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Abstract

Astrophysical jets are certainly one of the most fascinating phenomena in the uni-
verse. These are flows of matter observed around very different objects, such as
active galactic nuclei (AGNs), the compact objects in X-ray binary systems, or even
protostars. Despite their extremely different scales, these jets have in common that
they are linked to the presence of an accretion disc rotating around the central ob-
ject (black hole or star), and that they can be collimated at great distances, with the
matter remaining confined around the rotation axis of the disc.

The only model capable of reproducing all these flows is based on the presence
of a large-scale magnetic field in the disc (Blandford and Payne, 1982). The plasma is
first ejected from the accretion disc and then confined around its axis by the Laplace
magnetic force. The theoretical framework for this seminal work is MagnetoHydro-
Dynamics (MHD), which describes plasma as a fluid in motion. It gave rise to a
number of semi-analytical studies, followed by numerical simulations of jets from
accretion disks, in two or three dimensions, in the classical or relativistic regime...
However, the collimation of large-scale jets remains largely unexplored. How can
jets be collimated in asymptotic regions, when the current flowing through them is
disconnected from the disc ? These regions could be separated from the accelerating
circuit by a discontinuity that occurs after the plasma has been confined towards the
axis: the recollimation shock. Predicted by semi-analytical solutions and probably
observed in AGN and protostar jets, these shocks have not yet been reproduced by
MHD numerical simulations.

During my thesis, I carried out 2D numerical simulations of jets using the MHD
code PLUTO (Mignone et al., 2007). These simulations, in non-relativistic ideal
MHD, extend to unprecedented scales in space and time. In the first part of the the-
sis, I use the self-similar Jet-Emitting Disk (JED) model of Ferreira, 1997 as a bound-
ary condition. The simulations I obtain are the first to contain stationary recollima-
tion shocks. These behave qualitatively as expected by the semi-analytical solutions,
but they also show that the flow emitted by the central object (black hole or star) has
a significant influence on the collimation of the jet emitted by the disc.

In the second part of the thesis, the ejection is truncated: the JED is now limited
to the innermost regions of the disc, with the outer regions no longer launching a
jet. This more realistic setup produces jets that also contain recollimation shocks,
showing that these shocks are not due to a bias of self-similarity. In the third part
of the thesis, I present a special case of truncated simulation: the jet is no longer
stationary but is buffeted at regular time intervals. This creates perturbations that
propagate along the up from the asymptotic regions down to the vicinity of the disc.
Such perturbations may be at the origin of certain quasi-periodic oscillations (QPO)
observed in X-ray binaries.
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Résumé

Les jets astrophysiques sont certainement l’un des phénomènes de l’univers les plus
fascinants. Il s’agit d’écoulements de matière observés autour d’objets très différents,
comme les noyaux actifs de galaxie (AGN), les objets compacts d’un système binaire
X ou même les proto-étoiles. Malgré des échelles extrêmement différentes, ces jets
ont en commun d’être liés à la présence d’un disque d’accrétion en rotation autour
de l’objet central (trou noir ou étoile), ainsi que de pouvoir être collimatés à grande
distance, la matière restant confinée autour de l’axe de rotation du disque.

Le seul modèle capable de reproduire tous ces écoulements repose sur la présence
dans le disque d’un champ magnétique à grande échelle (Blandford and Payne,
1982). Le plasma y est d’abord éjecté du disque d’accrétion puis confiné autour
de son axe par la force magnétique de Laplace. Ce travail fondateur a comme cadre
théorique la MagnétoHydroDynamique (MHD), description du plasma comme un
fluide en mouvement. Il a suscité nombre de travaux semi-analytiques, puis de
simulations numériques de jets issus de disques d’accrétion, en deux ou trois di-
mensions, en régime classique ou relativiste... Cependant, la collimation des jets à
grande échelle reste encore largement inexplorée. Comment les jets peuvent-ils être
collimatés dans les régions asymptotiques, alors que le courant qui les parcourt est
déconnecté du disque ? Ces régions pourraient être séparées du circuit accélérateur
par une discontinuité ayant lieu après que le plasma ait été confiné vers l’axe : le
choc de recollimation. Prédits par les solutions semi-analytiques et probablement
observés dans les jets d’AGN et de proto-étoiles, ces chocs n’ont pour l’instant pas
été reproduits par des simulations numériques MHD.

Au cours de ma thèse, j’ai réalisé des simulations numériques 2D de jets en util-
isant le code MHD PLUTO (Mignone et al., 2007). Ces simulations, en MHD idéale
et non-relativiste, s’étendent à des échelles de temps et d’espace sans précédent.
Dans la première partie de la thèse, j’utilise le modèle autosimilaire Jet-Emitting
Disk (JED) de Ferreira, 1997 comme condition limite. Les simulations que j’obtiens
sont les premières à contenir des chocs de recollimation stationnaires. Celles-ci
se comportent qualitativement comme attendu par les solutions semi-analytiques,
mais elles montrent également que l’écoulement émis par l’objet central (trou noir
ou étoile) a une influence primordiale sur la collimation du jet émis par le disque.

Dans la deuxième partie de la thèse, l’éjection est tronquée : le JED est maintenant
limité aux régions les plus internes du disque, les régions externes ne lançant plus
de jet. Ce dispositif plus réaliste produit des jets contenant également des chocs de
recollimation, montrant que ces chocs ne sont pas dus à un biais de l’autosimilarité.
Dans la troisième partie de la thèse je présente un cas particulier de simulation tron-
quée. Dans celui-ci, le jet n’est plus stationnaire mais est ballotté à intervalles de
temps réguliers. Cela créée des perturbations remontant le jet des régions asymp-
totiques jusqu’au voisinage du disque. De telles perturbations être à l’origine de
certaines oscillations quasi-périodiques (QPO) observées dans les binaires X.
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xiii

Physical units and constants

This thesis is written in Gaussian-CGS units.
Below is a list of the various constants used in the text.

Speed of light in vacuum c = 2.9979 × 1010 cm · s−1

Electron mass me = 9.1094 × 10−28 g
Proton mass mp = 1.6726 × 10−24 g
Solar mass M⊙ = 1.9885 × 1033 g
Astronomical unit au = 1.4959 × 1013 cm
Parsec pc = 3.0857 × 1018 cm
Electron charge e = 4.8032 × 10−10 g1/2·cm3/2·s−1

Boltzmann constant kB = 1.3807 × 10−16 cm2·g · s−2·K−1

Planck constant hp = 6.6261 × 10−27 cm2·g · s−1

Gravitational constant G = 6.6726 × 10−8 cm3·g−1·s−2
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2 Chapter 1. Introduction

“Il faut toujours s’envoyer des fleurs. On est sûr que ça vient de quelqu’un qu’on aime
bien.”

“You should always send yourself flowers. You can be sure it’s from someone you like.”

Danièle Perret-Gentil
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Il existe un très grand nombre de jets astrophysiques. Le premier a été observé en 1918
autour de noyau du galaxie actif (AGN) M87. Les observations de cet AGN, et du jet qui
en émerge ont été extrêmement nombreuses. En son centre se situe un trou noir, M87*, dont
la masse est plusieurs trillions de fois celle du Soleil. Il fut le premier à être observé, par
la collaboration Event Horizon Telescope (EHT) en 2019. Depuis 1918, beaucoup d’autres
jets d’AGN ont été imagés. Nombre d’entre eux sont très collimatés (rectilignes et fins)
et s’étendent très loin du trou noir à leur source, à plus d’un million de parsecs. Lorsque
l’imagerie est impossible, la présence d’un jet est trahie par une forte émission radio.

Ces jets sont relativistes, tout comme ceux observés autour de binaires X. Une binaire X
est très différente d’un AGN. Il s’agit d’une étoile semblable au Soleil autour de laquelle orbite
un objet compact (trou noir ou étoile à neutrons). De part leur taille et luminosité beaucoup
plus faible, ces objets ne peuvent être observés que dans notre galaxie. Pour certains d’entre
eux, on peut voir l’objet compact émettre un jet, détectable grâce aux radio-télescopes. Dans
cette thèse, on ne s’intéressera qu’aux binaires X dont l’objet central est un trou noir. Alors
que les AGN et leurs jets sont persistants, les jets de binaires X n’apparaissent que lors de
violentes éruptions.

Enfin, dans notre galaxie des jets sont également observés autour d’étoiles en formation,
dans les premiers millions d’années de leur existence (classe 0, I et II). Ces jets stellaires sont
mis en évidence par leur interaction avec le milieu interstellaire, où ils forment des nébu-
losités dites Herbig-Haro. Celles-ci sont observables dans les raies optiques et infrarouges.
Nombre de ces jets apparaissent également très collimatés jusqu’à plusieurs dizaines d’unités
astronomiques de l’étoile.

Ainsi, les jets sont observés autour d’objets extrêmement différents, les trous noirs et les
étoiles. Une de leurs rares caractéristiques en commun et la présence d’un disque d’accrétion,
composé de plasma gravitationellement attiré par et tournant autour de l’étoile ou le trou
noir. Cela a incité à développer des modèles de jet où celui-ci provient non pas de l’objet
central (étoile ou trou noir) mais du disque d’accrétion. De tels modèles sont également cor-
roborés par les corrélations d’accrétion-éjection: plus l’accrétion dans le disque est puissante,
plus l’éjection dans le jet l’est aussi.

Dans ces modèles, l’accrétion et l’éjection sont interdépendantes, et nécessitent la présence
d’un champ magnétique à grande échelle dans le disque. La rotation de celui-ci entraîne les
lignes de champ magnétique, créant un fort gradient de pression magnétique toroidale don-
nant naissance au jet. Le champ magnétique toroidal ainsi créé, couplé au courant électrique
poloidal, peut au lancement collimater les lignes de champ magnétique, et donc le jet.

Cependant, cela ne permet d’expliquer la collimation du jet que dans sa partie la plus
proche du disque, lorsqu’il existe un fort courant électrique poloidal créé par le disque, au
voisinage de celui-ci. Or les jets restent collimatés à des distances plusieurs centaines de fois
plus grandes que le disque. Aussi loin de la source, le courant ne peut plus être causalement
relié à la source. Quel mécanisme pourrait alors entraîner la collimation ?

Les premiers modèles supposaient une collimation induite par le milieu extérieur, par le
biais d’une pression thermique ou d’une pression magnétique. Cependant, de récentes obser-
vations ont montré que les densité et champ magnétique du milieu interstellaire sont bien
trop faibles pour produire la collimation observée dans certains jets stellaires. Cependant, un
champ magnétique transporté depuis le disque le long des lignes de champ peut produire le
confinement nécessaire.

Dans cette thèse, je m’intéresse à la collimation asymptotique des jets, qui produit la
forme asymptotique de ces derniers: parabolique si la collimation est présente, cylindrique si
elle est absente. Cette région asymptotique est causalement déconnectée du disque d’accrétion,
le plasma ayant dépassé toutes les vitesses critiques. Mais alors, comment est fixé le courant
dans cette zone, et comment peut avoir lieu cette déconnexion causale ?
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Une possibilité pour créer cette déconnexion est la présence d’un choc de recollimation,
apparaissant lorsque les lignes de champ magnétique convergent vers l’axe du jet. De tels
chocs stationnaires sont observés dans des jets d’AGN tels que M87. Ils ont été prédits
mais n’ont pas pu être reproduits par les études analytiques autosimilaires. L’étape suivante
naturelle est de produire des simulations numériques de jets, afin de voir si et dans quels
conditions les chocs de recollimation stationnaire peuvent être reproduits. Le cadre théorique
adapté est la MagnétoHydroDynamique (MHD), description du plasma comme un fluide
magnétisé en mouvement. Dans mes simulations, le disque et l’objet central (étoile ou trou
noir) est une condition limite. Ces simulations s’étendent à des échelles en espace et en temps
sans précédent.

Dans cette thèse, je présenterai plusieurs simulations numériques conçues pour combler
le fossé entre les conditions de lancement du jet et ses propriétés de collimation aux échelles
observables. L’objectif est d’évaluer si les résultats génériques obtenus dans le cadre auto-
similaire sont toujours valables dans les simulations 2D dépendantes du temps. En par-
ticulier, je chercherai à savoir si l’existence d’un choc de recollimation est inévitable pour
les conditions attendues dans les disques d’accrétion képlériens, comme l’a proposé Ferreira,
1997.

En conséquence de cette approche, je me concentrerai principalement sur les jets en
régime stationnaire, afin de confronter mes simulations à la théorie des jets MHD. Il est clair
que la plupart des jets astrophysiques, sinon tous, présentent des caractéristiques dépen-
dant du temps. Cependant, le but de ce travail n’est pas de reproduire un jet spécifique, mais
plutôt d’étudier les comportements génériques des jets MHD émis par les disques d’accrétion
képlériens.

Le manuscrit est organisé comme suit :

• Le chapitre 2 définit le cadre théorique de la thèse: la MHD idéale non relativiste.
Je justifie les approximations utilisées et souligne leurs limites. Ensuite, je montre
quelques propriétés pertinentes de la théorie des jets MHD idéaux.

• Le chapitre 3 définit le cadre numérique de la thèse. Je présente les différentes carac-
téristiques du code MHD PLUTO (Mignone et al., 2007) que j’ai utilisé tout au long
de la thèse. Ensuite, je décris la configuration numérique conçue pour les simulations,
avec le Jet-Emitting Disk (JED) comme condition limite.

• Les chapitres 4 et 5 présentent des simulations de jet dans lesquelles le JED s’étend
sur toute la frontière inférieure. Je montre que des chocs de recollimation sont effec-
tivement obtenus, en accord avec la théorie analytique. Je présente ensuite une étude
paramétrique, montrant une correspondance entre mes simulations et les solutions
auto-similaires, mais soulignant également le rôle crucial de la colonne axiale dans la
collimation globale du jet. Enfin, je compare mes résultats à ceux de la littérature.

• Le chapitre 6 présente des simulations de jets où le JED est maintenant limité aux
régions les plus internes du disque. Je montre que cette configuration plus réaliste
produit des jets avec des chocs de recollimation aux propriétés similaires. J’effectue
également une étude paramétrique, mettant en évidence l’influence de la rotation de
l’objet central et de la pression ambiante sur les propriétés de collimation des jets.

• Le chapitre 7 décrit des simulations numériques obtenues par sérendipité, montrant des
oscillations créées dans le jet asymptotique qui se propagent jusqu’au disque. De telles
perturbations arrivant sur le disque pourraient fournir une explication aux QPOs
observés dans les binaires à rayons X, comme l’a proposé Ferreira et al., 2022.
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1.1 Observations of astrophysical jets

1.1.1 Different objects and lifetimes

Observing the active galaxy Messier 87 (M87), astronomer Herbert Curtis noted:
“A curious straight ray lies in a gap in the nebulosity in p.a. 20◦, apparently connected

with the nucleus by a thin line of matter. The ray is brightest at its inner end, which is 11”
from the nucleus.” Curtis, 1918.

This was the very first observation of an astrophysical jet. The Active Galactic
Nucleus (AGN) he refers to is a very luminous region at the galaxy center. It has
long been thought to be powered by matter accreting onto a supermassive black
hole (Lynden-Bell, 1969).

FIGURE 1.1: Composite image of the M87 central region from three
radio telescopes (EHT et al., 2021a,b). The lines indicate polarization.

In the following century, the M87 jet has been closely observed, most notably
thanks to the Hubble Space Telescope (HST) (see e.g. Biretta, Sparks, and Macchetto,
1999). But in recent years, the development of radio interferometry has allowed fast
improvements. The Atacama Large Millimeter Array (ALMA) provided detailed
imaging of the jet, and the Event Horizon Telescope Collaboration (EHT) allowed
imaging of M87∗, the supermassive black hole powering the AGN. Both images are
shown on Figure 1.1.

Looking at these images, two remarks come to mind:

• The jet is very collimated, i.e. straight and thin, as noted by Curtis.

• It extends extremely far away, more than a million times the black hole size.

Perhaps even more striking, astrophysical jets are not only detected around AGNs.
They are observed around most if not all types of accreting objects. In addition to
AGNs (Blandford, Meier, and Readhead, 2019; Boccardi et al., 2017), jets are emit-
ted from Young Stellar Objects (YSOs; Bally, Reipurth, and Davis, 2007; Frank et
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al., 2014; Ray et al., 2007; Ray and Ferreira, 2021), close interacting binary systems
(Fender and Gallo, 2014; Tudor et al., 2017), or even post-AGB stars (Asymptotic
Giant Branch; Bollen, Van Winckel, and Kamath, 2017).

In this thesis, I will only consider the galactic jets emitted from protostars and bi-
nary systems, and the extragalactic jets emitted from AGNs, as they share a striking
number of characteristics. In this section I will draw a short summary of their prop-
erties. For a more exhaustive overview, the curious reader is referred to the reviews
listed in the paragraph above.

Active Galactic Nuclei

AGN jets are a relatively rare phenomenon. Active galaxies represent only 10% of all
galaxies. They are characterised by a broad Spectral Energy Distribution (SED) from
radio to γ-rays, and by a strong variability. And, only 10% of all active galaxies are
considered radio-loud. Those are defined by huge radio emission, sometimes eight
orders of magnitude stronger than that of regular galaxies, betraying the presence of
a jet.

After the archetypal M87, jets were observed around many other AGNs. For
instance, the left panel of Figure 1.2 represents the jet emitted from the nucleus of
the active galaxy Hercules A. The radio flux associated with the jet is in blue. AGN
jets are extremely large, reaching sizes up to 106 pc. Consequently, their growth
should last tens to hundreds millions of years, and cannot be directly observed. The
black hole at the core of the AGN being supermassive (i.e. between 106 and 1010

solar masses), those jets reach relativistic speeds.

FIGURE 1.2: Astrophysical jet images. Left: Composite image of the
radio galaxy Hercules A. In blue, radio emission (NSF/NRAO/VLA);
in pink, X-ray emission (NASA/CXC/SAO); in white, orange, and
blue, optical emission. Credit: Bia Boccardi. Right: Optical and in-

frared image of HH111 (WFC HST). Credit: Brunella Nisini.

Young Stellar Objects

On the other hand, jets emitted from forming stars are much smaller, most of them
extending over less than one parsec. Thus, even though they are observed in our
galaxy, they were first seen much later. While Herbig, 1950, 1951 and Haro, 1952,
1953 indirectly observed small emission nebulosities, the first direct observation was
made by Snell, Loren, and Plambeck, 1980. Named Herbig-Haro (HH) objects, those
nebulosities are formed by the interaction between a jet ejected from a newborn star
with the interstellar medium. There are now more than a thousand detected Herbig-
Haro objects, often observed in the optical by HST and in the infrared by the Spitzer
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Space Telescope (SST). One of them, HH111, is represented in the right panel of
Figure 1.2. We see that, like the AGN jets, YSO jets can also be very collimated and
very large, extending up to thousands of stellar radii.

Other than their size, the main difference between AGN and YSO jets is their
velocities. Protostars having masses roughly equal to the solar mass M⊙, their jet
speeds range from 100 to 600 km.s−1. YSO jets are seen at the first three stages of
star formation, as illustrated in Figure 1.3, and seen with different tracers at different
stages.

FIGURE 1.3: Early evolution of a solar type star until Class III. Jets
are observed around Class 0, I and II stars. Adapted from Aloïs de

Valon’s PhD thesis.

• In Class 0, where the star mass is much smaller than that of the surrounding
enveloppe. Molecular jets (SiO, CO, H2) are visible in radio (mm-waves) and
infrared.

• In Class I, where a sufficient amount of the enveloppe has collapsed onto the
central star for it to be visible in the infrared. Atomic and molecular jets are
seen in infrared (H2, FeII) and optical (Hα, OI, NII, SII).

• In Class II, where the enveloppe has vanished, and the central star has become
a classical T Tauri star. Jets can then be observed in optical very close to the
central star.

The scales and durations of each class are represented in Figure 1.3. Of the objects
presented in this section, HH212 is Class 0, DG Tau B and HH111 are Class I and
HH30 is Class II.
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X-ray binaries

X-ray binaries are binary systems composed by a donor star and a compact object
(neutron star or black hole). The compact object accretes matter from the donor star,
and releases the gravitational energy in the form of a strong X-ray emission. The
X-ray band is usually decomposed in soft X-rays of lower energy (0.1 to 10 keV)
and hard X-rays of higher energy (10 to 100 keV). Some X-ray binaries, called micro-
quasars, also emit in radio. As in AGNs, this radio emission is often resolved as a
pair of jets (see e.g. Espinasse et al., 2020; Mirabel and Rodríguez, 1994). Figure 1.4
is a sketch of such a radio-emitting X-ray binary. In such a system, the donor is a
normal main sequence star and the mass of the compact object is only of a few solar
masses.

FIGURE 1.4: Sketch of a radio-loud Low-Mass X-ray Binary (LMXB),
constitued by a compact object (black hole or neutron star) and a less
massive donor star. The compact object accretes from the star via its
Roche lobe, and ejects a powerful jet, perpendicular to its accretion

disk. Credit: Salvatore Orlando.

Both black hole and neutron star binaries can produce powerful jets. But while
most neutron star systems are persistent sources, black hole systems are generally
transient (Done, Gierliński, and Kubota, 2007). In quiescence majority of the time,
they occasionaly experience bright outbursts. These outbursts last weeks to months,
and are spaced by months to decades. Over the course of the course of the outburst,
the binary can emit mostly soft X-ray photons (soft state) or hard X-ray photons
(hard state). Typical spectra are presented on Figure 1.5, for both soft (red) and hard
(blue) states. The outbursts are most commonly followed in the Hardness Intensity
Diagram (HID), an example of which is shown on Figure 1.6.

Hardness Intensity Diagrams are the equivalent for black hole outbursts of the
Hertzprung-Russell (HR) diagram, that tracks the evolution of stars. In a HID is
represented the total X-ray luminosity over the hardness ratio, at various times in
the outburst. The hardness ratio is the number of hard X-ray photons of high energy
over the total number of X-ray photons. It can thus be understood as a proxy for the
energy or "color" of the binary. When this ratio is close to unity, the binary is in a
hard state. When it is close to zero, it is in a soft state.
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FIGURE 1.5: Spectra in the soft state (red) and hard state (blue) for the
2005 outburst of GRO J1655-40. Figure from Grégoire Marcel’s PhD

thesis, adapted from Zhang, 2013.

Black hole X-ray binary outbursts typically follow the q-shaped path in the HID
shown in Figure 1.6. The evolution is counterclockwise, and starts in the low-luminosity
hard state (A). The luminosity then increases while the spectrum is still dominated
by the hard photons. In this hard state, steady radio jets can be observed. Then,
the luminosity starts to decrease (B) and the system quickly moves from hard to
soft state. During this transition the steady radio jets vanish, and we only observe
transient flares that can be followed by Very Long Baseline Interferometry (VLBI,
see e.g. Carotenuto et al., 2021). At some point (D) the luminosity decreases while
the system remains in the soft state. Then occurs a transition from the soft to the
hard state (E→F) leading to the reappearance of steady radio jets. Finally, the sys-
tem goes back to quiescence while remaining in the hard state (F→A). Naturally,
these are general behaviors, and some sources such as the very luminous Cygnus
X-1 show more peculiar behavior. The curious reader is referred to Dunn et al., 2010
for more exhaustive spectral studies of black hole X-ray binaries.

1.1.2 Accretion-ejection correlation

X-ray binaries, AGNs and protostars all emit jets, collimated outflows that extend
to very large scales compared to that of the central object. All those jets are almost-
unidirectional and supersonic. The central objects they emerge from are quite dif-
ferent from one another, in terms of sizes, temperatures and velocities. AGNs and
X-ray binaries are subject to relativistic effects, YSOs are not. One thing they do have
in common however, is the presence of an accretion disk. It is composed of matter
rotating around and falling into the central object (black hole or star) due to its grav-
itational attraction. Furthermore, for all these objects the power accreted in the disk
is correlated to the power ejected in the jet.

These accretion-ejection correlations are illustrated in Figure 1.7, for X-ray bina-
ries (top), AGNs (middle) and YSOs (bottom). In the case of a jet emitted from a
compact object (black hole or neutron star), the accretion power is inferred from X-
ray luminosity, in pink on Figure 1.2. Naturally, assumptions have to be made in
order to convert a luminosity L into an accretion power Ṁaccc2, with Ṁacc the mass
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FIGURE 1.6: Hardness Intensity Diagram for an outburst of the Black
Hole X-ray binary GRS 1915+105 (Fender and Belloni, 2012). Varia-
tion of the total X-ray luminosity with the hardness ratio (Hard X-ray
flux over total X-ray flux). Each point corresponds to a single obser-
vation, and the evolution is counter-clockwise (A→B→...→F→A). In
the bottom are the expected geometries: a strong jet is launched only

in the hard state.

accretion rate in the disk. For instance, Ghisellini et al., 2014 assume a disk radi-
ation efficiency L/(Ṁaccc2) of 30%. The result is a strong correlation between the
accretion and ejection powers. This correlation holds true whatever the mass of the
compact central object, which can span over several decades (MBH = 106 to 1010M⊙
for AGNs). On the top plot, we also see that neutron star and black hole X-ray bina-
ries follow different correlations. A neutron star jet has a power smaller than a black
hole jet with similar associated accretion power.

As shown in the bottom panel, the accretion-ejection correlation is also seen
among YSOs. The jet mass loss rate Ṁjet and the disk mass accretion rate Ṁacc are
proportional over a wide range of star masses and evolutionary stages.

Naturally, this does not mean that all the matter ejected in the jet must come from
the disk. First, because correlation does not imply causation. But also because mod-
els of jets emitted from the central object can also explain this correlation, whether
this object is a black hole (Blandford and Znajek, 1977) or a star (Matt and Pudritz,
2005). However, the universality of jet observations around objects subject to very
different physics paired with the accretion-ejection correlation is a compelling argu-
ment in favor of models explaining jets with some of the matter accreted in the disk
being released in the jet. In the following, I will mostly deal with jets emitted from
an accretion disk.
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FIGURE 1.7: Accretion-ejection correlations. Top: Radio luminosity
versus X-ray luminosity for several galactic black hole candidates and
neutron stars (Coriat et al., 2011). Middle: Jet power versus accretion
power for 217 AGNs (blazars) (Ghisellini et al., 2014). Bottom: Ob-
served jet mass loss rate versus mass accretion rate for protostars of

all classes (Ellerbroek et al., 2013).
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1.2 Large-scale collimation properties

Let us now look at what will be the main topic of this thesis: the collimation of jets
at their largest, asymptotic scales. Do they appear cylindrical, parabolic or conical ?
What are the differences in collimation between jet types, and among each type ?

1.2.1 Fanaroff-Riley dichotomy

The large-scale collimation of AGN jets has been closely studied. The reference work
of Fanaroff and Riley, 1974 classified them in two types based on their radio lumi-
nosity. They are defined as:

• The edge-darkened jets where the region of maximal luminosity is located
closer to the AGN than to the edge of the jet. Those are FRI jets.

• The edge-brightened jets where the region of maximal luminosity is located
closer to the edge of the jet than to the AGN. Those are FRII jets.

(A) FRI jet. (B) FRII jet.

FIGURE 1.8: AGN jet images of the two Fanaroff-Riley classes.

This classification is now known as the Fanaroff-Riley (FR) dichotomy. Detailed
observations with radio interferometry have recently revisited this classification,
showing the presence of another type, called FR0 (Garofalo and Singh, 2019), and
that the division between FRI and FRII is not as rigid as previously thought (Mingo
et al., 2019). For the sake of concision, I will only deal with the FRI and FRII classes.

Those two jet types are represented on Figure 1.8. The FRII jets appear more
collimated, and are generally brighter and more extended than the FRI jets. The
M87 jet (Figure 1.1) and Hercules A jet (Figure 1.2) are FRII. As their velocities are
close to the speed of light, they can appear one-sided due to relativistic beaming.
For instance, the counter jet of M87 pointed away from the Earth is very dim.

The differences between the shape of the emission maps for those two jet classes
are generally associated with the discrepancy in jet power, the FRII jets being more
luminous (Ledlow and Owen, 1996; Owen and Ledlow, 1994). The dichotomy would
thus be caused by the accretion process (Ghisellini and Celotti, 2001), as the mass
of the central black hole controls the optical emission of the galaxy (McLure and
Dunlop, 2001). General Relativistic MagnetohydroDynamic (GRMHD; Bromberg
and Tchekhovskoy, 2016; Tchekhovskoy and Bromberg, 2016) numerical simulations
suggest the ambient medium also plays a role in setting this dichotomy.
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1.2.2 Jet morphology

Protostellar jets

On the other hand, jets emitted from protostars do not show such a dichotomy. T
Tauri jets (from Class II sources) are ejected with a large opening angle of 10 to 30
degrees, and become rapidly collimated. At 50 to 100 au from the star, the opening
angle is only of a few degrees (Ray et al., 2007). Class I jets show similar opening
angles in both ionized and molecular components (Davis et al., 2011). Studies of the
HH212 jet point towards Class 0 jets being slightly more collimated than T Tauri jets.

Figure 1.9 shows this jet for different tracers and at different scales. HH212
appears cylindrical even at large scales, up to 105 au. At larger distances from
the source appear large bow shocks. They are seen in most Herbig-Haro jets (see
Reipurth and Bally, 2001 and references therein) and are signs of a conflicting in-
teraction with the ambient medium. Figure 1.10 compares the radius of the HH212
jet with that of the jets from the T Tauri stars DG Tauri and RW Aur. The jet is in-
deed slightly more collimated, but the morphology is very similar to the jets of other
classes.

FIGURE 1.9: Different scales of the HH212 protostellar jet (Lee, 2020).
(a): Reipurth et al., 2019, (b) and (c): Lee et al., 2015; McCaughrean
et al., 2002, (d) and (e): Lee et al., 2017. The observed molecules and

their associated colors are at the bottom.

FIGURE 1.10: Distribution of various protostellar jet radii as a func-
tion of the distance from the star (Lee, 2020).
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AGN jets

Extragalactic jets of both Fanaroff-Riley classes are also very collimated. Jets width
and length are usually measured in units of gravitational radii rg ≡ GM/c2 or
Schwarzchild radii rS ≡ 2GM/c2 where M is the mass of the supermassive black
hole at the core of the AGN, G is the gravitational constant and c is the speed of light
in vacuum. Such units act as a normalization of the distances by the black hole mass.

The left panel of Figure 1.11 shows the evolution of the M87 jet radius with the
distance to the central black hole. The unit is the Schwarzchild radius and the evolu-
tion described below is generic to both Fanaroff-Riley classes. The jets are launched
very close to the black hole, below 102rs. They are then accelerated and collimated at
scales of 103 to 105rs. At the end of this process, the flow loses its collimation, and its
energy is dissipated in radiation. This lasts until the formation of the lobes, beyond
109rs. These lobes are visible on Figure 1.8, and sometimes accompanied by compact
hotspots. Beyond those lobes, the jets vanish.

This dichotomy between an acceleration/collimation zone and a propagating
zone is clear in the left panel Figure 1.11. We see a change in jet slope around
zcoll = 2.5 × 105rs:

• Upstream (z < zcoll), the jet is parabolic: z ∝ r1.73±0.05.

• Downstream (z > zcoll), the jet is conical: z ∝ r0.96±0.1.
Figure 2. from The Structure of the M87 Jet: A Transition from Parabolic to Conical Streamlines
Asada & Nakamura 2012 ApJL 745 L28 doi:10.1088/2041-8205/745/2/L28
https://dx.doi.org/10.1088/2041-8205/745/2/L28
© 2012. The American Astronomical Society. All rights reserved.

Fig. 3. from Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV GammaRay Emission
Cheung, Harris, & Stawarz 2007 ApJL 663 L65 doi:10.1086/520510
https://dx.doi.org/10.1086/520510
© 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

FIGURE 1.11: Left: Distribution of the M87 jet radius as a function
of the deprojected distance from the core in units of Schwarzchild ra-
dius rs = 2GMBH/c2 = 120 au (Asada and Nakamura, 2012). Right:
VLBA imaging of the HST-1 knot at different times (Cheung, Harris,

and Stawarz, 2007). The knot is located around z = 5 × 105rs.

The transition between the two regions occurs at a strong shock, particularly
prominent in the optical and thus named HST-1. As it happens at this transition,
it was labeled recollimation shock. It also ejects superluminal features in radio, of
which four observations are represented in the right panel of Figure 1.11. The ver-
tical spacing is proportional to the time between the observations, and the vertical
lines represent the apparent motions of the subfeatures HST-1a, HST-1b, HST-1c and
HST-1d. These features are barely moving, and HST-1 is considered quasi-stationary.
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1.3 State of the art and pending questions

While the observations unveiled how collimated the jets were, various scenarii and
models were proposed to explain this large-scale confinement.

1.3.1 Funneling and outer pressure

Blandford and Rees, 1974 were the first to propose a model for extragalactic jets,
that was adapted to YSO jets by Konigl, 1982. This "twin-exhaust" model is repre-
sented in Figure 1.12. A central hotspot (A, the black hole or star) ejects subsonic
plasma in an isotropic manner. This plasma is later confined by a denser cloud (G),
rotating around the central object: It is collimated along a channel of diminishing
cross-section. This cross-section reaches a minimum at z = R∗ (N) where the flow
becomes super-sonic.

FIGURE 1.12: Scheme of the "twin-exhaust" model (Blandford and
Rees, 1974). A hot plasma is emitted from a central region (A) in
a central cavity (C). It is then collimated by an outer cloud in rota-
tion around the central object (G), whose isobars are represented in
dashed lines. The plasma is funneled into the nozzle (N), where it

becomes supersonic. After that, the flow remains confined.

This model is very reminiscent of the de Laval nozzle, used for instance in rocket
engines. In the same way that de Laval nozzle must have a very precise shape,
the "twin-exhaust" model requires a specific vertical pressure profile. Slighltly dif-
ferent pressure profiles would result in strong Kelvin-Helmholtz shear instabilities,
destroying the jet.

As a consequence, the following models assumed a supersonic ejection, which
was later confirmed by radio interferometry. Barral and Canto, 1981 showed that the
external pressure could reconfine an YSO jet. As the jet initially widens, its pressure
drops and the constant external pressure eventually dominates. After an altitude
zcoll , this leads to a refocusing of the jet towards its axis. They show that the external
pressure Pcoll required is

Pcoll ≃ 5 × 10−5

(
Ṁjet

10−8M⊙.yr−1

)(
vjet

300km.s−1

)( zcoll

50au

)−2
Ba (1.1)
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where the barye Ba = g.cm−1.s−2 is the CGS unit of pressure. As Cabrit, 2007, I
consider a classical T Tauri star jet of mass loss rate Ṁjet = 10−8M⊙.yr−1 and velocity
vjet = 300km.s−1, and assume a cloud temperature of T = 10K. For the reconfine-
ment to occur at zcoll < 50au, the cloud density should be ncoll > 2.4 × 109cm−3,
six hundred times higher than what is observed (see e.g. Hartigan, Edwards, and
Ghandour, 1995). Thus while such a process may be invoked for younger Class 0 or
Class I jets, it cannot be the universal mechanism for YSO jet collimation, as it does
not hold for Class II jets.

1.3.2 The need for self-induced magnetic collimation

If thermal pressure of the ambient medium cannot explain the collimation, maybe
magnetic pressure could. Replacing the thermal pressure Pcoll by the magnetic pres-
sure B2

coll/2, one obtains

Bcoll ≃ 10

(
Ṁjet

10−8M⊙.yr−1

)1/2 (
vjet

300km.s−1

)1/2 ( zcoll

50au

)−1
mG (1.2)

This value is two to three orders of magnitude higher than the organized mag-
netic fields measured in dense prestellar cores (see e.g. Lee, Hull, and Offner, 2017).
An isotropic turbulent magnetic pressure is also ruled out, as it would require a jet
extremely magnetized at those large scales, with a magnetic pressure six hundred
times higher than the thermal pressure (i.e. a magnetization B2/(4πP) ∼ 600).

However, such magnetic field values could be explained by a third mechanism,
MagnetoHydroDynamics (MHD) self-collimation. In such a model, the collimating
magnetic field is transported by the jet itself, carrying it from its launching point, at
the vicinity of the central object (star or black hole), onto the collimation and propa-
gation zones. As we will see in section 2.4, in steady-state ideal MHD the magnetic
flux is conserved along the magnetic field lines (flux-freezing condition). To produce
the magnetic field Bcoll of equation 1.2 at the recollimation point, constant vertical
magnetic field launched by the jet between ri = 0.1au and rJ = 1au would be

Bl ≃
(

rcoll

rJ

)2

Bcoll = 10
(

5au
1au

)2

mG = 250mG (1.3)

The launch of MHD extended disk jets relies on strong magnetic fields brought
by the accretion of matter in the vicinity of the central object. For the classical T Tauri
star considered above, this vertical magnetic field would be close to equipartition
(Ferreira and Pelletier, 1995)

Beq ≃ 200
(

M
M⊙

)1/4 ( Ṁacc

10−7M⊙.yr−1

)1/2 ( rJ

1au

)− 5
4+

ξ
2

mG (1.4)

We see that the two magnetic fields Beq and Bl are of the same order of mag-
nitude. Here the crucial parameter is the ejection index ξ, radial exponent of the
mass accretion rate in the disk Ṁacc(r) ≡ −4π

∫ h(r)
0 ρurdz ∝ rξ , where h(r) is the

disk height at the radius r. This ejection index, as well as the jet extent (r ∈ [ri; rJ ])
determines the fraction of accreted mass that gets transferred into the jet

Ṁjet

Ṁacc
≃ ξ

2
ln
(

rJ

ri

)
(1.5)
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where the factor two comes from the fact that while there is only one disk, there
are two jets, often called jet and counter-jet.

To compute Beq (equation 1.4) I used a disk ejection index ξ = 0.1 and the same
jet launching radii as above (r ∈ [ri = 0.1au; rJ = 1au]). This gives a jet mass loss rate
ten times smaller than the disk accretion rate, hence the choice Ṁacc = 10−7M⊙.yr−1.

1.3.3 Launching a jet from an accretion disk

This model of an extended disk/jet is called the Jet-Emitting Disk (JED). It allows the
launching of powerful jets from highly magnetized accretion disks. It is a generaliza-
tion by Ferreira, 1997 of the seminal work of Blandford and Payne, 1982, connecting
the jet to a turbulent accretion disk and highlighting the importance of the ejection
index ξ. Open magnetic field lines thread a thin keplerian disk. Along those lines,
the plasma is lifted from the disk and transferred into the jet, extracting energy and
angular momentum. Blandford & Payne initially built this model to explain the self-
collimation of AGN jets by a magnetic field, but it also applies to jets of YSOs, XrBs,
CVs...

These models use the framework of MagnetoHydroDynamics (MHD), describ-
ing the plasma as a fluid in motion. Because of the large degree of freedom of the
problem, they make the hypothesis of radial self-similarity: values follow power
laws with the distance to the central object (black hole or star). This approach will
be detailed in Chapter 2, detailing its approximations, as well as the conclusions on
jet behavior that can be retrieved from them. Here, I will only highlight a few points
on jet launching that are useful to understand the aim of this thesis.

A bead on a wire

The mechanism these models rely on is often called magneto-centrifugal. The cen-
trifugal force is exploited to eject matter from the rotating disk. I consider a poloidal
plane perpendicular to the disk as in Figure 1.13. The central object is the origin O
and the disk midplane is z = 0. Let us consider a magnetic field line anchored in
the disk at r0. Because of the flux freezing condition of steady-state ideal MHD, the
velocity field lines are parallel to the magnetic field lines. The plasma has to follow
the magnetic field lines, like a bead on a wire (Chan and Henriksen, 1980).

Let us immerse ourselves completely in this bead/wire analogy. The bead is only
subject to the gravitational attraction of the central object and to the centrifugal force
due to the rotation of the disk. Its potential energy is

Φ(r, z) = −GM
r0

[
1
2

(
r
r0

)2

+
r0√

r2 + z2

]
(1.6)

where G is the gravitational constant and M the mass of the central object. The
wire is considered in co-rotation with the disk at its anchoring point.

If the bead is at position (r = r0 + s sin θ; z = s cos θ) where s is a small curvilinear
abscissa on the wire and θ its colatitude, the angle between the wire and the normal
to the disk u⃗z, the bead potential becomes

Φ(s) = −GM
r0

1
2

(
r0 + s sin θ

r0

)2

+
r0√

r2
0 + 2r0s sin θ + s2

 (1.7)
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To know which angles provide a stable equilibrium, I compute the second deriva-
tive of the energy potential

(
d2Φ
ds2

)
(s) = −GM

r0

[
sin2 θ

r2
0

+
r0(3r2

0 sin2 θ − r2
0 + 4r0s sin θ + 2s2)

(r2
0 + 2r0s sin θ + s2)5/2

]
(1.8)

(
d2Φ
ds2

)
(s = 0) = −GM

r3
0

[
4 sin2 θ − 1

]
(1.9)

Therefore, if θ > π/6 the equilibrium is stable and the bead stays on the disk. If
θ < π/6 the equilibrium is unstable and the bead is flung on the wire. This means
that if the magnetic field line makes an angle with the disk greater than 60◦ and is
directed outwards, a jet could be launched to infinity.

FIGURE 1.13: Isopotential surfaces for beads on a wire anchored at r0
on a disk (z = 0) in Keplerian rotation around the origin O (Blandford
and Payne, 1982). If the wire makes an angle greater than 60◦ with the
disk, the equilibrium is stable and the bead stays close to the disk. If
the angle is smaller than 60◦ and the wire is directed outwards, the

bead can leave the disk and propagate to infinity.

The importance of the toroidal magnetic field and accretion

This simple analogy shows the possible poloidal magnetic field configurations able
to launch a jet. But it hides the crucial role played by the toroidal magnetic field (i.e.
in the direction perpendicular to the plane of Figure 1.13). This role is illustrated by
the schemes of Figure 1.14. This is a very simplified picture, and the curious reader
is referred to Ferreira and Pelletier, 1995 for a more exhaustive description.

The initial configuration is situation A. The magnetic field is initially purely
poloidal and vertical, emerging from the disk (in grey). The magnetic field lines
are rooted in the disk, and thus affected by the disk dynamics: the accretion along
−u⃗r (due to the torque or infall) and the rotation along +u⃗φ.
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Thus, in the following configuration B, the anchoring points of the field lines
have shifted inwards thanks to accretion. The rotation has twisted the field lines, and
a toroidal component of the magnetic field has appeared, directed along −u⃗φ. This
toroidal component is naturally decreasing with altitude, as we move away from
the disk, and the toroidal magnetic pressure −∇⃗Bφ can drive the plasma upwards.
Additionally, the poloidal magnetic field lines now tilted outwards can launch the
plasma via the magnetocentrifugal ejection described above in the bead/wire anal-
ogy. This was already seen in early ideal MHD simulations (see e.g. Uchida and
Shibata, 1985).
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FIGURE 1.14: Scheme explaining the ejection mechanism and the
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The appearance of a toroidal magnetic field can then help launch the plasma.
But it is also the driving force in jet collimation. The rotation induces an electric field
E⃗ind = v⃗φ× B⃗z, directed towards +u⃗r in the disk. The associated current density j⃗p is
represented in purple on situation B. Because of the current closure condition ∇⃗ · j⃗ =
0, counterclockwise current loops are created. The associated Laplace force j⃗p × B⃗φ

is directed inwards (along −u⃗r) on the innermost magnetic field lines, creating the
initial jet collimation. The final situation is configuration C, where the innermost
magnetic field lines are now collimated.

Additionally, the ejection powers the accretion, because of Lenz’s law. In the
disk, the Laplace force j⃗r × B⃗z is directed along −u⃗φ. The conservation of angular
momentum in the jet also brakes down the disk, reinforcing the accretion. In this
disk+jet system, the accretion and ejection are intertwined: the jets drive the disk
accretion, and the accretion feeds matter to the jets. It has been coined Magnetized
Accretion-Ejection Structure (MAES, Ferreira and Pelletier, 1993a,b; Ferreira and Pel-
letier, 1995). Such an interdependence between accretion and ejection is naturally
backed by the accretion-ejection correlations of section 1.1.2.

1.3.4 Performing large-scale numerical simulations

Acceleration and propagation zones

At this point, the reader might wonder why I am describing the ejection process,
while my subject of interest is the large-scale jet collimation, far away from the cen-
tral object or the disk. We have seen that the jet is collimated quickly after leaving
the disk, beyond a few astronomical units for YSO jets, or a few Schwarzchild radii
for AGN jets. The jet can be roughly summed up into a juxtaposition of two re-
gions, corresponcould correspondding to the parabolic and conical shapes of M87
described in section 1.2.2. Figure 1.15 schemes a possible evolution of the vertical
speed along the jet, assuming it has reached a steady state. The separation between
the two zones happens at the altitude zcoll .
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FIGURE 1.15: Simplified evolution of the vertical speed along a jet
reaching an asymptotic state. The jet is ejected from the disk at speed
v0. It accelerates until a certain altitude zcoll , after which the speeds

becomes constant at v∞.

The two zones are:

• An "acceleration" zone, where the flow is accelerated and collimated. It is in
this zone that the field lines go from their open configuration at launch (see the
bead/wire analogy above) to their confined configuration (|Br/Bz| ≪ 1). It is
also there that the flow crosses all critical surfaces (slow-magnetosonic, Alfvén
and fast-magnetosonic, see section 2.6.2). This is crucial, as it allows a causal
disconnection between the disk and the asymptotic jet, in the following zone.
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• A "propagation" zone, where the poloidal magnetic field lines should be almost
vertical. In Figure 1.15 I assume that the jet has reached a stationary state, and
the vertical speed is constant in this propagation zone. The field lines have
then reached their asymptotic state.

The self-similar models described above are stationary, and after their devel-
opment, numerical simulations were required. These would reveal whether those
steady states could be reached when starting out of an equilibrium, and highlight
their possible instabilities.

There have been many numerical simulations studying jet collimation in the sec-
ond "propagation" zone, starting relatively far away for the disk. Those were per-
formed using either classical (see e.g. Matsakos et al., 2008, 2009; Stute et al., 2008;
Stute et al., 2014; Teşileanu et al., 2014) or relativistic (see e.g. Komissarov and Falle,
1998; Perucho and Martí, 2007; Perucho et al., 2010; Porth and Komissarov, 2015)
MHD. In those cases, the jet is already collimated at launch. The magnetic field lines
are quasi-vertical, and the flow has already reached poloidal velocities above most
critical speeds, if not all. Their intent was to study the stability of an already colli-
mated jet, for instance to the various MHD instabilities, as well as the appearance of
substructure such as shocks.

The aim of this thesis differs; it is focussed on the crucial importance of the
launching conditions in setting the observable collimation properties of the jet. Sim-
ulations of a whole MAES have been performed (see e.g. Casse and Keppens, 2002,
2004; Murphy, Ferreira, and Zanni, 2010; Murphy, Zanni, and Ferreira, 2009; Sheikhnezami
et al., 2012; Stepanovs and Fendt, 2016) where a simulated viscous or/and resistive
accretion disk launches the jet/wind. But computing both the accretion and the
ejection induces huge numerical constraints, and such simulations have not reached
the jet asymptotic scales yet. The simulations presented in this thesis will extend
from the disk upper boundary until the observable scales. Those scales would be
equivalent to a few hundreds of astronomical units in the case of YSO jets, or a few
thousands of Schwarzchild radii in the case of AGN jets.

Global bottom-up simulations

Lots of these "global" simulations have also been performed. As mine, they use
the accretion disk as a boundary condition. Again, they were done using either
classical (see e.g. Anderson et al., 2005, 2006; Fendt, 2006; Krasnopolsky, Li, and
Blandford, 1999; Krasnopolsky, Li, and Blandford, 2003; Ouyed, Clarke, and Pu-
dritz, 2003; Ouyed and Pudritz, 1997a,b, 1999; Pudritz, Rogers, and Ouyed, 2006;
Ramsey and Clarke, 2011, 2019; Staff et al., 2015; Staff et al., 2010; Ustyugova et al.,
1995, 1999) or relativistic (see e.g. Barniol Duran, Tchekhovskoy, and Giannios, 2017;
Bromberg and Tchekhovskoy, 2016; Chatterjee et al., 2019; Porth and Fendt, 2010;
Tchekhovskoy and Bromberg, 2016) MHD. Performing those types of simulations
presents several difficulties.

First, they have a huge degree of freedom, as many distributions must be speci-
fied at the lower boundary condition. In the case of a 2.5D or 3D simulation, up to
eight boundary conditions must be specified, one for each MHD variable (ρ, P, B⃗ and
v⃗). Then, for each critical point that the flow is expected to cross, one of these con-
ditions is relaxed. In our case, and that of most simulations in the paragraph above,
this still leaves five or six distributions to fix. Such a large degree of freedom makes
it hard to draw generic conclusions on jet collimation from specific simulations.

Second, performing such simulations is numerically challenging, because of the
large discrepancy in scales. It requires a good resolution in the zone driving the
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ejection, just above the inner disk regions (the "acceleration" zone of Figure 1.15). But
it also needs to be on a grid large enough to capture the asymptotic jet regions, that
will explain its observable shape (the "propagation" zone of Figure 1.15). In addition,
launching jets from a Keplerian disk creates a discrepancy in timescales. The time
increment must be small enough compared to the orbital period at the inner disk, but
the simulation must run for a time long enough compared to the period at the outer
disk. For this reason, the "global" simulations listed above either were performed
on grids too small to see the jet asymptotics, or ran for a time too small to see a
global steady state of the jet. This is due to either technical limitations (especially for
the earlier works), or simply because this was not the intent of the authors. In my
case, performing simulations at the required scales in space and time proved rather
challenging, even with the usual methods of High Performance Computing (HPC).
It required the development of a few numerical techniques, described in Chapter 3
and Appendix C.

1.3.5 The self-similar approach and recollimation

Recollimation at large scales

The self-similar solutions are a good starting point to study large-scale jet collima-
tion, as, contrary to the numerical simulations, they are not subject to the technical
limitations mentioned above. Since the seminal model of Blandford and Payne, 1982,
it is known that a large-scale magnetic field threading a Keplerian accretion disk can
accelerate the disk material into the jet up to super-fast magnetosonic speeds, thus
crossing all MHD critical surfaces. This self-similar model was later generalized
by modifying the magnetic field distribution (Contopoulos and Lovelace, 1994; Os-
triker, 1997), or by adding thermal effects (Ceccobello et al., 2018; Vlahakis et al.,
2000), and was transposed to relativistic MHD (Li, Chiueh, and Begelman, 1992;
Polko, Meier, and Markoff, 2010, 2014; Vlahakis and Königl, 2003). Smoothly con-
necting self-similar jet models to a quasi-Keplerian accretion disk, Ferreira, 1997
showed that the super-fast magnetosonic jets systematically go through a recolli-
mation towards their axis. As in Polko, Meier, and Markoff, 2010, this recollimation
is due to the internal hoop stress caused by the self-induced Laplace force (see Figure
1.13). This is a generic result, later verified for warm outflows (Casse and Ferreira,
2000a) and weak magnetic fields (Jacquemin-Ide, Ferreira, and Lesur, 2019).

Some solutions are presented in Figure 1.16, each showing poloidal magnetic
field lines. On the top panel are the highly magnetized solutions of Ferreira, 1997,
with a magnetization (magnetic to thermal pressure ratio) B2/(4πP) ≲ 1 and vari-
ous ejection indexes ξ ∈ [0.005; 0.05]. On the bottom panel is the lowly magnetized
solution of Jacquemin-Ide, Ferreira, and Lesur, 2019, with B2/(4πP) = 5.7 × 10−3

and ξ = 0.1.
After being launched outwards (see the bead/wire analogy in section 1.3.3), all

field lines are eventually recollimated towards the axis. This recollimation is more
pronounced for small values of the ejection index (ξ ≤ 0.012) or of the magnetiza-
tion (B2/(4πP) ∼ 10−3, see also the other solutions of Jacquemin-Ide, Ferreira, and
Lesur, 2019). In those solutions, the magnetic field lines eventually become almost
horizontal (|Br/Bz| ≫ 1, with Br < 0). But in those cases, recollimation happens
very far away from the disk. The distances in both panels of Figure 1.16 are in units
of r0, radius of the field line at its anchoring point in the disk. This radius would
correspond to the innermost point in the disk, which would be around 0.1 au for a
YSO jet and at the Innermost Stable Circular Orbit (ISCO) for a black hole jet. The
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location of the ISCO depends on the black hole spin, and is on the same scale as
the Schwarzchild radius (see e.g. Bardeen, Press, and Teukolsky, 1972). Therefore,
in those self-similar solutions, strong recollimation is only observed beyond 102 as-
tronomical units for YSO jets, or beyond 103 Schwarzchild radii for AGN jets. Note
however that the model is newtonian so this last number must be taken with caution.

FIGURE 1.16: Top: Magnetic field lines for solutions of ejection
indexes ξ ∈ [0.05, 0.04, 0.03, 0.02, 0.012, 0.01, 0.009, 0.007, 0.005] (Fer-
reira, 1997). The smaller ξ, the higher cylindrical radii r are attained
and the further away the recollimation. Bottom: Magnetic field line
for the solution of low magnetization (B2/(4πP) = 5.7 × 10−3) and
ejection index ξ = 0.1 of Jacquemin-Ide, Ferreira, and Lesur, 2019).
The slow-magnetosonic point is marked by a star and the Alfvén
point is marked by a triangle. All solutions are super-SM in the con-

ventional sense (vp > VFMp ).
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The impending recollimation shock

Moreover, this recollimation happens on the same scale as the transition between the
acceleration zone and the propagation, illustrated in Figure 1.15. The self-similar so-
lutions cannot go further, as they would cross the fast-magnetosonic critical point,
singularity in the MHD equations. Yet, the observations of the archetypal source
M87 (Figure 1.11) show the presence of a quasi-stationary recollimation shock at the
transition between the parabolic and conical phases of the jet. I argue this recolli-
mation shock could be caused by the crossing of the fast-magnetosonic critical point
in a self-collimated jet. Such standing recollimation shocks were already present in
numerical simulations in which an already collimated jet is launched relatively far
away from the disk (see e.g. Matsakos et al., 2008, 2009; Stute et al., 2008). However,
they have yet to be seen in "global" jet simulations, in which a sub-Alfvénic flow
is launched consistently with jet-launching models, such as the Jet-Emitting Disk
(JED). As explained in the precedent section, this is most likely because those simu-
lations were run in a domain too small compared to the recollimation scales (beyond
102 au for YSO jets or 103 rs for AGN jets), or integrated on a time too small to reach
a fully steady jet.

It is important to note that in such an approach, the dominant mechanism in the
collimation is the internal hoop stress, caused by the toroidal magnetic field of the
jet. It is at odds with the pressure mismatch at the interface between the jet and the
ambient medium proposed as an explanation for the knots observed in AGN jets
(Komissarov and Falle, 1998; Perucho and Martí, 2007; Perucho, 2020). Both can
expected in MHD flows.
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FIGURE 1.17: Configuration of the electric circuits in the presence of
a recollimation shock (in red). The accelerating circuit (in purple) of
maximal current Ia is upstream of the shock. The asymptotic circuit
(in green) of maximal current I∞ is downstream of the shock. The
inner poloidal magnetic field lines (in blue) are collimated by the ac-
celerating circuit in the acceleration zone. They are then refracted by

the shock, and finally collimated by the asymptotic circuit.

One possible configuration of such a self-collimated jet is schemed on Figure 1.17.
This is a zoomed-out view of configuration C of Figure 1.14. Beyond the recollima-
tion shock (in red) and downstream of the accelerating electric circuit (in purple) ap-
pears a second asymptotic circuit (in green). The shock acts as a separatrix between
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the acceleration zone near the disk, and the propagation zone at the largest, asymp-
totic scales. It is a discontinuity in all variables, in particular the magnetic field. The
discontinuity in poloidal magnetic field induces a refraction of the poloidal mag-
netic field lines (in blue). The discontinuity in toroidal magnetic field induces a clear
separation between the accelerating circuit, anchored in the disk, and the asymptotic
circuit, at the observable scales.

In this situation, while the current Ia in the accelerating circuit is set by the
launching conditions, it is not clear what fixes the current I∞ in the asymptotic cir-
cuit. Yet, it this asymptotic current that dictates the jet shape. Heyvaerts and Nor-
man, 1989 showed that all stationary axisymmetric magnetized jets will eventually
collimate to a parabola, cone or cylinder, depending whether the asymptotic cur-
rent I∞ vanishes or not. This generic result has later been extended, taking into
account current closure (Heyvaerts and Norman, 2003), as well as the geometry of
the solution (collimating or decollimating, see Okamoto, 2003; Okamoto, 2001). It
is tempting to use this feature to provide a simple explanation for the conical shape
of the M87 jet beyond the recollimation shock (Figure 1.11): a vanishing asymptotic
current I∞ = 0 would lead to a ballistic propagation from the recollimation shock at
z ∼ 105rs, until the formation of the lobes at jet termination (z ∼ 109rs). Naturally,
Figure 1.17 shows a very simple picture, where there is a complete disconnection be-
tween the accelerating and asymptotic circuit. There could be a connection between
the two circuits by current closing down on the jet axis, or via an external sub fast-
magnetosonic outflow. Whether this scheme is realistic or not will be shown by the
numerical simulations.

1.3.6 Aims and contents

This thesis aims at studying the large scale collimation of jets, that dictates their
observable shape. The connection between the asymptotic current and the source
remains a long standing pending issue. It is naturally studied with time-dependent
MHD simulations, but previous works did not achieve a global steady state at these
large scales, most likely because those simulations did not reach the required scales
in space and time.

In this thesis, I will present several numerical simulations designed to bridge the
gap between the jet launching conditions and its collimation properties at observable
scales. The aim is to assess whether the generic results obtained within the self-
similar framework still hold in full 2D time-dependent simulations. In particular,
I will address whether the existence of recollimation shock is unavoidable for the
conditions expected in Keplerian accretion disks, as proposed by Ferreira, 1997.

As a consequence of this approach, I will focus mostly on steady-state jets, in
order to confront my simulations to MHD jet theory. It is clear that most if not all
astrophysical jets exhibit time-dependent features. However, the aim of this work
is not to reproduce a specific jet, but rather to investigate the generic behaviors of
MHD jets emitted from Keplerian accretion disks.

The manuscript is organized as follows:

• Chapter 2 sets the theoretical framework of the thesis: non-relativistic ideal
MHD. I justify the approximations used and highlight their limitations. Then,
I show a few relevant properties of ideal MHD jet theory.

• Chapter 3 sets the numerical framework of the thesis. I present various features
of the MHD code PLUTO (Mignone et al., 2007) I used throughout the thesis.
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Then, I describe the numerical setup designed for the simulations, with the
Jet-Emitting Disk (JED) as a boundary condition.

• Chapters 4 and 5 present jet simulations in which the JED extends on the whole
lower boundary. I show that recollimation shocks are indeed obtained, in
agreement with analytical theory. Then I present a parametric study, show-
ing a correspondance between my simulations and the self-similar solutions,
but also highlight the crucial role of the axial spine in global jet collimation. I
also compare my results to the literature.

• Chapter 6 presents jet simulations where the JED is now limited to the inner-
most disk regions. I show that this more realistic configuration produces jets
featuring recollimation shocks of similar properties. I also run a parametric
study, highlighting the influence of the central object rotation and the ambient
pressure on the jet collimation properties.

• Chapter 7 describes numerical simulations obtained serendipitously, showing
oscillations created in the asymptotic jet that propagate down to the disk. Such
perturbations arriving on the disk could provide an explanation to the QPOs
observed in X-ray binaries, as proposed by Ferreira et al., 2022.
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“Et saint Patrick d’ajouter froidement :
— You are Peter, and on that stone. . .
Saint Pierre ne le laisse pas achever.”

“And Saint Patrick adds coldly:
— You are Peter, and on that stone. . .
Saint Peter does not let him finish.”

Alphonse Allais
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Dans ce chapitre, je dérive les équations de la MHD idéale non-relativiste, cadre usuel
pour l’étude des jets astrophysiques. Je mets l’accent sur les différentes approximations util-
isées et leur validité. Puis, je montre certaines propriétés pertinentes des jets obtenues dans
ce cadre. Enfin, je donne les caractéristiques attendues des chocs de recollimation dans une
approche entièrement autosimilaire.

Comme la taille caractéristique du jet est bien supérieure à la longueur de Debye, mais
que les particules sont nombreuses dans une sphère de Debye, le plasma peut être considéré
comme électriquement neutre. Comme le libre parcours moyen des particules est petit devant
la taille caractéristique du jet, le plasma peut également être considéré comme collisionnel.
Cependant, cela suppose de considérer le plasma comme complètement ionisé, ce qui est une
hypothèse forte pour tous types de jets (AGN, étoiles jeunes, binaires X etc.). Dans ce cas,
il n’y a pas de particules neutres. Cela permet alors d’utiliser l’approche monofluide, et de
définir une unique densité et vitesse pour les ions et les électrons, et donc pour tout le plasma.
Enfin, comme la taille caractéristique du jet est grande devant le rayon cyclotron, l’échelle
macroscopique à laquelle le jet est observé est bien plus grande que l’échelle microscopique
de rotation des particules autour du champ magnétique. Le jet est donc bien décrit par les
équations de la dynamique des fluides.

Dans ce manuscrit, je négligerai les effets de la relativité et resterai dans le domaine de
la physique newtonienne. Cette approximation est valable pour les jets protostellaires, mais
ne fonctionne pas pour les jets d’AGN qui présentent de grands facteurs de Lorentz. La
plupart des comparaisons directes avec les observations seront faites en utilisant des jets pro-
tostellaires. Les équations de la MHD dans le cadre de la relativité générale (GRMHD) sont
différentes des équations newtoniennes. Dans l’équation du mouvement, par exemple, il y a
un terme supplémentaire dû au champ électrique; et l’inertie, alors (v/c)m, est plus grande.
Cela devrait compenser, au moins partiellement, le confinement causé par le champ magné-
tique toroïdal, en particulier pour des facteurs de Lorentz élevés. Ainsi, les structures (telles
que les chocs de recollimation) observées dans mes simulations non relativistes devraient ap-
paraître à des altitudes plus élevées dans des simulations GRMHD semblables. Cependant,
il n’est pas évident que ces structures apparaissent, et si elles apparaissent, on ne sait de com-
bien elles seraient déplacées vers le haut. Par conséquent, les comparaisons entre les résultats
présentés dans cette thèse et les jets d’AGN ne peuvent être que qualitatives.

L’effet Hall et la pression des électrons peuvent être négligés dans tous types de jets. On
néglige également la résistivité, ce qui est une hypothèse relativement forte au lancement,
mais bien valide loin du disque, lorsque le jet se recollimate. Une telle approximation est
appelée MHD idéale, et est le cadre usuel d’étude des jets astrophysiques. La viscosité du
plasma est négligeable, et l’équation du mouvement est l’équation d’Euler. Et, dans le jet
la densité est suffisamment faible pour négliger l’auto-gravité. On considère donc que seul
l’objet central (trou noir ou étoile) produit un champ gravitationnel. Enfin, je suppose une
équation d’état polytropique, le calcul des termes de chauffage et de refroidissement étant
particulièrement complexe.
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Dans un jet magnétisé supposé en MHD idéale, trois types d’ondes peuvent transporter
de l’information. La plus lente, l’onde magnétosonique lente (SM) est semblable à une onde
sonore dans le cas d’un plasma très magnétisé. L’onde d’Alfvén, de vitesse intermédiaire,
est une onde de cisaillement. La plus rapide est l’onde magnétosonique rapide (FM), qui
devient une onde d’Alfvén comprimant le plasma lorsque celui-ci est suffisament froid. C’est
le passage du plasma à des vitesses supérieures à celles des ondes rapides qui déclenchent
les chocs de recollimation auxquels on s’intéresse ici. L’écoulement devient stationnaire si et
seulement si sa vitesse est supérieure aux vitesses de phase de toutes ces ondes. Un écoule-
ment stable doit donc traverser trois points critiques. La présence d’un point critique pro-
duit une contrainte supplémentaire, introduisant ainsi une relation supplémentaire entre les
paramètres du problème. En pratique, chaque ligne de champ magnétique ancrée dans le
disque traversera les trois points critiques susmentionnés ou moins, en fonction des condi-
tions d’éjection et des vitesses atteintes sur la ligne de champ. Chaque franchissement d’un
point critique nécessite de laisser un paramètre libre à l’éjection, afin d’éviter de surcontrain-
dre le problème.

Dans tout ce qui suit, les jets seront supposés axisymétriques. En MHD idéale, le jet peut
être vu comme une succession de surfaces magnétiques imbriquées les unes dans les autres,
à la manière de poupées russes. Une surface magnétique est l’ensemble des lignes de champ
magnétique ancrées dans le disque à la même distance de l’objet central. La quantité définis-
sant une surface magnétique est le flux magnétique. Celui-ci est conservé sur l’entièreté de la
surface, de son lancement au niveau du disque, jusqu’à l’infini, dans la région asymptotique.
De plus, la topologie des surfaces magnétiques est conservée au cours du temps. Celles-ci ne
peuvent ni se rompre ni se reconnecter. Ainsi, les cinq invariants MHD, dépendant unique-
ment du flux, sont conservés au cours du temps et le long d’une surface magnétique. Ils
peuvent être imposés à la source (disque ou objet central) comme une condition limite, en
prenant en compte les problèmes de causalité expliqués dans le paragraphe précédent.

De nombreuses études analytiques ont permis de relier les propriétés du jet à celles du
disque. Celles ayant eu le plus de succès sont dites radialement autosimilaires. Dans cette
approche, on recherche des solutions stationnaires à l’écoulement 2D par séparation des vari-
ables, et on suppose que chaque quantité varie avec la distance à l’objet central par une loi de
puissance. Pour cette approche, le travail de référence est le papier de Blandford and Payne,
1982. Il définit les paramètres clés du problème: le chargement en masse κ, le bras de levier
magnétique λ et le paramètre α, exposant de la distance à la source pour le flux magné-
tique. De nombreux travaux autosimilaires ont suivi. En particulier, cette thèse s’appuie
sur la généralisation de Ferreira, 1997, appelée Jet-Emitting Disk. Cependant, ces solutions
ne peuvent pas traverser toutes les surfaces critiques, et ne reproduisent pas le jet asympto-
tique. L’état super-fast magnétosonique du jet devrait fortement dépendre de la distribution
du courant au lancement, qui, par le paramètre α, définit où le courant se referme, et donc
comment le jet est confiné.

Ce chapitre se conclut sur la dérivation des conditions de Rankine-Hugoniot pour des
chocs de recollimation stationnaires et adiabatiques, après le passage du point magnétosonique
rapide. Je décris les types de chocs possibles, ainsi que les relations entre les quantités pré et
post-choc. On s’attend à des chocs relativement faibles, où le jet est légèrement compressé et
réfracté au passage de la discontinuité. Ces considérations sont utiles pour comprendre les
simulations qui seront décrites dans la suite du manuscrit.
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In this chapter, I derive the equations of magnetohydrodynamics, highlighting
why the approximations made are justified in our astrophysical objects, namely
AGN and YSO jets. Then, I emphasize some properties of stationary flows relevant
for this manuscript. This is obviously not intended to be a course on magnetohy-
drodynamics. For this purpose, I recommend the read of Goedbloed, Keppens, and
Poedts, 2010; Goedbloed and Poedts, 2004 on which this chapter is based.

2.1 Ideal MHD approximations

2.1.1 Astrophysical jets: plasmas ?

In space, matter is not limited to the three most common states on Earth: solid, liquid
and gas. Ignoring dark matter, around 90% of the matter in the universe is plasma,
"a quasi-neutral gas of charged and neutral particles which exhibits collective behav-
ior" (Chen, 1974). Although not freely existing under "normal" conditions, plasma
can be generated on Earth, by lightning or flames for instance. Here, the charged
particles are negatively charged electrons and positively charged ions. In all the fol-
lowing, quantities with a subscript i will refer to the ions, quantities with a subscript
e will refer to the electrons and quantities with a subscript n will refer to the neutrals.

Electroneutrality

To study the electroneutrality of jets, I must introduce the Debye length:

λD =

√
kBTe

4πe2ne
(2.1)

It is the typical size of a region over which charge imbalance due to thermal fluc-
tuations may occur. For quasi-electroneutrality to hold, two conditions are required.

First, the plasma length scale should be much larger than the Debye length:

Rjet ≫ λD (2.2)

where Rjet is a typical radius of the jet.
In the case of AGN jets, I take Rjet = 1018cm(= 105rg), radius of the M87 jet at

the HST-1 knot (see the left panel of Figure 1.11), and in the case of YSO jets, I take
Rjet = 1015cm(= 102au) as the asymptotic radius of a HH jet (see Louvet et al., 2018
or Figure 1.9). The values used for all calculations are listed in Table 2.1.

I then need an estimate of the jet temperature at the collimation point. In the
case of YSO jets I use T = 104K (Bally, Reipurth, and Davis, 2007). In the case of
AGN jets, estimating the temperature is quite harder as radio observations only give
information on brightness temperatures of superthermal particles, around 1010K (see
e.g. Piner and Edwards, 2014, Homan et al., 2021). On the other hand, temperature
of the interstellar medium surrounding the jet is estimated around 107K(= 1keV)
(Allen et al., 2006). Such values are usually assumed for thermal studies of AGN jets
(see for instance Biretta, Stern, and Harris, 1991 or Asada and Nakamura, 2012). For
lack of a better estimate, I will take this value as a proxy for the plasma temperature
in the jet.

Second, there should be enough particles in a sphere of radius λD for statistical
considerations to be valid:

n ≫ λ−3
D (2.3)
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For the sake of concision, all adimensioned parameters are written in Table 2.2.
One can see that conditions 2.2 and 2.3 are verified for both AGN and YSO jets.

Collisionality and ionization

For particle motion to be long-range and collective rather than short-range and indi-
vidual, either one pressure component (ion, electron or neutral pressure) dominates
the others, or the plasma is thermalized: Ti = Te = Tn = T. In that case, there needs
to be a unique distribution function describing all the particles. This means that the
plasma is collisional, which occurs when:

Rjet ≫ λcoll (2.4)

where λcoll is the collisional mean free path of the electrons.
In the case of a fully ionized plasma, I consider the collisions between electrons

and ions, and the collisional mean free path is (Spitzer, 1962)

λcoll = λei ≃ 105 T2
e

ne ln Λ
cm (2.5)

where Te = T is the temperature of the electrons, ne = ni is the density of the
electrons and ln Λ is the Coulomb logarithm. In all the following ln Λ = 10.

In the case of a poorly ionized plasma the collisions between the electrons and
the neutrals should also be considered, and the collisional mean free path becomes

λcoll = λen ≃ 1015n−1
n cm (2.6)

where nn is the density of the neutrals.
For YSO jets, observations give a typical value of density n = 103cm−3, good

estimate of ne in a fully ionized jet and nn in a poorly ionized jet.
For AGN jets, densities are harder to derive, but back-of-the-enveloppe calcu-

lations can give an estimate. For a jet of power Lj, density n, axial velocity vj and
outward velocity vh, we have Lj ∼ πR2

jetnmpvjc2. By modeling the Spectral Energy
Distribution (SED), the M87 jet power is estimated at Lj ∼ 1044erg.s−1 (Owen, Eilek,
and Kassim, 2000; Prieto et al., 2016). Taking Vjet = c I obtain n ∼ 1cm−3.

What are the values of λcoll/Rjet ? In YSO jets, both fully ionized and poorly
ionized plasmas can be considered collisional. On the other hand, fully ionized AGN
jets are at the limit of validity of collisional plasma (λei ∼ Rjet). Assuming thermal
equilibium, the ionization fraction can be computed via the Saha equation:

ni

nn
=

(
2πmekB

h2
p

)3/2
T3/2

ni
e−Ui/(kBT) (2.7)

where Ui is the ionization energy. For AGN jets, this gives ni ≫ nn and the
plasma is fully ionized. AGN jets can thus be considered collisonial but would most
likely end up non-fully collisional after a certain altitude.

In conclusion, both AGN and YSO jets can be considered collisional. As they are
also electroneutral, they can be considered plasmas, according to definition of Chen
above.
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2.1.2 Fully ionized plasma

In all the following, I assume that the plasma is fully ionized. This means the plasma
is only composed of ions and electrons, there are no neutrals. We have seen that this
is a reasonable assumption for AGN jets. For YSO jets, the values in Table 2.1 give a
fully ionized via the Saha equation 2.7. However, this equation is highly dependent
on temperature, and colder jets are known to only be partially ionized. Hence, this
assumption is rather strong.

Within the fully ionized and electroneutral assumptions, one can define a single
plasma density ne = ni = n. As mi ≫ me the density and velocity of the plasma
become:

ρ = (mi + me)n ≃ min (2.8)

v⃗ =
miv⃗i + mev⃗e

mi + me
≃ v⃗i (2.9)

This approach is called "mono-fluid", the electrons and ions being treated as one
single fluid. Because of their low mass, the electron motion is negligible and elec-
trons only contribute to the current:

j⃗ = en(v⃗i − v⃗e) (2.10)

2.1.3 Kinetic approach

Describing the plasma as a single fluid, it should be considered on a macroscopic
scale, i.e. on large length and time scales compared to fundamental phenomena
happening to particles on small microscopic scales. One of such phenomena is the
movement of a charged particle subjected to magnetic field, called cyclotron motion.

For a particle of charge q and mass m subjected to a magnetic field of intensity B
and speed perpendicular to the magnetic field v⊥, this motion is a gyration of radius
mv⊥/(|q|B) and frequency |q|B/m. For an ion of charge e, those values are:

RL =
mpv⊥

eB
and ΩL =

eB
mp

(2.11)

Taking the thermal speed of the protons cth =
√

kBT/mp as an estimate for v⊥,
I can compare RL to a typical length-scale of the jet, Rjet, and 1/ΩL to a typical
time-scale of the jet, tjet = Rjet/Vjet. Around YSOs, (Carrasco-González et al., 2010),
B = 10−4G is a good estimate of the magnetic field in the jet. For AGN jets (Araudo
et al., 2018; Werner et al., 2012), it is in the 10−4 G range. For instance on the HST-1
knot of the M87 jet where the magnetic field should peak, X-ray variability measur-
ments (Harris and Krawczynski, 2006; Perlman et al., 2003) give a field strength of
0.5 − 20mG. This is consistent with the recent Event Horizon Telescope (EHT) of the
central black hole M87* (EHT et al., 2021a). A magnetic field strength of B ∼ 1− 30G
at launch and a poloidal magnetic field decreasing in Bp ∝ r−2 with the jet radius
gives slightly lower magnetic fields at HST-1, in the 10−4G range. As written in Table
2.2, the macroscopic scales at which we observe the jets are indeed much larger than
the microscopic scales of particles cyclotron motion. They can thus be described by
the equations of fluid dynamics.
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2.1.4 Non-relativistic electromagnetism

In this manuscript, I will neglect the effects of relativity and stay in the realm of
classical physics. As shown in Table 2.2, this approximation holds well for proto-
stellar jets, but does not work for AGN jets exhibiting large Lorentz factors. Some
qualitative consequences of our simulations can still be applicable to relativistic jets,
for instance in the context of the two-flow model (Henri and Pelletier, 1991) where
the inner spine emitted from the central object is highly relativistic (Lorenz factors
around ten), and the outer jet launched by the accretion disk is sub-relativistic. Still,
most of the direct comparison to observations will be made using protostellar jets.

The following four Maxwell equations are the foundation of classical electro-
magnetism (Heaviside, 1892; Maxwell, 1873). They link the electric field E⃗ and the
magnetic field B⃗ with the charge density τ and the electric current density j⃗.

∇⃗ · E⃗ = 4πτ Gauss’s law (2.12)

∇⃗ · B⃗ = 0 Gauss’s law for magnetism (2.13)

∇⃗ × E⃗ = −1
c

∂B⃗
∂t

Faraday’s law of induction (2.14)

∇⃗ × B⃗ =
1
c

(
4π⃗ j +

∂E⃗
∂t

)
Ampère’s circuital law (2.15)

From Maxwell-Ampère we see that the electric current is due to both auto-induction
and a variable electric field, called displacement current. Maxwell-Faraday then
yields an estimate of this displacement current

E
c2tjet

∼ VjetB
c2tjet

∼
(

Vjet

c

)2 B
Rjet

and

∣∣∣ 1
c

∂E⃗
∂t

∣∣∣∣∣∣∇⃗ × B⃗
∣∣∣ ∼

(
Vjet

c

)2

≪ 1 (2.16)

where tjet = Rjet/Vjet is a typical time-scale. In non-relativistic-jets with Vjet ≪ c
the displacement current is negligible compared to the auto-induction and Ampère’s
law becomes

∇⃗ × B⃗ =
4π

c
j⃗ (2.17)

This gives the current closure condition ∇⃗ · j⃗ = 0, meaning that all electric circuits
are closed.

2.1.5 Ohm’s law and resistivity

With this simplified version of Ampère’s circuital law, we now miss an equation
describing the time evolution of the electric field. Such an equation is obtained using
the momentum conservation of the electrons. In a fully ionized plasma, neglecting
the acceleration of the electrons and gravity because of their low mass yields

0⃗ = −∇⃗Pe − nee(E⃗ +
1
c

v⃗e × B⃗) +
mene

τei
(v⃗i − v⃗e) (2.18)

where the last term is due to collisions with ions, τei being the time-scale of such
collisions. Using the definitions of current j⃗ and mean plasma speed v⃗ in the section
2.1.2 above, I get the generalized Ohm’s law
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E⃗ +
1
c

v⃗ × B⃗ = ηm⃗ j +
1

ene
(⃗j × B⃗ − ∇⃗Pe) (2.19)

where ηm = me/(nee2τei) is the plasma resistivity.
The Hall effect 1

ene
j⃗ × B⃗ is negligible with respect to the left handside of the equa-

tion when

ΩLtjet ≫
(

VA

Vjet

)2

(2.20)

The electron pressure is negligible with respect to the left handside of the equa-
tion when

ΩLtjet ≫
(

cth

Vjet

)2

(2.21)

As these two conditions are satisfied in both AGN and YSO jets (see Table 2.2),
these two terms can be dropped and we thus obtain a simpified version of Ohm’s
law

E⃗ +
1
c

v⃗ × B⃗ = ηm⃗ j (2.22)

Combining it with the Maxwell equations I get the induction equation

∂B⃗
∂t

= (ηm∇⃗ × (∇⃗ × B⃗)− ∇⃗ × (⃗v × B⃗)) (2.23)

The plasma resistivity ηm can be expressed as in Spitzer, 1962

ηm =
4
√

2π

3
Ze2√me ln Λ
(kBTe)3/2 (2.24)

where Z is the ionization parameter and lnΛ ∼ 10 is the Coulomb logarithm.
The plasma is assumed to be fully ionized and Z = 1. I can now define the magnetic
Reynolds number, quantifying the relative strengths of magnetic field advection and
diffusion:

Rm =
VjetRjet

ηm
(2.25)

The magnetic Reynolds number reported in Table 2.2 is very small in both AGN
and YSO jets. The resistive term can thus be dropped and the induction equation
becomes

∂B⃗
∂t

= −∇⃗ × (⃗v × B⃗) (2.26)

describing the so-called ideal MHD regime.

2.1.6 Euler equations

As it exhibits collective behavior, the collisional plasma can be described as a fluid,
and thus follows the equations of fluid dynamics, namely the continuity equation

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 (2.27)
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and the equation of motion

ρ
∂v⃗
∂t

+ ρ(⃗v · ∇⃗)⃗v =
1
c

j⃗ × B⃗ − ∇⃗P − ρ∇⃗ΦG (2.28)

with only three volumic forces, the pressure gradient −∇⃗P, the gravitational
potential gradient −ρ∇⃗ΦG and the Laplace force (1/c)⃗j × B⃗.

This expression for the equation of motion implies a non-viscous plasma. To
verify this assumption, I compute the Reynolds number, ratio of inertial to viscous
forces:

Re =
VjetRjet

ν
(2.29)

where ν is the kinematic viscosity. As in Frisch, 1995, I take ν ∼ λcollcth, where
λcoll is the collisional mean free path between electrons and ions λei, and cth =√

kBT/mp is the thermal speed of the protons. The very large Reynolds numbers
(see Table 2.2) justify the non-viscous assumption for both YSO and AGN jets. Us-
ing Ampère’s law, the equation of motion becomes

ρ
∂v⃗
∂t

+ ρ(⃗v · ∇⃗)⃗v =
1

4π
(∇⃗ × B⃗)× B⃗ − ∇⃗P − ρ∇⃗ΦG (2.30)

Gravity can be due to two terms: the attraction of the central object (black hole
or star), or attraction of the plasma on itself, called self-gravity.

I seek for an estimate of the self-gravity potential compared to that of the cen-
tral object (black hole or star). In the following, M is the mass of the central object
(EHT et al., 2019 for AGNs) and Zjet is the typical vertical length-scale of the jet
(Asada and Nakamura (2012) for AGNs and Louvet et al., 2018 for YSOs). The grav-
itational potential at the center of a sphere of radius Zjet and uniform mass density
nmp is ΦS = −2πGnmpZ2

jet. The gravitational potential induced by the central ob-
ject of mass M is Φ∗ = −GM/Zjet. I thus computed the value of nmp/(M/Z3

jet).
Self-gravity being negligible for both types of jets, the gravitational potential is thus
simply

ΦG = −GM
R

(2.31)

where G is the gravitational constant and R the distance to the source
This is natural, as self-gravity is already negligible in the disk, and the jet density

is very small compared to that of the disk.

2.1.7 Energy equation

The exact energy equation is

ρT(
∂S
∂t

+ ∇⃗ · (Sv⃗)) = Γ − Λ (2.32)

where S is the specific entropy, and the entropy source Γ − Λ describes the local
effect of all possible heating Γ and cooling Λ terms.

The possible sources of heating are:

• Γe f f , effective resistive and viscous heating

• Γturb, turbulent energy deposition
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• Γext, all external heating terms, such as protostellar UV/X-rays or cosmic rays

The possible sources of cooling are:

• Λrad, the radiative losses

• Λturb, the turbulent transport

As usually done in works on jets, I assume a polytropic equation of state

P = SρΓ (2.33)

where Γ is the polytropic index, varying between Γ = 1 in the isothermal case
and Γ = 5/3 in the adiabatic case. This strong assumption makes the resolution of
the energy equation much simpler, as there is then no need to compute Γ and Λ. The
energy equation becomes

∂S
∂t

+ ∇⃗ · (Sv⃗) = 0 (2.34)

Object T(K) n(cm−3) B(G) M(g) Rjet(cm) Zjet(cm) Vjet(cm.s−1)

AGNs 107 100 10−3 1047 1018 1020 1010

YSOs 104 103 10−4 1033 1016 1017 107

TABLE 2.1: Typical physical conditions in AGN and YSO jets.

Object Vjet/c λD/Rjet λ−3
D /ne 1/(tjetωce) rL/Rjet 1/Rm (VA/Vjet)

2

AGNs 1 10−14 10−14 10−9 10−22 10−47 10−5

YSOs 10−3 10−13 10−12 10−20 10−21 10−40 10−3

Object (cs/Vjet)
2 λei/Rjet λen/Rjet 1/Re mpnjet/(M/Z3

jet)

AGNs 10−7 100 10−3 10−3 10−11

YSOs 10−3 10−4 10−4 10−5 10−3

TABLE 2.2: Adimensioned numbers in AGN and YSO jets.
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2.2 Ideal MHD equations

We now have the full set of ideal MHD equations:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 Continuity

(2.35)

ρ
∂v⃗
∂t

+ ρ(⃗v · ∇⃗)⃗v =
1

4π
(∇⃗ × B⃗)× B⃗ − ∇⃗P − ρ∇⃗ΦG where ΦG = −GM

R
Motion

(2.36)
∂ρS
∂t

+ ∇⃗ · (Sv⃗) = 0 where S =
P
ρΓ Energy

(2.37)

∂B⃗
∂t

= −∇⃗ × (⃗v × B⃗) where ∇⃗ · B⃗ = 0 Induction

(2.38)

Again, those equations were obtained in the non-relativistic case. There are sev-
eral consequential differences to the relativistic case. In the equation of motion for
instance there is an additional term due to the electric field and the inertia, then
(v/c)m, is greater. This expected to compensate, at least partially, the confinement
caused by the toroidal magnetic field (Figure 1.14), especially for high Lorentz fac-
tors. Thus, structures (such as recollimation shocks) seen in my non-relativistic sim-
ulations would be expected to appear at higher altitudes in similar GRMHD simu-
lations. However it is not clear that those structures would appear at all, and if they
do, by how much they would be displaced upwards. Consequently, comparisons
between the results shown in this thesis and AGN jets can only be qualitative.

These ideal MHD equations can then easily be transformed in their conservation
form

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 Continuity

(2.39)

∂ρv⃗
∂t

+ ∇⃗ ·
[

ρv⃗ ⊗ v⃗ +

(
P +

B2

8π

)
I − 1

4π
B⃗ ⊗ B⃗

]
= −ρ∇⃗ΦG where ΦG = −GM

R
Motion

(2.40)
∂S
∂t

+ ∇⃗ · (Sv⃗) = 0 where S =
P
ρΓ Energy

(2.41)

∂B⃗
∂t

+ ∇⃗ · (⃗v ⊗ B⃗ − B⃗ ⊗ v⃗) = 0⃗ where ∇⃗ · B⃗ = 0 Induction

(2.42)
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2.3 MHD waves

In a magnetized jet, several waves can transport information. To find out their prop-
erties, I will perform a linear analysis of the ideal MHD equations. For the sake of
simplicity, gravity will be neglected in this section. The form of the equations better
suited for this analysis is the following:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 Continuity (2.43)

ρ
∂v⃗
∂t

+ ρ(⃗v · ∇⃗)⃗v =
1

4π
(∇⃗ × B⃗)× B⃗ − ∇⃗P Motion (2.44)

∂S
∂t

+ ∇⃗ · (Sv⃗) = 0 where S =
P
ρΓ Energy (2.45)

∂B⃗
∂t

= −∇⃗ × (⃗v × B⃗) where ∇⃗ · B⃗ = 0 Induction (2.46)

I consider an homogenous and static plasma with linear perturbations: B⃗ = B⃗0 +
B⃗1, v⃗ = v⃗1, P = P0 + P1 and ρ = ρ0 + ρ1, where |B⃗0| ≫ |B⃗1|, P0 ≫ P1 and ρ0 ≫
ρ1. The other quantities with subscript 0 are assumed constant while the perturbed
quantities with subscript 1 vary in ei(⃗k·⃗r−ωt), with k⃗ and ω being respectively the
wave vector and the wave frequency.

The ideal MHD equations then lead to:

ωρ1 − ρ0(⃗k · u⃗1) = 0 (2.47)

ωρ0u⃗1 − P1⃗k +
1

4π
(⃗k × B⃗1)× B⃗0 = 0⃗ (2.48)

ωB⃗1 − k⃗ × (u⃗1 × B⃗0) = 0⃗ (2.49)
P1

P0
− Γ

ρ1

ρ0
= 0 (2.50)

Assuming ω ̸= 0, this yields

ρ1 = ρ0
k⃗ · v⃗1

ω
(2.51)

P1 = P0Γ
k⃗ · v⃗1

ω
(2.52)

B⃗1 =
(⃗k · v⃗1)B⃗0 − (⃗k · B⃗0)v⃗1

ω
(2.53)

(2.54)

Injecting those expressions into the linearized equation of motion, I obtain

[
ω2 − (⃗k · B⃗0)2

4πρ0

]
v⃗1 =

[(
ΓP0

ρ0
+

B2
0

4πρ0

)
k⃗ − k⃗ · B⃗0

4πρ0
B⃗0

]
(⃗k · v⃗1)−

(⃗k · B⃗0)(v⃗1 · B⃗0)

4πρ0
k⃗

(2.55)



40 Chapter 2. Theoretical framework

We place ourselves in cartesian coordinates (x, y, z) where z is the direction of B⃗0

and the wave vector k⃗ lies in the x − z plane. I define θ as the angle between B⃗0 and
k⃗. The problem is then reduced to the eigenvalue equation:


ω2 − k2V2

A − k2V2
S sin2 θ 0 −k2V2

S sin θ cos θ

0 ω2 − k2V2
A cos2 θ 0

−k2V2
S sin θ cos θ 0 ω2 − k2V2

S cos2 θ




vx
1

vy
1

vz
1

 =


0

0

0


(2.56)

where

VA =

√
B2

0
4πρ0

(2.57)

is the Alfvén speed and

VS =

√
ΓP0

ρ0
(2.58)

is the sound speed.
Non-trivial solutions of the eigenvalue equation are obtained when the matrix

determinant is zero. This yields the dispersion equation

(ω2 − k2V2
A cos2 θ)(ω4 − ω2k2(V2

A + V2
S ) + k4V2

AV2
S cos2 θ) = 0 (2.59)

This dispersion equation has three independent roots, corresponding to the three
waves able to propagate through an ideal MHD plasma.

The first root is

ω = kVA cos θ (2.60)

Its eigenvector being in the y direction, it is characterized by v⃗ · B⃗0 = 0 and
v⃗ · k⃗ = 0. From the equations above, we see that it does not perturb the density nor
the pressure. This transverse wave, also orthogonal to the magnetic field, is called
shear Alfvén wave.

The other two roots are

ω = kV± (2.61)

where

V± =

√
1
2

(
V2

A + V2
S ±

√(
V2

A + V2
S

)2 − 4V2
AV2

S cos2 θ

)
(2.62)

The first wave, associated with the root ω = kV+, is called fast-magnetosonic
wave, with a phase speed V+ ≡ VFM. The second wave, associated with the root
ω = kV−, is called slow-magnetosonic wave with a phase speed V− ≡ VSM. Their
eigenvectors being in the x − z plane, no straightforward characteristic can be de-
rived from these general expressions. However, in a few extreme cases relevant for
our jets, some properties can be derived.

For a cold plasma, in which VS tends to zero, the slow wave disappears while the
fast wave becomes an Alfvén compression wave of phase speed VFM = VA.
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For highly magnetized plasma (VA ≫ VS), the phase speed of the slow wave
becomes VSM = VS cos θ and the slow wave becomes a sound wave propagating
along the magnetic field lines.

2.4 Magnetic flux

Through a contour C comoving with the plasma, the magnetic flux Ψ is defined by

Ψ ≡
∫
S

B⃗ · d⃗S (2.63)

where S is a surface spanning C. The change of Ψ with time is due to two terms

dΨ
dt

=
∫
S

∂B⃗
∂t

· d⃗S +
∫
C

B⃗ · (⃗v × d⃗ℓ) =
∫
S

∂B⃗
∂t

· d⃗S +
∫
C
(B⃗ × v⃗) · d⃗ℓ (2.64)

the first term results from the variation of the surface S⃗ and the second from
the motion of the contour C. Using Maxwell-Faraday for the first term and Stokes
theorem for the second term yield

dΨ
dt

= −
∫
S
(∇⃗ × E⃗) · d⃗S +

∫
S

(
∇⃗ × (B⃗ × v⃗)

)
· d⃗S = −

∫
S

(
∇⃗ × (E⃗ + v⃗ × B⃗)

)
· d⃗S
(2.65)

Using Ohm’s law E⃗ + v⃗ × B⃗ = 0⃗ yields

dΨ
dt

= 0 (2.66)

This is known as the flux freezing condition: for any arbitrary contour, the mag-
netic flux Ψ is constant in time. This implies that magnetic field lines, defined as
lines of constant magnetic flux, are moving with the plasma with the plasma: they
are frozen into the plasma. Their topology is conserved with time: in ideal MHD,
magnetic field lines can never break or reconnect. Similarly, magnetic flux tubes,
also called magnetic surfaces, are embedded into the plasma. We can thus see jets as
a multitude of magnetic surfaces anchored in the disk, nested within each other like
Russian dolls, as illustrated in Figure 2.1.

2.5 Axisymmetry and stationarity

In all the following, I use the cylindrical coordinates (r,φ, z) and spherical coordi-
nates (R, θ,φ), with the disk midplane is at z = 0 or θ = π/2 and the jet axis at r = 0
or θ = 0. In both geometries, the toroidal direction is along u⃗φ and the poloidal
planes are orthogonal to that direction.

I further assume axisymmetry along the jet axis, and thus invariance along u⃗φ.
All developments will be made in the poloidal plane φ = 0. In addition, quantities
with a subscript p are computed in the poloidal plane.

The magnetic flux is then equal to Ψ = 2πrAφ were Aφ is the φ-component of
the magnetic vector potential A⃗ defined by B⃗ = ∇⃗ × A⃗. I assume that the outflow
is stationary, and the magnetic flux Ψ is constant along any magnetic field line or
magnetic surface.



42 Chapter 2. Theoretical framework

FIGURE 2.1: Axisymmetric jet composed of multiple magnetic sur-
faces (in blue) anchored in rotating disk (in orange)

2.6 Invariants and dynamics of steady flows

On top of the magnetic flux Ψ, a steady-state magnetic surface is characterized by
five other quantities, called MHD invariants:

• The mass flux to magnetic flux ratio η(Ψ) = 4πρvp/Bp.

• The rotation rate of the magnetic surface Ω∗(Ψ) = vφ/r − ηBφ/(4πρr).

• the total specific angular momentum carried away by that surface L(Ψ) =
vφr − rBφ/η.

• The Bernoulli invariant E(Ψ) = v2

2 + H + ΦG − Ω∗rBφ/η.

• The specific entropy S(Ψ) = P/ρΓ.

Those invariants, constant on a magnetic field along the whole, can be imposed
at their source as a boundary condition. This source where the invariants are set can
be either the disk in the case of a disk jet, or central object in the case of a stellar or
black hole jet. Changes from model to model or simulation to simulation will be the
values and profiles of those invariants, along the central object or the disk. But first,
let us derive the five MHD invariants.

2.6.1 MHD invariants

According to Ohm’s law, E⃗ + v⃗ × B⃗ = 0⃗, thus Eφ = −v⃗p × B⃗p. With A⃗ and V being

respectively the vector potential and the electric potential, we derive E⃗ = −∇⃗V − ∂A⃗
∂t

and thus Eφ = − 1
r

∂V
∂φ − ∂Aφ

∂t . Axisymmetry and time-invariance lead to Eφ = 0. Thus
v⃗p and B⃗p are colinear and

v⃗p = lB⃗p (2.67)

Mass conservation then gives

∇⃗ · (ρv⃗p) = ∇⃗ · (lρB⃗p) = B⃗p · ∇⃗(lρ) + lρ∇⃗ · B⃗p = B⃗p · ∇⃗(lρ) = 0 (2.68)
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Thanks to the divergence condition on the magnetic field, η ≡ 4πlρ is invariant
along a magnetic surface so that

v⃗p =
η

4πρ
B⃗p (2.69)

The mass flux at an altitude z between r and r + dr is

dṀjet = 2πrρvzdr =
η

2
rBzdr =

η

2
∂Ψ
∂r

dr (2.70)

η can thus be interpreted as the mass flux to magnetic flux ratio:

η = 2
dṀjet

dΨ
(2.71)

Projected along the toroidal direction, the induction equation gives in cylindrical
coordinates

∂

∂z
(vφBz − vzBφ)−

∂

∂r
(vrBφ − vφBr) = ∇⃗ · 1

r

(
vφB⃗p − Bφv⃗p

)
= 0 (2.72)

Using the η invariant, I get

B⃗p · ∇⃗
(

ηBφ

4πρr
− vφ

r

)
= 0 (2.73)

I can define the invariant

Ω∗ ≡
vφ
r

− ηBφ

4πρr
(2.74)

Ω∗ is a measure of the angular velocity of the magnetic field lines.
Projected along the toroidal direction, the equation of motion gives in cylindrical

coordinates

ρv⃗ · ∇⃗uφ =
1

4π

(
Bz

∂Bφ

∂z
+

Br

r
∂rBφ

∂r

)
ρ

r
v⃗p · ∇⃗(ruφ) =

1
4πr

B⃗p · ∇⃗(rBφ)

(2.75)

I derive

∇⃗ ·
(

ρrvφv⃗p −
rBφ

4π
B⃗p

)
= 0⃗ (2.76)

Using the η invariant, this gives

B⃗p · ∇⃗
(

rvφ − rBφ

η

)
(2.77)

I can then define the invariant

L ≡ rvφ − rBφ

η
(2.78)

It is the specific angular momentum, that consists in two parts: the classical ki-
netic part, and the magnetic part from the toroidal magnetic field.
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To derive the energy invariant, I project the equation of motion along the poloidal
velocity v⃗p

v⃗p ·
(
(⃗v · ∇⃗)⃗v +

1
ρ
∇⃗P + ∇⃗ΦG

)
=

1
4πρ

v⃗p · (∇⃗ × B⃗)× B⃗ (2.79)

Using (⃗v · ∇⃗)⃗v = (∇⃗ × v⃗)× v⃗ + 1
2∇⃗v2 I get

v⃗p · ∇⃗(H + ΦG +
v2

2
) =

1
4πρ

v⃗p · (∇⃗ × B⃗)× B⃗ (2.80)

where H =
∫ 1

ρ ∇⃗P · d⃗s is the enthalpy integrated over a field line, as there is no
heating nor cooling term. I get

1
4πρ

v⃗p · (∇⃗ × B⃗)× B⃗ =
Ω∗
4πρ

· ∇⃗(rBφ) =
1

4πρ
B⃗p · ∇⃗(Ω∗rBφ) = v⃗p · ∇⃗

(
Ω∗rBφ

η

)
(2.81)

Thus

v⃗p · ∇⃗
(

v2

2
+ H + ΦG − Ω∗rBφ

η

)
= 0 (2.82)

The Bernoulli invariant is then defined as

E ≡ v2

2
+ H + ΦG − Ω∗rBφ

η
(2.83)

It is the specific energy carried along a magnetic field line.
Finally, the energy equation directly implies that the specific entropy S is an in-

variant.

2.6.2 Critical points in ideal MHD

In section 2.3 we have seen the three types of waves can propagate in an ideal MHD
flow: the slow-magnetosonic wave of speed VSM, the Alfvén wave of speed VAp

and the fast-magnetosonic wave of speed VFM, with VSM < VAp < VFM. The flow
becomes stationary if and only if its velocity is greater than the phase speeds of all
these waves. A steady flow thus has to cross three critical surfaces, defined for each
wave as the surface of mach number equal to one. The radii at which these crossings
occur are noted respectively rSM, rA and rFM. They are illustrated in Figure 2.2.

The critical Alfvén speed relevant for the flow is the poloidal alfvén speed:

VAp =

√
B2

p

4πρ
(2.84)

And the slow-magnetosonic and fast-magnetosonic speeds are respectively:

VSM =

√
1
2

(
V2

A + V2
S −

√(
V2

A + V2
S

)2 − 4V2
Ap

V2
S

)
(2.85)

VFM =

√
1
2

(
V2

A + V2
S +

√(
V2

A + V2
S

)2 − 4V2
Ap

V2
S

)
(2.86)
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with VA =
√

B2

4πρ being the total Alfvén speed of the flow, poloidal and toroidal.
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FIGURE 2.2: The Jet-Emitting Disk extends from an inner radius rint
to an outer radius rext. The magnetic field line, launched from the
radius r0, crosses at maximum three critical surfaces: super-slow at

r = rSM, Alfvén at r = rA and super-fast at r = rFM.

The presence of a critical point produces an additional constraint, thus intro-
ducing an additional relation between the problem parameters. In practice, each
magnetic field line anchored in the disk will cross the three aforementioned critical
points or less, depending on the ejection conditions and on the speeds reached on
the field line. Each crossing of a critical point requires to let a parameter free at the
ejection, to avoid over-constraining the problem. Which parameters are free and
fixed in our setup will be detailed in the following chapter.

Each of these three critical points is associated with a physical characteristic of
the problem:

• The slow-magnetosonic constraint sets the mass flux emitted from the disk: a
high jet mass flux lowers this point and brings it closer to the disk, while a low
ejected mass brings it higher in the flow.

• The Alfvén constraint sets the angular momentum of the flow. The value of
the MHD invariant being L = Ω∗r2

A, where Ω∗ is a MHD invariant and rA the
jet radius where vp = VAp , setting the value of VAp sets the value of L.

• The fast-magnetosonic constraint finally sets the total energy E of the flow (see
e.g. Camenzind, 1986).

2.6.3 Asymptotic speeds

These critical surfaces are crossed in the first acceleration/collimation phase of the
flow (see section 1.3.4). The jet has already become super-FM at the largest observ-
able scales, where it is most collimated. There, it its maximal asymptotic speed v∞
(see Figure 1.15).

How does this asymptotic speed depend on the ejection parameters ? Let us
introduce the parameter g, defined by Pelletier and Pudritz, 1992 as Ω = Ω∗(1 − g)
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and thus measuring the difference between the plasma rotation and the rotation of
the magnetic field lines. It can be expressed as

g =
m2

m2 − 1

(
1 − r2

A
r2

)
(2.87)

This parameter is close to zero on the disk. At high altitudes, it rises to unity for
highly super-Alfvénic (m2 ≫ 1) and highly collimated (r ≫ rA) jets. On a specific
field line, the Bernoulli invariant becomes equal to the kinetic energy E ≃ v2

∞/2 and
the poloidal asymptotic speed becomes

v∞ ≃
√

2E (2.88)

This is a very generic result that dates back to Weber and Davis, 1967. It does not
require any specific profile at launch. It simply says that in steady-state ideal MHD,
the asymptotic speed of a highly super-Alfvénic and collimated jet is dictated by the
Bernoulli invariant. As this Bernoulli invariant can be fixed at launch (on the disk or
on the central object), the ejection conditions set the asymptotic jet speed.

2.6.4 The self-similar approximation

Unfortunately, not all results can be this generic, even though we have made quite
a few approximations to obtain the ideal MHD equations. These equations remain
heavy to solve with ordinary methods. The common method used to find solutions
to axisymmetric ideal MHD flows is the separation of variables, searching for solu-
tions of the form:

X = X0RζX fX(θ) (2.89)

One key assumption here is a power-law dependency with the spherical radius
R, giving the property of scale invariance to the solution. Such an approach is
known as the radially self-similar ansatz. Its justification relies on the expression
of the gravitational potential. Since gravity is the main energy reservoir in accretion-
ejection, it is indeed natural to expect the other quantities to follow a similar scaling.

I define the parameter α ≡ ζΨ as the radial exponent of the magnetic flux:
Ψ ∝ Rα. The seminal paper of Blandford and Payne, 1982 corresponds to the case
α = 3/4. In our approach, all other radial exponents are expressed using this α
parameter, as shown in Table 2.3.

Parameter X Ψ ρ P uR uθ uφ BR Bθ Bφ

Exponent ζX α 2α − 3 2α − 4 −1/2 −1/2 −1/2 α − 2 α − 2 α − 2

TABLE 2.3: Values of the radial exponents ζX in X ∝ RζX for the
radially self-similar ansatz.

2.6.5 Parameter space

The importance of the ejection parameter ξ was already mentioned in the introduc-
tion. It is defined as the radial exponent of the mass flux Ṁacc(r) ≡ −4π

∫ h(r)
0 ρurdz ∝

rξ , where h(r) is the disk height at the radius r (Ferreira and Pelletier, 1995). This
ejection index is linked to the α parameter through:



2.6. Invariants and dynamics of steady flows 47

α =
3
4
+

ξ

2
(2.90)

This relation induces a few constraints on the values the self-similar parameter
α can take. As material is only outflowing from the disk and not inflowing, ξ > 0.
Moreover, there are no stationary super-SM self-similar solutions for ξ ≥ 1. This
gives the constraint 0 < ξ < 1, thus 3/4 < α < 5/4.

In the continuation of Blandford and Payne, 1982, let us introduce a few relevant
jet parameters, where the subscript 0 means that the quantity value is taken at its
anchoring point in the disk, and the subscript A means that the quantity value is
taken on the Alfvén surface.

λ ≡ Ω∗r2
A

Ω0r2
0
≃ r2

A
r2

0
≃ 1 − Bφ0

ηΩ0r0
(2.91)

This λ parameter is the magnetic arm lever, braking down the disk. It is the
normalized specific angular momentum (i.e. the MHD invariant L). It also yields
another expression of the asymptotic speed (equation 2.88) of highly super-Alfvénic
and collimated jets

v∞ =
√

2λ − 3VKd (2.92)

where VKd = Ωoro is the Keplerian rotation speed at the anchoring point of the
field line, meaning the magnetic field surfaces closest to the polar axis are also the
ones with the highest asymptotic poloidal speeds.

Blandford and Payne, 1982 also introduced the well-known κ parameter, con-
stant in their solutions:

κ ≡ η
Ω0r0

B0
≃ 4πΩ0r0

B2
0

ρ0uz0 (2.93)

This κ parameter measures the mass load by the disk on a specific magnetic sur-
face.

Those two parameters λ and κ can be approximated via the ejection efficiency ξ,
and thus the α parameter (see e.g. Ferreira, 1997):

λ ≃ 1 +
1

2ξ
(2.94)

κ ≃ ξ (2.95)

The magnetic lever arm can be expressed as λ = 1 + q/κ, where q = |Bφ/Bz| is
the magnetic shear at launch, found close to unity in self-similar jets. The exact link
between α, λ and κ depends on the solution. Figure 2.3 displays those relations for
the solutions of Blandford and Payne, 1982.

There are a few restrictions on what solutions are able to provide collimated
super-Alfvénic flows. First, only in solutions with high enough κλ (2λ − 3)1/2 does
the flow eventually become super-Alfvénic. Thus, the parameter β ≡ κ (2λ − 3)3/2

should be larger than unity, but not to large, otherwise the centrifugal force would
be too large for the magnetic field to collimate the flow. Then, for the flow to be
magnetically dominated, at least at launch, the parameter κ needs to be smaller than
unity. However, recently Jacquemin-Ide, Ferreira, and Lesur, 2019 showed that it is
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possible to launch super-Alfvénic and lowly magnetized jets with κ up to ten (see
their Figure 4).

FIGURE 2.3: Values of λ and κ for the solutions of Blandford and
Payne, 1982. The parameter ξ

′
0 ≡ Br/Bz is the inclination of the mag-

netic field lines on the disk surface. The parameter β ≡ κ (2λ − 3)3/2

relates to the asymptotic collimation of the solution.

2.6.6 Electric circuits and collimation

How can a magnetically-dominated jet be collimated ? In plasma physics, there
are two complementary mechanisms can confine a flow towards its axis. In both
mechanisms, the plasma is threaded by the associated magnetic field B⃗ and electric
current j⃗. They are illustrated in Figure 2.4.

• In the z-pinch mechanism, the electric current j⃗ is axial and the magnetic field
B⃗ is toroidal. This is the tension effect, or hoop-stress.

• In the θ-pinch mechanism, the magnetic field B⃗ is axial and the electric current
j⃗ is toroidal. This is the radial gradient of the poloidal magnetic pressure.

FIGURE 2.4: Illustration of the pinching mechanisms (Goedbloed and
Poedts, 2004). Left: Z-pinch mechanism. Right: θ-pinch mechanism.

For both cases, the result is the same: a Laplace force j⃗ × B⃗ that is radial and
directed towards the axis, thus achieving confinement. In fusion experiments, an
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external electric current is applied, creating the associated magnetic field. In astro-
physical jets, it is the opposite: the magnetic field emitted from the disk induces an
electric circuit.

Is this circuit created by the poloidal or the toroidal magnetic field ? In steady
state ideal MHD, both integrated intensity rBφ and flux πr2Bz are conserved along a
flux tube. This leads to different power laws variations for the two components:
Bφ ∝ 1/r and Bz ∝ 1/r2. As the amplitude of the poloidal magnetic field de-
creases with altitude much faster than the amplitude of the toroidal magnetic field,
the toroidal field becomes dominant early in the jet. Moreover, the differential rota-
tion induces a negative toroidal magnetic field, along −u⃗φ. Thus, in order to create
a confining z-pinch, the electric current needs to be along −u⃗z, directed towards the
central object or the disk. Here, I assume the presence of preexistent vertical mag-
netic field lines at the vicinity of the disk, as in situation A of Figure 1.14. This field
is maintained by toroidal current in the disk.

How are the self-similar solutions confined ? A negative electric current Iaxis < 0
is transported along the axis and enters the disk at its inner radius rint. The total
current emitted from the jet is

Ijet =
∫ rext

rint

2πrJzdr = Iaxis

[
1 −

(
rint

rext

)1−α
]

(2.96)

We see that there are three possible cases, illustrated in Figure 2.5

• For α < 1 (left handside of Figure 2.5), the disk-emitted jet transports a positive
current. As the circuits close on r = rint, only the innermost parts of the jet are
confining.

• For α = 1, the disk-emitted jet does not transport any current as Ijet = 0 and the
jet is only confined by the current on the axis, that should close in an external
cocoon beyond rext.

• For α > 1 (right handside of Figure 2.5), the disk-emitted jet transports a neg-
ative current. As the circuits close on r = rext, the jet is self-confined in its
entirety, the positive return current being transported by an external cocoon.
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FIGURE 2.5: Electric circuits over a Jet-Emitting disk, for an α param-
eter lower than unity (left) and greater than unity (right).

In all cases, the current closure condition ∇⃗ · j⃗ imposes the presence of an external
anticollimated zone with a positive current. A globally collimated jet is beyond the
reach of the self-similar solutions, as the two configurations of Figure 2.5 cannot be
described by a single power law.
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2.6.7 Jet transverse equilibrium

The force balance in the poloidal plane is described by the transfield equation (Hu
and Low, 1989). Projected orthogonally to the field lines, it gives (Ferreira, 1997)

(1 − m2)
B2

p

4πR −∇⊥

(
P +

B2

8π

)
− ρ∇⊥ΦG +

(
ρΩ2r − B2

φ

4πr

)
∇⊥r = 0 (2.97)

where m2 ≡ vp
VAp

is the poloidal Alfvénic mach number squared, ∇⊥ ≡ ∇⃗Ψ·∇⃗
|∇⃗Ψ|

is the gradient perpendicular to a magnetic surface and R is the local curvature
radius of the magnetic surface, positive when bent inwards and negative when bent
outwards.

This equation provides the transverse equilibrium of the jet. The first term de-
scribes both the magnetic tension of the field lines and inertia, the other forces being
the pressure gradient, gravity, and the competing centrifugal force and hoop stress.
These last two terms are respectively the two main decollimating and collimating
forces in the jet.

2.7 Discontinuities

Ultimately, the collimation of the jet at the largest scales is set by the value of the
asymptotic current I∞. For instance, we saw in section 1.3.5 that the absence of such
a current (I∞ = 0) could explain the conical shape of the M87 jet past the HST-1
knot. Whatever the value of the asymptotic current, it should be separated from
the accelerating current connected to source by a recollimation shock, as sketched in
Figure 1.17. According to the self-similar solutions (Ferreira, 1997; Jacquemin-Ide,
Ferreira, and Lesur, 2019), this recollimation shock would occur at large distances,
beyond 102 astronomical units for a YSO jet or 103 Schwarzchild radii for an AGN
jet. The left panel of Figure 2.6 shows a specific configuration, prolongation of a
self-similar solution with an asymptotically collimated jet, meaning I∞ ̸= 0. In blue
is a magnetic surface, symmetrization of a poloidal magnetic field line around the
jet axis. The jet initially widens, then recollimates. At the recollimation shock, the
surface is refracted, then stays collimated in a cylinder because of the return current
I∞ ̸= 0. The recollimation shock is displayed in orange. In the self-similar ansatz,
this is a cone whose apex is the central object (black hole or star).

In the numerical simulations presented in this thesis, the recollimation shocks act
as a separatrix between the accelerating current and the asymptotic current. Before
delving into the simulations and seeing how the numerical shocks behave, let us see
what is expected from the theory.

One of the applications of the MHD conservation equations is the derivation of
shock conditions. In hydrodynamics, such a discontinuity is associated with a tran-
sition from a subsonic flow upstream to a supersonic flow downstream (Hugoniot,
1887, 1888; Rankine, 1870). The ideal MHD problem is much richer, as there are three
characteristic speeds. The geometry of the jet and recollimation shock is described in
the right panel of Figure 2.6. I consider a 2.5D jet, thus axisymmetrical around its Oz
axis, and study a standing shock that remains stationary in the lab frame. Therefore,
no system of coordinates is required to move with the shock front.

I write the Rankine-Hugoniot jump conditions valid for standing, adiabatic rec-
ollimation shocks. Contrary to Ouyed and Pudritz, 1993, I take account the toroidal
magnetic field into account, as the shocks happen when that component is dominant.
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FIGURE 2.6: Structure of MHD recollimation shocks. Left: 3D struc-
ture in the self-similar approach. The shock is displayed in orange. It
is a cone, whose apex is the central object (black hole or star). Right:
Geometry of the 2.5D recollimation shocks. In green in the central
object. It emits an axial spine, in red. The Jet-Emitting Disk is at the
lower boundary, between Rd and Rext at θ = π/2. The solid purple
line represents a recollimation shock surface starting on the axis at a
height Zc. For each point N lying on this surface, I use local poloidal
unit vectors (u⃗⊥, u⃗p

∥), respectively perpendicular and parallel to the
shock surface. Also, at any point M inside the domain, I either use

spherical (u⃗R ,⃗uθ ,⃗uφ) or cylindrical (u⃗r ,⃗uφ ,⃗uz) coordinates.

The local jumps [A] = A2 − A1 between a pre-shock quantity A1 and its post-shock
value A2 are expressed in the rest frame of the shock as

[ρv⊥] = 0

[ρv⊥(
v2

2
+ H) +

B2

4π
v⊥ − v⃗ · B⃗

4π
B⊥] = 0

[P + ρv2
⊥ +

B2
∥ − B2

⊥
8π

] = 0

[ρv⊥v∥ −
B⊥
µo

B∥] = 0 (2.98)

[B⊥] = 0
[B⊥v∥ − v⊥B∥] = 0,

where H = V2
s /(Γ − 1) is the enthalpy and v⊥, B⊥ (respectively v⃗∥, B⃗∥) are the

normal (respectively tangential) components to the shock surface. The shock is ax-
isymmetric, so that the tangential component (e.g. parallel to the shock) of the
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magnetic field is B⃗∥ = Bp
∥ u⃗p

∥ + Bφu⃗φ, whereas the poloidal component is B⃗p =

Bp
∥ u⃗p

∥ + B⊥u⃗⊥, with the unit vectors (u⃗⊥, u⃗p
∥ , u⃗φ) defining a local direct orthonormal

coordinate system. As these jump conditions express the conservation of mass, an-
gular momentum and energy in ideal MHD, the five MHD invariants along a given
magnetic surface (η, Ω∗, L, E, S) are therefore also conserved.

A shock corresponds to ρu⊥ ̸= 0 with B⊥ ̸= 0. The Rankine-Hugoniot conditions
give

B⃗∥2 =
m2 − 1

m2/χ − 1
B⃗∥1 (2.99)

which shows that the two tangential magnetic field components remain parallel
through the discontinuity. Three discontinuities can be derived from this equation:

• Oblique shock for m2 > χ > 1.

• Normal shock for m2 = χ > 1.

• Alfvén shear discontinuity for m2 = χ = 1.

In this section, I will only focus on the case m2 > χ > 1. After some algebra, all
post-shock quantities (region 2) can be expressed as a function of the pre-shock ones
(region 1). In particular

Bφ2

Bφ1

=
Bp
∥2

Bp
∥1

= χ
m2 − 1
m2 − χ

vφ2

vφ1
=

m2 − 1
m2 − χ

m2r2
A − χr2

m2r2
A − r2

(2.100)

P2

P1
= 1 + Γm2

s (χ − 1)

(
1
χ
+

b2

2
2χ − m2(1 + χ)

(χ − m2)2

)
T2

T1
=

1
χ

P2

P1
,

where the sonic Mach number ms = v⊥/Vs and magnetic shear b2 = (B∥/B⊥)2 are
computed in the pre-shock region. Of particular interest are the relative variations
of the toroidal magnetic field component δBφ = Bφ2 /Bφ1 − 1 and the plasma angu-
lar velocity δΩ = Ω2/Ω1 − 1, as well as the total deflection angle of the poloidal
magnetic surface δi = i2 − i1 where tan i = Bp

∥/B⊥:

δBφ = (χ − 1)
m2

m2 − χ

−δΩ =
χ − 1

m2 − χ

m2(r2 − r2
A)

m2r2
A − r2

≤ χ − 1
m2 − χ

(2.101)

tan δi =
m2(χ − 1)

m2 − χ

tan i1
1 + χ tan2 i1 m2−1

m2−χ

.

Before delving further into the resolution, a few remarks can be made on the
properties of the post-shock region. For a highly super-Alfvénic jet (m2 ≫ 1), we
have 0 < −δΩ ≲ (χ − 1)/m2 which is small. The shock should thus slow down the
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jet rotation, but only slightly. Then, as a shock corresponds to χ > 1, we have δBφ ≃
χ − 1 > 0. The shock should thus increase the current intensity I = −rBφ. In the
inner regions, the post-shock region should be more collimating than the pre shock
region. Naturally, this has to be put in perspective with the outwards refraction of
the poloidal magnetic field lines at the shock.

Let us now go back to the resolution. The compression rate χ is the solution of
the cubic polynomial equation

−Aχ3 + Bχ2 − Cχ + D = 0 (2.102)

with

A = 1 + b2 +
1 + χo

Γm2
s

B = χo(1 + b2) + 2m2
(

1 +
1 + χo

Γm2
s

− b2 χo − 3
4

)
C = m2

(
2χo + b2 1 + χo

2
+ m2

(
1 +

1 + χo

Γm2
s

))
D = χom4,

where χo = (Γ + 1)/(Γ − 1) is the maximal compression rate for a hydrodynamic
shock. Equation 2.102 has one positive root only for an incoming super-FM flow,
namely for n⊥ = v⊥/VFM⊥ larger than unity.

This is a hefty equation that can be simplified for supersonic (ms ≫ 1) and super-
Alfvénic (m ≫ 1) cold jets, where the dominant magnetic field is the toroidal one
(b2 ≃ (Bφ/B⊥)2 ≫ 1). The fast-magnetosonic Mach number in the normal direction
therefore writes n⊥ ≃ mVAp,⊥/VAφ = m/b, which leads to the simplified equation
for χ

χo − 3
2

χ2 +

(
1 + χo

2
+ n2

⊥

)
χ − χon2

⊥ = 0 . (2.103)

This shows that whenever the jets reach a very large fast-magnetosonic Mach num-
ber n⊥, compression rates close to the hydrodynamical case χo are possible.

2.8 Summary

In this chapter, I have shown that the equations of non-relativistic ideal MHD are ap-
plicable to both black hole and protostellar jets, with a few reserves. Then, I defined
and derived the MHD invariants, that, with the magnetic flux, can be followed along
a field line from the launching conditions until the asymptotic regions. I also drew
a few properties of the jet asymptotics and collimation, both generic and restricted
to the self-similar approach. Finally, I derived the phase speeds of the three waves
that can propagate in ideal MHD. I highlighted the requirements they bring to the
formation of a steady state ideal MHD jet, and derived the Rankine-Hugoniot jump
conditions for a fast-magnetosonic oblique shock.

The knowledge of these points was required to design the numerical setup used
to produce the simulations. They will also be useful in understanding the simula-
tion results. I will now move on to the bulk of the thesis. In the next chapter, I
will describe the MHD code and the setup used to produce the simulated jets. The
following chapters will then be dedicated to the description and analysis of the nu-
merical simulations.
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“Poco portäi in là volta la testa,
che me parve veder molte alte torri;

ond’io : «Maestro, di’, che terra è questa ? »
Ed elli a me : «Però che tu trascorri

per le tenebre troppo da la lungi,
avvien che poi nel maginare abborri.
Tu vedrai ben, se tu là ti congiungi,

quanto ’l senso s’inganna di lontano ;
però alquanto più te stesso pungi.»”

“À peine avais-je tourné la tête vers ce côté
que je crus voir plusieurs très hautes tours ;

et moi : «Maître, dis-moi, quelle est cette cité ? »
Il répondit : «Lorsque ta vue

veut pénétrer trop loin dans les ténèbres,
il advient qu’en imaginant tu t’égares.
Tu verras bien, si tu arrives jusque-là,

combien les sens y sont trompés par la distance ;
tâche de presser un peu le pas.»”

“No sooner had I turned my head this way
I thought I saw several very high towers ;

And I said, «Master, tell me, what is this city ? »
He answered: «When your sight

wants to penetrate too far into the darkness,
it happens that in imagining you go astray.

You will see, if you get there,
how much the senses are deceived by distance ;

try to quicken your pace a little. »”

Dante Alighieri
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Au cours de la thèse, l’essentiel de mon travail à concevoir, produire et analyser des sim-
ulations numériques de jets astrophysiques. Comme nous le verrons, l’utilisation du code
PLUTO (Mignone et al., 2007) s’est imposée naturellement comme une solution à ce prob-
lème. En général, l’exécution d’une simulation sur PLUTO est soumise à deux conditions
préalables :

• Adapter le code aux spécificités du problème : choisir les modules physiques et les
schémas d’intégration.

• Créer une configuration numérique : définir le domaine d’intégration et sa grille, im-
plémenter les conditions initiales et limites.

Au cours de ce chapitre, je détaille les choix faits au cours de ces deux étapes et leurs
motivations.

Dans la jungle des codes MHD, le code PLUTO (Mignone et al., 2007) est particulière-
ment adapté à la problématique de ma thèse, principalement pour trois raisons. Première-
ment, il est très flexible, ce qui permet de réaliser des implémentations spécifiques. Deux-
ièmement, il fournit des schémas de capture des chocs à haute résolution, utiles pour étudier
les grands chocs de recollimation attendus dans les jets collimatés. Enfin, Claudio Zanni
étant l’un des rédacteurs du code, il a pu m’apporter une aide précieuse dans la création des
configurations de simulation.

Il s’agit d’un code aux volumes finis. Pour s’assurer que la divergence du champ mag-
nétique reste bien nulle tout au long de la simulation, j’utilise la méthode de transport con-
traint. Celle-ci permet que si le champ est initialement à divergence nulle, il le reste, à
précision machine, jusqu’à la fin de la simulation.

Dans le domaine de calcul, deux solveurs de Riemann sont utilisés, HLL et HLLD. Tous
deux permettent de résoudre les ondes magnétosoniques rapides, nécessaires à la présence
des chocs de recollimation. Le solveur HLL, plus approché, n’est utilisé que dans une petite
partie du domaine, proche de l’axe, afin de permettre une convergence plus rapide des simu-
lations. En dehors de ce domaine, j’utilise le solveur HLLD, plus précis, et je reconstruis les
grandeurs à l’intérieur des cellules entre chaque pas de temps.

Une des différences principales entre mon travail et les simulations précédentes est la
conception et la mise en place d’une méthode d’accélération. Celle-ci repose sur le fait que
dans les cellules les plus petites du domaine, le jet converge rapidement vers un état station-
naire. Cette méthode a permis une convergence des simulations plus d’un millier de fois plus
rapidement que la méthode usuelle, et le projet n’aurait pu être mené à bien.

Les simulations menées au cours de cette thèse sont dites 2.5D. Cela signifie que la ro-
tation et le champ magnétique toroidal sont bien calculés à chaque pas de temps, mais sont
supposés axisymétriques. La grille de calcul est plus de 5000 fois plus grande que le rayon
de troncation du disque, ce qui est bien plus grand que les simulations de type plateforme de
la littérature.
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Au cours de ma thèse, j’ai effectué trois types de simulations :

• Premièrement, des simulations 2.5D dans lesquelles le jet est émis par l’ensemble du
disque. Elles ont été réalisées pour vérifier si les simulations globales dépendantes du
temps peuvent contenir des chocs de recollimation réguliers, comme le prévoient les
solutions auto-similaires.

• Ensuite, des simulations 2.5D dans lesquelles le jet n’est émis que depuis les parties
les plus internes du disque. Elles ont été réalisées pour étudier la présence et le com-
portement des chocs de recollimation dans un cadre plus réaliste.

• Enfin, des simulations 3D similaires aux simulations tronquées, mais symétrisées au-
tour de l’axe θ = 0, afin d’étudier la stabilité des chocs de recollimation.

Les deux derniers types de simulations sont des raffinements du premier, d’abord en
stoppant l’éjection dans les parties externes du disque, puis en symétrisant les simulations
tronquées autour de l’axe. Dans cet chapitre, je décris la configuration numérique conçue
pour le premier type de simulation.

La condition initiale est une simple solution potentielle auto-similaire. Elle assure qu’il
n’y a initialement ni courant ni force dans le jet. Ainsi, il n’y a pas de jet collimaté présent
ab initio dans la simulation. Celui-ci est bien lancé depuis le disque.

Les conditions limites délicates sont celles correspondant au disque et à l’objet central,
car elles doivent modéliser les conditions d’éjection du jet (depuis le disque) et de la colonne
interne (depuis l’objet central). On veut que le jet soit émis sub-FM et sub-Alfvénique, mais
super-SM. Cela suppose de fixer six quantités à la surface du disque, deux étant laissées
libres, le champ magnétique toroidal ainsi que celui perpendiculaire à la frontière.

Sur le disque, les conditions limites sont fixées comme dans les solutions autosimilaires
Jet-Emitting Disk (Ferreira, 1997). De plus, on s’assure que les lignes de champ de vitesse
soient colinéaires avec celles de champ magnétique, en cohérence avec la théorie des jets sta-
tionnaires en MHD idéale.

Sur l’objet central, les quantités sont interpolées entre leurs valeurs fixées au bord interne
du disque et leurs valeurs sur l’axe. On veut réaliser des simulations de jets émis depuis un
disque d’accrétion, les conditions sont donc fixées de sorte à limiter l’éjection autour de l’axe.
Par exemple, la densité sur l’axe est fixée cent fois plus faible que celle sur le bord interne du
disque.

Pour réaliser les simulations présentées dans ce manuscrit, j’ai bénéficié de temps de
calcul sur GRICAD (Grenoble Alpes Recherche-Infrastructure de Calcul Intensif et de Don-
nées). Au cours de ma thèse, j’ai effectué 371 simulations, soit sur 256 CPU pour les sim-
ulations de production, soit sur un plus petit nombre d’unités pour les simulations de test
parallélisées. La durée totale d’utilisation de l’unité centrale est de 25 ans (soit 219 000
heures d’utilisation), ce qui correspond à une tonne d’émissions de CO2.

Ce chapitre ce termine sur quelques formules permettant de passer des valeurs en unités
de code présentes dans le manuscrit à des unités physiques, pour un jet stellaire émis autour
d’une étoile semblable au Soleil.
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The gist of my work was setting up, producing and analyzing numerical simula-
tions of astrophysical jets. As we will see, the use of the PLUTO code (Mignone et al.,
2007) came naturally as a solution to this problem. Typically, running a simulation
on PLUTO has two prerequisites:

• Adapting the code to the specificities of the problem: choosing the physical
modules and integration schemes.

• Creating a numerical setup: defining the integration domain and its grid, im-
plementing the initial and boundary conditions.

The two sections of this chapter will lay out the choices made in these two steps
and their reasons. Results will be shown in the later chapters.

3.1 The PLUTO code

We have seen in chapter 2 that ideal MHD is suited for the study of astrophysi-
cal jets, with some reserves for jets emitted around compact objects. Moreover, my
jets are launched via the magnetocentrifugal process1 of Blandford and Payne, 1982
that works in an ideal MHD framework. There are many other methods in numer-
ical astrophysics which are complementary to MHD, but they are not yet appro-
priate to study astrophysical jets, especially at large scales. Hydrodynamic meth-
ods, either with a fixed grid or grid-free (Smooth-Particle Hydrodynamics (SPH)
for instance) seem ruled out because the absence of a magnetic field. Moreover,
even though Smooth-Particle MagnetoHydroDynamics (SPMHD) codes exist (see
e.g. Price, 2012), their computational cost is prohibitive for large scale simulations.
Also, the absence of a collimating Lorentz force rules out force-free methods. Fi-
nally, Particle-In-Cell methods require collisionless plasmas, and astrophysical jets
are collision-dominated in the acceleration zone.

I thus ran ideal MHD simulations, using the PLUTO (Mignone et al., 2007) code2.
In the jungle of MHD codes, it is particularly suited for this problem for three main
reasons. First, it is very flexible, enabling specific implementations to be made. Sec-
ond, it provides high-resolution shock capturing schemes, useful to study the large
recollimation shocks expected in collimated jets. Third, Claudio Zanni being one of
the redactors of the code, he was able to provide me with some much needed help
in creating the simulation setups.

1Here, "jet" only refers to the disk-ejected outflow. The central object (black hole or star) also ejects
an outflow, called "spine", but not by the magnetocentrifugal process. Details are in section 3.2.3.

2I used the static grid version (Mignone et al., 2007) of PLUTO 4.3.
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3.1.1 Finite volume methods

The PLUTO code uses a finite volume method to solve the equations of magnetohy-
drodynamics. It thus requires the equations in their conservative form:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 Continuity

(3.1)

∂ρv⃗
∂t

+ ∇⃗ ·
[

ρv⃗ ⊗ v⃗ +

(
P +

B2

8π

)
I − 1

4π
B⃗ ⊗ B⃗

]
= −ρ∇⃗ΦG where ΦG = −GM

R
Motion

(3.2)
∂S
∂t

+ ∇⃗ · (Sv⃗) = 0 where S =
P
ρΓ Energy

(3.3)

∂B⃗
∂t

+ ∇⃗ · (⃗v ⊗ B⃗ − B⃗ ⊗ v⃗) = 0⃗ where ∇⃗ · B⃗ = 0 Induction

(3.4)

Let us take one of these equations, of the form

∂u
∂t

+ ∇⃗ · f⃗ = σ (3.5)

where u is the density of the scalar unknown, f⃗ its associated flux and σ its associ-
ated source term. Integrating on an elementary volume V and using Stokes theorem
on its closed surface S we get

∂

∂t

∫
V

udv +
∮
S

f⃗ · d⃗s =
∫

S
σdv (3.6)

In the case of a cubic cell of n faces, this simplifies to

∂U
∂t

+
n

∑
i=1

FiSi = Σ (3.7)

where U is the unknown value integrated in the cell and Σ its source term. Fi and
Si are respectively the entering flux and the surface on the ith face.

3.1.2 Constrained transport

The equation of Maxwell-Faraday depicts the evolution of the magnetic field. Taking
its divergence, we derive that provided that ∇⃗ · B⃗ = 0 initially, B⃗ should remain
divergence-free indefinitely. However, some discretizations do not conserve ∇⃗ · B⃗ =
0 at machine precision. In ideal MHD, such errors may significantly influence the
equation of motion, creating an additional unphysical term:

∂(ρv⃗)
∂t

=
1

4π
∇⃗ · (B⃗ ⊗ B⃗) + ... =

1
4π

[
(∇⃗ · B⃗)B⃗ + (B⃗ · ∇⃗)B⃗

]
+ ... (3.8)

Several techniques have been developed to guarantee that ∇⃗ · B⃗ = 0 at machine
precision. One can rewrite the ideal MHD equations using the vector potential A⃗
such that B⃗ = ∇⃗ × A⃗, ensuring a divergence-free magnetic field. This is what I used
to set up my initial conditions.
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To evolve the induction equation over time, I used a different method: the con-
strained transport (Evans and Hawley, 1988), well suited for finite volume methods.
It requires the magnetic field bn to be defined at the face centers and the electric field
En to be defined at the edge centers, (see Figure 3.1). For each face, we store the
magnetic field perpendicular to that face. For each edge, we store the electric field
colinear to that edge.

FIGURE 3.1: Representation of the magnetic field and the electric field
components in a cell for constrained transport. In blue are the mag-
netic fields defined on the faces centers. In orange are the electric
fields defined on the edge centers. In red is the mean magnetic field,
computed at the center of the cell. The arrows indicate the direction
in which the integral on each contour is made. The figure is taken

from Nicolas Scepi’s PhD thesis.

Integrating the Maxwell-Faraday equation over a face F of closed contour C and
using Stokes theorem we obtain:

∂

∂t

(∫
F

B⃗ · d⃗s
)
= −1

c

∮
C

E⃗ · d⃗l (3.9)

To get the variation of the total flux entering the cell, this equation is then summed
on all n cell faces and associated contours. Looking at Figure 3.1, one realizes this
means each edge is considered twice, in opposite directions. This gives

∂

∂t

(∮
S

B⃗ · d⃗s
)
=

n

∑
i=1

[
∂

∂t

(∫
Fi

B⃗ · d⃗s
)]

= −1
c

n

∑
i=1

(∮
Ci

E⃗ · d⃗l
)
= 0 (3.10)

where S is the total closed surface of the cell. Consequently, as long as the mag-
netic field is initially divergence-free, it should then stay divergence-free at machine
precision.
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3.1.3 Riemann solvers

Riemann problem is the name for a type of initial value problem composed of a
conservation equation and piecewise initial conditions with a single discontinuity.
This is be used to study the evolution of a fluid between two neighbouring cells of
a computational grid. To simplify the formalism, we consider a single conservative
variable u and a one-dimensional problem along the direction x.

The evolution of u is dictated by the conservation equation

∂u
∂t

+
∂ f
∂x

= 0 (3.11)

where f is the flux associated to the conservative variable u.
The initial conditions (at t = 0) are represented on Figure 3.2-left. The discon-

tinuity is at x = 0, the constant value of u on the left state (x < 0) is uL and the
constant value of u on the right state (x > 0) is uR.

We have seen in chapter 2 that a pair of fast-magnetosonic, alfvénic and slow-
magnetosonic waves may propagate on both sides of the discontinuity, at respective
speeds VFM, VA and VSM. The discontinuity itself is comoving with the fluid at
speed V. At t > 0, six new constant states may then be created, whose boundaries
move at speeds V − VFM, V − VA, V − VSM, V, V + VSM, V + VA and V + VFM.
This is illustrated by the Riemann fan on Figure 3.2-right. Being able to estimate
those speeds is crucial in computing the intercell fluxes. As exact solvers present
a prohibitive numerical cost for my problem, I used approximate Riemann solvers:
the HLL and HLLD solvers, based on the seminal work of Harten, Lax, and Leer,
1983. I will shortly describe how they function and their respective advantages. For
a more exhaustive yet comprehensive explanation of these solvers, I recommend the
read of chapter 2 of Massaglia et al., 2008, on which this section is based. This will
be of particular interest to a reader curious about how the wave speeds and intercell
fluxes are computed.
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FIGURE 3.2: Left: Representation of the initial condtions for a vari-
able u. Right: General structure of a Riemann fan generated by two

constant states uL and uR.

Both the HLL and HLLD solvers only resolve some of the seven possible waves
that can propagate in a MHD plasma, two for HLL and five for HLLD. The approxi-
mate structure of the Riemann fan used for both solvers is displayed on Figure 3.3.

• The HLL solver only computes an estimate of the leftmost (λL) and right-
most (λR) signal speeds, corresponding to fast-magnetosonic waves. It then
averages the intermediate states into a single constant state between the two
outermost waves. Because of its simplicity, it is computationally cheap, and
preserves the positivity of density, pressure and energy. However, it cannot
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resolve any intermediate structures (e.g. Alfvén, slow and contact modes) and
is thus more diffusive than more complete algorithms.

• The HLLD solver (Miyoshi and Kusano, 2005) computes the two fast waves of
speeds λL and λR, but also two rotational discontinuities of speeds λLI and λRI
corresponding the Alfvén wave, and a contact wave of speed λC. Although
more computationally expensive, it is particularly robust and less diffusive,
allowing stronger discontinuities. It can also resolve all the possible MHD
waves, with the exception of slow-magnetosonic waves.

Thanks to the high modularity of the PLUTO code, I used both the HLL and the
HLLD solvers in all the simulations presented in this manuscript. I will explain in
the rest of this chapter why and how this was done.
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FIGURE 3.3: Left: Approximate structure of the Riemann fan used
in the HLL solver. Right: Approximate structure of the Riemann fan

used in the HLLC solver.

3.1.4 Godunov scheme

Solving a Riemann problem allows to compute the intercell fluxes in the equation
3.7 dictating the evolution of the cell-centered variable U. Integrating it over a time
increment ∆t = t2 − t1 we obtain:

U(t2)− U(t1) =
∫ t2

t1

(
Σ(t)−

n

∑
i=1

Fi(t)Si

)
dt (3.12)

We see that a correct estimation of these fluxes is critical to get a precise enough
integration scheme. In a Godunov scheme they are estimated by solving a Riemann
problem at each intercell face, whose initial conditions are set using the values of the
conservative variables at t1. While historically these initial values were constant in
each cell and simply equal to the values of the variables in the cell at t1 (flat recon-
struction scheme), nowadays most codes use interpolation schemes to reconstruct
the variation of the variables inside the cell.

In my simulations, I mainly used a second order in space piecewise reconstruc-
tion. To avoid spurious oscillations, I used it in conjunction with various slope lim-
iters, listed from least diffusive to most diffusive:

• Monotonized Center (van Leer, 1977) for the density ρ.

• Van Leer (van Leer, 1974) for the velocity v⃗ and the magnetic field B⃗.

• Minmod (Roe, 1986) for the pressure P.
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Such a reconstruction scheme (including the slope limiters) is the standard in
PLUTO. The curious reader is referred to section 3.1 of Mignone, 2014 for an exhaus-
tive description of the scheme and a comparison between solvers. For our problem,
it has the big perk of being Total Variation Diminishing, meaning that the sum of
all variations between neighbouring cells is decreasing with time (see Harten, 1983).
It is well-suited to capture shocks as it avoids misleading oscillations and preserves
monotonicity at the cell boundaries.

For all simulations, I also used a flat reconstruction scheme in conjunction with
the Minmod solver in small parts of the domain. I will explain in the rest of this
chapter why and how this was done.

3.1.5 CFL condition and acceleration scheme

We now know how to integrate the ideal MHD equations over time in our com-
putational domain. A priori, all the cells should evolve at the same time, but how
do we choose the time increment ∆t ? When integrating differential equations, the
maximal possible timestep is usually set by the Courant, Friedrichs, and Lewy, 1928
condition (hereafter CFL condition), prohibiting any wave to travel to an adjacent
grid point during a time increment. Let us consider an integration domain D of di-
mension Ndim ≤ 3, containing a certain numbers of cells C. In ideal MHD without
diffusion, the CFL condition is written:

∆t
Ndim

max
C∈D

(
Ndim

∑
d=1

|λd|
∆ld

)
= Ca (3.13)

where for a specific direction d and a cell C, |λd| is the maximum absolute signal
speed and ∆ld is the cell size. Ca is an arbitrary constant, chosen such that Ca ≤
1/Ndim.

Because of its simplicity and generality, this condition is particularly reliable and
easy to use. However, its issue is that it does not put any lower boundary on the
amplitude of the wave propagating at speed λd. Thus, extremely weak modes of
the MHD waves can cause prohibitively small time increments, if they arise in small
cells. This is particularly harmful for computational domains that are very large,
have big discrepancies in cell sizes, or for integrations that need to run for very long.
To get rid of this issue, Claudio Zanni implemented in 2.5D, and we implemented in
3D, a special acceleration scheme. Let us describe how it works.

In our problem, it is expected that a portion D1 of the integration domain con-
verges way faster than the rest, D2

3. At any time t, we take a relative variation of
the density as a criterion for convergence:( |∆ρ|

ρ
(t)
)
C
≤ 10−4 ⇔ C ∈ D1(t) (3.14)

where
(
|∆ρ|

ρ (t)
)
C

is the relative variation of density over the precedent timestep
in the cell C.

Then, we say that only the portion of the domain that has not converged, D2,
contributes to setting the following timestep ∆tacc:

∆tacc

Ndim
max
C∈D2

(
Ndim

∑
d=1

|λd|
∆ld

)
= Ca (3.15)

3D1 ∪D2 = D and D1 ∩D2 = ϕ.
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This prevents cells in the converged domain D1 to lower the time increment be-
cause of extremely small variations. Here, it is important to note that the subdivision
of the total domain D in a converged domain D1 and a non-converged domain D2
depends on time: the size of the converged domain D1 is expected to grow with time.
However, converged cells are not frozen, they keep evolving at the time increment
∆tacc and perturbations can propagate from D2 to D1. Thus, if these perturbations
are strong enough to break the convergence condition 3.15 in some specific cells,
those cells would move from D1 to D2, and thus contribute in setting the global time
increment.

Such an acceleration scheme was motivated by our rather niche requirements: a
stationary state as the expected final outcome, a huge discrepancy in cell sizes with
small cells converging faster than large cells, and a need to integrate over very large
scales in space and time. Still, it proved extremely effective. For means of compar-
ison, let us introduce two timescales, one using the acceleration algorithm, and one
without using it. I consider a simulation which at time t, has already performed N
timesteps. The effective accelerated timescale is

t(N) =
i=N

∑
i=0

∆tacc(i) (3.16)

where ∆tacc(i) is the accelerated time increment at the ith timestep (see equation
3.15). In all the following, this timescale will simply be referred as time.

The timescale without acceleration is

tna(N) =
i=N

∑
i=0

∆t(i) (3.17)

where ∆t(i) is the non-accelerated time increment at the ith timestep (see equa-
tion 3.13).

This non-accelerated timescale is simply the one the simulation would have each
at each timestep N, had the acceleration not been implemented. It helps quantifying
the effectiveness of the acceleration. At each timestep N I define the acceleration pa-
rameter as the ratio between the two timescales t(N)/tna(N). Figure 3.4 illustrates
the evolution of this acceleration parameter over time (equation 3.16). Three simu-
lations are represented, K2 being the reference simulation of chapter 4 (see chapter 5
for information on the other simulations).

A clear acceleration is seen after t=103, as the simulations begin to converge: the
size of the accelerated domain D1 is non-negligible. At the end of the simulation,
the acceleration factor reaches three orders of magnitude. For instance, the reference
simulation ran on the same CPU hours without the acceleration would have ended
at a timescale 2500 times smaller (e.g. tend = 2.60 × 102 instead of tend = 6.51 × 105).
Alternatively, this means that to reach the same physical timescales, the simula-
tion would have had to run on approximately4 2500 times more CPU hours (e.g.
around two million hours instead of 725 hours). The simulations performed in this
manuscript could not have been done without this acceleration scheme. Chapter 5
delves a bit more in the specifics of the acceleration for each simulation in Figure
3.4 and Appendix C explains the differences between the 2D and 3D acceleration
schemes.

4Contrary to the timescale comparison, this is only an approximation as: (a) For t < tend even the
non-accelerated time increment changes with time (see equation 3.13), and thus is not a perfect proxy
for the CPU cost. (b) For t > tend this is a prediction assuming the acceleration factor stays the same,
but it could be slowly evolving.
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FIGURE 3.4: Evolution of the acceleration with time for the simula-
tions K2, K5, and A5. See chapter 5 for details on the simulations.

3.1.6 Accounting

Before delving into the setups, let us open a short parenthesis about accounting.
To perform the simulations presented in this manuscript, I was granted computing
time on GRICAD (Grenoble Alpes Recherche-Infrastructure de Calcul Intensif et de
Données), who provides some statistics. Over the course of the PhD I ran 371 sim-
ulations, either on 256 CPUs for production runs, or on a smaller number for paral-
lelized test runs. The total CPU duration is 25 years (e.g. 219 000 CPU hours), which
amounts to a ton of CO2 emission. For means of comparison, Knödlseder et al., 2022
estimates the research-related carbon dioxide emission of an average astronomer at
36.6 ± 14.0 tons of CO2 per year.

Additionally, I was granted 50 000 CPU hours of preparatory time on the Irene-
Rome machine of the national computing center GENCI-TGCC (Grand Equipement
National de Calcul Intensif-Très Grand Centre de Calcul). Out of these CPU hours,
only 485.05 were used to run tests of 3D simulations. I will come back to these tests
in Appendix C.
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3.2 Numerical setups

The astrophysical problem at hand is the study of astrophysical jets emitted from Ke-
plerian accretion disks surrounding a spine emitted from a central object. A sketch
of the computational domain is presented on the left panel of Figure 3.5. I use two
systems of coordinates: spherical (R, θ,φ) and cylindrical (r,φ, z), both originated
on the same point O. At the origin lies the central object of mass M. The sphere
of radius R = Rd (green area in Figure 3.5-left) represents the central object, and its
with the disk. The disk itself extends from R = Rd to R = 5650Rd. It is not computed
but is a boundary condition at θ = π/2.

Over the course of my thesis, I ran three types of simulations:

• First, 2.5D simulations in which the jet is emitted from the whole disk (θ =
π/2), from R = Rd to R = 5650Rd. They were performed to probe whether
time-dependent global simulations can contain steady recollimation shocks,
as predicted by the self-similar solutions. Hereafter, they will be referred to as
self-similar simulations5.

• Then, 2.5D simulations in which the jet is only emitted from the inner parts
of the disk (θ = π/2), from R = Rd to R = 10Rd. They were performed to
investigate the presence and behavior of the recollimation shocks in a more
realistic setup. Hereafter, they will be referred to as truncated simulations.

• Finally, 3D simulations similar to the truncated simulations, but symmetrized
around the axis θ = 0, to probe the stability of the recollimation shocks.

The last two types of simulations are refinements of the self-similar simulations,
first by stopping the ejection after R = 10Rd on the lower θ = π/2 axis, then by
symmetrizing the truncated simulations around the θ = 0 axis, along the toroidal
direction u⃗φ. In this section, I describe the numerical setup made for the self-similar
simulations. The refinements made for truncated and 3D simulations will be de-
scribed in the dedicated chapters, respectively chapters 5 and Appendix C.

The boundary conditions on the disk are consistent with those provided at the
surface of a JED (Ferreira, 1997). In my setup, a large-scale magnetic field threads
both the disk and the central object. This allows the production of two outflows,
emitted from the disk (blue region in Figure 3.5-left) and from the central object (red
region in Figure 3.5-left).

3.2.1 Simulation domain and grid

The 2.5D computational domain is discretized using spherical (R, θ) coordinates. It
extends from the polar axis (θ = 0) until the disk surface (θ = π/2) 6.

The cell size in the θ direction is mostly uniform, but heavily decreases in the few
cells near the axis (see Figure 3.5-right). This is essential to the setup, as the expected
recollimation shocks should form first near the axis. Setting a too low resolution in
this zone would prevent their formation.

In most of the computational domain, I use a HLLD solver and the default re-
construction scheme of PLUTO described in section 3.1.4 (Monotonized Center for

5The simulations themselves are not self-similar, only the boundary conditions. This is a misnomer
to avoid long paraphrases.

6Consistently with the JED model, the surface of the disk is not exactly at θ = π/2, but at θ =
π/2 − ϵ, where ϵ is the disk sound speed relative to its the Keplerian speed. As for all simulations,
ϵ = 10−2 ≪ π/2, to ease notations the disk boundary is called θ = π/2.
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ρ, Van Leer for v⃗ and B⃗, Minmod for P). In the regions closest to the axis, as well as
in those of very low density and high Alfvén speed, I use a HLL solver with a flat
reconstruction scheme and a flat limiter. This was done to avoid prohibitively high
computational costs.

The cell spacing in the R direction is logarithmic: ∆R ∝ R. This ensures that
apart from the region near the polar axis, the cells remain approximately squared
(∆R ≃ R∆θ).

Our computational domain is huge compared to previous jet simulations (see
section 1.3.4). This is motivated by the self-similar solutions of Ferreira, 1997, where
jets are emitted from a JED. According to their Figure 6, reproduced on the top panel
of Figure 1.16, recollimation shocks are expected to occur at altitudes beyond a thou-
sand times the jet launching radius. The first objective of my thesis being to produce
these shocks using self-similar ejection conditions (as in the JED model), using a
large enough grid is crucial. Simulations in a domain that large may be able to cap-
ture the expected shocks, but have a serious drawback: as the disk is Keplerian, it
presents a huge contrast in time scales between the inner and outer edge. During the
time the outer disk takes to complete an orbit, the inner disk completes half a million
orbits. This constraint, in conjunction with the logarithmic cell spacing in the radial
direction, is required for the development of the special acceleration scheme (see
section 3.1.5). The innermost cells are the smallest and thus lower the global time
increment the most, but also have the smallest time scale and converge the fastest.

In this manuscript, two different grid meshes are used: a high-resolution one
with NR = 1408 points in the radial direction and Nθ = 266 points in the orthoradial
direction, and a low-resolution one with NR = 704 points in the radial direction
and Nθ = 144 points in the orthoradial direction. The low-resolution grid mesh is
represented in Figure 3.5-right.
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FIGURE 3.5: Left: Sketch of the computational domain for self-similar
simulations. The central object and its interaction with the innermost
disk are located below the inner boundary at R = Rd (green region),
the near-Keplerian jet-emitting disk (JED) being established from R =
Rd to the end of the domain R = 5650Rd. An axial outflow (the spine)
is emitted from the central regions (in red) and the jet is emitted from
the JED (in blue). At any point M inside the domain, I either use

spherical (u⃗R,u⃗θ ,u⃗φ) or cylindrical (u⃗r,u⃗φ,u⃗z) coordinates.
Right: Low resolution grid.
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3.2.2 Initial conditions

The initial conditions are set following the radially self-similar ansatz (see sections
2.6.4 and 2.6.5). We assume a magnetic flux of the form

Ψ(R, θ) = Ψd

(
R
Rd

)α

Φ(θ) (3.18)

where the function Φ(θ) is determined such that the initial magnetic field is po-
tential, e.g. current-free and force-free (Jφ = 0).

This magnetic flux naturally describes the initial magnetic field in the jet, but
also in the spine. This is a simplification, as the magnetic field near the axis θ = 0
is different from a stellar magnetic field. Because of the force-free condition, there is
initially no toroidal magnetic field, and a potential poloidal field is set by

B⃗p =
1

2πr
∇⃗Ψ × u⃗φ (3.19)

The exponent α is a parameter of the setup, fixed for each simulation. It naturally
sets the topology of the initial magnetic field: BR ∝ Bθ ∝ Rα−2 (see also table 2.3).

The initial magnetic field being potential, there is no magnetic force in the plasma.
It is therefore assumed to be in a spherically symmetric hydrostatic equilibrium
(⃗v = 0⃗) with dP/dR = −ρGM/R2. We choose the following solution:

ρ = ρa

(
R
Rd

)2α−3

(3.20)

P =
1

4 − 2α

ρaGM
Rd

(
R
Rd

)2α−4
(
= ρ

V2
S

Γ
= ρ

kBT
1
2 mp

)
(3.21)

where ρa is the density at (R = Rd, θ = 0).
In all the following, quantities with a subscript a refer the values on the axis

directly over the central sphere (R = Rd, θ = 0), while quantities with a subscript d
refer to the values at the inner edge of the disk (R = Rd, θ = π/2). The values of ρa
and Pa are fixed in accordance with the boundary conditions.

3.2.3 Boundary conditions

There are four boundaries to the simulation domain:

• The polar axis (θ = 0, R ∈ [Rd; 5650Rd])

• The outer boundary (R = 5650Rd, θ ∈ [0; π/2])

• The Jet-Emitting Disk (θ = π/2, R ∈ [Rd; 5650Rd])

• The central object (R = Rd, θ ∈ [0; π/2])

At these four boundaries, conditions have to be set on the eight evolving quan-
tities ρ, P, v⃗ and B⃗. On the first two boundaries, the conditions are rather straight-
forward. On the polar axis, usual reflecting conditions are applied on all quantities.
At the outer boundary, "outflow" conditions are imposed: the gradient along u⃗R of
ρ, P, BR, Bθ , RBφ, vR, vθ and vφ is conserved. The Van Leer slope limiter is used to
avoid spurious oscillations. Additionally, a positive Lorentz force is enforced on the
subalfvénic parts of this boundary. It turned out that this last condition is not strictly
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needed for the convergence of the simulation, but slightly decreases the computa-
tional cost. This boundary condition was carefully studied in the very specific case
of time-dependent (oscillating) truncated simulations (see chapter 6).

The last two boundary conditions (the Jet-Emitting Disk and the central object)
are particularly crucial as they set the ejection conditions of the two outflow compo-
nents (the jet and the spine). All choices will be made with the intent of limiting the
impact of the spine on global jet dynamics: the intent of this thesis is to investigate
the collimation properties of a jet emitted from an accretion disk. In the rest of the
section, I describe in detail how the ejection conditions were set. But first, let us de-
termine how many quantities should be fixed and how many should be let free at
these boundaries.7.

Causality and number of parameters

In ideal MHD, there are three critical speeds (VSM, VA and VFM). In a steady state,
each time the flow passes through a critical point, it defines a regularity condition
that fixes a quantity at its launching point. Thus, each crossing of a critical speed
on the spine/jet leaves one free quantity at the central object/disk surface. I want to
control the mass loss in the spine and the jet, to be capable of set Ṁspine/Ṁjet ≪ 1.
This requires the outflow to be super-SM (see section 2.6.2). Thus, there should be
six quantities imposed on the injection boundaries, and two that are let free to adjust
with time, the toroidal magnetic field Bφ and the poloidal magnetic field perpendic-
ular to the boundary (BR on the disk surface and Bθ on the central object). I make
this choice in order to control the injected magnetic flux while allowing the magnetic
field to bend in response to the jet dynamics.

Jet-Emitting Disk: θ = π/2

Along the θ = π/2 (so that r = R) boundary, I choose the following six conditions:

ρ = ρd

(
r

Rd

)2α−3

P = ρd
V2

sd

Γ

(
r

Rd

)2α−4

Bθ = −Bd

(
r

Rd

)α−2

vθ = −vd

(
r

Rd

)−1/2

vR = vθ
BR

Bθ

vφ = Ω∗r + vθ
Bφ

Bθ
,

(3.22)

The disk being set as Keplerian, the angular velocity of the magnetic surfaces is
Ω∗ = ΩK =

√
GM/r3.

These boundary conditions are consistent with a self-similar JED (see section
2.6.4. In particular, they preserve the alignment of the velocity and magnetic field

7A quantity that is "let free" at a boundary here means that the value of the quantity at the edge a
domain fixes the value of the quantity at the boundary, through gradient conservation (and use of Van
Leer slope limiter). It is also an "outflow condition".
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lines (v⃗p ∥ B⃗p), describing a steady ideal MHD flow. This sets the toroidal compo-
nent of the electric field E⃗ = −v⃗ × B⃗ to zero, and thus as seen in section 2.4, enforces
that the injected magnetic flux distribution does not change with time.

These conditions let four dimensionless parameters to be specified at r = Rd: ρd,
VSd , Bd and vd, acting as normalizing quantities. They are set consistently with the
self-similar solutions of Ferreira, 1997:

• The jet density ρd is fixed relative to the density at the polar axis with the
parameter δ ≡ ρd/ρa. This δ parameter defines the density contrast between
the spine and the jet.

• The disk sound speed VSd is fixed relative to the Keplerian speed with the pa-
rameter ϵ = VSd /VKd . This parameter is also the disk scale height, and the disk
sound speed sets the jet temperature. Since ϵ ≪ 1, the jet is cold.

• The disk magnetic field strength Bd is fixed with the parameter µ ≡ VAd /VKd =
Bd/

√
4πρdGM, vertical component of the Alfvén speed over the Keplerian

speed.

• The vertical injection speed vd is related to the mass-loading parameter κ in-
troduced by Blandford and Payne, 19828:

κ =
4πρdvdVKd

B2
d

=
vdVKd

V2
Ad

=
vd

VKd

1
µ2 . (3.23)

There are thus six conditions fixed at the disk boundary: the four parameters
above, the Keplerian rotation of the magnetic field lines (Ω∗ =

√
GM/r3) and v⃗p ∥

B⃗p (with vR = vθ(BR/Bθ)). As there are eight quantities, this lets two three param-
eters, Bφ and BR. This way I avoid overconstraning the problem, as the inner jet is
expected to cross the Alfvén and fast-magnetosonic critical surfaces. Freedom on the
six profiles of equation 3.22 allows a wealth of possibilities, explaining while to this
day, few generic results are known.

What are the values of the four parameters above ? As I want to impose the
jet mass loss rate, I need a super-SM ejection: MSM > 1. This places a constraint on
vd/VKd . I choose to impose vd/VKd which in return sets the parameter µ as a function
of κ.

In order to restrain the parameter space, some parameters are the same in all
simulations. By fixing vd/VKd = 0.1, I get the relation κ = 0.1/µ2. This relation leads
to Bd = 10VKd

√
4πρa for all simulations. The goal being to produce cold outflows, I

set ϵ = 10−2. This is consistent with a super-SM injection, as the vertical component
of the sonic mach number is MSθ

= vd/VSd = vd/(VKd ϵ) = 10. The poloidal speed
being longer than vd, the sonic mach number then gives MS = vp/VSd > vd/VSd =
MSθ

= 10. As the Alfvén speed is much greater than the sound speed (µ ≫ ϵ), the
sound speed is greater than the SM speed, and thus the injection is super-SM.

As the disk injection speed vd and magnetic field strength Bd are the same for
all simulations, the disk mass load and Alfvén speed are varied only by changing
the disk density ρd. As a consequence, the density contrast δ can be expressed as a
function of κ. In order to keep a high contrast in all simulations, the relation δ =
102/µ2 = 103κ is assumed.

8The expression of κ here slightly differs from that of Blandford and Payne, 1982 or Jannaud, Zanni,
and Ferreira, 2023 as these papers were written in SI units, while this manuscript is written using
Gaussian-cgs units.
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The key feature of this parametrization is that it only depends on one dimension-
less parameter, the mass load κ. Indeed, ϵ is fixed in all simulations, and µ and δ are
defined as functions of κ. Table 3.1 serves as a reminder of the values taken for these
parameters.

Parameter δ ϵ µ κ

Value or expression 103κ 10−2
√

0.1/κ TBD

TABLE 3.1: Values or expressions of the disk parameters.

Naturally, apart from these normalization parameters, the self-similar parameter
α setting the distributions on the disk has to be fixed.

Central object: R = Rd

On the boundary corresponding to the central object, six quantities need to be spec-
ified, so Bφ and Bθ are let free to evolve. In order to keep the magnetic field flowing
into the spine constant with time, BR(θ) is fixed to its initial value. Since BR is fixed
at R = Rd and θ ∈ [0; π/2] and Bθ is fixed at θ = π/2 and R ∈ [Rd; 5650Rd], then
at R = Rd and θ = π/2, BR and Bθ are both fixed. Thus, the normalizing value of
the magnetic field strength on the central object boundary is also fixed by the JED
parameter µ.

Just like the JED conditions at θ = π/2 were fixed consistently with an ideal
MHD steady jet, the central object conditions at R = Rd are fixed consistently with
an ideal MHD steady spline. Thus velocity is set so that v⃗p ∥ B⃗p, and one has
vθ = vR(Bθ/BR). Then, there stays the four θ-distributions of ρ, Vs, vR and vφ to
be specified. This is done through a spline function f (θ) that smoothly connects the
inner disk values (θ = π/2) to the values set on the polar axis (θ = 0). Its expression
is:

f (θ) =
(
3 sin2 θ − 2 sin3 θ

)3/2
(3.24)

so that f (θ = 0) = 0 on the axis and f (θ = π/2) = 1 on the disk.
Similarly to the JED boundary conditions, we set the plasma rotation as vφ =

Ω∗r + vR(Bφ/BR), the magnetic surfaces rotating at

Ω∗ = Ω∗a (1 − f (θ)) + ΩKd f (θ) (3.25)

where Ω∗a is the central object rotation on the axis. It will be used as a free
parameter, typically ranging from ΩKd (solid-body rotation on the central object)
to zero. The choice of Ω∗a is crucial in our problem. Sections 5.1.3 and 6.4.1 are
dedicated to its study.

The radial speed vR is set constant with θ, and fixed through the sonic Mach
number by vR = MSR Vs. The value of MSR , chosen constant with θ for simplicity, is
fixed by continuity at θ = π/2, with MSR = MSθ

|BR/Bθ |d = 10|BR/Bθ |d > 1. As
the magnetic inclination at the inner disk boundary |BR/Bθ | is constant, MSR does
not change with time. However, it may change from simulation to simulation with
the inclination of the field lines (in our parameter space with the value of α), while
always staying higher than unity.

The sound speed on the central object is computed using

VS = VSa(1 − f (θ)) + VSd f (θ) (3.26)
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The sound speed on the axis VSa is fixed thanks to the Bernoulli invariant on the
axis Ea. The MHD term Ω∗rBφ/η vanishing on the axis, one directly obtains

V2
sa
=

GM
Rd

1 + ea
1
2 M2

SR
+ 1

Γ−1

(3.27)

and
v2

Ra
=

GM
Rd

1 + ea
1
2 +

1
M2

SR
(Γ−1)

, (3.28)

where vRa is the injection speed on the axis and ea = EaRd/(GM) is the Bernoulli
invariant normalized to the gravitational energy at R = Rd. It is the parameter used
to fix the axial spine temperature. The aim is to make a transition as smooth as
possible, to avoid introducing discontinuities.

As our jets are cold, the energy is mostly determined by the magnetic lever arm
λ and for the field line anchored at r = Rd, ed = λd − 3/2 + ϵ2/(Γ − 1). The jet
magnetic lever arm being expected to be λd ≃ 10 (see Figure 2.3), in order to get a
spine of smaller energy than the jet, I fix ea = 2. With these conditions, the two flows
should reach the following poloidal asymptotic speeds:

• For the spine vp
∞spine ≃ 2

√
Ea = 2

√
eaVKd (equation 2.88).

• For the jet vp
∞jet ≃

√
2λd − 3VKd (equation 2.92).

This gives vp
∞spine /vp

∞jet ≃ 0.7. Asymptotically, the jet should be faster than the
spine, but this small difference should avoid extreme shears.

The plasma density is connected from its value on the axis ρa to its much larger
value on the disk ρd = δρa via the MHD invariant η, as ρ(θ) = ηBR/(4πvR), and η
follows:

η = ηa(1 − f (θ)) + ηd f (θ) (3.29)

where ηa and ηd are determined with ρa and ρd. This method simply ensures that
the mass flux to magnetic flux ratio has a smooth variation between the disk and the
axis. Keep in mind that my goal is to study the outcome of the disk jet, not so much
the spine-jet interaction.

3.2.4 Normalization

The MHD equations are solved with PLUTO and the results will be presented in
dimensionless units. Unless otherwise specified, lengths are given in units of Rd,
velocities in units of VKd =

√
GM/Rd, time in units of Td = Rd/VKd , densities in

units of ρa, magnetic fields in units of B0 = VKd

√
4πρa = Bd/10, mass fluxes in units

of Ṁd = ρaR2
dVKd and powers in units of Pd = ρaR2

dV3
Kd

.
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In order to be more specific, I translate these quantities for the case of a young
star, assuming a star of one solar mass with an innermost disk radius Rd = 0.1au
and a density on the axis ρa = 10−15g.cm−3, namely

VKd = 94.3
(

M
M⊙

)1/2 ( Rd

0.1au

)−1/2

km.s−1

Ṁd = 3.35 × 10−10
(

ρa

10−15g.cm−3

)(
M

M⊙

)1/2 ( Rd

0.1au

)3/2

M⊙.yr−1

Pjet = 1.26 × 1012
(

ρa

10−15g.cm−3

)(
M

M⊙

)3/2 ( Rd

0.1au

)1/2

ergs.s−1

B0 = 10.6
(

ρa

10−15g.cm−3

)1/2 ( M
M⊙

)1/2 ( Rd

0.1au

)−1/2

G

Td = 1.8
(

M
M⊙

)−1/2 ( Rd

0.1au

)3/2

days. (3.30)

Such a star is illustrated in Figure 3.6. This scheme shows that while the jet only
corresponds to the disk emitted outflow, the spine corresponds to the stellar jet and
the star-disk interaction jet.

Even though the choices of M and Rd are constrained by the observations, that
of ρa is arbitrary. Ultimately, it is the choice of ρa that defines the normalizations of
mass flux, pressure and magnetic field in the jet.

  

JED0 5650

Zc

101JED0 5650 RdRdR*
FIGURE 3.6: Scheme of young star and its magnetosphere, sur-
rounded by an accretion disk. In blue are poloidal magnetic field
lines. The star of radius R∗ is in orange, and the magnetized accretion
disk extends from Rd to 5650 Rd. Between R∗ and Rd is the Star-Disk

Interaction (SDI) in red.
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Chapter 4

Self-similar simulations: The
Blandford & Payne case
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“Half the charm of climbing mountains is born in visions preceding this experience - visions
of what is mysterious, remote, inaccessible.”

“La moitié du charme de l’ascension des montagnes naît des visions qui précèdent cette
expérience - visions de ce qui est mystérieux, lointain, inaccessible.”

George Mallory
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Maintenant que nous avons vu les équations résolues, les méthodes numériques, la con-
figuration et la plupart de ses paramètres, examinons les résultats. Comme nous l’avons vu
au chapitre 3, tous les paramètres sont réglés pour les quatre conditions aux limites, sauf
trois qui doivent encore être fixés pour les conditions d’injection :

• Le paramètre de chargement en masse κ.

• Le paramètre d’autosimilarité et exposant du flux magnétique α.

• La rotation des surfaces magnétiques sur l’axe Ω∗a .

Le but du travail présenté dans ce chapitre était de produire des simulations à grande
échelle de jets de type Blandford & Payne, afin d’observer leurs propriétés de collimation et
de voir s’ils produiraient des chocs de recollimation. Ainsi, pour la simulation de référence,
j’ai simplement pris les valeurs des paramètres figurant dans l’article fondateur Blandford
and Payne, 1982, c’est-à-dire κ = 0.1 et α = 3/4. J’ai aussi simplement décidé de fixer
Ω∗a = 0 pour limiter l’éjection magnétocentrifuge depuis l’axe. Une étude paramétrique de
κ, α et Ω∗a est décrite dans le chapitre 5. Dans ce chapitre, je vais m’attacher à décrire la
simulation de référence.

La simulation a été exécutée jusqu’à un temps tend = 6, 5 × 105, ce qui correspond à
105 orbites à la limite interne du disque et à un quart d’orbite à la limite externe du disque.
L’apparition de chocs de recollimation est la caractéristique la plus importante de la simu-
lation, car à ma connaissance, c’est la première fois que des simulations "globales" de jets
super-FM présentent les schémas prédits par les études analytiques. Ils commencent près
de l’axe polaire, et deux d’entre eux suivent approximativement la forme attendue des carac-
téristiques des jets auto-similaires MHD. Cependant, l’image est plus complexe : il y a aussi
des chocs plus petits qui semblent fusionner avec les plus grands.

Au dernier instant de la simulation, le jet a atteint un état stationnaire. Les grandeurs
caractéristiques de l’éjection n’évoluent presque plus, et les invariants MHD sont bien quasi-
ment constants le long des surfaces de champ magnétique. On peut alors vérifier si on y
retrouve bien les propriétés des jets stationnaires en MHD idéale. S’étendant jusqu’aux
chocs, le circuit accélérateur a bien la forme usuelle, ressemblant à un papillon. Au cours
de la propagation, l’énergie magnétique du jet est transférée en énergie cinétique. Lorsqu’il
atteint le bord externe de la grille de calcul, le jet a presque atteint sa vitesse asymptotique
théorique, eu égard des conditions de lancement.

L’écoulement présent est cependant légèrement différent de l’image vue dans les solutions
auto-similaires. Cela est du à deux raisons. La première est la présence d’une colonne axiale
émise depuis l’objet central, qui rompt l’autosimilarité. Elle correspond à un flux de masse
dix fois plus faible que celui du jet, mais à une puissance semblable. Par conséquent, le jet
s’écarte de plus en plus de l’image théorique lorsque l’on se rapproche de l’axe.
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La seconde raison est la présence des chocs de recollimation stationnaires. Ceux-ci étaient
prédits mais pas observés par les solutions auto-similaires. Pour étudier ces chocs, j’ai
développé des algorithmes me permettant de suivre précisément l’évolution du jet le long
de chaque ligne de champ. Cela m’a permis de comparer l’état du jet juste après le choc à
celui juste avant le choc. Ici, la quantité d’intérêt particulier est le taux de compression, aug-
mentation relative de la densité au niveau du choc. Son calcul, ainsi que d’autres, m’a tout
d’abord permis de confirmer que les chocs suivaient bien les conditions de Rankine-Hugoniot.
Mais surtout, cela m’a permis de caractériser les chocs obtenus. Ils sont de deux types :

• Les chocs de recollimation prédits par les solutions auto-similaires. Leur existence
résulte de la collimation globale des surfaces magnétiques : lorsque le rayon du jet
augmente, la contrainte de cerceau diminue plus lentement que le terme centrifuge, ce
qui conduit inévitablement à une contrainte de cerceau dominante et à une collimation.
Une focalisation magnétique vers l’axe est inévitable, et l’écoulement n’a alors d’autre
choix que de rebondir, créant les chocs de recollimation de cette première classe. Il s’agit
de chocs faibles, dont le taux de compression ne monte pas au delà de 1.5.

• Des chocs plus petits et plus faibles, limités à l’interface entre la colonne et le jet.
Leur facteur de compression tombe rapidement à l’unité, et certains fusionnent même
avec des chocs de recollimation plus puissants. Ils semblent également régulièrement
espacés. Cette régularité pourrait être due à une propagation horizontale d’ondes entre
l’axe et la frontière extérieure de la colonne. Ces plus petits chocs seraient alors la
résultante d’ondes magnétosoniques rapides déclenchés par les plus grands chocs.

La présence de ces chocs engendre de nombreuses différences dans la structure des cir-
cuits électriques, au delà du circuit accélérateur en forme de papillon décrit ci-dessus. On
n’atteint pas la déconnexion espérée entre le circuit accélérateur et le circuit asymptotique, de
nombreux circuits contournant le choc pour venir se refermer sur l’objet central en longeant
l’axe. De plus, plusieurs circuits se referment hors de la grille de calcul, laissant perplexe
quant à l’origine physique du courant post-choc.

Ces circuits électriques régissent la collimation du jet, que ce soit avant où après les
chocs. Au cours de la simulation, comme attendu le jet interne se décollimate tandis que le
jet externe se décollimate. Cette collimation est du au "hoop stress" créé aux forces de Laplace
créées par le champ magnétique toroidal. Sur toute l’étendue du jet, ce "hoop stress" reste la
force confinante dominante. Dans la partie interne du jet, la force déconfinante est la force
centrifuge, tandis que dans la partie externe il s’agit du gradient de pression magnétique.

Dans ce chapitre, je me suis également intéressé à l’évolution temporelle du jet simulé.
Qu’est-il arrivé avant que celui-ci converge ? D’abord, la colonne et les parties les plus
internes du jet progressent de la frontière inférieure jusqu’à la frontière extérieure, pour
l’atteindre après quelques milliers d’orbites au bord interne. Immédiatement après, les chocs
commencent à se former, mais leur position n’est stabilisée qu’après une dizaine de milliers
d’orbites. Puis, le jet se collimate petit à petit, jusqu’à une réorganisation massive après
une centaine de milliers d’orbites. Cette réorganisation, créée par une forte accumulation de
courant sur l’axe, entraîne la création d’un choc supplémentaire.



Chapter 4. Self-similar simulations: The Blandford & Payne case 79

Now that we have seen the equations solved, the numerical methods, the setup
and most of its parameters, let us look at the results. As seen in chapter 3, all param-
eters are set on all four boundary conditions, except three that still need to be fixed
on the injection conditions:

• The mass loading parameter κ.

• The self-similar parameter α.

• The rotation of the magnetic surfaces on the axis Ω∗a .

The aim of the work presented in this chapter was to produce large-scale simula-
tions of Blandford & Payne jets, in order to observe their collimations properties and
see whether they would produce recollimation shocks. Thus, for the reference simu-
lation we simply took the parameter values as in the seminal Blandford and Payne,
1982 paper, that is κ = 0.1 (Figure 2.3) and α = 3/4. We then simply decided to set
Ω∗a = 0 to limit the magnetocentrifugal ejection from the axis. A parametric study
in κ, α and Ω∗a is described in chapter 5 and for now, I will discuss the reference
simulation. Figure 4.1 shows several quantities just above the injection boundary at
the final simulation time tend. This boundary is almost self-similar: all parameters
follow power laws on the JED (r ≥ 1) and are smoothly interpolated to their finite
axis values on the central object (r ≤ 1). Note that Bφ, Bθ for r < 1 and BR for r > 1
are determined by the simulation ("outflow" conditions). For all other quantities, the
profiles are those described in section 3.2.3 with κ = 0.1, α = 3/4 and Ω∗a = 0.
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FIGURE 4.1: Boundary conditions on the lowermost cells of the ref-
erence simulations. The quantities are plotted on the first cell along
the injection boundaries (e.g. central object R = 1 for r ≤ 1 and JED
θ = π/2 for r ≥ 1). On the left are shown the conditions that are
directly set at the injection boundaries: the density ρ, the pressure P,
the radial and orthoradial magnetic fields BR and −Bθ , the radial and
orthoradial velocities vR and −vθ and the rotation speed of the mag-
netic surfaces Ω∗. On the right are quantities dependent on those set
conditions: the Bernoulli invariant E, the toroidal and vertical mag-
netic field −Bφ and Bz, the mass to magnetic flux ratio η, the sound

speed Vs and the vertical Aflvén speed VAz .
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4.1 A standing collimated jet

4.1.1 Description of the simulation

The simulation was run until a time tend = 6.5 × 105Td, corresponding to 105 orbits
at the inner disk boundary (r = 1) and to a quarter of an orbit at the outer disk
boundary (r = 5650). The final stage reached by the simulation is displayed on
Figure 4.2. The black lines are poloidal magnetic field surfaces, the dotted red line is
the Alfvén surface where m ≡ vp/VAp = 1 and the dashed red line is the FM surface
where n ≡ vp/VFMp = 1. The left panel is a snapshot of the whole computational
domain and the right panel is a zoom on the innermost outflow, corresponding to
the scale used by Fendt, 2006. The background colors are the logarithm of the FM
mach number on the left and the logarithm of the density on the right.

I define r0,FM as the anchoring radius of the outermost magnetic surface that
reaches super-FM speeds. In all the following, I will only refer to the jet as the
outflow ejected between the anchoring radii r0 = 1 and r0 = r0,FM, and to the
spine as the outlfow ejected between r0 = 0 and r0 = 1. For this simulation,
r0,FM = 323, meaning that the majority of the jet plasma eventually becomes super-
FM: Ṁjet+spine(r0 ≤ r0,FM)/Ṁjet+spine(r0 ≤ 5650) = 65%. The critical surfaces are
conical in a large portion of the domain1, characteristic of the steady state of self-
similar solutions. In the same way, I define r0,A as the anchoring radius of the outer-
most magnetic surface that reaches super-Alfvénic speeds. Beyond r0,A = 1284 the
flow cannot become stationary.

The yellow lines are the electric circuits, isocontours of the poloidal electric cur-
rent I = rBφ, mostly oriented counterclockwise. These circuits showcase some fea-
tures inside the jet:

• The usual butterfly shape of the initial accelerating circuit, extended until a
spherical radius R ≃ 3000.

• Current-closure happening outside of the domain: Circuits leaving the JED at
disk radii r0 ≳ 2000 exit the domain via the outer boundary, mostly at high
colatitudes in the sub-alfvénic regime, and re-enter it at smaller colatitudes, in
the super-FM jet.

• The presence of several current sheets, in the form of an accumulation of cur-
rent lines. Those are standing recollimation shocks.

Without the shocks, the electric circuits are quite similar to the theoretical picture
presented on the left panel of Figure 2.5, as here α = 3/4 < 1. The appearance
of recollimation shocks is the most important feature in the simulation, as to my
knowledge, this is the first time that "global" simulations of super-FM jets exhibit the
patterns predicted by analytical studies. They start near the polar axis, and roughly
follow the expected shape of MHD self-similar jets characteristics (see Figure 13 of
Ferreira, 1997 or Figures 3 of Vlahakis et al., 2000 and Ferreira and Casse, 2004). One
may see on Figure 4.3 two main recollimation shocks: a first one leaving the axis
at an altitude Z1 = 1850, fully enclosed in the domain and merging with the FM
surface around r = 2500, z = 3800; a second one starting on the axis at an altitude
Z5 = 2634 and leaving the simulation domain at r = 1800, z = 5200. However, the
picture is more complex: there are also smaller shocks emerging from the axis at
altitudes between Z1 and Z5. The section 4.2 is dedicated to the study of the shocks.
For now, I describe the jet in its globality.

1Except near the shock for the FM surface.



4.1. A standing collimated jet 81

0 1000 2000 3000 4000 5000
r

0

1000

2000

3000

4000

5000

z

0.96

0.72

0.48

0.24

0.00

0.24

0.48

0.72

0.96

lo
gn

0 50 100 150
r

0

50

100

150

200

250

300

z

1.05

0.90

0.75

0.60

0.45

0.30

0.15

0.00

0.15

0.30

lo
gn

FIGURE 4.2: Snapshot of the simulation at tend. Left: Global
view with of the simulation domain. Right: Close-up view
of the innermost regions. In both panels, black solid lines are
the poloidal magnetic surfaces anchored on the disk at ro =
3; 15; 40; 80; 160; 320; 600; 1000; 1500, the yellow solid lines are isocon-
tours of the poloidal electrical current, and the red dashed (resp. dot-
ted) line is the FM (resp. Alfvén) critical surface. In the background

is the logarithm of the FM mach number n.
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FIGURE 4.3: Snapshot of the simulation at tend. I use the same color
coding as in Figure 4.2, left for the background, critical surfaces and
electric circuits. The black arrows show the poloidal velocity. The
white lines are streamlines inside which (from left to right) 50%, 75%,
and 100% of the super-FM (spine+jet) mass outflow rate is carried in.
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4.1.2 Quasi steady state

I have pointed out that the simulated jet is stationary. In order to backup this as-
sertion, I compute a few global jet quantities with time: the radius r0,FM of the out-
ermost FM magnetic surface and the colatitudes θext

A and θext
FM of the intersection be-

tween the outer boundary and the critical surfaces (respectively Alfvén and FM).
On Figure 4.4 I represent the evolution of these quantities from t0 = 5.1 × 105 until
tend, normalizing the quantities to their "initial" values at t0. Their evolution is rather
straightforward: r0,FM and Ṁjet increase as the jet gets larger, while θext

A and θext
FM get

smaller as it gets more collimated. The relative variations of those quantities are
however very small, i.e. less than 3% for r0,FM and 1% for the other quantities.

FIGURE 4.4: Late evolution of several global jet quantities: the radius
r0,FM of the last super-FM surface, the jet mass-loss rate Ṁjet, and the
two colatitudes θext

A and θext
FM defined by the position of the two critical

surfaces. A slight drift from their initial value is indeed observed.

Therefore, the jet has achieved a relative global steady state at tend. Let us probe
whether the properties of steady-state ideal MHD jets are retrieved.

Figure 4.5 details the energy contributions to the Bernoulli invariant E at tend
along a magnetic surface anchored at r0 = 100. The total energy is indeed conserved,
and the usual pattern (Casse and Ferreira, 2000a) is retrieved: the kinetic energy
(green) increases thanks to the magnetic acceleration, leading to a decrease in the
magnetic energy (magenta). The outflow being cold, enthalpy (red) is negligible,
as well as gravity at high enough altitudes. The shock is also clearly seen around
z = 3800; the flow is slowed down and the energy is transferred to the magnetic
field, in agreement with the Rankine-Hugoniot jump conditions (see section 4.2).
After the shock, the MHD acceleration is resumed, but the magnetic energy still
holds around 45% of the total energy. The poloidal speed thus remains smaller than
its asymptotic value v∞ =

√
2λ − 3VK (although close, see Figure 4.7).

Figure 4.6 depicts the evolution of the five MHD invariants at tend along two
magnetic surfaces. Their evolution is normalized to their value on the disk surface,
at anchoring radii r0 = 100 (left) and r0 = 1000 (right). As their name suggests, the
MHD invariants are constant in a steady flow (see section 2.6.1). On the left panel,
we see that along this surface the invariants only display a small drift from their
values near the disk surface. They mostly vary at z ≃ 3800, as the magnetic field line



4.1. A standing collimated jet 83

crosses the shock. This variation remains very small, of about 1%. It is of numerical
origin, and after the shock the invariants quickly return to their pre-shock values.
For the right panel, as r0 = 1000 > 323 = r0,FM, the flow remains sub-FM along the
field line and no shock is crossed. The variations of the invariants are thus smaller,
always less than 0.5 %. The reader may notice that thanks to our choice of energy
equation, the entropy is conserved at machine precision.

This invariant evolution shows that my simulated jets are indeed steady, and also
that the PLUTO code and the configuration used are efficient.
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FIGURE 4.5: Evolution of the various energy contributions along a
magnetic surface of anchoring radius r0 = 100 at tend: the Bernoulli
invariant E, the gravitational potential ΦG, the total specific kinetic
energy u2/2, the enthalpy H, and the magnetic energy −Ω∗rBφ/η.

The abscissa is the altitude Z(Ψ).
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FIGURE 4.6: Evolution of the MHD invariants along field lines of two
different anchoring radii r0 at tend. All invariants have been normal-

ized to their values at r0. The abscissa is the altitude Z(Ψ).
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The steady-state jet looks a lot like the theoretical case described in section 2.6.
On the left panel of Figure 4.7 I represent the evolution of the magnetic lever arm λ
for field lines of anchoring radii r0. It is smaller in the inner jet regions, as the energy
of the spine is smaller than that of the jet (see section 3.2.3). The arm lever is 12 in the
innermost regions then grows with r0 until around 17. The two red vertical lines are
r0 = r0,FM (dashed) and r0 = r0,A (dotted). Beyond r0,A the field lines cannot become
stationary and λ is discontinuous. The right panel compares two poloidal speeds:
the asymptotic speed of each field line v∞ =

√
2λ − 3VK(r0) and the actual speed on

the field line at the edge of the domain R = 5650, named vmax. We see that the two
values are close, and vmax mimics the decrease of v∞ with the radius, caused by the
disk Keplerian rotation.
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FIGURE 4.7: Left: Evolution of the field line magnetic lever arm λ
over the anchoring radius r0. Right: Evolution of the asymptotic
speed v∞ =

√
2λ − 3VK(r0) in blue and the poloidal speed at the in-

tersection between the field line and the outer boundary R = 5650
in orange, over the anchoring radius r0. The vertical red lines are

r0 = r0,FM (dashed) and r0 = r0,A (dotted).

4.1.3 Radial layering

A two-component outflow: spine+jet

The outflow is composed of a spine emitted from the central object, and a jet emitted
from the Jet-Emitting Disk, as shown on Figure 3.5-left. In order to quantify the
impact of each component on outflow dynamics, I compute the mass loss rate of the
jet Ṁjet =

∫ r0,FM
Rd

ρu⃗ · d⃗S and the spine Ṁspine =
∫ π/2

0 ρu⃗ · d⃗S. I obtain a relative mass
loss rate Ṁspine/Ṁjet = 10%, showing that the outflow mass loss rate is controlled
by the Jet-Emitting Disk. Figure 4.3 shows how this mass loss rate is spread across
the jet. The three white lines are streamlines inside which 50%, 75% and 100% of the
total super-FM outflow (spine+jet) mass is carried. These streamlines are anchored
on the disk at respectively r0 = 10, r0 = 66 and r0,FM = 323. As the JED mass loss
rate falls off very rapidly (dṀjet/dr = 2πrρVz ∝ r2α−5/2 = r−1), even in a very large
domain the JED ejection is dominated by the innermost region of the disk. This
radial layering may also be vizualized by the black arrows on Figure 4.3, that are
poloidal velocity vectors, showing the swift radial decrease at the outer boundary,
from vp = 3.5 in the spine to vp = 0.2 at the outer edge of the super-FM domain (see
Figure 4.7). Note that at this outer boundary, the spine width (rspine ∼ 20) is around
the cell width, as the grid resolutions decreases with altitude.
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I also compute the power emanating from the jet Pjet =
∫ r0,FM

Rd
ρEu⃗ · d⃗S and the

spine Pspine =
∫ π/2

0 ρEu⃗ · d⃗S. I obtain a relative power Pspine/Pjet = 0.81. This means
that the central object, even though its area is roughly 10−7 that of the disk, has quite
an influence on the topology of the electric circuits, and thus and the collimation of
the outfow. The spine quickly reaches super-FM speeds, at z ∼ 260. Because of the
boundary conditions (Ω∗a = 0) there is no magnetocentrifugal acceleration near the
polar axis, and the spine slows down with altitude: it becomes super-FM thanks to
the vertical decrease of the magnetic field strength.

In physical units and considering the same solar mass star as in section 3.2.4,
the jet mass loss rate is 1.2 × 10−7M⊙.yr−1 and jet power 7.8 × 1014ergs.s−1 with a
magnetic field around 10 G at 0.1 au. As a reminder, jet here refers to what is ejected
between r0 = 1 and r0 = r0,FM = 323.

Layering inside the jet

How is this layering the jet itself ? Naturally, conditions resembling those set at the
JED boundary are recovered. Figure 4.8 shows in dashed lines the rotation speed,
the toroidal and vertical magnetic field along the horizontal z = 1500, upstream of
the shocks. In full lines are various power laws. The exponents are chosen so that a
full line power law is what is expected by the radially self-similar solutions for the
quantities represented by dashed lines of the same color. Those exponents are simply
computed by using α = 3/4 in the expressions of Table 2.3. The quantities qualita-
tively follow the variations expected from the self-similar solutions. Differences can
be explained by two factors. First, our solutions are not purely self-similar due to the
presence of an axial spine ejected at r0 ≤ 1. Second, radially self-similar means fol-
lowing power laws in spherical radius R, and here quantities are represented along
the cylindrical radius r. Still, the radial structure of the pre-shock jet retrieves the lay-
ering of the self-similar MHD jets, with the inner regions being denser, with higher
velocities and magnetic fields. This is analogous to the "onion-like" structure seen in
protostellar jets (see e.g. Agra-Amboage et al., 2011; Agra-Amboage et al., 2014).

101 102

r

10 3

10 2

10 1

V
B

Bz

r 1/2

r 5/4

r 3/2

FIGURE 4.8: Dashed lines: radial distribution of various quantities
at tend along the horizontal z = 1500. Solid lines: Radial profiles of

various monomials of r.



86 Chapter 4. Self-similar simulations: The Blandford & Payne case

4.2 Steady recollimation shocks

The presence of large scale shocks is certainly the most interesting feature of the
simulation. There are five shocks, highlighted in color on Figure 4.9, emerging from
the polar axis at altitudes Z1 = 1850, Z2 = 2000, Z3 = 2160, Z4 = 2372 and Z5 =
2634. They all occur occur when the magnetic field lines starts to bend towards the
axis, and then give rise to an outward refraction of the field line; thus coinciding
with a local minimum in the cylindrically radial magnetic field Br. Combined with
the fact that they are motionless with time (see section 4.4), the shocks may be called
standing recollimation shocks. Of all the shocks, only the two mentioned on section
4.1.1 and starting at altitudes Z1 and Z5 span over a large portion of the simulation
domain. And, as the shock starting at Z5 is not fully enclosed in the domain, the
shock starting at Z1 (in red on Figure 4.9) is the only one that will be extensively
studied. Hereafter, it is named main recollimation shock.

FIGURE 4.9: Close-up view of the simulation at tend showing
the shock forming region, with field lines anchored at r0 =
1.2; 2; 3; 4; 5; 7; 9. The five shocks are highlighted in red, orange, cyan,
blue, and purple. We use the same color coding as in the left panel of

Fig. 4.2.

4.2.1 Rankine-Hugoniot conditions

Happening beyond the n = 1 fast-magnetosonic critical surface, the recollimation
shocks are fast shocks, described in section 2.7. They correspond to a sudden jump
in all flow quantities that naturally follow the Rankine-Hugoniot conditions, thanks
to PLUTO’s shock capturing scheme. In this section I first explain how I studied
the shocks and confirm that the jump conditions are indeed retrieved. Then I detail
the characteristics of the main recollimation shock, that could lead to observational
consequences.

Numerical detection of shocks

Detecting a shock requires the ability to follow the evolution of various quantities
along a magnetic field line. To this end, I used the standard Cash and Karp, 1990
method, that I adapted to my needs using the interpolation schemes of the Python
library Scipy (Virtanen et al., 2020). The adaptative step of the Cash-Karp method
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was particularly useful given the huge discrepancy in cell sizes in my numerical
grid2. With this method, I followed all magnetic field lines looking for discontinu-
ities. In a discrete grid, this is not so obvious. To do so, I computed the derivative of
the toroidal magnetic field (∂Bφ/∂s) over the curvilinear absissa (s) along each field
line, as shocks are best seen with the poloidal electric currents. Then, I explored
the local extrema of ∂Bφ/∂s, that would correspond to the shock centers. I checked
the consistency using a different approach based on the magnetic field line refrac-
tion angle δi, that produced very similar results. I then implemented a few failsafes,
most notably that the shock leads to outward refraction (δishock > 0) and density
growth (compression factor χ > 1). This gave me the shock locations (colored lines
on Figure 4.9). Thanks to PLUTO’s shock capturing scheme, each shock is resolved
and has a finite width as both the HLL and HLLD solvers capture fast shocks. To de-
termine the shock width, I started from the shock center (maximum of ∂Bφ/∂s), and
searched along the field line for the closest local minimum and maximum in density.
These local extrema respectively correspond to the pre and post shock positions, that
were used to compute the pre-shock and post-shock quantities. Later in the PhD, the
existence of more robust methods (such as Lehmann, Federrath, and Wardle, 2016;
Richard et al., 2022) came to my knowledge, but my homemade method managed
to produce consistent results.

Compression factor and verification of the jump conditions

The use of this method enables to compute various jump quantities. On Figure 4.10
are represented the compression factor χ ≡ ρ2/ρ1

3 along the main recollimation
shock, as well as various quantities that should be equal to it. We see that the shocks
are relatively weak, with the compression rate remaining lower than 1.3. On the top
panel are represented the direct jumps in density ρ, Alfvén mach number m, toroidal
magnetic field Bφ and poloidal magnetic field parallel to the shock Bp

∥ . As at these
altitudes the jet is very super-alfvénic (m ∼ 102 ≫ χ > 1), the Rankine-Hugoniot
conditions (equation 2.100) can be simplified and all these jumps should be equal to
the compression factor. On the bottom panel are represented the compression factor
χ and the theoretical compression factor χth expected from equation 2.102 given the
pre-shock conditions. The top panel shows the efficiency of PLUTO’s shock captur-
ing scheme and my post-treatment shock detection algorithm, as curves are almost
superimposed. The bottom panel shows a pretty good coincidence between the de-
tected and theoretical compression factors, except near the axis where it is around
10%, and near the mergers with the smaller shocks. Note that the shocks the cell
width is around 10.

Physical characteristics of the main shock

We have seen that the shocks remain relatively weak. This is due to two factors.
First, the obliquity of the shocks near the polar axis is high, reducing the FM mach
number normal to the shock n⊥ ≤ n. Second, the total FM mach number itself
is low. Jets with a high Alfvén mach number can have a low FM mach number
if they are highly collimated (rA ≪ r, see Michel, 1969) and the magnetic field is
mostly toroidal (|Bp/Bφ| ≪ 1, see Pelletier and Pudritz, 1992). Figure 4.11 displays
several quantities along the main shock surface (in red on Figure 4.9), including

2I used this same method every time I had to plot a field line.
3As in section 2.7, a quantity with a subscript 1 is computed pre-shock and a quantity with a sub-

script 2 is computed post-shock.
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FIGURE 4.10: Distributions of several quantities equal to the com-
pression factor χ along the main recollimation shock at tend. Top:
Direct jumps in various quantity: density ρ, Alfvén mach number
m, toroidal magnetic field Bφ and poloidal magnetic field parallel
to the shock Bp

∥ . Bottom: Theoretical solution χth of equation 2.102
computed using pre-shock quantities, and actual compression rate

χ ≡ ρ2/ρ1.

the compression rate χ, the Alfvén mach number m and the normal FM number
n⊥. We see that even with an Alfvén mach number m ∼ 102, the normal FM mach
number stays around unity. Following the shock front from the polar axis to the FM
surface, the incident angle4 decreases, the shock becoming normal at its outer edge
(z ∼ 2500), on the FM surface. Thus as the shock becomes normal n⊥ → n = 1 and
the shock vanishes with a compression rate χ → 1.

The three other curves on Figure 4.11 show the evolution along the shock of the
relative jumps in toroidal magnetic field δBφ, plasma angular velocity δΩ and of the

4Here and in all the following, the angles of incidence and refraction are defined as in Snell-
Descartes law, i.e. measured from the normal to the shock front.
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FIGURE 4.11: Distributions of several quantities along the main rec-
ollimation shock at tend: Normal incident FM Mach number n⊥,
Alfvénic Mach number m, compression rate χ, relative variations of
the toroidal magnetic field δBφ and plasma angular velocity −δΩ,

and total deviation δi (in rad) of the poloidal magnetic field line.

field line deviation δi = i2 − i1, where i2 is the angle of refraction and i1 the angle
of incidence. The maximal deviation is δi = 0.07rad = 4o which is very small, in
agreement with the small compression rate.

The purple curve depicts the relative variation of the flow rotation, δΩ = (Ω2 −
Ω1)/Ω1. As δΩ is always negative, the shock introduces a sudden decrease in az-
imuthal speed. Even though the detection of rotation signatures is an important tool
for retrieving information on fundamental jet properties (see for instance Anderson
et al., 2003; Fendt, 2006; Louvet et al., 2018; Tabone et al., 2020), the weak shocks
observed here only create a rotation decrease of around 20% at the outer edge of the
shock.

The angular momentum lost by the plasma in the rotation jump is compen-
sated by an increase in toroidal magnetic field strength: the field lines twist is in-
creased by the shock. This is illustrated by the red curve, showing that δBφ =
(Bφ2 − Bφ1)/Bφ1 > 0. This dictates that in the current sheet, the current density
is flowing outwards, from the polar axis to the FM surface.

Naturally, as the shock follows the Rankine-Hugoniot conditions, the jumps de-
scribed above are consistent with those laid out in section 2.7 with the approxima-
tions r ≪ rA and |Bφ/Bp| ≪ 1.

4.2.2 Two kinds of stationary shocks

On Figure 4.12 are shown the compression factors along all five shocks in the simu-
lation, the color coding being the same as in Figure 4.9. All shocks but the red one
studied before have a higher compression factor near the polar axis. The orange
and purple shocks merge with the red one, respectively at r ∼ 500 and r ∼ 900, in-
creasing its compression factor. The simulation exhibits two classes of recollimation
shocks:
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• The recollimation shocks predicted by the self-similar solutions: the red and
purple shocks. Their existence results the global collimation of the magnetic
surfaces described in section 4.5: as shown in Ferreira, 1997, as the jet ra-
dius increases, the hoop stress decreases slower than the centrifugal term, in-
evitably leading to a dominant hoop stress and collimation, (see also Figure
4.18). This is also consistent with Blandford and Payne, 1982 and Contopou-
los and Lovelace, 1994. A magnetic focusing towards the axis is unavoidable,
and the flow has then no choice but to bounce away, creating the recollimation
shocks of this first class.

• Smaller and weaker shocks that are limited to the spine-jet interface: the or-
ange, cyan and blue shocks. Their compression factor quickly drops to unity,
and some even merge with stronger recollimation shocks. They also seem reg-
ularly spaced.

FIGURE 4.12: Bottom: Compression rates χ of all shocks appearing in
Figure 4.9, using the same color code. The main shock corresponds to

the red curve.

4.2.3 Shock spacing

One interesting feature of these shocks are their consistent spacing, the distance to
the following shock is only slightly increasing with altitude: ∆Z12 = Z2 − Z1 = 150,
∆Z23 = 160, ∆Z34 = 212 and ∆Z45 = 262. This spacing may also be seen on Figure
4.14, representing the time evolution of the altitude of the various shocks. These
smaller shocks at the spine-jet interface can thus be associated to steady oscillations,
reminiscent to those seen in Vlahakis and Tsinganos, 1997. The stability of these
shocks/oscillations is due to the scaling of the dominant forces at this interface (see
section 4.5).

What causes this regular spacing ? When reaching a shock front, the flow should
take a time ∆tz = ∆Z/uz to reach the next shock front. In the meantime, if a sta-
tionary wave was to propagate horizontally because of a shock-induced radial im-
balance, it would do so at the FM speed. Such a wave would go back and forth
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on the interface via the polar axis in the timescale ∆tr = 2rspine/VFM, where rspine
is the spine width and VFM the local FM speed. In a steady state the two times
∆tz and ∆tr should be equal, requiring ∆Z ≃ 2nrspine where n is the local FM
mach number. At the fourth shock we have rspine ≃ 40 and n ≃ 3, which gives
∆Z ≃ 2nrspine ≃ 240 ∼ 262 = ∆Z45. It also provides the correct order of mag-
nitude for the smaller shocks. Such a correspondence indicates that these smaller
shocks might be the outcome of stationary radial FM waves triggered by the steady
large-scale recollimation shocks.

4.3 Electric circuits

The presence of these shocks make the electric circuits differ quite a lot from the
theoretical picture of Figure 2.5-left. Figure 4.13 depicts the electric circuits in more
detail. Four remarkable electric circuits have been highlighted in color. The left
panel is the actual shape of the circuits in the simulation at tend, and the right panel
is a simplified sketch of this rather complicated picture.
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FIGURE 4.13: Left: Plot of the poloidal electric circuits at tend. The two
red curves are the critical surfaces, Alfvén (dotted) and FM (dashed).
The yellow curves are the poloidal electric circuits, defined as isocon-
tours of rBφ, where the arrow indicates the direction of the poloidal
current density j⃗p. Four circuits are highlighted in particular: (1) the
envelope of the inner accelerating current in white (rBφ = −2.06),
(2) the outermost circuit still fully enclosed within the domain in blue
(rBφ = −2.005), (3) a circuit closed outside the domain in orange
(rBφ = −1.80), and (4) a post-shock accelerating circuit in purple
(also with rBφ = −2.06). Right: Simplified sketch with the same
color coding, also representing the current closure outside the box for

the blue and orange circuits.

The white circuit is the outermost contour of the initial accelerating circuit, with
its usual counter-clockwise butterfly shape. It loops from the disk to the central
object, eventually flowing down along the axial spine. Right above it lies the first
recollimation shock, inducing more complexity in the circuit topology.
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The blue circuit is the outermost circuit which is still fully enclosed inside the
computational domain. It flows downstream of the first recollimation shock, but
stays below the other self-similar shock (in purple in Figure 4.9), flowing back to the
polar axis at an altitude between Z4 and Z5. Each shock acts as its own electromotive
force, with the current flowing clockwise around it. Thus, the blue current flows
around the four shocks below Z4. This is more visible for the larger shocks, emerging
from the polar axis at altitudes Z3 (in blue in Figure 4.9) and Z1 (main shock, in red
in Figure 4.9). After flowing around the main recollimation shock, it flows back to
the polar axis then down to the central object along the axial spine, on a path similar
to that of the white circuit.

The purple circuit is enclosed between the two self-similar recollimation shocks
(in red and purple in Figure 4.9), while having the same rBφ value as the white
circuit. It highlights the reacceleration of the plasma after each shock. As the current
density is flowing counter-clockwise in this circuit, it serves as an envelope to go
from the main red shock to the second blue shock. The black circuit has the same
purpose, but after the second recollimation shock.

These three (white, purple and blue) electric circuits are fully enclosed within
the computational domain. It is clear that any electric current leaving the disk be-
yond r0 ∼ 2000 will exit the domain and re-enter it at small colatitudes. This is
highlighted by the orange circuit on Figure 4.13. Those circuits that close outside the
domain boundaries are the ones responsible for the jet asymptotic collimation, as
they are the only circuits on the polar axis beyond the highest recollimation shock,
at altitudes greater than Z5 = 2634. But these outermost electric circuits cannot
be fully self-consistent, as they are determined by the outer boundary conditions
(R = 5650Rd), and are not necessarily consistent with the disk electromotive force.
Even though it does not affect the main recollimation shock, it may impact the large
scale collimation of the jet.

4.4 Time evolution

Such a current-closure issue is inherent to our self-similar ansatz. The jet launching
conditions are are established up to the outer domain, as quantities follow power
laws in the disk. It also requires to integrate the simulations over very long timescales.
It was noted in section 4.1.2 that at tend = 6.5 × 105, the jet is stationary. What hap-
pened before ?

The time evolution of my simulated jet can be described by different physical
timescales, some common to most MHD disk jets, some specific to this one. Figures
4.14 and 4.15 illustrate these many timescales. Figure 4.14 shows the time evolution
of the shock altitude Zshock for all shocks found in the simulation via the algorithm
described in section 4.2.1. The vertical lines correspond to seven various representa-
tive jet times, at which the simulation is represented in Figure 4.15. These times are
labeled from t1 to t6, the last one being t7 = tend.

The creation of the jet is a very quick process that scales with the local disk Ke-
plerian timescale, the plasma quickly reaching its final speed, close to v∞(r0) =√

2λ − 3VK(r0) =
√

2λ − 3VKd /
√

r0. Thus, in the matriochka of magnetic surfaces
that is a MHD jet, the innermost regions (anchored at r0 ∼ 1) are built first. Then,
it is an inside-out build-up until the outermost jet regions (anchored at r0 ∼ r0,FM)
are built. I compute the time for the innermost and outermost jet regions to cross the
whole domain. In both cases, that time is text(r0) ∼ Zext/v∞, where v∞(r0) is com-
puted with λ = 10. As the innermost jet is very collimated, Zext(r0 = Rd) ≃ 5650Rd,
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FIGURE 4.14: Altitude z of the different shocks (measured at the axis)
as a function of time (in Td units). The first sixvertical lines corre-
spond to the six times ti used in Fig. 4.15: t1 = 551, t2 = 2.08 103, t3 =
8.51 103, t4 = 1.99 104, t5 = 1.05 105, and t6 = 1.58 105. The last verti-

cal line is tend = 6.51 105.

which gives text(r0 = Rd) ∼ 103. For the outermost jet, taking Zext(r0 = r0,FM) =
Rext cos θFM = 4430Rd gives text(r0 = r0,FM) ∼ 104. We saw in section 3.2.3 that the
asymptotic speeds in the spine and in the inner jet are similar, so both are created on
the same timescale text(r0 = Rd) ∼ 103.

The times t1 = 551 and t2 = 2080 have been chosen to enclose text(r0 = Rd).
At t1, the inner bow shock is clearly seen (Figure 4.15). It is seen on Figure 4.14
until text(r0 = Rd) ∼ 103, thus tracking its outward progression. At t2, we see the
creation of several shocks near z ∼ 2000 on the axis (Figure 4.15), whose altitudes
(Figure 4.14) are close to their final values. However, they are not settled yet, and
new shocks are bound to appear. The jet is still far from being at equilibrium: t2 ≪
text(r0 = r0,FM).

The times t3 = 8.51 103 and t4 = 1.99 104 have been chosen to enclose text(r0 =
r0,FM). Between those times, four standing recollimation shocks located between
z = 2000 and z = 2500 appear to settle. Moreover, the transient shocks that are
present at t3 near the axis for z > 4000 are mostly gone at t4 and have completely
disappeared at t5. But at t4, the JED is still evolving: the disk has only done half
an orbit at r0,FM. This can be seen in the shape of the critical surfaces, that are not
conical yet.

After t4, the flow is slowly evolving, with four standing recollimation shocks.
The outer jet regions converge, and the critical surfaces progressively approach a
conical shape, without any obvious evolution in the shock positions. That is, until a
dramatic reorganization that occurs between times t5 = 1.05 105 and t6 = 1.58 105,
illustrated by the presence of many transient shocks beyond the four standing shocks
(z > 2500). Figure 4.14 clearly shows the creation of an additional fifth shock beyond
the first four during this reorganization. After t6 the other four shocks are very
similar to what they were before t5, the altitude of the highest one (Z4) being only
slightly lowered.
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FIGURE 4.15: Snapshots of the simulation at different times (given
in Td units). From top to bottom, left to right: t1 = 551, t2 =
2.08 103, t3 = 8.51 103, t4 = 1.99 104, t5 = 1.05 105, and t6 = 1.58 105.
The background color is the logarithm of the density, black lines are
the magnetic surfaces, red lines the Alfvén (dotted) and FM (dashed)
surfaces, and yellow curves are isocontours of the poloidal electric

current.
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This dramatic transient phase leading to a new steady state jet/shocks configu-
ration is illustrated on Figure 4.16. In blue is shown the evolution of the cylindrical
radius of the field line anchored at r0 = 3, measured at constant altitude z = 3500.
It shows that before the transient phase, the inner jet is getting slowly more con-
fined, with the field line radius dropping from r ∼ 150 to r ∼ 135 between t4 and t5.
Then at t5, the jet becomes too confined to remain stable, and magnetic field fluctu-
ations are suddenly triggered. This oscillating phase ends at t6, where a new stable
configuration has been obtained, with the appearance of an additional shock.

FIGURE 4.16: Time evolution of the cylindrical radius r measured at
z = 3500 of the magnetic surface anchored at r0 = 3 (blue curve) and
the electric current I = rBφ (red) flowing within that surface. The two

vertical dashed lines correspond to t5 = 1.05 105 and t6 = 1.58 105.

In red is shown the electric current I = rBφ at that point, whose strength slowly
increases until reaching a steady state value. This is consistent with a slow confine-
ment of the jet: the electromotive force of the outer disk regions slowly contributes to
the current and the subsequent confinement as their associated field lines converge
and their associated electric circuits flow back towards the polar axis. We know that
the outermost magnetic field line that can become steady is the outermost field line
that becomes super-Alfvénic, as passing the Alfvén critical surface fixes the outflow-
ing angular momentum. For a cold jet, E ≃ (λ − 3/2)Ω2

Kr2, so fixing λ fixes also E.
Let us name the anchoring radius of this outermost super-Alfvénic field line r0,A. In
my simulation, this radius is r0,A ∼ 103, and the associated Keplerian timescale is
thus roughly equal to t6 = 1.58 × 105: The fact that the simulation achieves a global
steady state after t6 should be due to the convergence of all super-Alfvénic magnetic
field lines.

4.5 Large scale collimation

Now that we have looked at the particular case of recollimation shocks, let us look
at the jet more globally. How is it collimated ? What are the forces driving the
collimation ?

As explained in section 2.6.6, in a self-collimated jet the main confining mecha-
nism is the Laplace force j⃗ × B⃗. In our case, the poloidal magnetic field is negligible
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with regards to the toroidal field, and consequently the toroidal current is negligible
with regards to the poloidal current. Any θ-pinch can thus be neglected, and the
confining force is thus the z-pinching j⃗p × B⃗φ. As Bφ < 0, the Laplace force is con-
fining when jz < 0 and deconfining when jz > 0. Looking at the topology of j⃗ on
the right panel of Figure 4.2, we see that the innermost field lines (r0 ≲ 30) have a
mostly negative jz while the outermost field lines (r0 ≳ 30) have a mostly positive
jz. Figure 4.17 shows the initial field configuration (dotted lines) and the final field
configuration (solid lines), where each color is associated with an anchoring radius
r0. We clearly see that the inner jet regions (r0 ≲ 30) are more collimated after the jet
propagation while the outer regions (r0 ≳ 30) are less collimated.
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FIGURE 4.17: Evolution of several magnetic field lines during the
simulation computation, for different anchoring radii r0. The field
lines at the first output of the simulation (initial conditions) are shown
in dotted lines. The field lines at the last output of the simulation (fi-

nal state) are shown as full lines.

How does this z-pinching force compare to the rest of the present forces ? What
drives the radial equilibrium ? The radial balance of a MHD jet is described by the
transfield equation 2.97. We consider the inner asymptotic jet, where the field lines
are almost vertical and gravity is negligble. Equation 2.97 then reduces to

− ∂

∂r

(
P +

B2

8π

)
+ ρΩ2r − B2

φ

4πr
= 0 (4.1)

On Figure 4.18 these forces5 are plotted along the horizontal z = 2400. At this al-
titude, gravity is negligible (see Figure 4.5) and field lines may be considered vertical
until r ∼ 100.

The three dominant forces are:

• The centrifugal force ρΩ2ru⃗r.

• The hoop stress − B2
φ

4πr u⃗r.

• The toroidal magnetic pressure − ∂
∂r

(
B2
φ

8π

)
u⃗r.

5I do not exactly plot the forces but the acceleration (forces over the density ρ) for better visuali-
sation. Of course, if a force is dominant over the other forces then the corresponding acceleration is
dominant over the other accelerations and vice-versa.
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FIGURE 4.18: Radial distribution of the radial accelerations
and their sum at the altitude Z = 2400 at tend: ther-
mal pressure gradient −1/ρ(∂P)/(∂r), poloidal magnetic pres-
sure gradient −1/ρ(∂Pp

B)/(∂r), toroidal magnetic pressure gradient
−1/ρ(∂Pφ

B )/(∂r), centrifugal acceleration Ω2r, hoop stress accelera-
tion −B2

φ/(ρr) and sum of all accelerations. The vertical dashed line
corresponds to the spine–jet interface, namely the field line anchored
at ro = Rd. This figure replaces the incorrect Figure 10 of Jannaud,

Zanni, and Ferreira, 2023.

FIGURE 4.19: Sketch of an oscillating spine (Vlahakis and Tsinganos,
1997). Solid line: Oscillating streamline At position 0, the confining
pinching force F⃗B is equal to the deconfining centrifugal force F⃗C. At
position 1 F⃗B is stronger than F⃗C and at position 2 F⃗B is weaker than

F⃗C. Dotted line: positions at which F⃗B + F⃗C = 0⃗.
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The hoop stress is a confining force, while the magnetic pressures and the cen-
trifugal force are deconfining. We see that the sum of all forces is not strictly zero,
meaning that the magnetic field lines are not strictly vertical. They are bended out-
wards in the innermost region (r < 10) where the decollimating centrifugal force
dominates, and bended inwards in the adjacent region (r ≳ 10) where the collimat-
ing hoop stress dominates. Such a situation is reminiscent of the picture of Vlahakis
and Tsinganos, 1997. In their self-similar solutions of a MHD jet, they find mag-
netic field lines with steady radial oscillations oscillations, due to a different scaling
between the pinching force and the centrifugal force (see Figure 4.19). Those oscil-
lations are damped in the z direction. At z = 2400 my simulation is in the midst
of stationary oscillations, although more complex than those of their solutions. As
these oscillations are located at the interface between two outflows (the jet and the
spine), the mismatch creates a radial equilibrium that highly depends on the altitude
and to the position relative to the shock. Note that these oscillations are not standing
modes of an instability, as none where found in the simulation (see A).

4.6 Summary

In this chapter, I presented an axisymmetric simulation of a 2.5D MHD jet launched
from a magnetized Keplerian disk. It is the first to showcase the formation of stand-
ing recollimation shocks, beyond a thousand times the innermost disk radius. Rec-
ollimation shocks are intrinsic to the process of MHD self-collimation. They were
suggested as the eventual outcome of self-similar jet solutions (Ferreira, 1997; Polko,
Meier, and Markoff, 2010). In my simulation there is not one single shock as pre-
sumed from the aforementioned solutions, but several. Two large recollimation
shocks, extending from the jet axis to fast-magnetosonic surface or the domain bound-
ary, enclose three smaller shocks that eventually merge with the bigger ones. The
shocks are regularly spaced, and the appearance of the smaller ones could be due to
a mismatch at the interface between two outflows: the axial spine emitted from the
central object and the jet emitted from the disk.

This is an enticing result. As such shocks were not seen in earlier simulations,
suspicions grew that they were not a consistent feature of the jets, but rather a biais
of self-similarity. It seems that few of those works were performed on scales large
enough to capture standing recollimation shocks, as those are bound to happen far
away from the central object. Using unprecedented scales in space and time enabled
to narrow the gap between analytical and numerical approaches.

There is however still work to do in order to bridge this gap. In chapter 5 I will
present a parameter study in α, κ and Ω∗a and carry out a quantitative analysis of
the self-collimated jets and recollimation shocks. I will also compare my results to
previous studies, both analytical and numerical.

Then, in chapters 6 and 7 I will present simulations in which the JED does not
extend on the whole θ = π/2 boundary, but is limited to the innermost disk regions,
moving away from the self-similar approach. Among others, this will enable to
confirm that standing recollimation shocks are a consistent feature of jets and not a
biais of self-similarity.
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Chapter 5

Self-similar simulations: Parameter
dependence and discussions
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“People who hear of some extraordinary phenomenon start proposing to explain it with
improbable hypotheses. First consider the simplest explanation: that it’s all nonsense.”

“Les gens qui entendent parler d’un phénomène extraordinaire commencent par proposer
des hypothèses improbables pour l’expliquer. Considérons d’abord l’explication la plus

simple : ça n’a aucun sens.”

Lev Landau
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Précédemment, on a laissé trois paramètres libres de varier aux conditions limites d’éjection
: le chargement en masse κ, la distribution du champ magnétique via le paramètre autosimi-
laire α et la rotation des surfaces magnétiques sur l’axe Ω∗a . Le chapitre 4 présente la simu-
lation de référence, la plus proche des solutions de Blandford and Payne, 1982 (par exemple
κ = 0, 1, α = 3/4 et Ω∗a = 0). Celle-ci a montré les chocs de recollimation permanents
attendus, accompagnés d’un ensemble de chocs permanents plus petits près de l’axe polaire.
Pour mieux comprendre le comportement de ces deux chocs et la façon dont ils dépendent des
conditions de lancement, j’ai effectué une étude des paramètres dans κ, α et Ω∗a . Dans ce
chapitre, pour chaque paramètre, je fais une brève présentation de sa signification physique
et de la manière dont sa plage de variation a été choisie. Ensuite, je présente les simulations
où ce paramètre est varié.

Le paramètre κ mesure la charge de masse du disque sur une surface magnétique spéci-
fique. Cinq simulations ont été produites, avec κ allant de κ = 0, 05 à κ = 1. Cette gamme
de valeurs est similaire à celle de Blandford and Payne, 1982, κ devant être inférieur à l’unité
pour que le flux sortant (jet+spine) soit dominé par le champ magnétique au moment du
lancement.

Les cinq simulations convergent vers un état stationnaire après quelques centaines de
milliers d’orbites. A chaque fois on observe la présence de chocs de recollimation stationnaires
étendus allant de l’axe jusqu’aux surfaces critiques, ainsi que de plus petits chocs fusionnant
avec les plus grands. Ainsi, ces simulations sont semblables à la simulation de référence
présentée dans le chapitre précédent. Quelles sont les différences ?

On remarque que le flux de masse du jet et de la colonne sont tous deux proportionnels à
κ, la colonne éjectant dix fois moins de masse que le jet quelle que soit la valeur du paramètre.
Les puissances suivent la même évolution, la puissance de la colonne étant comparable à celle
du jet pour toutes les valeurs de κ. Ces variations découlent directement des conditions.

Comme attendu, les surfaces caractéristiques se rapprochent du disque lorsque le charge-
ment en masse augmente. Cela entraîne une diminution de l’altitude des chocs de recollima-
tion. Cette diminution était aussi présente dans les solutions autosimilaires. En augmentant
κ d’un facteur 10, leur altitude de choc est diminuée de six ordres de grandeur. Lorsque
j’augmente κ d’un facteur 10, l’altitude du choc est diminuée d’un facteur 3 seulement.
Cette différence doit être principalement due à la différence des propriétés d’éjection. Les
solutions étant radialement autosimilaires, toutes les quantités suivent des évolutions en loi
de puissance, même à proximité de l’axe. Leur courant de retour, essentiel au confinement,
peut croître de façon illimitée. De même, dans les solutions le champ magnétique toroidal
et l’invariant de Bernoulli augmente lorsque l’on se rapproche de l’axe, tandis que pour mes
simulations il diminue fortement. Ceci suggère que même s’il n’éjecte qu’une faible quan-
tité de masse, l’objet central affecte considérablement les propriétés de collimation, et donc la
localisation des chocs. Ceci est confirmé par l’étude paramétrique à venir en α, et de façon
plus importante en Ω∗a . Cela signifie également que les conditions aux limites du champ
magnétique toroïdal sont critiques pour les propriétés de collimation.

Enfin, pour les simulations avec κ le plus élevé, un deuxième groupe de chocs apparaît
lorsque les lignes de champ se recollimatent en aval du premier groupe de chocs. Comme au-
cune dissipation n’est introduite, il y a toujours un courant sur l’axe. Il n’y a aucune raison
pour que de tels groupes de chocs cessent d’apparaître même plus en aval, tant que la limite
du domaine de simulation n’est pas atteinte. Dans une boîte de taille infinie, les lignes de
champ devraient se recollimater, être réfractées vers l’extérieur par un choc de recollimation,
puis se recollimater et ainsi de suite indéfiniment.

La deuxième section traite de la variation de α, paramètre auto-similaire défini comme
l’exposant du flux magnétique dans les conditions initiales et aux limites. J’ai essayé, sans
succès, d’obtenir des solutions stables pour α ≥ 1. Ceci est dû aux différences de topologie
du courant électrique entre α < 1 et α > 1.
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• Pour α < 1, les circuits se referment sur l’objet central, où nous voyons les circuits
électriques sortir du disque et se refermer sur l’objet central. Ainsi, seules les régions
les plus internes du disque contribuent à la collimation du jet : Ces régions sont les
seules à avoir un courant de retour descendant et donc une force de Lorentz collima-
trice.

• Pour α > 1, le courant électrique à la surface du disque croît avec la distance à
la source, et les courants électriques descendent sur l’objet central et sur le disque.
Comme il n’y a initialement pas de champ ou de courant magnétique toroïdal dans
la simulation, il s’en crée constamment aux rayons convergents les plus extérieurs,
qui croissent avec r ∝ t3/2. L’algorithme d’accélération ne peut jamais être activé
sur un domaine suffisamment grand pour être significatif. Ainsi, ces simulations
sont numériquement hors de portée car elles ne vont jamais à des échelles de temps
physiques suffisamment grandes.

J’ai donc réalisé six solutions pour α compris entre 10/16 et 15/16. Excepté celle avec la
valeur de α la plus élevée, toutes ont convergé vers un état stationnaire. Toutes les simula-
tions montrent également les chocs de recollimation stationnaires attendus. Le flux de masse
et la puissance du jet augmentent avec α: les régions les plus externes du disque contribuent
alors plus, la distribution du flux magnétique d’éjection étant plus plate. De plus, lorsque
la valeur de α augmente, l’extension verticale des chocs diminue. Cela est une conséquence
directe des conditions d’éjection: Quand α augmente, les lignes de champ magnétique devi-
ennent plus verticales au lancement.

Compte tenu des solutions autosimilaires, la valeur du paramètre α devrait fortement
modifier l’altitude des chocs. Mes simulations ne montrent pas un tel comportement, l’altitude
du choc restant à peu près la même quelle que soit la valeur de α. Encore une fois, cela est
probablement dû à la présence dans mes simulations d’une colonne axiale non auto-similaire
jouant un rôle majeur dans le processus de collimation, alors que les solutions sont purement
auto-similaires.

En plus des simulation décrites ci-dessus, ce chapitre présente une simulation où le profil
d’éjection sur l’objet central a été modifié. Pour les simulations décrites précédemment, la
rotation diminue rapidement sur l’objet central, pour être nulle sur l’axe. Dans celle-ci, la
rotation sur l’axe est la même qu’au bord interne du disque. De plus, l’énergie sur l’axe a été
doublée afin de limiter la collimation sur l’axe. Dans cette simulation, le choc de recollimation
est deux fois plus proche du disque que dans celle de référence, à cause d’un accroissement de
la collimation au niveau de la colonne, où les chocs se forment.

Ce chapitre ce termine sur quelques mots de mise en garde quant à l’applicabilité des
résultats, et sur une comparaison de mon travail aux autres simulations de jets semblables.
Les points de mise en garde à retenir sont: le cadre non-relativiste, l’impact non totalement
compris de la colonne interne, l’absence de dissipation, le réglage fin du dispositif numérique
afin d’obtenir des chocs, et la dépendance à la résolution numérique de la complexité des
chocs.

Les résultats restent cependant bien solides. Les chocs de recollimation produits dans
mes simulations étaient attendus des solutions auto-similaires, mais n’ont pas été observés
dans les simulations "globales" précédentes. Cela est très probablement dû aux énormes
échelles associées dans l’espace et le temps, qui n’ont pas pu être prises en compte par les
travaux antérieurs. Ici, cela a notamment été rendu possible par la méthode d’accélération de
la convergence développée spécifiquement pour ce problème.
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5.1 Parameter dependence

The constraints leave three parameters free to vary at the boundary conditions: the
mass loading parameter κ, the magnetic field distribution via the self-similar param-
eter α and the rotation of the magnetic surfaces on the axis Ω∗a . Chapter 4 presented
the reference simulation, closest to the solutions of Blandford and Payne, 1982 (e.g.
κ = 0.1, α = 3/4 and Ω∗a = 0). It showed the expected standing recollimation
shocks, accompanied by a bunch of smaller standing shocks near the polar axis. To
further understand the behavior of both these shocks and how they depend on the
launching conditions, I ran parameter study in κ, α and Ω∗a . All simulations are
presented in Table 5.1, and the three parameters are described in section 3.2.3. When
one parameter is varied, the other two stay fixed at their value in the reference simu-
lation K2. For each parameter, I will give a brief presentation of its physical meaning
and how its range of variation was chosen. Then, I will present the simulations
related to the variation of this parameter.

Name κ α µ δ tend
105 Zshock θext

FM θext
A ro,FM Ṁjet

Ṁspine

Ṁjet
Pjet

Pspine
Pjet

K1 0.05 12/16 1.41 50 7.34 2150 0.64 0.94 301 179 0.102 492 0.82
K2 0.1 12/16 1.00 100 6.51 1850 0.67 1.05 323 363 0.096 616 0.81
K2l 0.1 12/16 1.00 100 12.3 2490 0.65 1.02 289 357 0.094 620 0.81
K3 0.2 12/16 0.71 200 10.1 1810 0.69 1.09 368 743 0.093 768 0.80
K4 0.5 12/16 0.45 500 8.67 1150 0.90 1.26 655 2040 0.093 1024 0.81
K5 1.0 12/16 0.32 1000 4.62 700 0.99 1.34 670 4095 0.116 1264 0.96

A1 0.1 10/16 1.00 100 9.08 1900 0.96 1.23 234 195 0.206 551 1.21
A2 0.1 11/16 1.00 100 8.34 1800 0.87 1.15 349 272 0.137 578 0.99
A3 0.1 13/16 1.00 100 5.79 1920 0.59 0.95 566 690 0.047 668 0.66
A4 0.1 14/16 1.00 100 6.26 2050 0.64 0.94 398 1321 0.023 740 0.53
A5 0.1 15/16 1.00 100 1.62 2030 0.50 0.83 1046 3275 0.009 848 0.41

SP 0.1 12/16 1.00 100 3.93 1250 0.82 1.09 506 392 0.097 613 0.98

TABLE 5.1: List of the simulations presented in this chapter. The
reference simulation of chapter 4 is called K2. All the simulations
presented have been performed in the high resolution grid (NR =
1408 and Nθ = 266) except K2l, performed in a lower resolution
grid (NR = 704 and Nθ = 144). The parameters κ and α are
varied independently, allowing to compute µ and δ. The columns
Zshock, θext

FM, θext
A , r0,FM, Ṁjet, Ṁspine/Ṁjet, Pjet, and Pspine/Pjet are out-

puts of the simulation measured at the final time tend (given in 105Td
units). Simulations K1 to A5 were performed with a nonrotating
spine, namely Ω∗a = 0 and ea = 2. Simulation SP is preformed for

Ω∗a = ΩKd and ea = 10.

5.1.1 Mass loading parameter κ

This first section deals with the variation of the mass-loading parameter κ. It is
defined by equation 2.93 and its expression using simulation parameters is equation
3.23. Five simulations were produced, with κ ranging from κ = 0.05 to κ = 1. This
range of values is similar to that of Blandford and Payne, 1982, who took κ ∈ [0.01; 1]
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(see Figure 2.3). As explained in section 2.6.5, κ should be lower than unity for the
outlfow (jet+spine) to be magnetically dominated at launch.

The simulations

The five simulations are named K1 (κ = 0.05), K2 (κ = 0.1), K3 (κ = 0.2), K4 (κ =
0.5) and K5 (κ = 1). Four of them are displayed in Figure 5.2, the last one being
the reference simulation K2, extensively described in chapter 4. The simulations
are represented at their final state tend shown in Table 5.1. They have all reached
a steady state by tend, and have structures similar to K2, with at least one group
of standing recollimation shocks. The left column of Figure 5.2 shows the whole
simulation domain, and the right column shows a zoom on the shock-forming region
near the polar axis. Table 5.1 shows that for all simulations the spine mass loss rate
is around 10% of the jet mass loss rate. As shown in the Ṁjet column, both mass
loss rates are proportional to κ. The outflow powers follow the same behavior, with
Pspine/Pjet = 80% for all simulations, and with Pspine and Pjet both proportional to κ.
These variations follow directly from the expressions of Ṁjet and Pjet:

Ṁjet =
∫

ρv⃗p · d⃗s =
1

4π

∫
ηB⃗p · d⃗s =

1
4π

∫
η dΨ ∝ κ

Pjet =
∫

ρEv⃗p · d⃗s =
1

4π

∫
ηEB⃗p · d⃗s =

1
4π

∫
ηE dΨ ∝ κ

(5.1)

where the last step comes from the definition of κ (equation 3.23), the MHD in-
variant η being the mass flux to magnetic flux ratio (equation 2.71). This has the
caveat that the integration boundaries r0 ∈ [Rd, r0,FM] depend on κ, but the outer
regions contribute little to the mass loss rate and power of the jet.

When κ increases, the Alfvén and fast-magnetosonic surfaces get closer to the
disk. This is expected as the Alfvén speed increases when κ increases:

VAd = µVKd =
√

0.1/κVKd (5.2)

In all simulations, the main recollimation shock is defined as the shock intersect-
ing the FM surface. This intersection is defined as the tip of the shock. The shock
altitude on the axis Zshock is clearly decreasing with κ, as evidenced in Figure 5.3: it
goes down from Zshock = 2500 for κ = 0.05 to Zshock = 700 for κ = 1. The shock
geometry and opening angle are not perturbed, and the tip of the main shock Ztip
experiences a similar decrease. The whole jet structure is brought closer to the disk
with the increase of κ.

A second interesting aspect is the appearance of a second group of standing rec-
ollimation shocks at higher altitudes. This happens only when the first group has
gone to low enough altitudes, away from the domain outer boundary. This is for
κ ≥ 0.5. For κ = 0.5, this shock group is at z > 3000 and for κ = 1 it is at z > 2000.
This second set of shocks has a structure very similar to that of the first one:

• Two large recollimation shocks. Apart from the multiplicity that was also seen
in the other group, those are similar to the ones predicted from the self-similar
solutions. Like the other shock group, the lower shock has a large opening
angle while the higher shock has a much smaller one.

• Several smaller recollimation shocks, that are limited to the innermost jet radii.
They correspond to the spine-jet interaction.
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FIGURE 5.2: Influence of the mass-loading parameter κ on the fi-
nal stage of jets obtained with α = 3/4. The color background
is the logarithm of the FM Mach number n, black solid lines
are field lines, yellow lines are isocontours of the electric current
rBφ and the red dashed (resp. dotted) curve is the FM (resp.
Alfvén) critical surface. The left panels show the whole domain
and the right panels a close-up view around the shock-formation
regions. In the left panels, the field lines anchoring radii are r0 =
3; 15; 40; 80; 160; 320; 600; 1000; 1500. In the right panels, the field lines
anchoring radii are r0 = 1.2; 2; 3; 4; 5; 7; 9; 11; 13; 15 and the flow is
super-FM everywhere. The shocks displayed in the right panels are

the lowest in the simulation.
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FIGURE 5.3: Influence of κ on the altitude of the main recollimation
shock. This is done by measuring two altitudes for each shock: its
height at the axis (Zaxis, blue) and the altitude of its outer edge (Ztip,

orange).
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This second group of shocks appears as the field lines recollimate downstream of
the first group of shocks. As no dissipation is introduced, there is still a current Iaxis
on the axis. There is no reason why such groups of shocks should stop appearing
even further downstream, as long as the boundary of the simulation domain is not
reached. In a box of infinite size, the field lines should recollimate, be refracted
outwards by a recollimation shock, then recollimate and so on indefinitely.

Similarly to the small shocks (see section 4.2.3), one would expect the distance
between the shock groups to be periodic. However, the distance between the two
shocks HR appears quite larger than the altitude of the main shock Zshock. For the
simulation K4 (κ = 0.5), Zshock = 1150 while HR = 1650. This is because the "launch-
ing" conditions at the recollimation shock are quite different from the actual launch-
ing conditions on the disk. The acceleration and collimation happen at much larger
scales. At these large scales, even the collimated spine has become larger. Moreover,
the grid is logarithmic in the spherical u⃗R direction: ∆R ∝ R. At higher altitudes
gradients become weaker and structures are displaced upwards.

Now that we know what simulations K2 and K5 are, we can also take another
look at Figure 3.4, showing the evolution of the acceleration factors of these two sim-
ulations over their computation. Table 5.1 shows that the simulations with a mass
load closer to that of Blandford and Payne, 1982 (κ = 0.1) converge faster: they reach
greater timescales tend. This is also seen on Figure 3.4 where the acceleration factor
for K5 lies under that of K2. In simulations with higher values of κ, the collimation is
stronger and all structures, including the recollimation shocks, are displaced down-
wards. They now appear in smaller cells, which limit both the time increment and
the size of the accelerated zone. However, it still reaches large acceleration factors at
the end of the simulation, which is also the case for the three other simulations K1,
K3 and K4.

Comparison with self-similar solutions

On Figure 5.4 I plot the magnetic lever arm λ as a function of the mass-loading κ. To
compare my simulations with the seminal solutions of Blandford and Payne, 1982,
I select the field lines with an inclination at launch ξ ′0 ≡ Br/Bz equal to 1.4, 1.5 and
1.65. This allows to draw the isocontours of ξ ′0 and facilitates the comparison with
Figure 2.3, reproducing the Figure 2 of Blandford & Payne. Most works on similar
solutions produced such figures, and the comparison can be extended to e.g. Figure
3 of Ferreira, 1997, Figure 5 of Casse and Ferreira, 2000b or Figure 4 of Jacquemin-Ide,
Ferreira, and Lesur, 2019 that all show similar trends. Contrary to those solutions,
my simulations are not strictly self-similar: the greater the anchoring radius, the
greater the field line inclination ξ ′0 and thus the greater the magnetic lever arm λ.
On Figure 5.4 I also represent for each simulation (each value of κ) the magnetic
lever arm for r0 = 5, 50 and 500. We see that the simulations are in good agreement
with the analytical expectations. The intended values of the arm lever (see section
3.2.3) are retrieved. We learned in section 2.6.5 that λ = 1 + q/κ, with q = |Bφ/Bz|
being the magnetic shear at the disk surface. As shown in the right panel of Figure
4.1 for the reference simulation, my simulations have q ∼ 1, thus λ ∼ 1 + 1/κ. For
the reference simulation K2 (κ = 0.1), the magnetic arm lever λ is in the 12 to 17 range
(see Figure 4.7), similar to what is expected by this relation.

This relation also explains the decrease in shock altitude with the mass load il-
lustrated in Figure 5.3. As the mass load increases and the magnetic lever arm de-
creases, the centrifugal acceleration is weaker and the shocks appear closer to the
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FIGURE 5.4: Jet parameter space λ(κ) at the final stage of our simula-
tions K1-K5 with α = 3/4. Each simulation is obtained for a unique
mass loading κ and gives rise to a distribution of the magnetic lever
arm λ with the radius: green, red, and blue dots correspond to an-
choring radii ro = 5, 50, and 500, respectively. The solid curves are ob-
tained for constant values (indicated in the panel) of the initial mag-
netic field inclination ξ

′
0 = Br/Bz at the disk surface and reproduce

the Blandford & Payne scaling (Figure 2.3).

disk. This behavior was also seen in self-similar simulations such as the ones of Fer-
reira, 1997. The top panel of Figure 1.16 reproduces their Figure 6. It shows several
field lines anchored at the same point in the disk, with ξ ∼ κ varying from 0.005
to 0.05, all other things being equal. As those solutions do not exhibit fast shocks,
they cannot make precise predictions on their location. Indeed, they can occur at
any super-FM point on the field line, which happens even before the recollimation.
When extrapolating shock positions from these simulations, I will consider that they
happen beyond the recollimation point: Zshock > Zrecollimation. Here the recollimation
point is where Br = 0, and the field line is at it widest.

We see on Figure 1.16 that the expected location of the recollimation shock de-
creases in altitude with κ. However, their variation is much greater than mine. When
increasing κ by a factor 10, their shock altitude is decreased by six orders of magni-
tude. When I increase κ by a factor 10, the shock altitude is decreased by a mere fac-
tor 3. This discrepancy should be mostly due to the difference in ejection properties.
The solutions of Ferreira, 1997 and others are radially self-similar, meaning that all
quantities follow power-law evolutions, even close to the axis where r → 0. Their
return current limr→0(rBφ), essential to the collimating hoop stress −B2

φ/(4πr)u⃗r
can grow limitless. In self-similar solutions, following the central object (r < 1) from
r = 1 to r = 0.1 leads to an increase in toroidal magnetic field by a factor 18 and in
Bernoulli invariant e by a factor 10. In my simulations (see Figure 4.1 for the refer-
ence simulation K2), the toroidal magnetic field vanishes and the Bernoulli invari-
ant is decreased by a factor 5. This suggests that even though it only ejects a small
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amount of mass, the central object drastically affects the collimation properties, and
thus the location of the shocks. This is confirmed by the upcoming parameter study
in α, and more importantly in Ω∗a . This also means that the boundary conditions on
the toroidal magnetic field are critical for the collimation properties. Here, Bφ is a
simple "outflow" condition at the ejection boundaries.

As a side note: even though the impact of κ on the shock altitude is smaller here
than in self-similar solutions, it is sufficient to noticeably modify the shock physics.
We see on Figure 5.2 the shocks becoming weaker with an increasing κ. This is
directly due to their decrease in altitude, which leads to a decrease in pre-shock
FM mach number n1 and thus in compression factor χ, as shown by the Rankine-
Hugoniot jump conditions of section 2.7.

5.1.2 Magnetic field distribution α

The constraint α < 1

This second section deals with the variation of α, self-similar parameter defined as
the exponent of the magnetic flux (see section 2.6.4) in the initial and boundary con-
ditions. On the disk boundary, Bz ∝ rα−2. A shown in section 2.6.5, in self-similar
solutions the relation between α and the ejection index ξ limits the parameter space
to 3/4 < α < 5/4 for super-SM outflow.

I have tried, without success, to obtain steady solutions for α ≥ 1. This is due to
the differences in electric current topology between α < 1 and α > 1 described in
section 2.6.6 and illustrated in Figure 2.5.

• For α < 1, the circuits close on the central object. This is illustrated for the
reference simulation K2 (α = 3/4) on Figure 5.51, where we see the electric
circuits flowing out of the disk and closing down into the central object (R =
1). Thus, only the innermost disk regions contribute to the jet collimation, as
explained in section 4.5 and illustrated on Figure 4.17: Those regions are the
only ones with a return current jz < 0 and thus a collimating Lorentz force
j⃗p × B⃗φ, along −u⃗r.

• For α > 1 the electric current at the disk surface I = rBφ ∝ rα−1 grows with r,
and the electric currents flow down on the central object and on the disk (see
the right panel of Figure 2.5). As there is initially no toroidal magnetic field
or current in the simulation, it is constantly being created at the outermost
converged radii, that grows with r ∝ t3/2. The acceleration scheme (see section
3.1.5) can never be activated on a large enough domain to be significant. Thus,
these simulations are numerically out of reach as they never go to large enough
physical timescales.

For this reason I will only show simulations with α < 1. Six simulations were
produced, for α ranging from 10/16 to 15/16. For α = 1 the current would be flow-
ing out of the disk only at its outermost radius, so the numerical issue described
above would still be present.Simulations with α ≥ 1 will be shown in section 6.4.3
in the case of a truncated JED.

1On this figure, we also see a peak in density (background color) at the intersection between the
central object boundary and the disk boundary (r = 1, z = 0). The decrease in density is steep in
both on the disk (ρ = ρd(r/Rd)

2α−3 with α = 3/4 for K2) and on the central object (ρa = ρd/δ with
δ(κ) = 102 for K2). See the left panel of Figure 4.1 for the variation of the density along the whole
ejection boundary.
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FIGURE 5.5: Snapshot of the reference simulation K2 at tend, zoomed
for r < 10 and z < 10. The white lines are poloidal magnetic field
lines. The red lines are the two critical surfaces, Alfvén (dotted) and
FM (dashed). The yellow lines are electric circuits. They are oriented
counter-clockwise, flowing out of the disk with jz > 0 (z = 0, r ∈
[1; 10]) and closing into the central object with jz < 0 (R =

√
r2 + z2 =

1). In the background is the plasma density ρ.

The simulations

The six solutions are named A1 (α = 10/16), A2 (α = 11/16), K2 (α = 12/16), A3
(α = 13/16), A4 (α = 14/16) and A5 (α = 15/16). Five of them are displayed on
Figure 5.7, the last one being the reference simulation K2 extensively described in
chapter 4. All of them were performed with κ = 0.1, same as K2. These simula-
tions are displayed in their final state at tend. Except the simulation A5, they have all
reached a stationary state. All simulations have structures similar to K2, with one
group of shocks. In the left column of Figure 5.7 is the whole simulation domain,
and in the right column is a zoom on the shock-forming region near the polar axis.
The final times tend are shown in Table 5.1, with other global simulation character-
istics. We see that the anchoring radius of the outermost FM surface r0,FM increases
with α, while the colatitudes of the critical surfaces at the outer boundary θext

FM and
θext

A decrease. This is a direct consequence of the magnetic surfaces becoming more
vertical at launch as α increases.

We have seen in section 3.2.3 that at the intersection between the central object
and disk boundaries (R = Rd, θ = π/2), the inclination of the magnetic surfaces
|Br/Bz| is fixed. It is roughly equal to 1/α, thus the magnetic field lines are more
collimated at launch for higher values of α. As the jet mass loss rate Ṁjet and power
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Pjet are computed until a r0,FM that increases with α, it is natural that they increase
with α. Still, mass loss rate and power increase with α even when computed until a
fixed radius. The distributions become flatter with a higher α (ρ ∝ r2α−3 for instance)
while the normalizations stay the same, and thus the outer disk regions contribute
more to the jet mass loss rate and power for higher values of α.

There are some clear evolutions in shock behavior with the parameter α. As
shown in Figure 5.8, the shock altitude on the axis barely changes, while the altitude
at its outermost point ztip decreases with α. This is also a direct consequence of a
stronger jet collimation at launch for higher values of α. We see on the left column
of Figure 5.7 the shock radial extent decreasing for an increasing α. The main shocks
have an opening angle on the axis roughly equal to π/4, and more extended shocks
naturally end up at higher altitudes ztip. The simulations A1 (α = 10/16) and A2
(α = 11/16) have the lowest values of α. Their main shock stretches beyond the
outer R = 5650 boundary, and the altitude of the outermost shock point ztip cannot
be computed. The critical surfaces are too horizontal for the size of our (already very
large) simulation domain. For the simulations A4 and A5 with the largest values
of α (respectively α = 14/15 and α = 15/16) the critical surfaces are much more
vertical. The two large recollimation shocks as seen in K2 are now fully enclosed
in the domain and merge with the FM surface2. In these simulations, one or two
additional shocks also appear at higher altitudes.

Looking at the tend column in Table 5.1 we see a clear decrease with α, especially
for α = 15/16. This is due to the difficulties in computing simulations with α ≳ 1
described in section 5.1.2, as computing times were identical. We see also in Figure
3.4 the simulation A5 reaching acceleration factors smaller than those of the reference
simulation K2. Still, at tend the simulation A5 has reached timescales that would have
been sufficient for the reference simulation K2 to reach a steady state. As we saw in
section 4.4 the timescale at which the jet becomes stationary is text(r0,A), and r0,A is
larger for A5. The simulation A5 should be run until text(r0,A) ∼ 2 × 105 to reach a
stationary state.

Comparison with self-similar solutions

Which of my simulations can be compared to the self-similar solutions ? A self-
similar parameter α < 12/16 would correspond to an inflowing solution with a neg-
ative ejection index ξ. The comparison will thus be restrained to simulations with
α ≥ 3/4. Of those, only the reference solution α = 3/4 could be considered a cold jet
as it corresponds to low ejection indexes similar to those displayed on the top panel
of Figure 1.16 (ξ ∼ 10−2). Having higher ejection indexes would require either ad-
ditional disk heating (Casse and Ferreira, 2000a) or much lower disk magnetization
(Jacquemin-Ide, Ferreira, and Lesur, 2019).

The simulations with α > 3/4 should thus not be compared to the cold jet solu-
tions of Ferreira, 1997 but rather to those of Contopoulos and Lovelace, 1994. Some
of their solutions are represented on Figure 5.9, exhibiting the three classes they ob-
tain:

• Recollimating solutions that cross the FM point for α ≤ 0.856: Figure 5.9-(a).

• Non-recollimating sub-FM solutions for 0.856 < α < 1: Figure 5.9-(b).

• Vertically damped oscillating sub-FM solutions for α > 1: Figure 5.9-(c).

2For the reference simulation K2 the highest large scale shock was too big to be fully featured in the
domain and reached the outer boundary.
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FIGURE 5.7: Influence of the magnetic field distribution α on the final
stage of jets obtained with κ = 0.1. I use the same notations, colors,

and field lines anchoring radii as in Figure 5.2.
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FIGURE 5.8: Influence of α on the altitude of the main recollimation
shock. This is done by measuring two altitudes for each shock: its
height at the axis (Zaxis, blue) and the altitude of its outer edge (Ztip,

orange).
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FIGURE 5.9: Figure 2 of Contopoulos and Lovelace, 1994. Solutions
for various magnetic field distributions: (a) recollimating solution
with α = 0.8 (b) non-recollimating solution with α = 0.9 (c) oscil-

lating solution with α = 1.02.

Should my simulations behave similarly to their solutions, I would observe a
dichotomy between the simulations A1, A2, K2 and A3 and the simulations A4 and
A5, as 13/16 < 0.856 < 14/16. In the first class of solutions, they also observe a
increase with α of collimation altitude by several decades. My simulations do not
display such a behavior, the shock altitude staying roughly the same no matter the
value of α. Again, this is probably caused by the presence in my simulations of a
non self-similar axial spine playing a major role in the collimation process, while the
solutions of Contopoulos and Lovelace, 1994 are purely self-similar.

5.1.3 Influence of the central object

The parameters Ω∗a and ea

This third section deals with the influence of the spine emitted from the central ob-
ject on the surrounding jet emitte by the disk. To do so, I mostly play with the axis
rotation Ω∗a , although sometimes also with its energy ea. The Ω∗a parameter mea-
sures rotation speed of the magnetic surfaces on the axis in units of ΩKd , keplerian
rotation in the inner disk (r = 1; z = 0). The central object could be either a star or
a black hole, producing different kinds of axial spines. Possible rotation profiles for
both cases are represented on Figure 5.10.

• If the central object is a star (A), then the radius Rd corresponds to the disk
truncation radius rt. Inside the central object boundary are hidden the star
and its magnetosphere, launching the stellar wind and the star-disk interaction
wind. Setting the rotation on the axis fixes the value of this truncation radius
with respect to the disk corotation radius with the star rco = (GM/Ω2

∗a
)1/3.

As the case Ω∗a > 1 or rco < rt corresponds to the "propeller" regime where
accretion is inhibited (see e.g. Illarionov and Sunyaev, 1975), this manuscript
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will be restricted to the case Ω∗a ≤ 1. If Ω∗a = 1 the corotation and truncation
radii are confounded (in blue on Figure 5.10-(A)). If Ω∗a < 1 the corotation
radius is pushed further into the disk (in red on Figure 5.10-(A)). In both cases,
the two radii are linked by rco/rt = Ω−2/3

∗a
.

• If the central object is a black hole (B), then the radius Rd would correspond
to the innermost stable circular orbit rISCO, neglecting all GR effects. Setting
the rotation on the axis then fixes the spin of the black hole, and thus rISCO
with respect to the Schwarzchild radius rS. The case Ω∗a = 0 would model a
Schwarzchild black hole of spin parameter a = 0 with rISCO/rS = 3. It is rep-
resented in red on Figure 5.10-(B). The case Ω∗a > 0 would model a Kerr black
hole of spin parameter a ∈]0; 1], in prograde rotation at the speed ΩH(a) =
ac/(2rH), where rH = rg(1 +

√
1 − a2) is the radius of its event horizon. As-

suming a Keplerian disk starting in rISCO, the black hole rotation over the disk
rotation at the ISCO would reach a maximum ΩH(a = amax)/ΩKd ≃ 1.5 for
amax ∈]0; 1[. This case is represented in blue on Figure 5.10-(B). For higher
spin parameters, the black hole rotation speed compared to that of the disk at
ISCO gets lower, until reaching ΩH(a = 1)/ΩKd = 1/2 for a maximal spin
parameter a = 1. Naturally, the higher the spin parameter, the stronger the
non-relativistic and Keplerian disk at ISCO approximations. For a ≲ 1, the
r = Rd JED boundary is rejected far beyond the ISCO, where the disk becomes
quasi-Keplerian. And anyway, in the case of black hole jets the non-relativistic
framework forces us to draw only qualitative conclusions for the simulations.
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FIGURE 5.10: Schemes of the rotation profiles along the central ob-
ject and JED boundaries, normalized to ΩKd . (A) Protostar: Either
Ω∗a < ΩKd (red) and the truncation radius is smaller than the corota-
tion radius or Ω∗a = ΩKd (blue) and the truncation radius is equal to
the corotation radius. (B) Black hole: Either a = 0 and the black hole
does not spin (Ω∗a = 0, Kerr black hole, red) or a ∈]0; 1] and the black

hole spins (Ω∗a > 0, Schwarzchild black hole, blue).

Therefore, Ω∗a may be varied from 0 to around 1, which bears some physical
meaning for both YSO and prograde black hole jets. The aim of this work is to
produce and study jets emitted from the disk via the Blandford & Payne process.
Therefore, the influence of the axial spine was minimized as much as possible, by
setting Ω∗a = 0 for all previous simulations3. However even in this case the spine
has a clear influence on parameter dependence and jet dynamics.

3But not only, see section 3.2.3.
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The simulation

To further probe the impact of the axial spine I ran the simulation SP with solid-body
rotation on the central object: Ω∗a = 1. To produce this simulation I made another
change from the reference simulation K2: the normalized Bernoulli invariant on the
axis is increased from ea = 2 to ea = 10. It was done to limit the overgrowth of the
radial pinch on the axis and consequential imbalances, and therefore allows faster
convergence of the simulations.

Its final state is displayed on Figure 5.11 and some of its global characteristics
are written in Table 5.1. It achieves a steady state and exhibits the same features
as the reference simulation K2. As expected, the main shock is closer to the disk:
here Zshock = 1300, while for the reference simulation Zshock = 1850. The spine and
jet power both depend on the available electromotive force (emf) e =

∫
E⃗m · d⃗l =∫

(⃗v × B⃗p) · d⃗l. For the disk this emf is edisk ≃
∫ 5650

r=1 ΩKrBzdr and for the central

object eobj ≃
∫ π/2

θ=0 ΩrBRdθ. Going from K2 where Ω∗a = 0 to SP where Ω∗a = 1 the
rotation on the central object and therefore the emf eobj are greatly increased. The
collimating hoop stress in the spine becomes stronger, leading to lower shocks.

Further study on the influence of Ω∗a on jet collimation in the context of jets
emitted from truncated disks (see section 6.4.1) showed the modification of ea has
little influence on shock altitude. Note that other quasi self-similar simulations with
smaller changes in Ω∗a and ea were performed. They also led to a lowering of the
shock compared to K2, although naturally smaller.
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FIGURE 5.11: Snapshot at tend of the SP simulation with a rotating
spine, α = 3/4 and κ = 0.1. I use the same color coding as in Figure
4.2. The magnetic field lines (black solid lines) are anchored at the

same disk radii.
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5.2 Discussions

In this chapter and the previous one, I made some observations and drew a few con-
clusions on my simulations of jets emitted from quasi self-similar disks. This section
aims to provide a step back from these simulations and place them in a broader
context.

• First, by putting the emphasis on a few caveats of the numerical setup, high-
lighting what can and cannot be deduced from my simulations.

• Then, by comparing my methods and results to other published works, high-
lighting why we believe the steady recollimation shocks presented here are the
first of their kind.

• Finally, by summing up the conclusions that could be drawn from these quasi
self-similar simulations.

5.2.1 Setup limitations

As for all numerical works, a few words of caution are necessary to avoid over-
generalising the results obtained. The reader should also keep in mind that this
work was done in the framework of ideal non-relativistic MHD.

First, these simulations show jets emitted from a keplerian disk. The impact of
the axial spine has been reduced at maximum, for instance via setting the axis rota-
tion Ω∗a to zero and fixing a constant sonic mach number MS on the whole ejection
boundary, including the central object. Nevertheless, this axial spine proved to have
a strong impact on the jet structure. Its role in flow dynamics has yet to be explored
in the case of a more physical spine-jet outflow.

Second, these isentropic simulations prohibit energy dissipation, including in the
shocks. Therefore, the jet could recollimate, experience another shock, recollimate
again, etc. indefinitely. In this chapter, we saw this happening when the first group
of shocks is at low enough altitudes, for simulations K4, K5 (see Figure 5.2) and SP
(see Figure 5.11). On top of not being realistic, this prevents the simulations from
containing a true asymptotic circuit, extending from the shock until "infinite" alti-
tudes. Instead, there is a succession of circuits along the polar axis, located between
the consecutive shocks.

Third, the numerical setup has been fine tuned to capture the shocks. Different
Riemann solvers and reconstruction schemes were employed near the axis and in
regions of extremely low density and high Alfvén speed. The grid cells are also
smaller near the axis. As all other simulations, mine depend on those conditions,
although convergence tests were performed to test the validity of the acceleration
scheme and the solidity of the results. Figure 5.12 shows the simulation K2l that
has the same parameters as the reference simulation K2 but was performed in the
low-resolution grid that has roughly four times fewer cells (see the right panel of
Figure 3.5 for a representation of the grid). It attains a stationary state, and naturally
manages to reach a greater final time tend (see Table 5.1) in less computing time4.
It has a structure similar to that of K2, most notably containing two recollimation
shocks with a large radial extent: the lower main one with a large opening angle
ending on the FM surface, and higher one with a smaller opening angle ending at the
outer boundary. There are a few differences. Naturally, this simulation shows less

4In the same computing time, one would expect a factor 8 between the two final times tend: a factor
4 as there are 4 times fewer cells and a factor 2 because of the timestep (see equations 3.13 and 3.15).
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complexity: while in the simulation K2 there were two shock mergers along the main
shock (see Figure 4.9) in the simulation K2l there is only one, at (r ∼ 700, z ∼ 3100).
This is also why the shocks at lower altitudes in simulations K4 and K5 (see the
right column of Figure 5.2) showed higher complexity: as ∆R ∝ R the resolution
decreases with altitude. Also, the shocks appear at higher altitudes: Zshock = 1850
for K2 and Zshock = 2490 for K2l. This was also expected, a lower-resolution grid
inducing lower gradients and thus weaker recollimation. Still, the shocks have the
same impact on the jet morphology, and remain rather weak (χ ∼ 2 in the spine and
χ ∼ 1.4 in the jet, similar to K2). Therefore, the collimation and shock properties are
globally conserved in this simulation, and the resolution seems to only have a small
impact on the simulations.
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FIGURE 5.12: Snapshot of the low-resolution simulation K2l at tend.
The color coding is the same as the left panel of Figure 4.2, snapshot

of the high-resolution simulation K2.

5.2.2 Comparison with other numerical works

In this section, I compare my results to those found in the litterature, restraining it to
2D nonrelativistic simulations. Relativistic jets develop displacement currents and
an electric field modifying jet collimation, and 3D jets are susceptible to many ad-
ditional instabilities, mostly interface or current-driven. Those additional processes
forbid direct comparison to my simulations. As mentioned in the introduction, I will
also only deal with "global" simulations. In those, the jet is launched in a "bottom-
up" approach: there is no collimated jet ab initio in the domain. Some stationary 2D
jet simulations relying on self-similar solutions have been shown to contain standing
recollimation shocks. The domain of those works starts high above the disk, allow-
ing to be initially filled by either a Blandford & Payne-type jet (Gracia, Vlahakis, and
Tsinganos, 2006; Stute et al., 2008) or a combination of a Blandford & Payne jet dom-
inant in the outer regions and a meridionally self-similar solution dominant in the
inner regions (Matsakos et al., 2008, 2009). Naturally, the boundary conditions are



5.2. Discussions 119

set consistently with these initial conditions. After short timescales of a few tens to
a few thousands Td, their simulations converge to a steady state, with a collimated
jet containing recollimation shocks of properties similar to those in my simulations
(see section 4.1.2. of Matsakos et al., 2008 for instance). However, these shocks were
bound to appear because of the boundary conditions: In Matsakos et al., 2008 the
inner regions are set super-FM with magnetic field lines already bent inwards. Their
intent was to prove the numerical stability of the self-similar solutions, thus they
naturally reproduced such solutions.

The intent of my "global" platform simulations and those presented in this sec-
tion is different. The aim is to study which launching conditions, sub-FM, sub-
Alfvénic and consistent with disk models, would lead to the formation of collimated
jets, and maybe of additional substructures, steady or not. This section is not an ex-
haustive review, and some other simulations performed with a different intent are
mentioned in the introduction.

Ouyed, Clarke, and Pudritz, 2003; Ouyed and Pudritz, 1997a,b performed simu-
lations in a small cylindrical domain (r, z) = (20Rd, 80Rd) with 200 × 500 cells. Their
parameter space is quite different from mine: the magnetic field distribution is set
with α = 1 or α = 2, the inner jet regions are highly super-Alfvénic (µd = 10−2) with
a mass load κ steeply decreasing radially (κ ∝ r3/2−2α). They do not reach a station-
ary state, but see unsteady knots caused by jet collimation towards the axis. Those
shocks, only happening for small mass loads (κd ∼ 10−2) could be due to overcon-
strained boundary conditions at the jet launch. Pudritz, Rogers, and Ouyed, 2006
continued their work using the same grid and Alfvénic mach number at launch, but
explored magnetic field configurations closer to mine, with α ∈ [1/4, 1], and thus
had a flatter κ ∝ r3/2−2α distribution. Their simulations showed a dichotomy be-
tween parabolic field lines for α = 1/4 and α = 1/2 and cylindrical field lines for
α = 3/4 and α = 1. I suspect it is a direct geometric consequence of the boundary
conditions, as the magnetic field lines become more collimated at launch when α
increases.

Fig. 5. from Collimation of Astrophysical Jets: The Role of the Accretion Disk Magnetic Field Distribution
Fendt 2006 ApJ 651 272 doi:10.1086/507976
https://dx.doi.org/10.1086/507976
© 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

FIGURE 5.13: Adapted from Figure 6 of Fendt, 2006. Vari-
ation of the averaged jet collimation degree ζ ≡ Ṁz/Ṁr =
(
∫ rmax

0 rρvzdr)/(rmax
∫ zmax

0 ρvrdz) with the disk radial distribution of
the magnetic field (Bp ∝ r−µ i.e. µ ≡ 2 − α). (rmax, zmax) =
(150Rd, 300Rd) is his grid size. All simulations presented here have
a disk density radial distribution similar to my reference simulation

K2 (ρ ∝ r−µρ = r−3/2).
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Fendt, 2006 performed forty simulations in a bigger grid (r, z) = (150Rd, 300Rd)
with 256× 256 cells. His simulations are run for longer timescales, up to a few thou-
sand times Td, allowing some of the simulations to reach a steady state. He had
a vast parameter space, exploring at launch the radial distributions in density and
magnetic field. He also explored the impact of the boundary Alfvén mach number
with µd ∈ [0.1, 2.67], thus having some simulations with fully sub-Alfvénic launch
conditions. Like Pudritz, Rogers, and Ouyed, 2006 he saw an increasing jet collima-
tion for flatter magnetic field configuration (higher α), and showed that this holds
true whatever the disk density distribution. For instance, 5.13 shows the evolution
of < ζ > quantifying jet collimation with µ ≡ 2 − α5 for a disk density distribution
ρ ∝ r−3/2 as in our reference simulation K2. This tends to confirm that as mentioned
in the paragraph above and in section 5.1.2, the stronger collimation may simply be
a consequence of more vertical magnetic field, as in the potential solutions.

Fig. 7. from The Structure of Magnetocentrifugal Winds. I. Steady Mass Loading
Anderson et al. 2005 ApJ 630 945 doi:10.1086/432040
https://dx.doi.org/10.1086/432040
© 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

FIGURE 5.14: Figure 7 of Anderson et al., 2005. Evolution of the
Alfvén radius over anchoring radius rA/r0 with the mass loading
µ ≡ κ. The asterisks show their simulation values and the dashed
line are the values expected from the fit of Spruit, 1996: (rA/r0) =√

3/2(1 + κ)−2/3.

Krasnopolsky, Li, and Blandford, 2003 continued the work of Krasnopolsky,
Li, and Blandford, 1999 on a much larger domain: (r, z) = (1000Rd, 1000Rd) with
210 × 190 cells. As Pudritz, Rogers, and Ouyed, 2006 they saw an increase in jet col-
limation degree for a steeper disk density distribution, with a dichotomy between
configurations with a mass load κ radially increasing and decreasing. They did not
reach a steady state, that they attribute to their non self-similar scaling. Anderson
et al., 2005 used the same numerical setup and grid and made simulations with a
parameter space similar to the simulations of section 5.1.1. They have a Blandford
& Payne disk with α = 3/4, ρ ∝ r−3/2 and a constant mass load κ. They performed
simulations with κ ∈

[
6.3 × 10−4, 19

]
, and found a jet collimation growing with

the mass load, as expected by analytical (Spruit, 1996) and semi-analytical (Ferreira,

5This µ ≡ 2 − α parameter has nothing to do with my µ ≡ VAd /VKd parameter.
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1997) works. Figure 5.14 shows in asterisks their observed evolution of the normal-
ized Alfvén radius (rA/r0) over the mass load µ ≡ κ6. They did not reach a steady
state for mass loads κ ≳ 1, and did not see any recollimation shock. My simulations
(see section 5.1.1) indicate that the only case where standing recollimation shocks
would appear in their simulation domain, that is when Zshock < 1000, is for κ ∼ 1,
where they do not reach a steady state.

The earlier works mentioned above were the first to be interested in the influence
of launching conditions on jet collimation. Due to numerical constraints, they were
performed on relatively small scales in space and time. As a reminder, my simula-
tions were performed in a spherical grid (R, θ) = (5650Rd, [0; π/2]) with 1408 × 266
cells and run up to roughly a million Td. This discrepancy, especially on time scales,
forbids direct comparisons between these earlier works and my simulations.2376 J. P. Ramsey and D. A. Clarke

Figure 6. Similar to Fig. 3, but for simulation F (β i = 40) at t = 153 yr.

Figure 7. An axial slice of level 9 from simulation F at r = 0.4 au and t = 153 yr. Plotted on the left from top to bottom are density, poloidal velocity, and
poloidal magnetic field. Plotted in the middle from top to bottom are temperature, toroidal velocity, and toroidal magnetic field. Plotted on the right from top
to bottom are thermal pressure, total (thermal + magnetic) pressure, and plasma-β.
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FIGURE 5.15: Figure 6 of Ramsey and Clarke, 2019, simulation F with
κd = 2. The background is the temperature, the black arrows indicate
the poloidal velocity, the white contours are poloidal magnetic field
lines and the black contour is the SM critical surface. The inner jet

core and sheath reach super-FM speeds (see their Figure 3).

Ramsey and Clarke, 2011, 2019 are to my knowledge the first to perform simu-
lations on a grid large enough to capture standing recollimation shocks: (r, z) = (5 ×
103Rd, 8× 104Rd) with nine levels of AMR, their coarsest resolution being 160× 2548.
Their magnetic field profile is the critical flat distribution α = 1 (see section 5.1.2).
They also use the standard ρ ∝ r−3/2 density distribution and have a mass load
slowly decreasing radially with κ ∝ 1/

√
r. Despite this decrease, only the innermost

regions (r0 ≲ 10Rd) reach a relative steady state. They also explore the impact of
the mass loading parameter κ. Its value on the disk is explored on a large range:

6This µ ≡ κ parameter has nothing to do with my µ ≡ VAd /VKd parameter.
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κd ∈
[
5 × 10−2, 32

]
. Knots appear near the polar axis in their κd = 0.5 simulation

E, and become stronger and periodic in their κd = 2 simulation F. This simulation F
is presented on Figure 5.15, where the periodic knots are clearly seen in the bottom
panel. These knots are quite different from the steady recollimation shocks of my
simulations, as their radial extent is small, and the MHD invariants are not constant
through them (see the discussion in their section 4.3). Compared to my simulations,
their grid is ten times larger and the integration is made on a time tend ten times
smaller. Moreover, as explained in section 5.1.2 their vertical magnetic field config-
uration should prevent them from reaching a steady state out of the innermost jet
regions in reasonable timescales, which was not their intention anyway.

5.3 Summary

The simulations presented in this chapter and the previous one are the first to show
standing recollimation shocks in a jet emitted from emitted from a magnetized kep-
lerian disk. Such shocks were expected from the self-similar solutions, but were not
seen in previous "global" simulations. This most likely due to the huge associated
scales in space and time, that could not be captured by the earlier works.

In this chapter, I analyzed the influence of the launch conditions on those shocks.
I showed that they qualitatively follow the behavior demonstrated by the self-similar
studies, i.e. that they get closer to the disk as the mass load κ increases. I confirmed
that the magnetic field distribution in the disk (Bz ∝ rα−2) is the key quantity shaping
the collimation of the jet. In this quasi self-similar setup, the collimation follows the
trend of potential fields: the greater α, the stronger the collimation. In addition, no
steady-state simulations are obtained for α ≥ 1: at those large scales, it is difficult to
establish a consistent and stationary electrical circuit along the outer regions.

Although qualitatively in line with the self-similar studies, my results show an
undeniable impact of the axial spine on the jet asymptotics. This inner spine is not
ejected from the Keplerian disk, but from the central object and its interaction with
the surrounding disk. It carries a return current responsible for the collimation of
the innermost flow.
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Steady simulations of jets emitted
from a truncated JED
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“Les montagnes ne vivent que de l’amour des hommes. Là où les habitations, puis les
arbres, puis l’herbe s’épuisent, naît le royaume stérile, sauvage, minéral ; cependant, dans sa

pauvreté extrême, dans sa nudité totale, il dispense une richesse qui n’a pas de prix: le
bonheur que l’on découvre dans les yeux de ceux qui le fréquentent.”

“The mountains live only on the love of man. Where houses, then trees, then grass are
exhausted, a barren, wild, mineral kingdom is born ; yet, in its extreme poverty, in its total
bareness, it dispenses a priceless treasure: the happiness you discover in the eyes of those

who frequent it.”

Gaston Rébuffat
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Les résultats présentés dans les chapitres précédents ont été obtenus dans une configu-
ration quasi auto-similaire, l’ensemble de la frontière inférieure étant un disque d’émission
de jets (JED). Les jets émis à partir d’un disque aussi grand peuvent être comparés à des
solutions auto-similaires et à des simulations numériques avec une frontière d’éjection sem-
blable. Cependant, ces jets simulés sont très différents de ceux observés autour des YSOs, des
AGNs ou des binaires à rayons X. Pour cette raison, dans ce chapitre nous verrons des jets
simulés où l’éjection ne se fait que depuis la partie interne du disque, à la manière du modèle
JED-SAD. Ce modèle a été développé dans le contexte des binaires à rayons X, mais il est
également valable pour les jets protostellaires. Il s’agit d’un disque hybride, avec à l’intérieur
un disque d’émission de jets (JED, Ferreira, 1997) fortement magnétisé, entouré d’un disque
d’accrétion standard (SAD, Shakura and Sunyaev, 1973) à l’extérieur. La transition entre le
JED qui lance des jets et le SAD qui n’en lance pas se produit à un rayon fini. Dans le cas
d’une binaire à rayons X, la valeur de ce rayon de transition devrait varier au cours du cycle
de fonctionnement, mais ne jamais dépasser quelques dizaines de rayons de Schwarzchild.

Une autre raison de réaliser des simulations utilisant ce type de dispositif est de dé-
connecter le circuit accélérateur, lié au disque, du circuit asymptotique, qui dicte la forme
observée du jet. Cela implique que la valeur du courant post-choc est fixée par la valeur
du courant sortant du disque. Par conséquent, un certain nombre de morphologies de jets
ne sont pas atteignables. Par exemple, le jet de M87 est parabolique avant de rencontrer
les chocs de recollimation, puis devient conique. Dans mes simulations, la présence d’un
courant poloidal avant et après le choc force le jet à rester parabolique. Mais, si le choc per-
met une déconnexion entre le circuit accélérateur et le circuit asymptotique, alors l’allure du
jet de M87 pourrait être reproduite.

Dans la région interne du disque, les variables sont fixés conformément aux solutions
JED, comme dans la simulation de référence. De même, sur l’objet central on interpole les
grandeurs de leur valeur au bord interne du disque jusqu’à la condition voulue sur l’axe.
Dans la partie externe, l’éjection est arrêtée en diminuant fortement la densité et en arrêtant
la rotation. L’éjection étant alors sub-SM, la vitesse d’éjection est laissée libre. Afin de limiter
la force électromotrice du SAD, son champ magnétique toroidal est petit à petit diminué au
cours de la simulation.

Cette fois, il y a un écoulement interne super-FM et un écoulement externe sub-Alfvénique,
à cause de la nature des conditions d’éjection. Dans la partie super-FM, on observe des chocs
de recollimation similaires à ceux observés dans les simulations précédentes. La présence
de ces chocs est un résultat fort, montrant que leur formation n’est pas un biais d’auto-
similarité, mais une conséquence des conditions d’éjection du disque. Dans ce cas, les chocs
façonnent également l’interface entre les flux super et sub FM : une réfraction de la surface
FM peut être observée sur à chaque croisement de choc. Partout, l’interface est grossièrement
parabolique. Cette situation est inévitable en raison de la présence d’une nappe de courant
externe le long de l’interface. Celle-ci se referme sur l’axe, menant à de la collimation, avant
et après le choc. L’interface est confondue avec la surface FM. Dans son équilibre, les deux
forces dominantes sont les deux pressions magnétiques. La chute du champ magnétique
toroïdal à l’interface créant la nappe de courant induit une forte force dirigée vers l’intérieur.
Elle est ensuite compensée par une forte augmentation du champ magnétique poloïdal, créant
une force tout aussi forte dirigée vers l’extérieur.
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Pour ce type de jets à l’éjection tronquée, j’ai également réalisé une étude paramétrique.
Les trois paramètres modifiés furent la rotation sur l’axe, la pression magnétique externe, et
la distribution du flux magnétique, via le paramètre α.

Concernant la rotation sur l’axe, je me suis limité à des étoiles ou trous noirs tournant
moins vite que leur disque. Le cas contraire correspondrait à correspond à des trous noirs en
rotation rapide qui développeraient des jets relativistes puissants, ou à des étoiles en rotation
rapide dans le "propeller regime" (voir Romanova et al., 2009; Zanni and Ferreira, 2009).
Tous deux sont hors de portée de ce travail. Ici il n’a pas été nécessaire de modifier l’énergie
sur l’axe, et il est clair que la rotation de l’objet central affecte la collimation. Un jet dont
l’objet central est en rotation est plus confiné que son homologue dont l’objet central n’est pas
en rotation. Mais surtout, ses chocs de recollimation se produisent à des altitudes plus basses,
ce qui pourrait conduire, dans les observations, à des noeuds stationnaires plus proches du
disque. Cependant, la rotation sur l’axe ne modifie ni la puissance du jet, ni son bras de levier
magnétique.

Concernant la pression magnétique externe, j’ai réalisé cinq simulations différentes, en
partant d’une pression nulle. Dans le cas d’une pression nulle, l’interface est conique, maisla
collimation du jet par rapport à la solution potentielle initiale est bien présente. Puis, plus
la pression magnétique extérieure est forte, plus l’interface est collimatée, donc plus le jet
lui-même est collimaté. Il semble que les pressions nécessaires pour produire la collimation
coincident avec ce qu’on observe dans les jets protostellaires, mais il est difficile de conclure
sans image synthétique du jet simulé.

Concernant la distribution du flux magnétique sur le disque, j’ai à nouveau tenté de
réaliser des simulations avec α ≥ 1, mais cela n’a à nouveau pas fonctionné, j’ai par contre
pu observer que pour celles-ci ont obtenait bien un jet plus collimaté (du moins proche du
disque), ainsi qu’un bras de levier magnétique plus faible.

Enfin, je compare mes résultats à ceux de la littérature. A ma connaissance, la dynamique
et l’influence réciproque entre un jet MHD émis par un disque de taille finie et une atmo-
sphère statique n’ont pas encore été étudiées, et ces simulations sont les premières à le faire.
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6.1 Introduction

6.1.1 Reproducing the observations

The results presented in the previous chapters were obtained in a quasi self-similar
setup, the whole lower boundary (r ∈ [Rd; 5650Rd]) being a Jet-Emitting Disk (JED).
Jets emitted from such a large disk can be compared to self-similar solutions and to
numerical simulations with a similar ejection boundary. However, such simulated
jets are very different from those observed around YSOs, AGNs or X-ray binaries.

Let us take the case of Young Stellar jets as an example. As my disk inner ra-
dius Rd is considered to be the disk truncation rt = 0.1au, the JED would extend
until 565au. Such a large emission zone is inconsistent with outflow observations
(Ferreira, Dougados, and Cabrit, 2006; Lee, 2020; Tabone et al., 2020 and references
therein) that derive from jet kinematics an ejection no further than a few au from
the star. In the case of AGNs, radio-emitting regions seem limited to a maximum
of a thousand Schwarzchild radii from the source (see e.g. Anderson and Ulvestad,
2005). Ejection from a limited disk would also be consistent with black hole X-ray
binariy observations. The JED-SAD model (Ferreira et al., 2006; Marcel et al., 2018;
Marcel et al., 2018) manages to fit X-ray and radio spectra during the jetted hard
states of GX 339-4 (Barnier et al., 2022; Marcel et al., 2019, 2022).

The JED-SAD model was developed in the context of X-ray binaries, but also
holds for protostellar jets/winds. In that case, the structure is that of Figure 6.1. It
consists in a hybrid disk, with an inner highly magnetized Jet-Emitting Disk (JED,
Ferreira, 1997) surrounded by an outer Standard Accretion Disk (SAD, Shakura and
Sunyaev, 1973). The transition from the jet-launching JED to the non jet-launching
SAD happens at a finite radius rJ . In the case of an X-ray binary, the value of this
transition radius is expected to vary during the duty cycle, but never exceeds a few
tens of rISCO.

stellar wind disk wind no wind

0 R R RJstar

accretion

columns

SAD

in

JED

FIGURE 6.1: Scheme of the JED-SAD model in the case of a protostar
(Combet and Ferreira, 2008). With my notations, Rin = Rd. The Jet-
Emitting Disk (JED) is limited to [Rd; rJ ]. Beyond rJ lies a non-ejecting

Standard Accretion Disk (SAD).
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6.1.2 Disconnecting accelerating and asymptotic circuits

Stopping the jet production beyond a finite disk radius is thus required to produce
jets more consistent with the observations, most notably for young stars and X-ray
binaries. But such a restriction could also be useful for another intent. One of the
objectives of producing jet simulations on such a large grid was to capture recolli-
mation shocks. Those recollimation shocks, observed in YSO (Bonito et al., 2011)
and AGN (Cheung, Harris, and Stawarz, 2007) jets and predicted by self-similar so-
lutions (Ferreira, 1997; Polko, Meier, and Markoff, 2010) were expected to create a
disconnection between the accelerating and asymptotic circuits. Figure 6.2a presents
this situation, assuming a single recollimation shock, in yellow. It acts as a separa-
trix between the accelerating circuit in green and the asymptotic circuit in red. In
this simple case, the value of the post-shock current is directly determined by the
ejection conditions. But the situation recovered in my simulations is more complex.
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FIGURE 6.2: Schemes of the circuits for a steady state jet with one
recollimation shock in yellow, acting as a current sheet. (a) Expected
behavior, with disconnected acceleration and asymptotic electric cir-
cuits. (b) Obtained behavior: sketch of the circuits for the reference

simulation K2, right panel of Figure 4.13.

Figure 6.2b presents a simplified scheme of the circuits obtained in the reference
simulation K2, still assuming only one shock. There are still circuits fully enclosed
before the shock (such as the one in grey) or fully enclosed after the shock (such as
the one in purple). But there are also circuits going around the shock before flowing
back onto the central object, either by circumventing the shock (such as the one in
blue) or by directly flowing along the axis (such as the one in orange). The circuits
induce a direct link between the pre-shock and the post-shock regions, and thus
prevent the creation of a "true" asymptotic circuit: the intensity in the post-shock
region is dictated by the ejection conditions at the disk surface. This prevents the
simulations from showcasing all the possible jet topologies seen by the analytical
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work of Heyvaerts and Norman, 1989 mentioned in the introduction. In particular,
Asada and Nakamura, 2012 showed that the M87 jet shape presents a dichotomy on
the two sides of the recollimation shock at the HST-1 knot. This is illustrated on their
Figure 2, reproduced in this manuscript on Figure 1.11.

• Between the black hole and the shock, the jet is "parabolic" with zjet ∝ r1.73±0.05
jet .

• After the recollimation shock, the jet is conical with zjet ∝ r0.96±0.1
jet .

According to Heyvaerts and Norman, 1989, this observation may be interpreted
as an electric current vanishing in the shock: they showed that jets threaded by
an asymptotic current appear parabolic, while jets without an asymptotic current
appear conical. My simulated jets do not provide such a dichotomy, and the shocks
induce a transition from parabolic field lines to parabolic field lines.

But stopping the ejection at a finite disk could force all the emitted plasma to
go through the shock, and create the dreaded disconnection between the acceler-
ating and asymptotic circuits. Naturally, this relies on the strong assumption that
the general behavior of the inner jet would be the same as in the quasi self-similar
simulations, namely still undergoing recollimation. Thus, I decided to produce sim-
ulations in which the ejection is gradually stopped on the disk beyond r0 = rJ ≡ 10.
Depending on the central objects, the size of the the emitting zone thus extends to:

• For a stellar jet: rJ = 1au considering a disk truncation radius rt = Rd = 0.1au.

• For an AGN or a black hole X-ray binary jet: rJ = 10rISCO, with Rd = rISCO.

Those values are consistent with the size of the ejecting disk inferred by obser-
vations, and the field line anchored in rJ = 10 Rd is well within the last field line
crossing the main shock. As shown by Figure 4.2, such a field line is anchored at
r0 ≃ 320. The value rJ = 10 Rd meets this requirement while keeping a JED much
larger than the spine. Additionally, this factor ten between Rd and rJ makes it possi-
ble to consider a power-law in the JED (see equation 1.5), but one should not expect
the jet to behave in a self-similar way within this truncated approach.

6.2 Numerical setup

For the sake of clarity, I will hereafter refer to the region of finite radial extent launch-
ing jets according to JED values as JED. Thirteen simulations with a truncated JED
until rJ = 10 were performed. In this section, I will describe the numerical setup
used to produce the truncated simulation of reference, called O1. To produce the
other simulations I varied one parameter, all else being equal. They are presented in
Table 6.1.

6.2.1 A setup resembling the quasi self-similar one

The simulation was performed in the Low-Resolution grid, i.e. NR = 704 and
Nθ = 144 for computing time constraints. The combination of Riemann solvers
and the reconstruction schemes used are those used in all the simulations presented
previously. Naturally, the same usual set of ideal MHD are solved, and they are
integrated using the accelerated CFL condition (equation 3.15) with great success.

The conditions at all boundaries but the disk remain the same:

• On the polar axis (θ = 0, R ∈ [Rd; 5650Rd]): usual reflecting conditions.
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• On the outer boundary (R = 5650Rd, θ ∈ [0; π/2]): conservation of the spheri-
cal gradient in ρ, P, BR, Bθ , RBφ, vR, vθ and vφ.

• On the central object (R = Rd, θ ∈ [0; π/2]): conditions on P, ρ, v⃗ and BR
described in section 3.2.3, set to limit the influence of the axial spine: For the
reference simulation O1 the rotation on the axis is set to zero: Ω∗a = 0.

6.2.2 Different boundary conditions on the disk

On the disk, the boundary conditions remain the same JED conditions as in the pre-
vious setup until rJ = 10 Rd. There, the conditions on P, ρ, v⃗ and Bθ are the power
law distributions described in section 3.2.3, with exponents depending on the self-
similar parameter α and normalizations depending on the mass loading κ. The initial
conditions are fixed with a potential solution created with those parameters, same
as for the self-similar setup. For the truncated simulation of reference O1, the values
of those parameters are the same as in the self-similar simulation of reference K2, i.e.
α = 3/4 and κ = 0.1.

I first describe the boundary conditions on the density, pressure and velocities.
They follow different distributions in the ejecting JED and in the non-ejecting SAD.
Then, I present how the transition between the two regions is done. Finally, I de-
scribe the boundary conditions on the magnetic field, which is set differently. All
boundary conditions are illustrated in Figure 6.3. In all the following, distributions
in the inner ejecting region (r0 ≤ rJ) are indicated by the subscript JED and distri-
butions in the outer non ejecting region (r0 ≥ rS)1 are indicated by the subscript
SAD.

Density and pressure

Same as in the self-similar setup, the density and profiles in the ejecting zone are:

ρJED = ρd

(
r

Rd

)2α−3

PJED = ρd
V2

Sd

Γ

(
r

Rd

)2α−4
(6.1)

In the non-ejecting zone, the distributions are set as:

ρSAD = ρa

(
r

Rd

)2α−3

PSAD =
1

4 − 2α

ρaGM
Rd

(
r

Rd

)2α−4 (6.2)

The density distribution follows the same power law as in the inner ejecting zone,
normalized at the axis density ρa instead of ρd. The two normalizations are linked
by the parameter δ ≡ ρd/ρa = 103κ. All truncated simulations are set with κ = 0.1
thus δ = 100. This sets the same strong contrast between the ejecting JED and the
non-ejecting SAD as the one between the ejecting JED and the axis. The pressure
distribution is chosen to be consistent with the initial condition, that was normalized
to the boundary conditions on the axis (R = Rd, θ = 0). The ejection in the SAD is
thus already limited by a density drop of two orders of magnitude at rJ .

1For the sake of simplicity, this outer region is called non-ejecting, even though there is still some
remaining mass loss, although much smaller than in the inner region.



6.2. Numerical setup 131

Velocities

The rotation of the magnetic surfaces simply transitions from keplerian rotation
(Ω∗JED =

√
GM/r3) in the ejecting zone to no rotation (Ω∗SAD = 0) in the non-ejecting

zone. The intent is to suppress the MHD Poynting flux in this non-ejecting region, as
it is S⃗MHD = −1/(4π)Ω∗rBφB⃗p in steady state. The vanishing of Ω∗ greatly reduces
the plasma rotation vφ = Ω∗r + vθ Bφ/Bθ and consequently any magnetocentrifu-
gal ejection. However, we still observe a little rotation due to a remaining toroidal
magnetic field (see section on magnetic fields).

The distributions of poloidal velocities in the ejecting part are naturally those of
the self-similar setup:

vθJED = −vd

(
r

Rd

)α−2

vRJED = vθ
BR

Bθ

(6.3)

In the first tests, the poloidal velocity was set to zero in the outer non-ejecting
region: v⃗pSAD = 0⃗. While obviously preventing ejection by vθSAD = 0, this simple
condition had two drawbacks, most likely related. First, the simulations converged
quite slowly, as the acceleration scheme took time to get started. Second, the ejection
was now sub-SM in the non-ejecting SAD: The slow-magnetosonic speed increases
by two orders of magnitude due to the decrease in density, and the vertical speed
is dropped to zero. One condition had to be relaxed: when MSM < 1, the injection
speed vθ is now an outflow condition, meaning that its value in the domain fixes the
value at the boundary, with gradient conservation and the use of slope limiters.

As a summary:

vθSAD =

{
vθ(θ−1) +

∂vθ
∂θ (θ−1)(

π
2 − θ−1) if MSM < 1

0 if MSM ≥ 1
(6.4)

vRSAD = 0

The first line describes in a very simplified way an "outflow" condition for vθ at
the θ = π/2 boundary. The value at the boundary vθSAD is set by gradient conserva-
tion from the cell just above the boundary and thus in the domain, at θ = θ−1.

This simple fix produces faster converging solutions. However, one caveat re-
mains: these conditions are not compatible with steady state ideal MHD, as v⃗pSAD ∦
B⃗pSAD. The left panel of Figure 6.3 shows that in the non-ejecting region the radial
speed is not equal to zero, even in the lowermost cell: there is a discontinuity in vR
just below θ = π/2. This is not redhibitory as the field lines anchored in the outer
region remain subAlfvénic and thus non-stationnary. Still, future tests with the ra-
dial speed set as vRSAD = vθSAD(BRSAD /BθSAD) would be interesting, and will be done
in the near future.

A transition between the ejecting and non-ejecting regions

The disk boundary conditions are modified only for r0 > rJ ≡ 10Rd. The ejection is
stopped for r0 > rS ≡ 12 Rd, and the region r ∈ [rJ ; rS] consists in a transition zone.
Let us define a parameter x giving the position on this transition:
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x ≡


0 if Rd ≤ r < rJ
r−rJ
rS−rJ

if rJ ≤ r ≤ rS

1 if rS < r ≤ 5650Rd

(6.5)

For n ∈ N, I define the spline function fn:

fn : x −→
(
1 − 3x2 + 2x3)n

[0; 1] 7−→ [0; 1]
(6.6)

This function varies from fn(x = 0) = 1 in the inner ejecting zone to fn(x = 1) =
0 in the outer non-ejecting zone. The density, pressure and velocities are set with
such a spline, and increasing the integer n allows the production of coarser transi-
tions for certain quantities. Naming U one of those quantities, their distributions in
the whole disk are fixed by the spline function as:

U (r) = UJED(r) fn (x(r)) + USAD(r) [1 − fn (x(r))] (6.7)

Density and pressure are linked by the steep spline function f20 while the veloci-
ties are linked by the smoother function f1. As the transition region [rJ = 10; rS = 12]
is small, this doesn’t change much. Naturally, the distributions in the ejecting zone
are set as in the self-similar simulations, and the distributions in the non-ejecting are
set to minimize the ejection from the SAD region. Those distributions are shown in
the left panel of Figure 6.3. Those are plots on the lowermost cells of the computing
domain, thus quantities not set at the boundary (e.g. Bθ for r < 1 and BR for r > 1)
are also plotted, and differences with what is set can be observed.

Magnetic fields

In simulation B1 (see Table 6.1), the vertical magnetic field is set the same as in the
self-similar reference simulation K2. To probe the impact of external pressure, a
constant vertical magnetic field Bext is added, which provides additional collimation.
This gives a vertical magnetic field disk distribution on the disk boundary:

Bθ = −Bd

(
r

Rd

)α−2

− Bext (6.8)

For the truncated reference simulation O1, Bext = 2 × 10−4 Bd = 2 × 10−3. This
external magnetic field is naturally more dominant in the outer disk regions (r ≳
103 Rd) where the power law drops off, as is visible in both panels of Figure 6.3.

In order to reduce rotation in the non-ejecting region as much as possible, the
toroidal magnetic field is limited. However, this cannot be done by simply setting
BφSAD = 0, are the appropriate number of disk ejection conditions are already fixed:

• Six in the super-SM part: ρ, P, vR, vθ , vφ and Bθ .

• Five in the sub-SM part: ρ, P, vR, vφ and Bθ .

To avoid setting overconstrained boundary conditions, I gradually limit the toroidal
magnetic field for r > rS, with

Bφ(r, t + dt) = Bφ(r, t)e−
dt

T TK (r) (6.9)
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where TK(r) =
√

r3/(GM) is the local keplerian timescale at radius r and T =
10−6 is an adimensioned number quantifying how fast the toroidal magnetic field
decreases with time. This condition is not applied in the transition zone (r ∈ [rJ ; rS])
to prevent the creation of too high magnetic field gradients. While the simulations
with BφSAD = 0 do not converge, the simulations produced with this technique con-
verged fast, even faster than with a simple outflow condition on Bφ. The impact
of this condition on the jet radial structure was carefully studied. Various tests are
shown in appendix B, as well as the reasons behind the choices of rS = 12Rd and
T = 10−6.
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FIGURE 6.3: Boundary conditions on the lowermost cells of the refer-
ence truncated simulation. The quantities are plotted on the first cell
along the injection boundaries (e.g. central object R = 1 for r ≤ 1
and JED θ = π/2 for r ≥ 1). On the left are shown the conditions
that directly set on the injection boundaries: the density ρ, the pres-
sure P, the radial and orthoradial magnetic fields BR and −Bθ , the
radial and orthoradial velocities vR and −vθ and the rotation speed
of the magnetic surfaces Ω∗. On the right are quantities dependent
on those set conditions: the Bernoulli invariant E, the toroidal and
vertical magnetic field −Bφ and Bz, the mass to magnetic flux ratio η,
the sound speed Vs, the vertical Aflvén speed VAz and the SM mach
number MSM. This is a reproduction of Figure 4.1, which was for a

quasi self-similar simulation.

6.3 The reference simulation

Thirteen simulations where the jet is emitted from a truncated disk were run. In
this section I present the reference simulation O1. It was obtained without axis rota-
tion Ω∗a , with the Blandford & Payne magnetic field configuration α = 3/4 and an
additional magnetic field Bext = 2 × 10−3.

6.3.1 A two/three-component outflow

A snapshot of this simulation is presented on Figure 6.4. It clearly shows two out-
flows:

• A super-FM and and super-Alfvénic inner outflow, containing the axial spine.

• A sub-FM and sub-Alfvénic outer outflow.
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The two flows are separated by the confounded FM and Alfvén surfaces. This
interface is collimated to a radius 500 ≲ rI ≲ 1000 at large distances from the source
(z > 1500). We will see later that this due to the external magnetic field Bext.
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FIGURE 6.4: Snapshot of the truncated reference simulation O1 at tend.
The color coding is the same as the left panel of Figure 4.2, snapshot
of the self-similar reference simulation K2, with the addition of the

SM critical surface (dash-dotted, red).

As shown in Table 6.1, the outermost magnetic field line that ultimately becomes
super-FM is anchored on the disk at r0,FM = 58. This means the interface is slightly
less collimated than the magnetic field lines. There is some spreading, and the inter-
face between the super-FM and sub-FM flows does not exactly follow the field line
anchored in r0 = rJ . This is due to a lateral numerical diffusion at high altitudes,
where the cells are large. As set by the boundary conditions, the SAD region beyond
rS ejects very little. The mass flux emitted from the rJ < r0 < r0,FM disk region is
forty times smaller than the one emitted from the Rd < r0 < rJ .

For the sake of clarity, I will unfortunately have to use a different definition of
jet from what I used in the quasi-self-similar simulations. As a reminder, jet used to
refer to everything ejected between Rd and r0,FM. Now, throughout the rest of this
thesis and for all truncated simulations:

• The jet is the outflow ejected from the JED, between Rd and rJ .

• The wind is the sparse outflow ejected from the SAD, between rS and 5650Rd.

The spine remains the plasma ejected from the central object (r ≤ 1). The super-
FM inner flow and the sub-FM outer flow will be referred as such. The cocoon is
defined as the part of the wind that eventually reaches super-FM speeds, i.e. ejected
between rS and r0,FM.



6.3. The reference simulation 135

The wind is injected at sub-SM speeds, as the slow-magnetosonic mach number
becomes lower than unity in the rJ < r0 < rS transition zone. It becomes super-SM
at large distances from the disk, z ∼ 3000 in the outer regions.

The most notable feature of the jet is the presence of two large recollimation
shocks, leaving the polar axis at Zshock = 1550, and extending until the interface.
These shocks have a structure similar to those observed in the self-similar simula-
tion of reference, K2, having different opening angles while being ejected at the same
point on the axis. These are weak shocks, introducing a small refraction of the mag-
netic field lines, before the eventual recollimation due to the post-shock circuits. The
simulation O1 shows little complexity: there are no smaller shocks at the spine-jet
interface that would merge with these larger ones. It was done in the low-resolution
grid, the same that was used to produce the simulation K2l that also showed less
complexity.
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FIGURE 6.5: Snapshot of the reference simulation O1 at tend, zoomed
for r < 50 and z < 50. The white and blue lines are poloidal
magnetic field lines, the blue ones being anchored on the disk at
r0 ∈ [1.02; 4; 10; 12]. The red lines are the three critical surfaces, SM
(dashdot) Alfvén (dotted) and FM (dashed). The yellow lines are elec-
tric circuits, flowing out of the ejecting (z = 0, r ∈ [1; 10]) and tran-
sition (z = 0, r ∈ [10; 12]) regions, and closing into the central object

(R =
√

r2 + z2 = 1). The background is the plasma density ρ.

The presence of these shocks is quite a strong result, showing that their formation
is not a bias of self-similarity, but a consequence of the disk ejection conditions. In
this case, the shocks also shape the interface between the super and sub FM flows:
a refraction of the FM surface may be seen on Figure 6.4 at each shock crossing, at
the altitudes z ≃ 2200 and z ≃ 3050. The interface has three sections: 1) before
the first recollimation shock, 2) between the two shocks, and 3) after the second
one. In each of these sections, its shape is roughly parabolic. Such a situation is
unavoidable, because of an outer current sheet flowing along the interface. This
current sheet is reminiscent of the orange circuit drawn on Figure 6.2b: when it
eventually flows down into the central object, it creates a post-shock circuit, either
between the two shocks, or after the second shock for circuits of smaller intensities
|I| = −rBφ. There is thus no disconnection between the accelerating circuit and
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those post-shock, and the intensities in the post-shock regions depend directly on
the ejecting conditions. We see on Figure 6.5 this yellow sheath flowing out of the
transition zone rJ = 10 ≤ r0 ≤ 12 = rS. The vanishing of the toroidal magnetic
field in the r0 > rS region due to the procedure described by equation 6.9 (and seen
in the right panel of Figure 6.3) creates a steep gradient in intensity I = rBφ in the
transition. This then gives rise to the current sheet, each circuit being an isocontour
of intensity.

The evolution of the global outflow from its initial potential solution until the
final state is described in Figure 6.6. For magnetic field lines anchored in the disk at
various radii r0, the initial state is plotted in dotted lines and the final state in full
lines. One can see that at high altitudes, the super-FM outflow contains field lines
anchored further than rJ and up to r0,FM. For instance, the shocks are clearly visible
on the field line anchored at r0 = 50. We also see that only the innermost field lines
(r0 ≲ 4) end up more collimated, while the others (r0 ≳ 4) are decollimated. This
a direct consequence of the shape of the electric circuits. As seen on Figure 6.5, the
presence of the current sheet constrains the distribution of the current density j⃗. Its
vertical component jz is mostly negative only along the magnetic field anchored at
r0 ≲ 4, whereas for those anchored at r0 ≳ 4 it is positive, inducing a Laplace force
j⃗p × B⃗φ directed outwards. As a consequence, the overall jet radial balance depends
on outer pressure.
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FIGURE 6.6: Evolution of several magnetic field lines during the sim-
ulation computation, for different anchoring radii r0. The field lines
at the first output of the simulation (initial conditions) are shown in
dotted lines. The field lines at the last output of the simulation (final

state) are shown as full lines.

One should also keep in mind that while the two most visible outflows are the jet
emitted from Rd ≤ r0 < rJ ∼ rS and the wind emitted from rJ ∼ rS < r0 ≤ 5650Rd,
the axial spine emitted from 0 < r0 ≤ Rd is still present and has an impact on the
collimation of the other two outflows. Its interface with the jet can be seen in Figure
6.5 by turning points in the electric circuits near the field line anchored in the disk
at r0 ≃ Rd, while the interface between the jet and the wind can be seen by turning
points in the electric circuits near the field line anchored at r0 = rJ .
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6.3.2 Outflow properties

At the time tend = 2.26 × 106 the jet has reached a steady state, as its mass loss
rate Ṁjet barely evolves with time and the observed shocks are stationary. Table 6.1
describes a few properties of the reference simulation O1. Here, the jet mass loss rate
is defined by Ṁjet = 2π

∫ r0=rJ
r0=Rd

ρvzrdr and the jet power by Pjet = 2π
∫ r0=rJ

r0=Rd
ρEvzrdr.

The mass loss rate is Ṁjet = 37.8, considerably smaller than that of the self-similar
simulations with the same κ, α and Ω∗a parameters: Ṁjet = 363 for K2 and Ṁjet =
357 for K2l. That was expected as the r > rJ region now does not contribute. The
same trend is seen in the jet power: Pjet = 148 for the truncated simulation O1, while
the self-similar simulations have Pjet = 616 for K2 and Pjet = 620 for K2l, although
this decrease is much smaller. The energy varying on the disk as E ∝ 1/r in the
self-similar ansatz, the outer regions contribute more to the jet mass flux than to the
jet power.

Naturally, as the disk has been amputated of a large part compared to the self-
similar simulations, the axial spine now has a much greater influence on the kine-
matics of the global outflow. In the simulation O1, it represents half of the jet mass
flux, thus a third of the total outflow mass flux: Ṁspine/Ṁjet = 0.51. The jet and
spine powers are now similar despite Ω∗a = 0: Pspine/Pjet = 1.05.

It is interesting to look at how the magnetic field lines in this three-component
outflow behave compared to what is expected from steady state ideal MHD. The
global evolution pattern of the various energy contributions is retrieved at the mid-
dle of the jet. Figure 6.7 details the energy contributions to the Bernoulli invariant E
along the magnetic surface anchored at r0 = 4.
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FIGURE 6.7: Evolution of the various energy contributions along a
magnetic surface of anchoring radius ro = 4 at tend: Bernoulli invari-
ant E, gravitational potential ΦG, total specific kinetic energy u2/2,
enthalpy H and magnetic energy −Ω∗rBφ/η. The abscissa is the al-

titude Z(Ψ).
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The enthalpy is negligible, as well as gravity beyond altitudes of a few hun-
dreds. As in the quasi self-similar simulations, the total energy is conserved and is
composed of two major components. The magnetic term is dominant near the disk,
and as the flow accelerates the kinetic term rises, composing the vast majority of the
energy at the outer boundary. The presence of the shocks can be seen at altitudes
z ≃ 1800 and z ≃ 2200. They induce a slow-down of the plasma and a localized
increase of magnetic energy.

On Figure 6.8 I plot the evolution of the five MHD invariants along the magnetic
field lines anchored in the disk at r0 ∈ [2; 4; 6; 8]. The invariants are normalized to
their values at the anchoring point. We see that the field lines anchored near the
middle of the ejecting region (r0 = 4 and r0 = 6) conserve their invariants almost as
well as those in the self-similar simulations (see Figure 4.6). Their variation over the
whole domain is only of a few percents. The shock crossing can also be clearly seen
at z ≃ 1900 for the field line of anchoring radius r0 = 4 and at z ≃ 2050 for the field
line of anchoring radius r0 = 6. The behavior changes when going away from the
center of the ejecting region.
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FIGURE 6.8: Evolution of the MHD invariants along field lines of four
different anchoring radii r0 at tend. All invariants have been normal-

ized to their values at r0. The absicssa is the altitude Z(Ψ).
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Closer to the axial spine, the field line anchored at r0 = 2 keeps a small invariant
variation until z ≃ 3500. Small perturbations can be seen at the two shock crossings
(z ≃ 1700 and z ≃ 2000). But the behavior is heavily modified beyond z ≃ 3500, and
large invariant variations are observed, especially for the rotation of the magnetic
surfaces Ω∗ and the mass flux to magnetic flux ratio η. This is due to a contamina-
tion of the axial spine, as at these altitudes the resolution is small and there is lateral
numerical diffusion. For instance, we see on Figure 6.4 that the innermost field line
anchored at r0 = 3 becomes extremely collimated at higher altitudes. The axial spine
being non-rotating (Ω∗a = 0) and low in density (δ = ρd/ρa = 102), the contamina-
tion lowers the inner jet rotation Ω∗ and thus the mass flux to magnetic flux ratio
η = 4πρvp/Bp.

Similarly, along the field line anchored on the disk at r0 = 8 the invariants vary
by a few tens of percents. This time, this is due to a contamination by the wind:
the boundary conditions in the non-ejecting regions are not compatible with steady-
state ideal MHD, as v⃗pSAD ∦ B⃗pSAD.

6.3.3 Radial balance

At the final time tend, the outflow is at equilibrium, with a stable mass loss rate and
steady shocks and boundaries. What are the forces driving the radial balance ? Ne-
glecting gravity and cylindrically radial magnetic field (|Br/Bz| ≪ 1), we have seen
that the radial equilibrium equation reduces to:

− ∂

∂r

(
P +

B2

8π

)
+ ρΩ2r − B2

φ

4πr
= 0 (4.1)

On Figure 6.9 I plot all these terms along the horizontal z = 500, both on the
whole domain (left panel) and zoomed on the jet/wind interface (right panel).
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FIGURE 6.9: Radial distributions of the radial accelerations
and their sum at the altitude Z = 500 at tend: ther-
mal pressure gradient −1/ρ(∂P)/(∂r), poloidal magnetic pres-
sure gradient −1/ρ(∂Pp
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B )/(∂r), centrifugal acceleration Ω2r, hoop stress accelera-
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line corresponds to the spine–jet interface, namely the field line an-
chored at ro = Rd. The vertical red dashed line corresponds to the
FM surface. The right panel is a zoom of the left one between r = 102

and r = 103.
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For simplicity, this altitude was chosen below the shocks. The spine-jet interface
anchored at r0 = 1 is highlighted by the dotted vertical line. Inside it, we see the
same three dominant terms as in the self-similar simulations:

• The outward centrifugal force ρΩ2ru⃗r.

• The inward hoop stress − B2
φ

4πr u⃗r.

• The outward total magnetic pressure − ∂
∂r

(
B2

8π

)
u⃗r.

In this simulation of lower complexity there are no oscillations. The magnetic
field lines are indeed vertical and the sum of all forces is zero: The collimating hoop
stress compensates the decollimating centrifugal and magnetic pressure terms.

On the right panel are shown the forces at the interface between the inner dense
super-FM flow and the outer sparse sub-FM flow. This interface is naturally con-
founded with the FM surface (vertical red line). The two dominant forces are the
two magnetic pressures. The drop in toroidal magnetic field at the interface creating
the current sheet induces a strong force directed inwards. It is then compensated by
a steep increase in poloidal magnetic field, creating an equally strong force directed
outwards.
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6.4 Parameter dependence

This truncated simulation of reference O1 shows stationary recollimation shocks re-
sembling those in the self-similar simulation of reference K2. To further understand
the impact of jet launching conditions on collimation and shock behavior, I explore
the physical parameter space. I ran four simulations varying each parameter, all
others being equal to that of the reference. I vary three parameters:

• The rotation of magnetic surfaces on the axis Ω∗a : Simulations O2 to O5.

• The external vertical magnetic field on the disk Bext: Simulations B1 to B4.

• The exponent of the self-similar ansatz α: Simulations AT1 to AT4.

All simulations are presented in Table 6.1. They were all performed in the low-
resolution grid (NR = 704 and Nθ = 144). The first three columns describe the
modified parameters, and the others show various global properties of the jet. For
the simulations where Ω∗a was modified (O2 to O5) and the simulations where
Bext was modified (B1 to B4) the time tend at which the jet is studied is the same:
tend = 2.26 × 106. This was done to accurately compare collimation properties from
simulation to simulation. It was impossible to do so with α ≥ 1 (AT2 to AT4) as will
be discussed later.

In each subsection I will describe and interpret the simulations retrieved when
varying one parameter.

Name Ω∗a
Bext
103 α tend

105 Zshock θext
FM θext

A ro,FM Ṁjet
Ṁs
Ṁj

Pjet
Ps
Pj

O1 0 2 3/4 22.6 1550 0.129 0.129 58 37.8 0.51 148 1.05

O2 1/4 2 3/4 22.6 1600 0.083 0.083 44 37.7 0.51 148 1.09
O3 1/2 2 3/4 22.6 1150 0.035 0.035 54 37.7 0.52 147 1.12
O4 3/4 2 3/4 22.6 1050 0.117 0.117 62 37.8 0.51 148 1.15
O5 1 2 3/4 22.6 1100 0.075 0.075 51 37.7 0.51 148 1.18

B1 0 0 3/4 22.6 1250 0.78 0.78 64 37.6 0.51 147 1.06
B2 0 1 3/4 22.6 1500 0.34 0.34 80 37.7 0.51 148 1.06
B3 0 4 3/4 22.6 1450 0.075 0.075 51 37.9 0.51 148 1.05
B4 0 8 3/4 22.6 1550 0.029 0.029 31 38 0.51 149 1.05

AT1 0 2 15/16 66.4 1500 0.075 0.075 34 61 0.25 174 0.63
AT2 0 2 1 0.012 DNE DNE DNE DNE 69 0.54 172 0.02
AT3 0 2 17/16 0.014 DNE DNE DNE DNE 82 0.29 187 0.02
AT4 0 2 18/16 0.016 DNE DNE DNE DNE 99 0.22 203 0.03

TABLE 6.1: List of the simulations presented in this chapter. The ref-
erence simulation of section 6.3 is called O1. The parameters Ω∗a ,
Bext and α are defined above and the results are defined in chapter 4.
For all simulations the jet mass flux and power are computed until

rJ = 10.
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6.4.1 Rotation on the axis

I run four simulations varying the rotation of the magnetic surfaces on the axis Ω∗a .
Contrary to the self-similar simulation SP, here the energy on the axis is not modi-
fied: ea = 4 as in the reference simulation. The parameter is modified from Ω∗a = 0
(Schwarzchild black hole, or young star whose corotation radius on the disk is casted
to infinity) to Ω∗a = 1 (Kerr black hole, or young star whith coinciding truncation
and corotation radii). The case Ω∗a > 1 corresponds to highly rotating black holes
that would develop strong relativistic Blandford and Znajek, 1977 jets, or to rapidly
rotating stars in the "propeller regime" (see Romanova et al., 2009; Zanni and Fer-
reira, 2009). Both are out of reach of this work.

On Figure 6.10 are represented the rotation profiles at the ejection boundary for
the five simulations O1 to O5. Four regions are clearly seen. On the outer disk (r ≥
10), the conditions are the same for all simulations. In the ejecting region (1 ≤ r ≤ 10)
the rotation is keplerian: Ω∗ =

√
GM/r3. In the transition region (JED, 10 ≤ r ≤ 12)

it quickly drops to zero and in the non-ejecting region (SAD, 12 ≤ r ≤ 5650) there is
no rotation: Ω∗ = 0. It is only at the central object boundary (r ≤ 1) that the rotation
varies from simulation to simulation, in order to reach its value on the axis as set by
equations 3.24 and 3.25.
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FIGURE 6.10: Rotation profiles at the ejection boundary (on the cen-
tral object for r ≤ 1 and on the disk for r ≥ 1) for the different values

of rotation on the central object Ω∗a .

The four simulations O2 to O5 are presented at the same time tend in Figure 6.11,
and some of their general properties are highlighted in Table 6.1. As in the reference
O1 they present two visible components, the inner dense and super-FM flow and the
outer sparse and sub-FM flow. The spine whose rotation I am varying is contained
in the inner component. The shocks are always present, with a structure similar
those in the reference O1. As for the self-similar setup their altitude decreases with
Ω∗a , from Zshock = 1550 for Ω∗a = 0 to Zshock = 1100 for Ω∗a = 1. For Ω∗a ≥ 1/2 a
second set of shocks appears at higher altitudes, as in the simulation SP. This renders
drawing conclusions on the influence of Ω∗a on global jet collimation difficult. For
instance there is no clear trend in the variations of θext

FM = θext
A with Ω∗a .
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FIGURE 6.11: Influence of the axis rotation Ω∗a of jets obtained with
Bext = 2 × 10−3, at the same time tend = 2.26 × 106. I use the same

notations, colors, and field lines anchoring radii as in Figure 5.2.

However, axis rotation still has a small impact on jet collimation below the shocks.
Figure 6.12 shows on the left panel the magnetic field line anchored at r0 = 10 for all
five simulations, and on the right panel the evolution of the turning radius rt with
Ω∗a for those field lines. It is defined as the maximal field line radius before recol-
limation, where Br = 0. This is the radius of the collimation point defined in the
previous chapter. We see a small decrease in rt with the axis rotation. This is a direct
consequence of a more collimated (i.e. more cylindrical) spine, that allows for higher
collimation in the outer jet. As seen in section 5.1.3, this increase in collimation with
the central object rotation is due to the growing emf eobj ≃

∫ π/2
θ=0 ΩrBRdθ. On the left

panel we see that beyond the turning point, this order is disrupted by the presence
of the shocks.
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FIGURE 6.12: Collimation properties for different rotations on the
axis Ω∗a . Left: Poloidal magnetic field lines anchored in the disk at
r0 = 10 for all five simulations. Right: Turning radius rt of the field

anchored at r0 = 10 as a function of the rotation on the axis Ω∗a .

We have seen that shock altitude is lowered by an increased rotation due to a
stronger Z-pinch. This strong result proves that for the self-similar simulation SP
the decrease in shock altitude is not due to an increase in the energy on the axis ea,
but rather to the increased rotation on the axis. Figure 6.13 compares this decrease
to that of the self-similar simulations. We see that passing from no-rotation to solid-
body rotation has the same impact on both cases: the reduction of shock altitude by
a factor of roughly one third.
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FIGURE 6.13: Evolution of the shock altitude with the rotation on
the central object. Truncated ejection in blue, self-similar ejection in

orange (high resolution) and red (low resolution).

These simulations could be useful in interpreting the radio-Xray correlations of
black hole X-ray binaries. When plotting the radio power tracing the ejection as a
function of the X-ray luminosity tracing the accretion, we observe a strong correla-
tion that was one of the motivations of this work. However, it appears that neutron
star X-ray binaries lie under this correlation (see for instance Figure 5 of Coriat et al.,
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2011, reproduced in Figure 1.7). This means that a slower rotating neutron star emits
a jet of lower power than a highly spinning black hole of similar accretion power.
Moreover Table 6.1 shows that the spine power increases with the axis rotation Ω∗a .
This is naturally still work in progress and deserves further investigation.

As a conclusion, it is clear that the central object rotation affects the collimation.
A jet with a rotating central object is more confined than its counterpart with a non-
rotating central object. But more importantly, its recollimation shocks occur at lower
altitudes, which could lead in the observations to standing knots closer to the disk.
However, the axis rotation does not change the jet power, nor its magnetic lever arm
λ. We have λ ≃ 12 in the jet for all simulations, as in the inner regions of the quasi
self-similar jet (see Figure 4.7 for the reference simulation K2). As a consequence,
the asymptotic speeds of the jets are very similar, and in my simulation domain,
they almost attain these speeds: vmax ≃ 0.9v∞ for the simulations O1 to O5.

6.4.2 External magnetic field

I ran four simulations varying the constant external magnetic field Bext added on
top of the power law variation of the vertical magnetic field set on the disk surface.
Because the power law is steep (Bθ ∝ rα−2 = r−5/4) and the grid is large, only a
small variation was needed: at maximum 8 × 10−4Bd for the simulation B4. Figure
6.14 presents these boundary conditions, showing the profile of the vertical magnetic
field over the whole injection boundary. We see that this constant field starts being
dominant beyond a few hundreds, far into the non-ejecting region. It barely modifies
the jet launching conditions, and can be seen as a way to add an external pressure,
magnetic in this case. This limited effect on the inner ejecting disk can be seen in the
variations of Ṁjet on Table 6.1. As in the JED, the poloidal velocity is set such that
v⃗p ∥ B⃗p, increasing the vertical magnetic field increases vz and with it the jet mass
loss rate. However this variation is extremely marginal, with a relative mass flux
rate variation of only one percent between the two extremes. Naturally, the effect is
the same on jet power.
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the different values of the imposed external magnetic field Bext. This
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The four simulations are shown on Figure 6.15. All simulations contain the usual
set of steady recollimation shocks, leaving the axis at comparable altitudes. The di-
rect effect of the change in boundary conditions is clearly seen. The higher Bext, the
more vertical the outermost field lines (anchored at r0 =320, 600, 1000 and 1500).
Here, this has a direct impact on global outflow collimation. The interface between
the jet and the wind, confounded with the Alfvén and FM critical surfaces, is increas-
ingly more vertical for higher values of the external magnetic field. The colatitude
of this interface, seen in Table 6.1 with θext

FM = θext
A , decreases with Bext, going from

0.78 in the absence of an external field to 0.029 when the external field is maximal.
The increase of Bext also induces a decrease in lateral diffusion, seen by the decrease
of r0,FM with Bext in Table 6.1.
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FIGURE 6.15: Influence of the external magnetic field Bext on the final
stage of jets obtained with Ω∗a = 0, at the same time tend = 2.26× 106.
I use the same notations, colors, and field lines anchoring radii as in

Figure 5.2.
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Such an impact on collimation is also visible on Figure 6.16. It represents the total
magnetic field B =

√
B⃗ · B⃗ along the horizontal z = 500 for all five simulations. In

the same color is also represented the fast-magnetosonic surface, corresponding to
the interface between the two visible components. This interface gets closer to the
axis with increasing values of the external magnetic field. We see that this interface
corresponds with a change of regime, from the self-similar profile in the super-FM
flow to a flatter one in the sub-FM flow. This behavior is very natural, and is expected
from analytical works (see e.g. Figure 3 of Beskin and Nokhrina, 2009).
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FIGURE 6.16: Radial distribution of the total magnetic field B over the
horizontal z = 500 for the five simulations. Each color corresponds
to a simulation (see legend). The vertical dashed lines indicate the

position of the FM surface for this simulation.

Figure 6.16 tells us about jet collimation in another way. The value of the mag-
netic field on the axis is seen to be increasing with the external magnetic field. This
is not a direct consequence of the boundary conditions, as the external field Bext is
negligible compared to that in the innermost disk regions. The axis field increase is
due to the growing collimation. On the axis the toroidal magnetic field vanishes. As
along a magnetic field line the poloidal field varies in Bp ∝ 1/r2, the magnetic field
on the axis is less diluted for more collimated jets, that is for higher values of Bext.

Let us get back to equation 1.2, prescribing the magnetic pressure B2
coll/2 to col-

limate a jet of mass loss rate Ṁjet and speed vjet at a distance zjet:

Bcoll ≃ 10

(
Ṁjet

10−8M⊙.yr−1

)1/2 (
vjet

300 km.s−1

)1/2 ( zcoll

50 au

)−1
mG (1.2)

Taking into account the normalizations of section 3.2.4, the simulation B4 colli-
mates the jet to rjet = 15 au at rjet = 50 au, the external magnetic field is roughly
100 mG, inducing a field of 10 mG at z = 500 on the interface. Equation 1.2 then
gives

Bcoll ≃ 10
(

38 × 3.35 × 10−10

10−8

)1/2 (1.8 × 94.3
300

)1/2 (50
50

)−1

mG = 9 mG. (6.10)

This means that according to analytical calculations (Cabrit, 2007), an external
magnetic field of 9 mG would provide the collimation occurring in B4. In this simu-
lation I applied an external magnetic field of 10 mG, so this seems consistent.
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How can this collimation be quantified ? The left panel of Figure 6.17 shows the
magnetic field line anchored at r0 = 10 for all five simulations. Naturally, the higher
the external magnetic field, the more vertical this field line. The jet topology is thus
modified by this external magnetic field. The magnetic field lines below z = 500
and thus below any shocks can be fitted reasonably well by the monome z ∝ rñ. The
right panel shows the evolution of the exponent ñ with the external field. It swiftly
increases with the external field, from 1.2 for B1 to 3.2 for B4.
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FIGURE 6.17: Collimation properties for different external magnetic
fields Bext. Left: Poloidal magnetic field lines anchored in the disk at
r0 = 10 for all five simulations. Right: Value of the exponent ñ in

z ∝ rñ for all the field lines on the left. The fit is limited to z < 500.

The case of simulation B1 (Bext = 0) is particularly interesting. In the right panel
of Figure 6.17 its exponent is not exactly equal to one because below z = 500 it is
still very much affected by the launching conditions. This fit on the whole field line
gives an exponent much closer to unity. On the top left panel of Figure 6.15 we see
that the interface between the inner super-FM and the outer sub-FM components is
also conical. Nevertheless, the interface should not be considered as ballistic: in a
bigger computational domain, the current sheath would eventually close out, thus
at those altitudes the return current could induce a shape of the interface different
from a simple cone. Note that this only the case for the interface. Figure 6.18, is
same as Figure 6.6 but for the simulation without constant outer magnetic field B1.
The SAD field lines anchored at r0 ≥ 10 appear ballistic, but the JED field lines
follow the expected pattern. The innermost ones (r0 ≤ 3) are self-collimated because
the negative return current (jz > 0) while the outermost ones (3 < r0 < 10) are
decollimated because of the positive current flowing out of the disk (jz > 0).

6.4.3 Radial distribution of the vertical magnetic field

Finally I modified the disk distribution of the magnetic field via the self-similar ra-
dial exponent α. This parameter modifies the poloidal magnetic field in the ejecting



6.4. Parameter dependence 149

0 500 1000 1500 2000 2500
r

0

1000

2000

3000

4000

5000

z

r0 = 1.02
r0 = 2
r0 = 4
r0 = 5
r0 = 10
r0 = 20
r0 = 50
r0 = 100

FIGURE 6.18: Evolution of several magnetic field lines during the
computation of the simulation B1, for different anchoring radii r0.
The field lines at the first output of the simulation (initial conditions)
are shown in dotted lines. The field lines at the last output of the sim-

ulation (final state) are shown as full lines.

JED (1 < r < 10) and non-ejecting SAD (12 < r < 5650) regions, both regions hav-
ing the same profile in Bθ ∝ rα−2 (equation 6.8). I ran four simulations: one with
α = 15/16 to probe whether the results obtained with the self-similar setup would
be retrieved in the truncated one, and three with α ≥ 1 to explore different electric
circuit topologies. The four simulations are presented on Figure 6.19, both on the
whole domain (left column) and zoomed near the central object (right column).

We have seen in section 5.1.2 that as long as α < 1, its modification does not
significantly change the shocks altitude, only its radial extent. The simulation AT1
with α = 15/16 produces the expected results. The usual shocks are present in the
jet, leaving the axis at Zshock = 1500. This altitude is close to that observed in the
reference simulation O1 (Zshock = 1550). Here also, the change in α modifies the
shocks radial extent: the FM interface is much closer to the axis in AT1 than it was
in the reference simulation O1. We see in Table 6.1 that on θext

FM = θext
A this field

distribution change has the same impact as an additional Bext = 2 × 10−32.
For the simulations with α ≥ 1, the situation is more complex. One would expect

that since the current is only ejected from the inner zone (1 < r0 < 10), we would
avoid the numerical troubles described in section 5.1.2. It is not the case. Those
simulations do not reach any steady state, and converge way slower that those with
α < 1. They reach final times tend three orders of magnitude smaller, even though
they are done using more computing time.

To check whether this is due to the presence of the current sheath that prevents
circuits from closing beyond the transition zone, the same simulations were done
without the condition set by equation 6.9 to supress the toroidal magnetic field be-
yond the transition zone. It lead to similar results. And, in the simulations AT2,
AT3 and AT4 this condition has not had time to take effect, as there is still current
flowing beyond r0 = 12 at tend. For those simulations, the point on the disk where
the vertical current jz changes sign is no longer r = 1 but now r = 12. The keplerian

2The values of θext
FM = θext

A are the same for simulations AT1 and B3, and the difference in Bext
between the two is (4 − 2)× 10−3 = 2 × 10−3.
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FIGURE 6.19: Influence of the magnetic field distribution α on the
final stage of jets. We use the same notations, colors, and field lines
anchoring radii as in Figure 5.2. The yellow stripes (circuits) seen for

α ≥ 1 reveal an unsteady situtation at tend.
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timescales at this radius are still too long to provide global jet convergence in the
whole grid.

However, in the innermost zones represented in the right column of Figure 6.19,
a jet has formed by tend. The left panel of Figure 6.20 shows the field line anchored
at r0 = 5 for all five simulations. They are more collimated for higher values of α. At
r = 1 the inclination of the magnetic surfaces is fixed to roughly 1/α. This creates
a more collimated jet with smaller magnetic lever arms λ, as illustrated in the right
panel of Figure 6.19.
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FIGURE 6.20: Jet properties for different magnetic field distributions.
Left: Poloidal magnetic field lines anchored in the disk at r0 = 5 for
all five simulations. Right: Value of the magnetic lever arm λ for all

the field lines on the left.

6.5 Comparison with other numerical works

In chapter 5 I compared the results of my self-similar simulations to those found
in the literature. Here, I will compare the results of this chapter to other works
simulating a two-component outflow. To my knowledge, there is yet no published
simulations of jets accelerating and propagating in an outer atmosphere, à la JED-
SAD. Either the interaction with the ambient is studied far away from the central
object, in the propagation zone (see Figure 1.15 and references below). Or, the simu-
lations contain an inner strong jet surrounded by a sparser but similar wind, as will
be detailed in this section. Komissarov et al., 2007 proposed relativistic simulations
in which the jet interface with the ambient medium is a boundary condition. And,
as relativistic effects are expected to alter the jet collimation, I will also restrain the
comparison to non-relativistic simulations.

Murphy, Ferreira, and Zanni, 2010 produced short-scale 2.5D simulations, ex-
tending up to (r, z) = (40Rd, 120Rd) with 512 × 1536 cells. In these simulations, both
the jet and the accretion disk are computed. In the viscous disk, a Shakura and Sun-
yaev, 1973 alpha prescription is assumed. It extends up to ϵ ≡ h/r = VS/VK = 0.1
and is weakly magnetized, with B2/(4πP) initially set varying as R−1, starting from(

B2/(4πP)
)
(R = Rd) = 2 × 10−3. Because of this decreasing magnetization, the

ejection only occurs from a finite zone in the disk. The outflow stratification is rep-
resented on Figure 6.21. In their stationary state there are three zones:
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• Zone I, between the field lines anchored at r0 = Rd and r0 = 5Rd. In this inner
region the jet becomes super-FM.

• Zone II, between the field lines anchored at r0 = 5Rd and r0 = 13Rd. In this
intermediate region the outflow is always sub-FM but becomes super-Alfvénic.

• Zone III, beyond the field line anchored at r0 = 13Rd . In this outer region there
is little outflowing material, that always remains sub-Alfvénic.

A&A 512, A82 (2010)
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Fig. 1. Log of mass density at times a) t = 0τK0;
b) t = 31τK0; c) t = 160τK0; d) t = 953τK0.
The fast surface and the Alfvén surface are over-
plotted with dotted and dashed lines respectively.
The super fast-magnetosonic outflow (the jet) is
launched only from a small inner region, located
between r = 1 and r = 5. The extension of this
zone remains constant over time.

Keplerian orbital period τK0 = 2πr0/VK,0. Pressures are given
in units of ρd0V2

K,0 while the magnetic field is expressed in units

of
√
µ0ρd0V2

K,0.

For ease of reproducibility, the C subroutines defining initial
conditions and boundary conditions are available from the au-
thors on request. The numerical code PLUTO is publicly avail-
able from the URL http://plutocode.to.astro.it.

3. Ejection from weakly magnetized disks

3.1. Global description

When the simulations starts in the first visible phenomenon is
the triggering of the familiar vertical torsional Alfvén wave
(Mouschovias & Paleologou 1980; Ouyed & Pudritz 1997). It
is due to the differential rotation between the Keplerian disk and
the initially non rotating atmosphere. But after a few inner disk
rotations, a proper MHD outflow is launched from the disk, de-
veloping a bow shock and compressing the ambient material and
the preceding torsional flow. Figure 1 shows a plot of the jet den-
sity in the poloidal plane together with the fast and Alfvén sur-
faces and magnetic field lines. A superfast jet is launched within
a relatively narrow region at the disk surface up to r = 5. Matter
launched from this region crosses the slow and Alfvén surfaces
close to the disk surface and is accelerated up to the fast magne-
tosonic surface.

Along the z direction, the numerical simulation can be char-
acterised as divided into two main zones, a resistive zone, where
resistive effects are important (the disk), and an ideal MHD zone,
where ideal MHD is strictly enforced (the jet and atmosphere).
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Fig. 2. Poloidal cross section showing various zones at a time t =
953τK0: the critical surfaces of the MHD outflow (slow magnetosonic
S SM, Alfvén S A, fast magnetosonic S FM) and the disk surface. Field
lines anchored at r = 1, 5.1, 13 are also shown, delimiting the three
zones (see text).

The disk surface could be defined as the altitude where all
transport coefficients vanish. We choose rather to define the
disk surface as the altitude where the radial velocity compo-
nent vanishes, marking therefore a clear transition between un-
derlying accreting layers (ur < 0) and outflowing upper layers
(ur > 0). Figure 2 shows these various surfaces at the final time
t = 953τK0. Note however that they do not evolve much over
time as it can be seen in Fig. 1.
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FIGURE 6.21: Figure 2 of Murphy, Ferreira, and Zanni, 2010. The
three zones are demarcated by the field lines anchored in r0 ∈
{1; 5; 13}. The critical surfaces and disk boundary (ϵ ≡ h/r = 0.1)

are also represented.

The super-FM jet of zone I is self-confined. Additionnaly they show that an in-
creased resolution strengthens the collimation (see their Figure 13), as I saw in my
self-similar simulations (see section 5.2).

In Murphy, Ferreira, and Zanni, 2010, just like in Ramsey and Clarke, 2011, 2019
the super-FM jet is limited to the region close to the axis is not because of a hybrid
disk, but because their self-similar ejection quickly drops with r. They observe that
their simulated disks behaves like a SAD. However, some works have produced
simulations of two-component outflows, ejected from a hybrid disk.

Stute et al., 2008 produced truncated simulations on a cartesian grid (r, z) ∈
[0; 50] × [5; 100] with 200 × 400 cells. They use the super-FM solution of Vlahakis
et al., 2000 as their initial solution. Beyond a field line anchored in the disk at a
certain radius rJ , this solution is damped. This is illustrated on Figure 6.22. The
field line anchored at rJ is shown in black. The white lines are the electric circuits,
that I show in yellow for all my simulations. The bottom right plot corresponds to a
non-truncated simulation.

At the final time t = 2π × 50Td at which those snapshots were produced, the
jet has reached a stationary state. The electric circuits (in white) we see that these
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maps resemble those produced using my simulations. The usual counterclockwise
butterfly-shaped accelerating electric circuit is retrieved. In the non truncated sim-
ulation (bottom right panel), it is emitted from the whole lower boundary; in the
truncated simulations, there is either two accelerating circuits on both sides of the
separatrix (black line), or just one on the inside. Additionally, they retrieve a recolli-
mation shock, shown as an accumulation of electric circuits leaving the axis at z ≃ 20
for all simulations. Matsakos et al., 2008 showed that a comparable non-truncated
setup produces recollimation shocks, and Stute et al., 2008 extended those results
to truncated setups. I emphasize that such works have a different intent as mine.
They study the stability of a jet that is already present and super-FM in the domain,
starting relatively far away from the disk.M. Stute et al.: Stability and structure of analytical MHD jet formation models with a finite outer disk radius 351

Fig. 15. Poloidal currents R Bφ = const of models SC1a–SC1e (top) and
models SC2–SC5 and ADO (bottom) at the final timestep (at 50 t0) are
plotted.

Our truncated disk-wind solutions are stable for more than
50 t0, i.e. several orbital periods at the truncation radius. These
solutions may be relevant to describe observed jets, since the
jet radii are too large in the untruncated analytic disk outflow
solution with respect to observed jet widths. We also provide
all quantities at the outer z boundary which can now be used as
boundary conditions for jet propagation studies.

In Paper II, we calculate emission maps correspond-
ing to such truncated disk-models and compare them with
observations.
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The first row of Figure 6.22 shows the impact of the truncation radius rJ , which
decreases from left to right. In the outer regions, the magnetic field and density are
damped by a factor 103, the thermal pressure by a factor 106 and the velocity by a
factor 103/2. The increase of collimation we see from left to right is directly caused
by the decreasing influence of the overpressured inner region as its size decreases.

The second row of Figure 6.22 shows the impact of the damping strength on the
jet structure. In the first four panels, the truncation radius rJ is the same as in the
top left panel. In panel 1 the damping strength is decreased, and in panel 3 it is
decreased even more. This seems to have little impact on the global jet structure.
The inside regions seems freely expanding into the outside one. Panels 2 and 4 are
similar to respectively panels 1 and 3, but the damped down region is not outside
but inside. Naturally, the jet appears much more collimated.

The outputs of such simulations were compared to observations of protostel-
lar jets by Teşileanu et al., 2014. They find temperature, velocities and densities in
the range of what is expected for such jets (n ∼ 104 to 105cm−3, T ∼ 104K and
v ∼ 400km.s−1). They follow ionization and recombination of various ions and pro-
duce synthetic maps. They retrieve several non-standing knots at a few hundreds
of astronomical units from the source, and have a jet radius around 50au. This is in
the same ballpark of what I see in my simulations, as well as what observers see in
Herbig-Haro jets.

The 2.5D results of Stute et al., 2008 were expanded to 3D by Stute et al., 2014, on
a grid (x, y, z) ∈ [−100; 100]× [−100; 100]× [10; 210] with 2563 or 10243 cells. These
3D jets behave in a way comparable to the 2.5D ones. In particular, there still is a
standing recollimation shock beyond the super-FM critical surface. There are some
instabilities: In the sub-FM region, the poloidal magnetic field and toroidal veloc-
ity are very different from the 2.5D simulations, showing large oscillations in the
toroidal direction. However, these instabilities are absent beyond the FM surface.
The crossing of this critical surface provides stability to the jet, forbidding perturba-
tions to propagate to the larger scales.

To my knowledge, the dynamics and reciprocal influence between a MHD jet
emitted from a disk of finite size and a static atmosphere has not been studied yet,
and these simulations are the first to do so.

6.6 Summary

In this chapter I presented simulations in which the Jet-Emitting Disk (JED) only ex-
tends to a finite radius rJ . Beyond this radius the disk is non-ejecting, and the bound-
ary conditions can be likened to a Standard Accretion Disk (SAD). Using this more
realistic setup, the standing recollimation shocks seen in simulations with quasi self-
similar boundary conditions are retrieved. This confirms that the shocks are not a
bias of self-similarity, but a feature of collimated jets launched by such magnetized
keplerian accretion disks.

The interface between the dense super-FM outflow and the sparse sub-FM atmo-
sphere does not exactly follow the field line anchored at rJ in the disk. It is broader,
due to numerical lateral diffusion. This widening may be reminiscent of the mixing
at an interface caused by Kelvin-Helmholtz shear instabilities in dedicated numeri-
cal experiments. Additionally, in this case either there is no disconnection between
the accelerating circuit linked to the source and the asymptotic circuit at observable
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scales. A current sheet at the interface circumvents the shock and links the two cir-
cuits, ultimately creating a collimating post-shock return current that is connected
to the disk.

The parameter study confirms the conclusions drawn in the precedent chapter
with a quasi self-similar setup. The rotation of the central object slightly reinforces
the jet confinement, but more notably reduces the altitude of the recollimation shock.
More vertical magnetic profiles lead to more collimated jets, and in this case a more
vertical interface between the super and sub-FM flows. Again, the cases α ≥ 1 are
numerically out of reach because the return current is then not only located on the
central object but extends until rJ , leading to larger time increments. As expected, an
external (magnetic) pressure leads to a more confined jet, but does not modify the
shock altitude. The magnetic fields needed for such a collimation are on the same
scale as those predicted by analytical works.
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Chapter 7

Time-dependent simulations of jets
emitted from a truncated JED
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“At midnight I was at the tiller and suddenly noticed a line of clear sky between the south
and southwest. I called to the other men that the sky was clearing, and then a moment later

I realized that what I had seen was not a rift in the clouds but the white crest of an
enormous wave.”

“À minuit, j’étais au gouvernail. Soudain, vers le sud, m’apparut une ligne claire dans le
ciel. J’en prévins les autres ; puis, après un instant, je compris que la clarté en question

n’était pas un reflet dans les nuages, mais la crête blanche d’une énorme vague.”

Ernest Shackleton
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En effectuant divers tests afin de produire les simulations présentées dans le chapitre
précédent, j’ai découvert qu’un ensemble particulier de simulations avait un comportement
particulier. Ces simulations n’étaient pas stationnaires, car les jets simulés subissaient une
succession d’oscillations radiales presque périodiques. Il s’agit d’une découverte fortuite, car
elle a été obtenue en essayant d’obtenir des jets stationnaires dans une configuration avec
éjection tronquée. Il s’agit néanmoins d’une découverte bienvenue. Les oscillations quasi-
périodiques (QPO) sont omniprésentes dans les observations des binaires à rayons X. Ces
oscillations rappellent les oscillations de l’espace. Ces oscillations rappellent un scénario
récent (Ferreira et al., 2022) suggérant que les QPOs pourraient être la réponse du disque à
une instabilité dans le jet. Dans ce chapitre, je présente d’abord les QPOs et leurs propriétés
pertinentes pour cette étude, puis je décris le scénario susmentionné. Puis, je présente mes
simulations oscillantes, en explorant en particulier l’origine, la propagation et l’amplitude
des oscillations.

Le scénario d’origine des QPOs

Les binaires à rayons X sont des systèmes composés d’un objet compact (trou noir ou étoile
à neutrons) qui accrète la matière d’un compagnon stellaire. Leur taille angulaire étant
inférieure à une nano-arcseconde, ils ne peuvent pas être directement imagés, mais leur vari-
abilité en rayons X fournit de nombreuses informations. Une composante spécifique de la
variabilité est le QPO, une observation très courante dans les binaires à rayons X, qu’il
s’agisse de trous noirs ou d’étoiles à neutrons. Dans les binaires d’étoiles à neutrons, la
phénoménologie est plus riche et les QPOs sont donc plus difficiles à classer. Par conséquent,
je me concentre sur les binaires à trous noirs. Les QPOs sont mieux visibles dans les spectres
de puissance, qui mesurent la puissance d’un signal en fonction de sa fréquence. Ils appa-
raissent sous forme de pics, entre 0,1 et 10 Hertz pour les QPO à basse fréquence qui nous
intéressent ici. Une de leur proriétés intéressantes est qu’ils sont d’abord détectés dans l’état
soft de basse énergie, puis seulement après dans l’état hard. Cela indiquerait que l’oscillation
touche en premier les parties externes du disque, puis seulement après les parties internes.

Les oscillations de ces QPOs basse fréquence sont particulièrement lentes comparées aux
temps caractéristique du disque d’accrétion, et les deux sont proportionnelles. Des instabil-
ités haut dans le jet pourraient être la source de ces oscillations. A haute altitude, les échelles
de temps des instabilités du jet sont proportionnelles à sa largeur, qui est elle-même propor-
tionnelle au rayon de transition JED-SAD. Et ce rayon de transition est proportionnel aux
échelles de temps des QPO. Enfin, les échelles de temps de ces instabilités de jet sont pro-
portionnelles aux échelles de temps des QPOs. Le scénario de Ferreira et al., 2022 contient
donc deux étapes. 1) Une instabilité est créée dans le jet, à haute altitude. 2) Cette insta-
bilité se propage en aval du jet, donc dans la partie sub-FM, perturbant le disque lorsqu’elle
l’atteint. Cette perturbation peut conduire aux signatures QPO communément observées
dans les spectres des binaires à rayons X.
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Simulations dépendant du temps

La deuxième partie du chapitre a pour but d’explorer cette deuxième étape, la propagation,
dans le cadre de simulations 2.5D. J’y montre que les simulations de jets bidimensionnels
fournissent des informations utiles sur le scénario QPO basé sur l’instabilité du jet de Fer-
reira et al., 2022. Elles mettent en évidence la propagation en amont d’une perturbation
depuis les régions asymptotiques du jet jusqu’au disque. Cela montre la possibilité réelle
d’obtenir une rétroaction le long de l’interface entre un jet super-FM et le milieu ambiant, à
l’intérieur d’une gaine sub-FM. Les ondes sont canalisées à travers cette gaine, arrivent sur
le disque (dans la zone entre JED et SAD) et se propagent vers l’intérieur. Elles produisent
des variations du champ magnétique toroïdal conduisant à des variations de couple et donc
de flux de masse. Ces variations s’affaiblissent au cours de leur propagation vers l’intérieur,
à cause des réfractions vers le jet.

Cependant, ces perturbations n’ont pas été créées par une instabilité MHD, mais par
des conditions aux limites incompatibles avec un jet collimaté. Sans cette incohérence, les
simulations de jet tronqué en 2D sont stables, comme le montre le chapitre 7. Les instabilités
susceptibles de créer ces effondrements sont tridimensionnelles, car elles reposent sur des
variations de la direction toroïdale. Par exemple, ces instabilités pourraient être :

• Le mode "kink" de l’instabilité de pincement de Bennett (Bromberg and Tchekhovskoy,
2016; Tchekhovskoy and Bromberg, 2016).

• L’instabilité de "recollimation" (Gourgouliatos and Komissarov, 2018; Matsumoto,
Komissarov, and Gourgouliatos, 2020).

Afin d’étudier la stabilité en trois dimensions des jets collimatés et des chocs de recollima-
tion, mais aussi d’avoir une source cohérente pour les perturbations des jets, Claudio Zanni
et moi-même avons développé une configuration numérique pour produire des simulations
de jets en 3D. Cette configuration est présentée dans l’annexe C.
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When making various tests in order to produce the simulations shown in the
precedent chapter, I found out that one particular set of simulations had a peculiar
behavior. Those simulations were not stationary, as the simulated jets experienced a
succession of almost periodical radial oscillations. This was serendipitous, because
obtained while attempting to get stationary jets in a setup with truncated ejection.

However, this was a welcome discovery. The Quasi-Periodic Oscillations (QPOs)
omnipresent in the observations of X-ray binaries. These oscillations are reminiscent
of a recent scenario (Ferreira et al., 2022) suggesting that the QPOs could be the disk
response to an instability in the jet.

In a first section, I present the QPOs and their properties relevant to this study,
then describe the aforementioned scenario. In a second section, I present my oscil-
lating simulations, exploring in particular the origin, spread and amplitude of the
oscillations.

7.1 Quasi-periodic oscillations in X-ray binaries

In astrophysics, many topics are described as rich or complex. QPOs are no excep-
tion, but in this case it is not an exaggeration. They happen at many frequencies
and at all phases of X-ray binaries outburst cycles. A large number of physical sce-
narios and models have been proposed to understand them. This section is only an
introduction to the subject, and a description of the scenario relevant for my work.
The curious reader is referred to Ingram and Motta, 2019; Motta, 2016 for recent and
comprehensive reviews of QPOs.

7.1.1 Ubiquitous in the observations

X-ray binaries are systems composed of a compact object (black hole or neutron star)
accreting matter from a stellar companion. Their angular size being less than a nano-
arcsecond, they cannot be directly imaged, but their X-ray variability provides a
lot of information. One specific variability component is the QPO, a very common
observation in both black hole and neutron star X-ray binaries. In neutron star bi-
naries, their phenomenology is richer and QPOs are thus harder to classify. As a
consequence, I focus on black hole binaries.

QPOs are best seen in power spectra, that measure a signal power versus its
frequency. They are obtained by computing the Fourier transform of a light curve.
What is most often represented is the Leahy power, modulus squared of the Fourier
transform (see Leahy et al., 1983; van der Klis, 1989 for the methodology). Examples
of power spectra for the archetypal black hole X-ray binary GX 339-4 are represented
on Figure 7.1. The QPOs appear as peaks, here seen between four and ten Hertz.

Why are there three power spectra for a single object ? Most black hole bina-
ries are transient. While being in quiescence majority of the time, they occasionally
experience bright outbursts. These outbursts last weeks to months, and are spaced
by months to decades. Those are commonly studied using Hardness Intensity Di-
agrams (HID), sketched in Figure 1.6 or Figure 7.2. They represent the X-ray lumi-
nosity as a function of the spectrum hardness. The hardness is the ratio of the hard
X-ray emission of high energy over the total X-ray emission. This hardness ratio can
thus be roughly understood as a proxy for the energy1 or the outburst state. When

1I will only write energy (and not frequency) when discussing the energy/frequency of the detected
photons. This is to avoid any confusion with the frequencies in the power spectra that lie in the Fourier
space.
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the ratio is close to unity, the object is in a hard state, and when it is close to zero, it
is in a soft state.2 Sara E. Motta: QPOs in Black hole X-ray binaries

a light-curve. Therefore, the Fourier analysis is commonly
used to evidence vary fast aperiodic and quasi-periodic vari-
ability by producing power-density spectra (PDS).

In the PDS from BH XRBs we observe several dif-
ferent features, ranging from various types of broad-band
noise spanning several decades in frequency (i.e. essen-
tially scale-free), to much more narrow features: the so-
called quasi periodic oscillations (QPOs). QPOs have been
observed in practically all kinds of accreting systems (in
CVs, XRBs, ULXs and in AGNs). These peaks yield ac-
curate centroid frequencies that can be associated with mo-
tion and/or accretion-related timescales. The study of vari-
ability in general, and QPOs in particular, provides a way
to explore the accretion flow around BHs in ways which
are inaccessible via energy spectra alone. The association
of QPOs with specific spectral states and transitions sug-
gests that they could be a key ingredient in understanding
the underlying physical conditions that produce these states.
Furthermore, being produced in the vicinity of relativistic
objects such as BHs and NSs, they are expected to carry in-
formation about the condition of matter in the strong field
regime. Therefore, understanding them is key to use QPOs
as powerful tools to test the predictions of the Theory of
General Relativity.

2 Quasi Periodic Oscillations in BH XRBs

QPOs in BH and NS XRBs have been known for many
years and have been divided in various classes. QPOs in
BH XRBs are normally divided into two large groups, based
on the frequency range where they are usually detected: the
low frequency QPOs and the high-frequency QPOs. The
former are observed below ∼50 Hz, the latter are normally
found above ∼100Hz (but see the case of GRS1915+105,
Belloni et al., 2012) and up to ∼500Hz.

2.1 Low Frequency QPOs

Low-frequency QPOs (LFQPOs) with frequencies ranging
from a few mHz to ∼30 Hz are common features in almost
all black transient BHBs and were already found in sev-
eral sources with Ginga and divided into different classes
(see e.g. Miyamoto and Kitamoto, 1991 for the case of GX
339-4 and Takizawa et al., 1997 for the case of GS 1124-
68). Observations performed with the Rossi X-ray Timing
Explorer (RXTE) have led to an extraordinary progress in
our knowledge on properties of the variability in BHBs
(see van der Klis, 2006, Remillard and McClintock, 2006,
Belloni et al., 2011) and it was only after RXTE was
launched that LFQPOs were detected in most observed
BHBs (see van der Klis, 2004.

Three main types of LFQPOs, dubbed types A, B,
and C, originally identified in the Power Density Spec-
tra (PDS) of XTE J1550-564 (see Wijnands et al., 1999;
Homan et al., 2001; Remillard et al., 2002), have been seen
in several sources.
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Fig. 2 Examples of type A, B and C QPOs from our GX
339-4 observations. The centroid peak is indicated with an
arrow. The contribution of the Poisson noise was not sub-
tracted. Taken from Motta et al., 2011a.

The different types of QPOs are currently identified on
the basis of their intrinsic properties (mainly centroid fre-
quency and width, but energy dependence and phase lags
as well), of the underlying broad-band noise components
(noise shape and total variability level) and of the relations
among these quantities.

Type-A QPOs Type-A QPOs (see Fig. 2, top panel and
1, left panel) are the less common type of QPOs in BHBs. In
the entire RXTE archive only about 10 type-A QPOs have
been found. They normally appear in the HSS, just after the
hard to soft transition has taken place, when the overall vari-
ability is already quite low. They usually appear close in
time to the type-B QPOs.
Type-A QPOs (Fig. 2, top panel) are characterized by a
weak (few percent rms) and broad (ν/∆ν ≤3) peak around
6-8 Hz. Neither a subharmonic nor a second harmonic are
usually present (possibly because of the width of the fun-
damental peak), whereas a very low amplitude red noise
is associated with type-A QPOs. Originally, these LFQ-
POs were dubbed type A-II by Homan et al., 2001. LFQ-
POs dubbed type A-I (Wijnands et al., 1999) were strong,
broad and associated with a very low-amplitude red noise.
A shoulder on the right-hand side of this QPO was clearly
visible and interpreted as a very broadened second harmonic
peak. Casella et al., 2005 showed that this type A-I LFQPOs
should be classified as a Type-B QPOs.
Type-A QPOs have been associated to the flaring branch
oscillations (FBOs) seen in NS low-mass X-ray binaries
(see Casella et al., 2005), but the low number of detec-
tions in both BHs and NSs prevents a secure associa-
tion between the two classes. For the same reason, an
explanation for the existence of Type-A QPOs is diffi-
cult. Tagger and Pellat, 1999 proposed a model based on
the accretion ejection instability (AEI), according to which
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FIGURE 7.1: Examples of type A, B and C QPOs. PDS from the obser-
vations of GX 339-4 (Motta et al., 2011)
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Fig. 1 Typical black hole transient hardness Intensity diagram pattern. The q-shaped track is divided in five spectral
timing states and the location of the different types of low frequency and high-frequency QPOs is marked.

a spiral density wave in the disc, driven by magnetic
stresses, becomes unstable by exchanging angular momen-
tum with a Rossby vortex. This instability forms low az-
imuthal wavenumbers, standing spiral patterns which would
be the origin of LFQPOs. Varnière and Tagger, 2002 and
Varnière et al., 2012 suggested that type-A QPOs could be
produced through the AEI in a relativistic regime, where the
AEI coexist with the Rossby Wave Instability (RWI) (see
Tagger and Pellat, 1999).

Type-B QPOs Type-BQPOs have been seen in a several
BHBs and they appear during the SIMS, which is essentially
defined on the presence of this QPO type.
Type-B QPOs (Fig. 2, middle panel and Fig. 1) are charac-
terized by a relatively strong (∼4% rms) and narrow (ν/∆ν
≥6) peak, which is found in a narrow range of centroid fre-
quencies, i.e. around 6 Hz or 1-3 Hz (Motta et al., 2011b).
A weak red noise (few percent rms or less) is detected
at very low frequencies (≤0.1 Hz). A weak second har-
monic is often present, sometimes together with a sub-
harmonic peak. In a few cases, the subharmonic peak is
higher and narrower, resulting in a cathedral-like QPO
shape (see Casella et al., 2004). Rapid transitions in which
type B LFQPOs appear/disappear are often observed in
some sources (e.g. Nespoli et al., 2003). These transitions
are difficult to resolve at present, as they take place on a
timescale shorter than a few seconds.
It is worth noticing that type-B QPOs have been associated
to the normal branch oscillations (NBOs) seen in NSs and
that both type-B QPOs and NBOs appear at about 6 Hz de-
spite the obvious difference in the mass distributions of the
host systems.
Type-B QPOs have been associated to the relativistic jets
usually seen in X-ray binaries (Fender et al., 2009) in tran-
sition from hard to soft state. Motta et al., 2015 has shown
that the intrinsic power of type-B QPOs is higher for low in-
clination sources (i.e. for sources where the angle between
the line of sight and the accretion disk axis is small). This
property support the hypothesis that type-B QPOs are re-
lated to the relativistic jet (Fender et al., 2009), since there
is no other obvious mechanism that would be stronger face-

on. Among the attempts to explain the origin of type-B
QPOs, the model proposed by Varnière and Tagger, 2002
and Varnière et al., 2012 is noteworthy: here the type-B
QPOs would arise from the AEI, but differently from type-
A and type-C QPOs, they would be produced in a semi-
relativistic regime.

Type-C QPOs Type-C QPOs are by far the most com-
mon type of QPO in BHBs. They can be detected pretty
much in any spectral state (see Motta et al., 2012): they
are commonly observed in the LHS and in the HIMS,
where their frequency ranges between few mHz and about
10 Hz, but also in the HSS and in the ULS (see e.g.
Motta et al., 2012), where they can reach ∼30 Hz.
Type-C QPOs (Fig. 2, bottom panel and Fig. 1) are char-
acterized by a strong (up to 20% rms), narrow (ν/∆ν
≥10) and variable peak (its centroid frequency and in-
tensity varying by several percent in a few days; see,
e.g., Motta et al., 2015) superposed on a flat-top noise that
steepens above a frequency comparable to the QPO fre-
quency. A subharmonic, a second harmonic peak are often
seen and sometimes even a third harmonic peak. The to-
tal (QPO plus flat-top noise) fractional rms variability can
be as high as 40%. The frequency of the type-C QPOs
correlates both with the flat-top noise break-frequency
(Wijnands and van der Klis, 1999 and with the characteris-
tic frequency of some broad components seen in the PDS at
higher frequency (>20Hz, see Psaltis et al., 1999). Type-C
QPOs have been associated to the horizontal branch oscil-
lations (HBOs) seen in NS, that also show significant varia-
tions in frequency, easily reaching 50-100 Hz.
Differently from type-A and type-B QPOs,there are several
models attempting to explain the origin of type-C QPOs.
These models are based on two differentmechanisms: insta-
bilities and geometrical effects. In the latter case, the physi-
cal process typically invoked is precession.
– Instabilities: Titarchuk and Fiorito, 2004 proposed the
so called transition layer model, where type-C QPOs
are the result of viscous magneto-acoustic oscillations
of a spherical bounded transition layer, formed by mat-
ter from the accretion disc adjusting to the sub-keplerian
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FIGURE 7.2: Repartition of the QPO types among the phases of a X-
ray binary outburst. Type C QPOs are the only ones present during

the hard states. Figure taken from Motta, 2016.

As noted in the introduction, typical X-ray binary outbursts follow a counter-
clockwise q-shaped path in the HID. During this path the source can be either in a
hard state, in a soft state or in an intermediate state. The different types QPOs shown
Figure 7.1 are observed in different states. What we need to know for the following
is that steady radio jets are only observed in the hard state (Fender, Belloni, and
Gallo, 2004), and Figure 7.2 shows that type C QPOs are the only ones present in the
hard state. As we are interested in jet-induced QPOs, we will focus on the type C.

These are by far the most common type of QPOs in black hole X-rays bina-
ries. They are mostly observed in the hard states, at Fourier frequencies ranging
from a few mHz to around 10 Hz. They show narrow peaks, with quality factors
Q = νQPO/∆νQPO ≳ 8 where ∆νQPO is the full width at half-maximum. They also
have a high amplitude compared to the other types. This allows for distinguishable
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harmonics in the power spectra, as seen on Figure 7.1. Still, even type C QPOs re-
main epiphenomena of the global binary system physics. As seen on Figure 7.3, the
QPO represents at maximum a quarter of the total rms power, Leahy power of the
QPO normalized to the total Leahy power.

2062 S. E. Motta et al.

Figure 1. QPO rms as a function of the QPO centroid frequency for type-C QPOs (left figures) and type-B QPOs (right figures). For each figure, we plot
as follows. In the top panel, we show data from high-inclination (HI) sources (blue) and from low-inclination (LI) sources (dark grey). In the middle panel,
we plot the data from low-inclination sources (red) and from high-inclination sources (light grey). In the bottom panel light grey and dark grey points are the
same as in the top and middle panel, the blue circles correspond to QPO detected in high-inclination sources, the red squares correspond to QPOs detected in
low-inclination sources. The red squares and blue circles are ‘average’ points and have been obtained by applying a logarithmic rebin in frequency to the grey
points. The dashed blue and red lines are smooth fits to the blue and red points, respectively, for visualizing. Here, we did not separate the sources, but we only
distinguish between high- and low-inclination ones. Note that the axes are scaled differently for type-C and -B QPOs.

429 type-C QPOs, 135 type-B QPOs and 14 type-A QPOs (two
from 4U 1543−47, two from XTE J1550−564, two from XTE
J1817−330, four from XTE J1859+226 and four from GX 339−4).
Due to the very low number of detections, we decided to exclude
type-A QPOs from this work. In order to differentiate between the
rms of the type-B/C QPO, the rms of the noise associated with a
type-B/C QPO and the total rms of a PDS where we detected a
type-B/C QPO, we will refer to type-B/C QPO rms, type-B/C noise
rms and type-B/C total rms, respectively.

3 R ESULTS

After classifying QPOs, we plotted the QPO rms and the noise rms
as a function of the QPO centroid frequency, dividing the sources
in high inclination and low inclination: we do not separate the
different sources in order to give a better idea of the data gen-
eral trend. The results are shown in Figs 1 and 2. Blue and red
points always correspond to high-inclination and low-inclination
sources, respectively. For clarity’s sake, in each figure we display
the data in the following way: in the top panel we show the data for
high inclination sources in blue and the data from low-inclination
sources in dark grey. In the middle panel, we show the data from
low-inclination sources in red and the data from high-inclination
sources in light grey. In the bottom panel, the light and dark grey
dots are the same as in the top and middle panes, while the blue

circles and red squares are ‘average’ points, obtained applying a
logarithmic rebin in frequency to the grey points. The blues circles
and the red squares represent data from high- and low-inclination
sources, respectively.

In Fig. 3, we compare the distributions of rms for type-C and and
type-B QPOs. In Fig. 4 we do the same, but this time we consider
the noise associated with type-C and type-B QPOs. In Fig. 5, we
compare the distributions of QPO centroid frequency for type-C and
type-B QPOs. The plots in Figs from 3 to 5 show the histograms
and the corresponding empirical cumulative distribution functions
(ECDF). Blue represents high inclination, red low inclination and
an overlap of the two colours in a histogram is indicated by mixing
them into purple. As in the previous plots, we do not separate the
different sources.

3.1 Statistical analysis

From Fig. 1, it is clear that at least the type-B and type-C QPO
rms is different in high- and low-inclination sources in a quite large
frequency range. To test the significance of these differences we
carried out a two-sample Wilcoxon hypothesis test (U-test, also
known as Mann–Whitney test; Mann & Whitney 1947). This is a
non-parametric rank sum test designed to check for a difference
in location shift. The idea is similar to testing the significance of
the difference between two sample means in the popular Student’s
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FIGURE 7.3: QPO rms for various sources of high-inclination (HI,
blue) or low-inclination (LI, red) (Motta et al., 2015).

While one QPO is localized at a specific Fourier frequency, it is detected in the
whole hard state. One important property is that their frequency νQPO does not
depend on the energy or source inclination (see van den Eijnden et al., 2017 for in-
stance). However, harder and softer photons are not always detected at the same
time, and one can be lagging the other. There are thus two possibilities:

• The harder photons are lagging the softer photons: a hard lag.

• The softer photons are lagging the harder photons: a soft lag.

Figure 7.4 presents the phase lags as a function of the QPO frequency for type
C QPOs in various sources. They count hard lags as positive and soft lags as neg-
ative. The lags are slightly positive at lower frequencies (νQPO ≲ 2Hz). Then, at
higher frequencies (νQPO ≳ 2Hz) there is a change of behavior between high and
low-inclination sources. Low inclination sources (in red) acquire a greater hard lag,
while the lag of low inclination sources (in blue) becomes negative. Here, a low-
inclination source means the binary orbital plane is close to perpendicular to the line
of sight (face-on accretion disk). This lag behavior has been consistently observed in
many objects (de Ruiter et al., 2019; Motta et al., 2015; van den Eijnden et al., 2017;
Zhang et al., 2020).
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Inclination dependence of QPO phase lags 2647

Figure 3. Type-C QPO phase lags as a function of the QPO frequency. Black and grey points indicate low- and high-inclination sources, respectively. Different
sources within the low- or high-inclination sample are shown with different markers. The red and blue points show the average phase lag and the QPO frequency
in logarithmic frequency bins. The plots for individual sources, including the two sources of unknown inclination, can be found in Appendix A.

Figure 4. Representative examples of high- and low-inclination lag–energy spectra for observations with a low (∼0.5–1.5 Hz, left) and high (∼6 Hz, right)
type-C QPO frequency. The sources, RXTE ObsId and inclination are listed in both panels. The reference energy bands are indicated with zero phase lag.

3.2 Significance testing

The type-C QPO phase lags show a clear difference between low-
and high-inclination sources. However, the number of sources in
our sample is quite small. Thus, we want to know how likely it

is that the observed differences between low and high inclination
could have arisen by chance. In other words, we want to test the
null hypothesis that the type-C QPO phase lags do not depend on
the inclination of the source.
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FIGURE 7.4: Hard-to-soft phase lags of type C QPOs versus centroid
frequency, for both high-inclination (blue) and low-inclination (red)

sources. Figure taken from van den Eijnden et al., 2017.

7.1.2 Secular oscillations on the disk time scales

One property that is hard to explain is their frequency range. Type C QPOs are low-
frequency, mainly between 0.1 Hz and 10 Hz. This would correspond to variations
extremely slow compared to timescales of the inner highly magnetized disk (Marcel
et al., 2020; Markwardt, Swank, and Taam, 1999; Muno, Morgan, and Remillard,
1999; Rodriguez et al., 2002, 2004; Sobczak et al., 2000; Vignarca et al., 2003). Let us
quantify this discrepancy using the JED-SAD framework. The boundary between
the inner ejecting JED and the outer non-ejecting SAD happens at a radius rJ . In
GRMHD simulations this inner zone would correspond to the Magnetically Arrested
Disk (MAD, see McKinney, Tchekhovskoy, and Blandford, 2012 for instance). Fitting
the accretion rate ṁ and the transition radius rJ independently with time, Marcel et
al., 2020 managed to reproduce both the spectra and the HID of four outburst cycles
of GX 339-4. During those outbursts, many QPOs are observed, mostly of type C.
They observed a correlation between the keplerian frequency at the transition radius
and the QPO frequency:

νQPO = νK(rJ)/F (7.1)

where the factor F is a constant that varies between 70 and 130 depending on
the outburst cycle. This correlation is illustrated on Figure 7.5, where the dark blue
dots are the type C QPOs and the black line is νQPO = νK(rJ)/100. This correlation
was realized on all periods accessible to type C QPOs, from 0.1 to 10 Hz. Below 2 Hz
the uncertainty on rJ (deduced from the spectral fits) disables any strong constraint
on this radius, and make it impossible to verify the correlation. But nevertheless, we
see on Figure 7.5 that the observations are still compatible with νQPO ∼ νK(rJ)/100
at these lower frequencies.

Thus, the physical phenomenon at the origin of the QPOs should be particularly
slow, pointing to some secular evolution within the disk at the transition radius. For
this reason, instabilities at this interface such as the magnetic Rayleigh-Taylor insta-
bility or the Accretion-Ejection instability (Tagger and Pellat, 1999) seem ruled out
(see section 2 of Ferreira et al., 2022). The frequency νQPO being the same across the
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whole energy band also rules out some local instability being triggered on the whole
disk. The physical phenomenon at the origin of type C QPOs can be global, such as
the solid-body Lense-Thirring disk precession (see Bardeen and Petterson, 1975; In-
gram, Done, and Fragile, 2009; Ingram and Motta, 2019 and references therein). But
it can also be a local phenomenon at large timescales that propagates into the disk
and perturbs it.

FIGURE 7.5: Correlation between the keplerian frequency at rJ and
the QPO frequency νQPO(Marcel et al., 2020). The dark blue points
are type C. The black line is νQPOS = νK(rJ)/102. In red is a weighed

linear fit on type C QPOs νQPO = (10 ± 3)× 10−3νK(rJ)
0.96±0.04.

One such phenomenon could be instabilities in the jet. The timescales of theses
instabilities are proportional to the jet width. And we see in Figure 7.6 that this jet
width is proportional to the transition radius rJ . This Figure illustrates the JED-SAD
framework, and looks eerily similar to my truncated simulations of the precedent
chapter. At launch, the spine width is rin = Rd and the jet width is rJ . High above
the disk at altitude z2 > zFM, the jet has a radius rjet(z2) ≫ rJ with rjet ∝ rJ .

As a summary, at high altitudes z2 > zFM the timescales of jet instabilities are
proportional to its width rjet(z2), which in turn is proportional to the JED-SAD tran-
sition radius rJ . And, this transition radius is proportional to the QPO timescales
(equation 7.1). Finally, the timescales of those jet instabilities are proportional to the
QPO timescales.
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FIGURE 7.6: Scheme of the JED-SAD model (Marcel et al., 2019).

The large jet width compared to the JED width could then be the answer to the
secularity of the QPOs compared to the disk timescales. Does this work in quanti-
tative terms ? Similarly to what was discussed for the spine-jet interface in section
4.2.3, there may be long wavelength oscillations starting at the outer edge of the jet.
For the jet to perform global instabilities, this wavelength should be tied with the jet
radial size rjet(z2) = r2. The instability frequency is then:

νI =

(
VFM

2rjet

)
(z2) (7.2)

In cold jets with a dominant toroidal magnetic field, the fast-magnetosonic speed
at z2 can be simplified as

VFM ≃ VAφ
=

Bφ√
4πρ

=
m

m2 − 1

(
1 − r2

A
r2

2

)
Ω∗r2 ≃ Ω∗r2

m
(7.3)

as in Pelletier and Pudritz, 1992: at z2 the jet is assumed to be highly super-
Alfvénic and m2 ≫ 1 and r2

2 ≫ r2
A.

As seen in section 2.6.3, on the disk g ≃ 0 and Ω∗ ≃ ΩK. The invariant Ω∗ being
conserved along the field line anchored at rJ , the fast-magnetosonic speed becomes
VFM ≃ ΩK(rJ)r2/m. This then simplifies equation 7.2:

νI(z2) =

(
VFM

2rjet

)
(z2) ≃

ΩK(rJ)

2m
=

π

m
νK(rJ) (7.4)

For this instability to be in the same frequency range as those of the type C LFQ-
POs, one would require m = πF , where m is the jet Alfvénic mach number high
above the disk and F ∼ 100 is the constant of equation 7.1. We have seen that our
simulated jets can reach asymptotic Alfvénic mach numbers of a few hundreds (see
Figure 4.11 for instance), so this frequency range is attainable.

Thus, jet instabilities would be a reliable way to produce perturbations with vari-
abilities in the same frequency-range as the QPOs. Those could be current-driven
instabilities such as the kink instability (Figure 7.7) or instabilities at the interface
between the jet and the ambient medium such as the centrifugal instability (Figure
7.8). Those 3D jet instabilities and others are quickly presented in section C.1.
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FIGURE 7.7: Destructive kink instability in a laboratory experiment
(Hsu and Bellan, 2003).

FIGURE 7.8: Centrifugal instability in an AGN jet simulation (Gour-
gouliatos and Komissarov, 2018).

As a summary, this scenario contains two steps. 1) An instability is created in the
jet, at large altitudes. 2) This instability propagates downstream in the jet, thus in
the sub-FM part, disrupting the disk when it reaches it. This disruption may lead to
the QPO signatures commonly observed in X-ray binary spectra. The next section is
aimed at exploring this second step, the propagation, within 2.5D simulations. The
first step should be explored with full 3D simulations, whose setup is detailed in
appendix C.

7.2 Oscillating simulations

Some simulations I performed during my PhD were very interesting in that context:
they exhibit jets that wiggle in an almost periodic manner. As mentioned above,
this discovery was serendipitous, the simulations being performed while making
numerical tests to produce the stationary jets emitted from a truncated disk.

In the follwing, I mostly focus on an oscillating simulation of reference, hereafter
called Q1, on which the behavior was discovered. First, I describe the ejection con-
ditions of these simulations, showing the changes from the stationary simulations of
chapter 6. Then, I discuss the origin of the oscillations, showing simulations other
than Q1 for which the outer boundary condition has been changed. Finally, I de-
scribe the oscillations and their period. After that, my interest will be on the vertical
(upstream) and radial (inwards) propagation of the perturbations.

7.2.1 Ejection properties

The conditions used to produce the oscillating simulation of reference Q1 are almost
the same as those used to produce the truncated simulation of reference O1. There
are only three differences.
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First, the condition that causes the vanishing of the toroidal current on the non-
ejecting disk regions (r0 > rS) is not implemented. For the record, this condition
is

Bφ(r, t + dt) = Bφ(r, t)e−
dt

T TK (r) (6.9)

For Q1 the toroidal magnetic field was simply let as an "outflow" condition. It is
thus freely varying on the whole lower boundary.

Second, the end of the transition zone is now at rS = 20, while it was at rS = 12
for the simulations of chapter 6. The conditions described in this chapter work the
same way in this now longer zone (e.g. r0 ∈ [rJ = 10; rS = 20]).

Third, the vertical speed is fixed on the whole disk. On the ejecting boundary
(r0 ∈ [Rd; rJ ]), vz is set as in the Jet-Emitting Disk, and thus as in all simulations
presented in this thesis. On the non-ejecting boundary (r0 ∈ [rS; Rext]), it is simply set
at zero, with no distinction on slow-magnetosonic mach values as in the precedent
chapter.

Other than these three points, everything remains the same: the other boundary
conditions, the initial conditions, the grid size and resolution, the Riemann solvers
and reconstruction schemes. These ejection conditions are represented on Figure
7.9. It is a zoom on the innermost regions of the simulation Q1, at a time tb chosen
before the oscillations. This map is very similar to the one showing the simulation
O1, Figure 6.5. The only visible difference is beyond rJ = 10. For O1 there was no
current in this region because of the condition of equation 6.9. For Q1 there is little
current because of the drop in Ω∗, but we can still see that there are a few electric
circuits in the non-ejecting region.
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FIGURE 7.9: Snapshot of the simulation at tb = 1.8317 × 106 (top left
panel of Figure 7.10), zoomed for r < 50 and z < 50. The yellow
contours are the poloidal electric circuits, the white lines are velocity
field lines and the red lines the critical surfaces: FM (dashed), Alfvén
(dotted) and SM (dash-dotted). In the background is the plasma den-

sity.
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What kind of jet do these conditions produce ? The top left panel of Figure 7.10
present a simulation snapshot taken at tb = 1.8317× 106, before the oscillations. Nat-
urally, the simulation Q1 is very similar to the truncated simulation of reference O1.
It still contains two visible flows, in addition to the axial spine: an inner super-FM
dense flow and an outer sub-FM sparse flow. The jet exhibits the usual recollima-
tion shocks, but they are now located at higher altitudes: Zshock = 2350, against
Zshock = 1550 for O1.

Same as for O1, the wind emitted beyond rJ = 10 has a negligible impact on the
outflow dynamics: its mass loss rate is 0.4 % that of the jet, and its power is 1.2 %
that of the jet. The outermost super-FM field line is ejected at r0,FM = 39 and as a
reminder:

• The mass loss rates are Ṁjet = 2π
∫ rJ

Rd
ρvzrdr and Ṁwind = 2π

∫ r0,FM
rJ

ρvzrdr.

• The powers are Pjet = 2π
∫ rJ

Rd
ρEvzrdr and Pwind = 2π

∫ r0,FM
rJ

ρEvzrdr.

7.2.2 Periodic oscillations

The most notable feature of this simulation is its time-dependence: it exhibits a suc-
cession of radial oscillations. One of these oscillations is represented on Figure 7.10.
The top left snapshot is at time tb before the oscillation, and the bottom right snap-
shot is taken after the oscillation at a time te, when the jet has again reached a quasi-
stationary state. The state of the jet at te resembles that at tb, although less collimated.

This oscillation is a body mode, the whole interface is wobbling, radially drifting
inwards, then outwards. Note that the term body mode is usually used to describe
instabilities, and as we will see later this is no instability. We see on Figure 7.11 that
the oscillations are quasi-periodic. It represents the variation of Bφ/Bz with time
along the field line anchored on the disk at rS = 20. Each color represents the field
line inclination Bφ/Bz at a specific altitude on the field line. Those altitudes range
from z = 100, close to the disk, to z = 5000, close to the outer boundary. We see that
the oscillations perturb the whole field line, although this perturbation increases
with altitude. It is greatest at z ∼ 5000, near the outer boundary. This is where the
oscillation probably starts, since the amplitude is greater there.

On Figure 7.11 we see five oscillations, all separated by a similar timescales ∆tosc
ranging from 2 × 105 to 5 × 105. What can this timescale be related to ? After each
oscillation, the jet is set in a decollimated state. We have seen in section 4.4 that
for the jet to reach its final state, all the plasma that eventually becomes super-FM
should have time to reach the outer boundary. Thus, calling Lr0,FM the field line
anchored in r0,FM = 39, that time is

text(r0,FM) =
∫

Lr0,FM

ds
vp(s)

= 1.82 × 105 (7.5)

where vp is the poloidal speed and s is the curvilinear abscissa along the field
line. This was computed at tb, just before the oscillation. Thus, the jet experiences
quasi-periodic collapses on jet formation timescales.
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FIGURE 7.10: Evolution of the reference simulation with time during
the first oscillation. We use the same notations, colors, and field lines

anchoring radii as in Figure 5.2.
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FIGURE 7.11: Evolution with time of Bφ/Bz at the intersection be-
tween the field line anchored at r0 = 20 (in the sheath) and at various

altitudes z.
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7.2.3 Origin of the oscillations

What causes these oscillations ? The fact that it starts at the outer boundary (see Fig-
ure 7.10) is rather suspicious. To see if this is a coincidence, I ran another simulation
where the outer boundary was moved from Rext = 5650 to Rext = 9936. This simu-
lation is named Q2, and its characteristics and parameters are described in Table 7.1.
All other things are the same as in the reference Q1. In particular, the resolution for
R < 5650 is unchanged. As the grid size along u⃗R is logarithmic (∆R ∝ R), perform-
ing this simulation was not much more computationally expensive. There is not a
lot more cells, as we go from NR = 704 to NR = 750. Moreover, these additional
cells are large, so they do not modify the time increment (cf CFL equation 3.15).

Name Rext Boundary condition at R = Rext
tb

105 Zshock θext
FM θext

A ro,FM Oscillations

Q1 5650 ∂2(RBφ)/∂R2 = 0 and Fsub−A
Bφ

> 0 18.32 2350 0.14 0.14 39 Yes

Q2 9936 ∂2(RBφ)/∂R2 = 0 and Fsub−A
Bφ

> 0 21.02 2400 0.063 0.063 59 No

Q3 5650 ∂2(RBφ)/∂R2 = 0 16.10 2000 0.15 0.16 37 Yes

Q4 5650 ∂(RBφ)/∂R = 0 and Fsub−A
Bφ

> 0 17.20 2350 0.10 0.12 25 Yes

TABLE 7.1: List of the simulations presented in this chapter. Values
are computed at tb, before any oscillation. For simulation Q1, this
corresponds to the top left snapshot of Figure 7.10. For simulations

Q2 to Q4, this corresponds to the snapshots of Figure 7.12.

This simulation is presented in the first row of Figure 7.12. The left panel is a
snapshot of the simulation at time tb = 2.1018× 106. We see that in the inner regions
(R < 5650), the simulation is very close to Q1. The FM outer interface is at the same
place, the two shocks are at the same altitude (see also Table 7.1). The only difference
is that the highest point of the highest shock, at R ∼ 5650, is now far away from
the outer boundary condition. This causes the change observed in the right panel.
This plot is the analogue to Figure 7.11 as it presents the time evolution of Bφ/Bz
along the field line anchored at r0 = 40, here only at altitude z = 5000. There is
no oscillation, only a steady growth over time. This growth is directly caused by
an increase the jet collimation, that induces a greater vertical magnetic field. This
is due to a drift in the axial electric current (as in self-similar studies) whose origin
is certainly numerical. The small oscillations are caused by the point of intersection
between the field line and z = 5000 moving from one cell to its neighbour, as the
resolution is already quite low at this point.

Inconsistent boundary conditions

This is direct evidence that the oscillations seen in the simulation Q1 are caused by
the boundary conditions, and not a local instability. As in the precedent chapters, the
boundary conditions in the inner ejecting zone (1 < r0 < 10, θ = π/2) are consistent
with steady-state ideal MHD. Thus the simulation is trying to converge to a station-
ary state, as described in section 4.4 for the self-similar simulations. But here, the
outer boundary conditions (R = Rext) are not consistent with this stationary state.
Thus, each time the jet is collimated enough, it experiences a forcing caused by the
boundary conditions. That forcing disrupts the jet equilibrium, and it experiences a
collapse. After this collapse, the jet ends in an uncollimated state, as in the bottom
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FIGURE 7.12: Impact of the outer boundary conditions change. For
each simulation: In the left column, a snapshot at tb, before any oscil-
lation; In the right column the time evolution after tb of Bφ/Bz at the
intersection between the field line anchored at r0 = 40 and z = 5000.
I use the same notations, colors, and field lines anchoring radii as in

Figure 5.2.
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right panel of Figure 7.10. It then takes a time text(r0,FM) ≃ 2 × 105 to get collimated
again. At that time, the forcing is triggered again, and the jet experiences another
collapse. After that collapse, it takes another text(r0,FM) for the jet to be rebuilt from
the launching zone, get collimated again, and experience yet another collapse. As
the boundary conditions do not change with time, this succession of collimations
and collapses should continue indefinitely, causing the apparent quasi-periodicity.

What makes the boundary conditions inconsistent in the specific case of the sim-
ulation Q1 ? As seen in the top left panel of Figure 7.10, the point (r ≃ 800, z ≃ 5000)
where the perturbation seems to rise is at the intersection of three lines:

• The intersection between the super-FM and sub-FM outflows, naturally con-
founded with the fast-magnetosonic but also the Alfvén critical surfaces.

• The highest recollimation shock, in a stationary state inside the jet. It extends
from the axis at z ≃ 2000 uo to this point.

• The outer boundary, at R = Rext.

Let us place ourselves on this point, on the shock and at the very last grid cell,
at Rext = 5650. As the next cell along u⃗R is a "ghost" cell in the boundary, its values
of P, ρ, v⃗ and B⃗ are set as in the "outflow" condition. The gradients along u⃗R of ρ,
P, BR, Bθ , RBφ, vR, vθ and vφ are conserved, and the Van Leer slope limiter is used.
At any other point in the boundary this would not be an issue. But here, due to
the presence of either the shock or the interface, these gradients are strong. This
outflow condition weakens the shock, making the compression factor weaker that
what is expected from the Rankine-Hugoniot jump conditions (equations 2.100). The
density in the ghost zone after the shock is smaller than what it would be without
the boundary.

That accentuates the mismatch at the interface, illustrated for example in the
right panel of Figure 6.9. The inwards acceleration in the super-FM side of the inter-
face and the outwards acceleration in the sub-FM side of the interface are increased.
The natural consequence is an emptying and widening of this zone, leading to lower
densities, and thus even stronger accelerations. This reinforcing cycle of perturba-
tion leads to the jet collapses seen in Figure 7.10. We will see in the next sections that
the location of the perturbation at the interface is also important for the propagation.

The impact of boundary conditions in the literature

A similar but less dramatic influence of the boundary conditions has already been
noticed by Ustyugova et al., 1999. They ran simulations in both cartesian and spheri-
cal grids, looking at the impact of the toroidal magnetic field boundary condition on
jet collimation. They used three different "outflow" boundary conditions, expressed
here on a spherical boundary R = Rext:

• The "free" boundary condition, enforcing ∂Bφ
∂R = 0.

• The "force-free" boundary condition, enforcing B⃗p · ∇⃗(RBφ) = 0.

• The "force-balance" boundary condition, enforcing B⃗p · ∇⃗(RBφ) ∝ BRBφ.

The "force-balance" condition relies on the Ω∗ invariant to impose the toroidal
magnetic field. It is therefore better than the "force-free" condition that imposes
j⃗p ∥ B⃗p and thus removes the decollimating force j⃗p × B⃗p. But on the other side,
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the "force-balance condition is cumbersome, as it requires additional simulations to
compute the proportionality coefficient between B⃗p · ∇⃗(RBφ) and BRBφ. Both give
more consistent results than the "free" condition that impose an artificial j⃗p × B⃗p col-
limating force (see Figure 7.13).

Fig. 5. from Magnetocentrifugally Driven Winds: Comparison of MHD Simulations with Theory
Ustyugova et al. 1999 ApJ 516 221 doi:10.1086/307093
https://dx.doi.org/10.1086/307093
© 1999. The
American Astronomical Society. All rights reserved. Printed
in U.S.A.

FIGURE 7.13: Figure 5 of Ustyugova et al., 1999. Artificial collimating
j⃗p × B⃗p force for a "free" condition at the boundary of a cartesian grid.

Ustyugova et al., 1999 found that simulations with a "free" boundary condition
experience a collapse and never reach a steady state:

“These "boundary" forces act such way that the flow never reaches a stationary state.
To check this fact and to be sure that this is not an effect of nonstationarity of our initial
configuration, we did simulations for cases that went to a stationary state with other outer
boundary conditions. After establishing stationarity, we substituted the outer boundary
conditions on Bφ to a "free" boundary condition. We observed that the stationary state was
destroyed for the reasons mentioned above.” Ustyugova et al., 1999 (section 4.1.1.).

They also observe that simulations with a "force-free" condition are much more
collimated than those with the "force-balance" condition, where there is no sup-
pressed collimation. Later, Zanni et al., 2007 remarked that "outflow" boundary con-
ditions similar to those of my simulations (e.g. gradient conservation) give results
very similar to "force-free" conditions.

Using a "free" outer boundary condition, Stute et al., 2008 saw a jet collapse in
their test simulations. Those were made on a cartesian grid (r; z) ∈ [0; 50]× [5; 100].
It is represented on Figure 7.14. Their setup is similar to that of Matsakos et al., 2008,
but truncated at a field line anchored at a certain rJ (white line in Figure 7.14). Inside
this field line, the initial values are taken as in the super-FM solution of Vlahakis
et al., 2000. Based on the seminal work of Blandford and Payne, 1982, it also fea-
tures refocusing towards the axis. Outside this field line, the initial values are also
taken from this solution, but with damped density and vertical speed. The boundary
conditions are set consistently to these initial conditions, without overspecification.

They observe a collapse similar to the one seen in my simulations, and also pro-
pose the collapse is triggered by the boundary conditions. Since their initial con-
ditions fill the computational domain with an already super-FM collimated flow,
the collapse happens immediately. At the z = 100 upper boundary, they use "free"
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FIGURE 7.14: Figure 1 of Stute et al., 2008. From left to right, snap-
shots of their test simulations at times 0; 2; 3; 6 × 2π Td where Td is
defined at R = 1. In the background is the density logarithm, and the

white line is the field line anchored at rJ .

boundary conditions. All quantities (ρ, P, v⃗ and B⃗) are constant, meaning their gra-
dient along u⃗z is zero. As they state, this affects the radial2 component of the Laplace
force:

Fr = −1
2

∂B2
φ

∂r
− B2

φ

r
− 1

2
∂B2

z
∂r

+ Bz
∂Br

∂z
(7.6)

their "free" boundary condition suppressing the last term. Since that term is posi-
tive, suppressing it creates an artificial collimation, leading to the collapse. They also
produce simulations for which Bφ is also damped in the outer region where they do
not see this collapse: in those, the z-pinching −B2

φ/r is greatly reduced.
To see whether these conclusions still hold in my setup, I ran two additional

simulations varying the boundary conditions at the outer edge:

• In the simulation Q3, I dropped the requirement of the toroidal Lorentz force
to be positive in the sub-Alfvénic wind.

• In the simulation Q4, I used a "free" condition on the toroidal magnetic field:
∂(RBφ)/∂R = 0.

They are also represented in Figure 7.12 As seen in the left column, the simulation
Q3 is very similar to the reference Q1, while the simulation Q4 is more collimated.
This is also evidenced by the values of θext

FM in Table 6.1. This evolution is consistent
with Stute et al., 2008; Ustyugova et al., 1999, the "free" condition adding an artificial
j⃗p × B⃗p at the outer boundary. As a consequence, the upper shock in simulation Q4
does not reach the outer boundary.

The right column of Figure 7.12 shows the evolution of Bφ/Bz over time at the
intersection between the field line anchored on the disk at r0 = 20 and z = 5000.

2As Stute et al., 2008 used a cylindrical grid, "radial" here refers to the cylindrically radial compo-
nent of the force, along u⃗r.
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The oscillations are present in both Q3 and Q4. They appear at similar times as in
the reference simulation Q1: t ∼ 1.75 × 106. As the shock does not reach the outer
boundary in Q4, this means that the presence of a shock is not required to trigger
the perturbations. They simply require a collimated jet, inconsistent boundary con-
ditions, and a sub-FM sheath where they can propagate.

Instabilites and forcing

Here, it is important to state that the jet radial oscillations are not caused by a phys-
ical instability. The perturbation does not arise from the integration of the MHD
equations but from inconsistent boundary conditions. A more appropriate term
would be forcing. It is akin to what happens when you compress a wooden plank
by putting two opposite forces at the extremities: if the forces are large enough, it
breaks. In addition, I searched for two-dimensional (axisymmetric) MHD instabili-
ties. I looked for instability criteria in all simulation outputs, and found out that they
were never verified in zones more than a few cells wide. This is described in Ap-
pendix A. Nevertheless, it is of great interest to study the upstream propagation of
the perturbation, to see if the jet perturbation caused by a physical instability could
perturb the disk in a manner similar to type-C LFQPOs.

7.2.4 Vertical propagation

Let us now focus on the top-down propagation of the perturbation. For this study
to be relevant to the QPO scenario, the perturbation, no matter its cause, should
propagate upstream, from high in the jet down to the disk. On Figure 7.11 it is clear
that the field line is perturbed at all altitudes, but it is unclear which ones oscillate
first, and how such a propagation can be accomplished.

Cross-correlation

At first, I investigated this anteriority problem using methods inspired from obser-
vations. Figure 7.11 is very reminiscent of multi-wavelength studies, used to extrap-
olate jet properties from timing analysis (see for instance Tetarenko et al., 2019, 2021).
Different wavelengths probing different jet regions, in this analogy each altitude of
Figure 7.11 would correspond to a different wavelength. The method the observers
used is called cross-correlation It is rather intuitive. To illustrate it, let us define a
quantity U , of which we know the time evolution at altitudes Z1 and Z2, called re-
spectively U1(t) and U2(t). These could also be light curves at wavelengths λ1 and
λ2. The correlation function is defined as

CF(τ) =
COV(U1(t),U2(t + τ))

σU1 σU2

(7.7)

For each function U , E(U ) is the mean and σU ≡
√

E[U 2]− (E[U ])2 the standard
deviation. Defining Uτ

2 by ∀ t, U τ
2 (t) = U2(t+ τ), the covariance of the two functions

is COV(U1(t),U2(t + τ)) = COV(U1,U τ
2 ) = E [(U1 − E[U1]) (U τ

2 − E[U τ
2 ])].

The correlation function quantifies how much U1(t) and U2(t + τ) are correlated.
If they are equal, CF(τ) = 1. If they are in phase opposition, CF(τ) = −1. If they
are uncorellated (a sine and a cosine for instance), CF(τ) = 0. The lag between
the two functions U1 and U2 is then simply defined as the value of τ for which this
correlation function is maximal. As light curves are not continuous but discrete
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FIGURE 7.15: Cross-correlations during the first oscillation of the ref-
erence simulation Q1. Top: Evolution of the toroidal magnetic field at
the intersection between the field line anchored at r0 = 20 and vari-
ous altitudes (Z ∈ {100; 1000; 3000; 4500}). Middle: Cross-correlation
functions between the neighbouring altitudes of the signals in the top
panel. Bottom: Cumulative lag as a function of the altitude. All times
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functions, several techniques have been developed to avoid binning issues (see for
instance Edelson and Krolik, 1988).

I used this method at first, and it provided encouraging results. I retrieved ap-
parent upstream propagation with reliable correlation factors, in the 0.7 to 0.9 range.
An example is shown on Figure 7.15. The top panel represents the variation of
the toroidal magnetic field Bφ at the intersection between the field line anchored at
r0 = 20 and several horizontals Z ∈ {100; 1000; 3000; 4500}. They are analogous to
the light curves of multi-wavelength observations. The middle panel represents the
correlation function between the neighbouring altitudes Z1 and Z2. I simply com-
pute equation 7.7 with U1 = Bφ(Z1) and U2 = Bφ(Z2). We see that the point where
the correlation function is maximal, where the lag is defined, always corresponds to
negative values of the delay τ. This means that the lower altitudes lag the higher
altitudes, hinting towards upstream propagation. The bottom panel shows the cu-
mulative lag, taking Z = 100 close to the disk as the reference point. We retrieve
the negative delays (i.e. upstream propagation). This plot also shows a propagation
speed increasing with altitude, as the lag drops with altitude.

The further apart two altitudes Z1 and Z2 are, the easier it is to compute the
average propagation velocity between them. This is simply because further apart
altitudes means higher lag. But the further apart the altitudes, the more different
the two signals: the wave may be refracted or reflected along the way. This can
make the cross-correlation study inconclusive. But here, I could only use the cross-
correlation between relatively distant altitudes. Indeed, while for multi-wavelength
observations, the limiting factor is the number of light curves, for me it is the num-
ber of outputs during the oscillation. The oscillation lasting only one hundredth of
the simulation duration, this method could only calculate time lags between distant
altitudes, i.e. between only four altitudes between the simulations. Moreover, com-
puting lags between far apart altitudes means averaging the propagation speed over
a large distance. For all these reasons, cross-correlation is not adapted to measure
varying propagation speeds along the jet.

Space-time diagram

Thus, I relied on another method, more common to the time-dependence analysis
of numerical simulations: the use of space-time diagrams. Figure 7.16 is such a
diagram. It represents the evolution of the perturbation in both space and time. The
abscissa is time, starting before the perturbation at tb = 1.8317 × 106, and stopping
after the perturbation has reached the disk. The ordinate is the altitude of the field
line anchored at r0 = 40 ≳ r0,FM(tb). The background is the relative variation of the
squared toroidal magnetic field, for each altitude and along the field line anchored
at r0 = 40. This means that for each point of coordinates (t, z) is plotted:

δB2
φ

B2
φ

=
|B2

φ(r0, t)− B2
φ(r0, tb)|

B2
φ(r0, tb)

(7.8)

Here, we can see an apparent upstream propagation (negative slope), from the
regions close to the outer boundary (z > 5000) down to the disk (z ≳ 0). At each
altitude, I define the start of the oscillation as a variation of squared toroidal field of
more than 5%, first colored contour in Figure 7.18. Looking closely at the diagram,
we can see two propagation zones, above and below z ≃ 3000. As seen in Figure
7.10, this altitude corresponds to the intersection between the lower shock with the
jet/wind interface.
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FIGURE 7.16: Space-time diagram of the relative variation of B2
φ for

the first oscillation along the field line anchored at r0 = 40. For each
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φ compared to its value at the start of
the oscillation, tb = 1.8317 × 106 (top left panel of Figure 7.10). It
is computed at the point of altitude z on the field line anchored at

r0 = 40.
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What causes this division ? The study of space-time diagrams with smaller
thresholds show that small perturbations coming from the outer boundary trigger
stronger perturbations at the shock. But let us focus on this diagram. The perturba-
tion takes a time Tu

P = 3000 to reach the shock from the outer boundary, and a time
Tl

P = 1800 to reach the disk from the shock. Here the exponents u and l respectively
stand for upper (z ≥ 3000, downstream of the shock) and lower (z ≤ 3000, upstream
of the shock).

These timescales should be compared to the timescales of critical waves, that
would propagate along the field line anchored at r0 = 40, here named Lr0 . The
timescales of such waves are:

TC(r0) =
∫

Lr0

dz
VC − vp

=
∫

Lr0∩(z≤3000)

dz
VC − vp︸ ︷︷ ︸

Tl
C

+
∫

Lr0∩(z≥3000)

dz
VC − vp︸ ︷︷ ︸

Tu
C

(7.9)

with the critical speed Vc being either the fast-magnetosonic speed VFM or the
Alfvén speed VA. In both zones, the timescales of critical waves are smaller than
that of the perturbation:

• Between the boundary and the shock, Tu
FM = 1603 < Tu

A = 2006 < Tu
P = 3000.

• Between the shock and the disk, Tl
FM = 845 < Tl

A = 1137 < Tu
P = 1800.

This order is expected. As the field line anchored at r0 = 40 is located in the
sub-FM and sub-Alfvénic wind, no perturbation can propagate through it at speeds
faster than the critical speeds.

The perturbation thus takes a time Tu+l
P = Tu

P + Tl
P = 4800 to propagate from the

outer boundary down into the disk. The perturbation is born at the intersection be-
tween the field line anchored at r0 = 40 and the outer boundary R = Rext. This point
is also where the field line is the most likely to be disturbed by a fast-magnetosonic
wave, being the closest to the FM surface: As r0 = 40 ≳ 39 = r0,FM(tb), that point is
located at the interface between the inner super-FM dense flow and the outer sub-
FM sparse flow.

The fact that the perturbation leads to waves emerging from the intersection be-
tween the interface and the outer boundary was confirmed by studying space-time
diagrams performed on more inner field lines, well inside the jet. In those, the per-
turbations are weaker, happen later and do not have a clear sense of propagation.

The rising phase of the oscillations is the upstream propagation of a perturba-
tion in the sub-FM zone that surrounds the super-FM jet and cocoon. But all per-
turbations do not reach the disk. Refraction occurs, mostly close to the disk. Figure
7.17 represents the evolution of the fast-magnetosonic speed VFM with the altitude z
along the magnetic field line anchored in the disk at r0 = 40.

As the perturbation propagates downwards, the fast-magnetosonic speed in-
creases. At z ∼ 100 there is a change of slope in VFM. As the pulsation of the
perturbation ω = VFMk is constant, its wavenumber k = 2π/λ decreases suddenly.
Therefore, this abrupt jump in magnetosonic speed acts as a low-pass filter. Only the
perturbations of lowest wavelengths λ can pass through, and then reach the disk, the
others being reflected back.

Moreover, because of the jet radial stratification, at a fixed altitude VFM decreases
with the cylindrical radius r, which induces a refraction of the waves towards the
interface. This provides the conditions for a perturbed sheath lying just outside the
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fast-magnetosonic interface. As a consequence, in the disk everything happens as if
all the perturbation arrives in rJ .

As a conclusion, the information emanating from the jet collapses can propagate
from the outer boundary down to to the disk, at r0,FM ≃ 39 and rJ = 10.
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FIGURE 7.17: Variation of the FM speed with the altitude along the
field line anchored in r0 = 40, at a time tb before the oscillation.

7.2.5 Radial propagation

I then used the same method to study radial propagation. This is interesting to see if
the perturbation can reach the inner disk regions (r ≳ 1) emitting the harder photons.
This could also show if the scenario is compatible with the hard lags observed in
QPOs (see Figure 7.4), meaning that the information first arrives in the outer disk
regions (r0 ≳ rJ) and only later in the inner regions (r0 ≳ 1).

Figure 7.18 is a similar space-time diagram, but here the ordinate is the anchoring
radius of the field line. The fixed value is the altitude on the field line, z = 1. At each
time t, I plot the relative variation of the squared toroidal magnetic field at z = 1 for
all field lines anchored in the disk at r0 ∈ [1; 40].

We see that the propagation is clearly inwards. The perturbation first hits the disk
at r0 ≃ 40, and is then detected at smaller radii. However, this radial propagation is
too quick to be resolved: the fast-magnetosonic speed being around unity at rJ , the
timescale of the radial propagation would be smaller than 10 Td. This requires a time
resolution too high for the available outputs. The timescale seen in Figure 7.18 is the
rising time of the outburst, roughly 5× 103. Note that this rising time is roughly that
of the downwards propagation Tu+l

P = 4800.
As it did with distance to the outer boundary, the perturbation fades as the radius

gets smaller. This is especially visible in Figure 7.19 that follows the square rooted
relative evolution with the radius of the squared toroidal magnetic field, again at
altitude z = 1. This distribution is shown at different times, from the beginning
of the perturbation (t = 1.8322 × 106) to near its apex (t = 1.8409 × 106). It shows
the strong increase of the perturbation with time, but also a strong decrease with the
radius. The perturbation is quite small in the transition zone (r0 ∈ [rJ = 10; rS = 20]),
being always lower than 20%.
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How can we translate this variation in terms of luminosity ? As the jet is cold and
the magnetic field is mainly toroidal, it can be related to a variation of mass loss rate:
Ṁ ∝ BzBφ. Then, for simplicity, I relate the mass loss rate to luminosity: Ṁ ∝ Lν.
This gives √

δB2
φ

B2
φ

≃ δṀ
Ṁ

∼ δLν

Lν
(7.10)
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This means that those perturbations would only have a small impact on the light
curve emitted from the black hole accretion disk. It is consistent with the QPOs, as
those are an epiphenomenon with a fractional rms that is less than 20% (see Fig-
ure 7.3). Note that here in ideal MHD there is no dissipation, and the perturbation
decrease in only due do upwards refraction. In a more realistic setup, such dissipa-
tion might reduce the amplitude. But as accretion and ejection are interdependent
(see Figure 1.14), the variation in jet mass flux might also foster additional accre-
tion, leading to a perturbation of greater intensity. Thus it too early to estimate the
strength of the perturbation, especially as its origin is unphysical.

Moreover, this perturbation in this simulation is consistent with the consistently
hard lag of lower frequency QPOs (see Figure 7.4). In my simulation, the outer
regions that produce softer photons are hit first, while it is only at the later stages
the inner regions that produce harder photons experience a visible perturbation.
However, such a pertubation propagation does not explain the difference between
high and low inclination sources for the QPOs of highest frequencies (frequencies
over 2 Hz in Figure 7.4).

7.3 Summary

In this chapter, I have shown two-dimensional jet simulations provide useful in-
sights on the QPO scenario based on jet instability of Ferreira et al., 2022. It features
the upstream propagation of a perturbation from the asymptotic jet regions down
to the disk. This shows the true possibility to get a feedback along the interface be-
tween a super-FM jet and the ambient medium, within a sub-FM sheath. The waves
are channeled through this sheath, arrive on the disk (in the zone between JED and
SAD, r0 ≳ 10) then propagate inwards. They produce variations of the toroidal mag-
netic field leading to torque and thus mass flux variations. These variations weaken
during their inwards propagation, because of refractions towards the jet.

However, these perturbations were not created by any MHD instability, but by
boundary conditions inconsistent with a collimated jet. Without this inconsistency,
the 2D truncated jet simulations are steady, as shown in chapter 6. The instabilities
that could create those collapses are three-dimensional, as they rely on variations in
the toroidal direction. For instance, these instabilities could be:

• The "kink" m = 1 mode of the Bennett pinch instability (Bromberg and Tchekhovskoy,
2016; Tchekhovskoy and Bromberg, 2016).

• The "recollimation" instability (Gourgouliatos and Komissarov, 2018; Matsumoto,
Komissarov, and Gourgouliatos, 2020).

In order to investigate the stability in three dimensions of collimated jets and
recollimation shocks, but also to have a consistent source for the jet perturbations,
Claudio Zanni and I developed a numerical setup to produce 3D jet simulations.
This setup is presented in Appendix C.
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“Je laisse Sisyphe au bas de la montagne ! On retrouve toujours son fardeau. Mais Sisyphe
enseigne la fidélité supérieure qui nie les dieux et soulève les rochers. Lui aussi juge que tout

est bien. Cet univers désormais sans maître ne lui paraît ni stérile, ni futile. Chacun des
grains de cette pierre, chaque éclat minéral de cette montagne pleine de nuit, à lui seul forme

un monde. La lutte elle-même vers les sommets suffit à remplir un cœur d’homme. Il faut
imaginer Sisyphe heureux.”

“I’m leaving Sisyphus at the bottom of the mountain ! We always find our burden. But
Sisyphus teaches the higher fidelity that denies the gods and lifts the rocks. He too believes
that all is well. This universe, now masterless, seems to him neither sterile nor futile. Each
grain of this stone, each mineral shard of this mountain full of night, alone forms a world.

The struggle to reach the summit is enough to fill a man’s heart. We have to imagine
Sisyphus happy.”

Albert Camus
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Conclusions

Dans cette thèse, j’ai présenté plusieurs simulations "globales" 2.5D de jets. Ces simulations
ont été réalisées à des échelles de temps sans précédent, grâce à un algorithme d’accélération
spécial (voir la section 3.1.5). Les jets simulés ont été éjectés à partir d’une condition limite
cohérente avec le modèle Jet-Emitting Disk (JED), qui permet le lancement, à partir d’un
disque d’accrétion magnétisé, d’un jet puissant traversant toutes les surfaces critiques. Dans
les chapitres 4 et 5, ce JED a été étendu à l’ensemble de la frontière inférieure, tandis que dans
les chapitres 6 et 7, il a été limité aux régions les plus internes du disque.

Ces travaux ont confirmé l’existence de chocs de recollimation stationnaires. Ceux-ci
avaient été prédits par des études analytiques, mais n’avaient jamais été reproduits dans des
simulations de jets "globaux". Leur présence dans les simulations où le JED a une taille
finie (chapitre 6) montre qu’ils ne sont pas un biais de l’auto-similarité, mais une carac-
téristique des jets magnétisés auto-collimatés. Ces chocs de recollimation ne fournissent pas
la déconnexion attendue entre le circuit électrique accélérateur connecté au disque et le cir-
cuit asymptotique définissant la forme asymptotique du jet. Il existe toujours une nappe de
courant dans le cocon entourant le jet qui contourne le choc et relie les zones d’accélération
et de propagation. L’étude paramétrique a montré un accord qualitatif avec la solution au-
tosimilaire pour les jets autosimilaires (chapitre 5) et tronqués (section 6.4).

Enfin, des effondrements quasi-périodiques du jet se sont produits dans certaines sim-
ulations (chapitre 7). Ces effondrements pourraient être un mécanisme concret pour créer
des oscillations quasi-périodiques à basse fréquence (LFQPO) en tant que réponse du disque
aux instabilités du jet. Mes simulations montrent qu’une perturbation dans le jet peut se
propager sur le disque, à condition qu’il y ait un mécanisme physique créant la perturbation.

Perspectives

Les simulations 3D de jets collimatés sont connues pour être sujettes à diverses instabil-
ités, telles que l’instabilité "kink" (Bromberg and Tchekhovskoy, 2016; Tchekhovskoy and
Bromberg, 2016) ou l’instabilité de "recollimation" (Gourgouliatos and Komissarov, 2018;
Matsumoto, Komissarov, and Gourgouliatos, 2020). Ces instabilités pourraient être le mé-
canisme de départ des LFQPOs susmentionnés. Dans ce but, et aussi pour explorer la sta-
bilité générale des jets à grande échelle et les chocs de recollimation qu’ils contiennent, j’ai
développé avec Claudio Zanni une configuration numérique pour propager les simulations
2.5D en 3D. Afin d’atteindre des temps de calcul raisonnables, nous avons codé plusieurs
nouvelles méthodes numériques dans PLUTO, y compris la version de transport contraint
de la méthode de la moyenne des anneaux (Zhang et al., 2019). Cela me permettra de réaliser
des simulations de jets en 3D.

Les simulations de cette thèse sont censées modéliser un écoulement émis par un disque,
à la Blandford & Payne. En conséquence, les profils sur la frontière centrale de l’objet ont été
maintenus très simples, et choisis afin de minimiser l’influence de la colonne axiale. Cepen-
dant, il est clair que même une colonne axiale avec un faible taux de perte de masse a un
impact énorme sur la collimation du jet de disque environnant. Par conséquent, les con-
ditions d’éjection de l’objet central doivent être affinées pour mieux modéliser l’éjection et
l’accélération de la colonne vertébrale. Des conditions plus réalistes pourraient être ap-
pliquées en mettant en place une éjection subsonique près de l’axe.

Dans le cas d’un jet de trou noir comme dans celui d’une étoile, il serait intéressant de
modéliser correctement le jet émis par l’objet central avec une configuration de champ magné-
tique plus réaliste. De plus en plus d’observations sont interprétées comme des conséquences
de la juxtaposition d’une colonne interne et d’un jet de disque externe. Barnier et al., 2022
interprète les observations radio de GX 339-4 comme le mélange d’une épine de Blandford
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& Znajek interne avec un jet de Blandford & Payne externe. Récemment, l’interférométrie
radio a fourni des images détaillées des régions de lancement des jets de M87. Par exemple,
les observations de Lu et al., 2023 ont montré qu’autour de la colonne axiale se trouve un
flux externe qui n’est pas ancré dans le trou noir central, mais dans le disque d’accrétion
qui l’entoure. Dans le cas des jets protostellaires, ceux-ci devraient être le mélange d’un jet
stellaire et d’un vent de disque en forme d’oignon (Bacciotti et al., 2000; Lavalley-Fouquet,
Cabrit, and Dougados, 2000).

En particulier, il serait intéressant d’étudier le degré plus élevé de collimation du jet pour
un objet central à rotation plus rapide, comme montré par mes simulations. Cela pourrait
expliquer pourquoi les étoiles à neutrons sont aberrantes dans la corrélation radio/rayons X,
étant donné que les étoiles à neutrons à rotation lente émettent moins en radio que les AGN
à rotation rapide d’une puissance en X similaire. Il serait très intéressant de produire des
simulations de jet GRMHD à grande échelle pour les rotateurs rapides et lents, et de créer des
cartes de flux synthétiques du jet en rayons radio/X/γ, en commençant relativement près de
l’objet central (étoile à neutrons ou trou noir) jusqu’à la zone asymptotique, au-delà du rayon
de Bondi. Ceci pourrait également être intéressant pour les observations Gravity/ngEHT ou
X-ray des AGNs.

De telles cartes synthétiques issues de simulations à grande échelle de jets AGN colli-
matés permettraient également de prédire la variabilité observée du flux à plusieurs longueurs
d’onde. Certains travaux tels que Clairfontaine et al., 2021; Clairfontaine, Meliani, and
Zech, 2022 expliquent les éruptions de jets d’AGN par l’accélération de particules sur des
chocs de recollimation permanents. Lorsque des noeuds en mouvement passent à travers
un noeud stationnaire, une éruption est détectée. Cet éruption est observée à la fois dans
le jet et dans les noeuds mobiles. Les auteurs combinent des simulations hydrodynamiques
de jets pré-collimatés avec le transfert radiatif. Dans un jet précollimaté et en surpression
avec des chocs de recollimation permanents similaires aux miens agissant comme des noeuds
permanents, ils lancent des éjectas du bas vers le haut, à une vitesse supérieure à celle de
l’écoulement. Ces éjecta modèlent les noeuds en mouvement. Lorsque ces éjectas en mou-
vement traversent un choc de recollimation permanent, les auteurs observent une éruption
dans leurs courbes de lumière et leurs images synthétiques qui permet de retrouver qualita-
tivement les propriétés des éruptions des blazars à haute énergie.

Je pourrais utiliser des simulations de plateforme MHD ou GRMHD de jets autocolli-
matés à grande échelle et de transfert radiatif pour sonder un tel scénario afin de trouver
des structures de jet fiables. Plutôt que d’injecter des chocs ad hoc dans le jet, le cadre de la
MHD me permettra de lancer, par exemple, des inversions de polarité dans le jet (Giannios
and Uzdensky, 2019), en sondant comment ces régions peuvent interagir avec les structures
de recollimation pour fournir une reconnexion magnétique. L’éruption potentielle induite
par une telle configuration doit être comparée à la dissipation sans doute plus intrinsèque
résultant des instabilités de kink dans la zone de recollimation (Bromberg and Tchekhovskoy,
2016; Tchekhovskoy and Bromberg, 2016). Ceci est particulièrement intéressant dans le con-
texte du jet M87, dont le choc de recollimation au niveau du nœud HST-1 est une source
d’éruption au TeV (Giannios, Uzdensky, and Begelman, 2010).

Ces méthodes pourraient également être étendues aux jets protostellaires. Des noeuds
périodiques sont observés dans de nombreux jets protostellaires. Cette périodicité pourrait
être due à une éjection périodique de l’étoile, créant des chocs périodiques le long de l’axe du
jet stellaire. C’est ce que préconisent la remarquable symétrie jet/contre-jet et les simulations
hydrodynamiques simples de Tabone et al., 2018. Il serait intéressant de réaliser des simula-
tions MHD d’un jet stellaire variable entouré d’un vent de disque stationnaire, et de produire
des images synthétiques de ces simulations. Une façon simple de commencer cette investi-
gation serait de lancer une simulation dans laquelle la vitesse d’éjection de l’objet central est
temporellement périodique, et d’étudier comment cette variabilité affecte le jet environnant.
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8.1 Summary of the main results

In this thesis, I presented various 2.5D "global" simulations of jets. These simula-
tions were performed on scales unprecedented in time, thanks to a special accelera-
tion algorithm (see section 3.1.5). The simulated jets were ejected from a boundary
condition consistent with the Jet-Emitting Disk (JED) model, that enables the launch-
ing from a magnetized accretion disk of a powerful jet crossing all critical surfaces.
In chapters 4 and 5 this JED was extended on the whole lower boundary, while in
chapters 6 and 7 it was limited to innermost disk regions.

These works confirmed the existence of steady recollimation shocks. Those were
predicted by analytical studies, but had never been reproduced in "global" jet simu-
lations. Their presence in simulations were the JED has a finite size (chapter 6) shows
they are not a bias of self-similarity, but a feature of self-collimated magnetized jets.
These recollimation shocks do not provide the expected disconnection between the
accelerating electric circuit connected to the disk and the asymptotic circuit setting
the asymptotic shape of the jet. There is always a current sheet in the cocoon sur-
rounding the jet that bypasses the shock and links the acceleration and propagation
zones. The parameteric study showed qualitative agreement with the self-similar
solution for both the self-similar (chapter 5) and truncated (section 6.4) jets.

A second strong result is the non-negligible influence of the central object (black
hole or star). Even when a vast majority of the matter is emitted from the disk, the
spine ejected from the central object has a strong influence on the collimation of the
jet emitted from the disk. It may explain why my simulations showed a relative
apathy when exploring the parameter space when compared to the self-similar so-
lutions where such a spine is missing. This spine can be a Blandford & Znajek flow
emanating from the surroundings of black hole or a stellar wind. My simulations
show that even if it is weak, it greatly diminishes the altitude of the recollimation
shocks by increasing the jet collimation.

Finally, quasi-periodic jet collapses occurred in specific simulations (chapter 7).
These collapses could be a concrete mechanism to create Low-Frequency Quasi-
Periodic Oscillations (LFQPOs) as the disk response to instabilities in the jet. My
simulations show that a perturbation in the jet can propagate onto the disk, pro-
vided there is a physical mechanism creating the perturbation.

8.2 Perspectives

The work described in chapters 4 and 5 has lead to a publication (Jannaud, Zanni,
and Ferreira, 2023, reproduced in Appendix D). The results shown in chapters 6 and
7 will each lead to the submission of a paper. However, the subject of jet collimation
is very rich, and there are many pending questions. Below are a few perspectives,
sorted by stage of development. For the first point, the setup has been done and
what remains is to run and analyze the simulations. For the second point, a few test
simulations and calculations were performed. The third point is a long-term plan,
still at the discussion stage.

8.2.1 3D simulations: collimation stability

3D simulations of collimated jets are known to be prone to various instabilities,
such as the kink instability (Bromberg and Tchekhovskoy, 2016; Tchekhovskoy and
Bromberg, 2016) or the "recollimation" instability (Gourgouliatos and Komissarov,
2018; Matsumoto, Komissarov, and Gourgouliatos, 2020). Those instabilities could
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be the starting mechanism of the aforementioned LFQPOs. For this purpose, and
also to explore the general stability of the large-scale jets and the recollimation shocks
their contain, I developed with Claudio Zanni a numerical setup to propagate 2.5D
simulations into 3D. In order to reach reasonable computing times, we have coded
several new numerical methods into PLUTO, including the constrained transport
version of the ring-average method (Zhang et al., 2019). This will enable me to run
3D jet simulations. I do not expand on this topic here as this is the subject of Ap-
pendix C.

8.2.2 Towards a realistic ejection from the central object

The simulations of this thesis are supposed to model a disk-emitted outflow, à la
Blandford & Payne. As a consequence, the profiles on the central object boundary
were kept very simple, and chosen in order to minimize the influence of the axial
spine. However, it is clear that even an axial spine with a small mass loss rate has
huge impact on the collimation of the surrounding disk jet. Therefore, the ejection
conditions from the central object should be refined to better model the ejection and
acceleration of the spine. More realistic conditions could be applied by setting a
subsonic ejection near the axis. In the simulation presented in this thesis, the ini-
tial acceleration of the spine is not taken into account, as at launch vp > cS. This
approcimation could be relaxed.

More realistic magnetic field and rotation profiles on the central object

It would be also interesting to explore different magnetic field or rotation configu-
rations near the axis. Let us do a few back of the envelope calculations to see what
profiles could be expected from astrophysical objects.

In the case of a star, the innermost disk radius Rd is inevitably smaller than the
corotation radius rco. The ratio Rd = rco/4 is often assumed for T Tauri stars (see
e.g. Bessolaz et al., 2008), which lead to Ω∗a /ΩKd = 1/8. Such simulations were
already performed (see section 6.4.1). However, one should also modify the vertical
magnetic field profile. Assuming continuity of the magnetic field at Rd and a dipolar
magnetic field, Bd = Ba(Rd/R∗)−3, where Bd is the vertical magnetic field in the disk
(R = Rd; θ = π/2), Ba is the vertical magnetic field on the axis (R = Rd; θ = 0) and
R∗ is the stellar radius. Assuming R∗ = Rd/2 this leads to Ba = 8Bd. This is not the
case in my simulations, that have Ba ≃ Bd.

The case of a black hole is a bit more complicated. The innermost disk radius Rd
corresponds to the Innermost Stable Circular Orbit (ISCO). The value of rISCO, and
thus the rotation at that point (ΩISCO) highly depends on the black hole spin param-
eter a (see e.g. Bardeen, Press, and Teukolsky, 1972). The event horizon is located at
radius rH = rg(1+

√
1 − a2), and it rotates at speed ΩH = ac/(2rH). Assuming a Ke-

plerian disk, differences in the spin parameter only induce relatively small variations
on the rotation profile. Naturally, a Schwarzchild black hole (a = 0) is non-rotating
(ΩH = 0). And at maximum (a = amax ≃ 3/4) we only have ΩH/ΩISCO = 3/2.
Both these extreme cases are in the same ballpark as my simulations of section 6.4.1.
But as for a star, it is the vertical magnetic field whose profile should be modified.
Simple extrapolations from the fits of Narayan et al., 2021 make us lean towards a
magnetic field on the axis Ba much higher than that in the disk Bd, with Ba ≫ 100Bd
whatever the spin parameter a. This would increase the magnetic pressure in the
inner regions and thus lower the collimation.
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FIGURE 8.1: Radial layering of the jets. Left: Launching region of the
M87 jet (Lu et al., 2023). VLBI radio observations (GMVA, ALMA,
GLT). Right: Launching region of the DG Tauri B jet (de Valon et al.,

2020). Radio observations in CO (ALMA)

In both cases it would be interesting to properly model the jet emitted by the cen-
tral object with a more realistic magnetic field configuration on the R = Rd boundary.
More and more observations are interpreted as consequences of the juxtaposition of
an inner axial spine and an outer disk jet. Barnier et al., 2022 interpret the radio ob-
servations of GX 339-4 as the mixing of an inner Blandford & Znajek spine with an
outer Blandford & Payne jet. And recently, radio interferometry provided detailed
images of the jet launching regions of M87. For instance, the observations of Lu et
al., 2023 showed that surrounding the axial spine is an outer flow not anchored in
the central black hole, but in the surrounding accretion disk (see Figure 8.1). In the
case of protostellar jets, those should be the mixing of a stellar jet and an onion-like
disk wind (Bacciotti et al., 2000; Lavalley-Fouquet, Cabrit, and Dougados, 2000).

Black hole and neutron star radio/Xray correlations

In particular, it would be interesting to investigate the higher degree of jet colli-
mation for a faster-spinning central object shown by my simulations. This hints
towards an explanation as to why neutron stars are outliers in the Radio/X-ray cor-
relation, as slow-rotating neutron stars emit less in radio than fast-rotating AGNs
of similar X-ray power (see the top panel of Figure 1.7, from Coriat et al., 2011). It
would be of great interest to produce large-scale GRMHD jet simulations for both
fast and slow rotators, and to create synthetic flux maps of the jet in radio/X-ray/γ-
ray, starting from relatively close to the central object (neutron star or black hole)
until the asymptotic zone, beyond the Bondi radius. This could also be of interest
for Gravity/ngEHT or X-ray observations of AGNs.

This involves tools different from those I used during this thesis (special or gen-
eral MHD simulations) but is also a natural next step. Verifying if the asymptotic
behavior of the jet varies a lot with the central object may be a way to understand
the differences between black hole and neutron star jets.

8.2.3 Time-dependent features in jets

AGN jet flares

Such synthetic maps from large-scale simulations of collimated AGN jets would also
help predict observed multi-wavelength flux variability. Some works such as Clair-
fontaine et al., 2021; Clairfontaine, Meliani, and Zech, 2022 explain AGN jet flares via
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particle acceleration on standing recollimation shocks. Figure 8.2 shows radio obser-
vations of the blazar 3C 273. In the top panel are the positions of the blazar knots,
either quasi-stationary (k32 and k35) or drifiting away from the core. We see that
when the moving knots pass through the standing k32 knot, a flare is detected (ver-
tical lines). This flaring is seen in both the jet (middle panel) and the moving knots
(bottom panel). The authors combine hydrodynamic simulations of pre-collimated
jets with radiative transfer. In a pre-collimated and overpressured jet with standing
recollimation shocks similar to mine acting as the standing knots, they launch ejecta
from the bottom up, at a speed higher than that of the flow. These ejecta model the
moving knots. When these moving ejecta cross a standing recollimation shock, the
authors observe a flare in their light curves and synthetic images that qualitatively
retrieves the properties of the high-energy blazar flares.
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FIGURE 8.2: Radio observations of the blazar 3C 273 (Clairfontaine
et al., 2021). Top: Distance of the knots to the core. Straight lines
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and k35. Middle: Radio jet light curve. Bottom: Flux of the radio core
and moving knots. The vertical lines show the most likely time for
when the moving knots pass through the quasi-stationary k35 knot

(purple dashed line).

One could use MHD or GRMHD platform simulations of large-scale self-collimated
jets and radiative transfer to probe such a scenario for reliable jet structures. Rather
than injecting had hoc shocks into the jet, the framework of MHD will enable me to
launch, for example, polarity reversals into the jet (Giannios and Uzdensky, 2019),
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probing how these regions may interact with recollimation structures to provide
magnetic reconnection. The potential flaring induced by such a setup should be
compared to the arguably more intrinsic dissipation resulting from kink instabilities
in the recollimation zone (Bromberg and Tchekhovskoy, 2016; Tchekhovskoy and
Bromberg, 2016). This is particularly interesting in the context of the M87 jet, whose
recollimation shock at the HST-1 knot is source of TeV flaring (Giannios, Uzdensky,
and Begelman, 2010).

Periodic knots in protostellar jets

These methods could also be expanded to protostellar jets. Periodic knotty features
are seen in many protostellar jets, such as HH212 (see Figure 1.9) or the jet from the
source C7 in the protostellar cluster Serpens South (see Figure 8.3 below). This pe-
riodicity could be caused vy periodic ejection from the star, creating periodic bow
shocks along the stellar jet axis. This is advocated by the remarkable jet/counter-
jet symmetry, and by the simple hydrodynamic simulations of Tabone et al., 2018.
It would be interesting to perform MHD simulations of variable a stellar jet sur-
rounded by a steady disk wind, and to produce synthetic images of these simula-
tions. One simple way to start this investigation would be to launch a simulation in
which the ejection velocity from the central object is time-periodic, and study how
this variability affects the surrounding jet.
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2.5D MHD instabilities
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Accross the simulations described in this manuscript I saw two outflow behav-
iors that could be associated to plasma instabilities:

• The standing oscillations seen at the spine-jet interface of the self-similar sim-
ulation of reference K2 (see sections 4.2.3 and 4.5).

• The jet oscillations seen in the time-dependant simulations of chapter 7.

In this Appendix I will say a few words on MHD instabilities to explain why
they are not the cause of these oscillations. I will only consider instabilities that can
develop in axisymmetric ideal MHD plasmas. For exhaustive overviews the curious
reader is referred to Chandrasekhar, 1961 or Freidberg, 1982.

A.1 Axisymmetric instability criteria

Let us consider a confined column of magnetized plasma. We saw in section 2.6.6
that the confinement can be created via a toroidal magnetic field and axial current
(z-pinch); or via an axial magnetic field and toroidal current (θ-pinch). In addition,
the screw-pinch is a combination of both z-pinch and θ-pinch.

In this section I will not make any demonstration1, only show a few results. I
assume the column to be of constant velocity, without any rotation or gravity. Those
are strong assumptions, but reasonable far away from the disk. While the θ-pinch
has be shown to remain stable, both the pure z-pinch and the general screw-pinch
are susceptible to some ideal MHD instabilities.

1They can be found in Kadomtsev, 1966 or in section 9.4 of Goedbloed and Poedts, 2004.
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A.1.1 Z-pinch

In the z-pinch configuration the magnetic field is only toroidal. Only considering
the m = 0 mode because of axisymmetry, the stability condition is

−d ln P
d ln r

< 2γ +
8πP
B2 (A.1)

where γ is the adiabaticity index and B = Bφ is the toroidal magnetic field.
Highly magnetized jets (8πP ≪ B2) are more prone to this instability. It is called

the "sausage" instability, characterized by regular oscillations along the axis (see Fig-
ure A.1). This is a a sufficient and necessary condition for stability, but it only works
in the case of a pure z-pinch.

FIGURE A.1: Mechanism of the m = 0 sausage instability in a pure
z-pinch configuration (Freidberg, 1982).

A.1.2 Screw-pinch

In the screw-pinch configuration there is both an axial and a toroidal component of
the magnetic field. This case is more complex, and here I will only deal with the
Suydam, 1958 criterion for localized interchange. It relies on the pitch of the plasma
column P , defined along a magnetic field line as

P =
Bφ

rBz
=

dφ
dz

(A.2)

The stability condition is then

8
dP
dr

+ rB2
z

(
1
P

dP
dr

)2

> 0 (A.3)

A negative pressure gradient combined with a small magnetic shear dP/dr drives
the instability, while a strong axial magnetic field stabilizes the flow. This is only a
sufficient condition for stability: if equation A.3 is verified the flow stable, but if it is
not verified it is not necessarily unstable.
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A.2 Application to the simulations

I searched for both instabilities in the simulation K2. How applicable are the criteria ?
We see on Figure 4.18 that the centrifugal force is negligible compared to other forces
at the spine-jet interface, tus rotation is negligible. The Suydam criterion (equation
A.3) is better suited than the Kadomtsev criterion (equation A.1): As −Bφ/Bz ∼ 2 in
the spine and 4 in the jet we are not in a pure z-pinch configuration. For this reason,
on Figure A.2 I only show the evolution of the Suydam criterion along several hor-
izontals. We see that this criterion remains relatively small, for both negative and
positive values. In particular, it is positive at the spine-jet interface, located at r ≃ 8
for z = 1200. Thus, this instability is not the cause of the standing oscillations. Note
that even inside the spine, the invalidity of the criterion does not mean the flow is
unstable, especially as this zone is only a few cells wide.

FIGURE A.2: Evolution of the Suydam stability criterion (equation
A.3) for the self-similar simulation of reference K2, along various hor-

izontals (left) or only z = 1200 (right).

I also looked for the satisfaction of the criteria during the oscillations of the time-
dependant simulations of chapter 7. I adopted a straightforward technique: Produce
videos of the oscillations where the cells appear in one color if the criterion is sat-
isfied, and in another color if it is unsatisfied. I saw that the stability criterion was
never unsatisfied in zones larger than one or two cells. As a consequence, these
instabilities is not the cause of the jet collapses.

A.3 Conclusion

In this Appendix, we saw that the described MHD instabilities are not the cause of
the standing or moving oscillations present in my simulations. This an additionnal
argument in favor of the causes given in the manuscript:

• For the simulation K2, a standing imbalance at the interface between the inner
spine and the outer jet (see section 4.5).

• For the time-dependant truncated simulations of chapter 7, a perturbation cre-
ated by the boundary condition at the outer edge of the simulation domain
(see section 7.2.3).
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B.1 Context

In this appendix I describe the process performed to get to two parameters of the
truncated simulation of reference of chapter 6:

• The size of the transition region [rJ ; rS]. This region is located between the
inner ejecting JED [Rd; rJ ], and the outer SAD (r > rS) where the ejection has
vanished. I play on the size of this regions by varying rS, while rJ is fixed to
10.

• The parameter T , quantifying the characteristic time of reduction of the toroidal
magnetic field beyond rS (equation 6.9).

As a reminder, in the SAD (r > rS) is diminished at each timestep via

Bφ(r, t + dt) = Bφ(r, t)e−
dt

T TK (r) (6.9)

where TK(r) =
√

r3/(GM) is the local keplerian timescale.
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B.2 Tests

To study the impact of these two parameters on jet collimation and toroidal magnetic
field, I ran the tests R1, R2 and R3 described in table B.1. Those simulations were
then analyzed by a first year Masters student, Victorien Mouton, in the context of
his two-month internship. In table B.1 is also the simulation Q1, reference of chapter
7, without the reduction of Bφ, and thus T is not defined (ND).

Name rS T tend

R1 12 10−4 1.71 × 106

R2 15 10−4 4.73 × 104

R3 20 10−4 4.29 × 104

Q1 20 ND 3.20 × 106

TABLE B.1: Simulations performed in the search of optimal rS and T .

On Figure B.1 I show the radial distribution of the electric current −rBφ along the
disk surface, on the first cell above the boundary. The left panel shows the variation
of the current with the disk transition radius rS. We naturally see that for lower
values of rS the plateau corresponding to the SAD (θ = π/2, r > rS) happens sooner,
but also that its current −rBφ(r > rS) is lower. The right panel shows the reduction
of the toroidal magnetic field via equation 6.9. In Q1 it was not implemented, and
Bφ is one order of magnitude higher than in R3 where it is implemented. The impact
of this reduction of Bφ can also be seen by comparing Figures 6.5 and 7.9. As Q1 was
done without the reduction, and we can see on Figure 7.9 a current sheet leaving the
disk at r > rS = 20 which is missing in Figure 6.5.
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FIGURE B.1: Evolution of the current −rBφ at the disk surface for
several values of the transition radius rS (left) and for several values

of the parameter T (right).

B.3 Conclusion

The conclusion of these tests is straightforward: The lower rS and T , the lower the
electric current in the SAD (θ = π/2, r > rS). As our goal was to limit current
sheet ejected from this region, I set low values of both rS (12) and T (10−6) for the
truncated simulation of reference O1.
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C.1 Motivations and constraints

The simulations presented in this thesis were all in 2.5D. This means that they are
axisymmetric, but compute and depend on quantities in the toroidal direction (Bφ

and vφ). A natural follow-up is to produce full 3D simulations. In those, the jet
would be free to evolve in the φ-direction. This would be interesting for two reasons.

First, such simulations could be used to investigate the general stability of the
collimated jets and recollimation shocks. The recollimation shocks presented in this
thesis are intrinsically axisymmetric. They rely on all magnetic field lines ejected
from the disk at the same radius to hit the axis at the same altitude. It would be
interesting to see if the shocks are conserved if some asymmetry is introduced.

Second, 3D collimated jets are known to be prone to several instabilities. These
can be current-driven such as the kink (see e.g. Appl, 1996; Barniol Duran, Tchekhovskoy,
and Giannios, 2017; McKinney, 2006; Mizuno, Hardee, and Nishikawa, 2014; Moll,
Spruit, and Obergaulinger, 2008) that may play role in the FRI/FRII dichotomy of
AGN jets (see e.g. Bromberg and Tchekhovskoy, 2016; Tchekhovskoy and Bromberg,
2016). These instabilities can also happen at the interface between the jet and the
outer medium such as the Kelvin-Helmholtz (KH, see Baty and Keppens, 2002,
2006; Bodo et al., 1994) or Rayleigh-Taylor (RTI, see Hassam, 1992; Matsumoto and
Masada, 2013; Meliani and Keppens, 2009; Rayleigh, 1882; Taylor, 1950) or cen-
trifugal (CFI, see Rayleigh, 1917) instabilities. The last two are at the origin of the
non-destructive recollimation instability seen in 3D jet simulations (see Matsumoto,
Komissarov, and Gourgouliatos, 2020 and references therein).

Third, the expected 3D instabilities could be the cause of the type-C LFQPOs
ubiquitous in X-ray binary observations. This could especially be the case of the
aforementioned recollimation instability. It happens beyond the recollimation point,
and could thus provide the large timescales yet unexplained by accretion disk physics
(see Ferreira et al., 2022). Indeed, the simulations described in chapter 7 show that
provided there is a physical instability creating an oscillation or wobbling, a per-
turbation could propagate along the sub-FM sheath from beyond the recollimation
point down to the disk. Making 3D simulations could provide a consistent origin to
these oscillations, instead of a forcing caused by the boundary conditions.

Thus, performing 3D jet simulations is of great interest. The most obvious way
to do this would be to take the final output of a 2.5D simulation as an initial condi-
tion by symmetrizing it in the toroidal direction around the polar axis Oz. Figure
C.1 illustrates what these initial conditions could look like. It is a 3D rendering of
the 2.5D self-similar simulation of reference K2. We see several magnetic surfaces
of equal values of magnetic flux Ψ. The outer surfaces look very similar to the the-
oretical picture (Figure 2.1). The inner surfaces are slightly different because of the
pre-shock recollimation and the post-shock refraction.

Performing such a simulation could in principle be relatively simple. One would
mostly need to adapt the boundary conditions to 3D. Unfortunately, it would also be
very computionally expensive. Let us do a back-of-the-enveloppe calculation to see
how much. I start from the low-resolution 2D grid with NR = 704 cells in the radial
direction and Nθ = 144 cells in the orthoradial direction, to which I add Nφ = 128
cells in the toroidal direction. Naturally, each timestep should cost around 102 times
more, as there is 102 times more cells. But the timestep itself is also changed. The
non-accelerated timestep ∆t is computed by the CFL condition:

∆t
Ndim

max
C∈D

(
Ndim

∑
d=1

|λd|
∆ld

)
= Ca (3.13)
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It is set by the smallest cell, or by a cell nearby. In the 2.5D grid, the smallest cell
is in the bottom left corner, near the (R = 1, θ = 0) boundary. Its sizes are dr ≃ 10−2

and rdθ ≃ 3 × 10−3. But in 3D, it also has the size r sin θdφ ≃ 10−4. Thus, passing
from 2.5D to 3D reduces the minimum cell size and thus the timestep by a factor
30. Additionnaly, as 3D simulations are expected to be unstable, the acceleration
algorithm should not work, or at least not as well. This amounts to reducing the
timestep by a factor up to 103, as this was the acceleration factor reached in the 2.5D
simulations (see Figure 3.4).

Thus, to run as long as the 2.5D simulations, the 3D ones would require around
106 times more computing time. As a typical 2.5D simulation runs for 103 HCPU,
it would take nearly a billion HCPU to run 3D simulations on the same physical
timescales. That is way too much, and the numerical technique detailed in section
C.3 does not compensate for this nearly enough. For this reason, I decided to limit
the simulation domain to right under the shock location, at z ∼ 103. I set a minimal
spherical radius Rmin ∼ 103, and all cells with R < Rmin are removed from the do-
main. Between the decrease in cell numbers and the increase in cell size, it saves a
factor 104 in computing time. A run would then take 104 to 105 HCPU, putting us
back in reasonable territory. While 109 HCPU is unreachable for any supercomputer,
computations of 104 to 105 can be made on national supercomputers, but even at lo-
cal ones such as GRICAD in Grenoble. Naturally, such a setup prevents to showcase
the propagation of an eventual instability born near the shock, or at least its up-
stream propagation below Rmin. However there shouldn’t be much difference in the
propagation of information through the sub-FM sheath between the 3D simulations
and the 2.5D ones of 7 .

FIGURE C.1: Magnetic surfaces (surfaces of iso-magnetic flux Ψ) for
K2, self-similar simulation of reference.
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C.2 Numerical setup

C.2.1 Initial conditions

Let us now see how the initial conditions and the value of Rmin were set. As a 3D
initial condition, the self-similar simulations of chapters 4 and 5 are discarded: the
absence of an interface forbids the development of the KH, RTI and CFI instabilities
described above. And obviously, the time-dependant simulations of chapter 7 are
ruled out: as they are already unstable in 2.5D, it would be hard to disentangle the
3D effects from the perturbations caused by the boundary conditions. Therefore, to
initialize the 3D jet I use the 2.5D simulation of reference of the steady-state simula-
tions of chapter 6, named O1.

I consider all the variables (B⃗, v⃗, P, ρ) of the simulation O1 at its final output,
t f = 2.26× 106 beyond Rmin = 1403. It is represented on Figure C.2, with the bound-
ary R = Rmin highlighted in purple. Its value was chosen to be below the lowest
recollimation shock (Zshock = 1550), but also at the exact position of a cell in the 2.5D
grid. It allows the 3D cells to be in the exact same positions in each poloidal (R, θ)
plane as they were in the 2.5D simulation. This is of particular importance to en-
sure that the initial 3D conditions are divergence-free. We have seen in section 3.1.2
that provided the initial magnetic field is divergence-free, it should stay divergence-
free at machine precision during the computation. Thus O1 is divergence-free at
t f = 2.26 × 106; and if the 3D magnetic field is initally set divergence-free, it should
stay so at machine precision along the computation. Equation C.1 is the expression
of the 3D divergence of the magnetic field in spherical coordinates:

∇⃗ · B⃗ =
1

R2
∂(R2BR)

∂R
+

1
R sin θ

∂(Bθ sin θ)

∂θ
+

1
R sin θ

∂Bφ

∂φ
(C.1)

In PLUTO, its computation relies on the use of face-centered magnetic fields. The
sum of the first two terms is the 2.5D divergence and depends on BR and Bθ which
were already face-centered in 2D. Thus as the 3D cells are in the exact same (R, θ)
positions as their 2.5D counterparts, the sum of the first two terms in the initial 3D
conditions is zero. In the 2.5D simulations, the toroidal magnetic field is cell-centered
while in 3D it is face-centered. However, simply setting the 3D face-centered Bφ as
equal to the 2.5D cell-centered Bφ is enough to ensure that the last term in equation
C.1 is zero, as it sets ∂Bφ/∂φ = 0 inside the cell.

Let us make a quick recap on how the initial 3D conditions are set. I consider a
cell C centered in (RC , θC ,φC) of half-widths (∆RC , ∆θC , ∆φC). The values of v⃗, P and
ρ were cell-centered (i.e. defined in (RC , θC ,φC)) in 2.5D; and in 3D they remain cell-
centered, and are thus set to the same value in the same position. Similarly, BR and Bθ

are face-centered in both 2.5D and 3D, i.e. respectively defined in (RC ± ∆RC , θC ,φC)
and (RC , θC ± ∆θC ,φC); they are also set to the same value in the same position. For
Bφ, the 2.5D cell-centered value is translated to the cell faces in (RC , θC ,φC ± ∆φC)
to set the initial 3D conditions. Naturally this is done Nφ times, with Nφ being the
number of cells in the toroidal direction.

These simple conditions provide two crucial characteristics to the initial 3D state.
First, it is the exact same as the final state of the 2.5D simulation O1, simply limited to
R > Rmin = 1403, and symmetrized around the polar axis Oz. Second, its magnetic
field is divergence-free.
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FIGURE C.2: Final state at t f = 2.26 × 106 of the 2.5D reference simu-
lation O1. The legend is the same as in Figure 6.4, with Rmin = 1403

highlighted in purple.

C.2.2 Boundary conditions

Naturally, as the simulations go from 2.5D to 3D, the boundary conditions need to
be adapted. There are still four boundaries to the computational domain:

• The polar axis (θ = 0, R ∈ [Rmin; 5650Rd])

• The outer boundary (R = 5650Rd, θ ∈ [0; π/2], φ ∈ [0; 2π])

• The disk (θ = π/2, R ∈ [Rmin; 5650Rd], φ ∈ [0; 2π])

• The R = Rmin boundary (R = Rmin, θ ∈ [0; π/2], φ ∈ [0; 2π])

The outer boundary (R = 5650Rd) is kept unchanged from the 2.5D setup. "Out-
flow" conditions are imposed: the gradient along u⃗R of ρ, P, BR, Bθ , RBφ, vR, vθ and
vφ is conserved. Same as in the 2.5D setup, I use the Van Leer slope limiter to avoid
spurious oscillations, and enforce a positive Lorentz force on the subalfvénic parts
of the boundary.

The three other boundaries are however different from their 2.5D counterparts.
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Polar axis: θ = 0

As a reminder, in PLUTO the boundary conditions are set using "ghost" cells, en-
closing the actual computational domain. On the outer boundary they are located at
R > 5650Rd, on the disk at θ > π/2 1 and on the R = Rmin boundary at R < Rmin.
In these ghost zones, the variables can be set via a fixed condition, or by their values
inside the domain, for example via gradient conservation ("outflow" condition).

The way the boundary conditions are handled near the polar axis is illustrated on
Figure C.3. For each cell near the boundary located at φC , the corresponding ghost
cell is also in the domain, at φC + π. For the cell-centered variables (ρ, v⃗, P), as well
as the face-centered BR and Bφ we can use standard outflow conditions described
above. However, Bθ is defined at θ = 0 which is degenerate, and a shift in θ accross
the axis is necessary to get to the corresponding ghost face. Naturally, the θ = 0
"face" is not taken into account when computing ∇⃗ · B⃗.

  

θ

θ

θ

θ θ

v

FIGURE C.3: Boundary conditions on the θ = 0 polar axis of a 3D
spherical grid, face-on view adapted from Figure 4 of Zhang et al.,
2019. Left: Cell-centered variables (ρ, v⃗, P). Right: Face-centered

variables (B⃗).

Lower boundaries: R = Rmin and θ = π/2

In this 3D setup, the lower boundaries are quite different from the 2.5D setup. While
in the 2.5D setup the ejection was always sub-FM and sub-Alfvénic, we see in Fig-
ure C.2 that in O1, at R = Rmin there is a significant super-FM zone at the lowest
colatitudes. Then, as θ increases, the flow becomes sub-FM, then sub-Alfvénic, then
sub-SM. The crossing of these critical surfaces increases the number of degrees of
freedom at the R = Rmin boundary from zero to three. A simple solution is to set
all variables at the boundary equal to their initial values if vp > VFM; then relax the
BR condition and set it as an outflow condition if VFM > vp > VA; then relax Bφ if
VA > vp > VSM; then relax vz if VSM > vp.

1Well not exactly because the boundary is not at θ = π/2 but at θ = π/2 − ϵ with ϵ = 10−2. For
the sake of clarity we forget about ϵ here.
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At the θ = π/2 boundary the same conditions as in the 2.5D simulations can be
used, as they are consistent with the initial conditions and the R = Rmin boundary
conditions.

C.3 Ring-Average method

We have seen in section C.1 that one of the reasons of the high computing cost of 3D
spherical simulations is the small cell size in the φ-direction: ∆φC = r sin θdφ. This
is problematic for the cells close to the axis, especially when they have a small size
in θ. We see on the left panel of Figure C.4 that even in a grid with a regular spacing
in θ, the cell size in the φ-direction can become prohibitively small. People doing
disk simulations usually solve this problem by enlarging the θ-cell size close to the
axis. But my jets and recollimation shocks happen close to the axis, and the cell size
in the θ-direction is smaller near the axis (see Figure 3.5).

To increase ∆φC = r sin θdφ without changing the cell size in the θ-direction,
we can increase dφ for the cells closest to the axis. One way to do this is to use the
Ring-Average method, illustrated on the right panel of Figure C.4. In a first ring,
closest to the axis, the cells are clumped by groups of eight. In the next ring, the
cells are clumped by groups of four and in the next two rings, they are grouped by
clumps of two. The number of cells merged in each clump of the innermost ring is
the Ring-Average Parameter NRA, here equal to 8. It naturally has to be a power of 2,
starting from 20 = 1 (i.e. no Ring-Average). We see on Figure C.4 that the clumping
also limits the aspect ratio, the clumps being squarer than the associated cells.

FIGURE C.4: Scheme of the Ring-Average method, adapted from Fig-
ure 1 of Zhang et al., 2019. Left: Spherical grid in the (⃗uθ ,⃗uφ) plane
with Nθ × Nφ = 15 × 64 regularly spaced cells. Right: Same grid us-

ing the Ring-Average method with NRA = 8.

This method is intuitive but its implementation can be tricky, especially in con-
strained transport. We saw in section 3.1.2 that it relies on the computation of the
electric field along the edges of each face to enforce ∇⃗ · B⃗ = 0; but with the Ring-
Average method B⃗ and E⃗ are not defined on the same place at the inner and outer
sides of the clump.

Claudio Zanni and I had the unpleasant surprise to find out that the Ring-Average
method was not implemented in the constrained transport version of PLUTO, right
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in the middle of the PhD. Given the importance of the 3D simulations in the project,
we decided to implement it. As in Zhang et al., 2019, we reconstruct the magnetic
flux inside each clump using a piecewise reconstruction scheme. With this recon-
structed magnetic flux we compute the variation of the electric field along each edge
within the clump. Again, when summing all the variations to compute the total
flux flowing in the cell (equation 3.10), each edge is considered twice, in opposite
senses. The curious reader is referred to section 2 of Zhang et al., 2019 for details.
As described in the next section, this method is now working, and could be imple-
mented into the public constrained transport version of PLUTO, so that it benefits
the community.

C.4 Scaling tests

The initial and boundary conditions, as well as the Ring-Average method, were im-
plemented in a 3D setup. CLaudio Zani adapted the acceleration algorithm (see
section 3.1.5) to 3D, but as expected it did not modify the timestep much.

To estimate the computing costs of such 3D simulations, we asked and obtained
5 × 105 HCPU of preparatory time on Irene-Rome, one of the supercomputers of
TGCC (Très Grand Centre de Calcul), one of France’s national CPU computing cen-
ters. With around 3 × 105 cores it is suited to very high performance computing.
As my simulations are performed on NR × Nθ × Nφ = 114 × 144 × 128 cells the
parallelization is quite high: the subdomain affected to each core can be down to a
dozen cells. In practice it was down to 128 cells as the acceleration algorithm was
not parallelized in the φ-direction.

Some of the performed 3D tests are described in Table C.1. The test T1 was per-
formed with the grid on which the science simulations are expected to be run. Each
timestep took 4 × 10−3 HCPU. Thus, assuming the timestep stays constant, running
a simulation up to a physical time tend in Td units would take 0.30tend HCPU. For
tend = 106 as in the 2.5D runs it gives 3 × 105 HCPU, well within the range of usual
3D MHD simulations.

Name Rmin Nφ NRA dt

T1 1403 128 8 1.38 × 10−2

T2 1 128 8 3.10 × 10−5

T3 1 64 8 5.24 × 10−5

T4 1 128 16 3.75 × 10−5

TABLE C.1: Scaling of the 3D simulations. For all tests, there is NR ×
Nθ = 114 × 144 cells in a poloidal plane. Rmin: Minimal value of the
spherical radius, at the lower boundary. Nφ: Number of cells in the
φ-direction. NRA: Number of cells in each clump of the first ring. dt:

Timestep in Td units.

The tests T2 to T4 were performed with Rmin = 1, in order to investigate the ef-
fectiveness of the Ring-Average method. From T2 to T3, the number of cells in the
φ-direction is halved. From T2 to T4, the Ring-Average parameter NRA is doubled:
each clump is composed of twice as many cells. We see that the Ring-Average rep-
resents a significant improvement in timestep and thus computing time, but not as
big as reducing the resolution. This is certainly because of the reconstruction in the
φ-direction mentioned in section C.3. These tests also tell us how much we have
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gained in computing time moving Rmin from 1 to 1403. A science simulation with
Rmin = 1 run until tend = 106 would have taken 2 × 108 HCPU and is thus fully out
of reach of any supercomputer.

C.5 Summary

In this appendix, I described a 3D simulation setup made to investigate the stability
of the collimated jets and the associated recollimation shocks. This setup took half
a year to do, as it required the writing of the initial and boundary conditions, the
implementation of various numerical methods (Ring-Average and acceleration), as
well as running various tests. Unfortunately, there was no time left in the PhD to run
simulations, but the now working setup should be used to run science simulations
in the near future.
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Appendix D

Article published in A&A

This appendix is the article that I published in Astronomy & Astrophysics with Clau-
dio Zanni and Jonathan Ferreira (Jannaud, Zanni, and Ferreira, 2023). It corresponds
to the results of chapters 4 and 5.
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ABSTRACT

Context. The most successful scenario for the origin of astrophysical jets requires a large-scale magnetic field anchored in a rotating
object (black hole or star) and/or its surrounding accretion disk. Platform jet simulations, where the mass load onto the magnetic field
is not computed by solving the vertical equilibrium of the disk but is imposed as a boundary condition, are very useful for probing
the jet acceleration and collimation mechanisms. The drawback of such simulations is the very large parameter space: despite many
previous attempts, it is very difficult to determine the generic results that can be derived from them.
Aims. We wish to establish a firm link between jet simulations and analytical studies of magnetically driven steady-state jets from
Keplerian accretion disks. In particular, the latter have predicted the existence of recollimation shocks – due to the dominant hoop
stress –, which have so far never been observed in platform simulations.
Methods. We performed a set of axisymmetric magnetohydrodynamics (MHD) simulations of nonrelativistic jets using the PLUTO
code. The simulations are designed to reproduce the boundary conditions generally expected in analytical studies. We vary two
parameters: the magnetic flux radial exponent α and the jet mass load κ. In order to reach the huge unprecedented spatial scales
implied by the analytical solutions, we used a new method allowing us to boost the temporal evolution.
Results. We confirm the existence of standing recollimation shocks at large distances. As in self-similar studies, their altitude evolves
with the mass load κ. The shocks are weak and correspond to oblique shocks in a moderately high, fast magnetosonic flow. The jet
emitted from the disk is focused toward the inner axial spine, which is the outflow connected to the central object. The presence of
this spine is shown to have a strong influence on jet asymptotics. We also argue that steady-state solutions with α ≥ 1 are numerically
out of range.
Conclusions. Internal recollimation shocks may produce observable features such as standing knots of enhanced emission and a
decrease in the flow rotation rate. However, more realistic simulations (e.g. fully three-dimensional) must be carried out in order to
investigate nonaxisymmetric instabilities and with ejection only from a finite zone in the disk, so as to to verify whether these MHD
recollimation shocks and their properties are maintained.

Key words. magnetohydrodynamics (MHD) – methods: numerical – ISM: jets and outflows – galaxies: active

1. Introduction

Astrophysical jets are commonly observed in most, if not all,
types of accreting sources. They are emitted from young stellar
objects (YSOs; Bally et al. 2007; Ray et al. 2007; Ray & Ferreira
2021), active galactic nuclei (AGNs) and quasars (Boccardi et al.
2017), close interacting binary systems (Fender & Gallo 2014;
Tudor et al. 2017), and even post-AGB stars (Bollen et al. 2017).
Despite the different central objects (be it a black hole, a pro-
tostar, a white dwarf, or a neutron star), these jets share several
properties: (i) they are supersonic collimated outflows with small
opening angles, (ii) the asymptotic speeds scale with the escape
speed from the potential well of the central object, and (iii) they
carry away a sizeable fraction of the power released in the accre-
tion disk. As the only common feature shared by all these dif-
ferent astrophysical objects is the existence of an accretion disk,
it is natural to seek a jet model that is related to the disk and
not to the central engine. This universal approach is further con-
sistent with the accretion–ejection correlations observed in these
objects (see e.g., Merloni & Fabian 2003; Corbel et al. 2003;

Gallo et al. 2004; Coriat et al. 2011; Ferreira et al. 2006; Cabrit
2007 and references therein).

Despite these general common trends, astrophysical jets
do show some differences in their collimation properties. For
instance, the core-brightened extragalactic jets, classified as FRI
jets after Fanaroff & Riley (1974), appear conical and show
large-scale wiggles (see e.g., Laing & Bridle 2013, 2014 and
references therein). On the contrary, the edge-brightened FRII
jets appear nearly cylindrical, with a terminal hotspot (Laing
et al. 1994; Boccardi et al. 2017). Most of the jets imaged with
very long baseline interferometry do not appear as continuous
flows, but can be modeled as a sum of discrete features, known
as blobs or knots, usually associated with shocks (Zensus 1997).
Those shocks are assumed to originate either from pressure mis-
matches at the jet boundary with the external medium or from
major changes at the base of the flow (e.g., new plasma ejections
or directional changes), with some of these knots being station-
ary features (e.g., Lister et al. 2009, 2013; Walker et al. 2018;
Doi et al. 2018; Park et al. 2019).
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On the other hand, jets from young forming stars do not
seem to have such a clear FRI/FRII dichotomy and often display
evidence of a conflictual interaction (shocks) with the ambi-
ent cloud medium (Reipurth & Bally 2001). This might be
consistent with the suspicion that the FR dichotomy would only
be a consequence of the jet interaction with its environment, with
low-power jets remaining undisrupted and forming hotspots in
lower mass hosts (Mingo et al. 2019). However, protostellar jets
might also have intrinsic collimation properties different from
those of extragalactic jets, possibly because they are nonrela-
tivistic outflows. This is an open question.

Since the seminal model of Blandford & Payne (1982; here-
after BP82), it is known that a large-scale vertical magnetic field
threading an accretion disk is capable of accelerating the loaded
disk material up to super-fast magnetosonic speeds. This accel-
eration, usually termed magneto-centrifugal, goes along with an
asymptotic collimation of the ejected plasma thanks to the mag-
netic tension associated with the toroidal magnetic field (hoop
stress). In this semi-analytical model, a self-similar ansatz has
been used allowing the full set of stationary ideal magneto-
hydrodynamic (MHD) equations to be solved. Later, this self-
similar jet model was generalized in different ways by altering
the magnetic field distribution (Contopoulos & Lovelace 1994;
Ostriker 1997), thermal effects (Vlahakis et al. 2000; Ceccobello
et al. 2018) and was even extended to the relativistic regime (Li
et al. 1992; Vlahakis & Königl 2003; Polko et al. 2010, 2014).
However, it is unclear whether or not self-similarity affects the
overall jet collimation properties. Not only are both the axis and
the jet-ambient medium region not taken into account, but the
final outcome of the jets (i.e., acceleration efficiency, jet kine-
matics and opening angle, presence of radial oscillations, or even
shocks) may well also be impacted by the imposed geometry.

Using the only class of self-similar jet models smoothly con-
nected to a quasi-Keplerian accretion disk, Ferreira (1997; here-
after F97) showed that these super-fast magnetosonic jets sys-
tematically undergo a refocusing toward the axis (see also Polko
et al. 2010). Such a recollimation is due to the dominant effect
of the internal hoop stress and has nothing to do with a pres-
sure mismatch at the jet–ambient medium interface proposed to
explain knotty features in extragalactic jets (Komissarov & Falle
1998; Perucho & Martí 2007; Perucho 2020). According to F97,
recollimation would be generic to MHD jets anchored over a
large range of Keplerian accretion disks. This is indeed verified
for warm outflows (Casse & Ferreira 2000a) and weak magnetic
fields (Jacquemin-Ide et al. 2019).

While MHD recollimation is also seen in nonself-similar
works (e.g., Pelletier & Pudritz 1992), other strong assumptions
are usually made, leaving the question of the jet asymptotics
open. Heyvaerts & Norman (1989) used another approach based
on the electric poloidal current (or Poynting flux) still present
at infinity. These authors showed that any stationary axisym-
metric magnetized jet will collimate at large distances from the
source to paraboloids or cylinders, depending on whether or not
the asymptotic electric current vanishes. This important theorem
was later generalized (Heyvaerts & Norman 2003a) by taking
into account the issue of current closure and its effect on the
geometry of the solution (Okamoto 2001, 2003). However, the
theorem only addresses the asymptotic electric current, and it is
unclear how much of this current is actually left as no simple
connection with the source can be made.

Connecting the asymptotic electric current to the source is
naturally done with time-dependent MHD simulations. Those
reaching the largest spatial scales treat the accretion disk as
a boundary condition, allowing the jet dynamics to be studied
independently of the disk (Ustyugova et al. 1995, 1999; Ouyed

& Pudritz 1997a,b, 1999; Krasnopolsky et al. 1999, 2003; Ouyed
et al. 2003; Anderson et al. 2005, 2006; Fendt 2006; Pudritz
et al. 2006; Porth & Fendt 2010; Porth & Komissarov 2015; Staff
et al. 2010, 2015; Stute et al. 2014; Barniol Duran et al. 2017;
Tesileanu et al. 2014; Tchekhovskoy & Bromberg 2016; Ramsey
& Clarke 2019). The drawback of these platform jet simulations
is their huge degree of freedom, which is attributable to the fact
that several distributions must be specified at the lower injection
boundary. It has thereforebeenverydifficult todetermine theexact
generic results on jet collimation that can be derived from them.

In summary, despite many theoretical and numerical stud-
ies, no connection has been firmly established between the
jet-launching conditions and the jet-collimation properties at
observable scales. This work is the first of a series designed to
bridge this gap. Our approach here is to assess whether the gen-
eral results obtained within the self-similar framework still hold
in full 2D time-dependent simulations. We will address in par-
ticular whether the existence of recollimation shocks is indeed
unavoidable for the physical conditions expected in Keplerian
accretion disks, as proposed by F97.

As a consequence of this approach, we focus only on steady-
state jets, allowing us to directly confront our simulations with
MHD jet theory. It is clear that most if not all astrophysical
jets exhibit time-dependant features; see for example Cheung
et al. (2007) for M87 or Bally et al. (2007) for young stars.
However, our goal is not to reproduce a specific astrophysical jet,
but instead to deduce the generic behaviors of MHD jets emitted
from Keplerian accretion disks.

The paper is organized as follows. Section 2 describes our
numerical setup and boundary conditions, which mimic an axial
spine (related to the central object) surrounded by a self-similar
cold jet. As analytical studies require huge spatial and temporal
scales, a special temporal numerical scheme has been designed.
Our reference simulation, which corresponds to a typical BP82
jet, is described in length in Sect. 3. We show that recollima-
tion shocks are indeed obtained in agreement with the analytical
theory. This is the first time that such shocks are obtained self-
consistently, showing that these are not artificial biases due to the
mathematical ansatz used, but consequences of the jet-launching
conditions. A parametric study is presented in Sect. 4, where
we vary the magnetic flux exponent α and the jet mass load κ,
confirming the striking qualitative correspondance between our
numerical simulations and analytical solutions. In particular, we
show that the asymptotic jet collimation depends mostly on the
exponent α. However, the existence of an axial spine introduces
quantitative differences hinting at a possible role of the central
object in affecting the collimation properties of the jets emitted
by the surrounding disk. Our results are finally confronted to the
wealth of previous 2D numerical simulations in Sect. 5 and we
conclude in Sect. 6.

2. MHD simulations of jets from Keplerian disks

2.1. Physical framework and governing equations

We intend to study the collimation properties of magnetically
driven jets emitted from Keplerian accretion disks, as depicted
in Fig. 1. The disk is settled from an inner radius Rd to an outer
radius Rext = 5650.4Rd and is assumed to be orbiting around a
central object of mass M located at the center of our coordinate
system. The disk itself is not computed and we assume that it
behaves like a JED, with consistent prescribed boundary condi-
tions. As we use a spherical grid, the central object as well as
its interaction with the disk are assumed to occur inside a sphere
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Fig. 1. Sketch of our computational domain. The central object and its
interaction with the innermost disk are located below the inner boundary
at Rd (green region), the near-Keplerian jet-emitting disk (JED) being
established from Rd to the end of the domain Rext. An axial outflow (the
spine) is emitted from the central regions (in red) and the jet is emitted
from the JED (in blue). The solid purple line represents a recollima-
tion shock surface starting on the axis at a height Zc. For each point N
lying on this surface, we use local poloidal unit vectors (e⊥, e‖), respec-
tively perpendicular and parallel to the shock surface. Also, at any point
M inside the domain, we either use spherical (eR,eθ,eφ) or cylindrical
(er,eφ,ez) coordinates.

of radius Rd (the green zone in Fig. 1). This sphere defines the
inner boundary discussed below.

We further assume that a large-scale magnetic field is thread-
ing both the disk and the central object. The existence of this
field allows the production of two outflows, one from the disk
(blue region in Fig. 1) and one from the central spherical region
(red region in Fig. 1). Hereafter, we always refer to the disk-
emitted outflow as the “jet”, and to the outflow emitted from the
spherical region (green zone in Fig. 1) as the “spine”. As our
goal is to focus on the dynamics of the jet itself, we try to limit
the influence of the spine as much as possible.

Two systems of coordinates centered on the mass M are used,
spherical (R, θ, φ) and cylindrical (r, φ, z). Both the spine and the
jet are assumed to be in ideal MHD and we numerically solve the
usual set of MHD equations. This includes mass conservation
∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

where ρ is the density and u the flow velocity, and the momentum
equation is

∂ρu
∂t

+ ∇ ·
[
ρuu +

(
P +

B · B
2µo

)
− BB
µo

]
= −ρ∇ΦG, (2)

where P is the thermal pressure, B the magnetic field, and ΦG =
−GM/R the gravitational potential due to the central mass.

The evolution of the magnetic field is determined by the
induction equation,
∂B
∂t

+ ∇ × (B × u) = 0. (3)

As we focus on highly supersonic flows, we decided to derive the
pressure P and internal energy by solving the entropy equation,
∂ρS
∂t

+ ∇ · (ρS u) = 0, (4)

where S = P/ρΓ is the specific entropy and Γ = 1.25 is the
polytropic index (the same for all our simulations). This simple
advection equation guarantees that the pressure does not assume
nonphysical (e.g., negative) values. But on the other hand, it does
fail to provide the correct entropy jump in the shocks. However,
as long as the thermal energy of the flow remains negligible com-
pared to the kinetic and magnetic energy, this should not present
a problem.

Thanks to axisymmetry, the poloidal magnetic field can be
computed using the magnetic flux function Ψ (which corre-
sponds to R sin θ Aφ, where A is the vector potential),

BR =
1

R2 sin θ
∂Ψ

∂θ
Bθ = − 1

R sin θ
∂Ψ

∂R
, (5)

which already verifies∇·B = 0. An axisymmetric magnetized jet
can therefore be seen as a bunch of poloidal magnetic surfaces
defined by Ψ(R, θ) = constant, nested around each other and
anchored on the disk for the jet and in the central object for the
spine.

In steady state, Eqs. (1) to (4) lead to the existence of the
following five MHD invariants, namely quantities that remain
constant along each magnetic surface (Weber & Davis 1967):

– the mass flux to magnetic flux ratio η(Ψ) = µoρup/Bp,
– the rotation rate of the magnetic surface Ω∗(Ψ) = Ω −
ηBφ/(µ0ρr),

– the total specific angular momentum carried away by that
surface L(Ψ) = Ωr2 − rBφ/η,

– the Bernoulli invariant E(Ψ) = u2

2 + H + ΦG −Ω∗rBφ/η,
– the specific entropy S (Ψ) = P/ρΓ,

where Ω = uφ/r and H = Γ
Γ−1

P
ρ

is the specific enthalpy. We make
use of these relations when designing boundary conditions.

2.2. Numerical setup

We solve the above set of equations using the MHD code
PLUTO1 (Mignone et al. 2007). We configured PLUTO to use a
second-order linear spatial reconstruction with a monotonized-
centered limiter on all the variables. This method provides
the steeper linear reconstruction compatible with the stability
requirements of the scheme. A flatter and more diffusive lin-
ear reconstruction is employed in a few cells around the rotation
axis to dampen numerical spurious effects that typically appear
in these zones due to the discretization of the equations around
the geometrical singularity of the axis. The HLLD Riemann
solver of Miyoshi & Kusano (2005) is employed to compute the
intercell fluxes. This solver is one of the best suited to properly
capture Alfvén waves, a crucial element in properly modeling
trans-Alfvénic flows. So as to match the order of the spatial
reconstruction, we chose a second-order Runge-Kutta scheme to
advance the equations in time. The ∇·B = 0 condition is ensured
by employing a constrained transport (CT) scheme, enforcing
that constraint at machine accuracy.

The two-dimensional computational domain is discretized
using spherical coordinates (R, θ) assuming axisymmetry around
the rotation axis of the disk. The domain encompasses a spheri-
cal sector going from the polar axis (θ = 0) to the surface of the
disk that is assumed to be θ = π/2 for simplicity, and is resolved
with Nθ = 266 points in the θ direction. The cell size in the θ
direction is mostly uniform, but decreases on a few cells near
the axis. This is essential to our setup, as the expected collima-
tion shocks are formed near the axis: an overly low resolution in

1 PLUTO is freely available at http://plutocode.ph.unito.it
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this zone would prevent their formation. In the radial direction,
the grid goes from Rd to Rext = 5650.4Rd with NR = 1408 points
in a logarithmic spacing (∆R ∝ R) so as to make sure the cells
remain approximately square (∆R ≈ R∆θ) far from the axis.

We choose such a huge numerical domain because our goal is
to capture the recollimation shocks predicted in the self-similar
solutions of F97. According to their Fig. 6, those shocks may
occur at altitudes spanning from several hundred to a thousand
times the jet launching radius. Our spherical grid with a ratio
of 5650.4 therefore provides a suitable range to observe such
shocks. The drawback of these huge spatial scales is of course
the terrible contrast in timescales. The Keplerian time scaling in
r3/2 means that in order to compute a full orbit at the outer disk
edge, the inner one should have completed over 4 × 105 orbits.
This would be barely affordable if we were to use a standard evo-
lutionary scheme. In order to achieve such long timescales, we
designed a specific method that accelerates the numerical inte-
gration using larger and larger time steps to evolve the equations
as the solution starts to converge towards a steady-state. This
method is very successful and allowed us to significantly boost
the evolution of our jets (see Appendix A).

2.3. Initial conditions

Our initial magnetic field is assumed to be potential, which leads
to a second-order partial differential equation on Ψ(R, θ). In order
to represent suitable self-similar solutions, we solve this equa-
tion by assuming

Ψ = Ψd(R/Rd)αΦ(θ) , (6)

where the function Φ (θ) has been determined assuming that the
initial field is potential, that is, current-free and force-free (Jφ =
0).

The exponent α is a free parameter of the model leading to
BR ∝ Bθ ∝ Rα−2. For α = 0, field lines are conical, for α = 1 they
are parabolic, and α = 2 describes a constant (straight) vertical
field. The seminal BP82 solution is for α = 3/4.

As the magnetic field is potential, no magnetic force is
initially imposed on the plasma. It is therefore assumed to
be in spherically symmetric hydrostatic equilibrium (u = 0)
with dP/dR = −ρGM/R2. We choose the following trivial
solution:

ρ = ρa

(
R
Rd

)2α−3

P =
1

4 − 2α
ρaGM

Rd

(
R
Rd

)2α−4

.

(7)

The sound speed Cs is defined as C2
s = ∂P/∂ρ = ΓP/ρ. In the

following, ρa refers to the density at the axis immediately above
the central sphere.

2.4. Boundary conditions

Boundary conditions must be imposed at the polar axis (θ = 0, R
from Rd to Rext), at the outer frontier (R = Rext, θ from 0 to π/2),
at the JED surface (θ = π/2, R from Rd to Rext), and at the spine
boundary (R = Rd, θ from 0 to π/2). On the polar axis, usual
proper reflecting boundary conditions are imposed on all quan-
tities. The special treatment done for the other three boundaries
is described, especially for the JED and spine boundaries where
mass is being injected.

2.4.1. Outer boundary (R = Rext)

“Outflow” conditions are imposed at the outer frontier: for ρ, P,
BR, Bθ, RBφ, uR, uθ and uφ, the gradient along the radial direction
is conserved, and we use the Van Leer slope limiter to avoid spu-
rious oscillations. Additionally, we enforce a positive toroidal
Lorentz force on the subalfvénic part of this boundary.

2.4.2. Jet generation: the jet-emitting disk (θ = π/2)

We need to specify eight quantities (ρ,u, B, P) that must be rep-
resentative of the fields expected at the surface of a JED. As
the lifted material gets accelerated along a field line, its poloidal
velocity will become larger than the slow magnetosonic Vsm,
poloidal Alfvén VAp, and fast magnetosonic Vfm phase speeds.
Crossing each of these critical speeds defines a regularity con-
dition that determines one quantity at the jet basis, therefore
leaving five free functions to be specified. However, we wish
to control the mass loss from the JED, which requires that the
injected outflow be already super-slow magnetosonic (hereafter
super-SM). We therefore have to impose six functions at the JED
boundary, leaving two free to adjust over time, Bφ and BR, the
latter controlling the magnetic field bending.

Our choice of boundary conditions at θ = π/2 (so that R = r)
is therefore as follows:

ρ = ρd

(
R
Rd

)2α−3

P = ρd
C2

sd

Γ

(
R
Rd

)2α−4

Bθ = −Bd

(
R
Rd

)α−2

uθ = −ud

(
R
Rd

)−1/2

uR = uθ
BR

Bθ

uφ = Ω∗r + uθ
Bφ
Bθ
,

(8)

where Ω∗ is the angular velocity of the magnetic surfaces (an
MHD invariant in steady-state). We assume Ω∗ = ΩK =√

GM/r3, in agreement with a near Keplerian accretion disk,
leaving four normalizing quantities, ρd,Csd , Bd, and ud, to be
specified at Rd. These distributions are consistent with a self-
similar JED and describe an ideal steady MHD flow with up ‖
Bp

2, anchored on a disk that imposes magnetic field lines rotat-
ing at the Keplerian angular velocity ΩK . We note that the fixed
component of the magnetic field threading the disk (Bθ) is actu-
ally the initial condition to conserve the magnetic flux injected
into the computational domain, and only BR is allowed to vary
in response to the jet dynamics.

In order to pick up values at Rd that are consistent with the
jet calculations performed by BP82 or F97, we express the JED
boundary conditions as a function of four dimensionless param-
eters: (1) the jet density ρd is fixed with respect to the density at
the polar axis using ρd = δρa; (2) the disk sound speed (tempera-
ture) is defined relative to the Keplerian speed with ε = Csd/VKd;
(3) the magnetic field strength Bd is controlled by measuring the
θ component of the poloidal Aflvén speed with respect to the

2 With this condition, the φ component of the electric field E = −u×B
is zero and the magnetic flux distribution does not change in time.
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Keplerian speed, namely µ = VAd/VKd = Bd
√

Rd/(µoρdGM);
and (4) the (vertical) injection velocity ud can be determined
with the well-known mass-loading parameter κ introduced by
BP82 using

κ =
µoρdudVKd

B2
d

=
udVKd

V2
Ad

=
ud

VKd

1
µ2 . (9)

By fixing ud/VKd = 0.1 for all the simulations, we obtain
κ = 0.1/µ2. In order to be able to fix the value of the injec-
tion speed ud and therefore the JED mass flux, we must require
that up > Vsm. As we are mostly interested in producing cold
MHD outflows, we assume ε = 0.01 so that the θ component of
the sonic Mach number is Msθ = ud/Cs = ud/VKdε = 10. As the
total poloidal speed at the jet boundary is larger than ud, the sonic
Mach number Ms = up/Cs > 10. As the poloidal Alfvén speed
at the disk surface is much larger than the sound speed, Cs > Vsm
and Ms > 1 is enough to warrant a super-SM condition.

We decided to vary the mass load and the disk Alfvén speed
by only changing the disk density ρd (and keeping the injec-
tion speed ud and the disk magnetic field Bd constant for all
the simulations). As a consequence, the density contrast δ can
be expressed as a function of µ (or κ). We assume the rela-
tion δ = 100/µ2 = 1000κ. We highlight the fact that with our
parametrization the JED boundary conditions are determined by
only one dimensionless parameter, typically κ, while the other
two free parameters µ and δ are determined as a function of κ,
and ε is fixed for all the simulations.

2.4.3. Spine generation: the central object (R = Rd)

In the spine, we follow a similar methodology to that in the JED
and specify six quantities along the inner spherical boundary at
Rd. This again leaves two quantities that are free to evolve, Bφ
and Bθ. In order to conserve the magnetic flux injected into the
computational domain, we fix BR(θ) to its initial value. We note
that, as the Bθ(R) profile is fixed along the JED boundary (θ =
π/2) and BR(θ) is kept constant in time along the spine boundary
(R = Rd), the total poloidal field and its inclination BR/Bθ do not
change with time at the inner radius of the disk (R = Rd, θ =
π/2). The strength of the magnetic field is already determined
by the value of µ chosen in the JED. As the outflowing material
leaving the central region is in ideal MHD and we are looking
for a steady jet, one has uθ = uRBθ/BR. This leaves us with the
four distributions ρ,Cs, uR, and uφ to be specified along θ.

If the central object possesses its own magnetosphere, then
Rd might be considered as the disk truncation radius. What
would be encapsulated within Rd could then be a complex com-
bination of a stellar wind plus any type of magnetospheric wind
(steady or not; see for instance Zanni & Ferreira 2013 and refer-
ences therein). If the central object is instead a black hole, then
Rd might be considered as the innermost stable circular orbit and
what is hidden inside Rd would highly depend on the black hole
spin. While a nonrotating black hole would provide no outflow,
a rather strong magnetic flux concentration is seen to occur in
GRMHD simulations of spinning black holes, leading to the gen-
eration of powerful outflows through the Blandford-Znajek pro-
cess (see e.g., Blandford & Znajek 1977; Tchekhovskoy et al.
2010; Liska et al. 2018 and references therein).

However, our goal is to study the outcome of the jet emitted
from the disk. We therefore decided to minimize the influence of
the spine as much as possible. This was found to be an almost
impossible task; details are given below. As pointed out in early
works on magnetized rotating objects (e.g., Ferreira & Pelletier

1995), the jet power depends on the available electromotive force
(emf) e =

∫
Em · dl =

∫
(u × Bp) · dl. While the disk provides

an emf edisk '
∫

ΩKrBzdr, the central region provides eobj '∫
ΩrBRRddθ. An obvious way to decrease eobj is therefore to

allow Ω to decrease as one goes from the disk to the pole. We
therefore use (in agreement with steady-state ideal MHD) uφ =
Ω∗r + uRBφ/BR, with magnetic surfaces rotating as

Ω∗ = Ωa(1 − f (θ)) + ΩKd f (θ), (10)

where f (θ) is a spline function varying smoothly from zero at
θ = 0 to unity θ = π/2 (see Appendix B). Most of the simulations
presented in this paper were done with Ωa = 0 (but not all, see
Sect. 4.3). This choice is consistent with a nonrotating black hole
but also with an innermost disk radius (our Rd) well below the
co-rotation radius in the case of a star.

The fixed radial speed is defined through the sonic Mach
number MsR, by uR = MsRCs. For MsR we assume a constant
value along θ that can be derived from the JED boundary con-
ditions by assuming its continuity at the inner disk radius Rd,
MsR = Msθ|BR/Bθ|d = 10|BR/Bθ|d > 1. As the field inclination
at the inner disk radius |BR/Bθ|d is constant, also MsR does not
change with time. The sound speed at the base of the spine is
computed as

Cs = Csa(1 − f (θ)) + Csd f (θ), (11)

where the sound speed on the axis Csa is computed so as to verify
the Bernoulli integral Ea = E(θ = 0) at the axis. As the MHD
contribution vanishes on the axis, one directly obtains

C2
sa =

GM
Rd

1 + ea
1
2 M2

sR + 1
Γ−1

(12)

and

u2
Ra =

GM
Rd

1 + ea
1
2 + 1

M2
sR(Γ−1)

, (13)

where uRa is the injection radial speed on the axis and ea =
EaRd/GM is the Bernoulli integral normalized to the gravita-
tional energy at Rd and will be used as a parameter to fix the
axial spine temperature. We note that the normalized Bernoulli
integral for the jet at Rd writes ed = λd − 3/2 + ε2/(Γ− 1), where
λ = L(Ψ)/

√
GMro is the magnetic lever arm parameter, mea-

sured here at the anchoring radius ro = Rd. As our jets are cold,
enthalpy plays no role and ed is mostly determined by λ (which is
known only once the simulation has converged to a steady state).
For our simulations, we expect a λ of around 10 (see our param-
eter space Fig. 15). We therefore fix ea = 2 in order to obtain a
spine with a smaller energetic content than the surrounding jet.
We note that, with our choice of parameters, the injection speed
along the axis, set in Eq. (13), is higher than the escape speed.
As the flow is cold and there is no magneto-centrifugal accel-
eration along the symmetry axis, the flow will gradually slow
down along R in the spine from this very high speed in its core.
The spine flow can cross the Alfvén and fast-magnetosonic crit-
ical points due to a decrease of the magnetic field intensity, not
thanks to a flow acceleration.

Finally, for the density, we need to smoothly connect its axial
value ρa to the much larger value injected at the disk surface ρd.
We choose to do this by computing ρ(θ) = ηBR/(µouR), with the
MHD invariant η following

η = ηa(1 − f (θ)) + ηd f (θ), (14)
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with ηa and ηd being fully determined (see Appendix B). This
method ensures that the mass flux to magnetic flux ratio has a
smooth variation from the disk to the axis. For numerical sta-
bility reasons, as the strongest magnetic field is on the axis, the
density in the code is normalized to ρa, providing a dimension-
less density at the axis of 1.

2.5. Summary of parameters and normalization

Each simulation is entirely determined by the following dimen-
sionless parameters and quantities: the radial exponent of the
magnetic field α; the Bernoulli parameter ea (equal to 2 for most
cases) and the spine angular frequency on the axis Ωa (equal to 0
in most simulations); and the cold jet parameters: κ, µ =

√
0.1/κ,

δ = 1000κ, ε = 0.01.
With our choices, we ensure that the injected flow is every-

where super-SM and that the main emf is due the JED, which is
magnetically launching a cold jet. The profiles of several quan-
tities along the magnetic flux near the lower boundary (inner
spherical boundary and disk) reached by our reference simula-
tion K2 at the final time can be seen in Fig. B.1.

This leaves us with only two free parameters, α and κ. We
do not explore their whole range here but keep them within the
parameter space of jets from JEDs as obtained by F97 but also
by the solutions of Contopoulos & Lovelace (1994) and the sim-
ulations of Ouyed & Pudritz (1997a). The radial exponent α is
varied from 10/16 to 15/16. In a strict self-similarity, this expo-
nent must be consistent with the underlying disk, namely α =
(12 + 8ξ)/16, where ξ is the disk ejection efficiency defined with
the disk accretion rate as Ṁa(r) ∝ rξ (Ferreira & Pelletier 1995).
However, our simulations are not strictly self-similar because of
the presence of the axis and its spine, and so we also explore a
slightly smaller α than the fiducial BP82 value α = 12/16. As
discussed further below, values of α ≥ 1 are numerically prob-
lematic. The mass load parameter κ is varied between 0.05 and
1, which is a range globally consistent with BP82 and F97 jets,
both solutions leading to a flow recollimation toward the axis.

The MHD equations have been solved with PLUTO and the
results will be presented in dimensionless units. Unless other-
wise specified, lengths are given in units of Rd, velocities in
units of VKd =

√
GM/Rd, time in units of Td = Rd/VKd, den-

sities in units of ρa, magnetic fields in units of Bd = VKd
√
µoρa,

mass fluxes in units of Ṁd = ρaR2
dVKd and powers in units of

Pd = ρaR2
dV3

Kd. In order to be more specific, we translate these
quantities for the case of a young star, assuming a star of one
solar mass with an innermost disk radius Rd = 0.1 au, namely

VKd = 94.3
(

M
M�

)1/2 ( Rd

0.1 × au

)−1/2

km s−1

Ṁd = 3.3 × 10−10
(

ρa

10−15g cm−3

) (
M
M�

)1/2 ( Rd

0.1 au

)3/2

M� yr−1

Pjet = 6.7 × 1041
(

ρa

10−15g cm−3

) (
M
M�

)3/2 ( Rd

0.1 au

)1/2

W

Bd = 10.6
(

ρa

10−15g cm−3

)1/2 (
M
M�

)1/2 ( Rd

0.1 au

)−1/2

G

Td = 1.8
(

M
M�

)−1/2 ( Rd

0.1 au

)3/2

days. (15)

The list of all the simulations performed in this paper is pro-
vided in Table 1, with their input parameters α and κ and several
quantities that are measured at the final stage tend of the sim-

ulation. As explained in Sect. 2.4.1, the values of µ and δ are
dictated by the values of κ. As discussed below, all our simula-
tions display several recollimation shocks. In the table, we pro-
vide only the altitude (measured at the axis) of the first main
recollimation shock Zshock. As stationary jets require them to
become super-Afvénic and super-fast magnetosonic (hereafter
super-A and super-FM, respectively), we also display the colati-
tudes θext

A and θext
FM of the intersection of the outer boundary Rext

and the Alfvén and FM surfaces, respectively. The last super-
FM magnetic surface (defining the jet) can then be followed
down to the disk, allowing us to identify the largest anchoring
radius ro,FM that we consider in the JED. This allows us to mea-
sure the mass flux emitted from the JED as Ṁjet =

∫ ro,FM

Rd
ρu · dS

and compare it with the mass loss emitted from the spine only
Ṁspine =

∫ π/2
0 ρu · dS. We also compute the power emanating

from the jet Pjet =
∫ ro,FM

Rd
ρEu · dS and compare it to the power

emanating from the spine Pspine =
∫ π/2

0 ρEu · dS.
Simulations K1 to A5 were performed with a nonrotating

spine, namely Ωa = 0 and ea = 2. Our reference simulation K2 is
extensively analyzed in the following section. This reference was
repeated with a lower resolution in K2l –all other things being
equal– to verify numerical convergence. Section 4 addresses the
influence of κ (simulations K1 to K5) and α (simulations A1 to
A5). In Sect. 4.3, the effect of a rotating spine (simulation SP) is
briefly addressed.

3. The Blandford & Payne case

3.1. Overview

In this section, we discuss our reference simulation K2 per-
formed for the BP82 α = 3/4 magnetic field distribution and
a mass-loading parameter κ = 0.1. It was run up to tend =
6.5 105 Td and has reached a steady-state in a sizable fraction of
our computational domain (a quarter of an orbit has been done
at ro = Rext).

Figure 2 displays the final stage reached by K2 at tend. The
black solid lines are the poloidal field lines, the dotted red
line is the Alfvén surface (where the Alfvénic Mach number
m = up/VAp is equal to unity) and the dashed red line is the
FM surface (where the FM Mach number n = up/Vfm = 1).
The left panel shows our simulation on the full computational
domain, with a close-up view on the scale used by (Fendt 2006)
in the right panel. The background color is the logarithm of n on
the left and the logarithm of the density on the right. The last
magnetic surface characterizing the super-FM jet is anchored
at ro,FM = 323 in the JED, and the critical surfaces (A and
FM) both achieve a conical shape over a sizable fraction of the
domain, which is characteristic of a self-similar steady-state sit-
uation. Our spine also achieves super-FM speed at an altitude of
z ∼ 260.

The poloidal velocity vectors can be seen in Fig. 3. The
velocity decreases radially very rapidly, mirroring the injection
conditions, going from 3.5 at the spine to 0.2 at the edge of the
super-FM zone (in VKd units). The white lines show streamlines
inside which 50%, 75%, and 100% (from left to right) of the
total super-FM mass outflow (spine + jet) rate is being carried
in. These lines are anchored in the disk at r0 = 10, ro = 66,
and ro,FM = 323, respectively. As dṀ/dR = 2πRVz falls off
very rapidly, this plot shows that even ejection from a very large
radial domain may be observationally dominated by the inner-
most, highly collimated regions up to ro ∼ 10, with the outer
“wide angle wind” probably remaining barely detectable.
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Fig. 2. Snapshot at tend of our Blandford & Payne simulation K2. Left: global view with field lines anchored on the disk at ro =
3; 15; 40; 80; 160; 320; 600; 1000; 1500, where the background is the logarithm of the FM mach number n. Right: close-up view of the inner-
most regions, where the background is the logarithm of the density. In both panels, black solid lines are the poloidal magnetic surfaces, the yellow
solid lines are isocontours of the poloidal electrical current, and the red dashed (resp. dotted) line is the FM (resp. Alfvén) critical surface.

Fig. 3. Snapshot of our reference simulation K2 at tend. We use the same
color coding as in Fig. 2, left. The black arrows show the poloidal veloc-
ity. The white lines are streamlines inside which (from left to right)
50%, 75%, and 100% of the super-FM (spine+jet) mass outflow rate is
carried in.

The yellow solid lines are isocontours of the poloidal elec-
tric current I = 2πrBφ/µo. These contours are very useful as they
allow us to grasp several important features of the simulation: (1)
The typical butterfly shape of the initial accelerating closed elec-
tric circuit can be seen up to a spherical radius R ∼ 3000. (2) For
disk radii ro & 2000, the electric current flowing out of the disk
reaches the outer boundary (most of it in the sub-A regime at
high colatitudes) and re-enters in the jet at smaller colatitudes,
in the super-FM regime. (3) More importantly, several current
sheets can be clearly seen (as an accumulation of current lines),
highlighting the existence of several standing (stationary) rec-
ollimation shocks. To our knowledge, this is the first time that

simulations of super-FM jets exhibit the patterns predicted in
analytical jet studies. Justifications for this assessment are pro-
vided in Sect. 5.2.

These shocks are best seen in Fig. 4, which presents a zoom
onto the region of interest. Five shocks (highlighted in colors)
can be seen starting near the polar axis, following approximately
the expected shape of the MHD characteristics in self-similar jets
(see Figs. 3 in Vlahakis et al. 2000; Ferreira & Casse 2004). They
are located at Z1 = 1850,Z2 = 2000,Z3 = 2160,Z4 = 2372, and
Z5 = 2634. Only two of these shocks span a significant lateral
portion of the jet (those best seen also in the left panel in Fig. 2).
The first one (in red) leaves the axis at an altitude Z1 = 1850
(labeled Zshock in Table 1) and stays within our domain, finally
merging with the FM surface (red dashed curve) around (r =
2500, z = 3800). The second shock starts at Z5 and leaves the
simulation domain at (r = 1800, z = 5200), and is therefore not
fully captured by our simulation. For this reason, only the first
shock is extensively described here.

It can be seen that all shocks do occur only after the mag-
netic surface has started to bend toward the axis (with a decreas-
ing cylindrical component Br), and give rise to a sudden outward
refraction of the surface with its ouflowing material. This, plus
the fact that their positions remain steady in time (see below),
justifies our use of the name “standing recollimation shocks” to
describe them. While these standing recollimation shocks appear
quite generic for our set of simulations, we stress that fantasti-
cally large spatial and temporal scales are required to see them.

This simulation was also performed with a two-times-
smaller resolution (see K2l in Table 1). We also observed stand-
ing recollimation shocks that are similar, although with less com-
plexity.

3.2. Quasi steady-state jet and spine

Jet production is a very rapid process that scales with the local
Keplerian timescale (especially As µ is constant with the radius).
It is therefore an inside-out build-up of the jet with its associ-
ated electric circuit, until the innermost jet regions (including
the spine) reach the outer boundary. This will take a time of
typically text(ro = 1) ∼ Rext/Vz, with the maximal jet speed
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Fig. 4. Close-up view of our reference simulation K2 at tend show-
ing the shock forming region, with field lines anchored at ro =
1.2; 2; 3; 4; 5; 7; 9. The five shocks are highlighted in red, orange, cyan,
blue, and purple. We use the same color coding as in the left panel of
Fig. 2.

Vz '
√

2λ − 3VK . According to BP82, cold outflows with mod-
erate inclinations and κ = 0.1 reach λ ∼ 10 (see their Fig. 2),
which is exactly what we also obtain (see Fig. 15, with a min-
imum value λ = 11). This leads to a dynamical time text ∼
1.3 × 103 (in Td units) and so the innermost jet regions achieve
an asymptotic state very early. However, the transverse (radial)
equilibrium of the outflowing plasma is still slowly adjusting,
because, as time increases, more and more of the outer magnetic
surfaces achieve their asymptotic state, providing an outer pres-
sure and modifying the global jet transverse equilibrium. This,
in turn, necessarily modifies the shape of the magnetic surfaces
as well as the associated poloidal electric circuit.

This means that the MHD invariants along each magnetic
surface can always be defined (each surface is quasi-steady), but
that they are also slowly evolving in time as the global mag-
netic structure evolves. For our simulation K2, the last super-FM
magnetic surface is anchored at ro,FM = 323, defining a local
Keplerian time TK = 5.8 × 103. At that distance, the boundary
is located at Zext ∼ Rext cos θFM ∼ 4430, leading to a dynamical
time text(ro,FM) ∼ Zext/Vz(ro,FM) ∼ 1.6 × 104 (with λ = 14) as
the speed distribution on the disk is Keplerian. We can therefore
expect MHD invariants within our jet to evolve much less only
after a time ∼104.

This slight evolution of the jet quantities over time is illus-
trated in Fig. 5. We chose to look at global quantities, such as
the radius ro,FM of the last super-FM surface, the jet mass-loss
rate Ṁjet, and the two colatitudes θext

A and θext
FM that define the

position of the two critical surfaces. We pick up their values at
t = 5.1×105 and plot their evolution by normalizing them to this
“initial” value. It can be seen from Fig. 5 that their evolution is
quite obvious: ro,FM keeps on increasing, leading to an increase
in Ṁjet and a decrease in both θext

A and θext
FM. But the relative vari-

ations are less than 3% for ro,FM and 1% for the other quantities.
We therefore consider that our simulation K2 has achieved

a relatively global steady-state. In physical units (and for our
choice of axial density ρa), the jet mass loss is about 2 ×
10−7 M� yr−1 with a magnetic field around 10 G at 0.1 au. The
spine mass loss is only ∼10% of the jet mass loss, and so we
can safely presume that the dynamics are mostly controlled by
the JED, as expected. However, as the spine power is compara-

ble to the jet power (Pspine/Pjet = 0.81), the impact of the spine
on the collimation and topology of the electric field cannot be
neglected. The influence of the spine is detailed in Sect. 4.3.

Figure 6 shows the various contributions to the Bernoulli
integral E(ψ) along a magnetic surface anchored at ro = 100
at the final stage tend. It can be seen that E is indeed conserved
and that jet acceleration follows the classical pattern (Casse &
Ferreira 2000a): the kinetic energy (green) increases thanks to
the magnetic acceleration, leading to a decrease in the mag-
netic contribution (magenta). Enthalpy (red) is negligible in this
cold outflow. The presence of the shock is clearly seen around
Z = 3800: the flow is suddenly slowed down and the energy
is transferred back to the magnetic field, in agreement with the
Rankine-Hugoniot jump conditions (see Appendix C). Beyond
the shock, MHD acceleration is resumed but, at the edge of our
domain, the magnetic field still maintains around 45% of the ini-
tial available energy.

The evolution along a magnetic surface of the five MHD
invariants is shown in Fig. 7 for two surfaces, one anchored at
ro = 100 (left) and the other at ro = 1000 (right). In order to plot
η,Ω∗, L, E, and S on the same figure, we normalize each quantity
by its initial (at the disk surface) value at tend. On the left, vari-
ations of the invariants can indeed be seen but only at the shock
located at Z = 3800; they remain very small, much less than 1%
for all but the entropy (which is conserved to machine accuracy).
On the right plot, the field line is anchored beyond ro,FM and the
flow remains sub-FM while crossing no shock. Variations of the
invariants are again observed, but always less than 0.3%. This
shows that the PLUTO code is quite efficient and the MHD solu-
tion is indeed steady.

3.3. Jet collimation

Before analyzing the shocks in the following section, let us
briefly discuss jet collimation. Figure 8 shows the initial mag-
netic field configuration (in dotted lines) along with the final
configuration (solid lines) obtained at tend. Each color is asso-
ciated with a different anchoring radius ro, allowing us to see the
evolution from the initial potential field and the final full MHD
solution. This plot clearly illustrates how magnetic collimation
works. As the poloidal electric circuit responsible for the col-
limation must be closed, its sense of circulation must change
within the whole outflow (defined as both the jet and its spine).
The poloidal current density J p is therefore downward in the
inner regions and outward in the outer jet regions. As a conse-
quence, field lines anchored up to ro ∼ 25 are focused to the
polar axis (Z-pinch due a pole-ward J p × Bφ force as Jz < 0),
while field lines anchored beyond ro ∼ 30 are de-collimated and
pulled out (because of the outward action of the same J p × Bφ

force as Jz > 0). See the right panel of Fig. 2 for the topology
of J.

The inner self-collimated jet region can only exist thanks to
the existence of these outer jet regions that are pulled back and
out. The final state of the jet collimation, namely the asymptotic
jet radius achieved by these inner regions (the densest ones, pos-
sibly responsible for the observed astrophysical jets), is there-
fore also a consequence of the transverse equilibrium achieved
by the outflow outskirts with the ambient medium. This balance
is mathematically described by the Grad-Shafranov equation
and expresses the action of the poloidal electric currents – how
they are flowing and how electric circuits are closed within the
jet – on the shape of the magnetic surfaces (Heyvaerts & Nor-
man 1989, 2003a,b; F97; Okamoto 2001). We return to this point
below.
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Table 1. Simulations presented in this paper.

Name κ α µ δ tend
105 Zshock θext

FM(rad) θext
A (rad) ro,FM Ṁjet

Ṁspine

Ṁjet
Pjet

Pspine

Pjet

K1 0.05 12/16 1.41 50 7.34 2150 0.64 0.94 301 179 0.102 492 0.82
K2 0.1 12/16 1.00 100 6.51 1850 0.67 1.05 323 363 0.096 616 0.81
K2l 0.1 12/16 1.00 100 12.3 2490 0.65 1.02 289 357 0.094 620 0.81
K3 0.2 12/16 0.71 200 10.1 1810 0.69 1.09 368 743 0.093 768 0.80
K4 0.5 12/16 0.45 500 8.67 1150 0.90 1.26 655 2040 0.093 1024 0.81
K5 1.0 12/16 0.32 1000 4.62 700 0.99 1.34 670 4095 0.116 1264 0.96
A1 0.1 10/16 1.00 100 9.08 1900 0.96 1.23 234 195 0.206 551 1.21
A2 0.1 11/16 1.00 100 8.34 1800 0.87 1.15 349 272 0.137 578 0.99
A3 0.1 13/16 1.00 100 5.79 1920 0.59 0.95 566 690 0.047 668 0.66
A4 0.1 14/16 1.00 100 6.26 2050 0.64 0.94 398 1321 0.023 740 0.53
A5 0.1 15/16 1.00 100 1.62 2030 0.50 0.83 1046 3275 0.009 848 0.41
SP 0.1 12/16 1.00 100 3.93 1250 0.82 1.09 506 392 0.097 613 0.98

Notes. All the simulations presented have been performed in the grid described in Sect. 2.2 (e.g., NR = 1408 and Nθ = 266) except K2l, performed
in a lower resolution grid (e.g., NR = 704 and Nθ = 144) The parameters κ and α are varied independently, allowing us to compute µ, δ, and MS .
The columns Zshock, θ

ext
FM, θ

ext
A , ro,FM, Ṁjet, Ṁspine/Ṁjet, Pjet, and Pspine/Pjet are outputs of the simulation measured at the final time tend (given in 105Td

units). Simulations K1 to A5 were done with a nonrotating spine, namely Ωa = 0 and ea = 2. Simulation SP is done for Ωa = ΩKd and ea = 10 and
is discussed in Sect. 4.3. See Sect. 2.5 for the definition of all these quantities.

Fig. 5. Late evolution of several global jet quantities for the simulation
K2: the radius ro,FM of the last super-FM surface, the jet mass-loss rate
Ṁjet, and the two colatitudes θext

A and θext
FM that define the position of

the two critical surfaces. A slight drift from their initial value is indeed
observed. The values provided in Table 1 are those achieved at the final
time.

3.4. Standing recollimation shocks

Our reference simulation K2 ends with five standing shocks, of
which only the first (red in Fig. 4), starting on the axis around
Z1 = 1850, is studied hereafter. This is for two reasons: (1)
Contrary to the orange and cyan shocks, the red shock surface
covers a large extension in the jet itself. It is therefore most prob-
ably related to the dynamics of our quasi self-similar jet, whereas
these smaller shocks may be related to the spine–jet interaction.
(2) It remains far away from the outer boundary (it ends up at the
FM surface at a point r = 2500, z = 3800), which is clearly not
the case for the purple shock and also probably not for the blue
one.

Fig. 6. Evolution of the various energy contributions along a mag-
netic surface of anchoring radius r0 = 100 for the simulation K2 at
tend: the Bernoulli invariant E, the gravitational potential ΦG, the total
specific kinetic energy u2/2, the enthalpy H, and the magnetic energy
−Ω∗rBΦ/η. The absicssa is the altitude Z(Ψ).

3.4.1. Rankine-Hugoniot conditions

All shocks are due to the flow heading toward the axis (with
decreasing, usually negative Br and ur components) at a super-
FM velocity, resulting in a sudden jump in all flow quantities
with an outward refraction of the magnetic surface (this can
be seen in Fig. 8). The Rankine-Hugoniot jump conditions (see
Appendix C for more details) are of course satisfied with the
shock-capturing scheme of PLUTO and MHD invariants are
conserved (up to some accuracy, as discussed above).

The left panel of Fig. 9 displays the evolution of several
quantities along the red shock surface. It can be seen that the
compression rate χ (green curve), defined as the ratio of the
post-shock to the pre-shock densities, is larger than unity while
remaining small (≤1.3, see red curve in the right panel), despite
a very large Alfvénic Mach number m ∼ 100 (orange). This
is probably because the shock is oblique and the incoming jet
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(a) (b)

Fig. 7. Evolution of the MHD invariants along field lines of two different anchoring radii ro at tend for simulation K2. All invariants have been
normalized to their values at ro. The absicssa is the altitude Z(Ψ).

material does not reach very large super-FM Mach numbers n⊥
(defined as the ratio of the flow velocity normal to the shock
surface to the FM phase speed in that same direction; blue
curve). In fact, n⊥ ≤ n = up/V f m, and at these distances the
jet has reached its asymptotic state with a maximum velocity
of up ∼

√
2λ − 3VKo (VKo = Ω∗ro the Keplerian speed at the

anchoring radius). Assuming Bp � |Bφ|, m � 1 and a jet widen-
ing such that r � rA where rA is the Alfvén cylindrical radius
along a flow line where m = 1, leads to

n ' up

VAφ
=

up

Ω∗r
m

1 − r2
A/r

2
' m

ro

r

√
2λ − 3 ∼ m

rA

r
, (16)

which shows that the asymptotic FM Mach number critically
depends on how much the jet widens (see Pelletier & Pudritz
1992 and Sect. 5 in F97). In our case, n ∼ 4 at the outer edge
of the spine–jet interface, in agreement with self-similar stud-
ies. Following the main red shock along growing r, the incident
angle3 of the magnetic field lines on the shock front decreases
until turning into a normal shock on its external edge (r ∼ 2000).
Hence, on this edge, the shock front coincides with the FM crit-
ical surface n = 1. As the shock becomes normal, n⊥ → n = 1
and the shock vanishes, with a compression rate χ going to 1.

The three other curves in the left panel of Fig. 9 describe
other modifications in jet dynamics. The brown curve is the mag-
netic field line deviation at the shock front, δi = i2 − i1, where
i is the flow incidence angle to the normal to the shock surface
(subscripts 1 and 2 refer to the pre- and post-shock zones, respec-
tively). The maximum deviation of 0.07 rad = 4◦ is very small,
in agreement with the small compression rate.

The purple curve describes the relative variation of the flow
rotation δΩ = (Ω2 − Ω1)/Ω1, which is always negative. The
shock introduces a sudden brake in the azimuthal speed, mean-
ing that the compressed shocked material is always rotating
less. As t.e detection of rotation signatures in YSO jets is an
important tool for retrieving fundamental jet properties (see e.g.,

3 Here and throughout the following, the angles of incidence and
refraction are defined as in Snell-Descartes law, e.g., measured from
the normal to the shock front.

Fig. 8. Evolution of several magnetic field lines during the simulation
computation, for different anchoring radii R0 and for the reference sim-
ulation K2. The field lines at the first output of the simulation (initial
conditions) are shown in dotted lines. The field lines at the last output
of the simulation (final state) are shown as full lines.

Anderson et al. 2003; Ferreira et al. 2006; Louvet et al. 2018;
Tabone et al. 2020), recollimation shocks appear to be a very
interesting means to lower the jet apparent rotation. However,
the rather weak shock found here only introduces a decrease of
∼20% at the outer edge of the shock.

The plasma loss of its angular momentum at the shock is of
course compensated for by a gain of magnetic field (the angular
moment is a MHD invariant). This means that the magnetic field
lines are more twisted after the shock than before, as illustrated
in the red curve showing δBφ = (Bφ2 − Bφ1 )/Bφ1 > 0. The shock
surface acts therefore as a current sheet with an electric current
density flowing outwardly (in the spherical R direction).

3.4.2. Two families of shocks

The right panel of Fig. 9 displays the compression rate χ for
the five shocks seen in Fig. 2, using the same color code. All
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Fig. 9. Distributions along the shock of several quantities for K2 at tend. Left: normal incident FM Mach number n⊥, Alfvénic Mach number m,
compression rate χ, relative variations of the toroidal magnetic field δBφ and plasma angular velocity −δΩ, and total deviation δi (in rad) of the
poloidal magnetic field line for the main recollimation shock. Right: compression rates χ of all shocks appearing in Fig. 4, using the same color
code. The main shock corresponds to the red curve. See Appendix C for more details on this figure.

Fig. 10. Radial distribution of the radial accelerations and their sum
at the altitude Z = 2400 for the simulation K2 at tend. The vertical
dashed line corresponds to the spine–jet interface, namely the field line
anchored at ro = Rd.

shocks but the red one have larger compression factors near the
axis. The orange and cyan shocks merge with the main red one
(respectively at r ∼ 500 and r ∼ 900), leading to an increase in
its compression rate χ. The large blue shock has the same behav-
ior as the orange and cyan but remains alone (i.e., not merging
with the red) with χ converging to 1, while the purple shock
seems to have a similar behavior to the red one, maintaining a
larger value for χ. Although these last two shocks are probably
affected by their proximity with the outer boundary, it seems that
two classes of recollimation shocks are at stake.

The first class (represented by the red and purple shocks)
corresponds to the recollimation shock predicted in self-similar
studies (FP97, Polko et al. 2010). The reason for their exis-

tence is the hoop-stress that becomes dominant as the jet widens,
leading to a magnetic focusing toward the axis. As shown in
FP97, such a situation always arises in the super-FM regime,
meaning that a shock is the only possibility for the converg-
ing flow to bounce away. However, as long as no dissipation is
introduced, such a situation will repeat. Indeed, after the flow
refraction due to the shock, the magnetic field starts to acceler-
ate the plasma again, the magnetic surface widens and the same
situation repeats. One would therefore expect periodic oscilla-
tions and shocks on a vertical scale HR (measured on the axis).
Figure 8 provides some evidence of this pattern for the field lines
anchored at ro = 20, 30 or 40. The first recollimation shock (red)
is quite far away from the disk (Zshock = 1850), but the second
shock (purple) occurs at Z5 ' 2634. A much larger computa-
tional domain would be necessary in order to clearly assess a
periodic pattern.

The second class of recollimation shocks (represented by
the orange, cyan, and blue shocks) are limited to the vicinity
of the spine–jet interface and are thereby a consequence of a
radial equilibrium mismatch between these two super-FM out-
flows. The transverse equilibrium of a magnetic surface is pro-
vided by projecting the stationary momentum equation in the
direction perpendicular to that surface, leading to the equation
(FP97)

(1−m2)
B2

p

µ0R−∇⊥
(
P+

B2

2µ0

)
−ρ∇⊥ΦG+

(
ρΩ2r−

B2
φ

µ0r

)
∇⊥r = 0. (17)

Here, ∇⊥ = e⊥ · ∇ provides the gradient perpendicular to a mag-
netic surface with e⊥ = ∇Ψ/|∇Ψ| and B2

p/R = e⊥ · (Bp · ∇Bp),
measures the local curvature radius R of the magnetic surface.
In the asymptotic region where these small recollimation shocks
are observed, the field lines are almost vertical and gravity is
negligible. The above equation therefore reduces to

− ∂
∂r

(
P +

B2

2µ0

)
+ ρΩ2r −

B2
φ

µ0r
= 0. (18)

Looking at Fig. 10, where the various forces are plotted as a
function of the cylindrical radius at a constant height Z = 2400,
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it can be clearly seen that the dominant force is the hoop stress
−B2

φ/(µor) (purple curve) near the spine-jet interface (dashed
vertical line), defined as the magnetic field line anchored at
ro = Rd. That pinching force overcomes the others (the above
sum is actually nonzero and negative), indicating that the field
lines do have a curvature and are actually converging toward
the axis (therefore Eq. (18) is too simplistic). Nevertheless, this
behavior of the forces is consistent with the stationary shape of
the magnetic surfaces seen at Z = 2400 at those radii. Further
out, downstream, the fifth (purple) shock will make the field
lines bounce back again. This tells us that we are witnessing
radial oscillations of the radius of the spine driven by a mis-
match between the dominant forces (hoop stress, magnetic pres-
sure, and centrifugal term).

This oscillatory behavior may be a generic feature of
MHD outflows from a central rotator as shown by Vlahakis &
Tsinganos (1997), because of the different scaling with the radius
of the pinching force and the centrifugal force (as in the self-
similar jet; F97). But it may also be triggered by the pinching
due to the outer jet recollimation, namely the spine–jet inter-
face response to the global jet recollimation. Indeed, no spine–jet
shock is seen before the onset of the main recollimation shock.
We further note that the five shocks are located at a slightly
increasing distance from each other. Indeed, ∆Z12 = Z2 − Z1 =
150,∆Z23 = 160,∆Z34 = 212, and ∆Z45 = 262, which is the sign
of some damping of the spatial oscillations at the spine–jet inter-
face (see e.g., Vlahakis & Tsinganos 1997). This corresponds to
three spine–jet shocks (orange, cyan, and blue) located between
the two large jet recollimation shocks (red and purple), as can be
seen in Fig. 4.

Despite the fact that the magnetic surfaces are in a steady
state, it is useful to look at this spatial oscillatory pattern as
the nonlinear outcome of transverse waves. Immediately after
a shock, the flow is again outwardly accelerated leading to a
widening of the magnetic surface and its refocusing toward the
axis with the unavoidable shock. It will therefore take a time
∆tz = ∆Z/uz to reach the next shock. On the other hand, any
radial unbalance triggered immediately after the shock gives
rise to a transverse (radial) FM wave that bounces back on a
timescale of ∆tr = 2r/V f m measured at the spine–jet interface. In
steady-state, these two times must be the same, which requires
∆Z ∼ 2nr, where n is the FM Mach number measured at the
spine–jet interface. At Z = 2400, the width of the spine is
r ' 40, and n ' 3, providing the correct order of magnitude
for ∆Z ∼ 240 . This is also verified for all other shocks. This
correspondence strengthens the idea that these small shocks are
actually triggered by the first large recollimation shock.

3.5. Electric circuits

The existence of these shocks drastically affects the poloidal
electric circuits that go along with MHD acceleration (and of
course collimation). This can be seen in Fig. 11, where sev-
eral interesting circuits are shown in color. Each poloidal circuit
corresponds to an isocontour of rBφ, the arrows indicating their
flowing direction.

The white contour marks the last electric circuit that flows
below the first recollimation shock and defines the envelope of
the initial accelerating current. It links the disk emf with the
accelerated jet plasma and flows back to the disk along the spine.
This is due to the fact that the largest electric potential difference
is with the axis.

The blue circuit is the last electric circuit fully enclosed
within the computational domain. The current flows out of the

Fig. 11. Plot of the poloidal electric circuits at tend for simulation K2.
The two red curves are the critical surfaces, Alfvén (dotted) and FM
(dashed). The yellow curves are the poloidal electric circuits, defined
as isocontours of rBφ, where the arrow indicate the direction of the
poloidal current density J p. Four circuits are highlighted in particu-
lar: (1) the envelope of the inner accelerating current in white (rBφ =
−2.06), (2) the outermost circuit still fully enclosed within the domain
in blue (Bφ = −2.005), (3) a circuit closed outside the domain in orange
(rBφ = −1.80), and (4) a post-shock accelerating circuit in purple (also
with rBφ = −2.06).

disk (further away than the previous circuit) and makes a large
loop that goes beyond (downstream) the main recollimation
shock, flowing back on the axis below Z5 until it encounters the
smaller shock at Z4 (blue curve in Fig. 4). As a shock behaves
as an emf, with an outwardly (positive Jr) electric current flow-
ing along its surface, the blue electric current gets around it and
goes back to the axis where it meets the next shock surface at Z3
(cyan in Fig. 4). As that shock merges with the main recollima-
tion shock, the blue electric current flows along these two sur-
faces, gets around the main shock (near the point r ∼ z ∼ 3000
in Fig. 11) and returns back to the disk via the spine, where it
joins the white circuit below Z1.

As mentioned above, the outflowing plasma gets re-
accelerated after each shock. This requires a local accelerating
electric circuit, which is naturally enclosed within two recolli-
mation shocks. One such circuit is exemplified by the purple
contour in Fig. 11. It actually has the same rBφ value as the white
one, but is enclosed between the two large recollimation shocks.
As the small shocks (orange and cyan in Fig. 4) merge with the
main one, the purple accelerating circuit is the envelope of the
current used to go from the first main shock to the second one
flowing back to the spine just before Z5 (and getting around the
shock starting at Z4 near the point r ∼ 2000, z ∼ 4000, like the
previous blue electric circuit).

These three examples of electric circuits (white, purple, and
even blue) are fully closed within the computational domain and
therefore do not contribute to any further asymptotic collimation.
However, it can be seen that the electric current outflowing from
the disk beyond ro ∼ 2000 leaves the computational domain
and is supposedly closed by the inflowing current that enters the
computational domain at small colatitudes. One example of such
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Fig. 12. Altitude Z of the different shocks (measured at the axis) as
a function of time (in Td units) for simulation K2. The vertical lines
correspond to the six times ti used in Fig. 13: t1 = 551, t2 = 2.08 ×
103, t3 = 8.51×103, t4 = 1.99×104, t5 = 1.05×105, and t6 = 1.58×105.
The last vertical line is tend = 6.51 × 105.

an electric circuit is shown by the orange curve in Fig. 11. This
inward electric current is responsible for the inner jet collimation
at large distances, say at Z & 3000, and is seen to flow back to the
disk along the spine, which acts as a conductor. This implies that
the asymptotic jet collimation is here somewhat controlled by an
electric circuit that is not fully self-consistent. Indeed, this elec-
tric circuit is actually determined by the boundary conditions at
Rext and there is no guarantee that its evolution is consistent with
the disk emf. This is of course unavoidable but it may have an
impact on the collimation properties of numerical jets (see dis-
cussion in Sect. 5). Moreover, as this current embraces very large
spatial scales, very long timescales are consistently implied and
may lead to evolution of the jet transverse equilibrium on those
scales.

3.6. Time evolution

Figure 12 shows the evolution in time of the vertical height Z
(measured at the axis) of all shocks found in the simulation. As
discussed previously, it takes a time text(1) ∼ 103 for the inner-
most jet (anchored at ro = Rd) to reach the boundary of our
computational box. During this early evolution with t < text(1),
the detected shocks correspond to the first bow shock where the
jet front meets the initial unperturbed ambient medium. Once
the jet has reached the boundary, the spine is in a steady-state
while the jet transverse equilibrium continues to evolve due to
the self-similar increase in its width. Indeed, the time to reach
the outer boundary for a magnetic surface anchored at ro in the
disk grows as text(ro) ∝ r1/2

o . It therefore takes a time ∼104 to
achieve a steady ejection from ro = ro,FM = 323, where ro,FM is
the maximum radius of the field lines that achieve a super-FM
flow speed. The global jet structure is only expected to have a
steady state beyond that time.

The vertical lines in Fig. 12 trace six times t1 = 551, t2 =
2.08× 103, t3 = 8.51× 103, t4 = 1.99× 104, t5 = 1.05× 105, and
t6 = 1.58× 105. The snapshots corresponding to each of these
times are shown in Fig. 13, allowing us to see the global jet
evolution. The times t1 and t2 have been chosen to enclose text(1).
The bow shock with the ambient medium is clearly seen, as is

the outward (radial) evolution of the jet width. At t2, several
shocks near Z ∼ 2000 can be seen in both figures. The jet radial
equilibrium is clearly not yet steady. However, Fig. 12 shows
that while the positions of the shocks (as measured on the axis)
are already close to their final values, their final number is not
yet settled.

Four standing recollimation shocks seem to settle some-
where between t3 = 8.51×103 and t4 = 1.99×104, in agreement
with our previous estimate; they can be clearly seen in Fig. 13,
where some transient shocks located further up at Z > 4000
at t3 have disappeared at t4. Also, given the huge spatial scales
involved, most of our JED is still evolving. For instance, while
there have already been 3183 orbital periods at Rd at t4, the disk
has done only half of an orbit at ro = 323. This can be seen
in the shape of the FM surface, which has not yet reached its
steady-state configuration (conical).

Beyond t4, the global flow is slowly evolving in time in some
adiabatic way, with four standing recollimation shocks. The evo-
lution of the jet outer regions and the progressive evolution of the
A and FM surfaces to their conical shapes seems to produce no
obvious evolution in the shocks until t5. At that time, a dramatic
evolution is triggered with the appearance of shocks beyond Z4.
Figure 12 clearly shows this pattern with the appearance of a fifth
shock; its altitude Z5 evolves in time, consistently with Z4 until
a steady-state is finally reached approximately near t6. Our final
state tend shows no relevant difference in the positions of the five
shocks. This evolution of the distribution of the shocks has only
slightly affected the position of the farthest shock Z4, leading to
the final regular distance ∆Z discussed above.

The appearance of a fifth shock at t5 leading – after a tran-
sient phase ending at t6 – to a new steady state jet configuration
is illustrated in Fig. 14. The time evolution of the cylindrical
radius of the field line anchored at ro = 3 (in blue) is measured
at a constant height Z = 3500. It can be seen that this radius
is steadily slowly decreasing in time, going from r ∼ 150 near
t4 down to r ∼ 135 at t5 where some fluctuations are suddenly
triggered. These oscillations describe a time-dependent behavior
which ends at t6, with a new radial balance found at a smaller
radius r ' 125. Globally, this evolution describes a magnetic
surface that is first slowly getting more and more confined, and
then enters an unstable situation until the formation of another
(tighter) equilibrium. This behavior is consistent with the evo-
lution of the electric current (red curve) that flows within that
magnetic surface, which is seen to first steadily (although very
slowly) increase until achieving a final value.

In these inner regions, transverse equilibrium of the cold jet
is mostly achieved by the poloidal magnetic pressure balancing
the toroidal pressure and hoop stress (see Eq. (18) and Fig. 10).
In this Bennett relation, one gets

(rBφ)2 = (rBz)2 +

∫ r

0
2B2

z rdr . (19)

This relation shows that the toroidal field Bφ is compelled to fol-
low the same scaling as Bz in order to maintain the jet trans-
verse equilibrium. If we assume that the self-similar radial scal-
ing for the vertical field Bz is recovered at large distances, we
get (rBφ)2 ∝ r2(α−1). As a consequence, for α < 1 (which is the
case here), whenever the electric current is increasing, the radius
of the magnetic surface decreases (as in a Z-pinch). This scaling
provides ∆I/I = (α − 1)∆r/r = −0.25∆r/r, which is consistent
with the evolution seen in Fig. 14.

This slow increase in time of the electric current flowing
near the axis is a natural consequence of the increase of the
disk emf edisk as the outer disk regions achieve a steady state.
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Fig. 13. Snapshots of our reference simulation K2 at different times (given in Td units). From top to bottom, left to right: t1 = 551, t2 = 2.08 ×
103, t3 = 8.51 × 103, t4 = 1.99 × 104, t5 = 1.05 × 105, and t6 = 1.58 × 105. The background color is the logarithm of the density, black lines are the
magnetic surfaces, red lines the Alfvén (dotted) and FM (dashed) surfaces, and yellow curves are isocontours of the poloidal electric current.

Indeed, edisk '
∫ rmax

Rd
ΩKrBzdr increases with rmax, which is the

maximal radius in the disk that achieved a steady state. This
increase in the available current is expected to stop when no
further relevant emf is added. The available current is deter-
mined at the disk surface by the crossing of the Alfvén critical
point, because it is that point that fixes the available total spe-
cific angular momentum carried away. One can therefore esti-
mate the time where the current should level off as the time
when the outermost magnetic field line reached the Alfvén point.
Figure 14 shows that this is achieved approximatively around t6
with rmax ∼ 103, corresponding to a full orbital period at rmax

equal to t = 2πr3/2
max = 2 × 105 (we note that the time for the

flow ejected at rmax to reach the outer boundary is comparable).
After a time of a few 105 Td, our simulation has finally achieved
a global steady state.

4. Parameter dependence

In the previous section, we showed that our reference simula-
tion K2 behaves qualitatively like the self-similar analytical cal-
culations of Blandford & Payne (1982) and F97, with a refo-
cusing toward the axis and the formation of a recollimation
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Fig. 14. Time evolution of the cylindrical radius r measured at Z = 3500
of the magnetic surface anchored at ro = 3 (blue curve) and the electric
current I = rBφ (red) flowing within that surface for simulation K2.
The two vertical dashed lines correspond to t5 = 1.05 × 105 and t6 =
1.58 × 105.

Fig. 15. Jet parameter space λ(κ) at the final stage of our simulations
K1–K5 with α = 3/4. Each simulation is obtained for a unique mass
loading κ and gives rise to a distribution of the magnetic lever arm λwith
the radius: green, red, and blue dots correspond to anchoring radii ro =
5, 50, and 500, respectively. The solid curves are obtained for constant
values (indicated in the panel) of the initial magnetic field inclination
ξ′0 = Br/Bz at the disk surface.

shock. However, the presence of the axial spine breaks down the
self-similarity and introduces additional shocks localized at the
spine–jet interface.

To further understand the behavior of these shocks, we con-
ducted a parameter study in κ and α, the jet mass load and
the radial exponent of the disk magnetic flux, respectively. We
finally ran one simulation with the same JED parameters as in
our reference simulation K2, but with a rotating spine. All our
simulations are presented in Table 1.

4.1. Influence of the mass loading parameter κ

In this section, we present our simulations K1 to K5, obtained
with the same parameters as K2 except for the mass load κ

which is varied from κ = 0.05 to κ = 1. Our parameter range
in κ is slightly smaller than the one achieved by Blandford &
Payne (1982) which goes down to κ = 0.01. It can be seen in
Fig. 15, which represents the magnetic lever arm λ as a function
of the mass-loading parameter κ. Each simulation is obtained
for a unique value of κ but as the simulation is not strictly self-
similar, we obtain a range in λ: the larger the anchoring radius,
the larger the field line inclination at the disk surface and the
larger the magnetic lever arm λ. To ease the comparison with
Fig. 2 of Blandford & Payne (1982), for each simulation, we
computed the anchoring radius ro at which the field line inclina-
tion ξ′0 = Br/Bz at the disk surface is equal to 1.4, 1.5, and 1.65.
This allowed us to draw in our Fig. 15 iso-contours of ξ′0, which
are in agreement with the above expectations and analytical self-
similar calculations (see also Fig. 3 in F97).

All simulations achieve a steady-state and exhibit roughly
the same behavior as K2, as can be seen in Fig. 16. From top to
bottom, κ increases from 0.05 to 1, the left panels showing the
whole computational domain with the two critical surfaces in red
(A, dotted and FM dashed) and the right panels providing a close
up view around the shock-forming regions near the axis. Table 1
provides the value of several jet quantities: the spine mass-loss
rate stays around 10% of the jet mass-loss rate, despite the net
increase in Ṁjet (∝κ, factor 20 increase). Similarly, while the jet
power Pjet scales in κ, the spine power stays around 80% of the
jet power.

The first observation is that the altitude of the main recolli-
mation shock (the one merging with the FM surface) decreases
globally with κ. This is quantitatively shown in Fig. 17, where
Zshock moves from 2150 down to 700. The same evolution occurs
for the altitude Ztip where the main shock merges with the
FM surface. Globally, as κ increases, the whole jet structure
decreases toward the disk.

Such behavior is consistent with the self-similar calculations
obtained by F97. Indeed, as evidenced in his Fig. 6, the denser
the jet (larger κ), the sooner (smaller altitudes) recollimation
takes place. This can be understood qualitatively by the fact that
λ = 1 + q/κ, where q = |Bφ/Bz| is the magnetic shear at the
disk surface (F97). Now, as the mass load κ increases, the mag-
netic lever arm λmust decrease (see also Fig. 15). This translates
into magnetic surfaces that open less, a less efficient magneto-
centrifugal acceleration, and recollimation shocks that are not
only closer to the disk but also show a smaller compression rate
χ due to a smaller FM Mach number n.

However, the physical scales implied are very different.
Here, a factor 20 difference in κ leads to a decrease in Zshock
by a mere factor 3, with a minimum value of 700. In F97, the
mass-loading parameter κ ∼ ξ varies from 0.01 to 0.05 only (for
a constant disk aspect ratio, see his Fig. 3) but leads to variations
in recollimation altitudes that span six decades. Our lowest Zshock
obtained for κ = 1 is still much farther away than the minimum
height of ∼10 found for κ ∼ 0.05 in F97.

This discrepancy can of course be attributed to the very dif-
ferent injection properties. Indeed, our numerical simulations
assume a supersonic flow while the self-similar calculations
compute the disk structure and outflows are found to only be
super-SM (and still subsonic) at the disk surface. However,
our guess is that the huge difference in the shock position is
probably due to the existence of the spine, which breaks down
the self-similarity. Indeed, recollimation is due to the dominant
hoop stress, and while in our case all quantities are leveling off
on the axis, strictly self-similar solutions have an axial elec-
tric current that grows without limits. For instance, at a cylin-
drical distance r = 0.1 from the axis at the spine basis, our
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Fig. 16. Influence of the mass-loading parameter κ on the final stage of jets obtained with α = 3/4. The color background is the logarithm of the
FM Mach number n, black solid lines are field lines, yellow lines are isocontours of the electric current rBφ and the red dashed (resp. dotted) curve
is the FM (resp. Alfvén) critical surface. The left panels show the whole domain and the right panels a close-up view around the shock-formation
regions. In the left panel, the field lines anchoring radii are ro = 3; 15; 40; 80; 160; 320; 600; 1000; 1500. In the right panel, the field lines anchoring
radii are ro = 1.2; 2; 3; 4; 5; 7; 9; 11; 13; 15.

Bz remains comparable to the disk field, Bφ goes to zero, and
the normalized Bernoulli integral e has decreased by a factor
5 (see Fig. B.1). Self-similar solutions, on the contrary, have
fields and a Bernoulli integral increasing respectively by a factor
105/4 = 17.8 and 10. This suggests that the conditions assumed

on the axis most certainly affect the overall jet collimation prop-
erties. We return to this aspect later on by changing the spine
properties.

A second interesting aspect is the appearance of a second
ensemble of shocks arriving at higher altitudes, namely
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Fig. 17. Influence of κ (orange lines) and α (blue lines) on the altitude of
the main recollimation shock. This is done by measuring two altitudes
for each shock: its height at the axis (Zshock, solid lines) and the altitude
of its outer edge (Ztip, dashed lines). The scale for κ is indicated below,
while the scale for α is above.

Z > 3000 for κ = 0.5 and Z > 2000 for κ = 1. This second
group of shocks is also composed of two large recollimation
shocks separated by smaller ones. The distance (measured at the
axis) between the two large shocks is comparable to the width of
the first group of shocks. As discussed in Sect. 3.3, this hints to
the fact that each group is caused by the global jet recollimation
dynamics, which should be periodic in the Z-direction on a scale
HR. Looking at the simulation K4 with κ = 0.5, this would give
HR ∼ 1650, while the width of each group is around W ∼ 300
(the first group of shocks being located between 1150 and 1450,
and the second between 3100 and 3400). As long as no dissipa-
tion is introduced, such a periodic behavior should continue in a
box of infinite size.

4.2. Influence of the magnetic field distribution α

In this section, we vary the magnetic flux distribution exponent
α in our simulations A1 to A5, keeping all other parameters (see
Table 1) constant. A strict mathematical self-similarity links the
magnetic field distribution α with the disk density in such a way
that α = (12 + 8ξ)/16, where ξ is the disk ejection efficiency
and is related to the disk accretion rate Ṁa(r) ∝ rξ (Ferreira &
Pelletier 1995). As long as material is only outflowing from the
disk (namely ξ > 0) and jet power is only released from accretion
(namely ξ < 1, F97), this leads to the unavoidable constraint
12/16 < α < 20/16.

Only α = 12/16 can be compared to the cold jet solutions of
F97, assuming an ejection efficiency ξ < 0.1. Larger values of
α > 12/16 would require a disk ejection efficiency of ξ = 0.125
up to 0.5. These values are only achievable in analytical stud-
ies by introducing an additional heat deposition at the disk sur-
face (magneto-thermal flows, Casse & Ferreira 2000b) and/or
a much smaller magnetic field strength (Jacquemin-Ide et al.
2019). However, the physical processes required to get these
solutions are missing in our simulation setup. We nevertheless
vary α in order to allow a comparison with the self-similar jet

solutions found by Contopoulos & Lovelace (1994), who tested
the effects of α ranging from 0.5 to 1.02. We did not succeed
to numerically obtain steady-state solutions for α ≥ 1 for rea-
sons that are discussed below, and show only simulations with α
ranging from 10/16 = 0.625 to 15/16 = 0.937.

All our A1 to A5 simulations reach a steady state with the
same overall behavior as K2, namely the existence of two main
recollimation shocks within the computational domain, sepa-
rated by several smaller standing shocks located at the spine–
jet interface. This can be clearly seen in Fig. 18 where, on the
other hand, a trend with α can be observed. Indeed, the radial
extension of the shocks decreases with α. This can also be seen
in Fig. 17 which shows that the altitude Ztip of the main recol-
limation shock decreases with α, while its altitude Zshock at the
axis barely changes. For simulations A1 (α = 10/16) and A2
(α = 11/16), the main recollimation shock ends out of the box,
and therefore Ztip cannot be defined. However, the value of Zshock
remains similar (see Table 1). This is a geometrical effect due
to the fact that, as α increases, the magnetic field configuration
goes from a highly inclined magnetic configuration (α = 0 cor-
responds to a monopole) to one that is much less inclined (α = 2
is a purely vertical field). This can be seen in the shape of the
magnetic field lines (black solid lines) in Fig. 18. This geometri-
cal effect translates into a smaller incidence angle near the axis
and therefore to weaker shocks (the incidence becomes normal
and n⊥ decreases to unity).

For α = 10/16 and 11/16, the shocks still exist but the MHD
characteristics are much more vertical than in K2. A larger box
would probably be necessary to recover the K2 behavior. The
opposite trend can be seen for α = 14/16, with less vertical
MHD characteristics allowing now the second main recollima-
tion shock to merge with the FM surface within the domain.

Table 1 also shows that as α increases, the last radius on the
disk giving rise to a super-FM flow increases and the colatitudes
(measured at the outer boundary) θext

FM and θext
A of the critical FM

and A surfaces decrease. These results are a natural consequence
of the magnetic field distribution becoming more vertical as α
increases. As the jet mass loss Ṁjet and jet power Pjet are com-
puted up to r0,FM which increases with α, Ṁjet and Pjet increase
with α. Still, the mass loss increases even when computing up to
a fixed radius. Indeed, the density decreases less with an increas-
ing α (ρ ∝ r2α−3) and the outer disk regions contribute more
to the mass flux and jet power. Moreover, as the distribution
in density is flatter with an increasing α, it is only natural that
Ṁspine/Ṁjet and Pspine/Pjet decrease when α increases.

In summary, we find that the altitude of the shocks
barely changes with α, which is in strong contrast with
Contopoulos & Lovelace (1994). Indeed, their Table 1 shows
that as α increases from 0.5 to a critical value 0.856, their self-
similar jet becomes super-FM and undergoes a recollimation at
a distance that increases by several decades (as in F97). As dis-
cussed above, we believe that this discrepancy is due to our non-
strict self-similar scaling (which forbids the unlimited growth of
the inner electric current and the subsequential Z-pinch in self-
similar solutions) and the presence of the spine. Contopoulos &
Lovelace (1994) also report that their solutions with α > 0.856
remain sub-FM, while we clearly achieve super-FM flows up to
α = 0.937 = 15/16. This is again probably a difference in our jet
radial balance, leading to a slightly different jet acceleration effi-
ciency. Finally, their solutions with α = 1, 1.01, and 1.02 remain
sub-FM but evolve through a series of radial oscillations at log-
arithmically equal distances in Z.

Our simulation A5 is the simulation with the largest value
α = 15/16, of close to unity. Although the final integration time
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Fig. 18. Influence of the magnetic field dis-
tribution α on the final stage of jets obtained
with κ = 0.1. We use the same notations,
colors, and field lines anchoring radii as in
Fig. 13.
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tend is quite comparable with the other simulations, its appear-
ance clearly shows that the global configuration is still far from
achieving a steady state like K2. This can be seen in Fig. 18, in
the shape of the critical surfaces but also on the isocontours of
the poloidal electric circuit (yellow curves) that are still strug-
gling to find their final state. This is normal and points to a
numerical difficulty in computing MHD codes when the mag-
netic configuration is such that α ≥ 1.

Indeed, it has been argued above that for self-similar bound-
ary conditions, the jet transverse balance imposes a toroidal mag-
netic field scaling with the vertical magnetic field. This leads to
an electric current at the disk surface behaving as I = rBφ ∝ rα−1.
Magnetic configurations with α < 1 correspond to a poloidal
current density leaving the disk surface and closing along or near
the spine (where it flows back to the disk), whereas configura-
tions with α > 1 correspond to an inward poloidal current den-
sity, with current closure being done only at the outskirts of the
outflow (F97). As div J = 0 in ideal MHD, all electric circuits
must be closed. Let us define a radius in the disk rI such that for
r < rI , the electric current flows down into the disk whereas it
flows out of it for r > rI . For α < 1, rI is always larger but close
to Rd implying very short timescales. As discussed in Sect. 3.6,
as time is evolved, the outer disk regions provide more current
that struggles to reach the innermost disk radius. But a global
radial balance can be achieved consistently with the electric cur-
rent closure condition because the local time near rI is small.
On the contrary, configurations with α > 1 have rI that is con-
stantly increasing in time (as t2/3), leading to an electric circuit
that freezes in time and therefore to a transverse MHD balance
that takes a much longer time to achieve steady state. We observe
this behavior for all values of α > 1 and none of these simula-
tions has achieved a steady state.

The limiting value α = 1 (close to our A5 simulation) would
correspond to rI = Rd and absolutely no electric current flow-
ing out of the disk until some outer radius. Current closure could
only be done through the spine and the outer jet interface with
the ambient medium. But then, no magnetic acceleration would
be possible as no electric current could be used along the mag-
netic surfaces. This would correspond to an exact force-free field
configuration fully determined by the chosen boundary condi-
tions. To compute such a situation, boundary conditions must
be designed where the jet launching region has a finite extent.
However, we doubt that the outcome would be a force-free field
unless explicitly enforced. This is beyond the scope of this paper.

4.3. Influence of a rotating central object

In this section, we do not intend to fully explore the physical
parameters of the spine but instead wish to probe whether the
spine, despite its small spatial extent, has indeed a profound
influence on the overall jet dynamics. All simulations K1-K5
and A1-A5 were done with the same nonrotating central object
in order to minimize its emf and numerically follow the outcome
of a jet emitted from an outer self-similar disk (see Sect. 2.4.2).
Our choice of parameters gives rise to a spine carrying typically
10% of the mass flux, and therefore providing only a small con-
tribution to the overall outflow. Nevertheless, this spine carries a
large fraction of the emitted power, even superior to that of the
disk for the simulation A1. The spine plays an important role
in introducing extra standing shocks at its interface with the jet,
but is probably also determining the altitude where the first large
recollimation shock occurs. Indeed, as discussed in the previ-
ous sections, the amount of electric current that is flowing along
the innermost axial regions (along the spine and the inner jet) is

Fig. 19. Snapshot at tend of our SP simulation with a rotating spine,
α = 3/4 and κ = 0.1. We use the same color coding as in Fig. 2. The
magnetic field lines (black solid lines) are anchored at the same disk
radii.

what determines the strength of the Z-pinch acting upon the jet
and thereby the altitude Zshock.

In order to probe this idea, we ran another simulation with
a rotating object (simulation SP in Table 1). We chose an object
rotating at the same angular velocity as the innermost disk radius
Rd, namely Ωa = ΩKd. This is for instance representative of a
star–disk interaction where the disk truncation radius is located
at the co-rotation radius. By doing so, the emf due to the central
object becomes non-negligible and we expect a stronger poloidal
electric current. However, care must be taken as enhancing the
hoop stress may also lead to an overwhelming radial pinch. To
prevent this and get somewhat closer to the self-similar condi-
tions, we also increase the value of the Bernoulli integral on the
axis and use ea = 10 (ea = 2 for the other simulations). We
note that the Bernoulli invariant from the innermost disk region
is ed ' λd − 3/2 ∼ 10. This translates mostly into a thermal
pressure that is five times larger than previously. Thus, our new
conditions for the spine provide a rotation and a specific energy
that are only comparable to those at the inner jet, not much larger
as in a self-similar situation.

Figure 19 shows the final outcome of this new simulation. It
achieves a global steady state with the same features as in our
reference simulation K2. However, the shocks are, as expected,
localized at lower altitudes, allowing a second set of large recol-
limation shocks to appear near Z ∼ 3700. The first large recol-
limation shock appears at Zshock = 1300, which is significantly
smaller than Zshock = 1850 obtained for a nonrotating central
object. This result confirms the role of the central object in shap-
ing, through its spine, the collimation properties of the jets emit-
ted by the surrounding disk. This is very promising and deserves
further investigation.

5. Discussion

5.1. Caveats

This paper provides some novel information on the collimation
of jets emitted from self-similar magnetized disks. However, we
would like the reader to pay attention to several caveats:

As we tried to replicate a Blandford & Payne process, we
mostly explored the ejection conditions on the disk and not on
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the source, with the exception of the rotation (see Sect. 4.3). For
instance, we kept a value of sonic mach number MS = 10 on
the whole ejection zone, thus only creating cold jets. It would
be interesting to provide a real exploration of the spine param-
eters to better understand the role of the central object in the
collimation.

The shocks displayed in our simulations are rather weak
(χ ∼ 2 near the axis, χ ∼ 1.3 in the jet). This is probably
due to our isentropic scheme, but as the simulations only reach
small values of n, the compression rates are intrinsically low (see
Appendix C). Moreover, as shown in Eq. (C.4) the impact of
those shocks on jet angular velocity in YSOs is probably weak,
at least for jets achieving m2 � 1.

Our adiabatic solutions do not allow energy dissipation, and
so the shocks should go on, one above the other, with each shock
producing its own local accelerating circuit. This is showcased
by the presence of a second subset of shocks in simulations K4,
K5 (see Fig. 16), and SP (see Fig. 19). Thus, this setup does
not allow the presence of a “true” asymptotic circuit that would
extend up to infinity on the jet axis.

These simulations are highly dependent on the numerical
setup. In order to capture the expected shocks, we used an HLLD
solver, switching to a more diffusive HLL solver and MINMOD
linear spatial reconstruction in regions of extremely low density
and very high Alfvén speed. For the same reason, we used a
higher resolution in θ around the axis to resolve the shocks. Still,
we were only able to reach very long timescales thanks to a novel
method that boosts the numerical integration (see Appendix A).

5.2. Comparison with other numerical works

In this section, we only compare our findings with previous
2D platform simulations of nonrelativistic jets. Indeed, relativis-
tic jets develop an electric force that deeply affects the asymp-
totic collimation, forbidding a direct comparison with our non-
relativistic setup. We also disregard 3D jet simulations as they
usually introduce a whole new phenomenology related to jet
instabilities that are not present in our work. Making 3D sim-
ulations of our jets is planned for future work.

Platform simulations of jets have a great many degrees of
freedom and it is therefore very difficult to determine the exact
generic results on jet collimation that can be derived from them.
Even if the whole injection domain is chosen to be sub-SM,
three free distributions must be chosen at the boundary (assumed
to be the disk surface), usually Bz(r), ρ(r), and uz(r). The disk
being assumed to be Keplerian, most previous works used field
lines rotating at Keplerian speeds and uz = VinjVK , where Vinj is
a small dimensionless number. We use the following notations
Bz ∝ rα−2 and ρ ∝ r−αρ leading to

κ =
Vinj

µ2 = κdrακ , µ =
VAz

VK
= µdrαµ , (20)

with ακ = −2αµ = −2α + αρ + 3 and the cylindrical radius is
normalized to the inner radius Rd. For a given magnetic field dis-
tribution, the way the mass is injected in the outflow (or how the
magnetic energy must vary within the disk) is an important quan-
tity allowing to compare the various jet models. Our injection
conditions (Eq. (8)) have αρ = 2α−3, and therefore αµ = ακ = 0,
which is in agreement with self-similar studies (BP82; F97). For
our explored range in α < 1, our jets are always dominated by
the mass flux emitted from the innermost disk regions. As dis-
cussed previously, the spatial and temporal scales are also very
important in order to obtain recollimation shocks. We recall that

our spherical domain goes up to Rext = 5650Rd covered with
266 × 1408 zones and lasts T f & 105 Td.

The box size and timescales achieved in the pioneering
works of Ouyed & Pudritz (1997a,b, 1999) were of course quite
small, with a cylindrical domain (z, r) = (80, 20) in Rd units
and a resolution of (500, 200) cells, with the simulations last-
ing up to T f ∼ 500. These authors studied mostly α = 1 and
α = 2 magnetic configurations, assuming αρ = 3/2, µd = 0.01
and with no injected spine. Their jets have therefore a steeply
decreasing κ (or increasing µ) with ακ = 3/2−2α, providing
situations very different from ours. The authors argued that the
nature of the outflow (steady or not) is mostly determined by the
mass load κ, with unsteady jets containing shocks and associated
knots arising at small values of κd ∼ 10−2. While these shocks
are indeed due to jet material being focused toward the axis,
Ouyed & Pudritz (1997a,b, 1999) did not report any steady-state
situation. Our own simulations show that their timescales were
still too short to warrant a transverse jet balance, especially for
α ≥ 1. Moreover, it remains unclear as to whether these knots
were indeed a consequence of a small mass load κd or due to
the boundary conditions used at the jet basis, which were too
numerous and therefore over-determined the outflow dynamics
(see discussions in e.g., Bogovalov 1997; Krasnopolsky et al.
1999; Ramsey & Clarke 2019).

Ustyugova et al. (1999) showed that if the simulation region
is elongated in the z-direction, then Mach cones may be partially
directed inside the domain, leading to an artificial influence (usu-
ally collimation) on the flow. Using a domain (z, r) = (200, 170)
with 100×100 cells, these authors showed that this effect can be
reduced with a square or spherical grid.

Pudritz et al. (2006) extended their work by exploring a
larger range in α = 1, 3/4, 1/2, 1/4, using κ = 5r3/2−2α, µd =
0.01 and no spine. These latter authors argued that the collima-
tion of a jet depends on its radial current distribution, which in
turn is prescribed by the mass load. Simulations with α = 1, 3/4
would collimate to cylinders due to a decreasing κ leading to
a large Bφ, whereas simulations with α = 1/2, 1/4 with an
increasing κ would produce a smaller Bφ and jets closer to wide-
range outflows with parabolic collimation. However, our sim-
ulations show that the physical scales needed to observe the
correct asymptotic state are much larger than those achieved in
these early simulations. Moreover, it is indeed correct that self-
collimation depends on Bφ, which, in a magnetic jet that carries
away the disk angular momentum, namely −rBφ/η ∝ Ωr2, varies
as Bφ ∝ κ(r)Bz at the disk surface. In their case, this expression
leads to Bφ ∝ r−1/2−α, which is indeed more steeply decreas-
ing with α. (However, our guess is that the collimation observed
within the box of Pudritz et al. 2006 is mostly a consequence of
the potential magnetic field configuration used as the initial con-
dition, as also illustrated in Fig. 8.) Therefore, the smaller α, the
wider (less collimated at a fixed distance) the jet.

The influence of the magnetic field profile α on the asymp-
totic jet collimation has also been investigated: Fendt (2006)
performed 40 simulations in a larger cylindrical grid (z, r) =
(300, 150) with 256 × 256 cells, with the simulations lasting up
to T f ∼ 300 to 5 103 (for those achieving a steady state over at
least 50% of the grid). He explored a wide range in αρ from 0.3
to 2 and in α from 0.5 to 1.8, using the same boundary conditions
as Ouyed & Pudritz (1997b), with Vinj = 10−3, κd = 5, no spine,
and µd varying between 0.1 and 2.67. Fendt (2006) confirmed
that the degree of collimation is decreasing for a decreasing α
regardless of αρ, in agreement with our suspicion that the over-
all MHD collimation trivially follows the potential field config-
uration (see also Sect. 3.2). For α > 1.6, no steady-state jet is
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actually found, with a wavy radial pattern evolving along the
outflow. This is consistent with our finding that for α ≥ 1
the timescales for reaching stationarity become overwhelmingly
long and also with the existence of radially oscillating, sub-
FM analytical solutions for α ≥ 1 (Contopoulos & Lovelace
1994). Fendt (2006) also reports a degree of jet collimation
increasing with the jet magnetization exponent, namely with
µσ = −ακ−3/2 (see his Eq. 10). Now, of the 40 simulations, only
6 have ακ = αµ = 0 and 8 have ακ > 0, meaning that most simu-
lations describe a mass loading decreasing with the radius. None
of the simulations show standing recollimation shocks, even in
the BP82 case obtained with µd = 0.177 (we use µd = 1). Putting
aside this difference, our Fig. 12 shows that around their final
time T f = 5000, we observed shocks only around Z ∼ 1900, far
beyond their computational domain.

Krasnopolsky et al. (1999) used a cylindrical grid (z, r) =
(80, 40) with 256 × 128 cells, with the simulations lasting up
to T f ∼ 170, introducing a ballistic axial flow below Rd (the
spine), injected close to the escape speed and surrounded by a
disk wind. These authors used the correct number of boundary
conditions and, by testing the effects of adjusting the size of the
box, they showed the drastic importance of the amount of mag-
netic flux becoming super-A within the box on the overall flow
collimation. They studied mostly α = 1/2 and 3/4 with µd = 4
and rather flat density distributions leading to ακ > 0, from 2
to 3/2. The authors do not report any time-dependent behavior
seen in previous studies, which they attribute to both the exis-
tence of their sub-FM inner spine (where magneto-centrifugal
acceleration is inefficient) and the correct treatment of boundary
conditions. This latter work was extended by Krasnopolsky et al.
(2003) on a much larger box (z, r) = (103, 103) with 190 × 210
zones, with the simulations lasting an unspecified time T f . They
only studied the case α = 1/2, with ejection from a finite zone
ro = Rd and ro = 10Rd, yielding αρ = 1 (ακ = 1) or αρ = 3
(ακ = −1). The authors found that the collimation degree of
this finite jet is improved for a steeper density profile, namely
with a decreasing mass load with the radius, as discussed above.
Krasnopolsky et al. (2003) report neither recollimation toward
the jet axis nor radial oscillations, and attributed this behavior to
their nonself-similar scaling. Our own results show instead that
recollimation should be seen farther out (beyond their box) and
that radial oscillations are expected only for α > 1.

Using the same grid and numerical setup as Krasnopolsky
et al. (2003), Anderson et al. (2005) studied the effect of κd on
the collimation of a cold BP82 jet model with α = 3/4 and
αρ = 3/2 (thus ακ = 0). These authors varied κd from 6.3 10−3

to 19 assuming that ejection takes place only from ro = Rd and
ro = 10 Rd (but enforcing Bz to zero at the edge of the launching
region), while we assumed ejection from the whole disk and var-
ied κd only from 5 × 10−2 to 1. Despite the truncation due to the
limited ejection range and the (almost) purely radial magnetic
field at the edge of the launching region, Anderson et al. (2005)
recover the same results as in steady-state jet theory (FP97):
jets become increasingly open as κd decreases (see discussion
in Sect. 4.1). Anderson et al. (2005) do not report any recolli-
mation shock (although wiggles can be seen in their Fig. 4) but
again, our shocks fall below Z = 1000 (within their box) only for
κd ∼ 1 (see Fig. 17). We conclude that their box was too small
to observe any standing recollimation shock. The authors report
the inability to reach steady state (the timescale T f is unspeci-
fied) for κd larger than unity, when field lines start to oscillate
and produce ripples that propagate outward. This behavior is
consistent with analytical studies and is related to the capabil-
ity to produce super-A flows when they are heavily loaded (or

have a weak magnetic field). Indeed, magnetically driven cold
flows are possible only up to κ ∼ 1, leading to a magnetic lever
arm λ ∼ 2. For larger mass loads (and smaller λ), gravity plays
an important role, with the Alfvén surface getting closer to the
disk, requiring the field lines to be bent by much more than the
fiducial 30◦ at the disk surface4 (see Fig. 4 and discussion around
the Grad-Shafranov equation in Jacquemin-Ide et al. 2019).

The largest axisymmetric simulations have been provided by
Ramsey & Clarke (2011, 2019), using nine levels of AMR in a
cylindrical grid (z, r) = (8×104, 5×103)Rd with simulations last-
ing up to T f ∼ 6× 104. These authors computed the propagation
and evolution of eight jets up to observable scales, defined with
varying mass loads κd from 5 × 10−2 to 32 and αρ = 3/2, α = 1
(thus a decreasing mass load with ακ = −1/2). In the simula-
tions of these latter authors, mass is injected with Vinj = 10−3

and there is no injected spine as in Ouyed & Pudritz (1997a),
although a spine naturally emerges. In all simulations, Ramsey
& Clarke (2011, 2019) observe that regions beyond ro ∼ 10 Rd
fail to displace the hot atmosphere and that the outflow is stifled,
despite the decrease in κ. This is actually consistent with our pre-
vious discussion for simulations with α ≥ 1, which take a much
longer timescale to reach steady state. Nevertheless, as the inner
parts of the outflow evolve on much shorter timescales, some
quasi-stationary situation can settle (see their Sect. 5.3). With
no surprise, this is the case for small mass loads, while knots
appear for κd = 0.5 (simulation E) and are recurrent (quasi-
periodic) for κd = 2. These knots are not to be compared with
our standing recollimation shocks, as none of the MHD invari-
ants are constant along field lines passing through them. They
are made of plasmoids launched from Rd . ro . 2Rd, where gas
is both dense and hot. The knot formation mechanism is here
directly related to the jet-launching process from this innermost
disk region. Indeed, in this region, the field line bending is insuf-
ficient to drive the massive injected material, until a sufficiently
strong toroidal field builds up and lifts the matter, in agreement
with steady-state theory of massive outflows (F97; Jacquemin-
Ide et al. 2019). The regularity of knot spacing is indicative of
a simple oscillator related to the necessary build up of a strong
toroidal field. These plasmoids are magnetically confined by the
surrounding poloidal magnetic field, follow the path of the jet,
and eventually merge together. For larger mass loads (κd = 8
and 32, simulations G and H), the outflows are fully unsteady
while keeping their global structure (probably because of their
2D nature, as destroying instabilities such as kink or Kelvin-
Helmholtz require 3D, as argued by the authors).

To our knowledge, no previous jet simulation has shown
the existence of standing recollimation shocks, either because
the computational domain was too small and/or the simulation
timescales were too short. These limitations are even worse of
course for simulations that do take into account the disk physics,
as they must also struggle to follow the disk and the mass-
loading process.

The first of these simulations computed an accretion–
ejection configuration with α = 3/4 and αρ = 3/2 (the BP82
case) within a cylindrical grid (z, r) = (80, 40) on a time T f =
251 only (Casse & Keppens 2002, 2004). On these timescales,
the mass-loading process is computed, leading to the inside-
out establishment of self-similar conditions with ακ = 0. Fur-
ther simulations, carried out with the same initial configura-
tion but exploring various disk parameters, were computed on
slightly extended scales, a grid (z, r) = (120, 40) on a timescale

4 This is why we could not reach steady-state solutions with κ > 1 with
our setup.
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of T f = 400 (Zanni et al. 2007; Tzeferacos et al. 2009, 2013)
and a grid (z, r) = (180, 50) on a timescale of T f = 5.6 × 103

(Sheikhnezami et al. 2012). As most of these works were focused
on the disk physics and less on the jet dynamics, they provided
little information about the latter. The simulations of Stepanovs
& Fendt (2016) were done on a spherical grid up to Rext = 1500
with (NR × Nθ) = (600 × 128) zones and up to T f = 104, for
the same BP82 initial configuration. Such scales would be rel-
evant for the appearance of recollimation shocks but they only
show close-up views below R = 30 and focus instead on the
accrection–ejection correlations. However, the long timescales
allow us to see a radial redistribution of both the vertical mag-
netic field and the disk density (as both evolve on accretion
timescales; Jacquemin-Ide et al. 2019), thereby modifying the
initial strict self-similar conditions.

The time evolution of the disk magnetic field distribution has
been reported previously (Murphy et al. 2009). These simula-
tions were done in a cylindrical grid (z, r) = (120, 40) up to a
time T f ' 6 × 103, and using α = 1/4 with αρ = 3/2. Such
an initial magnetic field distribution leads to a magnetic energy
density on the disk midplane that decreases very rapidly (∝r−1),
meaning that a super-FM ejection (with proper MHD invariants)
only takes place up to a certain radius ro ∼ 5 (Murphy et al.
2010). This latter study focused on this ejection from a limited
zone within the disk and little was mentioned about the jets.
However, we report that on the long timescale of the simula-
tion, the magnetic field is seen to slowly evolve within the disk,
leading to some readjustments also in the jet. How such a mod-
ification affects the jet transverse balance and possible stand-
ing recollimation shocks is an open issue that deserves further
investigation.

We note that standing recollimation shocks have already
been discussed in steady-state 2D jet simulations built upon ana-
lytical self-similar solutions. In these works, a cylindrical box is
used, which starts at a zo well above the disk (say z from zo = 10
to 210 and r from 0 to 100 in units of Rd). This allows the whole
domain to be filled with either only a self-similar BP82 jet model
(Gracia et al. 2006; Stute et al. 2008) or a combination of an axial
(meridionally self-similar) stellar wind surrounded by a BP82
jet model (Matsakos et al. 2008, 2009). The numerical proce-
dure, which evolves the MHD equations over time for a set of
boundary conditions, allows a stationary solution to be rapidly
obtained on timescales of T f ∼ 40 to 103. A weak recollima-
tion shock is always found between the axial flow and the BP82
jet, which fulfills most properties discussed in our paper. How-
ever, in strong contrast with our own work, the existence of this
shock is unavoidable in these works and is directly imposed by
the boundary conditions. Indeed, the outflow is already super-
FM at the injection altitude zo for all radii below ro ∼ 6 (see
for instance Fig. 1 in Matsakos et al. 2008), while field lines are
already being focused toward the axis.

5.3. Astrophysical consequences

In this paper, we showcase one mechanism enabling the creation
of a recollimating jet and its subsequent shocks. There are other
models explaining the creation of such shocks. They could be
triggered for instance by a sudden mismatch between the jet and
the ambient medium pressure. Studying FRII jets such as those
from the radio galaxy Cygnus A, Komissarov & Falle (1998)
proposed that the jet confinement and its consequential shocks
are caused by the thermal pressure of an external cocoon. For the
case of FRI jets, in Perucho & Martí (2007) the jet expands until

it becomes under-pressured with respect to the ambient medium,
and then recollimates and generates shocks, unless a turbulent
mixing layer at its interface with the ambient medium forbids
its formation (Perucho 2020). In any case, such shocks happen
much farther away than in our case and depend critically on the
ambient pressure distribution.

On the contrary, the jets in our simulations are intrinsically
collimated by the self-induced hoop stress (see Fig. 10). As
shown in FP97 for self-similar cold models and proven here
in full 2D time-dependent simulations, this force will lead the
cold jets toward the axis, leading to the formation of standing
recollimation shocks. Such a mechanism should therefore apply
regardless of the external medium and around various astrophys-
ical objects.

Extragalactic jets imaged by VLBI display knots of
enhanced emission that could be associated with shocks (as they
play an important role for the production of nonthermal emis-
sion). While most of these features are moving, some of them
appear stationary (Lister et al. 2009, 2013; Doi et al. 2018 and
Boccardi et al. 2017 for a review). The closely studied M87
jet is a particularly interesting case. It contains several moving
and stationary bright features near the HST-1 complex (Asada
& Nakamura 2012; Walker et al. 2018; Park et al. 2019), whose
origin may be due to pressure imbalance when the jet reaches
the Bondi radius. This distance is actually larger than the scales
reached by our simulations. However, these are Newtonian and
it is unclear whether or not relativistic effects (in particular the
decollimating force due to the electric field) would push the rec-
ollimation scale farther out. In any case, we note that our nonrel-
ativistic simulations provide shocks that are located on the same
scale as the closest features in the M87 jet (see Fig. 2 of Asada
& Nakamura 2012).

Protostellar jets also present some interesting features along
the flow usually interpreted as being bow shocks, as in HH212
(Lee et al. 2017) or HH30 (Louvet et al. 2018). Their origin
remains highly debated, either instabilities triggered during jet
propagation or variability induced by a time-dependent jet pro-
duction mechanism (as advocated for instance in HH212 by the
remarkable jet–counter-jet symmetry; see Tabone et al. 2018).
However, we suspect that whenever a jet undergoes an MHD rec-
ollimation shock that refracts the jet away from the axis, more
shocks are to be expected downstream (and probably affected
by the external pressure distribution). MHD recollimation may
therefore provide an intrinsic means to trigger jet variability on
observable scales. Stationary emission features are sometimes
indeed detected, as in HH154 (Bonito et al. 2011). These fea-
tures are located from a few tens to a few hundreds of astronom-
ical units from the source, a distance comparable to the altitude
of the first standing recollimation MHD shock. This is worthy of
further investigation.

6. Conclusion

We present axisymmetric simulations of nonrelativistic MHD
jets launched from a Keplerian platform. These are the first to
show the formation of standing recollimation shocks, at large
distances from the source. These recollimation shocks are intrin-
sic to the MHD collimation process and have been proposed as
a natural outcome of self-similar jet-launching conditions (F97;
Polko et al. 2010). Because they were never seen in previous
MHD simulations of jets, the suspicion grew that recollimation
would be a bias due to the self-similar ansatz. It turns out that the
physical scales required to capture these shocks are much larger
than those used in previous works. Using unprecedentedly large
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space and temporal scales allowed us to firmly demonstrate the
existence of such internal standing shocks and thereby bridge the
gap between analytical and numerical approaches.

We analyzed the conditions of formation of these recollima-
tion shocks and show that they qualitatively follow the behavior
demonstrated in analytical studies, namely that they get closer
to the source as the mass load increases. We also confirm that
the magnetic field distribution in the disk (Bz ∝ rα−2) is the
key quantity shaping the asymptotic jet collimation. For our self-
similar ejection setup, this MHD collimation closely follows the
trend satisfied by the potential field: the larger the α the stronger
the collimation. However, no steady-state solution is obtained for
α ≥ 1, because of the difficulty in establishing a stationary self-
consistent poloidal electric circuit along the outer jet regions.
As the magnetic field distribution is very likely to evolve on the
accretion time scale, we expect jet signatures to vary as well (see
e.g., discussion in Barnier et al. 2022).

Despite their qualitative agreement with analytical studies,
our results reveal an undeniable impact of the central axial flow
on the jet asymptotics. This inner spine is not related to the Kep-
lerian disk but instead to the central object and its interaction
with the surrounding disk. Indeed, the spine carries a poloidal
electric current responsible for the innermost jet collimation.
However, it may also introduce extra localized spine–jet inter-
actions, leading potentially to disruptive instabilities (like kink
and/or Kelvin-Helmholtz) or, on the contrary, to global jet sta-
bilization in 3D. Going to 3D is therefore necessary in order to
assess the role of the inner spine and the possible persistence of
recollimation shocks. In any case, our results confirm the role of
the central object in shaping, through its spine, the collimation
properties of the jets emitted by the surrounding disk. This is a
very interesting topic that merits further investigation.

These internal recollimation shocks introduce several inter-
esting features: (i) an enhanced emission likely seen as stationary
knots in astrophysical jets; (ii) a sudden decrease in the rotation
rate of the ejected material, and (iii) a possible electric decou-
pling between the pre-shock and the post-shock regions. This is
of especially great interest as these shocks occur at observable
distances, typically ∼150−200 au in the case of a YSO. How-
ever, our setup also assumes ejection up to several hundreds of
astronomical units, which is clearly inconsistent with derived jet
kinematics (see e.g., Ferreira et al. 2006; Tabone et al. 2020 and
references therein). Simulations with ejection from only a finite
zone within the disk (the JED) must therefore be carried out in
order to verify whether MHD recollimation shocks are indeed
maintained. This is a work in progress.
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Appendix A: Evolution on long timescales

In numerical simulations, the time increment is fixed by the–
Friedrichs–Lewy condition ∆t < ∆x/Cmax, where Cmax is the
maximal wave speed in the cell (in our case u + vFM) and ∆x is
the cell size. In a standard simulation, the time increment of all
cells is chosen by taking the absolute minimum of all the time
increments in the full computational domain. In our simulations,
this time step is set by the smallest cells around the inner spher-
ical boundary at Rd, which also happen to have the strongest
field and the highest Alfvén speed. However, these cells near the
source are also the ones that converge the fastest to a station-
ary solution. Thus, the cells that we consider are converging to a
steady state (meaning the relative variation of the density in one
integration step is smaller than an arbitrarily small parameter)
and are not used to determine the time increment of the cells that
are still evolving in time. The time increment used to evolve the
evolving cells is computed by taking a minimum over only the
cells that have not converged yet. The cells that have converged
to a steady state are still integrated in time using their own local
time increment so as to ensure the stability of the integration
and to be able to capture any perturbation that could possibly
alter their steady condition. As the cells that converge the fastest
are those characterized by the shortest time increment, the time
increments used to evolve the cells that are still evolving in time
and have not converged yet to a steady state become larger and
larger.

It is important to point out that the stationary solutions
obtained with this time boost are also a solution of the standard
nonaccelerated algorithm.

Figure A.1 shows the gain in computing time obtained thanks
to the time boost. The acceleration factor, defined as the ratio
between the physical time reached using the time boost and the
physical time that would have been achieved using the standard
CFL condition, is plotted versus the progressive numbering of
the outputted files.

Without the acceleration due to our handling of the CFL con-
dition, the time interval between two outputs would have been
constant, and the physical time of the solution would have been
proportional to the output number. Any increase in the accelera-
tion factor means that another batch of cells has converged. This
means the time increment of the cells that are still evolving in
time becomes larger, thus increasing the timescales reached.

This increase is clearly visible after the 300th output. Using
the output number as a proxy for the computational cost of a
simulation, this figure clearly shows that, at the end of the inte-
gration, the time boost enables us to reach timescales at least
two or three orders of magnitude larger than using a standard
CFL condition, without increasing the computational cost of the
simulation. Analogously, without employing the time boost, we
would have required two or three orders of magnitude more CPU
hours to reach the same timescales. Our approach enabled us
to produce simulations that would have consumed much more
computing time otherwise. The reference simulation K2 con-
sumed 725 CPU hours, but without the time boost it would
have required almost two million CPU hours. This enabled us
to work on simply 64 processors kindly provided by GRICAD
(Grenoble Alpes Recherche - Infrastructure de Calcul Intensif
et de Données).

For the evolution of the acceleration factor with the mass
load, we can see in Table 1 that the simulations with κ closest to
that of Blandford & Payne (1982) converge the fastest, reaching
larger timescales at the end of the computation. Nevertheless, all
seem to reach comparable convergence speeds: in Figure A.1 we

Fig. A.1. Evolution of the acceleration for the simulations K2, K5, and
A5.

see that the simulation K5 reaches an acceleration factor simi-
lar to that of K2 at the final output. For the evolution with the
magnetic field, we can clearly see that the higher the α and thus
the flatter the profile of the vertical magnetic field, the slower
the simulation converges. For higher values of α, the jet is ini-
tially more collimated as Br/Bz is higher on the disk. Therefore,
the field lines further on the disk have a higher impact, retard-
ing the global convergence. That is why the simulation A5 with
α = 15/16 has not yet converged. As an instability develops,
some cells that were previously stable become unstable, hence
the decrease in acceleration.

Appendix B: Boundary conditions

The plots represented in Figure B.1 illustrate the injection
boundary conditions we have chosen for the reference simula-
tion K2. The Bernouillli invariant E, the poloidal magnetic field
BΦ, the vertical magnetic field Bz, the mass to magnetic flux
ratio η = µ0ρvp/Bp, the rotation speed of the magnetic surfaces
Ω? = Ω−ηBΦ/(µ0ρr), the speed of sound Cs =

√
γP/ρ, and ver-

tical Alfvénic speed VAz = Bz/
√
µ0ρ are plotted on the first cell

over the injection boundary. The toroidal magnetic field goes to
zero on the axis for symmetry reasons, and |BΦ/Bz| & 1 on the
disk : The JED magnetic field is weakly toroidal. The launching
conditions are very cold as VAz/Cs ∼ 102 on both the source and
the disk.

The reader may observe the power-law dependency with the
magnetic flux on the whole disk (Ψ > 10, after the black vertical
line) for all parameters but the electric current. This is directly
induced by the self-similar ansatz. However, the torroidal mag-
netic field BΦ breaks the power-law dependency and shows a
swift decrease for Ψ > 2.106. Of all eight variables, only BR
and BΦ are free at the injection boundary (see Equation (8)), and
need to cross a characteristic surface to be fixed. For the toroidal
current, it is the Alfvénic surface. As all magnetic surfaces over
Ψ & 109 never cross the Alfvénic surface, the current can never
be fixed. Thus, the simulation cannot ever be stationary in this
region.

As the disk is a self-similar jet-emitting disk, all dimension-
less parameters are assumed to be independent of the radius
(Blandford & Payne (1982)). All these parameters are regrouped
in section 2.4.
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Fig. B.1. Conditions on the lowermost cells of the reference simula-
tion K2. Here all parameters are traced along the first cell above the
lower boundary : R = 1 and θ ∈ [0; π/2] on the source and then
θ = π/2 and R ∈ [0; Rext] on the disk. Shown are the Bernouilli invari-
ant E, the toroidal and vertical magnetic field BΦ and Bz, the mass to
magnetic flux ratio η, the rotation speed of magnetic surfaces Ω∗, the
speed of sound Cs and the vertical Alfvénic speed VAz , over the mag-
netic flux Ψ. The black vertical line corresponds to the flux anchored at
(R = 1,θ = π/2), at the source/disk interface.

As explained in section 2.3.2.2, we defined a spline function
f (θ) equal to zero on axis (θ = 0) and one at the inner disk radius
(θ = π/2) to smoothly connect the axis values with the inner disk
ones: f (θ) ≡ (3 sin2 θ − 2 sin3 θ)3/2.

The injection speed (VR on the source, −Vθ on the disk) is
fixed at κµ2 = 0.1 even when varying κ. However, even though
the injection Mach number Ms = up/Cs is assumed to be the
same all along the boundary, in order to account for the varying
inclination of the magnetic surfaces, its value is modified with
the parameter α from simulation to simulation. Its variation with
α is shown in Table 1.

Appendix C: Rankine-Hugoniot jump conditions

In this section, we write the Rankine-Hugoniot jump conditions
valid for standing, adiabatic recollimation shocks. Contrary to
Ouyed & Pudritz (1993), we take into account the toroidal mag-
netic field as the shocks arise when that component is dominant.
The local jump [A] = A2 − A1 between a pre-shock quantity A1
and its post-shock value A2 are expressed in the rest frame as

[ρu⊥] = 0

[ρu⊥(
u2

2
+ H) +

B2

µo
u⊥ − u · B

µo
B⊥] = 0

[P + ρu2
⊥ +

B2
‖ − B2

⊥
2µo

] = 0

[ρu⊥u‖ − B⊥
µo

B‖] = 0 (C.1)

[B⊥] = 0
[B⊥u‖ − u⊥B‖] = 0,

where H = C2
s/(Γ − 1) is the enthalpy and u⊥, B⊥ (respectively

u‖, B‖ ) are the normal (respectively tangential) components to
the shock surface. The shock is axisymmetric, and so the tangen-
tial component of the magnetic field B‖ = Btet + Bφeφ, whereas

the poloidal component is Bp = Btet+B⊥e⊥, with the unit vectors
(e⊥, et, eφ) defining a local orthonormal coordinate system. As
these jump conditions express the conservation of mass, angular
momentum, and energy in ideal MHD, the five MHD invariants
along a given magnetic surface (η,Ω∗, L, E, S ) are therefore also
conserved (see Fig.7).

In the case of a shock, the mass flux through the surface is
nonzero, which requires B⊥2 = B⊥1 , 0 and leads to

B‖2 =
m2 − 1

m2/χ − 1
B‖1, (C.2)

where m = u⊥/VAp,⊥ = up/VAp is the Alfvénic Mach number of
the incoming (pre-shock) flow and χ = ρ2/ρ1 = u⊥1/u⊥2 is the
shock compression rate. This equation shows that there are three
nontrivial discontinuities with χ ≥ 1: (1) an oblique shock with
m2 > χ > 1, (2) a normal shock with m2 = χ > 1 (requiring
B‖1 = 0), and (3) an Alfvén shear discontinuity with m2 = χ =
1 (allowing an arbitrary jump between the two tangential field
components). The oblique shock is the only case studied here.

After some algebra all post-shock quantities can be
expressed as function of the pre-shock ones, in particular

Bφ2

Bφ1
=

Bt2

Bt1
= χ

m2 − 1
m2 − χ

uφ2

uφ1
=

m2 − 1
m2 − χ

m2r2
A − χr2

m2r2
A − r2

(C.3)

P2

P1
= 1 + Γm2

s(χ − 1)
(

1
χ

+
b2

2
2χ − m2(1 + χ)

(χ − m2)2

)

T2

T1
=

1
χ

P2

P1
,

where the sonic Mach number ms = u⊥/Cs and magnetic shear
b2 = (B‖/B⊥)2 are computed in the pre-shock region. Of par-
ticular interest are the relative variations of the toroidal mag-
netic field component δBφ = Bφ2/Bφ1−1 and the plasma angular
velocity δΩ = Ω2/Ω1 − 1, as well as the total deflection angle of
the poloidal magnetic surface δi = i2 − i1 where tan i = Bt/B⊥,
which read

δBφ = (χ − 1)
m2

m2 − χ

−δΩ =
χ − 1

m2 − χ
m2(r2 − r2

A)

m2r2
A − r2

≤ χ − 1
m2 − χ (C.4)

tan δi =
m2(χ − 1)

m2 − χ
tan i1

1 + χ tan2 i1 m2−1
m2−χ

.

These quantities are plotted in Fig. 9. The compression rate χ is
the solution of the cubic polynomial equation

−Aχ3 + Bχ2 −Cχ + D = 0 (C.5)

with

A = 1 + b2 +
1 + χo

Γm2
s

B = χo(1 + b2) + 2m2
(
1 +

1 + χo

Γm2
s
− b2 χo − 3

4

)

C = m2
(
2χo + b2 1 + χo

2
+ m2

(
1 +

1 + χo

Γm2
s

))

D = χom4,
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Fig. C.1. Distribution at tend along the main recollimation shock of the
compression ratio for simulation K2. The yellow curve is the theoretical
solution χth of Eq. C.5, computed using the pre-shock quantities, while
the blue curve is the ratio χ = ρ2/ρ1.

where χo = (Γ + 1)/(Γ − 1) is the maximal compression ratio
for a hydrodynamic shock. Equation C.5 has one positive root
only for an incoming super-FM flow, namely for n⊥ = u⊥/V f m,⊥
larger than unity.

We are dealing here with supersonic (ms >> 1) and super-
A (m >> 1) cold jets, where the dominant magnetic field is the
toroidal one (b2 ' (Bφ/B⊥)2 >> 1). The FM Mach number in
the normal direction therefore writes n⊥ ' mVAp,⊥/VAφ = m/b,
which leads to the simplified equation for χ

χo − 3
2

χ2 +

(
1 + χo

2
+ n2

⊥

)
χ − χon2

⊥ = 0 . (C.6)

This shows that whenever jets reach a very large FM Mach num-
ber n⊥, a large compression rate χ ' χo is possible. But this is
never achieved in our case. Indeed, the poloidal FM Mach num-
ber n = up/VFM,p (> n⊥) writes

n2 = ωA
BpAr2

A

Bpr2

1 − 1/m2

1 − r2
A/r

2

(
up

Ω∗rA

)3

∼ ωA

(
up

Ω∗rA

)3

, (C.7)

where ωA = Ω∗rA/VAp,A is the fastness parameter introduced in
F97 (ratio at the Alfvén point of the speed of the magnetic rota-
tor to the poloidal Alfvén speed). For magneto-centrifugal jets
like ours, with m2 >> 1, r >> rA and achieving their maximal
velocity up ∼

√
2Ω∗rA, the FM Mach number is n2 ∼ ωA, which

is larger than but of the order of unity (see also Krasnopolsky
et al. 2003). As a consequence, we expect rather weak shocks as
illustrated by the small values of χ achieved along the various
shocks (see Fig. 9).

Figure C.1 plots the theoretical solution χth of Eq. C.5 (in
yellow) computed along the main recollimation shock of our
simulation K2 and compares it with the ratio χ = ρ2/ρ1 (in
blue) directly measured (see Fig. 4). The correspondence is very
good, with discrepancies remaining below a few percent. The
two regions where larger differences are obtained correspond
to the positions where the two smaller shocks (triggered at the
spine-jet interface) merge with the main shock: the orange one
near r ∼ 500 and the cyan one near r ∼ 900.

The shocks were detected by following all magnetic field
lines anchored on the disk and looking for discontinuities. This
is not obvious in a discrete grid. To do so, we computed the
derivative of the toroidal magnetic field (δBφ) over the curvi-
linear abscissa along the field line, as shocks are best seen with
the electric poloidal current and explored its local extrema. We
checked that a different approach, based on the calculation of the
refraction angle δi of the poloidal magnetic surface, produces
very similar results. This gave us the shock locations used to
produce the plots in Figures 2 and 17. As PLUTO has a shock
capturing scheme, each shock is resolved and has a finite width.
To determine the shock width, we checked that the density was
growing within the shock as expected. Then, still following the
field line, we looked for the closest local minimum and maxi-
mum in density. The positions of these extrema allowed us to
compute the values of the pre-shock and the post-shock quanti-
ties, respectively. These were finally used to compute the param-
eters leading to the Figures 9 and C.1.
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