tokens are identified based on a scoring system which 

measures the degree of perturbation of the model’s output. The selected tokens are then modified using 

four techniques: delete, replace, swap and add. In [210], [211],authors generate semantically equivalent 

adversaries (SEA) to fool the model. Such approaches generate paraphrases and compare the model’s 

prediction with the original sentences. Other works [212], [213] leverage generative adversarial 

networks (GANs) [214] to generate adversarial examples by searching for the neighbors of the input 

data in the latent space.  

The output of the adversarial attacks can be targeted, meaning that the attacker maps the output to a 

desired value, or untargeted in which case the attacker cares only about producing incorrect output. For 

multimodal attacks, there has been some work on image captioning [215], optical character recognition 

[216] and image question answering [217]. To the very best of our knowledge, this is the first work to 

consider adversarial attacks issues under the framework of video question answering methods.  The 

framework of our approach is illustrated in Figure 7.9. 

 

7.5.2 Methodology 

Our objective is to verify the importance of the building elements of our pipeline and test their respective 

contribution to the model prediction. To allow a fair comparison, the same model-independent attacks 

are applied on the different models. For this reason, we apply untargeted black-box attacks, meaning 

that we do not enforce any specific results. We use an automatic method to generate the rephrased 

questions without additional human intervention, which is more scalable in real-world environments. 

To this purpose, we have retained the BART approach [191], which is a sequence-to-sequence NLP 

model that uses a BERT-like encoder (i.e., bidirectional encoder) and a GPT-like decoder (i.e., left-to-

right decoder). BART is pre-trained in an unsupervised manner using general objectives such as text 

corruption with random noise and text shuffling. The model is originally applied to sequence generation 

and machine translation tasks. The model is fine-tuned for text rephrasing purposes. The pre-trained 

model is directly used as a sequence-to-sequence model. At each time step, the model computes the 

probability of each word in the vocabulary to be the likely next word. Then, the next word is picked 

based on three decoding methods: (1) random sampling: we randomly choose the next word 𝑤𝑡 

according to its conditional probability distribution. (2) top-K sampling [218]: we only sample the 𝐾 

high probability words from the distribution. (3) top-p (nucleus) sampling: we sample from a set of 

words whose cumulative probability exceeds 𝑝.  
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Figure 7.9. Rephrasing attacks on Video Question Answering model. 

For training, we use three datasets: Quora [219] (400k training samples), MSRP [220](13M training 

samples) and PAWS [221] (108k training samples). The original data is filtered to ensure more diversity 

as follows. First, the sentence pairs that present more than 80% unigram overlap are removed. This first 

step minimizes the chance to copy the original sentence. We use Siamese BERT [192] to remove the 

question pairs with low semantic similarity. For MSRP and Quora, we only select the sentences that are 

rephrases to each other. Finally, the trained model is applied on the test set of MSVD-QA.  

Some examples of rephrased questions are provided in Table 1. In order to compare the differences 

between the two datasets (original and rephrased) we compute the GLEU score [197] which is more 

suitable for single sentences. GLEU is a variant of the BLEU score that assigns more weight to n-grams 

that are changed from the source. Specifically, the GLEU score is the minimum of recall (ratio of the 

number of matching n-grams to the total number of n-grams in the original question) and precision (the 

ratio of the number of matching n-grams to the total n-grams in the rephrased question). The GLEU 

score range is between 0 (no matches) and 1 (all match). We have obtained a GLEU score of 0.5638.  
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Table 7.2. Examples of rephrased questions from MSVD-QA dataset. 

Original question Rephrased question 

Who is on an ambulance stretcher Who is riding an ambulance stretcher? 

What are school aged children doing? What is a group of teenagers doing? 

How many elephants are spraying water on 

themselves? 

How many elephants are spraying water 

on themselves with their trunks? 

 

What is the best way to cut potato into pieces 

with a knife? 

 

Who is cutting into pieces a potato with a 

knife? 

What does a man pick up a card from? What does a man pick a card up from? 

What is climbing? What is climbing? 

 

7.6 Experimental evaluation 

 

The experimental evaluation has been carried out on the publicly available datasets HowToVQA, 

MSVD-QA and MSRVTT-QA [1].    

7.6.1 Datasets 

HowToVQA: Under the framework of a pre-training, then fine-tuning paradigm, we have trained the 

model on the HowToVQA 69M task-specific dataset. HowToVQA 69M is today the largest VideoQA 

available dataset, with over 69 million video question-answer triplets. The videos have been extracted 

from HowTo100M, which was originally designed for video captioning purposes. The question-answer 

pairs are automatically generated from the transcribed speech using two transformers. We randomly 

select 164148 training samples to reduce memory and computational requirements.  

MSVD-QA: For fine-tuning, we have retained the popular MSVD-QA VideoQA dataset, which 

represents a smaller dataset automatically derived from MSVD. The dataset contains 1970 video clips, 

each 10-seconds long and featuring a single activity, along with 50,505 open-ended question-answer 

pairs that require an understanding of the video content to answer correctly. The questions cover a wide 

range of topics and were created automatically from the existing captions in MSVD dataset. The answer 

vocabulary contains 1852 training answers. 

MSRVTT-QA: We also used the MSRVTT-QA dataset. This dataset includes 10,000 video clips, each 

20-seconds long, and 200,000 open-ended question-answer pairs covering a diverse range of topics. The 

questions are also automatically generated from the available captions. Unlike the MSVD-QA dataset, 

the MSR-VTT-QA dataset also includes the audio channel. We do not apply pre-training on MSRVTT-

QA as the dataset is small enough to perform the training from scratch.  

 

7.6.2 Implementation details 

For pre-processing, we uniformly sample the video into 𝑁 = 20 clips. Similarly, we set the maximum 

number of tokens in the input question to 20.  We project the video features and text features into a 
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common embedding space of size d=512.We process the contextual features of the video using 𝐿𝑣 = 2   

layer transformer with 𝐻𝑣 = 8 attention heads and a scaling factor 𝑑𝑣 =
𝑑

𝐻𝑣
= 64. Regarding the 

transcript, we utilize the Whisper ASR model to extract the speech from the video. We apply the Whisper 

model on the entire video rather than on individual clips, as people commonly mention key objects or 

actions before or after they are shown in the video. We set the maximum number of tokens in the 

transcript to 20.  

 For the multimodal transformer, a number of H = 8 attention heads has been retained. In this setting, 

the scaling factor 𝑑ℎ𝑒𝑎𝑑 is the fraction of the embedding size over the number of heads 𝑑ℎ𝑒𝑎𝑑 =
𝑑

𝐻
=

64. To train the rephrasing model BART, we select the high probability words based on top-K and p-

sampling strategies. We set K=50 and p=0.95.  

The loss function of the proposed model is the sum of the cross entropy loss and the masked language 

modeling (MLM) loss. The MLM objective is to predict a randomly masked word from a predefined 

vocabulary of 30K words. MLM loss is the negative log-likelihood for masked words. Specifically, we 

randomly select with a probability of 15% all WordPiece tokens in each question. Once the token is 

selected, the data generator replaces the token with a special token [MASK] 80% of the time, a random 

token 10% of the time, and the same token 10% of the time. The goal of this procedure is to influence 

the model to maintain a contextual representation of each input token, since it does not know which 

words will be predicted. 

A cosine annealing learning rate schedule has been used, with initial values of 10−4for training on both 

HowToVQA and MSRVTT-QA, and 10−5 for fine-tuning on MSVD-QA respectively. For 

optimization, we have adopted the Adam approach with batch size of 16 for pre-training and 32 for fine-

tuning. The training process has been run on 2 NVIDIA GeForce RTX 2080 GPUs and for 20 epochs.  

The final model is selected according to the best performance on the validation set.  

 

7.6.3 Ablation studies 

7.6.3.1 Ablation studies on MSVD-QA 

To investigate the effectiveness of each component of the pipeline, we have compared the performance 

of different baselines on both original and rephrased datasets using the MSVD-QA dataset. More 

precisely, we have first retained the following four baseline methods:  

 Early fusion which concatenates the video features from S3D and text representations and feeds 

them directly into a fully connected layer to predict the correct answer.  

 Cross modal module only (CMM) that learns inter-modal representations of each modality under 

the constraint of the other (cf. Section 3.2).  

 Multi-modal transformer (MMT) which feeds the representations of the pre-trained model to a 

joint transformer and neglects the cross modal module (cf. section 3.3).  

 CMM+MMT which uses the cross modal module in conjunction with the multimodal 

transformer trained from scratch on MSVD-QA.  

 CMM+MMT+PF, which is the same as the latter but pre-trained on a subset of HowToVQA 

69M then fine-tuned on MSVD-QA (PF).  

Let us underline that none of the above-mentioned baseline methods uses the video transformer. Instead, 

they extract visual features from the frozen layers of the S3D model.  

In a second part, we gave considered the complete framework, integrating the transformer-based 

approaches, with two variants:  
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 CMM+MMT+VT, which is our framework including the video transformer (VT) trained from 

scratch on MSVD-QA,  

 CMM+MMT+VT+PF, which is our framework pre-trained on a subset of HowToVQA69M and 

fine-tuned on MSVD-QA. 

In order to evaluate the performances, we have adopted the accuracy metric as the answers do not exceed 

several words. The accuracy represents the ratio of the correct predictions with respect to the total 

number of input samples. The obtained results are summarized in Table 7.3.  

The following conclusions can be drawn: (1) The lowest score is obtained by directly concatenating 

video and text representations. This behavior can be explained by the heterogeneous nature of the two 

modalities involved which are pre-trained with different tasks/datasets. (2) Cross-correlation technique 

yields more grounded representations as features are learnt under the constraint of the other modality, 

with a 3.72% improvement in accuracy. (3)  The video transformer improves the results by 0.58% when 

the model is trained from scratch and by 1.38% when the model is pre-trained on HowToVQA. This 

result proves the effectiveness of the video transformer architecture in capturing long-range 

dependencies in videos. Consequently, the model's ability to process complex video data and produce 

more accurate results is improved. (4) The best results are obtained using the full pipeline, which 

integrates extensive inter-modal interactions. (5) Pre-training on large task-specific datasets effectively 

optimizes the weights of the proposed architecture. (6) Our approach is more robust to rephrasing attacks 

then the transformer-only architecture. This is due to learning-conditioned features as opposed to simple 

concatenation.  

Table 7.3.Ablation studies on MSVD-QA. Acc1 represents the performance on the original dataset. 

Acc2 represents the performance on the rephrased dataset. 

Methods ACC1 ACC2 

Early fusion 27.33% 21.31% 

CMM 31.05% 25.81% 

MMT 37.88% 33.47% 

CMM+MMT 38.96% 33.87% 

CMM+MMT+PF 43.58% 39.42% 

CMM+MMT+VT 39.54% 34.51% 

CMM+MMT+VT+PF 44.96% 41.09% 

 

Figure 7.10 provides examples of results on the MSVD-QA dataset, demonstrating both original and 

rephrased questions. In general, the model's predictions on the test set and rephrased set align well with 

the ground truth. However, as shown in example (f), the adversarial attack may sometimes alter the 

results. Interestingly, rephrasing the question can also improve the accuracy of the model, as shown in 

example (h), where rephrasing has eliminated additional noise in the question by focusing only on the 

relevant textual cues. These findings suggest that data augmentation using rephrased samples could 

potentially yield better results by adding more training samples and reducing inherent biases during 

training.  
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(a) (b) 

OQ:  What are school aged children doing? 

RQ:  What is a group of teenagers doing? 

GT: Perform 

OP: Perform 

RP: Perform 

OQ: What is a man showing in a box? 

RQ: What is a man in a box? 

GT: Gun 

OP: Gun 

RP: Gun 

(c) (d) 

OQ: What flees from an eagle?  

RQ: What escapes from an eagle?   

GT: Rabbit 

OP: Rabbit 

RP: Rabbit 

OQ: What is the dog enjoyed doing? 

RQ: What do the dog like to do?  

GT: Play 

OP: Play 

RP: Play 

(e) (f) 

OQ:  What does someone dive off? 

RQ:  What does a person jump off? 

GT: Cliff 

OP:  Cliff  

RP:  Cliff  

OQ: What is a man walking along a path through? 

RQ: What is a man walking down? 

GT: Road 

OP: Road 

RP: Rain 

(g) (h) 

OQ:  What are school students forming? 

RQ:  What do a group of people make? 

GT: Pyramid 

OP: Sign 

RP: Group 

OQ: What is the chef in pink shirt rolling out? 

RQ: What is the cook spreading? 

GT: Dough. 

OP: Paper 

RP: Dough 

Figure 7.10. Examples of results of our approach on the MSVD-QA dataset, with both original and 

rephrased questions. OQ: Original question; RQ: Rephrased Question; GT: Ground Truth; OP: 

Prediction of the model to the Original question; and RP: Prediction of the model to the rephrased 

question. 
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7.6.3.2 Effect of the transcript input 

We have also investigated the impact of incorporating transcript information into the question using the 

MSRVTT-QA dataset, as described in section 7.4.1.2. We have compared the performance of our model 

trained with only the question input versus the model trained with both the question and transcript as 

input text. To this purpose, we have manually annotated two subsets of the test set. The first subset is 

referred to as "vision-text" samples, which require both video and transcript information to answer 

questions, such as identifying the main topic of a discussion. The second subset is called "vision-only" 

samples, which can be answered based on visual cues only, such as identifying an action or object in the 

video. We have identified videos where the transcript conveys semantic meaning and labeled them as 

"vision-text" samples (Figure 7.11.(c)). In contrast, videos lacking a transcript (Figure 7.11.(e)) or with 

an incomprehensible transcript (Figure 7.11.(h)) were classified as "vision-only" samples. Our manual 

annotations resulted in 663 vision-only videos and 552 vision-text videos being labeled. The results 

obtained are reported in Table 7.4, where 𝐴𝑐𝑐𝑡𝑒𝑠𝑡  is the accuracy on the whole test set, 𝐴𝑐𝑐𝑣−𝑡 represents 

the accuracy on the “vision-text” subset and 𝐴𝑐𝑐𝑣 represents the performance on the “vision-only” 

subset. The results show that incorporating the transcript information improves accuracy by 1.86% on 

the test set. Furthermore, the improvement is even greater for vision-text samples (2.1% gain) compared 

to vision-only samples at 1.65%. However, the results are globally better for vision-only samples. We 

believe that including the transcript as an additional modality input could potentially yield even better 

results, at the cost of an increased complexity. 

 

Table 7.4.Comparison of the effect if the transcript input on MSRVTT-QA dataset. 

Methods 𝐴𝑐𝑐𝑡𝑒𝑠𝑡  𝐴𝑐𝑐𝑣−𝑡 𝐴𝑐𝑐𝑣 

Model trained with only the question as  text input (MQ) 40.02% 38.90% 44.23% 

Model trained with both question and transcript as text input (MQT) 41.88% 41.00% 45.88% 

 

In Figure 7.11, we present some examples of results from the MSRVTT-QA, showcasing the 

performance of two models: (MQ) trained with only the question as input text, and (MQT) trained with 

both the question and transcript as input text. In general, the generated answers are accurate and well-

aligned with the video content. Both MQ and MQT are able to correctly identify the most salient visual 

features in the video, as seen in examples (a) and (b). However, when the ASR transcript is available, 

MQT outperforms MQ in identifying the main topic or subject being discussed, such as in examples (c) 

and (d) where MQ fails to generate the correct answers due to the lack of relevant visual cues. 

Nonetheless, there are some discrepancies in the generated answers. For instance, in example (g), MQT 

predicts "perfume" which is correlated to the word "smell" in the question and the word "perfume" in 

the generated transcript, which is not the correct answer. In example (h), both models rely solely on the 

visual element "helicopter", disregarding the actual question. We attribute these discrepancies to the 

quality of the automatically generated transcript and the clarity of the question. 

Overall, the results suggest that incorporating the transcript in the input text can enhance the accuracy 

of generated answers in video-based question answering tasks, compared to using only the question and 

video as input. 
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(a) 

ASR: What up everybody, how are you all doing? 

Today I'm going to teach my puppy how to sit down. 

Make sure you're gonna grab a good treat. 

Question: Who is speaking about how to teach his 

puppy to sit down ? 

GT: Man 

MQ: Man 

MQT: Man  

(b) 

ASR: She's part of the family. Would you like to hold 

her? Of course, please. Come here. Look, Bella. You 

smell so clean. Check this out guys. 

Question: What does a man hold? 

GT: Dog 

MQ: Dog 

MQT: Dog 

(c)  

ASR: Well, this is the mother of all earthquake faults. 

It can pack wallop 30 times that of the San Andreas 

fault. So forget all the Hollywood hype about the San 

Andreas fault. We're talking about an earthquake a 

night. 

Question: What is a man talking on tv about? 

GT: Earthquake 

MQ: Color 

MQT:  Earthquake 

(d) 

ASR:  In the film, McConaughey said that he was in a 

Tesseract. Let me ask you something, how do I phrase 

this? What the F is a Tesseract? 

Question: What do two men discuss? 

GT: Movie 

MQ: Video 

MQT: Movie  

(e) 

ASR:  ø 
Question: What is woman doing? 

GT: Play 

MQ:  Play 

MQT:  Play 

(f) 

ASR:  ø 
Question: What is being displayed?  

GT: Ship 

MQ: Ship 

MQT: Ship  

(g) 

ASR: This smells awesome. Oh no, it doesn't. This 

does smell like a middle schooler's perfume though, 

right? It does, yeah. It's like a jello shot.  

Question: What are people smelling? 

GT: Drink 

MQ: Women 

MQT: Perfume  

(h) 

ASR:  The new fronts and the fighting bring fresh hill 

and the groaned. 

Question: What is a helicopter being shot at by ground 

forces in? 

GT: Syria 

MQ: Helicopter 

MQT: Helicopter 

 

Figure 7.11. Examples of predictions on MSRVTT-QA dataset. 
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7.6.4 Comparison with state-of-the-art 

We have compared our approach to various state of the art methods on the MSVD-QA  and MSRVTT-

QA datasets [1]. Table 7.5 summarizes the accuracy of the different VideoQA models retained for 

comparison. Our evaluation includes monolithic models including ST-TP [140], AMU [1], and 

HCRN [222], graph model B2A [171], memory-based models including Co-Mem [167], and 

HME [168] and transformer-based models including CLIPBERT [180], and CoMVT [223].  

The proposed method achieves the highest accuracy scores on both MSVD-QA (44.96%) and 

MSRVTT-QA (41.88%) datasets. In particular, it outperforms the state of the art CoMVT model by 

2.36% on MSVD-QA and 2.38% on MSRVTT-QA. Interestingly, CoMVT is pre-trained on a larger, 

task-independent dataset (HowTo100M). It uses four transformer blocks to model intra- and inter-model 

dynamics, while we use a simple weight matrix followed by a 2-layer transformer. This demonstrates 

the importance of task-oriented pre-training and the effectiveness of our model, which minimizes the 

required computational effort. 

 

Table 7.5. Comparison with state-of-the-art models on MSVD-QA and MSRVTT-QA 

Methods MSVD-QA MSRVTT-QA 

ST-TP  [140] 31.3% 30.9% 

AMU  [1] 32.0% 32.5% 

Co-Mem [167] 31.7% 31.9% 

HME [168] 33.7% 33.0% 

HCRN [222] 36.1% 35.6% 

B2A [171] 37.2% 36.9% 

CLIPBERT [180] - 37.4% 

CoMVT [223] 42.6% 39.5% 

Our model 44.96% 41.88% 

 

7.7 Conclusion 

In this chapter, we have proposed a novel multimodal framework for video question answering. The 

proposed system is based on reciprocally constrained, cross-correlation conditioning of visual and 

textual features. Our system also integrates attention mechanisms using a multimodal, transformer-based 

approach to capture complex inter-modal dynamics. Additionally, we have used a video transformer 

incorporating temporal attention to learn contextual features of the video rather than relying on pre-

extracted frozen features from external models. Ablation studies demonstrate the importance of each 

composing block of the approach. We have also proved the effectiveness of our pipeline by testing the 

robustness of the model to rephrasing attacks. Furthermore, we have investigated the importance of the 

transcript modality in providing the correct answer while maintaining the same model. The experimental 

results obtained show that the proposed framework achieves high accuracy scores, with 44.96% and 

41.88% accuracy on the MSVD-QA and MSRVTT-QA datasets, respectively. In addition, it 

outperforms previous state-of-the-art methods (by 2.36% and 2.38%, respectively). 
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For future work, we plan to extend our video question answering framework to incorporate audio 

features and explore their impact on model performance. Additionally, we intend to apply our model on 

a real video-question platform to conduct a subjective system evaluation with user feedback, in order to 

further validate the effectiveness of our approach. 
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8 VIDEO CAPTIONNIG 
 

 

 

 

 

 

  

Abstract: In this chapter, we introduce a novel end-to-end multimodal video captioning framework 

based on visual and textual fusion. The proposed approach integrates a modality-attention module, 

which captures the visual-textual inter-model relationships using cross correlation. Further, we 

integrate temporal attention into the features obtained from a 3D CNN to learn the contextual 

information in the video using task-oriented training. In addition, we incorporate an auxiliary task 

that employs contrastive loss to enhance the model's generalization capability and foster a deeper 

understanding of inter-modal relationships and underlying semantics. The task involves comparing 

the multimodal representation of the video-transcript with the caption representation, facilitating 

improved performance and knowledge transfer within the model. Finally, we use a transformer 

architecture to effectively capture and encode the interdependencies between the text and video 

information using attention mechanisms. During the decoding phase, the transformer allows the 

model to attend relevant elements in the encoded features, effectively capturing long-range 

dependencies and ultimately generating semantically meaningful captions. The experimental 

evaluation, carried out on the MSRVTT benchmark dataset, validates the proposed methodology 

which achieves BLEU4, ROUGE and METEOR scores of  0.4408,  0.6291 and  0.3082, respectively. 

When compared to the state of the art methods, our system shows superior performances, with gains 

in performance ranging from 1.21% to 1.52% across the three metrics considered. 

 

Keywords: Video captioning, multimodal learning, cross correlation. 
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8.1 Introduction 

Video captioning refers to the task of generating descriptive, natural language text from the input video, 

encapsulating the semantic and taking into account the dynamic elements that are present in the video 

sequence (Figure 8.1). This task extends beyond simple image captioning as it involves a comprehension 

of temporal sequences and relationships, in addition to static objects and their interactions. Thus, video 

captioning requires the full understanding of a video’s context, objects, scenes, and actions, further 

mapping these aspects into a coherent natural language sentence or paragraph.  

 

Figure 8.1. Video captioning problem. 

This chapter is organized as follows.  

In Section 8.2, we briefly recall the challenges of automatic video captioning within the framework of 

TV archive indexation.  

In Section 8.3, a comprehensive state-of-the-art review is proposed. The state of the art methods are 

classified into template-based and deep-learning based approaches, the latter being further subdivided 

into visual-based and multimodal methodologies. We also lay out the commonly-used benchmark 

evaluation metrics such as BLEU, ROUGE, and METEOR.  

Section 8.4 introduces the proposed architecture, which is built upon an encoder-decoder paradigm. The 

process starts with the extraction of visual and textual features, followed by the application of a 

modality-attention module similar to that used in the video question answering framework. To encode 

the multimodal features, a transformer encoder is utilized. The subsequent generation of the decoded 

caption is then achieved through a transformer decoder, which makes use of the previously generated 

tokens and encoder information to guide the training process. 

In Section 8.5, we outline the model’s training objectives. A masked language modeling technique is 

employed to facilitate the learning of robust textual representation. We incorporate an auxiliary task 

based on a contrastive loss between the multimodal video-transcript and caption features, thereby 

aligning the input more closely with its corresponding caption. Cross-entropy is applied on the decoded 

tokens to evaluate the caption generation.  

Section 8.6 details the experimental evaluation performed and the results obtained. In order to assess the 

importance of the building blocks within our framework, extensive ablation studies are carried out, and 

our approach is compared with previous state-of-the-art methods.  

Finally, we conclude the chapter in Section 8.7, outlining potential future directions for research in this 

field. 
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8.2 Application to TV archive indexing 

The process of summarizing video content constitutes a crucial component of the responsibilities borne 

by documentalists within the television broadcasting industry. This typically involves the creation of 

natural language descriptions for each video shot (Figure 8.2). However, this task is not without its 

inherent difficulties, with the process being labor-intensive, time-consuming, and subject to potential 

human bias. In this chapter, we propose an automatic technique that seeks to alleviate these challenges 

by synthesizing video content using advanced video captioning methodologies. Our method automates 

the creation of comprehensive, contextual video summaries, thereby offering a potential resolution to 

the time-intensive nature of manual video summarization. Furthermore, the inherent objectivity of an 

automated system addresses the issue of human bias, providing consistent and impartial summaries. 

Crucially, the application of video captioning for archive indexing could significantly enhance content 

retrieval processes, enabling faster and more efficient location of relevant archived footage. In essence, 

this video captioning-based approach presents a substantial stride forward in streamlining the 

documentalist's workflow and augmenting the operational efficiency of TV broadcast archives. 

 

 

Figure 8.2. An archive indexing page. The field « descriptif » represents the natural language description 

of the video content at the shot level. Source: DALET. 

 

8.3 Related work 

Video captioning is a well-explored domain within the literature with initial methods dating back to 

2002 [224]. This section reviews these methodologies, beginning with early template-based techniques 

(Section 8.3.1). We then transition into an analysis of deep learning approaches, classifying them into 

visual-based methods (Section 8.3.2.1) and multimodal strategies (Section 8.3.2.2). Finally, we present 

the various evaluation metrics used in the literature. We do not discuss the video captioning datasets as 

most of them were already outlined for video question answering (section 7.3.1). 

 

8.3.1 Template-based approaches 

Building on the achievements in image recognition and activity recognition, one straightforward method 

involves the conversion of detected outputs into a coherent sentence using a template, which ensures 

grammatical accuracy. This template-based language process initially dissects sentences into fragments, 

such as the subject, verb, and object, guided by specific grammar rules. Each of these fragments is then 

linked to detected words, which could be objects, actions, or attributes identified within the visual 

content. Subsequently, the generated fragments are reassembled into a sentence using a predefined 
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language template. Let us underline that the quality of the captioning process heavily relies on the 

sentence templates, with sentences always being produced with a syntactical structure. 

In the pioneering work introduced in [224], a concept hierarchy of actions is constructed for the natural 

language description of human activities. Here, a Conditional Random Field (CRF) is used to establish 

a semantic representation for each video, by employing a template model for sentence generation. 

Additionally,[225] authors put forward a two-step method involving a Highest Vision Confidence 

(HVC) model and a Factor Graph Model (FGM). This process initially establishes confidences on the 

subject, verb, object, and scene elements. Subsequently, a factor graph model is implemented to deduce 

the most likely Subject-Verb-Object (SVO) triplet in the video. Finally, a sentence is constructed based 

on the considered template. 

Although template-based language models can generate complete sentences, the descriptions produced 

are typically inflexible. Moreover, evaluation is often confined to a narrow domain with a restricted 

vocabulary. For any adequately rich domain, the complexity of rules and templates needed makes the 

manual design of templates impractical or overly costly. 

 

8.3.2 Deep-learning based approaches 

More recently, video captioning has been reformulated as a machine translation task [225], [226], 

leading to the development of the encoder-decoder paradigm (Figure 8.3) that is commonly used today. 

Within this framework, the encoder processes a set of video features and accumulates its hidden states. 

The resulting output state is then passed to a decoder, which generates a natural language caption based 

on the encoded information. Such an approach makes it possible to model complex video features, and 

thus generate captions that are more semantically meaningful than those obtained by rule-based 

methods. Moreover, the encoder-decoder paradigm can be trained in an end-to-end fashion, allowing 

the simultaneous optimization of both encoder and decoder. This leads to improved performances when 

applied on the video captioning task. We can identify two families of approaches that exploit the 

encoder-decoder paradigm: the visual-based approaches and the multimodal approaches.  

 

Figure 8.3. The paradigm of the encoder-decoder architecture. 
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8.3.2.1 Visual-based approaches 

Visual-based approaches in video captioning focus primarily on extracting relevant visual information 

from video frames. Such approaches leverage computer vision techniques to analyze the visual content 

of the video and identify important elements such as objects, scenes and actions, together with their 

corresponding spatial and temporal relationships. In early works, the visual encoder is implemented as 

a 2D CNN applied to video frames. Thus, Venugopalan et al. [227] propose a framework where CNN 

features from each frame are averaged and provided as input to the decoder at every time step. Zhang et 

al. [228] introduce the GMNet model, incorporating a guidance module within the encoder-decoder 

model for video caption generation. GMNet facilitates word generation by considering both preceding 

and subsequent words in the caption. The model utilizes a soft attention mechanism and leverages 

InceptionV4 [229] to extract semantic features from the video.  

To capture temporal dynamics within the video, the 2DCNN architecture has been later extended to 

3DCNNS [69]. Xu et al. [230] introduced a two-module model for video captioning: the 'Proposal 

Module' that extracts features using 3D convolutional layers (C3D), and the Segment Proposal Network 

(SPN) for obtaining temporal segments. The model maps visual representation solely from the video to 

a common vector space, while the syntactic representation relies on the Part-of-Speech (POS) tagging 

structures of the video description. Hemalatha and Sekhar [231] introduce a video captioning approach 

that incorporates domain-specific decoders through the use of a domain classifier. The model utilizes 

ResNet152 for extracting 2D-CNN features and a 3D-CNN for extracting temporal features. To obtain 

a video representation, both the 2D-CNN and 3D-CNN features are processed using VLAD [232].  

For sentence generation, many existing approaches rely on recurrent neural networks (RNNs) such as 

LSTM [233] and GRU [234] to generate the caption. Yao et al. [83], Donahue et al. [66]and 

Venugopalan et al. [227] use the LSTM architecture for yielding variable-length video descriptions. 

Guo et al. [235] further incorporate attention mechanisms within the LSTM model to refine the captions. 

Similarly, Zhang et al. [236]introduce a hierarchical decoder with temporal or spatial attention. The 

model implements a teacher-recommended learning system to leverage external language models and 

incorporate linguistic information. 

Overall, visual-based approaches primarily focus on leveraging visual cues to generate accurate and 

descriptive captions. They are particularly effective in scenarios where the video content is 

predominantly visual and lacks significant audio or textual cues. However, in many applications videos 

represent a rich source of information, as they often contain multiple modalities such as visual, audio, 

and textual information (e.g., subtitles). Such modalities contribute to the overall meaning of the video 

and must be jointly considered to generate meaningful captions [237]. The multimodal approaches have 

gained popularity in video captioning task as they provide a more comprehensive understanding of the 

video. 

 

8.3.2.2 Multimodal approaches 

Currently, various methods adopt multimodal learning in video captioning tasks.  Hessel et al. [237] use 

both automatic speech recognition (ASR) and video features to perform video captioning and claim that 

most of the enhancement in performance is attributable to the use of ASR. Similarly, Shi et al. [238] 

train their video captioning model on both visual and ASR inputs and demonstrate the benefits of adding 

the textual input to the overall understanding of the video. Inspired by such results, we have also 

considered in our work both visual and textual modalities.  

However, multimodal video captioning also presents several challenges. One major one concerns the 

alignment between different modalities, as the timing and content of the visual and textual inputs may 

not always be perfectly synchronized [194]. Furthermore, the size and complexity of multimodal 

datasets can raise challenges for training models that are both accurate and efficient [109]. To tackle 
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such issues, several works [100], [194] use instructional videos [137], where the video and subtitles 

tracks are specifically aligned for video captioning tasks. While such videos are useful for training, they 

have specific structure and format that may not be representative of real-world scenarios [182]. This 

makes it difficult to generalize the model on unseen data.  

Furthermore, real-world speech tends to be less structured, with key actions or events in the video not 

always corresponding to the same segments in the input transcript. To address the visually misaligned 

narrations, various approaches have employed contrastive learning between video and transcript. For 

instance, MIL-NCE [194] leverages weak and noisy training signals in instructional videos by 

combining multiple instance learning with contrastive learning. Meanwhile, VideoCLIP [239] 

constructs temporally overlapped pairs of video and text clips of varying lengths, aiming to enhance the 

quality and quantity of the pre-training dataset.  

Traditionally, most existing methods have applied the contrastive loss to the outputs of visual and text 

encoders, typically before the multimodal fusion stage [111]. The primary aim of this loss is to establish 

alignment between the video and transcript during the pre-training phase. In our approach, we tackle the 

alignment challenge differently by incorporating the modality attention module. This module is 

specifically designed to bridge the gap between video and text modalities before feeding them into a 

transformer encoder. By exploiting cross-correlation, the modality attention module generates text-

conditioned visual features and video-conditioned textual features, facilitating a more effective 

alignment. Conversely, the contrastive loss serves the purpose of aligning the multimodal representation 

of the input with its corresponding caption. In contrast to previous state-of-the-art models, we apply this 

loss to the output of the multimodal transformer. 

 

8.3.2.2.1 Architecture 

In view of the success of transformers in several domains, recent methods use this architecture as both 

encoder and decoder to tackle video captioning. Under this framework, three main training paradigms 

are encountered in the literature.  

The share-type paradigm, illustrated in Figure 8.4 (a), includes Unicoder-VL [97], VL-BERT [98], 

UNITER [99], VideoBERT [100], and VideoAsMT [101]. In this case, the textual and visual modalities 

are fed into a single encoder that generates a unified representation. While computationally efficient, 

this approach suffers from modality entanglement due to the vast differences among various 

modalities [240]. This challenge stems from the fact that several modalities may interfere, particularly 

when there are numerous modalities and tasks involved [241]. It is challenging for a foundational model 

with a single module to strike a balance between the advantages of modality collaboration and the impact 

of modality entanglement across various modalities.  

The cross-type paradigm, illustrated in Figure 8.4 (b), includes models like ViLBERT [102] and 

LXMERT [103]. Within this framework, multiple separate encoders are used to accommodate to the 

different interactions between modalities. In contrast to the single-stream input in the share-type, the 

two-stream input allows for interactions between different modalities at various representation depths. 

The cross-type approach can be more computationally demanding due the use of several cross-encoders.  

Finally, the joint-type paradigm, illustrated in Figure 8.4 (c), is used by models such as SwinBert [242], 

UniVL [243] and MV-GPT [244]. This paradigm utilizes a two-stream input, similar to the cross-type 

architecture, allowing for effective capture of intra-modal features. However, in contrast to the cross-

type, the joint-type architecture incorporates a single encoder to capture inter-modal dependencies. This 

approach strikes a balance between computational efficiency and the capacity to capture modality-

specific features and interactions. For this reason, in our work we have also adopted the joint-type 

encoding paradigm.  
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(a) (b) (c) 

Figure 8.4. Various paradigms for video-text training. (a) Share-type; (b) Cross-type; and (c) Joint-type. 

There are several architectures that can be considered for the decoder component in video captioning 

models. One common approach is to use RNNs, which generate the caption word by word, in a 

sequential manner. This method has the advantage of being able to capture long-term dependencies 

between words, but can suffer from slow convergence and difficulty in modeling complex relationships 

between video and language [4]. More recently, several studies [100], [242]–[244] have explored 

transformer-based models for video captioning, which show promising results due to their ability to 

capture long-range dependencies and relationships between different modalities. We follow this line of 

work and use the attention mechanism to sequentially generate the caption. We use both the encoder 

hidden states and the previously generated words in the caption as supervisory signals for the attention. 

 

8.3.2.2.2 Training strategies 

In recent years, vision-language pre-training has gained considerable popularity within the research 

community [245]–[248]. This approach involves an initial phase where multimodal models are pre-

trained on extensive datasets in an unsupervised manner, followed by subsequent fine-tuning for specific 

downstream tasks (e.g. video captioning, action recognition, video question answering). Typically, the 

considered datasets comprise videos along with their associated transcripts, a resource that is abundantly 

available. These methods learn multimodal representations by formulating proxy tasks such as masked 

language modeling [243], [244], or vision-language matching [245], [246]. 

The paradigm of pre-training followed by fine-tuning for multimodal models is undeniably effective 

and has yielded remarkable results across various applications [111], [249]. However, it is essential to 

acknowledge that this approach comes with substantial resource requirements, primarily in terms of 

hardware, rendering it unfeasible for small-scale setups. This is particularly the case when considering 

multimodal models with billions of parameters, such as the GIT model [250], which has over 5 billion 

parameters and is pre-trained on 10.5 billion samples. Additional statistics for similar models can be 

found in  section 8.6.4. The resource-intensive demands penalize the adoption and deployment of such 

approaches in the case of applications where the computational resources are limited/constrained, most 

often for economical reasons. 

Within this context, let us note that pre-training undoubtedly enhances the model’s performances. Thus, 

comparing pre-trained models with models learnt from scratch is not entirely equitable. In our case, due 

to hardware constraints, we opt for an alternative strategy by forgoing pre-training altogether. Despite 

this, we demonstrate that competitive results can still be achieved. The proposed approach leverages the 

available resources efficiently, focusing on task-specific training without the need for massive pre-

training datasets or extensive computational power. This resource-aware approach not only makes 

multimodal modeling accessible to a wider range of users and applications but also highlights the 

potential for effective multimodal model development in resource-constrained environments. 
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8.3.3 Evaluation metrics 

Human evaluation of model performance, while highly valuable, poses challenges due to its resource-

intensive nature, time consumption, and potential subjectivity. Consequently, the deployment of 

automatic, objective evaluation tools is necessary. The validity of such evaluation metrics is correlated 

to their alignment with human judgement. An effective evaluation metric should deliver reliable results 

despite potential linguistic alterations in the text. Such alterations could include synonym substitution, 

the addition of redundant words, modification of word sequence, or the abbreviation of sentences, 

provided the semantic integrity of the original content remains unaltered. In this section, we review the 

most common evaluation metrics used in the literature including BLEU, ROUGE, and METEOR. 

 

8.3.3.1 BiLingual Evaluation Understudy (BLEU) 

The BLEU [151]metric quantifies the quality of machine-generated translations by determining the 

proportion of n-grams in the machine translation that overlap with human-generated reference 

translations. The BLEU[B@n] score is calculated using the following formula: 

 

𝐵𝐿𝐸𝑈[𝐵@𝑛] = 𝐵𝐹 × exp (∑𝑤𝑛 log 𝑝𝑛

𝑁

𝑛=1

) 
(8.1) 

where BF denotes the brevity penalty factor, 𝑝𝑛signifies the geometric mean of the modified n-gram 

precision up to length N, and 𝑤𝑛 represents the weight of the n-gram precision, with the sum of 𝑤𝑛terms 

normalized to 1. Let 𝑐𝑙 denote the length of the machine translation, and 𝑟𝑙 the length of the reference 

translation. The brevity penalty factor, 𝐵𝐹, in Eq.(8.1) is computed as follows: 

 
𝐵𝐹 = {

1           𝑖𝑓 𝑐𝑙 > 𝑟𝑙

𝑒
(1−

𝑟𝑙
𝑐𝑙
)
           𝑖𝑓 𝑐𝑙 ≤ 𝑟𝑙

 
(8.2) 

The BLEU[B@n] metric fundamentally relies on precision, without incorporating recall. This metric 

distinguishes words with synonymous meanings as separate entities, thereby penalizing even small 

variations in words. This limitation is mitigated by the METEOR metric, which tends to align more 

closely with human judgement due to its ability to recognize synonyms and consider recall in addition 

to precision. 

 

8.3.3.2 Recall-Oriented Understudy for Gisting Evaluation (ROUGE) 

The ROUGE-L [152](Recall-Oriented Understudy for Gisting Evaluation - Longest Common 

Subsequence) metric assesses the quality of a generated summary by comparing it to reference 

summaries. This comparison involves measuring the overlap of n-grams and word pairs between the 

machine-generated summary and the human-crafted reference summaries.  

The ROUGE-N variant calculates an n-gram recall between a system-generated summary and a 

collection of human-generated summaries, as described in the following equation: 

 
𝑅𝑂𝑈𝐺𝐸 − 𝑁 =

∑ ∑ 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑛 − 𝑔𝑟𝑎𝑚)𝑠∈𝑛−𝑔𝑟𝑎𝑚𝑠∈𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠

∑ 𝐶𝑜𝑢𝑛𝑡(𝑛 − 𝑔𝑟𝑎𝑚)𝑠∈𝑛−𝑔𝑟𝑎𝑚
 

(8.3) 

where n indicates the length of the n-gram, 𝐶𝑜𝑢𝑛𝑡(𝑛 − 𝑔𝑟𝑎𝑚), and 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑛 − 𝑔𝑟𝑎𝑚)  
respectively represent the maximum number of n-gram overlaps in a candidate summary and a set of 

reference summaries.  

The ROUGE metric is primarily recall-based, given that the denominator of the equation represents the 

total sum of the number of n-grams present in the reference summary. In Eq.(8.3) if more reference 
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summaries are included into the metric, the number of matching n-grams in the denominator increases. 

Each addition to the reference pool broadens the distinct summaries' space. ROUGE-N evaluates various 

facets of text summarization by modulating the type of reference added to the pool. The numerator of 

Eq.(8.3) aggregates all the reference summaries, granting more weight to matching n-grams that appear 

in multiple references. Thus, ROUGE-N rewards machine-translated summaries that share a greater 

number of words with the reference summaries. 

There exist several variations of the ROUGE metric. The ROUGE-L version uses a Longest Common 

Subsequence (LCS)-based F-Measure to establish the correlation between two text summaries A and B 

(where A is a reference summary and B is a model-generated summary). It calculates 𝑅𝐿𝐶𝑆, 𝑃𝐿𝐶𝑆, and 

𝐹𝐿𝐶𝑆 using the following formulas: 

 
𝑅𝐿𝐶𝑆 =

𝐴 + 𝐵

𝑎
 

(8.4) 

 
𝑃𝐿𝐶𝑆 =

𝐴 + 𝐵

𝑏
 

(8.5) 

 
𝐹𝐿𝐶𝑆 =

1 + 𝛾2𝑅𝐿𝐶𝑆𝑃𝐿𝐶𝑆
𝑅𝐿𝐶𝑆 + 𝛾

2𝑃𝐿𝐶𝑆
 

(8.6) 

where 𝐿𝐶𝑆(A,B) denotes the length of the LCS of summaries A and B, and 𝛾 =
𝑃𝐿𝐶𝑆

𝑅𝐿𝐶𝑆
. 

 

8.3.3.3 Metric for Evaluation of Translation with Explicit ORdering (METEOR) 

The METEOR [251] evaluation metric incorporates both precision and recall. Precision, denoted as P, 

is computed as the ratio of the number of unigrams in the machine-generated translation that correspond 

with those in the human-generated translation, over the total quantity of unigrams in the machine-

generated translation. Recall, denoted as R, is determined by the proportion of unigrams in the machine-

generated translation that overlap with those in the reference translation, over the aggregate amount of 

unigrams in the reference translation.  

The harmonic mean of precision and recall, 𝐻𝑚, is calculated as follows: 

 
𝐻𝑚 =

10𝑃𝑅

𝑅 + 9𝑃
 

(8.7) 

The METEOR penalty is computed as follows: 

 
𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 0.5 × (

#𝑐ℎ𝑢𝑛𝑘𝑠

#𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑
)3 

(8.8) 

The final METEOR score, 𝑀𝑠, is derived from the harmonic mean and the penalty, as expressed in the 

following equation: 

 𝑀𝑠 = 𝐻𝑚 × (1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) (8.9) 

This score reflects the intersection of precision and recall, thus offering a more balanced assessment of 

the translation quality, addressing both false positives (captured by precision) and false negatives 

(captured by recall). 
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8.4 Proposed video captioning architecture 

Figure 8.5 illustrates the synoptic scheme of the proposed approach, which comprises three fundamental 

elements: (1) the modality attention module, (2) the joint encoder and (3) the decoder. As a 

preprocessing step, we start by extracting the visual and textual embeddings.  

 

 

 

Figure 8.5. Overview of the proposed multi-modal architecture. 

 

8.4.1 Feature extraction 

The feature extraction process concerns the two components involved, which are the visual and textual 

(with both transcript and caption) data. 

 

8.4.1.1 Visual feature representation 

In order to acquire the visual representations, we utilize a uniform sampling approach to divide the video 

into N fixed length, non-overlapping clips of 16 frames each. The clips are then processed with the help 

of the S3D network [69], which is designed to learn robust video representations. Prior to use, the S3D 

model has been pre-trained on HowTo100M [137] with the MIL-NCE technique [194]. The feature 

activations before the final fully connected layer are extracted and we apply average pooling to generate 

a dv=1024-dimensional vector (the v subscript stands here for visual). Subsequently, a feed forward 

network that includes a linear projection, followed by the GeLU [195] activation function and layer 

normalization, is used to yield the final feature vector (of the same size dv). The resulting visual features 

are represented as a 𝑁 × 𝑑𝑣 matrix, denoted by 𝑉. Let us underline that the S3D model is used only as 

a backbone for feature extraction and its weights are subsequently frozen.  

A video transformer is further employed to effectively capture the dependencies between frames in video 

clips and learn the inherent temporal dynamics of video objects, actions, and scenes. This approach 

enables us to learn grounded visual features that are specifically optimized for the task of video 

captioning, without being restricted to pre-extracted features from external models. In addition, using a 

pre-extracted feature-based model with a transformer architecture can significantly reduce the 
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computational cost of training, as the S3D model can be pre-trained on large-scale video datasets and 

the transformer can be fine-tuned on a smaller dataset dedicated to video captioning.  

To take into account the dynamic dependencies between clips, we employ temporal attention on the 

feature vector V. Our approach is motivated by the observation that video data often contains redundant 

information, and only a limited number of clips contain discriminative information that is relevant for 

the video captioning task. For this reason, a multi-head temporal attention mechanism is applied on the 

visual descriptor V. For each attention head ℎ ∈ {1,  … ,  𝐻𝑣 } (where 𝐻𝑣 denotes the number of visual 

attention heads), we first compute the associated 𝑄𝑢𝑒𝑟𝑦ℎ
𝑉,  𝐾𝑒𝑦ℎ

𝑉  𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉 components defined as:  

 𝑄𝑢𝑒𝑟𝑦ℎ
𝑣 = 𝑉𝑊𝑞𝑢𝑒𝑟𝑦,ℎ

𝑣  ;  𝐾𝑒𝑦ℎ
𝑣 = 𝑉𝑊𝑘𝑒𝑦,ℎ

𝑣   (8.10) 

 𝑉𝑎𝑙𝑢𝑒ℎ
𝑣 = 𝑉𝑊𝑣𝑎𝑙𝑢𝑒,ℎ

𝑣  (8.11) 

where 𝑊𝑞𝑢𝑒𝑟𝑦,ℎ
𝑣 , 𝑊𝑘𝑒𝑦,ℎ

𝑣  and 𝑊𝑣𝑎𝑙𝑢𝑒,ℎ
𝑣  are three learnable matrices of size (𝑑𝑣 ×

𝑑𝑣

𝐻𝑣
).  

The visual temporal attention for a given attention head is computed as:  

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ

𝑣 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑢𝑒𝑟𝑦ℎ

𝑣(𝐾𝑒𝑦ℎ
𝑣)𝑇

√𝑑𝑣/𝐻𝑣
)𝑉𝑎𝑙𝑢𝑒ℎ

𝑣 
(8.12) 

where superscript T denotes the matrix transpose operator.  

The attention heads are then concatenated under the form of a (𝑁 × 𝑑𝑣) matrix, denoted by 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑣  

and globally gathering the visual representation. An additional projection is considered in order to obtain 

the final visual representation, denoted by 𝐹𝑣 and defined as: 

 𝐹𝑣 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑣𝑊𝑐𝑜𝑛𝑣𝑒𝑟𝑡
𝑣  (8.13) 

where 𝑊𝑐𝑜𝑛𝑣𝑒𝑟𝑡
𝑣  is a learnable matrix of size (𝑑𝑣 × 𝑑). This final operation performs the dimensionality 

conversion of the visual feature to a common dimension d that will also be used for the textual 

representation.  

 

8.4.1.2 Textual feature representation 

Concerning the textual data, we consider the audio transcript (if the audio channel includes speech) as 

well as the video captions.  

To obtain the audio transcript from the input video, we utilize the Whisper model [196] which is an ASR 

algorithm that exhibits human-level robustness in English speech recognition, even in the presence of 

background noise and reverberation.  

Whatever the source (audio transcript or caption), the textual data undergo a tokenization process using 

WordPieces [197], which segments the text into sub-words using a vocabulary of 𝑆𝑣𝑜𝑐 = 30,000 tokens. 

The tokenized sequences are fed into the BERT-based uncased model [116], which performs the 

embedding. As recommended in [116], the first token in the input sequence is represented as a dedicated 

[CLS] token, and the final one is represented by a so-called [SEP] token. To achieve equal length for all 

the tokenized text sequences, we expand the sentence using padding, with the help of the [PAD] token. 

Let us denote by M  the length of the padded tokenized sequences, which correspond to the maximal 

number of tokens that are allowed to appear in a given sentence. Let us also mention that a random 

masking of the tokens can also be considered. In this case, the input token is replaced by a dedicated 

token, denoted by [MASK].  

The BERT approach also employs a self-attention mechanism, yielding in output a (𝑀 × 𝑑𝐵𝐸𝑅𝑇) feature 

matrix, with 𝑑𝐵𝐸𝑅𝑇 = 768, corresponding to the activations of the last BERT layer.  
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The text embedding approach is applied on both transcript and caption data. Similarly to the visual 

component, the transcript feature matrix, is finally converted into a (𝑀 × 𝑑) matrix denoted by 𝐹𝑡, with 

d being the common dimension considered also for the visual representation. The caption feature matrix, 

denoted by 𝐹𝑐, does not require projection onto a space of common dimension (see its utilization in 

section 8.5.2) and thus remains of size   (𝑀 × 𝑑𝐵𝐸𝑅𝑇).  

Let us finally note that BERT encoder is fine-tuned separately for the transcript and the caption data.  

 

8.4.2 Modality Attention module 

Modeling visual and textual dynamics within and across modalities is a highly intricate task. To 

overcome such a challenge, we have developed a modality-attention module (Figure 8.6) that effectively 

captures both intra- and inter-modal relationships between the visual and audio transcript modalities. It 

is designed to bridge the gap between features 𝐹𝑣and 𝐹𝑡, which are generated from separate models 

trained on different tasks.  

 

 

Figure 8.6. The modality attention module. 

As we use real-life videos as input, in a majority of cases the feature vectors are not well-aligned. Figure 

8.7 illustrates some video examples with their respective transcripts. We observe that people tend to 

speak in a disorganized manner, and the key actions or events in the video do not necessarily correspond 

to the same segment of the input text.  
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Figure 8.7. Video samples from MSRVTT dataset for which the transcript and video data are not well-

aligned. 

The objective is to create an embedding space that makes semantically-related visual-textual pairs of 

features appear closer together than unrelated pairs. This will enhance the alignment between 𝐹𝑣and 𝐹𝑡, 
and enable better modeling of the interactions between visual and audio transcript data. To this purpose, 

we consider the cross-correlation matrix 𝑍𝑡,𝑣 : 

 𝑍𝑡,𝑣 = 𝐹
𝑡𝑊𝑡,𝑣𝐹

𝑣𝑇 (8.14) 

where 𝑊𝑡,𝑣 is a (𝑑 × 𝑑) learnable matrix and T denotes the transpose operator. 

A high coefficient in the correlation matrix 𝑍𝑡,𝑣 indicates a strong relationship between the 

corresponding visual and textual features. To create cross-correlation visual-transcript (resp. transcript-

visual) weights, we apply column-wise softmax over 𝑍𝑡,𝑣 (resp. 𝑍𝑡,𝑣
𝑇 ), as described in the following 

equations:   

 𝐹𝑡−𝑣 = 𝐹𝑡
 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑡,𝑣) (8.15) 

 𝐹𝑣−𝑡 = 𝐹𝑣𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑡,𝑣
𝑇) (8.16) 

 

This approach enables us to develop more distinctive and mutually constrained modality representations. 

To avoid information loss during the cross-correlation phase, we have considered a dense skip 

connection technique. This means that we add the reweighted features 𝐹𝑡−𝑣 and 𝐹𝑣−𝑡 to the original 

representation of each modality, and regularize the result with the help of a tanh function:  

 �̂�𝑡−𝑣 = 𝑡𝑎𝑛ℎ (𝐹𝑡−𝑣 + 𝐹𝑡) (8.17) 

 �̂�𝑣−𝑡 = 𝑡𝑎𝑛ℎ (𝐹𝑣−𝑡 + 𝐹𝑣) (8.18) 

 

The modality attention module addresses the alignment issue between modalities. In equation (8.14), 

the cross-correlation matrix encodes the relationships between video and text features learned by the 

model through the trainable parameter 𝑊𝑡,𝑣. Applying softmax to the matrix 𝑍𝑡,𝑣 enhances the 

discriminative power of the features. The model assigns higher weights to visual features when they 

exhibit strong correlations with textual features, and vice versa. This process potentially improves 

alignment between modalities. Specifically, it makes it possible to capture and emphasize the most 

salient correspondences between textual and visual elements. The resulting outcome, described in 

equations (8.15) and (8.16) , is used to reweight the input features based on their correlation with the 

other modality. Finally, the skip connection technique detailed in (8.17) and (8.18) enforces the 

preservation of modality-specific information while adding non-linearity to the model.  
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8.4.3 Transformer encoder 

In order to make the video and text fully interact, we design a transformer-based encoder. The transcript 

and visual features are first concatenated into a single global descriptor 𝐹 = [�̂�𝑡−𝑣  | �̂�𝑣−𝑡], which is a 

matrix of size  (𝑀 + 𝑁) × 𝑑. The transformer architecture does not include any recurrent connections, 

which means that the order of the input tokens (or of video clips for the visual component) is lost during 

the process. To overcome this limitation, a position embedding technique is integrated. It consist in a 

trainable look-up table, where the embedding of each position in the input sequence is learned during 

training. To this purpose, we have followed the approach suggested in [116], described in the following 

equation:  

 𝐸𝑝𝑜𝑠 = 𝑊𝑝𝑜𝑠(𝑝𝑜𝑠0, … , 𝑝𝑜𝑠𝑀+𝑁) (8.19) 

where 𝑊𝑝𝑜𝑠  of size (𝑀 + 𝑁) × 𝑑 is a lookup table, mapping the position index of each token 𝑝𝑜𝑠𝑖 onto 

its corresponding vector representation. 

In addition, a modality embedding is integrated, in order to differentiate between the visual and textual 

modalities: 

 𝐸𝑚𝑜𝑑 = 𝑊𝑚𝑜𝑑(0,…0⏟  
𝑀

, 1, , … ,1⏟    
𝑁

) (8.20) 

where 𝑊𝑚𝑜𝑑  of size 2 × 𝑑 is a lookup table, mapping the type of each modality (text: 0; video: 1) onto 

a vector representation. 

The input to the encoder is defined as the sum of all these three features: 

 ℱ0 = 𝐹 + 𝐸𝑝𝑜𝑠 + 𝐸𝑚𝑜𝑑 (8.21) 

 

Our encoder comprises a number of Lenc self-attention layers. Each layer l consists of Multi-Head Self-

Attention (MSA), layer normalization (LN) and Feed Forward Network (FFN). The considered layers, 

for 𝑙 ∈ {0,1,… , 𝐿𝑒𝑛𝑐 − 1}, are recursively computed as illustrated in Figure 8.8 and as described 

formally in the following equations:  

 ℱ𝑙
′ = 𝑀𝑆𝐴(𝐿𝑁(ℱ𝑙−1)) + ℱ𝑙−1 

(8.22) 

 ℱ𝑙 = 𝐹𝐹𝑁(𝐿𝑁(ℱ𝑙
′)) + ℱ𝑙

′ (8.23) 

 

The FFN consists of two linear projections separated by a GELU non-linearity [195].  
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Figure 8.8. Overview of the encoder architecture. (left) Encoder block. (right) multi-head self-attention 

mechanism. 

To enhance the model performance, we employ a multi-head attention mechanism, which splits the input 

into 𝐻𝑒𝑛𝑐 heads, allowing the model to attend to diverse parts of the input simultaneously. For each 

attention head ℎ ∈ {1,  … ,  𝐻𝑒𝑛𝑐}, we compute the attention sub-layers of the encoder as follows: 

 
𝐴𝑡𝑡ℎ,𝑙

𝑒𝑛𝑐(𝑄ℎ,𝑙
𝑒𝑛𝑐, 𝐾ℎ,𝑙

𝑒𝑛𝑐, 𝑉ℎ,𝑙
𝑒𝑛𝑐) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄ℎ,𝑙
𝑒𝑛𝑐 𝐾ℎ,𝑙

𝑒𝑛𝑐𝑇

√𝑑 𝐻𝑒𝑛𝑐⁄
)𝑉ℎ,𝑙

𝑒𝑛𝑐  
(8.24) 

 

Here, the queries 𝑄ℎ,𝑙
𝑒𝑛𝑐 = 𝐿𝑁(ℱ𝑙)𝑊𝑞𝑢𝑒𝑟𝑦,ℎ,𝑙

𝑒𝑛𝑐 , keys 𝐾ℎ,𝑙
𝑒𝑛𝑐 = 𝐿𝑁(ℱ𝑙)𝑊𝑘𝑒𝑦,ℎ,𝑙

𝑒𝑛𝑐  , and values 𝑉ℎ,𝑙
𝑒𝑛𝑐 =

𝐿𝑁(ℱ𝑙)𝑊𝑣𝑎𝑙𝑢𝑒,ℎ,𝑙
𝑒𝑛𝑐  represent linear projections of the multimodal input ℱ𝑙 and 𝑑 𝐻𝑒𝑛𝑐⁄  is a scaling factor 

used to address  the vanishing gradient issue.  

Finally, the MSA is computed as follows: 

 𝑀𝑆𝐴(𝐿𝑁(ℱ𝑙)) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴𝑡𝑡1,𝑙
𝑒𝑛𝑐 , . . , 𝐴𝑡𝑡Henc,𝑙

𝑒𝑛𝑐 )𝑊𝑙
𝑒𝑛𝑐 (8.25) 

where 𝑊𝑙
𝑒𝑛𝑐 represents the learnable linear projection matrix. 

The outputs of the various heads are concatenated and passed through a linear layer to obtain the final 

output ℱ𝑒𝑛𝑐 = ℱ𝐿𝑒𝑛𝑐−1
𝑒𝑛𝑐  of size (𝑀 + 𝑁) × 𝑑.   

 

8.4.4 Transformer decoder 

 

The objective of the decoder is to generate a caption 𝐶 = 𝐶(𝑥𝑣 , 𝑥𝑡) given the input video 𝑥𝑣 and 

transcript 𝑥𝑡 by maximizing the conditional probability 𝑝(𝐶|𝑥𝑣 , 𝑥𝑡). The caption C is represented as an 

ordered sequence of tokens 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝐿𝐶). The joint probability can be recursively decomposed 

as follows: 

 𝑝(𝐶 | 𝑥𝑣 , 𝑥𝑡) = 𝑝(𝑐1 | 𝑥𝑣 , 𝑥𝑡) × 𝑝(𝑐2 | 𝑐1, 𝑥𝑣 , 𝑥𝑡) × ⋯× 𝑝(𝑐𝐿𝐶  | 𝑐𝐿𝐶−1, … , 𝑐1, 𝑥𝑣 , 𝑥𝑡) (8.26) 
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During training, the decoder generates one token at a time, conditionally to the previously generated 

tokens. However, by adopting such an approach, the errors can propagate and accumulate over time. In 

order to overcome this difficulty, we use the teacher-forcing technique [252] where the ground truth 

caption is forced to be provided until a certain token, selected in a random manner. Solely beyond this 

token, the model is allowed to generate its own ones. This technique stabilizes the training and limits 

the propagation of errors notably made in the early stages of decoding.  

Formally, let 𝑦𝐶,𝑛 = (𝑡𝐶,1, … , 𝑡𝐶,𝑛 ) denote the sequence of decoded tokens up to token n. This sequence 

is iteratively providing new inputs 𝑌𝐶,𝑛  to the decoder, as described in the following equation:  

 ∀ 𝑛 ∈ {1,2,… , 𝐿𝐶} ,   𝑌
𝐶,𝑛 = 𝑑𝑝(𝐿𝑁(𝑒𝑚𝑏(𝑝𝑎𝑑(𝑦𝐶,𝑛)) + 𝐸𝑝𝑜𝑠

𝐶 )  (8.27) 

where 𝑑𝑝 is the droput layer, 𝐿𝑁 is the layer normalization, pad is the padding operator necessary to 

complete the 𝑦𝐶,𝑛 sequence up to length LC, 𝑒𝑚𝑏 is the embedding layer and 𝐸𝑝𝑜𝑠
𝐶  is the positional 

embedding of the caption.  

The transformer decoder consists in 𝐿𝑑𝑒𝑐 identical layers. Each layer l includes of a Masked-Multi-head 

Attention (MMA), layer normalization (LN), Multi-head Cross-Attention (MCA) and a Feed Forward 

Network.  

The first layer is initialized as: 

𝑌0
𝑐 = (𝑌𝑐,1, … , 𝑌

𝑐,𝐿𝐶) 

The subsequent layers, for 𝑙 ∈ {1,… , 𝐿𝑑𝑒𝑐 − 1}, are recursively computed as illustrated in Figure 8.9 

and as described formally in the following equations:  

 Y𝑙
′𝑐 = 𝑀𝑀𝐴(𝐿𝑁(Y𝑙−1

𝑐 )) + Y𝑙−1
𝑐  (8.28) 

 Y𝑙
"𝑐 = 𝑀𝐶𝐴(𝐿𝑁(Y𝑙

′𝑐), 𝐿𝑁(ℱ𝑒𝑛𝑐)) + Y𝑙
′𝑐 (8.29) 

 
Y𝑙
c = 𝐹𝐹𝑁 (𝐿𝑁 (Y𝑙

"𝑐)) + Y𝑙
"𝑐 

(8.30) 

 

 

Figure 8.9. Overview of the decoder architecture. 
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The Masked Multi-head Attention mechanism represents a modification of the self-attention 

mechanism, consisting in a masking procedure whose goal is to prevent the decoder from attending 

future positions during training. This ensures the autoregressive property of the decoder, which is forced 

to get access solely to the tokens that precede the current position. The masking is achieved by setting 

the attention scores of future positions to a very large negative value. This ensures that the softmax 

operation applied to the attention scores assigns a probability close to zero to the future positions, thus 

effectively blocking their influence on the current position’s representation. Formally, for each masked 

attention head ℎ ∈ {1,  … ,  𝐻𝑑𝑒𝑐} and for each layer l, we compute the masked attention (MAtt) as: 

 
𝑀𝐴𝑡𝑡ℎ,𝑙

𝑑𝑒𝑐(𝑄ℎ,𝑙
𝑀𝑀𝐴, 𝐾ℎ,𝑙

𝑀𝑀𝐴, 𝑉ℎ,𝑙
𝑀𝑀𝐴) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄ℎ,𝑙
𝑀𝑀𝐴 𝐾ℎ,𝑙

𝑀𝑀𝐴𝑇

√𝑑 𝐻𝑑𝑒𝑐⁄
+ Λ)𝑉ℎ,𝑙

𝑀𝑀𝐴  
(8.31) 

where the queries 𝑄ℎ,𝑙
𝑀𝑀𝐴 = 𝐿𝑁(Y𝑙

c)𝑊𝑞𝑢𝑒𝑟𝑦,ℎ,𝑙
𝑀𝑀𝐴 , the 𝐾ℎ,𝑙

𝑀𝑀𝐴 = LN(Y𝑙
c)𝑊𝑘𝑒𝑦,ℎ,𝑙

𝑀𝑀𝐴  , the values 𝑉ℎ,𝑙
𝑀𝑀𝐴 =

𝐿𝑁(𝑌𝑙
𝑐)𝑊𝑣𝑎𝑙𝑢𝑒,ℎ,𝑙

𝑀𝑀𝐴  represent linear projections of the decoder input 𝑌𝑙
𝑐. Here, Λ is the masking matrix 

of size 𝐿𝐶 × 𝐿𝐶. It is constructed such that the upper triangular portion (including the main diagonal) is 

filled with negative infinity values, and the lower triangular portion is filled with zeros.  

We employ multi-head masked attention, and we concatenate the outputs of different heads as follows: 

 𝑀𝑀𝐴(𝐿𝑁(Y𝑙
c)) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑀𝐴𝑡𝑡1,𝑙

𝑑𝑒𝑐 , . . , 𝑀𝐴𝑡𝑡
𝐻𝑑𝑒𝑐,𝑙
𝑑𝑒𝑐 )𝑊𝑙

𝑀𝑀𝐴 (8.32) 

where 𝑊𝑙
𝑀𝑀𝐴 represents the learnable linear projection matrix.  

Let us underline that during inference, the masked multi-head-attention is similar to the self-attention as 

the model does not have access to the future positions.  

 

Figure 8.10.Multi-head Cross Attention process. 

The second attention sub-layer is a Multi-Head Cross Attention (MCA), illustrated in Figure 8.10 and 

computed as follows:  

 𝑄ℎ,𝑙
𝑀𝐶𝐴 = 𝐿𝑁(Y𝑙

′𝑐) 𝑊𝑞𝑢𝑒𝑟𝑦,ℎ,𝑙
𝑀𝐶𝐴 ;  (8.33) 

 𝐾ℎ,𝑙
𝑀𝐶𝐴 = 𝐿𝑁(ℱ𝑒𝑛𝑐)𝑊𝑘𝑒𝑦,ℎ,𝑙

𝑀𝐶𝐴  (8.34) 
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 𝑉ℎ,𝑙
𝑀𝐶𝐴 = 𝐿𝑁(ℱ𝑒𝑛𝑐)𝑊𝑣𝑎𝑙𝑢𝑒,ℎ,𝑙

𝑀𝐶𝐴  (8.35) 

where 𝑊𝑞𝑢𝑒𝑟𝑦,ℎ,𝑙
𝑀𝐶𝐴 , 𝑊𝑘𝑒𝑦,ℎ,𝑙

𝑀𝐶𝐴 ,𝑊𝑣𝑎𝑙𝑢𝑒,ℎ,𝑙
𝑀𝐶𝐴  of size 𝑑 × 𝑑 𝐻𝑑𝑒𝑐⁄  are learnable matrices. The cross attention 

𝐶𝐴𝑡𝑡ℎ,𝑙
𝑑𝑒𝑐 is computed as follows:  

 
𝐶𝐴𝑡𝑡ℎ,𝑙

𝑑𝑒𝑐(𝑄ℎ,𝑙
𝑀𝐶𝐴, 𝐾ℎ,𝑙

𝑀𝐶𝐴, 𝑉ℎ,𝑙
𝑀𝐶𝐴) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄ℎ,𝑙
𝑀𝐶𝐴 𝐾ℎ,𝑙

𝑀𝐶𝐴𝑇

√𝑑 Hdec⁄
)𝑉ℎ,𝑙

𝑀𝐶𝐴  
(8.36) 

 

The outputs of the different cross attention heads are then concatenated and projected using a learnable 

matrix 𝑊𝑙
𝑀𝐶𝐴 as follows:  

 𝑀𝐶𝐴(𝐿𝑁(Y𝑙
′𝑐), 𝐿𝑁(ℱ𝑒𝑛𝑐)) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝐴𝑡𝑡1,𝑙

𝑑𝑒𝑐 , . . , 𝐶𝐴𝑡𝑡
𝐻𝑑𝑒𝑐,𝑙
𝑑𝑒𝑐 )𝑊𝑙

𝑀𝐶𝐴  (8.37) 

 

The output of the final layer 𝑌
𝐿𝑑𝑒𝑐
𝑐   is used to determine the decoded token n as follows: 

  𝑡𝐶,𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌
𝐿𝑑𝑒𝑐
𝑐 𝑊𝑑𝑒𝑐) (8.38) 

using the learnable matrix 𝑊𝑑𝑒𝑐and use the softmax function to compute the probability the token. 

During inference, the model does not have access to the ground truth. Using the predicted output from 

previous time step can lead to a compounding error problem, where even small errors in the prediction 

can accumulate and result in poor performance. Therefore, we use the beam search  decoding strategy 

to mitigate this problem. It is a heuristic algorithm that generates output sequences by keeping only the 

K most probable candidates at each step. Formally, at each time step n the decoder computes the 

probability distribution over the entire vocabulary for the next token as 𝑝(𝑐𝑛 | 𝑐𝑛−1, … , 𝑐1, 𝑥𝑣 , 𝑥𝑡).  Then 

we select the K candidates with the highest probabilities. For each candidate, the process is continued 

until an end token is generated or the maximum length is reached. Among all the generated candidates, 

the caption with the highest global probability is selected as output. 

 

8.5 Training objectives 

Three training objectives are considered to optimize the model: (1) masked language modeling, (2) 

contrastive learning and (3) caption generation.  

 

8.5.1 Masked Language Modeling 

Similar to BERT, we also randomly replace 15% of the tokens in the sentence with the special token 

[MASK], and then generate the masked tokens given the known tokens and video input. The  Masked 

Language Modeling (MLM) loss function is defined as the cross-entropy loss between the predicted 

probability distribution over the vocabulary and the true distribution for each masked token: 

 

ℒ𝑀𝐿𝑀 = − ∑ ∑𝑦𝑖𝑗 log (𝑝𝑖𝑗)

𝑆𝑣𝑜𝑐

𝑗=1

𝑆𝑚𝑎𝑠𝑘

𝑖=1

 

(8.39) 

Here, 𝑆𝑚𝑎𝑠𝑘 is the number of masked tokens, 𝑆𝑣𝑜𝑐  is the size of the vocabulary, 𝑦𝑖𝑗  is the true probability 

of the j-th token for the i-th masked position and 𝑝𝑖𝑗  is the predicted probability of the j-th token for the 

i-th masked position. 
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8.5.2 Contrastive learning 

Our goal is to create a system that can match a video 𝑥𝑣 and transcript 𝑥𝑡 to their correct caption 𝐶 by 

calculating the dot product of their respective embeddings. We want to assign to incorrect captions a 

large distance, meaning that the dot product between their corresponding embeddings should be small.  

Formally, we start by extracting the multimodal representation of the (video, transcript). We follow 

[188], and consider as a global representation of the multimodal input the embedding ℱ𝑒𝑛𝑐[𝐶𝐿𝑆] of the 

[CLS] token, which appears on the first position of the feature matrix ℱ𝑒𝑛𝑐 = {ℱ𝑒𝑛𝑐1 =

ℱ𝑒𝑛𝑐[𝐶𝐿𝑆], ℱ
𝑒𝑛𝑐

2, … , ℱ
𝑒𝑛𝑐

𝑀+𝑁}. The global video-transcript representation is computed as:  

 ℱglobal = 𝑑𝑝( ℱ[𝐶𝐿𝑆]𝑊𝑔𝑙𝑜𝑏𝑎𝑙 + 𝑏𝑔𝑙𝑜𝑏𝑎𝑙), (8.40) 

where 𝑊𝑔𝑙𝑜𝑏𝑎𝑙 of size 𝑑 × 𝑑 and 𝑏𝑔𝑙𝑜𝑏𝑎𝑙 of size 𝑑 are learnt during training. We denote by 𝑓(𝑥𝑣 , 𝑥𝑡) the 

function that associates a pair of video 𝑥𝑣 and transcript 𝑥𝑡 to their global representation ℱglobal . 

Similarly, we extract the global representation of the caption embedding 𝐹𝐶𝐿𝑆
𝐶  (cf. Section  8.4.1.2) and 

project it as follows: 

 𝐹global 
𝑐 = 𝑑𝑝(𝐹𝐶𝐿𝑆

𝐶 𝑊global 
𝑐 + 𝑏global 

𝑐 ), (8.41) 

where matrix 𝑊global 
𝑐  of size 𝑑𝐵𝐸𝑅𝑇 × 𝑑 and vector 𝑏global 

𝑐  of size 𝑑 are learnt during training. Let us 

denote by 𝑔(𝐶) the function that associates the caption 𝐶 to its global representation 𝐹global 
𝑐 .  

The contrastive loss is then computed as: 

 

ℒ𝐶𝑜𝑛𝑡 = 𝑚𝑎𝑥
𝑓,𝑔

∑ 𝑙𝑜𝑔 

(

 
 𝑒

𝑓(𝑥𝑣𝑖,,𝑥𝑡𝑖)
𝑇
.𝑔(𝑐𝑖)

𝑒
𝑓(𝑥𝑣𝑖 ,𝑥𝑡𝑖)

𝑇
𝑔(𝑐𝑖) +∑  

(𝑥𝑣𝑗 ,𝑥𝑐𝑗 ,𝑐𝑗) ∈ 𝑁𝑖
  𝑒𝑓(𝑣𝑗,𝑡𝑗)

𝑇
.𝑔(𝑐𝑗)

)

 
 

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

𝑖=1

 

(8.42) 

Here, given a positive triplet of index 𝑖 in the batch (𝑥𝑣𝑖 , 𝑥𝑡𝑖 , 𝑐𝑖) of (video, transcript, caption), we 

construct the negative set 𝑁𝑖 of negative triplet by concatenating incorrect captions 𝑐𝑗 within the training 

batch to the (video, transcript) pair (𝑥𝑣𝑖 , 𝑥𝑡𝑖) as (𝑥𝑣𝑖 , 𝑥𝑡𝑖 , 𝑐𝑗) with 𝑐𝑗 ≠ 𝑐𝑖. 

 

8.5.3 Caption generation 

The decoder loss measures the difference between the predicted caption and the ground truth caption 

using cross-entropy as follows: 

 

ℒdecoder = −∑  log  𝑃(𝑐𝑛 ∣ 𝑐1, … , 𝑐𝑛−1, 𝑥𝑡 , 𝑥𝑣)

𝐿𝐶

𝑛=1

 

(8.43) 

The final loss function considered for our model is simply defined as the sum of all these three 

components: 

 ℒmodel = ℒMLM + ℒCont + ℒdecoder  (8.44) 

 

8.6 Experiments and results 

The experimental evaluation has been carried out on the publicly available dataset MSRVTT [2], 

described in the following section.  
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8.6.1 Dataset 

The MSRVTT (Microsoft Research Video to Text) dataset is widely used for benchmarking video 

captioning methods. It spans over 20 domains, including sports, news, education, and how-to videos. 

The dataset comprises 10,000 video clips, with an average length of 20 seconds, and 200,000 natural 

language descriptions, which have been collected from crowd-workers, ensuring diverse and human-

like language expressions. The videos have been crawled from YouTube, contributed by internet users, 

and thus correspond to real-life situations.  

The MSRVTT dataset raises several challenges, such as recognizing objects, actions, and scenes, as well 

as understanding the context and generating semantically meaningful captions. Additionally, it is worth 

noting that the MSRVTT dataset comprises videos with both visual and audio modalities, which adds 

an extra level of complexity to the task of generating captions. Nevertheless, around 20% of the videos 

in the dataset have no audio channel, while others have non-English audio, making the task even more 

challenging with sparse modalities. 

 

(a) 

 

(b) 

Figure 8.11. (a) Sample requiring both transcript and visual modalities for caption generation. (b) 

Sample requiring visual cues only. 

In order to study the effect of each modality on the performance of the model, we have manually 

annotated two distinct subsets. The first subset, labeled as "vision and text" (534 samples), encompasses 

videos where both the visual features and transcript information contribute to the video captioning task. 

For example in Figure 8.11.(a), the transcript helps identifying specific ingredients such as oil type, 

difficult to discern solely from visual modality.  The second subset, called the "vision only" (663 

samples) subset, comprises videos where the task can be accomplished solely through visual cues. Some 

of these videos include silent or non-English speaking videos, where the transcript modality cannot be 

provided. Similarly, videos featuring sports or other activities that emphasize visual actions can be 

categorized in this subset. An example is illustrated in Figure 8.11.(b), the transcript represent the lyrics 

of music in the video and is not correlated to the caption. We study the performance of our model on 

these subsets to better understand the role of the transcript information in video captioning.  

... 

“You can just put all of the potato slices into a big bowl. 

Next, add in three tablespoons of olive oil. I'm using 

extra virgin olive oil.” 

Caption 

A woman is cooking 

sliced potatoes with 

olive oil. 

... 

“Let me see eyes I'm standing still, I can't move, I'm feeling 

paralyzed. Let your worries go, this is complicated as time 

moves on and on” 

Caption 

Someone is skiing 

down a hill and falls. 
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8.6.2 Implementation details 

In the pre-processing stage, the videos are divided into 𝑁 = 48 uniformly sampled clips. The clips are 

then processed with the help of the S3D model. Next, the transformer encoder is applied, with 6 layers 

to capture the sequential information in the 3D feature. Each block consist of 𝐻𝑣 = 12 attention heads 

and a hidden size of 𝑑𝑣 = 1024.  

Regarding the transcript, we utilize the Whisper ASR model to extract the speech from the video. Our 

initial findings indicate that the quality of the ASR model has a notable influence on the overall 

performance. We apply the Whisper model on the entire video rather than on individual clips, as people 

commonly mention key objects or actions before or after they are shown in the video (Figure 8.7). We 

set the maximum number of tokens in a given phrase to M=48.   

The model includes a 2-layer transformer encoder and a 3-layer transformer decoder, both consisting of 

12 attention heads and a hidden size of d = 768. To accelerate the training process, we initialize the 

encoder and decoder weights with the pre-trained weights proposed by the model in [6]. The training 

process is conducted using 2 NVIDIA GeForce RTX 2080 GPUs over a period of 20 epochs, taking 4 

days to complete. We use a linear learning rate schedule with a warm-up strategy, employing an initial 

learning rate of 1e-5. To overcome the limited GPU memory, we use the gradient accumulation 

technique [252] with 16 steps in conjunction with a batch size of 256. This technique effectively 

increases the batch size and allows us to update the model's parameters with fewer samples, without 

sacrificing the accuracy of the gradient estimation. The final model is selected according to the best 

performance obtained on the validation set. 

 

8.6.3 Ablation study 

We have conducted an ablation study in order to determine the significance of each component within 

the framework. The study compares several combinations to evaluate their relative performances. More 

precisely, Table 8.1 reports the evaluation results obtained for the following methods:  

 text only, which used only text as input, trained with the transformer encoder and decoder. 

 video only, which used only video as input, also trained with the transformer encoder and 

decoder.  

 video-text, which used both video and text as input but did not employ the modality-attention 

module.  

 MAM, which adds the modality attention module (MAM) to the former. 

 MAM+init, which uses the initialization of the encoder and decoder weights from the model in 

[6]. 

 MAM+Cont, which is trained with all objectives from scratch on MSRVTT, including the 

contrastive loss with caption as input. 

 MAM+Cont+init, which initializes the encoder and decoder weights using those of [6] and 

includes both modality-attention and contrastive loss objective techniques. We denote this 

complete architecture by CapVT. 

 

Table 8.1. Ablation studies on MSRVTT dataset 

Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE 

Text only 0.6682 0.4684 0.33 0.2299 0.2087 0.4850 

Video only 0.7643 0.6225 0.4878 0.3666 0.2637 0.5825 

Video-text 0.7723 0.6456 0.5073 0.3782 0.2674 0.5881 
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MAM 0.7752 0.6507 0.5250 0.3972 0.2754 0.5987 

MAM+Init 0.7909 0.6612 0.5320 0.4104 0.2803 0.6001 

MAM+Cont 0.7979 0.6676 0.5373 0.4191 0.2893 0.6087 

MAM+Cont+Init 0.8417 0.6784 0.5792 0.4408 0.3082 0.6291 

 

The following evaluation metrics are retained to evaluate the performance of the models: BLEU (1-4) 

[151], METEOR  [251] and ROUGE [152] (see 8.3.3). All scores range between 0 and 1, with higher 

values indicating better performances.  

The ablation study results demonstrate that the complete  CapVT model (MAM+Cont+init) outperforms 

other models with a BLEU4 score of 0.4408, indicating the importance of our training choices.  

Pre-training the model on external large datasets can be beneficial, but this is often computationally 

expensive and requires significant hardware resources. To address this issue, we have used transfer-

learning techniques to initialize the weights of our transformer encoder and decoder, which allowed us 

to leverage the knowledge learned from a larger dataset while reducing the computational load. This is 

observed with an improvement in performance of 1.2% and 2.17% for BLEU4 when comparing MAM 

to MAM+Init and MAM+Cont to CapVT, respectively. The study also highlights the importance of the 

contrastive loss objective in improving captioning quality, as removing it leads to a significant drop in 

performance (2.19% in terms of BLEU4). Additionally, incorporating textual information is crucial for 

generating accurate captions, as evidenced by the lower score achieved when only the video modality is 

considered. Finally, the results indicate that the visual modality is more informative than the textual one 

as we achieve better results when feeding only the visual modality as compared to feeding only the 

textual modality. 

As part of our study, we also investigate how the quality of the generated captions is affected by different 

input modalities. For this purpose, we selected the first three baselines: text-only model, video-only 

model and video-text model. We have deliberately excluded the other models that employ additional 

strategies such as modality attention or contrastive loss. Our primary objective here is to solely examine 

the impact of the input modality on the model’s performance. 

Table 8.2. Performance comparison (BLEU4) across models using different input modalities on two 

subsets 

Model Vision-Only 

subset 

Vision-text subset 

Text-only model 0.1671 0.3247 

Video-only model 0.3241 0.3051 

Video-text model 0.3556 0.4192 

 

We have assessed the performance of each baseline on videos that require only the visual modality to 

generate captions and those that require both visual and textual modalities. However, it was not feasible 

to label videos that require only textual modality in the MSRVTT dataset as certain information, such 

as key objects/persons can only be perceived through visual cues and not through text. We have 

randomly selected 1179 test samples and manually labeled them as either "vision-only" (663 samples) 

or "vision and text" (534 samples) to evaluate the performance of each baseline model on these different 
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types of videos. Table 8.2 shows the performance comparison in terms of BLEU4 of the three models 

trained with different input modalities. The evaluation has been performed on the two subsets of samples 

that require either only visual modality or both visual and textual modalities to generate captions. The 

following conclusions can be drawn: (1) The effectiveness of video captioning models is heavily 

influenced by the input modalities. The different performances obtained on the two subsets underscore 

the significance of the dataset's modality composition. (2) The text-only model struggles to generate 

captions from visual content alone with a low score of 0.1671. (3) The video-only model performs well 

in a vision-only context, and may benefit from leveraging textual cues when available. Thus, adding the 

textual modality as input improves the performance with 11% on the vision-text subset. (4) The video-

text model consistently outperforms the models relying on a single modality on the two subsets. This 

observation underscores the significance of multimodal approaches in video captioning. The ability to 

seamlessly integrate visual and textual information results in enhanced caption quality, making the 

model versatile and well-suited for real-world applications where both modalities are accessible. 

 

8.6.4 Comparison with state of the art  

To facilitate a meaningful comparison between our work and previous state-of-the-art models in the 

context of video captioning, we have examined key statistics pertaining to these models. Specifically, 

we have compiled comprehensive data encompassing model size (number of parameters), the scale of 

pre-training samples, hardware infrastructure employed (GPU/TPU), and the training duration. The 

detailed findings of this analysis are presented in Table 8.3, drawing from information extracted from 

the respective authors' publications and the survey introduced in [111].  

 

Table 8.3. Statistics of video captioning models. PT stands for Pre-Training. x stands for unknown . 

Method Size PT data scale  
Hardware 

(GPUs/TPUs) 

Training time 

m-PLUG2 

[245] 

600M 766M 16 NVIDIA A 

100 GPUs 

- 

GIT [250] 681M 800M x NVIDIA A100 - 

GIT2 [250] 5.1B 10.5B x NVIDIA A100 - 

CLIP-DCD 

[248] 

425M 400M - - 

VAST [246] 1.3B 324M 64 Tesla V100 - 

VideoCoca 

[247] 

2.1B 144M 128 CloudTPU v4 6 hours 

UniVL [243] 198M 136M 8 NVIDIA Tesla 

V100 GPUs 

14 days 

OA-BTG 

[226] 

- No PT  - - 

VideoAsMT  

[101] 

286M 136M - - 

SwinBert 

[242] 

198M No PT Nvidia V100 

GPUs 

- 
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OpenBook  

[253] 

- No PT - - 

CapVT 198M No PT 2NVIDIA 

GeForce2080 

GPUs 

4 days 

 

For a fair comparison, we have retained models that are comparable to ours, including OA-BTG [226], 

VideoAsMT [101], SwinBert [242], and OpenBook [253]. Additionally, we have retained the UniVL 

[243] model, as we leveraged its weights to initialize the encoder and decoder parameters in our own 

approach. This approach aims to deliver a comprehensive and equitable evaluation of our method in 

relation to its peers, thus establishing a clear understanding of its performance within a defined resource 

context.  

Table 8.4 presents a comparison of CapVT with the retained models on the MSRVTT dataset. CapVT 

outperforms previous methods by a significant margin of 1.28%, 1.52%, and 1.21% in terms of BLEU4, 

METEOR, and ROUGE, respectively. Notably, even our model without encoder-decoder initialization 

(MAM+Cont)  achieves comparable results, highlighting the effectiveness of modality fusion using 

modality attention and the importance of caption information in guiding the training. We anticipate that 

further improvements can be achieved by integrating a vision-language, end-to-end pre-training phase 

on the whole model. The results obtained demonstrate the pertinence of the CapVT model and its 

potential for achieving superior performance in video captioning tasks. 

 

Table 8.4. Comparison with state of the art.  

Method BLEU4 METEOR ROUGE 

OA-BTG [226] 0.4140 0.2820 - 

VideoAsMT [101] 0.417 0.285 - 

UniVL [243] 0.4179 0.2894 0.6087 

SwinBert [242] 0.419 0.299 0.621 

OpenBook [253] 0.428 0.293 0.617 

MAM+Cont 0.4191 0.2803 0.6087 

CapVT 0.4408 0.3082 0.6291 

 

 

8.6.5 Qualitative results 

Some examples of results obtained on MSRVTT are illustrated in Figure 8.12, Figure 8.13 Figure 8.14. 

The results indicate that the quality of the predicted captions is affected by various factors, including the 

availability of audio and visual information, the complexity of the content and the accuracy of the ASR.  

When the transcripts are pertinent (with salient words represented in purple in Figure 8.12), combining 
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textual and visual modalities leads to a precise captioning. In contrast, in the absence of the audio (Figure 

8.14) or more generally when the transcript channel is not coherent with the content (transcripts 

represented in red in Figure 8.13), the predictions rely only on visual clues and may not be as 

informative. In general, the accuracy of the predicted captions is largely influenced by the type and 

quality of the input data. In all cases, incorporating multimodal approaches can enhance the precision 

of the predictions. 
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ASR: When planning on going for a jog, be sure to lock the front swivel wheel and use the tether strap 

for maximum safety. A quick release trigger fold also makes this stroller easy to fold. 

GT: A person is demonstrating the flexibility of a movement assistance device 

Prediction: A woman is demonstrating how to use a stroller 

 
 

ASR:  What's up everybody, how are you all doing? Today I'm going to teach my puppy how to sit 

down. So let's check out how to teach my puppy, how to teach him to sit. Make sure you're gonna grab 

a good treat. 

GT: A bald man with orange sunglasses tries to teach his puppy to sit down 

Prediction:  A man is talking about how to teach a puppy how to sit down 

 
 

ASR:  And now, on behalf of everyone involved in the research and development of the FPT, I want to 

thank you for your expressed confidence in our product and for allowing us to share in your efforts to 

improve your feminine health.  

GT:  A middle aged woman encourages you to use her product to increase your feminine health 

Prediction:   A middle aged woman encourages you to use her product to increase your feminine health. 

 
 

ASR: One of the downsides of Apple Pay is that you really can't use it at a lot of places. Apple says 

that it has agreements with 220,000 store locations. That sounds like a big number, but it's really just 

5.5% of all retail locations. 

GT:  A reporter in black coat discussing the down sides of apple pay 

Prediction:  A man in a suit is talking about apple pay 

Figure 8.12. Qualitative results from MSRVTT dataset. Samples requiring both textual and visual 

modalities to generate the caption.  
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ASR:  Um, so. About the what the hell is gonna happen here. I honestly don't know, but we're just gonna 

fly over here, figure it out! Blow up! Drop your bomb! I really did a good job there, I think 

GT:  Gameplay footage of someone playing a game 

Prediction:  A person is playing a video game 

 

 
 

ASR: I bring it in when I got you some courtesy you gotta know You are so respectable You are so 

respectable You are so respectable 

GT:  There are some women dancing on the floor with music 

Prediction:   A group of people are dancing in a gym 

 

 
 

ASR: I don't know if you can see the velveteros. I want to see what it looks like. We're coming. You're 

hungry. You're hungry. I'm hungry. 

GT:  A girl is playing the sims 

Prediction:    A person is playing a video game 

 

Figure 8.13.Qualitative results from MSRVTT dataset. The ASR is not aligned with the content of the 

video. 
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ASR: ø 

GT:  A girl and two men posing for a photo 

Prediction:   A still image of a man and a woman are shown 

 

 
ASR: ø 

GT:  A man is dicing an onion very quickly 

Prediction:   A person is slicing a red onion 

 

 
 

ASR: ø 

GT:  A 360 degree view of an Audi car 

Prediction:  A car is shown 

 

Figure 8.14. Qualitative results from MSRVTT dataset. Samples with no audio channel. 

 

 

8.7 Conclusion 

In this work, we have introduced CapVT, a novel architecture that efficiently exploits and combines rich 

information from both visual and transcript modalities for multimodal video captioning. The proposed 

modality-attention module and contrastive learning technique makes it possible to enhance the 

representation of inter-modal relationships, leading to a new state-of-the-art performance on the 

MSRVTT dataset with respect to various evaluation metrics. The proposed model achieves a BLEU4 

score of 0.4408, a METEOR score of 0.3082, and a ROUGE score of 0.6291 representing an 

improvement of 1.28%, 1.52%, and 1.21% respectively with respect to the state of the art. Our 

comprehensive study of each training strategy demonstrates the effectiveness of the CapVT model and 

its potential for achieving superior performance in the video captioning task. Furthermore, the study of 
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the effect of the input modalities involved highlights the effectiveness of our training strategies in 

improving the model's ability to generate accurate captions that rely on both text and visual information.  

We have also found that the performance gain strongly depends on the nature of the data in different 

categories. This indicates a need for further research to develop more effective training methods that 

can take into account in a fine-grained manner the data characteristics of various categories. Future work 

could explore pre-training on larger datasets to further improve the performance of our approach. Large-

scale pre-training allows the model to learn and capture the intricate correlations and interactions 

between different modalities. It facilitates the comprehension of complex multimodal patterns which 

may not be discernible in smaller, more constrained datasets. Another potential avenue can be the 

exploration of knowledge-augmented models. External knowledge sources can enhance the contextual 

understanding of video content, improve caption accuracy, and ensure domain relevance. They offer 

potential solutions to handle ambiguous or limited sensory cues, adapt to evolving content, and reduce 

biases. While knowledge-enhanced NLP models are widely studied, the exploration of knowledge-

enhanced vision and multimodal models is a relatively uncharted territory, presenting an exciting 

opportunity for further research. 
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9 CONCLUSION AND PERSPECTIVES 
 

9.1 Conclusion 

This thesis represents a comprehensive exploration of the challenges faced by documentalists at France 

TV and the innovative application of deep learning techniques to enhance their workflows and improve 

the quality and consistency of their work. The research spans a wide spectrum of tasks, from unimodal 

models for landmark recognition, camera motion estimation, and scene identification to advanced 

multimodal models for tasks such as video question answering and video captioning.  

Our first contribution in this research is centered around the development of a data-driven approach for 

classifying shots based on the type of camera motion. This problem is critical in the field of multimedia 

analysis, as it enables the automatic identification and categorization of shots in video content, which 

can have a profound impact on video production, content indexing, and user experience enhancement. 

To achieve this, we implemented a novel model based on 3D convolutional neural networks with 

residual blocks. These architectural choices were inspired by the success of similar techniques in action 

recognition. One of the key challenges we faced in this task was the scarcity of data specifically tailored 

to camera motion classification. To overcome this limitation, we employed a transfer-learning approach. 

We initiated our model's training on the Kinetics action recognition dataset, even though its content 

seemed unrelated to our immediate purpose. Interestingly, we found that the derived feature maps from 

this dataset contained essential spatio-temporal cues that could be exploited for our task. Moreover, our 

research introduced a semi-automatic method for dataset construction, which reduced the human 

intervention required for annotating and curating the data. Our model achieved an accuracy rate of 94% 

highlighting its effectiveness. 

Our second contribution addresses the task Video Question Answering. One of the primary challenges 

in building a VideoQA model lies in the fundamental heterogeneity between the visual and textual 

modalities, as well as the inherent quadratic complexity of transformers. To overcome these challenges, 

we introduced a framework that integrates a lightweight transformer with a cross-modality module. The 

latter serves as a bridge between the visual and textual aspects of the task, facilitating the mutual learning 

of text-conditioned visual features and video-conditioned textual features. To test the robustness of our 

model, we introduced an adversarial testing scenario that involved rephrased questions, a reflection of 

the linguistic variations that occur in practical VideoQA applications. This test highlighted the 

adaptability of our model in handling diverse forms of input questions, showcasing its real-world 

applicability. The empirical evaluation of our model was conducted on the MSVD-QA and MSRVTT-

QA benchmark datasets, achieving accuracy rates of 44.96% and 41.88%, respectively. These scores 

surpassed those of state-of-the-art methods and validated the efficacy of our proposed methodology. 

Finally, we have tacked the challenge of video captioning. We introduced a novel framework known as 

CapVT, a multimodal architecture designed to capture intricate and meaningful relationships between 

visual and textual data. The framework incorporate a modality-attention module which allows the model 

to focus on the most relevant aspects of both visual and textual modalities. By emphasizing the salient 

features in each modality, the model can effectively align visual and textual information to generate 

more coherent and contextually relevant captions. We also incorporated contrastive learning to help the 

model distinguish and understand the relationships between different elements in the data. In the context 

of video captioning, this is invaluable for capturing the nuanced interdependencies between the video 

content and the corresponding textual descriptions. The effectiveness of the CapVT framework was 

thoroughly evaluated on the MSRVTT dataset. Our model achieves a strong performance across a range 

of evaluation metrics, including BLEU4, ROUGE, and METEOR, achieving scores of 0.4408, 0.6291, 

and 0.3082, respectively.  
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9.2 Future work 

For future work, we outline several significant directions for research and development. To adapt 

multimodal models for industrial applications at France TV, one key area for future exploration is 

language-specific adaptation. While our experiments have been conducted using public datasets in 

English, extending the models to handle French content is essential for addressing the unique linguistic 

characteristics and demands of the French-speaking audience. Moreover, as we transition from 

experimental datasets to real-world TV programs, a critical consideration is the domain discrepancy. 

Future work can focus on bridging this gap to ensure that the models' performance is robust and reliable 

in the actual broadcast environment. 

Another promising avenue for enhancing our model's performance and aligning it more closely with the 

unique requirements of documentalists, is the integration of Reinforcement Learning from Human 

Feedback (RLHF) techniques. By incorporating RLHF, we can create a feedback-driven model 

adaptation framework that leverages the valuable insights provided by documentalists. This approach 

not only empowers the model to continuously learn and improve but also ensures that it caters directly 

to the specific needs and expectations of the documentalists themselves. Hence, we can foster a dynamic 

feedback loop, enabling documentalists to actively participate in refining and optimizing the model's 

performance, ultimately resulting in a solution that is more finely attuned to their tasks and objectives. 

Efficiency is another paramount concern, especially for industrial applications where real-time 

processing is crucial. While our research has introduced lightweight multimodal models, there is still 

room for optimization, particularly in reducing the inference time. Future research efforts may involve 

exploring advanced techniques such as model pruning and knowledge distillation to streamline the 

computational demands of these models, making them more suitable for deployment in industrial 

settings. 

In the context of video captioning, our work has primarily concentrated on generating captions for short 

video formats. However, there is an emerging need for dense video captioning, which aims to produce 

text descriptions for a series of events in untrimmed videos. To achieve this, one potential avenue for 

future exploration involves adopting hierarchical structures in the models. These structures can better 

capture the long-term context and narrative flow within videos, ultimately leading to more informative 

and coherent captions. In addition, solutions that minimize the reliance on pre-segmentation, such as 

detecting and interpreting events within videos in a continuous and holistic manner, will be a critical 

area of study. Another potential avenue can be the exploration of knowledge-augmented models. 

External knowledge sources can enhance the contextual understanding of video content, improve 

caption accuracy, and ensure domain relevance. They offer potential solutions to handle ambiguous or 

limited sensory cues, adapt to evolving content, and reduce biases. While knowledge-enhanced NLP 

models are widely studied, the exploration of knowledge-enhanced vision and multimodal models is a 

relatively uncharted territory, presenting an exciting opportunity for further research. 

In the context of video question answering, we have predominantly addressed factoid questions, as this 

field is still in its early stages of development. However, the significance of inference questions cannot 

be understated, as they delve into the nuanced relationships and connections within video content. Future 

research in this domain will focus on advancing the capabilities of models to answer inference questions, 

which may require sophisticated reasoning, contextual understanding, and a deeper analysis of the 

video's content. More broadly, there has been a growing interest in the development of universal and 

task-agnostic models. The research aims to create multimodal models capable of excelling across a 

broad spectrum of unimodal and multimodal downstream tasks, each with its unique characteristics and 

requirements. While significant strides have been made, there are several areas of future work that hold 

promise and merit exploration. This may involve a deeper exploration of the intricate interactions and 

synergy across different modalities, as well as the development of methods that allow fine-grained 

semantic alignments to naturally emerge. As the scale of multimodal training data expands, addressing 
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issues related to noise and data heterogeneity, training strategies, and model efficiency is becoming 

increasingly important. A comprehensive understanding of the strengths of Transformers, particularly 

their ability to encode implicit knowledge, aggregate non-local patterns, and handle domain gaps, will 

likely play a pivotal role in shaping the future of task-agnostic models.  
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Résumé en français 

 

 

 

Titre : Analyse multimodale par apprentissage profond pour la production audiovisuelle 

Mots clés : Indexation d'archives, Apprentissage multimodal, Traitement du langage naturel, Vision 

par ordinateur 

Résumé : Dans le contexte en constante évolution du contenu audiovisuel, la nécessité cruciale 

d'automatiser l'indexation et l'organisation des archives s'est imposée comme un objectif 

primordial. En réponse, cette recherche explore l'utilisation de techniques d'apprentissage 

profond pour automatiser l'extraction de métadonnées diverses dans les archives, améliorant ainsi 

leur accessibilité et leur réutilisation. 

La première contribution de cette recherche tourne autour de la classification des types de 

mouvements de caméra. Il s'agit d'un aspect crucial de l'indexation du contenu, car il permet une 

catégorisation efficace et une récupération du contenu vidéo en fonction de la dynamique visuelle 

qu'il présente. L'approche novatrice proposée utilise des réseaux neuronaux convolutionnels 3D 

avec des blocs résiduels. Une approche semi-automatique pour la construction d'un ensemble de 

données fiable sur les mouvements de caméra à partir de vidéos disponibles au public est 

également présentée, réduisant au minimum le besoin d'intervention manuelle. De plus, la 

création d'un ensemble de données d'évaluation exigeant, comprenant des vidéos de la vie réelle 

tournées avec des caméras professionnelles à différentes résolutions, met en évidence la 

robustesse et la capacité de généralisation de la technique proposée, atteignant un taux de 

précision moyen de 94 %. 

La deuxième contribution se concentre sur la tâche de Video Question Answering. Dans ce 

contexte, nous explorons l'efficacité des transformers basés sur l'attention pour faciliter 

l'apprentissage multimodal ancré. Le défi ici réside dans le comblement de l'écart entre les 

modalités visuelles et textuelles et dans la réduction de la complexité quadratique des modèles 

de transformers. Pour résoudre ces problèmes, un nouveau cadre est introduit, qui intègre un 

transformers léger et un module de cross-modalité. Ce module utilise une corrélation croisée 

pour permettre un apprentissage réciproque entre les caractéristiques visuelles conditionnées par 

le texte et les caractéristiques textuelles conditionnées par la vidéo. De plus, un scénario de test 

adversarial avec des questions reformulées met en évidence la robustesse du modèle et son 

applicabilité dans le monde réel. Les résultats expérimentaux sur des ensembles de données de 

référence, tels que MSVD-QA et MSRVTT-QA, valident la méthodologie proposée, avec une 

précision moyenne de 45 % et 42 % respectivement, ce qui représente des améliorations notables 

par rapport aux approches existantes. 

La troisième contribution de cette recherche aborde le problème de video captioning, un aspect 

critique de l'indexation du contenu. Le travail introduit intègre un module de modality attention 

qui capture les relations complexes entre les données visuelles et textuelles à l'aide d'une 

corrélation croisée. De plus, l'intégration de l'attention temporelle améliore la capacité du modèle 

à produire des légendes significatives en tenant compte de la dynamique temporelle du contenu 

vidéo. Notre travail intègre également une tâche auxiliaire utilisant une fonction de perte 

contrastive, ce qui favorise la généralisation du modèle et une compréhension plus approfondie 

des relations intermodales et des sémantiques sous-jacentes. L'utilisation d'une architecture de 
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transformer pour l'encodage et le décodage améliore considérablement la capacité du modèle à 

capturer les interdépendances entre les données textuelles et vidéo. La recherche valide la 

méthodologie proposée par une évaluation rigoureuse sur la référence MSRVTT, atteignant des 

scores BLEU4, ROUGE et METEOR de 0,4408, 0,6291 et 0,3082 respectivement. En 

comparaison avec les méthodes de l’état de l’art, cette approche surpasse de manière constante, 

avec des gains de performance allant de 1,21 % à 1,52 % pour les trois métriques considérées. 

 

En conclusion, ce manuscrit offre une exploration holistique des techniques basées sur 

l'apprentissage profond pour automatiser l'indexation du contenu télévisuel, en abordant la nature 

laborieuse et chronophage de l'indexation manuelle. Les contributions englobent la classification 

des types de mouvements de caméra, la video question answering et la video captioning, faisant 

avancer collectivement l'état de l'art et fournissant des informations précieuses pour les 

chercheurs dans le domaine. Ces découvertes ont non seulement des applications pratiques pour 

la recherche et l'indexation de contenu, mais contribuent également à l'avancement plus large des 

méthodologies d'apprentissage profond dans le contexte multimodal. 
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Abstract 

 

 

 

Title : Multimodal analysis using deep learning techniques for audiovisual production 
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Abstract : Within the dynamic landscape of television content, the critical need to automate the 

indexing and organization of archives has emerged as a paramount objective. In response, this 

research explores the use of deep learning techniques to automate the extraction of diverse 

metadata from television archives, improving their accessibility and reuse.  

The first contribution of this research revolves around the classification of camera motion types. 

This is a crucial aspect of content indexing as it allows for efficient categorization and retrieval 

of video content based on the visual dynamics it exhibits. The novel approach proposed employs 

3D convolutional neural networks with residual blocks, a technique inspired by action 

recognition methods. A semi-automatic approach for constructing a reliable camera motion 

dataset from publicly available videos is also presented, minimizing the need for manual 

intervention. Additionally, the creation of a challenging evaluation dataset, comprising real-life 

videos shot with professional cameras at varying resolutions, underlines the robustness and 

generalization power of the proposed technique, achieving an average accuracy rate of 94%. 

The second contribution centers on the demanding task of Video Question Answering. In this 

context, we explore the effectiveness of attention-based transformers for facilitating grounded 

multimodal learning. The challenge here lies in bridging the gap between the visual and textual 

modalities and mitigating the quadratic complexity of transformer models. To address these 

issues, a novel framework is introduced, which incorporates a lightweight transformer and a 

cross-modality module. This module leverages cross-correlation to enable reciprocal learning 

between text-conditioned visual features and video-conditioned textual features. Furthermore, an 

adversarial testing scenario with rephrased questions highlights the model's robustness and real-

world applicability. Experimental results on benchmark datasets, such as MSVD-QA and 

MSRVTT-QA, validate the proposed methodology, with an average accuracy of 45% and 42%, 

respectively, which represents notable improvements over existing approaches. 

The third contribution of this research addresses the multimodal video captioning problem, a 

critical aspect of content indexing. The introduced framework incorporates a modality-attention 

module that captures the intricate relationships between visual and textual data using cross-

correlation. Moreover, the integration of temporal attention enhances the model's ability to 

produce meaningful captions, considering the temporal dynamics of video content. Our work also 

incorporates an auxiliary task employing a contrastive loss function, which promotes model 

generalization and a deeper understanding of inter-modal relationships and underlying semantics. 

The utilization of a transformer architecture for encoding and decoding significantly enhances 

the model's capacity to capture interdependencies between text and video data. The research 

validates the proposed methodology through rigorous evaluation on the MSRVTT benchmark, 



169 

 

   

achieving BLEU4, ROUGE, and METEOR scores of 0.4408, 0.6291 and 0.3082, respectively. 

In comparison to state-of-the-art methods, this approach consistently outperforms, with 

performance gains ranging from 1.21% to 1.52% across the three metrics considered. 

In conclusion, this manuscript offers a holistic exploration of deep learning-based techniques to 

automate television content indexing, addressing the labor-intensive and time-consuming nature 

of manual indexing. The contributions encompass camera motion type classification, VideoQA, 

and multimodal video captioning, collectively advancing the state of the art and providing 

valuable insights for researchers in the field. These findings not only have practical applications 

for content retrieval and indexing but also contribute to the broader advancement of deep learning 

methodologies in the multimodal context. 
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