
HAL Id: tel-04480233
https://theses.hal.science/tel-04480233

Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Neural Network Compression for Visual
Recognition
Robin Dupont

To cite this version:
Robin Dupont. Deep Neural Network Compression for Visual Recognition. Computer Vision and
Pattern Recognition [cs.CV]. Sorbonne Université, 2023. English. �NNT : 2023SORUS565�. �tel-
04480233�

https://theses.hal.science/tel-04480233
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité - Informatique

Informatique, Télécommunication et Électronique (Paris) - ED130

Deep Neural Network Compression
for Visual Recognition

Compression de Réseaux de Neurones Profonds
pour la Reconnaissance Visuelle

Présentée par

Robin Dupont

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Soutenue publiquement le 8 décembre 2023

Devant un jury composé de :

Mme Jenny Benois-Pineau
Professeure, Université de Bordeaux

Rapportrice

M. Titus Bogdan Zaharia
Professeur, Télécom SudParis

Rapporteur

M. Pierre Beauseroy
Professeur, Université de Technologie de Troyes

Examinateur

M. Nicolas Gac
Professeur, Université Paris-Saclay

Président du jury

M. Vincent Gripon
Professeur, IMT Atlantique

Examinateur

Mme Alice Lebois
Ingénieure, Netatmo

Co-encadrante de thèse

M. Hichem Sahbi
Chercheur CNRS (HDR), Sorbonne Université

Directeur de thèse

ii

Abstract

Thanks to the miniaturisation of electronics, embedded devices have be-
come more and more ubiquitous, since the 2010s, realising various tasks
all around us. As their usage is developing, there is a growing demand
for these devices to process data and make complex decisions efficiently.
Deep neural networks are powerful tools to achieve this goal, however,
these networks are often too heavy and complex to fit on embedded de-
vices. Thus, there is a compelling need to devise methods to compress
these large networks without significantly compromising their efficacy.
This PhD thesis introduces two innovative methods, centred around the
concept of pruning, aiming to compress neural networks while ensuring
minimal impact on their accuracy.

This PhD thesis first introduces a budget-aware method for com-
pressing large neural networks with weight reparametrisation and bud-
get loss that does not require fine-tuning. Traditional pruning methods
often rely on post-training saliency indicators to remove weights, dis-
regarding the targeted pruning rate. Our approach integrates a budget
loss, driving the pruning process towards a specific value during train-
ing, thereby achieving a joint optimisation of topology and weights. By
soft-pruning the smallest weights using weight reparametrisation, our
method significantly mitigates accuracy degradation in comparison to
traditional pruning techniques. We show the effectiveness of our ap-
proach across various datasets and architectures.

This PhD thesis later focuses on the extraction of effective subnet-
works without weight training. Our goal is to identify the best sub-
network topology in a large network without optimising its weights
while still delivering compelling performance. This is achieved using
our novel Arbitrarily Shifted Log Parametrisation, which serves as a dif-
ferentiable relaxation of discrete topology sampling, enabling the train-
ing of masks that represent the probability of selection of the weights.
Alongside, a weight rescaling mechanism (referred to as Smart Rescale)

iii

is also introduced, which allows enhancing the performance of the ex-
tracted subnetworks as well as speeding up their training. Our pro-
posed approach also finds the optimal pruning rate after one training
pass, thereby circumventing computationally expensive gird-search and
training across various pruning rates. As shown through comprehen-
sive experiments, our method consistently outperforms closely related
state-of-the-art techniques and allows designing lightweight networks
which can reach high sparsity levels without significant loss in accuracy.

iv

Résumé

Grâce à la miniaturisation de l’électronique, les dispositifs embarqués
sont devenus de plus en plus omniprésents depuis les années 2010, réali-
sant diverses tâches tout autour de nous. À mesure que leur utilisation se
développe, la demande pour des dispositifs traitant les données et pren-
nant des décisions complexes de manière efficace augmente. Les réseaux
de neurones profonds sont des outils puissants pour atteindre cet objec-
tif, cependant, ces réseaux sont souvent trop lourds et complexes pour
être intégrés dans des appareils embarqués. C’est pourquoi il est impé-
ratif de concevoir des méthodes pour compresser ces grands réseaux de
neurones sans compromettre significativement leur performance. Cette
thèse de doctorat introduit deux méthodes innovantes, centrées autour
du concept d’élagage, visant à compresser les réseaux de neurones tout
en assurant un impact minimal sur leur précision.

Cette thèse de doctorat introduit d’abord une méthode prenant en
compte le budget pour compresser de grands réseaux de neurones à
l’aide de reparamétrisation des poids et d’une fonction de coût budgé-
taire, le tout ne nécessitant pas de fine-tuning. Les méthodes d’élagage
traditionnelles s’appuient souvent sur des indicateurs de saillance post-
entraînement pour supprimer les poids, négligeant le taux d’élagage ci-
blé. Notre approche intègre une fonction de coût budgétaire, guidant le
processus d’élagage vers une valeur spécifique de parcimonie pendant
l’entraînement, réalisant ainsi une optimisation conjointe de la topologie
et des poids. En simulant l’élaguage des poids les plus petits en cours
d’entraînement grâce à la reparamétrisation des poids, notre méthode
atténue significativement la perte de la précision par rapport aux tech-
niques d’élagage traditionnelles. Nous démontrons l’efficacité de notre
approche à travers divers ensembles de données et architectures.

v

Cette thèse de doctorat se concentre ensuite sur l’extraction de sous-
réseaux efficaces, sans entraînement des poids. Notre objectif est d’iden-
tifier la meilleure topologie d’un sous-réseau dans un grand réseau sans
en optimiser les poids tout en offrant des performances convaincantes.
Ceci est réalisé grâce à notre méthode appelée Arbitrarily Shifted Log-
Parametrisation, qui sert à échantillonner des topologies discrètes de
manière différentiable, permettant l’entraînement de masques représen-
tant la probabilité de sélection des poids. Parallèlement, un mécanisme
de recalibrage des poids (appelé Smart Rescale) est également introduit,
permettant d’améliorer les performances des sous-réseaux extraits ainsi
que d’accélérer leur entraînement. Notre approche proposée trouve éga-
lement le taux d’élagage optimal après un unique entraînement, évi-
tant ainsi la recherche exhaustive d’hyperparamètres et un entraînement
pour chaque taux d’élagage. Nous montrons à travers un ensemble ex-
périences que notre méthode surpasse constamment les techniques de
l’état de l’art étroitement liées et permet de concevoir des réseaux légers
pouvant atteindre des niveaux élevés de parcimonie sans perte signifi-
cative de précision.

vi

Contents

Abstract iv

Résumé vi

Contents x

List of Figures xxi

List of Tables xxvi

List of Acronyms xxviii

Remerciements xxx

1 Introduction 1
1.1 Context . 3
1.2 Industrial Context . 6
1.3 Why Deep learning ? . 6
1.4 Challenges . 8
1.5 Contributions . 9
1.6 Outline . 12

2 Deep Learning Overview 15
2.1 Introduction . 17
2.2 Early Architectures . 19

2.2.1 Perceptron . 19
2.2.2 Multilayer Perceptron 20

2.3 Neural Network Training 21
2.3.1 Functional Definition 22
2.3.2 Loss Function and Regularisation 23
2.3.3 Loss Optimisation 26

vii

CONTENTS

2.4 Convolutional Neural Networks for Computer Vision . . . 29
2.4.1 Building Blocks . 29
2.4.2 Architectures Evolution 34
2.4.3 Architectures Used in Experiments 37

2.5 Datasets . 39
2.5.1 CIFAR-10 . 42
2.5.2 CIFAR-100 . 43
2.5.3 TinyImageNet . 43
2.5.4 Train, Validation and Test Sets 44

3 Deep Neural Network Compression 47
3.1 Introduction . 49
3.2 Accelerating Computation in Neural Networks 51

3.2.1 Fast Fourier Transform 51
3.2.2 Optimised Matrix Multiplication Algorithms 52
3.2.3 Leveraging Matrix Structures 53
3.2.4 Practical Applications and Limitations 55

3.3 Teaching Paradigm . 55
3.3.1 Knowledge Distillation 55
3.3.2 Feature-Map Matching 56
3.3.3 Deep Mutual Learning 57
3.3.4 Teacher Assistant . 58
3.3.5 Alternative Distillation Losses 58

3.4 Architecture Design . 60
3.4.1 Building Blocks for Efficient Architecture Design . . 61
3.4.2 Automatic Architecture Design Through Neural

Architecture Search 67
3.5 Compressing and Optimising an Existing Architecture . . 69

3.5.1 Lower Precision Weights and Activations Repre-
sentation . 71

3.5.2 Removing Weights and Connections 74
3.6 Positioning . 81
3.7 Conclusion . 83

4 Weight Reparametrization for Budget-Aware Network Pruning 85
4.1 Introduction and Related Work 89

4.1.1 Unstructured Magnitude Pruning. 89
4.1.2 Weight Reparametrisation 91
4.1.3 Pruning with Budget 92

viii

CONTENTS

4.1.4 Pruning without fine-tuning 93
4.1.5 Contributions . 96

4.2 Pruning with Weight Reparametrisation and Budget Loss . 97
4.2.1 Weight Reparametrisation 99
4.2.2 Budget Loss . 103

4.3 Method and Algorithm Overview 106
4.4 Experiments . 108

4.4.1 Experimental Setup 109
4.4.2 Performances . 109
4.4.3 Optimal Value of λ 110
4.4.4 Validation of the Budget Loss 114
4.4.5 Validation of the Reparametrisation 118
4.4.6 Tuned Initialisation 122

4.5 Conclusion . 128

5 Effective Subnetworks Extraction without Weight Training 131
5.1 Introduction and Related Work 135

5.1.1 Pruning at initialisation 136
5.1.2 Lottery Tickets . 139
5.1.3 Existence of effective subnetworks 141
5.1.4 Subnetwork topology extraction 142

5.2 Contributions . 143
5.3 Extracting Effective Subnetworks with

Gumbel-Softmax . 144
5.3.1 Stochastic Weight Sampling 144
5.3.2 Smart Weight Rescaling 151
5.3.3 Freezing the Topology via Thresholding 154

5.4 Method Overview and Algorithm 155
5.5 Experiments . 157

5.5.1 Experimental Setup 157
5.5.2 Performances . 159
5.5.3 Validation of the Weight Rescaling Mechanism . . . 162
5.5.4 Effect of the Learning Rate on Training Performances167
5.5.5 Post Training Pruning Rate Adjustment 169

5.6 Conclusion . 170

6 Conclusion and Perspectives 173
6.1 Summary of contributions 175
6.2 Perspectives . 177

ix

CONTENTS

A Appendix 181
A.1 Relationship between Multiply-Accumulate Operations

and the Number of Parameters 181
A.2 Scheduling of the Mixing Coefficient λ 182
A.3 Xavier and Kaiming Initialisations 182

Bibliography 185

x

List of Figures

1.1 Models top-5 accuracy on ImageNet [26] compared to hu-
man performance. 7

2.1 Conceptual scheme of the perceptron. Each input xi is mul-
tiplied by its associated weight wi and summed to the
other weighted inputs. The bias b is added to the sum
and the result is passed through an activation function g
to produce the output ŷ. 20

2.2 Conceptual scheme of a Multilayer Perceptron (MLP)
with one hidden layer. Each circle represents a neuron
and each line a connection associated with a weight. 21

2.3 Illustration of the effect of the learning rate on the conver-
gence of the gradient descent. The gradient descent has
been applied iteratively for 20 epochs. On the one hand,
a too-high learning rate (η = 1.01) causes the gradient de-
scent to overshoot the minimum of the loss function. On
the other hand, a too-low learning rate (η = 0.01) causes
the gradient descent to converge slowly. 28

2.4 Conceptual representation of a Convolutional and a Fully
Connected layer. The Convolutional layer (figure 2.4a)
takes a multi-channel input and produces a multi-channel
output. Each coefficient of the output is computed by ap-
plying a convolution operation at a corresponding loca-
tion in the input. The Fully Connected layer (figure 2.4b)
takes a vector input and produces a vector output. Each
connection is represented by a weight in the weight matrix. 31

2.5 Rectified Linear Unit (ReLU), tanh and sigmoid activation
functions. Best viewed in colours. 32

xi

LIST OF FIGURES

2.6 Architecture of LeNet-5, a Convolutional Neural Net-
work used for handwritten digit recognition. Image taken
from [108] . 35

2.7 Architecture of the VGG16 network introduced in [177].
Image taken from [40] . 35

2.8 A residual block and its skip connection used in ResNets[68].
The identity skip connection allows for the gradient to be
backpropagated directly through several layers, thus mit-
igating the vanishing gradient problem. 36

2.9 Networks size comparison. The x-axis represents the
number of Floating Point Operations (FLOPs) required
to process a single image. The y-axis represents the Top-
1 accuracy on the ImageNet [26] dataset and the size of
the circles represents the number of parameters in the
network. Numbers are taken from [156] 37

2.10 VGG16 adapted for CIFAR-10 and CIFAR-100. 38

2.11 ResNet20 and ResNet18 architectures. ResNet20 (fig-
ure 2.11a) is tailored for CIFAR-10 and comprises 3 stages
encompassing 3 Basic Blocks of 2 Convolutional (Conv)
layers each, with an identity skip connection in each
block. ResNet18 (figure 2.11b) is tailored for ImageNet
and is composed of 4 stages encompassing 4 Basic Blocks
of 2 convolutional layers each. There are two types of
blocks: BI with an identity skip connection and BP with
a projection skip connection. The projection skip connec-
tion is used to match the dimensions between the input
and the output of the block. 40

2.12 Conv2, Conv4 and Conv6 architectures. The number of
flat features F corresponds to the size of the feature map of
the last block B, once vectorised. F = 16384, 8192 and 4096
for Conv2, Conv4 and Conv6, respectively for input im-
ages of size 32× 32. 41

2.13 A sample of images from CIFAR-10. Each row contains
images from one of the 10 classes: plane, car, bird, cat,
deer, dog, frog, horse, ship, and truck 42

2.14 A sample of images from CIFAR-100. Each image repre-
sents an instance of one of the 100 distinct classes. 43

xii

LIST OF FIGURES

2.15 A sample of images from the Tiny ImageNet dataset. Each
image represents an instance of one of the 200 distinct
classes. 44

3.1 Overview of various knowledge distillation frameworks.
From top to bottom, left to right: Deep Mutual Learning
[214], FitNet [167], Attention Transfer [211], Teacher As-
sistant [139] and Knowledge Distillation [75]. 57

3.2 Conceptual scheme of [2]. The student network efficiently
learns the main task while retaining high mutual informa-
tion with the teacher network. The mutual information is
maximised by learning to estimate the distribution of the
activations in the teacher network, provoking the transfer
of knowledge. Adapted from the original scheme found
in [2]. 59

3.3 Conceptual scheme of the Probabilistic Knowledge Trans-
fer method. Both the student and the teacher feature
maps are modelled using probability distributions. The
divergence of the latter is minimised in order to transfer
knowledge from the teacher to the student. Illustration
taken from [148]. 59

3.4 Illustration schemes of the standard and depthwise sep-
arable convolution. The standard convolution uses Cout

kernels of size k× k× Cin. The depthwise separable con-
volution is split into two steps: (i) a convolution with Cin

kernels of size k × k and (ii) a convolution with Cout ker-
nels of size 1× 1× Cin. Best viewed in colours. 62

3.5 Illustration scheme of the fire module. The fire module
is composed of a squeeze layer (pointwise convolution de-
signed to reduce the number of channels fed to the follow-
ing layer) and an expand layer (convolution with mixed
1× 1 and 3× 3 kernels. The 1× 1 kernels replace some of
the 3× 3 kernels, being less computationally intensive.).
Best viewed in colours. 63

xiii

LIST OF FIGURES

3.6 Illustration scheme of grouped convolution with channel
shuffling. Each filter only acts on a subset of the input
tensor (here represented by a matching colour). The chan-
nels of the yielded tensor are shuffled to ensure the subse-
quent groups can access information from all the previous
groups. Best viewed in colours. 63

3.7 Illustration scheme of the path taken by the feature maps
after the channel split block. Adapted from the original
scheme found in [133]. 64

3.8 Illustration scheme of the residual block and the inverted
residual block. Note that on the inverted residual block,
the feature maps with the lower number of channels are
the ones connected via the skip connection, whereas it is
the opposite on the standard residual block. Diagonally
hatched layers do not use non-linearities. The grey colour
indicates the beginning of the next block. Both illustra-
tions are taken from [30]. Best viewed in colours. 65

3.9 Illustration scheme of the Squeeze-and-Excitation mod-
ule. The original feature map is squeezed into a channel
descriptor through global average pooling. This descrip-
tor is then used to learn the interdependencies between
the channels through two fully connected layers. The out-
put is then multiplied layerwise with the original feature
map (excitation). Best viewed in colours. 66

3.10 Figure 2.9 updated with the size and performance of
the efficient architectures detailed in section 3.4.1. Best
viewed in colours. 66

3.11 ImageNet top-1 accuracy vs model size (in millions of pa-
rameters). The EfficientNet family of models significantly
outperforms other models of similar size, obtained either
by Neural Architecture Search (NAS) or manual design.
This graph is taken from [186]. 69

3.12 Figure 3.10 updated with the size and performance of ar-
chitectures detailed in section 3.4.2. Best viewed in colours. 70

3.13 Example of binarised kernels and activations in a convo-
lutional layer. The kernels are taken from the first layer
of a Convolutional Neural Network (CNN) trained on
CIFAR-10. Image taken from [88]. 72

xiv

LIST OF FIGURES

3.14 Fake quantisation nodes (fake quant.) are included in the
computation graph of figure 3.14b, whereas figure 3.14a
represent the computaion graph used during inference.
During the inference, weights are stored in uint8 format,
whereas the bias are not, because their computational
overhead is negligible.[92]. Both illustrations are adapted
from [92]. 74

3.15 Conceptual illustrations of structured and unstructured
pruning. 75

3.16 Illustration Scheme of ThiNet. The dotter filters and cor-
responding channels are the ones to be pruned. Once they
are removed, the pruned network is fine-tuned. Image
taken from [132] . 77

3.17 Comparison of the method described in [97] (right) and
standard channel pruning (left). The differentiable mask
allows for a soft pruning that can be reverted during the
training. Image taken from [97] 78

4.1 Comparison of our method and magnitude pruning. Mag-
nitude pruning does not include any prior on weights
during the initial training phase and needs an additional
fine-tuning procedure. Our method embeds a saliency
measure based on the weight magnitude in the reparame-
trisation and does not require fine-tuning. Best viewed in
colour. 99

4.2 Reparametrisation function ht with varying temperature
parameter t and power n. t controls the width of the pit,
and n controls the steepness of the slope. 102

4.3 The unstable reparametrisation function h̃t and its stable
alternative ht, with t = 1 and n = 4 for both functions. . . . 104

4.4 Log-scale plot of number of parameters and normalisa-
tion factor per layer for a VGG16 network. The signif-
icant differences in terms of the number of parameters
yields dramatically different normalisation factors. Some
of them are 4 orders of magnitude apart, and all of them
are vanishingly small compared to a common main task
loss value. 106

xv

LIST OF FIGURES

4.5 Principle scheme of our pruning pipeline and the stan-
dard pruning pipeline. With our pruning pipeline, the
targeted pruning rate that will be enforced during the
effective pruning step, is taken into account from the be-
ginning. Thus, our method does not need a fine-tuning
step. In contrary, the standard pruning pipeline applies
the pruning criterion and the effective pruning after the ini-
tial training. This results in a drop in performance that
needs to be compensated for with fine-tuning. 108

4.6 Performances comparison of our method (Ours) against
magnitude pruning without (MP w/o FT) and with fine-
tuning (MP w/ FT) with a Conv4 network on CIFAR-10
and CIFAR-100 datasets, for different pruning rates. Fig-
ure 4.6a and figure 4.6b show the testing accuracy of
the model and figure 4.6c and figure 4.6d the number
of epochs needed to obtain the best model. Best viewed
in colours. 111

4.7 Performances comparison of our method (Ours) against
magnitude pruning with fine-tuning (MP+FT) with a VGG16
network on CIFAR-10 and CIFAR-100 datasets, for dif-
ferent pruning rates. Figure 4.7a and figure 4.7b show
the testing accuracy of the model and figure 4.7c and fig-
ure 4.7d the number of epochs needed to obtain the best
model. Best viewed in colours. 112

4.8 Performances comparison of our method (Ours) against
magnitude pruning with fine-tuning (MP+FT) with a ResNet20
network on CIFAR-10 and CIFAR-100 datasets, for differ-
ent pruning rates. Figure 4.8a and figure 4.8b show the
testing accuracy of the model and figure 4.8c and fig-
ure 4.8d the number of epochs needed to obtain the best
model. Best viewed in colours. 113

4.9 Performances comparison of our method (Ours) against
magnitude pruning with fine-tuning (MP+FT) with a ResNet18
network on TinyImageNet dataset, for different pruning
rates. 113

xvi

LIST OF FIGURES

4.10 Impact of the parameter λ on the achieved final budget
for a Conv4 network on CIFAR-10 dataset, for various
pruning rates. A too-small value of λ does not make
the actual budget match the desired budget. The actual
budget is either too small (figure 4.10a) or too high (fig-
ure 4.10c) compared to the target, depending on the ap-
plied pruning rate. 115

4.11 Comparison of our method and its variant without the
budget loss. The experimental results are referred to as ℓ1

reg., wherein the budget loss is replaced by a ℓ1 regularisa-
tion loss on the network weights. The mixing coefficient
λ is varied from 0.1 to 100, depending on the experiment.
w/o budget corresponds to the absence of the budget loss
(this is equivalent to λ = 0). On the other hand, w/ budget
corresponds to our method, with the same setup as de-
scribed in section 4.4.2. Results are presented for a Conv4
network, trained on CIFAR-10 (figure 4.11a) and CIFAR-
100 (figure 4.11b). Best viewed in colours. 118

4.12 Comparison of our method and its variant without the
budget loss. The experimental results are referred to as
ℓ1 reg., wherein the budget loss is replaced by a ℓ1 regu-
larisation loss on the network weights. The mixing coeffi-
cient λ is varied from 0.1 to 100, depending on the experi-
ment. w/o budget corresponds to the absence of the budget
loss (this is equivalent to λ = 0). On the other hand, w/
budget corresponds to our method, with the same setup
as described in section 4.4.2. Results are presented for
a ResNet20 network, trained on CIFAR-10 (figure 4.12a)
and CIFAR-100 (figure 4.12b). Best viewed in colours. . . . 119

xvii

LIST OF FIGURES

4.13 Comparison of our method and its variant without the
budget loss. The experimental results are referred to as
ℓ1 reg., wherein the budget loss is replaced by a ℓ1 regu-
larisation loss on the network weights. The mixing coeffi-
cient λ is varied from 0.1 to 100, depending on the experi-
ment. w/o budget corresponds to the absence of the budget
loss (this is equivalent to λ = 0). On the other hand, w/
budget corresponds to our method, with the same setup
as described in section 4.4.2. Results are presented for a
VGG16 network, trained on CIFAR-10 (figure 4.13a) and
CIFAR-100 (figure 4.13b). Best viewed in colours. 119

4.14 Comparison of our method and its variant without the
reparametrization on Conv4, evaluated on CIFAR-10 and
CIFAR-100. Our method (budget + reparam) has similar
performance to the budget only variant before pruning,
whereas our method, is already pruned. Once pruned,
the budget only variant is significantly impaired. 122

4.15 Comparison of our method and its variant without the
reparametrization on ResNet20, evaluated on CIFAR-10
and CIFAR-100. Due to the small size of the network
(see table 2.1), the pruned version of our method (bud-
get + reparam) and the budget only variant cannot keep up
with the unpruned version. Nevertheless, if considering
the pruned versions, our method scores better, thanks to
the addition of the reparametrization. 123

4.16 Comparison of our method and its variant without the
reparametrizationn VGG16, evaluated on CIFAR-10 and
CIFAR-100. Our method (budget + reparam) has similar
performance to the budget only variant before pruning,
whereas our method, is already pruned. Once pruned,
the budget only variant is significantly impaired. 123

xviii

LIST OF FIGURES

4.17 Fine-tuning of a Conv4 network pruned by magnitude
pruning (MP w/o FT) on the CIFAR-10 and CIFAR-100
datasets for various pruning rates. Conventional (MP w/
FT) fine-tuning is compared to fine-tuning with our me-
thod (pruned+FT (w/ our method)). Our method, described
in section 4.3, is shown for comparison purposes (Ours).
On this network, our method performs better than other
approaches. Fine-tuning the network with our method
provides better results than fine-tuning it with a conven-
tional method. 125

4.18 Fine-tuning of a ResNet20 network pruned by magnitude
pruning (MP w/o FT) on the CIFAR-10 and CIFAR-100
datasets with various pruning rates. Conventional (MP w/
FT) fine-tuning is compared to fine-tuning with our me-
thod (pruned+FT (w/ our method)). Our method, described
in section 4.3, is shown for comparison purposes (Ours).
On this network, fine-tuning with our method consider-
ably outperforms other approaches. 126

4.19 Fine-tuning of a ResNet20 network pruned by magnitude
pruning (MP w/o FT) on the CIFAR-10 and CIFAR-100
datasets with various pruning rates. Conventional (MP w/
FT) fine-tuning is compared to fine-tuning with our me-
thod (pruned+FT (w/ our method)). Our method, described
in section 4.3, is shown for comparison purposes (Ours).
On this network, fine-tuning with our method performs
on par with other methods up to 95% of pruning. For
higher pruning rates, it outperforms other approaches. . . 126

4.20 Comparison of fine-tuning a network whose initialisation
has been trained from scratch (denoted unpruned initial-
isation) or trained from scratch and pruned with magni-
tude pruning (denoted pruned initialisation). Fine-tuning
a pruned initialisation always outperforms fine-tuning an
unpruned initialisation in the tested configurations. 127

5.1 Comparison of a standard train-prune-finetune pipeline
and the prune at initialisation pipeline. In the latter, the
network is pruned before training. 136

xix

LIST OF FIGURES

5.2 Synflow accuracy compared to SNIP and GraSP for differ-
ent pruning rates. Methods are benchmarked on VGG16
trained on CIFAR-100. Illustration taken from [188] 138

5.3 Conceptual illustration of the different processes to obtain
a Lottery Ticket: reinitialising the weights to their original
values with one-shot magnitude pruning (LT with original
values), reinitialising the weights to their early stage val-
ues with one-shot magnitude pruning (LT with early stage
values) and iterative magnitude pruning (LT with iterative
magnitude pruning). Best viewed in colour. 140

5.4 Overview of our pruning pipeline and standard pruning
pipelines. Our pipeline performs topology selection only:
weights are not trained. On the contrary, standard prun-
ing pipelines rely on weight training and fine-tuning. . . . 156

5.5 Data Augmentation pipeline example used for CIFAR-10
and CIFAR-100. 159

5.6 Impact of Smart Rescale (SR) on the number of epochs
required to reach convergence for Conv{2,4,6} on CIFAR-
10 and CIFAR-100. 166

5.7 Evolution of the test accuracy for Conv4, VGG16 and
ResNet-20 trained with Arbitrarily Shifted Log Parametri-
sation (ASLP) (with data augmentation, Weight Rescaling
(WR) and Signed Constant (SC)) on CIFAR-10 for various
learning rates. A learning rate of 50 yields the optimal
balance between performance and training speed. 168

5.8 Comparative analysis of Arbitrarily Shifted Log Parame-
trisation (ASLP) performance for CIFAR-10 and CIFAR-
100 datasets using various network architectures (Conv{2,4,6},
ResNet-20, and VGG16) at different pruning rates. Arbi-
trarily Shifted Log Parametrisation (ASLP) performances
are evaluated with Weight Rescaling (WR), Signed Con-
stant (SC) and data augmentation. Results demonstrate
that Conv{2,4,6} networks maintain strong performance
even at higher pruning rates and indicate that the pruning
rate achieved by thresholding is equivalent to the prun-
ing rate yielding the best test accuracy when sweeping
through the possible pruning rates. 170

xx

LIST OF FIGURES

A.1 Evolution of the mixing coefficient λ for different values
of p and for increasing and decreasing scheduling. Best
viewed in color. 184

xxi

LIST OF FIGURES

xxii

List of Tables

2.1 Number of parameters for the used neural network ar-
chitectures. The number of parameters is given for the
CIFAR-10 dataset, except for the ResNet18 architecture,
whose number of parameters is given for the TinyIma-
geNet dataset. 37

2.2 The number of images, of classes, image size and size of
the test set for the three datasets used: CIFAR-10, CIFAR-
100 and TinyImageNet. 41

4.1 Impact of the parameter λ on the achieved budget and the
post-pruning test accuracy of the model for a Conv4 net-
work on the CIFAR-10 dataset for various pruning rates.
Although a high value of λ ensures the targeted budget
is reached, it also leads to a lower test accuracy when the
pruning rate increases. 116

4.2 Achieved budget for the budget only variant. Results are
presented for λ = 5. Across all experiments, the achieved
budget matches closely the targeted budget, which is
computed as (1−pruning rate)×100 and is expressed in
percent. 121

xxiii

LIST OF TABLES

5.1 Comparison of the number of explored topologies for the
Conv4 and ResNet-18 networks with CIFAR-10 and Tiny-
ImageNet, respectively. Since a new topology is sampled
for every batch, the number of explored topologies (E) is
computed as the product of the number of batches and the
number of epochs during which the network is trained
(here 103). The number of possible topologies (P) is com-
puted as the number of possible weight combinations in
the network (2N). The fraction of explored topologies is
computed as the ratio of the fraction of explored topolo-
gies for the Conv4 network and the fraction of explored
topologies for the ResNet-18 network. In these experi-
mental setups, the fraction of explored topologies for the
Conv4 network is significantly higher than the fraction of
explored topologies for the ResNet-18 network. 161

5.2 Comparison of Arbitrarily Shifted Log Parametrisation
(ASLP) test accuracy against Edge-Popup and Super-
mask [159, 217] on CIFAR-10 using various configura-
tions. We reimplemented the configurations tested by the
authors in their articles. Performances are presented with
(table 5.2a) and without (table 5.2b) data augmentation,
Weight Rescaling (WR), and Signed Constant (SC) weight
distribution. A dash denotes a configuration that was
not tested by the authors. Our method performances are
reported for both the thresholding and averaging setups de-
tailed in section 5.3.3. For Edge-popup, we use the value
of k which yeilds the best test accuracy for Conv{2,4,6},
as reported in [159]. Across all setups, our method ASLP
outperforms Edge-Popup and Supermask. 163

xxiv

LIST OF TABLES

5.3 Comparison of Arbitrarily Shifted Log Parametrisation
(ASLP) test accuracy against Edge-Popup and Supermask
[159, 217] on CIFAR-100 using various configurations. We
use the configurations tested by the authors in their arti-
cles. Performances are presented with (table 5.2a) and
without (table 5.2b) data augmentation, Weight Rescal-
ing (WR), and Signed Constant (SC) weight distribution.
A dash denotes a configuration that was not tested by
the authors. Our method performances are reported for
both the thresholding and averaging setups detailed in sec-
tion 5.3.3. For Edge-popup, we use the value of k which
yeilds the best test accuracy for Conv{2,4,6}, as reported
in [159]. For smaller networks, ASLP outperforms the
other methods, with the exception of the Signed Constant
(SC) setup for Conv2 and Conv4. However, for Conv6,
Arbitrarily Shifted Log Parametrisation (ASLP) perfor-
mance is superior when data augmentation is disabled,
while Edge-popup achieves better results with data aug-
mentation enabled (except for the Weight Rescaling (WR)
setup). 164

5.4 Comparison of Arbitrarily Shifted Log Parametrisation
(ASLP) test accuracy against Edge-Popup and Supermask
[159, 217] on both CIFAR-10 and CIFAR-100 datasets
using VGG16 and ResNet-20 architectures. The results
showcase the scenario with data augmentation, Weight
Rescaling (WR) and Signed Constant (SC) weight distri-
bution. Across all datasets and network architectures,
Arbitrarily Shifted Log Parametrisation (ASLP) surpasses
the comparative methods in its thresholding configuration,
detailed in section 5.3.3. 165

5.5 Comparison of Arbitrarily Shifted Log Parametrisation
(ASLP) test accuracy against Edge-Popup and Supermask
[159, 217] on TinyImageNet datasets using ResNet-18 ar-
chitecture. The results showcase the scenario with data
augmentation, Weight Rescaling (WR) and Signed Con-
stant (SC) weight distribution. The thresholding and aver-
aging configurations are detailed in section 5.3.3. Edge-
popup [159] performs the best in this scenario. 165

xxv

LIST OF TABLES

5.6 Comparison of observed pruning rates of the Arbitrarily
Shifted Log Parametrisation (ASLP) method across var-
ious neural network architectures and datasets (CIFAR-
10 and CIFAR-100) after applying the thresholding proce-
dure, detailed in section 5.3.3. The results are presented
as mean percentages of pruned weights with their respec-
tive standard deviations, for the setup with data augmen-
tation, Weight Rescaling (WR) and Signed Constant (SC)
weight distribution. 166

A.1 Conv4 test accuracy on CIFAR-10, with λ = 50, for in-
creasing (incr.) and decreasing (decr.) scheduling for var-
ious pruning rates and values of the parameter p. The
networks have been trained for 300 epochs. 183

xxvi

Acronyms
NaN Not a Number

AI Artificial Intelligence

ANN Artificial Neural Network

ASLP Arbitrarily Shifted Log Parametrisation

BN Batch Normalisation

CNN Convolutional Neural Network

Conv Convolutional

DNN Deep Neural Network

DWR Dynamic Weight Rescaling

FC Fully Connected

FFT Fast Fourier Transform

FLOP Floating Point Operation

FP32 single-precision floating-point format

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GS Gumbel-Softmax

IoT Internet of Things

KD Knowledge Distillation

LT Lottery Ticket

xxvii

LIST OF TABLES

LTH Lottery Ticket Hypothesis

MAC Multiply-Accumulate

MLP Multilayer Perceptron

NAS Neural Architecture Search

OBS Optimal Brain Surgeon

ReLU Rectified Linear Unit

SC Signed Constant

SGD Stochastic Gradient Descent

SKD Scaled Kaiming distribution

SR Smart Rescale

STE Straight Through Estimator

STGS Straight Through Gumbel-Softmax

TA Teacher Assistant

WR Weight Rescaling

xxviii

Remerciements

La thèse est un défi aussi bien scientifique qu’humain et qui ne peut
être relevé sans l’aide de nombreuses personnes qui m’ont apporté leur
temps, leurs idées, leurs conseils et leur soutien. Je souhaite ici les re-
mercier.

Je tiens tout d’abord à remercier mon directeur de thèse Hichem
Sahbi pour son encadrement durant ces quelques années.

Je souhaite remercier Jenny Benois-Pineau et Titus Bogdan Zaharia
pour avoir accepté d’être rapporteurs de cette thèse et pour le temps
consacré à ce manuscrit. Mes remerciements s’étendent également à
Pierre Beauseroy, Nicolas Gac et Vincent Gripon pour leur participa-
tion en tant que membres du jury.

Cette thèse est une thèse CIFRE, menée en partenariat avec Netatmo
où j’ai pu rencontrer et travailler avec de brillants collègues. Je remercie
tout particulièrement Alice Lebois, Mohammed-Amine Alaoui mais
aussi Guillaume Michel et Mehdi Felhi qui ont été de grands soutiens
et m’ont aidé à progresser tout au long de cette thèse. Je veux égale-
ment remercier Chadi Gabriel, Steeve Vu, Fabien Freling et Yacine
Mezaguer et toutes les autres personnes que j’ai pu côtoyer chez Ne-
tatmo pour les discussions enrichissantes, leur soutien, leurs coups de
main et les bons moments que nous avons pu passer ensemble.

Je remercie l’école doctorale et en particulier son directeur Habib
Mehrez pour sa bienveillance, son soutien et son aide précieuse.

xxix

LIST OF TABLES

Je remercie mes proches dont l’intensité et l’exigence de ces quelques
années m’ont un peu éloigné, à mon grand regret. Je remercie mes amis
qui m’ont accompagné et soutenu. Je pense à Hugo, Pierre, Antoine,
Nicolas, Arnaud, Paul-Octave, le groupe des Lamas et ses nombreux
docteurs, le groupe des Cryptogourmets, Arthur, Brian et en particulier
Léo pour m’avoir inspiré à entreprendre, moi aussi, l’aventure qu’a été
cette thèse.

Je remercie très chaleureusement Odile pour son aide inestimable et
ses précieux conseils qui m’ont aidé à avancer et ne pas baisser les bras.

Je remercie mes parents Denis et Véronique ainsi que ma sœur
Pauline. Ils m’ont toujours soutenu dans tous les défis que je m’étais
lancé et j’espère que je les aurai rendus fiers d’être arrivé au bout de
celui-ci.

Enfin, je remercie Alice, qui, en plus d’être ma moitié, a été ma bé-
quille pendant ces quelques années. Elle m’a écouté, soutenu, accompa-
gné et encouragé, parfois au mépris de ses propres ambitions et projets.
Elle a été mon moteur, tant et si bien que tout ceci n’aurait pas été pos-
sible sans elle.

À toutes celles et à tous ceux que j’ai cités, mais aussi à celles et ceux
que j’ai oubliés, merci.

xxx

Chapter 1

Introduction

1

2

Contents
1.1 Context . 3
1.2 Industrial Context . 6
1.3 Why Deep learning ? . 6
1.4 Challenges . 8
1.5 Contributions . 9
1.6 Outline . 12

1.1 Context
From the spinning jenny, blast furnace and steam engine that sparked
the first industrial revolution to the Internet of Things (IoT) devices that
drives the fourth, the objective of mechanising labour and optimising
productivity has been a persistent theme throughout the past centuries.
The first industrial revolution, which dates back to 1760, introduced
mechanisation through the use of water wheels and steam engines. The
second industrial revolution, starting towards the end of the XIXth cen-
tury, is linked to the development of automobiles, crude oil extraction
and assembly lines powered by electric energy. The third industrial rev-
olution, also called the digital revolution, took place in the second half
of the XXth century and brought electronics, information and commu-
nication technology, and automated production. The Fourth Industrial
Revolution, often known as Industry 4.0, inaugurates the digital integra-
tion of production chains as well as smart and connected devices that
lead to more efficient manufacturing systems. The fourth industrial rev-
olution focuses on the interconnectivity of devices and the development
of their computational capabilities. This track leads to the emergence of
ever-connected IoT devices with embedded computing facilities, such
as smartphones, autonomous vehicles or satellites, that leverage Artifi-
cial Intelligence (AI) algorithms.

3

1.1. CONTEXT

In parallel with these industrial revolutions, the field of AI has seen
substantial growth and development. The term Artificial Intelligence was
first used at the Dartmouth workshop in 1956 which is considered to be
the founding event of AI as a research field [135]. It launched decades of
research into machine learning and natural language processing among
others [144]. In the subsequent decades, AI saw significant strides, in-
cluding the development of rule-based systems, called expert systems
[50], in the 1970s and the early exploration of machine learning in the
1980s [171]. These advancements occurred alongside the third industrial
revolution, setting the stage for further progress in AI. In the late XXth
and early XXIst centuries, coinciding with the premises of the fourth
industrial revolution and helped with substantial progress in computa-
tional power of Graphics Processing Units (GPUs), AI started to draw
tremendous attention from both researchers and industrials with the
advent of Deep Learning. The latter is a subfield of machine learning
which uses multi-layer Artificial Neural Network (ANN) to learn and
model complex patterns in datasets in an end-to-end fashion, bringing
significant improvement over manually engineered data representation.
The fast development of Deep learning has been driving advancements
in various domains such as natural language processing [13, 28, 195],
image and speech recognition [103, 177, 68, 62, 14, 4], text and image
generation [54, 99, 13], video game playing [175, 176] and molecule fold-
ing [96] to name a few.

The conquest of new fields and the quest for performance improve-
ment of Deep Learning models have led to a significant increase in their
computational complexity and size (see figure 3.12), particularly regard-
ing their number of parameters. The sheer size of modern ANNs, called
Deep Neural Networks (DNNs), presents a significant barrier to their
deployment on embedded devices or IoT devices whose memory and
computational resources are inherently limited. To circumnavigate this
hurdle, the prevalent approach is to offload computations onto remote
servers, leveraging the ever-interconnected nature of modern IoT de-
vices and appliances.

Nonetheless, several compelling reasons exist for conducting embed-
ded computations instead of moving them to the cloud. First, processing
the data locally on premises ensures better data privacy, since the latter
does not need to leave the device to be processed on the cloud. Indeed

4

CONTENTS

cloud instances can be located on various continents or countries where
the legislation about data privacy might be different from the one of the
countries where the data is collected. Second, local computations can
distribute the processing and limit communications. This is particularly
relevant in more ways than one: first, it can reduce the cost of communi-
cation and bandwidth, which are typically billed to companies by cloud
providers. Second, in some scenarios, the device might not have access
to a large bandwidth or cannot afford to transmit a lot of data, which
can be the case for remote areas or some devices with a low power bud-
get. Third, local computations can lead to greater responsiveness by
reducing latency, which might be critical in some applications such as
autonomous vehicles. Fourth, local computations can enable autonomy,
which is particularly relevant for devices that cannot rely on internet
access, such as Mars rovers, submarine drones or any other devices that
need to process data in radio silence.

The fourth industrial revolution and the rapid evolution in the field
of AI have opened up a myriad of applications, with AI algorithms and
in particular DNNs, offering significant potential to enhance the capa-
bilities of IoT devices. However, the deployment of these advanced
DNNs on IoT devices presents a significant challenge due to the inher-
ent computational and memory constraints of such devices. The sheer
size and complexity of modern DNNs, which have been instrumental in
their success, become a barrier when considering on-device deployment.
This presents a compelling case for the development of lightweight neu-
ral networks, tailored for IoT devices, that maintain the power of their
larger counterparts while being significantly reduced in size and compu-
tational requirements. Such lightweight neural networks can also bene-
fit all areas where saving computational resources is of interest. Conse-
quently, there is a need for dedicated research efforts to design methods
that yield lightweight neural networks. This thesis aims to contribute to
this effort by introducing pruning methods that can reduce the size of
neural networks while preserving their performances, with a focus on
topology selection. We introduce two new pruning methods: The first
performs joint topology and weight optimisation allowing for a minimal
loss in performance after pruning compared to standard methods. The

5

1.2. INDUSTRIAL CONTEXT

second approach does not require any weight training and instead fo-
cuses on stochastic yet differentiable topology selection, achieving com-
pelling results overall and outperforming other related state-of-the-art
methods that, again, do not train the weights.

1.2 Industrial Context
This research work is a CIFRE thesis with Netatmo, a French company
specialising in smart devices that is now part of the Legrand Group.
Notably, Netatmo commercialises security cameras for individual use
that perform tasks such as face recognition and object detection using
DNNs. The objective is to run the DNNs directly on these cameras,
sidestepping the need to send data to distant servers. This approach
aligns well with the reasons outlined in the previous section, particu-
larly in ensuring data privacy. Moreover, it allows for a subscription-free
business benefiting the end user, since there is no need to pay for cloud
infrastructures dedicated to running DNNs. Therefore, Netatmo needs
to develop lightweight neural networks that can be run on embedded
devices while maintaining the performance of their larger and more
complex counterparts. The models should be lightweight in order to,
on the one hand, run on limited hardware, and on the other hand, be
fast enough to perform, for instance, real-time intruder detection and
alerting.

1.3 Why Deep learning ?
Deep learning is a subfield of machine learning that is the subject of in-
tense research efforts and numerous publications. It employs Artificial
Neural Networks, called Deep Neural Networks (DNNs), that aim to
learn and model complex patterns in unstructured data in an end-to-
end fashion. Deep learning models have proven their effectiveness in
numerous domains and have been particularly performant in the field
of computer vision [68, 162, 123]. Computer vision, which lies at the
heart of Netatmo smart camera functionalities, encompasses algorithms
that enable computers to interpret and understand the visual world and
in particular detect and classify objects.

6

CONTENTS

DNNs are the backbone of most advanced computer vision appli-
cations, including Netatmo facial recognition and object detection fea-
tures. More specifically, Convolutional Neural Networks (CNNs), a
specific type of DNNs can process images directly, reducing the need
for manual feature extraction, and their capacity for hierarchical feature
learning makes them particularly effective for tasks such as object recog-
nition and classification. Their architecture is such that they perform
well at recognising patterns in unstructured data and are able to learn
gradually more complex and abstract concept representations from raw
data, enabling them to outperform other machine learning models and
humans in computer vision tasks (see figure 1.1).

Al
ex

N
et

 (2
01

2)

ZF
N

et
 (2

01
3)

VG
G

 (2
01

4)

G
oo

gL
eN

et
 (2

01
4)

R
es

N
et

 1
01

 (2
01

5)

R
es

N
ex

t 1
01

 (2
01

7)

N
AS

N
et

 (2
01

8)

Ef
fic

ie
nt

N
et

 (2
01

9)

H
um

an
s

Models

0

2

4

6

8

10

12

14

Im
ag

eN
et

 T
op

-5
 T

es
t E

rro
r

Figure 1.1: Models top-5 accuracy on ImageNet [26] compared to human per-
formance.

Given the nature of tasks the Netatmo cameras are designed to per-
form, deep learning and Deep Neural Networks are not just a choice but
a necessity. They represent the state of the art in computer vision tasks
that outperforms other algorithms and allows for accurate and reliable
object detection and recognition.

7

1.4. CHALLENGES

1.4 Challenges

While deep learning, particularly through the use of CNNs, is the tech-
nology of choice for computer vision applications, it comes with its chal-
lenges that need to be addressed, especially in the context of deploying
these deep and large models on embedded devices. These challenges
include model complexity and computational requirements. The neces-
sity of compressing neural networks has been highlighted previously
and also comes with its challenges that include: preserving the per-
formance and controlling the size of the compressed model as well as
training time.

One of the most significant challenges in deploying deep learning
models and especially CNNs on embedded devices is the large model
size. These models often have millions of parameters and this makes
them computationally heavy and challenging to fit into the limited
memory of embedded devices. Secondly, these complex models require
substantial computational resources to operate. This translates into slow
computations which is a critical issue for devices which aim to perform
real-time tasks.

Compressing large neural networks is a necessity to deploy them
on embedded devices. However, it comes with its challenges. First,
the compressed model should maintain the performance of the original
model. However, the original large model is trained with all its param-
eters and thus depends on all of them. Consequently, removing more
than a few can lead to degraded performance.

Second, the compressed model should be small enough to fit into the
limited memory of embedded devices. It means that the process should
be controlled to ensure that the size of the resulting model does not ex-
ceed the memory budget. However, compressing the model too much
can lead to an irrecoverable loss in performance. The compression pro-
cedure and hyperparameters should be carefully chosen to ensure that
the produced model has enough capacity to perform the task at hand.
This is often achieved by grid-searching the optimal set of hyperparam-
eters, which can be time-consuming.

8

CONTENTS

Third, the compression process should be fast enough to be practical.
Indeed, this process is often performed after the training of the original
model and often requires fine-tuning the compressed one to compensate
for the loss of performance. This fine-tuning step can be computation-
ally expensive and time-consuming, effectively doubling the training
time of the model in some scenarios.

To conclude, while deep learning and CNNs represent an exciting
advancement in computer vision applications, several challenges need
to be addressed for efficient and effective deployment on embedded de-
vices. Addressing these challenges forms the crux of this research, with
a particular focus on model compression techniques to reduce the size
and complexity of neural networks without significant loss in perfor-
mance.

1.5 Contributions
This thesis tackles the challenge of compressing DNNs through prun-
ing, a technique that aims to reduce the size of a neural network by
removing redundant or unnecessary parameters, subsequently detailed
in chapter 3. The contributions detailed in this manuscript focus on
methods to identify the parameters to prune as well as minimise the
impact of their removal on the final performance. These contributions
are as follows:

Budget-aware pruning with weight reparametrisation. The two main
challenges when pruning a neural network are first, determining which
weights should be removed and then, mitigating the loss of performance
introduced by weight removal. The first challenge is often referred to as
determining the saliency of the weights, which is a score that reflects the
importance of the weights in the network. The second challenge is often
sidestepped and the pruned network is simply fine-tuned to recover the
lost performance. To address both of these challenges, we propose the
following main contributions:

• A numerically stable reparametrisation function, used in both our
weight reparametrisation and our budget regularisation loss (subse-
quently detailed), that acts as a surrogate differentiable ℓ0 norm.

9

1.5. CONTRIBUTIONS

• A weight reparametrisation that embeds the saliency score of the
weight in its expression and therefore value. This reparametrisa-
tion allows to soft-prune the weights during training thereby sig-
nificantly mitigating the performance drop that occurs after prun-
ing. Moreover, this reparametrisation does not require the introduc-
tion of auxiliary variables to determine the saliency of the weights,
leading to a minimal impact on memory and computational require-
ments.

• A budget regularisation loss that allows to drive the optimisation
procedure to respect a given budget. This budget regularisation loss
benefits directly from the aforementioned reparametrisation func-
tion to compute the current weight budget. It is optimised jointly
with the original loss, leading to an optimal solution in terms of per-
formance and budget.

• A comprehensive set of experiments that demonstrate the effective-
ness of our method and validate each one of its components on
various datasets and architectures.

These contributions have been published in the following article:

• Robin Dupont, Hichem Sahbi, and Guillaume Michel. Weight re-
parametrization for budget-aware network pruning. In 2021 IEEE
International Conference on Image Processing, ICIP 2021, Anchorage, AK,
USA, September 19-22, 2021, pages 789–793. IEEE, 2021.

Pruning without weight training with stochastic sampling. As men-
tioned above, a major hurdle in pruning is determining which weights
to remove. This is especially challenging since weights, and conse-
quently their saliency, can fluctuate throughout training. This implies
that pruning should either be reversible or performed at the end of train-
ing. We propose a different approach that does not require training the
network to determine the saliency of the weights, the latter being fixed
throughout the process. Instead, we sample a subset of weights (effec-
tively pruning the other weights) forming a subnetwork of the original
network and evaluate its performance. This allows us to search for a

10

CONTENTS

topology that is both lightweight and performant inside the original
network without training its weights. The main contributions of this
method are as follows:

• A stochastic weight sampling method that is computationally effi-
cient, numerically stable, differentiable and allows sampling weights
while training their probability of being selected, represented by la-
tent masks. The optimisation of the latter allows to learn the saliency
of the weights without training the network, and therefore identify-
ing and extracting an effective subnetwork.

• A pruning strategy for the masks that freeze the topology and per-
forms better than averaging methods previously used in the state-
of-the-art. Moreover, this pruning strategy allows to discover the
optimal pruning rate for the network, eliminating the need for costly
grid search to determine it.

• An efficient learnt-based weight rescaling mechanism to compen-
sate for the disruption in weight distribution caused by stochastic
sampling. This rescaling is less computationally intensive, more
flexible and allows for smoother variations of the scaling factor than
other rescaling methods.

• A comprehensive set of experiments that demonstrate the effective-
ness of our method and validates each one of its components on
various datasets and architectures, as well as comparison with other
closely related state-of-the-art methods in various configurations.

• A public repository containing the implementation of our method
and the methods we compare against, as well as detailed code and
instructions to reproduce our results.

These contributions have been published in the following article:

• Robin Dupont, Mohammed Amine Alaoui, Hichem Sahbi, and Al-
ice Lebois. Extracting effective subnetworks with Gumbel-Softmax.
In 2022 IEEE International Conference on Image Processing, ICIP 2022,
Bordeaux, France, 16-19 October 2022, pages 931–935. IEEE, 2022.

11

1.6. OUTLINE

1.6 Outline

The rest of this thesis is organised as follows:

Chapter 2 offers an introduction to deep learning, providing a de-
tailed overview of its foundational and core concepts. It first explores
early architectures, beginning with the Perceptron and the Multilayer
Perceptron (MLP). The focus of the chapter then shifts towards neural
network training, giving formal definitions of the loss function, regu-
larisation, and optimisation process. A dedicated section delves into
Convolutional Neural Networks, exposing and detailing their building
blocks, and the evolution of their architectures. Then, the architectures
used in the experiments of chapters 4 and 5 are detailed. Additionally,
this chapter lists and describes prominent datasets, namely CIFAR-10,
CIFAR-100, and TinyImageNet, and discusses their respective train, val-
idation, and test sets.

Chapter 3 introduces deep neural network compression and presents
state-of-the-art methods divided into different families. The chapter
begins with acceleration techniques and presents a range of methods
whose goal is to speed up matrix operations or convolutions. Then, it
explores the teaching paradigm, highlighting methods that rely on a
large pre-trained network to improve the training of lightweight ones.
Furthermore, the chapter addresses the design aspects of lightweight
architectures introducing building blocks for efficient architecture de-
sign and Neural Architecture Search. Afterwards, the chapter discusses
methods to compress and optimise existing architectures and in particu-
lar pruning. Finally, the chapter presents the positioning of our methods
and the rationale behind them.

Chapter 4 presents our pruning method based on weight reparame-
trisation and budget regularisation. It starts by outlining closely related
work. Then, the core method components are examined, starting with
our weight reparametrisation and then our budget loss. Afterwards, a
general overview of the algorithm is provided. Furthermore, the chap-
ter details experiments assessing our method performance in various
configurations as well as experiments validating the components of our

12

CONTENTS

method and the choices of hyperparameters. A conclusion summarises
the key findings and highlights of our method for neural network prun-
ing.

Chapter 5 delves into our stochastic pruning method without weight
training. It starts with an introduction and examination of closely re-
lated work. Then, it details the first core component of our method,
namely Arbitrarily Shifted Log Parametrisation, a method for extracting
effective subnetworks using the Gumbel-Softmax technique that solves
various issues that arose from previous methods. Afterwards, it intro-
duces our weight-rescaling technique and presents its main benefits, as
well as our pruning strategy to freeze the stochastic topology. Subse-
quently, a method and algorithm overview outlines the key points of
our methods. Furthermore, the chapter exposes a comprehensive set
of experiments that compares our method against other state-of-the-art
methods in various scenarios and validates the components of our me-
thod. The chapter concludes by summarising our findings and results.

13

1.6. OUTLINE

14

Chapter 2

Deep Learning Overview

15

16

Contents
2.1 Introduction . 17
2.2 Early Architectures . 19

2.2.1 Perceptron . 19
2.2.2 Multilayer Perceptron 20

2.3 Neural Network Training 21
2.3.1 Functional Definition 22
2.3.2 Loss Function and Regularisation 23
2.3.3 Loss Optimisation 26

2.4 Convolutional Neural Networks for Computer Vision . . . 29
2.4.1 Building Blocks . 29
2.4.2 Architectures Evolution 34
2.4.3 Architectures Used in Experiments 37

2.5 Datasets . 39
2.5.1 CIFAR-10 . 42
2.5.2 CIFAR-100 . 43
2.5.3 TinyImageNet . 43
2.5.4 Train, Validation and Test Sets 44

2.1 Introduction
Deep Learning is a subfield of machine learning that focuses on the
study of Deep Neural Networks (DNNs) which have their roots in Ar-
tificial Neural Networks (ANNs). DNNs aim to learn a representation
from unstructured data such as raw images [103], text [13] or audio [62],
in an end-to-end fashion. DNNs have been used to solve a wide range
of tasks, including image and speech recognition [103, 177, 68, 62, 14, 4],
natural language processing [13, 28, 195], object detection [161, 162], se-
mantic segmentation [127, 120], text and image generation [54, 99, 13] as
well as exotic domains like video games [175, 176] or molecules folding
[96]. ANNs were initially conceptualised based on the understanding

17

2.1. INTRODUCTION

of biological neural networks present in the brain [136, 74]. Rosenblatt
proposed in [168] a theoretical model of a neuron, denoted the percep-
tron, which was capable of learning a linear decision boundary. The
perceptron model was later extended to multiple layers of neurons, giv-
ing rise to the Multilayer Perceptron (MLP) [169, 171]. A Multilayer
Perceptron is a type of artificial neural network that extends the concept
of a single-layer perceptron by including one or more hidden layers of
neurons connected downstream from an input layer and upstream to
an output layer. Each layer is fully connected to the next, allowing the
model to learn and represent more complex, non-linear relationships in
the input data. Although more capable than the perceptron, the MLP is
still limited by its depth. The next advance came from the stacking of
multiple layers, leading to Deep Neural Networks.

In the context of DNNs, the term deep denotes the stacking of many
layers within a neural network. The concept of DNNs is based on the
idea that the depth and the numerous layers can help in learning fea-
tures at various levels of abstraction, enabling the network to learn com-
plex hierarchical pattern representations. For instance, in the context of
image recognition, lower layers learn local features like edges and tex-
tures, while deeper layers learn to identify more abstract concepts like
shapes or objects.

The rise of DNNs was made possible by several factors. On the one
hand the increase in computational power, and in particular the use of
GPUs, made the training of large and deep networks feasible. Indeed,
AlexNet, the first CNN to win the ImageNet Large Scale Visual Recogni-
tion Challenge [103], was trained on two GPUs in parallel to accelerate
computations. Nowadays, the use of GPUs or dedicated hardware such
as Tensor Processing Unit [95] is ubiquitous and supported by all the
major deep learning frameworks [1, 149]. On the other hand, the avail-
ability of large-scale datasets such as ImageNet [26] allowed to train or
pre-train deep networks with millions of parameters without overfit-
ting.

This chapter aims to give an overview of the different neural net-
work architectures, building blocks, training techniques and datasets
that are widely used in Deep Learning for computer vision and in our
experiments. Section 2.2 introduces the early neural network architec-

18

CONTENTS

tures, namely the perceptron and the MLP. Section 2.3 focuses on the
functional definition of a neural network and its training. Section 2.4
presents the building blocks and architectures of various CNNs for com-
puter vision, and in particular the ones we benchmark our methods with
(see sections 4.4 and 5.5). Finally, Section 2.5 gives an overview of the
most prevalent datasets that we used in our experiments.

2.2 Early Architectures
In this section, we present the perceptron [168] and then the Multilayer
Perceptron [169, 171]. Both are the two founding neural network archi-
tectures that led to the development of Deep Neural Networks.

2.2.1 Perceptron
The perceptron is a model of artificial neuron, capable of learning a linear
decision boundary. It was proposed by Rosenblatt in 1958 [168] and con-
ceptualised based on the understanding of biological neural networks
present in the brain [136, 74]. The perceptron is composed of inputs
that are weighted and summed before being passed through a nonlinear
function referred to as an activation function. The conceptual represen-
tation of the perceptron is displayed in figure 2.1 and its mathematical
formulation is defined in equation (2.1):

ŷ = g(
n

∑
i=1

wi · xi + b) (2.1)

where xi is the ith input, wi its associated weight, n is the number of
inputs, b is the bias, g is the activation function, and ŷ is the output of
the perceptron. This formulation can also be written in vector form as in
equation (2.2):

ŷ = g(wTx + b) (2.2)

19

2.2. EARLY ARCHITECTURES

where x is the vector of inputs and w is the vector of weights. The acti-
vation function g is typically a nonlinear function, such as the sigmoid
or the hyperbolic tangent (see figure 2.5). Due to its shallow architec-
ture, the perceptron cannot learn complex decision boundaries. Nev-
ertheless, it is possible to stack several perceptrons to learn nonlinear
decision boundaries, leading to a Multilayer Perceptron.

Σ

w1

w2

w3

wn

g(.)

x1

x2

x3

xn

inputs weights

summation activation
function

b

ŷ

...
Figure 2.1: Conceptual scheme of the perceptron. Each input xi is multiplied by
its associated weight wi and summed to the other weighted inputs. The bias b
is added to the sum and the result is passed through an activation function g
to produce the output ŷ.

2.2.2 Multilayer Perceptron
The Multilayer Perceptron (MLP) is an extension of the perceptron
model, comprising multiple layers of perceptrons, also referred to as
neurons [171]. A MLP with one hidden layer is represented in figure 2.2.
In the latter, the circles represent the neurons and the connections be-
tween them, representing weights, are materialised by lines. The MLP
is the simplest type of feedforward ANN. Feedforward refers to the fact
that the connections between neurons in the MLP form a directed acyclic
graph, where the outputs of the neurons from one layer are passed to
the next, with no backward connections or feedback. Using the same
notations as in equation (2.2), the vector form of the MLP displayed in
figure 2.2 can be written as in equation (2.3), where the subscript of acti-
vation functions gi, weight matrices wi and bias vectors bi denotes their
belonging to the ith layer.

20

CONTENTS

ŷ = g2(wT
2 · g1(wT

1 · x + b1) + b2) (2.3)

Each layer of the MLP, being fully connected to the next one, enables
the MLP to handle problems that the perceptron cannot solve, such as
problems requiring nonlinear decision boundaries. Furthermore, Cy-
benko proved in [25] that an MLP can approximate continuous func-
tions on compact subsets of Rn. This result is known as the Universal
Approximation Theorem. Before the emergence of Deep Learning, MLPs
have been applied to various domains, including voice recognition, im-
age recognition, and machine translation [201].

x1

x2

x3

xn

input layer

...

hidden layer output layer

ŷ1

ŷ2

ŷ3

Figure 2.2: Conceptual scheme of a MLP with one hidden layer. Each circle
represents a neuron and each line a connection associated with a weight.

2.3 Neural Network Training

Neural Network Training revolves around the optimisation of a map-
ping function that learns to predict an output given input data by ad-
justing its internal parameters, also referred to as weights. This optimi-
sation, also called training, involves iteratively tuning these weights so
that the discrepancy between the output predicted by the model and the

21

2.3. NEURAL NETWORK TRAINING

reference output is minimised. Weights tuning relies on gradient-based
methods that hinge around two core components: the backpropagation al-
gorithm to compute the gradients and the Stochastic Gradient Descent
(SGD) algorithm to update the weights.

2.3.1 Functional Definition

Neural networks can be defined as a mapping function from an input
space X to an ouput space Y . This mapping function f is characterised
by a set of parameters θ, often called weights. The training of a neural
network consists in tuning the parameters θ so that, given an input X,
the mapping function f output, denoted ŷ, is as close as possible to the
associated true output y. This training is done iteratively by using ex-
ample pairs (X, y) ∈ X × Y , where X ∈ X is the input and y ∈ Y is
the output. In the context of image classification, X is an image and y
is a label that indicates the class of the associated image. A functional
representation of a neural network is given in equation (2.4), where f is
the neural network, θ is the set of parameters of the network, X ∈ X is
the input given to the neural network and ŷ is the output.

f : X → Y

X 7→ f (X, θ) = ŷ

(2.4)

Considering image classification, the output ŷ is a probability vector
where the largest coefficient is the one whose index corresponds to the
predicted class of the input image. This vector is generally converted
into a one-hot vector, where the only non-zero coefficient is at the index
of the predicted class. The true label y, referred to as the ground truth,
is the class index so that y ∈ J0; C− 1K, where C is the number of classes
considered. The ground truth can also be converted into a one-hot vec-
tor.

22

CONTENTS

2.3.2 Loss Function and Regularisation
Training a neural network aims at finding the optimal parameters θ that
maximise a performance, quantified by a metric, often based on the dis-
crepancy between the predicted output ŷ and the true output y. How-
ever, optimising directly the metric might be intractable. To solve this
issue, one may define a differentiable cost function and minimise the
latter as a proxy for optimising the metric. Considering k example pairs
(Xk, yk), the cost function J (θ), also referred to as the empirical risk, is
defined in the following equation:

J (θ) =
1
k

k

∑
i=1
L(f (Xk, θ), yk) (2.5)

where L is the loss function. Note that the true data distribution, and
therefore the risk, is unknown. This is why the empirical risk, com-
puted with a set of example pairs, is used instead. The minimisation
of the empirical risk alone is not sufficient to ensure good overall per-
formance. Indeed, the neural network could learn to perfectly predict
the output of the training set but may fail to generalise to unseen data.
This phenomenon is called overfitting. To prevent overfitting, we add a
regularisation term to the empirical risk. The regularisation term, de-
noted R, is a function of the parameters θ of the neural network which
penalises the complexity of the model, and thus prevents overfitting. To
account for regularisation, the cost function in equation (2.5) is updated
to:

Jr(θ) =
1
k

k

∑
i=1
L(f (X, θ), y) +R(θ) (2.6)

Loss function. In equations (2.5) and (2.6), the loss function L is a mea-
sure of the discrepancy between the ground truth y and the predicted
output. Contrary to the metric P which might be non-differentiable, the
loss function is differentiable so that its minimisation can be achieved us-
ing gradient-based methods, subsequently detailed in section 2.3.3. The
choice of the loss function depends on the task at hand. For classification
tasks (not only images), the loss function is often the cross-entropy loss.

23

2.3. NEURAL NETWORK TRAINING

For a binary classification problem, the ground truth is a binary variable
y ∈ {0, 1} and the predicted output is a scalar f (X, θ) = ŷ ∈ [0, 1]. The
binary cross-entropy loss is defined as follows:

L(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ) (2.7)

The binary cross-entropy loss defined in equation (2.7) can be extended
to problems with more than two classes. For a classification problem
with C classes, the ground truth is a one-hot vector y ∈ {0, 1}C and the
output is a C-dimensional vector f (X, θ) = ŷ ∈ RC. The multi-class
cross-entropy loss is defined as follows:

L(ŷ, y) = −
C

∑
i=1

yi log (ϕ(ŷ)i) (2.8)

In the above equation, ŷ is the unnormalised raw output vector of the
neural network and ϕ is the softmax function, whose expression is given
in equation (2.9). The softmax function is used to convert the raw out-
put vector of real numbers into a probability distribution. Note that
some models which use the softmax as the activation function of their
last layer output directly a probability distribution, in which case the
softmax is not needed.

Considering a vector z = [z1, . . . , zn], the j-th component of vector z
normalised by the softmax function is given by:

ϕ(z)j =
exp(zj)

n

∑
k=1

exp(zk)

(2.9)

24

CONTENTS

Regularisation. The regularisation term R is a differentiable function
of the weights θ. It acts as a control mechanism to avoid overfitting by
preventing the weights of the neural network from becoming too large,
which can lead to overly complex models that overfit the training data.
This is typically achieved by adding a penalty proportional to the mag-
nitude of the weights, thereby keeping them small.

Common types of regularisation include ℓ1 and ℓ2 regularisation,
whose expressions are shown in equations (2.10) and (2.11) respectively.
ℓ1 regularisation [190], adds a penalty equal to the absolute value of the
magnitude of the weights. On the other hand, ℓ2 regularisation [79],
adds a penalty equivalent to the square of the magnitude of the weights.
Both methods aim to reduce the magnitude of the weights, but ℓ1 regu-
larisation is more targeted towards feature selection, effectively pushing
some weights to 0, whereas ℓ2 restrains globally their magnitude.

The regularisation term R is added to the cost function with a regu-
larisation coefficient, usually denoted as λ, which is a hyperparameter
that balances the trade-off between fitting the training data (minimising
the loss L) and limiting the complexity of the model (minimisingR).

For a network with L layers and parameters θ = {w1, . . . , wL}, the
ℓ1 and ℓ2 regularisation term is defined as follows:

Rℓ1(θ) = λ
L

∑
i=1
∥wi∥1 (2.10)

Rℓ2(θ) =
λ

2

L

∑
i=1
∥wi∥2

2 (2.11)

where ∥.∥1 and ∥.∥2
2 respectively denote the sum of the absolute value

and the sum of the squaring of each element of the vector.

25

2.3. NEURAL NETWORK TRAINING

2.3.3 Loss Optimisation

As mentioned before, the training of a neural network involves finding
the optimal set of parameters θ that minimises a cost function J (θ).
This process of optimisation is typically carried out using gradient-
based methods which rely on the iterative adjustment of the parameters
in the opposite direction of the gradient of the cost function. The gradi-
ent of a function provides the direction of the steepest ascent at a given
point [12]. Thus, by moving the parameters in the opposite direction of
the gradient, we seek to descend to a local minimum of the function.

Backpropagation. One critical step in the optimisation process is the
computation of the gradient of the cost function with respect to the
parameters, ∇J (θ). These gradients are computed with the backpropa-
gation algorithm [171] which is an application of the chain rule (see equa-
tion (2.12)) to efficiently compute these gradients. It involves a forward
pass through the network to compute the outputs and thus the loss,
and a backward pass to calculate the gradients. During the backward
pass, the partial derivative of the cost with respect to each parameter is
computed, starting from the output layer and going back to the input
layer. The previously computed derivatives from the subsequent layers
are used to compute the ones of the earlier layers, making the backprop-
agation algorithm computationally efficient.

∂z
∂x

=
∂z
∂y

∂y
∂x

(2.12)

Stochastic Gradient Descent. Once the gradients are calculated, they
are used to update the parameters. The most prevalent method for pa-
rameter updates is Stochastic Gradient Descent (SGD), a derivative of
the Robbins–Monro algorithm [166]. In SGD, the gradient of the loss
function is computed for a random subset of the data (a batch or mini-
batch), and the weights are shifted in the direction that decreases the
loss function. This is achieved by subtracting the gradient of the cost
function with respect to that parameter multiplied by a learning rate η:

26

CONTENTS

θ
(t+1)
i = θ

(t)
i − η

∂J (θ)

∂θi
(2.13)

where θ
(t)
i is the ith parameter at iteration t. The SGD algorithm is de-

tailed in algorithm 1. The use of mini-batches in SGD leads to a trade-off
between computational efficiency and estimation accuracy. Indeed, the
gradient is estimated using a subset of the entire training set, which is,
on the one hand, less accurate than using the whole dataset, but on the
other hand, less computationally intensive. The size of the mini-batch,
which is a hyperparameter of the training algorithm, determines this
trade-off and should also be chosen depending on the computational
and memory resources available. Note that the size of modern datasets,
subsequently detailed in section 2.5, makes it intractable to evaluate
the gradients on the whole dataset in one step, hence the use of mini-
batches.

Algorithm 1 Stochastic Gradient Descent Algorithm

Require: Learning rate η, mini-batch size m, Initial parameters θ(0),
m′ ≥ m training pairs (X, y) ∈ X ×Y , Loss function J
while Stopping criterion not met do

Sample mini-batch of size m from training set
Compute gradient estimate on mini-batch: ĝ← ∇J (θ)
Update parameters: θ(t+1) ← θ(t) − η ĝ

end while
return Optimal parameters θ

Learning Rate. The learning rate is a hyperparameter that determines
the step size of the update at each iteration while moving toward a
minimum of the loss function (see equation (2.13)). Setting the learning
rate too high can cause the learning process to converge too quickly or
overshoot while setting it too low can make the learning process slow to
converge, as shown in figure 2.3.

27

2.3. NEURAL NETWORK TRAINING

6 4 2 0 2 4 6
x

0

5

10

15

20

25

30

35

(x
)

= 0.01
= 0.1
= 1.01

Figure 2.3: Illustration of the effect of the learning rate on the convergence
of the gradient descent. The gradient descent has been applied iteratively
for 20 epochs. On the one hand, a too-high learning rate (η = 1.01) causes
the gradient descent to overshoot the minimum of the loss function. On the
other hand, a too-low learning rate (η = 0.01) causes the gradient descent to
converge slowly.

Alternative methods. To enhance the performance of SGD, various
modifications and extensions have been proposed, such as SGD with
momentum [183, 152], RMSProp [76], or Adam [101]. These methods
aim to adjust the learning rate dynamically or dampen the oscillations
in the gradient descent to achieve faster and more stable convergence.

For instance, SGD with momentum [183, 152] uses a momentum
coefficient γ and smoothes the variations of the descent direction, thus
preventing the optimisation from getting stuck in small local minima.
The momentum term is a moving average of the gradient, here denoted
v, and it is used to update the parameters as shown in equation (2.14). In
this equation, the momentum coefficient γ ∈ [0, 1] is a hyperparameter
that is typically set close to 1, 0.9 being a common value.

vt+1 = γvt + η∇J (θ)

θt+1 = θt − vt+1
(2.14)

28

CONTENTS

2.4 Convolutional Neural Networks for Com-
puter Vision

In the field of computer vision, CNNs have emerged as effective archi-
tectures that enable high performance on image classification tasks. The
effectiveness of CNNs lies in their architecture that leverages the Con-
volutional (Conv) layers to automatically learn abstract features from vi-
sual data in a hierarchical fashion. In this section, we explore the build-
ing blocks of CNNs and various architectures that have been widely
used and became de facto standards in the literature.

2.4.1 Building Blocks
This section covers the most common building blocks of CNNs for com-
puter vision. These building blocks are organised in layers that are
stacked to form neural network architectures subsequently detailed in
sections 2.4.2 and 2.4.3.

Convolutional layer. Conv layers are one of the core building blocks of
CNNs. Each convolution layer performs a series of spatial convolutions
on the input data using a set of learnable filters or kernels. These filters
are designed to extract low-level features such as edges, corners, and
textures in the early layers, while they learn high-level features like ob-
ject parts or even whole objects in the deeper layers. Contrary to manual
feature engineering, the features learned by Conv layers are learned in
a end-to-end fashion. The 2D convolution operation is defined in equa-
tion (2.15) :

Yij =
kh−1

∑
a=0

kw−1

∑
b=0

Xi−a,j−b · Kab (2.15)

where X is the input, K is the kernel of size kh× kw and (i, j) are the spa-
tial coordinates in the output feature map. Note that some Deep Learn-
ing frameworks implement cross-correlation instead of convolution. In
the former, the kernel is not spatially flipped leading to the cross-corre-
lation not being commutative [53]. The Conv layer kernels are typically

29

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

smaller than the input along width and height dimensions (they are gen-
erally 3× 3 [68]) but comprise as much channels as the input. During
the forward pass, each kernel is spatially convolved channel-wise with
the input and the convolution outputs are summed along the channel
dimension to yield a single scalar for each kernel position on the input
(see also figure 2.4a).

Conv layers are more computationally efficient than Fully Connected
(FC) layers, as they have a form of weight sharing baked in. Indeed, the
same kernel is applied to every location of the input, which brings two
main benefits: (i) the number of parameters is independent of the input
size and (ii) a single learned kernel, acting as a feature detector, can be
used in multiple locations. This is especially useful for early feature
detector that detects basic shapes or textures. In addition, because of
the kernels being convolved across the whole input, Conv layers are
also less sensitive to spatial translations that might occur in different
instances of the same class.

Fully connected layer. FC layers, also known as Dense layers are of-
ten the last layers of a CNN, effectively serving as a classifier, whereas
the Conv layers act as a feature extractor. FC layers perform high-level
reasoning by conducting non-linear transformations of the extracted
features and combining them to make decisions. In an FC layer, each
neuron is connected to every neuron in the previous layer. A FC layer
can be described as a matrix-vector product as in equation (2.16) (see
figure 2.4b).

y = wT · x + b (2.16)

where x is the input vector, w is the weight matrix and b is the bias. In
the context of CNNs, before passing the output of the last Conv layer
to the first FC layer, it needs to be flattened or reshaped into a single
column vector. The final layer in a CNN is a FC layer that has a num-
ber of neurons equal to the number of output classes, and it typically
uses a softmax activation to output a probability distribution over those
classes.

30

CONTENTS

k

k

1
1

Input Feature Map
Output Feature Map

Convolution Kernel

(a) Convolutional Layer

Input Features

Output Features

Neuron

Connection

(b) Fully Connected Layer

Figure 2.4: Conceptual representation of a Convolutional and a Fully Con-
nected layer. The Convolutional layer (figure 2.4a) takes a multi-channel in-
put and produces a multi-channel output. Each coefficient of the output is
computed by applying a convolution operation at a corresponding location in
the input. The Fully Connected layer (figure 2.4b) takes a vector input and
produces a vector output. Each connection is represented by a weight in the
weight matrix.

Activation functions. They are often applied to the output feature map
of a convolutional or fully connected layer, resulting in the activation
map or activations. These functions introduce non-linearity into the
model, allowing it to learn more complex patterns [127]. A common
activation function used in CNNs is the Rectified Linear Unit (ReLU),
represented as f (x) = max(0, x). Other functions like the sigmoid
f (x) = 1/(1 + e−x) or tanh f (x) = (ex − e−x)/(ex + e−x) functions have
been used (see figure 2.5), however, the ReLU is preferred over the latter
for its computational efficiency and its ability to mitigate the vanishing
or exploding gradient problem [78, 51].

Pooling. This operation is often employed after Conv layers in a CNN
and aims at progressively reducing the spatial extent of the input repre-
sentation, thus reducing the number of parameters and computations in
the network. This also helps control overfitting and increases the recep-
tive field of the subsequent layers. The pooling operation is performed
independently on each input channel, so the number of channels re-
mains unchanged. The two most common types of pooling are max and
average pooling. The former selects the maximum value in each window
(often of size 2× 2), while the latter computes the average value of the

31

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

ReLU
Tanh
Sigmoid

Figure 2.5: ReLU, tanh and sigmoid activation functions. Best viewed in
colours.

window. Given an input matrix X, the output matrix Y for a certain
spatial location (i, j) is defined in equation (2.17) for max pooling and
equation (2.18) for average pooling:

Ymax
ij = max

(a,b)∈[0,kh−1]×[0,kw−1]
Xi+a,j+b (2.17)

Yavg
ij =

1
kh × kw

kh−1

∑
a=0

kw−1

∑
b=0

Xi+a,j+b (2.18)

where kh and kw represent the height and width of the pooling windows
respectively. Note that pooling has no learnable parameters. It only
downsamples the input based on a fixed function.

Batch Normalisation. Batch Normalisation (BN) is a technique intro-
duced in [91] to combat the issue of internal covariate shift in deep
neural networks, thereby accelerating training and improving gener-
alization. Covariate shift refers to the changes in the distribution of

32

CONTENTS

features in the training and test dataset, which can lead to slow con-
vergence, make the network harder to train or hinder its generalisation
capabilities. BN normalises the input of the layer by adjusting and scal-
ing the activations of the previous one. For each mini-batch of inputs
(for instance, the activation map of the previous layer), it computes the
mean and variance of the activations and performs normalization. The
transformation is defined as follows:

x̂i =
xi − µB√

σ2
B + ε

(2.19)

where xi is the input, µB is the mini-batch mean, σ2
B is the mini-batch

variance, and ε is a small constant for numerical stability. After normal-
ization, the method allows the network to learn an affine transformation
for each activation, permitting the network to control the mean and stan-
dard deviation of the input distribution, formalised in equation (2.19):

yi = γx̂i + β (2.20)

where, γ and β are the learnable parameters of the affine transforma-
tion. BN has the advantage of making the network less sensitive to the
initial weights, allowing higher learning rates, and reducing the need
for Dropout, among other regularisers. However, its effectiveness de-
creases in the case of small batch sizes, as the estimate of the batch mean
and variance becomes less accurate.

Dropout. Dropout is a regularization technique used to prevent overfit-
ting in neural networks. Dropout was introduced in [180] and works by
randomly deactivating a proportion of neurons in a layer during each
training iteration. More specifically, during the forward pass, each neu-
ron has a probability p of being temporarily removed from the network,
effectively breaking up co-adaptations between neurons and forcing
them to learn more robust and independent features. The output of
Dropout is given in equation (2.21):

33

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

ri ∼ Bernoulli(1− p), y =
x⊙ r
1− p

(2.21)

In the above equation, x denote the output of a layer processed with
dropout, r is a binary mask vector of the same shape as x, where each
element of r is independently drawn from a Bernoulli distribution with
probability 1− p, leading to ri = 1 if the associated weight is kept and a
ri = 0 if not. The product x ⊙ r is scaled by 1 − p to ensure that the
expected value of x remains unchanged. During the evaluation, the
dropout is changed to an identity function.

2.4.2 Architectures Evolution
The evolution of Convolutional Neural Networks is characterised by a
consistent increase in their size and performance, alongside the intro-
duction of new architectural modifications to address the limitations of
their predecessors (see figure 2.9). In this section, we present a historical
overview of the CNNs evolution and we subsequently detail the archi-
tectures that we used in our experiments.

One of the earliest CNN was introduced in 1998: LeNet-5 was de-
veloped for digit recognition [108], constituting a relatively simple net-
work with 5 layers with learnable parameters: 2 Conv layers and 3 fully
connected layers. Its size is significantly smaller compared to the con-
temporary models (see figure 2.9). With the introduction of AlexNet
[103] in 2012, the network size considerably grew, comprising more lay-
ers and neurons to handle more complex tasks, like large-scale image
recognition. AlexNet tackled the overfitting issue in LeNet-5 using data
augmentation and dropout techniques, while also introducing and pop-
ularising the ReLU activation function.

The next advancement was the VGG networks family [177] which
proposed much deeper architectures with up to 19 layers, which is a sig-
nificant increase over the 8 layers of AlexNet. However, the increased
depth led to the vanishing gradient problems, which refers to the situation
in training a deep neural network where gradients are backpropagated
through layers and become increasingly small, effectively preventing
the weights of earlier layers from learning and updating effectively. The

34

CONTENTS

Figure 2.6: Architecture of LeNet-5, a Convolutional Neural Network used for
handwritten digit recognition. Image taken from [108]

VGG networks also introduced the practice of stacking multiple convo-
lutional layers with small 3× 3 filters instead of using larger ones. The
same year, Google’s Inception (or GoogLeNet) [185] was introduced, ad-
dressing the vanishing gradient issue with its novel inception modules,
which allowed the network to learn at varying scales and increased
computational efficiency, without overly increasing the network size.
GoogleNet was also the first CNN that was not a simple stack of lay-
ers and processed a single input with different blocks in parallel before
merging them.

Figure 2.7: Architecture of the VGG16 network introduced in [177]. Image
taken from [40]

Later, the ResNet models family was proposed in [68], which ef-
fectively tackled the vanishing gradient problem by introducing skip
(or shortcut) connections, allowing gradients to backpropagate directly
through several layers. These shortcut connections also allowed the net-
work to grow in depth up to 152 layers without a significant increase in
computational cost. However, a challenge remained with the constant

35

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

need for careful design to manage feature-map sizes. Indeed, stacking
numerous layers, with their channel count increasing with depth, can
lead to an explosion in the number of parameters as well as increased
memory consumption.

+

ReLU

ReLU

X

f(x)

f(x) + x

Skip
Connection

Identity

Conv Layer

Conv Layer

Figure 2.8: A residual block and its skip connection used in ResNets[68]. The
identity skip connection allows for the gradient to be backpropagated directly
through several layers, thus mitigating the vanishing gradient problem.

In response, DenseNet [86] was proposed. It connects each layer to
every other following layer of the same block in a feed-forward fashion.
By reinforcing the propagation of features and gradients through the
network, the DenseNet architecture alleviates the vanishing-gradient
problem and further improves the information flow from earlier lay-
ers to later ones by reusing earlier features in the deeper layers. Thus,
through these chronological advancements, neural networks not only
grew in size but also improved in performance, thereby becoming more
efficient and capable of handling more complex tasks.

36

CONTENTS

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of FLOP (109)

60

65

70

75

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

AlexNet

VGG19
VGG16

VGG13
VGG11

InceptionV3

GoogLeNet
ResNet-18

ResNet-34

ResNet-50

ResNet-101 ResNet-152

DenseNet-121

DenseNet-161

Size (Millions of parameters)
10M
50M
100M

Type of Architecture
Standard Architectures

Type of Architecture
Standard Architectures

Figure 2.9: Networks size comparison. The x-axis represents the number of
Floating Point Operations (FLOPs) required to process a single image. The
y-axis represents the Top-1 accuracy on the ImageNet [26] dataset and the size
of the circles represents the number of parameters in the network. Numbers
are taken from [156]

2.4.3 Architectures Used in Experiments

In the subsequent paragraphs, we detail the architectures that we used
in our experiments. We chose these architectures because they are rep-
resentative of the state-of-the-art in image classification and they are
widely used in the pruning literature. Table 2.1 gives an overview of the
different network architectures.

Conv2 Conv4 Conv6 VGG16 ResNet20 ResNet18

Number of Parameters 4,301,642 2,425,930 2,262,602 14,728,266 269,034 11,685,608

Number of layers 5 7 9 14 20 18

Number of Conv layers 2 4 6 13 19 17

Number of FC layers 3 3 3 1 1 1

Table 2.1: Number of parameters for the used neural network architectures.
The number of parameters is given for the CIFAR-10 dataset, except for the
ResNet18 architecture, whose number of parameters is given for the TinyIm-
ageNet dataset.

37

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

VGG16. The VGG16 network [177] is a 16-layer CNN composed of 13
Conv layers and 3 fully connected layers. VGG16 was originally de-
signed for ImageNet [26] and in our experiments with CIFAR-10 and
CIFAR-100 (described in section 2.5) we use a slightly modified version
of VGG16 where we replace the 3 FC layers with an average pooling
layer and a single FC layer [122]. The Conv layers filters are of size 3× 3
with a stride of 1. The max-pooling layers are of size 2× 2 with a stride
of 2. Each Conv layer is followed by a ReLU activation function. The
VGG16 network is illustrated in figure 2.10.

Input

Output

Conv 3x3

Conv 3x3

Max Pooling

B1 (no=64)

B1 (no=128)

B2 (no=256)

B2 (no=512)

B2 (no=512)

B1:

no = number of output channels

B2:

Conv 3x3

Conv 3x3

Max Pooling

Conv 3x3

FC 512xC

Avg Pooling

C = number of classes

ReLU

ReLU

ReLU

ReLU

ReLU

Figure 2.10: VGG16 adapted for CIFAR-10 and CIFAR-100.

ResNet{18,20}. The ResNet18 and ResNet20 networks [68] are 18 and
20-layer CNNs respectively. These layers are organized into stages,
with ResNet18, represented in figure 2.11b, consisting of 4 stages with 2
Basic Blocks (detailed subsequently), while ResNet20, represented in fig-
ure 2.11a, is structured into 3 stages, each containing 3 Basic Blocks. The
Basic Blocks, also referred to as Residual Blocks, are composed of Conv
layers (see figures 2.11a and 2.11b) and follow the principle of learning
the residual function:

f (x) = h(x)− x (2.22)

38

CONTENTS

where h(x) is the mapping usually learned by previous architectures
such as VGG16. The representation of a residual block is given by equa-
tion (2.23) (see also figure 2.8):

y = f (x, θ) + x (2.23)

where x is the input, f represents the residual function, θ are the weights
of the block, and y is the output. In equation (2.23) +x denotes the skip
connection, which enables direct backpropagation of the gradient to ear-
lier layers.

Conv{2,4,6}. Conv2, Conv4 and Conv6 are shrunk down versions of
the VGG16 network architecture, composed of 2, 4 and 6 Conv layers
respectively and 3 FC layers. Although Conv2, Conv4 and Conv6, intro-
duced by Frankle and Carbin in [44], are not widely featured in existing
literature, we chose to employ them due to their use in the methods we
benchmark against. The Conv layers are stacked in increasing depth,
and their convolutional filters are of size 3× 3 with a stride of 1. The
max-pooling layers are of size 2× 2 with a stride of 2. They are repre-
sented in figure 2.12.

2.5 Datasets
In this thesis, we focus on image classification and supervised learning,
a machine learning paradigm in which the model is trained using la-
belled data. In the context of image classification, the labelled data are
pairs of images and labels which represent the class of their associated
image. We denote an input image X and its corresponding label y. Each
image X belongs to the set of all images of the dataset X , and each label
y belongs to the set of all labels of the dataset Y . The ensemble of the
image-label pairs are gathered in a dataset, denoted D, which is for-
mally a set of pairs (X, y), where X ∈ X and y ∈ Y , so that D ⊂ X ×Y .

39

2.5. DATASETS

Conv 3x3

Conv 3x3

Max Pooling

B:

ReLU

BatchNorm

BatchNorm

+
ReLU

B

B

S:

B

S (no=16)

S (no=32)

S (no=64)

Conv 3x3

BatchNorm

ReLU

Avg Pooling

FC 64xC

Input

Output

no = number of output channels

C = number of classes
B = basic block

S = stage

(a) ResNet20

Conv 3x3

Conv 3x3

Max Pooling

B1:

ReLU

BatchNorm

BatchNorm

+
ReLU

B2

B1

SP:

 SI (no=64)

SP (no=128)

SP (no=256)

Conv 7x7

BatchNorm

ReLU

Avg Pooling

FC 512xC

Input

Output

no = number of output channels

C = number of classes
B = basic block

S = stage

Conv 3x3

Conv 3x3

Max Pooling

B2:

ReLU

BatchNorm

BatchNorm

+
ReLU

Conv 1x1

BatchNorm

Max Pooling

SP (no=512)

B1

B1

SI:

(b) ResNet18

Figure 2.11: ResNet20 and ResNet18 architectures. ResNet20 (figure 2.11a) is
tailored for CIFAR-10 and comprises 3 stages encompassing 3 Basic Blocks of
2 Conv layers each, with an identity skip connection in each block. ResNet18
(figure 2.11b) is tailored for ImageNet and is composed of 4 stages encompass-
ing 4 Basic Blocks of 2 convolutional layers each. There are two types of blocks:
BI with an identity skip connection and BP with a projection skip connection.
The projection skip connection is used to match the dimensions between the
input and the output of the block.

40

CONTENTS

Input

Output

B (no=64)

no = number of output channels

Max Pooling

FC Fx256

C = number of classes

FC 256

FC 256xC F = number of flatened features

Conv 3x3

Conv 3x3

B:

ReLU

ReLU

Input

Output

B (no=64)

B (no=128)

Max Pooling

FC Fx256

FC 256

FC 256xC

Input

Output

B (no=64)

B (no=128)

B (no=256)

Max Pooling

FC Fx256

FC 256

FC 256xC

Conv2 Conv4 Conv6

Figure 2.12: Conv2, Conv4 and Conv6 architectures. The number of flat fea-
tures F corresponds to the size of the feature map of the last block B, once
vectorised. F = 16384, 8192 and 4096 for Conv2, Conv4 and Conv6, respec-
tively for input images of size 32× 32.

Following these formal notations, the subsequent sections give de-
tails about the datasets used in our experiments. We evaluated our
methods on three different datasets tailored for image classification:
CIFAR-10 [164], CIFAR-100 [164] and TinyImageNet [106]. The follow-
ing paragraphs give details about these datasets and table 2.2 sums up
their main characteristics.

Dataset Number of images Number of classes Image size Size of test set

CIFAR-10 60,000 10 32x32 10,000

CIFAR-100 60,000 100 32x32 10,000

TinyImageNet 100,000 200 64x64 10,000

Table 2.2: The number of images, of classes, image size and size of the test set
for the three datasets used: CIFAR-10, CIFAR-100 and TinyImageNet.

41

2.5. DATASETS

2.5.1 CIFAR-10

CIFAR-10 [164] is a widely used dataset in machine learning and com-
puter vision. This is a labelled subset of the 80 Million Tiny Images
dataset [192]. CIFAR-10 is a simple yet challenging dataset that allows
for quicker iteration or hyperparameter tuning than larger datasets such
as ImageNet [172], but it is significantly more complex than the MNIST
dataset [27], which contains grayscale handwritten digits images. The
CIFAR-10 dataset contains 60,000 colour images of size 32x32 pixels,
split into 10 classes, namely: plane, car, bird, cat, deer, dog, horse, ship,
and truck. Each class contains 6,000 images. The dataset is divided into
two subsets: a training set, composed of 50,000 images and a test set
containing 10,000 of them.

Figure 2.13: A sample of images from CIFAR-10. Each row contains images
from one of the 10 classes: plane, car, bird, cat, deer, dog, frog, horse, ship, and
truck

42

CONTENTS

2.5.2 CIFAR-100
CIFAR-100 [164] is a more challenging version of CIFAR-10. Like the
latter, it is a labelled subset of the 80 Millions Tiny Images and is com-
posed of 60,000 colour images of size 32x32 pixels. However, instead
of 10 classes, CIFAR-100 contains 100 classes of 600 images each. As a
result, each class has far fewer images than in CIFAR-10. CIFAR-100 is
also divided into two sets: a training and a test set, composed of 50,000
and 10,000 images respectively.

Figure 2.14: A sample of images from CIFAR-100. Each image represents an
instance of one of the 100 distinct classes.

2.5.3 TinyImageNet
TinyImageNet is another popular dataset in machine learning and com-
puter vision, conceived as a subset of the larger ImageNet dataset [172].
It comprises 100,000 colour images of size 64x64 pixels, split into 200
classes, whereas ImageNet contains 1.2 million images of size 256x256
pixels, split into 1,000 classes. The dataset is divided in 3 sets: the train

43

2.5. DATASETS

set, which contains 500 images per class, the validation and test sets,
which both contain 50 images. The scaled-down image size and the
reduced number of images make TinyImageNet more computationally
manageable than ImageNet while still being challenging by offering di-
versity in the image classes.

Figure 2.15: A sample of images from the Tiny ImageNet dataset. Each image
represents an instance of one of the 200 distinct classes.

2.5.4 Train, Validation and Test Sets
In our experiments, for each dataset, we use 3 distinct sets for training,
validation and testing. The training set serves to tune the weights of
the model, while the validation set is used to monitor the evolution of
the performance metric on unseen data throughout the training. The
validation metric provides the necessary triggers for the early stopping
policy (i.e. interrupting the training prematurely if the validation met-
rics do not change over a given number of iterations). The test set, on
the other hand, is used to evaluate the model’s performance on entirely
new data and to report the final test accuracy. When utilizing datasets
like CIFAR-10 and CIFAR-100, only training and testing sets are avail-
able. For these datasets, we split the given train set using the following
proportions: 90% is used for training the network and the remaining
10% is for validation. On the other hand, the TinyImageNet dataset
does provide training, validation, and testing sets, but the test set lacks
annotations. Hence, we use 90% of the original training set for model

44

CONTENTS

training and the remaining 10% for validation. Instead of the original
unannotated test set, we repurpose the original validation set to serve
as the test set. This is a common strategy employed by other implemen-
tations [205, 197, 196].

45

2.5. DATASETS

46

Chapter 3

Deep Neural Network
Compression

47

48

Contents
3.1 Introduction . 49
3.2 Accelerating Computation in Neural Networks 51

3.2.1 Fast Fourier Transform 51
3.2.2 Optimised Matrix Multiplication Algorithms 52
3.2.3 Leveraging Matrix Structures 53
3.2.4 Practical Applications and Limitations 55

3.3 Teaching Paradigm . 55
3.3.1 Knowledge Distillation 55
3.3.2 Feature-Map Matching 56
3.3.3 Deep Mutual Learning 57
3.3.4 Teacher Assistant . 58
3.3.5 Alternative Distillation Losses 58

3.4 Architecture Design . 60
3.4.1 Building Blocks for Efficient Architecture Design . . 61
3.4.2 Automatic Architecture Design Through Neural

Architecture Search 67
3.5 Compressing and Optimising an Existing Architecture . . 69

3.5.1 Lower Precision Weights and Activations Repre-
sentation . 71

3.5.2 Removing Weights and Connections 74
3.6 Positioning . 81
3.7 Conclusion . 83

3.1 Introduction
The fast development of neural networks has led, on the one hand, to
the enhancement of their performance, but also, on the other hand, to
a significant growth in size and parameter count. The rapid evolution
and adoption of these networks has given rise to various applications
[103, 13, 176, 96], particularly embedded ones[100, 104], whose resources

49

3.1. INTRODUCTION

are highly constrained in terms of computing power, energy consump-
tion and memory footprint. Alongside the increase in the size of these
networks, compression techniques [107, 61, 60] have been devised, in
order to enable the use of these algorithms in embedded applications or
resource-constrained environments.

This chapter focuses on state-of-the-art neural network compression
methods, predominantly based on various operations applied to the
weights of an already existing large neural network. This chapter is
organised as follows: Section 3.2 examines fast convolution techniques,
which aim to accelerate the computation of convolutions in neural net-
works, thereby reducing both the runtime and computational resources
required. Thereafter, section 3.3 delves into Knowledge Distillation
(KD), a process by which the knowledge of a larger, more complex net-
work (referred to as the teacher) is transferred to a smaller and more
efficient network (called the student), enabling the latter to achieve com-
parable performance with a reduced footprint. Subsequently, section 3.4
explores architecture design methods that aim at producing more effi-
cient and effective networks. Section 3.4.1 details ad-hoc architectures,
referred to as Efficient Architectures. These architectures are lightweight
networks that revolve around a core technique to reduce their size while
preserving performance as much as possible. Hence, section 3.4.2 dis-
cusses NAS, a method that automates the discovery of optimal net-
work architectures tailored to specific tasks or constraints, potentially
leading to more compact and efficient designs. Afterwards, section 3.5
presents two categories of techniques that harness an existing neural
network and refine its architecture to produce a more compact and ef-
ficient model. First, section 3.5.1 focuses on quantisation and binarisation
techniques, which aim to lower the numerical precision of weights and
activations of networks in order to speed up their computation and
reduce their memory footprint. Lastly, section 3.5.2 considers neural
network pruning, which seeks to remove redundant or insignificant
connections and weights from networks, resulting in sparser and more
computationally efficient models.

50

CONTENTS

3.2 Accelerating Computation in Neural Net-
works

Among various operations and functions used in neural networks, two
fundamental mathematical operations, convolution and matrix multi-
plication are used extensively and are the backbone of most computa-
tions in neural networks. However, performing these operations can
be computationally demanding, particularly with large and complex
networks. This may lead to long and heavy computations, posing a
challenge for real-time or resource-limited applications. To mitigate this
issue, some research efforts have focused on developing techniques to
speed up these operations. These strategies encompass optimizing the
underlying algorithms to leveraging hardware acceleration, with the
objective of enhancing the speed and efficiency of neural network com-
putations.

3.2.1 Fast Fourier Transform

The most popular algorithms for accelerating convolution operations
rely on the FFT [19, 118, 153], and leverage the Convolution Theorem.
The Convolution Theorem states that the convolution of two signals in
the source domain is the product of the two signals in the Fourier do-
main, as shown in equation (3.1):

F(x ∗ y) = F(x) · F(y) (3.1)

where x and y are the two signals in the source domain, x ∗ y is the con-
volution of x and y and finally F(x) and F(y) are the Fourier transforms
of x and y, respectively. Then, to obtain the result of the convolution
in the source domain, the inverse Fourier transform, denoted F−1, is
applied as follows:

x ∗ y = F−1(F(x) · F(y)) (3.2)

51

3.2. ACCELERATING COMPUTATION IN NEURAL NETWORKS

The convolution theorem allows for faster computation of the 2D con-
volution by using the FFT to compute the convolution in the frequency
domain, and the inverse FFT to convert the result back to the source
domain [146].

3.2.2 Optimised Matrix Multiplication Algorithms
It is possible to accelerate matrix multiplication by directly optimising
the underlying algorithm. The Strassen algorithm [182], used in [20], is
a fast method for matrix multiplication that reduces the computational
complexity from the standard O(n3) to approximately O(n2.807) by re-
cursively dividing the matrices of size n into 4 submatrices of size n

2 ×
n
2 ,

reorganising and combining these multiplications to perform only 7 in-
stead of 8 matrix multiplications (see equations (3.5) and (3.6)).

Considering a matrix multiplication of two square matrices A and
B of size 2n with n ∈ N, defined in equation (3.3), the output of the
standard bloc matrix multiplication, referred to as C, is defined in equa-
tion (3.4). Note that Aij and Bij are either a scalar if n = 1, or a matrix of
size n

2 ×
n
2 .

A =

A11 A12

A21 A22

 , B =

B11 B12

B21 B22

 (3.3)

The computation of C requires 8 matrix multiplications, as shown in
equation (3.4).

C = A · B =

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

 (3.4)

The Strassen algorithm reduces the number of multiplications to 7 by
defining the following 7 products, referred to as Pi, with i ∈ J1; 7K:

52

CONTENTS

P1 = (A11 + A22)(B11 + B22)

P2 = (A21 + A22)B11

P3 = A11(B12− B22)

P4 = A22(B21− B11)

P5 = (A11 + A12)B22

P6 = (A21− A11)(B11 + B12)

P7 = (A12− A22)(B21 + B22)

(3.5)

The result of the matrix multiplication is then obtained by combining
these products, as shown in equation (3.6).

C =

P1 + P4− P5 + P7 P3 + P5

P2 + P4 P1− P2 + P3 + P6

 (3.6)

The Strassen algorithm has later been refined by Coppersmith and
Winograd, who introduced the Coppersmith-Winograd algorithm [21].
The latter brings down the complexity to O(n2.376). This algorithm is
used in various works, mostly targeted towards a specific Field Pro-
grammable Gate Array (FPGA) processor [124, 131, 199].

3.2.3 Leveraging Matrix Structures

Using a particular matrix structure also speeds up the standard opera-
tions used in a neural network. Fully connected layers can be effectively
accelerated by forcing the use of specific matrix structures. For instance,
Cheng et al. devised a method where dense layers standard operation
is replaced by a circulant projection [16]. The circulant matrix can be
stored in a memory-efficient way and can be further sped up with FFT.
C is an example of a circulant matrix (see equation (3.7)).

53

3.2. ACCELERATING COMPUTATION IN NEURAL NETWORKS

C =

a b c d

d a b c

c d a b

b c d a

 T =

a b c d

e a b c

f e a b

g f e a

 (3.7)

Likewise, convolutional operations can be accelerated thanks to Toe-
plitz matrices. A Toeplitz matrix, or diagonal-constant matrix, has the
unique characteristic of each descending diagonal from left to right be-
ing constant. T is an example of a Toeplitz matrix (see equation (3.7)).
This property is particularly useful for convolutions, as they can be
expressed as a multiplication by a Toeplitz matrix [55], as shown in
equation (3.8). This algorithm has been used in [116], focusing on FPGA
architectures. Note that the representation of convolution as a product
with a Toeplitz matrix can further be accelerated by using the aforemen-
tioned optimisations to the matrix multiplication algorithm, such as the
Strassen or Coppersmith-Winograd algorithm.

Let x be a signal of length N and h be a kernel of length M, expressed
as a Toeplitz matrix H. The convolution of x and h can be expressed as:

h ∗ x = Hx =

h0 0 · · · 0

h1 h0 · · · 0
...

hM−1 hM−2 · · · h0

0 hM−1 · · · h1

...

0 0 · · · hM−1

x0

x1

...

xN−1

 (3.8)

54

CONTENTS

3.2.4 Practical Applications and Limitations

The algorithms presented in sections 3.2.1 to 3.2.3 offer significant ac-
celeration in the computation of convolution operations and are widely
implemented and used in state-of-the-art software [156, 1]. In particular,
the Coppersmith-Winograd algorithm is used in various Deep Learn-
ing frameworks [1, 149] or neural network GPU libraries [22] where the
fastest algorithm is automatically selected based on the tensor sizes and
the hardware. However, depending on the operand size, the total pro-
cessing speed can be bound to the hardware and more specifically, to the
memory throughput and data access speed, more than the computation
time [202, 32].

3.3 Teaching Paradigm

The teaching paradigm embraces a class method that aims to transfer
the knowledge of a large, complex and accurate network, referred to as
the teacher, to a smaller and more efficient one called the student. The
student is trained with a combination of the main task loss as well as
a supplementary supervision signal which is derived from the feature
maps of the teacher network at various depths.

3.3.1 Knowledge Distillation

Methods in the teaching paradigm are mostly based on the seminal
work of Hinton et al. [75], better known as Knowledge Distillation (KD).
The latter seeks to train simple networks with KD yielding better per-
formances compared to those trained from scratch. KD relies on teacher
and student networks, where the logits of the former are used as an
additional supervision signal for the latter. When trained separately, the
student network can only rely on classification labels in order to learn
its own data representation while KD relies on the logits of the trained
teacher network which provide more insight about the latent data rep-
resentation.

55

3.3. TEACHING PARADIGM

For a classification problem, the loss used to train the student net-
work with KD can be expressed as:

Ltotal = LCE(ŷs, y)︸ ︷︷ ︸
Task loss

+λ
T2

2
LCE

(
ŷs

T
,

ŷt

T

)
︸ ︷︷ ︸

Distillation loss

(3.9)

where LCE is the cross-entropy loss, ŷs and ŷt are the logits of the student
and teacher networks respectively, y is the ground truth label, T is the
temperature parameter and λ is a mixing coefficient balancing the two
losses. Note that the distillation loss is scaled by T2

2 to ensure that the
relative contribution of the task loss and distillation loss stays balanced
if the temperature changes.

3.3.2 Feature-Map Matching

Inspired by KD, [167] introduced FitNet, a two-stage training algorithm,
where an intermediate layer of the teacher is chosen as a hint1 for an
intermediate layer of the student. Initially, the first layers of the student
are trained to mimic the hint feature map. Then, the whole student
network is trained with standard KD against the whole teacher. In the
first step, a regressor is needed in order to adapt the dimensions of the
feature map, which may differ from the teacher to the student networks,
as illustrated in figure 3.1. Yim et al. argue that the direct feature map
matching utilised by FitNets is overly restrictive. Drawing inspiration
from the techniques used in [49] for style transfer, they propose an al-
ternative method. In the context of style transfer, the Gram matrix of
the feature maps is employed to encapsulate the texture information
of an image. Adapting this approach, the method presented in [208]
calculates the Gram matrix across the feature maps of multiple layers.
This computed Gram matrix, dubbed as the Flow of Solution Procedure
matrix, then serves as a hint for the student network, guiding its training
process. In practice, handling full-dimensional feature maps is cumber-

1Hint is the terminology used by Romero et al. [167] to denote a feature map used
as a target for the student network.

56

CONTENTS

some. That is why, in order to avoid this issue, [211] use an attention
map generated by squashing the feature maps to a 2D map allowing for
a smaller 2D regressor to match attention map dimensions.

Softmax Layer

Sofmax Layer

Predictions

Predictions
Softmax Layer
modified temperature

Knowledge
Distillation Loss

FitNet Loss Regressor
size matching

Attention
squashing along

channel dimension

Attention
squashing along

channel dimension

Regressor
size matching

Attention
Transfer Loss

Teacher Network Student Network

Softmax Layer
modified temperature

A Teacher
Assistant can be
added in between

For Deep Mutual Learning the
Teacher Network is also a

Student Network. (There can
be more than two networks)

Figure 3.1: Overview of various knowledge distillation frameworks. From top
to bottom, left to right: Deep Mutual Learning [214], FitNet [167], Attention
Transfer [211], Teacher Assistant [139] and Knowledge Distillation [75].

3.3.3 Deep Mutual Learning

Note that the aforementioned knowledge transfer methods require tea-
cher-student pairs and assume that teachers are large trained models.
[214] relax this assumption by proposing Deep Mutual Learning, which
enables a pool of networks of different architectures to learn together,
provided that they have the same logit dimensions, and none of the
models in the pool requires a pretraining step. The uncertainty of each
model is distilled into each other, which creates additional knowledge.

57

3.3. TEACHING PARADIGM

3.3.4 Teacher Assistant

In all the aforementioned methods, the efficacy of knowledge distilla-
tion, and consequently, the final performance of the student network, is
significantly influenced by the disparity in size between the student and
teacher networks. This size discrepancy, when excessive, may cause the
student network to encounter difficulties in aligning with the teacher
logits, thus preventing optimal knowledge distillation. To tackle this
issue, Mirzadeh et al. introduced the concept of Teacher Assistant: net-
works of intermediary dimensions aiming at bridging the size gap be-
tween student and teacher [139]. The Teacher Assistant (TA) approach
proposes to ensure effective knowledge transfer through a stepwise
transfer of knowledge, starting from the teacher to the TA, and finally
from the TA to the student. This technique allows each model to learn
from a slightly simpler model than itself. Empirical evidence shows that
the TA approach tends to outperform traditional one-step distillation in
various experiments and across different network architectures, result-
ing in improved performances. However, it is important to note that it
does introduce additional computational overhead due to the necessity
of additional training steps for the TA, and careful selection of the size
and number of TAs. These considerations underscore that while the TA
strategy is effective in managing the size disparity problem, it also adds
complexity to the distillation process.

3.3.5 Alternative Distillation Losses

Other approaches that do not rely on direct feature map or logit match-
ing have been proposed. [2] introduced Variational Information Distilla-
tion, which indirectly maximises the mutual information between the
student and the teacher. This is done by using variational information
maximisation [8] to maximise a variational lower bound of the mutual
information, since directly maximising the latter is intractable in prac-
tice (see figure 3.2). Likewise, [148] proposed a Probabilistic Knowledge
Transfer method that does not match logits or feature maps, but rather
represents the latter as a probability distribution and minimises diver-
gence between the two (see figure 3.3).

58

CONTENTS

Teacher Student

T2

T1

T0

S1

S2

S0

image

label

Mutual
Information

main task
loss

estimation
knowledge

Mutual
Information

Figure 3.2: Conceptual scheme of [2]. The student network efficiently learns
the main task while retaining high mutual information with the teacher net-
work. The mutual information is maximised by learning to estimate the dis-
tribution of the activations in the teacher network, provoking the transfer of
knowledge. Adapted from the original scheme found in [2].

Figure 3.3: Conceptual scheme of the Probabilistic Knowledge Transfer me-
thod. Both the student and the teacher feature maps are modelled using prob-
ability distributions. The divergence of the latter is minimised in order to
transfer knowledge from the teacher to the student. Illustration taken from
[148].

59

3.4. ARCHITECTURE DESIGN

3.4 Architecture Design

The architectural design of neural networks, while contributing sig-
nificantly to their performance, often inflates their computational and
memory requirements. This increased complexity, although beneficial
for the final performance, could limit the deployment of these networks
in resource-constrained environments. Thus, formulating effective and
efficient neural network architectures is of significant importance. The
design of neural networks is a problem that not only involves design-
ing suitable building blocks but also determining their organization and
interconnections. This section scrutinizes these aspects by focusing on
handmade and automatic efficient architecture design.

Section 3.4.1 introduces building blocks to design efficient architec-
tures. These building blocks have been meticulously engineered in the
state-of-the-art to strike a balance between computational efficiency and
performance. Properly incorporating these blocks can result in architec-
tures better suited to their operating environments, enhancing efficiency
while maintaining the desired level of performance.

Thereafter, section 3.4.2 delves into the field of Neural Architecture
Search. The primary aim of NAS is to design, in an automatic fashion,
network architectures that demonstrate a high level of efficiency and
performance for a given task. By doing so, it eliminates the need for
manual design and the associated iterative trial-and-error approaches
that would otherwise be necessary to assess and evaluate the impact
and effectiveness of each design decision [80, 173, 81]. Although NAS
was not initially targeted at generating lightweight architectures, the
principles and methods described in this section can be adapted to opti-
mise the architecture search for efficiency and compactness.

This section explores techniques aimed at the creation of efficient and
effective neural networks through the careful selection and assembly of
optimised building blocks. The organization of these components plays
an important role in network compression and optimization, highlight-
ing that high performance can also be reached with designs that are less
resource-demanding.

60

CONTENTS

3.4.1 Building Blocks for Efficient Architecture Design

Depthwise Separable Convolutions. One of the initial strategies to-
wards achieving efficiency in neural network architectures is the use of
depthwise separable convolutions. This technique, used in MobileNet
[82] and EfficientNet [186], separates the standard convolution opera-
tion into two distinct steps: a depthwise convolution and a pointwise
convolution (see figure 3.4). By decomposing the operations in this
manner, the computational complexity is markedly reduced while still
retaining the ability to capture spatial and channel-wise information.
Consider an input feature map with Cin channels of arbitrary width and
height and Cout convolution kernels of size k× k× Cin. A standard con-
volution algorithm will need Cin × Cout × k × k Multiply-Accumulate
(MAC) operations to produce a 1× 1× Cout element of the output fea-
ture map. In contrast, a depthwise separable convolution algorithm will
first apply a k × k × 1 convolution kernel to the Cin channels and then
perform Cout pointwise convolutions with 1 × 1 × Cin kernels to pro-
duce the same 1× 1×Cout element. This effectively reduces the number
of parameters to Cin × (Cout + k × k), essentially reducing the number
of computations required to produce a 1× 1×Cout element by a factor of

Cout× k× k
Cout + k× k

.

Fire Module. An alternative approach for designing efficient architec-
tures involves the integration of fire modules, as proposed in [90]. These
modules, represented in figure 3.5, aim to minimise computational re-
quirements by employing two distinct strategies: (i) diminishing the
number of input channels supplied to the following conventional k× k
convolutions and (ii) substituting a portion of the resource-intensive
k× k convolutions with pointwise convolutions, which possess k2 times
fewer parameters. The initial strategy is applied within the Squeeze
Layer of the fire module, which decreases the number of input channels
delivered to the Expand Layer, subsequently reducing the number of
parameters in the Expand Layer kernels. The second strategy is imple-
mented in the Expand Layer, where some 3× 3 convolutions are replaced

61

3.4. ARCHITECTURE DESIGN

W'

H'

Cout

. . .

W

H

Cin
k

k Cin

Cout

(a) Standard Convolution

W'

H'

Cout

W

H

Cin
. . .

1

W

H

Cin

k

Cout

k

Cin
Cin1

(b) Depthwise Separable Convolution

Figure 3.4: Illustration schemes of the standard and depthwise separable con-
volution. The standard convolution uses Cout kernels of size k× k× Cin. The
depthwise separable convolution is split into two steps: (i) a convolution
with Cin kernels of size k × k and (ii) a convolution with Cout kernels of size
1× 1× Cin. Best viewed in colours.

with 1× 1 variants. Although the 1× 1 convolutions capture less spa-
tial information, they are significantly less computationally demanding
than the 3× 3 ones.

ShuffleNet. Pushing the concept of depthwise separable convolutions
further, [213] introduces pointwise group convolutions and channel
shuffle operations to enhance efficiency while maintaining accuracy.
Pointwise group convolutions were initially introduced in [103], though
their original purpose was not for compression. Instead, group convo-
lutions in [103] were used to enable distributed training across multi-
ple GPUs with limited memory. However, ShuffleNet [213] leverages
this concept for network efficiency by dividing the input channels into
groups and performing convolutions on each group independently. This
approach reduces the number of operations and the computational cost
compared to traditional convolutions. To counteract the potential loss
of expressive power caused by the separation of channels into groups,
ShuffleNet incorporates channel shuffle operations as shown in figure 3.6.

62

CONTENTS

C'<CC

. . .

. . .
. . .

3
3

1
1

1
1

Squeeze Layer
(pointwise convolution)

Expand Layer
(mix of 1x1 ans 3x3 convolutions)

C'

Figure 3.5: Illustration scheme of the fire module. The fire module is com-
posed of a squeeze layer (pointwise convolution designed to reduce the number
of channels fed to the following layer) and an expand layer (convolution with
mixed 1× 1 and 3× 3 kernels. The 1× 1 kernels replace some of the 3× 3
kernels, being less computationally intensive.). Best viewed in colours.

This technique allows for information exchange between groups, ef-
fectively maintaining accuracy by ensuring that different groups can
capture diverse features in the input.

. . .

Groupped
Convolution

Channel
Shuffling

Figure 3.6: Illustration scheme of grouped convolution with channel shuffling.
Each filter only acts on a subset of the input tensor (here represented by a
matching colour). The channels of the yielded tensor are shuffled to ensure
the subsequent groups can access information from all the previous groups.
Best viewed in colours.

Learned group convolutions. Following ShuffleNet, CondenseNet was
introduced in [87], incorporating learned group convolutions to fur-
ther enhance efficiency. Unlike the predefined group convolutions in
ShuffleNet, CondenseNet learns which channels should be grouped to-
gether, enabling the network to adapt its structure for a specific task.
This results in better utilisation of network capacity and reduces redun-
dancy. CondenseNet leverages the DenseNet architecture [86] to further
improve performance. Thanks to the densely connected architecture,
features discarded in any layer can still be recovered in subsequent ones.

63

3.4. ARCHITECTURE DESIGN

Channel
Split

1x1 Conv 3x3
DWConv 1x1 Conv

Concat Channel
Shuffle

BN ReLU

BN ReLU

BN

Figure 3.7: Illustration scheme of the path taken by the feature maps after the
channel split block. Adapted from the original scheme found in [133].

ShuffleNetV2. Building on the success of ShuffleNet, ShuffleNetV2 was
introduced in [133], focusing on enhancing network efficiency through
the combination of strided convolution and channel split. Strided con-
volution helps to reduce the spatial extent of feature maps, thereby re-
ducing the computation cost. The Channel Split technique efficiently
processes the input feature maps while maintaining the expressive
power of the architecture. Channel Split works by dividing the input
feature maps into two equal parts. One part is passed through the main
branch of the ShuffleNet unit, while the other part is sent through the
identity branch, which leaves its input unchanged. In the main branch, a
sequence of pointwise and 3× 3 convolutions are performed. After both
the main branch and the identity branch complete their respective oper-
ations, the two parts are concatenated along the channel dimension and
the channels are shuffled. Finally, the output feature maps are passed
to the next ShuffleNet unit in the network. This process is represented
in figure 3.7. This approach balances computational efficiency with the
expressive capacity of the model.

Inverted residual and Linear bottlenecks. Depthwise Separable Con-
volutions were employed in MobileNet [82]. Sandler et al. introduced
skip connections and residual blocks into the MobileNetV2 architecture
[173], initially proposed in [68]. They also introduced the concept of in-
verted residuals and linear bottlenecks. In conventional residual blocks,
the input is first compressed, then expanded, and finally compressed
again after being added to the original input. With inverted residual
bottlenecks, on the other hand, this process is reversed: the input is
first expanded, then a depthwise separable convolution is applied, and
finally, it is compressed again. In this architecture, the skip connections
link the feature maps of smaller size, instead of the larger ones. This
allows for a more memory-efficient architecture. The standard residual
blocks and the inverted residual blocks are shown in figure 3.8. The
linear bottlenecks, on the other hand, are convolutions with a linear

64

CONTENTS

activation function. This takes advantage of the property that high-
dimensional feature maps can be embedded in a lower-dimensional
manifold. To do this, it is necessary to use linear transformations since
non-linear ones could potentially destroy information as reported in
[173, 59].

(a) Standard Residual Block

1

Relu6, Dwise Relu6, 1x1
3x3

+

(b) Inverted Residual Block

Figure 3.8: Illustration scheme of the residual block and the inverted residual
block. Note that on the inverted residual block, the feature maps with the
lower number of channels are the ones connected via the skip connection,
whereas it is the opposite on the standard residual block. Diagonally hatched
layers do not use non-linearities. The grey colour indicates the beginning of
the next block. Both illustrations are taken from [30]. Best viewed in colours.

Squeeze-and-Excitation modules. Advancing from MobileNet and Mo-
bileNetV2, its third version [81] incorporated Squeeze-and-Excitation
modules initially introduced in [84]. These modules adaptively recal-
ibrate channel-wise feature responses, amplifying important features
and suppressing less relevant ones. The Squeeze-and-Excitation mod-
ule (represented in figure 3.9) performs squeeze and excitation operations.
The squeeze operation uses global average pooling to create a channel
descriptor that summarises the spatial information for each channel.
The excitation operation uses this descriptor to learn non-linear in-
teractions between channels through two fully connected layers. The
outputs of this mini-network are per-channel modulation weights that
recalibrate the original feature maps, scaling or "exciting" them by these
weights.

The architectures we reviewed in this section revolve around specific
key techniques such as depthwise separable convolutions, fire modules,
channel shuffling, and Squeeze-and-Excitation modules, among others.
These architectures, while highly efficient, are manually crafted and
require a significant degree of human expertise, intuition, and time to
develop, optimise, and fine-tune. The manual design of these architec-

65

3.4. ARCHITECTURE DESIGN

X

Global Average
Pooling
(squeeze)

2 Layer FC
Network

Multiplication
(excitation)

Figure 3.9: Illustration scheme of the Squeeze-and-Excitation module. The
original feature map is squeezed into a channel descriptor through global av-
erage pooling. This descriptor is then used to learn the interdependencies
between the channels through two fully connected layers. The output is then
multiplied layerwise with the original feature map (excitation). Best viewed in
colours.

tures often relies on a deep understanding of the tasks at hand, the data
they will process, and the constraints of the environment in which they
will operate. However, the process of designing these efficient architec-
tures can be automated, which is the subject of the next section. Sizes
and performance of network architectures detailed in this section can be
compared to standard architecture sizes in figure 3.10.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of FLOP (109)

60

65

70

75

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

AlexNet

VGG19
VGG16

VGG13
VGG11

InceptionV3

GoogLeNet
ResNet-18

ResNet-34

ResNet-50

ResNet-101 ResNet-152

DenseNet-121

DenseNet-161

MobileNetV1
MobileNetV2

MobileNetV3

SqueezeNet

ShuffleNetV1

ShuffleNetV2

Size (Millions of parameters)
10M
50M
100M

Type of Architecture
Standard Architectures
Efficient Architectures

Type of Architecture
Standard Architectures
Efficient Architectures

Figure 3.10: Figure 2.9 updated with the size and performance of the efficient
architectures detailed in section 3.4.1. Best viewed in colours.

66

CONTENTS

3.4.2 Automatic Architecture Design Through Neural
Architecture Search

Neural Architecture Search (NAS) is a method that automates the dis-
covery of neural network architectures, potentially leading to more com-
pact, efficient designs and reducing the need for manual intervention.
Although NAS might not explicitly aim at producing lightweight ar-
chitectures, it can still yield designs that strike a good balance between
performance and computational cost [187, 186]. By using automated
methods to search for optimal architectures, it is possible to further en-
hance the efficiency of neural networks, opening up new possibilities
for their deployment in resource-constrained environments. NAS has
emerged as an essential paradigm, aiming to automate the tradition-
ally manual and labour-intensive process of designing efficient neural
networks [138]. Early network architectures were indeed entirely hand-
crafted, requiring significant human effort and expertise. However,
these manual methods are being replaced by NAS techniques, which
seek to automatically determine the optimal network structure given a
training set [203, 39].

The performance and efficiency of NAS are fundamentally deter-
mined by two key aspects: the search space and the search strategy. The
search space, as the name implies, defines the set of all possible archi-
tectures that can be discovered by the NAS algorithm. It could be as
broad as all possible configurations of a certain type of network, such as
CNNs, or as narrow as different arrangements of a specific set of layers
[120]. The search strategy, on the other hand, determines how the NAS
algorithm navigates through this search space in order to optimise its
given objective. This could involve gradient-based strategies [121, 206],
or stochastic methods, such as evolutionary algorithms and reinforce-
ment learning [221, 160]. The choice of search space and search strategy
significantly influences the ability of NAS to discover effective and ef-
ficient architectures and is thus a critical aspect of NAS research. In
the following paragraphs, we will delve deeper into some of the major
strategies and their impact on the field of NAS.

67

3.4. ARCHITECTURE DESIGN

Search space. The search space is a critical aspect of NAS as it bounds
the possibilities of architectures and significantly influences the outcome
of the search. The search space could be as broad as all possible configu-
rations of a certain network type or as specific as various arrangements
of a predefined set of layers or blocks. For instance, [221] define their
search space as a set of repeatable sub-structures composed of basic lay-
ers (convolution layers, fully connected layers, BN layers, etc...) often
called cells that are stacked to form the final architecture, while [204]
design their search space based on the connectivity patterns between
network blocks. DARTS [121] propose a continuous search space where
the architecture is parameterized as a differentiable function, allowing
for efficient search using gradient-based methods. Hierarchical search
spaces, on the other hand, offer a strategic approach which allows to
manage the complexity of the architecture search in NAS [120, 187]. In
such a setup, the architecture is divided into several levels of hierarchy,
with each one searched independently. This structure enables a more
systematic and organized exploration of the search space, allowing the
algorithm to uncover useful patterns and configurations at different lev-
els of the network. The EfficientNet models are exemplary of innovative
architecture search strategies [186]. This series utilizes both NAS and
compound scaling. A baseline, EfficientNet-B0, was developed through
multi-objective NAS, optimizing both accuracy and Floating Point Op-
erations (FLOPs). Subsequently, a compound scaling method was ap-
plied to this baseline, uniformly scaling depth, width, and resolution via
a compound coefficient. This approach yielded a series of progressively
larger EfficientNet models, whose performances are shown in 3.11.

Search strategy. The search strategy is another major component of
NAS, dictating how the algorithm explores the search space to find the
optimal architecture. A wide range of search strategies have been pro-
posed. Evolutionary algorithms [160] use principles of natural evolution
such as mutation, crossover, and selection to explore the search space.
Despite their potential to find high-quality solutions, these methods of-
ten require substantial computational resources due to the large number
of evaluations needed. Reinforcement Learning-based methods [221]
employ a policy network to generate architectures and a reward signal,
typically validation accuracy, to guide the search. While reinforcement
learning methods can effectively navigate large search spaces, their suc-
cess heavily depends on the quality of the reward signal. Gradient-

68

CONTENTS

0 20 40 60 80 100 120 140 160 180
Number of Parameters (Millions)

74

76

78

80

82

84

Im
ag

en
et

To
p-

1
A

cc
ur

ac
y

(%
)

ResNet-34

ResNet-50

ResNet-152

DenseNet-201

Inception-v2

Inception-ResNet-v2

NASNet-A

NASNet-A

ResNeXt-101

Xception

AmoebaNet-A
AmoebaNet-C

SENet

B0

B3

B4

B5
B6

EfficientNet-B7

Figure 3.11: ImageNet top-1 accuracy vs model size (in millions of parame-
ters). The EfficientNet family of models significantly outperforms other mod-
els of similar size, obtained either by NAS or manual design. This graph is
taken from [186].

based methods [121, 206] make the search space continuous and use
gradient descent for optimization, which enables efficient exploration
of the search space but requires careful regularization to prevent over-
fitting. [10] uses Bayesian optimization to build a probabilistic model
of the objective function and uses it to select promising architectures,
balancing exploitation and exploration. This method can be sample-
efficient but might struggle with high-dimensional spaces. These di-
verse strategies offer multiple paths to navigate the complex landscape
of architecture search, each with its unique compromises between effi-
ciency, effectiveness, and computational demands.

3.5 Compressing and Optimising an Existing
Architecture

While the prior sections have primarily focused on constructing new,
efficient network architectures and mechanisms for automatic architec-
ture discovery, this part of the chapter transitions towards compressing
and optimising existing neural networks. The methods discussed in this

69

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of FLOP (109)

60

65

70

75

80

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

AlexNet

VGG19
VGG16

VGG13
VGG11

InceptionV3

GoogLeNet
ResNet-18

ResNet-34

ResNet-50

ResNet-101
ResNet-152

DenseNet-121

DenseNet-161

MobileNetV1
MobileNetV2

MobileNetV3

SqueezeNet

ShuffleNetV1

ShuffleNetV2

EfficientNet-B0
EfficientNet-B1

EfficientNet-B4 EfficientNet-B5

MNASNET-0.5

MNASNET-1.0
DARTS

NASNet-A

NASNet-C

Size (Millions of parameters)
10M
50M
100M

Type of Architecture
Standard Architectures
Efficient Architectures
NAS

Type of Architecture
Standard Architectures
Efficient Architectures
NAS

Figure 3.12: Figure 3.10 updated with the size and performance of architec-
tures detailed in section 3.4.2. Best viewed in colours.

section, namely quantisation, binarisation and pruning, are specifically
geared towards leveraging and enhancing already existing architectures
or trained models. Instead of developing a new architecture, these tech-
niques seek to make an existing architecture more efficient by modifying
its weights and connections.

Section 3.5.1 delves into the methodologies of quantisation and bina-
risation. These methods endeavour to reduce the numerical precision of
weights and activations in a network, without a significant drop in over-
all performance. This process can significantly speed up computations
and decrease memory usage, contributing to the increased efficiency of a
pre-existing network, especially in environments with limited hardware
or memory resources.

Subsequently, section 3.5.2 examines the application of pruning tech-
niques. Pruning refers to the elimination of redundant or insignificant
weights and connections in a network, leading to a sparser and more
effective architecture. Pruning an existing network can further enhance
efficiency by reducing the computational resources needed with a mini-
mal or controlled impact on the performance.

70

CONTENTS

Through these methods, this section aims to demonstrate how the
effectiveness of existing neural networks can be optimised, thereby of-
fering another viable path towards generating more efficient models
without creating new architectures from scratch.

3.5.1 Lower Precision Weights and Activations Represen-
tation

Quantization is the process of converting continuous, high-resolution
input values into a lower-resolution and typically discrete representa-
tion. Historically, the training of neural networks has largely relied on
the use of single-precision floating-point format (FP32). FP32 has been
the default choice due to its wide support across various hardware plat-
forms and software libraries, which has made it a practical and conve-
nient choice for the majority of machine learning tasks [184]. However,
using single-precision floating-point format is not always necessary, and
it is possible to constrain neural networks to use lower precision values,
effectively quantising its parameters or feature maps, while maintaining
compelling performances. Quantising a neural network can result in a
reduced memory footprint as well as faster computation if the opera-
tions are implemented to leverage the specificity of the quantisation or
paired with appropriate hardware.

Quantising a neural network has been proposed as early as the 1990s
[7, 41]. This later regains traction as Vanhoucke et al. leveraged Sin-
gle Input Multiple Data instructions (SIMD) of x86 processor to speed
up the fixed-point 8-bit operations [194]. Gupta et al. [58] used uni-
form quantisation with fixed-point 16-bit representation and stochastic
rounding to train neural networks. Quantisation has also been applied
together with K-means clustering [181]. [61] uses K-means clustering
to iteratively compute a lookup table or code book for the weights. This
codebook is later further compressed using Huffman coding [89]. Note
that this method is mostly useful for storage, but for training or in-
ference, the weights need to be decompressed and their original value
fetched in the code book before being used.

71

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

Logarithmic quantisation. Logarithmic quantisation provides compel-
ling alternatives to uniform quantisation. On the one hand, logarithmic
quantisation enables quantising weights with a larger dynamic range
compared to uniform or linear quantisation. On the other hand, mul-
tiplication can be conveniently represented as an inexpensive bit shift
operation if operands are properly represented in the logarithmic base.
This is particularly beneficial for FPGA implementations [3]. To lever-
age this potential speedup, [119] forced the weight representation to be
a power of two and [216] improved this technique by applying it itera-
tively.

Figure 3.13: Example of binarised kernels and activations in a convolutional
layer. The kernels are taken from the first layer of a CNN trained on CIFAR-
10. Image taken from [88].

Binarisation. A more extreme version of the quantisation has been pro-
posed in [24], where the weight values are either −1 or +1. The concept
of minimising the bit-width of weights to a bare minimum is called bi-
narisation. This allows for a dramatic simplification of the computation
in the neural network at the expense of a drop in performance. Binari-
sation has been further developed in [88], where the authors proposed
a method to binarise both weights and activations (see examples of bi-
narised kernels in figure 3.13). DoReFa-Net [218] built upon the success
of binarised neural networks and introduced the stochastic 8-bit quan-
tisation of the gradients during the backward pass to accelerate both
training and inference.

72

CONTENTS

When to quantise. Quantisation methods that quantise weights or acti-
vations after the training are called Post-Training Quantisation methods.
Quantising an already existing network is a widely used technique in
the most famous deep learning framework [189, 34, 157, 145]. Because
they quantise the weights after the training, these methods are fast and
easy to apply. However, they often introduce an irreversible information
loss and a performance drop that needs to be compensated for [114]. In
order to solve this issue, several works proposed to take into account
the effect of quantisation on the weights and feature maps during the
training. These methods are called Quantisation-Aware Training meth-
ods. Such methods include BinaryConnect [24], which use a variant of
Bayesian inference called Expectation Back Propagation [18, 178]. An-
other binarisation method uses Straight Through Estimator (STE) [9]
to bypass the binarisation function in the backward pass [88]. STE is
also employed for quantisation in [92] which uses it together with fake
quantisation nodes for 8-bit quantisation (see figure 3.14). The fake quan-
tisation nodes are injected inside the computation graph and simulate
the effect of quantisation in the forward pass.

Quantisation and binarisation are solutions to compress and accel-
erate neural networks. The potential of these techniques is vast, as
they offer significant reductions in memory usage and enhanced com-
putational speed when implemented correctly and paired with suitable
hardware. However, these benefits are not without their drawbacks.
On the downside, such techniques introduce a certain degree of error
which can result in a performance drop, especially if not properly man-
aged during the training process. This information loss is particularly
notable in the case of Post-Training Quantisation methods, which ne-
cessitate additional efforts to mitigate these performance impacts. To
address this, Quantisation-Aware Training methods have been devel-
oped, which incorporate the effects of quantisation during the training
phase itself. The more extreme approach, binarisation, further accentu-
ates the advantages and disadvantages observed in quantisation. While
it offers extreme compression of neural networks, this often comes at
the cost of significant accuracy loss.

73

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

conv

+

ReLU6

weights

biases

Input
uint8

uint8

uint32

uint32

uint8

uint8
output

(a) Fake quantisation in-
ference

conv

+

ReLU6

fake
quant.

biases

Input

output

weights

fake
quant.

(b) fake quantisation training

Figure 3.14: Fake quantisation nodes (fake quant.) are included in the compu-
tation graph of figure 3.14b, whereas figure 3.14a represent the computaion
graph used during inference. During the inference, weights are stored in
uint8 format, whereas the bias are not, because their computational overhead
is negligible.[92]. Both illustrations are adapted from [92].

3.5.2 Removing Weights and Connections

Lightweight neural networks can be obtained from a larger network
through pruning. Pruning is the process of removing weights or con-
nections, identified as redundant or unnecessary, while limiting to a
minimum the impact on the performance of the network. The iden-
tification of the latter, often referred to as determining the saliency of
weights, has been a hot spot in the pruning literature [113, 17, 115].
Pruning a neural network removes weights and consequently reduces
the theoretical computational complexity of the network as well as its
memory footprint. The fraction of weights removed during pruning is
often denoted as the pruning rate, which is commonly defined as the
fraction of the number of weights removed from the original network
over the number of initial weights in that network. Arguably, the first
pruning method, introduced in 1989, was based on biased weight decay
[63]. In the following years, LeCun et al. proposed a pruning method
entitled Optimal Brain Damage [107] that used the Taylor expansion of
the loss hessian matrix to identify the weights whose removal would
have the least impact on the loss. This method, and in particular the
computation of the hessian matrix was refined in Optimal Brain Sur-
geon [64, 66, 65]. As neural networks have become larger and more
computationally intensive (see section 2.4.2 and figure 2.9), pruning has

74

CONTENTS

pruned column
or row pruned channel pruned filter

pruned subnetwork

......Network:

Filter:

(a) Structured pruning

pruned weight

preserved weight

(b) Unstructured prun-
ing

Figure 3.15: Conceptual illustrations of structured and unstructured pruning.

been receiving increased attention as a method to compress the latter.
Pruning methods can be classified into two categories: structured and
unstructured.

Structured pruning. Structured pruning involves the removal of entire
structural components of the network, such as rows, columns, channels,
filters, layers or even whole subnetworks (note that pruning a channel
in layer ℓ + 1 implies pruning a filter in layer ℓ, and vice-versa). This
type of pruning results in regular2 network structures that are easier
to exploit on typical hardware and do not necessitate a specific sparse
computing library or hardware, making it an attractive approach for
practical deployment. To some extent, structured pruning can be seen
as a subcategory of Neural Architecture Search (section 3.4.2), where
the search space would be the structure of the network to be pruned.
Structured pruning leads to reduced computation complexity as well as
significant memory footprint reduction, however, it also presents unique
challenges. The impact of removing structural components can be much
greater than eliminating individual weights, hence, structured pruning
often requires more careful consideration of the trade-off between the

2regular in this context means that all weight tensors are dense and that the accel-
eration of computations does not rely on sparse computing enhancement.

75

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

model performance and complexity reduction. Since structured prun-
ing operates on a coarser scale, it typically results in lower pruning rates
compared to unstructured pruning.

Weight-dependant structured pruning. One of the main categories of
structured pruning for CNN is weight-dependent pruning. This strat-
egy assesses the importance of filters based on their respective weights.
The Pruning Filter for Efficient ConvNets method [112] focuses on the
filter norms as their saliency indicator. Filters with smaller ℓ1 norms,
which result in weak activations, are assumed to contribute less to the
final classification decision, hence they become the prime candidates for
pruning. The Filter Pruning via Geometric Median method [71] calcu-
lates the geometric median of a set of filters and prunes those filters that
are nearest to this geometric median, rather than the ones considered
less important by [112]. The filters close to the geometric median are
considered by He et al. to be redundant with other filters in the same
layers. Wang et al. used another approach to determine redundancy in
[200]: The filters are organized into a graph based on their proximity in
the space in which they are defined. A redundancy metric is computed
for each graph and the least important filters are pruned in the graph
with the highest redundancy (as per the authors, any other method for
filter importance evaluation can be used [112, 151, 141]). This process
is iteratively applied until the targeted pruning rate is reached. These
weight-dependent strategies tend to be straightforward and usually de-
mand lower computational costs compared to other methods [69]. They
provide an intuitive understanding of how different filters contribute to
the overall network performance based on their weight characteristics.

Activation-based structured pruning. Another prominent category of
structured pruning is activation-based pruning, where activation de-
notes the result yielded by a layer for given input data. This method
takes advantage of activation maps (also called feature maps) for filter
pruning. Removing a channel in a feature map is equivalent to remov-
ing the filter that computed this channel. He et al. proposed a method to
prune filters based on a LASSO regression selection while minimising
the least square reconstruction error or the feature map [72]. Hu et al.
capitalised on the abundance of zeros in feature maps that follow the
ReLU activation function. They introduced the method called Average
Percentage of Zeros (APoZ) that identifies channels in the feature map

76

CONTENTS

prune weak filters

* … …*Original

Model

* *
……

Pruned

Model

input of

layer 𝑖
filters of

layer 𝑖
input of

layer 𝑖+1

filters of

layer 𝑖+1

input of

layer 𝑖+2

fine-tuning

* *
……

Fine-tuned

Model

Figure 3.16: Illustration Scheme of ThiNet. The dotter filters and correspond-
ing channels are the ones to be pruned. Once they are removed, the pruned
network is fine-tuned. Image taken from [132]

with a high count of null outputs. These channels, which contribute
minimally to the final outcome, can hence be pruned. While the afore-
mentioned methods consider only the feature map of the layer to be
pruned, techniques like ThiNet [132] and Approximated Oracle Filter
Pruning [29] exploit the relationships between layers to guide pruning.
They take into consideration the effect a filter removal in one layer has
on the next, allowing for more contextual pruning decisions. More glob-
ally, approaches such as Neuron Importance Score Propagation [210]
and Discrimination-aware Channel Pruning [220] consider the holistic
effect of removing a filter. They aim to understand and quantify the
total impact on network performance when a specific filter is removed,
accounting for cascading effects across all layers.

Regularisation-based structured pruning. Other methods learn struc-
tured sparse networks by introducing various sparsity regularizers.
Some methods focus on Batch Normalisation parameters, employing
methods like Gated Batch Normalisation [209] and Network Slimming
[126]. These methods aim to push certain BN parameters towards zero,
effectively disabling corresponding channels and inducing sparsity.
Network Slimming applies a ℓ1 regularisation on the scaling factors
γ of the BN [126], whereas [209] adds the ℓ1 regularisation on scalar
factors associated with feature map channels. Kang and Han use BN
parameters to craft a mask that prunes channels whose output is likely
to be null once evaluated by the ReLU [97].

77

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

Binary Masks Feature Map Differentiable Masks Feature Map

(a) Previous Methods (b) Our Method

Not Updated 1.0 0.0 Updated strong weak

Masked
Feature Map

Masked
Feature Map

Figure 3.17: Comparison of the method described in [97] (right) and standard
channel pruning (left). The differentiable mask allows for a soft pruning that
can be reverted during the training. Image taken from [97]

Taylor Expansion-based structured pruning. The Taylor Expansion is
a tool that can be used to approximate the change in the loss function
due to pruning. Early unstructured pruning methods, Optimal Brain
Damage [107] and Optimal Brain Surgeon [65] used Taylor expansion
of the hessian matrix to remove weights with the least impact on the
loss function. More recently, in [141], Molchanov et al. used first-order
Taylor expansion of the loss function to compute the importance score
and prune the feature maps. This was later refined in [142] where the
authors computed the importance score on the weight, rather than the
feature maps, to lower memory consumption.

Variational structured pruning. Variational Bayesian methods pro-
vide a way to tackle the computationally intensive process of inferring
posterior probability distributions in large data sets, by approximating
the posterior distribution with a variational distribution [43]. Specific
methods like Variational Pruning [215] and Recursive Bayesian Prun-
ing [219] use this approach to create more effective and stable pruning
mechanisms for neural networks. Variational Pruning, models chan-
nel importance as random variables, utilizing the centrality property of
the Gaussian distribution to induce sparsity [215], while [219] targets
the posterior of redundancy, assuming inter-layer dependency among
channels.

Dynamic structured pruning. Dynamic pruning represents a different
approach in which neural networks are pruned during both training and
inference, which facilitates maintaining the model representation capa-
bility and offers superior resource consumption-accuracy trade-offs. In

78

CONTENTS

the training phase, Dynamic Network Surgery [57] introduces the con-
cept of dynamic pruning through an unstructured approach. This me-
thod applies a binary mask indicating the importance of weights and
updates it alternately with all the weights, allowing incorrectly pruned
parameters an opportunity to revive. Soft Filter Pruning [70] imple-
ments a structured version of dynamic pruning. Instead of employing a
fixed mask throughout the training, which could limit the optimization
space, Soft Filter Pruning dynamically generates masks based on the ℓ2

norm of filters at every epoch. The dynamic nature of Soft Filter Prun-
ing allows soft-pruned filters to be updated in the next epoch, with new
masks being formed based on the updated weights. Focusing on the in-
ference stage, Lin et al. introduced Runtime Neural Pruning [117] which
employs a unique framework consisting of a CNN backbone and a re-
current neural network as a decision network. This approach enables
the model to adapt to the properties of different input images by dynam-
ically adjusting its complexity. For easier tasks or simpler images, the
network can become sparser, saving computational resources. Deep Re-
inforcement Learning pruning [15] learns both the static and dynamic
importance of channels. The static importance refers to the channel’s
relevance for the entire dataset, while the dynamic importance is tied
to a specific input. Deep Reinforcement Learning pruning [15] applies
reinforcement learning to generate a unified pruning decision based on
these two aspects of channel importance. More recently, Elkerdawy et al.
recently introduced Fire Together Wire Together [38], another dynamic
pruning method that treats pruning as a self-supervised binary classifi-
cation problem. It employs a prediction head to train learnable binary
masks and uses a crafted ground truth mask to guide the learning after
each convolutional layer. This head takes advantage of the ReLU acti-
vation function, which zeros out negative values, to identify the filters
that will yield zero activations based on the input and that will be sub-
sequently pruned.

As previously discussed, structured pruning removes indivisible
groups of weights and therefore yields regular network architectures
that can be implemented in standard deep learning frameworks in a
straightforward way. Despite its practicality, structured pruning en-
forces a strong topological prior by pruning entire groups of weights
from the original network, which consequently leads to a lower spar-
sity rate compared to its counterpart, unstructured pruning. Unstruc-

79

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

tured pruning provides a more flexible approach by removing individ-
ual weights from the original network structure. This process not only
offers greater adaptability compared to structured pruning, but also re-
sults in higher pruning rates.

Unstructured pruning. In the early stages, unstructured pruning metho-
dologies identified weights that could be eliminated based on their in-
fluence on the Hessian of the loss function [107, 65, 66]. A simpler and
more tractable strategy for larger networks was later introduced by Han
et al. in [60], suggesting a straightforward heuristic: the pruning of
weights with the smallest magnitude (i.e. absolute value), also referred
to as magnitude pruning. This technique presented in [60] devises an
iterative method wherein a portion of the smallest magnitude weights
are removed, followed by the retraining of the network to compensate
for the drop of the accuracy. This cycle is reiterated until the preferred
level of sparsity is attained. Furthermore, magnitude pruning has been
used together with quantisation and compression techniques to min-
imise the storage footprint of a network [61]. Magnitude pruning has
also been used in energy-efficient CNN design, as detailed in [207]. In
this research, the energy consumption of each layer is evaluated, and
the layers with the highest energy expenditure are pruned using un-
structured magnitude pruning. This layer is then fine-tuned to retain
the network accuracy. This process is repeated iteratively until a no-
ticeable drop in accuracy is observed. Dynamic Network Surgery [57]
puts forward a derivative of magnitude pruning. A mask, whose value
is updated during training, is computed for each weight. This mask is
used to stochastically prune a weight or splice3 it. The saliency of the
weights is ascertained based on the magnitude of the associated mask.

Effective subnetworks. More recently, unstructured pruning researches
focus on the discovery of small subnetworks inside the original network.
In other words, to identify a subset of weight that can perform, under
certain conditions or assumptions, as well as the original network. Most
notably, the Lottery Ticket Hypothesis [44] states that within a large,
randomly initialized neural network, there exist subnetworks or Lottery
Tickets that are capable of training effectively when isolated from the rest
of the weights. These smaller networks, found by pruning the smallest

3to splice is the verb used by the authors (Guo et al.) to denote the reactivation of a
weight that was previously pruned

80

CONTENTS

magnitude weights from the trained original network, are observed to
train faster and achieve comparable or even superior performance with
respect to the original network. The lottery ticket is found by training the
original network up to convergence, then pruned with magnitude prun-
ing and finally, the remaining weights are reinitialized to their original
values, it is to say the value they had before the training even started.
The resulting subnetwork is the lottery ticket. This research sparked sig-
nificant interest and various works: [217] proposed an analysis of the
results presented in [44]. These results [44] have been extended to larger
networks in [45], the necessity of training the original network to con-
vergence to find the Lottery Tickets has been challenged in [125]. The
existence of the lottery ticket (or in other words the subnetwork) has been
theoretically proven in [134] and the requirements on the theoretical size
of the original network have been later refined in [150, 147].

3.6 Positioning

Within the various deep neural network compression methods pre-
sented in this chapter, we choose to focus specifically on pruning in
the context of supervised image classification. Among various types
of pruning, our interest goes towards unstructured pruning due to the
flexibility it offers, in particular, its potential for achieving high pruning
rates compared to structured pruning.

Our decision to work on pruning is rooted in the following considera-
tions:

• First, pruning allows the creation of lightweight networks while pre-
serving or sometimes improving the performance of the original net-
work.

• Then, pruning integrates well with other compression techniques
and can be applied in conjunction with them, on any kind of archi-
tecture.

81

3.6. POSITIONING

• Finally, pruning does not necessitate the creation and development
of an architecture from scratch. It can be applied to an already exist-
ing architecture to compress it, which makes it possible to develop
small, lightweight networks without the need for extensive research
into the creation of the base architecture. This approach allows free-
ing exploration and research and development efforts that can be
allocated to other topics.

Despite its numerous advantages, pruning is not without challenges.
One such challenge is the identification of the weights to be preserved.
This is a topic that is the subject of many works detailed in this chapter.
Additionally, the preserved weights typically require fine-tuning, which
can impose a substantial computational cost. This process of fine-tuning
can be both time-consuming and resource-intensive.

Chapter 4 delves into the fine-tuning issue and presents a new prun-
ing method that circumvents the need for the expensive fine-tuning step.
Its budget loss together with the weight reparametrisation allows for
joint optimisation of the topology and the weights of the network with-
out the need for auxiliary variables. As a result, the obtained lightweight
networks preserve accuracy after effective pruning and do not require
fine-tuning. Furthermore, chapter 5 tackles the challenge of identifying
relevant weights without even having to train them. It proposes a me-
thod of topology selection given a set of untrained weights that achieves
compelling performances, thereby also sidestepping the fine-tuning. In
contrast to other methods, the optimal pruning rate is discovered in one
shot by our pruning strategy that circumvents the costly gird search
for its value. This innovative approach opens up new possibilities for
further reducing the computational costs associated with pruning and
provides a new direction for future research in this area, as well as neu-
ral network training without weight tuning in general.

82

CONTENTS

3.7 Conclusion
The evolution of neural networks, along with the growing demand
for their deployment in resource-constrained environments, has under-
lined the need for neural network compression techniques. This chapter
has examined the state-of-the-art methodologies for reducing the com-
putational demands and memory footprints of deep neural networks,
thereby facilitating their usage in a variety of application domains.

First, we explored chapter 2 the historical progression and the major
architectures of deep neural networks, illustrating the connection be-
tween their complexity and performance. Then, in this chapter, we first
investigated the techniques for accelerating computations within neural
networks, emphasising the role of fast convolution techniques in reduc-
ing both runtime and computational resources. Our focus then shifted
to Knowledge Distillation, a paradigm that allows the transfer of knowl-
edge from a large, complex network to a smaller, more efficient one. The
core idea is to teach a lightweight student network to mimic the be-
haviour of a teacher network, thus achieving comparable performance
with a reduced footprint. Next, we delved into efficient architecture
design methods, including bespoke architectures designed to minimise
size while maintaining performance, and Neural Architecture Search
strategies for automating the discovery of optimal architectures. Lastly,
we addressed the strategies for compressing and optimising existing
neural networks, considering both quantisation and binarisation tech-
niques that lower the numerical precision of weights and activations,
as well as pruning techniques that remove redundant or insignificant
weights and connections, resulting in sparser and more computation-
ally efficient models. In conclusion, these techniques provide a multi-
faceted approach to neural network compression and acceleration, with
each offering unique advantages and trade-offs.

The next chapters will present our contributions to neural network
compression based on pruning. The chapter 4 details our first contribu-
tion that consists in a method to simultaneously train and prune neural
networks while matching a budget. This method allows bypassing the
need for the finetuning step present in most methods based on magni-
tude pruning by jointly optimising the topology and the weights with-
out the need for additional auxiliary parameters.

83

3.7. CONCLUSION

84

Chapter 4

Weight Reparametrization
for Budget-Aware Network
Pruning

85

86

Contents
4.1 Introduction and Related Work 89

4.1.1 Unstructured Magnitude Pruning. 89
4.1.2 Weight Reparametrisation 91
4.1.3 Pruning with Budget 92
4.1.4 Pruning without fine-tuning 93
4.1.5 Contributions . 96

4.2 Pruning with Weight Reparametrisation and Budget Loss . 97
4.2.1 Weight Reparametrisation 99
4.2.2 Budget Loss . 103

4.3 Method and Algorithm Overview 106
4.4 Experiments . 108

4.4.1 Experimental Setup 109
4.4.2 Performances . 109
4.4.3 Optimal Value of λ 110
4.4.4 Validation of the Budget Loss 114
4.4.5 Validation of the Reparametrisation 118
4.4.6 Tuned Initialisation 122

4.5 Conclusion . 128

Chapter Abstract
This chapter addresses the challenge of compressing large

neural networks, whose time and memory footprints are
increasingly high. Although large neural networks have
shown impressive performances across various domains,
they are not deployable on embedded devices due to their
size. Among the existing techniques that yield lightweight
neural networks, pruning is a popular approach that seeks
to reduce the size of neural networks by removing redun-
dant or unnecessary weights. However, most of the pruning

87

CONTENTS

methods rely on saliency indicators that identify removable
weights after training without considering the targeted prun-
ing rate.

In this chapter, we propose an alternative pruning app-
roach based on weight reparametrization. Our method incor-
porates a budget loss that drives sparsity toward the targeted
pruning rate during training. The weight reparametrisation
acts as a mask that soft-prunes the smallest weights, while
the budget loss serves as a surrogate ℓ0 norm that regulates
the network budget. As a result, our approach significantly
mitigates the performance drop, induced by pruning, with
respect to the unpruned network compared to other meth-
ods. We demonstrate experimentally the effectiveness of our
method across various pruning rates, datasets, and architec-
tures, including Conv4, VGG16, ResNet20 on CIFAR-10 and
CIFAR-100, and ResNet18 on the more challenging TinyIma-
geNet dataset.

We also evaluate the effectiveness and relevance of our
method in a comparative experimental analysis using dif-
ferent settings. Furthermore, we evaluate the proposed ap-
proach with an already tuned and pruned initialisation and
show that it outperforms common fine-tuning methods. Our
results show that our proposed approach is a promising alter-
native to existing pruning techniques, providing an efficient
and effective way to reduce the size of neural networks while
eliminating the need for costly fine-tuning steps.

This chapter presents work that has resulted in the publica-
tion of the following conference article:

• Robin Dupont, Hichem Sahbi, and Guillaume Michel.
Weight reparametrization for budget-aware network prun-
ing. In 2021 IEEE International Conference on Image Process-
ing, ICIP 2021, Anchorage, AK, USA, September 19-22, 2021,
pages 789–793. IEEE, 2021.

88

CONTENTS

4.1 Introduction and Related Work
This chapter addresses the challenge of pruning large neural networks
without degrading their performance. Most of the existing pruning
methods degrade the performance of neural networks due to the prun-
ing step that removes weights from the networks. Therefore, a costly
fine-tuning step is usually required in order to compensate for the loss
in performance. The method we introduce in this chapter circumvents
this issue and yields lightweight pruned networks with minimal perfor-
mance degradation. This is achieved through a combination of weight
reparametrisation that encompasses a surrogate ℓ0 norm and a budget
loss that drives the sparsity toward the predefined pruning rate.

Pruning is an excellent way to obtain lightweight neural networks
because it reduces the number of parameters in a pre-trained network
without the need to design a new architecture. Instead of starting from
scratch, pruning techniques can be applied to existing architectures,
which have been trained and tested on large-scale datasets. Pruning
aims to reduce the number of network parameters by removing redun-
dant or unnecessary weights from a given network referred to as the
original network. It then yields a sparsified and lightweight architecture,
hereafter referred to as pruned network. Pruning methods can be split into
two major categories: (i) unstructured weight pruning, where individ-
ual weights of a given network are removed based on their importance,
and (ii) structured pruning, where entire columns, rows, channels, filters
or even entire parts, such as skip connections of a residual network [68],
are removed. Our method belongs to the first category. The subsequent
sections provide an overview of related works on unstructured pruning,
pruning with weight reparametrisation, budget loss and pruning with-
out fine-tuning, followed by the contributions of this chapter.

4.1.1 Unstructured Magnitude Pruning.
Unstructured magnitude pruning has emerged as an effective heuris-
tic for determining the saliency of the weights. This method focuses
on removing independent weights from the global structure of the net-
work, hence offering greater flexibility compared to structured pruning
which imposes a strong topological prior by eliminating whole sections

89

4.1. INTRODUCTION AND RELATED WORK

of the original network. Magnitude pruning revolves around the hy-
pothesis that the smallest weights contribute less to the final output of
the network and can thereby be removed with minimal impact on the
performance. Considering a weight tensor w, if p represents a pruning
function, magnitude pruning can be formalised and implemented as
follows:

wpruned = p(w, α) = w⊙mα (4.1)

where α is a threshold, ⊙ denotes the Hadamard product and mα is a
binary mask that is defined as follows:

(mα)ij =

{
0 if |wij| ≤ α

1 otherwise
(4.2)

In equation (4.2), the threshold α is typically chosen to be the k-th per-
centile of the weights so that the pruning rate, defined as the fraction of
non-zero weights, is equal to k.

Unstructured magnitude pruning has been used in various works
and in particular in [60] where a three-step process is proposed:

1. The process begins with standard training to identify the most im-
portant connections within the network.

2. This is followed by a magnitude pruning step where weights with
the smallest magnitude (or absolute value) are removed until a given
pruning rate is reached.

3. The final step involves fine-tuning the remaining weights to com-
pensate for any loss of accuracy caused by the pruning.

90

CONTENTS

The authors also propose an iterative variant where steps 2 and 3
are repeated while gradually increasing the pruning rate until the final
pruning rate is reached. This method was used in [61], where it was
combined with quantisation and Huffman coding. In both methods
[60, 61], obtaining the final network is computationally intensive due to
the fine-tuning step, which can be all the more computationally inten-
sive if the magnitude pruning and fine-tuning are performed iteratively.

Unstructured magnitude pruning has gained significant renewed
interest with the advent of the Lottery Ticket Hypothesis (LTH) [44].
An empirical study in [44] demonstrated the existence of subnetworks,
called Lottery Ticket (LT), within large pre-trained networks. These sub-
networks, when trained with initial weights from the larger networks,
yielded comparably accurate classifiers. To isolate these lottery tickets,
the authors rely on magnitude pruning or its iterative variant to iden-
tify the subnetworks. The large network is trained to convergence, then
its weights are pruned with magnitude pruning, and restored to their
original values. Despite the potency of this approach, its practical appli-
cation is often hindered by the computationally intensive training and
fine-tuning steps required to obtain a trained lightweight subnetwork.

4.1.2 Weight Reparametrisation

Weight reparametrisation is a technique where the weights are ex-
pressed as a function of other variables. Typically the weights used
in the network, here denoted ŵ and referred to as apparent weights, are
expressed as a function of the latent weights w and other variables. In
[174], Schwarz et al. presented a weight reparametrisation based on
raising a weight to the power of n while preserving its sign. This repara-
metrisation is formalised as:

ŵ = w⊙ |w|n−1 (4.3)

91

4.1. INTRODUCTION AND RELATED WORK

where n is a hyperparameter of the method, typically set between 1 and
3 [174]. This reparametrisation creates a rich get richer (sic) dynamic ac-
cording to the authors, referring to the fact that the weights with the
largest magnitude are all the more increased. The pruning is enforced
by pruning reparametrised weights with magnitude pruning.

4.1.3 Pruning with Budget
Most pruning techniques, including the ones presented in this section,
enforce a pruning rate after the initial training. Consequently, the opti-
misation process does not take into account the final weight budget that
will be allocated to the network. Some work tackled this issue by adding
a loss that drives the network to respect a budget. Note that the works
described subsequently all fall into the structured pruning category.

Lemaire et al. introduced in [110] a Budget-Aware Regularisation
loss or BAR loss that performs structured pruning on the channels of
the activations (and consequently of the kernels of the layer yielding it).
This loss is combined with the task loss to drive the sparsity toward the
targeted pruning rate as described in equation (4.4). The relative impor-
tance of both losses is set with a strictly positive mixing coefficient λ.

L = Ltask + λLBAR (4.4)

The BAR loss is responsible for introducing sparsity in the network and
for driving the sparsity toward the targeted pruning rate. It is defined
as follows:

LBAR(Φ, V, a, b) = LS(Φ) f (V, a, b) (4.5)

where Φ is a mask sampled from the hard concrete distribution [129], a
continuous relaxation of the Bernoulli distribution. V is the current bud-
get used by the network, computed as the fraction of active channels in
the activations and referred to as the activation volume by the authors,

92

CONTENTS

b and a are hyperparameters detailed subsequently. This BAR loss is
composed of two parts. The first part, LS(Φ) introduces sparsity in the
network by penalising the masks Φ with the hard concrete loss [129],
and the second part f (V, a, b) controls the budget. The function f im-
plements a variant of the log barrier function [12], where a controls the
steepness of the function and b is the target budget.

ChipNet [191] is another channel-based structured pruning method
that includes a sparsity inducing loss Lc dubbed as crispness loss and a
budget loss Lb. Both losses are combined with the task loss with two
mixing coefficients α1 and α2 respectively, as shown in equation (4.6):

L = Ltask + α1Lc + α2Lb (4.6)

Each channel of the network is associated with a mask, and the crisp-
ness loss ensures crisp mask values, that is to say, close to 0 or 1. For
the budget loss, authors of [191] propose four variants depending on
the type of budget that is enforced, namely: a channel budget that com-
putes the fraction of channels that are not pruned, a volume budget that is
equivalent to the activation volume of [110], a parameter budget and finally
a FLOP budget. In their experiments, the authors reported that they fine-
tuned the networks after the pruning with the same hyperparameters
as the initial training phase and in particular with the same number of
epochs, effectively doubling the training time.

4.1.4 Pruning without fine-tuning

Most pruning methods cause a performance drop following the pruning
step. This is due to the fact that the weights that are removed play a non-
negligible role in the network. In this context, fine-tuning is a common
technique that aims to recover the lost performance but fine-tuning is a
computationally intensive task. Some works propose pruning methods
that are designed to circumvent the need for fine-tuning [64, 65, 97].

93

4.1. INTRODUCTION AND RELATED WORK

Optimal Brain Surgeon (OBS) introduced in [64] by Hassibi and Stork
is a Hessian-based pruning method that builds upon [107] but contrary
to the former, it relaxes the diagonal assumption of the loss Hessian ma-
trix. OBS is a second-order pruning method that uses the Hessian matrix
of the loss function to identify the most removable weights and deter-
mine the optimal update for the remaining weights in order to mitigate
the performance drop. Among their contributions in [64], [64] also pro-
posed an iterative method to compute the inverse of the Hessian matrix
but this is outside of the scope of this section. OBS considers the follow-
ing expression of the loss function Taylor expansion at a local minimum:

δL =

(
∂L
∂w

)T

· δw +
1
2

δwT ·H · δw + O(∥δw∥3) (4.7)

where δL is the variation of the loss function, δw is the variation of the
weights and H is the loss Hessian matrix w.r.t. the weights. In equa-
tion (4.7), at a local minimum, the first term vanishes and the author
neglects higher-order terms. The equation (4.7) is updated to:

δL ≈ 1
2

δwT ·H · δw (4.8)

Each weight is associated with a saliency indicator that represents its
impact on the loss, whose variation is quantified by equation (4.8), as
well as an update vector that is applied to the other weights to miti-
gate the performance drop if the considered weight were to be pruned.
Both quantities (saliency indicator and update vector) are computed by
minimising equation (4.8) with respect to the weight to be pruned. The
authors then propose to remove the weight with the smallest saliency
indicator and update the remaining weights.

This process is repeated until a defined stopping criterion. Hassibi
and Stork suggest stopping the pruning process when the impact on the
loss function is no longer negligible compared to the value of the loss
itself. Once the pruning is stopped, the remaining weights can be used
as is and do not necessitate further fine-tuning thanks to the corrections

94

CONTENTS

applied with the update vector. The authors applied this method suc-
cessfully on small networks (a few tens of thousands of weights) com-
pared to modern architectures (see table 2.1). This method is intractable
in practice with larger neural networks, in particular the computation of
the Hessian matrix whose size is quadratic in the number of weights of
the network.

Whereas OBS corrects the remaining weights after pruning, it is pos-
sible to introduce sparsity while training the network. Kang and Han
introduced a stochastic structured pruning method in [97] that prunes
the channels after a BN layer that have the highest probability of being
inhibited by the ReLU activation function. Each channel is associated
with a latent mask q, parametrised by a function of the shift and scale
parameters of the BN layer: Φ(β, γ). The mask applied to the channel
during training is then obtained by binarising q, using the Gumble Soft-
max trick [93] to preserve differentiability. Sparsity is then introduced
in the masks by adding a regularisation loss defined as follows:

Lsparse(B, C) = ∑
β j∈B,γj∈C

β j + s|γj| (4.9)

where B and C are the set of shift and scale parameters of the BN, and s is
a hyperparameter of the method. This setup allows for a joint optimisa-
tion of the masks through the BN parameters and the network weights.
Once the training is completed, the masks are binarised following equa-
tion (4.10), where c is a given threshold, and then multiplied with their
associated channels to prune the network. Since the optimisation of the
masks is done jointly with the network weights, the network does not
necessitate further fine-tuning.

q(δ; β, γ) =

{
0 if Φ(β, γ) ≥ c
1 otherwise

(4.10)

95

4.1. INTRODUCTION AND RELATED WORK

These structured or unstructured methods propose different saliency
indicators and pruning criteria that aim at identifying and removing
redundant or unnecessary weights or groups of weights. Removing
weights is typically done after the training phase. This approach does
not take into account the final desired model size, or weight budget,
during the optimization process. In other words, the pruning strat-
egy is an afterthought and is not integrated into the training process.
This results in an inefficient process where the network is first trained
with a large number of weights, many of which are later pruned. This
introduces a loss of functional performance - depending on the task
considered - that needs to be compensated for (with the exception of
[97, 64]). This is achieved through fine-tuning the sparse or lightened
networks obtained after applying the pruning criterion. Fine-tuning is
a computationally intensive task and requires additional training time
[60, 61]. Moreover, the amount of weights pruned is enforced after the
initial training, meaning that the final targeted size or weight budget is
never considered in the optimisation procedure. Indeed, separating the
optimisation of topology from weight tuning is sub-optimal and there-
fore introduces a performance drop when the pruning is enforced. Thus,
the remaining weights need to undergo a fine-tuning step that adapts
them to the enforced sparse topology. Furthermore, the pruned connec-
tions are permanently removed with no possibility of reactivating them
during fine-tuning.

4.1.5 Contributions

In order to address the aforementioned issues, namely the need for a
costly fine-tuning step and the lack of consideration for the final bud-
get and topology, we introduce a novel weight reparametrisation that
learns not only the weights of a surrogate lightweight network but also
its topology. This weight reparametrisation acts as a regulariser that
models the tensor of the parameters of a network, again referred to as
the surrogate network, as the Hadamard product of a weight tensor and
an implicit mask. The latter makes it possible to implement unstruc-
tured pruning constrained with a budget loss that precisely controls
the number of non-zero weights in the resulting network. Experiments
conducted on the CIFAR-10, CIFAR-100 and the TinyImageNet clas-

96

CONTENTS

sification tasks, using standard primary architectures (namely Conv4,
VGG16, ResNet20 and ResNet18), show the ability of our method to
train effective surrogate pruned networks without any fine-tuning.

In what follows, for the sake of conceptual simplicity, we will adopt
a conventional approach where multidimensional tensor entries are in-
dexed by i, in addition to the layer index ℓ, effectively vectorising these
entities for ease of manipulation.

The rest of this chapter is organised as follows: section 4.2 details
the proposed method and in particular the weight reparametrisation in
section 4.2.1 and the budget loss in section 4.2.2. An overview of the
method and a general algorithm are given in section 4.3. Section 4.4
presents the results of our comprehensive experiments, including per-
formance comparisons, the experimental validation of our two main
components, the impact of the mixing coefficient λ that balances the
task loss and the budget loss, and the initialisation. Finally, section 4.5
concludes the chapter by summarising our contributions and our key
findings.

4.2 Pruning with Weight Reparametrisation
and Budget Loss

Consider the general case of a multi-layer neural network. Following
the notations introduced in section 2.3, a neural network is represented
as a function f of two variables: θ and X. Function f embodies the
network topology, which is essentially a graph, whose edge values are
determined by θ. More specifically, θ represents the collection of weights
of the network, with θ = {w1, w2, . . . , wL} and L denoting the number
of layers. Each element wℓ of θ is a multi-dimensional weight tensor
encompassing a total of νℓ elements, associated with layer ℓ. Following
the notation introduced in section 2.5, the parameter X of f represents
the input given to the network. Each input X is associated with a label y,
also called ground truth. This functional conception of a neural network
can be formally written as:

97

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

f : Rdim(X) → Rdim(y)

X 7→ f (X, θ)

(4.11)

The discrepancy between the output of the neural network and the
ground truth y ∈ Y is computed with a loss function L, whose expres-
sion depends on the considered task. This loss is then minimised by
updating the parameters θ of the network, thanks to the backpropaga-
tion algorithm [170, 171] and gradient descent methods.

When used in the loss function, the ℓ0 norm is perfectly suited for
pruning a network by, on the one hand, acting as a sparsity-inducing
regulariser for the weights (θ), and on the other hand, by indicating the
number of non-zero weights in the network, which is useful for com-
puting the weight budget.

We aim to propose an end-to-end method that fits into the back-
propagation framework. Therefore, adding a ℓ0 regulariser and a ℓ0

based weight budget is not possible since the ℓ0 norm is not differen-
tiable. Thus, we propose our differentiable reparametrisation, which
seeks to define a novel weight expression related to magnitude pruning
[107, 60]. This expression corresponds to the Hadamard product involv-
ing a weight tensor and a function applied entry-wise to the same tensor
(as shown in figure 4.1). This function acts as a mask that (i) multiplies
weights by soft-pruning factors which capture their importance and
(ii) pushes less important weights to zero through a particular budget
added to the loss function L.

Our proposed framework allows for joint optimisation of the net-
work weights and topology. On the one hand, it prevents situations
where, because of excessively pruning a layer, the output from layer ℓ
of the network is no longer transmitted to layer ℓ + 1, a scenario we
refer to as disconnections. These disconnections can lead to degenerate
networks with an irrecoverable performance drop. Due to these discon-
nections, the network output becomes entirely uncorrelated with the in-
put, and it becomes impossible to update the weights located upstream
of this disconnection. On the other hand, our framework allows reach-
ing a targeted pruning budget in a more convenient way than ℓ1 regu-

98

CONTENTS

Weight

Weight
Kept Weight W

Pruned Weight Pruned W

Training

Pruning

Weight h(Weight) W

W

Pruned W

Training

Effective Pruning
Kept Weight

Pruned Weight
W

Magnitude Pruning Our method

End of the trainingAn additional fine-tuning is needed

1

2

3

1

2

3

Figure 4.1: Comparison of our method and magnitude pruning. Magnitude
pruning does not include any prior on weights during the initial training
phase and needs an additional fine-tuning procedure. Our method embeds
a saliency measure based on the weight magnitude in the reparametrisation
and does not require fine-tuning. Best viewed in colour.

larisation (see section 4.4.4). Our reparametrisation also helps to min-
imise the performance drop between the original and the pruned surro-
gate networks by maintaining competitive performances without fine-
tuning. Learning the weight values and the network topology only re-
quires one step that achieves pruning as a part of network design. This
step zeroes out the targeted number of connections by constraining their
reparametrised weights to vanish.

4.2.1 Weight Reparametrisation

We consider the original network f as a stack of L layers. The global
expression of f can be recursively defined by the application of the layer
ℓ to the output of the layer ℓ− 1. Without a loss of generality, we omit
the bias for clarity. This expression is shown in equation (4.12).

f (x) = gL
(
wL · gL−1(wL−1 · gL−2 . . . w2 · g1(w1 · x))

)
, (4.12)

99

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

with gℓ being a nonlinear activation associated to ℓ ∈ {1, . . . , L} and
{wℓ}ℓ denoting a set of weight tensors where each tensor is associated
with a specific layer ℓ in the network. Keeping the same topology but
changing the values of the weight, we now consider the surrogate net-
work f̂ with weights {ŵℓ}ℓ. Equation (4.12) can be rewriten as equa-
tion (4.13). The activation function and the topology of f and f̂ are the
same. Only the weights are updated.

f̂ (x) = gL
(
ŵL · gL−1(ŵL−1 · gL−2 . . . ŵ2 · g1(ŵ1 · x))

)
. (4.13)

In the above equation, ŵℓ is referred to as apparent weight tensor, which
is a reparametrisation of wℓ that includes a prior on its saliency. An
apparent weight ŵℓ of f̂ is derived from a latent weight wℓ by applying
the following reparametrisation:

ŵℓ = wℓ ⊙ ht(wℓ), (4.14)

with ht being the reparametrisation function and t its temperature pa-
rameter (see equation (4.19)). Here, ⊙ represents the Hadamard prod-
uct. It means that it is element-wise, and every single weight has its
own reparametrisation. This reparametrisation function enforces the
prior that the smallest weights should be removed from the network
and acts as a surrogate ℓ0 norm for the budget loss (see section 4.2.2). In
order to achieve this objective, ht should exhibit four properties:

1. ∀x ∈ R, 0 ≤ ht(x) ≤ 1

2. ht(x) ∈ C1 on R

3. ht(x) = ht(−x)

4. ∀a, ε ∈ R+∗, ∃ t ∈ R+∗ | ht(x) ≤ ε, x ∈ [−a, a]

First Property - Constrained Image

∀x ∈ R, 0 ≤ ht(x) ≤ 1 (4.15)

There should not be any co-adaptation between the weights and their re-
parametrisation. In other words, the reparametrisation function should
only act as a means to select or not the weight. It should not act as a scal-
ing factor for the latent weight and scale it so that the apparent weight

100

CONTENTS

becomes larger than the latent weight. Constraining the image prevents
the value of the weights from increasing rapidly to compensate for the
removal of the smallest weights. Finally, the apparent weights should
have the same sign as the latent weights. That is why the image of R by
ht should be the segment [0, 1].

Second Property - Differentiability

ht(x) ∈ C1 on R (4.16)

Our method should fit in the backpropagation framework [171]. Since
the optimisation will be achieved by gradient descent, the reparametri-
sation function should be differentiable to ensure a computable gradient.

Third Property - Symmetry

ht(x) = ht(−x) (4.17)

The reparametrisation function should not induce any bias toward the
positive or negative weights so that only their magnitudes matter. It
implies that the reparametrisation function should be symmetric.

Fourth Property - Upper Bounded Segment

∀a, ε ∈ R+∗, ∃ t ∈ R+∗ | ht(x) ≤ ε, x ∈ [−a, a] (4.18)

The last property ensures the existence of a temperature parameter t,
which allows upper-bounding the response of ht on any interval for any
arbitrary ε. More formally, for any arbitrarily large a and arbitrarily
small ε, it exists a temperature t which guarantees that ht(x) is smaller
than ε, provided that x is in the segment [−a, a]. Hence, ht acts as a
band-stop filter, eliminating the smallest weights where the parameter t
controls the width of that filter. Figure 4.2b shows the impact of t on the
shape of the function, more precisely on the width of its pit, when the
expression of ht is set using equation (4.20).

101

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0
h t

(x
)

t=
1 n = 2

n = 4
n = 8
n = 10
n = 20
n = 30

(a) ht with t = 1 and varying n

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

h t
(x

)
n

=
2 t = 0.01

t = 0.1
t = 1
t = 10
t = 100

(b) ht with n = 2 and varying t

Figure 4.2: Reparametrisation function ht with varying temperature parame-
ter t and power n. t controls the width of the pit, and n controls the steepness
of the slope.

Weight distribution varies tremendously from one layer to another.
In order to match a specific budget (see section 4.2.2), the width of the
stopband, controlled by t, is tuned according to the weight distribution
of each layer. The manual setting of this parameter is non-trivial and
cumbersome, so in practice, t is learned as a part of gradient descent on
a layer-by-layer basis.

Considering the aforementioned four properties of ht, a simple choice
of that function is:

h̃t(x) = exp
{
− 1
(tx)n

}
, n ∈ 2N, (4.19)

where n controls the crispness of h̃t. Here and in what follows, h̃t denotes
the expression of equation (4.19) for the reparametrisation function. The
exponent n is not considered as a parameter of ht (or h̃t) since we use
a fixed value for our experiments (section 4.4), whereas t is a learnt pa-
rameter and varies from one layer to another. Figure 4.2a shows the
impact of n on the general sharpness of the function. Although the func-
tion whose expression is given in equation (4.19) satisfies the four above
properties, in practice, h̃t suffers from numerical instability as it gener-
ates Not a Number (NaN) outputs in most of the widely used deep learn-
ing frameworks. Due to the way backpropagation works, a single NaN in
a weight tensor makes the whole optimisation process for the entire net-
work no longer possible. We consider instead a stabilised variant with

102

CONTENTS

similar behaviour, as equation (4.19), that still satisfies the four above
properties. This numerically stable variant is defined as:

ht(x) = C1

(
exp

{
− 1

(tx)n + 1

}
− C2

)
, (4.20)

with C1 =
1

1−e−1 and C2 = e−1. In what follows, we use the expression of
equation (4.20) for the reparametrisation function ht, whereas h̃t refers
to the expression of equation (4.19), which is its numerically unstable
version.

The addition of the scalar value 1 at the denominator in equa-
tion (4.20) is a way to achieve numerical stability. In equation (4.19),
the denominator (tx)n has the potential to approach very small values
that result in numerical instabilities, leading to NaN outputs. The addi-
tion of 1 to the denominator makes the function numerically stable and
avoids producing NaN outputs. This solution is favoured over adding a
small value, such as an arbitrarily small ε, as the latter requires careful
consideration of its magnitude and may result in either dramatic alter-
ations to the shape of the function or continued numerical instability if
not carefully chosen. The addition of the value 1 to the denominator
provides a straightforward and sufficient mean to stabilise the function.
Constants C1 and C2 are introduced to compensate for the slight alter-
ations to the shape of the function caused by the addition of 1 to the
denominator, and thus, to ensure that the first property (equation (4.15))
is satisfied. Although both h̃t and ht satisfy the four properties, they do
not have the exact same shapes, as illustrated in figure (4.3).

In the next sections, the application of function ht to a multi-dimen-
sional tensor is element-wise. Consequently ht(z) denotes the tensor
whose entries are the result of applying ht to each one of the corre-
sponding entries of z.

4.2.2 Budget Loss
Most of the traditional pruning methods in deep learning do not explic-
itly incorporate the targeted weight budget during optimisation. The
amount of weights pruned is typically enforced post-training, which
may lead to suboptimal results compared to methods that consider the

103

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

h t
(x

)
&

h t
(x

)
n

=
4,

t=
1

ht(x)
ht(x)

Figure 4.3: The unstable reparametrisation function h̃t and its stable alterna-
tive ht, with t = 1 and n = 4 for both functions.

weight budget during optimisation. Our method introduces a budget
loss, in addition to the main task loss, that drives the network to match
and satisfy a given weight budget during the training process. Conse-
quently, the trained network can be pruned to the desired pruning rate
with a marginal loss in performance without fine-tuning.

The considered budget is weight-based and should quantify the tar-
geted fraction of active connections in the network. To build the budget
loss, we first introduce a cost function that quantifies the number of
active connections in the network. Let C({w1, . . . , wL}) be the observed
cost associated to a neural network and Ctarget the targeted one. Ctarget is
the number of connections that should be active at the end of the train-
ing procedure. The budget loss is defined as

Lbudget =
(
C({w1, . . . , wL})− Ctarget

)2. (4.21)

This budget loss is combined with the main task loss (a classification
loss in our experiments - see section 4.4). The budget loss Lbudget is
quadratic in order to ensure the minimisation of the difference between
the observed and the targeted costs. For better conditioning of this combi-
nation, we normalise the budget loss by Cinitial. The latter corresponds to

104

CONTENTS

the cost of the original unpruned network, which is set in practice to the
number of its parameters (see also section 4.4). Hence, equation (4.21) is
updated as:

Lbudget =

(
C({w1, . . . , wL})− Ctarget

Cinitial

)2

. (4.22)

Finally, the two losses are combined together via a strictly positive
mixing hyperparameter λ that controls the relative importance of the
budget loss Lbudget compared to the main task loss Ltask, leading to

L = Ltask + λ · Lbudget. (4.23)

Ideally, the budget of a neural network could be evaluated as the
number of multiply-add operations, often referred to as FLOPs or MACs1,
needed for a forward pass or through the ℓ0 norm of its weights. How-
ever, in their basic form, neither are known to be differentiable and,
therefore, cannot be used in a gradient-based optimisation. In order to
circumvent these limitations, we use our weight reparametrisation as
a surrogate measure of ℓ0, and we define the cost function as in equa-
tion (4.24).

C({w1, . . . , wL}) =
L

∑
ℓ=1

νℓ

∑
i=1

ht(wℓi). (4.24)

One may argue that the cost should be normalised layer-wise and,
therefore, that the right-hand term of equation (4.24) should be written
as

1The number of MAC operations or FLOPs for a layer cannot be fully determined
by its number of parameters since it is heavily dependent on the input size. More
details are given in appendix A.1

105

4.3. METHOD AND ALGORITHM OVERVIEW

conv1
conv2

conv3
conv4

conv5
conv6

conv7
conv8

conv9
conv10

conv11

conv12

conv13

fc1 fc2 fc3

10
4

10
5

10
6

10
7

10
8

N
um

be
r o

f p
ar

am
et

er
s

in
 la

ye
r

(a) Number of parameters

conv1
conv2

conv3
conv4

conv5
conv6

conv7
conv8

conv9
conv10

conv11

conv12

conv13

fc1 fc2 fc3
10

8

10
7

10
6

10
5

10
4

N
or

m
al

iz
at

io
n

va
lu

e
pe

r l
ay

er

(b) Normalisation factor

Figure 4.4: Log-scale plot of number of parameters and normalisation fac-
tor per layer for a VGG16 network. The significant differences in terms of
the number of parameters yields dramatically different normalisation factors.
Some of them are 4 orders of magnitude apart, and all of them are vanishingly
small compared to a common main task loss value.

L

∑
ℓ=1

νℓ

∑
i=1

ht(wℓi)

νℓ

However, the number of elements in a layer greatly varies from one
to another (as displayed in figure 4.4). As a result, the budget loss
relative importance would vary from one layer to another. More impor-
tantly, the optimisation process would have less incentive to introduce
sparsity in larger layers since their normalisation factor would make
the budget loss negligible compared to other layers or the main task
loss. This is critical since the large layers are generally the ones where
the highest pruning rates can be achieved [179]. Regarding the afore-
mentioned reasons, a better alternative is to normalise by the initial cost
Cinitial, as done in equation (4.22).

4.3 Method and Algorithm Overview
Our method is a combination of a weight reparametrisation and a bud-
get loss, both described in the previous sections. The two are combined
in a global method that can be used in a standard training procedure
using gradient descent. Once the neural network trained using the me-

106

CONTENTS

thod detailed in section 4.2, we proceed to prune the smallest weights,
w.r.t. their magnitude, to match and enforce the predetermined targeted
budget. During this stage, we set the smallest weights to zero until the
budget requirement is met. This process is referred to as effective pruning.

In sections 4.4.2 to 4.4.5 our results are obtained after following this
procedure, which is described in algorithm 2. In other words, the net-
work is first trained with our reparametrisation and our budget loss,
then the effective pruning step is applied, and finally, the performance is
evaluated. In section 4.4.6, we assess the performance of our method
with an already trained and pruned initialisation. In this precise setup,
since the initialisation is already pruned to match the targeted budget,
the effective pruning step is not needed and thus not applied.

Algorithm 2 Our training procedure
Require: Dataset D ⊂ X × Y , network f , weights θ, number of epochs

E, mixing coefficient λ, learning rate η, pruning rate p
for t = 1 to E do

for each (X, y) ∈ D do
L = Ltask(y, f (X, θt)) + λ · Lp

budget(θt) {Compute the loss: task loss
and budget loss}
θt+1 = θt− η∇θL {Backpropagate the loss and update the weights}

end for
end for
return Trained network f
Perform effective pruning on the weights θ: set to 0 the smallest p% of
the weights w ∈ θ
return Trained and pruned network f

The reader can grasp a better understanding of the key differences of
our method compared to the standard pruning pipeline that applies to
most pruning methods, not only magnitude pruning method, by look-
ing at figure 4.5. It highlights the fact that the targeted pruning rate is
taken into account from the beginning thanks to the budget loss, and
therefore, the network does not need a fine-tuning step after the effective
pruning step. On the contrary, the standard pruning pipeline applies the

107

4.4. EXPERIMENTS

Our Pipeline

Train Effective
Pruning

Pruning
rate target

(a) Our Pipeline

Standard Pruning Pipeline

Train Pruning
criterion FinetuneEffective

pruning

Pruning
rate target

(b) Standard Pruning Pipeline

Figure 4.5: Principle scheme of our pruning pipeline and the standard prun-
ing pipeline. With our pruning pipeline, the targeted pruning rate that will be
enforced during the effective pruning step, is taken into account from the be-
ginning. Thus, our method does not need a fine-tuning step. In contrary, the
standard pruning pipeline applies the pruning criterion and the effective prun-
ing after the initial training. This results in a drop in performance that needs
to be compensated for with fine-tuning.

pruning criterion and the effective pruning after the initial training. This
results in a drop in performance that needs to be compensated for with
fine-tuning.

4.4 Experiments

In this section, we will study the effectiveness of our method for com-
pressing Convolutional Neural Networks image classification models,
as well as its impact on accuracy. To that extent, we will review the
impact of both our reparametrisation and our budget loss. For this pur-
pose, we use three reference databases in the field of computer vision:
CIFAR-10 [164], CIFAR-100 [164], and TinyImageNet [106], presented
in section 2.5. We will evaluate the impact of our method on several
neural network architectures: VGG16 [177], Conv4 [44], ResNet18, and
ResNet20 [68], introduced in section 2.4.3.

108

CONTENTS

4.4.1 Experimental Setup

Performances of our method are evaluated on CIFAR-10 and CIFAR-100
with Conv4, VGG16 and ResNet20. On TinyImageNet, we evaluate our
method on ResNet18. We compare our method against magnitude prun-
ing [60]. Despite its apparent simplicity, magnitude pruning remains the
gold standard of pruning techniques [105, 11], hence our choice to use
it for comparison. The key differences between our method and mag-
nitude pruning are the following: (i) our method uses a budget loss
to encourage sparsity, which takes into account the final pruning rate
from the beginning of the training process and (ii) our method does not
require fine-tuning after pruning. Because of the latter, we compare our
method against magnitude pruning with and without fine-tuning. Both
methods share the following setup: networks are trained during 300
epochs with an initial learning rate of 0.1. A Reduce On Plateau policy is
applied to the learning rate: if the validation accuracy is not improving
for 10 epochs in a row, then the learning rate is decreased by a factor of
0.3. A weight decay is applied on the weights with a penalisation factor
of 5 × 10−5. This value is lower than the more conventional value of
1× 10−4, because we want some weights to be able to drift away from
the origin, and therefore, escape from the pit of ht. An Early Stopping
policy was used to stop the training prematurely if no improvement in
the test accuracy is observed in 60 epochs. To keep the comparison fair,
for magnitude pruning, the 300 epochs are split into two phases: the first
150 epochs are dedicated to the training of the network, and the last 150
epochs are used for fine-tuning the pruned network. In the fine-tuning
phase, the learning rate is divided by 100 for better convergence.

4.4.2 Performances

Results are reported on figures 4.6 to 4.8. In these figures, our method
(denoted Ours) is compared to magnitude pruning with and without
fine-tuning (denoted MP w/ FT and MP w/o FT, respectively). All three
methods are evaluated on the test set of the dataset once the network
has been pruned up to the pruning rate indicated on the x-axis. The test
accuracy is reported on the y-axis as a float between 0 and 1 (0 being
all images wrongly classified and 1 being all images correctly classified).
Each solid line representing a method is the mean of 5 independent runs.

109

4.4. EXPERIMENTS

The coloured area surrounding the solid line represents the standard de-
viation. In addition to the three methods, the dashed lines represent the
performances of an unpruned network trained without weight repara-
metrisation and budget loss (denoted baseline) and the accuracy of our
method before the effective pruning (denoted Ours (pre pruning)), i.e.
before we set the smallest weight, w.r.t. their magnitude, to zero. Sub-
figures (c) and (d) of figures 4.6 to 4.8. represents the number of epochs
(y-axis) needed to obtain the best model for each method, depending on
the pruning rate (x-axis).

Overall, our method performs consistently better than magnitude
pruning without fine-tuning (MP w/o FT) and, for almost all pruning
rates, better than magnitude pruning with fine-tuning (MP w/ FT) on
the CIFAR-10 and CIFAR-100 datasets. In particular, our method signif-
icantly outperforms magnitude pruning in both setups (with and with-
out fine-tuning) for Conv4 networks (cf. figure 4.6a). For the VGG16
network, we observe the same trend, although the difference is less
significant. For ResNet20, magnitude pruning slightly overtakes our
method on CIFAR-100 for high pruning rates (more than 90%). Fig-
ures 4.6c, 4.6d, 4.7c, 4.7d, 4.8c and 4.8d show that our method requires
an equivalent number of epochs compared to magnitude pruning for
a higher level of performance (i.e. a higher test accuracy). Magnitude
pruning requires fewer epochs than our method, only at high pruning
rates (more than 90%). On TinyImageNet (figure 4.9), our method out-
performs magnitude pruning with and without fine-tuning including at
very high pruning rates (95%). In all scenarios (figures 4.6 to 4.9), our
method produces much more stable results, and variations from one run
to another are significantly smaller than the ones in magnitude pruning.
Indeed, the combination of the reparametrisation and the budget loss
acts, on the one hand, as a regulariser and, on the other hand, helps to
prepare the network for the effective pruning step.

4.4.3 Optimal Value of λ

Our method relies on a budget loss whose relative importance compared
to the main task loss is controlled by a parameter λ (cf. equation (4.23)).
The choice of this parameter is crucial to ensure a good tradeoff between
(i) adhering to the budget constraint, which ensures that the weights set

110

CONTENTS

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(a) Conv4 - CIFAR-10

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(b) Conv4 - CIFAR-100

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

50

100

150

200

250

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(c) Conv4 - CIFAR-10 (Number of
Epochs)

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

100

125

150

175

200

225

250

275

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(d) Conv4 - CIFAR-100 (Number of
Epochs)

Figure 4.6: Performances comparison of our method (Ours) against magni-
tude pruning without (MP w/o FT) and with fine-tuning (MP w/ FT) with a
Conv4 network on CIFAR-10 and CIFAR-100 datasets, for different pruning
rates. Figure 4.6a and figure 4.6b show the testing accuracy of the model and
figure 4.6c and figure 4.6d the number of epochs needed to obtain the best
model. Best viewed in colours.

111

4.4. EXPERIMENTS

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.70

0.75

0.80

0.85

0.90

0.95

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(a) VGG16 - CIFAR-10

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(b) VGG16 - CIFAR-100

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

80

100

120

140

160

180

200

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(c) VGG16 - CIFAR-10 (Number of
Epochs)

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

100

120

140

160

180

200

220

240

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(d) VGG16 - CIFAR-100 (Number of
Epochs)

Figure 4.7: Performances comparison of our method (Ours) against magnitude
pruning with fine-tuning (MP+FT) with a VGG16 network on CIFAR-10 and
CIFAR-100 datasets, for different pruning rates. Figure 4.7a and figure 4.7b
show the testing accuracy of the model and figure 4.7c and figure 4.7d the
number of epochs needed to obtain the best model. Best viewed in colours.

112

CONTENTS

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.2

0.4

0.6

0.8

te
st

 a
cc

ur
ac

y
Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(a) ResNet20 - CIFAR-10

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(b) ResNet20 - CIFAR-100

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

50

75

100

125

150

175

200

225

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(c) ResNet20 - CIFAR-10 (Number of
Epochs)

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

80

100

120

140

160

180

200

220

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(d) ResNet20 - CIFAR-100 (Number of
Epochs)

Figure 4.8: Performances comparison of our method (Ours) against magnitude
pruning with fine-tuning (MP+FT) with a ResNet20 network on CIFAR-10 and
CIFAR-100 datasets, for different pruning rates. Figure 4.8a and figure 4.8b
show the testing accuracy of the model and figure 4.8c and figure 4.8d the
number of epochs needed to obtain the best model. Best viewed in colours.

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

Ours
MP w/o FT
MP w/ FT
Baseline
Ours (pre-pruning)

Figure 4.9: Performances comparison of our method (Ours) against magnitude
pruning with fine-tuning (MP+FT) with a ResNet18 network on TinyImageNet
dataset, for different pruning rates.

113

4.4. EXPERIMENTS

to zero during the effective pruning step are already vanishingly small
if the constraint is satisfied. This implies that zeroing these weights
will have a minimal impact on performance; and (ii) the optimisation of
the main task loss, which directly impacts the final performance. The
achieved budget as a function of the parameter λ is shown for different
pruning rates in figures 4.10a to 4.10c. In these figures, the achieved
budget is computed as the sum of the weight reparametrisations di-
vided by the number of weights in the original network.

For low pruning rates (figure 4.10a), a relatively low value of λ does
not guarantee adherence to the budget constraint and the final network
has a smaller achieved budget than the targeted one. Similarly, for
higher pruning rates (figure 4.10c), a low value of λ results in a budget
in excess compared to the targeted one. In both cases, the performances
of networks trained with a low value of λ are subpar compared to higher
values, as reported in table 4.1. In contrast to low values of λ, high val-
ues might lay too much emphasis on the budget loss, and the network
performances are negatively impacted, even though the budget is sat-
isfied or almost satisfied. This is especially the case for a pruning rate
of 95% associated with λ = 500 and also for a pruning rate of 99% for
values of λ ≥ 50. Following the abovementioned observations, we set
the value of λ to 5 for all the experiments. This value strikes the best
balance between the two objectives: budget loss and main task loss.
Note that various scheduling for λ have been considered, but they do
not significantly improve performance (see appendix A.2).

4.4.4 Validation of the Budget Loss

In order to establish the importance and the effectiveness of the budget
loss in our method, we present in this section the results of a compara-
tive experimental analysis with alternative variants. Specifically, we in-
vestigated the impact of the budget loss by comparing it with two other
variants: (i) a variant where the budget loss is removed, and (ii) a vari-
ant where the budget loss is replaced with a regularisation loss based on
the ℓ1 norm of the network weights. In order to remove the budget loss,
the value of λ is set to zero 0 in equation (4.23). In the second variant,

114

CONTENTS

0.005 0.5 5.0 50.00

2

4

6

8

10

Pe
rc

en
ta

ge
 o

f I
ni

tia
l B

ud
ge

t

target budget: 10%
achieved budget

(a) Pruning 90% of the weights

0.005 0.5 5.0 50.00

2

4

6

8

10

Pe
rc

en
ta

ge
 o

f I
ni

tia
l B

ud
ge

t
target budget: 5%
achieved budget

(b) Pruning 95% of the weights

0.005 0.5 5.0 50.00

2

4

6

8

10

Pe
rc

en
ta

ge
 o

f I
ni

tia
l B

ud
ge

t

target budget: 1%
achieved budget

(c) Pruning 99% of the weights

Figure 4.10: Impact of the parameter λ on the achieved final budget for a
Conv4 network on CIFAR-10 dataset, for various pruning rates. A too-small
value of λ does not make the actual budget match the desired budget. The
actual budget is either too small (figure 4.10a) or too high (figure 4.10c) com-
pared to the target, depending on the applied pruning rate.

115

4.4. EXPERIMENTS

Pruning Rate (%) λ Achieved Budget (%) Test Accuracy (post pruning) (%)

90

0.005 5.25 ± 0.69 85.83 ± 0.83

0.5 8.06 ± 0.19 86.34 ± 0.64

5 9.93 ± 0.03 85.82 ± 0.74

50 10.00 ± 0.01 86.52 ± 0.46

500 10.03 ± 0.00 85.55 ± 0.49

95

0.005 5.22 ± 0.73 86.27 ± 0.32

0.5 4.33 ± 0.41 85.66 ± 0.74

5 4.85 ± 0.19 86.11 ± 0.48

50 5.03 ± 0.02 85.37 ± 0.37

500 5.00 ± 0.00 10.00 ± 0.00

99

0.005 4.60 ± 0.29 40.52 ± 5.27

0.5 3.69 ± 0.38 42.45 ± 9.02

5 1.89 ± 0.45 76.85 ± 6.34

50 2.09 ± 0.15 10.00 ± 0.00

500 2.28 ± 0.01 10.00 ± 0.00

Table 4.1: Impact of the parameter λ on the achieved budget and the post-
pruning test accuracy of the model for a Conv4 network on the CIFAR-10
dataset for various pruning rates. Although a high value of λ ensures the
targeted budget is reached, it also leads to a lower test accuracy when the
pruning rate increases.

we varied the mixing coefficient λ between 0.1 and 100. Considering the
same issue of loss conditioning as in section 4.2.2, the ℓ1 norm is divided
by the total number of parameters, denoted N, before being added to
the global loss. This specific global loss is expressed as:

L = Ltask + λ · 1
N

L

∑
ℓ=1
||wℓ||1 (4.25)

Where || . ||1 represents the ℓ1. Values of N for most of the used
architectures are reported in table 2.1.

In both variants, the reparametrisation is kept in order to isolate the
impact of the budget loss. We evaluated the performance of our ap-
proach and the two variants on the CIFAR-10 and CIFAR-100 datasets
using Conv4, VGG16, and ResNet20 networks. The results are presented
in figures 4.11 to 4.13. In the figures mentioned above, the variant with-

116

CONTENTS

out the budget loss is denoted w/o budget, and the variant with a ℓ1

regularisation loss is referred to as ℓ1 reg.. The results denoted w/ budget
represents our method in the same setup as in section 4.4.2.

Removing the budget loss (variant (i) - w/o budget) negatively impacts
the network performances. The test accuracy is systematically lower
than the one obtained with the budget loss. This is particularly visible
in figures 4.11b and 4.13b. Removing the budget loss does not push the
optimisation to introduce sparsity, let alone to respect the targeted bud-
get. Since sparsity was not introduced beforehand, the effective pruning
step has a negative impact on the network performance. Indeed, the
latter was not trained with a prior on either targeted sparsity or targeted
budget, embedded in the loss.

Replacing the budget loss with a ℓ1 regularisation loss (variant (ii) -
ℓ1 reg.) also impacts negatively the performance, with the exception of
the ResNet20 network (figure 4.12). Although performances are gener-
ally worse than our method (w/ budget), results indicate that the mixing
coefficient λ has major importance. Indeed, the ℓ1 regularisation does
not target a precise budget, however, it still helps optimisation to in-
troduce sparsity in the network. Thus, for certain pruning rates, the
variant (ii) can exhibit better results than our method (especially visible
on figures 4.12a and 4.12b). Nevertheless, the choice of λ is critical and
not trivial. Because of the absence of a budget loss, the optimisation
does not take any targeted level of sparsity into account. The tradeoff
between optimising the main task loss and the ℓ1 regularisation loss
is controlled only by the parameter λ, which makes it difficult to find
a single value suited for a large range of pruning rates, networks and
datasets. Since variant (ii) does not target any specific sparsity, in fig-
ures 4.11 to 4.13, we vary the pruning rate to examine the performance
of trained networks at various sparsity levels.

In contrast, our method is able to achieve good performance across
multiple and diverse conditions, without the need to try different val-
ues of λ. Experiments presented in this section reveal that the budget
loss is a critical component of the method to train networks and prune
them while introducing a minimal impact on the performance if no fine-
tuning is applied. While the ℓ1 regularisation loss may achieve superior

117

4.4. EXPERIMENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(a) Conv4 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(b) Conv4 CIFAR-100

Figure 4.11: Comparison of our method and its variant without the budget
loss. The experimental results are referred to as ℓ1 reg., wherein the bud-
get loss is replaced by a ℓ1 regularisation loss on the network weights. The
mixing coefficient λ is varied from 0.1 to 100, depending on the experiment.
w/o budget corresponds to the absence of the budget loss (this is equivalent
to λ = 0). On the other hand, w/ budget corresponds to our method, with the
same setup as described in section 4.4.2. Results are presented for a Conv4 net-
work, trained on CIFAR-10 (figure 4.11a) and CIFAR-100 (figure 4.11b). Best
viewed in colours.

performance in certain cases, our method is simpler to implement since
it does need to search for a value of λ per architecture, and more robust
in its applicability across various scenarios.

4.4.5 Validation of the Reparametrisation

The proposed method comprises two primary components: budget loss
and weight reparametrization. The previous section establishes the sig-
nificance of the budget loss in achieving optimal performance. In this
section, we study the impact of incorporating weight reparametrisation.
To establish the necessity of weight reparametrisation, we compare our
approach with a variant where the budget loss is applied but the weight
reparametrisation is not. This variant is denoted budget only in the fol-
lowing. The objective of this variant and the comparison is to isolate
the impact of weight reparametrization. The budget loss is evaluated in
the same way as described in section 4.2.2. Note that in the budget only

118

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(a) ResNet20 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(b) ResNet20 CIFAR-100

Figure 4.12: Comparison of our method and its variant without the budget
loss. The experimental results are referred to as ℓ1 reg., wherein the budget
loss is replaced by a ℓ1 regularisation loss on the network weights. The mixing
coefficient λ is varied from 0.1 to 100, depending on the experiment. w/o budget
corresponds to the absence of the budget loss (this is equivalent to λ = 0). On
the other hand, w/ budget corresponds to our method, with the same setup
as described in section 4.4.2. Results are presented for a ResNet20 network,
trained on CIFAR-10 (figure 4.12a) and CIFAR-100 (figure 4.12b). Best viewed
in colours.

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(a) VGG16 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(b) VGG16 CIFAR-100

Figure 4.13: Comparison of our method and its variant without the budget
loss. The experimental results are referred to as ℓ1 reg., wherein the budget
loss is replaced by a ℓ1 regularisation loss on the network weights. The mixing
coefficient λ is varied from 0.1 to 100, depending on the experiment. w/o budget
corresponds to the absence of the budget loss (this is equivalent to λ = 0). On
the other hand, w/ budget corresponds to our method, with the same setup
as described in section 4.4.2. Results are presented for a VGG16 network,
trained on CIFAR-10 (figure 4.13a) and CIFAR-100 (figure 4.13b). Best viewed
in colours.

119

4.4. EXPERIMENTS

variant, the budget evaluation uses our reparametrisation function as a
surrogate ℓ0 norm but the weights used to produce the network output
are the standard weights w, not the reparametrised weights ŵ.

We evaluate the performance of our method and the budget only vari-
ant on Conv4, ResNet20, and VGG16 networks using CIFAR-10 and
CIFAR-100 datasets (see figures 4.14 to 4.16). Both the proposed ap-
proach and budget only variant are trained with the same hyperparame-
ters, namely, the learning rate, weight decay, number of epochs and the
Reduce on Plateau policy for the learning rate. For the budget only variant,
we perform experiments by varying the mixing coefficient λ from 0.5
to 500. The performances did not vary significantly w.r.t. λ, suggesting
that the mixing coefficient does not have a significant impact on the per-
formance. Therefore, in order to ensure the clarity of figures 4.14 to 4.16,
we only display the results for λ = 5.

Figures 4.14 to 4.16 present the results of the performance compar-
ison. Our method is referred to as budget + reparam and is evaluated
after pruning, whereas the budget only variant results are presented both
before and after pruning. On Conv4 and VGG16 (figures 4.14 and 4.16,
respectively), our method performs on par with the budget only variant
before pruning while being already pruned, up to very high pruning
rates (more than 98%). On the contrary, and even for ResNet20, the bud-
get only post-pruning variant performs poorly. The budget only variant
performance is massively impaired by the effective pruning step, even
though the budget is thoroughly respected (table 4.2). In comparison,
our method performs much better than the latter when effective pruning
is applied to both methods. The budget loss alone enforces a stricter
adherence to the targeted budget (table 4.2), however, the lack of re-
parametrisation fails to prepare the network for the effective pruning
step. Indeed, weights are not soft-pruned and the network is not pre-
pared for sparsity.

120

CONTENTS

Dataset Network Pruning Rate (%) Achieved Budget (%)

CIFAR-10

Conv4

90 9.99 ± 0.00

95 4.97 ± 0.01

99 0.98 ± 0.00

ResNet20

90 9.83 ± 0.02

95 4.88 ± 0.01

99 0.98 ± 0.00

VGG16

90 10.00 ± 0.00

95 5.00 ± 0.00

99 1.00 ± 0.00

CIFAR-100

Conv4

90 9.94 ± 0.02

95 4.91 ± 0.02

99 0.98 ± 0.00

ResNet20

90 9.84 ± 0.02

95 4.91 ± 0.01

99 1.00 ± 0.00

VGG16

90 10.00 ± 0.00

95 5.00 ± 0.00

99 1.00 ± 0.00

Table 4.2: Achieved budget for the budget only variant. Results are presented
for λ = 5. Across all experiments, the achieved budget matches closely the tar-
geted budget, which is computed as (1−pruning rate)×100 and is expressed
in percent.

121

4.4. EXPERIMENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
te

st
 a

cc
ur

ac
y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(a) Conv4 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(b) Conv4 CIFAR-100

Figure 4.14: Comparison of our method and its variant without the repara-
metrization on Conv4, evaluated on CIFAR-10 and CIFAR-100. Our method
(budget + reparam) has similar performance to the budget only variant before
pruning, whereas our method, is already pruned. Once pruned, the budget
only variant is significantly impaired.

The results presented in this comparison and the ones of section 4.2.2
show that both components of our method are of crucial importance. In
particular, the reparametrization allows for a considerably better gener-
alization of the network after pruning, thus enabling a much higher level
of performance. Sections 4.4.4 and 4.4.5 provide empirical evidence that
no component of our method can be removed without significant im-
pairment of the performance, and therefore, they function in synergy.

4.4.6 Tuned Initialisation
In the previous sections, weights were initialised with the standard
Kaiming initialisation scheme [67] (see appendix A.3). In this section
we study an alternative initialisation scheme: we initialise the weights
of the network with trained and pruned weights. These weights are
obtained by training the network in its standard configuration (i.e. with-
out reparametrisation and budget loss) up to convergence and then the
weights are pruned with magnitude pruning at a specified pruning rate.
In other words, our method is used to fine-tune the weights of a trained
and pruned network. This fine-tuning setup is of particular interest
since the major deep learning frameworks [149, 1] provides pretrained
weights for various architectures [156] but it is up to the end user to
prune and fine-tune them according to their needs.

122

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(a) ResNet20 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(b) ResNet20 CIFAR-100

Figure 4.15: Comparison of our method and its variant without the repara-
metrization on ResNet20, evaluated on CIFAR-10 and CIFAR-100. Due to the
small size of the network (see table 2.1), the pruned version of our method
(budget + reparam) and the budget only variant cannot keep up with the un-
pruned version. Nevertheless, if considering the pruned versions, our method
scores better, thanks to the addition of the reparametrization.

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(a) VGG16 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(b) VGG16 CIFAR-100

Figure 4.16: Comparison of our method and its variant without the
reparametrizationn VGG16, evaluated on CIFAR-10 and CIFAR-100. Our me-
thod (budget + reparam) has similar performance to the budget only variant be-
fore pruning, whereas our method, is already pruned. Once pruned, the bud-
get only variant is significantly impaired.

123

4.4. EXPERIMENTS

We compare the performances of a network trained in a standard
way, then pruned with magnitude pruning and finally fine-tuned with
two methods: Our method and standard fine-tuning [60]. Put simply,
this section describes a process where the initial weights of the network
are not randomly initialised, but are trained and pruned weights. Note
that the pruning definitely zeroes out the smallest magnitude weights
and they are not reactivated during the fine-tuning. The latter only
tunes the remaining unpruned weights. This setup is evaluated on
Conv4, ResNet20 and VGG16 for both CIFAR-10 and CIFAR-100. The
results are shown in figures 4.17 to 4.19. First, a network is trained for
150 epochs on the main classification task. Then it is pruned up to a
specified pruning rate. The pruning criterion used is the magnitude
of the weights where weights with the smallest absolute values are re-
moved in an unstructured way. The pruned network is then fine-tuned
for 300 epochs with an early stopping criterion based on the validation
accuracy. The training is stopped prematurely if the validation accuracy
does not improve for 30 epochs. When fine-tuned with our methods,
the pruned network is treated as the original network. The initial latent
weights of our method (w) are the ones of the trained and pruned net-
work. They are reparametrised as in 4.2.1.

Except for results with the Conv4 networks, fine-tuning a network
with our method overperforms the conventional fine-tuning method by
a comfortable margin on ResNet20 across all pruning rates (figure 4.18)
and VGG16 (figure 4.19) for pruning rates higher than 96%. At initial-
isation, the weights of the network are already pruned to the targeted
pruning rate. With the enforcement of the budget through budget loss,
the remaining unpruned weights cannot dwindle to zero, hence pre-
serving them during the fine-tuning process. In contrast, in the absence
of budget loss, the remaining weight values are not restricted, allowing
them to possibly vanish, resulting in further a drop in network capacity
with weights of vanishingly small magnitude. This behaviour is high-
lighted by the following additional experimental results displayed in
figure 4.20. This experiment involves a comparison between two initial
setups: one where the initial weights are only fine-tuned and another
where they are fine-tuned and then pruned. The outcomes demonstrate
that initialising a network with weights that are fine-tuned and then
pruned beforehand yields significantly superior results. Moreover, the
networks produced by fine-tuning with our method are much more

124

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
te

st
 a

cc
ur

ac
y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(a) Conv4 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(b) Conv4 CIFAR-100

Figure 4.17: Fine-tuning of a Conv4 network pruned by magnitude pruning
(MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets for various pruning
rates. Conventional (MP w/ FT) fine-tuning is compared to fine-tuning with
our method (pruned+FT (w/ our method)). Our method, described in section 4.3,
is shown for comparison purposes (Ours). On this network, our method per-
forms better than other approaches. Fine-tuning the network with our method
provides better results than fine-tuning it with a conventional method.

consistent from one run to another. This is illustrated by the standard
deviation being so small that the coloured area around the solid line is
barely visible on the graphs. This is not the case for conventional fine-
tuning where performances vary greatly from one run to another. This
is especially visible in figure 4.17a.

Although the method proposed in this chapter was not initially in-
tended for fine-tuning networks, it demonstrates superior performance
compared to widely-used standard fine-tuning techniques. Notably, it
exhibits enhanced recovery from the performance decline that occurs
following pruning. Furthermore, the performance consistency of net-
works fine-tuned with our method is significantly higher across multi-
ple runs in comparison to networks generated by traditional fine-tuning
methods. The slight variation observed in the results indicates increased
robustness against the inherent randomness of the optimization process.
Consequently, the final performance is less dependent on specific initial-
izations, batch orders, or data augmentation seeds than with standard
fine-tuning approaches.

125

4.4. EXPERIMENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(a) ResNet20 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(b) ResNet20 CIFAR-100

Figure 4.18: Fine-tuning of a ResNet20 network pruned by magnitude prun-
ing (MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets with various prun-
ing rates. Conventional (MP w/ FT) fine-tuning is compared to fine-tuning
with our method (pruned+FT (w/ our method)). Our method, described in sec-
tion 4.3, is shown for comparison purposes (Ours). On this network, fine-
tuning with our method considerably outperforms other approaches.

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(a) VGG16 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(b) VGG16 CIFAR-100

Figure 4.19: Fine-tuning of a ResNet20 network pruned by magnitude prun-
ing (MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets with various prun-
ing rates. Conventional (MP w/ FT) fine-tuning is compared to fine-tuning
with our method (pruned+FT (w/ our method)). Our method, described in sec-
tion 4.3, is shown for comparison purposes (Ours). On this network, fine-
tuning with our method performs on par with other methods up to 95% of
pruning. For higher pruning rates, it outperforms other approaches.

126

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(a) Conv4 - CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(b) Conv4 - CIFAR-100

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(c) ResNet20 - CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.05

0.10

0.15

0.20

0.25

0.30

0.35

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(d) ResNet20 - CIFAR-100

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(e) VGG16 - CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.40

0.45

0.50

0.55

0.60

0.65

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(f) VGG16 - CIFAR-100

Figure 4.20: Comparison of fine-tuning a network whose initialisation has
been trained from scratch (denoted unpruned initialisation) or trained from
scratch and pruned with magnitude pruning (denoted pruned initialisation).
Fine-tuning a pruned initialisation always outperforms fine-tuning an un-
pruned initialisation in the tested configurations.

127

4.5. CONCLUSION

4.5 Conclusion

This chapter introduces a novel approach for pruning neural networks,
which addresses the limitations of conventional pruning pipelines. The
latter usually apply a pruning criterion and prune networks after an
initial training phase without taking into account the target pruning
rate. This often requires a fine-tuning phase to restore the accuracy
loss that follows pruning and the subsequent topology alteration. In
contrast, the proposed method does not require fine-tuning to achieve
superior performance compared to state-of-the-art magnitude pruning
methods. Experimental evaluations conducted on various datasets and
networks commonly used for image classification benchmarking vali-
date this claim.

Our approach described in this chapter consists of two key compo-
nents: a budget loss and a weight reparametrisation function. Com-
parative analyses demonstrate the importance of both components, as
variants without either the budget loss or the reparametrisation, result
in inferior performance compared to the full-fledged method. While the
proposed method is designed to avoid computationally intensive fine-
tuning, it can still be used for fine-tuning and performs comparatively
better than standard fine-tuning.

The proposed method of this chapter focuses on weight reparametri-
sation with budget loss to enhance the network robustness to pruning:
compared to a network trained in the absence of such strategies, our use
of reparametrisation and budget loss substantially mitigates the perfor-
mance degradation typically induced by pruning. This forces less useful
weights to take small values, binding the weight value to the network
topology. As such, the optimisation process learns both the weights and
topology under the hypothesis that weights with smaller magnitudes
will be removed. This method highlights the importance of determining
the optimal topology in addition to the optimal weights, achieved in
this chapter with the prior that magnitude is a saliency factor for weight
relevance in the topology.

128

CONTENTS

Notwithstanding the improved performance of the proposed me-
thod compared to magnitude pruning, it still suffers from some lim-
itations. Namely, the value of the weight saliency is bound to the
reparametrisation which is in turn bound to the weight value. As a
consequence, the weight saliency is only determined by the latter. The
resulting limitation is that the current method cannot treat weights with
the same value (or similar values) differently. Put simply, the topology
is bound to the magnitude of the weights, but not their position in the
network.

In the next chapter, the introduced approach seeks to determine the
optimal topology without training the weights and without binding
their saliency (or relevance) to their magnitude. The saliency of the
initial weights is determined by a trained mask. In other words, the
next method aims at determining the best topology, given a set of fixed
weights.

129

4.5. CONCLUSION

130

Chapter 5

Effective Subnetworks
Extraction without Weight
Training

131

132

Contents
5.1 Introduction and Related Work 135

5.1.1 Pruning at initialisation 136
5.1.2 Lottery Tickets . 139
5.1.3 Existence of effective subnetworks 141
5.1.4 Subnetwork topology extraction 142

5.2 Contributions . 143
5.3 Extracting Effective Subnetworks with

Gumbel-Softmax . 144
5.3.1 Stochastic Weight Sampling 144
5.3.2 Smart Weight Rescaling 151
5.3.3 Freezing the Topology via Thresholding 154

5.4 Method Overview and Algorithm 155
5.5 Experiments . 157

5.5.1 Experimental Setup 157
5.5.2 Performances . 159
5.5.3 Validation of the Weight Rescaling Mechanism . . . 162
5.5.4 Effect of the Learning Rate on Training Performances167
5.5.5 Post Training Pruning Rate Adjustment 169

5.6 Conclusion . 170

Chapter Abstract

This chapter focuses on the development of lightweight
and efficient neural networks for image classification tasks,
particularly in visual category recognition. These lightweight
networks are increasingly important for intelligent embed-
ded systems with limited computational and energy resources.

133

CONTENTS

Pruning techniques are popular in designing lightweight
networks, but they require weight training, pruning and
fine-tuning. These weights are pruned based on criteria or
saliency indicators that are learned alongside the weights.

This chapter introduces approaches that extract effective
subnetworks by pruning large untrained networks, without
weight training. A new method, named Arbitrarily Shifted
Log Parametrisation (ASLP), is proposed to extract effective
subnetworks from a large, untrained deep neural network us-
ing the Straight Through Gumbel-Softmax (STGS) technique,
which enables the training of stochastic discrete variables
while still preserving differentiability. Additionally, a weight
rescaling mechanism, referred to as Smart Rescale (SR), is in-
troduced. It rescales the weight distributions of the selected
subnetworks and as a result, improves the performance and
reduces the number of epochs required for training as shown
later in experiments. Finally, we introduce a novel pruning
strategy that automatically finds the pruning rate yielding
the best performances once the training is completed, elim-
inating the need to iteratively search and strictly enforce a
specific pruning rate throughout the training.

The ASLP method, which integrates the STGS sampling
technique and the SR mechanism, is evaluated through ex-
periments on CIFAR-10, CIFAR-100, and TinyImageNet data-
sets. In most cases, ASLP outperforms other state-of-the-art
methods and consistently surpasses them for various net-
work architectures. Further experiments show that the spar-
sity of the networks extracted with ASLP can be increased
with minimal impact on the performance. These experiments
also show that our method can accept a broad range of learn-
ing rates and is robust to extremely large learning rate values.
Additionally, the experiments show the effectiveness of the
SR mechanism regarding performance improvement and the
reduction in the number of epochs needed to reach conver-
gence.

This chapter presents work that has resulted in the publica-
tion of the following conference article:

134

CONTENTS

• Robin Dupont, Mohammed Amine Alaoui, Hichem Sahbi,
and Alice Lebois. Extracting effective subnetworks with
Gumbel-Softmax. In 2022 IEEE International Conference on
Image Processing, ICIP 2022, Bordeaux, France, 16-19 October
2022, pages 931–935. IEEE, 2022.

Our code for the ASLP method, as well as the reimplementa-
tion of the comparative methods used in this chapter, is pub-
licly available at:

• https://github.com/N0ciple/ASLP

5.1 Introduction and Related Work
In this chapter, we tackle the challenge of extracting lightweight and
effective subnetworks from large, untrained neural networks. The goal
is to obtain subnetworks that have both a smaller number of parameters
compared to the original network and compelling performances. Con-
trary to chapter 4 where the focus was on soft-pruning weights based on
their value during the training, the method presented in this chapter re-
lies on training latent masks. The latter represents a parametrisation of
the probabilities for the weights to be selected or not in a sampled topol-
ogy. The method described in chapter 4 binds the saliency of the weights
to their magnitude in a fully deterministic way. In contrast, the method
introduced in this chapter is, on the one hand, stochastic, and on the
other hand, decorrelating the pruning criterion from the weight value
by relying on a separate latent mask to represent the weight saliency.

This method exhibits several advantages over the method presented
in the previous chapter: First, as we just mentioned, the pruning cri-
terion is decorrelated from the value of the weight, offering a different
approach where the weight value is not the only parameter determining
its saliency. Indeed, two weights with the same value can have dif-
ferent probabilities of being selected since their associated latent mask
can evolve differently. Second, this method does not train the weights
but selects the best subset of network connections to minimise the loss
used to train the network. Consequently, this method is perfectly suited
for applications where training the weight might not be possible and
activating or deactivating a weight is the only option. Finally, from a
global standpoint, this method provides a new path to neural network

135

https://github.com/N0ciple/ASLP

5.1. INTRODUCTION AND RELATED WORK

training that does not rely on weight training, but rather on topology
selection through the same widely spread gradient-based optimisation
framework used by standard training. The following sections provide
an overview of the related works on pruning at initialisation, Lottery
Tickets, effective subnetwork existence and extraction, followed by the
contributions of this chapter.

5.1.1 Pruning at initialisation
In general, extracting a lightweight subnetwork is still a challenging
problem [47] and is computationally demanding as this amounts to full
training of large networks (until convergence) prior to their pruning.
Instead of pruning the network after an initial training phase, existing
alternatives approach this problem by pruning the network weights just
after their initialisation and before training [109, 198, 188]. The resulting
sparse network is then trained after this initial pruning step, as shown
in figure 5.1.

Initialise
weights Train Prune Fine-tune

Initialise
weights Prune Train

Standard train - prune - finetune pipeline

Pruning at initialisation pipeline

Figure 5.1: Comparison of a standard train-prune-finetune pipeline and the
prune at initialisation pipeline. In the latter, the network is pruned before train-
ing.

Single-Shot Network Pruning (SNIP) was introduced by Lee et al. in
[109]. The authors devise a new criterion to determine the importance of
a connection even before the start of training. The criterion, called con-
nection sensitivity, is based on the influence of a connection on the loss

136

CONTENTS

function. The more a connection can change the loss function output,
the more important it is considered to be. Considering a weight wj, the
authors define its sensitivity as:

sj =

∣∣∣∣∂L∂cj

∣∣∣∣
N

∑
k=1

∣∣∣∣∂L∂ck

∣∣∣∣
(5.1)

where N is the number of connections in the network and cj in an aux-
iliary variable introduced by the authors that represents the presence
(cj = 1) or absence (cj = 0) of the weight wj in the network. The connec-
tions are then sorted by their connection sensitivity score and the top-k
connections are kept to match a given pruning rate.

GraSP (Gradient Signal Preservation) [198] is a refinement of SNIP
that takes into account the gradient flow. The authors seek to preserve
the latter in order to allow large gradients in the subsequent network
training. The scores of the weights are defined in a vectorised way as :

S(−w) = −w⊙Hg (5.2)

where ⊙ is the Hadamard product, w is the vector of weights, H is the
Hessian matrix of the loss function with respect to the weights and g is
the gradient of the loss function with respect to the weights. Consider-
ing how the score is defined in equation (5.2), pruning is achieved by
removing the top-k weights that reduce the gradient flow to match a
given pruning rate.

Both SNIP and GraSP require a single mini-batch to compute their
respective scores. Another pruning method known as SynFlow [188] is
data-free and seeks to preserve synaptic flow, defined subsequently, in a
given network in order to prevent layer collapse. The latter is defined by

137

5.1. INTRODUCTION AND RELATED WORK

the authors as the complete pruning of a layer, which effectively renders
the network untrainable. For a given layer ℓ, the synaptic flow score of
the weights θℓ of a layer ℓ is defined as :

SSF(wℓ) =

∂

(
1T

(
L

∏
ℓ=1
|wℓ|

)
1

)
∂ wℓ

⊙wℓ (5.3)

where L is the total number of layers in the network and 1 is the all ones
vector. Contrary to previous methods, namely SNIP [109] and GraSP
[198], SynFlow does not necessitate any data to compute the scores.
These scores are computed and updated iteratively for 100 steps, re-
gardless of the targeted dataset or batch size. Since it prevents layer
collapse, network pruning with SynFlow can reach higher pruning rates
than with SNIP or GraSP (see figure 5.2).

M
ax C

om
pression

Figure 5.2: Synflow accuracy compared to SNIP and GraSP for different prun-
ing rates. Methods are benchmarked on VGG16 trained on CIFAR-100. Illus-
tration taken from [188]

These aforementioned methods allow pruning a network at initial-
isation but still require training the weights. Moreover, while these
methods outperform the basic benchmark of random pruning, their ac-
curacy is still below the one of post-training magnitude pruning [47]. In

138

CONTENTS

contrast to these works, our proposed solution in this chapter identifies
effective subnetworks by training only their topology and without any
weight tuning. Our solution yields sparse and lightweight subnetworks
that achieve compelling performances and does not need further weight
fine-tuning.

5.1.2 Lottery Tickets
As discussed in chapters 3 and 4, pruning methods, either structured
or unstructured, are particularly successful at simplifying large neural
networks, and seek to remove connections with the least perceptible
impact on classification accuracy. Structured pruning consists in jointly
removing groups of weights, entire channels or subnetworks [112, 126],
whereas unstructured pruning aims at removing weights individually
[60, 61].

Unstructured pruning has witnessed a recent surge in interest in the
wake of the LTH [44]; an empirical study in [44] demonstrates that large
pre-trained networks encompass lightweight subnetworks, referred to
as LTs, which can achieve comparable performance to the original large
networks in a similar number of epochs when trained in isolation with
initial weights taken from the large network. To identify these LTs, the
large network is trained until convergence, followed by pruning the
smallest weights based on their magnitude. The remaining weights are
then rewound to their original value, that is, the value they had before
the training of the large network began. This resulting subnetwork is
known as a Lottery Ticket. Frankle and Carbin also leveraged iterative
magnitude pruning to identify LTs, where the pruning rate is gradually
increased during training until it reaches the desired pruning rate [44].

Rewinding the weights to their original values does not allow to find
LT for larger architectures, as noted by [125, 48]. Frankle and Carbin
proposed a weaker version of the LTH where the weight values are not
reset to their original values, but instead to an early stage of the train-
ing corresponding to the network reaching a stable state, described in
[46]. Figure 5.3 provides conceptual illustrations of the different existing
methods devised by Frankle and Carbin to find a LT.

139

5.1. INTRODUCTION AND RELATED WORK

Initial weights w0 trained weights wn
magnitude

pruning
weights

rewinded to w0

Initial weights w0 trained weights wn
magnitude

pruning
weights

rewinded to wk
weights at early

stage wk

Initial weights w0
weights at
stage wk

pruned weight

magnitude
pruning

weights at
stage w2k

weights at
stage w3k ...

trained and iteratively
pruned weights

magnitude
pruning

repeat

weights
rewinded to w0

LT with original
values

Lottery
Tickets

LT with early
stage values

LT with iterative
magnitude pruning

Figure 5.3: Conceptual illustration of the different processes to obtain a Lot-
tery Ticket: reinitialising the weights to their original values with one-shot
magnitude pruning (LT with original values), reinitialising the weights to their
early stage values with one-shot magnitude pruning (LT with early stage values)
and iterative magnitude pruning (LT with iterative magnitude pruning). Best
viewed in colour.

140

CONTENTS

Another study [125] pushes that finding further and concludes that
only the topology of these subnetworks is actually important in order
to reach compelling performances. Liu et al. [125] point out that the
weights of the LTs are not important and can be randomly initialised,
provided that the optimisation procedure is carefully designed: Liu
et al. used a common SGD optimiser with momentum instead of using
an Adam optimiser [101] with a low learning rate as Frankle and Carbin
did in [44], suggesting that using an Adam optimiser might hinder the
training of randomly initialised LT.

The aforementioned works [44, 46, 125] focus on finding a Lottery
Ticket that still needs to be trained in order to reach a satisfying level of
performance. In contrast, our proposed method extracts a subnetwork
that already achieves compelling performances without any weight
training.

5.1.3 Existence of effective subnetworks

At first, it seems counterintuitive that there exists a subnetwork in a
large network, that can achieve compelling performances without any
weight training. This has been first conjectured in [159] as the Strong
Lottery Ticket Hypothesis. A few theoretical analyses provide evidence
that such subnetworks do exist. [134] demonstrate that a neural network
of width d and depth l can be approximated by pruning a randomly
initialised one that is a factor O(d4l2) wider and twice as deep. The
upper bound on the network width has later been improved by [147]
to O(d2 log(dl)) under the assumption of a hyperbolic weight distribu-
tion. This upper bound has eventually been refined to O(d log(dl)) by
[150] for a broad class of weight distributions, including the uniform
one which is widely used for weight initialisation [67].

141

5.1. INTRODUCTION AND RELATED WORK

5.1.4 Subnetwork topology extraction
Although the existence of effective subnetworks with untrained weights
has been established, no constructive proof has been provided in order
to identify them. In this context, several methods proposed heuristics to
extract the lightweight and efficient subnetwork from a large untrained
network [217, 159].

Supermark is a method introduced by Zhou et al. in [217] which is
the first attempt to extract efficient subnetworks from a large untrained
network using stochastic mask training. Each weight of the network is
stochastically sampled following a Bernoulli distribution parametrised
by a latent variable m. To that extent, weights are reparametrised as
follows:

ŵ = w× Bern(σ(m)) (5.4)

where ŵ is the effective weight (also referred to as the apparent weight in
chapter 4) used in the network, wi is the original frozen weight and σ
the sigmoid function. At each iteration, a random variable is sampled
from the Bernoulli distribution parametrised by m, which either selects
or prunes the corresponding weight. The sampling being nondifferen-
tiable, it is not possible to train directly m with SGD. Instead, the authors
proposed to use the STE [9], a technique that approximates the gradi-
ent in the backward pass with a continuous surrogate function of the
forward pass non-differentiable function. Zhou et al. also introduced a
weight rescaling mechanism, called Dynamic Weight Rescaling (DWR),
to mitigate the disruption of weight statistics due to pruning [67]. More
details are given in sections 5.3.1 and 5.3.2.

During training, weights are frozen and only the masks are allowed
to vary. However, the major drawback of this method resides in the
vanishing gradient issue of the sigmoid which makes mask training
numerically challenging. Ramanujan et al. [159] proposed another al-
ternative, entitled Edge-popup, based on binarised saliency indicators
learned with STE, which selects the most prominent weights in the re-
sulting subnetworks. Each weight wij, corresponding to the connection

142

CONTENTS

between neurons i and j, is associated with a latent saliency indicator sij.
During the forward pass, the weights associated with the top-k saliency
indicators are selected and the others are pruned. Similarly to Super-
mask, binarised saliency indicators are not differentiable, therefore, the
latter is made with STE. The authors consider the following expression
for the weights in the backward pass:

ŵij = sijwij (5.5)

Edge-popup enforces the pruning rate a priori, thereby determining the
value of k. This value is the same for all the layers, imposing a constant
pruning rate throughout all the layers of the network, which is subop-
timal. Indeed, the optimal pruning rate is layer-dependent and varies
from one layer to another. Moreover, finding the pruning rate giving the
highest performances has to be made through a cumbersome and time-
consuming grid search. Like Supermask, Edge-popup also includes
a weight rescaling mechanism, based on a learnt rescaling factor that
rescales the weight distribution in a layer-wise fashion, subsequently
detailed in section 5.3.2.

5.2 Contributions
Considering the limitation of the aforementioned related work, namely,
the challenges in mask training due to the sigmoid mask parametri-
sation, and the time-consuming nature of finding the optimal pruning
rate, we introduce in this chapter a new stochastic subnetwork selection
method based on Gumbel-Softmax (GS). The latter allows sampling
subnetworks whose weights are the most relevant for classification. The
proposed contribution also relies on a new mask parametrisation, enti-
tled Arbitrarily Shifted Log Parametrisation (ASLP), that allows better
conditioning of the gradient and thereby mitigates numerical instabil-
ity during mask optimisation. Besides, when combining ASLP with
a learned weight rescaling mechanism, training is accelerated and the
accuracy of the resulting subnetworks improves as shown later in exper-
iments. Our proposed pruning strategy is designed such that it does not
necessitate any prior information regarding the optimal pruning rate
that would yield the best performance. Instead, it automatically sets the
optimal rate, eliminating the need for an exhaustive grid search.

143

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

The rest of this chapter is organized as follows: section 5.3 delves into
our proposed method, named Arbitrarily Shifted Log Parametrisation
(ASLP), for extracting efficient subnetworks using Gumbel-Softmax, in-
cluding stochastic weight sampling and our weight rescaling approach.
The overall workflow of our proposed method is detailed in section 5.4.
In section 5.5, we share the results of our comprehensive experiments,
including performance benchmarks, the impact of our weight rescaling
approach, the effect of increasing the pruning rate after training and the
impact of the learning rate on the training convergence speed and final
performance. We conclude the chapter in section 5.6, summarizing our
contributions and our key findings. As we will demonstrate, our new
approach overcomes several of the challenges associated with previous
techniques, offering a more efficient and effective way to extract high-
performance subnetworks without weight training.

5.3 Extracting Effective Subnetworks with
Gumbel-Softmax

Considering the same formalism as in chapter 4, let fθ be a deep neural
network whose weights are defined as θ = {w1, . . . , wL}, with L being
its depth, wℓ ∈ Rdℓ×dℓ−1 its ℓth layer weights, and dℓ the dimension of ℓ.
The output of a given layer ℓ is defined as

zℓ = gℓ(wℓ ⊗ zℓ−1), (5.6)

being gℓ an activation function and ⊗ the usual matrix product.
Without loss of generality, we omit the bias in the definition of (5.6).

5.3.1 Stochastic Weight Sampling

Given a network fθ, weight pruning consists in removing connections in
the graph of fθ. A node in this graph refers to a neural unit while an edge
corresponds to a cross-layer connection. Pruning is usually obtained by
freezing and zeroing out a subset of weights in θ, and this is achieved

144

CONTENTS

in practice by multiplying wℓ by a binary mask mℓ ∈ {0, 1}dim(wℓ). The
binary entries of mℓ are set depending on whether the underlying layer
connections are kept or removed, so equation (5.6) becomes

zℓ = gℓ((mℓ ⊙wℓ)⊗ zℓ−1). (5.7)

Here ⊙ stands for the element-wise matrix product. In chapter 4, the
effective pruning step was achieved by setting the values of mℓ to zero or
one depending on the magnitude of the weight reparametrisation (see
equation (4.14) and section 4.3). Consequently, the value of the masks
mℓ are only determined by the value of the weights and not the topology
of the network. In this chapter, we propose another approach to obtain
the masks mℓ that is not bound to the value of the weights. In equa-
tion (5.7), the masks mℓ are stochastic and sampled from a Bernoulli
distribution. However, sampling is not a differentiable operation, there-
fore, optimising directly mℓ is not possible. To overcome this issue,
while still relying on SGD, the Straight Through Estimator (STE) tech-
nique is applied together with a reparametrisation of the mask.

Straight Through Estimator. Zhou et al. [217] consider a Bernoulli
parametrisation of mℓ in order to sample masks in equation (5.7). Since
sampling is not a differentiable operation, they rely on the STE. It is
a technique developed in [9] that enables the training of neural net-
works with discrete activations, such as binary or quantised activations.
The technique involves using a differentiable relaxation to the non-
differentiable activation function during the backward pass, and using
the non-differentiable function in the forward pass. This allows for the
use of SGD to optimise the network, which was previously not possible
with discrete activations. It is worth noting that STE is a heuristic that
does not provide the correct gradient, but it is effective in practice [9].

145

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

In order to apply STE to the problem of Bernoulli stochastic mask
sampling, the definition of mℓ is based on another latent parametrisa-
tion m̂ℓ, detailed subsequently, and obtained by applying a sigmoid
function σ(.) to m̂ℓ. This allows optimizing m̂ℓ using gradient descent
by considering the following surrogate of equation (5.7) in the backward
pass of the backpropagation algorithm:

zℓ = gℓ((σ(m̂ℓ)⊙wℓ)⊗ zℓ−1). (5.8)

As a result, although masks mℓ are sampled and thus disconnected from
the computation graph (sampling being not differentiable), their repara-
metrisation m̂ℓ can be updated as if they were used in the computation
graph as shown in equation (5.7).

Gumbel-Softmax. In what follows, we consider an alternative to STE
based on Gumbel-Softmax (GS) [93] that demonstrates better perfor-
mances for differentiable categorical sampling, which is the process of
randomly selecting a category from a given set of categories, where each
category has a specified probability of being chosen. Gumbel-Softmax
is a technique that can be used to approximate a discrete categorical
distribution with a continuous relaxation. Gumbel-Softmax works by
using the Gumbel distribution [56] to add noise to a categorical distri-
bution and then applying the Softmax function to obtain a continuous
relaxation of the discrete distribution. The proposed method, dubbed
as Straight Through Gumbel-Softmax (STGS), is based on a variant of
Gumbel-Softmax combined with Straight Through Estimator. In the for-
ward pass, the softmax of GS is replaced by an argmax operator. Since
this operator is not differentiable, the standard softmax is considered in
the backward pass. The argmax operator allows sampling from a cate-
gorical distribution, as the limit of GS (i.e., when its softmax temperature
approaches zero).

Gumbel-Softmax applied to weight sampling. Let z be a categori-
cal random variable, associated with n-class probability distribution
P = [π1, . . . , πn]. In order to sample in a differentiable manner, the
Gumbel-Softmax estimator takes as an input a vector of log-probabilities

146

CONTENTS

log(P) = [log(π1), . . . , log(πn)] (5.9)

then it disrupts the latter with a random additive noise sampled
from the Gumbel distribution, and finally takes its argmax, yielding a
categorical variable. More formally, following [93], the value q of our
categorical variable z is obtained as

q = argmax
k

[log(πk) + gk], (5.10)

with gk being independent and identically distributed samples from
the Gumbel distribution with zero mean and unit variance, denoted
G(0, 1).

For mask sampling, only two possible outcomes are considered. Ei-
ther the corresponding weight is selected and its mask is set to 1, or it
is pruned from the sampled topology and its mask is set to 0. In what
follows, and unless stated otherwise, we omit ℓ from wℓ and we write
it for short as w. Let wij be the weight associated with the i-th and j-th
neurons respectively belonging to two consecutive layers. Since there
are two possible outcomes for the masks, we define a two-class categor-
ical distribution Pij on {0, 1} as

 Pij(z = 1) = π
ij
1

Pij(z = 0) = π
ij
2

(5.11)

with, again, π
ij
1 = pij and pij being the probability to keep the under-

lying connection. Since there are only two mutually exclusive outcomes,
π

ij
2 = 1− pij. In other words, keeping the weight wij (or not) in the sam-

pled topology is a Bernoulli trial with a probability pij. Considering
equation (5.10), a binary mask mij is defined as

147

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

mij = 1{qij=1} (5.12)

1{} being the indicator function and following equation (5.10), qij is

qij = argmaxk∈{1,2}
[

log(πij
k) + gij

k

]
(5.13)

with π
ij
1 = pij and π

ij
2 = 1− pij, the probability for a weight to be

selected or not in the sampled topology, respectively.

The proposed STGS algorithm enables the learning of probabilities
pij for each weight wij through SGD. However, optimizing pij (with
SGD) raises a major issue. Since the optimisation is not constrained, pij

can take values larger than 1 or smaller than 0. As a consequence, it
could no longer be interpreted as a probability, moreover, log(pij) and
log(1− pij) would also be undefined.

On another hand, solving constrained SGD, besides being computa-
tionally expensive and challenging, may result in a worse local min-
imum. In order to overcome all these issues, one may consider an
alternative reparametrisation pij = σ(m̂ij), similar to the reparametri-
sation in [217], with m̂ij being a latent mask variable and σ the sigmoid
function which bounds pij in [0, 1]. However, this workaround suffers
in practice from numerical instability in gradient estimation and is also
computationally demanding. Indeed, the combination of the logarith-
mic and the sigmoid functions leads to severe numerical instabilities,
that necessitate a cumbersome stabilisation by adding ε to prevent pij

and (1− pij) from being to close to 0. The logarithmic function, which
is applied to these quantities, is not defined on 0 and tends to −∞ at its
vicinity. Furthermore, it is important to note that the above formulation
is computationally intensive since it requires the evaluation of log and
exponential for every mask in the network.

148

CONTENTS

Arbitrarily Shifted Log Parametrisation. In order to solve the issues
related to STGS in the context of this chapter, in particular, the need for
numerical stabilisation and computational complexity, another alterna-
tive is to consider the following expressions for log(Pij):

log(Pij) =

 log(pij) = m̂ij

log(1− pij) = log(1− exp(m̂ij))

 (5.14)

and learn the underlying mask m̂ij. However, this reparametrisation is
also flawed in the same way as the aforementioned sigmoid reparame-
trisation, namely: numerically unstable and high computational cost,
again due to the combination of logarithmic and exponential functions.

In what follows, we propose an equivalent formulation which turns
out to be highly effective and numerically more stable. Instead of us-
ing the logarithmic probabilities outlined in equation (5.9) as the input
for the STGS that would eventually lead to the formulation of equa-
tion (5.14), we adopt the ensuing expression at the weight level:

m̂ij

0

 (5.15)

Here, the second coefficient of the vector, normally representing
log(1 − pij), is set and fixed to 0. It is important to note that this for-
mulation is not the same as the one of equation (5.9). We interpret the
formulation of equation (5.15) as:

m̂ij

0

 = log
(
Pij(.)

)
+ c =

 log(pij) + c

log(1− pij) + c

 , (5.16)

149

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

In the above expression, instead of using log(Pij(.)) as an input for
STGS, we interpret equation (5.9) as log(Pij(.)) + c , which is the input
of the argmax in equation (5.10).

The constant c ∈ R does not need to be known. Adding this constant
ensures that even if m̂ij > 0, we can still interpret pij as a probability with
log(pij) ∈]−∞, 0] ⇔ pij ∈ [0, 1]. This is enforced by setting the second
coefficient of equations (5.15) and (5.16) to zero, rather than computing
it explicitly. Although different, the formulation of equation (5.16) is
theoretically equivalent to the aforementioned sigmoid reparametrisa-
tion (see equations (5.4) and (5.8)). Indeed, solving the system of equa-
tion (5.16) with respect to m̂ij yields pij = σ(m̂ij) (see proposition 5.3.1).

Proposition 5.3.1 (Formulation equivalence). The formulation in equa-
tion (5.16) is equivalent to defining pij = σ(m̂ij) with σ the sigmoid function,
provided that pij ∈]0, 1[.

Proof. Consider the following system of equations: m̂ij = log(pij) + c (1)

0 = log(1− pij) + c (2)

Substracting (2) from (1) yields:

(1)− (2)⇔ m̂ij = log
(

pij

1− pij

)

⇔ 1
pij
− 1 = exp(−m̂ij)

⇔ pij =
1

exp(−m̂ij) + 1

⇔ pij = σ(m̂ij)

150

CONTENTS

Differently put, the formulation in equation (5.16) considers a repara-
metrisation m̂ij = log(pij) + c and log(1− pij) + c = 0 which is strictly
equivalent to the sigmoid one while being computationally more effi-
cient and also numerically stable.

Proposition 5.3.1 assumes that pij ∈]0, 1[, which, in practice, is veri-
fied. For the probabilities pij to reach 0 or 1, the masks m̂ij would need to
reach±∞. This scenario cannot happen during training since m̂ij are ini-
tialised to 0 (see section 5.5) and the sigmoid function applied to them
makes the gradients of m̂ij vanishingly small when m̂ij deviate from
0. Because m̂ij are updated following the SGD algorithm, vanishingly
small gradients result in vanishingly small updates of m̂ij. In practice, it
prevents the m̂ij reaching ±∞ and thus σ(m̂ij) = pij from reaching 0 or
1, which validates the assumption of proposition 5.3.1 that pij ∈]0, 1[.

A crucial point to consider is that adding any arbitrary constant c to
each coefficient of the log-probability vector does not change the out-
come of Gumbel-Softmax sampling. This is because it does not alter
the outcome of the argmax function, which remains unchanged regard-
less of the value of c, provided that the same value c is added to both
coefficients, which is the case in our formulation (c.f. equation (5.16)).
The presence of this constant c, whose value is arbitrary, that shifts the
log-probabilities of our probability parametrisation gives the name of
the method: Arbitrarily Shifted Log Parametrisation.

5.3.2 Smart Weight Rescaling
Subnetwork selection may disrupt the dynamic of the forward pass
[67, 159], and thereby requires adapting weights accordingly. [67] es-
tablish that the variance of the initial weight distribution has a critical
impact on the network performances. Since in the context of this chap-
ter, the weights are not trained, it is all the more important to address
this issue. The sampling of the weights alters the original weight distri-
bution and therefore its statistics.

151

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

Dynamic Weight Rescaling (DWR) [217], along with the Scaled
Kaiming distribution (SKD) [159], are two recognised strategies for ad-
justing the weights of chosen subnetworks to mitigate the aforemen-
tioned issue. Each approach has its limitations, which we address with
our proposed weight rescaling method.

Dynamic Weight Rescaling. The DWR [217] method calculates the
effective pruning rate at each training step on a layer-by-layer basis,
referred to as the observed pruning rate. This is achieved by dividing
the number of active weights in the layer (corresponding to a mask
value of 1) by the total number of weights in the layer. Subsequently,
all weights are rescaled by multiplying them with the inverse of the
observed pruning rate. A drawback of DWR is that it demands the
storage of sampled masks and the calculation of the observed pruning
rate at each training step for every layer in the network. This makes the
procedure computationally demanding and increases the memory re-
quirements. Furthermore, the flexibility and adaptability of the method
are limited due to the rescaling being tied to the pruning rate; there is
no guarantee that the inverse of the observed pruning rate is the opti-
mal factor to prevent changes to the weight distribution statistics. The
performance boost attributable to DWR, as noted by Zhou et al., might
be due to the increase of the standard deviation of the Xavier (or Glorot)
initialisation [52] that the author used. Experimentally, a larger standard
deviation improves the performance within the context of this chapter.
Indeed, the Kaiming initialisation1 [68], has a larger standard deviation
than the Xavier initialisation and achieves superior results [159, 179].

Scaled Kaiming distribution. The Kaiming initialisation [68] was pre-
sented by Ramanujan et al. in [159]. Similar to DWR, the weights are
rescaled to safeguard the weight statistics from alteration. The rescaling
factor here is the inverse of the square root of the pruning rate. Unlike
DWR, the pruning rate in this method is enforced, not observed, mak-
ing it less computationally intensive than DWR. However, it shares the
same limitation as DWR in that the rescaling factor is directly tied to the
pruning rate.

1Kaiming and Glorot initialisation are detailed in appendix A.3

152

CONTENTS

Smart Rescale. In what follows, we consider our proposed weight
adaptation mechanism, referred to as Smart Rescale (SR). Instead of
handcrafting this rescaling factor proportionally to the pruning rate (as
achieved for instance in [217]), SR is learned layerwise and provides an
effective (and also efficient) way to adapt the dynamic of the forward
pass without retraining the entire weights of the selected subnetwork.
These localised adjustments of distributions provide an advantage over
the aforementioned methods that depend on a scaling factor that is
reliant on the pruning rate and which is the same across all layers in
the case of the Scaled Kaiming distribution. This flexibility ends up
reducing the number of epochs needed to reach convergence and also
improving accuracy (to some extent) as shown later in section 5.5.

Furthermore, SR improves accuracy as it adjusts the weights to main-
tain the statistics of the distribution of the original network weights,
preserving the representative power of the network. Hence, rather than
forcing the weights to follow an arbitrary distribution or scale, they
are guided by the data-driven SR method which results in better per-
formance and reduced training time. With SR, the ℓ-th layer network
output becomes

zℓ = gℓ(sℓ × (mℓ ⊙wℓ)⊗ zℓ−1), (5.17)

where sℓ refers to the rescaling factor of the ℓ-th layer (see also algo-
rithm 3). Smart Rescale increases the flexibility of subnetwork selection
and adaptation compared to DWR (which is again bound to the pruning
rate). Moreover, scaling factors obtained with SR vary smoothly, con-
sequently making the training more stable with SGD compared to the
ones obtained with DWR which are again inversely proportional to the
observed pruning rates, and changes of the latter are more abrupt due
to stochastic mask sampling.

153

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

5.3.3 Freezing the Topology via Thresholding

A network trained with ASLP has a stochastic topology that is sampled
at each forward pass. To evaluate such a network, we chose to freeze
its topology so that its outputs and thus performance are deterministic.
This section presents a pruning strategy to evaluate a network trained
with our method on a fixed topology. Once the latent masks m̂ij are
trained, a pruning step is applied to extract a subnetwork from the orig-
inal heavy and unpruned network. This pruning fixes the values of the
masks mij to either 0 or 1 (c.f. equation (5.7)), effectively freezing the net-
work topology which was previously stochastic. This pruning step does
not enforce a specific pruning rate, it is rather based on thresholding the
weights probability of being selected pij. The resulting observed pruning
rate is computed as the fraction of weights whose pij is below the said
threshold, denoted τ. This pruning step can be defined by applying the
function ξτ to each mask m̂ij, and assigning its result to mij, as shown in
equation (5.18).

mij ← ξτ(m̂ij) =

 1 if pij ≥ τ ⇔ m̂ij ≥ σ−1(τ)

0 otherwise.
(5.18)

where σ−1 is the inverse of the sigmoid function, also known as the logit
function, whose expression is given in equation (5.19).

σ−1(x) = log
(

x
1− x

)
(5.19)

Our pruning strategy seeks to retain the weights that have the high-
est probability of being present in the sampled topologies. Specifically,
we set τ so that retained weights must be selected, on average, in at
least half the sampled topologies. This implies that the weight selection
probabilities pij, which are defined as σ(m̂ij), must be greater than or
equal to τ = 0.5, otherwise, the related weight wij is pruned. In other
words, the weight is kept if the binary event of keeping a connection is

154

CONTENTS

more likely than its removal. Since pij is defined as σ(m̂ij), in terms of
latent masks, it means that a weight is kept if its associated latent mask
m̂ij ≥ σ−1(0.5) = 0. We refer to this pruning method as thresholding.

5.4 Method Overview and Algorithm

Our method introduced a new perspective on neural network train-
ing. Rather than relying on the common training of the weights, our
focus is on identifying the optimal topology by selecting a subset of the
weights. This approach delivers an effective sparse subnetwork that
demonstrates compelling performance compared to standard weight
training, all without the need for weight training. Such a strategy is par-
ticularly beneficial in scenarios where a lightweight neural network is
required due to limited computing resources or where weight training
may not be feasible.

Proceeding with this innovative approach, our method integrates the
Straight Through Gumbel-Softmax sampling technique and the Smart
Rescale mechanism, resulting in a comprehensive method named Ar-
bitrarily Shifted Log Parametrisation (ASLP). This strategy constructs
lightweight neural networks by sampling topologies from a large, un-
trained network and learns the probability of selecting each weight.
Probabilities are determined using Stochastic Gradient Descent in con-
junction with a standard loss function, specifically cross-entropy loss
for image classification tasks. The training procedure for our method
is detailed in algorithm 3. Unless stated otherwise, this procedure is
implemented in section 5.5.

The core differences between our approach and standard pruning
pipelines are illustrated in figures 5.4a and 5.4b. As highlighted in fig-
ure 5.4a, our method focuses exclusively on topology selection without
weight training, whereas conventional pruning pipelines rely on weight
training and subsequent fine-tuning.

155

5.4. METHOD OVERVIEW AND ALGORITHM

(a) Our pruning pipeline (b) Standard pruning pipelines

Figure 5.4: Overview of our pruning pipeline and standard pruning pipelines.
Our pipeline performs topology selection only: weights are not trained. On
the contrary, standard pruning pipelines rely on weight training and fine-
tuning.

Algorithm 3 Our training procedure
Require: Dataset D ⊂ X × Y , network f , weights θ, latent masks m̂,

number of epochs n, learning rate η
for t = 1 to n do

for each (X, y) ∈ D do
Forward Pass:

qij ← argmax

m̂ij + gij

0 + g′ij

 {Sample of a topology}

mij ← 1{qij=1} {Give the masks mij their values}
L
(

fθ(X, sℓ(mℓ ⊙wℓ)), y
)

{Compute the loss with masked weights
and SR}
Backward pass: {In the backward pass, ∇m̂L is computed as qij is
obtained through a softmax instead of an argmax}
m̂t+1 = m̂t − η∇m̂L {Backpropagate the loss and update the
masks}

end for
end for
return Network f with unchanged weights θ and trained latent masks
m̂.

156

CONTENTS

5.5 Experiments

In this section, we evaluate the efficacy of our proposed method and we
investigate the influence of various parameters and configurations. Sec-
tion 5.5.1 details the experimental setups, section 5.5.2 presents the per-
formances of our method against other state-of-the-art methods, namely
Edge-popup [159] and Supermask [217], both detailed in section 5.1.4.
Section 5.5.3 validates our weight-rescaling strategy, section 5.5.4 stud-
ies the impact of the learning rate on the performance of our method,
and validates our choice of learning rate. Finally, section 5.5.5 inves-
tigates the impact of imposing a fixed pruning rate after the training
and presents experimental results that support the effectiveness of our
thresholding pruning strategy.

5.5.1 Experimental Setup

Our experiments were conducted on the CIFAR-10, CIFAR-100 and
TinyImageNet datasets which are described in section 2.5. Unless stated
otherwise, on each table we report the test accuracy evaluated on the
test set of the datasets. This accuracy is given in percentages with the
standard deviation. The latter is given numerically in tables or repre-
sented by the shaded area around curves for figures. Each data point
is obtained by averaging 5 independent runs. The architectures con-
sidered are Conv2, Conv4, Conv6, VGG16, ResNet-20 and ResNet-18,
which are presented in section 2.4.3

In order to demonstrate the efficacy of our method in a standard
image classification scenario, we compare our approach with state-of-
the-art methods, specifically Edge-popup [159] and Supermask [217].
We re-implemented both methods in PyTorch [149] and employed a
uniform training procedure for all methods: networks are trained for
1000 epochs with a fixed learning rate of 50 (except for Edge-popup,
which utilises a learning rate of 0.1). The learning rate of SR is set to
10−3, and neither weight decay nor ℓ2 regularisation is applied. This sec-
tion examines several configurations initially presented in [217], which
encompass combinations of techniques or enhancements employed for

157

5.5. EXPERIMENTS

method evaluation. The various techniques include the application of
Weight Rescaling (WR), the use of Signed Constant (SC) weight distri-
bution [217, 159] and data augmentation.

Weight Rescaling. Each method discussed in this section incorporates
its own weight rescaling technique: Dynamic Weight Rescaling (DWR)
for [217], Scaled Kaiming distribution (SKD) for [159] and Smart Rescale
(SR) for ASLP (Ours). All of these techniques are denoted as WR in this
section. The three of them have been detailed in section 5.3.2

Signed Constant Distribution. The signed constant distribution was
introduced by [217]. Weights sampled from this distribution can take
only two values: −σ and σ, where σ represents the standard deviation of
the weight tensor upon initialization using the widely adopted Kaiming
initialization [67], which is tailored to initialise weights in such a way
that the variance remains the same across every layer during both for-
ward and backward passes, especially for neural networks with ReLU
activation functions (More details are given in appendix A.3). Zhou
et al. report that it improves performances over the standard weight
initialisation scheme.

Data augmentation. Although Zhou et al. [217] did not used any data
augmentation, it is a widely accepted practice in image classification and
is generally applied even if not explicitly mentioned by the authors (for
example Ramanujan et al. used data augmentation in their code [42] al-
tough it is not mentioned in the original article [159]). Consequently, we
consider two configurations: with and without data augmentation. The
data augmentation we apply has been observed in various state-of-the-
art implementations [42, 165, 111] and is the following: first, images are
padded with zeroes, next, a random crop of the original size is extracted
from the padded image. Lastly, a random horizontal flip is performed.
An example of this data augmentation pipeline is displayed in figure 5.5.

Pruning Strategy. To prune the networks trained with our method, we
chose to freeze the topology with our threhsolding pruning strategy, de-
scribed in section 5.3.3, which thresholds the probabilities of selection
pij and consequently the latent masks m̂ij. As a matter of comparison,
we also consider the setting in [217] which is an averaging strategy to
evaluate Supermask performance. It consists in sampling ten different

158

CONTENTS

original image padding random crop random flip

Data Augmentation Pipeline

Figure 5.5: Data Augmentation pipeline example used for CIFAR-10 and
CIFAR-100.

topologies, yielding effectively 10 different subnetworks. The perfor-
mances of each of these subnetworks are evaluated independently giv-
ing 10 test accuracies that are averaged to obtain the final test accuracy.
We refer to this pruning strategy as averaging. In the Edge-popup me-
thod [159], described in section 5.1.4, the pruning rate (denoted k by the
authors) is inherently incorporated with two primary characteristics: (i)
the set of pruned weights is deterministic (the pruned weights are the
ones associated with the bottom-k saliency indicators), and (ii) the frac-
tion of pruned weights is strictly equal to the predetermined pruning
rate. As a result, a distinct pruning step enforcing the predetermined
pruning rate is redundant since it would not bring any changes to the
network structure or the values of the weights.

5.5.2 Performances

Overall, the analysis of our ASLP method results, presented in tables 5.2
to 5.5, shows that ASLP outperforms both Edge Popup and Super-
mask methods on CIFAR-10 and CIFAR-100 datasets, a trend consistent
across all tested networks, including Conv2, Conv4, Conv6, VGG16,
and ResNet20. Notably, our thresholding pruning strategy demonstrated
superior performance compared to Supermask averaging approach (see
section 5.3.3 for details of both strategies). The thresholding strategy
ensures that the most likely-to-be-selected weights are incorporated
into the final frozen network. It is accomplished by setting a thresh-
old on pij, the probability for a weight of being selected. Only those
weights exceeding this threshold are preserved, leading to the reten-
tion of the most valuable connections in the network. This approach
focuses on the utilisation of high-impact weights, which contribute to

159

5.5. EXPERIMENTS

the enhanced performance of the pruned network. Contrastingly, the
averaging strategy employed by the Supermask method [217] takes a
different approach. It draws 10 random subnetworks, each possessing a
distinct set of weights. However, this strategy introduces a risk, as these
randomly selected weight sets may contain weights that contribute min-
imally to the overall performance of the network. The inclusion of such
potentially useless weights could reduce the performance of the pruned
network.

Remarkably, for larger networks such as VGG16 and ResNet-20,
our ASLP method employing the thresholding strategy also consistently
surpasses all other methods (see table 5.4). Nevertheless, a ResNet-18
trained on TinyImagenet with ASLP is outperformed by its counterpart
trained with Edge-popup (see table 5.5).

We put forth several hypotheses to account for the reduced per-
formance. First, the ResNet-18 architecture employed is the standard
PyTorch implementation [155], designed for the ImageNet dataset [26].
As a result, it is tailored for 224× 224 pixel images, while TinyImageNet
images are only 64× 64 pixels. With a smaller input image size, each
pixel encompasses a larger area of the input space, and an overly large
receptive field for a smaller image like TinyImageNet may lead to the
loss of crucial spatial information. We opted against upscaling TinyIm-
ageNet images to 224× 224 as a preprocessing step in order to prevent
an exponential increase in computational cost.

Secondly, the ResNet-18 network is among the largest networks we
examined, having roughly 3 times the number of parameters of a Conv4
network (refer to table 2.1). As a result, there are numerous possible
weight combinations and subnetworks. Viewing ASLP as a Neural
Architecture Search method, the search space for ResNet-18 is consider-
ably larger than for the Conv{2,4,6} networks. Nevertheless, the number
of sampled topologies is only equal to the product of the number of
batches and the number of epochs during which the network is trained.
Table 5.1 presents the details of 2 setups: ResNet-18 trained on Tiny-
ImageNet and Conv4 trained on CIFAR-10. It shows that the fraction
of explored topologies by our ASLP method is considerably higher for
the Conv4 network than for the ResNet-18 one in the given configura-

160

CONTENTS

Conv4 & CIFAR-10 ResNet-18 & TinyImageNet

Number of parameters (N) 2,425,930 11,685,608

Train Dataset Size (number or images) 50,000 90,000

Batch Size used for training 256 256

Nb. of batches for 1 epoch 196 352

Nb. of explored topologies in 103 epochs (E) 196,000 352,000

Nb. of possible topologies (P) P = 2N ≈ 5× 10105.86
P = 2N ≈ 5× 10106.54

Fraction of explored topologies (νexp) νConv4
exp =

E
P
≈ 10−105.86

νResNet-18
exp =

E
P
≈ 10−106.54

Ratio of fractions of explored topologies
νConv4

exp

νResNet-18
exp

≈ 10106.44

Table 5.1: Comparison of the number of explored topologies for the Conv4
and ResNet-18 networks with CIFAR-10 and TinyImageNet, respectively.
Since a new topology is sampled for every batch, the number of explored
topologies (E) is computed as the product of the number of batches and the
number of epochs during which the network is trained (here 103). The num-
ber of possible topologies (P) is computed as the number of possible weight
combinations in the network (2N). The fraction of explored topologies is com-
puted as the ratio of the fraction of explored topologies for the Conv4 network
and the fraction of explored topologies for the ResNet-18 network. In these ex-
perimental setups, the fraction of explored topologies for the Conv4 network
is significantly higher than the fraction of explored topologies for the ResNet-
18 network.

tions. The number of explored topologies might be sufficient to sweep
the search space for Conv{2,4,6} networks and find a compelling and ef-
fective subnetwork, but it might not be enough for a ResNet-18 network.

However, this hypothesis warrants further clarification. Indeed, the
VGG16 network has more parameters than the ResNet-18 (see table 2.1),
nevertheless, in our experiments, ASLP achieves superior results com-
pared to other methods on the VGG16 architecture. We suggest the
following explanation: First, the CIFAR-10 and CIFAR-100 datasets are
simpler datasets with fewer classes, compared to TinyImageNet. Sec-
ondly, although the VGG16 has more parameters, it has fewer weights
in its fully connected layers since the datasets it is benchmarked on have
fewer classes. Indeed, a VGG16 network tailored for CIFAR-100 has
51,200 parameters in its last fully connected layer, whereas a ResNet-18
network designed for TinyImageNet has 102,400. Thus, the search space
for the fully connected part of the VGG network is significantly smaller
than on the ResNet-18 network. Therefore, because of the smaller search
space, ASLP finds a more optimal subset of weights for the last layer of

161

5.5. EXPERIMENTS

the VGG16 network than the ResNet-18 one. This final fully connected
layer of a neural network plays a crucial role in determining its overall
performance and accuracy in predicting outcomes.

5.5.3 Validation of the Weight Rescaling Mechanism
In tables 5.2 and 5.3, we observe that our weight rescaling technique,
entitled Smart Rescale (SR), positively impacts performance, as corrobo-
rated by the increase in test accuracy compared to the baseline (referred
to as ∅). This improvement is consistent across CIFAR-10 and CIFAR-
100 datasets, with and without data augmentation. Besides enhancing
accuracy, SR also contributes to a reduction in the number of epochs
necessary for convergence. This observation is supported by figure 5.6,
which shows a significant decrease in the number of epochs prior to con-
vergence for all tested architectures and datasets. Networks used in fig-
ure 5.6 have been trained with and without SR using data augmentation
in both cases. The total number of epochs is set to 1,000 and an early
stopping policy, described in section 5.5, is applied. The point of con-
vergence is defined as the moment when the early stopping policy halts
the training process. Again, the training process is stopped if there is
no improvement in the validation accuracy over the last 60 epochs. The
reason for the enhanced performance and reduced training time when
using SR can be attributed to its flexibility. Unlike DWR and SC, which
impose a pruning-bound scaling factor, SR provides a more flexible ap-
proach, permitting an adaptation of weight distributions for each layer
individually. The layer-wise adaptation allows for limiting the exhaus-
tive search of topology (and thereby reducing the training time) by en-
abling a slight adjustment of the weight distribution.

Besides improving performances and reducing the number of epochs
prior to convergence, SR is also an efficient alternative to Dynamic
Weight Rescaling (DWR) [217]. DWR requires rectifying weights lay-
erwise using the inverse of the observed pruning rates. In order to find
the observed pruning rate for each layer, it is necessary to store the
sampled masks and compute their active fraction. These layerwise eval-
uations introduce a substantial overhead at each training epoch. On the
other hand, SR involves straightforward scalar multiplications for each
layer, resulting in reduced complexity. In our experiments, enabling
DWR increases the epoch runtime by 0.2 seconds for Conv4 network,

162

CONTENTS

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 75.70 ± 0.30 75.81 ± 0.69 76.48 ± 0.68 76.92 ± 0.24

ASLP (averaging) 75.42 ± 0.25 75.50 ± 0.56 76.05 ± 0.44 76.44 ± 0.19

[217] (averaging) - - - -

[159] (k = 50%) 74.18 ± 0.76 75.19 ± 0.56 74.51 ± 0.31 75.45 ± 0.44

Conv4

ASLP (thresholding) 83.03 ± 0.31 83.73 ± 0.46 83.59 ± 0.29 84.06 ± 0.31

ASLP (averaging) 82.29 ± 0.25 83.22 ± 0.56 82.79 ± 0.30 83.46 ± 0.49

[217] (averaging) - - - -

[159] (k = 50%) 82.38 ± 0.29 83.61 ± 0.38 81.71 ± 0.59 83.55 ± 0.32

Conv6

ASLP (thresholding) 84.98 ± 0.33 86.49 ± 0.36 85.32 ± 0.27 86.21 ± 0.34

ASLP (averaging) 84.24 ± 0.28 85.67 ± 0.34 84.51 ± 0.35 85.49 ± 0.38

[217] (averaging) - - - -

[159] (k = 50%) 84.67 ± 0.35 85.87 ± 0.13 84.37 ± 0.58 85.84 ± 0.51

(a) With data augmentation.

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 68.24 ± 0.14 68.11 ± 0.64 66.84 ± 0.46 66.05 ± 0.93

ASLP (averaging) 68.09 ± 0.35 67.69 ± 0.52 65.79 ± 0.65 65.35 ± 0.83

[217] (averaging) 67.12 ± 0.25 66.34 ± 0.41 56.71 ± 2.99 56.26 ± 1.64

[159] (k = 50%) - - - -

Conv4

ASLP (thresholding) 71.64 ± 0.36 69.74 ± 1.37 72.85 ± 0.48 72.08 ± 0.62

ASLP (averaging) 70.88 ± 0.47 68.77 ± 1.42 71.82 ± 0.53 71.09 ± 0.69

[217] (averaging) 68.09 ± 0.84 67.48 ± 0.52 58.13 ± 2.39 53.84 ± 5.00

[159] (k = 50%) - - - -

Conv6

ASLP (thresholding) 73.32 ± 0.42 69.83 ± 1.46 76.20 ± 0.91 75.30 ± 0.89

ASLP (averaging) 72.62 ± 0.57 69.53 ± 1.68 75.24 ± 0.69 74.50 ± 0.96

[217] (averaging) 70.71 ± 0.98 69.16 ± 1.92 44.77 ± 17.02 36.59 ± 15.32

[159] (k = 50%) - - - -

(b) Without data augmentation.

Table 5.2: Comparison of ASLP test accuracy against Edge-Popup and Su-
permask [159, 217] on CIFAR-10 using various configurations. We reimple-
mented the configurations tested by the authors in their articles. Performances
are presented with (table 5.2a) and without (table 5.2b) data augmentation,
Weight Rescaling (WR), and Signed Constant (SC) weight distribution. A dash
denotes a configuration that was not tested by the authors. Our method per-
formances are reported for both the thresholding and averaging setups detailed
in section 5.3.3. For Edge-popup, we use the value of k which yeilds the best
test accuracy for Conv{2,4,6}, as reported in [159]. Across all setups, our me-
thod ASLP outperforms Edge-Popup and Supermask.

163

5.5. EXPERIMENTS

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 38.64 ± 0.92 38.31 ± 0.75 41.81 ± 0.84 42.06 ± 0.76

ASLP (averaging) 38.49 ± 0.61 38.18 ± 0.81 41.12 ± 0.66 41.17 ± 0.54

[217] (averaging) - - - -

[159] (k = 50%) 38.47 ± 0.46 39.83 ± 0.46 38.57 ± 0.59 39.87 ± 0.78

Conv4

ASLP (thresholding) 47.78 ± 1.18 49.33 ± 0.77 50.33 ± 0.39 51.49 ± 0.43

ASLP (averaging) 47.18 ± 1.17 48.78 ± 0.79 49.39 ± 0.30 50.17 ± 0.50

[217] (averaging) - - - -

[159] (k = 50%) 47.75 ± 0.63 50.16 ± 0.47 48.20 ± 0.72 50.02 ± 0.65

Conv6

ASLP (thresholding) 51.09 ± 0.92 53.00 ± 0.52 51.70 ± 0.48 52.85 ± 0.50

ASLP (averaging) 50.22 ± 1.09 51.72 ± 0.73 50.56 ± 0.33 51.59 ± 0.24

[217] (averaging) - - - -

[159] (k = 50%) 51.13 ± 0.39 53.48 ± 0.51 51.06 ± 1.11 54.01 ± 0.35

(a) With data augmentation

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 38.72 ± 0.59 38.64 ± 1.23 42.42 ± 0.30 41.95 ± 0.68

ASLP (averaging) 38.40 ± 0.81 38.71 ± 1.05 41.66 ± 0.39 41.42 ± 0.55

[217] (averaging) 38.09 ± 1.03 37.28 ± 0.47 26.03 ± 2.23 23.49 ± 1.36

[159] (k = 50%) - - - -

Conv4

ASLP (thresholding) 47.56 ± 0.36 49.30 ± 0.54 50.39 ± 0.58 51.16 ± 0.94

ASLP (averaging) 46.89 ± 0.52 48.74 ± 0.47 49.55 ± 0.57 50.23 ± 0.87

[217] (averaging) 45.84 ± 1.01 47.72 ± 0.75 27.70 ± 2.41 27.53 ± 5.20

[159] (k = 50%) - - - -

Conv6

ASLP (thresholding) 51.43 ± 0.41 53.10 ± 0.27 51.52 ± 0.35 53.22 ± 0.54

ASLP (averaging) 50.47 ± 0.42 52.00 ± 0.27 50.38 ± 0.33 51.82 ± 0.34

[217] (averaging) 49.19 ± 0.75 50.66 ± 0.47 2.54 ± 1.63 9.21 ± 5.50

[159] (k = 50%) - - - -

(b) Without data augmentation

Table 5.3: Comparison of ASLP test accuracy against Edge-Popup and Super-
mask [159, 217] on CIFAR-100 using various configurations. We use the con-
figurations tested by the authors in their articles. Performances are presented
with (table 5.2a) and without (table 5.2b) data augmentation, Weight Rescaling
(WR), and Signed Constant (SC) weight distribution. A dash denotes a con-
figuration that was not tested by the authors. Our method performances are
reported for both the thresholding and averaging setups detailed in section 5.3.3.
For Edge-popup, we use the value of k which yeilds the best test accuracy for
Conv{2,4,6}, as reported in [159]. For smaller networks, ASLP outperforms
the other methods, with the exception of the SC setup for Conv2 and Conv4.
However, for Conv6, ASLP performance is superior when data augmentation
is disabled, while Edge-popup achieves better results with data augmentation
enabled (except for the WR setup). 164

CONTENTS

Dataset

CIFAR-10 CIFAR-100

ResNet-20

ASLP (thresholding) 81.08 ± 0.50 44.63 ± 0.91

ASLP (averaging) 78.85 ± 0.41 42.91 ± 1.14

[217] (averaging) 69.83 ± 1.20 30.60 ± 0.91

[159] (k = 50%) 75.09 ± 1.41 22.47 ± 1.37

VGG16

ASLP (thresholding) 24.93 ± 0.69 8.66 ± 0.33

ASLP (averaging) 24.93 ± 0.77 8.58 ± 0.32

[217] (averaging) 25.07 ± 0.34 7.97 ± 0.35

[159] (k = 50%) 23.05 ± 0.84 6.65 ± 0.38

Table 5.4: Comparison of ASLP test accuracy against Edge-Popup and Super-
mask [159, 217] on both CIFAR-10 and CIFAR-100 datasets using VGG16 and
ResNet-20 architectures. The results showcase the scenario with data augmen-
tation, Weight Rescaling (WR) and Signed Constant (SC) weight distribution.
Across all datasets and network architectures, ASLP surpasses the compara-
tive methods in its thresholding configuration, detailed in section 5.3.3.

TinyImageNet

ResNet-18

ASLP (thresholding) 33.56 ± 1.18

ASLP (averaging) 34.16 ± 0.26

[217] (averaging) 34.83 ± 0.46

[159] (k = 50%) 38.00 ± 0.26

Table 5.5: Comparison of ASLP test accuracy against Edge-Popup and Super-
mask [159, 217] on TinyImageNet datasets using ResNet-18 architecture. The
results showcase the scenario with data augmentation, Weight Rescaling (WR)
and Signed Constant (SC) weight distribution. The thresholding and averaging
configurations are detailed in section 5.3.3. Edge-popup [159] performs the
best in this scenario.

165

5.5. EXPERIMENTS

Pruning Rate

CIFAR-10 CIFAR-100

Conv2 51.80 ± 0.14 51.90 ± 0.16

Conv4 51.78 ± 0.46 52.83 ± 0.40

Conv6 51.28 ± 0.40 52.15 ± 1.35

ResNet-20 51.63 ± 0.09 52.73 ± 0.28

VGG16 60.81 ± 1.56 60.89 ± 1.04

TinyImageNet

ResNet-18 52.73 ± 0.28

Table 5.6: Comparison of observed pruning rates of the ASLP method across
various neural network architectures and datasets (CIFAR-10 and CIFAR-100)
after applying the thresholding procedure, detailed in section 5.3.3. The results
are presented as mean percentages of pruned weights with their respective
standard deviations, for the setup with data augmentation, Weight Rescaling
(WR) and Signed Constant (SC) weight distribution.

while our SR method increases it by 0.13 seconds only. This corresponds
to a 35% reduction in training overhead when using SR compared to
DWR on a Conv4 network.

Conv2 Conv4 Conv6250

300

350

400

450

500

550

600

Ep
oc

hs

w/ Smart Rescale
w/o Smart Rescale

(a) CIFAR-10

Conv2 Conv4 Conv6250

300

350

400

450

500

550

600

Ep
oc

hs

w/ Smart Rescale
w/o Smart Rescale

(b) CIFAR-100

Figure 5.6: Impact of Smart Rescale (SR) on the number of epochs required to
reach convergence for Conv{2,4,6} on CIFAR-10 and CIFAR-100.

166

CONTENTS

5.5.4 Effect of the Learning Rate on Training Perfor-
mances

The learning rate is an essential hyperparameter for training neural net-
works as it controls the magnitude of the network parameter updates.
When training networks with our ASLP method introduced in this chap-
ter, we set the learning rate to 50. This value is significantly higher than
the learning rates typically used for training neural networks. For in-
stance, the learning rates to train various baseline models reported in
[23], are several orders of magnitude lower than 50. An excessively high
learning rate typically results in a diverging loss function resulting in a
network failing to learn a data representation. However, in the case of
ASLP, increasing the learning rate up to arbitrarily high values does not
cause the loss function to diverge. This section investigates the impact
of the learning rate on the final performances of the network and its
convergence speed. It also provides elements to justify the choice of a
learning rate of 50.

Figure 5.7 shows the evolution of the test accuracy for Conv4, VGG16
and ResNet-20 on CIFAR-10, when trained with different learning rates.
The solid line represents the average of five independent runs and the
shaded area of the corresponding colour indicates the standard devia-
tion. For ease of visualisation and comparison, the curves of test accu-
racies have been padded with their last value in order to make them all
1000 epochs long. Networks have been trained with data augmentation,
WR and SC. Results from figure 5.7 indicate that a high learning rate
makes the loss function and the accuracy converge to their final values
more quickly. Networks trained with ASLP and a high learning rate
(500 or 5000) exhibit better performance than the ones trained with a
lower learning rate (5 or 50) when considering only the first 50 epochs.
Nevertheless, the former are eventually outperformed by the latter if the
training is run for more epochs. Conversely, an excessively low learning
rate may not allow networks to reach satisfying performance levels in
a reasonable amount of time. Our experimental findings indicate that
using a scheduling policy on the learning rate does not improve perfor-
mance. In other words, opting for a high learning rate and subsequently
decreasing it yields worse results than maintaining a lower, constant

167

5.5. EXPERIMENTS

learning rate. We found that a learning rate of 50 strikes the optimal
balance between performance and training speed. Interestingly, this
learning rate remains consistent across all architectures and datasets.

In standard training, high learning rate values cause the optimisa-
tion to fail because of parameters becoming too large and resulting in
NaN values. However, this is not the case for ASLP which exhibits ro-
bustness to high learning rates. This robustness can be attributed to the
fact that, in ASLP, the trained variables are the latent masks, denoted
by m̂, which can be interpreted as probabilities of selection by applying
a sigmoid function (refer to section 5.3.1 and proposition 5.3.1). The
sigmoid function ensures that: (i) the latent masks cannot take extreme
values leading to NaN because of increasingly small gradients as the la-
tent masks move away from the origin (see section 5.3.1), and (ii) the
sigmoid output is bounded between 0 and 1 resulting in probabilities of
selection close to 0 or 1, but not altering in a dramatical way the output
of the network that otherwise might also lead to NaN values. Besides,
due to the vanishingly small gradients as the masks move further away
from the origin, it is practically impossible to reactivate those weights,
let alone reactivate them with a smaller learning rate. This accounts for
the observation that reducing the learning rate after using a high learn-
ing rate does not enhance performance.

0 200 400 600 800 1000
training epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

lr=5
lr=50
lr=500
lr=5000

(a) Conv4

0 200 400 600 800 1000
training epoch

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

te
st

 a
cc

ur
ac

y

lr=5
lr=50
lr=500
lr=5000

(b) VGG16

0 200 400 600 800 1000
training epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

lr=5
lr=50
lr=500
lr=5000

(c) ResNet-20

Figure 5.7: Evolution of the test accuracy for Conv4, VGG16 and ResNet-20
trained with ASLP (with data augmentation, WR and SC) on CIFAR-10 for
various learning rates. A learning rate of 50 yields the optimal balance be-
tween performance and training speed.

168

CONTENTS

5.5.5 Post Training Pruning Rate Adjustment

This section investigates the impact of pruning a network trained with
ASLP to a given pruning rate instead of using the thresholding strategy,
described in section 5.3.3. Unlike Edge-popup [159] where the pruning
rate is a hyperparameter of the method, the proposed ASLP approach
does not enforce a predefined pruning rate during training. Instead,
it determines an optimal subset of weights that enables the network
to minimises the loss function by updating weights probabilities of se-
lection pij through backpropagation [171]. Rather than being enforced,
the pruning rate is observed and is determined by thresholding the pij

following equation (5.18), as explained in section 5.3.3. The observed
pruning rate, which is the fraction of weights whose probabilities of
selection pij are smaller than the threshold τ in equation (5.18), lies just
above 50% for the tested architectures (60% for VGG16), as reported in
table 5.6. However, instead of thresholding the pij and observing the
pruning rate, it can be adjusted by pruning the weights on the mag-
nitude of their associated latent masks m̂, which enforces the prun-
ing rate a posteriori by considering the probabilities of selection pij as
saliency scores. This is equivalent to changing the value of the thresh-
old τ in equation (5.18) in order to match a given pruning rate. Notably,
Conv{2,4,6} networks trained with ASLP, and pruned a posteriori with a
given pruning rate, achieve compelling performances on CIFAR-10 and
CIFAR-100 datasets for pruning rates up to 85%, whereas their observed
pruning rate is approximately 50% (see figure 5.8 and table 5.6). In the
figure 5.8, the solid line represents the average test accuracy of five in-
dependent runs and the shaded area represents the standard deviation.

Moreover, the results presented in figure 5.8 provide further sup-
port for the thresholding strategy. This figure displays the test accuracy
of networks trained with ASLP and pruned a posteriori, as described
in the above paragraph, for various pruning rates. Sweeping through
the pruning rate enables us to determine the optimal pruning rate for
each network and dataset combination. The optimal pruning rate is
defined as the pruning rate that yields the highest test accuracy. The
results presented in the figure suggest that the optimal pruning rate for
Conv{2,4,6} and ResNet-20 networks lies at 50%, and at 60% for VGG16.
These rates are precisely the observed pruning rates obtained using the
ASLP method with the thresholding pruning strategy (see table 5.6). In

169

5.6. CONCLUSION

other words, the ASLP method together with thresholding pruning au-
tomatically determines the optimal pruning rate for an architecture in
one shot without the need for a costly grid search. This is a signifi-
cant advantage over the Edge-popup method [159] which requires a full
training for each tested pruning rate.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

Conv2
Conv4
Conv6
ResNet-20
VGG16

(a) cifar10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

Conv2
Conv4
Conv6
ResNet-20
VGG16

(b) cifar100

Figure 5.8: Comparative analysis of ASLP performance for CIFAR-10 and
CIFAR-100 datasets using various network architectures (Conv{2,4,6}, ResNet-
20, and VGG16) at different pruning rates. ASLP performances are evaluated
with WR, SC and data augmentation. Results demonstrate that Conv{2,4,6}
networks maintain strong performance even at higher pruning rates and indi-
cate that the pruning rate achieved by thresholding is equivalent to the prun-
ing rate yielding the best test accuracy when sweeping through the possible
pruning rates.

5.6 Conclusion
In this chapter, we introduced the Arbitrarily Shifted Log Parametrisa-
tion method, which focuses on selecting efficient subnetworks from
large, untrained neural networks through stochastic pruning, with-
out training the weights. Arbitrarily Shifted Log Parametrisation is
a stochastic subnetwork selection method that uses Gumbel-Softmax
sampling and a new mask parametrisation to optimize the subnetwork
topology while mitigating numerical instabilities. Additionally, we pre-
sented the Smart Rescale technique to accelerate training and improve
the accuracy of the resulting subnetworks. Our experimental results
show that ASLP outperforms closely related state-of-the-art methods,
such as Edge-popup [159] and Supermask [217], on the CIFAR-10 and

170

CONTENTS

CIFAR-100 datasets across various network architectures. Our proposed
thresholding pruning strategy consistently yields better performance
than Supermask averaging approach, while finding the optimal pruning
rate without the need for costly grid-search, contrary to Edge-popup.
Furthermore, our Smart Rescale method leads to faster convergence and
improved accuracy with a lower overhead compared to other weight-
rescaling techniques, such as Dynamic Weight Rescaling. Arbitrarily
Shifted Log Parametrisation also exhibits robustness to substantially
high learning rates, ensuring stable performance across different net-
work architectures and datasets.

All in all, the Arbitrarily Shifted Log Parametrisation method pro-
vides a promising solution for selecting efficient subnetworks from large
untrained neural networks through stochastic pruning, offering im-
proved performance and faster convergence and a new perspective on
neural network training which focuses on topology selection rather than
weight training.

171

5.6. CONCLUSION

172

Chapter 6

Conclusion and
Perspectives

173

174

Contents
6.1 Summary of contributions 175
6.2 Perspectives . 177

6.1 Summary of contributions
In this thesis, we addressed the issue of Deep Neural Networks com-
pression, specifically from the perspective of pruning, and in particular,
we focused on the problem of performance drop after pruning. We pro-
posed several solutions to address this issue and ultimately questioned
the very necessity of training the weights. We summarised our contri-
butions in the following paragraphs.

Budget-aware pruning with weight reparametrisation. Pruning a net-
work post-training introduces a performance drop that needs to be com-
pensated for with fine-tuning. In chapter 4 we propose a budget-aware
pruning method based on a weight reparametrisation. Respecting a
budget throughout training allows for joint optimisation of the weights
and the topology. Moreover, by controlling the number of parameters
that will remain, it encourages the network not to use more capacity and
therefore weights than what will be allowed once pruning is enforced.
To reach this goal, we introduce in chapter 4 two main components
that work together. On the one hand, a budget regularisation loss that
computes the current weight budget at each training step, guiding the
optimisation process to adhere to it. On the other hand, a weight repara-
metrisation that embeds the saliency of the weights in their expression
and thereby soft-prune them during training. Both components are
based on our reparametrisation function that acts as a surrogate ℓ0 norm
and have been carefully designed to be differentiable and numerically
stable.

175

6.1. SUMMARY OF CONTRIBUTIONS

We validated our approach by comparing our method against mag-
nitude pruning with and without fine-tuning on various datasets and
network architectures. Our method performs consistently better than
magnitude pruning without fine-tuning and, for almost all tested prun-
ing rates, better than magnitude pruning with fine-tuning. We also
validated the relevance of each component of our method individually
in a set of comparative experiments. Finally, we provided experimental
results to discuss and support the choice of the mixing coefficient and
tested our method on trained and pruned initialisation to show the im-
portance of budget enforcement and weight reparametrisation, even on
already pruned networks when they undergo fine-tuning.

Pruning without weight training with stochastic sampling. When it
comes to estimating the saliency of weights, the general approach is
to derive an indicator based on their value, such as magnitude prun-
ing which considers the absolute value of the weight as its saliency.
However, these approaches, by design, cannot treat differently two con-
nections with the same weight value. In chapter 5, we proposed a new
stochastic approach to extract lightweight subnetworks from a large un-
trained network. This approach estimates the importance of a weight
based on trained masks which are auxiliary variables that represent
their associated weight saliency and are consequently not bound to the
value of the weights. Furthermore, to also tackle the aforementioned
issue with the necessity to fine-tune pruned networks, the method
detailed in chapter 5 does not require any weight training and relies
purely on topology selection through the optimisation of the auxiliary
masks. This method works by stochastically sampling topologies from
a large untrained network, based on the value of the masks, interpreted
as probabilities of selection of the corresponding weight. These sam-
pled topologies are evaluated to eventually identify a subnetwork with
compelling performances. The subnetwork is extracted by pruning the
weights of the large network identified as redundant from the larger
network. Notably, the performance of this subnetwork does not experi-
ence any drop when compared to the larger network before pruning. To
achieve this, we introduced two components called Arbitrarily Shifted
Log Parametrisation (ASLP) and Smart Rescale (SR). The former is a
computationally efficient and numerically stable technique that relies
on Gumbel-Softmax to train the masks in a stochastic context. The lat-
ter is an efficient learnt-based weight rescaling mechanism that allows

176

CONTENTS

the network to rescale the weight distributions in order to mitigate the
disruption of the weight distribution statistics caused by the pruning.
We also introduce a thresholding strategy responsible for pruning the
weights, that allows to effectively freeze the topology.

We validated our approach by comparing our method against other
state-of-the-art methods on various datasets and network architectures.
Our method performs better than those other methods in most tested
scenarios, offering higher accuracy. We also provided experimental re-
sults to validate the relevance of our SR mechanism and thresholding
strategy, support our choice of learning rate and finally, show that our
method is robust to modification of the pruning rate post-training. Fi-
nally, our code has been made publicly available 1 and contains the
instructions to reproduce our results as well as a reimplementation of
the state-of-the-art method we benchmark against in PyTorch.

6.2 Perspectives

In this section, we discuss the perspectives and future works that could
be undertaken to improve the methods we proposed in this thesis as
well as push forward the findings we made.

Experimental validation on larger datasets and architectures. In our
experiments, we chose to focus on results reliability and therefore we
chose to run every configuration for every experiment at least 5 times
to average the results and provide their standard deviation. This choice
was made to avoid drawing conclusions based on a single run that could
be an outlier. However, this choice comes at the cost of computational
time and resources, thereby limiting the scale of datasets and architec-
tures we could evaluate.

1Code available at: https://github.com/N0ciple/ASLP

177

https://github.com/N0ciple/ASLP

6.2. PERSPECTIVES

Futur works and development efforts could target the evaluation of
our method on larger networks and datasets, namely the ResNet-50 ar-
chitecture [68], Vision Transformers [31], both in combination with the
ImageNet dataset [172]. A larger dataset like ImageNet would allow to
sample more topologies and therefore explore the topology space more
thoroughly.

Structured Pruning. The methods introduced in chapters 4 and 5 are
unstructured pruning methods, meaning that they prune weights indi-
vidually which is a flexible approach that allows to reach high prun-
ing rates. However, the speedup obtained by unstructured pruning is
not straightforward and could necessitate additional optimisations. On
the other hand, structured pruning methods, which prune weights in
groups, yield networks with lower pruning rates but with a regular
structure. This regularity can be exploited to obtain a more straightfor-
ward speedup in the most popular Deep Learning frameworks [149, 1].

Our method, Arbitrarily Shifted Log Parametrisation (ASLP), could
benefit from a structured pruning approach. In addition to the afore-
mentioned network regularity, using a structured approach could allow
to reduce the number of masks to train. Instead of training a mask per
weight, it is possible to train a mask per group of weights. This could
lead to significant memory savings and speedups during training since
the sampling operation takes a heavy toll on the GPU. Our prelimi-
nary works on a semi-structured approach, where we start by pruning
the network with a structured approach and then perform an unstruc-
tured pruning step afterwards, limits the sampling: we only sample
the weights that are not pruned by the structured part. This approach
is promising since it can reduce on average the number of masks to
sample. However, the theoretical sampling speedup is not observed in
practice due to memory latency caused by partial access to the masks.
A careful reimplementation of the mask partial selection and sampling
logic could resolve this issue and allow for faster sampling.

Controlling mask magnitude. In chapter 5, we used a learning rate
value of 50 that is several orders of magnitude higher than standard
learning rates used in baselines training [23]. This choice is motivated
and explained in section 5.5.4. However, this high learning rate together

178

CONTENTS

with vanishingly small gradients as masks move away from the origin
(as explained in section 5.3.1) can lead to masks being stuck at their high
or low value and therefore being effectively frozen.

Adding a regularisation term to the loss function that penalises
masks with extreme values, or any other mechanism that can limit the
magnitude of the masks could help to mitigate this issue and prevent
a mask from being frozen. Our preliminary experiments with naive
regularisation loss show improved results in the aforementioned semi-
supervised setup.

Better initialisation scheme. The ASLP method introduced in chap-
ter 5 extracts a lightweight and effective neural network from a large
untrained one. The weights of the large network are initialised with
state-of-the-art methods such as Kaiming initialisation [67] and are not
modified. However, these initialisations are designed with weight train-
ing in mind and might not be optimal for the ASLP method which does
not train the weights.

A better initialisation scheme could be designed to improve the per-
formance of the ASLP method. This initialisation scheme could be in-
spired by trained weight distributions and could be designed to be more
robust to the pruning and sampling operation.

Training through pruning. ASLP and experiments conducted in chap-
ter 5 showed that it is possible to achieve compelling performances with-
out training the weights. This raises the question of the very necessity of
training the weights and opens the way for new research directions that
investigate the possibility of training a network through pruning. Fur-
thermore, in this context, the word training is to be understood lato sensu
and could include any strategy that selects a topology, not necessarily
strategies that rely on gradient-based mask training as we proposed.

179

6.2. PERSPECTIVES

180

Appendix A

Appendix

A.1 Relationship between Multiply-Accumulate
Operations and the Number of Parameters

For a convolution operation, the number of parameters of a layer is not
representative of its computational complexity. Each kernel has to be
spatially convolved with the entire input. The resulting convolutional
complexity is, for one part, highly dependent on the input size, and for
the other part, higher than the number of parameters.

Without loss of generality, consider a 2D square matrix M of size
m × m, and a 2D convolution kernel K of size k × k, with k ≪ m. The
output of the spatial convolution of M by K is denoted O. The matrix
O is of size (m− k + 1)× (m− k + 1). Each one of the (m− k + 1)2 ele-
ments of O necessitates k2 multiplications and k2 − 1 additions. For the
sake of simplicity, we will consider k2 Multiply-Accumulates (MACs)
operations per element of O. The total number of MACs needed to com-
pute O, denoted µ, is therefore:

µ = (m− k + 1)2× k2

Considering that there are k2 elements in K, the ratio between the
number of MACs and the number of parameters is:

µ

k2 = (m− k + 1)2

181

A.2. SCHEDULING OF THE MIXING COEFFICIENT λ

Since k≪ m, the ratio µ

k2 is always greater than 1, and grows quadrat-
ically with m. Therefore, for a 2D convolution, the computational com-
plexity can roughly be estimated as (m − k + 1)2 times the number of
parameters in the convolution kernel.

A.2 Scheduling of the Mixing Coefficient λ

This section presents the test accuracy of a Conv4 network trained on
CIFAR-10 with the method introduced in section 4.2.1 when schedul-
ing is applied on the mixing coefficient λ. Two trends are tested for
λ: increasing and decreasing. Given a λmax, a maximum number of
epochs emax, the current epoch e, and a shape parameter p, the decreas-
ing scheduling is defined as follows:

λe = λmax
p

√
1−

(
e

emax

)p

and the increasing scheduling is defined as follows:

λe = λmax

1− p

√
1−

(
e

emax

)p

Examples of the evolution of λ for different values of p are shown in
figure A.1 and the related performances in table A.1.

A.3 Xavier and Kaiming Initialisations
Glorot and Kaiming initializations are strategies for initializing the
weights of neural networks. They are designed to help mitigate the
issues of vanishing and exploding gradients, which can occur during
the training of deep neural networks.

182

APPENDIX A. APPENDIX

pruning rate (%) λ Trend p Test Accuracy (%)

90

incr.

0.6 85.46 ± 0.18

1 85.43 ± 0.46
1

0.6 84.96 ± 0.53

decr.

0.6 85.36 ± 0.59

1 85.55 ± 0.47
1

0.6 85.50 ± 0.29

95

incr.

0.6 84.00 ± 0.85

1 79.28 ± 0.96
1

0.6 66.43 ± 05.13

decr.

0.6 83.53 ± 0.65

1 83.42 ± 0.50
1

0.6 84.07 ± 0.92

99

incr.

0.6 14.27 ± 3.21

1 11.05 ± 01.26
1

0.6 10.33 ± 0.43

decr.

0.6 34.36 ± 33.40

1 52.51 ± 29.65
1

0.6 45.37 ± 32.32

Table A.1: Conv4 test accuracy on CIFAR-10, with λ = 50, for increasing (incr.)
and decreasing (decr.) scheduling for various pruning rates and values of the
parameter p. The networks have been trained for 300 epochs.

183

A.3. XAVIER AND KAIMING INITIALISATIONS

0.0 0.2 0.4 0.6 0.8 1.0
e

emax

0.0

0.2

0.4

0.6

0.8

1.0
λ

n = 0.6

n = 1

n = 1
0.6

(a) Increasing scheduling

0.0 0.2 0.4 0.6 0.8 1.0
e

emax

0.0

0.2

0.4

0.6

0.8

1.0

λ

n = 0.6

n = 1

n = 1
0.6

(b) Decreasing scheduling

Figure A.1: Evolution of the mixing coefficient λ for different values of p and
for increasing and decreasing scheduling. Best viewed in color.

Glorot Initialization, also known as Xavier Initialization, suggests
that the initial weights of the network should be drawn from a distribu-
tion with zero mean and a specific variance. The variance is dependent
on the number of input and output neurons in the weight tensor. Kaim-
ing initialisation is a modification of Glorot initialisation that is tailored
for neural networks with ReLU activations. It is designed to take into
account the fact that ReLU activations nullify half of the input values.
These two types of initialisation can be used with either a normal or
uniform distribution. They impact the standard deviation (and con-
sequently the variance) of the underlying distribution. The standard
deviation for Glorot normal initialisation is computed as follows:

σ =

√
2

nin + nout
(A.1)

where nin and nout are the number of input and output neurons in the
weight tensor. The standard deviation for Kaiming normal initialisation
is computed as follows:

σ =
1√
nin

(A.2)

184

APPENDIX A. APPENDIX

where nin is the number of input neurons in the weight tensor.

It is important to note that, when using the Pytorch framework, this
standard deviation is adapted depending on the type of non-linearities
used in the network. For instance, using ReLU activation functions re-
quire multiplying the standard deviation by

√
2 [154].

185

A.3. XAVIER AND KAIMING INITIALISATIONS

186

Bibliography
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Mur-
ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems. CoRR, abs/1603.04467, 2016. URL
http://arxiv.org/abs/1603.04467.

[2] S. Ahn, S. X. Hu, A. C. Damianou, N. D. Lawrence, and
Z. Dai. Variational information distillation for knowledge
transfer. In CVPR, 2019. doi: 10.1109/CVPR.2019.00938. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/
Ahn_Variational_Information_Distillation_for_Knowledge_
Transfer_CVPR_2019_paper.html.

[3] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric
Pétrot. Ternary neural networks for resource-efficient ai appli-
cations. In 2017 international joint conference on neural networks
(IJCNN), pages 2547–2554. IEEE, 2017.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,
Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates,
Greg Diamos, Erich Elsen, Jesse H. Engel, Linxi Fan, Christo-
pher Fougner, Awni Y. Hannun, Billy Jun, Tony Han, Patrick
LeGresley, Xiangang Li, Libby Lin, Sharan Narang, Andrew Y. Ng,

187

http://arxiv.org/abs/1603.04467
http://openaccess.thecvf.com/content_CVPR_2019/html/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.html

BIBLIOGRAPHY

Sherjil Ozair, Ryan Prenger, Sheng Qian, Jonathan Raiman, San-
jeev Satheesh, David Seetapun, Shubho Sengupta, Chong Wang,
Yi Wang, Zhiqian Wang, Bo Xiao, Yan Xie, Dani Yogatama, Jun
Zhan, and Zhenyao Zhu. Deep speech 2 : End-to-end speech
recognition in english and mandarin. In Maria-Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Con-
ference Proceedings, pages 173–182. JMLR.org, 2016. URL http:
//proceedings.mlr.press/v48/amodei16.html.

[5] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured
pruning of deep convolutional neural networks. ACM Journal
on Emerging Technologies in Computing Systems (JETC), 13(3):1–18,
2017.

[6] Sercan Ö Arık, Mike Chrzanowski, Adam Coates, Gregory Di-
amos, Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller,
Andrew Ng, Jonathan Raiman, et al. Deep voice: Real-time neural
text-to-speech. In International conference on machine learning, pages
195–204. PMLR, 2017.

[7] Wolfgang Balzer, Masanobu Takahashi, Jun Ohta, and Kazuo
Kyuma. Weight quantization in boltzmann machines. Neural Net-
works, 4(3):405–409, 1991.

[8] David Barber and Felix Agakov. The im algorithm: a variational
approach to information maximization. Advances in neural informa-
tion processing systems, 16(320):201, 2004.

[9] Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propa-
gating gradients through stochastic neurons for conditional com-
putation. CoRR, abs/1308.3432, 2013.

[10] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In John Shawe-
Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N.
Pereira, and Kilian Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 24: 25th Annual Conference on
Neural Information Processing Systems 2011. Proceedings of a meet-
ing held 12-14 December 2011, Granada, Spain, pages 2546–2554,
2011. URL https://proceedings.neurips.cc/paper/2011/hash/
86e8f7ab32cfd12577bc2619bc635690-Abstract.html.

188

http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html

BIBLIOGRAPHY

[11] Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle,
and John V. Guttag. What is the state of neural network prun-
ing? In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivi-
enne Sze, editors, Proceedings of Machine Learning and Systems 2020,
MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.
URL https://proceedings.mlsys.org/book/296.pdf.

[12] Stephen P Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[13] Pawel Budzianowski and Ivan Vulic. Hello, it’s GPT-2 - how can I
help you? towards the use of pretrained language models for task-
oriented dialogue systems. In Alexandra Birch, Andrew M. Finch,
Hiroaki Hayashi, Ioannis Konstas, Thang Luong, Graham Neu-
big, Yusuke Oda, and Katsuhito Sudoh, editors, Proceedings of the
3rd Workshop on Neural Generation and Translation@EMNLP-IJCNLP
2019, Hong Kong, November 4, 2019, pages 15–22. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/D19-5602.
URL https://doi.org/10.18653/v1/D19-5602.

[14] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Lis-
ten, attend and spell: A neural network for large vocabulary con-
versational speech recognition. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2016, Shang-
hai, China, March 20-25, 2016, pages 4960–4964. IEEE, 2016. doi:
10.1109/ICASSP.2016.7472621. URL https://doi.org/10.1109/
ICASSP.2016.7472621.

[15] Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Stor-
age efficient and dynamic flexible runtime channel prun-
ing via deep reinforcement learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a914ecef9c12ffdb9bede64bb703d877-Abstract.html.

189

https://proceedings.mlsys.org/book/296.pdf
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://proceedings.neurips.cc/paper/2020/hash/a914ecef9c12ffdb9bede64bb703d877-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a914ecef9c12ffdb9bede64bb703d877-Abstract.html

BIBLIOGRAPHY

[16] Yu Cheng, Felix X. Yu, Rogério Schmidt Feris, Sanjiv Kumar,
Alok N. Choudhary, and Shih-Fu Chang. An exploration of pa-
rameter redundancy in deep networks with circulant projections.
In 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pages 2857–2865. IEEE
Computer Society, 2015. doi: 10.1109/ICCV.2015.327. URL https:
//doi.org/10.1109/ICCV.2015.327.

[17] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of
model compression and acceleration for deep neural networks.
arXiv preprint arXiv:1710.09282, 2017.

[18] Zhiyong Cheng, Daniel Soudry, Zexi Mao, and Zhen-zhong Lan.
Training binary multilayer neural networks for image classifica-
tion using expectation backpropagation. CoRR, abs/1503.03562,
2015. URL http://arxiv.org/abs/1503.03562.

[19] Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolution.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/2fd5d41ec6cfab47e32164d5624269b1-Abstract.html.

[20] Jason Cong and Bingjun Xiao. Minimizing computation in con-
volutional neural networks. In Stefan Wermter, Cornelius Weber,
Wlodzislaw Duch, Timo Honkela, Petia D. Koprinkova-Hristova,
Sven Magg, Günther Palm, and Alessandro E. P. Villa, editors, Ar-
tificial Neural Networks and Machine Learning - ICANN 2014 - 24th
International Conference on Artificial Neural Networks, Hamburg, Ger-
many, September 15-19, 2014. Proceedings, volume 8681 of Lecture
Notes in Computer Science, pages 281–290. Springer, 2014. doi:
10.1007/978-3-319-11179-7_36. URL https://doi.org/10.1007/
978-3-319-11179-7_36.

[21] Don Coppersmith and Shmuel Winograd. Matrix multiplication
via arithmetic progressions. In Proceedings of the nineteenth annual
ACM symposium on Theory of computing, pages 1–6, 1987.

[22] NVIDIA Corporation. cuDNN: NVIDIA CUDA Deep Neural Net-
work library. https://developer.nvidia.com/cudnn, 2014. Ac-
cessed: May 29, 2023.

190

https://doi.org/10.1109/ICCV.2015.327
https://doi.org/10.1109/ICCV.2015.327
http://arxiv.org/abs/1503.03562
https://proceedings.neurips.cc/paper/2020/hash/2fd5d41ec6cfab47e32164d5624269b1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2fd5d41ec6cfab47e32164d5624269b1-Abstract.html
https://doi.org/10.1007/978-3-319-11179-7_36
https://doi.org/10.1007/978-3-319-11179-7_36
https://developer.nvidia.com/cudnn

BIBLIOGRAPHY

[23] Nvidia Corporation. Nvidia deep learning examples for
tensor cores, 2023. URL https://github.com/NVIDIA/
DeepLearningExamples. [Online; accessed 23-June-2023].

[24] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bi-
naryconnect: Training deep neural networks with binary weights
during propagations. Advances in neural information processing sys-
tems, 28, 2015.

[25] George Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303–314,
1989.

[26] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[27] Li Deng. The mnist database of handwritten digit images for ma-
chine learning research [best of the web]. IEEE Signal Processing
Magazine, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional transform-
ers for language understanding. In Jill Burstein, Christy Doran,
and Thamar Solorio, editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT 2019, Minneapo-
lis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics, 2019.
doi: 10.18653/v1/n19-1423. URL https://doi.org/10.18653/v1/
n19-1423.

[29] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and
Chenggang Yan. Approximated oracle filter pruning for destruc-
tive CNN width optimization. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Re-
search, pages 1607–1616. PMLR, 2019. URL http://proceedings.
mlr.press/v97/ding19a.html.

191

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://proceedings.mlr.press/v97/ding19a.html
http://proceedings.mlr.press/v97/ding19a.html

BIBLIOGRAPHY

[30] Ke Dong, Chengjie Zhou, Yihan Ruan, and Yuzhi Li. Mobilenetv2
model for image classification. In 2020 2nd International Conference
on Information Technology and Computer Application (ITCA), pages
476–480, 2020. doi: 10.1109/ITCA52113.2020.00106.

[31] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa De-
hghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

[32] Charles-Éric Drevet, Md. Nazrul Islam, and Éric Schost. Optimiza-
tion techniques for small matrix multiplication. ACM Commun.
Comput. Algebra, 44(3/4):107–108, 2010. doi: 10.1145/1940475.
1940488. URL https://doi.org/10.1145/1940475.1940488.

[33] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
machine learning research, 12(7), 2011.

[34] Marat Dukhan, Yiming Wu, and Hao Lu. Qnnpack: Open
source library for optimized mobile deep learning. https:
//engineering.fb.com/2018/10/29/ml-applications/qnnpack/,
2018. Accessed: 26/05/2023.

[35] R. Dupont. ASLP - Our implementation. https://github.com/
N0ciple/ASLP, 2022.

[36] Robin Dupont, Hichem Sahbi, and Guillaume Michel. Weight
reparametrization for budget-aware network pruning. In 2021
IEEE International Conference on Image Processing, ICIP 2021, An-
chorage, AK, USA, September 19-22, 2021, pages 789–793. IEEE, 2021.
doi: 10.1109/ICIP42928.2021.9506265. URL https://doi.org/10.
1109/ICIP42928.2021.9506265.

[37] Robin Dupont, Mohammed Amine Alaoui, Hichem Sahbi, and Al-
ice Lebois. Extracting effective subnetworks with gumbel-softmax.
In 2022 IEEE International Conference on Image Processing, ICIP 2022,
Bordeaux, France, 16-19 October 2022, pages 931–935. IEEE, 2022.
doi: 10.1109/ICIP46576.2022.9897718. URL https://doi.org/10.
1109/ICIP46576.2022.9897718.

192

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1145/1940475.1940488
https://engineering.fb.com/2018/10/29/ml-applications/qnnpack/
https://engineering.fb.com/2018/10/29/ml-applications/qnnpack/
https://github.com/N0ciple/ASLP
https://github.com/N0ciple/ASLP
https://doi.org/10.1109/ICIP42928.2021.9506265
https://doi.org/10.1109/ICIP42928.2021.9506265
https://doi.org/10.1109/ICIP46576.2022.9897718
https://doi.org/10.1109/ICIP46576.2022.9897718

BIBLIOGRAPHY

[38] Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilanjan
Ray. Fire together wire together: A dynamic pruning approach
with self-supervised mask prediction. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022, New Or-
leans, LA, USA, June 18-24, 2022, pages 12444–12453. IEEE, 2022.
doi: 10.1109/CVPR52688.2022.01213. URL https://doi.org/10.
1109/CVPR52688.2022.01213.

[39] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural
architecture search: A survey. The Journal of Machine Learning Re-
search, 20(1):1997–2017, 2019.

[40] Max Ferguson, Ronay Ak, Yung-Tsun Tina Lee, and Kincho H Law.
Automatic localization of casting defects with convolutional neu-
ral networks. In 2017 IEEE international conference on big data (big
data), pages 1726–1735. IEEE, 2017.

[41] Emile Fiesler, Amar Choudry, and H John Caulfield. Weight dis-
cretization paradigm for optical neural networks. In Optical inter-
connections and networks, volume 1281, pages 164–173. SPIE, 1990.

[42] Allen Institute for AI. hidden-networks: A repos-
itory for research on neural networks, 2023. URL
https://github.com/allenai/hidden-networks/blob/
dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.
py#L29C18-L29C18. [Online; accessed 23-June-2023].

[43] Charles W Fox and Stephen J Roberts. A tutorial on variational
bayesian inference. Artificial intelligence review, 38:85–95, 2012.

[44] Jonathan Frankle and Michael Carbin. The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

[45] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and
Michael Carbin. The lottery ticket hypothesis at scale. CoRR,
abs/1903.01611, 2019. URL http://arxiv.org/abs/1903.01611.

193

https://doi.org/10.1109/CVPR52688.2022.01213
https://doi.org/10.1109/CVPR52688.2022.01213
https://github.com/allenai/hidden-networks/blob/dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.py#L29C18-L29C18
https://github.com/allenai/hidden-networks/blob/dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.py#L29C18-L29C18
https://github.com/allenai/hidden-networks/blob/dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.py#L29C18-L29C18
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1903.01611

BIBLIOGRAPHY

[46] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and
Michael Carbin. Linear mode connectivity and the lottery ticket
hypothesis. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research, pages 3259–
3269. PMLR, 2020. URL http://proceedings.mlr.press/v119/
frankle20a.html.

[47] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and
Michael Carbin. Pruning neural networks at initialization: Why
are we missing the mark? arXiv preprint arXiv:2009.08576, 2020.

[48] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity
in deep neural networks. CoRR, abs/1902.09574, 2019. URL http:
//arxiv.org/abs/1902.09574.

[49] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural
algorithm of artistic style. CoRR, abs/1508.06576, 2015. URL http:
//arxiv.org/abs/1508.06576.

[50] Joseph C Giarratano and Gary Riley. Expert systems: principles and
programming. PWS Publishing Co., 1994.

[51] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and statis-
tics, pages 249–256, 2010.

[52] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 315–323.
JMLR Workshop and Conference Proceedings, 2011.

[53] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learn-
ing. MIT press, 2016.

[54] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

[55] Robert M Gray et al. Toeplitz and circulant matrices: A review.
Foundations and Trends® in Communications and Information Theory,
2(3):155–239, 2006.

194

http://proceedings.mlr.press/v119/frankle20a.html
http://proceedings.mlr.press/v119/frankle20a.html
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576

BIBLIOGRAPHY

[56] E.J. Gumbel. Les valeurs extrêmes des distributions statistiques.
Annales de l’Institut Henri Poincaré, 5(2):115–158, 1935.

[57] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, Advances in Neural Information Processing Sys-
tems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain, pages 1379–1387,
2016. URL https://proceedings.neurips.cc/paper/2016/hash/
2823f4797102ce1a1aec05359cc16dd9-Abstract.html.

[58] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pri-
tish Narayanan. Deep learning with limited numerical precision.
In International conference on machine learning, pages 1737–1746.
PMLR, 2015.

[59] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal
residual networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 6307–6315. IEEE Computer Society, 2017. doi: 10.1109/
CVPR.2017.668. URL https://doi.org/10.1109/CVPR.2017.668.

[60] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both
weights and connections for efficient neural network. In Corinna
Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and
Roman Garnett, editors, Advances in Neural Information Processing
Systems 28: Annual Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
1135–1143, 2015. URL https://proceedings.neurips.cc/paper/
2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html.

[61] Song Han, Huizi Mao, and William J. Dally. Deep compression:
Compressing deep neural network with pruning, trained quan-
tization and huffman coding. In Yoshua Bengio and Yann Le-
Cun, editors, 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016. URL http://arxiv.org/abs/1510.00149.

195

https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://doi.org/10.1109/CVPR.2017.668
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
http://arxiv.org/abs/1510.00149

BIBLIOGRAPHY

[62] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg
Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sen-
gupta, Adam Coates, and Andrew Y. Ng. Deep speech: Scaling up
end-to-end speech recognition. CoRR, abs/1412.5567, 2014. URL
http://arxiv.org/abs/1412.5567.

[63] Stephen Hanson and Lorien Pratt. Comparing biases for minimal
network construction with back-propagation. Advances in neural
information processing systems, 1, 1988.

[64] Babak Hassibi and David G. Stork. Second order derivatives for
network pruning: Optimal brain surgeon. In Stephen Jose Han-
son, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neu-
ral Information Processing Systems 5, [NIPS Conference, Denver, Col-
orado, USA, November 30 - December 3, 1992], pages 164–171. Mor-
gan Kaufmann, 1992.

[65] Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal
brain surgeon and general network pruning. In Proceedings of
International Conference on Neural Networks (ICNN’88), San Fran-
cisco, CA, USA, March 28 - April 1, 1993, pages 293–299. IEEE,
1993. doi: 10.1109/ICNN.1993.298572. URL https://doi.org/
10.1109/ICNN.1993.298572.

[66] Babak Hassibi, David G. Stork, and Gregory J. Wolff. Opti-
mal brain surgeon: Extensions and performance comparison. In
Jack D. Cowan, Gerald Tesauro, and Joshua Alspector, editors, Ad-
vances in Neural Information Processing Systems 6, [7th NIPS Confer-
ence, Denver, Colorado, USA, 1993], pages 263–270. Morgan Kauf-
mann, 1993.

[67] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
In ICCV, 2015.

[68] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Soci-
ety, 2016. doi: 10.1109/CVPR.2016.90. URL https://doi.org/10.
1109/CVPR.2016.90.

196

http://arxiv.org/abs/1412.5567
https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

BIBLIOGRAPHY

[69] Yang He and Lingao Xiao. Structured pruning for deep con-
volutional neural networks: A survey. CoRR, abs/2303.00566,
2023. doi: 10.48550/arXiv.2303.00566. URL https://doi.org/10.
48550/arXiv.2303.00566.

[70] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang.
Soft filter pruning for accelerating deep convolutional neural net-
works. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, pages 2234–2240. ijcai.org, 2018.
doi: 10.24963/ijcai.2018/309. URL https://doi.org/10.24963/
ijcai.2018/309.

[71] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 4340–4349. Computer Vi-
sion Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00447.
URL http://openaccess.thecvf.com/content_CVPR_2019/
html/He_Filter_Pruning_via_Geometric_Median_for_Deep_
Convolutional_Neural_Networks_CVPR_2019_paper.html.

[72] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for ac-
celerating very deep neural networks. In IEEE International Con-
ference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 1398–1406. IEEE Computer Society, 2017. doi: 10.1109/
ICCV.2017.155. URL https://doi.org/10.1109/ICCV.2017.155.

[73] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song
Han. AMC: automl for model compression and acceleration
on mobile devices. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss, editors, Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, September 8-
14, 2018, Proceedings, Part VII, volume 11211 of Lecture Notes
in Computer Science, pages 815–832. Springer, 2018. doi: 10.
1007/978-3-030-01234-2_48. URL https://doi.org/10.1007/
978-3-030-01234-2_48.

[74] Donald Olding Hebb. The organization of behavior: A neuropsycho-
logical theory. Psychology press, 2005.

197

https://doi.org/10.48550/arXiv.2303.00566
https://doi.org/10.48550/arXiv.2303.00566
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.24963/ijcai.2018/309
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-030-01234-2_48

BIBLIOGRAPHY

[75] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. CoRR, abs/1503.02531, 2015. URL http://
arxiv.org/abs/1503.02531.

[76] Geoffrey Hinton. Neural networks for machine learning, lecture
6.6 - rmsprop: Divide the gradient by a running average of its re-
cent magnitude. https://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf, 2012.

[77] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Improving neural net-
works by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012. URL http://arxiv.org/abs/1207.0580.

[78] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmid-
huber, et al. Gradient flow in recurrent nets: the difficulty of learn-
ing long-term dependencies, 2001.

[79] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics, 12(1):55–67,
1970.

[80] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. URL http://arxiv.org/abs/1704.04861.

[81] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le,
Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingx-
ing Tan, Grace Chu, Vijay Vasudevan, and Yukun Zhu. Searching
for mobilenetv3. In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019, pages 1314–1324. IEEE, 2019. doi: 10.1109/ICCV.2019.
00140. URL https://doi.org/10.1109/ICCV.2019.00140.

[82] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

198

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/ICCV.2019.00140

BIBLIOGRAPHY

[83] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Net-
work trimming: A data-driven neuron pruning approach towards
efficient deep architectures. CoRR, abs/1607.03250, 2016. URL
http://arxiv.org/abs/1607.03250.

[84] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 7132–7141. Computer Vision Foundation /
IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00745.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html.

[85] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger.
Condensenet: An efficient densenet using learned group con-
volutions. In CVPR, 2018. doi: 10.1109/CVPR.2018.00291.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html.

[86] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 4700–4708, 2017.

[87] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q
Weinberger. Condensenet: An efficient densenet using learned
group convolutions. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2752–2761, 2018.

[88] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Binarized neural networks. In Daniel D.
Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett, editors, Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona, Spain, pages 4107–4115,
2016. URL https://proceedings.neurips.cc/paper/2016/hash/
d8330f857a17c53d217014ee776bfd50-Abstract.html.

[89] David A Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

199

http://arxiv.org/abs/1607.03250
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html

BIBLIOGRAPHY

[90] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016. URL http://arxiv.org/abs/1602.07360.

[91] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift. In Francis R. Bach and David M. Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop
and Conference Proceedings, pages 448–456. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

[92] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In
2018 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 2704–2713. Computer Vision Foundation / IEEE
Computer Society, 2018. doi: 10.1109/CVPR.2018.00286.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Jacob_Quantization_and_Training_CVPR_2018_paper.html.

[93] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparame-
terization with gumbel-softmax. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=rkE3y85ee.

[94] Steven A Janowsky. Pruning versus clipping in neural networks.
Physical Review A, 39(12):6600, 1989.

[95] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson,
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia,
Nan Boden, Al Borchers, et al. In-datacenter performance anal-
ysis of a tensor processing unit. In Proceedings of the 44th annual
international symposium on computer architecture, pages 1–12, 2017.

200

http://arxiv.org/abs/1602.07360
http://proceedings.mlr.press/v37/ioffe15.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openreview.net/forum?id=rkE3y85ee

BIBLIOGRAPHY

[96] John Jumper, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool,
Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accu-
rate protein structure prediction with alphafold. Nature, 596(7873):
583–589, 2021.

[97] Minsoo Kang and Bohyung Han. Operation-aware soft channel
pruning using differentiable masks. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pages 5122–5131. PMLR, 2020. URL http://proceedings.
mlr.press/v119/kang20a.html.

[98] Ehud D. Karnin. A simple procedure for pruning back-
propagation trained neural networks. IEEE Trans. Neural Net-
works, 1(2):239–242, 1990. doi: 10.1109/72.80236. URL https:
//doi.org/10.1109/72.80236.

[99] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator
architecture for generative adversarial networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pages 4401–4410, 2019.

[100] Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee, Jiyeon Kim,
Ankur Kumar, Sungsoo Kim, Abhinav Garg, and Changwoo Han.
A review of on-device fully neural end-to-end automatic speech
recognition algorithms. In 2020 54th Asilomar Conference on Signals,
Systems, and Computers, pages 277–283. IEEE, 2020.

[101] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[102] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp
Hochreiter. Self-normalizing neural networks. Advances in neural
information processing systems, 30, 2017.

[103] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks. In
Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges,
Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural

201

http://proceedings.mlr.press/v119/kang20a.html
http://proceedings.mlr.press/v119/kang20a.html
https://doi.org/10.1109/72.80236
https://doi.org/10.1109/72.80236

BIBLIOGRAPHY

Information Processing Systems 2012. Proceedings of a meeting held De-
cember 3-6, 2012, Lake Tahoe, Nevada, United States, pages 1106–1114,
2012. URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[104] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber
Fallah. A survey of deep learning applications to autonomous ve-
hicle control. IEEE Transactions on Intelligent Transportation Systems,
22(2):712–733, 2020.

[105] Andrey Kuzmin, Markus Nagel, Mart van Baalen, Arash Be-
hboodi, and Tijmen Blankevoort. Pruning vs quantization: Which
is better? CoRR, abs/2307.02973, 2023. doi: 10.48550/ARXIV.2307.
02973. URL https://doi.org/10.48550/arXiv.2307.02973.

[106] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition chal-
lenge. ., 2015.

[107] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal
brain damage. In David S. Touretzky, editor, Advances in
Neural Information Processing Systems 2, [NIPS Conference, Den-
ver, Colorado, USA, November 27-30, 1989], pages 598–605. Mor-
gan Kaufmann, 1989. URL http://papers.nips.cc/paper/
250-optimal-brain-damage.

[108] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proc.
IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791. URL https:
//doi.org/10.1109/5.726791.

[109] N. Lee, T. Ajanthan, and P. H. S. Torr. Snip: single-shot network
pruning based on connection sensitivity. In ICLR, 2019.

[110] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. Structured
pruning of neural networks with budget-aware regularization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9108–9116, 2019.

[111] Eric Mingjie Li. Rethinking the value of network prun-
ing - implementation, 2019. URL https://github.
com/Eric-mingjie/rethinking-network-pruning/blob/
2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/
network-slimming/main.py#L67. [Online; accessed 23-June-
2023].

202

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.48550/arXiv.2307.02973
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67

BIBLIOGRAPHY

[112] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=
rJqFGTslg.

[113] Zhuo Li, Hengyi Li, and Lin Meng. Model compression for deep
neural networks: A survey. Computers, 12(3):60, 2023.

[114] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong
Zhang. Pruning and quantization for deep neural network ac-
celeration: A survey. Neurocomputing, 461:370–403, 2021. doi:
10.1016/j.neucom.2021.07.045. URL https://doi.org/10.1016/
j.neucom.2021.07.045.

[115] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong
Zhang. Pruning and quantization for deep neural network accel-
eration: A survey. Neurocomputing, 461:370–403, 2021.

[116] Siyu Liao, Ashkan Samiee, Chunhua Deng, Yu Bai, and Bo Yuan.
Compressing deep neural networks using toeplitz matrix: Algo-
rithm design and fpga implementation. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1443–1447. IEEE, 2019.

[117] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural
pruning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett, editors, Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 2181–2191,
2017. URL https://proceedings.neurips.cc/paper/2017/hash/
a51fb975227d6640e4fe47854476d133-Abstract.html.

[118] Jinhua Lin and Yu Yao. A fast algorithm for convolutional neural
networks using tile-based fast fourier transforms. Neural Process.
Lett., 50(2):1951–1967, 2019. doi: 10.1007/s11063-019-09981-z. URL
https://doi.org/10.1007/s11063-019-09981-z.

203

https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1016/j.neucom.2021.07.045
https://proceedings.neurips.cc/paper/2017/hash/a51fb975227d6640e4fe47854476d133-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a51fb975227d6640e4fe47854476d133-Abstract.html
https://doi.org/10.1007/s11063-019-09981-z

BIBLIOGRAPHY

[119] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and
Yoshua Bengio. Neural networks with few multiplications. In
Yoshua Bengio and Yann LeCun, editors, 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1510.03009.

[120] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L. Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic
image segmentation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 82–92. Computer Vision Foun-
dation / IEEE, 2019. doi: 10.1109/CVPR.2019.00017. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_
Auto-DeepLab_Hierarchical_Neural_Architecture_Search_
for_Semantic_Image_Segmentation_CVPR_2019_paper.html.

[121] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: dif-
ferentiable architecture search. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=S1eYHoC5FX.

[122] Kang Liu. Pytorch models for cifar-10, 2020. URL https://
github.com/kuangliu/pytorch-cifar.

[123] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single
shot multibox detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision - ECCV 2016 - 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part I, volume 9905 of Lecture Notes in Computer Science,
pages 21–37. Springer, 2016. doi: 10.1007/978-3-319-46448-0_2.
URL https://doi.org/10.1007/978-3-319-46448-0_2.

[124] Xingyu Liu, Jeff Pool, Song Han, and William J Dally. Efficient
sparse-winograd convolutional neural networks. arXiv preprint
arXiv:1802.06367, 2018.

[125] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethink-
ing the value of network pruning. In ICLR, 2019. URL https:
//openreview.net/forum?id=rJlnB3C5Ym.

204

http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1510.03009
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://doi.org/10.1007/978-3-319-46448-0_2
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym

BIBLIOGRAPHY

[126] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng
Yan, and Changshui Zhang. Learning efficient convolutional net-
works through network slimming. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 2755–2763. IEEE Computer Society, 2017. doi: 10.1109/
ICCV.2017.298. URL https://doi.org/10.1109/ICCV.2017.298.

[127] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully con-
volutional networks for semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
3431–3440, 2015.

[128] I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent
with warm restarts. In ICLR (Poster), 2017.

[129] Christos Louizos, Max Welling, and Diederik P Kingma. Learning
sparse neural networks through l_0 regularization. arXiv preprint
arXiv:1712.01312, 2017.

[130] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning
sparse neural networks through l_0 regularization. In 6th Inter-
national Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=
H1Y8hhg0b.

[131] Liqiang Lu and Yun Liang. Spwa: An efficient sparse winograd
convolutional neural networks accelerator on fpgas. In Proceedings
of the 55th Annual Design Automation Conference, pages 1–6, 2018.

[132] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compression. In
IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pages 5068–5076. IEEE Computer Soci-
ety, 2017. doi: 10.1109/ICCV.2017.541. URL https://doi.org/10.
1109/ICCV.2017.541.

[133] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shuf-
flenet v2: Practical guidelines for efficient cnn architecture de-
sign. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss, editors, Computer Vision – ECCV 2018, pages 122–
138, Cham, 2018. Springer International Publishing. ISBN 978-3-
030-01264-9.

205

https://doi.org/10.1109/ICCV.2017.298
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/ICCV.2017.541

BIBLIOGRAPHY

[134] E. Malach, G. Yehudai, S. Shalev-Shwartz, and O. Shamir. Proving
the lottery ticket hypothesis: Pruning is all you need. In ICML,
2020. URL http://proceedings.mlr.press/v119/malach20a.
html.

[135] John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude
Shannon. A proposal for the dartmouth summer research project
on artificial intelligence. Available at AI Magazine Vol 27 No 4,
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1904,
1956.

[136] Warren S McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. The bulletin of mathematical
biophysics, 5:115–133, 1943.

[137] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonza-
lez Arenas, Kanishka Rao, David Rybach, Ouais Alsharif, Haşim
Sak, Alexander Gruenstein, Françoise Beaufays, et al. Personal-
ized speech recognition on mobile devices. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5955–5959. IEEE, 2016.

[138] Risto Miikkulainen, Jason Zhi Liang, Elliot Meyerson, Aditya
Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad,
Arshak Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving
deep neural networks. CoRR, abs/1703.00548, 2017. URL http:
//arxiv.org/abs/1703.00548.

[139] S.-I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh. Improved knowledge distillation via teacher
assistant. In AAAI, 2020. URL https://aaai.org/ojs/index.php/
AAAI/article/view/5963.

[140] Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Vari-
ational dropout sparsifies deep neural networks. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Re-
search, pages 2498–2507. PMLR, 2017. URL http://proceedings.
mlr.press/v70/molchanov17a.html.

206

http://proceedings.mlr.press/v119/malach20a.html
http://proceedings.mlr.press/v119/malach20a.html
http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548
https://aaai.org/ojs/index.php/AAAI/article/view/5963
https://aaai.org/ojs/index.php/AAAI/article/view/5963
http://proceedings.mlr.press/v70/molchanov17a.html
http://proceedings.mlr.press/v70/molchanov17a.html

BIBLIOGRAPHY

[141] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. Pruning convolutional neural networks for resource effi-
cient inference. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJGCiw5gl.

[142] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 11264–11272. Computer Vision Founda-
tion / IEEE, 2019. doi: 10.1109/CVPR.2019.01152. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/
Molchanov_Importance_Estimation_for_Neural_Network_
Pruning_CVPR_2019_paper.html.

[143] Michael Mozer and Paul Smolensky. Skeletonization: A
technique for trimming the fat from a network via rele-
vance assessment. In David S. Touretzky, editor, Advances
in Neural Information Processing Systems 1, [NIPS Confer-
ence, Denver, Colorado, USA, 1988], pages 107–115. Mor-
gan Kaufmann, 1988. URL http://papers.nips.cc/paper/
119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.

[144] Nils J Nilsson. Artificial intelligence: a new synthesis. Morgan Kauf-
mann, 1998.

[145] Nvidia. 8-bit inference with tensorrt. https://developer.nvidia.
com/tensorrt, 2021. Accessed: 26/05/2023.

[146] Alan V Oppenheim, Alan S Willsky, Syed Hamid Nawab, and Jian-
Jiun Ding. Signals and systems, volume 2. Prentice hall Upper Sad-
dle River, NJ, 1997.

[147] L. Orseau, M. Hutter, and O. Rivasplata. Logarith-
mic pruning is all you need. In NeurIPS 2020, 2020.
URL https://proceedings.neurips.cc/paper/2020/hash/
1e9491470749d5b0e361ce4f0b24d037-Abstract.html.

[148] Nikolaos Passalis and Anastasios Tefas. Learning deep represen-
tations with probabilistic knowledge transfer. In Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision - ECCV 2018 - 15th European Conference, Munich,

207

https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://proceedings.neurips.cc/paper/2020/hash/1e9491470749d5b0e361ce4f0b24d037-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1e9491470749d5b0e361ce4f0b24d037-Abstract.html

BIBLIOGRAPHY

Germany, September 8-14, 2018, Proceedings, Part XI, volume 11215
of Lecture Notes in Computer Science, pages 283–299. Springer, 2018.
doi: 10.1007/978-3-030-01252-6_17. URL https://doi.org/10.
1007/978-3-030-01252-6_17.

[149] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf,
Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[150] A. Pensia, S. Rajput, A. Nagle, H. Vishwakarma, and D. S.
Papailiopoulos. Optimal lottery tickets via subset sum: Log-
arithmic over-parameterization is sufficient. In NeurIPS 2020,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1b742ae215adf18b75449c6e272fd92d-Abstract.html.

[151] Adam Polyak and Lior Wolf. Channel-level acceleration of deep
face representations. IEEE Access, 3:2163–2175, 2015. doi: 10.1109/
ACCESS.2015.2494536. URL https://doi.org/10.1109/ACCESS.
2015.2494536.

[152] Boris T Polyak. Some methods of speeding up the convergence of
iteration methods. Ussr computational mathematics and mathematical
physics, 4(5):1–17, 1964.

[153] Harry Pratt, Bryan M. Williams, Frans Coenen, and Yalin Zheng.
FCNN: fourier convolutional neural networks. In Michelangelo
Ceci, Jaakko Hollmén, Ljupco Todorovski, Celine Vens, and Saso
Dzeroski, editors, Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2017, Skopje, Mace-

208

https://doi.org/10.1007/978-3-030-01252-6_17
https://doi.org/10.1007/978-3-030-01252-6_17
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://doi.org/10.1109/ACCESS.2015.2494536
https://doi.org/10.1109/ACCESS.2015.2494536

BIBLIOGRAPHY

donia, September 18-22, 2017, Proceedings, Part I, volume 10534 of
Lecture Notes in Computer Science, pages 786–798. Springer, 2017.
doi: 10.1007/978-3-319-71249-9_47. URL https://doi.org/10.
1007/978-3-319-71249-9_47.

[154] Pytorch. Pytorch weights initialisation. Software, 2023. URL
https://pytorch.org/docs/stable/nn.init.html.

[155] Pytorch. Resnet-18 implementation. Software, 2023. URL
https://github.com/pytorch/vision/blob/main/torchvision/
models/resnet.py.

[156] PyTorch. Pytorch vision models. https://pytorch.org/vision/
master/models.html, Accessed 2023. Accessed on May 24, 2023.

[157] Qualcomm. Snapdragon neural processing engine
sdk. https://developer.qualcomm.com/software/
qualcomm-neural-processing-sdk, 2021. Accessed: 26/05/2023.

[158] Ramchalam Kinattinkara Ramakrishnan, Eyyüb Sari, and
Vahid Partovi Nia. Differentiable mask for pruning convolutional
and recurrent networks. In 17th Conference on Computer and Robot
Vision, CRV 2020, Ottawa, ON, Canada, May 13-15, 2020, pages
222–229. IEEE, 2020. doi: 10.1109/CRV50864.2020.00037. URL
https://doi.org/10.1109/CRV50864.2020.00037.

[159] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and
M. Rastegari. What’s hidden in a randomly weighted neural net-
work? In CVPR, 2020.

[160] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-
taka I. Leon-Suematsu, Jie Tan, Quoc V. Le, and Alexey Kurakin.
Large-scale evolution of image classifiers. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, volume 70 of Proceedings of Machine Learning Re-
search, pages 2902–2911. PMLR, 2017. URL http://proceedings.
mlr.press/v70/real17a.html.

209

https://doi.org/10.1007/978-3-319-71249-9_47
https://doi.org/10.1007/978-3-319-71249-9_47
https://pytorch.org/docs/stable/nn.init.html
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://pytorch.org/vision/master/models.html
https://pytorch.org/vision/master/models.html
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://doi.org/10.1109/CRV50864.2020.00037
http://proceedings.mlr.press/v70/real17a.html
http://proceedings.mlr.press/v70/real17a.html

BIBLIOGRAPHY

[161] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 779–788.
IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.91. URL
https://doi.org/10.1109/CVPR.2016.91.

[162] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with region
proposal networks. In Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 91–99,
2015. URL https://proceedings.neurips.cc/paper/2015/hash/
14bfa6bb14875e45bba028a21ed38046-Abstract.html.

[163] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao,
and Tie-Yan Liu. Fastspeech: Fast, robust and controllable text to
speech. Advances in neural information processing systems, 32, 2019.

[164] Canadian Institute For Advanced Research. Cifar-10 and cifar-100
datasets. https://www.cs.toronto.edu/~kriz/cifar.html, 2009.

[165] Facebook AI Research. Openlth: A framework for lottery tickets
and beyond, 2020. URL https://github.com/facebookresearch/
open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/
datasets/cifar10.py#L46C50-L46C50. [Online; accessed 23-June-
2023].

[166] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–407, 1951.

[167] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.
URL http://arxiv.org/abs/1412.6550.

[168] Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review,
65(6):386, 1958.

[169] Frank Rosenblatt. Principles of neurodynamics. perceptrons and
the theory of brain mechanisms. Technical report, Cornell Aero-
nautical Lab Inc Buffalo NY, 1961.

210

https://doi.org/10.1109/CVPR.2016.91
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/facebookresearch/open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/datasets/cifar10.py#L46C50-L46C50
https://github.com/facebookresearch/open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/datasets/cifar10.py#L46C50-L46C50
https://github.com/facebookresearch/open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/datasets/cifar10.py#L46C50-L46C50
http://arxiv.org/abs/1412.6550

BIBLIOGRAPHY

[170] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Technical
report, California Univ San Diego La Jolla Inst for Cognitive Sci-
ence, 1985.

[171] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. nature, 323
(6088):533–536, 1986.

[172] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge. Int. J. Comput.
Vis., 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y. URL
https://doi.org/10.1007/s11263-015-0816-y.

[173] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In CVPR, 2018. doi: 10.1109/CVPR.2018.00474. URL http:
//openaccess.thecvf.com/content_cvpr_2018/html/Sandler_
MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html.

[174] Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E
Latham, and Yee Teh. Powerpropagation: A sparsity inducing
weight reparameterisation. Advances in neural information process-
ing systems, 34:28889–28903, 2021.

[175] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[176] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, et al. A general rein-
forcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

[177] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

211

https://doi.org/10.1007/s11263-015-0816-y
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://arxiv.org/abs/1409.1556

BIBLIOGRAPHY

[178] Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backprop-
agation: Parameter-free training of multilayer neural networks
with continuous or discrete weights. In Zoubin Ghahramani,
Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 963–971,
2014. URL https://proceedings.neurips.cc/paper/2014/hash/
076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html.

[179] Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Al-
liot Nagle, Hongyi Wang, Kangwook Lee, and Dimitris S. Papail-
iopoulos. Rare gems: Finding lottery tickets at initialization. CoRR,
abs/2202.12002, 2022. URL https://arxiv.org/abs/2202.12002.

[180] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res., 15
(1):1929–1958, 2014. doi: 10.5555/2627435.2670313. URL https:
//dl.acm.org/doi/10.5555/2627435.2670313.

[181] Hugo Steinhaus et al. Sur la division des corps matériels en parties.
Bull. Acad. Polon. Sci, 1(804):801, 1956.

[182] Volker Strassen et al. Gaussian elimination is not optimal. Nu-
merische mathematik, 13(4):354–356, 1969.

[183] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.
On the importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pages 1139–1147.
PMLR, 2013.

[184] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Effi-
cient processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295–2329, 2017.

[185] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich. Going deeper with convolutions. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages 1–9. IEEE Com-
puter Society, 2015. doi: 10.1109/CVPR.2015.7298594. URL https:
//doi.org/10.1109/CVPR.2015.7298594.

212

https://proceedings.neurips.cc/paper/2014/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://arxiv.org/abs/2202.12002
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594

BIBLIOGRAPHY

[186] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In ICML, volume 97 of Pro-
ceedings of Machine Learning Research. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/tan19a.html.

[187] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark
Sandler, Andrew Howard, and Quoc V. Le. Mnasnet: Platform-
aware neural architecture search for mobile. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pages 2820–2828. Computer Vision
Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00293. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_
MnasNet_Platform-Aware_Neural_Architecture_Search_for_
Mobile_CVPR_2019_paper.html.

[188] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli. Pruning neural
networks without any data by iteratively conserving synaptic flow.
In NeurIPS, 2020.

[189] Tencent. Ncnn: A high-performance neural network inference
framework optimized for the mobile platform. https://github.
com/Tencent/ncnn, 2021. Accessed: 26/05/2023.

[190] Robert Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 58(1):267–288, 1996.

[191] Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak K
Gupta. Chipnet: Budget-aware pruning with heaviside continu-
ous approximations. arXiv preprint arXiv:2102.07156, 2021.

[192] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million
tiny images: A large data set for nonparametric object and scene
recognition. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 30(11):1958–1970, 2008. doi: 10.1109/TPAMI.2008.128.

[193] Inc. Uber Technologies. masked_layers.py in deconstructing-
lottery-tickets repository, 2019. URL https://github.com/
uber-research/deconstructing-lottery-tickets/blob/
master/masked_layers.py. Licensed under the Uber Non-
Commercial License.

213

http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://github.com/uber-research/deconstructing-lottery-tickets/blob/master/masked_layers.py
https://github.com/uber-research/deconstructing-lottery-tickets/blob/master/masked_layers.py
https://github.com/uber-research/deconstructing-lottery-tickets/blob/master/masked_layers.py

BIBLIOGRAPHY

[194] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improv-
ing the speed of neural networks on cpus. In Deep Learning and
Unsupervised Feature Learning Workshop, NIPS 2011, 2011.

[195] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008,
2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[196] Alvin Wan. Neural-backed decision trees source
code, 2020. URL https://github.com/alvinwan/
neural-backed-decision-trees.

[197] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry
Jin, Suzanne Petryk, Sarah Adel Bargal, and Joseph E. Gonzalez.
Nbdt: Neural-backed decision trees, 2020.

[198] C. Wang, G. Zhang, and R. B. Grosse. Picking winning tickets be-
fore training by preserving gradient flow. In ICLR, 2020.

[199] Xuan Wang, Chao Wang, Jing Cao, Lei Gong, and Xuehai Zhou.
Winonn: Optimizing fpga-based convolutional neural network ac-
celerators using sparse winograd algorithm. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(11):
4290–4302, 2020.

[200] Zi Wang, Chengcheng Li, and Xiangyang Wang. Convo-
lutional neural network pruning with structural redun-
dancy reduction. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, virtual, June 19-
25, 2021, pages 14913–14922. Computer Vision Founda-
tion / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01467.
URL https://openaccess.thecvf.com/content/CVPR2021/
html/Wang_Convolutional_Neural_Network_Pruning_With_
Structural_Redundancy_Reduction_CVPR_2021_paper.html.

214

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://github.com/alvinwan/neural-backed-decision-trees
https://github.com/alvinwan/neural-backed-decision-trees
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html

BIBLIOGRAPHY

[201] Philip D Wasserman and Tom Schwartz. Neural networks. ii. what
are they and why is everybody so interested in them now? IEEE
expert, 3(1):10–15, 1988.

[202] R. Clinton Whaley, Antoine Petitet, and Jack J. Dongarra.
Automated empirical optimizations of software and the AT-
LAS project. Parallel Comput., 27(1-2):3–35, 2001. doi: 10.
1016/S0167-8191(00)00087-9. URL https://doi.org/10.1016/
S0167-8191(00)00087-9.

[203] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru,
Thomas Elsken, Arber Zela, Debadeepta Dey, and Frank Hutter.
Neural architecture search: Insights from 1000 papers. CoRR,
abs/2301.08727, 2023. doi: 10.48550/arXiv.2301.08727. URL
https://doi.org/10.48550/arXiv.2301.08727.

[204] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS:
stochastic neural architecture search. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rylqooRqK7.

[205] Hanyuan Xu. Image classification on tiny imagenet, 2018. URL
https://github.com/DennisHanyuanXu/Tiny-ImageNet.

[206] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi,
Qi Tian, and Hongkai Xiong. PC-DARTS: partial channel con-
nections for memory-efficient architecture search. In 8th Inter-
national Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=BJlS634tPr.

[207] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-
efficient convolutional neural networks using energy-aware prun-
ing. In 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 6071–
6079. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.643.
URL https://doi.org/10.1109/CVPR.2017.643.

215

https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.48550/arXiv.2301.08727
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://github.com/DennisHanyuanXu/Tiny-ImageNet
https://openreview.net/forum?id=BJlS634tPr
https://doi.org/10.1109/CVPR.2017.643

BIBLIOGRAPHY

[208] Junho Yim, Donggyu Joo, Ji-Hoon Bae, and Junmo Kim. A gift
from knowledge distillation: Fast optimization, network mini-
mization and transfer learning. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 7130–7138. IEEE Computer Society, 2017.
doi: 10.1109/CVPR.2017.754. URL https://doi.org/10.1109/
CVPR.2017.754.

[209] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping
Wang. Gate decorator: Global filter pruning method for ac-
celerating deep convolutional neural networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages 2130–2141,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
b51a15f382ac914391a58850ab343b00-Abstract.html.

[210] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu,
Xintong Han, Mingfei Gao, Ching-Yung Lin, and Larry S. Davis.
NISP: pruning networks using neuron importance score prop-
agation. In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 9194–9203. Computer Vision Foundation /
IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00958.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Yu_NISP_Pruning_Networks_CVPR_2018_paper.html.

[211] S. Zagoruyko and N. Komodakis. Paying more attention to at-
tention: Improving the performance of convolutional neural net-
works via attention transfer. In ICLR, 2017. URL https://
openreview.net/forum?id=Sks9_ajex.

[212] Matthew D Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[213] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shuf-
flenet: An extremely efficient convolutional neural network for
mobile devices. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6848–6856, 2018. doi: 10.1109/
CVPR.2018.00716.

216

https://doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1109/CVPR.2017.754
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex

BIBLIOGRAPHY

[214] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep mu-
tual learning. In CVPR, 2018. doi: 10.1109/CVPR.2018.00454.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html.

[215] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wen-
jun Zhang, and Qi Tian. Variational convolutional neural
network pruning. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 2780–2789. Computer Vision Foun-
dation / IEEE, 2019. doi: 10.1109/CVPR.2019.00289. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/
Zhao_Variational_Convolutional_Neural_Network_Pruning_
CVPR_2019_paper.html.

[216] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen.
Incremental network quantization: Towards lossless cnns with
low-precision weights. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=HyQJ-mclg.

[217] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing lottery
tickets: Zeros, signs, and the supermask. In NeurIPS, 2019.

[218] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[219] Yuefu Zhou, Ya Zhang, Yan-Feng Wang, and Qi Tian. Acceler-
ate CNN via recursive bayesian pruning. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, pages 3305–3314. IEEE, 2019.
doi: 10.1109/ICCV.2019.00340. URL https://doi.org/10.1109/
ICCV.2019.00340.

[220] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jin-Hui Zhu.
Discrimination-aware channel pruning for deep neural networks.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kris-
ten Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 31: An-

217

http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
https://openreview.net/forum?id=HyQJ-mclg
https://openreview.net/forum?id=HyQJ-mclg
https://doi.org/10.1109/ICCV.2019.00340
https://doi.org/10.1109/ICCV.2019.00340

BIBLIOGRAPHY

nual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 883–894,
2018. URL https://proceedings.neurips.cc/paper/2018/hash/
55a7cf9c71f1c9c495413f934dd1a158-Abstract.html.

[221] Barret Zoph and Quoc V. Le. Neural architecture search with
reinforcement learning. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=r1Ue8Hcxg.

218

https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

	Cover
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Remerciements
	Introduction
	Context
	Industrial Context
	Why Deep learning ?
	Challenges
	Contributions
	Outline

	Deep Learning Overview
	Introduction
	Early Architectures
	Perceptron
	Multilayer Perceptron

	Neural Network Training
	Functional Definition
	Loss Function and Regularisation
	Loss Optimisation

	Convolutional Neural Networks for Computer Vision
	Building Blocks
	Architectures Evolution
	Architectures Used in Experiments

	Datasets
	CIFAR-10
	CIFAR-100
	TinyImageNet
	Train, Validation and Test Sets

	Deep Neural Network Compression
	Introduction
	Accelerating Computation in Neural Networks
	Fast Fourier Transform
	Optimised Matrix Multiplication Algorithms
	Leveraging Matrix Structures
	Practical Applications and Limitations

	Teaching Paradigm
	Knowledge Distillation
	Feature-Map Matching
	Deep Mutual Learning
	Teacher Assistant
	Alternative Distillation Losses

	Architecture Design
	Building Blocks for Efficient Architecture Design
	Automatic Architecture Design Through Neural Architecture Search

	Compressing and Optimising an Existing Architecture
	Lower Precision Weights and Activations Representation
	Removing Weights and Connections

	Positioning
	Conclusion

	Weight Reparametrization for Budget-Aware Network Pruning
	Introduction and Related Work
	Unstructured Magnitude Pruning.
	Weight Reparametrisation
	Pruning with Budget
	Pruning without fine-tuning
	Contributions

	Pruning with Weight Reparametrisation and Budget Loss
	Weight Reparametrisation
	Budget Loss

	Method and Algorithm Overview
	Experiments
	Experimental Setup
	Performances
	Optimal Value of Lambda
	Validation of the Budget Loss
	Validation of the Reparametrisation
	Tuned Initialisation

	Conclusion

	Effective Subnetworks Extraction without Weight Training
	Introduction and Related Work
	Pruning at initialisation
	Lottery Tickets
	Existence of effective subnetworks
	Subnetwork topology extraction

	Contributions
	Extracting Effective Subnetworks withGumbel-Softmax
	Stochastic Weight Sampling
	Smart Weight Rescaling
	Freezing the Topology via Thresholding

	Method Overview and Algorithm
	Experiments
	Experimental Setup
	Performances
	Validation of the Weight Rescaling Mechanism
	Effect of the Learning Rate on Training Performances
	Post Training Pruning Rate Adjustment

	Conclusion

	Conclusion and Perspectives
	Summary of contributions
	Perspectives

	Appendix
	Relationship between Multiply-Accumulate Operations and the Number of Parameters
	Scheduling of the Mixing Coefficient lambda
	Xavier and Kaiming Initialisations

	Bibliography

