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Foreword

This dissertation has been written with the aim of providing as self-contained as possible a pre-
sentation of the mathematical analysis of a class of non-Newtonian flows, in order to present the
research work carried out by the present author and his collaborators as part of a doctoral thesis,
on the one hand, and with a pedagogical aspiration, on the other, so that a student a priori not
specialized in the field can read and interpret the various results without needing, at first, to go
looking for information in an accompanying document. First, let us draw up an outline of the
dissertation, which the reader will be able to refer to in order to simplify reading.

The dissertation begins with an introduction in French (hereafter entitled "Introduction (French)"),
and the same introduction is then translated into English so that the non-French-speaking reader
can benefit from the entire presentation without loss of information (hereafter entitled "Summary
of the dissertation").

In Chapter |1}, we first present in Section the theory of nonlinear monotone operators, as well
as that of variational inequalities, and the links between the two. This section is intended to
provide an introduction to the tools and notions used in the analysis of the non-Newtonian flows
we consider in this dissertation, but its reading can also be passed by the informed reader, its
role once again being purely pedagogical. In a second step, we will present in Section a state-
of-the-art of existing results using these same theories. We have chosen to present a variety of
results, both old and new, in order to show how the various conditions and hypotheses operate,
and how research has evolved. Secondly, we will show a solution existence result (Theorem
and a finite stopping time result (Theorem , both obtained in collaboration with Laurent
Chupin and Nicolae Cindea (see [44]). To illustrate our finite stopping time result, we will present
an analogous result in the case of the p-Laplacian parabolic equation.

In Chapter [2] we will present control theory for quasilinear equations. Section will be devoted
to the presentation of the Hilbert Uniqueness Method, which we will be using later, and via
which we show an approximate control regularity result (Theorem obtained in collaboration
with Nicolae Cindea (see [49]). Then, in Section we will review the state of the art of
various controllability results for quasilinear parabolic equations, and demonstrate the exact and
approximate controllability results obtained with Nicolae Cindea (Theorem Theorem
Corollary Corollary and Corollary also obtained in [49]. For pedagogical
purposes, we will briefly introduce the mixed finite element methods and Hsieh-Clough-Tocher
finite elements, which we use in the simulations of our results, which come from [49] as well.

Chapter [3| is devoted to the analysis of a sedimentation problem. In Section we briefly
present the theory of non-homogeneous Besov spaces on the torus, which will be invaluable in
the analysis of the model, in particular to show the existence of weak solutions in the critical
case. In Section we recall some results concerning transport equations. These two sections
can therefore be skipped by the experienced reader. In Section [3.3] we will establish a new
result, obtained in collaboration with Dimitri A. Cobb concerning the existence of solutions for
the sedimentation model in a power-law fluid whose viscosity depends on a possibly degenerate
density coefficient (Theorem [3.0.2), to be prepublished in [54].
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The final chapter of this dissertation concerns the study of an applied problem taken from
medicine, the aim of which is to determine the diffusion coefficients of the porous membrane
of a dialyzer fiber. To this end, we present simulations to determine the coefficients, based on
a model previously studied by Julien Aniort, Laurent Chupin and Nicolae Cindea in [7]. This
study was carried out in collaboration with Julien Aniort and his team at the Gabriel Montpied
University Hospital in Clermont-Ferrand.

Functional spaces and certain related prerequisites are defined and presented in the appendix. By
way of example, tools that are commonplace in fluid mechanics but are nevertheless frequently
used throughout the dissertation are presented, such as the spaces constructed from zero diver-
gence distributions D, () which are defined in Section [A.2] the Aubin-Lions theorem is presented

in Section [A.1.T] or De Rham’s theorem in Section

A final appendix presents the models studied in this dissertation, and this can be passed on by
the discerning reader. More precisely, it is is an introduction to rational continuum mechanics,
with a dual objective. Firstly, it highlights results from mathematical physics, which offers a
framework that we hope will be easy to grasp without any prior physical knowledge (other than
classical mechanics), and in which it is possible to find properties analogous to the laws of classical
mechanics. In some cases, in particular for the action-reaction principles described by Newton’s
third law in classical mechanics, these properties are demonstrable in the axiomatics of continuum
mechanics, whereas they are postulated in classical mechanics. The second objective is to show
how the models we study mathematically are obtained, and how to interpret them. A student of
mathematics will sometimes be confronted, when reading certain articles, with terms that are not
necessarily part of his or her lexical field: simple fluid, shear, ... We therefore thought it would
be useful to offer a few clarifications concerning the various macroscopic models studied. Reading
this chapter is entirely optional, as it is presented solely for educational purposes. The results
presented in this chapter are essentially drawn from [167, [166] 48].

Notations

Depending on the context, different notations will be used in this dissertation. Unless expressly
stated otherwise, dimension of space will be designated by the letter N.

The symbol < (respectively =) will be used to express the fact that the inequality is true to within
one multiplicative (positive) constant, when the parameters on which the constant depends have
no influence on the computations. Where necessary, we will denote such a constant by the generic
letter C.

For a fixed p € [1, +00], we will use either the notation p’ or ¢ to designate the element r € [1, +o0]
satisfying

1 1

S4-=1

p T
When we use the letter ¢ for any other purpose, it will always be specified in the statement in
question.

In Chapter [3] we will refer to functional spaces without specifying spatio-temporal dependencies,
in order to lighten the notation. More precisely, we will denote by X (Y") the space X (R, Y (T)),
and by X7(Y) the space X((0,7),Y(TV)), where X and Y describe functional spaces and TV
is the N-dimensional torus. For example, for s, > 1 the space L*(L") denotes the space
LRy, L™ (TN)).

In this dissertation, the figures are sometimes inspired by different works. Specifically, Figure
is inspired by [48] Fig. 1.4-1.], while Figures|C.9} |C.10} |C.11} [[1.7} [IL.5] and [L.2)in the present
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dissertation are reproduced from the respective models [48 Fig. 1.8-3., Fig. 2.3-2., Fig. 2.3-3.],
59, Fig. 8.1., Fig. 4.3.], [I75] Figure 32.5|, and [156] Figure 11.]. We point out that Figures

1.7 are the same as Figures [.3] [[.1]
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Car c’est tout a fait de quelqu’un qui aime
a savoir, ce sentiment, s’étonner: il n’y a
pas d’autre point de départ de la quéte du
savoir que celui-lIa.

Socrate, Théétete (Platon).

[ntroduction (french)

Ce manuscrit est consacré a I’analyse mathématique de certains fluides non-newtoniens et de cer-
taines propriétés qui leurs sont propres. Avant toute chose, précisons qu’un fluide est "un milieu
matériel parfaitement déformable", c’est-a-dire, pour simplifier, qu’il s’agit d'un corps déformable.
De trés nombreux matériaux sont des fluides, et nous y sommes confrontés quotidiennement. On
pensera facilement aux gaz comme 'air, aux liquides, I’eau par exemple, ou méme encore aux
plasmas. En revanche, ce qui est moins connu, c’est que de nombreux fluides adoptent des com-
portements qui dépendent des contraintes qu’ils subissent. Prenons ’exemple de la mayonnaise:
lorsque celle-ci subit des contraintes, par exemple lorsqu’elle est fouettée, elle se comporte comme
un liquide au sens usuel du terme. Cependant, lorsqu’on la laisse au repos sans la soumettre &
des forces extérieures non naturelles, elle reste figée, comme un solide. En fait, si I'on veut étre
plus précis, il faut dépasser un certain niveau de forces appliquées, un certain seuil de contraintes,
pour que la mayonnaise viennent & se comporter de maniére semblable & un liquide. Les fluides
qui ont ce type de comportement sont appelés des fluides & seuil, dont on distinguera par exemple
les fluides de Bingham. Ainsi, si nous voulons préciser notre définition d’un fluide, nous pouvons
rajouter qu’il s’agit d’un corps qui peut subir des déformations non rigides. En d’autres termes,
ce n'est pas un solidd’] Pour insister encore un peu sur l'exemple de la mayonnaise, celle-ci
s’écoule d’autant plus facilement que les contraintes qui lui sont imposées sont importantes. On
parle alors de comportement rhéofluidifiant. On trouve aussi des fluides, comme une solution
peu diluée de fécule de mais par exemple, qui ont le comportement inverse: plus les contraintes
imposées sont conséquentes, plus le fluide tend a se solidifier. On parle alors de comportement
rhéoépaississant. L’étude des propriétés liées & I’écoulement des fluides s’appelle la rhéologieﬁ7 et
peut étre abordée de multiples facons. Une premiére approche est la compréhension des inter-
actions microscopiques donnant lieu & des écoulements particuliers. Bien que cette approche ne
soit pas celle que nous aborderons dans ce manuscrit, elle permet de donner un cadre assez précis
permettant de distinguer différents types d’écoulements. Citons quelques exemples.

Les suspensions: Il s’agit d’un cadre général de fluides. Intuitivement, lorsque de toutes petites
particules, disons solides, se trouvent dans un fluide, on parle de celles-ci comme étant en sus-
pension dans le fluide, et par suite on dit que le mélange est une suspension. De trés nombreux
exemples de suspensions se retrouvent dans la vie courante, comme par exemple le béton, le ci-
ment, les peintures, mais c’est également le cas des potages (qui sont des suspensions de légumes
dans l’eau), ou encore des fluides biologiques comme le sang (qui est, grossiérement, une suspen-
sion de globules et de plaquettes dans la plasma sanguin). Lorsque la force de gravité agissant sur
une suspension est plus importante que les autres forces auxquelles celle-ci est soumise, on parle
de sédimentation. Nous étudierons un tel phénomeéne au Chapitre[3l On observe alors sur le long
terme une séparation de phases, ce qui se traduit par une variation de la densité du fluide selon
la zone considérée.

Les colloides: Lorsque les particules en suspension sont trés petites (disons de diameétre inférieur

#Si Pon veut étre précis, un fluide est un matériau égalitaire qui n’est pas un solide, voir [I67, Section IV.17.].
PDes racines grecques rheos qui signifie "courant” ou "écoulement" et de logos qui signifie "recherche" ou
"théorie".
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a 1 um), certaines interactions qui étaient jusqu’alors négligeables prennent de 'ampleur, il s’agit
d’interactions entre les particules en suspension dans le liquide, que 'on qualifie d’interactions
colloidales. 11 s’agit essentiellement des forces de Van der Waals, qui tendent & faire s’agréger
les différentes particules en suspension. Ainsi, les colloides donnent souvent lieu 4 des mélanges
non homogénes, car les particules tendent & s’agglutiner. D’un point de vue pratique, on stabilise
en général les interactions colloidales afin d’éviter un tel phénoméne et pour rendre le colloide
utilisable. De nombreux fluides sont de nature colloidale, citons par exemple une nouvelle fois les
peintures, les ciments, mais aussi des dentifrices, des crémes cosmétiques, des argiles, etc. Aussi,
on retrouve un certains nombre de colloides qui ont ce comportement de fluide de Bingham,
¢’est-a-dire qu’il est nécessaire d’y appliquer des contraintes suffisantes pour que le fluide entre en
mouvement, s’écoule.

Les polymeéres: Le lecteur pourra s’interroger quant & la présence des polyméres dans cette
série d’exemple, tant ceux-ci sont utilisés sous leur forme solide dans la vie quotidienne. Cepen-
dant, dans le processus de fabrication de ces matériaux polymériques, on place des polyméres en
suspension dans un liquide. Un polymeére, ou chaine polymérique, est donc une molécule formée
d’un grand nombre de particules (plusieurs milliers voire plusieurs millions) identiques associées
par leur atome de carbone. Une des propriétés trés intéressante est que cette chaine admet donc
énormément de configurations possibles, car elle peut s’étendre ou se recroqueviller. Cela induit
que le fluide obtenu en mettant des polymeéres en suspension (et par suite le matériau qui en
résulte, en général) a d’excellentes propriétés d’élasticité. On parle alors de fluide viscoélastique,
et le mélange obtenu se comporte, pour parler simplement, comme un solide élastique lorsqu’on
impose une contrainte, puis trés rapidement s’écoule comme un liquide. Ainsi, il est commun que
les solutions polymériques soient rhéofluidifiantes.

B
5

Figure [.1: Représentation d’une chaine polymérique. La longueur de la chaine r est la distance
euclidienne entre ses extrémités. Elle peut s’étendre lorsqu’elle soumise & une contrainte f.

Les émulsions: Dans les exemples précédents, nous nous sommes essentiellement focalisés sur
des suspensions de particules solides dans un liquide. En fait, il arrive qu’un fluide soit en fait
un "mélange" de plusieurs fluides distincts, ayant tous des propriétés différentes. Lorsque 1’on
est dans une telle configuration, on parle en général de fluide complexe. Dans certains cas, on
souhaite placer des petites particules d’un fluide en suspension (c’est-a-dire qu’elles soient trés
dispersées) dans un autre fluide, par exemple pour aider a la pénétration dans un matériau poreux.
Lorsqu’une telle suspension a lieu, on parle alors d’une mise en émulsion. Ce terme d’usage com-
mun se retrouve a juste titre dans la vie quotidienne, en particulier dans la sphére culinaire. Cela
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nous permet de revenir & notre exemple initial qu’est la mayonnaise, qui est la mise en émulsion
dans une solution oléagineuse (parfois aussi aqueuse, au choix du préparateur) de jaunes d’oeufs
et de moutarde (et peut étre quelques assaisonnements complémentaires). Comme nous l’avons
évoqué, les émulsions peuvent alors avoir des comportements rhéofluidifiants, et aussi étre des flu-
ides & seuil. On retrouvera de nouveau des exemples d’émulsions dans de multiples domaines, en
allant de I'agroalimentaire (vinaigrettes, beurre, etc.) au génie civil (fluides pétroliers) en passant
par la cosmétique (crémes par exemple).

Figure [.2: La mayonnaise est une émulsion, qui se comporte comme un fluide de Bingham: sans
étre soumise & des contraintes suffisamment importantes, elle reste figée.

Il existe bien d’autres exemples de fluides, nous renvoyons le lecteur a [59] (dont la plupart des
exemples précédents sont issus) ainsi qu’a [19, [105] pour des explications précises et détaillées.

Cependant, comme nous le mentionnions précédemment, un fluide est un corps qui n’est pas solide,
au sens ol il peut subir des déformations non rigides. Une question se pose alors: qu’entend-t-on
lorsque ’on parle de corps? Une premiére approche serait d’utiliser la définition de la mécanique
classique, en disant qu’un corps est un ensemble de points pondérés obéissants aux lois de la
mécanique classique. Bien que cette approche ne soit pas fausse, elle présente de nombreuses
difficultés. D’une part, si un point représente une particule de fluide, il est difficile de comprendre
comment les interactions & de petites échelles, disons mésoscopiques, vont étre considérées. Ainsi,
doivent elles étre omises, ou sinon prises en considération, mais comment? Il est alors préférable
de définir un cadre simplifié qui rende compte du comportement macroscopique de 1’écoulement,
sans avoir & rentrer dans des considérations annexes comme les interactions de Van der Waals
par exemple. Cela conduit & donner une définition différente d’un corps, comme étant un élément
d’un ensemble, généralement un sous-ensemble ouvert de RY, N > 2.

I.1 Analyse des écoulements non-newtoniens

Nous commencgons par présenter un modeéle générique d’écoulement pour un fluide visqueux in-
compressible, puis nous étudierons 'existence de solutions pour celui-ci.

I[.1.1 Position du probléme et résultats antérieurs

Dans I’Appendice[C] nous présenterons un cadre rigoureux permettant de conduire a cette derniére
approche, que nous qualifierons d’approche macroscopique. Ce cadre est celui de la mécanique
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des milieuz continus, qui est une alternative simplifiée pour I’étude de certains fluides ou solides,
particuliérement adapté & des matériaux déformables. Nous présenterons donc des résultats de
physique-mathématique établis dans le cadre des recherches associées au sixiéme probléme de
Hilbert (formalisation mathématique de la physique), dont les résultats pourront étre retrouvés
dans [167]. Les objectifs de ce chapitre sont multiples:

e Premiérement, il sera mis en avant quels sont les objets considérés dans le cadre de la
mécanique des milieux continus et par conséquent, dans le cadre de la mécanique des fluides
telle que considérée dans la suite du manuscrit.

e Cela permettra de mettre en évidence comment les déformations induites par ’écoulement
sont considérées dans notre cadre, et donc comment I’on approche les observations mention-
nées précédemment.

e Enfin, en mettant en évidence que des alternatives aux lois de la mécanique classique sont
disponibles dans le cadre de la mécanique des milieux continus, nous pourront établir le
modéle générique des équations décrivant ’écoulement d’un fluide visqueux incompressible.

Ces derniéres équations rendent compte d'une moyennisation locale des propriétés du fluide, et
sont les suivantes:

Op + div(pu) =0 dans Ry x Q

p (Oru+ (u-V)u) —div (7(p, D(u))) + Vr(p) = pf dans Ry x Q

div(u) =0 dans R4 x Q (111)
u=20 sur Ry x 99

Plt=0 = PO dans (2

Ujp=0 = Up dans )

ol les équations sont posées dans Ry x €2, ¢’est-a-dire que la variable temporelle évolue dans Ry et
la variable spatiale dans 'ouvert Q ¢ RY. La premiére équation est appelée équation de continuité,
et I'inconnue p est la densité du fluide. La seconde est ’équation de 1’écoulement, dans laquelle
u est le champ de vitesses du fluide, et 7 la pression. La condition div(u) = 0 traduit quant
a elle I'incompressibilité du fluide, c’est-a-dire que pour tout petit volume de fluide considéré,
celui-ci reste constant en fonction du temps. Enfin, le tenseur 7 est le tenseur des contraintes
internes associées & ’écoulement. Lorsque ce dernier s’exprime de facon linéaire relativement &
D(u), ott D(u) = V“%VUT est le tenseur des taux de déformations du fluide, on dit que le fluide est
newtonien, d’apreés les hypotheéses énoncées par Isaac Newton] Dans le cas contraire, 1’écoulement
est dit non-newtonien. Dans le cas d’un fluide incompressible, les écoulements newtoniens sont
décrits par exemple par les équations d’Euler (cas d'un fluide dit parfait) ou de Navier-Stokes.

Néanmoins, les écoulements newtoniens ne recouvrent pas les cas précédemment décrits, comme
par exemple la rhéofluidification ou le rhéoépaississement. Autrement dit, de tels comportements
sont non-newtoniens et par conséquent cela se traduit par le fait que le tenseur des contraintes
s’exprime de fagon nonlinéaire relativement & D(u). Ainsi, donne un cadre précis pour
I’étude macroscopique d’un écoulement non-newtonien, mais, bien que cela ne soit pas I’approche
que nous présenterons dans ce manuscrit, mentionnons qu’il existe des approches alternatives &
cette dualité entre le macroscopique et le mésoscopique: on parle alors de modéle micro-macro. De
tels modeéles ont été décrits et analysés avec succés, par exemple pour les suspensions polymériques
diluées. On pourra référer a [127, Chapitre 4] ainsi qu’a [I18] par exemple pour la modélisation

“Voir par exemple [31] Section 1.4.2.] pour davantage de détails.
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et 'analyse de modéles d’halteéres.

Nous focaliserons dans un premier temps notre étude sur les équations de la forme ([.1.1) pour
une densité constante, c’est-a-dire que p = pg > 0. Dans ce cas, le systéme générique se réécrit,
avec un bon choix d’unités:

Ou+ (u-V)u—divr(D(u)) + Vr = f dans Ry x

div(u) =0 dans Ry x Q (112)
u=20 sur Ry x 092
Ujj=0 = Ug dans .

Il reste alors une question en suspens: bien qu’on sache que le tenseur des contraintes 7 décrit
une loi non linéaire, on ne sait pas comment elle peut s’exprimer. Autrement dit, on ne sait pas
quels sont les modéles que nous pouvons considérer. En fait, comme on pourrait s’y attendre, ces
modeéles sont essentiellement établis sur la base d’expérimentations physiques. Pour cela, on utilise
un appareil permettant d’estimer les différentes propriétés du fluide en fonction des contraintes
qui lui sont appliquées, appelé un rhéoméire. Les mesures relevées sont ensuite approchées par
des courbes décrivant des fonctions, relatives & la déformation du fluide, et 'on obtient alors la
description de 7.

disque
solide

Materiau

Figure 1.3:  Un rhéométre a disques paralleles: une plaque est fixe puis le matériau est placé
entre celle-ci et une plaque supérieure, dont la mobilité est assurée par la rotation relative & un
axe, provoquant un cisaillement, que I’on mesure en fonction des contraintes appliquées.

Citons quelques exemples de lois pour 7, ou k € {0, 1} selon les considérations sur la viscosité du
fluide, ce qui revient & dire que I'on ajoute ou pas de la diffusion dans I’équation.

e Carreau:

(M) = &M+ 1+ M) %M, p>1,
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Carreau-Yasuda:

(M) = kM + (1+ |[M|*)*% M, p>1,a >0,

Ostwald-De Waele (loi puissance):

T(M) = &M + [MPP~M, p > 1,

e Cross:
(M) =rM + M > 1
T =
1 n |M‘27p7 p )
e Bingham:
% si |M| >0
T(M)=rM +7(M), 7T(M)=
[0,1] sinon,
e Herschel-Bulkley:

g+ IMPT2M, p> 1 si[M] >0
T(M) =M +7(M), 7(M)=
[0,1] sinon.

En observant les courbes associées aux tenseurs 7 précités, on se rend compte que lorsque le
paramétre p vérifie 1 < p < 2, le fluide est rhéofluidifiant, et rhéoépaississant si p > 2. Dans le
cas des fluides de Carreau, de Carreau-Yasuda, d’Ostwald-De Waele, et de Cross, lorsque p = 2, 7
est linéaire en M et alors le fluide est newtonien. Une autre observation intéressante concerne les
lois de Carreau-Yasuda et de Cross dans le cas rhéofluidifiant: lorsque le fluide est peu déformé
ou énormément, i.e. lorsque |M| est trés petit ou trés grand, on s’attend alors a ce que celui-ci
adopte un comportement relativement semblable & un fluide newtonien. Ce sera en effet le cas, ce
qui peut s’observer par exemple pour le sang, ce qui sera utilisé notamment au Chapitre [d] Cette
remarque demeure valable pour un fluide de Carreau, qui est un fluide de Carreau-Yasuda pour
a = 2. Le cas de la loi de Bingham est, formellement, une loi d’Ostwald-De Waele pour le cas
limite p = 1. Il convient cependant de remarquer dans ce cas que la partie non diffusive du tenseur
des contraintes 7 est discontinue en M = 0, puisque 7(M) = % Dans ’étude mathématique
d’une telle équation, la notion appropriée est celle de fonction multivaluée. Quoiqu’il en soit,
lorsque |7(M)| prend une valeur différente de 1, cela impose & M de prendre la valeur M = 0.
Cela revient & dire que le fluide a un comportement wviscoplastique, autrement dit il se comporte
comme un solide lorsqu’il ne subit pas assez de contraintes et s’écoule dés lors qu'un certain seuil
de contraintes est dépassé: on parle alors de fluide & seuil. Avant de poursuivre, rappelons les
définitions suivantes, ot o € NF est un multi-indice.

Définition I.1.1. (Types de nonlinéarité) On dit qu’une équation auz dérivées partielles est:

(i) Semilinéaire si, pour des fonctions (aa)|a—k, €lle s’écrit sous la forme:

Z ao(2)V*u + ag (Vk_lu, ..., Vu,u, x) =0
|a|=k

(1) Quasilinéaire si, pour des fonctions (aa)|a|=k, elle s’écrit sous la forme:

Z aa(Vk_lu, ooy, Vu,u, 2) VO + ag (Vk_lu, ..., Vu,u, x) =0
|a|=k
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Remarquons alors que les équations décrites pour les tenseurs que nous considérons sont alors des
équations quasilinéair@sﬁ suivant leur variable spatiale, ce qui revient & dire que celle-ci s’exprime
comme une fonction linéaire des termes dont les dérivées sont du plus grand ordre.

Ainsi, ’analyse mathématique des fluides non-newtoniens se trouve a l'interface de 'analyse non
linéaire et de la mécanique des fluides. Pour cette raison, nous décrirons dans le Chapitre (1| les
outils nécessaires a ’analyse des équations quasilinéaires. Une notion incontournable dans ce
cadre est celle d’opérateur monotone, ¢’est-a-dire qu’il s’agit d’un opérateur A : X — X* ou X
est un espace de Banach réflexif et X™* est son dual topologique, qui vérifie:

V(u,v) € X2, (A(u) — A(v),t — 0) yur x >0

Par exemple, le laplacien sur un domaine borné¢ Q défini par —A : HE(Q) — H1(Q) est un
opérateur monotone car il vérifie

/(—Au—i—Av)(u—v) dm—/]V(u—v)lz dx > 0.
Q Q

La terminologie d’opérateur monotone peut étre pensée en se rappelant qu’une fonction d’une
variable réelle f : I — R est croissante sur I C R si et seulement si:

V(t,s) € 17, (f(t) = f(s)) (t — ) 20,

I'inégalité étant inversée dans le cas d’un fonction décroissante. Ceci étant dit, on pensera égale-
ment (et surtout) au fait que f est convexe sur I si et seulement si elle vérifie I'inégalité de
convexité:

V(t,s) € I?, (f'(t) = f'(s)) (t—s) > 0.

On retrouvera alors une relation trés étroite entre la notion d’opérateur monotone et la notion
de convexité, il s’agit des opérateurs dits & potentiel convexes, et leur caractérisation est liée au
le théoréme de Kachurovskii, qui étend les caractérisations usuelles des fonctions convexes aux
fonctionnelles. Dans le cas du laplacien, cela revient a dire que

(=Au,v) 2 = (J'(u),v) s,

ou

1
() = 2/vau|2 de,

est une fonctionnelle convexe. De maniére générale, la plupart des lois introduites précédemment
dérivent d’un potentiel convexe, a Iexception des fluides & seuil (Bingham ou Herschel-Bulkley).
Remarquons que dans ce cas, le caractére rhéoépaississant ou rhéofluidifiant des fluides dont
Pécoulement est associé aux lois citées pour 7 (Carreau, Cross, Ostwald-De Waele) est déterminé
par un parameétre p > 1. En fait, de ce parameétre dépend la régularité a priori de la solution (au
moins si £ = 0). Pour simplifier, nous considérerons dans cette introduction que:

4Notons que la nomenclature des équations semilinéaires et quasilinéaires ne vient pas des notions d’application
des mémes noms. On pourra par exemple penser & une application décrivant une paraboloide qui est une application
quasilinéaire mais n’est pas décrite par une fonction linéaire en sa derniére variable.
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T(M) ~ kM + (u+ |M2)"2 M, ke {0,1},1>0,

c’est-a-dire que 7 se comporte comime le tenseur sus-mentionné dans les estimations, et garderons
ces congidérations & l'esprit par la suite.

En utilisant & bon escient la notion d’opérateur monotone, il est possible de montrer 'existence
de solutions pour les équations (L.1.2). Citons par exemple le résultat suivant (voir [141]):

Théoréme I.1.2 (Malek-Necas-Ruzicka). Considérons un domaine Q C R3, ayant une frontiére
C3, p€[2,3), u € W&f(Q), f € L?((0,7),L*(2)), un temps arbitrairement firé T € R* , tels
que le tenseur des contraintes T vérifie de bonnes hypothéses de monotonie. Alors il existe une
solution a (L.1.2) au sens faible. De plus, si p > %, la solution u est unique et vérifie:

we C((0,T), L2(R)) N L=((0,T), Wo 2 () N Li=1((0,T), W74 (Q)) et dyu € L2((0,T), L3(€2)).

Remarque 1.1.3. Nous avons ici omis de spécifier les hypothéses précises du théoréme, en partic-
ulier concernant le tenseur des contraintes T, ce que nous ferons également par la suite concernant
les résultats liés aur Chapitres[1] et[d Ce choix est effectué afin de ne pas alourdir la présentation
des résultats, puisque selon le résultat, les hypothéses concernant le systéme considéré ou le tenseur
des contraintes sont multiples et trés variables selon les auteurs. Cependant, les hypothéses et ré-
sultats concernés seront cités avec précision dans les Chapitres[1] et[4 Dans le cas présent, nous

renvoyons le lecteur aux hypothéses dans le Chapitre [1]

Le théoréme (qui correspond au Theorem dans le manuscrit) nous indique donc qu’il
existe des solutions dans le cas d’'un écoulement rhéoépaississant, et que de plus il est possible de
montrer que la solution est unique dés lors que le caractére de rhéoépaississement du fluide est
suffisamment conséquent.

Le cas des fluides rhéofluidifiants est plus délicat, car le terme non linéaire peut parfois étre
singulier, notamment avec une loi d’Ostwald-De Waele ou de Bingham. Il est néanmoins toujours
possible, en faisant appel a des techniques d’analyse fine, de montrer ’existence de solutions
pour ([.1.2). On a par exemple le résultat suivant (voir [72] pour le résultat, les hypothéses sont
[(SWDI(SW2)[([SW3')| [[SW4)] et sont détaillées dans le Chapitre [I)).

Théoréme I.1.4 (Diening-Ruzicka-Wolf). Soit Q un sous-ensemble ouvert borné (régulieif]) de
RY, o N > 2, et s0it 0 < T < 400 firé arbitrairement. De plus, en considérant certaines
hypothéses de monotonie sur T (que nous omettons icﬂ) et

<p< ,
Nig P>

alors, siug € L2(Q) et f € LI((0,T) x Q), il existe une solution faible u € LP ((O,T), Wol”f:(Q)) N
Cul(0,T), 12() de (C13).

Dans le cas bidimensionnel, le Théoréme [[.1.4] couvre 'ensemble des lois que nous avions alors
mentionnées, exceptée celle pour ’écoulement de Bingham. Cela vient simplement du fait que
I’opérateur non linéaire associé a un tel écoulement n’est pas monotone. Deux approches sont alors
possibles : premiérement, I'on peut affaiblir la notion de solutions associées au probléme, sinon
on peut généraliser la notion d’opérateur monotone. La premiére approche conduit & la notion
d’inégalité variationnelle. Formellement, on obtient une telle inégalité en multipliant la solution

®Nous reviendrons sur ’hypothése de régularité au Chapitre
f .
Voir Remarque
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par ¢ —u, ol ¢ est une fonction test (c’est-a-dire qu’elle appartient a un espace de fonctions dont
la régularité est adaptée au cadre de ’équation). Dans ce cas, on obtient, toujours formellement,
une expression du terme non linéaire comme dérivée d’un potentiel, ou comme limite de telles
dérivées. L’idée est alors d’utiliser les propriétés de convexité d’un potentiel convexe, donc d’un
opérateur monotone d’aprés le théoréme de Kachurovskii, pour établir une inégalité impliquant
le champ de vitesses (i.e. la solution). Dans cette inégalité, on ne fait alors plus apparaitre la
dérivée d’un potentiel, mais une différence I'impliquant.

[lustrons a titre d’exemple avec un calcul simple. Pour approcher le 1-laplacien, qui est formelle-
ment I'opérateur u — |Vu|~!Vu, nous pouvons par exemple utiliser 'opérateur:

1
Ae(u) = s /QVUPJFS dzx,

qui est un potentiel convexe, et donc jouit de propriétés de convexité d’aprés le théoréme de
Kachurovskii. Formellement, 'opérateur terme AL converge vers le 1-laplacien, noté Ay, lorsque
e — 0. En particulier, cela signifie que I'on s’attend & ce que ce dernier bénéficie des mémes
inégalités de convexité que lopérateur AL. Plus précisément, toujours formellement:

(AL(u) = AL(v),u —v) gy (A1(u) — Ar(v),u —v).
>0 >0

Ce raisonnement heuristique montre que pour de tels problémes pour lesquels la convexité est
dégénérée, on cherche a faire apparaitre une inégalité, le théoréme de Kachurovskii nous permet-
tant d’écrire:

(AL(u) — AL(v),u —v) > 0 & A.(u) — Ac(v) > (AL(u),u — v)
— Ao(u) = Ag(v) = (A1 (u),u—v) (L13)

Les calculs étant formels, le principe est alors de donner un sens & la derniére limite, donc a
Aj dans notre exemple. Les inégalités de ce type sont nommées inégalités variationnelles, et
permettent de définir une notion de solution faible aux problémes singuliers.

En appliquant ce méme principe de passage a la limite au systéme de Bingham pour k£ = 1, qui
est parabolique, le résultat suivant peut étre obtenu (voir [50] ainsi que [77] pour la preuve, et
pour le détail des hypothéses données dans le Chapitre [1)).

Théoréme 1.1.5 (Cioranescu-Duvaut-J.L.Lions). Soit k € N, k > 1, et Q un domaine de RY a
frontiére lisse, N € {2,3}. On considére (p;)1<i<k, (¢i)i1<i<k, tels que

3N 2p;
—_ d g >
N +2 o ql_pi—l

Di =

k ) p;
_4i -1,
et f € ﬂ La—1((0,T), W, " 1(Q)). Alors, sous certaines hypothéses, Uon a:
i=1

k
ue <ﬂ Lqi(<0,T),H§,a(Q))> A L((0,T), L2(%2))
=1
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k
9
tel que O € ﬂLqi—l((O,T),HU_S(Q)) satisfasse pour tout ¢ dans un ensemble de fonctions
=1
admissibles:

/OT <<@t90,s0 — )+ (~Auyp —u) + /Q<u®u> Dl —u)de+ Alp) - A(“)> :

T
> / (f, o —u)dt, (11.4)
0
le résultat étant vrai pour le modéle de Bingham.

Illustrons notre propos en reprenant notre exemple précédent: A rend compte du terme non linéaire,
qui a beaucoup d’égard se comporte comme le 1-laplacien, mais il existe cependant quelques
différences. En effet, en prenant la limite ¢ — 0 dans avec un opérateur d’approximation
tel que présenté précédemment, on n’obtient pas nécessairement exactement le 1-laplacien mais
une variante de ce dernier. On retrouve une approche similaire du Théoréme [[.1.5]

Expliquons le sens de 'inégalité variationnelle ([.1.4)), pour cela commengons par remarquer que
I'inégalité variationnelle

T
/0 <<8tu,<,0 —u) + (—Au, o —u) + /Q(u ®@u): D(p —u) de+ A(p) — A(u)> dt
T
2/0 (fyo—u)ydt (1.1.5)

permet de recouvrir une solution classique, au moins formellement, si u est réguliére, en testant
contre ¢ = (1+ A)u puis ¢ = (1 — A)u, pour A > 0, puis divisant par A et prenant la limite A\ — 0.
Les auteurs du Théorém ont montré Pexistence d’une inégalité de la forme dans le
cadre bidimensionnel, y compris pour Bingham (voir [77]), mais pas dans le cas tridimensionnel.
L’inégalité (I.1.4]) présentée dans le Théorémen’est pas identique, puisqu’il apparait un terme
de dérivée temporelle sur ¢ et non sur u. Cela définit une notion de solution trés faible pour le
probléme.

Notons également qu’un des avantages des inégalités variationnelles réside dans le fait que celles-ci
se prétent relativement bien aux simulations numeériques (voir par exemple [158] [100]).

Une approche alternative aux inégalités variationnelles est donc de donner un sens plus général aux
opérateurs monotones, permettant en particulier la prise en considération des multivaluationd?]
Cette généralisation est donnée par la notion d’opérateur mazimal monotone, que nous verrons en
détail dans le Chapitre[l} Dans ce cadre, il est alors possible d’étendre les solutions de monotonie
précitées (voir [35], les hypothéses sont données dans le Chapitre (1| par (B4))).

Théoréme 1.1.6 (Bulicek-Gwiazda-Malek-Swierczewska). On considére un domaine @ de RY,
N € {1,2}, suffisamment régulier, et on suppose que le tenseur T vérifie certaines hypothéses de
monotonie maximale (voir Theorem |1.2.12 pour p > % Soit une N-fonction ¢ vérifiant la
Ag-condition, la Vo-condition (voir Définition A.5.§), et telle qu’il existe C1,Co,C3,Cy > 0 telles

que

CitPh — Oy < (p(t) < Cst" +Cy re [p, —l—oo)

Alors, il existe une solution faible de (1.1.2) pour la condition de bord u-n = 0 au lieu de la
condition de Dirichlet homogéne.

SRappelons que dans le cas d’un écoulement de Bingham, nous avions dit que le cadre approprié pour traiter le
tenseur 7(M) = % est celui des fonctions multivaluées, c’est a cet endroit qu’elles font leur apparition
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Le Théoréme @ (qui correspond au Theorem dans le manuscrit) est une alternative
au Théoréeme @ pour les opérateurs maximaux monotones (mais avec la condition de bord
u-n = 0). Notons que les solutions obtenues appartiennent a des espaces dont la régularité
dépend d’une N-fonction, appelés espaces d’Orlicz. Nous renvoyons a la Section [A 5| en appendice
pour plus de détails concernant ces espaces. Notons tout de méme que, bien que les opérateurs
maximaux monotones soient considérés dans le Théoréme le cas des fluides a seuil (c’est-a-
dire Bingham ou Herschel-Bulkley) ne semble pas pris en compte, nous renvoyons aux remarques
suivant le Theorem dans le Chapitre [I] pour davantage de détails.

1.1.2 Résultats de la thése

Plusieurs questions se posent alors:

e Est-il possible de construire des solutions dans le cas tridimensionnel, qui prennent en con-
sidération les fluides a seuil?

e Si de telles solutions existent, sont-elles en relation avec des solutions numériquement util-
isées?

e Quel est 'impact du terme non linéaire sur la régularité des solutions?

e (Ces solutions rendent-elles compte de certaines propriétés expérimentales propres aux écoule-
ment rhéofluidifiants?

Comme nous I’avons mentionné précédemment, les solutions sous forme d’inégalités variationnelles
sont souvent utilisées pour les simulations numériques d’écoulements & seuil, soit en prenant la
limite sur le paramétre p > 1 dans Ostwald-De Waele, soit en ajoutant une petite constante que
I'on fait tendre vers 0 dans le simulations. Il convient alors de s’intéresser & I'existence théorique
de telles solutions, idéalement sous des hypothéses ne faisant pas intervenir explicitement des
objets d’analyse fonctionnelle complexes & définir. Le point crucial réside dans le fait de donner
un sens & la limite dans ’approximation du terme non linéaire propre au caractére non-newtonien
du fluide, ce qui peut se faire de plusieurs facons, par exemple en faisant apparaitre un gradient
de Clarke (voir Chapitre [1)), ce qui donne la notion d’inégalité hémivariationnelle, ou encore en
utilisant une convergence de type Kuratowski (voir Section en appendice).

Le cas singulier p = 1 (qui correspond aux fluides de Bingham et d’Herschel-Bulkley) est partic-
ulierement difficile & traiter, tout spécialement dans le cas d’un fluide o 'on ne considére pas de
terme de diffusion, correspondant & kK = 0. Dans ce cas, il faut alors considérer I'opérateur dans
Pespace des fonctions a déformations bornées BD(€2) (nous renvoyons au Chapitre [1] ainsi qu’a
la, Section en appendice pour davantage de précisions, et a [6] pour une discussion détaillée).
Une approche intermédiaire mais qui permet néanmoins d’appréhender certaines des difficultés du
probléme est de considérer un terme de diffusion (avec un laplacien), ce qui revient & considérer
k= 1. On a alors un tenseur de la forme

—div(r) = —A - Ay
et la conservation de I'énergie permet d’assurer que I'opérateur est bien défini sur Hg (Q)NBD(Q),

et ainsi U'opérateur —A — Aj est défini sur un sous-domaine du laplacien. Plus généralement, et
toujours dans cet esprit, nous considérons des tenseurs de contraintes visqueuses de la forme:

T(M) = M + F(|M|)M,
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ce qui revient & considérer le systéme suivant:

u — Au+ (u-V)u —div (F(|D(u)|)D(u)) + Vr = f  dans Ry x Q

div(u) =0 dans R4 x (116)
u=20 sur Ry x 02 o
Ujj—0 = Up dans Q.

On fait les hypothéses suivantes sur le tenseur par des hypothéses sur F', qui est une fonction
d’une variable réelle.

C1 : (0, 4+00) = (0, 4+00);

(€1 F

(C2) F € W™ (0, +00);

(C3) t — tF(t) est croissante sur (0,400);

(C4) il existe p € [1,2], to > 0 et K > 0 tels que pour tout t > to, F(t) < KtP~2.

On obtient alors le résultat suivant, issu de [44].

Théoréme 1.1.7. On considére que F wérifie les hypothéses (C1)-(C4) et que Q € RV, N ¢
{2,3}, est un domaine borné o frontiére Lipschitz, T > 0 et soit une donnée initiale ug € Hg ,(Q)
ainsi qu’un terme de force f € L?((0,T), H;1(Q)). Alors, il existe une solution faible u de (L.1.6)

satisfarsant la régularité suivante
w € Cy ((0,T), L2(Q)) N L* ((0,T), H, 5 (Q)) et dyu e L¥((0,T), H; ().

Dans le Théoréme la notion de solution faible est donnée par la définition suivante.

Définition 1.1.8. On dit que la fonction u € L? ((O,T),H&U(Q)) N Cw((0,T), L2(Q)) telle que

O € LN ((0,T), H;*(2)) est une solution faible de (L.1.6) si elle vérifie uj—g = ug € H&U(Q),
eet pour tout o € C*((0,T) x Q):

T T
/ @M)<»m+§@w&uywwnﬁnn+/“4wawaw—uwwx

/ / ) da dt+/ /G ID(¢(t))]) — G (ID(u(t))]) du dt

_/0 F(b), 0(t) — u(t)) dt. (L1.7)

Dans 'inégalité variationnelle ([.1.7), la fonction G est définie de sorte & donner un sens a la
limite de la procédure d’approximation, tout comme dans notre raisonnement heuristique impli-
quant , sur le terme non linéaire, et joue un role analogue a celui de la fonction A dans
le Théoréme [.1.5] Intuitivement parlant, la fonction G joue le role de primitive de la fonction
F sans en étre toutefois une par rapport aux raisons évoquées précédemment. Notons alors que
le Théoréeme prend en compte les écoulements a seuil, et que cela s’obtient comme limite
des modéles utilisés pour les simulations numériques. De plus, remarquons que la régularité des
solutions est optimale au sens oil 'on recouvre la régularité des solutions pour les équations de
Navier-Stokes incompressible, ce qui était suggéré par le caractére bien posé de I'opérateur non
linéaire. Notons que F' n’est pas a priori bien définie en s = 0, il convient alors de donner un sens
& sa limite dans ce cadre, comme nous l'avions précédemment mentionné.
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Notons qu’il existe encore au moins une approche alternative & celles mentionnées, celle des
solutions dissipatives. Le principe associé & ces derniéres est de faire intervenir un tenseur d’énergie
dépendant de la quantité d’énergie que le systéme a dissipé jusqu’au temps présent, ce qui permet
de définir des solutions trés faibles. Le cas de telles solutions a été établi avec succes dans de
nombreux cas, comme par exemple pour I’équation d’Euler incompressible. Nous renvoyons le
lecteur intéressé a [138, Section 4.4.] pour plus de détails dans ce dernier cas. Dans le cas de
I’équation , il est possible de montrer I'existence de solutions dissipatives, y compris dans
le cadre tridimensionnel pour les fluides & seuil (Théoréme d’Abbatiello-Feireisl), nous renvoyons
le lecteur a [I] pour plus de détails dans ce cas.

Dans une derniére partie de cette section, nous nous arrétons sur une des propriétés majeures des
écoulements rhéofluidifiants qui que leur flot devient statique au bout d’un intervalle de temps fini,
on parle d’arrét en temps fini. Autrement dit, si le fluide n’est soumis & aucune force extérieure, il
s’immobilise. Cette propriété se retrouve naturellement dans des équations d’évolution présentant
des termes non linéaires semblables & celui de la loi d’Ostwald-De Waele, par exemple lorsqu’on
congsidére les solutions de 1’équation:

0w — Apu =0 dans Ry x )
u=20 sur Ry x 092 (1.1.8)

Ujg= = Uo dans

ou 'opérateur A, défini ici pour p > 1 par

WyP(Q) — We(Q)
AV (I.1.9)
u— div (|Vu[P~2Vu)

est appelé le p-laplacien, s’arrétent en temps fini lorsque 1 < p < 2. Mieux que cela, il est possible
d’estimer le temps d’arrét en fonction de la norme de la donnée initiale, c’est 'objet du Théoréme
d’arrét en temps fini de Di-Benedetto, qui correspond au Theorem dans le manuscrit. On
peut alors se demander si il est possible de montrer un tel résultat dans le cas des solutions établies
dans le Théoréme [[.1.7] La réponse est positive et donnée par le résultat suivant, également issu
de [44].

Théoréme 1.1.9. Considérons que les hypothéses du Théoreme sont vérifiées, que T > 0
est choisi suffisamment grand, et soit p € [1,2). De plus, nous considérons deuz constantes
strictement posttives X et T1 < T telles que

F(t) > MP™2 pour tout t € (0, +00) et f =0 presque partout dans (T1,T). (1.1.10)

Alors, il existe un temps d’arrét fini Ty € (0,T) pour u, c’est-a-dire que u(t) = 0 pour presque
tout t > Ty.

Le Théoréme [[.1.9) (qui correspond au Theorem dans le manuscrit), exprime le fait que
lorsque l'on arréte de soumettre le fluide & des forces extérieures, celui-ci fini par se stabiliser dans
un état stationnaire en un temps fini. Pour revenir & notre exemple initial, lorsque 'on arréte de
fouetter la mayonnaise, alors celle-ci se fige.

I.2 Controélabilité des équations paraboliques quasilinéaires

Comme souvent, une solution trouvée appelle une question nouvelle. En l'occurrence, sachant
que cet arrét en temps fini existe, est-il possible d’appliquer une force, localement (en espace), de
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sorte que 'on puisse faire en sorte que le temps d’arrét soit aussi petit qu’on le souhaite? Ou,
en d’autres termes, est-il possible de faire en sorte qu’a partir d'un temps prescrit, le fluide soit
forcément a ’arrét, en appliquant une force localisée? C’est I'objet du Chapitre [2| et ce type de
question reléve de la théorie du controle.

Notons qu’il y a différentes notions de controlabilité, citons-en trois.

e La controlabilité approchée,
e La contrélabilité exacte,

e La contrélabilité optimale.

Prenons un exemple illustrant ces trois notions. Imaginons que vous souhaitez vous rendre de
Paris & New-York. Faire du contréle approché, c’est montrer qu’il existe un moyen de se rendre de
Paris & un endroit qui est arbitrairement proche de New-York, et lorsqu’il est possible de montrer
que l'on peut se rendre exactement a New-York, alors on a fait du controle exact. Maintenant,
lorsque 'on a étudié un probléme de contrélabilité exacte ou approchée, on peut par exemple
s’étre donné un temps pour faire le trajet, disons quinze heures. Peut étre que notre solution nous
dit que se rendre de Paris a New-York est possible en ce laps de temps si I'on prend un avion de
chasse. Cependant, il y a fort & parier que empreinte carbone de ce dernier soit conséquente, et
a fortiori que la consommation de carburant le soit aussi. S’intéresser a la controlabilité optimale,
c’est donc se dire que sachant que nous allons de Paris & New-York, nous souhaitons nous y rendre
en minimisant un cotlt, qui peut par exemple étre la consommation de carburant. Cela peut étre
sujet & des contraintes, comme par exemple le temps, ou le chemin suivi. Dans ce cadre, ce qui est
important est donc de minimiser une fonctionnelle de coiit. Pour notre exemple, si I'on se donne
une contrainte de quinze heures, il semble que prendre un avion de ligne soit une alternative plus
intéressante, du point de vue du contréle optimal, que celle de ’avion de chasse.

I1.2.1 Position du probléme et résultats précédents

La question que nous avons évoquée est donc une question relative a la contrélabilité exacte ou
approchée. Pour simplifier, nous considérerons la controlabilité d’équations paraboliques quasil-
inéaires (ou les solutions sont & valeurs scalaires), dont un exemple est donné par ([.1.8)).

Prenons le temps de faire un commentaire sur ces équations. D’un point de vue historique,
I’analyse des équations paraboliques quasilinéaires et des propriétés de leurs solutions a pris son
essor dans les années 1960, avec les travaux pionniers [125] 132 9]. Ces équations ont fait I’objet
d'un grand nombre de publications au cours des derniéres décennies. Comme dans le cas des
équations paraboliques linéaires, la question de la bornitude de la solution ou de son gradient se
pose naturellement. De tels résultats sont maintenant bien connus et ont été établis pour de larges
classes de systémes quasi-linéaires, nous pouvons nous référer a [144] (78, [0, 37, 36l [73] 26l 151] dans
le cas d’un domaine borné avec une frontiere réguliére. Cependant, cela reste une source d’activité
de recherche importante, en particulier pour I’étude des systémes singuliers ou dégénérés. Parmi
les exemples, on peut citer les résultats récents de régularité au second ordre pour le p-Laplacien
parabolique (voir par exemple [45, [87]) et son alternative dans le cadre du gradient symétrisé
avec la méthode d’A-approximation (voir [25]). Dans le cas d’une équation a valeurs scalaires non
dégénérée et non singuliére, il est bien connu que ’on obtient des solutions lisses (nous renvoyons
par exemple & [43, Theorem 3.4.1., Sections 3.1.4. and 0.10.]). Notons que ce fait est utilisé, par
exemple, pour approcher la solution de 1’équation du p-Laplacien parabolique (voir par
exemple [87, Section 4| ou [130]). Le cas p = 1 est plus difficile, mais il est encore possible de
montrer dans certains cas non singuliers des propriétés d’existence et de régularité intéressantes
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(voir par exemple [145, I70], 82]) ; dans ce dernier cas, nous soulignons que le caractére lisse des
solutions de viscosité a été prouvé dans [122], ce qui peut étre lié¢ & des raisonnements tels que
ceux présentés dans [119]. Nous devons également souligner que leffet régularisant des équations
paraboliques quasi-linéaires est connu dans de nombreux cas (voir par exemple [106, Chapitre
IV] ou [145]). La littérature sur le sujet des équations et systémes paraboliques quasi-linéaires
est extrémement vaste, c’est pourquoi nous renvoyons principalement le lecteur intéressé aux
monographies [132], [125] 131 169, 153|176 43| 123, 4] pour ’étude des propriétés de ces équations
et systemes.

La controlabilité des équations quasilinéaires est un sujet de recherches trés actif, on se référera
par exemple a [39 41 [40], dans le cadre du controle optimal, ou [140, 139, R8] dans le cadre
de la contrélabilité exacte. Dans ces derniers articles, les résultats de la contrdlabilité exacte
s’appliquent aux systémes ol le terme non linéaire dépend de la solution du systéme, mais pas de
son gradient. Les résultats qui en sont issus sont présentés en détail dans le Chapitre 2]

Afin d'illustrer nos propos, nous considérons désormais ’alternative suivante a (I.1.8)), ot w C €2
est un sous-domaine et ¢ un terme de forces extérieures:

Ou — Apu = xup  dans (0,7) x Q
u=20 sur (0,7") x 92 (I1.2.1)

Ujj—0 = Up dans Q

Toujours dans le cas des équations quasilinéaires, lorsque le terme non linéaire dépend du gradient
de la solution, seul un résultat de contrélabilité locale avait jusqu’alors été démontré dans ’article
récent [91], plus précisément le résultat suivant est vérifié (voir dans le Chapitre pour
les hypotheéses exactes).

Théoréme 1.2.1 (FernandezCara-Limaco-Thamsten-Menezes). Soit Q un domaine de RN 4
frontiére lisse, w C Q un ouvert, yo € HL(Q) N HA(Q) et vérifiant la condition de compatibilité:

(Ayo, A%yo) € Hy(Q)?
Alors, il existe n > 0 tel que si
lyollzs) <m

on ait Uezistence d’un controle ¢ € L*((0,T) x w) pour des équations du type ([.2.1) impliquant
y(T) =0.

Le Théoréme montre donc un résultat de contrdlabilité locale exacte, le terme local décrivant
qu’il y a une condition de petitesse pour la norme de la donnée initiale. Ce théoréme s’applique a
une classe d’équations comprenant le p-laplacien parabolique, et nous renvoyons & ’énoncé précis
de celui-ci (Theorem dans le manuscrit pour les hypothéses précises concernant les équations
prises en considération.

1.2.2 Résultats de la thése

Nous nous intéresserons aux équations de la forme suivante:

Oy — div (F(|Vy|)Vy) = xwe dans Qr
y=0 sur X (1.2.2)
Yii=0 = y" dans €,

oit  C RY est un domaine ouvert et borné dont la frontiere est lisse 9Q, Qr = (0,T) x Q,
Yr = (0,T) x 09, la donnée initiale y° appartient & L2(2), w C Q est également un domaine
régulier, et il existe p > 1 tel que la fonction F': Ry — R% vérifie les hypothéses suivantes:
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(A1) F e Wh(Ry) NC®(Ry) N L*(Ry) N L7 T (R);

(A2) Le potentiel défini pour tout ¢t € Ry par ®(t) = fot sF(s) ds est convexe et satisfait ® €
Wh (Ry);

(A3) 1l existe C1,Co, pu, v > 0 et ki, ko > 0 tels que pour tout ¢ € R4 nous ayons

ki 4+ Oy +12)5%° < F(t) < ko + Ca(v +12) 7"

Le controle ¢ agit dans un ouvert borné et non vide w C €. Plus précisément, on note x,, € C*<(Q)
une fonction réguliére telle que

(z) = 1 for x € ws
XA =1 0 for x € O\ w,

ol ws = {x € w tels que dist(z,dw) > 0} pour une constante § > 0 donnée suffisamment petite.

L’objectif est le suivant: on considére le systéme linéaire associé a (I.2.2)), donné par:

Ou — div(a(t,z)Vu) = xup dans (0,7) x
u=0 sur 02 (I.2.3)
Ujp—p = u? dans

et I’on montre que ce dernier est approximativement contrélable, avec un controle lisse. Pour ce
faire, il convient en premier lieu d’adapter une méthode connue sous le nom de Méthode d’Unicité
de Hilbert (abrégé par 'acronyme HUM par la suite). Cette méthode repose sur un argument de
dualité de type Fenchel-Rockafellar et est présentée en détail dans le Chapitre 2 Nous référons
également a [30] pour une présentation générale et trés détaillée de la méthode dans le cadre des
équations paraboliques. Ainsi, on montre le résultat suivant (voir [49, Theorem 1.1.]).

Théoréme 1.2.2. Soit Q un sous ensemble ouvert borné de RN a fronticre Lipschitz, u® € L*(Q),
a € C*(Qr) vérifiant o
0<ps<a(t,z)  ((tz)€r),

et T > 0. Alors, pour tout ¢ > 0 il existe un controle approché ¢ € C*°(Qr) au sens ot la solution
correspondante u de (1.2.3)) vérifie

lu(T) 20 < e

De plus, le controle o dépend de maniére Lipschitz continue du coefficient de diffusion a pour la

norme ||| £2(qQy)-

Le lecteur pourra & raison s’interroger quant a 'intérét de la dépendance continue de la solution ¢
relativement au parameétre de diffusion. La raison est la suivante: & partir de la solution controlée
de I'équation linéaire, on souhaite montrer I'existence d’un contréle approché pour 1’équation
quasilinéaire, en appliquant un théoréme de point fixe de type Schauder, mais pour une topologie
faible. 11 est alors nécessaire d’avoir une dépendance continue sur le point fixe dans un espace
bien choisi pour effectuer cette méthode de point fixe. Appliquant cette stratégie, on peut alors
montrer le résultat de controlabilité approchée suivant (voir [49, Theorem 1.2.]).

Théoréme 1.2.3. Soit F' vérifiant les hypothéses et y° appartenant & L?(SY) choisis
tels qu’il existe une unique solution o (1.2.2). Alors, il existe un controle distribué o, dont la
régularité est donnée par le Théoréme tel que (1.2.2)) soit approvimativement controlable a
zéro en T > 0, i.e., pour tout y° € L?(Q) et tout € > 0 il existe un controle p € C°(Qr) tel que
la solution y de (1.2.2)) satisfasse

[yl L20) < e
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On remarquera que le cas des équations singuliéres ou dégénérées comme le p-laplacien pour p # 2
ne sont a priori pas pris en considération dans le précédent théoréme. Cependant, il est possible
de prendre une famille de solutions arbitrairement proches du cas du p-laplacien parabolique qui
vérifient les hypotheses du Théoréme [[.2.3] On obtient alors immédiatement le corollaire suivant
( voir [49, Corollary 1.1.]).

Corollaire 1.2.4. Soit u® € L%(Q) et % < p < 3. Alors (1.2.1)) est approzimativement controlable
a zéro pour tout temps T > 0, i.e., pour tout € > 0 il existe un controle p € C>°(Qr) tel que la
solution u of (1.2.1) vérifie

|w(T) |20y < e

En fait, dans le cas ol 'on se concentre sur les équations ayant une solution qui s’arréte en temps
fini, il est possible de déduire du résultat précédent un résultat de controlabilité exacte globale.
Plus précisément, on a (voir [49, Theorem 1.3.]):

Théoréme 1.2.5. Considérons que F vérifie les hypothéses et que y est la solution
de ([[.2.2) associée a la donnée initiale y° € L*(Q), y° # 0. De plus, on considére que y s’arréte
en temps fini, ¢’est-a-dire que, si o =0, alors il existe Ts € (0,T) tel que:

ly(Ts)llL2(0) = 0. (1.2.4)

Dans ce cas, on peut choisir un terme de force o tel que y soit exactement contrdlable & zéro pour
tout temps T* € (0,T).

Comme nous 'avons mentionné, le p-laplacien parabolique s’arréte en temps fini, il s’ensuit donc
immeédiatement le résultat suivant (voir [49, Corollary 1.2.]).

Corollaire 1.2.6. Soit u° € L>(Q) et % < p < 2. Alors, en choisissant la solution positive
de (L.2.1)), le probleme (1.2.1) est controlable a zéro pour tout temps T > 0, i.e., il existe un
controle o € C°(Qr) telle que la solution u de ([.2.1) vérifie

u(T) = 0.

I.3 Solutions faibles d’un systéme de Stokes-transport non new-
tonien

Jusqu’a présent, nous avons considéré des fluides en mouvement qui finissent par s’arréter com-
pléetement. Dans les Chapitres [1| et [2| nous nous sommes concentrés sur des modéles ot la densité
du fluide était constante (en considérant les modeéles du chapitre [2| comme une fagon de ren-
dre compte de modeéles proches de la mécanique des fluides), mais cela n’est pas adapté pour
étudier des problémes de sédimentation ou les fluides comportant des particules en suspension
par exemple.

I.3.1 Position du probléme et résultats précédents

Dans ce cas, nous ménerons notre étude en nous concentrant sur le cas d’un fluide quasi-stationnaire,
c’est-d-dire que le fluide n’évolue plus suffisamment pour considérer le terme de dérivée temporelle
dans le modéle. Dans le Chapitre [3] nous étudierons un probléme de sédimentation dans un fluide
en loi puissance, en considérant I’équation suivante:
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op+u-Vp=0 dans Ry x Q
—div (v(p)|D(u)[P~2D(u)) + Vi = pg  dans Ry x Q
div(u) =0 dans Ry x Q
Plt=0 = PO dans €.

(1.3.1)

Le systéme n’est plus un probléme parabolique mais un systéme couplé hyperbolique-
elliptique, ce qui appelle des méthodes de résolution trés différentes. Comme nous le verrons,
I’équation ([[.3.1)) est une équation dite scalaire active, ¢’est-a-dire que I'inconnue est une fonction
scalaire p qui est solution d’une équation de transport donnée par

Op+u-Vp=0,

ol u est un champ de vitesses exprimé comme une fonction de p (dans notre cas, par le biais de
la résolution d'un probléme elliptique non linéaire). Un premier cas important d’équation scalaire
active, qui a été la source de nombreuses recherches récentes, est donné par le cas de ’équation
de Stokes-transport

adp+u-Vp=0 dans Ry x Q
—Au+Vr=pg dansR, x
div(u) =0 dans Ry x
Plizo = Po dans ©,

(1.3.2)

qui correspond & pour p = 2, et lorsque v est constante suivant la densité p. Notons
que l'absence de terme convectif est cohérente du point de vue physique, puisque pour un fluide
quasi-statique, on considére un transport par convection négligeable relativement au transport par
diffusion, ce qui revient & dire que 1’on considére un écoulement & trés petit nombre de Reynolds.
Nous renvoyons a [105, Chapter 9] pour davantage de détails. Notons que ce systéme s’obtient
rigoureusement comme limite d’un grand nombre de particules sphériques en sédimentation (en
dynamique non inertielle) plongées dans un fluide de Stokes (voir par exemple [113] [114] ainsi que
[115] pour I’analyse de I'impact de la viscosité d’Einstein). Précisons également de tels raison-
nements sont valables dans d’autres cadres, comme par exemple en remplagant le modéle de Stokes
par un modele de type Vlasov-Stokes (voir [112]). L’analyse du modéele a été effectuée dans
le cadre d’'un domaine borné général, il convient d’ajouter une condition garantissant 'unicité des
solutions, comme une condition de bord. Par exemple, avec la condition de Dirichlet homogeéne,

le systéme générique ([[.3.2)) devient

Op+u-Vp=0 dans Ry x Q
—Au+Vr=pg dansR, x

div(u) =0 dans Ry x Q (1.3.3)
u=20 sur Ry x 90
pli—o = po0 dans ©

Tl peut étre montré (voir [61]), que pour un champ de vitesse u € L'(W 1), la régularité spatiale
induite par la donnée initiale peut étre préservée pour des estimations sur I’équation de transport,
et que ’on a une perte de régularité pour un champ de vitesses de régularité moindre. Pour espérer
obtenir 'unicité d’un couple de solutions dans le cadre d’une équation scalaire active, il faut donc
choisir une donnée initiale qui permette a priori de conduire & un couple de solutions dont le
champ de vitesses a une régularité W1 en espace. Dans le cas ou la régularité spatiale du
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champ de vitesses est supérieure, nous parlons de régime sous-critique, de régime sur-critique si la
régularité est moindre, et de régime critique si la donnée initiale conduit exactement a un champ
de vitesses de régularité spatiale Lipschitz (ou, a la rigueur, Log-Lipschitz). Dans le cas d’un
régime sous-critique, il a été montré [I128, Theorem 1.1.] le résultat ci-apres.

Théoréme 1.3.1 (Leblond). Soit Q un domaine de fronticre C% de RN, N € {2,3}, et py €
L>®(Q). Alors il existe une solution (p,u) € L®(Ry, L®(Q)) x L®(Ry, W1>(Q)) de ([.3.3) au
sens des distributions.

On peut alors s’interroger quant & la véracité d’un tel résultat sur un domaine non borné. Il est
alors parfois possible de montrer 'existence de solutions, par exemple pour le systéme:

Op+u-Vp=0 dans Ry x ((0,1) x R)

—Au+Vr=pg dans Ry x ((0,1) x R)

div(u) =0 dans R4 x ((0,1) x R) (13.4)
u=0 sur Ry x ({0,1} x R)

fol ui(z,y)dy =0 dans Ry xR

flizo = o dans ((0,1) x B).

Théoréme 1.3.2 (Leblond). Soit pg € L*(Q2) et Q = (0,1) x R. Alors il existe une solution
(pyu) € L®(Ry, L%®(Q)) x L®(Ry, Wh>*(Q)) de ([.3.4) au sens des distributions.

Daus le cas tridimensionnel de ’espace entier, c’est-a-dire pour = R3, il est nécessaire d’ajouter
une condition de décroissance & l'infini en espace pour le champ de vitesses, soit:

Op+u-Vp=0 dans Ry x R3

—Au+Vr=pg dansR; xR3

div(u) = 0 dans R, x R3 (1.3.5)
lim |ul=0 dans R3

|| =400

Plt=0 = PO dans R?

Ainsi, il été établi le résultat suivant [142, Theorem 2.1.].

Théoréme 1.3.3 (Mecherbet-Sueur). Soit ¢ > 3 et py une mesure de probabilité sur LY(R3). En
notant E, le sous-espace de Li(R3) composé de telles mesures, il existe une unique solution au

sens des distributions (u,m, p) a (1.3.5) telle que:

e Sigq>3, (ump)eC(Ry, WHI(R?) x WH(R?) x Eg)

o Sig=3, (u,mp) €C Ry, WR) x WHR)N () WHR?) x WHR?) x B,
re(3,400)

Le résultat de ce théoréme étant optimal au sens ol le cas ¢ = 3 correspond au régime critique
(et ¢ > 3 au régime sous-critique). Nous renvoyons a [142] pour davantage de précisions. Une
autre question importante est de savoir si les solutions obtenues sont asymptotiquement stables
obtenu dans un cadre semblable & en remplacant le laplacien par l'identité, c’est-a-dire
en regardant une équation d’écoulement en milieu poreux. On obtient alors le systéme de type
Darcy-transport suivant.
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(Op+u-Vp=0 dans Ry x Q

u+ V7m = pg dans Ry x Q

div(u) =0 dans Ry x (1.3.6)
u=0 sur Ry x 00

Plt=0 = PO dans (2

Notons que ce systéme peut se réécrire, pour € := R?:

Op+u-Vp=0 dans R, x R?

=R Rt dans R x R2
temap e e (L3.7)
div(u) =0 dans Ry x R
Pli=0 = PO dans R
ot Rt = (Ra2,—R1), et Ry etRy correspondent aux transformations de Riesz respectivement

suivant la premiére et la seconde variable spatiales. Ainsi, on peut visualiser 1’équation ([.3.7))
comme une équation quasi-géostrophique de surface (usuellement désignée par acronyme SQG),

pour laquelle le champ de vitesses est donné par u = —VL(—A)_% p. Toutes deux font partie de la
classe des équations quasi-géostrophiques de surface généralisées, pour lesquelles nous définissons

u=V*+(-A)"2m(D)p,

ot B € R et m(D) est un multiplicateur de Fourier positif, défini de sorte que m(D) = log(Id—A)*
1 € R. Nous renvoyons a [53, Section 1.1.] pour davantage de détails et d’explications sur les
modeles associés. On a alors le résultat suivant (voir [80, Theorem 1.3.] ).

Théoréme 1.3.4 (Elgindi). Soit n(y) := y. Il existe g > 0 tel que si l'on considére la solution
de (L.3.7) associée a la donnée initiale po = po +n ot || pollwr1(w2) + [|Poll i w2y < € < €0, 5 > 20,
alors la solution p vérifie pour tout t > 0:

1

(1) llp(t) = nllgsmey < et™ 1
_3
(2) ||U1(t)HH3(R2) <et 1

_5
(3) Nlu2(®)|| 3wz < et™1

Notons qu’un résultat similaire peut étre établi pour le tore bidimensionnel (voir [80, Theorem
1.4.]). 1l est en fait possible de montrer, pour @ = T x (0,1), que les solutions de (I.3.3) sont
aussi asymptotiquement stables relativement a une perturbation sur la donnée initiale py (voir
[60, Theorem 1.1.]).

Théoréme 1.3.5 (Dalibard-Guillod-Leblond). Il existe £g > 0 petit tel que pour toute donnée
iitiale po € HO (T x (0,1)) vérifiant |[po — 0| grs(rx(0,1y) < €0 et (po —0) € HE (T x (0,1)), la
solution p de (1.3.3) satisfasse:

lp = pocllL2(rx(01y) < €0 (L+1) "

et |lp— poollEa(Tx(0,1)) < €0

0l Poo €St domné par le réarrangement vertical décroissant de pg, c’est-a-dire:
o
poo(2) = /0 Lo<z<|{po>a}] A,
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et ot la fonction 6 : T x (0,1) — (0,1) qui dépend seulement de sa seconde variable, est appelée
profil de densité stratifié et est donnée par 0(z) =1 — z.

On peut alors s’interroger quant a ’existence de résultats d’existence de solutions pour une classe
de problémes incluant des problémes du type (I.3.5)) et ([.3.7)), et, par suite, l'existence de résultats
de stabilité sur ceux-ci. On considére ’équation de Stokes-transport-fractionnaire suivante:

Op+u-Vp=0 dans R, x RN

(=A)2u+Vr=pg dansR; xRN

div(u) =0 dans R x RY (1.3.8)
lim |u|=0 dans RY

|z|—+o0

Plt=0 = PO dans RY.

Notons que (I.3.8) défini bien une équation scalaire active, car en appliquant le projecteur de
Leray P = Id + V(—A)~!div, & savoir la projection orthogonale L? sur l'espace des champs de
vecteurs & divergence nulle & la seconde équation de ([.3.8)), on obtient directement

w=(~A)"5P(pg).

Il est alors possible de montrer 'existence et 'unicité de solutions globales pour ([I.3.8)).

Théoréme 1.3.6 (Cobb). Soit a € (0,N) et un exposant q tel que

N
T <g< —. (1.3.9)

Alors pour toute donnée initiale pg € LY(RY), il existe une solution faible globale p € L>°(R, L4(RY))
de (1.3.8)) associée a la donnée initiale po. Si de plus:

e ac€[0,N) et que les indices s > 0 et q € [1,+00] sont tels que
N
q< —, et s>1—a.
o

Alors si py € B(‘;J(RN) N LY(RYN), il existe un temps T > 0 tel que la solution de ([.3.8)
soit unique et vérifie p € C([0,7T), 5;71(RN) N LY(RN)).

e N>2ecta€ (1,N). Alors pourq € [1, %) etr = %, et pour toute donnée initiale pg dans
Uespace LYRN)NL"(RY), ([3.8) admet une unique solution globale p € L™(R, L4(RN) N

L™ (RYN)).
e N > 2 et ac [1,N]. Alors pour q = % et r = %, et pour toute donnée initiale
OE B?%l(RN) N BRI(RN), (1.3.8) admet une unique solution globale p € C(R4; BSJ(RN) N
Brl(R ))

Nous renvoyons le lecteur & [53, Theorem 1.1., Theorem 1.3., Theorem 1.6.] pour une preuve de
ce résultat. Le Théoréme assure donc l'existence de solutions (locales et globales) ainsi que
I'unicité, pour une importante famille d’équations scalaires actives correspondant & la sédimenta-
tion dans des fluides newtoniens, en couvrant a la fois les régimes critique et sous-critique.
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1.3.2 Résultats de la thése

11 est alors pertinent de s’interroger quant & la possibilité de démontrer un tel résultat dans le
cadre d’un fluide non-newtonien, par exemple un fluide suivant une loi d’Ostwald-De Waele. C’est
précisément 1’objet du probléme posé en ([.3.1)).

Plus précisément, nous considérons le probléme suivant sur le tore N-dimensionnel.

Op+u-Vp=0 dans Ry x TV
—div (V(P)’D(U)\p_2D(U)) +Vr=pg dansR, x TV

div(u) =0 dans Ry x TN (1.3.10)
frnv udz =0 dans Ry

Plt=0 = PO dans TV

ol v est une fonction positive de la densité p qui peut potentiellement dégénérer. Commentons
briévement la physique de ce systéme, en notant un tenseur 7 dépendant de D(u). On note p la
densité du mélange, de sorte que celle-ci s’écrive:

p=p+p,

ol p est la densité du fluide porteur, qui est supposée constante, c¢’est-a-dire que le fluide porteur
est homogéne, et p est la densité des particules en suspensions a laquelle on soustrait la densité
du fluide porteur. On observe alors que la densité p des particules en suspensions, a laquelle
on soustrait la densité du fluide porteur, peut étre négative, selon qu’elle est plus ou moins
importante relativement & la densité du fluide porteur. Plus précisément, lorsque celle-ci est
négative, les particules remontent vers la surface (phénomeéne de crémage), sinon elles descendent
vers le fond suivant le vecteur de gravité (phénomene de sédimentation). Nous regrouperont,
comme il est usuel de le faire, ces deux terminologies en parlant de sédimentation. Les équations
que nous avons initialement sont donc données par:

Op+u-Vp=0 in Ry x TN

—div ((p)|D(u)[P2D(u)) + VT =pg in Ry x TV

div(u) =0 in Ry x TV (L3.11)
frv ude =0 in Ry

Plt=0 = PoO in TV

En fait, il est possible de voir que la premiére ligne se réécrit directement comme fonction de
p, puisque p est constante. Dans la deuxiéme équation, on peut faire ’observation suivante:
P9 = pg~+ pg =V (pg-x)+ pg, et ainsi on peut réécrire 1 = T + pg - x, ce qui permet de définir
un nouveau terme de pression. En posant pj_g = po — p := po, et en redéfinissant v(p) = v(p), il
s’ensuit le systéme . Notons que, d’un point de vue mathématique, les systémes et
sont identiques. Cependant, la justification précédente permet de comprendre pourquoi
nous avons a priori une densité qui peut étre négative, en fait cela vient du fait qu’il y a des
termes microscopiques présents dans qui vont disparaitre et conduire, via le procédé
précédemment décrit, & ([.3.10). Nous référons a [I15] pour davantage de détails.

Revenons & l'analyse mathématique du probléme. Il n’est pas évident que le probléme défini une
équation scalaire active, & cause notamment du théoréme nonlinéaire. En fait, en multipliant
formellement I’équation de Stokes non-newtonienne par D(u), nous n’obtenons pas de borne uni-
forme sur u en WP comme nous 'aurions si imposions & v(p) de rester strictement positive. Nous
pouvons montrer par des estimations a priori une majoration plus faible, mais insuffisante pour
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raisonner directement par compacité. Nous travaillons alors a priori en régime sur-critique. Pour
montrer que ([.3.10) est bien une équation scalaire active, il convient d’observer que 'opérateur:

A= [ 9D da
b Jr~

est un opérateur a potentiel strictement convexe et coercif sur un espace de Banach réflexif, en
Poceurence sur un sous-espace de LP(v(p)dz), qui est l'espace LP associé & la mesure a densité
v(p)dz. 11 est alors nécessaire d’effectuer un découplage dans le systéme en étudiant
séparément les propriétés de I’équation de Stokes non-newtonienne et de ’équation de transport
(ou équation de continuité). Il faut alors trouver un schéma adapté a ce découplage pour effectuer
une méthode d’approximation de type Friedrich, 'objectif étant de montrer I'existence de solutions
faibles, définies comme suit.

Definition I1.3.7. On considére N > 2 la dimension et un exposant q € [1,+00]. Soil pg € LY une
donnée initiale. La fonction p € L>(L?) est une solution faible du probléme de Stokes-transport
non-newtonien associée & la donnée initiale pg si les conditions suivantes sont satisfaites:
(i) Il existe un champ de vitesses u : Ry x TN — RN tel que v(p)|D(u)|P~! € LL (R4 x TV)
et qui, pour presque tout t € Ry, est solution de l'équation de Stokes: en d’autres termes
div(u) = 0 dans D(Ry x TV) et quelle que soit ¢ € D(Ry x TN RY) & divergence nulle,

nous aVons

[ voItr2p@ s D@ drat = [[ pg-sdsar

(ii) Le champ de vitesses est u € L (LY) et p est une solution faible de Uéquation de transport
pour la donnée initiale po, c’est-a-dire que pour tout ¢ € D(R, x TV, R), nous avons

// (P&gcé + pu - ngb) dzdt + /p0¢(0) dr = 0.

Montrer I’existence de solutions, méme approchées, n’est pas immeédiat: on ne peut pas appliquer
tel quel un théoréme de Cauchy-Lipschitz. La régularité a priori étant insuffisante, il est nécessaire
de coupler un argument par une méthode de Minty dans I’équation de Stokes non-newtonienne,
et de faire usage de la théorie de Di Perna-Lions pour estimer le terme de densité. Ce faisant,
on peut montrer Iexistence de solutions approchées globales via 'usage du théoréme de Cauchy-
Peano, et montrer la convergence de ces solutions. On obtient ainsi le résultat suivant (voir [54]
et Theorem , qui est issu d’un travail réalisé en collaboration entre Dimitri A. Cobb et le
présent auteur lors d'un séjour de recherche & 1’'Université de Bonn (Allemagne).

Théoréme 1.3.8 (Theorem [3.0.2). Soit N > 2 la dimension. On considére p € (1,400) et
une fonction v € C(R\ {0}) N COT(R) N L>(R) telle que v(|r|) 2 |r|” pour tout r € [—1,1],
gamma = min(vy, 1), v > 0.

On considére également des exposants q € (1,2) et o € [1,400] tels que l'une des conditions
sutvantes soit vérifiée:

(i) Cas sous-critique: ou bien nous avons l'inégalité stricte

1 w11
(1 ﬂ S o<1 1.3.12
p(+a +q N< ( )

(1) Cas critique: ou bien nous avons l’égalité

1 ~ 1 1

(1 ﬂ S -1, 1.3.13

P ( + o + qg N ( )
et de plus la condition ¢ > % est vraie. En particulier, cela est toujours vrai si N = 2.
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Alors, pour toute donnée initiale po € LI(TYN) telle que 1/py € L7(TYN), il existe une solution
faible p € L= (R4, LY(TN)). De plus, si po € LY(TV) N L"(TN) pour un r € [1,+00], alors

ol Lo 2y = llpollr-

Nous attirons attention du lecteur sur le fait que les terminologies "cas critique" et "cas sous-
critique" dans I’énoncé du Théoréme ne sont pas en lien avec le régime sous-critique et
critique pour 'unicité des solutions de I’équation scalaire, mais sont en rapport avec la régularité
a priori critique pour montrer I’existence de solutions faibles.

Une question est de savoir si les résultats des Théorémes et peuvent conduire a un
résultat de contrélabilité exacte interne des solutions de . Nous ne discutons pas ici du
bien fondé physique de cette assertion, puisque a priori dés lors que l'on applique des forces
externes suffisamment importantes au fluide, celui-ci serait conduit & sortir de son état quasi-
statique, et par la suite la cohérence du modéle serait discutable. On pourrait pallier ce probléme
en définissant des controles admissibles qui permettraient de garder une cohérence physique pour
ce dernier. Remarquons que dans le cas de , il a été établi 'existence de controles internes
pour l’équation de continuité et de Stokes (voir [142], Theorem 2.5.]).

A titre d’exemple, remarquons que le modéle ([.3.10) peut rendre compte, par exemple, d'un
phénomeéne de sédimentation des globules rouges dans le plasma sanguin.

I.4 Détermination d’un coefficient de diffusion en hémodialyse

Nous conclurons ce manuscrit par I’étude d’un probléme appliqué au domaine médical concernant
I’hémodialyse, réalisé en collaboration avec le Centre Hospitalier Universitaire Gabriel Mont-
pied de Clermont-Ferrand. Comme nous I’évoquions précédemment, le sang est un fluide non-
newtonien rhéofluidifiant, et celui-ci se modélise assez bien par des modéles de Carreau ou de
Cross. En d’autres termes, une des particularités du sang est qu’il se comporte, lorsqu’il est
soumis a d’importantes déformations, comme un fluide newtonien.

Plus précisément, le sang est une suspension d’érythrocytes (globules rouges), de leucocytes (glob-
ules blancs, comprenant les granulocytes éosinophiles, basophiles, et neutrophiles, ainsi que les
lymphocytes et les monocytes), et de de thrombocytes (plaquettes), dans un liquide aqueux appelé
le plasma, qui est également constitué de divers éléments comme des protéines (albumine, im-
munoglobulines, fibrinogénes, transferrine, ap-antitrypsine, macroglobulines, lipoprotéines, céru-
loplasmine, etc.) ainsi que d’espéces chimiques variées et autres substances organiques ou inor-
ganiques (sels minéraux comme le calcium, le sodium, le potassium, ou encore le magnésium, par
exemple). Ainsi, le sang est une suspension aqueuse de particules trés hétérogeénes, tant en taille
qu’en représentations volumiques.

Principalement, les érythrocytes représentent en moyenne environ 40% du volume sanguin, et
jouissent de propriétés d’élasticité importantes. La concentration volumique en érythrocytes dans
le sang est appelée ’hématocrite (souvent abrégée en Ht), et se calcule par centrifugation du
sang dans un tube, en estimant le volume obtenu formé par 'agrégat d’érythrocytes. Notons
qu’en général l'agrégat obtenu pour la mesure de I'hématocrite est constitué en moyenne de 96%
d’érythrocytes, le reste étant du plasma retenu dans I'agrégat. Ainsi, la mesure de I’hématocrite
doit étre comprise avec une certaine marge d’erreur due & la mesure. Notons également que
I’hématocrite joue un réle prépondérant dans le caractére rhéofluidifiant du sang, il est méme
établi qu’en-dessous d’un certain seuil d’hématocrite, le sang n’est plus rhéofluidifiant (voir [33])
ce qui peut étre interprété dans le sens ol en général, le plasma est une suspension tellement
diluée qu’on peut le considérer comme un fluide newtonien. Cependant, certaines pathologies
induisent, sous une augmentation significative de certaines protéines comme des fibrinogénes ou
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des immunoglobulines, une modification du plasma telle que sa viscosité ne corresponde plus & un
modéle newtonien (voir par exemple [74]).

Ainsi, la viscosité du sang est trés complexe et dépend de plusieurs paramétres. Un fait intéressant
est que lorsque le sang circule dans un capillaire, c’est-a-dire formellement un long tube de petit
diameétre avec comme frontiére une membrane partiellement perméable, alors plus le diamétre
de celui-ci est petit, plus la viscosité diminue: il s’agit de leffet Fahraeus-Lindqvist (voir [85]
101} 152]). Cependant, cet effet s’inverse en dessous d’un certain diameétre (inférieur & 6 pm, et
significativement en dessous de 3 ym).

Dans [7], ce phénomeéne est mis en évidence en comparant les simulations numériques obtenues
en considérant des modéles d’écoulements non-newtoniens et newtoniens, dés lors que le sang
s’écoule dans les petites fibres d’un dialyseur: les dimensions associées & une telle fibre sont par
exemple donnés par un rayon R = 2.3 x 107% m et une longueur L = 2.3 x 10~ m, le rayon du
cylindre interne dans lequel circule le sang étant alors Ry = 104 m et I’épaisseur de la membrane
d’environs de 0,4 x 107* m.

r

Figure 1.4: Représentation tridimensionnelle d'une fibre de dialyseur. 4, €, et €2 représentent
respectivement les régions associées au dialysat, a la membrane poreuse, et au sang.

L’objectif est alors le suivant: a partir de prélévements réalisés sur des patients, peut-on déterminer
les valeurs des coefficients de diffusion intramembranaires, dits coefficients de Beavers-Joseph?
Pour ce faire, on considére que la membrane est assujettie & une loi de Darcy, et 'on prend
en considération les réactions chimiques ayant lieu dans le dialyseur, modélisées par le systéme
d’évolution suivant, oil les valeurs (¢;)1<i<5 correspondent aux concentrations des cing espéces
chimiques en présence et prises en considération.

@q+&wﬁﬁ+u@qyé@@m@m—@ammg:ﬂ@dmuanxa

¢; =G, nput sur (0,7) x (Dep UT, )
Onc;i =0 sur (0,7) x Ty, (I4.1c
¢i(0) = ¢jp dans Q. (I.4.1d

Dans ([.4.1)), les coefficients (D;)1<i<5 représentent les coefficients de diffusion intramembranaires
pour les espéces (¢;)1<i<s, (Si)1<i<3 est un coeflicient utilisé pour éliminer les espéces ne traversant
pas la membrane (Albumine et Calcium Albumine), soit

‘ - 1, six ey
SZ(II;)_{ 0, size N\

et S;=1siie{l, 4, 5}.
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I’approche que nous aborderons pour déterminer les coefficients de diffusion repose sur une méth-
ode de descente de gradient couplée avec une méthode de Newton, et sera présentée en détails
dans le Chapitre

Remarquons que dans le modéle précédent, nous considérons pour simplifier une membrane
poreuse et une diffusion intramembranaire suivant une loi de Darcy. Potentiellement, on peut
dans certains cas observer une agrégation de thrombocytes sur le bord de la membrane du dial-
yseur: ce phénomene est appelé 'hémostase primaire. Cela pourrait venir d’un détachement du
collagéne présent dans les cellules endothéliales (c’est-a-dire des cellules composant 1’endothélium,
la couche interne des vaisseaux sanguins en contact direct avec le sang) qui se fixent sur la mem-
brane ou, le cas échéant, circulent dans le sang. Les thrombocytes se fixent alors aux molécules de
collagéne, ce qui induit une variabilité dans la porosité de la membrane du dialyseur. Une éven-
tualité pour pallier de tels problemes serait de considérer une loi de Darcy généralisée davantage
adaptée aux échanges de fluides par la membrane poreuse, comme ce qui a été établi dans [I57].
Pour une discussion approfondie concernant la biomécanique du sang, nous renvoyons le lecteur
a [97, 148].

Notons pour conclure cette introduction que la connaissance des coefficients est intéressante car
elle permet d’ouvrir une question de contréle optimal: le fait d’effectuer une dialyse a pour but de
rétablir un équilibre souhaitable entre différentes espéces chimiques intrasanguines chez le patient.
Connaissant les coefficients de diffusion et 1’état cible, quelle est alors la bonne concentration des
espéces chimiques & mettre dans le dialysat pour atteindre la cible souhaitée? Cela dépend des
données propres a chaque patient, 'objectif étant d’atteindre de maniére optimale les concentra-
tions souhaitées & la sortie du dialyseur.
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[La science] monte trés haut dans I'infiniment
grand, elle descend trés bas dans l'infiniment pe-
tit. Entre ces deux extrémes, qui se répondent
I'un a Pautre, elle explore ce que nous appelons le
monde réel — c’est-a-dire le notre.

Summary of the dissertation

Jean d’Ormesson, La Science (Guide des égarés).

This dissertation is devoted to the mathematical analysis of certain non-Newtonian fluids and
their specific properties. First of all, a fluid is "a perfectly deformable material medium", i.e., to
put it simply, a deformable body. Many materials are fluids, and we are confronted with them
on a daily basis. We can easily think of gases such as air, liquids such as water, or even plasmas.
What is less well known, however, is that many fluids adopt behaviors that depend on the stresses
they are subjected to. Take mayonnaise, for example: when subjected to stress, such as when
whipped, it behaves like a liquid in the usual sense. However, when left at rest without being
subjected to unnatural external forces, it remains fixed, like a solid. In fact, to be more precise,
you need to exceed a certain level of applied forces, a certain threshold of stress, for mayonnaise to
start behaving like a liquid. Fluids with this type of behavior are called threshold fluids, with the
example of Bingham fluids. So, if we want to refine our definition of a fluid, we can add that it is
a body that can undergo non-rigid deformations. In other words, it is not a solidﬂ. To emphasize
the example of mayonnaise, it flows all the more easily the greater the constraints imposed on it.
This is called shear-thinning behavior. There are also fluids, such as a slightly diluted solution
of cornstarch, which behave in the opposite way: the greater the constraints imposed, the more
the fluid tends to solidify. This is known as shear-thickening behavior. The study of fluid flow
properties is called rheolog and can be approached in a number of ways. A first approach is
to understand the microscopic interactions that give rise to particular flows. Although this is not
the approach we will be taking in this dissertation, it does provide a fairly precise framework for
distinguishing different types of flow. Here are a few examples.

Suspensions: This is a general framework for fluids. Intuitively, when very small particles, say
solids, are in a fluid, we speak of them as being suspended in the fluid, and consequently we say
that the mixture is a suspension. Many examples of suspensions can be found in everyday life,
such as concrete, cement and paint, but also in soups (which are suspensions of vegetables in
water), or biological fluids such as blood (which is, roughly speaking, a suspension of blood cells
and platelets in blood plasma). When the force of gravity acting on a suspension is greater than
the other forces to which it is subjected, we speak of sedimentation. We will be looking at this
phenomenon in Chapter [3] In the long term, phase separation is observed, which translates into
a variation in fluid density depending on the zone under consideration.

Colloids: When the particles in suspension are very small (say, less than 1 um in diameter),
certain previously negligible interactions become more pronounced. These are called colloidal
interactions. These are essentially Van der Waals forces, which tend to cause the various sus-
pended particles to aggregate. As a result, colloids often give rise to inhomogeneous mixtures, as
particles tend to clump together. From a practical point of view, colloidal interactions are usually
stabilized to avoid this phenomenon and to make the colloid usable. Many fluids are colloidal
in nature, again including paints and cements, but also toothpastes, cosmetic creams, clays and
so on. A number of colloids also exhibit Bingham fluid behavior, i.e. it is necessary to apply
sufficient constraints for the fluid to move and flow.

}fIf we want to be precise, a fluid is an egalitarian material that is not a solid, see [Section IV.17.]Truesdell-1991.
'from the Greek roots rheos meaning "current" or "flow" and logos meaning "research" or "theory"



Polymers: Readers may wonder why polymers are included in this series of examples, given
their widespread use in solid form in everyday life. However, in the manufacturing process for
these polymeric materials, polymers are suspended in a liquid. A polymer, or polymer chain,
is therefore a molecule made up of a large number of identical particles (several thousand or
even several million) associated by their carbon atom. One of the most interesting properties
of a polymer chain is that it can take on an enormous number of possible configurations, as
it can expand or contract. This means that the fluid obtained by suspending polymers (and
consequently the resulting material, in general) has excellent elasticity properties. The resulting
mixture behaves, to put it simply, like an elastic solid when subjected to stress, and then very
quickly flows like a liquid. It is therefore common for polymer solutions to be shear-thinning .

B
T>

Figure 11.5:  Representation of a polymeric chain. The length of the chain r is the Euclidean
distance between its ends. It can expand when subjected to a constraint f.

Emulsions: In the previous examples, we focused mainly on suspensions of solid particles in a
liquid. In fact, sometimes a fluid is actually a "mixture" of several distinct fluids, all with different
properties. In such a configuration, we generally speak of a complez fluid. In some cases, it is
desirable to place small particles of one fluid in suspension (i.e. highly dispersed) in another fluid,
for example to aid penetration of a porous material. When such a suspension takes place, it is
referred to as en emulsion setting. This commonly-used term is rightly found in everyday life,
particularly in the culinary sphere. This brings us back to our initial example of mayonnaise, which
is the emulsification of egg yolks and mustard (and perhaps a few additional seasonings) in an
oilseed solution (sometimes also aqueous, as the maker chooses). As mentioned above, emulsions
can exhibit shear-thinning behavior, and can also be threshold fluids. Once again, examples of
emulsions can be found in a wide range of fields, from food processing (salad dressings, butter,
etc.) to civil engineering (petroleum fluids) and cosmetics (creams, for example).

There are many other examples of fluids, and we refer the reader to [59] (from which most of the
above examples are taken) as well as [19] [105] for precise and detailed explanations.

However, as we mentioned earlier, a fluid is a body that is not solid, in the sense that it can
undergo non-rigid deformations. The question then arises: what do we mean when we speak of
a body? A first approach would be to use the definition of classical mechanics, saying that a
body is a set of weighted points obeying the laws of classical mechanics. While this approach
is not wrong, it does present a number of difficulties. On the one hand, if a point represents a
fluid particle, it is difficult to understand how interactions at small, say mesoscopic, scales are



Figure I1.6: Mayonnaise is an emulsion, which behaves like a Bingham fluid: without being
subjected to sufficiently high stresses, it remains set.

to be considered. So, should they be omitted, or otherwise taken into consideration, but how?
In such cases, it is preferable to define a simplified framework that accounts for the macroscopic
behavior of the flow, without having to enter into ancillary considerations such as Van der Waals
interactions, for example. This leads to a different definition of a body, as an element of a set,
generally an open subset of RY.

II.1 Analysis of non-Newtonian flows

We begin by presenting a generic flow model for an incompressible viscous fluid, then study the
existence of solutions for it.

I1.1.1 Problem position and previous results

In Appendix [C] we will present a rigorous framework leading to the latter approach, which we will
refer to as the macroscopic approach. This framework is that of continuum-mechanics, which is a
simplified alternative for the study of certain fluids or solids, particularly well-suited to deformable
materials. We will therefore present physics-mathematics results established within the framework
of research associated with Hilbert’s sixth problem (mathematical formalization of physics), the
results of which can be found in [I167]. The aims of this chapter are manifold:

e Firstly, it will be highlighted which objects are considered within the framework of contin-
uum mechanics and, consequently, within the framework of fluid mechanics as considered
in the remainder of the dissertation.

e This will highlight how flow-induced deformations are considered in our framework, and
thus how we approach the observations mentioned above.

e Finally, by demonstrating that alternatives to the laws of classical mechanics are available
within the framework of continuum mechanics, we will be able to establish the generic model
of the equations describing the flow of an incompressible viscous fluid.

The latter equations reflect a local averaging of fluid properties, and are as follows.



(8tp+ div(pu) =0 in Ry xQ

p (Owu+ (u-Vu) —div (r(p, D(u))) + Vm(p) = pf in Ry xQ

div(u) =0 in Ry xQ (IL1.1)
u=20 on Ry x 90

Plt=0 = PO in

U|t:0 = Uup in Q

where the equations are set in Ry x €, i.e. the time variable evolves in Ry and the space variable
in the open Q C RY. The first equation is called the continuity equation, and the unknown p
is the fluid density. The second is the flow equation, where u is the fluid velocity field, and =«
is the pressure. The condition div(u) = 0 reflects the incompressibility of the fluid, i.e. for any
small volume of fluid considered, it remains constant as a function of time. Finally, the tensor 7
is the tensor of internal stresses associated with the flow. When the latter is expressed linearly
with respect to D(u), where D(u) = M is the tensor of the fluid’s deformation rates, the
fluid is said to be Newtonian, according to the assumptions made by Isaac Newtonﬂ. Otherwise,
the flow is said to be non-Newtonian. In the case of an incompressible fluid, Newtonian flows are
described, for example, by the Euler equations (for a perfect fluid) or the Navier-Stokes equations.

Nevertheless, Newtonian flows do not cover the cases described above, such as shear-thinning or
shear-thickening behaviors. In other words, such behaviors are non-Newtonian and consequently
result in the stress tensor being expressed non-linearly relative to D(u). Thus, gives a pre-
cise framework for the macroscopic study of a non-Newtonian flow, but, although this is not the
approach we will present in this dissertation, let us mention that there are alternative approaches
to this duality between the macroscopic and the mesoscopic: we then speak of a micro-macro
model. Such models have been successfully described and analyzed, for example for dilute poly-
meric suspensions. Reference can be made to [I127, Chapter 4| and [I18] for the modeling and
analysis of dumbbell models, for example.

Initially, we will focus on equations of the form (I1.1.1)) for constant density, i.e. p = pg > 0. In
this case, the generic system is rewritten, with a good choice of units:

Ou+ (u-Vyu—divr(D(u)) + Vr=f inRy xQ

div(u) =0 in Ry x Q (1L1.2)
u=20 on Ry x 092
Ujg—0 = Uo in Q.

This leaves us with an open question: although we know that the stress tensor 7 describes a
nonlinear law, we do not know how it can be expressed. In other words, we do not know which
models we can consider. In fact, as you would expect, these models are essentially based on
physical experiments. To do this, we use a device called a rheometer to estimate the various
properties of the fluid as a function of the stresses applied to it. The measurements taken are
then approximated by curves describing functions, relative to the deformation of the fluid, and
the 7 description is obtained.

iSee for example |31} Section 1.4.2.] for more details.
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solid disc
plate

material

Figure I1.7: A parallel-disk rheometer: a fixed plate is placed between the material and an upper
plate, whose mobility is ensured by rotation relative to an axis, causing shear, which is measured
as a function of the stresses applied.

Let us take a look at some examples of laws for 7, where x € {0,1} according to considerations
on fluid viscosity, which comes down to whether or not we add diffusion to the equation.

Carreau:

T(M) = kM + (1 + |M]>)"2 M, p> 1,

Carreau-Yasuda:

(M) = kM + (14 |M|*)*s M, p>1, a >0,

Ostwald-De Waele (power law):

T(M) = &M + [MP~M, p > 1,

Cross:

M
M)=M+ ———5— 1

Bingham:
% si |[M]>0
T(M) =M +7(M), 7(M)= :

0,1] otherwwise,

Herschel-Bulkley:
WM| +|MP2M, p>1 si|M|>0

T(M) =M + 7(M), %(M):{ .
[0, 1] otherwise.

By observing the curves associated with the above-mentioned 7 tensors, we realize that when the
parameter p verifies 1 < p < 2, the fluid is shear-thinning, and shear-thickening if p > 2. In the
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case of Carreau, Carreau-Yasuda, Ostwald-De Waele, or Cross fluids, when p = 2, 7 is linear in
M and the fluid is Newtonian. Another interesting observation concerns the Carreau-Yasuda and
Cross laws in the shear-thinning case: when the fluid is little deformed or enormously deformed,
i.e. when |M| is very small or very large, then we expect it to adopt a behavior relatively similar
to a Newtonian fluid. This will indeed be the case, as can be observed for blood, for example,
which will be used in Chapter ]l This remark remains valid for a Carreau fluid, which is a
Carreau-Yasuda fluid for & = 2. The case of Bingham’s law is, formally, an Ostwald-De Waele
law for the limiting case p = 1. Note, however, that the non-diffusive part of the stress tensor 7
is discontinuous at M = 0, since 7(M) = M—% In the mathematical study of such an equation,
the appropriate notion is that of a multivalued function. In any case, when |7(M)| takes a value
other than 1, this forces M to take the value M = 0. In other words, it behaves like a solid
when subjected to insufficient stress, and flows when a certain stress threshold is exceeded: this is
known as a threshold fluid. Before continuing, let us recall the following definitions, where o € N*
is a multi-index.

Definition I1.1.1. (Nonlinearity types) A partial differential equation is said to be:

(i) Semilinear if, for functions (aa)|a—k, it can be written as:

Z a0 (z)Viu + ag (Vkilu, ..., Vu, u,x) =0
|a|=k

(i1) Quasilinear if, for functions (aa)|aj—k, it can be written as:

Z ae(VE Yu, .., Vu,u, )V + ag (Vkilu, ..., Vu,u, a:) =0
|a|=k

Note that the equations described for the tensors we are considering are then quasilinear equa-
tionsﬁ according to their spatial variable, which means that the latter is expressed as a linear
function of the terms whose derivatives are of the highest order.

Thus, the mathematical analysis of non-Newtonian fluids lies at the interface of nonlinear analysis
and fluid mechanics. For this reason, in Chapter [I] we describe the tools needed to analyze
quasilinear equations. An essential notion in this context is that of a monotone operator, i.e. an
operator A : X — X* where X is a reflexive Banach space and X™ is its topological dual, which
verifies:

V(u,v) € X2, (A(u) — A(v),u —v) yer x > 0.

For example, the Laplacian on a bounded domain  defined by —A : H}(Q) — H-1(Q) is a
monotone operator because it verifies

/(—Au+Av)(u—v) dmz/\V(u—v)2 dx > 0.
Q Q

The terminology of monotone operator can be thought of by remembering that a function of one
real variable f: I — R is increasing on I C R if and only if:

kNote that the nomenclature of semilinear and quasilinear equations is not derived from the notions of applica-
tions with the same names. For example, an application describing a paraboloid is a quasilinear application, but
is not described by a linear function in its last variable.



V(t,s) € I?, (f(t) = f(s)) (t —s) >0,

the inequality being reversed in the case of a decreasing function. Having said that, we should also
(and above all) remember that f is convex on I if and only if it satisfies the convexity inequality:

V(t,s) € I?, (f'(t) — f'(s)) (t—s) > 0.

We then find a very close relationship between the notion of monotone operator and the notion
of convexity: these are the convex potential operators, and their characterization is linked to
Kachurovskii’s theorem, which extends the usual characterizations of convex functions to func-
tionals. In the case of the Laplacian, this means that

(—Au,v) 2 = (J'(u),v) 5,

where

1
() = Q/vauP de,

is a convex functional. In general, most of the laws introduced above derive from a convex
potential, with the exception of threshold fluids (Bingham or Herschel-Bulkley). Note that in
this case, the shear-thickening or shear-thinning behaviour of fluids whose flow is associated with
the laws cited for 7 (Carreau, Cross, Ostwald-De Waele) is determined by a parameter p > 1.
In fact, the a priori regularity of the solution depends on this parameter (at least if k = 0). For
simplicity’s sake, we will assume in this introduction that:

(M)~ &M+ (u+ |M?)*% M, ke{0,1},u>0,

i.e. 7 behaves like the above-mentioned tensor in the estimates, and we will keep these consider-
ations in mind as we move forward.

By making good use of the notion of monotone operator, it is possible to show the existence of
solutions for equations (II.1.2)). Take, for example, the following result (see [141]):

Theorem I1.1.2 (Malek-Necas-Ruzicka). Consider a domain Q C R3, with a C® boundary,
p € [2,3), uy € Wol;f(Q), f € L*(0,T),L*(Q)), a time T € RY arbitrarily fived, such that the
stress tensor T verifies good monotonicity assumptions. Then there is a solution to in the
weak sense. Moreover, if p > %, the solution u is unique and verifies:

w e C((0,7), L2(R)) N L=((0,T), Wo k() N L1 ((0,T), W51 (Q)) et dyu € L((0,T), LA(Q)).

Remark I1.1.3. We have omitted here to specify the precise assumptions of the theorem, in
particular concerning the T stress tensor, which we will also do later concerning the results linked
to Chapters[1] and[9 This choice has been made so as not to make the presentation of the results
too cumbersome, since depending on the result, the assumptions concerning the system under
consideration or the stress temsor are multiple and vary considerably from one author to another.
However, the assumptions and results concerned will be cited with precision in Chapters[1] and [9

In this case, we refer the reader to the following hypotheses into the Chapter|[i]

Theorem [[1.1.2] (which corresponds to Theorem in the dissertation) thus tells us that there
are solutions in the case of a shear-thickening flow, and that moreover it is possible to show
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that the solution is unique as soon as the shear-thickening character of the fluid is sufficiently
consistent.

The case of shear-thinning fluids is more delicate, as the nonlinear term can sometimes be singular,
especially with an Ostwald-De Waele or Bingham law. However, it is always possible to show
the existence of solutions for (II.1.2), using fine analysis techniques. For example, we have the
following result (see [72] for the result, the assumptions being given by [(SWDI(SW2)[(SW3)]
SW4)| and can be found in Chapter .

Theorem II.1.4 (Diening-Ruzicka-Wolf). Let Q be an open bounded subset (regulaﬂ) of RV,
where N > 2, and and arbitrarily fived 0 < T < +00. In addition, under certain assumptions of
monotonicity on T (which we omit her, and considering

<p <
Nig Pt

if ug € L2(Q) and f € LI((0,T) x Q), there is a weak solution u € LP ((O,T),Wol’f(ﬂ)) N
Co([0,T], LZ()) of ([L1.2).

In the two-dimensional case, Theorem covers all the laws we mentioned at the time, except
the one for Bingham flow. This is simply because the nonlinear operator associated with such
a flow is not monotone. Two approaches are then possible: first, we can weaken the notion
of solutions associated with the problem, otherwise we can generalize the notion of monotone
operator. The first approach leads to the notion of a variational inequality. Formally, such an
inequality is obtained by multiplying the solution by ¢ — u, where ¢ is a test function (i.e. it
belongs to a space of functions whose regularity is adapted to the framework of the equation).
In this case, we obtain, still formally, an expression for the nonlinear term as the derivative of a
potential, or as the limit of such derivatives. The idea is then to use the convexity properties of a
convex potential, i.e. a monotone operator according to Kachurovskii’s theorem, to establish an
inequality involving the velocity field (i.e. the solution). In this inequality, we no longer show the
derivative of a potential, but a difference involving it.

Let us illustrate with a simple calculation. To approximate the 1-laplacian, which is formally the
operator u — |Vu|~'Vu, we can use the operator:

1
Ae(u) = 15z /QWU’HE dz,

which is a convex potential, and therefore enjoys convexity properties according to Kachurovskii’s
theorem. Formally, the term operator AL converges to the 1-Laplacian, denoted A, when & — 0.
In particular, this means that the latter is expected to benefit from the same convexity inequalities
as the operator AL. More precisely, still formally:

(AL(u) — AL(v),u —v) = (A1(u) — Ar(v),u —v)
>0 >0

This heuristic reasoning shows that for such problems, for which convexity is degenerate, we seek
to bring out an inequality, Kachurovskii’s theorem allowing us to write:

(AL(w) — AL(0),u—0) > 0 Au(u) — Ac(v) > (AL(u),u— 1)
— Ao(u) — Ap(v) > (A1(u),u —wv) (IL.1.3)

"We will come back to the assumption of regularity in Chapter
"See Remark [I1.1.3



Since the calculations are formal, the principle is to give meaning to the last limit, A; in our
example. Inequalities of this type are called wvariational inequalities, and allow us to define a
notion of weak solution to singular problems.

By applying the same principle of boundary crossing to the Bingham system for x = 1, which
is parabolic, the following result can be obtained (see [50] and [77] for a proof, the detailed

assumptions being given by [D1)H(D4)]in the Chapter [L)).

Theorem I1.1.5 (Cioranescu-Duvaut-J.L.Lions). Let k € N, k > 1, and Q be a domain of RY
with smooth boundary, N € {2,3}. We consider (pi)1<i<k, (¢i)1<i<k, such as

koo n:
i -1,
and f € ﬂ La-1((0,T), W, "' (Q)). Then, under certain assumptions, we have:
i=1

k
u e (ﬂ Lq?‘((O,T),HS,U(Q))> N L>((0,T), L7(2))
=1

k
4
such that Oyu € m Lau=1((0,T),H;°(2)) satisfies for all ¢ in a set of admissible functions:
i=1

/oT (@%9@ — )+ (~Au g — ) + /Q<u®u> : D(p —u) de + A(p) - A(“)> “

T
> / <fa ¥ — u> dtv (IIl4>
0
the result being true for the Bingham model.

Let us illustrate our point by returning to our previous example: A accounts for the nonlinear
term, which in many respects behaves like the 1-laplacian, but there are a few differences. Indeed,
taking the limit ¢ — 0 in with an approximation operator as presented above, we do not
necessarily obtain exactly the 1-laplacian but a variant of it. A similar approach can be found in
Theorem

To explain the meaning of the variational inequality (IL.1.4), let us start by noting that the
variational inequality

/OT ((@u,cp —u) + (—Au, o — u) + /Q(u ®u): D(p —u) dz+ A(p) — A(u)> g

T
2/0 (frp—uydt (IL15)

allows us to recover a classical solution, at least formally, if u is regular, by testing against
¢ = (1+ XNu then ¢ = (1 — A)u, for A > 0, then dividing by A and taking the limit A — 0. The
authors of Theorem have shown the existence of an inequality of the form in the
two-dimensional frame, including for Bingham (see [77]), but not in the three-dimensional case.
The inequality presented in Theorem is not identical, since a time derivative term
appears on ¢ and not on u. This defines a very weak notion of solution for the problem.

9



It should also be noted that one of the advantages of variational inequalities is that they lend
themselves relatively well to numerical simulations (see for example [I58, 100]).

An alternative approach to variational inequalities is therefore to give a more general meaning
to monotone operators, allowing in particular the consideration of multivaluationg”} This gen-
eralization is given by the notion of mazimal monotone operator, which we will see in detail in
Chapter [T} Within this framework, it is then possible to extend the aforementioned monotonicity
solutions (see [35], the assumptions being given in Chapter [1] by [B1)H(B4)).

Theorem I1.1.6 (Bulicek-Gwiazda-Malek-Swierczewska). Consider a domain Q of RN, N €
{1,2}, sufficiently reqular, and we assume that the tensor T verifies some mazimal monotonicity

assumptions (see Theorem forp> ]\%—fQ Let be an N-function o checking the Ao-condition,
the Va-condition (see Definition , and such that C1,Co,C3,Cy > 0 such as

Cit? — Oy < (p(t) < Cst" + Oy re [p, +OO) .

Then there is a weak solution of (L.1.2) for the boundary condition u-n = 0 instead of the
homogeneous Dirichlet condition.

The Theorem [[I.1.6] (which corresponds to the Theorem [1.2.12)in the dissertation) is an alternative
to Theorem [[I.1.4] for maximal monotone operators (but with the boundary condition u - n = 0).
Note that the solutions obtained belong to spaces whose regularity depends on a N-function, called
Orlicz-spaces. We refer you to Section in the appendix for more details on these spaces. Note,
however, that although maximal monotone operators are considered in Theorem [[I.1.6] the case
of threshold fluids (i.e. Bingham or Herschel-Bulkley) does not seem to be taken into account, we
refer to the remarks following Theorem in Chapter [1] for further details.

I1.1.2 Thesis results

This raises several questions:

Is it possible to construct solutions in the three-dimensional case that take threshold fluids
into account?

If such solutions exist, are they related to numerical solutions?

What impact does the nonlinear term have on the regularity of solutions?

Do these solutions account for certain experimental properties specific to shear-thinning
flows?

As mentioned above, solutions in the form of variational inequalities are often used for numerical
simulations of threshold flows, either by taking the limit on parameter p > 1 in Ostwald-De
Waele, or by adding a small constant which is made to tend towards 0 in the simulations. The
theoretical existence of such solutions then needs to be investigated, ideally under assumptions
that do not explicitly involve complex-to-define objects of functional analysis. The crucial point
lies in making sense of the limit in the approximation of the nonlinear term specific to the non-
Newtonian nature of the fluid, which can be done in a number of ways, for example by making a
Clarke gradient appear (see Chapter ID, giving the notion of hemivariational inequality, or using
Kuratowski convergence (see Section @ in the appendix).

"Remind that in the case of a Bingham flow, we had said that the appropriate framework for treating the tensor

7(M) = % is that of multivalued functions, which is where they make their appearance
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The singular case p = 1 (corresponding to Bingham and Herschel-Bulkley fluids) is particularly
difficult to deal with, especially in the case of a fluid where we do not consider any diffusive term,
corresponding to k = 0. In this case, we have to consider the operator in the space of functions
with bounded deformations BD(S2) (we refer to Chapter (1| and to Section in the appendix for
further details, and to [6] for a detailed discussion). An intermediate approach, which nevertheless
allows us to grasp some of the difficulties of the problem, is to consider a diffusion term (with a
Laplacian), which amounts to considering x = 1, giving us a tensor of the form

—div(r) = —A - Ay

and the conservation of energy ensures that the operator is well defined on H}(2) N BD(Q2), and
thus the operator —A — A; is defined on a subdomain of the Laplacian. More generally, and still
in this spirit, we consider viscous stress tensors of the form:

T(M)=M+ F(|M|)M
This leads to the following system:

Ou — Au+ (u-V)u —div (F(|D(u)|)D(u)) + Vr = f  in Ry x

div(u) =0 in Ry x (I1.1.6)
u=20 on Ry x 0€2 o
u‘tzo = Up in €.

Assumptions about the tensor are made by assumptions about F, which is a function of a real
variable.

(C1) F:(0,400) — (0,400);
(C2) F € Wiy (0, 400);
(C3) t+— tF(t) is non-decreasing on (0, 4+00);

(C4) thereis p € [1,2], tp > 0 and K > 0 such that for any ¢ > to, F(t) < KtP=2.

The following result is obtained from [44].

Theorem I1.1.7. We consider that F verifies hypotheses (C1)-(C4) and that Q C RN, N € {2,3},
s a bounded domain with Lipschitz boundary, T > 0 and an initial data ug € H&U(Q) as well

as a force term f € L*((0,T), H;*())). So there is a weak solution u of ([L.1.6)) satisfying the

following regularity
u € Cy ((0,T), L2(2)) N L% ((0,T), Hi ,(Q)) and pu € L¥((0,T), H; ().

In Theorem [[I.1.7], the notion of a weak solution is given by the following definition.

Definition I1.1.8. We say that the function u € L? ((O,T),H&U(Q)) N Cw((0,T),L2(Q)) such

that dyu € L~ ((0,T), H; 1 () is a weak solution of (L1.6) if it checks uy—o = uo € Hg (),
and for all p € C((0,T) x Q):
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T 1 T
/0 (Gru(t), o(t)) dt + 5 <HUOH%Q(Q) - ”U(T)Hiz(m) +/0 /QD(U(t)) : D(p(t) — u(t)) do
T T
- [ [ ) ey ety dear+ [ 60D - G(DWO)) de
T
> [ (.00 - ) . (IL1.7)
0

In the variational inequality , the function G is defined so as to give meaning to the limit of
the approximation procedure, just as in our heuristic reasoning involving , on the nonlinear
term, and plays a role analogous to that of the function A in the Theorem [[I.1.5] Intuitively
speaking, the function G plays the role of a primitive of the function F, without however being
one, for the reasons given above. Note then that Theorem [[I.1.7]takes threshold flows into account,
and that this is obtained as a limit of the models used for numerical simulations. Furthermore,
we note that the regularity of solutions is optimal in the sense that we recover the regularity of
solutions for incompressible Navier-Stokes equations, which was suggested by the well-posedness
of the nonlinear operator. Note that F' is not a priori well-defined in s = 0, so we need to make
sense of its limit in this setting, as previously mentioned.

It should be noted that there is at least one alternative approach to those mentioned above, that
of dissipative solutions. The principle associated with the latter is to involve an energy tensor
that depends on the amount of energy the system has dissipated up to the present time, enabling
very weak solutions to be defined. The case of such solutions has been successfully established in
many cases, such as for the incompressible Euler equation. We refer the interested reader to [138),
Section 4.4.] for more details in the latter case. In the case of the equation , it is possible
to show the existence of dissipative solutions, including in the three-dimensional framework for
threshold fluids (Abbatiello-Feireisl Theorem), we refer the reader to [1] for more details in this
case.

In the last part of this section, we focus on one of the major properties of shear-thinning flows:
their flow becomes static after a finite time interval, known as finite-time standstill. In other
words, if the fluid is not subjected to any external force, it comes to a standstill. This property is
naturally found in evolutionary equations with nonlinear terms similar to the Ostwald-De Waele
law, for example when considering solutions to the equation:

Ou—Apu=0 inRy xQ
u=20 on Ry x 99 (11.1.8)

U|t:0 = Up in Q

where the operator A,, defined here for p > 1 by

Wy P () — W9()
Ay (I1.1.9)
u— div (|[Vu[P~2Vu)

is called the p-laplacien, stops in finite time when 1 < p < 2. Better than that, it is possible
to estimate the stopping time as a function of the norm of the initial data, this is the object of
the Di Benedetto Theorem, which corresponds to the Theorem in the dissertation. We may
then ask whether it is possible to show such a result in the case of the solutions established in
Theorem [[I.1.7] The answer is positive and given by the following result, also from [44].
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Theorem I1.1.9. Consider that the assumptions of Theorem are verified, that T > 0 is

chosen to be sufficiently large, and p € [1,2). In addition, we consider two strictly positive
constants \ et Ty < T such as

F(t) > MP™2 for all t € (0, +00) and f =0 almost everywhere in (T1,T). (I1.1.10)
Then there is a finite stopping time Ty € (0,T) for u, i.e. u(t) =0 for almost every t > Tp.

The Theorem [II.1.9| (which corresponds to Theorem in the dissertation), expresses the fact
that when we stop subjecting the fluid to external forces, it eventually stabilizes in a stationary
state in a finite time. To return to our initial example, when we stop whipping mayonnaise, it
freezes.

II1.2 Controllability of quasilinear parabolic equations

As is often the case, a solution that has been found leads to a new question. In this case, knowing
that this finite-time stop exists, is it possible to apply a force, locally (in space), so that the stop
time can be made as small as desired? Or, to put it another way, is it possible to ensure that,
from a prescribed time onwards, the fluid is necessarily at a standstill, by applying a localized
force? This is the subject of Chapter [2] and this type of question falls within the scope of control
theory.

Note that there are different notions of controllability:

e Approximate controllability,
e Exact controllability,

e Optimal controllability.

Let us take an example to illustrate these three concepts. Let us say you want to get from Paris
to New York. Approximate control means showing that there is a way to get from Paris to a place
that is arbitrarily close to New York, and when it is possible to show that you can get exactly
to New York, then you have done exact control. Now, when we have studied a problem of exact
or approximate controllability, we may, for example, have given ourselves a time to make the
journey, say fifteen hours. Perhaps our solution tells us that getting from Paris to New York is
possible in that time if we take a fighter jet. However, it is a safe bet that the latter’s carbon
footprint is substantial, let alone its fuel consumption. To look at optimal controllability, we need
to know that we are going from Paris to New York, and we want to get there while minimizing
a cost, which could be fuel consumption. This may be subject to constraints, such as time, or
the route taken. In this context, what is important is to minimize a cost functional. For our
example, if we give ourselves a constraint of fifteen hours, it seems that taking an airliner is a
more interesting alternative, from the point of view of optimal control, than taking a fighter jet.

I1.2.1 Problem position and previous results

The question we have raised is therefore one of exact or approximate controllability. For simplic-
ity’s sake, we will consider the controllability of quasilinear parabolic equations (where solutions
are scalar-valued), an example of which is given by (II.1.8)).

Let us take a moment to comment on these equations. From a historical point of view, the
analysis of quasilinear parabolic equations and the properties of their solutions took off in the
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1960s, with the pioneering work of [125, 132, [0]. These equations have been the subject of a
large number of publications in recent decades. As in the case of linear parabolic equations, the
question of the bornitude of the solution or its gradient naturally arises. Such results are now
well known and have been established for large classes of quasi-linear systems, we can refer to
(144 78], 9, (37, 36} [73], 26, [151] in the case of a bounded domain with a regular boundary. However,
this remains an important source of research activity, particularly for the study of singular or
degenerate systems. Examples include recent second-order regularity results for the p-parabolic
Laplacian (see for example [45] 87]) and its alternative in the symmetrical gradient framework
with the A-approximation method (see [25]). In the case of a nondegenerate, nonsingular scalar-
valued equation, it is well known that smooth solutions are obtained (we refer, for example, to
[43] Theorem 3.4.1., Sections 3.1.4. and 0.10.]). Note that this fact is used, for example, to
approximate the solution of the p-Laplacian parabolic equation (II.1.8) (see e.g. [87, Section 4]
or [130]). The p = 1 case is more difficult, but it is still possible to show interesting existence and
regularity properties in certain non-singular cases (see for example [145], 170 82]) ; in the latter
case, we would point out that the smoothness of viscosity solutions has been proven in [122],
which can be linked to reasoning such as that presented in [I19]. We should also point out that
the smoothing effect of quasilinear parabolic equations is known in many cases (see for example
[106], Chapitre IV] or [145]). The literature on the subject of quasi-linear parabolic equations and
systems is extremely vast, so we mainly refer the interested reader to the monographs [132, 125,
137, 169, 153, 176, 43, [123], 4] to study the properties of these equations and systems.

The controllability of quasilinear equations is a subject of very active research, see for example
[39, 41, [40], for optimal control, or [140} 139, B8] in the context of exact controllability. In the
latter papers, the exact controllability results are applied to systems where the nonlinear term
depends on the solution of the system, but not on its gradient. The resulting results are presented
in detail in Chapter

To illustrate, we now consider the following alternative to (I1.1.8]), where w C  is a subdomain
and ¢ is an external force term:

Oru— Apu = xup in (0,T) x Q2
u=0 on (0,7) x 09 (IL.2.1)

Ujj—0 = Ug in Q

Still in the case of quasilinear equations, when the nonlinear term depends on the gradient of the
solution, only one local controllability result had so far been demonstrated in the recent paper [91],
more precisely, the following result is verified (see [F1)H(F3)|in Chapter [2|for exact assumptions).

Theorem II.2.1 (Ferndndez—Cara-Limaco-Thamsten-Menezes). Let Q be a domain of RN with
smooth boundary, w C Q an open set, yo € H} () N H?(Q) and verifying the compatibility condi-
tion.:

(Ayo, Ayo) € Hy ()
Then there exists n > 0 such that if
lyollzrs() < m

we have the existence of a control ¢ € L*((0,T) x w) for equations of the type ([1.2.1)) involving
y(T) = 0.

The Theorem [[T.2.1]shows an exact local controllability result, the local term describing that there
is a smallness condition for the norm of the initial data. This theorem applies to a class of equations
including the p-parabolic Laplacian, and we refer to its precise statement (Theorem in the
dissertation for precise assumptions concerning the equations taken into consideration.
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I1.2.2 Thesis results

We are interested in equations of the following form.

Oy — div (F(IVy[)Vy) = xwy in Qr
y=0 on Y (11.2.2)
Yjt=o = " in Q,

where @ C RY is a bounded open domain with a smooth boundary 9Q, Qr = (0,7) x €,
Y1 = (0,T) x 09, the initial data y° belongs to L?(£2), w C Q is also a regular domain, and there
exists p > 1 such that the function F': Ry — R*% verifies the following assumptions:

(A1) F e Who(Ry) NC®(Ry) N LA(Ry) N Lo T (R);

(A2) The potential defined for any ¢ € Ry par ®(t) = fot sF(s) ds is convex and satisfies ® €
Wh (Ry);

(A3) There exists C1,Co, u, v > 0 and kq, ko > 0 such that for any ¢t € R, we have

p—2
2 .

ki + Oy + )77 < F(t) < ko + Ca(v + 1)

The control ¢ acts in a bounded and non empty open subset w C 2. More precisely, we denote

Xw € C(Q) a regular function such that

(z) = 1 for x € ws
XA =0 for x € O\ w,

where ws = {& € w such that dist(z,dw) > d} for a constant 6 > 0 sufficiently small.
The objective is as follows: consider the linear system associated with ([1.2.2), given by:

Ou — div(a(t,z)Vu) = xue in (0,7) x Q
u=20 on 0N (I1.2.3)
Ujp—g = u? in Q

and we show that the latter is approximately controllable, with smooth control. To do this, we
first adapt a method known as Hilbert Uniqueness Method (abbreviated by the acronym HUM
hereafter). This method is based on a Fenchel-Rockafellar duality argument and is presented in
detail in Chapter 2] We also refer to [30] for a general and very detailed presentation of the method
in the context of parabolic equations. Thus, we show the following result (see [49, Theorem 1.1.]).

Theorem I1.2.2. Let Q be a bounded open subset of RN with Lipschitz boundary, u® € L*(Q),
a € C*®(Qr) checking
0<pe<alt,z) ((t,z) € Qr),

and T > 0. So, for all € > 0 there exists an approzimate control ¢ € C*°(Qr) in the sense that

the corresponding solution u of (I1.2.3) wverifies

[(T) |2y <e

In addition, the control ¢ depends in o continuous Lipschitz manner on the diffusion coefficient
a for the norm ||| 2(0,)-
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The reader may rightly wonder about the interest of the continuous dependence of the solution
o on the diffusion parameter. The reason is as follows: starting from the controlled solution of
the linear equation, we wish to show the existence of an approximate control for the quasilinear
equation, by applying a Schauder-type fixed-point theorem, but for a weak topology. It is then
necessary to have a continuous dependence on the fixed point in a well-chosen space to perform
this fixed-point method. Applying this strategy, we can then show the following approximate
controllability result (see [49] Theorem 1.2.]).

Theorem 11.2.3. Let F satisfy the hypotheses and y° belonging to L?(Q) chosen such
that there exists a unique solution to . Then there exists a distributed control ¢, whose
reqularity is given by Theorem such that 15 approzimately null controllable in T > 0,
i.e., for all y° € L?(Q) and all € > 0 there exists a control p € C°(Qr) such that the solution y
of satisfies

[yl L20) < e

Note that the case of singular or degenerate equations such as the p-Laplacian for p # 2 are a
priori not taken into consideration in the previous theorem. However, it is possible to take a family
of solutions arbitrarily close to the case of the parabolic p-Laplacian which verify the hypotheses
of Theorem We then immediately obtain the following corollary (see [49, Corollary 1.1.]).

Corollary I1.2.4. Letu® € L*(Q) and % <p < 3. Then (l1.2.1) is approzimately null controllable
for any time T > 0, i.e., for any € > 0 there exists a control ¢ € C*°(Qr) such that the solution

w of ([1.2.1)) verifies
[u(T)|12(0) <.

In fact, in the case where we focus on equations with a solution that stops in finite time, it is
possible to deduce a global exact controllability result from the previous result. More precisely,
we have (see [49, Theorem 1.3.]):

Theorem I1.2.5. Consider that F' verifies the assumptions and that y is the solution
of (1.2.2) associated with the initial data y° € L*(Q), y° # 0. Furthermore, y is assumed to stop
in finite time, i.e. if ¢ =0, then there exist Ts € (0,T) such that:

ly(Ts) |2y = 0. (11.2.4)
In this case, we can choose a force term o such that y is exactly null controllable for any time
T € (0,7).
As we mentioned, the parabolic p-Laplacian stops in finite time, so the following result immediately

follows (voir [49, Corollary 1.2.]).

Corollary I1.2.6. Let u° € L>(Q) and % < p < 2. Then, by choosing the positive solution

of (I1.2.1)), the problem (I11.2.1)) is null controllable for any time T > 0, i.e., there exists a control
p € C®(Qr) such that the solution u of (LL.2.1)) verifies

u(T) = 0.

I1.3 Weak solutions of a non-Newtonian Stokes-transport system

So far, we have considered moving fluids that eventually come to a complete stop. In Chapters
and [2) we concentrated on models where the fluid density was constant (considering the models
in Chapter [2| as a way of accounting for models close to fluid mechanics), but this is not suitable
for studying sedimentation problems or fluids with suspended particles, for example.
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I1.3.1 Problem position and previous results

In this case, we will focus our study on the case of a quasi-stationary fluid, i.e. the fluid no longer
evolves sufficiently to consider the time derivative term in the model. In Chapter [3] we will study
a sedimentation problem in a power-law fluid, considering the following equation:

Op+u-Vp=0 in Ry €2

—div (v(p)| D(w)P~D(u)) + Vr = pg  in Ry x Q (I1.3.1)
div(u) =0 in Ry x Q

Pli—o = Po in Q.

The system is no longer a parabolic problem but a coupled hyperbolic-elliptic system,
which calls for very different solution methods. As we shall see, the equation is an active
scalar equation, i.e. the unknown is a scalar function p which is a solution of a transport equation
given by

op+u-Vp=0,

where u is a velocity field expressed as a function of p (in our case, by solving a nonlinear elliptic
problem). A first important case of an active scalar equation, which has been the source of much
recent research, is given by the case of the Stokes-transport equation

Op+u-Vp=0 inRy xQ
—Au+Vr=pg inR;yxQ
div(u) =0 in Ry xQ
Plt=0 = PO in €2,

(11.3.2)

which corresponds to for p = 2, and when v is constant according to the density p. Note
that the absence of a convective term is consistent from a physical point of view, since for a quasi-
stationary fluid, we consider transport by convection to be negligible in relation to transport by
diffusion, which means that we are considering a flow with very small Reynolds number. We refer
to [105, Chapter 9| for further details. Note that this system is rigorously obtained as the limit of
a large number of sedimenting spherical particles (in non-inertial dynamics) immersed in a Stokes
fluid (see for example [113, [114] as well as [115] for analysis of the impact of Einstein viscosity).
We should also point out that such reasoning is valid in other settings, such as when replacing the
Stokes model with a Vlasov-Stokes-type model (see [112]). As the analysis of the model
has been carried out in the framework of a general bounded domain, it is appropriate to add a
condition guaranteeing the uniqueness of solutions, such as an edge condition. For example, with
the homogeneous Dirichlet condition, the generic system becomes

Op+u-Vp=0 inRy xQ
—Au+Vr=pg inRixQ

div(u) = 0 in Ry x Q (IL.3.3)
u=20 on Ry x 02
Plt=0 = PO in 2.

It can be shown (see [61]), that for a velocity field u € L*(W°°), the spatial regularity induced
by the initial data can be preserved for estimates on the transport equation, and that there is a
loss of regularity for a velocity field of lesser regularity. In order to obtain the uniqueness of a
pair of solutions within the framework of an active scalar equation, it is therefore necessary to
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choose an initial datum that allows a priori to lead to a pair of solutions whose velocity field has
W1 regularity in space. If the spatial regularity of the velocity field is higher, we speak of a
sub-critical regime, a super-critical regime if the regularity is lower, and a critical regime if the
initial data leads exactly to a velocity field with Lipschitz (or, in a pinch, Log-Lipschitz) spatial
regularity. In the case of a sub-critical regime, the following result has been shown [128, Theorem
1.1].

Theorem I1.3.1 (Leblond). Let Q be a domain with C? boundary of RN, N € {2,3}, and
po € L=(Q). So there is a solution (p,u) € L¥(Ry, L>®(Q)) x L®(Ry, WL>(Q)) of (11.3.3) in
the sense of distributions.

This raises the question of the veracity of such a result on an unbounded domain. It is sometimes
possible to show the existence of solutions, for example for the system:

Op+u-Vp=0 in Ry x ((0,1) xR)
—Au+Vr=pg inR;y x((0,1) xR)
0,1) x R)

div(u) =0 in Ry x ((0, -
u=20 on Ry x ({0,1} x R) 3.
fol up(z,y)dy =0 in Ry xR

Plt=0 = PO in ((0,1) xR).

Theorem I1.3.2 (Leblond). Let pg € L*°(Q2) and Q = (0,1) x R. So there is a solution (p,u) €
L®(Ry, L>®(Q)) x L®(Ry, Wh*(Q)) of ([1.3.4) in the sense of distributions.

In the three-dimensional case of whole space, i.e. for 0 = R3, it is necessary to add a condition
of decay to infinity in space for the velocity field, i.e.:

Op+u-Vp=0 inR, xR3

—Au+Vr=pg inR, xR3

div(u) =0 in Ry x R3 (11.3.5)
lim |u|=0 in R3

|z| =400

Plt=0 = PO in R?.

The following results were obtained [142, Theorem 2.1.].

Theorem I1.3.3 (Mecherbet-Sueur). Let ¢ > 3 and po be a probability measure on LI(R3).
Denoting E, the subspace of LA(R3) composed of such measures, there exists a unique solution in

the sense of the distributions (u,m, p) to ([1.3.5) such that:

e Ifqg>3, (u,mp) eC (R+, W24(R3) x WHa(R3) x Eq)

o [Fq=3, (ump) €C Ry, W2E) x WHR) A (] WIT(R?) x WIS(RY) x B,
re(3,400)

The result of this theorem is optimal in the sense that the case ¢ = 3 corresponds to the criti-
cal regime (and ¢ > 3 to the sub-critical regime). We refer to [142] for more details. Another
important question is whether the solutions obtained are asymptotically stable relative to a per-
turbation on the initial density pg. A first result in this direction was obtained in a framework
similar to by replacing the Laplacian by the identity, i.e. by looking at a flow equation in
a porous medium. We then obtain the following Darcy-transport-type system:
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Op+u-Vp=0 inRy xQ

u+ V7r = pg in Ry x

div(u) =0 in Ry x Q (I1.3.6)
u=20 on Ry x 00

Plt=0 = PO in ).

Note that this system can be rewritten for Q := R?:

Op+u-Vp=0 inR, x R?

u=RiR"p in R, x R? (113.7)
div(u) =0 in R, x R? o
Pit=0 = PO n RQ:

where R+ = (Ra,—R1), and Ry andRy correspond to the Riesz transforms along the first and
second spatial variables respectively. Thus, we can visualize the equation (I1.3.7) as a surface
quasi-geostrophic equation (usually referred to by the acronym SQG), for which the velocity field

is given by u = —VL(—A)_%p. Both belong to the class of generalized surface quasi-geostrophic
equations, for which we define

u=V(~A)"Zm(D)p,

where § € R and m(D) is a positive Fourier multiplier, defined so that m(D) = log(Id — A)*
u € R. We refer to [53], Section 1.1.] for further details and explanations of the associated models.
We then have the following result (see [80, Theorem 1.3.] ).

Theorem I1.3.4 (Elgindi). Letn(y) :=y. There exists eg > 0 such that if we consider the solution

of (LL.3.7) associated with the initial data po = po +n where ||pollyw7.1 2y + [0l s (m2) < € < €0,
s > 20, then the solution p verifies for all t > 0:

1

(1) llp(t) = nll prarey < et™7
3
(2) ()]l g3re) <et™a

5
(3) llu2(t) |3 (re) < et™ 2
ot u = (u1,us) = Ry R p.

Note that a similar result can be established for the two-dimensional torus (see [80, Theorem
1.4.]). It is in fact possible to show, for @ = T x (0,1), that the solutions of ([1.3.3) are also
asymptotically stable relative to a perturbation on the initial py (see [60, Theorem 1.1.]).

Theorem II.3.5 (Dalibard-Guillod-Leblond). There ezists a small ¢g > 0 such that for any
initial data po € HS (T x (0,1)) verifying ||po — Ol s (Tx (0,1)) < €0 and (po — 0) € HZ (T x (0,1)),
the solution p of (11.3.3) satisfies:

lo = poollz2rxon) <€ L+~ and o= psollaa(rx (o)) < €0

where poo 1S given by the decreasing vertical rearrangement of po, i.e.:

Poo(2) ::/0 Lo<z<|{po=a}| A,
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and where the function 6 : T x (0,1) — (0,1) which depends only on its second variable, is called
stratified density profile and is given by 0(z) =1 — z.

This raises the question of the existence of solution results for a class of problems including
problems of the type ([1.3.5) and ([1.3.7)), and, consequently, the existence of stability results on
these. We observe that the fractional Stokes-transport equation:

hp+u-Vp=0 in Ry x RN
(-A)2u+Vr=pg inR, xRN
div(u) =0 in Ry x RN (I1.3.8)
lim |u|=0 in RY
|z| =400
[ Plt=0 = Po in RY

Note that ([1.3.8)) does define an active scalar equation, since by applying the Leray projector
P = Id + V(—A)~!div, namely the orthogonal projection L? onto the space of zero divergence
vector fields to the second equation of (I1.3.8)), we obtain directly

u = (~A)~3P(pg).
It is then possible to show the existence and uniqueness of global solutions for ([1.3.8]).

Theorem I1.3.6 (Cobb). Let o € (0, N) and an exponent q such that

N
N 11.3.9
1+%<Q< a ( )

Then for any initial data po € LY(RYN), there exists a global weak solution p € L™ (R, L4(RY))
of (I1.3.8)) associated with the initial data po. If, in addition:
e a € [0,N) and the indices s > 0 and q € [1,400] are such that

N
q< —, and s>1—a.
Q@

Then if po € Bgoyl(]RN)ﬂLq(RN), there exists a time T > 0 such that the solution of (|[1.3.8)
is unique and verifies p € C([0,T), Bng(RN) N LY(RN)).

e N>2anda€ (1,N). So forqc [1,%) and r = %, and for any initial data po in the
space LY(RN)NL™(RN), (1.3.8) has a unique global solution p € L>=(R,, LY(RN)NL"(RN)).

e N >2and a € [1,N]. So for q = % and r = %, and for any initial data py €
Bgyl(RN) ﬂBS}l(RN), (11.3.8) has a unique global solution p € C(R4; BSJ(RN) ﬂBgl(RN)),

We refer the reader to [53, Theorem 1.1., Theorem 1.3., Theorem 1.6.] for a proof of this result.
Theorem thus ensures the existence of solutions (local and global) as well as uniqueness,
for an important family of active scalar equations corresponding to sedimentation in Newtonian
fluids, covering both critical and subcritical regimes.
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I1.3.2 Thesis results

It is then pertinent to ask whether such a result can be demonstrated in the context of a non-
Newtonian fluid, such as one following an Ostwald-De Waele law. This is precisely the problem

posed in ([1.3.1)).

More precisely, we consider the following problem on the N-dimensional torus.

Op+u-Vp=0 in Ry x TV

—div (v(p)|D(w)[P">D(u)) + Vr = pg  in Ry x TN

div(u) =0 in Ry x TV (11.3.10)
frv udz =0 in Ry

Plt=0 = PO in TV

where v is a positive function of the density p that can potentially degenerate. Let us briefly
comment on the physics of this system, noting a tensor 7 depending on D(u). Let us note p the
density of the mixture, so that it can be written:

p=p+p,

where p is the density of the carrier fluid, which is assumed to be constant, i.e. the carrier fluid is
homogeneous, and p is the density of the suspended particles from which the density of the carrier
fluid is subtracted. It can then be seen that the density p of the suspended particles, from which
the density of the carrier fluid is subtracted, can be negative, depending on whether it is greater
or lesser relative to the density of the carrier fluid. More precisely, when the latter is negative, the
particles rise to the surface (creaming phenomenon), otherwise they sink to the bottom following
the gravity vector (sedimentation). As is customary, we will combine these two terminologies and
refer to them as sedimentation. Our initial equations are therefore given by:

op+u-Vp=0 in Ry x TV

—div (7(p)|D(w)[P">D(u)) + VT =pg  in Ry x TV

div(u) =0 in Ry x TV (I11.3.11)
frv udz =0 in Ry

Plt=0 = Po in TV

In fact, we can see that the first line can be rewritten directly as a function of p, since p is constant.
In the second equation, we can make the following observation: pg = pg + pg = V (pg - ) + pg,
and so we can rewrite m = T + pg - x, which allows us to define a new pressure term. By positing
Pli=0 = Po — p = po, and redefining 7(p) = v(p), we obtain the system (IL.3.10). Note that,
from a mathematical point of view, the systems and are identical. However,
the preceding justification allows us to understand why we a priori have a density that can be
negative, in fact it comes from the fact that there are microscopic terms present in that
will disappear and lead, via the process previously described, to . We refer to [115] for
more details.

Let us go back to the mathematical analysis of the problem. It is not obvious that the problem
defines an active scalar equation, in particular because of the nonlinear term. In fact, by formally
multiplying the non-Newtonian Stokes equation by D(u), we do not obtain a uniform bound on u
in WP as we would if we imposed v(p) to remain strictly positive. We can use a priori estimates
to show a smaller majorization, but it is not enough to reason directly by compactness. We then
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work a priori in the over-critical regime. To show that ([1.3.10)) is indeed an active scalar equation,
we need to observe that the operator:

A =3 [ 9D da

b Jrw~

is a strictly convex and coercive potential operator on a reflexive Banach space, in this case on a
subspace of LP(v(p)dx), which is the LP space associated with the v(p)dx density measure. It is
then necessary to decouple the system by studying the properties of the non-Newtonian
Stokes equation and the transport equation (or continuity equation) separately. We then need to
find a scheme adapted to this decoupling to perform a Friedrich-type approximation method, the
aim being to show the existence of weak solutions, defined as follows.

Definition I1.3.7. Let d > 2 be the dimension and an exponent q € [1,4+00|. Let py € L7 be
initial data. The function p € L*°(LY) is a weak solution of the non-Newtonian Stokes-transport
problem (I1.3.10) associated with the initial data po if the following conditions are satisfied:

(i) There ezists a velocity field u : Ry x TNV — RN such that v(p)|D(uw)|P~! € LL (R4 x TV)
and which, for almost any t € Ry, is a solution of the Stokes equation: in other words,

div(u) = 0 in D(Ry x TV) and whatever ¢ € D(Ry x T4 RN) with null divergence, we have
[ voItpD@ s D@ drat = [[ pg-sdrar

(ii) The velocity field is u € L=(LY) and p is a weak solution of the transport equation for the
initial data po, i.e. for all ¢ € D(Ry x TN R), we have

// (pam +pu- ws) dz dt + /po(;s(o) dz — 0.

Showing the existence of solutions, even approximate ones, is not immediate: we cannot apply
a Cauchy-Lipschitz theorem as it stands. As a priori regularity is insufficient, it is necessary to
couple an argument by a Minty method into the non-Newtonian Stokes equation, and make use
of Di Perna-Lions theory to estimate the density term. In doing so, we can show the existence
of global approximate solutions via the use of the Cauchy-Peano theorem, and demonstrate the
convergence of these solutions. This leads to the following result (see [54] and Theorem [3.0.2)),
which stems from collaborative work between Dimitri A. Cobb and the present author during a
research stay at the University of Bonn (Germany).

Theorem I1.3.8 (Theorem [3.0.2). Let d > 2 be the dimension. Consider p € (1,+00) and
a function v € C®°(R \ {0}) N CO7(R) N L>®(R) such that v(|r|) = |r|? for all v € [-1,1],
¥ =min(y,1), v > 0. We also consider exponents q € (1,2) and o € [1,+00] such that one of the
following conditions is satisfied:

(i) Subcritical case: either we have the strict inequality

1 w11

2 (1 7) S o<1 11.3.12

D ( + o + q N ( )
(1) Critical case: either we have equality

1 1 1

7(1+1)+7_7:1, (I1.3.13)

P o q N

and the condition q > ]3—172 is true. In particular, this is always true if N = 2.
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Then, for any initial data pg € LI(TN) such that 1/py € L°(TVN), there exists a weak solution
p € L>®(Ry; LI(TN)). Furthermore, if po € LY(TN) N L"(TN) for some r € [1,400], then

Il Lo zry = llpollLr-

We draw the reader’s attention to the fact that the terminologies "critical case" and "subcritical
case" in the statement of Theorem are not related to the subcritical and critical regime for
the uniqueness of solutions of the scalar equation, but are related to the a priori critical regularity
for showing the existence of weak solutions.

One question is whether the results of Theorems [[1.3.8] and [[T.2.5] can lead to a result of exact
internal controllability of solutions. We won’t discuss the physical validity of this as-
sertion here, since a priori, as soon as sufficiently large external forces are applied to the fluid,
the latter would be led out of its quasi-stationary state, and subsequently the consistency of the
model would be questionable. We could alleviate this problem by defining admissible controls
that would enable us to maintain physical consistency. Note that in the case of , the
existence of internal controls for the continuity and Stokes equations has been established (see
[142] Theorem 2.5.]).

As an example, let us note that the model ([[I.3.10) can account, for example, for the sedimentation
of red blood cells in plasma.

II.4 Determination of a diffusion coefficient in hemodialysis

We conclude this dissertation with the study of a problem applied to the medical field of hemodial-
ysis, carried out in collaboration with the Gabriel Montpied University Hospital in Clermont-
Ferrand. As mentioned above, blood is a shear-thinning non-Newtonian fluid, and can be modeled
fairly well by Carreau or Cross models. In other words, one of the peculiarities of blood is that,
when subjected to large deformations, it behaves like a Newtonian fluid.

More specifically, blood is a suspension of erythrocytes (red blood cells), leukocytes (white blood
cells, including eosinophil granulocytes, basophils and neutrophils, as well as lymphocytes and
monocytes), and thrombocytes (platelets), in an aqueous fluid called plasma, which is also made
up of proteins (albumin, immunoglobulins, fibrinogen, transferrin, aq-antitrypsin, macroglobulins,
lipoproteins, ceruloplasmin, etc.) as well as various chemical species and other organic or inorganic
substances (mineral salts such as calcium, sodium, potassium and magnesium, for example).
Blood is thus an aqueous suspension of highly heterogeneous particles, both in size and in volume.

On average, erythrocytes account for around 40% of blood volume, and boast significant elasticity
properties. The volume concentration of erythrocytes in blood is called the hematocrit (often ab-
breviated to Ht), and is calculated by centrifuging blood in a tube, estimating the resulting volume
formed by the erythrocyte aggregate. It should be noted that, in general, the aggregate obtained
for hematocrit measurement is made up of an average of 96% of erythrocytes, the remainder be-
ing plasma retained in the aggregate. Thus, hematocrit measurement must be understood with a
certain margin of error due to the measurement process. It should also be noted that hematocrit
plays a major role in the shear-thinning properties of blood, and it has even been established
that below a certain hematocrit threshold, blood is no longer shear-thinning (see [33]), which can
be interpreted in the sense that, in general, plasma is such a dilute suspension that it can be
considered as a Newtonian fluid. However, certain pathologies induce, under a significant increase
in certain proteins such as fibrinogens or immunoglobulins, a modification of plasma such that its
viscosity no longer corresponds to a Newtonian model (see for example [74]).

Thus, the viscosity of blood is highly complex and depends on a number of parameters. An
interesting fact is that when blood flows through a capillary, i.e. formally a long tube with a small
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diameter and a partially permeable membrane as boundary, then the smaller is the diameter, the
lower is the viscosity: this is the Fahraeus-Lindqvist effect (see [85] 1011 152])). However, this effect
is reversed below a certain diameter (below 6 um, and significantly below 3 um).

In [7], this phenomenon is highlighted by comparing numerical simulations obtained by consid-
ering non-Newtonian and Newtonian flow models, when blood flows through the small fibers
of a dialyzer: the dimensions associated with such a fiber are given, for example, by a radius
R =23x10"* m and a length L = 2.3 x 10~! m, the radius of the inner cylinder in which the
blood flows being then R; = 10™* m and the membrane thickness around 0.4 x 10~ m.

Iy

Figure I1.8: Three-dimensional representation of a dialyzer fiber. Qg, Q,,, and 2 represent the
regions associated with dialysate, porous membrane and blood respectively.

The aim is to determine the values of intra-membrane diffusion coefficients, known as Beavers-
Joseph coefficients, from patient samples. To do this, we consider that the membrane is subject to
a Darcy law, and we take into account the chemical reactions taking place in the dialyzer, modeled
by the following evolution system, where the values (¢;)1<i<5 correspond to the concentrations of
the five chemical species present and taken into consideration.

i + S; (Uy0zci + U, Orci) — %& (rD;Orc;) — 0y (D;0rc;) = Fi(e) in (0,T) x 0 11.4.1a

)
I1.4.1b)
)
)

o~

¢i = i, mput o0 (0,7) x (Tgp UL q)
Onci =0on (0,7) x T,
¢i(0) = ¢jp in Q.

IT.4.1c
I1.4.1d

TN~

In (I1.4.1)), the coefficients (D;)i1<i<5 represent the intramembrane diffusion coefficients for the
species (¢;)1<i<s, (Si)1<i<3 is a coefficient used to eliminate species that do not cross the membrane
(Albumin and Calcium Albumin), i.e.

1 ifxey
S’(x)_{ 0, ifz e\

and S; = 1ifi € {1, 4, 5}.

Our approach to determining diffusion coefficients is based on a gradient descent method coupled
with a Newton method, and will be presented in detail in Chapter []

Note that in the previous model, for simplicity’s sake, we consider a porous membrane and
intramembrane diffusion according to Darcy’s law. In some cases, thrombocytes may aggregate
at the edge of the dialyzer membrane, a phenomenon known as primary hemostasis. This may
be due to a detachment of the collagen present in the endothelial cells (i.e. cells making up
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the endothelium, the inner layer of blood vessels in direct contact with the blood) which attach
themselves to the membrane or, as the case may be, circulate in the blood. Thrombocytes then
attach themselves to the collagen molecules, resulting in variability in the porosity of the dialyzer
membrane. One way of overcoming such problems would be to consider a generalized Darcy’s law
more suited to fluid exchange via the porous membrane, as established in [I57]. For an in-depth
discussion of blood biomechanics, we refer the reader to [97, [148].

To conclude this introduction, it should be noted that knowledge of the coefficients is interesting
because it opens up a question of optimal control: the aim of performing dialysis is to restore a
desirable equilibrium between different intrasanguineous chemical species in the patient. Knowing
the diffusion coefficients and the target state, what is the right concentration of chemical species
to put in the dialysate to reach the desired target? This depends on the data specific to each
patient, the aim being to optimally achieve the desired concentrations at the outlet of the dialyzer.
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Ecoulements et transformations renouvellent le monde constamment,
comme le cours ininterrompu du temps maintient toujours nouvelle la
durée infinie. Dans ce fleuve, de quel objet parmi ceux qui passent en
courant, pourrait-on faire cas, puisqu’il n’est pas possible de s’arréter
sur chacun?

Marc-Auréle, Pensées pour moi-méme, Livre V1.

Mathematical analysis of non-Newtonian fluid flows

This chapter is dedicated to the mathematical analysis of non-Newtonian flows of the shear-
thinning or shear-thickening type. First, we introduce the tools needed to understand and master
the methods used in this context. We begin by studying the theory of nonlinear monotone op-
erators and some of their properties, before turning to variational inequalities. To illustrate
the importance of the latter, we will highlight some of their applications, in control theory for
example. Secondly, we present some existence results for non-Newtonian flows, first using mono-
tonicity methods and then variational inequalities. We will conclude this part of existence with
Theorem proved by the present author and his advisors in [44]. Finally, we will establish the
existence of a finite stopping time for shear-thinning flows of the Ostwald-De Waele and Bingham
type, which is the subject of Theorem proved by the same authors.

1.1 Analysis tools

In this section, we introduce the basic tools and notions that are usually used in the mathematical
analysis of non-Newtonian fluids. First, we briefly introduce the theory of nonlinear monotone
operators, and then we discuss the notion of variational inequality and the link between these two
notions.

1.1.1 Nonlinear monotone operators

Let us generically consider a reflexive Banach space X and denote its topological dual X*. In a
first time, we will consider operators A : X — X* that are not a priori linear. We recall that, by
definition, A is bounded if it maps any bounded subset of X into a bounded subset of X*. Let
us introduce some classical definitions generalizing those of the linear case (for an introduction
to the linear theory, we mainly refer to [I74]). The aim of this section is to show some results
leading to the existence of solutions to the equation:

A(u) = §, (1.1.1)

where u belongs to a reflexive separable Banach space X, f belongs to its topological dual X*,
and A : X — X*. Thus, showing the existence of solutions for any fixed f is the same as showing
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that the operator A is onto.

Definition 1.1.1 (Monotonicity modes). Let X being a reflexive separable Banach space, and
denote X* its dual. We say that the operator A : X — X* is:

e Monotone if : V(u,v) € X2, (A(u) — A(v),u —v) >0

e Strictly monotone if A is monotone and satisfies: V(u,v) € X%, u # v = (A(u) —
A(v),u—wv) >0

e Pseudomonotone if it is bounded and for every sequence (un)neny C X satisfying:

(A1) u, — wu;

n—-+4o0o

(A2) Tim (A(up),u, —u) <0,

n—-+00

then it satisfies: Vv € X, (A(u),u —v) < lim (A(uyn), un — v)

n—+o0o

e d-monotone with respect to a seminorm |-| if for an increasing function d : [0,+00) — R,
it satifies:

V(u,v) € X2, (A(u) — A(v),u —v) > (d(|u]) = d([o])) (Ju| - |v])
e Uniformly monotone if there exists an increasing function ¢ : [0,+00) — [0,400) such

that:
V(u,0) € X2, (A(u) = A(v),u —v) > o(|lu = v]|)u -

e Strongly monotone if it is uniformly monotone relatively to p : t — Ct, C > 0.

Let us now explain two examples to illustrate some notions of monotonicity given in the previous
definition. Note that when we consider a differential operator associated to some boundary
conditions, these are in general encoded in the space on which the operator is defined.

Example 1.1.2. Let H be a separable Hilbert space and P : H — H be the projection onto its
closed unit ball By. We recall that for u € H, P(u) is the unique element of By satisfying:

(P(u) —u, P(u) —v) <0 Vv € By

Also, P is a monotone operator since for all v € H:

(P(u) = P(v),u—wv) = (P(u) = P(v),u— P(u)) + | P(u) = P(v)|[} + (P(u) = P(v), P(v) —=v) > 0

Example 1.1.3 (Monotonicity of the p-Laplacian). Let us consider Q C RN a bounded domain
and the p-Laplacian operator A, in the homogeneous Dirichlet selting given for p > 1 by:

Wy (Q) — W14(Q)

POl div (|Vu[P~2Vu). (1.1.2)

Then, A, is d-monotone for d : [0,+00) — [0, +00), t — tP~L. Moreover, it is strictly monotone
for p > 1, and even uniformly monotone for p > 2. See [156, Example 2.83 p.75] and [173,
Ezample 25.5 p.502].
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Note that a number of properties presented in this section remain true for operators that do not
necessarily verify one of the modes of monotonicity presented above, but are of type M. Since
we do not need such a degree of generality for our presentation, we refer the interested reader to
[161, Chapter II]. Let us now introduce the different modes of continuity usually used together
with the different modes of monotonicity presented above.

Definition 1.1.4 (Continuity modes). Let X be a reflexive separable Banach space, X* its dual
and A : X — X*. Then, we say that A is:
e Hemicontinuous if for all (u,v,w) € X3, the map t — (A(u + tv),w) is continuous, that

is A is directionally weakly continuous

e Radially continuous if for all (u,v) € X2, the map t — (A(u+tv),v) is continuous, that
is if the previous definition holds only for w = v instead of every w

e Demicontinous if for all v € X, the map u — (A(u),v) is continuous
e Weakly continuous if for all v € X, the map u — (A(u),v) is weakly continuous

e Strongly continuous if for (up)neny C X such that u, — u € X, then A(u,) —
n—+o0 n—+00
A(u)

We point out that using the previous definitions, an operator A : X — X™* is demicontinuous if
it is continuous from X endowed with its strong topology to X* endowed with its weak topology,
and weakly continuous if it is continuous from X to X™* both endowed with their weak topologies.
Let us now give some usual properties using the previous definitions. The first property is known
as Minty’s trick.

Lemma 1.1.5 (Minty’s trick). Let X be a reflexive separable Banach space, and A : X — X* be
radially continuous. Assume moreover that there exists uw € X and f € X* such that it satisfies:

(f —A@),u—v) =20  YoeX. (1.1.3)
Then A(u) = f in X*.

Proof. Consider v = u + rw for w € X and r > 0. Then (1.1.3) leads to:

(f —A(u+rw), —rw) >0 Vw € X. (1.1.4)

Then we cand divide by r > 0 into (1.1.4)) and pass to the limit over r, using the radial continuity
of A, to get:
(f —A(u),w) <0  YvelX. (1.1.5)

Since the result holds for w as for —w, and for every w € X, the result follows. O

The following properties hold.

Proposition 1.1.6. Let X be a reflexive separable Banach space and A : X — X*. Then, we
have:

(i) If A is pseudomonotone, then it is demicontinuous

(i) If A is monotone, it is locally bounded in the following sense:

Yue X, Je>0,3C>0, YWweX, |lu—vllx <e=||A®W)|x+ <C (1.1.6)
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(13) If A is monotone and radially continuous, then it is demicontinuous
(i) If A is monotone and hemicontinuous, then it is pseudomonotone

(v) If A is strongly continuous, then it is pseudomonotone.

Proof. (i) Let (un)nen be a sequence converging to v € X. By definition, the sequence (A(up)),,cx
is bounded in X*. Then, as X is assumed separable, we get up to extract that A(u,) — w for
some w € X*. It follows that

(A(up),up —u) — (w,0) =0,

n—-+00

and thus from the definition of a pseudomonotone operator, it leads to, for every v € X:

(A(w),u—v) < lim (A(un), un —v) = (w,u —v).
n—+00
Setting successively v = 0 and v = 2u leads to A(u) = w in X*. So w is uniquely determined and
therefore the whole sequence converges, which proves the result.

(ii) Suppose that the result does not hold, thus assume that the converse is true. Up to translate
and without loss of generality we can consider u = 0. Hence there exists (up)nen such that

u, — 0 and satisfying ||A(u,)||x+ — +oo. Let us now consider (8, )nen defined by
n—-+00 n—-+00

B o= L [ A - unl -

Thanks to the monotonicity of A, we can write:

(B Alun), v) < B ((Alun), ) + (A(0), v — un)
<1+ [JA@)xe (olx + )
= T4 A@) - ol

But we can now prove the same inequality with —v instead of v, which leads to thefact that
lim |(B8, A(un),v)| < +o0, this last being true for every v € X. Applying Banach-Steinhaus

n—-4o00

theorem, we then get that there exists a constant M > 0 such that ||A(u,)|x+ < M, so that:
[Aun) ||l < MBy = M (1 + [[A(un) || x+[[unx)
which in turn implies

M

< - M
- 1_M||unHX n——+o0o ’

[[ACun) ||+

but this is a contradiction, thus the result is true.

(iii) We choose some u € X such that there is a sequence (uy)nen in X which converges toward
u. By the previous point (ii), the sequence (A(uy))nen is uniformly bounded in X* then up to,
an extraction we have that A(u,) — w € X*. Now from the monotonicity of A, we get for every
v € X that:

0< (ngrfoo (A(un) — A(v), up —v) = (w — A(v),u — v).

Now from the radial continuity of A, one can apply Lemma which leads to A(u) = w. Since
w is uniquely determined, the whole sequence (A(uy,))nen converges weakly for every subsequence
initially considered.
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(iv) Let us consider a sequence (u,)nen such that u, — w for some u € X, and such that:

n——+00
lim —u) <0. 1.
Jm (Alun),up —u) <0 (1.1.7)
From the monotonicity of A, we get that:
(Aun,), un —u) > (A(u), uy — u). (1.1.8)

The right-hand side of the above inequality goes to zero as n — 0o, also combining (1.1.7) and

(1.1.8)) leads to:
(A(up), up, —u)y —> 0.

Setting now w = u 4+ A\(v — u) for some A > 0, we have since A is monotone that:

(A(un) — A(w), up —w) >0,

which leads to:

MA(un), u—v) > (—A(up), un — u) + (A(w), up — u) + AA(w),u —v).

Letting n — oo in this inequality and then dividing by A > 0 leads, for every v € X, to:
lim (A(up),un —v) > (A(w),u — v).
n—-+00
Now since A is hemicontinuous, we can take the limit A — 0 in this last and get:
lim <A(un)a Un — U> > <A(U)7u - U>7
n—-+00

namely A is a pseudomonotone operator.

(v) Assume that A is strongly continuous, then considering a sequence in X denoted (uy,)nen such
that u, — wu,then A(u,) — A(u). Thus, it follows for every v € X that:
n—+oo n—+oo

(Aw),u—v) = T (Alwn), un — o),

and so A is pseudomonotone.

O]

Note that the different modes of continuity can be expected to relate to each other. Although it
is not easy to establish these, the following theorem shows us that it is sometimes possible, with
the help of the monotonicity of the operator, to link some of them.

Theorem 1.1.7 (Kato). Let X be a reflexive separable Banach space, denote X* its topological

dual, and consider a monotone operator A : X — X*. Then, A is hemicontinuous over D(A) if
o

and only if it is demicontinuous over D(A)
Proof. We refer to [120] or [51, Chapter V Theorem 1.6] for a proof. O
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Let us now recall the following definition.

Definition 1.1.8 (Coercivity). Let X be a reflexive separable Banach space, and consider A :
X — X*. Then, A is coercive if there exists ¥ : [0,4+00) — [0, +00) satisfying ¥ (t) t—+> 400
—+00
such that:
(Aw),u) 2 P(Jullx)llullx  VueX (1.1.9)

If A only satisfies ||A(u)||x~ —  +o0, then we say that A is weakly coercive.
l[ull x =400

We point out that (1.1.9)) is equivalent to:

(A(u), u)

llullx  fullx—+oo

(1.1.10)

Asis usual in calculus of variations, the notion of coercivity plays an important role in establishing
the existence of solutions to (1.1.1)). We have the following important theorem:

Theorem 1.1.9 (Brézis). Let X be a reflexive separable Banach space and A : X — X* a coercive
pseudomonotone operator, then A is onto.

Sketch of the proof. The proof is rather long so we just give a sketch of it here. We refer the
interested reader to [156, Theorem 2.6.] for details. The proof is based on a nonlinear Galerkin
method.

First step: We proceed to a Galerkin approximation, which is possible thanks to the separability
of the space. Then, using the properties of the operator, we show the existence of Galerkin so-
lutions using reasoning by the absurd (we assume that "desirable" solutions do not exist), based
on the application of Brouwer’s fixed-point theorem.

Second step: Using a priori estimates, we show that we can pass to the limit with respect to the
Galerkin parameter and thus obtain the desired result. O

Theorem means that there exists always a solution to ([L.1.1)) under the wished assumptions.
Let us now exhibit some other properties linked to coercivity.

Proposition 1.1.10. Let X being a separable reflexive Banach space and A : X — X* a mono-
tone, radially continuous, bounded and coercive operator. Then:

(i) A is onto

(i) If A is also strictly monotone, then A™' exists and is a bounded demicontinuous strictly
monotone operator. Moreover, if A is d-monotone and if X is is uniformly convez, then
A=Y 4s continuous

(ii3) If, in addition, A is uniformly (respectively strongly) monotone, then A~' is uniformly
(respectively Lipschitz) continuous.

Proof. (i) First, from Proposition [I.1.6] (iii), A is a pseudomonotone operator. By Theorem[1.1.9]
since A is assumed to be coercive, then it is onto. Moreover, we can prove that the set of solutions

to A(u) = f is a convex subset of X: from Proposition (i), it is also a demicontinuous

Y4y’
2

operator. Thus, the set of solutions to A(u) = f is closed in X. Now, setting u =
and 7 are both solutions to the previous equation, one can see that:

, where n
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1

(f ~ Alw),u—v) = L(A®m) ~ Alw), 1 —v) + {AG) — Aw), ) > 0,

since A(n) = A(n') = f, and using the monotonicity of A. The Minty’s trick given by Lemma
leads to the fact that A(u) = f and the set of solutions is then convex.

(ii) We have for all couple of solutions u and v to A(u) = f that

(A(u) = A(v),u —v) = (f = fu—v) =0,

but from the strict monotonicity of A, this should lead to a contradiction as soon as u # v.
Then, the solution is unique, so the inverse A~! exists. Let us consider (u,v) € X2, u # v, and
(f,g) € (X*)? such that A(u) = f and A(v) = g respectively. Then the strict monotonicity of
A~!is rather direct, writing:

(f =9, A7(f) = A7H(9)) = (A(u) — A(v),u —v) > 0.
Using the coercivity of A, there exists by definition ¢ : Ry — R such that () . —:)oo +o00 and
satisfying for all u € X:
(A(u), u) = flullxt (lullx) -
But this implies, for u solution to A(u) = f, that:

¥ (lullx) lullx < (Au), u) = (f,u) < | fllx-lullx,

and thus it follows:
Y (1A Hlx) < 1 fllx-
which means that A~! maps bounded sets of X* into bounded sets of X, and so this is a bounded
operator.
Let us now counsider a sequence (fn)nen into X* such that f, j f for f € X*. From the
n—-+0o0

boundedness of A~!, we have that (A~!(uy,))nen is bounded, and thus up to extract we have that
AN f) = up j win X. Then, A~! is demicontinuous if we can prove that A(u) = f, but
n—-+0oo

arguing by monotonicity, we have for every v € X:

0 < (A(un) — AW),up —v) = (fn — A(v), up, — v).

Letting n — 400 in the previous inequality leads to:

0> (f—=A(v),u—wv),

and Minty’s trick Lemma leads to A(u) = f. If we assume now that A is d-monotone, we
can write for some (uy,)neny which weakly converges toward w in X:

(d ([[unllx) = d(lJullx)) < (Alun) = A(w), un = u) = (fo = Alw), un —u)
— (= A(u),u—u) =0,

n—-+0o

which leads, since d : R — R is increasing, to ||un|[x — ||ullx. Now, since u, — wu and both
n—+4o00 n—00

belongs to a closed convex set by (i), we can apply Proposition which leads to u, — u in

n—oo
X. Also, A~! is continuous.

33



(iii) By definition of uniform monotonicity, there exists ¢ : R4 — R4 such that we can write, for
every (u,v) € X2, u # v, satisfying A(u) = f and A(v) = ¢

¢ ([lu = vllx) lu = vllx < (A(w) = A(v),u = v) = (f = g,u = v)
<f = gllxllu —vllx,

thus A~! is uniformly continuous, from the assumptions over ¢. If A is strictly monotone, then
¢ = 1Id, and thus the previous inequality leads to:

IATH(f) = AT )llx = llu = vllx < If = gllx-,

and so the result is proved. O

Finally, another important result of existence of solutions to (1.1.1)) is the following:

Theorem 1.1.11. (Browder-Minty) Let X be a reflexive separable Banach space and A : X — X*
a coercive, monotone, and radially continuous operator. Then A is onto.

Proof. We apply a Galerkin method, by considering subspaces X, C X such that Upen Xy is dense
in X, we is valid from the separability of the spaces considered. Then one can define a projector
Py : X* — X[ such that for every ok e Xy

(Pr(f), ") = (f, Pe(vF)) = (f,0F).

Then for a Galerkin solution u; € X, one can write for vk e X

(A(u),v*) = (f.0"),

from the coercivity of A and setting v = wug in the previous inequality leads to the boundedness
of (A(uk))ken and the one of |Jug||x, thus one can extract a subsequence such that A(ug) =

PE(f) — f.

k—4o00

Hence, the monotonicity of A leads to:

(A(WF) = A(ug), v* — ug) = (Alug), v* — ug) — (f, 0% —u) >0,

and considering a sequence v* such that v* T v in X (arguing by density), we get since A is
n—-+0oo

demicontinuous from Proposition m (ii) that A is strongly continuous, and so one can pass to
the limit over k — 400 to get for every v € X:

(A(v) = f,o—u) > 0.

Setting now v = u + A\’ for an arbitrary chosen v’ € X, and use Minty’s trick Lemma leads
to the result. ]

In view of the previous examples, one would be tempted to believe that the classical theory of
monotone operators (in the sense of the different modes of monotonicity considered) lends itself
more easily to the framework of operators depending on a single variable, or even of elliptic
operators. In fact, this is not the case: as the following propositions show, the time derivative
operator is a monotone operator, and moreover the different modes of monotonicity enjoy an
additive stability.
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Proposition 1.1.12 (Monotonicity of time derivative). Let us consider a reflexive Banach space
X, its topological dual X*, and a separable Hilbert space H such that:

XCHCX”

Moreover, let us denote the time derivative operator T defined as:

D(T) — X*
T: (1.1.11)
u — Oy

where we denoted D(T) := {u € W'P([0,T),X)/up—g = uo € H}. Then, T is a monotone oper-
ator.

Proof. The proof is rather direct. First, T is a linear operator. Its monotonicity follows from the
estimate:

S 0)(T)]% = 0.

T
| @ = T vy de= 5
0

O

Proposition 1.1.13 (Sum of monotone operators). Assume that X is a reflezive separable Banach
space, X* is its dual, and consider A, B : X — X*. Then:

(i) If both A and B are monotone, then A+ B is monotone.

(ii) If both A and B are pseudomonotone, then A+ B is pseudomonotone.

Proof. (i) This is true by definition.
(ii) See [I75), Proposition 27.6 (e)]. O

Multivalued theory

The theory of nonlinear monotone operators that we have just introduced, which we could call
classical, is very efficient to show the existence of solutions of nonlinear partial differential equa-
tions. However, it happens in mechanics, especially in plasticity theory, to encounter multivalued
operators. In this case, the theory presented so far fails, and it is then necessary to extend the
notion of monotonicity. This is the subject of the end of this section. If Y is a Banach space, we

denote 2 its power set

Definition 1.1.14 (Multivalued mapping). Let us consider a reflexive separable Banach space
X and X* its topological dual. Assume that A : X — 2% is a multivalued mapping, that is it
assigns to every u € X a subset A(u) of X*. Then we define the:

o Effective domain of A as being the set:

D(A) :={ue X/ A(u) # 0}

e Range of A as being the set:
R(A) == | ] A(u)

ueX
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e Graph of A as being the set:

G(A) == {(u.v) € X x X"/ u € D(A),v € A(u)}

e Inverse of A as being the mapping given by:

X — 2%
AL
v {ue X/veAu)}

Moreover, if B : X — 2X7 then for every couple of scalars (o, ), we define the linear combi-
nation of A and B as being the multivalued mapping given by:

[ aA(u)+ BB(u) if ue D(A)ND(B)
(ad +BB)(u) = { 0 otherwise

One can see from the previous definitions that we get D(a«A+B) = D(A)ND(B). Furthermore,
let us point out that every single-valued map A : X — X* can be identified with a multivalued
map, setting:

X — 2%
A
N { {A(uw)} if u e D(A)

0 otherwise

We then have that R (A) = R(A) and D (A) = D(A) for the usual definitions of the domain and
the range of a single-valued mapping. Also, we point out that we always have by definition that
D (A7) = R(A).

Definition 1.1.15 (Proper mapping, extension). Let us consider a reflerive separable Banach
space X and denote its topological dual X*. Also, we consider A, B : X — 2X". We say that the
operator A is:

(i) Proper if D(A) # 0, that is A is not identically equal to oo
(ii) An extension of B if G(B) C G(A)

We are now able to give the main definition of this section.

Definition 1.1.16 (Maximal monotonicity). Consider a reflexive separable Banach space X, X*
its dual, and A : X — 2X°. Then, we say that A is a:

(i) Monotone operator if
(W —v*u—v) >0 YV ((u, u*), (v,0%)) € G(A)?
(1) Maximal monotone operator if it is monotone and it satifies
(u,u*) € X x X*, V(v,0v%) € G(A), (u" —v*,u—v) >0= (u,u”) € G(A)
In terms of set theory, the monotonicity (respectively maximal monotonicity) of A is equivalent
to the monotonicity (respectively maximal monotonicity) of its graph G(A). We mainly refer to

[I75 Section 32.2.| for the details.
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—A /——:’_A /—-I’_ ’
d /| /
/ / /

Figure 1.1: From the left to the right, A is respectively monotone and maximal monotone, mono-
tone but not maximal monotone, and maximal monotone.

Let us give some properties concerning multivalued monotone and maximal monotone operators.

Proposition 1.1.17. Let us consider X a real reflexive separable Banach space, X* its topological
dual, and A : X — 257, Assume also that B : X — X* is a monotone operator. Then, the
following statements hold.

(1) A is mazimal monotone if and only if its inverse is mazimal monotone

(ii) If A is maximal monotone, then for each u € X, the set A(u) is a weakly-x closed convex
subset of X*

(iii) If A is monotone, it admits a mazimal monotone extension
() If B is hemicontinuous, then it is maximal monotone

(v) If X is a (real) Hilbert space, then B is mazximal monotone if and only if R(B+ 1) =X

Proof. (1) See [I75], Proposition 32.5.].

(ii) See [I75l, Proposition 32.6.].

(iii) It is a matter of applying Zorn’s theorem.

(iv) See [175, Proposition 32.7.].

(v) See [L75, Proposition 32.8.]. O

Let us emphasize that the temporal derivation operator introduced in Proposition [1.1.12]is not a
problem and also fits the multivalued framework.

Proposition 1.1.18 (Maximal monotonicity of time derivative). The operator T introduced in
Proposition is mazimal monotone.

Proof. [175], Proposition 32.10.] O

Subdifferentials

To close this section, let us exhibit a prime example of an operator which, under certain conditions,
is maximal monotone: the subdifferential of a functional. To express ourselves formally, the notion
of subdifferential aims at generalizing the notion of derivative of a convex functional. Let us recall
the following result.

Theorem 1.1.19 (Kachurovskii). Let X be a reflezive separable Banach space, X* its topological
dual. Moreover, let us consider a functional J : X — R such that D(J) is a convex subset of X
and such that it admits a Gateauz-derivative J' for every uw € D(J). The following statements are
equivalent:
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(a) J is conve.
(b) J(w) = J(u) > (J'(u),v—u)  Y(u,v) e D(J)>.
(¢) (J'(u)—J(v),u—v) >0  V(uv)e D)2
Proof. Assume Then one can write for every ¢ € (0,1] and every (u,v) € D(J)?:
J(v+t(u—v)) = J(tu+ (1 — t)v) < tJ(u) + (1 — t)J (v),

which in turn leads to, after substracting J(v) from each side and then dividing by ¢ > 0:

Jw+tlu—wv))—J(v)
t

< J(u) — J(v).

Letting t — 0 into the previous inequality leads to:

(J'(v),u—v) < J(u) = J(v),
which is nothing else than [(b)] Let us now consider that [(b)] holds, then one can write for every
(u,v) € D(J)%:

(J'(v),u —v) < J(u) = J(v)

(J'(w),v —u) < J(v) — J(u).

Summing the two inequalities above leads to [(c)|, after reordering the terms. Finally, if we assume
that |(c) holds, we set the function ¢(t) = J(tu + (1 — t)v), for ¢t € [0,1]. Then, we get:

(1) = (J'(v + t(u = v)),u —v),
and moreover for every s € [0,1):
(¢'(t) = ¥'(s)) (t = 5) 2 0.

Hence, ¢’ is a non-decreasing function and it follows from the mean-value theorem that:

p(t) —¢(0) _ v —p(1) _ »(1) — ()

t - t—1 1—t

this last inequality being equivalent to:
p(t) < te(l) + (1 - 1)p(0),
which in turn can be rewritten:
Jtu+ (1 —t)v) <tJ(u)+ (1 —1t)J(v),
and so J is convex, namely implies and the result is proved. O

Based on the relation in Theorem[1.1.19-(b), it is legitimate to try to find, in the case of functionals
which present, for example, a lack of regularity, some elements ©v* € X* which verify the following
relation :

J(v) = J(u) > (u*,v —u) Vv e X. (1.1.12)

This motivates the following definition.
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Definition 1.1.20 (Subgradient, subdifferential). Assume that X is a real reflezive separable
Banach space and denote X* its topological dual. We consider a functional J : X — R.

(i) An element u* € X* is called a subgradient of J at u € X if |J(u)| # 400 and if it

satisfies (1.1.12).

(i) The subdifferential of J at u € X is the set of all its subgradients at u, and is denoted
0J(u).

From a geometric point of view, in R? one can visualize the notion of subgradient at v € R by
noticing that it coincides with the supporting hyperplanes of the epigraph of J at w.

~-&SUbportin,
YDerplape

Figure 1.2: Subdifferential of a convex lower semi-continuous function; 0®(u1) = 0, f3 € [f1, f2] =

DD (us).

The following proposition shows that the generalization we have made does make sense.

Proposition 1.1.21. Let us consider a reflexive separable Banach space X, X* its topological
dual, and a functional J : X — R. The following statements hold.

(i) Assume that J is conver and admits a Gateauz-derivative at uw € X. Then, we have:

0J(u) = {J'(u)}.

(i) If the subdifferential 0J : X — X* is single-valued and hemicontinuous, then J is Gdteauz-
differentiable over X and for all u € X, we have 0J(u) = {J'(u)}.

Proof. Let us prove , that is we assume that J has a Gateaux-derivative at u € X. Then, since
J is convex, one can apply Kachurovskii Theorem [1.1.19| and write for every v € X:

J(u+v) — J(u) > (J'(u),v),

namely J'(u) € 0J(u). Conversely, let us consider u* € dJ(u), then we can write by definition,
for every v € X and ¢t > 0:
J(u+tv) — J(u) > (u*, tv).
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Dividing the above inequality by ¢ > 0, and then taking the limit as ¢t — 0 leads to (J'(u),v) >
(u*,v) for all v € X, that is setting —v instead of v leads to the equality, for all v € X:

(J'(u),v) = (u", v).

Thus, J'(u) = u* and the result follows.

Let us now prove Since J is assumed to be single-valued, we can write for every (u,v) € X2
and ¢t > 0:

J(u+tv) — J(u) > (0J(u),v),
J(u) — J(u+tv) > —(0J(u+ tv), tv).

Now, using both inequalities above, the hemicontinuity of 9J leads to, for all v € X :

(07 (). v) <l 2 =T g Tt to) = J(w)

t—0 t T t—0

< lim (2 (u + tv), v) = (2 (u), ).

Hence, we get that J'(u) does exist and satisfies J'(u) = dJ(u), which is the desired result. [

As we said before, the subdifferential of a functional can provide a good example of a maximal
monotone operator, this is the object of the following theorem.

Theorem 1.1.22 (Brgnsted-Rockafellar). Let X be a real reflezive separable Banach space and
denote X* its topological dual. We consider a lower semicontinuous convex functional J : X —
(—00, +00] such that D(J) # (0. Then, its subdifferential 0J : X — 2% is a mazimal monotone
operator.

The proof of Theorem [1.1.22] is rather hard and is derived from the results of [34] to which we
refer the interested reader.

Example 1.1.23 (Duality map). Let us give an example of a commonly used mazimal monotone
operator. Consider a real reflexive separable Banach space X and the functional:

X —>R

v 1,112
u i gllul%-

Then, the duality map of ¢ is defined as being:
X = 22X

u— dp(u)

If X s only supposed to be a real Banach space, then the duality map is a mazimal monotone
operator (see e.g. [175, Proposition 32.21]). Furthermore, under our assumptions and assuming
moreover that X™* is strictly convex, then the duality map J is a bounded single-valued demicon-
tinuous coercive mazimal monotone operator (see e.g. [I75, Proposition 32.22 (a)]).

Let us emphasize that the sum of two monotone maximal operators is not necessarily a monotone
maximal operator anymore. The following theorem provides a very convenient condition to ensure

additive stability.
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Theorem 1.1.24 (Rockafellar). Let us consider a reflexive separable Banach space X, X* its

o

dual and A, B : X — 2% two mazimal monotone operators. Then if D(A)ND(B) # 0, A+ B is
mazimal monotone.

Proof. We refer to [15, Theorem 2.6.] or [174, Theorem 47.F|. O

As we have seen, a single-valued operator can always be identified with a multivalued operator.
A natural question is then to know if, from a monotone single-valued operator, it is possible to
construct a maximal monotone operator. This result holds on real Hilbert spaces and, together
with Theorem [I.1.24] allows to use the full potential of the theory of maximal monotone operators.
It is the subject of the following proposition.

Proposition 1.1.25. Let X be a real reflexive separable Banach space, X* its topological dual,
and H o real Hilbert space such that:
XCHCX”

Moreover, let us consider a bounded hemicontinuous monotone operator A : X — 2X°, a convex
lower semicontinuous functional ¢ : X — (—o00,+00|, such that D(p) # 0, and assume that there
exists ug € X such that Op(ug) # 0 and:

(A(u),u — ug)x*xx
[Jull x ull x —+o0

Then, the mapping :

H —2H
B:
- {A(u) + 0p(u)} NH for ue X (1.1.13)
0 for uwe H\X
s mazximal monotone.
Proof. We refer the interested reader to [174, Chapter 55]. O

We end this section with a major result in the framework of multivalued theory, related to the
existence of solutions for equations defined in this framework, which is the main objective of this
last. First, let us point out that if X is, as usual, a real reflexive separable Banach space, and
X* its topological dual, then considering A : X — 2%X" a maximal monotone operator, then the
equation A(u) = f does not a priori make sense on set-valued parts. For this reason, we generally
denote f € A(u) instead. This being the case, we will sometimes abuse the notation, when it is
not confusing, to use the writing in equation form.

Theorem 1.1.26 (Browder). Let us consider a real reflexive separable Banach space X with its
topological dual denoted X*, Q@ C X a nonempty closed convex subset of X, A : Q — 2X" 4
mazimal monotone operator, and B :  — X* a bounded and demicontinuous pseudomonotone
operator. Then the problem:

f € A(u) + B(u), fex”

has a solution.

The proof of Theorem [1.1.26]is beyond the scope of our study and we refer the interested reader
to [175, Theorem 32.A].
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1.1.2 Variational inequalities and applications

We saw with Theorem [[.1.19] that in the framework of convex analysis, a characterization of the
convexity of a functional J : X — R was the inequality:

J) = J(u) > (J'(u),v—u)  V(u,v) € D(J)>. (1.1.14)

This same theorem shows that in this framework, it is still equivalent to the monotonicity of the
Gateaux-derivative J' as an operator. In the previous section, we have seen how the different
modes of monotonicity can lead to the existence of solutions for general problems. An alternative
approach is given by that of variational inequalities, which generalize in some way the principle
of inequalities of the same type as that of (I.1.14)). The objective of this approach is to be able to
apply the principles of convex analysis to functionals which are not convex a priori, but also to be
able to circumvent the problems linked to a lack of regularity or to a multivaluation. In this section,
we first briefly introduce the principle of variational inequality and some properties motivating
its use. Then, in order to further motivate the close link between variational inequalities and
monotone operators, we emphasize the connection between potential operators and the calculus
of variations. Finally, we will cite some results that demonstrate the success of using variational
inequalities in optimal control theory.

Definition and basic properties

One of the first theorems motivating the development of the theory is the following.

Theorem 1.1.27 (J.L.Lions-Stampacchia). Consider a real Hilbert space H, H* its dual, and 2
a nonempty closed convex subset of H. Also, we assume that a : H x H — R is bilinear. Then,
the following statements hold.

(i) If a is coercive, then for each w € H* there exists a unique u € Q such that:

a(u,v —u) > (w,v — u) Vv € Q (1.1.15)
Moreover, the map:
H* — Q
(S
WU

18 continuous.

(i1) If a is not coercive, but satisfies the non negativity condition a(v,v) > 0 for all v € Q, then
the set of solutions is a closed convex subset of H (but can be empty).

Proof. See [137] and [L61, Theorem 2.3., Section 1.2.]. O

There is no absolute consensus about the definition of a variational inequality: it is more an idea
to come back to a result comparable to the Theorem [[.1.27] In this sense, such an inequality
is generally defined as an inequality similar to (1.1.14)) or (1.1.15)), involving an unknown, a test
function, and some auxiliary terms. However, in order to make the presentation as clear as
possible, let us give a very general definition of what we can consider as a variational inequality,
making it clear that this definition will not be of any use other than for the structure of the

presentation.
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Definition 1.1.28 (Variational type inequality). Let us assume that X andY are two real reflex-
we separable Banach spaces, denote X* the topological dual of X, Q) a subset of X, and consider
A:Q =25 B:Q =Y. Moreover, consider Z another real reflexive separable Banach space,
U a subset of Z and F : U XY — R. Then, a variational inequality with unknown u € 0 is an
inequality of the form:

(A(u),v —u) + F (y,B(u)) > 0 (y,v) e U x Q2 (1.1.16)

Usually, one could think of Y = R x RY, U = [0, 7] x 2, A as a differential operator and B as an
operator leading to some norms or seminorms of w in the functional spaces involved. We point
out that when the subset € into Definition depends of the unknown wu, the inequality is
generally called quasivariational, but we will not use this designation throughout our presenta-
tion.

As previously mentioned, there are close links between operators with a monotonicity mode and
variational inequalities, which are mainly a very efficient practical tool for the analysis associated
with this type of operators. To further highlight this connection, we are interested in the study of
evolutionary equations. As a first step, let us mention that if H is a real separable Hilbert space,
A: H — 2% is a maximal monotone operator, and f € W2([0, T], H), then the problem:

{ f €Ot Alu) = cu (1.1.17)

Ujt=0 = U0
where ¢ € [0,7] and ¢ € R, has a solution. The proof of this result comes from the so called
nonlinear Yosida approximation, which in turn is related to the notion of resolvent and accretive

operator. These notions not being necessary for our presentation, we refer the interested reader
to [15, Chapter 3| or [I74, Sections 55.1 and 55.2].

Finally, let us give a classical result concerning quadratic-type evolution variational inequalities.

Proposition 1.1.29. Let us consider a real reflexive separable Banach space X, X* being its
topological dual, and H o real separable Hilbert space such that:

XCHCX"

Moreover, let us consider a bounded bilinear form a : X x X — R, a convex lower semicontinuous
functional ¢ : X — (—o00, +0o] with D(¢) # 0, ug € X and f € W12([0,T], H) satifying:

(i) I(a,B) >0, Yo € X, a(v,v) > aljv|} — Blv|%

(i1) o(up) < +00

(iii) Yw € H, Yo € X, a(ug,v — tig) + 9(v) — p(uo) > (w, v — o)
where we denoted (-,-) g the inner product over H. Then, the variational inequality:

Vo e X, (O, v —u)y +a(u,v—u) — (f,v—u)x=xx + ©(v) > p(u) (1.1.18)
admits a solution v € WY2((0,T], H) satisfying Ujg—g = Uo-

Proof. Use theorems above and [I73, Proposition 55.5]. O
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Monotonicity and potential

In the words of the late Jacques-Louis Lions "The main application that |Guido| Stampacchia
had in mind at the beginning of this theory |of variational inequalities| was to potential theory"
(see [I36]). It is therefore natural, in view of the history of the theory of variational inequalities
as well as Theorem [I.1.19] to introduce the notion of potential operator and the formulation in
variational inequality which is linked to it.

More precisely, if X is a real reflexive separable Banach space, we would like to solve an equation
of type

Alu) = f

where A : X — X* is an operator following some mode of monotonicity. Thus, we are interested
in Gateaux-differentiable functionals J : X — R verifying the equation

J'(u) = A(u) - f
i.e. we are looking to investigate the validity of the relation
J'(u) =0,

which is equivalent to the issue to find the critical points of J. This problem, under the assumption
of sufficient regularity, is equivalent to minimizing the functional J. The theory of critical points,
consisting in the study of such problems, is one of the fundamental aspects of the variational
analysis of partial differential equations. We refer the interested reader to [84] Chapter 8], [121] or
[164] for an introduction to the different methods applicable in this context. This section is devoted
to the study of the link between variational inequalities and the existence of a potential operator.
As before, we first present the single-valued framework and then return to the multivalued theory.
This motivates the following notion.

Definition 1.1.30 (Potential operator). Let us consider a real reflexive separable Banach space
X, X* its topological dual and A : X — X*. Then, A is said to be a potential operator if there
erists a Gateauz-differentiable functional J : X — R, called the potential, such that A =J'.

Example 1.1.31 (p-Laplacian). The p-Laplacian operator, given by (1.1.2)), is a potential operator
for 1 < p, whose potential being the functional:

WP () — R
P (1.1.19)
U ;/|Vu|p dx
Q

JA

Example 1.1.32 (Symmetrized p-Laplacian). The symmetrized p-Laplacian, defined as:

Wy P (Q) — W-Le(Q)

SBp 3 s div (ID(u)P~2D(u)) ,

(1.1.20)

is well-defined in view of Section[A.3 and is a potential operator associated to the potential:

WP () - R
Isa, - (1.1.21)
u ;/ﬂ\D(u)\p dx.
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First, let us establish a link between the convexity of the potential and its associated operator.

Proposition 1.1.33. Let us assume that X is a real reflexive separable Banach space, X* is its
dual, and A : X — X™ is a potential operator, whose potential being the functional J : X — R.
Then the following statements are equivalent.

(i) The potential J is convez (respectively strictly convez).

(ii) A is monotone (respectively strictly monotone).

Proof. Actually, it is simply a reformulation of a part of Kachurovskii theorem [1.1.19] since
assuming that J is convex, it leads to the fact that for every (u,v) € X2

(J'(u) = J'(v),u =),

namely J’ is monotone. Equivalently, if the previous inequality is satisfied, then .J is convex, once
again from Theorem [1.1.19] U

Let us now express a first link between the potential minimization problem, the associated Euler-
Lagrange equation (characterizing its critical points), and the variational inequality it generates.

Proposition 1.1.34. Let X be a real reflexive separable Banach space, denote X* its topological
dual, Q be a subset of X, and consider a potential operator A : Q0 — X* with potential J : Q — R.
Moreover, assume that u is a solution to the problem:

J(u) :E)réig J(v). (1.1.22)

Then, the following statements hold:
(i) If Q2 is open, the u solves: A(u) = 0.
(ii) If Q is convex, then u is a solution to the variational inequality:

(A(u),v —u) >0 Vv € Q.

Proof. Let us first prove namely we assume that 2 is convex. Then, if @ is a minimum of J,
we get that it is attained while we set t = 0 in J(u + t(v — @)). Differentiating this last at ¢ = 0,
we get that:

(4 (o — 7)), 0 — W) = (J' (@), v —T0) = (A(T), v — 7) > 0,

and the assertion is proved. Now let us turn to prove It is a matter of observing that one can
take an arbitrary v in a neighborhood of u, thus take —v instead of v leads to the result. O

This result can be clarified when we strengthen the assumptions. Specifically, we have:

Proposition 1.1.35. Let us consider a real reflexive separable Banach space X, X* being its
topological dual, Q C X, A : Q — X* a potential operator, whose potential being the functional
J : Q@ = R. Furthermore, assume that J is twice Gateauz-differentiable, and there exists v :
[0, +00) — [0, 4+00) verifying 1 (t) Rl +oo such that :

J"@)(h ) = (RIDIRL ¥(u,h) € 0.
Then, if Q= X:
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(i) There exists at least a minimum of J over X.
(1) uw € X is a minimum of J over X if and only if it is a critical point of J.
(1) If 1 is increasing, A is a uniformly monotone operator.

() If furthermore b > 0 on [0,+00), then A is strictly monotone over X and the minimum is
UNLqUE.

Moreover, if ) is a nonempty closed convex subset of X, then u is a minimum of the potential J
if and only if it satifies the variational inequality

(A(u),v —u) >0 Yo € Q.
Proof. We refer to [I75], Proposition 25.22 and Corollary 25.23| for a proof of this result. O

In variational analysis, it is common to try to show that the functional to be minimized is sequen-
tially weakly lower semicontinuous. For a potential operator, it is sometimes possible to show,
depending on the assumptions, that this is the case for the potential associated to it. This is the
subject of the following result.

Proposition 1.1.36. Let us consider a real reflexive separable Banach space X, its topologial dual
X*, and a bounded pseudomonotone potential operator A : X — X* with potential J : X — R. If
one of the following assumption is fulfilled:

(a) A is monotone,

(b) A is locally bounded and pseudomonotone,

(c) A is bounded demicontinuous and satisfies u, — u in X for every (up)nen such that:

Uy, — U and Iim  (A(up) — A(u), u, —u) <0,

n—-4o0o n—+4o00o

(d) J is convex and lower semicontinuous,

(e) J is twice Gateauz-differentiable and satisfies J"(u)(h,h) > 0 for every (u,h) € X2,
then the potential J is sequentially weakly lower semicontinuous.

Proof. First, let us observe that to show points (a), (b), and (c), it suffices to show the following

property: whatever the sequence (uy)nen such that u, j u where u € X, then we have:
n—-+0oo

lim (A(up),un —u) > 0.

n—-+0oo

and A is locally bounded.

Assuming that A is monotone, we can write for v, — w:
n—-+o0o

(A(un), up —u) > (A(u), up — u),

and the result follows by taking the upper limit in the previous inequality, and observing that A
is locally bounded according to the Proposition [1.1.6] (ii).
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If A is pseudomonotone, the result is obtained by noting that for such a sequence u,, satisfying
the criterion for defining pseudomonotonicity, we have for all v € X:
HEEOO<A(U7L)7 Up — u> <0,

(A(u),u —v) < lim (A(up),un — v).

n—-+00
By setting u = v in the second inequality, we then obtain:

<A(un)> Up — u> njoo 07

which also establishes the condition, since we assume that A is locally bounded.

The case of (¢) implies that A is pseudomonotone, since we get for (u,)nen such that the assump-
tions of (c) are fulfilled:

Iim (A(up) — A(u),up —u) = lm  (A(un), up —u) <0,

n—-+o0o n—-+o0o

which implies v, — w in X, so by demicontiuity A(u,) — A(w), which in turn leads to,
n—-+00 n—-+o0o

for every v € X:
(A(up),up —v) — (A(u),u —v),

n—+00

so that A is bounded pseudomonotone and we got the wished property.

Thus, let us prove that the announced property implies the result. We proceed by contradiction,
namely we assume that J is not weakly sequentially lower continuous at u € X. Then there exists

a constant v > 0 and a sequence (up)nen in X such that u, —J\r uw in X, satisfying:
n—-—+0oo

J(un) = J(u) < =7,
lm  J(up) — J(u) < —7.

n—-+0o

(1.1.23)

Applying the mean value theorem to the mpping ¢ — J(u + tv) where ¢ € [0,1], for every fixed
v € X, we get that there exists 6 € (0, 1) satisfying:

J(u+v) = J(u) = (A(u+ 6v),v).

Combining this fact with (1.1.23)) leads for € > 0 to:

S(un) = J(u+ e(un —u)) + J(u+ e(un — u)) = J(u) < =7,

and the existence of a sequence (6,,(€))nen in (0, 1), such that:

J(u+e(un —u)) = J(u) = e(A(u + by (2) (un — ), up — u).

Then, we highlight that (u, — u),en is bounded since wu, _}j u, and the local boundedness of

A at u € X leads, for € small enough, to:

|[J(u+e(un —u)) = J(u)| S e,

~

this inequality being true for all n € N. Following the same line of arguments, we can get for
€ > 0 small enough:
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|J(up) — J(u+e(up, —u))| Se,

~

and thus using (|1.1.23)) to this last leads to the existence of a sequence (5, (¢))nen in (0,1) such
that:

(Aun + Bn(e)(1 = &) (un — ), (1 — ) (un — u))

1-¢
- (1 + Bole)(1— 5)) (A(un + Bn(e)(1 — &) (un — u)), un — u+ Bp(e)(1 — €)(up — u)).

Now, we have by assumption that

Un + Bn(e)(1 —&)(up —u) — wu,

n—+00

and so we get that:

(A(un + Bn(e)(1 = €)(un — u)),un — u+ Bn(e)(1 — &) (un — u))
= (A(up + Bn(e)(1 — &) (up — w)),un — u+ Bp(e)(1 — &) (uy, —u)) <0,

which is a contradiction with the assumptions. Hence J is weakly sequentially lower semicontin-
uous.

To prove (d), we also argue by contradiction. Let us assume that J is not weakly sequentially

lower semi-continuous, hence there exists (uy,)neny in X such that v, — wu and so that there
n——+oo

are p > 0 and ng € N satisfying for every n > ng:

J(u) > p > J(un),

which implies:
J(u) > p> lim  J(uy),
n——+00
and so this is in contradiction with the fact that the set {u € X / J(u) < u} is weakly relatively
closed. Hence, J is weakly lower continuous.

The last point, (d), follows from the fact that it implies that J is a convex potential, and so from
Proposition [1.1.33| A is a monotone operator, then (a) leads to the result. O

Let us exhibit an interesting property, highlighting the interest of weak coercivity in the variational
analysis of potential operators. The following two theorems establish this relationship, the first
with the monotonicity and the second with the pseudomonotonicity of the operator.

Theorem 1.1.37. Let us consider a real reflexive separable Banach space X, X* its topological
dual, and a monotone potential operator A : X — X with weakly coercive potential J : X — R.
Then, u € X 1s a minimum of J over X if and only if it is a critical point of J, and there exists
at least a minimum of J. Furthermore, if A is strictly monotone, then the minimum is unique.

Proof. We refer to [175], Theorem 25.F.]. O
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Theorem 1.1.38. Let us consider a real reflexive separable Banach space X, X™ its topological
dual, and a bounded pseudomonotone potential operator A : X — X* with C' weakly coercive
potential J : X — R. Then, u € X s a munimum of J over X if and only if it is a critical point
of J, and there exists at least a minimum of J.

Proof. We refer to [I75, Theorem 25.G.]. O

Let us return to the motivation explained at the beginning of this section, the Theorem [1.1.19] by
establishing an alternative version of this result in the framework of monotone potential operators.

Theorem 1.1.39. Assume that X is a real reflexive separable Banach space, denote X* its topo-
logical dual, and consider A : X — X*. The following statements are equivalent:

(a) A is a monotone potential operator.

(b) A is monotone hemicontinuous and satisfies:
1 1 1
/ (A(tu), u) dt — / (A(tv),v) dt = / (A(v+t(u —v)),u—v) dt Y(u,v) € X2
0 0 0

(c) A is a potential operator whose potential J : X — R is a weakly lower semicontinuous convex
functional.

Proof. We refer to [174, Proposition 42.11]. O

Before establishing the theory in a multivalued framework, let us state without proof the following
result.

Proposition 1.1.40. Assume that X is a real reflexive separable Banach space, denote X* its
topological dual, and consider a monotone potential operator A : X — X*. Then A is demicon-
tinuous.

Let us now very briefly introduce the multivalued framework for potential operators. First of all,
let us note that the multivalued theory for such operators can be approached by several aspects,
with different generalizations of the notion of differentiation of a functional. A lot of work has been
done in this sense, and although it could possibly be fruitful in the framework of the mathematical
analysis of non-Newtonian fluids, it is impossible for us to mention all of them here, which would
force us to deviate from the research that has been done so far. However, we refer the interested
reader to [12], [10], or [63] for some alternative approaches.

Definition 1.1.41 (Superpotential operator). Let X be a reflexive separable Banach space, X*
its topological dual, and A : X — 2% . We say that A is a superpotential operator if there exists
a functional J : X — R such that A = 0.J.

Example 1.1.42 (1-Laplacian). The case of the 1-Laplacian, being the extremal case of the p-
Laplacian when p = 1, is not a potential operator in sense of Definition [1.1.30 However, it can
be shown that it 1s a potential operator in sense of Definition |[1.1.41] associated to the functional:

L*(Q) - R
SN
V(u,Q)+/ (1.1.24)
0]
400 otherwise ,

w s Q|’YO(U)| do if uwe BV(Q)NL*(Q)
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where
V(u, ) :=sup {s eER/s= / udiv(p) dz, ¢ € Ca(Q,RY), ol Loo () < 1}
Q

is the total variation of u over @ C RN, BV (Q) := {u € L' (Q)/V(u,Q) < 400} is the space of
functions with bounded variations over §2, ~yy is the trace on the boundary and o the Hausdorff
measure. Then, 0Ja, is not everywhere well defined over its domain D(Ja,), but is a potential
mazimal monotone operator. Let us point out that the 1-Laplacian is not generally well-defined
over WH1(Q), even if there is some approches in that case. We refer the interested reader to
177, 183, [66, (63, (67 for an overview of this operator. Moreover, we point out that the operator:

HY Q)N H2(Q) = H Q) + H2(Q)
JA, (1.1.25)
u— Au+ Aju

is well defined (see [16], Section 4.3.]).

Example 1.1.43 (Symmetrized 1-Laplacian). The same conclusions holds for the symmetrized 1-
Laplacian. However, since from Proposition[A.5.9 we get that BV () # BD(Q), we must replace
in the previous example BV (Q2) by BD(Q2).

In general, we use the term potential operator to refer to both potential and superpotential
operators. Once again, a natural question is whether, like Theorem there is a link between
the convexity of the potential and the monotonicity of the operator. The following result is
available for this purpose.

Theorem 1.1.44. Let X be a real reflexive separable Banach space, with topological dual given
by X*, and let A: X — 2% be a potential operator (in sense of Definition|1.1.41]), such that its
potential J : X — R is a proper convex functional. Then the following statements hold:

(i) A is a closed-valued, convex-valued, and monotone operator.
(1) If J is lower semicontinuous, then A is mazimal monotone.

(13) If J is coercive, A is onto.

Proof. See [156, Theorem 5.3.]. We point out that (iii) can be proved using the duality map
introduced earlier as an example. O

As previously mentioned, one of the interests of the theory presented so far is to be able to establish
results in an a priori non-convex framework. As an example, let us mention the following result.

Theorem 1.1.45. Consider X a real reflezive separable Banach space, its topological dual X*,
A: X = 2% and B : X — X* two potential operators, respectively associated to J4 : X — R
and Jp : X — R. If J4 is a proper convezx lower semicontinuous functional and Jp a Gédteaus-
differentiable and weakly lower semicontinuous functional, then for every f € X*, there exists a
solution u € X to the variational inequality:

Ja(v) + (B(u),u—wv) > Ja(u) + (f,v — u) Vv e X,
that is A + B is onto.

Proof. See [156, Theorem 5.4.]. O
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We have tried to make the close relationship between variational inequalities and operators pre-
senting some mode of monotonicity as clear as possible for the reader. However, a major advantage
of variational inequalities is that they allow us to considerably relax the notion of solution, by
making it possible to give meaning to solutions as soon as a certain type of limit exists. In this
way, a number of solutions in the form of variational inequalities can be derived from a potential,
but not in the sense of a classical subdifferential as previously presented. A classic example is
given by the following approach.

Definition 1.1.46 (Clarke gradient, hemivariational inequality). Let X be a real reflexive sep-
arable Banach space, X* its topological dual, and consider a functional J : X — R. Then, we
define the Clarke gradient as being the set:

J(w +ev) — J(w)

OcJ(u) =< fe X* YoeX, lim (
ey
e>0

) > (f,0)

A multivalued inclusion involving a Clarke gradient is called an hemivariational inequality.

As with quasivariational inequalities, hemivariational inequalities will be referred to as variational
inequalities if the case arises.

Applications to optimal control theory

Variational inequalities lend themselves particularly well to the study of controllability problems.
This is due in particular to the possibility of establishing such solutions under very relaxed assump-
tions. In particular, as far as optimal control is concerned, it is worth noting that assumptions on
the cost function may sometimes not require differentiability at all (see e.g. [94,[95]). To illustrate
this point, let us put forward the following example of optimal control for a parabolic equation.

Consider the problem, for @ C RY, ¢ € H?(Q) and f € L*():

B(u)+ f € Ou+ A(u) + M(u—1) on (0,T) x Q

(1.1.26)
Ult=0 = U0 on €2,

where the following assumptions are satisfied:

(PC1) There is an Hilbert space V' with topological dual V* such that the following inclusions
hold:
V cc L3(Q) c V*.

(PC2) A: D(A) C V — V* is a symmetric linear continuous operator such that there exists
a, B) € (0,+00) x R satisfying:

(Aw),u) > allull} - BlulZeqy ~ Vue V.

(PC3) M is a potential operator, whose potential being given by J : R — R. Moreover, defining
the sequence (M;)c>0o as being:

R—-R
M, :

t—(Id+eM)~1(t)

t e 2
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we assume that for every monotone increasing function A € C*(R) such that A(0) = 0, there
exists a positive constant C' which does not depend of € such that the following inequalities
hold:

(A(u), Mc(u — 1)) > =C (1 + [ Mc(u — )|l r2(0)) (1 + [Jull 20));
(Au),Aou) > —C (1 + [[Aoullr2) (1 + lull L2e),

for all e > 0 and u € Dy(A), where Dy(A) is the domain of A identified as an operator over
L3 ().

(PC4) B is a linear continuous operator from V to L?().
Next, we give ourselves a cost functional defining the optimal control problem.

D(G) c D(A) x L?((0,T),V) =R
G : (1.1.27)
(u,v) — [ 9(t,u(t)) + h(v(t)) dt + ¢(u(T)).

One way of visualizing this functional is to imagine that we wish to reach the proximity of a
certain state of the system given by at time 7', given by the function ¢, but that the
means of doing so has a systemic cost given by the function g, and we wish to make the control
v, whose action is given by the cost h, act in order to minimize the cost of reaching at time T a
state close to that predicted by the system.

We assume that the following assumptions are satisfied for the functional (1.1.27).

(PF1) h:V — Ris a convex lower semicontinuous functional, and there exists (v, ) € (0, +00) xR
such that:
hw) > lellE — e o EV,

(PF2) g :[0,7T] x L?(2) — [0,4+00) is a measurable function over its first variable, and for every
r > 0, there exists C; > 0 which does not depend of ¢ such that g(¢,0) € L*([0,7]) and

l9(t,y)—g(t, 2)|+Ho(y)—d(2)] < Crlly—2lli2) V(¥ 2) € LX), Iyllzz@) izl 2@ <
Then, one can see that, setting:
L?(Q) =R
ur— [o J(u—1) du,

we have the equivalent formulation of (1.1.26]) given by the Cauchy problem

{ B(u) + f € du+ A(u) + 9p(u) on (0,7) (1.1.28)

Uj—o = Ug on D(p)NV ={ueV/J(u-1y)e L' (Q)},

where Jp is maximal monotone from Theorem [1.1.22] One could think of an homogeneous Dirich-
let problem given V = H}(Q) , V* = H71(Q), and A = —A, for example. Finally, the optimal
control problem is given by:

Find i G(u, h | 1.1.28), up € D(p)NV.
in UGLQI’(I(%%)’V) (u,v) where u solves uo (p)
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Then, the following result holds.

Theorem 1.1.47. For every ug € D(p) NV, the optimal control problem admits at least a solu-
tion.

We refer to [14, Chapter 5] for a proof of this result. Let us point out that this result is not valid
for highly singular problems, but there are other results along these lines, see e.g. [18]. Also, there
exists several approaches to these kind of problems, sometimes without potential. We should e.g.
refer to |11} [I17], which respectively deal with local and optimal controllability.

1.2 Applications to the study of non-Newtonian flows

In this section, we explain how the theory of monotone operators or variational inequalities can
be used to construct solutions to problems arising from non-Newtonian fluid mechanics. First,
we present results specific to shear-thickening fluids, for which it is generally possible not only
to show the existence and uniqueness of solutions, but also, if the fluid is sufficiently shear-
thickening, to construct strong solutions. In a second step, we will present some results for the
existence of solutions to equations modeling shear-thinning fluids, first presenting results obtained
by monotonicity, then in the form of variational inequality. The results presented in this section
are intended to give the reader a broad overview of the methods used and results obtained in our
study, but as the literature is very extensive, we do not claim to be exhaustive.

1.2.1 Shear-thickening flows

Initially, we are interested in a shear-thickening fluid model, using the p-Laplacian operator di-
rectly in the modeling, which remains consistent given that we will assume a homogeneous Dirich-
let condition, i.e. a no-slip boundary condition. More precisely, let us consider the following
system.

Ou— Au+ (u-V)u—div (|[VulP~2Vu) + Vr = f in (0,T) x Q

div(u) =0 in (0,7) x Q
u=0 on (0,7) x 02 (1.2.1)
U|t:0 = Up in Q.

We define a weak solution of the previous system as follows.

Definition 1.2.1. Let us assume that ug € L2(Q) and f € LY((0,T), H,;1(2)), where ¢ > 1 is a

real number satisfying:
1 1
I |
p q

p > % and Q C RY is an open bounded domain. Then we say that u € Lp((O,T),H&U(Q)) N

L>®((0,T),L2()) is a weak solution of if it satisfies for all p € C§°((0,T), CF%,(Q)):

?

T
/ ((Opu, @) ~|—/ Vu: Ve dr +/ u®u: Vo dr+ / |VulP"Vu: Ve dz) dt
0 Q Q Q

T
_/0 (f. o) dt (1.2.2)

Then the following result holds.

93



Theorem 1.2.2 (J.L.Lions). Let us assume that ug € L2(Q) and f € LI((0,T), H;*(Q)), where
q > 1 is a real number satisfying:

1 1
+

P q

and Q C RY is an open bounded domain. Moreover, we assume that p satisfies:
N +2
p>te (1.2.3)
2

Then, there ezists a unique weak solution to (1.2.1) in the sense of Definition [1.2.1]

Proof. We refer to [132, Théoréme 5.2.] for a complete proof. Let us just point out that the
uniqueness follows from the monotonicity of the operator and suitable a priori estimates. O

Note that similar conclusions are still valid for more general systems. In the following we focused
in the three-dimlensional case. Consider, for example, the three-dimensional one.

Ou+ (u-V)u—div(S(D(w))) + Vo= f in(0,T) x Q

div(u) =0 in (0,7) x Q
w=0 (0,T) x 90 (1.24)
Ujg=0 = Ug in Q.

Where the stress tensor S € R3X3 associated to the flow is assumed to derive from a potential

J : R¥3 — [0, +00), such that J = ®(|-|*) for the usual euclidiean matrix norm, and such that
there exists p € [2, 400) satisfying for every (A, B) € (ngﬁ) and every (i,7,k,1) € [1,3]NN:

S1) ®(0) = 8;9;J(0) = 0.

S2) S(A);; = 0:0;J(A).

(S1)
(52)
(83) 4Ct > 0, 0;0; 8k81J(A)BiﬁjBk,l > Cl(l + ‘A‘)p*2‘B’2_
(S4) 3Cy > 0, |9:0;010m J(A)| < Co(1 + |A|)P~2

We define a weak solution of ([1.2.4) as follow.

Definition 1.2.3. Let us consider a bounded domain Q C R3, with C® boundary, a fized time
T eRY, pel2,3), u € Wol’f:(Q), f € L2((0,T),L3(R)), and that S satisfies assumptions (S1)
- (S4). Then, we define a weak solution to as being a function u € L>((0,T), L2(Q) N
LP((0,T), Wy 2 () satisfying for all ¢ € Cg°((—o0, T), C5,(Q)):

/0 < (u, Opp) /S D(p )dw+/9u®u:V<pdm> dt:/OT(f,cp) dH_/QuO.SD(O)dx'

Then, the following result holds.

Theorem 1.2.4 (Mélek-Necas-Ruzicka). Let us consider a bounded domain Q C R3, with C3
boundary, a fized time T € R, p € [2,3), uy € ng’f(Q), f € L%((0,T),L*(R)), and that
S satisfies assumptions (S1) - (S4). Then, there exists a weak solution to (1.2.4) in sense of
Definition Moreover, if p > %, the solution w is unique and satisfies:

w € C((0,7), LE(Q)NLX((0,T), Wy () Lo ((0,T), W54 () and du € LA(0,T), L(%2))
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We will admit the proof of this result, for which we refer to [I4I]. In fact, under other assump-
tions, which are not necessarily more restrictive, a similar result can be shown for p > 2, see [24],
Theorem 3.4.].

Remark 1.2.5. In the case of the 3-laplacian operator with the symmetrized gradient, we obtain
the Smagorinsky model for Large Eddy Simulation of turbulence (see e.g. [22]).

1.2.2 Shear-thinning flows

We can now present a set of results concerning shear-thinning fluids. Because of the possible
singularity present in the deviatoric part of the stress tensor, the mathematical analysis of these
can be harder. Initially, we will present results whose main idea is the use of the monotonicity
of the operator. In particular, this has the advantage of being able to handle equations with no
Laplacian. Next, we will present solutions in the form of variational inequalities, derived from
our work (see [44]).

Some monotonicity results

Let us first consider the following system.

o+ (u - V)u—div (Sw(t,z, D(u))) + Vr = —=div(f) in (0,7) x Q
div(u) =0 in (0,7) x Q
u=20 on (0,7) x 00
u‘tzo = Uug in Q

(1.2.5)

We assume that there exists for 1 < p < +o00o such that the following assumptions over Sy are
verified, withq:%ifp>1orq:+oo if p=1:

(SW1) The tensor Sy : (0,T) x Q x R¥XN s RVXN i 5 Carathéodory function.

sym sym

(SW2) There exists Cy > 0 and a non negative function g € L((0,7T) x Q) such that:

VA e RN ae. (t,2) € (0,T) x Q, [Sw(t,z, A)| < ColAP~! +g.

sym
(SW3) There exists C; > 0 and a non negative function h € L'((0,T) x ) such that:

VA e RVNXN qe. (t,z) € (0,T) x Q, C1|AP™F —h < Sw(t,z, A) : A

sym

(SW4) The operator A — Sy (t,x, A) is strictly monotone for a.e. (¢t,x) € (0,T) x Q.

Also, let us define the notion we will consider later as a weak solution of ((1.2.5]).

Definition 1.2.6. Let us assume that % < p < 4o and that (SW1)-(SW2) holds. Then, for

ug € L2(Q), f € LY(0,T) x Q), we say that u € LP((0,T), Wy:2()) N L=((0,T), L2(Q)) is a
weak solution tp (1.2.5) if for every ¢ € C*°((0,T),C65,(2)) such that supp(p) CC [0,T), we
have:

/OT <_ /Q u-Opp dx + /Q Sw(t, 2, D(u)) —u®@u): D(p) d:n) “

:/OT/Qf:wdxdt+/Quo-<p(o)dx.
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The following result holds.

Theorem 1.2.7 (Wolf). Let us assume that Q C RN 1 + NLH < p < 400, a fized time T € RY |
ug € L2(Q), f € LYQ) and that Sw satisfies assumptions (SW1)-(SW4). Then, there exists a
weak solution u € LP((0,T), W&’CI:(Q)) N Cyw((0,T), L2(Q)) to (1.2.5) in sense of Definition .

This result has several advantages: firstly, it ensures the existence of solutions for tensors that do
not necessarily take into account a Laplacian term. Furthermore, there is no a priori limitation
on the  domain, which may or may not be bounded or regular. However, if the author of the
theorem insists on this point, we should note that this lack of restriction must be understood in a
prescribed sense: while there is no need to specify that the set must be measurable, let us mention,
for example, that the author nevertheless seems to employs Korn inequality (see Theorem
in an underlying way (through embbeddings, for example). However, it is actually known that
Korn inequality is not valid on cuspidal domains, for example (see [2]).

Example 1.2.8. The following tensors can be considered by Theorem for 1+ NL+2 <p<
+o00:

o Sy (t,x, A) := C|AP=2A (Perfect power-law)
e Sy(t,x,A):=C(1+ |A|2)L§2A (Perfect Carreau law)
o Sw(t,z,A) = C|AP~2A + CA (Power-law)

o Sw(t,z,A):=C(1+ \A|2)L52A + CA (Carreau law)

Sketch of the proof of Theorem [1.2.7 Firstly, it is established that there is an integrable pressure
term even in the case where the tensor Syy is non-diffusive, in the sense that it cannot be written
as the sum of a Laplacian and another term (vulgarly, we can sometimes say that we do not
consider "kinematic viscosity", to make the link with the Navier-Stokes equations). The proof
then breaks down into several steps.

First step: We show the existence of local solutions for an approximate decoupled system, in which
the convective term is expressed according to another function and is penalized by a smooth cut-
off function. In particular, a general version of the Theorem is applied. We show that we
can find local solutions to the system by applying a Schauder fixed-point theorem, which is done
via the use of a harmonic decomposition and the Minty’s trick Lemma [I.1.5] This leads to the
existence of weak solutions on bounded domains.

Second step: We show the existence of global solutions for bounded domains, which is made
possible by estimates.

Third step: We show that it is possible to extend the result to unbounded domains approximated
by a sequence of bounded domains, and by showing that the estimates for this sequence of domains
are uniform.

We refer to [I71] for the details. O

In fact, there is still room for improvement. First of all, it is possible to slightly relax assumptions
(SW2)-(SW3) assuming that there exists § > 0 as follows.

(SW2’) There exists Cp > 0 and a non negative function g € L((0,T) x Q) such that:
VA e RNXN e (t,x) € (0,T) x Q, [Sw(t,z, A)| < Co(6 + |A)P72|A| + g.

sym
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(SW3) There exists C; > 0 and a non negative function h € L1((0,T) x Q) such that:

VA e RNXN g (t,z) € (0,T) x Q, C1(6 +|A|)P72A| — h < Sy (t,z, A) : A

sym

We then have the following result, which is an improvement on Theorem [1.2.7]

Theorem 1.2.9 (Diening-Ruzicka-Wolf). Let us consider Q an open bounded subset of RV,
where N > 2, and a fived time T € RY. Moreover, we assume that S satisfies assumptions
(SW1),(SW2°),(SW3’), and (SW}) for

<
N 12 p < +00,

and some § > 0. Then, if ug € L2(Q) and f € LI((0,T) x Q), there exists a weak solution
ue LP ((O,T),W&’f(ﬁ)) N Cw([0,T], L2(Q)) of (1.2.5)) in the sense of Definition |1.2.6

Proof. The proof is based on the Lipschitz truncation method, where the domain is studied using
a Whitney decomposition. We refer to [72] for more details. O

Remark 1.2.10. We point out that Theorem 1s optimal in the sense that for p < ]\%—fQ, the
Sobolev embbedding

(N+2)p
N

LP((0,T), Wo 2(2)) N L=((0,T), L3 () < L ((0,T) x Q)

does not hold. Even if the convective term in the weak formulation can still be well defined, there
is a lack of monotonicity over Wol’p(Q) (in space variable) in this case, and it is not obvious that
the considered methods can still be used when dealing with Wol’f(ﬂ) N L%(Q) (see [72, Remark
1.4.6.]).

A result similar to Theorem can be obtained under slightly different assumptions for Navier
boundary conditions. More precisely, consider the following system:

Ou+ (u-V)u—div (Sp(t,z,D(w))) + Vo= f in (0,7) x Q

div(u) =0 in (0,7) x Q

u-n=0 on (0,7) x 0Q (1.2.6)
Sg—(Sp-n)n=—a(u—(u-n)n)=0 on (0,7) x 02

U|t:0 = Uup in Q,

where a¢ > 0 and n is a unit outer normal vector to 9€). The Navier boundary conditions state
that the tangential component of the velocity is proportional to the tangential stresses applied at
the boundary (we refer to [98] for details concerning these last). The following assumptions are
made.

(B1) For a.e. (t,z) € (0,T) x Q, 0 € Sp(t,z,0).

NxN
]Rsym .

(B2) The map A — Sp(t,x, A) is monotone on
(B3) The map A~ Sp(t,z, A) is maximal monotone on RYXN.

sym

(B4) There exists a non negative function g € L'((0,T) x §2), a constant Cy > 0, and an N-
function ¢ (see Definition [A.5.1)) such that:

VA e Ré\;ran, Sp(t,x,A): A > —g+Co (p(|4]) + ¢* (|ISs(t,z, A)|)) a.e. (t,x) € (0,T)xQ.
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At this point, we feel it is important to make an initial comment on the hypotheses presented
here. These are equivalent to those proposed by the authors (see [35]), but they are presented
in a different form. Firstly, the authors wish to highlight an implicit relationship between the
deviatoric part of the stress tensor and the strain rate tensor. Thus, the authors do not establish
the hypotheses on Sp but on a graph A(t,z). The fact that a couple (D, S) belongs to the graph
A(t, x) is then equivalent to a relationship of the form G(D,S) = 0. This choice of writing allows
us to take a different look at the constitutive relations. However, the authors’ assumption (A3) of
maximal monotonicity is equivalent to the existence of a maximal monotone operator describing
the evolution of the graph (see [175, Section 32.2.]), and joining this to their explicit assump-
tion (A5), we obtain that it is equivalent to the explicit relation we have chosen to evoke in our
assumptions, in order to maintain a certain consistency with the rest of the results presented here.

Definition 1.2.11. Let us consider a domain Q of RN with C1' boundary, a fived time T €
R* and p > 1. Moreover, we assume that ug € L2(Q) satisfies ug-n = 0 on 98, and f €

4 717L . . .
LT <(O,T) x W, 77 (Q)) satisfies the same assumption on the boundary. We say that u is a
weak solution of (1.2.6) if the following statements hold for every test function .

There exists T € LY((0,T) x Q) such that equation

(Opu, <p>+<SB(t,x,D(U)),D(¢)>—<U®u,D(¢)>+a/BQ Yo(uw)0(p) do = (f, <P>+/Q mdiv(p) dx

is satisfied for a.e. t € (0,T).

u e Cyu((0,T), L2(Q)) N LP((0,T), WAP(Q)) such that u-n = 0 in the sense of both spaces.

There exists an N-function such that the map A — Sp(t,x, A) belongs to L¥ ((0,T) x Q)
and D(u) belongs to L¥((0,T) x Q).

[u(t) — uoll2(q) v 0.
t>0

Here are used Orlicz spaces (see Section [A.5)). We then have the following result.

Theorem 1.2.12 (Buli¢ek-Gwiazda-Mélek-Swierczewska). Let us consider that the assumptions
(B1)-(B4) as the assumptions of Definition are fulfilled for some p > ]\2,—% as for an N-
function ¢ satisfying the Ag-condition, the Va-condition (see Definition m, and such that
there exist Cp,Cyo, C3,Cy > 0 verifying

CitP — Cy < o(t) < Cst" + Cy for some r € [p,+0).
Then, there exists a weak solution to (1.2.6)) in the sense of Definition |1.2.11]

Let us take a moment to understand the ins and outs of this result. First of all, it is worth
noting that a number of power-law models are taken into account here, which the authors of the
article take the time to point out (see [35, Lemma 1.1.]). That said, threshold flow models, such
as (perfect) Bingham or Herschel-Bulkley for example, are not taken into account in this result.
Indeed, we note that the identity function is not an N-function, and therefore cannot define an
Orlicz space. Note also that the proof of the result uses the reflexivity of Orlicz spaces, which
is true by Theorem [A.5.10] Proposition and Theorem since the N-function under
2N

consideration satisfies the As- and Vs-conditions. Note that the restriction p > App must be

understood, particularly in view of Remark [1.2.10] as the limitation of the (perfect) power-law
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models considered.

A considerable advantage of this result is that the use of Orlicz spaces and the Navier boundary
condition allows the authors to obtain an integrable pressure. As a result, using the Lipschitz
truncation method, the authors deduce that the weak formulation is verified almost everywhere.
While the authors are content to announce the triviality of this assertion, we note that this is due
to the fact that it is possible to integrate in the approximation on any subdomain, and to apply
a Lebesgue differentiation theorem.

Variational inequality solutions

As we have established, there is a close link between the notion of monotone operator and that
of variational inequality. It is therefore also natural to look for solutions in this form for shear-
thinning flow problems, especially as such solutions lend themselves relatively well to numerical
analysis (see for example [I00]) or control theory, as mentioned above. Consider the following
system:

Ou— A(u) + (u- V)u —div (Se(D(w)))+Vr=f in(0,T) x Q
div(u) =0 in (0,7) x Q
u=0 on (0,7) x 99
Upp=0 = 0 in €,

(1.2.7)

where S¢(D(u)) = 0®(D(u)) under the following assumptions:

(D1) There exists a family of Gateaux-differentiable proper lowersemicontinuous convex function-
als (®;)1<i<k and a proper lower semicontinuous convex functional 1 over L?(€2) such that
the functional:

L(Q) = (—o00, +o9]
D :
k
u Y B+
i=1

satisfies ®(0) = 0.

(D2) The functionals (®;)1<i<k satisfy, for some p > 1, r > p:

p—1
_p_ _p_ P pr
</Q|‘1>2(U)|P‘1 ID(U)I”‘1> < CIDW) £ -

(D3) There exists a family of functionals (1););eny which admit Gateaux-derivatives and such that
for every ¢ € L((0,T) x ), and a sequence (¢;)jen which is weakly convergent toward ¢
in L2((0,T) x Q) we have:

T
| wito—vterat — 0 ad v =0

J—>+oo

T T T
/ Yi(p;) <C = lim / Vi(py) dt > lim / P(pj) dt.
0 0 0

j—+oo j—+o0

99



(D4) The map
Wb () = We ()
A

k
i=1

where (A;)1<i<k Is a family of coercive (for ¢ = Id relatively to Definition |1.1.8)) hemicon-
tinuous monotone operators defined such that

From Proposition [I.1.13]it is clear that the operator A defined above is monotone and hemicon-
tinuous, and we can think of it as a generalization of the Laplacian. Now let us give the following
result for the existence of a solution of (|1.2.7).

Theorem 1.2.13 (Cioranescu-Duvaut-J.L.Lions). Let us consider for k € N, k > 1 some
(pi)i<i<k, (¢i)i<i<k and a fized time T € R, being such that

Pq

k

and f € m La—1((0,T), W, " '(Q)), where Q is a domain of RN with smooth boundary. Then,
i=1

assuming that assumptions (D1)-(D4) are fulfilled, there exists:

k
ue <ﬂ L%((0,7), Hs,am))) A L((0,T), L2(%))

i=1

k
i
such that Oyu € ﬂ Lu=1((0,T),H;%(2)) salisfying for every ¢ in an admissible set of test func-
i=1
tions:

/OT <<8ts0, o —u) + (A(u), p —u) + /Q(u ®u): D(p —u) do+ p(p) — 1/,(10) dt

T
> [(fo-uwd (128)
0
the result being true for the Bingham model.

The previous result allows us to obtain the existence of solutions in the form of variational in-
equality, where the emphasis is on convexity by systematically testing against the term u — ¢.
However, as pointed out in [77], it is not possible, with this weak formulation, to recover the equa-
tion even formally (that is admitting smoothness). Secondly, the singular term is approximated
by penalizing the power into the functional, which is not generally the preferred approach from a
numerical point of view. We refer the interested reader to [77, 50] for a proof of this result.

This brings us to the following question: is it possible to construct solutions in the form of vari-
ational inequalities for fluids with shear-thinning behavior, using the approximation commonly
employed for numerical simulations? Of course, ideally we would need solutions that at least for-
mally allow us to find solutions to the equation. From Remark [I.2.10] it is clear that we need to
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introduce a Laplacian so as not to lose too much regularity, otherwise definitional problems could
arise. That said, this is not a problem in the sense that it does not contravene the physical reality
of the models under consideration (on the contrary). Also, a point that may seem important in
view of the previous theorems is to show the existence of solutions under simple assumptions,
so that the result can be understood by a wide community including mathematicians as well as
physicists and engineers.

Let us consider the following system

Ou— Au—+ (u-V)u+ Vr —div (F (|[D(u)]) D(u)) = f in (0,T) x Q
div(u) =0 in (0,7) x
u=0 on [0,T) x 92
u = U on {0} x Q

(1.2.9)

Where  is an open subset of R, N € {2,3} having a Lipschitz boundary, and F satisfies the
following assumptions.

Cl) F:[0,400) — [0,+00);

C2) F € W2 ((0,+00));

(C1)
(C2)
(C3) t— tF(t) is non-decreasing on (0, +00);

(C4) there exist p € [1,2], to > 0 and K > 0 such that for every t > tq, F(t) < KtP~2.

Remark 1.2.14. Assumption (C3) is equivalent to the fact that for all € > 0, the function
t—tF (\/5 + t2> 15 non-decreasing. Indeed, we can write:

Vt € (0, +00), tF (\/64-152) - (@) Ve + 2F (\/€+t2>.

Hence, t — tF <\/6 —|—t2) is the product of two non-negative and non-decreasing functions, so it

s a non-decreasing function. The opposite implication being obuious by setting € = 0.

It is then necessary to be able to give a very weak meaning to the solutions, giving variational
inequalities their full meaning. Before giving the notion of definition that we will be considering,
let us introduce the regularization functional, derived from a potential, that we will be using to
give meaning to our solutions.

We fix for the moment 0 < ¢ < § and we define a function G, : (0,400) — (0,400) and a
functional j : H&U(Q) — R by

t
Ge(t) = / sF(Ve+s?)ds for every t € (0,400) (1.2.10)
0

and
je(v) = /Q G.(D()) dr, (ve HE (), (12.11)

respectively. We also denote j = jg and G = Gy. One can check that G. is a convex functional
for € small enough. Indeed,

GL(t) = tF (Ve + t2), for every t € (0, +00),
and applying the hypothesis (C3) the convexity of G follows immediately.
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Lemma 1.2.15. For every € > 0 the functional j. defined by (1.2.11)) is convexr and verifies

%@w%uz/

QF( e+ |D(v)\2) (D) : D(w)) dz  (v,we HY,(Q).  (1.2.12)

Proof. The convexity of j. is immediately obtained from the hypothesis (C3) and (1.2.11)). For
every t € R we have

d ) d
5 (Ge (ID(v +tw)])) = G2 (ID(v + tw)]) - (ID (0 + tw)])

F (Ve +1D(v+w)P) |D(v+ tw)| (D(T;(zqi) t:wl;(w)>

F (Ve+1D(w+ tw)) Do+ tw) : D(w).

Hence

(o + b)) = il -+ tw) = [

Letting t going to 0 we obtain (|1.2.12). O

Remark 1.2.16. We point out that j' is well defined. Firstly, by our assumptions (C2) and (C3),
we can deduce that for all § € (0, %), there exists 0y such that:

F(t) <t~ for every t € (0,6).
Indeed, assume that this last inequality does not hold, then for every dg > 0, there exists ty € (0,dp)
such that:

F(tg) > tg "),

1
We can consider without loss of generality that ép < min (1,F(1)_E>, which implies, using our
assumption (C3):

5,7 < ty” < toF(ty) < F(1).
This contradiction shows the result. We recall Korn’s L? equality for divergence free vector fields:

1
LD do = Sl (o 7).
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Using these last results and applying Cauchy Schwarz’s and Hélder’s inequalities, we get:

1 (), 0) m-\/ (ID())D(w) : D(p) da

S~

F(D@)ID @) dx) ol

1

(/ F(D(w))2[D(w)f? dz + / F<|D<u>|>2|D<u>|2dx) .

{ID(u)|<éo} {ID(u)|>6b0}

(/ D(u)|"2 di + / F(ID ()2 D) ? dx> Il
{ID( u)|<5o} {ID(u)|>60}

|D(w)
— / st—28 dsdx+/ F(|D(u)])?D(u)[* dUC) ol -
- ﬂ {ID(w)|<50} {ID(u)[>d0}

And so j' is well-defined.

%\H &\H

%‘ —_
[\V]
N|=

N

&\H

We are now able to give the following definition.

Definition 1.2.17 (Weak solution of ([2.2.8)). We say that a function u € L? ((0,T), H&U(Q)) N

Cw((0,T),L2(2)) such that Ou € L ((0,7), H;1(Q)) is a weak solution of [2.2.8) if and only
if u verifies u—g = ug € H&U(Q), and for all p € C*((0,T) x Q):

[ o) s (Huoum CaT / | Do) Dot —u(t) o
/ / ) dz dt+/ /G ID(e(0)]) = G (ID(u())]) de dt
_/0 F(1), () — u(t)) dt. (1.2.13)

Let us start by quickly checking that we can formally find equation (2.2.8)) from this definition.
First, we point out that since u belongs to C,((0,T), L2(12)), Definition [1.2.17| makes sense. Then,
if we consider that the Lebesgue measure of the set

{(t,z) € (0,7) xQ | |D(u)(t, x)| < b}
is equal to zero for a small § > 0, we have, from an argument similar to the one in Lemma [1.2.15

that:
T T
/0 (J'(u), @) dt :/0 /QF(\D(u)\) (D(u) : D(¢)) dz dt.

Now, if we replace ¢ by u + s, with s > 0, in the variational inequality (1.2.13)), we obtain after
dividing by s:

/ [ ot dde/oT/QG(‘D(“*S@f—G<’D<“>’> o
[ e

T
2/ /(f—@tu,g0>dt / u - Vu) - ¢ dzx dt.
0 Q
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Since j admits a Fréchet-derivative, it also admits a Gateaux-derivative and both are the same.
Hence, taking the limit as s — O:

T T
/ /D(u):D(gp) da:dt+/ /F(|D(u)])(D(u):D(g0)) dz dt
0 Q 0 Q

2/OT/Q<f—8tu,cp>dt—/0T/Q(u-Vu)-gpdazdt.

Repeating once again the previous reasoning but writing v — s¢ instead of u + sp, we get the
following equality:

T T
/ / D(u) : D(p) dxdtJr/ / F (|D(u)]) (D(u) : D(p)) dxdt
0 Q 0 Q

:/()T/Q<f—8tu,cp>dt—/0T/Q(u-Vu)-godxdt.

Therefore, assuming that w is regular enough, we obtain
1 /T T
—2/ / Au-gpdacdt—/ /div(F(\D(u)\)D(u))godmdt
0 Jo 0 Jo
T
:/ /(f—@w—u-Vu)wpdxdt.
0 Jo

Furthermore De Rham’s theorem for a domain with Lipschitz boundary states that there exists
a pressure term 7 such that f = V7 into some well chosen Sobolev space (see [72] section 2] for
details). Considering such a function and also the two previous observations, we can write:

T
/ / <(9tu + (u.V)u — %Au + Vp —div (F (|D(u)]) D(u)) — f) edrdt=0, ¢eC™((0,T)xQ),
0 Q

which is almost everywhere equivalent to the equation (2.2.8)) up to the multiplicative dynamic
viscosity constant % We have omitted this constant in Definition [1.2.17|for convenience, and note

that it is enough to add the constant 2 in front of the term fOT Jo D(u) : D(u — ) dxdt in order

to find exactly (2.2.8).

We have now shown that these very weak solutions formally allow us to find a solution to the
(2.2.8) system. We now need to show that such solutions exist. This is the subject of the following
theorem.

Theorem 1.2.18. Assume that the function F satisfies the hypotheses (C1)-(C4) and that Q2 C
RN, N € {2,3}, is a bounded domain with a Lipschitz boundary, T > 0 and consider an initial
datum ug € Hy () and a force term f € L*((0,T), H;'(Q)). Then, there ewists a weak solution

u of (2.2.8) having the following regularity

w € Cy ((0,T), L2(2)) N L? ((0,T), HL ,(Q)) and du € L¥((0,T), H, (%))

Proof of Theorem [1.2.18, The proof of this result is based on a nonlinear Galerkin method and
is divided into four steps. First, we briefly establish the Galerkin solutions for the regularized
system, with the regularization usually used in numerical methods. Next, we carry out energy
estimates to derive, in a third step, weak convergence properties. Finally, we demonstrate the
theorem by making use of properties specific to variational inequalities.
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First step: Galerkin scheme

We apply here the usual Galerkin method using the Stokes operator in homogeneous Dirichlet
setting, and we use its eigenfunctions (w;);en as an orthogonal basis of H& »(92) and orthonormal
basis of L2(2) (see [84] for details about this property, and [I55, Section 2.3] for details concerning
the Stokes operator).

For every positive integer m, we denote by P, the projection of L2(Q) onto Span ((w;)1<i<m)-
We would like to formally define our Galerkin system as follows.

Oty + Py (U - V) + VP (1) —Auy, — Py (div (F (| D(um)|) D(um))) = P f

div(um) =0 on (0,7) x Q
U, =0 on [0,7) x 0N
U = P (ug) on {0} x Q.

(1.2.14)

In order to avoid the issue posed by the nonlinear term in domains for which the fluid is not
deformed we consider the following regularized Galerkin system:

— 1 2
atum,s P, (le <F( €+ |D(um,6)‘ )D(Um,6)>) n (O’T) x Q)
+ P (tum,e - Vume) + VP(7) — Aume = P f
div(tm.e) = 0 in (0,7) x &
e = 0 on [0,7T) x 09
um78|t:0 = Pm(uO) ln Q7
(1.2.15)

with 0 < ¢ < 1. Applying a Galerkin method, we can see that, writing u,.(t) = >, d, (t)wi,
we obtain the ordinary differential system for all 1 < i < m:

0/ = (o) = [ Syt do = | Dlw) s Dlw) da

1 1 : : 1 :
- /Q §Hwinng ety §ijH§15(d%w(t))2 +2(D(wj) = D(uo))dm(t) + 5HU0H§,3 dy, () dae
j=1

= [P+ 3 gl @h(0)2 + 2DGw) : D))+ 5ol | (Dluo) : Dw) da
j=1

—Z/ij-Vwid;l(t)dZn(t) dz, (1.2.16)
j=1

completed with initial condition di,(0) = (ug,w;) 3~ This system is described by a locally Lips-

chitz continuous function with respect to d,,. Indeed, applying the hypothesis (C2), the function
¥ : R™ — R defined by

1 m
P(z) = F €2+Z*Hwﬂ| 15+ 2(D(w;) = D(uo))aj + 5 luoll 7 Ve €R

is locally Lipschitz. The Picard-Lindel6f theorem shows the existence of a solution for sys-

tem (T.2.15).
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Second step : Energy estimates

We recall that the solution u,, . of (1.2.15) belongs to Span ((w;)i<i<m), for (w;)ien the basis of
H& »(€2) which are the eigenfunctions of the Stokes operator in the homogeneous Dirichlet setting.

In order to clarify our presentation, we specify that we consider the following notion of solution.

Definition 1.2.19 (Solution of (L.2.15)). We say that um. € L*((0,T), Hj ,()), Oitime €
L2((0,T), H1()) is a weak solution of (1.2.15) if for every ¢ € C®((0,T) x Q) and for a.e.
t € (0,T) it satisfies

(Ot e, @ / D(ume) : D(p) dz + (jL(um.e), ) — /Q(umE Nume) o de=(f o). (12.17)

We also say that is the formulation in space of the solution of when the time is
fixed. We point out that this definition makes sense since we are studying smooth finite dimen-
sional Galerkin solutions. Then, in order to obtain weak limits into the Galerkin formulation, we
establish some estimates.

Proposition 1.2.20. Assume that up, ¢ is a solution of (1.2.15)) in the sense of Definition|1.2.19,
Then, up to some multiplicative positive constants depending on p, Q, N, T, |uollr2q) and
1 £l z2(0,7),5-1(02)), the following estimates hold:

L il o1y 22 2lm el om0,y 202y a1y + lolle;

-1
L%((O,TLH—I) g (1 + HfHLQ((O,T),Hfl) + HUQHLz)p ;

2. |5 (um.e) |l
2 2 2 2 \?
3. ||Orum, ‘SHLN((O Ty, H-1) ~ ”f”LQ((o,T%H—l) + ”U0HL2 + (HfHLQ((o,T),H—l) + ||UOHL2)

1
+ (1 + 1 Fll 2oy, m-1) + llwollz2)®

Before the proof of Proposition [1.2.20] we state the following result.
Lemma 1.2.21. Let X be a Banach space, and v > % Then, the following inequality holds:

1
V(wv) € X2, flutofk <2072 (Jul} + ol %) -
Proof. Using the convexity of t — t22~P) and triangle’s inequality of the norm, we get:

2
2 u—+v
st ol =227 | ==

Y
— 2 2
<227 (Jlull¥ + oY)
X

Applying now the well-known inequality: V(a,b) € [0,400)2, va+b < a + vb, we get the
result. O

Proof of Proposition[1.2.20,

1. Setting ¢ = . in the weak formulation, we get:

1d
) dt||um5||L2 + / | D (t, 5)| dr + <]€(ums) Um,e) — /Q(umﬁ VUme)  Ume dz = (f, Ume)-
-~

>0
=0
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Using the well-known Korn’s L? equality for divergence free vectors fields, we get
d
@Hum,e(t)”%z + lum e (B)lI7 < 2(F (), ume(t)) -

Moreover, we have:

2 (1), e (0)) < 2SO+ + im0 .

Then, using the above inequality and integrating on (0,t) we get

1 t t
laome Ol + 5 [ el dt <2 [ 1710 dt+ ol (1.2.15)

Indeed, we recall that (P, (ug),w;)r2 = (uo, Phwi)rz = (up,w;)r2, and the conclusion
follows. From now on, we will omit to detail this last part which is usual.

. We have, using Cauchy-Schwarz’s inequality and Korn’s equality in the divergence free L2
setting:

() 0) = [ F (V24 1Dluma)?) Dl D) do

< < |7 (\/e+ |D<um,€>|2)2 1Dt ) daz>2 Il (12.19)

From hypothesis (C4), setting A = QN {|D(ume)| < to} and B its complement in €2, we
obtain

F'{ /e + D (ume)? 2 ID(ume)> de = | F (/e + |D(ume)|? i |D(um,e)|? dr
N A
2
+/BF( 6—|—|D(um7€)|2> ‘D(um,g)P de.

Let’s estimate these two integrals independently. By assumption (C3), we have that the
2
application t — t2F (\/6 + t2) is non-decreasing, and we obtain directly:

2 2
/F( g+yp(um,a)y2> D)2 do < F (Ve +107) t0214]
A
2
(\/5+t02) 12|10

<F
2
<F (\/1 +t02> V1+ 029

1.

N

Then we have, using again (C4):

2 5 ‘D(Um,€)|2
/BF< e+ |D<um,€>l2> 1D ()" dr 5 /B (e + | D(um,e) )"

< / 1D (1t )PV dz
B

gK/ Vit |20V da
B

2(p—1
S el ™,
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where we used Jensen’s inequality in the concave setting with ¢ — t?~! in the last line. So,
we obtain:

( [ (Ve+ Pl ) 1Dt dx); (

Thus, combining the inequality (1.2.19))-(1.2.20) and using Lemma [1.2.21| with v = %, we

get:

1
2@ D ) . (1.2.20)

y 4 4(p—1)
e Cume)ll s S 1+ lumell "

Therefore, integrating in time over (0,7):

4(p—1)

4
/ N <1 N
U + [|w .
||Ja( m,E)HLﬁ,((O’T)’ Sy | m,s||L4(p]\71) (0.7, H2)

. 4(p—1) . . 2 4(p—1)
Then, since 0 < =~ < 2, we get, using the embbedding L* < L™~ and Lemma|1.2.21

with X := H}, ¢ = % and p =2 on ||um7€||L4(p71)
N

((0,7),HY)

4(p—1)
N
((0,1),HY)’

4

v ~
U

[FAS m,z-:)HL%((QT)’ Sy

4()

Using the first point of the proposition for t = T', and since >0, we get:
. % < 4(p—1)
17 (ume)ll 74 ST+ 2oy, m-1) + lluollz2) ™~

Then using the exponent % on both sides and applying once again Lemma [1.2.21| with
~ = = on the right-hand side in the ineuality above leads us to:
y -1
152 m )l 4 oy rory S 1+ I aqoimy, sy + ol )P~
This is the wished result.

. From the weak formulation (|1.2.17]) we get

(Orttmer ) = — /Q D(tme) : D(9) dz — {f.(tme). 0) + /Q (e - Vitme) - @ dz + (f, 9).
(1.2.21)
Let us point out that

1 1
[ Plune): Do) do =5 [ T T do < 5 lmel el (1.2.22)
Q Q

Also, setting p=4,k=0,l=1,r =g =2, and s = 2 into Theorem we get that up
to a multiplicative positive constant which only depends on N and 2, we have:

N 4N
lullgs S NVull fllull 2
and thus:
2 =
ullze SNVl 22 llull 2 (1.2.23)

~
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Then, we have:

IA

/ (Um,e.VUme).p dz
Q

1
2/|Um,s|2'|v‘p| dx
Q

24Vl 2
4-N N

LQTHumEHE(%HSOHHg (1.2.24)

A

S ||Um,z-:

S ume

So, putting (1.2.22)—(1.2.24) and the second estimate of the Proposition [1.2.20in (1.2.21)),

we obtain

1 , 4-N N
(Orum.e, ) S §||Um,e||H3”<PHH3 + HJ;(um,E)HH*H‘PHHg + [[umell 5 ||um,6‘|[35||80”H§

1l s

and, therefore,
<1 . E 3
1OcumeOla-1 S Sllumellag + 17e(wme)ll -1 + lumell 3 Numell gy + 1 llm-1-

Now, using the following convexity inequality

4
k N 4
Vk € N, V(l‘i)lgigk S (0, —|—OO)k, (Z -1%) 5 Zl‘zﬁ

i=1 i=1
we get:

8—2N

4 4 4 4
19t e ()1 771 S etm,el o + 13 Cum ) s + Nt el 2 e[y + 111

Since N € {2,3}, we have % < 2. Hence, integrating in time over (0,7") and using the
embedding L2(Q) — L~ (Q):

4 4 4
N < N v N
‘L%((O,T),Hfl) ~ H“m76HL2((o7T)7H3) + Hjs(um’a)HL%((O,T),H*)

8—2N 4 4

1Byt

+ ||Um,6HL£((0,T)7L2)Hum,ang((oyT)yHé) + Hngz((o,T),H—l)'

Using the previously given convexity inequality and the first and second points of the propo-
sition we obtain the desired result.

O

Third step: weak convergence

We are now interested in the weak convergence with respect to the energy estimates established in
Proposition [1.2.20] Here, we prove such convergences by passing to the limit with respect to the
parameter ¢ in a first time, then by passing to the limit with respect to the Galerkin parameter m.

Before proving Theorem [1.2.18] we establish several useful lemmas.

69



Lemma 1.2.22. Consider that ¢ € L*((0,T), H}()), then there exists a constant C(g,p) > 0
which goes to zero as € does, such that the following inequality holds:

Je(p) + C(e, ) > j(»), (1.2.25)

where j. and j are defined by (1.2.11)).

Proof. Recalling that the assumption (C3) states that t — ¢tF'(t) is increasing, we get:

/ / P B dsda
) dsdx + Ve F(s) dsdz
<[ [ s [ [

V2ID(¢)[Ve+D(g) 2
< eVeF(e)|Q] —i—/ﬂ/ : sF(\Ve+s%) dsdx

224 D() |2 +1D ()]
<evEPEIRl+ [ / SP(V=+ 52) ds do+j-(9),

=C(e,p)

which is the wished result. O

Lemma 1.2.23. Consider Q an open bounded subset of RN with Lipschitz boundary, and a
sequence (wn)nen such that wnllp20m).m1 @) S 1. Then, for almost all (t,z) € (0,T) x €,
the following inequality holds: ’

lim [D(wn)(t, z)| = [D(w)(t, z)|.

n—-+oo

Proof. Firstly, let us recall that Eberlein-Smulyan theorem leads up to an extraction to w, — w
in L2((0,T), H}(2)) then, for all Lebesgue points tg € (0,7) and xg € €, for all § > and R > 0
small enough, we have w, — w in L*((tg — 6,to + 8), H(B(xo, R)). Indeed, we have for all test

function ¢ :
T T
/ /an-Vgadtd:U — / /Vw-Vgodtda:.
0 Ja notee Joo Ja

Hence, we can take ¢, which belongs to C§°((tg — 0, %o+ J) x B(zo, R)) (up to arguing by density
thereafter), satisfying:

Vo — Vi on (tg—d,t9 + d) x B(xp, R)
YT1L 0 on(0,T) x Q\(to — 6,0 + 8) x B(xo, R)

and so this leads to:

to+0 to+0
/ / an Vi dt dx / / Vw -V dtdx.
to B(zo,R n—>+oo B(zo,R

That is w, — w in L?((to—6,to+0), H*(B(zo, R))). Also, from Korn’s L? equality and Lebesgue’s
differentiation theorem over (6, R) after dividing by 26| B(x¢, R)|, one gets that for every Lebesgue
point (to,zo) € (0,7 x Q:
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| D(wn(to, x0))* S 1.

Following the same line of arguments, we find that:

to+0 to+0
lim / D(wy)[? dmdt>/ / w)|? de dt.
n—+oo Jtg—§ xo,R) to—9d (zo,R
Dividing each side by 26|B(xg, R)|, we get:
to+4 to+4
lim ][ D(wy)|* dz dt > ][ ][ w)|? de dt
n—+o00 B(zo,R) to B(zo,R)
then letting (0, R) — (0,0) leads to the result, after applying a dominated convergence theorem.

O]

The following lemma gives the convergence of u,, . when € goes to zero.

Lemma 1.2.24. With the hypotheses of Proposition there ewists vy, € L? ((0,7), H&U(Q))ﬂ
L*> ((0,T), LZ(Q)) with dyvp, € Lv ((0,T), H;1(Q)) such that, up to subsequences:

1. Ot e = vy in LN ((0,T), H;1(Q));
2. Ume — Uy in L? ((0, T), H&U(Q));

8. Ume — vm in L2((0,T), LE(Q));

4o Ume = vy in L ((0,T), L2(9)).

Moreover, vy, satisfies, for all ¢ € C*°((0,T) x Q):

5 (lon I = Sluls) = [0 v drs [ [ Do) Dl —0) du

T T T
+/0 J(vm) — 7(¥) dt—/o /Q(vm~va)-wdxdt§/o (fyvm — ) dt.  (1.2.26)

Proof. The first and second points follow from the reflexivity of L~ ((0,T), H;*(£2)) and L*((0,T), Hy ,(2))
respectively, the third one from Aubin-Lions’ Lemma, and the last one by Banach-Alaoglu-
Bourbaki’s theorem.

Then, since u,, . is a solution of (1.2.19), it satisfies (|1.2.17)). Testing against ¢ = Uy, — ¥ in
(1.2.17) for a test function v, we have:

<8tum,aa Um,e — ¢> + /Q D(Um,a) : D(um,e — ) dx + <j;(um,6)a Um,e — Y)

[ e Vi) v e = (o =) 220)
Q
Applying Lemma [1.2.15] leads to the well-known convexity inequality:

ja(um,a) - ]5(¢) < <j£—(um,£)a Um,e — ¢> (1228)
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Using now Lemma |1.2.22| for u,, . in (1.2.28]), we get:

J(tume) — Cle,um,e) — Je(¥) < <jé(um7a)v Um,e — V)

and then, by (C3) applied to uy, . for the convergence toward v,,, we get:

J(tume) — Cle,um,e) — je(y) < <]é(um,s)> Ume — ).

Then, we can write (see [84] part 5.9. for details):

T
Vo € H (), [ tne(T)g de = (une(D),0) = [ (Opume(t) o) dt + (uoi0) . (1.229)
Q 0

Now, we also have, using Proposition [1.2.20

N
T
[ Gttt 0 0+ G000 S w4y ([ HcpH“”dt) + uoll 2l

S (75 + Huollm) Il -

In the above inequality we considered ¢ as a function in L*((0,T), H}(f2)), so it belongs to
Lﬁ((O, T), HY(Q)) and its left-hand side defines a linear form over L%((O, T), H-1(Q)).

Also, the weak convergence leads to:

T T
/ Ot (1), 2) dt —> [ (Opom(), ) dt. (1.2.30)
0

e—0 0

Finally, (1.2.29) and (1.2.30) imply, up to apply a dominated convergence theorem, to:

Ume(T) — vy(T) in L*(Q). (1.2.31)

e—0

Then, (1.2.31)) implies:

(lom (DI = [1Pm (uo)I72) (1.2.32)

N

o1
lm 5 (e (D2 = |1Pra(uo) ) =
e—0

Also, from usual estimates (see [155, Chapter 4]), since wp, ¢ =, Um in L2((0,7), H} ,(Q)), we
e— ’

have up to extract:

T T
/ /|D(um,€)|2 dar —>/ /\D(vm)|2 dar (1.2.33)
0o Ja e=0 Jo Ja
and
T T
/ / (Um,e - VUme) - ¥ dedt — / /(vm - Vup,) - ¢ dx dt. (1.2.34)
o Ja e=0 Jo Jao

Integrating in time ([1.2.27), and passing to the limit over &, combining with (1.2.33)), (1.2.34]),

(1.2.32) and Lemma, [1.2.23|leads to (|1.2.26)). O

Arguing in the same way, we obtain the following result.
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Lemma 1.2.25. Under the assumptions of Pmposition there existsu € L* ((0,T), H&7U(Q))ﬂ
L*> ((0,T), LZ(Q)) with Oyu € L~ ((0,T), H;1(Q2)) such that the function vy, given by Lemmal1.2.24
verifies.

1. Oyvm = By in LY ((0,7), Hy 1 (2));
2. v — u in L2 ((0,T), L2(2));

3. vm — u in L*((0,T), Hy ,(2));

4. Um = win L% ((0,T), L2(2)).

Moreover, we point out that u € Cy,((0,T), L2(Q2)) from the above estimates (see [3I, Proposi-
tion V.1.7. p.363| for details).

Fourth step: proof of the Theorem

We point out that the coefficients of v, given by Lemma [1.2.24| satisfy an ODE as (|1.2.16]) with
e = 0, then vy, is still smooth in space and time. Moreover, we can take up again the method
previously used, that is we can write :

T
Vo € Ho(). [ onT)ede= (on(D)g) = [ Own(®).0) di+ (Putuo)g). (1239

Using Proposition [1.2.20] then leads to:

4—N
T T 4 T4
4—N
[ @m1.0) e+ tw0e ) S 10wl e ([ 0T )+ ol bl

4-N
S (75" + llwolz2 ) el - (1.2.36)

Then, the weak convergence leads to:

T T
/ Oom(®),0) dt —> | (Drom(t), ) dt. (1.2.37)
0 e—0 0
Finally, (1.2.35) and (1.2.37)) imply:
v(T) — w(T) in L*(Q). (1.2.38)

e—0

Then, (1.2.31)) implies:

(lu(T))172 = lluoll72) (1.2.39)

N =

. 1
lim - (va(T)H%Q - HPm(UO)H%?) =

m——+00 2

Using once again usual estimates for Navier-Stokes equation, since vy, LU in L2((0,T), HL (),
m—+00 ’

we have:

T T
/ /|D(um)\2 dedt — / /\D(U)P dx dt (1.2.40)

and
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/OT/Q(vm.va)wd:cdt o /OT/Q(u-VU)'wdxdt- (1.2.41)

—+00
Applying lemma [1.2.23| with our assumption (C3) and passing to the limit over m, we get:

T
lim 3(vm) dt > j(u). (1.2.42)

m——+o0o J(O

Passing to the limit over m in (1.2.36), combining with (1.2.40), (1.2.41)), (1.2.42) and (1.2.39)

leads to:

N

T T T
(D iey = lolioey) = [ (o) dt+ [ [ Dluys D=y dwat+ [ jw) = i) a

_/()T/Q(u.vu)-q,z)dxdtg/oT<f,u—¢>dt

(1.2.43)
which is the desired result, that is u is a weak solution of (2.2.8). O

The previous theorem, proved in [44], therefore shows the existence of solutions for a class of
shear-thinning non-Newtonian flows, taken as the limit by the regularization usually studied for
numerical simulations (see, for example, [I58]). We can cite, for example, some possible choices
of function F' satisfying assumptions (C1)-(C4) and leading to non-Newtonian behavior.

1. Firstly, in order to describe power-law fluids (also known as Ostwald-De Waele or Norton-
Hoff flows), we can consider functions (F})i1<p<2 given by:

(0, 400) — (0, 400)
Fp :
t— P2,

2. Considering functions (F),p),~0pe[1,2) of the form

(0, 4+00) — (0, 4+00)
Fup -
p—2
2

t— (u+t2)
leads to Carreau flows.

3. Cross fluids are obtained by choosing function (F, 4)y>0pe[1,2) given by:

(0, +00) — (0, +00)
Fyp:
t—s g+ 1772,

4. Another possible choice is to take functions (F}, 5.) given
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(0, +00) — (0, +00)
Fppy
tP~2log(1 4 t)~" Ift € (0,9]
t—
log(14~)7Atr=2  Ift € (7, +0)

for 1 < p < 2 and some 3,7y > 0 with v small enough.

Remark 1.2.26. The reader may wonder whether similar results exist when density is not con-
stant. In this context, for the two-dimensional Bingham case, the existence of solutions in the
form of a variational inequality of the type of Theorem was established in [28]. In addition,
it 4s possible to show the existence of similar solutions with some measure reqularity for the power
and Bingham laws in a three-dimensional setting, see [90]. However, this last result is outside the
scope of our study, as the spaces considered are part of a microlocal analysis, and we refer to [3f
for an introduction to the analysis of such spaces.

1.3 Finite stopping time property

An interesting property of shear-thinning fluids is that their flow stops in finite time. This means
that there is a time after which the fluid no longer flows, provided it is not subjected to any
external force inducing displacement. This phenomenon has been studied for classes of parabolic
equations. Take, for example, the case of the parabolic p-Laplacian equation for 1 < p < 2.

Opu — div (|VuP~?Vu) =0 in Ry x Q
u=20 on Ry x 09 (1.3.1)

Ujj—0 = Up in 0
More precisely, the following result holds.

Theorem 1.3.1 (Di Benedetto (stopping time)). Let Q be a bounded domain of RN and u €
C(Ry,L*(2)) N LP(R,, Wol’p(Q)) be the unique non negative weak solution of with initial
datum ug € L>®°(Q) assumed to be non negative. Then, there exists a finite time T depending
only upon N, p, and ug such that u(-,t) =0 for every t > T*.

Proof. We refer to |71, Chapter VII, Proposition 2.1.]. O

This raises the question of whether such a finite stopping time result can be established for
solutions in the form of a variational inequality as in Theorem [1.2.18] First, let us give a sense to
the existence of a finite stopping time.

Definition 1.3.2 (Finite stopping time). Let u be a weak solution in the sense of Definition
of the system (2.2.8)). We say that Ty € (0,T) is a finite stopping time for u if:

l1u(To)ll £2(q) = 0.

In order to prove the existence of a finite stopping time for the solution w provided by Theo-
rem [1.2.18] we do not make any assumption on the initial velocity field, but we assume that after
a certain time the fluid is no longer subjected to any external force. More exactly we make some
more assumption on F' as stated by the following theorem.
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Theorem 1.3.3 (Existence of a finite stopping time). Assume that the hypotheses of Theo-
rem are verified, that T > 0 is choosen large enough, and let p € [1,2). Moreover, we
assume that there exists two positive constants k and T1 < T such that

F(t) > kt?™2 for every t € (0, +00) and f =0 almost everywhere on (11,T). (1.3.2)

Then, there exists a finite stopping time Ty € (0,T) for u in the sense of Definition[1.3.4
We point out that the proof being well-known in the two-dimensional case (see [70]) and can be

in that last case a direct application of the Korn’s inequality and Sobolev’s embbedding theorem.
For this reason, we only give a proof in the three-dimensional setting.

Proof of Theorem [1.5.3, Let wy, . be the solution of (1.2.15). Choosing ¢ = ty, in (1.2.17) we
get:

<u;n’€,um7a> + /QD(um7€)]2 dx + (jé(um75), Ume) — /Q (Um,eVUm.e) Ume dz = (f,ume). (1.3.3)

=0
Combining (1.2.11]) and (|1.3.2)), we obtain
./ 2 2 222
elim ). ime) 2 [ Dlm o (€ + D)) T do (1.3.4
Q

Now, observing that:

2 2 on 5= p=2
|D(ume)|” =€+ |D(ume)|” — ¢ and (e +D(ume)l?) 2 <e=,

and since:

1D (um,e)|P” < (e + |D(um’€)\2)g,
we get from (1.3.3)) and (1.3.4), we get:

1d

5 (Jtme(®) 320 ) + /Q D) da + [ Dt ) [y gy S (Frume) + 1005, (13.5)

Then, using successively the embbedding LP(Q2) — L!(Q), assumption (1.3.2) and the Theo-

rem we get from ([1.3.5)), for ¢t € (11,1):

1d ) , . .
Sq (I!um@(t)llm(g)) +/QyD(um,a)| dz + Hum,a”L%(Q) < |Qes. (1.3.6)

Now, from the embbedding {u € Hy (/1D ()| 120 < 400} < L5(€2) which can be obtained
using Korn’s L? equality and Sobolev embbedding Hi(Q) < L5(2) we get from (L.3.6):

1d 2 2 p z
35 (lme@y) + (Wumeloy + humelg ) S 0% (137

Now, we can apply Lemma with r = 1% to get:
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1_2(120%) 4 p 2
Then, (1.3.8) combined with (1.3.7)) leads to, for t € (T1,T):

1d et
zdt(uum¢<wuizgn)—%\umﬁrL%£k+4>:sQr

™
IS

(1.3.9)

Assume that for all ¢ € (T1,T), we get that |[um el L2(q) > l]Q\sg for some p > 0 small enough.
Then dividing by [[um.e(t)[|12(q) the both sides of (1.3.9 -, we obtain for almost all ¢t € (T1,T):

d 2( 2% p

77 Ulm,e ()l 2(0)) + llum,e(t )HL2<) 2 S 190e>,

which is equivalent to:
d
(I ) S 01

Up to take u < 1, integrating over (71,t), we have for almost all ¢t € (T1,T):

8—p

[ e (t )II”“ S e (T Fgy + (1 = w)(Ty — 1),

which leads to ||um..(t )||1"+4Q < 0 for t large enough, up to take T large enough. This is a

contradiction, so, there exists a time Ty € (0,T) such that |[wuy,(t)| < i’Q‘E%, and so letting
e — 0 leads to [[vm(t)|[z2() = 0 for all ¢ € [Ty, T) since it leads to |[vm||p2((7,1),2(0)) = 0 from
the weak convergence in Lemma [1.2.24] The same line of arguments shows the existence of a
finite stopping time for u in the sense of Definition [1.3.2] This concludes the proof. O

It should be pointed out that finite stopping time for parabolic systems can be shown for a wide

class of systems, under varying assumptions. We refer the interested author to |8, Sections 2.2.3
and 3.7] for an in-depth discussion of the subject.
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D’aprés ce que j’ai entendu dire de certaines tentatives dans un sens novateur, je suis
convaincu qu’on peut surmonter ces limitations de la science actuelle, qu’on peut donc
développer une science qui soit directement et constamment subordonnée a nos besoins
et nos désirs, dans laquelle il n’y aurait plus de séparation arbitraire entre ’activité
scientifique et 'ensemble de nos modes de connaissance, ou il n’y aurait plus de séparation
arbitraire entre la science et notre vie.

Alexandre Grothendieck, Allons-nous continuer la recherche scientifique?.

Control theory for quasilinear parabolic partial
differential equations

This chapter is devoted to the study of the null controllability of quasilinear parabolic equations
with p-growth. First, we present in Section the Hilbert Uniqueness Method introduced in
[135], adapted to a particular framework of diffusive linear parabolic equations. This method
makes it possible to show the existence of regular controls for such linear equations, which is the
object of the well-known Theorem We will show that it is in fact possible to adapt the
method in order to obtain smooth approximate controls depending Lipschitz continuously on the
diffusion coefficient, which is the main novelty of this section and is the subject of Theorem [2.1.3]
Secondly, in Section [2.2] we present controllability results on quasilinear parabolic systems. To
this end, we will first present in subsection known results in the case where the nonlinearity
depends on the state, i.e. on the solution of the equation. Then we present in Subsection [2.2.2]
known results for control of such equations in the case of a dependence of the gradient of the
state in the nonlinear term, first from an optimal control point of view and then from an exact
or approximate control point of view. Apart from Theorem and Theorem [2.2.5] the results
presented in the Subsection are new and are the main subject of our work [49].

2.1 Hilbert Uniqueness Method

Here, we present the Hilbert Uniqueness Method, which we shall hereafter abbreviate by the
acronym HUM. Historically, this method was introduced in the 1980s, and it is often accepted
that the first explicit presentation of this method can be found in [I35]. Since then, this method
has been the source of many developments, one of the major issues being to show observability
inequalities, an example of which we present in Proposition (we refer, for example, to [168] 11]
for a discussion on this subject). The proof of such inequalities relies essentially on the existence
of Carleman-type inequalities (see e.g. [89], [96] [129]). Note that HUM can be employed in many
settings, much more general than the one presented here. For a detailed presentation in the
parabolic case, we refer mainly to [30], [99] (see also [89]) while we can refer the interested reader
to [133], [134] for a presentation in a hyperbolic setting.
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2.1.1 Approximate controllability and regularity

We comnsider the following generic system for a domain {2 with Lipschitz boundary.

Ou — div(a(t,x)Vu) = xup in (0,7) x Q
u=0 on 02 (2.1.1)

Ujj—g = u? in Q
where a € C*®(Qr) satisfies:

0 < pe <aflt,x) ((t,x) € Qr), (2.1.2)

where p, > 0 is a constant. We will say that (2.1.1)) is approximately null controllable at time
T > 0 if there exists a force term ¢, whose regularity we will discuss later, such that we have

[u(T)|[z2) < ¢ (2.1.3)

It is natural that the force term ¢ depends on e and, a fortiori, so does the solution u. We
have omitted these dependencies here for the sake of simplicity. The distributed controllability
of equation is a well studied subject (see for example [96] or the more recent review
paper [89]). The existence of an optimal distributed control, in the sense of minimal L2-norm,
can be obtained by applying the Hilbert Uniqueness Method (HUM) introduced in [I35]. The
main idea of the method, that we present here through an example, is to consider the dual final

boundary value problem of (2.1.1)) given by:
Orp +div (a(t,z)Ve) =0 in Qr
=0 on X (2.1.4)
o(T) = ¢° in Q

for some " € L?(Q) and then to deduce the controllability of (2.1.1)). In this chapter, we will
denote by ||-|| the usual norm over L?(2), associated to the inner product that we will denote by
(+,+). Also, for every § > 0 we consider the functional:

R =5 [ xelS OO dwdt + 5161 + (S*(Ma(e*)0),1), (2.1.5)

where S%(¢°) is the solution of (2.1.4) with a diffusion coefficient a satisfying (2.1.2)).

Let € > 0. For every § > 0 we denote Ms(¢°) € C*°(Q) a mollification of some ¢° € L?(Q) (see
[32]) such that ||Ms(¢") — ¢°|| — 0 when § — 0. Following this notation we set My(p°) := .
We then recall the following result.

Proposition 2.1.1 (Observability inequality [89, Theorem 1.5.]). There ezists a constant Cy > 0,
depending of Q, T, w, and ||al|p~(q,), such that the following inequality holds:

18“(Ms(¢")(0)]|* < Cy // Xl SUMs(O))|? dedt (o0 € L2(Q)). (2.1.6)

We then have the following result.

Theorem 2.1.2. Let us denote ¢° the minimizer of J§ in L*(Qr). Then, S%(¢Y) is an approzi-

mate control of the solution u of (2.1.1)) in the sense of (2.1.3).
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Proof. Let us first consider ¢° € L?(2), then testing into the weak formulation of (2.1.1)), one
gets:

0

/ (Opu, S* (¥°)) dt + // aVuVS® () de dt = // XwS(0) dz dt, (2.1.7)
T

Where ¢ is the minimizer of J¢, that is of ([2.1.5) with 6 = 0. Now, we point out that we have
(at least formally, it can be rigorously proved by regularity of the solutions):

T T
/ (B, 8% () dt = (u(T), 1) — (u°, 8% (4°) (0)) — / (0,05 () db.  (2.1.8)
0 0
However, testing against u into the weak formulation of leads to the formula:
T
— / (u, 0,8 (¥7)) // aVuVS*(y°) dx dt. (2.1.9)
0 T
Combining and , it comes from :
(w(T),¥°) — (u®, 8* (¥°) ( // Xew sa o0 sa(¢0) da dt. (2.1.10)
ar

Then, since ¢0 is the minimizer of J§, it satisfies its associted Euler-Lagrange formulation, so
testing into this last against 4° leads to:

// xoS* () 8°(u°) ddi 4= (70,0°) + (5*@)(0), ") = 0. (2.1.11)
ar
Adding now and leads to:

<u(T) +egh, wo) ~0. (2.1.12)
The last equality being true for every 1° € L?(Q), it then follows that

u(T) = —ey, (2.1.13)

and thus

lu(T)I < ell°]- (2.1.14)

It remains to prove that 0| remains bounded uniformly relatively to e. But, from (2.1.11) with
¥ = 0 combined with (2.1.6)), one gets:

s ()] g, S W01 2.1.15)

Now, testing against S* (@) into the weak formulation of (2.1.4) associated to the final datum

Y leads to, using once again (2.1.6)

_ — N\ |12
R Ol
117 S [|xwsS™ (¢ 20

(2.1.16)
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Combining (2.1.14)), (2.1.15)), and (2.1.16)) leads to the result. O

Clearly, the previous result leads, in the case of a linear system, to the existence of exact control
of the solution when ¢ — 0. Also, there is several ways to define a suitable functional in this
sense. However, we are not going to deal with this case here. The previous theorem has many
generalizations. We refer you mainly to [30] for a detailed presentation in a general framework,
clarifying the duality link we have implied. More precisely, the preceding result is closely related
to the Fenchel-Rockafellar duality, which applies to variational solutions induced by functionals
(for which we refer to [79, Part two] for a detailed discussion).

We now aim to show here that minimizing J¢ over L*() for § > 0 we obtain a control (s which
is now in C*°(Qr) which is close to the one obtained by minimizing J§, so, for § > 0 small enough
and for this regular control, the solution u of still verifies . More precisely, we have
the following result.

Theorem 2.1.3 ([49, Theorem 1.1.]). Let Q be an open bounded subset of RN with Lipschitz
boundary, v’ € L*(Q), a € C®(Qr) satisfying (2.1.2) and T > 0. Then, for every ¢ > 0
there exists an approzimate control ¢ € C°(Qr) in the sense that the corresponding solution u

of @) verifies

[u(T)]] <e.

Moreover, the control ¢ depends Lipschitz continuously to the diffusion coefficient a for the norm
1l 22(Qr)-

For every § > 0 we denote goig the minimum of J¢. Therefore, for every ¢° € L?(Q) we have
J[[ xS (S (Ms(00)) d i+ (2B, ) + (S OLN(O). %) =0 (2117)
ar

I s @S 00 dn dt (0,00 + (SO0 0. (2138)

Lemma 2.1.4. With the above notation, there exists a constant Cy > 0 such that
131 < Coll°| (2.1.19)

and for every f € C([0,T], L*(Q)) the following convergences occur

(fs S (M5(3)) = S*(@9) r2(@r) = s

when 6 — 0

Proof. Remark that Jg(;g) < J§(0) = 0. This implies that (?2)»0 verifies (2.1.19). Then we can
extract a subsequence, still denoted (¢9)s~0, weakly converging to ¢? in L?(2). Let us observe
that S*(Ms(§) — ¢§) = SUMs(¢§) — Ms(¢°)) + S*(Ms(2°) — ¢5).

Now, in the weak formulation of Sa(M5(<,72) — Ms(¢")), one can write for the final datum term:

(S“(M5() = Ms()(T), F(T)) 2@ = (93, Ms(F(T))) 12 (@) — (M5(¢"), F(T)) 120 v

(2.1.20)
Hence, %i_r}r(l) S*(Ms (goig) — Mj5(")) is the weak solution of associated to the null final datum,
namely arguing by uniqueness S®(Ms(p)) — Ms(¢?)) o S§%(0) = 0. Using a similar argument,
we get that S*(Ms(¢°) — Ms(¢?)) = 0 and the result follows. O

o—
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More exactly, we aim to prove the following result.

Proposition 2.1.5. With the above notation, we have

J[

Proof. We choose ¢° = @72 — @ in (2.1.17)-(2.1.18) and we subtract these relations:

N 12 J— N
SU(M(9)) = S*(@0)| da dt + ] — P2 = 0

when 6 — 0.

// NS (M5 (20)S (M(2] — ) da dt — // NSNS0 — ) da dt

+ellp] — DOl + (SU(M5(§ — ¢°))(0) = S*(§ — 9)(0),3°) = 0.

Using the linearity of the equation (2.1.4) (hence of §%) and of My, the above equality writes as
follows:

// Xoo| S (M5 (02 M da;dt—ir// X lSH(@0)|? dx dt — /sta Ms(2 9)S(M5(¢Y)) da dt
qr qar qr

[ xS DS ) do di + ] DI (SO - )~ (5]~ P0)(0).1) =0
ar
Finally, we get
I} xS 015 = S ot~ ] oS (MRS (Ms(7) - ) d
ar ar
// XeoSU(0)S (M5(3) — ¢3) da dt + e[ @f — O* + (S“(M5(8§ — ¢°) — (2§ — ¢9))(0),3°) = 0.
qr

The result follows applying Lemma [2.1.4 O
We now give the proof of Theorem
Proof of Theorem [2.1.3. The existence of approximate controls ¢ € C*°(Qr) is obtained by min-
imizing the functional J§ applying the standard HUM method, the regularity being derived from

the usual regularity in the linear parabolic case (see, for example, [32, Theorem 10.1]). We
therefore focus on proving the Lipschitz L? continuity with respect to the diffusion coefficient a.

Let us consider two diffusion coefficients a and b in C*(Qr) verifying (2.1.2). Then, we denote
Pg = S“(M(;( ) and ¢y = Sb(M(;(gob 5)) with ¢ 5 being the minimum of J§ and ¢} ; being the

minimum of J? 5 Writing W= Qg — ©p, We get that w satisfies the following equation:

Opw + div (a(t, z)Vw) = —div ((a — b)Vpp) in Qr
w=0 L on Xr (2.1.21)
w(T) = Ms(¢) 5 — ¥ 5) in Q.

)

An energy estimate over (2.1.21)) leads:

1 1 1 — —
§Hw(T)”2 + (px = )Wz 0.y, 111 (02)) < g”%”%/vlvoo(n)”@ —blIF2 (0 + §HM6(802,5 — sl
(2.1.22)

According to the Young’s inequality for convolution (see [32, Theorem 4.15.]):
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I1M5(02 5 = D I < llpsllrlled s — b sll < 11 5 — @b s (2.1.23)

where (ps)s=o is the mollifier used to define Ms. Then, we get from Euler-Lagrange formula:

I} xouSt O3 dwd + (5, 0%) + (S O4(7))(0).4) = 0 (2.1.24)

J[| xS0t dodi -+ (a5, 0%) + (S"(Ms(00)(0).5°) = 0. (2.1.25)

Subtracting the relations (2.1.24))-(2.1.25)), we obtain:

J[[ xelias® 050 - S (0%) dd + (5 — 050 0°)

+H(SH(M5(4))(0) = S*(M5(4°))(0), %) = 0. (2.1.26)
Now, one can write:

// Yoo (S (M) — pS®(M(42))) ddt = // Yol — ol du dt

qr

T // Yo (0 — 9)(SU(M5(6%)) — u + p3) daxdt + // N @S (Ms(0°)) — SP(M(42))) d dt.
(2.1.27)

Setting 9° := g025 — % into (2.1.26)) and using (2.1.27)) leads to:

// XeolPa — pl* da dt + €]|00 s — o 5[I7 + (S (Ms(20 5 — 9 5))(0) = S*(M5(0 5 — £05))(0),3°) =
qr

- // Yoo — o) (S (Ms(F0, = 703)) — P + 1) ddt

qaT
~ [ vl s~ A — SO ~ ) da
qr
(2.1.28)
Here, writing g := S“(Mg(@ - %)) — Sb(M(;(% - %)), we have that it solves:
8,8 + div (aV ) = div ((a — D) VSH (M (05 @)) in Qr
B0 on ¥y (2.1.29)

B(T) =0 in Q.

Testing against 8 into the weak formulation of (2.1.29) leads to, after applying Holder’s and
Young’s inequality for 0 < s < py:

1 1 _ —
SIBO)I+ (e — 5) //Q VAP dvdt < 1 S*(M5(20 5 = £ ) i (g la = bll 72 gy (2:1:30)
T

84



From Poincaré’s inequality (2.1.30]) leads to:

1
MOERY S —
Bllon < (oos ) IS GG, - Alranle ~ s, (2131
*

where \1(Q)~! is the sharp Poincaré constant, and p, comes from (2.1.2). Using (2.1.31) into
(2.1.28)), then Young’s inequality and an energy estimate, we then get for 0 < s < 1:

. I 1 . P
(1-s) // Xola = ol dwdt + ellgg 5 — @017 < IS (Mo (2l 5 = 2h5)) = a + bl T2(gy)
qar
Hlleoll 2 (g IS (Ms(2 5 — 3 5)) — S"(Ms(£2 5 — 08 )l L2(ar)

1
M)\ ? S
1 () 18 s — Pl el — Ul zcan,
(2.1.32)

Now, setting W = S*(Ms()?)) — vq + p and w = S*(Ms(¢°)) — SP(Ms(?)), we get that these
respectively solve:

W + div (aVW) = div((a — b)Vep) in Qr

W=0 on Xp (2.1.33)
W(T)=0 in Q
ow + div (aVw) = —div((a — b)VS* (%) in Qr
w=0 on X (2.1.34)
w(T) =0 in Q

and following exactly the same argument as for (2.1.31]) leads to, for some 0 < s < py:

1
M)~ 2
IWlzeger) < (22255 ) * ool ey lla = B2z,
(2.1.35)

1
-1 5
W2y < (15 ) ISP @O By lla = B2,

Combining (2.1.32)) to (2.1.35)), finally leads to the existence of a positive constant C' > 0 such
that:

ellgd s — ensll? < (1—s) // Xel®a — @o|* da dt + |0 s — ) ]I
qar

S lla— bH%Q(QT) + lla = bl z2(qy)- (2.1.36)

By dividing each member of (2.1.36]) by € > 0 and combining this with (2.1.23)) and (2.1.22)), we

deduce the result. O

At this point, it is worth noting that the Lipschitz constant in L? of the control is strongly
dependent on the parameter ¢ > 0. Indeed, the Lipschitz constant thus obtained explodes as ¢
tends towards 0. Consequently, there is no reason to conclude that the exact control, of minimal
L? norm, depends continuously in the L? sense on the diffusion coefficient.
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2.2 Controllability of quasilinear parabolic equations

Let us now turn to the study of the controllability of quasilinear equations. As we said, we will first
highlight some existing results on the controllability of quasilinear equations whose nonlinearity
depends on the state, and then focus on the case of nonlinear terms depending on the gradient
of the state. To highlight recent advances in this last field, we begin by presenting an optimal
controllability result given by the Theorem [2.2.3] and then we present a local controllability result,
namely the Theorem [2.2.5] Recall that local controllability is to be understood in the sense that,
if the initial data is small enough according to a certain norm, then it is possible to control the
equation. This result is presented independently from the other results that follow it, from [49].
The principle of these last results is to apply the Theorem in order to apply a Schauder-type
fixed-point theorem, but for continuity in a weak topology.

2.2.1 Equations with nonlinear term involving the state

In this section, we focus on controllability results for a class of quasilinear equations where non-
linearity is applied to the solution of the equation (i.e. not to its gradient). We consider the
following internal control problem.

Oy — div (a(y) - Vy) =1, in Qr
y=0 on X (2.2.1)
Yo = " in

where € is a bounded domain of RV with C? boundary, w C € is a nonempty open set, Qr =
(0,T) x Q, and X7 = (0,T) x 99Q. As usual, 1, should refer to the characteristic function of w.

Here, a: R — ]RS]\;IXHN is of class C? and satisfies the coercivity assumption:

N
Y aij(9)&& 2 € (5,6 eRxRY (2.2.2)
i,j=1
Moreover, we set:
N
A= 1+ sup |a; :(s)]? + sup |d} (s)]? and v = max a (s)|? 2.2.3
Z:j ( sup. Jais(5)f* + sup ol (5) o, e (223)

Then, the following result holds.

Theorem 2.2.1 (Liu-Zhang). Let us consider Q a bounded domain of RN with C® boundary,

w C Q a nonempty open set, and a constant v > 0. Moreover, we assume that a : R — Ré\}f,ﬁlN

satisfies the coercivity assumption given by (2.2.2). Then, for any initial value yo € CQ+%(§)
satisfying

and the first order compatibility condition, one can find a control
11,
peC2i(Qr)

with supp(p) C [0,T] X w such that the solution y of (2.2.1) satisfies y(T) =0 in Q.
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Moreover, ||g0HC?12%(@) < CleeCQAHyOHLz(Q) where C1 depends only on Co, v, N, Q and T, and

Cy depends only on Co, N, Q and T, the constants A and v being given in (2.2.3).

Proof. The proof is based on an observability inequality. More precisely, considering the dual
system of the linearized , the authors obtain a Carleman inequality involving only the C!
norm of the diffusion coefficient. The authors deduce an observability inequality that allows local
controllability to be induced using Schauder theory applied to parabolic equations. We refer to
[140] for the proof of this result. O

If, instead of the previous assumptions, we consider the alternative version of (2.2.1)

Oy — div (a(y)Vy) = xwp in Qr
y=0 on X (2.2.4)
Yjt=o = " in Q

where x is a smooth cutoff function over w, N < 3, and the diffusion coefficient verifies:

(L1) a € C3(R).
(L2) 3(po,p1) >0, Yz € RN, po < a(z) < pr.

(L3) ¥(8,2) e Nx RY, § <3 = [aP(2)| S 1.

Then, the following result holds.

Theorem 2.2.2 (Fernindez—Cara-Limaco-Marin-Gayte). Let Q be a domain of RN, with smooth
boundary, N € {2,3}, w C Q an open set, yo € HH(Q) N H3(Q) and we assume that assumptions
(L1)-(L8) hold. Then, there exists n > 0 such that if

lvoll sy < m

we have the existence of a control p € L*((0,T) x Q) leading to y(T) = 0.
Proof. See [88] O

The proof of this result is based on a Ljusternik-type inversion method. We should point out
that the authors state that this result extends to cases where the coefficient a in is not
homogeneous, in the sense that it may also depend on spatio-temporal variables. We refer the
reader to the article [88] for further details.

2.2.2 Equations with nonlinear term involving the gradient of the state

We devote this section to the study of the controllability of quasilinear parabolic equations whose
nonlinear term depends on the gradient of the state. First, we present an optimal controllability
result. Then, in line with our main focus, we examine the exact and approximate controllability
of such equations. It should be stressed, however, that for the sake of unity of presentation, we
concentrate our presentation on the distributed controllability.
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Optimal controllability

Consider the optimal control problem consisting of minimizing the cost function

J(f) ::/ L(t,x,y(t,x), f(t,x)) dx dt (2.2.5)

over a nonempty convex set K C L"(Qr), for 1 <r < 400, where we denoted L : Qp XxRxR — R
and y (which depends of f) solves the following equation.

Oy — div (a(t,z, Vy)) +b(t,z,y) = f in Qr
y=0 on X (2.2.6)
Yjt=0 = Yo in Q
Let us state suitable assumptions over the different parameters involved, where we assume that
there exist p > max (%, 1) a positive increasing function ¢ and k > 0 such that these are

satisfied:

(CA1) a: Qr x RY — RY is such that for every 1 < i < N, (t,z) — a;(t,z,u) is a measurable
function over Qr for every v € RY, and for almost every (¢,z) € Qr, the mapping u
a;(t, z,u) belongs to C1(RV).

(CA2) b : Qr x R — R is such that (¢,z) — b(t,z,v) is a measurable function over Qr and

v+ b(t, z,v) belongs to C'(R) for almost every (¢t,2) € Qr
CA3) V(& v) € RY xR, Va(t,z,v) : (§®¢) 2 (k+ [])P7?¢]*.
CA4) Y(t,z,v) € Qr x R, |Va(t,z,v)| < (k + |[v])P72

CA6

(CA3) v(

(CA4) V(

(CA5) ¥(t,2,v) € Qr x R, 0 < dyalt, z,v) < (|v]).

(CA6) Y(t,z) € Qr, Vi € [1, N]NN, a;(t,z,0) = b(t, z,0) = 0.
(CAT)

CAT7) The map (v,u) — L(t,z,u,v) belongs to C1(R?) and L(t,x,0,0) € LY(Qr) for all (t,z) €
Qr.

(CA8) WM >0, 3(hdT, hY, Cur) € LF1)(Qr) x L2(Qr) x (0,400),
0, L(t, 2, u,v)| < B (t,z) + Carlv|" (t,z,u,v) € Qp x [-M, M] x R
0uL(t, 2, u,v)| < W (t ) + Culv|z (t,2,u,0) € Qp x [-M, M] x R.
(CA9) The map v +— L(t,x,u,v) is convex for every (¢,z,u) € Qp x R.
(CA10) There exists fy € K such that the set {f € K/ J(f) < J(fo)} is bounded in L"(Q7).

Then, the following result holds.

Theorem 2.2.3 (Casas-Fernandez-Yong). Let Q be an open bounded subset of R™Y with Lipschitz
boundary and 0 <'T' < +o0co. We assume that there exists p > max (%, 1) a positive increasing
function ¢ and k > 0 such that assumptions (CA1)-(CA10) are fulfilled. Then, there exists a

solution to the optimal control problem ([2.2.5))-(2.2.6).

Proof. We refer to [41, Theorem 3.1| for a proof of this result. Let us point out that, slightly
modifying the assumptions, the result still holds for p = +oo. O
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When we talk about the existence of a solution to the optimal control problem, we need to
understand the existence of a solution with usual regularity of the equation , as well as the
existence of a minimizer f of the functional J defined by given in the space L"(Qr). The
following example gives an idea of the scope of Theorem [2.2.3]

Example 2.2.4. We point out that Theorem[2.2.5 does not take into account the case of parabolic
p-Laplacian, since assumptions (CA1) or (CA3) could not be satisfied for example. Nevertheless,
one can set a(t,z,Vy) = (k+ |Vy|)P~2Vy, and the previous result leads to the optimal controlla-
bility of such an equation.

Note, however, that there are alternative results to the aforementioned Theorem whose
study focuses on the p-Laplacian. Reference can be made, for example, to [42], for results relating
to this framework. In general, however, these are not results whose controllability is internal. For
the case of an optimal internal control of the p-Laplacian with p > 2, see [I50], for example.

Exact and approximate controllability

Let us start by presenting a local controllability result, whose proof is an adaptation of that of
Theorem [2.2.2] Consider the following quasilinear equation.

Oy — div (a(Vy)Vy) = 1,0 in Qr
y=0 on X (2.2.7)
Yit=0 = Yo in Q

We assume the following assumptions for a : RN — R.

(F1) a € CHRN).

(F2) 3pg >0, Vz € RN, py < a(x).

(F3) 3r € [1,+00), V(8,2) € NV xRV, |6 <4 = |[VFa(z)| £ 1+ ||+

Then, the following result holds.

Theorem 2.2.5 (Fernandez—Cara-Limaco-Thamsten-Menezes). Let Q be a domain of RN with
smooth boundary, w C Q an open set, yo € H} () N H?(Q) satisfying the compatibility condition:

(Ayo, A%yo) € Hy(2)?
and we assume that assumptions (F1)-(F3) hold. Then, there exists n > 0 such that if
lyollzs) < m
we have the ezistence of a control p € L*((0,T) x Q) leading to y(T) = 0.

Proof. See [91] O

As in Theorem the proof of this result relies on a local inversion theorem applied to the
linearized system, as well as a regularity argument.

We now turn to the main result of this section. We consider the following system:
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Oy — div (F(IVy[)Vy) = xwy in Qr
y=0 on X7 , (2.2.8)
y(0) =¢° in Q,

where Q C RY is an open bounded domain with a smooth boundary 9, Qr = (0,T) x Q,
Y7 = (0,T) x 09, the initial data y° belongs to L?(2), and there exists p > 1 such that the
function F': Ry — RY verifies the following assumptions:

(A1) F e Wh(Ry) NC®(Ry) N LA (Ry) N L7 T (R);

(A2) The potential defined for every t € Ry by ®(t) = fg sF(s) ds is convex and satisfies
& e W (R,);

(A3) There exists C1,Co, u,v > 0 and kq, ko > 0 such that for every ¢ € R, we have that

p—2
2 .

ki 4 Ci(p+ 1) < F(t) < ky + Co(v + £2)

The control ¢ acts in the open and non empty set w C 2. More precisely, we denote by y,, €

C>(Q) a regular function such that

() = 1 for xz € ws
XA =0 for x € O\ w,

where ws = {z € w such that dist(z,0w) > ¢} for a given § > 0 small enough. We also denote
qr = (0, T) X W.

Let us underline that assumption [(A2)| means that ®(u) = ®(|u|) is a convex potential and thus
the operator A : X — X* defined for every ¢ € X by

A¢p = —div (F(|V¢|) V) (2.2.9)

is monotone from Proposition where X is a reflexive Banach space compactly and densely
embedded in L?(2) and X* is its dual with respect to the pivot space L?(2). Having this in
mind, we point out that the existence of a unique weak solution to equation is a direct
consequence of Theorem applied to the nonlinear monotone operator A given by .

We aim to prove the following result.

Theorem 2.2.6 ([49, Theorem 1.2.]). Assume that F satisfies assumption |(A1)H(A3) and y°
belongs to L*(Y) are chosen such that there exists a unique solution of ([2.2.8). Then, there

exists a distributed control ¢, whose reqularity is given by Theorem such that (2.2.8) is

approzimately null controllable in any time T > 0, i.e., for every y° € L*(Q) and every ¢ > 0
there exists a control p € C™(Qr) such that the solution y of (2.2.8) satisfies

ly(T)|| < e.

In order to extend the controllability properties of the linear equation to the quasilin-
ear equation , we aim to apply a fixed point theorem. In this purpose, we first consider
the result given by Theorem which allows to obtain regular approximate controls for the
equation which are Lipschitz continuous with respect to the diffusion coefficient a. The
existence of approximate regular controls for the linear equation makes possible to define
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an application associating to the diffusion coefficient a the quantity F5(|Vugs|) from a bounded
closed convex set with values in itself, u, s being the controlled solution of the regularized version
of and Fjy being a regularization of the function F' still verifying hypotheses |[(A1)[H(A3)
The objective is then to show the continuity of such applications on some weakly sequentially com-
pact sets, in order to apply a suitable fixed point theorem. Remark that, since we aim to prove
only a null approximate controllability result, it is not necessary to take the limit with respect
to the regularization parameter §. Here and henceforth we denote by “x” the convolution product.

We define a regularisation process R : L'(Qr) — C*(Qr). More exactly, for every g € L'(Q7)
we define Rs5(g) by

Rs(g) = vs * (xs9) + 6, (2.2.10)

where (v5)s is a mollifier, x5 : RVt — R is a smooth cutoff function with supp(xs) = Qr. We
can see that Rs(g) 5—>0 g in LY(Qr) for every g € LY(Q7).
—

From now on, we should denote L2 (Q7) the subspace of non negative functions in L*(Qr). Then,
we consider the following bounded convex closed set

Co

1
_ 2 . . 2
Ks = {f € L3 (Qr) satistying || f||72(g,) < 2(CL +1) (5 + o5

) I5°11% + 6Q|T} . (2.2.11)

where C7, is the Lipschitz constant of F' from assumption [(Al)land Cj is the observability constant
given in (2.1.6). Moreover, let us observe that Ry is continuous over L (Qr). Taking a € K and
h € L?(Qr) such that a + h € K, we can write:

Rs(a+ h) — Rs(a) = vs * (xsh) (2.2.12)

and the continuity of R follows from Hoélder’s inequality.

Let us now define the function G : Ks — L*(Q7) by

Gs(a) = F(|Vvasl), (2.2.13)
where v, ¢ is the weak solution to:

Oyva,s — div (Rs(a)(t, 2)Vvas) = Xwpa  In Qr
Va5 =0 on X (2.2.14)
Va,6(0) = M;(y°) in Q,

with ¢, € C*(Q7) being the approximate control provided by Theorem applied to (2.2.14])
which is nothing else than an alternative version of (2.1.1) with a regularised operator Ls : u

—div (Rs(a)Vu).
Let us recall the following fixed point theorem (see [I126] for a proof).

Theorem 2.2.7 ([126, Theorem 2.1]). Let K be a closed convex subset of a Banach space Y.
Let us consider G : K — K such that for all sequence (ay), C K which converges weakly toward
a, then (G(an))n admits a subsequence which converges strongly toward G(a). Hence, if G is
continuous and G(K) is weakly compact, G admits a fized point.

Before proving the Theorem let us prove the following lemma.

Lemma 2.2.8. For every § > 0 the application G5 : K5 — L*(Qr) defined by [2.2.13)) is contin-
uous and verifies G(Ks) C K.
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Proof. First, let us show the fact that Gs(Ks) C Ks. Since K contains 0z2(q,.), from one
can write:

IGs(a) = G5(0) 2oy = I o
S CLHUG,,(; - v076HL2((07T)7H3(Q))' (2215)

Now, we point out that for every a € Ky, [|vasllz2((0,r),m () 18 bounded by [[M;s(y N/ E+ 252,
this bound following from the energy estimate:

—_

1
i (QT ||Ua 5||L2 ((0,7),HE () §||M6( 0)H2 + 475||Xw80a||%2(qﬂ, (2.2.16)

since testing against ¢ into the Euler-Lagrange equation associated to , then applying
the observability inequality as given in Proposition 1] and Young’s mequahty leads to the
inequality:

IXwPallFgry < Col Ms(y2)II?, (2:2.17)

and combining (2.2.16)) together with (2.2.17]) implies

1 1 Co
NI 2 0\ (12
H’UacSHLz (07),HY(Q) = ”Mé( M=+ ﬁHXw%”m(qT) < <5 252) [ Ms(y=) 1|7 (2.2.18)

Now, from ([2.2.15)), we can write:

1Gs(@)1B2(ap) < Co (Itaslaory iy + 1W0sl22qomy miy ) +I1GsOFagy:  (22:19)

On the other hand, we have:

||G6(0)||%2(QT) < HUO,(S”%2((07T)7H&(Q) + 5|Q|T- (2-2-20)

Hence, combining (2.2.20)), (2.2.19)) and (2.2.18)), we get that G5(Ks) C K.

Let us now show that Gs is continuous. Since F' is globally Lipschitz from assumption |[(A1)] one
have:

1Gs(a +h) = G5(a) 1720, = IF(Varnsl) = F(IVoasDlZ2(0p) < CrllVvatns = Voasllizgp-
(2.2.21)

Then, we have that wgp, := Veqn,s — va,s solves:

Oywg,p, — div (Rs(a + h)Vwgp) = Xw (Path — a) — div ((Rs(a + h) — Rs(a)) Vvgsn) in Qr

Wap =0 on X
wa,h(o) =0 (1n Q. )
2.2.22
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Hence, an energy estimate over (2.2.22) leads to, using parametrized Young’s inequality and
Poincaré’s inequality:

1 2 5 2 1 2
S lwanllee o,r),c2()) + 5 1Wanlize o), 3 () S51%a+n = Pallzz(gr)

1
5 IVvasnlio g | Rola + h) = Rs(@)[72(q..

Using Theorem combined to (2.2.21]), and since, for a k large enough with respect to N,
HE(Q) is continuous embedded in W,"*°(2), we get that:

c(s
[Gota+ 1) — Go(a) Bagy) < 0 (Ihli3aiqy + M5OI Rsla + 1) ~ Bs(a) gy
(2.2.23)
which proves the lemma. ]

Remark 2.2.9. We can avoid the global reqularity assumptions over F' as m by considering
that

_pP
F e Wi (Ry) N Li,(Ry) N LpH(R).

loc

It is then necessary to introduce an additional reqularization process. First, for every 6 > 0 we
define a regularisation process s : LE (Ry) NWET(Ry) — C®(RL) N WE®(R,) by:

loc loc
rs(F) i= (s * (05F) + 0, (2.2.24)

for every F € LY(Ry)NWL2(R,), where ((s)s5 is a mollifier and o5 : R — R is the smooth cutoff
function satisfying:

1 in [5,}]
70 = { 0 in (—00,0]U [+ +6,+00). (2.2.25)

Then, we see that such a regularization process also holds over L (Ry)NWH (R \{0}), in the

loc

sense that for every F € L (Ry) N WH®(R\{0}), such an rs(F) leads to a globally Lipschitz

loc
function, i.e., there exists Cr 5 > 0 such that

rs(F)(t) —rs(F)(s)| < Crslt — s, (2.2.26)
for every t, s > 0.

Remark 2.2.10. We point out that is essential here to consider solutions to the reqularized
equation , since the space of functions which are essentially positively lower and upper
bounded do not give rise to reqular enough solutions of (namely, at least Hélder continuous)
since we can construct discontinuous solutions with respect to the space variable of for some
diffusion coefficient in this space, given by Serrin’s example (see [160]).

We are now able to prove Theorem [2.2.6]

Proof of Theorem [2.2.6 Let § > 0 to choose later. In order to apply Theorem we first show
that if (ay,), is a sequence which converges weakly toward a, then Gg(a,) converges weakly, up
to a subsequence, toward Gs(a). First, let us observe that the weak convergence of (a, ), implies
that Rs(ay) n_?oo Rs(a) strongly in Ky, by definition of Rs. Also, arguing by continuity, one can

see that the associated controls provided by Theorem [2.1.3|in (2.2.14) leads to

[XwPRs(an) = XwPRs(a)llL2(Qr) — 0.

n—-+00
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From this, an energy estimate leads to, setting w, := v,5 — vq, s, Where vgs and v,, s are
respectively solutions to (2.2.14)) associated to the diffusion coefficient Rs(a) and Rs(ay,) and to
the controls ¢r; () and Ygg(a,), respectively:

if\wn\\%w((o,n,m(m) HwnHL2 ((0,1),HA(Q)) = HXw(SORa(a) S"Ra(an))H%Q(qT)

Clly°
” HkHR( n) = Rs(a)|320,).  (22:27)

+

Then, we can write, from (2.2.21):

Glan) — Co(@)220r) = 1E(Vva,sl) — F(T0as) 22i0r) < CrllwnlZaomm oy (22:28)

Then, (2.2.27) combined with (2.2.28) leads to the fact that ||Gs(an) — Gs(a)|r2(Q,) 0.

~>+oo

Applying now Lemma we get from Theorem that G5 admits a unique fixed point in
K. Namely, we get that in the solution to the equation

Ovs — div (Rs (F(|Vvs])) Vvs) = xwe  in Qr
vs =0 on X (2.2.29)
vs(0) = Ms(y°) in Q.

¢ can be chosen as an approximate control of (2.2.29), from Theorem For the sake of
simplicity, we denote Rs(F'(]-|)) as Fs(||). Next, we denote w := y — v5 with y the solution

to (2.2.8). Writing:

F(IVy)Vy = F5(IVvs|)Vvs = F(IVy[)Vy = F(IVvs|)Vvs + (F([Vvs]) = F5(|Vvs|)) Vvs, (2.2.30)

an energy estimate leads to:

ST + // F(Vy)Vy — F(IVvs])¥vs) - (Vy — Vus) dad

+ // (F(|Vvs|)Vvs — F5(|Vvs|)Vvs) - (Vy — Vvg) dedt = %”Ma(yo) — yOHQ. (2.2.31)

Then, (2.2.31]) leads, using the monotonicity of the operator (assumption (A3) see [132, Chapitre
2, section 1.3.] and [I75} section 25.3|) to:

S < Gl + [ (FOV)Ty = 0 T5) - (T = Toe)
< | 9l Pvs — Fs9l)Pa) - (T V) ] + 110156 — o7

- 1 I vavush -~ ves(vvsh) - ¥ - vo) dxdt] A M)~ (2232)

It remains to prove that the first term in the right hand side goes to zero as § does. First, let us
remark that we can write:
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Vos(|z]) = Fs(|z|)z
= Rs(F)(|z|)z
= (s x (xo F)(|z|) +6) z
= vs * (XsF)(|z[)z + oz
= vs * (X F'(|z])z) + 6z
= V(®)%(|z|) + oz

(2.2.33)

Here, we denoted by (®)° a regularization (by mollification) of ®. Combining (2.2.32)) and (2.2.33),
we easily get:

%Hw(T)H2 < ‘//QT(V@ﬂVV(;\) — V(®)°(|Vvs)) - V(y — vs) da dt’ + ‘/QT 0Vvs - (Vy — Vv;s) dedt
+ 21500 — oI (2234)

Evaluating the second integral term in (2.2.34]), we obtain:

’/Q Vv - (Vy — Vvs) dx dt‘ <4y - V(SH%Q((O’T%H(%(Q)
T

"Wl ((O,T%WOL%(Q)) by =vsllio(omywir)- (2235)

We get, since the solutions are regular enough, that the term present in (2.2.35) goes to zero as d

does. Now, from assumption [(A2)| then using (2.2.10]) and (2.2.24)), we get the following estimate
for the first integral term in (2.2.34)):

L a(0sh — @ (50D - V) ] < [VO(Til) — V(@ (Vi)

L7 T (Qr)
||y - V6HLP(O7T,W01’p(Q)) . (2236)

Let us now formally denote Vv = lim Vvs (which leads to a term that can be estimated even if
0—0
this limit was infinite, thanks to assumptions even if it can be proven that it is finite

under suitable assumptions, see e.g. [153, Theorem 5.2.1.] or [I76, Theorem 2.3.1. and Theorem
2.4.1.]). Then, we can write:

V(|Vvs|) = V(2)°(IVvs]) = VO(|Vvs]) — V(| V)
+VO(|Vv]) — (VE)°(|Vv])
+H(VE)’(IVV]) = V(2)°(|Vv])
+V(@)°(|Vv]) = V(®)° (| Vve)).

(2.2.37)

Integrating the left-hand side in , we get by definition that the first and the fourth term in
the obtained right-hand side goes to zero as § does thanks to assumptions , the second
term does too using assumption and since it is a classical mollification. It remains to deal
with the third term, but it still goes to zero as ¢ does applying Friedrich’s Lemma (see e.g. [43]
Section 1.5.4.], [116, Lemma 17.1.5] or [31, Section 2.2.]).

Moreover, an energy estimate leads to, testing against vs into the weak formulation:

1 1
§||V6||2Loo((o,T),L2(Q)) +//Q F5(|Vvs))[Vvs]? da dt = // XwpVVs dz dt + §\|M5(y0)||%2(sz)-
T qT
(2.2.38)
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We get from assumptions using Young’s inequality for 0 < s < 1 and the fact that
IMs(y0) L2 < 1901220

SN2 0.1y e + 201522 0y prscan ™ Moy FUVVSIVval? dar

((0,7),W5 P (2)

< () [ e S 3
p—Tgp—1 —1(qr)

pP* sP—
HVO(|Vvs]) - Vvs — (V@) (|Vvs]) - Vs L1 (0n)

"’%HyOH%%Q)
(2.2.39)
We point out that from assumptions the product V®(|Vvs|) - Vs involved in the

above inequality is non negative. Let us focus ourselves to the case 1 < p < 2, the case p > 2
being rather direct. From assumption (A4), since we get:

[y FANVVDIVS2 dadt > [f, (1+ [Vvs]?) T [Vvs]? da dt

= [l (1 + [Vvs?)E dadt — [[,, p(p+ |Vvs?)*T dadt |

p
> H 5||p OT) 1,;0(9)) - ’Q|TM2

(2.2.40)

then one can write from (2.2.39) and (2:2.40) for 0 < s < 3:

1— P < p—1 Loll7 1
(U= 6l iy < (s ) Dol

pP=-sP
HIVE(|Vvs]) - Vvs — (V) (|Vvs]) - Will L1 0n) (2.2.41)
+%Hy0”%2(9) + |Q|T,U,g

Using Young’s inequality, we then get from (2.2.41)):

1-9 p < 44114144, Lol 1
T S 1L

pP* sP*

+ () I9R09vs) - (V9 (9wl

P=1(Qr)

P
2

15Oy + 1T HE.

(2.2.42)

And so the uniform bound over ¢ of ||V5||Lp((0 )W () follows since every term in the right-hand
)W

side of ([2.2.42)) is uniformly bounded over § (this last being chosen small enough). Combining
this fact with (2.2.36)), we get that the left-hand side of (2.2.36]) goes to zero as § does. Thus,
up to take 0 small enough, from (2.2.34)—([2.2.36)) combined to (2.2.42)), we obtain the wished

approximate controllability. O
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In fact, it is possible to derive an exact controllability result from the Theorem refthm:global-
approximate-control-quasi as soon as we have the existence of a finite stopping time for the
solutions of (2.2.8). More precisely, we have that:

Theorem 2.2.11 ([49, Theorem 1.3.]). Assume that F satisfies assumptions[(AT}H(AS), and that
y 18 the solution of associated to an initial data y° € L?(Q). Moreover, let us consider
that y stops in finite time, which is that, if ¢ = 0 then, there exists Ts € (0,T), v >0 and pu > 0
such that:

ly(Ts)l| =0 and Ty < plly°|". (2.2.43)

Then, one can choose the force term ¢ such that y is exactly null controllable in any time T* €

(0,7).

1

Proof of Theorem[2.2.11 Let T* € (0,T) and ¢ = (%>§ Applying Theorem [2.2.6| for an

approximate control in time %* there exists a control ¢. € L2((0, %) x §2) such that the solution
y of (2.2.8) with the control given by

ety forte (0,5
(P(t)_{() fortz%*

T—*<5
y2 > &

Combining the above inequality to the estimate (2.2.43]) we obtain that y(7™) = 0, which is the
desired result. O

verifies

The results given by Theorem and Theorem [2.2.11] can in fact be demonstrated for a larger
class of equations, typically for the parabolic p-Laplacian (as given by (1.3.1)) in the homogeneous
setting) which is given by

v — div (|[V[P2Vv) = xup  in Qr
v=20 on X (2244)
v(0) = ¢° in Q,

with % < p < 3. We then have the following results.

Corollary 2.2.12 ([49, Corollary 1.1.]). Let y° € L*(Q2) and 3 < p < 3. Then ([22.44) is

approximate null controllable in any time T > 0, i.e., for every € > 0 there exists a control

© € C™(Qr) such that the solution v of (2.2.44) verifies
V(D) < e

Corollary 2.2.13 ([49, Corollary 1.2.]). Let y° € L*(Q) and % < p < 2. Then, by always
choosing a non-negative solution to (2.2.44), the problem (2.2.44)) is null controllable in any time
T >0, i.e., there exists a control p € C®°(Qr) such that the solution v of (2.2.44)) verifies

v(T) = 0.

Proofs of Corollary and Corollary[2.2.15. The proofisin fact quite immediate. It is enough
to note that the solutions of (2.2.44)) can be approximated by the solutions of

p—2
Ay — pAy — div ((uHVyz) 2 Vy) =Xwp inQr

y=0 on X
y(0) = ¢° in Q.

(2.2.45)
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(see e.g. [130]) which is approximately controllable according to Theorem It is possible to
see that, for example, by observing that the approximation operator in p > 0 has the M-property
(see [I76l Lemma 3.2.2.], [132, Chapitre 2 Remarque 2.1.|, and [175, Proposition 31.5.]) and
converges in the sense of LP((0,7), Wol’p(Q)) to the p-Laplacian operator. Then, Corollary
is an immediate consequence of Theorem [2.2.11|applied to |71, Proposition 2.1.] and [I32, Exemple
1.5.2.], setting X := W, P(€2) N L2(Q). O

It is also possible to apply these results in a similar way to obtain the exact controllability of
other quasilinear parabolic equations stopping in finite time and whose structure is close to that
of the p-Laplacian, as for example for the following equation.

Ou — Au — div (]Vu]p_QVu) = Xwp inQr
u=20 on X (2.2.46)
u(0) = y° in Q
with % < p < 2. We point out that the operator A : u+ —Au — div (|Vu[P"2Vu) is well-defined
and monotone over X := H?(2) N HL(Q) (see e.g. [16], Section 4.3.]).

Then, we have the following result.

Corollary 2.2.14. Let y° € L*(2), and % < p < 2. Then (2.2.46) is null controllable in any
time T > 0, i.e., there exists a control ¢ € C*(Qr) such thal the solution u of (2.2.46)) verifies

u(T) = 0.

The proof of Corollary [2.2.14] can be obtained in similar way to that of Corollary [2.2.13] applying
an stopping time result as [8, Theorem 2.1.], setting X := H}(Q) N H2().

2.3 Mixed finite element method

When numerically studying a constrained minimization problem, it is sometimes possible to reduce
it to what is known as a mixed formulation. More precisely, we then consider two coupled weak
formulations, defined using two bilinear forms, and whose sought-after minima coincide with the
minima of the initial problem. This makes it possible to successfully apply a finite element method
to nonlinear problems.

As mentioned in the summary, we first set out some reminders in Subsection [2.3.1] as well as at
the beginning of Subsection [2.3.2]

2.3.1 Mixed Lagrangian formulation

Let be two Hilbert spaces H; and Hy. Consider the problem of finding (u, \) € H; x Hy satisfying
the following equation:

a(u, ) +b(p, ) = (f,p) Vo € Hy
{b< 6) = (g, 9) Vo € Hy (23.1)

where a : H; x Hi — R is a continuous and symetric bilinear form, and b : Ho x H; — R is a
continuous bilinear form.

We consider the following two associated linear forms A and B given by Riesz representation
theorem:
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H1—>H{

A: (2.3.2)
u— A(u)
where
a(u, ) = (A(u),¢), V(u,9) € Hf,
H1 — Hé
B: (2.3.3)
A= B())
where

b(¢7 )‘) = <B()‘)v¢>v V(Avqb) € Hl X H2-

Here and thereafter, we should denote A* : Hy — H{ and B* : Hy — H{ their respective adjoint
linear forms for the duality bracket. Thus, problem (2.3.1]) can be reformulated as follows.

{ Alu)+ BA=f in H (23.4)

B(u)=g in H)

We point out that since a is symmetric, then the problem (2.3.1) reduces to the constrained
minimization problem

min_ sa(e.e) — (£, (2:3.5)

and so A stands as the Lagrange multiplier of (2.3.1)) and its associated saddle-point problem is
given by the condition

inf sup (1a<w,w> Fb(6N) — {fr) <g,¢>> . (2.3.6)

weH1 ycH, 2

The reader should not worry if the considerations of this approach are not yet very clear. These
will become clearer as we return to our case study. Let us denote by ay the restriction of a to
the subspace Ker(B) x Ker(B), and by Ag the function defined, as for A, by:

Ker(B) — Ker(B)'
Ak : (2.3.7)
U +— AK(U)

where
ag(u,) = (Ag (u),9), V(u,p) € Ker(B)?.

Let us now set out one of the main results of this section.

Theorem 2.3.1. Let Hy and Ho be two real Hilbert spaces. Moreover, we consider two continuous
bilinear formsa : HHxHy — R and b: Hox Hi — R, a being symmetric. We define the continuous
linear functions A: Hy — H{, B : Hy — H{ and Ak : Ker(B) — Ker(B)' respectively by (2.3.2),

(2.3.3), and (2.3.7). Then, the problem (2.3.1) has a unique solution for every (f,g) € H{ x H}
if and only if both of the following conditions hold:

(SP1) Ak is an isomorphim from Ker(B) over Ker(B)'.
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(SP2) B is onto, i.e. R(B) = H).
Proof. See |27, Theorem 4.2.2.]. O

We point out that a similar result holds replacing assumption (SP1) by a coercivity condition
over ar. However, we then lose the uniqueness (see |27, Theorem 4.2.1.]).

2.3.2 The Ladyzhenskaya-Babuska-Brezzi conditions

The purpose of this section is to show that it is possible to find conditions equivalent to (SP1)
and (SP2) of the Theorem but which will often be preferable in practice.

From the Corollary [A.8.2) we can say that condition (SP2) is equivalent to the existence of a
constant 1 > 0 such that for v # 0:

B*(v) || g
1B @)l .
[0l
Now, if we want to optimize the constant 7, we write from ([2.3.8):
B*(v ’ b
< inf w = inf sup M (2.3.9)
v |lv]m, ve ye, ||Vl || ull a2,
v#0 v#0 w0

Then (2.3.9) is equivalent to (SP2). Arguing in the same way, we can prove that assumption
(SP1) is equivalent, form Corollary and the symmetry of a, to the existence of v > 0 such
that the following inequality holds:

< inf sup UL (2.3.10)
veH1 we py |0y [|wl| a2,y
v#0 w#0

Remark 2.3.2. We point out that in the case when the bilinear map a is not symmetric, (2.3.10))
should be replace by the fact that there exists v > 0 such that both of the following inequalities
hold.

v < inf sup M,
= Ue;fgl wetr, 1Pl wlley
v w#0
v < inf sup el (2:3.11)
= weH: yeil, ol ey 1wl &y
w#0 v£0

Since Corollary[A.8.2 should be applied in the aim to establish the isomorphic equivalence.

The equivalences ([2.3.10)) and (2.3.9) of (SP1) and (SP2) respectively are called the Ladyzhenskaya-
Babuska-Brezzi conditions.

Thus, we get the following alternative version of Theorem [2.3.1]

Theorem 2.3.3. Let Hi and Ho be two real Hilbert spaces. Moreover, we consider two continuous
bilinear formsa : H1xHy — R and b: Hyx Hi — R, a being symmetric. We define the continuous
linear functions A: Hy — H{, B: Hy — H{ and Ak : Ker(B) — Ker(B)' respectively by (2.3.2),

100



(2.3.3), and (2.3.7). Then, the problem (2.3.1) has a unique solution for every (f,g) € H{ x H}
if and only if there exists two pisitive constants v and n such that (2.3.10) and (2.3.9) hold.

Example 2.3.4. Let us consider the elliptic Stokes problem with non-slip boundary conditions for
a domain Q of R? with smooth boundary given by finding (u,p) € HE(Q) x L*(Q) such that:

Jo D(u) : D(¢p) dz — [opdiv(p) de = [quv- fde ve Hi(Q) (2.3.12)
fQ¢div(u) dr =0 ¢€L2(Q)' -9-

System is of the same kind as setting Hy = H}(Q) and Hy = L*(Q)). Moreover,
one can prove that (2.3.10) and (2.3.9) holds, the last being harder to prove. We refer for example
to [31, Chapter IV, Section 3.1.] for a proof. Then, Theorem implies the existence of a
unique solution to (2.3.12)).

2.4 Simulations using Hsieh-Clough-Tocher finite elements

Following the presentation done in [46}, 23], we now recall how to define the structure of reduced
Hsieh-Clough-Tocher (subsequently abbreviated to HCTr) finite elements and how we make use
of them to illustrate our results with numerical simulations. As a reminder, a finite element of
RY is a triple (K, P,¥) such that the following assertions are verified.

(FE1) K is a subset of R with a nonempty interior and Lipschitz boundary

(FE2) P is a finite dimensional vector space whose elements are real-valued functions defined over
K

(FE3) X is a set of dim(P) linear forms over P, which is P-unisolvent, namely:
V (@) 1<i<dim(p)> (9i)1<i<dim(P)) € REMP) 5 $dmP) "3 € P gy(p) = (2.4.1)

and sucht that such a p is unique.

Clearly, we have that |X| = dim(P). In addition, the linear forms (¢;)1<j<dim(p) that describe
the set X are called the degrees of freedom of the finite element.

A HCTr is a finite element (K, P, X) built as follows:

(HCTrl) K is a triangle with vertices aq, ag, and as.

(o]

(HCTr2) For every a € K, we denote by K; the triangle with vertices a, aj7, ajz5, where 1 stands
as the representation of ¢ in Z/3Z. Moreover, we denote by O; the opposite side of a; into
K. Then, we set:

P:={pe CYK)/Vie[1,3]NN, p, € Ps(K;), Onpjo; €P1(0i)}. (2.4.2)
(HCTr3) The set X is given by:
vi={o e LPR)/3G6,5) € (1LINN’, 6 =i},
where (¢ ;)1<i j<3 is given for every i € [1,3] NN by
$in 1 p > pla;)
Gi2 :p > p(ai)(agg — ai)
bi3:p = p'(ai) (a5 — aq)
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Figure 2.1: A representation of a reduced Hsieh-Clough-Tocher triangle

Then, the following result holds.

Theorem 2.4.1 (Ciarlet). The triple (K, P,Y) defined by (HCTr1)-(HCTr3) is a finite element,
namely > is P-unisolvent.

Proof. See [46, Theorem 1]. O

We now wish to illustrate the results of Theorem with numerical simulations. To this end,
we follow a mixed finite element method as presented in section 2.3 More precisely, we pro-
pose a numerical strategy for the computation of an approximate null control for quasilinear
equations . In a first step we approach an approximate control ¢ for the linear equa-
tion by solving a mixed formulation in order to approach the solution of the optimality
condition (2.1.18). Such a method is established in [143] in order to approach an approximated
control by solving a mixed formulation of the following type: find (p,\) € ® x L*(Qr) solution

“’ (35770 Bellay, e
where

a:Px® R, a(p,p) = //qT Xwp@ da dt + (o(T), 5(T)) (2.4.4)

b:®x L*(Qr) = R, b(p,\)=— //T(atgo + div(aVe)) A dz dt (2.4.5)

120 =R, U(p)=—(0(0),5°). (2.4.6)

The space ® appearing in the above relations is the completion with respect to the norm

lell? = // Yeolpl? da dt + (D) + 1|0 + div(aVe) |22 0,
qr

of the following space:
W ={p € C*Qr), o(T) € C*(Q), p=0o0n3r}.

Using Theorem [2.3.3] it can be shown that the mixed formulation (2.4.3) is well-posed, ¢ being
the solution of (2.1.4) corresponding to the final data obtained as the minimum of the functional
J§ given by ([2.1.5)) (we refer to [143] for details).
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In order to numerically compute an approximate control for the quasilinear equation we
employ the mixed formulation of the control problem combined to a fixed point strategy. This
approach is illustrated by several examples in the one-dimensional setting in the space variable.
For the remaining part of this section we consider Q2 = (0,1), w = (0.1,0.5) and 7" = 0.5.

From a practical point of view, the proposed strategy needs to efficiently compute the solutions
of mixed formulations of the form . In order to numerically approach the solutions of such
mixed formulations, we consider structured triangulations 7, of the domain Q7 with A > 0 being
the diameter of triangles forming 7. Then we define the finite dimensional sub-spaces ®;, C ®
and Ay, C L*(Qr) as follows:

O = {¢n € C(Qr) : ¢nlk €P(K) VK € Tp, ¢p =0o0n Sp}, (2.4.7)

where P(T') denotes the reduced Hsieh-Clough-Tocher (HCTr for short) C! finite element space,
and

Ap={X € C(Qr) : M|k €P1(K) VK € Tp}, (2.4.8)

with P (7T) being the space of affine functions with respect to both x and ¢. We then approach
the mixed formulation (2.4.3]) by its following discrete version: find (pp, A\p) € ®p, x Ay, solution
to

a(SOh,@h) + b(¢h7 Ah) = l(@h) (@h c q)h)
{ b((’ph,Xh) =0 (Xh e Ah)~ (2.4.9)

Remark that for every h > 0 the mixed-formulation (2.4.9) is well posed. Nevertheless, in order to
have a convergence of the solutions (¢n, Ap) to the solution (¢, A) a discrete inf-sup should be ver-
ified for the discrete mixed-formulation with a inf-sup constant uniform with respect to h.
Proving such a uniform inf-sup condition is generally a difficult question. An alternative avoiding
the necessity of this condition is to stabilize the mixed formulation by an appropriate term.

We denote by N, the number of right triangles in the triangulation 7, having one side on the
boundary € x {0} and by N, the number of right triangles having one side on the boundary
{0} x (0,7T"). We take Ny such that the vertical side h, of every triangle in 7}, is much smaller
than h, where h, is the length of the horizontal side of the triangle. Then h, = 1/N, and
Ny = N,y 'T with v € (0,1] being such that N, is an integer. Two such triangulations are
represented in Figure 2.2

I'=0.5 I =0.5

x =0 r=1 =0 r=1
(a) (b)
Figure 2.2: Two structured triangulations of Qp with N, = 10. (a) v = 1. (b) v = 0.25.

Since the controls of minimal L? norm for the heat equation oscillate in time near the control
time T, for all the simulations discussed in this work we consider meshes that are more thin in
time than in space. More exactly, we take N, = 320 and N, € {20, 40, 80, 160}.
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2.4.1 Approximation of controls for linear parabolic equations

Let us consider a non-homogeneous diffusion coefficient given by
1 2
a(t,z) = 75 (1+a°+1). (2.4.10)

In order to compute an approximate control for the equation 1|2.1.1: we numerically aproach the
minima of the functional J§ by solving the mixed formulation 1|2.4.9|).

In what follows, we consider two examples of regular initial data to control.

Example 1: linear equation with y°(z) = sin(wx)

As a first example we consider the approximate control of the linear equation (2.1.1]) with initial
data given by

y° () = sin(mz). (2.4.11)

In Table we gather the L? norm of the approximate control y, ¢ obtained for different meshes
and three different values of €. We observe that the norm of the control converges with respect
to the size of the mesh for each value of € € {10_% with 1 < i < 6}. We observe that norm of
the control are larger for smaller valuer of € and they seem to converge with respect to N, and €.
The control y, and its associated controlled solution A computed for N, = 160 and ¢ = 10712
are displayed in Figure 2.3

2 1072 107* 106 10°% 10710 10712
N, =20 0943 1946 2.495 2.690 2.698 2.698
N, =40 0930 1.895 2422 2659 2.678 2.678
N, =80 00935 1905 2437 2690 2.717 2.718
N, =160 0.936 1.908 2.442 2699 2.730 2.730

Table 2.1: Example 1: L?(¢r) norm of the control of the linear equation (2.1.1)) with a diffusion
coefficient a given by (2.4.10)) and initial data (2.4.11f) as a function of € and N,.

1.3e+01 1.0e+00

'IO 0.8
0.6
4
—04
0.2 .
-0.2
0
12 -0.4
-1.5e+01 -6.4e-01

(a) (b)

Figure 2.3: Example 1: (a) Control x,¢ for the linear equation (2.1.1) with a given by (2.4.10)
and initial data (2.4.11)) computed for N, = 160 and € = 1072, (b) The corresponding controlled

solution \.
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Example 2: linear equation with y%(z) = X (0.6,0.9)(Z)

As a second example we consider a localized but still regular initial data to control:

1, if z € [0.6 +6,0.9 — ]
0, if z € (0,1)\ (0.6,0.9)

(0,
0 _ —
Yy (x) = X(O.6,0.9)($) = 60‘( _m) ifr e (0 6,0.6 + )
o (# - Gmrvm=) i e (0.9 —6,0.9),

(2.4.12)

Sl

with § = 0.1 and o = 0.02.

We obtain results similar to the ones in the Example 1 described in Section The L? norm
of the obtained control are listed in Table 2.2 We also depict the control and corresponding
controlled solution computed on the mesh with N, = 160 and ¢ = 1076 in Figure

z 1072 107* 10°% 10°% 10710 1012
N, =20 0250 0.615 0.854 0.947 0.950 0.950
N, =40 0.242 0.591 0.820 0.931 0.941 0.941
N, =80 0244 0.595 0.826 0.946 0.959 0.959
N, =160 0.244 0.596 0.827 0.950 0.964 0.965

Table 2.2: Example 2: L? (qT) norm of the control of the linear equation (2.1.1)) with a diffusion
coefficient a given by (2.4.10) and initial data (2.4.12]) as a function of € and Nj.

£
K o
I [ |

(a) (b)

Figure 2.4: Example 2: (a) Control x,¢ for the linear equation (2.1.1) with a given by (2.4.10)
and initial data (2.4.12)) computed for N, = 160 and £ = 10~'2. (b) The corresponding controlled

solution .

5.5e+00

1.0e+00
0.8
0.6

O—‘M

2.4.2 Approximation of controls for quasilinear equations

We now focus on the controllability of quasilinear equations. First we consider the following
nonlinearity:

F(X) = 15 (1+(1+X2) %). (2.4.13)

Remark that this nonlinear function F' satisfies assumptions (A3)]

In order to numerically approach the control and the corresponding controlled solution we employ
a fixed-point algorithm combined to the strategy proposed in Section 2:4:1] for the approximation
of controls for linear parabolic equations. More exactly, the following algorithm is employed for
the computation of an approximate null control for the quasilinear equation :

In what follows we consider the same initial data as in Section for the control of the quasi-
linear equation (2.2.8)) corresponding to this choice of F. We consider different levels of meshes
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Algorithm 1 Fixed point algorithm for the approximation of the control and the controlled
solution for the quasilinear problem

Require: I, 3%, T, €, imax > imax 1s the maximal number of iterations

a1

140

eIT <— +00

Compute the control and controlled solution (g, Ao) for the linear problem.

while ¢ < iy, and err > tol do > The tolerance tol is taken equal to h?
a < F(|VX])
141+1

Compute the control and controlled solution (¢;, A;) for the linear problem.
err < [Ixw (i — i-1)llL2(4r)
end while
if err < tol then
The algorithm converged.
The control and solution of the quasiliinear problem are (¢, A) < (@i, \i)-
end if

and several values of the penalization parameter €. For each mesh of the domain Q)7 and every
value of € we compute the L? norm of the control provided by Algorithm [I] and we report the
number of iterations needed for its convergence.

Example 3: quasilinear equation with y°(z) = sin(wx)

In this section we consider again the control of initial data in the case of the quasilinear
equation with F' given by . The first question we would want to investigate is
related to the convergence of Algorithm In this purpose we list in Table the number
of iterations needed for the convergence of the fixed point algorithm for four levels of meshes
and for four different values of the penalization parameter e. We observe that, for every ¢ €
{107% with 1 < i < 6} the number of iterations needed for the convergence slightly increases
with N,. This is probably due to the fact that tolerance parameter in the algorithm is smaller for
larger values of N,;. The second observation is that the fixed point algorithm does not converge
for small values of € and fine enough meshes.

€ 102 107* 107% 10°% 10710 1012
N, =20 4 5 6 6 6 7
N, =40 4 6 7 7 8 8
N, =80 5 7 8 9 9 -
N, =160 5 8 9 - - -

Table 2.3: Example 3: The number of iterations needed for the convergence of Algorithm [I]as a
function of € and N, for the control of quasilinear equation (2.2.8) whith F' given by (2.4.13) and

initial data (2.4.11)).

In Table we gather the norm of the approximate control computed for different of values of
N, and €. As for the control of the linear equation we observe a convergence of the norm of the
control with respect to h. The control obtained for N, = 160 and ¢ = 1079 and its associated
controlled solution are illustrated in Figure [2.5
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€ 1072 107* 10°% 10°® 10710 1012
N, =20 0485 1.423 2366 3.011 3.356 3.389
N, =40 0.486 1.390 2.301 2.931 3.317 3.402
N, =80 0.488 1.395 2.316 2.956 3.359 -
N, =160 0.489 1.396 2.319 - -

Table 2.4: Example 3: L?(gr) norm of the control of the quasilinear equation (2.2.8)) with F given
by (2.4.13)) and initial data (2.4.11)) as a function of € and N,.

= —ShbwbhooN® O

o Dwh=—

e+00

9.0e+00
6
4

F.'!.F\!.!! 1 F!!.!.!
H HOLLO000000000

[0}
o

Figure 2.5: Example 3: (a) Control x,¢ of the quasilinear equation (2.2.8) with F' given

by (2.4.13), initial data given by ([2.4.11) and for N, = 160, ¢ = 1075, (b) The correspond-
ing controlled solution A.

Example 4: quasilinear equation with y°(x) = X(0.6,0.9) (%)

This last example consider the numerical approximation of the approximate null control for equa-
tion with F' given by and initial data . For this choice of initial data we
conduct the same experiments as for Example 3. We obtain similar results with the difference
that Algorithm [T has a better convergence for this initial data. As reported in Table [2.5] the fixed
point algorithm converge for e = 1072 and for all the values of the discretization parameter N,.
Nevertheless, the number of iterations augment for N, = 160 and the convergence will probably
deteriorate for smaller values of €.

€ 1072 107* 107% 10°% 10710 1012
N, =20 4 5 6 6 6 6
N, =40 4 5 6 7 7 7
N, =80 5 6 7 8 8 8
N, =160 6 7 8 9 9 -

Table 2.5: Example 4: the number of iterations needed for the convergence of Algorithm [I] as a
function of € and NV, for the control of quasilinear equation (2.2.8)) whith F' given by (2.4.13)) and
initial data (2.4.12)).

The values of the L? norm of the computed controls, reported in Table indicate that controls
converge with respect to N, for fixed values of . This convergence seems faster for larger value
of the penalization parameter €. The control and the corresponding controlled solution associated

to the initial data (2.4.12)) are displayed in Figure
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€ 102
N, =20 0.127
N, =40 0.124
N, =80 0.124
N, =160 0.124

Table 2.6: Example 4: L?(gr) norm of the control of the quasilinear equation (2.2.8)) with F given
by (2.4.13)) and initial data (2.4.12)) as a function of € and N,.

1074
0.419
0.405
0.406
0.406

1076
0.748
0.720
0.723
0.723

108
1.013
0.976
0.983
0.984

10—10
1.166
1.147
1.161
1.163

10—12
1.181
1.185
1.213

Figure 2.6: Example 4. (a) Control x.,¢ of the quasilinear equation (2.2.8) with F' given
by ([@2.4.13), initial data given by ([@2.4.12) and for N, = 160, ¢ = 107'°. (b) The correspond-

ing controlled solution A.
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Si donc c’est le continu, I'étant est multiple. En effet, le continu est divisible
indéfiniment. Mais il y a une difficulté a propos de la partie et de la totalité,
qui n’est sans doute pas relative au propos présent mais qui vaut en elle-méme :
est-ce que la partie et la totalité sont une ou multiples, et comment sont-elles une
ou multiples, et si elles sont multiples, comment sont elles multiples? Et a propos
des parties qui ne sont pas continues la difficulté est aussi que, si chacune de ces
parties est une avec la totalité en tant qu’elle est indivisible, elles le seront aussi
les unes par rapport aux autres. Mais si c’est 'un comme indivisible, il n’aura
en rien ni quantité ni qualité, et par conséquent I’étant ne sera ni infini comme le
dit Mélissos, ni non plus fini comme le dit Parménide. Car c’est la limite qui est
indivisible, non le fini.

Aristote, Physique.

Sedimentation in a quasi-static non-Newtonian fluid

This chapter is devoted to the study of the existence of global weak solutions for the sedimentation
problem in an Ostwald-De Waele fluid, modeled by the following system.

Op+u-Vp=0 in Ry x TV

—div (v(p)|D(u)[P~2D(u)) + Vr = pg  in Ry x TV

div(u) =0 in Ry x TN (3.0.1)
fonudzr =0 in Ry

Plt=0 = PO in TV

In Section 3.1} we will first present the prerequisites concerning Besov spaces on the N-dimensional
torus, which will be useful for analyzing the model in critical regularity. Then, in Section
we will recall some results on transport equations, which we will also use. First, let us define the
notion of a weak solution associated with . Throughout this chapter, in the interests of
simplicity of notation, we regularly omit to specify integration domains where this is unambiguous.
In this case, we will use a double integral to denote integration over Ry x TV and a single integral
to denote integration over TV . Similarly, where there is no ambiguity, we regularly omit to specify
the underlying variables of integration.

Definition 3.0.1. We consider a dimension N > 2 and an exponent q € [1,+o0]. Let pg € L7 be
an initial datum. We say that a function p € L>°(L?) is a weak solution of the Stokes-Transport
problem (3.0.1)) associated to the initial datum pg if the following conditions are satisfied:

(i) There ezists a velocity field u : Ry x TN — RN such that v(p)|DulP~! € LL (R4 x TV)
and which is, for almost every time t € Ry, a weak solution of the Stokes equation: in other
words div(u) = 0 in DRy x TV) and, for any divergence-free ¢ € DRy x TV, RN), we

have
//V(p)|Du|p_2Du : Do dxdt = //pg-qbdxdt;

(ii) The velocity field isu € L>®°(LY) satisfies f udx =0 and p is a weak solution of the transport
equation with initial datum po, that is, for all ¢ € D(R. x TN, R), we have

// <P8t¢ +pu - w) dadt + /po¢(0> dz = 0.

109



We aim to prove the following result, which is the main theorem of this Chapter.

Theorem 3.0.2 ([54]). We work in dimension N > 2. Consider p € (1,400) and a function
v e C®(R\ {0}) N COT(R) N L>®(R) such that v(|r|) = |r|Y for all r € [~1,1], ¥ = min(y, 1),
v = 0.

Consider exponents q € (1,2) and o € [1,400| such that one of the following conditions is satisfied:

(i) Sub-critical case: either we have the strict inequality

1 w11

- (1 7) S o<1 3.0.2

P ( + o + q N ( )
(11) Critical case: either we have equality

1 w11

(1 f) o 3.0.3

p ( Tt qg N ’ ( )

and in addition the condition ¢ > ]\%7]4\:2 holds. In particular, this is always true when N = 2.

Then, for any initial datum py € LI(TVN) such that 1/py € L (TYN), there exists a weak solution
p € L>®(Ry; LI(TN)). In addition, if po € LY(TN) N L"(TN) for some r € [1,400], then

ol ooy = llpollr-

Section will be devoted to the proof of this last. We point out that (3.0.1) being an active
scalar equation, we can express the velocity field u as a function of p.

Remark 3.0.3. The present theorem is the result of joint work carried out with Dimitri A. Cobb
by the present author, and was the subject of a research stay at the University of Bonn (Germany).
This work, together with other results, will be the subject of a pre-publication.

3.1 Introduction to Besov spaces on the torus

In this section, we introduce the notion of Besov space, focusing on the cases which are relevant
in view of a definition over the N-dimensional torus TV. First, and in order not to lose generality,
we establish the results on RY, via the non-homogeneous Littlewood-Paley decomposition and
the associated Besov spaces. Finally, we will see that this approach immediately substitutes on
the torus.

First of all, let us recall the notion of Fourier multiplier which will be used throughout this chapter.

Definition 3.1.1 (Fourier multiplier). Let m : RN — C be a bounded function. Then, the Fourier
multiplier associated to m is the operator denoted m(D) and defined, when it makes sense, by:

vu € 8'(RY), Ve € RY, m(D)u(€) = m(€)a(€).

We also say that m is the symbol associated to m(D).

Let us present the notion of Littlewood-Paley decomposition some of its well-known properties.
This decomposition is based on a dyadic partition of unity in the frequency variable, in the sense
that if we choose some compactly supported and radially symmetric smooth function x € D such
that r — x(re) is decreasing for all e € RV, such that

x(x)=1for |z| <1 and x(x) =0 for |z| > 2,
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then, by setting p(£) = x(&) — x(2€) and ¢;(£) = ¢(277¢), we obtain the following partition of
unity in the frequency variable (see [I3, Proposition 2.10.])

L=x()+ > 9;(&). (3.1.1)

Jj=0

This last holding for all £ € R?. This partition of unity gives rise to a set of operators: we define
the Littlewood-Paley blocks by

A;j=0 if j < -2,
Ay = x(D), (3.12)
Aj=g;(D) forj>0.

We also define the homogeneous low frequency cut-off operator S; = x (27! D). Let us also make
the following observation: the operators A; and S; are respectively scaled versions of ¢(D) and
A_1, and thus are uniformly bounded in the LY — L4 topology for all ¢ € [1,400].

Hence, we can write, at least formally for instance

Id= ) A,

Jj=—-1

The above relation being known as the non homogeneous Littlewood-Paley decomposition, and
holds over the space of tempered distributions S'(RY) (see [13, Proposition 2.12., Proposition
2.13.)).

One of the main properties linked with Littlewood-Paley decomposition is given by the fact that it
is possible to estimate the derivatives of a distribution in terms of its frequencies. More precisely,
given a distribution u, the Fourier transform of Aj;u has its support included in an annulus of size
more or less 27, thus the derivative of u will act as a multiplication by 27. This is the object of
the following result.

Proposition 3.1.2 (Bernstein inequalities). Let 0 <r < R. There exists a constant C > 0 such
that for any nonnegative integer k, any couple (p,q) in [1,+00]?, with p < q, and any function
u € LP, we have, for all A > 0,

11
supp (@) € BOAR) = [Vullze < ¥ AHG0) s
supp (@) C{€ e RN |[rA < €| < RAY = CF I 0ullze < ||[VFulze < CEFLN 0|10 .

Proof. See [13, Lemma 2.1.] O

We are now able to define the Besov spaces.

Definition 3.1.3 (Non-homogeneous Besov space). Let s € R and 1 < p,r < 4o0. The non-
homogeneous Besov space B, , = B;,,(RN) is defined as the set of tempered distributions f € S’
for which

1735, = || @ N85 fllze) 1o, < Hoo-

We then have the following property.

Proposition 3.1.4. Let us consider (s,p,r) as in Definition|3.1.5, Then, B, , endowed with the

norm || - ||ps, is a Banach space.

T
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It can be proved, even if we will not use this notion, (see [165] Section 2.3.3., Section 2.5.7.]) that
for 0 < p < 1, the space B, , can still be well-defined but is no more a Banach space (nevertheless,
it is a quasi-Banach space).

As with the Sobolev spaces WP, the exponent s € R acts as a regularity index and p as an
integrability exponent. In fact, a consequence of the Bernstein inequalities are the embeddings

By, CW*P C By, (3.1.3)

which holds for all £ € N and all p € [1,400]. Moreover, another consequence of Proposition
is that it leads to some embeddings between Besov spaces. More precisely, the following result
holds.

Proposition 3.1.5. Consider s; € R and q1,q2,71,72 € [1,4+00] such that ¢ < g2 and r; < ry,
then the inclusion BS! . C B32  holds with

q1,71 q2,72
1 1
S92 2281—d<—>.
q1 Qg2

Proof. See [13, Proposition 2.71]. O

Moreover, the following interpolation inequality holds.

Proposition 3.1.6. Consider real numbers s1 < sy and p,r € [1,+00]. Then, for all § € [0, 1]
and s :=0s1 + (1 — 0)sa, we have

0 —0
vre By, sy, < 170 17152

p,r

Proof. For f € B2, we write

. . isr(1— (1—0
2957 A fll5e = 2570 | A £l 275 OO As £

etd A=
Then it leads to the result using the Hoélder inequality on the sequences with exponents % =

4 1-0
Z+ N

T

Let us also point out that there exists some embeddings that are more precise than those given
in (3.1.3). In particular, we will devote a special attention to the role of the third index r of the
Besov space B, ,..

Proposition 3.1.7. Consider q € [1,2] and r € [2,4+0c0[. Then we have the following continuous
embeddings:

L'CB), and B),CL.
and also

B),CL! and L"CB,.

Proof. See [13, Theorems 2.40 and 2.41]. O

Proposition 3.1.8. Consider a Fourier multiplier m(D) whose symbol is a smooth function away
from the origin m € C®° (RN \ {0}) such that there is an order M € R with the following property:
for all o € NV with |a| < d+ 2, there exists a constant Cy > 0 with

VA0, [0%m(€)] < Calg[MTI0.
Then, for any Lebesque exponent q € [1,+00] and any f € S', we have
Vi=0,  |m(D)A;fllLa < C(@)2"7 | Ajf||La-
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Proof. See [13, Lemma 2.2]|. O

Proposition allows us to show continuity properties on Fourier multipliers, except that the
proposition only deals with dyadic A; blocks with j > 0. To understand low-frequency behavior,
other techniques are required, such as the use of Bernstein inequalities. We can also turn to the
theory of Calder6n-Zygmund, whose essential result is quoted below. The theorem will be used
elsewhere.

Theorem 3.1.9 (Calderéon-Zygmund). Consider a Fourier multiplier m(D) whose symbol is a
homogeneous function of degree zero m € C®°(R¥\{0}). Then for any 1 < q < +o0, the operator
m(D) : S — &' has a unique bounded extension

m(D) : LY — L9,
Proof. This is a consequence of [102, Theorem 4.2.2.]. O

Let us now introduce the paraproduct operator, which relies on the observation that the product
of two elements belonging into &'(R%Y), denoted thereafter u and v, can be written

uv = Ty(v) + To(u) + R(u,v), (3.1.4)

where we set

Tu(v) = ZSj_luAjv, and R(u,v) == Z Z Ajuljv.
J

Jo i =jI<t

Where 7 and R are respectively called the paraproduct and the remainder operators. The
equation (3.1.4) is called the Bony decomposition, and follows from [29]. In the end, we can think
of (3.1.4) as a kind of Leibniz formula for temperate distributions. The following result holds.

Proposition 3.1.10. For any (s,p,r) € R x [1,4+00]? and t > 0, the paraproduct operator T
maps continuously L x By, in By, and Bgo'ioo X By, in B;;t. Moreover, the following estimates
hold:

T

ITa()llB;, < Cllullze VU] g
as well as

C C
Iy < Slullpz 190l and @l < =l Vel iy

For any (s1,p1,m1) and (s2,pa2,72) in R x [1,400]? such that sy + sy > 0, % =141 <
and % = % + % < 1, the remainder operator R maps continuously By . x Bp?Z . into B;},j’”.
Also, we have the estimates over the remainder:

IR, )l ez S gy, 0l

. . _ - : S1 52 )
In thoe case s1+ s = 0, provided r = 1, operator R is continuous from B! . X Bp? . with values
in B -

Proof. See [13, Theorem 2.85.] O
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Note that so far we have only mentioned results valid on RY. However, we are (also) interested in
Besov spaces on the torus. In fact, the construction of Besov spaces on the torus is in every respect
similar to that on RV, Let us start by noting that on the torus, we have S'(TY) = D'(TV). It
then suffices to consider the decomposition of an element u of D'(T%) into a Fourier series, i.e.:

u(z) = Z e where iy, = ]er e M u(y) dy,

where we point out that Z% is the dual lattice of TV. Then we can define the periodic dyadic
blocks and the low frequency cut-off operator as follows

AP = 3 (2 e = f )t —y) dy (315
! keZN ™
per, _ ~ er . __ —7 ~ ik-x
ST =g + Z Ai’ u= Z X (277 k)uipe™ ", (3.1.6)
I<j—1 kezZN

where we wrote hj(y) = Y ,czv 0(277k)e?* Y. Also, one can associate by duality to every u in
D'(TV) a unique periodic distribution uP® defined as

uP (x) = Z u(z + ) for x € [—m, 7.
~vye(2rZ)N

Over the last, both periodic and nonhomogeneous Littlewood-Paley decomposition holds. More-
over, periodic blocks and nonhomogeneous blocks coincides in the following sense.

Proposition 3.1.11. For every u belonging to S'(RN), we have:

Vi€ Z, (p(277D)u)"" = AP P,
J

Proof. The proof relies to an application of Poisson formula. We refer to [62] Proposition 1.2.2.]
for details. 0

With this in mind, we can then see that all the results hitherto presented on RY remain valid
on TV. It should be pointed out, however, that this is not the only way to establish a periodic
theory from that on RY. In fact, it is possible to establish a link between certain periodic distribu-
tions and distributions that damp out at high frequencies, which amounts to considering weighted
spaces. We refer the interested reader to [165, Sections 9.1.3. and 9.1.4.] for more details on the
latter approach, which we won’t be using in our study.

The reader may wonder why we do not use here the notion homogeneous Besov spaces. The reason
is that one of the major interests of such spaces is the very fine study of low frequencies, i.e. around
zero. However, there is no special interest here in proceeding in this way: since frequency space
is a lattice, analysis of low frequencies is reduced to k = 0. In particular, functions f having a
null mean value

foy= fdz=0

TN

have no low frequency component.
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./

Figure 3.1: Homogeneous decomposition for the torus

We refer the interested reader to [13], 55l [159] for further discussions about Besov spaces theory,
particularly in the whole space case.

3.2 Some results for transport equations

In this section, we set out some results concerning transport equations, mainly taken from [75].
We are concerned with the linear transport equation

{th +div(fu) =0 (32.1)

f(O) = Jo

where u is a divergence-free vector field div(u) = 0, and will be assumed to have regularity
u € LAL(WHP) with respect to space, for some 3 > 1. The first result we mention is a well-
posedness theorem for (3.2.1]).

Theorem 3.2.1 (Di Perna-P.L.Lions). Let ¢ > 3’ and consider an initial datum fo € LY. Then
there ezists a unique weak solution f € L°°(L?) of the transport equation.

The proof of this Theorem relies on a regularization procedure: let (1¢)c~o be a mollification
sequence on TV. Then, by taking the convolution of the transport equation, we obtain the
system

Ocfe + div(feu) = [u- Vv * ] f,
where f. = 1 * f and the commutator is to be understood in the weak sense, namely we have
[u -V, e * ]f = div(feu) — e * div(fu).

Then it is a matter of proving that the commutator goes to 0 as the regularization parameter
does. We refer to [75, Proposition II.1. and Theorem II.2.| for details. The following lemma
shows that the commutator in fact converges to zero as the mollification parameter does.
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Lemma 3.2.2. Assume that u € L*(W'P) and fir a function g € L>®(L9) for some ¢ > . We
then have
[u-V,pe*x]g—0  in L*(L*),

where a is given by i = % + %.

Proof. See |75, Lemma 11.1.] O

Finally, we cite one last result, which has to do with propagation of regularity: the solution f can
be as regular as the velocity field and the initial datum allows.

Theorem 3.2.3. Consider s > 1+ and assume that u € L'(H*) and fo € H*. Then the unique

solution [ of the transport equation (3.2.1) given by theorem has regqularity f € LS (H®)
and we have, for every T > 0,

T
[ fllzge < Il follms exp (C/O ||Vu||Hs_1dt> .

Proof. See e.g. [13| Theorem 3.19.]. O

3.3 Existence of weak solutions

The aim of this section is to show the existence of global weak solutions of , that is we aim
to prove Theorem The whole proof will be divided in several steps. First, we establish some
a priori estimates in Subsection [3.3.I] then we will show that the steady problem is well-posed
in Subsection [3.3.2] in order to prove that it defines in a suitable sense an active scalar equation,
we establish some continuity property in Subsection [3.3.3] Then in Subsection we prove
that there exists some approximate solutions, and we show the strong convergence of densities in
Subsection [3.3.5] Finally, we conclude the proof of the Theorem in Subsection [3.3.6]

In this section, we will exceptionally use the letter d to denote the dimension of the ambient space,
the letter N being dedicated to another use for the sake of clarity. Also, for any p > 1, we will
note in this section p’ the real number satisfying:

1 1
-4+ = =1,
p P

which was hitherto noted by the letter ¢, which will be used here to another effect as well.

3.3.1 A priori estimates

Let us start by establishing a few a priori estimates that will be useful later on.

Proposition 3.3.1. Consider a smooth initial datum pg associated to a smooth solution p and
smooth velocity and pressure fields u and w. Then, under the assumptions of Theorem[3.0.2, we
have the following inequalities:

120l oo (L) < [lpollze (3.3.1)

and
o4 1
1

1D zs S 111/p0l| 22 Nooll7a" (3.3.2)

where 1 < B < +oo is defined by the relation % = %(1+ %) In addition, we also have the

iequality
[ull o S 1D ()l s (3.3.3)
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Remark 3.3.2. Notice that, when the viscosity coefficient v(p) is degenerate, that is when v > 0
and o < 400, then we may experience a loss of regularity when compared to the usual p-Laplacian
estimates: the velocity field is not WP but only W5,

Remark 3.3.3. Inequality (3.3.2) is consistent with the equation’s “scaling ” properties. Since
the wviscosity coefficient behaves, at worse, as vi|p|Yin a neighborhood of {p = 0}, we see that the
Stokes equation

— div (v(p)| D()/"*D()) + Vr = pg

behaves roughly as (in physicist notation)

[density]7 X [velocity]p_l = [density],

so that the velocity is “homogeneous” to a density at the power %. This is absolutely consistent

with the righthand-side of (3.3.2)), which also scales as a density to the power g.

Proof (of Proposition . First of all, thanks to the fact that the velocity field is assumed to
be divergence-free, the flow map associated to u preserves the Lebesgue measure, and therefore
all Lebesgue norms. We deduce that

Ip(lze = llpollze  for all t € Ry, (3.3.4)

For the same reasons, we also have

11/ o = [[1/p0ll e (3.3.5)

Now, let us focus on the finding estimates for the velocity field. For this, we perform an energy
estimate in the elliptic equation: by taking the scalar product of the Stokes equation by u, we
obtain

[ o120 Va= [ pg-u.

Because the symmetric and skew-symmetric spaces form orthogonal subspaces for the d x d matrix
scalar product, we deduce that

[vorptr = [ pg-u (33.6)

There will be two steps in our estimates. First of all, we will show how the norm ||D(u)||;s can
be controlled by the lefthand term in this equality. Once we have done that, we will focus on the
righthand side term and examine how to close the estimates.

We then start by finding an upper bound for ||D(u)||;s. The idea is to introduce the viscosity
multiplier v(p) in order to obtain force the apparition of the lefthand side term of (3.3.6). We

have:
1

v(p)/P
We remark that the LP norm of the first factor v(p)/?D(u) is exactly (up to the 1/p-th power) the

lefthand side of (3.3.6)). On the other hand, because of our assumption on the viscosity multiplier
v(r), we may bound the last factor in this product by a power of 1/p, namely

D(u) = v(p)"/* D(u)

1 1/v/?
< .
v(p)/P = |p[/P
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so that the L7P/7 power of v(p)~'/? will exactly be the L% norm of 1/p (again, up to the 1/o-th
power). Applying Holder’s inequality, we immediately obtain

ID@)lls < [[v(p) D) 11/ 1017 ]] foprs

S (/ I/(p)|D(u)|P> v 11/, (3.3.7)

where the exponent ( is defined by the relation

1 1 1
=—+ L =—(1+1).
B p op p o

Note that this inequality is homogeneous in the sense of Remark [3.3.3]

The second step is now to bound the righthand side in the energy balance equation (3.3.6)).
Because p is bounded in L9, we will try to show that v is bounded in L7 . With that in mind, we
express u as a function of the strain rate tensor: keeping in mind that div(u) = 0, we may write

u=—2(—A)"tdiv(D(u)). (3.3.8)

In other words, u is the image of D(u) by a Fourier multiplier of order —1. This makes possible
expressing the regularity of w in terms of that D(u) € L?. Two cases must be distinguished,
according to whether the sub-critical or the critical assumptions of Theorem hold.

First case: critical case. First of all, note that the condition ¢ > f—fQ is equivalent to the

inequality é — é < % In particular, we have 8 < 2 thanks to the relation %4— % —é = 1. Therefore,

applying the Besov embeddings of Proposition we obtain that L? C Bg o- Propositions|3.1.5
and therefore provide the chain of embeddings

Bi,CBY,CL?,

since the exponents satisfy 7= % 1. This leads us to the bound |[ul, ¢ < ||D(w)|s, and so,
by plugging this in the energy balance equation ([3.3.6)), we have

/V(P)ID(U)!pz/pg-uS lollzallull Lo < lpllzallD(u)ll e

Second case: sub-critical case. In that case, the Proposition provide the inclusion

1 /
Bj o C By o C LY

with s = d (1 — % — é + é) > 0. In particular, thanks to Proposition [3.1.8] we obtain the same

inequality as above:

/ v(p)|D(w) P = / pg-u < lollzelull o < Dol ol D ()]l 5.

In both cases, we may use these estimates in inequality (3.3.7) in order to finish the proof of the
proposition: first we write

ipies < ([ vorowr) el

2
SID@) 2l EE |1
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and then we apply Young’s inequality ab < ea? + %bpl in order to absorb the ||D(u)| ;s factor in
the lefthand side, and finally get,

/ / 2
D) zs S oI5 ||1 /0] 727

o 7 (3.3.9)
S el g 11/ellze"-
The upper bound can be evaluated at initial time ¢ = 0 thanks to (3.3.4) and (3.3.5). O

3.3.2 Well-posedness for the Stokes system

Having this in mind, in order to show that we do define an active scalar equation via system
(3.0.1), let us begin by proving that the non-Newtonian Stokes problem

{— div (v(p)|D(uw)P~*D(w)) + Vr = pg (3.3.10)

div(u) = 0.
has a unique solution satisfying suitable estimates. Namely, the following Proposition holds.

Proposition 3.3.4. Consider 1 < p,q < +00. For any p € L there is a unique solution u € WP
such that f udz =0 and satisfying

[l S 151/ (3.3.11)

We introduce the following notation: we call ¥(p) the unique solution associated to p, thus defining
a nonlinear map U : L9 — WA,

Proof. We introduce the real reflexive Banach space

Y, e {U cwhl ) ][de — 0, div(v) = 0, /y(p)\D(v)|de < +oo} , (3.3.12)
endowed with the norm )
loly = ([ vioID@par)”, (3.3.13)

which is the norm involved on Y, by the one defined over LP(T9, v(p)dx), since v(p)dz is a
measure from the positivity almost everywhere and the boundedness of v(p). We point out that
the divergence free and mean value integrals assumption arising in the definition of ¥, make sense
since from our a priori estimates we have Y, C WL8 < D'. Then, let us point out that the
functional A, defined over Y, by

Ap(u) := p/l/(p)D(u)\p dz — /pg ~udz, (3.3.14)

which can be rewritten as .
Ap(u) := 5”“”% - /pg ~ude, (3.3.15)

so that A, is a strictly convex functional, since for every (u,v) € Y, u # v and every 6 € (0,1):

Ay(Qu+ (1 —0)v) = ;|0u +(1— 9)v||7;,p — /pg (Ou+ (1 —0)) do

1 1
<o (Sl = [ og-uds) + @0 (Slolt, = [ pg-vac)

= 0A,(u) + (1 0)A,(v).
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The second inequality above being true since the function ¢ — P defined over R, is strictly
convex. The Euler-Lagrange formulation associated to the minimization of A, leads, computing
the derivative in the direction of a test function, to the fact that each of its minimizers are a

weak solution of (3.3.10), and vice versa (thanks to the convexity of A,). It remains to prove the
existence and uniqueness of such a minimizer, but we underline that A, is coercive over Y, since

we get from (3.3.15)), using Holder’s inequality
Lo
Aolu) =l el - (3:3.16)

Then, thanks to (3.3.3]), we get from ([3.3.16))

Ap(u) Z ully, = llpllze | D(w)llzs (3.3.17)

Using once again our a priori estimates it follows from (3.3.17) that, combining (3.3.5)) and (3.3.7)

A 2 Jull, — ) ( [ oD ac) 3:318)

Finally, Young’s inequality applied in the right-hand side of (3.3.18) leads to the wished result,

namely

Ap(u) 2 (1 =€) |lully, — C(e,p', po)- (3.3.19)

The previous computations mean that A, is a p-coercive functional over Y,. Hence, it follows from
[84, Section 8.2.2., Theorem 2, Theorem 3| that it admits a unique minimum in Y, once again
denoted u, this last being a weak solution of (3.3.10)), which is hence unique. Testing now into

the weak formulation against u, then using both estimates (3.3.3)) and (3.3.9) leads to (3.3.11]).
O

Remark 3.3.5. Observe that Proposition[3.53.4) can also be proved much more quickly, by noting
that A, defines a strictly convex potential over Y,, and is therefore a strictly monotone operator
according to Proposition[1.1.33. The result is then an immediate consequence of Theorem[I.1.57
However, the proof we proposed here is elementary.

3.3.3 Continuity of the inverse nonlinear Stokes map

In the above section, we have shown that the nonlinear Stokes-type equation can be uniquely
solved: with the notations of Theorem [3.0.2] for any p € L9, there exists a unique u solution of
the Stokes equation (3.3.10) which lies in the space W8, where % = ;1) (1 + g) In other words,
we have defined a nonlinear map
L1 — WA
v (3.3.20)
p— u.

The purpose of this section is to prove a form of continuity property for the map W. Of course, it is
too much to expect that ¥ is norm continuous LI — W1#. However, by relaxing the topologies,
we may still obtain a continuity result. The following Proposition is based on the Minty’s trick

(see Lemma [1.1.5)).
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Proposition 3.3.6. Let us assume that p,q,v,0 are defined as in Theorem [3.0.9 and B as in
Proposition (3.3.1, We consider a sequence (pn)nen such that there exists p, — p in L1. Then,

one have for W given by (3.3.20)
U(p,)—=U(p)  in WHP, (3.3.21)

In other words, the nonlinear map ¥ 4s L1 — Wq},’ﬂ continuous, where Wuljﬁ 1s the Sobolev space
WL equipped with its weak topology.

Proof. First, let us introduce for ¢ € Dg;y := {¢ € D/ div(p) = 0} the functional

Xo(9) = / v(pa) (1D(n) "2 D(un) = |D(@)P72D(9) ) : (D(un) ~ D(#))dw  (3.3.22)

where u, = ¥(p,) is the unique solution of (3.3.10)) associated to p,, as given by Proposition

Thanks to inequality (3.3.11) we are sure that the functional X, is well-defined on the
space Dgy;v- In addition, the functionals X,, are nonnegative due to the following lemma.

Lemma 3.3.7. Consider n € N and 1 < p < 4+o0. Then for every regular and divergence-free
function ¢ € Dgiy, we have a monotonicity inequality:

Xo(6) > 0. (3.3.23)

Proof. We begin with the observation that the functional

1

A,(0) = [ V() D@) da (3.3.24)

is convex because p > 1. Furthermore, A,, acts as a potential with respect to X,,. This means
that X, (¢) is formally given by the relation

Xn(0) = (Ap(un) — A7 (9), un — 9), (3.3.25)

where A/ (f) is the differential of A,, evaluated at a point f. Still formally, the convexity of A,
shows that the above is non-negative X,,(¢).

The argument as it is is not entirely complete: this is because while ¢ € C*° is very regular, it
may not be the case of u, = ¥(p,) which is defined as the unique solution of a nonlinear elliptic
problem. However, we may argue by density: the functional X, is continuous on the space

Vo= {f €W, Df e 17(v(pn)da)},
and the viscosity multiplier v(r) is bounded, so C* is a dense subspace of L?(v(p,)dx). It is

therefore enough to show that the brackets in (3.3.25)) are non-negative when assuming that u,
is smooth. O

Using the weak formulation of (3.3.10) into ([3.3.23)), we get for all ¢ € Dgiy:

Xn(0) = /pn(un —¢)gdx — /v(pn)\D(¢)lp‘2D(¢) . (D(un) — D(¢))dz >0 (3.3.26)

We can now pass to the limit on n in this expression. First, we have that p, — p a.e. since
pn—p in L, and D(u,) — D(u) in L?, in view of (3.3.7) and (8.3.11)). Also we have that
v(pn) — v(p) in LP'. Thus we get:
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[ eD@P D) s (D) - D@ ds — [ v(@)D@IP2D(0) : (D(w) ~ (@) da
(3.3.27)

Moreover, we recall that from (3.3.7) and (3.3.11) we have the boundedness (u,) ¢ W8 ¢ LY
which leads to weak convergence u,, — w in L7 , up to an extraction. Also, let us consider a family
of functions (n)r>o chosen as:

m: € Cy(R)
O<m,<1imR (3.3.28)
ng(r) =7 in [k, k]

the bounds given into the previous definition being uniform over k. Then, one can write:

Prtin — pu = (pn — Mk(pn)) un + Mk (pn)un — M(p)u + (k(p) — p) u (3.3.29)

Then, let us point out that we have by dominated convergence Theorem:

o) =l S [ loftdz > 0 (3:3.30)
{lp|>k} k—+o00

and that nk(pn)njoonk(p) in L% so that n(pn) — pn — mk(p) — p in L2, Then, it follows that:

nelpn)un —  ne(p)u  in LP. (3.3.31)

n—-+4o0o

It follows that such a convergence also holds in the topology of D’. We therefore deduce from ,
(3.3.29), (3.-3.30), (3.3.31) and (3.3.3)):

[(ontn — pu, V)| < |lpn — n(on) || Lallunll o 11 oo + 10 (pn)un — ne(p)ull o l|¥]] e
+ () — pllcallull Lo 19l o
S Mlon = nk(pa)llLall D (un) || a9l Lo + 1k (pn)un — nx(p)ull Lo ll91l e
+ () = pllzallD(w)| 5|9l Lo

S C(PO)(HPn = Nk(pn) lLa [l oo + 1k (on)un — i (p)ull Lol Lo

+ lmep) = plsll ] o) (3.3.32)

where in the previous equation the bracket stands as the duality bracket over D’ x D. Taking the
upper limit over n — 400 into (3.3.32)) leads, thanks to (3.3.30]), to

Pty — pu in D’ (3.3.33)

From (3.3.33)), (3.3.27)) and (3.3.26)), we get for all ¢ € Dyjy:

Xo(#) — X(9) = / plu— d)gdz — / V(D) DO)P2D() : (D) — D(&))dz >0 (3.3.34)

n——4o00
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In the previous expression, the limit must be understood in a weak sense, in view of the conver-
gence in measures. Moreover, one can check that:

_ / /1 ‘1 —1,° l—p?/ ,
(o) ID(un) PHIT < Nl /V(Pn)\D(un)!p(hj < [Vl HPOIHLS )Hpoll’iq (3.3.35)
Then up to an extraction we get from ([3.3.35)) that there exists y € L¥ such that:

v(pn)|D(un) P 2D(uy) — x in LY (3.3.36)

The main objective is now to show that x = v(p)|D(u)[P~2D(u), and that we have the convergence
desired in the equation. Then, testing into (3.3.10)) we get that for all test function ¢ € Dy;y:

/V(Pn)!D(un)IPQD(un) - D(v) dw—/pngwdx (3.3.37)
Thus, from (3.3.33) and (3.3.36)) we get in D,
/X :D(y)dx = /pgwdx (3.3.38)
Combining (3.3.38)) together with (3.3.34) we get:

X(@) = [ (x: Dlu=6) - vp)ID@)P*D(@) : (Dlu) - D)) do > 0 (3.3.39)

The resulting functional X is the derivative of a convex potential, tested against u—¢. To demon-
strate our result, we would now like to test into (3.3.39) against some well-chosen ¢ functions.
So, choosing ¢ = u + A, for ¢ € Dgiy and A > 0 in (3.3.39)), then divide by A leads to:

- / (x: D) + v() Dl + ) P2Dlu+ M) - D)) de > 0 (3.3.40)

Passing to the limit as A — 0 into (3.3.40f) leads to:

/V(p)|D(u)|p2D(u) :D(y)dx > /X :D(¢) dz (3.3.41)

Following the same line of arguments with ¢ = v — A leads to the converse inequality, and then
to the equality:

/Z/(p)|D(u)|p_2D(u) :D(y)dx = /X :D(y)dx (3.3.42)

Now, thanks to (3.3.37)), we obtain by means of (3.3.42)) that u satisfies the weak formulation of
(13.3.10)), namely

[ ¢@ID@P D) : D) - pgv) do =0
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Remark 3.3.8. We point out that the structure of the proof of Proposition s quite robust.
In particular, if we had added to the Stokes equation an elliptic term, say —vAF for some constant
vg > 0, so as to have instead

—vpAFu — div (v(p)|D(uw)[P~2D(u)) + Vr = pg
div(u) =0,

then the result would still apply: one could use the methods of Proposition[3.3.4] to obtain, for every

p € L1, the existence and uniqueness of a solution u € LP(v(p)dz) N H*, noted ¥o(p), and a

strasghtforward adaptation of the proof immediately above would yield continuity Vg : LY — Wllu’ﬁ
regardless of the value of vy.

3.3.4 Approximate solutions

In this part, we will construct a family of functions regular (p,,) that solve an approximate system,
namely
Opn, + div(ppuy,) =0
Up = SpUp,
— div (v(pn) | D (o) P2 D(v0)) + V' = pg
div(vy,) = 0.

In the above, the operator .S, is the Littlewood-Paley approximation operator defined in (3.1.6]).
We equip system (3.3.43)) with the following initial values: for every n,

pn(0) = Sppo. (3.3.44)

It follows that the approximate initial data are uniformly bounded in LY with respect to g, that
is [|SnpnllLe S lpollre. Our reasoning is the following: formally, taking the limit n — o0
lets us recover the non-Newtonian Stokes-Transport system (3.0.1). In addition, the velocity
fields u,, are smooth functions with respect to the space variable (they are in fact trigonometric
polynomials), and so the solutions p, are also smooth functions. In particular, the a priori
estimates of Proposition hold for the approximate solutions.

(3.3.43)

However, the approximate system (3.3.43) is a set of highly nonlinear PDEs, so that even the
existence of solutions to (3.3.43]) is not obvious! In the next proposition, we make sure that
(13.3.43) does indeed have global smooth solutions.

Proposition 3.3.9. Consider any ¢ > 0. Then the initial value problem — has a
solution p, € L>®°(L?) N VVlifo(Hz) such that, for almost every time t > 0, the function v, is a
solution of the Stokes system (3.3.10) with datum p,. In particular, inequality holds: for
almost all times,
N
1

1 .
[ oD@ S ol 2713/l
and so inequality (3.3.7) provides v, € L>®(W15).

Proof. In order to show existence of solutions to the approximate system (3.3.43)), we introduce
another approximate system, for which solutions will be shown to exists through the Cauchy-
Peano theorem. Let us consider, for any fixed n and for all N > 1, the system

atpN + En diV(pNuN) =0

uN = SpUN

—+AFuy — div (v(pn)|D(vn)[P72D(vN)) + Vn = png
diV(UN) = 0,

(3.3.45)
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where Ey is a Fourier truncation operator defined by

~

VieS,  Exf(&) =Tlign/(©).

and k > 1 is an exponent which will be fixed later on. In fact, Ey is the L?-orthogonal projection
on the space of functions whose Fourier transform is supported in the ball B(0, N). We equip

system (|3.3.45)) with the initial datum

pn(0) = EnSnpo. (3.3.46)

STEP 1: defining an ODE system. First of all, we show that for any N > 1, system (|3.3.45)
possesses a global solution py. We will do this by means of the Cauchy-Peano theorem applied in
a subspace of L2. We define a map Fy : L? — L? by the following steps, which will be justified
immediately below:

1. For any py € L?, we define vy to be the unique solution of a Stokes system with improved

viscosity:
{;A’%N — div (v(pn)|D(vn)P2D(vN)) + Van = prg (3.3.47)

div(vy) = 0;
2. We then define the trigonometric polynomial uy by the relation uy = Spvn;

3. Finally, we set Fn(pn) := div(pyupn), which is a trigonometric polynomial, and hence in
L?.

In the three steps above, only the first one requires additional explanations, as Proposition
does not give per se solutions to this modified Stokes equation. However, the proof of Proposi-
tion [3.3.4] can be adapted with straightforward modifications, simply by replacing the functional

(3-3.14) with
_ ! k24 L p_/ .
A= oy 194242 [ v@I@p = [ pg-u

and by working in the space Y, N H* instead of . Because we have assumed that ¢ < 2,
the same computations as in the proof of Proposition W show that the functional A, is strictly
convex and coercive. We deduce, in the same way, that for every py € L2, system ({3.3.47))
possesses a unique weak solution vy € H* N Y, that satisfies [vny =0 and

lonll e S VNl 2

Remark 3.3.10. Introducing a penalized term as an improved viscosity by adding —%Ak in the

Stokes problem is a necessary step: it allows vy to be estimated in some space by an upper bound

that does not involve ||1/pn||Lo, thus enabling the Cauchy-Peano theorem to work in the energy
2

space L.

STEP 2: applying the Cauchy-Peano theorem. If we wish to apply the Cauchy-Peano
theorem to the ODE 0;pn = Fy(pn), we must check that Fyy : L2 — L? is continuous. Consider
then two functions py, ply € L? to which we associate vy and v)y solutions of the Stokes problem

(3-3.47), and (un,u)y) = Sp(vn,vly). Then, we have

[En (o) = En ()| e S CN)|[ Ewv div (o = plyv)un) || as
+ C(N)|| B div ((un — un) o) || o (3.3.48)
S C(N)llow = Pnllzzllun e + C(N)Jun — ||zl L2
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We turn our attention to the difference uy — uy. We subtract the elliptic equation satisfied by
vy by the one satisfied by v/, multiply by the function vy — vy and integrate by parts so as to
obtain

~ [ 1940y = TR+ [ (vo)ID@n)P2Dlon) = w(an) D) D(053)) : Dlo = o))

- / (on = P)g - (on — vly).
(3.3.49)

Let us decompose the large integral above into two parts, in order to benefit from the monotinicity
inequalities fulfilled by the Stokes operator: we have

[ (vomIDox)P2D(wn) = v DA Dleh)) : Dlw = o)
= [ vow) (1D 2Dlox) - [D@h)P-2D(eh)) : Doy — i)

+ / (V(PN) - V(p’zv)) | D) [P2D(vly) : Doy — vly)

By using the convexity of the LP(V(pN) dx) norm exactly as in Lemma we see that the first
integral in the righthand side above is nonnegative. Therefore, we deduce from equation (3.3.49)
that

1 -1
NHvN—vaHHk < |[wlon) = (pW)|| oo 1PN I 1D (o) = D (i)l 1+ lpw — x| 22 low = vl |l 2

By fixing the exponent k so that k& > 1 + d/2, we may benefit from the Sobolev embedding
H* ¢ W1, Moreover, we use the fact that the function v is, by assumption, 5-Holder, where
4 = min{vy,1}. The combination of these two facts yields the inequality

1 1
~ lvw = ol S llow = pvllze 1 D)l + low = Pyl 2.

Plugging this inequality in ({3.3.48)) and using the fact that the operator Fy is in fact bounded
in H=! — L? shows that the map Fy : L? — L? is 4-Holder, and therefore continuous. The
Cauchy-Peano applied in the finite dimensional space

Xy :=ker(Id — Ey) endowed with the norm ||. |2

consequently provides the existence of a local solution py € C1([0, Ty[; Xn) for the approximate
problem.

STEP 3: lifespan of the approximate solutions. The next step is to prove that the lifespan
T of the approximate solution py can be extended to reach Ty = 4+00. For this, we note that by
performing a simple energy estimate in the transport equation in (3.3.45)), we obtain conservation
of the L? norms: since py = Enpn, we have

1d . .
th/!m\fl2 = —/PNEN div(pnun) = —/PN div(pnun) = 0.
and so
lon ()2 = [[ENSnpollz < [[Snpollr2- (3.3.50)

We deduce that the approximate solutions always have a bounded time derivative: ||Oppn]r2 <
max| | ,<1 [[F'(r)|[z2. In particular, this means that the Cauchy-Peano solution py : [0, Tn[—

L? necessarily has a limit at time Ty, as in that case the sequence
1 Tn=3
PN (TN - j) = pn(0) +/ F(py)dt
0
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is Cauchy as j — +o00. By using the Cauchy-Peano theorem again with initial value pn (T} ), we
construct an (continuous and non-necessarily unique) extension of the ODE solution on [0, T/,
which we continue to call py. This extension is C' with respect to time by virtue of the equation:
opn = Fy(pn) € C(L?). We infer that the maximal time T% beyond which there exists no
extension of the solution must in fact be T% = +oo, and hence deduce the existence (but not
uniqueness) of a global ODE solution py : Ry — L2

STEP 4: uniform bounds and weak convergence. We now prepare to take the limit
N — 400 in the approximate system ((3.3.45)). With this in mind, we use Proposition and
(3.3.50), and write the following uniform estimates (recall that ¢ < 2).

(pn) C L(L%) c L®(LY)  and  (vy) € L¥(W'P) c L=(LY). (3.3.51)

Concerning the velocity fields uy = Spvn, the presence of the regularization operator 5, implies
that the w, are trigonometric polynomials of uniform degree (at most C2"), and so (uy) C
L>®(H) for any ¢ € Z. In addition, by using the transport equation to trade space regularity for
time regularity, we see that, provided ¢ > d/2 so that HY c L™,

Oypn = —div(pyun) C L®(H™), (3.3.52)

so that we get, for every finite T > 0, the uniform bound py C W%’OO(H_l). Ascoli’s theorem
lets us deduce strong convergence of the densities to some limit

oN — pn  in Cp(H72). (3.3.53)
N—+oo

Concerning the sequences (vy) and (uy ), the uniform bounds above provide weak-(x) convergence

*

o 2wv,  in LW LYY (3.3.54)

and, for all ¢ € Z,

uy =u,  in L®(HY). (3.3.55)

The high regularity the velocity field has transfers to the density, since the initial datum pn(0) =
EnSppo is uniformly bounded with respect to N in H¢. By invoking Theorem [3.2.3] we have,
provided that £ > 14 d/2 so that H* ¢ W1,

T
ol < 1ExSupnllaeess (€ [ unllaeat).

Because of the inequality ||EnSnpollge < [|Snpollge and the uniform bounds on the sequence
(un), we deduce from the above the estimate (py) C L3°(H') for all sufficiently large ¢. In
particular, the interpolation inequality

1/2 1/2
lon = pullze < llon — anH/-szN — anH/z

shows that the convergence of the densities (py) is in fact strong:
pN — pn in Cp(L?). (3.3.56)

Finally, these high regularity bounds (pn), (un) C L(H') show that, by using the transport
equation as in (3.3.52)) to trade space for time regularity, we have (pn) C W%’W(Hg_l).

It remains to make sure that the functions (py, uy, vy,) are solutions of the target problem (3.3.43]).

STEP 5: the transport equation. We first check that p, is a solution of the transport equation
with velocity field u,,, which is absolutely straightforward given the strong convergence ([3.3.56)) of
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the densities. Indeed, thanks to the uniform bounds (uy) C L®°(H"), we have weak convergence
of the product
PNUN — Ppln in LOO(LQ).

Likewise, we have strong convergence of the initial density defined in (|3.3.46)),
EnNSnpo — Shpo in H..

This implies that p, is indeed a solution of the transport equation with the appropriate initial
datum:

Otpn + div(ppuy) =0
pn(0) = Shpo.

STEP 6: the Stokes equation. In order to take the limit N — 400 in the Stokes equation,
we resort to the continuity properties of the inverse Stokes map, as in Proposition [3.3.6] Let us
explain. We note ¥y : LI — W# the map that associates any py € L7 to the weak solution
vy of the Stokes problem (3.3.47). By the remarks we made in STEP 1 above, this map is well-
defined. Now, as we have already noticed, the presence of the elliptic summand —%Ak does not
change any of the convexity or coercivity properties required to solve the Stokes problem. More
than that, a quick glance at the proof of Proposition shows that the minor modifications (e.g. the
addition of a nonnegative term to the functionals X,,) of the exact same argument yield a similar
“continuity” property: assume that we have strong convergence

PN N_)—+>OO Pn in L9. (3.3.57)

Then we may deduce the weak convergence

\IIN(,ON)N:_OO\I/(,OH) in Who,

Because ¢ < 2; the strong Cp(L?) convergence (3.3.56) of the sequence (py) implies that the
convergence (3.3.57) must take place at (almost) every time t € [0,T], so that v, is indeed a
solution of the elliptic problem associated to p, at almost every time:

—div (v(pn)|D(vn)[P~2D(vn)) + Vi = png
div(v,) = 0.
This ends the proof of Proposition [3.3.9

3.3.5 Strong convergence of the densities

As explained in the previous subsection, Proposition [3.3.9] provides a sequence of approximate
solutions (pn, Uy, vy) which solve problem ([3.3.43)). We now begin to study the limit n — 400 by
focusing on the densities (py,), on which we establish strong convergence.

Proposition 3.3.11. Let (p,, un,vy) be the sequence of approximate solutions as given in ,
We have, up to an extraction, strong and pointwise convergence of the densities, namely

Pn—>p in L. (L9) and a.e. on Ry x T

for every 1 < r < +o0. In addition, still up to an extraction, we have weak-(x) convergence of the
velocities u, —*u in LOO(WL/B) and the function p is a weak solution of the transport equation:

{Otp +div(pu) =0

2(0) = o (3.3.58)
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Proof. For the proof of Proposition we use ideas from DiPerna-Lions theory of transport
equations, which is expected to function on our problem because the our a priori estimates show
that the velocity field is expected to have regularity u € L®(W1#), where 3 is as defined in
Proposition [3.3.1] Indeed, assumptions (3.0.2) or (3.0.3) show that we must have 1 < 8 < 400
so that Theorem [3.1.9] applied to (3.3.8) gives

IVull s =2V (=A)"" div(D(w) s < 1D (W)l s

First of all, we notice that due to the form of the approximate system (3.3.43)), all the bounds
of Proposition in fact hold for the approximate solutions. Namely, we have the following
uniform estimates:

(pn)n C L®(LY), and (1/pn), C© L=(L7), (3.3.59)

as well as
(Un)n C LO(WHP) c L®(LY)  and  (vp)n C LO(WHP) C L®(LY). (3.3.60)

One of the main points of DiPerna-Lions theory is to deal with low regularity solutions by using
renormalization functions: more precisely, we say that a function n € C'(R) N L>(R) is admis-
sible if ' > 0 everywhere. For one such function 7, we may multiply the first equation in the
approximate system by 7'(pn) and obtain a new solution of the transport equation:
Oin(pn) + div (n(pn)un) =0 (3.3.61)
1(pn(0)) = n(Snpo)-

This equation is much easier to handle: indeed the sequence 71(p,) is bounded in the space
L>°(L*°). Furthermore, thanks to the fact that ' > 0, no information is lost, as (3.3.61)) implies
that p, is a solution of the approximate transport equation in (3.3.43|).

Now, thanks to the remark that (n(pn)) C L>(L*>), we deduce weak-(*) convergence in that
space up to an extraction: there exists a g € L (L) such that

n(pn) =g in L®(L™).

In addition, the uniform bounds of (3.3.60)) also provide, up to an extraction, the weak-(x) con-
vergence
up 2w in L®(WH N0 LY.

We will prove that g is a solution of the transport equation with velocity field u. For this, we need
to obtain strong compactness on the sequence (n(pn)) in order to take the limit in the product
7(pn)un. Note that we have the uniform bound (n(p,)) C L>®(L1), so that by exploiting equation

(13.3.61)) and the embedding LY B(?’,oo’ we get

Om(pn) = —div (U(Pn))
C L®(B,L) C LOO(B;O{;Od/q’).

The last inclusion above is an application of Proposition The above therefore shows that
the sequence (n(py)) is uniformly bounded in the space W%’M(B;o%;od/ q,) for every finite 7' >
0, in addition to being already bounded in the space L>(L*) C L*(BY, ). Therefore, an
interpolation argument shows that, for a small enough 6 €]0,1[, we may write an inclusion in a
Holder-Besov space:

L¥(B, o) N W™ (B ¢ 0 (BLL2),

00,00
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where the regularity exponent —s/2 < 0 may be taken as close to zero as desired by taking 6 > 0
as close to zero as necessary. In particular, the Ascoli theorem provides strong convergence

n(pn) —g  in LT (Bw) (3.3.62)

In order to use this strong convergence and prove that ¢ is a solution of the transport equation
with velocity field u, we state and prove the following product lemma.

Lemma 3.3.12. Assume that 0 < s < 1. The function product (f,h) — fh is continuous in the
B}?,oo X B — Bﬁis topology.

oo

Proof (of the lemma). This is a direct application of the Bony decomposition. We write the
product fh as a sum

fh="Ts(h) + To(f) + R(f, h).
On the one hand, the first paraproduct may be evaluated in the following way: for j > —1,

18T (W)l S D ISm-1f sl Amhl L=

lj—m|<4

S 2 fllslbll pos

<2 /gy _Whlper

so that we have ||7}(h)HB§io < HfHBé,oo”hHB;foo' Likewise, the second paraproduct is bounded

in the same manner: for ariy j>-1,

1A Ta(Ple S Y ISmothllzel|AnfllLe
li—ml<4
1

< Z97s . 927
S <Al 27 f Iy
2| flgy hllpes

and this gives the inequality ||7,(f)|| Bl Finally, the remainder term can be bounded by using
Proposition [3.1.10, We have ’

IRC D) S Uy WPl

The combination of all three inequalities proves the lemma. O

Let us apply Lemma [3.3.12| in order to study the convergence of the product n(p,)u, as we let
n — +o0. For any function ¢ € D([0, T[xT?), we have

K??(Pn)un - gy, <Z3>‘ S lnlen) — QHL%O(BI;’;)H%HL;?(B},M)H¢HL1T(B;7’1) + ‘<Un - U79¢>}-
Firstly, the strong convergence property shows that the first summand in the previous
upper bound tends to zero as n — +o00. Secondly, we know that u,, converges to u in the weak-(x)
topology of L°(L%"), while the function g¢ is an element of L* (L), and so belongs to the predual
space L1(L%) (recall that 1 < g < d). This means that the bracket in the above inequality also
converges to zero. Finally, the initial data for the transport equation ([3.3.61) converges strongly:
for any r < 400, dominated convergence yields

n(Snpo) — n(po)  in L"
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for all » < +o00. This shows that the limit g is a weak solution of the initial value problem
Org + div(gu) =0
9(0) = n(po)-

We will show that in fact ¢ = n(p), and thereby deduce that p is a solution of the transport
equation.

(3.3.63)

By performing the same steps by replacing the function by 12, we see that the functions 1(p,)?
have a limit
n(pn)® —=h  in L®(L™)

which is a solution of the initial value problem

{ath + div(hu) = 0 (3.3.64)

h(0) = n(po)*.
Now, let us show that g2 is also a solution of the initial value problem (3.3.64). We wish to
multiply the transport equation (3.3.63]) by ¢. In order to make sure we can do this, we first go
through a regularization procedure: consider a mollification sequence (1¢)e>o and set ge = Ve * g.

Then g. solves the equation
O0ige +u-Vge = [u V., e *}g,

where, in the above, the brackets [A, B] = AB — BA represent a commutator of operators, where
Yex : f +— e *x f is the convolution operator and where u - V must be understood in the weak
sense u - V = div(fu). Multiplying the above by g, gives

Oy (g2) + div(gZu) = ge[u -V, ve x | g.

To check that ¢? also is a solution of the transport equation (3.3.64]), we only must check that the
righthand side tends to zero as € — 07. This is the case, thanks to Lemma which provides

[u-V,¢ex]g—0  in LL(LP).

Consequently, g € L®(L>®) and h € L*(L*) solve the same initial value problem (3.3.64).
In addition, the transport equation with a LOO(WL/B) coefficient is well-posed in that space, by
Theorem [3.2.1], so that we must have h = g? and therefore

n(pn)® = g°  in Lo(L®).

Let us prove that the weak convergence above implies strong convergence of the 1(p,). By fixing
any T > 0 and using Ly 7 € L' (L") as a test function in the weak-(x) convergence, we see that

(o)l 72 12y = ((pn)*, Lpoz)) — (9% Do,y = gl 72 z2y-

In other words, the sequence (n(pn)) converges weakly-(x) in L>°(L>), and therefore weakly
in the Hilbert space L2T(L2), and additionally the Hilbert space norms converge. This implies
convergence in the norm topology of L2(L?), and so

nlpn) — g in L (L), (3.3.65)
and, up to extracting again, the convergence is also true almost everywhere in Ry x T¢.

We now show that the pointwise convergence of the n(p,,) implies convergence almost everywhere
of the p,. For this, we resort to an appropriate choice of admissible functions n and the notion of
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convergence in measure (see Definition . We first prove that the sequence (p,,) is convergent
in measure on every [0,7] x T? by resorting to a Cauchy criterion (see Proposition . Fix a
€ > 0 and two indices m > n > 1. Moreover, recall the functions n; defined in . Then, by
decomposing the product [0, 7] x T¢ according to whether |py|, |pm| < k or not, we have

{’pn — Pm| > 6} = {|Pn — pm| > 5} N {‘Pn’ <k and |pn| < k}
U Alpn — pml = €} N {|pn| >k or |pm| > k}.

On the one hand, the Markov inequality provides the bound

1 [T
meas{|pn| >k or |pm| >k} k:q/ /(’pm|q + Ipn|q) dx dt
0

< ol
~ kq °

On the other hand, on the set where both |p,,| and |p,| are smaller than k, we know that these
functions are equal to, respectively, ng(pm) and ng(pn). We deduce that

ool Zq
k1

meas{ |pn — pm| > €} < meas{|nk(pn) — m(pm)| > €} +T

Now, we had deduced from that, for any given k, the sequence (Uk(Pn))n converges almost
everywhere (to a limit gi). Proposition then shows that the sequence converges in measure,
and in particular it must fulfill the Cauchy criterion of Proposition so that the measure in
the inequality immediately above converges to zero as m > n > N — +oo. By taking the limit
superior, we infer that

llpoll7q

lim meas{|pn — pm| > €} ST 4

m>n>N—+o0
Since this upper bound can be made as small as desired by taking k£ as large as necessary, we
see that the limit superior must be zero, and so the sequence (p,) must converge in measure.
Proposition m then asserts that the convergence is also true almost everywhere on [0, 7] x T¢
up to taking an extraction. By taking T as having integral values T' = M — +o00, we see by

means of diagonal extraction that the convergence can in fact be assumed hold almost everywhere
on Ry x T Let f be the limit of this convergence:

pn—f a.e. on Ry x T¢.

It is a consequence of Proposition that in fact f = p, so that the p, converge to p almost
everywhere on R x T¢.

Finally, let us show that the convergence of (p,) takes place in the norm topology of L"(LY).
According to Proposition @, it is enough to show convergence of the norms ||p,|| r7.(ra) for
every T > 0, as the space LT.(L9) is uniformly convex (since 1 < r < 400). On the one hand,
we have, since the flows of the smooth w, (which are trigonometric polynomials) preserve the
Lebesgue norms

lon@)llza = [lpn(0)l[za = [1SnpollLa — Ilpollza- (3.3.66)
n——+o00
If we show that the preservation of the Lebesgue norms transfers to the limit ||p(t)||ze = ||pol| e,

then the preceding equation is enough to apply Proposition [A.7.5] Instead of working directly
with the density p, we do this by means of the almost everywhere convergence p, — p that we
have shown just above, and apply it to the “renormalized” equation (3.3.61)). Consider a function
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N as in (3.3.28]) and note that, as ng(p,) is a solution of the initial value problem (3.3.61]) with
7 = 1, we must have

an(pn(t))HLq = |7k (Snpo)|La for a.e. t € R,.

However, the convergence S,pg—> po in L? and the almost everywhere convergence of the p,
implies that, by dominated convergence, and up to taking an extraction,

71 (Snpo)ll e — an(Po)HLq as n — +0o

and
[ (on | e =2 Nmlp®)]a forace. t € Ry

—+00

Uniqueness of the pointwise limit then shows that

e (e@)|| o = |lme(po)|| e for ae. t € Ry

Lastly, by our choice of ng, we note that |ng(r)| < |r|, and ng(r) — r pointwise as k — 400, so
that dominated convergence yields

an(p)‘ L5 (L9) — HPHLT(L‘?) as k — 400

and
lm(p0)|| e — ool as k — +oo,

so that we do indeed have preservation of the Lebesgue norms ||p(t)||ze = ||pol|ze and (3.3.66)
allows us to deduce convergence of the norms [|pn| 7 (Le) — [|pll Lz (£4)- As explained above, this
is enough to invoke Proposition and thereby end the proof.

O

3.3.6 Proof of the main Theorem

Here we combine all the elements proved above and show the existence of a weak solution of the
non-Newtonian Stokes-Transport problem (3.0.1). Proposition provides the existence of a
family (pn, un,vy) of functions which solve the approximate problem (3.3.43)), and for which the

a priori estimates also hold, see (3.3.59) and (3.3.60)). In addition, Proposition [3.3.11| shows that

the densities strongly converge (up to an extraction)
pn—>p  in Ly (L9), (3.3.67)

where p is a solution of transport equation (3.3.58)) with initial datum pg. Concerning the veloci-
ties, we have the weak convergences

k¥

vn in L (W1P).

Up —* U

All that remains to show is then that u = v and that v is, at almost every time ¢ € Ry, a weak
solution of the Stokes equation, namely

— div (/I D@)IP2D(v)) + Vi = pg
div(v) = 0.

Let us rephrase the problem: if ¥ : LY — W1# is the inverse map introduced in Proposition
We know that v, (t) = ¥(p,(t)) for almost every time ¢ € Ry and we have to show that
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U=v= \Il(p(t) . This will be done by resorting to the continuity property of the map ¥ from
Proposition [3.3.6, Consider a function ¢ € L*(L9). Then,

+oo
<U"’ ¢>L1(L‘1')><L°°(L4) = /O / U(pp)¢dedt
+oo
= A <\I/(pn), ¢>Lq’ x La dt.

However, Proposition m shows that U is continuous with respect to the LI —s Wy C LY
topology. In addition, (3.3.67)) insures that strong convergence

pult) —sp(t) i L9
occurs for almost every time ¢ € Ry, hence convergence for the brackets

(W (on(6)), 6()) L o — (Y (P(8)), 6(1)) 1ot o

also occurs at almost every time ¢ € Ry. By dominated convergence, we deduce convergence in
the whole space-time bracket, and hence ¥(p,,) — ¥(p). In other words, v is indeed a solution
of the Stokes problem for almost every time.

The last thing left is to check that uw = v. Recall that we have w,, = S,vy, so that the Fourier
transforms u,, and v, must coincide on any ball B(0, R), provided that n is taken large enough

n > C'log(R). Consequently, the limit Fourier transforms u and v must also agree on every ball,
and so u = v. We have finished proving Theorem [3.0.2]

Moreover, if we alo have pgp € L1N L" for r € [1,+o0], then we got conservation of Lebesgue
norms, and since we have renormalized solutions, then arguing as above leads, for every ¢t € R.:

le@)llzr = llpollLr,

and this ends the proof.
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Ce que j’aime dans les mathématiques appliquées, c’est qu’elles ont
pour ambition de donner du monde des systémes une représentation qui
permette de comprendre et d’agir. Et, de toutes les représentations, la
représentation mathématique, lorsqu’elle est possible, est celle qui est
la plus souple et la meilleure. Du coup, ce qui m’intéresse, c’est de
savoir jusqu’ott on peut aller dans ce domaine de la modélisation des
systémes, c’est d’atteindre les limites.

Jacques-Louis Lions

Hemodialysis: optimization of chemical species
concentrations

Here, we present results obtained as part of a numerical study of a hemodialysis problem. The
aim was to determine the diffusion coefficient of the porous membrane present in the fibers of a
dialyzer, based on a set of medical data supplied by the Gabriel Montpied University Hospital in
Clermont-Ferrand.

4.1 Numerical calibration of the porosity of a dialyser

Hemodialysis is a process for rebalancing the concentrations of chemical species in the blood, and
the deletion of some extra fluid for a patient with end-stage renal disease by using a medical
device enabling chemical interactions between an external fluid, the dialysate, and blood called
a dialyser [II0]. The balance between calcium intake and loss during haemodialysis treatment
affects the mineral metabolism and can be the cause of bone disorders and cardiovascular calci-
fications [103]. It is then of high importance to predict calcium exchange during hemodialysis.
Establishing a mathematical and numerical model for the concentration of calcium in the blood
at the exit of a dialyser was the main subject of the work [7].

As in [7], in order to model the chemical exchanges during a hemodialysis session, we firstly con-
sider the flow of blood and dialysate inside a fiber in a dialyse filter. More exactly, Navier-Stokes
equations are employed to model the flow of the dialysate, a non-Newtonian model modelize the
flow of the blood, and Darcy’s equation is considered to tackle the flow through the porous mem-
brane between the blood and the dialysate. We keep the same approach as in [7] by considering a
radially symmetric flow in one fiber and we take into account the geometric anisotropy of the fiber
to obtain a simpler model by neglecting the terms of order €. We recall that ¢ is an adimensional
quantity obtained as the fraction of the radius R of the fiber and its length L. A typical example
for these dimensions is R = 2.3 x 107 m and L = 2.3 x 107! m. The radius of the internal
cylinder in which the blood flows is Ry = 10™% m and the thickness of the membrane is typically
0.4x107* m. Setting Ry = 1.4 x 10~* m the dialysate fluid flows outside the cylinder of radius Ry
and inside the fiber. The solution (U, U,) of this model is then expressed in a two-dimensional
domain which is nothing else than half of the longitudinal section of a hollow fiber. Since we sup-
posed that the flow are radially symmetric in the cylindrical fiber, this two-dimensional model is
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a good representation of the three-dimensional setting. The two dimensional domain in which we
finally state the system of partial differential equations modeling the flow and the concentrations
of the chemical species in blood and dialysate is the set Q = Q, UQ,,, UQ illustrated in Figure 1]

r

Figure 4.1: Schematic representation of a hollow fiber. Using the radial symmetry of the fiber,
the computation are carried in Q = Qp U Q,, U Qy.

The fluid flow (U, U,) computed in © acts as an advective vector field in a reaction-diffusion-
advection system involving five chemical species. As in [7] we consider only five interacting
chemical species: Calcium (species number 1), Albumin (species number 2), Calcium-Albumin
(species number 3), Citrate (species number 4) and Calcium-Citrate (species number 5). We
denote by ¢;(t, x,r) the concentration of the species ¢ at the time ¢ and at position (z,r) and by ¢
the vector (01 co €3 ¢4 05). The system of equations governing the evolution in time of the
concentrations ¢; inside the domain {2 are the following

Drcs + S (Unducs + Uy dyes) — %a, (rDsdhci) — Dy (Didacs) = Fi(e) in (0,T) x O

¢; =G, mput on (0,7) x (Cep UTq)
Onci =0o0n (0,T) x T, (4.1.1c
CZ(O) =G0 in Q, (4.1.1d

where D; represents the diffusion coefficient for the species i, S; is a sewing coefficient used to
tackle the fact that some chemical species (Albumin and Calcium Albumin) does not cross the

membrane, i.e., for i € {2, 3}
Sz(x) _ { 1, if x € Q

0, ifz e\

and S; =1 fori e {1, 4, 5}. We also denote
Pp=TpqUlyp Ul UL, UL, U Ty, (4.1.2)
The function F' in the right hand of equation (4.1.1al) models the interactions between the five
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chemical species and is given by:

Fi( ) kacs + kacs — kicica — kscies

Fz( . ) k‘QCg — /{10162
F(C) = Fg(cl,...,C5) = —kocs + kicica , (4.1.3)

Fy( ) kycs — kscicq

F5( ) —kacs + kscicq
where k; are some reaction constants. These reaction constants are experimentally known and,
for their values see, for instance, [7] and the references therein. Finally, the quantity Cinpu =
(Ci, tnput )1 <;<5 represents the measured concentrations of the considered five species in blood and
in dialysate at the entrance of the dialyser and the initial data ¢; ¢ in (4.1.1d)) verifies ¢; 0 = &, nput
on I'gp UT', 4 and is constant in 2, and g.

The qualitative results of the numerical simulations presented in [7] are in concordance with the
clinical observations. Nevertheless, some quantities describing the model are not very well known,
and these errors in the parameters can be the source of errors in the results when compared to the
clinical measurements. An example of such badly known parameters are the diffusion coefficients
D; in the porous membrane for different chemical species. The aim of this work is to optimize
the coefficients D; such that the concentrations in the blood at the exit of the dialyser of the
five considered chemical species predicted by the model better fit to the corresponding clinical
measurements. More exactly, the following data were recorded during a clinical trial at CHU
Gabriel Monpied in Clermont-Ferrand for 22 patients:

o flow rates of the blood (gyinput and, respectively, gpoutput) and of dialysate (gginpus and,
respectively, qqoutput) at the entrance and, respectively at the exit of the dialyser;

e concentrations of the five considered chemical species Gnput = (i, input)1<i<5 in the blood
at the entrance of the dialyser (i.e. on boundary I'y;) and in the dialysate at the entrance
of the dialyser (i.e. on boundary I'zp);

e concentrations of the five considered chemical species Coutput = (i, output)1<i<s in the blood
at the exit of the dialyser (i.e. on boundary I';});

e rate of hematocrites before and after the dialyser.

The remaining part of this section is organized as follows. In subsectiond.1.1] we propose a Newton
method for solving directly the non-transient system associated to (4.1.1). In subsection we
consider the optimization problem of the minimization of a functional which associates to the
diffusion coefficients into the dialyser’s membrane the relative error between the concentrations
¢; in the blood at the exit of the dialyser obtained as solutions of a variational formulation and
the experimental data recorded from a patient. The aim is to validate the method proposed in
subsection and subsection by comparing the results of the numerical simulations to the
experimental data from 22 patients. Finally, in subsection we state some conclusions and
propose some perspectives.

4.1.1 Stationnary solution of the reaction-convection-diffusion system

Since the values of interest of the concentrations ¢ in (4.1.1)) correspond to its stationary solution,
we can consider the non-transient system associated to . Also, a scaling of the appearing
quantities is necessary in order to tackle the particular geometry of the domain and the magnitudes
of the diffusion coefficients. Moreover, there are two different situations:
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e for i € {1,4,5} which corresponds to Calcium, Citrate and Calcium-Citrate, respectively,
the non-transient system is:
Ut + Usdyes — 20, (rDides) — =0, (Ditnci) = Fie) in 0 (4.1.4n)
I ¢i — ——0p (rD;Opc;) — — 0zc;) = F;(e) in 1.4a
Y1 TYr-i 'Perr YT+ P@.’L’ 1YTr-1 3
Ci = Cj, input ON Fg,b U Fr,d (4.1.4b)

Onci =0on 'y U Fr,b U Pg’d; (4.1.4(3)

e since the Albumin and the Calcium-Albumin does not cross the membrane, the equation
representing species ¢ € {2, 3} holds only in €:

82

Updpci + UpOre; — %%ar (rD;dre;) = —5-0r (Didacs) = Fy(c) in
C; = Cj, input ON F&b
Onci =0on Ty UT,, (4.1.5¢
Di&«ci = CiUT on Fbm- (4.1.5d

We refer to [7] for details concerning this re-scaling procedure and the expressions of the constants
e and Pe. Moreover, as explained in [7], the rescaling procedure require to accordingly rewrite

the expression of the nonlinear term appearing in (4.1.4a)) and (4.1.5a) as follows:

C3 + (5205 - (516162 — 530104

~ c3 — 01c1C2

F(e)=F(c1,...,05) = —; —c3 + d1c1c2 ) (4.1.6)
dacs — d3C1C4

—dgcs + d3c104

where 61, d9, 03 and Fd are some new constants.

We approach the solution of the stationnary reaction-advection-diffusion system using a Newton
method in a variational form. More exactly we first write the variational formulation associated
to (4.1.4): for i € {1, 4, 5}, find ¢; € C; solutions to:

2
// (U0 cz—i-UacZ)rgoldxdr—i—// rDacﬁrcpdedr—;— rD@ciapidr

2
+/ rD;0, czgoldT—l—// rD;0¢; J;gozdxdT—// c)p;dxdr, (4.1.7)
736 Fﬁb

for every ¢; € C;, where C; are Sobolev spaces taking into account the boundary conditions
in . Similarly, we can write a variational formulation associated to . The main
difference with respect to the variational formulation is that the solutions to are
supported in € and not in 2 and are null in £, and 4. Another difference is the presence of a
boundary term on I'y,, due to the boundary condition. More exactly, for i € {2,3} find ¢; € C;
solution to:

1 r
/ (UpOyci + Uy Orci) r; dedr + — // rD;0pc;Opp; dax dr — / Ecicpidr
Q Pe o Tom 776

2 2 ~
+/ rD;0pcip; dr + 6// rD;0yc;0pp; dxdr = // rF;(e)p; dz dr, (4.1.8)
Pe Fl,b Pe Qp Q

for every ¢; € C;, where C; are Sobolev spaces taking into account the boundary conditions

in (4.1.5). Remark that we can gather together (4.1.7)-(4.1.8) as: find ¢ = (¢;)1<i<5 € C solution
to

F(e,p) =0, (4.1.9)
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for every ¢ = (gpz)1<z<5 eC = >< C; with F : C x C — R® regrouping the mtegral terms in

the five equalities (4.1.7] - Slnce the application F is nonlinear, we solve using the
Newton method. In thls purpose, we need to compute the gradient V.F of F. More exactly, we

have r he r
V.F(C (P)C_ lim (C—l— 0790)_ (Cv QO>
h—0 h
with £ grouping the linear terms in the right-hand side of (4.1.4)-(4.1.5) and N gathering the
remaining nonlinear terms, i.e.,

N(e, ¢, p) (/ VF )ii dzx d7“> .
1<i<5

We give the detail of the variational Newton method employed to approach the solution of
in Algorithm . From a numerical analysis perspective, we approach all the variational formu-
lations by the finite elements method. More exactly we consider structured regular triangulation
Tr, of Q formed by triangles of diameter h and we approach C; by its finite dimensional subspace
C}, formed by the continuous function which restriction to any triangle of 7; is a first degree
polynomial. All the numerical simulations were done using FreeFEM [108].

=L(¢, o)+ N(e, ¢, ), (4.1.10)

Algorithm 2 Newton method in variational form for equation (4.1.9).

Require: F, cg, tol, nmax > Nmax 18 the maximal number of iterations
n < 0.
Compute ¢,+1 € C solution to

VF(cn,¥)ent+1 = VF(cn,p)cn — F(Cn, p) for every p € C.

while n < npax and ||ep41 — cp| > tol do > The tolerance tol is taken equal to 10™%
n<—n+1
Compute ¢,+1 € C solution to

VF(en,p)ent1 = VF(cn,p)cn — F(cn,®) for every ¢ € C.

end while
if ||cn+1 — cnl| < tol then

The algorithm converged.

The solution of the variational problem is approximated by ¢p41.
end if

4.1.2 Optimization algorithm for intramembrane coefficients

Let us recall that D; is the diffusion coefficient of the species i in water (or in blood). We know
that the corresponding diffusion coefficient in the dialyser membrane, which we denote D" is
a fraction of D; (see, for instance, [81], were the diffusion coefficients are considered five times
smaller into the membrane than in blood), i.e., DI" = o;D; with «; € [0,1]. Since the Albumin
does not cross the membrane, these coefficients for Albumin and Calcium-Albumin are equal to
0: oy =0 for i € {2,3}.

We assume that we know, from measurements, the concentrations Ginpu; = (G, input)1 <i<5 in blood
and dialysate at entrance of the dialyser and the concentrations €outpus = (€i, output )<< in blood
at the exit of the dialyser for one patient. Since the concentrations ¢; iyput are constant on I'yp
and on I, 4, the vector €jpyy is in R'9, and, since we are interested only on the concentrations in
blood at the exit of the dialyser, Coutpus € R®.
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The operator Bg : R® — R? take as input the known concentrations Cinput in blood and dialysate
at entrance of the dialyser and its output are the concentrations ¢;, output at the exit of the dialyser
numerically computed by the procedure discussed in Section for some diffusion coefficients
a = (a;);<;<5. More exactly, for a solution ¢ € C, we define

2R?
Ci, output = ﬁ reidr.
1 F'r,b

Since the Albumin and Calcium-Albumin does not cross the membrane, we set as = az = 0.
Moreover, the diffusion coefficients of Citrate and Calcium-Citrate are very close. Therefore, we
define the admisible set for the coefficients a; by

A= {CX = (ai)1§i§5 € RE) ’ ar=a3=0, ag = a5 and a; € (0, 1] for i € {1, 4, 5}} .

We then compute the optimal coefficients a by solving the following problem

in J
iy (@)
where ;
2
J(a) _ Z ’Ba,i(cinpu‘c) — Gy, output‘ . (4 1 11)
i—1 ‘Ci, output‘2

The quantity Bai(Cinpus) denotes the i-th component of the vector Bq(Cinput). Considering the
constraints present in A, we need only to optimize coefficients o1 and ay. Hence, we finally
minimize over [0, 1]? the functional J : R? — [0, 00) defined for every B = (31, 32) by J(8) =
J(a) with o = (ﬁl, 0, 0, 52, /62)

In order to compute the minima of 7 we use a gradient descent method combined to a projection
method. Since the operator By, is nonlinear we should numerically approach the gradient of 7.
More exactly we choose a small value of h (for the numerical simulations discussed in the next
section we take h = 0.02 which is also the size of the triangles in the triangulation) and then
approach the gradient of J in 8 in directions ¢ = (1,0) and j = (0,1) by

. J(B+hi) - T(B) . T(B+hi) - T(B)

vI(B)i= : VI3 !
The gradient vector V.7 (3) is then approached by
VIB) = (VIB)i, VI(B)F). (4.1.12)

In Algorithmwe described the gradient descent with adaptive step (see, for instance, [47, Section
8.4] for several gradient descent methods) which we employ to optimize the diffusion coefficients
into the membrane. Remark that at each step of this algorithm there are at least four calls to the
Newton method described in Algorithm [2]

4.1.3 Comparison to experimental data

In this section we compare the results obtained by the numerical simulation of the solutions
of to the measurements from 22 patients gathered during the clinical trial. These mea-
surements correspond to the boundary conditions on I'yy, I'y g and I';p, and provides essentially
the quantities Cinpur and Coutput -

A first step consists in validating the Newton method in variational form proposed in Section
and its numerical dicretization using P; finite elements. More exactly we consider a set of bound-
ary data (constant functions for every chemical species on I'yp and I, 4) corresponding to the
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Algorithm 3 Gradient descent algorithm with adaptive step for the minimization of J.

Require: 7, Bo, tol, nmax. > Nmax 18 the maximal number of iterations
Require: initial step > initial step is the initial descent step
Require: tol. > tol is a small value
n + 0.
Compute J(Bn). > Use Newton algorithm described in Algorithm
Compute VI (Bn). > Two more calls of Newton method

s < initial step
while 7(P(Bn —s-VI(Brn))) > T (Brn) and [|P(Br —s- VI (Bn)) — Brl| > tol do
s+ s/2. > P(B) is the projection of 3 on [0,1]?
end while
while ||P(Bn —s- VI (Brn)) — Bnll > tol and n < npax do
Bnt+1 < P(Brn —s-VI(Bn))
n<+<n+ 1
Compute VT (Br).
s < initial step.
while J(P(Bn —s-VJ(Bn))) 2 T (Bn) and s - |[P(Bn —s- VI (Bn)) — Bnll > tol do
s < s/2.
end while
end while
The approximation of the minima of 7 is 3.

experimental measurements for the patient number 1 in the clinical trial. These values are re-
ported in Table We also consider that the diffusion coefficient of Calcium and the diffusion
coefficient of Citrate are five times smaller than the corresponding diffusion coeflicients in water,
which corresponds to take 3 = (0.2,0.2). For this data, eight iterates are sufficient in the New-
ton method described in Algorithm [2| to reach a precision 107%. In Figure we represent the
evolution of the norm between two successive iterations in the Newton method. Similar rate of
convergence were observed for all the data considered in this work. We also check that the solution
c obtained by this iterative method coincides with the solution obtained once the time-stepping
method employed in [[7] converged to the stationary solution. An illustration of numerical solution
of problem for the boundary data in Table is given in Figure [4.3] In this figure we
choose to display only the concentrations of Calcium (c¢;) and Citrate (c4). These solutions have
the correct form. Nevertheless the concentration of Calcium in blood at the exit of the dialyser
is smaller than expected and the concentration of Citrate is more important than in Table
Therefore, we assume than the diffusion coefficient 3 = (0.2,0.2) have its both components too
low.

Boundary value ¢ c3 c3 c4 cs
on I'yy 0.11 3.71602 0.0577928 5.03048  1.37152
on I'y 4 1.25 0 0 0 0
on I',; 0.96 3.577187  0.48553  0.144108 0.342892

Table 4.1: Concentrations (in mol - m™3) of the five chemical species in blood (boundary I'y;)
and dialysate (boundary I'; 4) at the entrance of the dialyser and in blood at the exit of dialyser
(boundary I',.p) for the patient number 1.

Once the method for the computation of the concentrations ¢ at the exit of the dialyser is validated,
we apply the procedure described in Section [.1.2]to optimize the values of the diffusion coefficients
B for the boundary input and output data recorded for the patient number 1 and reported in
Table 4.1} We choose 8o = (0.2,0.2) and then we employ Algorithm [3] to minimize the functional
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Convergence for Newton method
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Figure 4.2: Evolution of the error in Newton algorithm described in Algorithm [2] for boundary
data in Table [4.1l
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Figure 4.3: Components ¢; (corresponding to Calcium) and ¢4 (corresponding to Citrate) of the
numerical approximation of the solution ¢ computed using Newton’s method for the initial data

in Table [£.1]and B = (0.2,0.2).

J. We repeat the experiment with B¢ = (0.4,0.8). The successive values of J(3y,) in this gradient
descent algorithm are displayed in Figure Starting from B¢ = (0.2,0.2) the Algorithm
converge to the local minimum (0.985295,0.792707) and starting from By = (0.4,0.8) a local
minimum of the functional J is reached around (0.522323,0.814407). As seen in Figure the
values of J in these local minima are very close. In Figure [L.5] we display the concentration of
Calcium and the concentration of Citrate obtained as the solution of for boundary data
in Table and B = (0.985295,0.792707). Since the diffusion coefficients were optimized to fit
these data the concentrations in blood at the exit of the dialyser obtained from the simulations
are very close to the experimental data.

The simplest way to compare the results of the numerical simulations to the experimental data
is to look at the values of the functional J given by . Indeed, the functional J is nothing
else that a relative error between Bq (Cinput) and Cogtpus- In Figure we compare the values of
J for the diffusion coefficients 3 = (0.522323,0.814407) and B = (0.985295,0.792707), obtained
by optimizing J for the data corresponding to the patient 1, for all the patients included in the
clinical study. We removed from out analysis the patients number 14 and 19 for which we suspect
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Figure 4.4: Evolution of J(3,) along the iterates of the gradient descent method described in
Algorithm [3| (b) Values 3,, along the iterates of the Algorithm [3|for two different initializations.
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Figure 4.5: Components c¢; (corresponding to Calcium) and ¢4 (corresponding to Citrate) of the
numerical approximation of the solution ¢ computed using Newton’s method for the initial data

in Table [f.1] and B = (0.2,0.2).

Calcium
Citrate

some experimental errors. By the continuous line we represent the average of the values of J(3)
for the two considered values of 3. We observe that the value of this average is around 0.5 and
that is slightly smaller for 3 = (0.522323,0.814407). These values are much smaller that the one
obtained for 8 = (0.2,0.2) for which the average value of J(3) is close to 86. Nevertheless, the
values of J(B) are much smaller for the patient number one that for the other patients in the
study.

4.1.4 Conclusion and perspectives

This work proposed two main developments with respect to the previous study [7]. The first
novelty is that we propose to directly compute the equilibrium solution by solving directly, by a
Newton method, the non-transient system associated to the reaction-convection-diffusion inside
a dialyser’s fiber. In this way, the computations are much faster and more precise than solving in
time the initial evolution system considered in [7]. This gain in the computational time allows us
to optimize the diffusion coefficients into the membrane in order to fit the data for one patient,
which is the second novelty of this paper.

Since the functional J (associating to the diffusion coefficients into membrane the relative error
between the numerical solution and the corresponding experimental data) is not necessary convex,
the minimization problem has not an unique solution. The optimized diffusion coefficients provide
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Figure 4.6: Values of J(8) for 3 = (0.522323,0.814407) and 8 = (0.985295,0.792707) and data
from patients in the study.

better results that the coefficients from the literature. Nevertheless, since there is a big difference
between the results for the data used to optimize the coefficients and all the other data (recorded
from 22 patients), we conclude that the bad known diffusion coefficients cannot entirely explain
the differences between the numerical results and the experimental data. A better understanding
to exactly what terms into the mathematical model correspond the experimental data and a
corresponding adaptation of the model is necessary to further ameliorate the results.

4.2 FreeFEM algorithm code

In this section, we present the FreeFEM code associated with algorithm [3]

NoUseOfWait = true;
include "hydro.edp" // This program is used to simulate flow in the dialyzer
NoUseOfWait = false;

// Pe is an adimensional number called the Peclet number

Pe = R"2%V /(L *D);

// Fd is the coefficient used to scale the equation of the flow to the level of chemical
— interactions
Fd =V / (L * k2);

// BMD is a macro used to define functions whith different values in Blood, Membrane and
— Dialysate

macro BMD(b, m, d)((0 <=y && y <= 1%R1/R) ? b : 0)
+ ((1xR1/R <y && vy < R2/R) ?m : 0)
+ (R2/R <=y && y <= 1) 7.d : 0)// EOM BMD
real cht = 1, chte = 1;
for (int ii = 0; ii <= 4; ii++){
bloodconlii| = 1 / cht % bloodconlii[;
dialcon[ii] = 1 / cht * dialconlii|;
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x Here we define initial concentrations in blood, membrane and dialysate
./

real difCa = get ARGV("—difCa",1.0);

real difCi = get ARGV("—difCi",1.0);

func cel = BMD(bloodcon|0], dialcon|0], dialcon[0]); // concentration of Calcium

func ce2 = BMD(bloodcon[1], dialcon[1], dialcon[1]); // concentration of free Albumin sites
func ce3 = BMD(bloodcon|2|, dialcon[2], dialcon|2]); // concentration of Calcium — Albumin
— sites

func ce4 = BMD(bloodcon|3], dialcon|3], dialcon[3]); // concentration of Citrate
func ceb = BMD(bloodconl[4], dialcon[4], dialcon[4]); // concentration of Calcium  Citrate

func D1 = BMD(16.6, difCax16.6, 16.6); // diffusion coefficent of Calcium

func D2 = BMD(0.877, 1le—14, 1le—14); // diffusion coefficient of free Albumin sites

func D3 = BMD(0.877, le—14, le—14); // diffusion coefficient of Calcium—Albumin sites

func D4 = BMD(7.67, difCix7.67, 7.67); // diffusion coefficient of Citrate

func D5 = BMD(7.67, difCix7.67, 7.67); // diffusion coefficient of Ca Citrate Calcium  Citrate

func S1 = BMD(1.0, 1.0, 1.0); // transport coefficient for Calcium

func 82 = BMD(1.0, 0, 0); // transport coefficient for free Albumin sites

func S3 = BMD(1.0, 0, 0); // transport coefficient for Calcium-—Albumin sites
func S4 = BMD(1.0, 1.0, 1.0); // transport coeflicient for Citrate

func S5 = BMD(1.0, 1.0, 1.0); // transport coefficient for Calcium-— Citrate

// #* Description of the boundary of the domain (0, 1) x (0, 1)

border CO(t = 0, 1) {x = t; y = 0; label = 10;}

border C1(t = 0, R1 / R) {x = 1; y = t; label = 11;}
border C2(t = R1 /R, R2 / R) {x = 1; y = t; label = 12;}
border C3(t = R2 / R, 1) {x = 1; y = t; label = 13;}
border C4(t = 1, 0) {x = t; y = 1; label = 14;}

border C5(t =1, R2 / R) {x = 0; y = t; label = 15;}
border C6(t = R2 / R, R1 / R) {x = 0; y = t; label = 16;}
border C7(t = R1 /R, 0) {x = 0; y = t; label = 17;}

border C8(t =1, 0) {x =t; y = R1 / R; label = 18;}

mesh Th = buildmesh(C0(nn) + Cl(nn * R1 / R) + C2(nn * (R2 — R1) / R) + C3(nn * (R —
— R2) /R)
+ C4(nn) + C5(nn * (R — R2) / R) + C6(nn * (R2 — R1) / R) + C7(nn
— x R1 / R));
mesh ThD = buildmesh(CO(nn) + Cl(nn * R1 / R) + C8(nn) + C7(un * R1 / R));

// P1 finite elements in space
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fespace VhC(Th,P1);
fespace VhD(ThD, P1);

VhC ux = VX / V,uy = VY / (eps x V);

/% ———— DIFCONV ————
DIFCONYV is a macro for the terms appearing in the variational formulation
of the diffusion and convection equation for one chemical species
* ¢ the concentration for the step n
* phi test function
* cold the concentration for the stepn — 1
* ce is a function for the boundary conditions
* Di the diffusion coefficient
* Si transport or (glomerular) Sieving coefficient

*/

macro DIFCONV (¢, phi, ce, Di, Si)int2d(Th)((Di % eps~2 / Pe) % dx(c) * y * dx(phi))
— int1d(Th, 13)((Di % eps~2 / Pe) * dx(c) * y * phi)
+ int1d(Th, 17)((Di % eps~2 / Pe) % dx(c) * y * phi)
+ int2d(Th)(Di / Pe * y * dy(c) * dy(phi))
+ int2d(Th)((ux * dx(c) + Si % uy * dy(c)) * y * phi)
// EOM DIFCONV
macro MDIFCONV((c, phi, ce, Di, Si)int2d(Th)((Di * eps~2 / Pe) % dx(c) * y * dx(phi))
+int1d(Th, 13)((Di % eps”2 / Pe) x dx(c) * y  phi)
— int1d(Th, 17)((Di % eps~2 / Pe) * dx(c) # y * phi)
— int2d(Th)(Di / Pe * y * dy(c) * dy(phi))
— int2d(Th)((ux * dx(c) + Si * uy * dy(c)) * y * phi)
// EOM MDIFCONV

VhC cincl, cinc2, cine3, cincd, cinceb; // concentrations increments
VhC phil, phi2, phi3, phi4, phi5; // test functions
VhC cl, c2, ¢3, c4, ¢b; // concentrations to find

real al = R1 / R;

problem INCREMENT ([cincl,cinc2, cine3, cincd, cinch],[phil, phi2, phi3, phi4, phi5|, solver=
— sparsesolver)=
DIFCONV(cincl, phil, cel, D1, S1)
I DIFCONV (cine2, phi2, ce2, D2, S2

)
+DIFCONV(cinc3, phi3, ce3, D3, S3)
+DIFCONV (cincd, phi4, ced, D4, S4)
+DIFCONV (cinch, phib, ceb, D5, S5)
+ int2d(Th)(1./Fd * deltal % ¢2 % cincl % y % phil)
+ int2d(Th)(1./Fd * delta3 x ¢4 * cincl * y % phil)
+ int2d(Th)(1./Fd * deltal % cl % cinc2 % y * phil)
— int2d(Th)(1./Fd * cinc3 v % phil)
+ int2d(Th)(1./Fd * delta3 % cl # cinc4d % y % phil)
— int2d(Th)(1./Fd * delta2 * cinch * y * phil)
+ int2d(Th)(1./Fd * deltal % ¢2  cincl % y % phi2)
+ int2d(Th)(1./Fd * deltal * cl * cinc2 * y * phi2)
— int2d(Th)(1./Fd * cinc3 * y * phi2)
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— int2d(Th)(
— int2d(Th)(
+ int2d(Th)(
+ int2d(Th)(
+ int2d(Th)(1
— int2d(Th)(
— int2d(Th)(
— int2d(Th)(
+ int2d(Th)(

Th
Th

+ int2d
+ int2d
— int2d
— int2d

I S s s

Th

) (exp( (s
)(exp( (
Th)(exp(—1000%(y—R1/R+0.02
)(exp( (

1./Fd * deltal % ¢2 * cincl * y % phi3)
1./Fd x deltal * cl * cinc2 * y * phi3)
1./Fd * cince3 * y * phi3)

1./Fd x delta3 =
/Fd * delta3 *
1./Fd x delta2 «
1./Fd * delta3 =
1./Fd x delta3
1./Fd * delta2 x

¢4 x cincl * y * phid)
cl * cincd * y * phid)
cinch * y * phid)
c4 x cincl x y * phib)
cl x cincd x y * phib)
cinch * v x phib)

—1000%(y—R1/R+0.02
—1000#(y—R1/R-+0.02

~2) x al / Pe * cinc2 * uy * phi2)
~2) x al / Pe * cinc3 * uy * phi3)
~2) x al x D2 / Pe * dy(c2) * phi2)
~2) % al * D3 / Pe % dy(c3) * phi3)

N N S

—1000#(y—R1/R+0.02

—MDIFCONV (c1, phil, cel, D1, S1
—MDIFCONV(c2, phi2, ce2, D2, S2

—MDIFCONV

—~MDIFCONV/(c4, phi4, ced, D4, S4
—MDIFCONV(c5, phi5, ce5, D5, S5)

— int2d(Th)(1.
— int2d(Th)(1.

+ int2d(Th)(1.
+ int2d(Th)(1.
— int2d(Th)(1.
+ int2d(Th)(1.
+ int2d(Th)(1.
— int2d(Th)(1.
~ int2d(Th)(1.
+ int2d(Th)(1.
+ int2d(Th)(1.
— int2d(Th)(1.

( )
( )
(c3, phi3, ce3, D3, S3)
E )

/ Fd * deltal * cl % ¢2 * y * phil)
/ Fd x delta3d % cl * c4 % y % phil)
/ Fd % ¢3 * y * phil)

/ Fd x delta2 x ¢5 * y * phil)

/ Fd * deltal * cl * ¢2 * y * phi2)
/ Fd x ¢3 % y % phi2)

/ Fd « deltal = ¢l % ¢2 % y * phi3)
/ Fd % ¢3 * y * phi3)

/ Fd x delta3 % cl * ¢4 % y * phid)
/ Fd x delta2 % ¢5 * y % phi4)

/ Fd x delta3 % cl * c4 % y % phib)
/ Fd x delta2 x ¢5 x y * phib)

+ on(13, 17, cincl = 0)

+ on(13, 17, cincd = 0)

+ on(13, 17, cinch = 0)

+ on(13, 17, cinc2 = 0)

+ on(13, 17, cinc3 = 0);
%

x Initializing the

f

parameters used in the loop

real pasi = 0.5 ; // initial step

real h = 0.02 ;

// gradient discretization step

real epsilon = 0.001 ; // convergence step
macro NEWTON(IND)

cl = cel;
c2 = ce2;
c3 = ced;
cd = ced,;
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errnewton = 1el0;

mbo4
mbob

mbol[i] =2 % R"2 / R1°2 % int1d(Th, 11)(cl * y
mbo2[i] =2 % R"2 / R1°2 * int1d(
mbo3[i] =2 % R"2 / R1°2 % int1d(Th, 11

(

—_— —_— —_———

INCREMENT ;

Th, 11)(c2 * v);

i|=2%R2/R1°2* int1d(Th, 11)(cd * v
i] =2%R"2/R1°2  int1d(Th, 11)(c5 * y
while (i < nmax && errnewton > le—6){

?

)

) )
) )
)(e3 % y);
) )
) )

?

cinc2 = (0 <=y && y <= R1/R) 7 cinc2 : 0.0;
cined = (0 <=y && y <= R1/R) ? cinc3 : 0.0;

cl = cl — cincl;
c2 = ¢2 — cinc2;
c3 = c3 — cinc3;
c4 = c4 — cincd;
cH = ¢cd — cinch;
14+=1;

mboll[i] =2 % R"2 / R1°2 % int1d(Th,
mbo2[i] =2 % R"2 / R1°2 x int1d(Th,
mbo3

mbo4
mbob

i =2%R"2/R1"2 % int1d(Th,

(
(
i = 2%R"2/ R1"2 # int1d(Th,
(
ij=2%R"2/R1°2 % int1d(Th,

—_—_— —_—————

errnewton =
mbo2[i|—mbo2[i—1])~2+
mbo3[i| mbo3[i—1])~2
mbo4|i|—mbod[i—1]) "2
(mbo5[i]-mbo5[i—1]) "2
err[i] = errnewton;
}

tableau#IND|[0] = chtxmbol]i];
tableau#IND|1| = chtxchtexmbo2|i];
tableau#IND|2] — chtxchtexmbo3li];

|

]

+
+

tableau#IND|3| = chtxmbo4|i];
tableau#IND[4] = chtxmbobli|;

// END OF MACRO

/*

*[nitializing arrays using Newton methods

*/

real[int| tableaul
real|int] tableau2
real|int| tableau3
real[int] tableaud

5);
5);
5);
5)

o~

?

(mbol[i]—mbol[i—1])~2+

)~

11)(cl * y);
11)(c2 * y);
11)(e3 * y);
) )i
) )

11)(cd * y
11)(cd * y

7

7

0.5;
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real[int| tableau5(5);
real[int| tableau6(5);

intn=0;
bool convergence = false ;

real difCaQ ; // optimal diffusion coefficient for calcium to be determined
real difCiO ; // optimal diffusion coefficient for citrate to be determined

real pas = pasi;
int i = 0; // iterator

int nmax = 1000;
real[int] mbol(nmax)
real[int] mbo2(nmax);
real[int] mbo3(nmax);
)
)

7

real[int] mbo4(nmax
real[int] mbo5(nmax
real[int] err(nmax);
real errnewton;

b

7

while (lconvergence){
pas = pasi;
difCa = difCa + h ;
NEWTON(1)

difCa — difCa — h ;
difCi = difCi + h;
NEWTON(2)

difCi = difCi — h ;
NEWTON(4)

real[int] test1(5);

testl = tableaul—cible;
testl = testl ./ cible;
real[int] test2(5);

test2 = tableau2—cible;
test2 = test2 ./ cible;
real[int] test4(5);

test4 = tableaud—cible;
testd = testd ./ cible;

real gradCa = ((testl.12)"2 — (test4.12)"2) /h;
real gradCi = ((test2.12)"2 — (test4.12)°2) /h;

real difCab = difCa;
real difCib = difCi;

difCa = difCa — pasxgradCa;
difCi = difCi — pasxgradCi;
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}

if (difCa > 1){
difCa = 1;

}

if (difCi > 1){
difCi — 1;

}

NEWTON(5);

real[int| test5(5);

testh = tableaub — cible;
testh = testb ./ cible;
real a = testh.12 ;

real b = test4.12 ;

intj=1;

while (a > b && pas > epsilon){
difCa = difCab;
&ifCi = difCib;
pas = (0.5 * pas ;

difCa = difCa — pasx*gradCa;
difCi = difCi — pass*gradCi;
if (difCa > 1){
difCa = 1;
}
if (difCi > 1){
difCi = 1;
}
NEWTON(5)

testh = tableaub — cible;
testh = testh ./ cible;
a = testh.12 ;
j=1
}
if (pas > epsilon && abs(a — b)>epsilon){
n—+=1;
}

else {

convergence — true;

}
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Tout au loin mes yeux voyant chaque résultat, réussite revenir i sa
source, son nid son gite, dans I'obligation parfaite,

Tout au loin les heures, les mois, les ans — au loin les commerces, les
traités, les établissements, dans leurs moindres détails,

Tout au loin la vie quotidienne, la parole, les ustensiles, la politique,
les richesses, les personnes;

Tout au loin nous-mémes, moi mes feuilles mes chants, pleins de foi,
d’admiration,

Ressemblant & un pére qui va vers son propre pére, il conduit ses enfants
par la main.

Walt Whitman, Savantisme (Feuilles d’herbe).

Some tools from functional analysis

A.1 Some classical results: miscellaneous

In this appendix, we show some of the classic results we use throughout the dissertation.

A.1.1 Aubin-Lions theorem

In this section, we present a result that we use regularly in this dissertation, and which allows us
to obtain compactness.

Theorem A.1.1 (Aubin-J.L.Lions). Let us consider three Banach space X1, X, and Xo such
that X 1is continuously embedded into Xo, and X1 is compactly embedded into X. We consider,
Jor 1 < p,r < +oo, the set Y, given by:

Y, = {u e L7((0,T), X1) / % € LT((o,T),XQ)} :

which is a Banach space. Then:

1. If p < 400, Yy, is compactly embedded into LP((0,T),X).

2. Otherwise if p = +o00 and r > 1, Y, is compactly embedded into C((0,T), X).

The proof of this theorem is not trivial. Basically, it boils down to showing that we can extract a
Cauchy sequence in the space in which we aim to show the wished compact embbedding, via the
following interpolation lemma, :

Lemma A.1.2 (J.L.Lions). Let us consider three Banach space X1, X, and Xy such that X is
continuously embedded into Xo, and X1 1s compactly embedded into X. Then, for every ¢ > 0,
there exists a constant C(e) > 0, such that for all uw € X;:

ullx < ellullx, +CE)|lullx,-

Proof. See [132, Lemme 5.1.]. O

151



The preceding lemma then shows that it is in fact sufficient to construct a Cauchy sequence in
LP((0,T),X2) if p < 400 and in C((0,T), X2) if p = +oo. To construct such a sequence, we
decompose a sequence of elements of X and show that it converges in the right space, by applying
Ascoli’s theorem. To show that it is Cauchy, we proceed by diagonal extraction. We refer to [31),
Theorem 2.5.16.] for a detailed proof.

A.1.2 De Rham theorem

One of the main difficulties encountered a priori in fluid mechanics is determining the pressure
term, which is an unknown. In the case of the whole space, pressure can be expressed as a function
of the velocity field, as long as it is possible to define a Leray projector: to see this, formally take
the divergence on the incompressible system, and invert the Laplacian. We refer the interested
reader to [52] for a detailed discussion of this subject.

In the case of a bounded domain, this seems a priori more delicate. Having said that, it is possible
to determine the pressure using the structure of functional spaces, via De-Rham’s theorem.

Theorem A.1.3 (De Rham). Let us consider a Lipschitz domain  of RN and f € H=1(Q) such
that for every ¢ € D, (Q2), we have:

(fi)-11=0.

Then there exists © € L?(Q), unique up to an additive constant, such that:
f=vVr in H Q).
Proof. See [31, Theorem IV.2.4.]. O

Depending on the regularity available, the previous theorem is not always applicable. There are
many variants of this result, depending on the regularity assumptions on f, which lead to different
regularities for 7. However, the following result is generally applicable.

Theorem A.1.4 (De Rham (distributions)). Let Q be a domain of RY and f € D'(Q) such that
for every ¢ € D, (), we have:

(f,)p,p = 0.

Then there exists m € D'(Q), unique up to an additive constant, such that:
f=Vr in D(Q).

Proof. See [162]. O

A.2 Divergence free spaces

In this section we introduce function spaces with zero divergence in the sense of distributions,
which appear naturally in mathematical analysis in fluid mechanics. We pose for Q@ C RY an
open subset:

Dy(©) :={p € D(Q) / div(p) = 0},

and we sometimes note Dy ({2) = C§%,(22). For k > 0, p > 1, we define the space WEP(Q) as being
the completion of Dy () into W*P(Q) for the induced norm, W(if(Q), as well as the completion of
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Dy;(Q) in Wé“’p(Q) and denote W5 "4(Q) the dual of the latter. Naturally, if we argue by density,
the usual injections are still valid in these spaces.

We observe, reasoning by density, that these spaces correspond, taking L? as the pivot space, to
the subspace of WA (Q) (respectively of Wéﬁ P(€2) having zero divergence in the weak sense, since
we can then write for u,, € D(Q2) which converges to u € L2(Q), for ¢ € D(Q):

/un-Vgod:c:—/div(un)apdx:0 — u-Vodr =0,
Q Q

n—-+o0o Q

hence the assertion.

A.3 Deformation spaces

As we saw when modeling fluid mechanics equations, the naturally occurring tensor is the strain
rate tensor (its linear counterpart), which corresponds mathematically to the symmetrized gra-
dient. While in the case of Newtonian flow, this easily becomes a gradient, this is no longer the
case in most of the other cases we consider. In fact, as we shall see in this section, if we consider
spaces of functions with deformations in LP, this coincides in most cases with a usual Sobolev
space.

Definition A.3.1 (Space of functions with deformations in LP). Let us consider Q C RN and
1 <p < +oo. Then the space Y,(Q2), defined as
Yp(Q) = {u € LP(Q)/ D(u) € LP(Q2)}

1s called the space of functions with deformations in LP. In the case p = 1, we talk about the
Lebesgue deformations space, and we denote this last LD((2).

The following result holds.

Proposition A.3.2. Let us consider @ C RN and 1 < p < +oo. Then:

1) The space Y,(Q) is a Banach space.
() 14 P 14

(it) The space Y,(Q2) is a local space,in the sense that it satisfies

Vo € C°(Q), Yu € Yy(), pu € Y,(Q).
(i) If Q has a C1 boundary, then C°°(Q) NY,(Q) is dense into Y, ().
Proof. We refer the interested reader to [68], Section 6.7.]. O

The following theorem is a major result.

Theorem A.3.3 (Korn inequality). Let Q be a domain of RN and 1 < p < +oo. Then, if
u € Y,(Q2), we have that u € WEP(Q).

loc

Moreover, if Q is bounded with C? boundary, we have that if u € Y,(2), then u € W1P(Q). More
precisely, the following inequality holds:

1
3Cp > 0, [Vul oy < Cp (Iuluiy + 1D@IEiq)” = Colully, ey
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Proof. The proof is highly technical in the general case, then we refer the reader to [68, Theorem
7.71.]. O

An interesting implication of this last result will not have escaped the reader, namely that in the
case of a regular bounded domain and for 1 < p < 400, the space of functions with deformations
LP is none other than a Sobolev space.

Corollary A.3.4. Let us consider Q a bounded domain of RN with C? boundary, and 1 < p <
~+00. Then:
V(@) = WH(Q).

Proof. We first have, from triangle inequality, that Y,(2) C W1P(Q). Korn inequality leads to
the inverse inclusion and the result follows. O

Remark A.3.5. It follows from Corollary[A.53.4) that the notions of trace, as well as embbeddings,
of Sobolev spaces are valid on Y,(2) spaces. For a reason that we shall now ezplain, however, it
is pertinent to question the validity of this assertion in the case of the space LD(Q)) corresponding
to the case p=1.

Let us point out that Korn inequality as presented in Theorem [A.3.3]does not hold in the borderline
case p = 1. We refer to [149, 57] to some counterexamples. There are also many variants
and generalizations of Korn inequality, depending on the spaces considered. In particular, Korn
inequality is valid on certain classes of fractional Sobolev spaces (see, for example, [107]), weighted
spaces (see [38]), or in a fruitful framework for compressible fluid mechanics (see, for example,
[86, Proposition 2.1.]).

A.3.1 Case p=1, Lebesgue deformations space

As we listed earlier, it is relevant to study the case of space LD(2) in a way that is unique to
it. Indeed, since Korn inequality is not valid for p = 1, we don’t have LD(Q) = WH(Q) and,
consequently, there is no reason to conclude that the results of injections or traces, for example,
can be transposed just as easily to this framework. It is possible to show that this is in fact the
case, as the following proposition establishes.

Proposition A.3.6 (Properties of LD(R)). Let us consider Q an open subset of RV. Then, the
following statements hold.

(i) If ) is of class C*, then there exists yo € L(LD(SY), L*(00Q)) which is onto. This application
1s called the trace and coincides with the usual trace operator when defined in the classical

sense, namely on LD(2) N C(Q) or WH1(Q).

(i) If O is Lipschitz, then LD(QY) is compactly embbedded into LI(2) for q < %, and con-

tinuously embbedded when q < %

Proof. See [68, Theorem 6.92., Theorem 6.95., Theorem 6.99.]. O

A.3.2 Bounded deformations space

One question that then arises is what happens to functions with bounded variations. If this is not
the case, what about the properties of BV () space? Are they, in a prescribed sense, substitutable
for the space of functions with bounded deformations? This is the subject of this subsection.
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Definition A.3.7 (Bounded deformations space). Let Q be an open subset of RN. Then, the
space

BD(Q) := {u € L'(Q)/ VD(u,Q) < +o0}
where

VD(u,) := sup {k eER/ k= / D(u) : ¢ dz, ¢ € CH(Q), ol Lo (@) < 1}
Q

is called the space of bounded deformations functions.

As a reminder, let us emphasize that the space M! () is the space of bounded measures, that is:

M) == {p € CF(Q)/ 3K C co(), v € CF(), supp(p) C K = (1, 0)| < Cllpllze}
(A.3.1)
where in the previous expression, ¢o(£2) denotes the space of the compact subsets of 2, and the

constant C' does not depend of K (otherwise it would define the space M1(£2)). We recall the
following definition.

Definition A.3.8 (Tight convergence of measures). Let us consider an open subset Q of RN and
(fin)nen a sequence of MY(). Then, we say that (un)nen converges tightly toward pp € M(Q)
if:

Vo € Cy(Q), Kpn — p,9)] — 0.

n—+oo

Replacing C,(9) test functions by C§(Q) tests functions in the previous definition leads to the
notion of vague convergence in M'(Q).

Let us now present, without proof, the results specific to the expectations we have mentioned.

Proposition A.3.9 (Properties of BD(Q)). We consider an open subset Q of RN. Then, we
have the following properties.

(i) The space C>°(2) N WL(Q) is dense into BD(RQ) for the tight topology, that is to say that
for every u € BD(R), there exists a sequence (un)nen belonging to C*° () N WHL(Q) such
that:

o7l
U, n_>—+>oo win L'(Q),

—  D(u) vaguely in M*(£),

n—>+oo
/\Dun]dx = /|D )| da.

(ii) If OYis Lipschitz, then BD(S) is continuously embbedded into LP(Q) for every 1 < p < &,
and compactly embbedded for 1 < p < %

(115) There is no Korn type inequality between BV () and BD(QY), which means that BV (Q) #
BD(Q).

(iv) If O is C*, then there exists 49 € L(BD(Q), L*(0N2)), which is called the trace operator
over BD(Q). Moreover, g coincide with the usual notion of traceo ver WH1(Q).

(v) The trace vy is not continuous with respect to the weak topology, but it is with respect to
the tight one, in the following sense: if (up)nen is a sequence of BD(Y) which is tightely
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convergent toward u € BD(Q) in the sense that it satisfies:

o7l
Un —2 uin L (),

D — D
/Q\ (un)| dzx T /Q] (u)| de,
then we have ~vo(uy,) - yo(u) in LY(09).

Proof. We refer to [68, Theorem 6.104.,Corollary 6.105.,Theorem 6.106., Theorem 6.108., Theorem
6.111.]. O

A.4 Kuratowski convergence

This section is devoted to convergence in the Kuratowski sense (sometimes also known as Painlevé-
Kuratowski), which is a mode of convergence in set-valued analysis. Formally, the idea is to make
use of the distance between an element of a metric space and a subset or sequence of subsets of
it.

Definition A.4.1 (Kuratowski convergence). Let (X,d) be a metric space and (Ap)nen be a
sequence of subsets of X. For every subset A of X and x € X, we denote d(x,A) = in}fqd(x,y)
ye

the distance of x from the subset A. Then, the convergence modes in the sense of Kuratowski are
given as follows.

(i) The upper limit of (Ap)nen s given by:

lim An::{xGX/ lim d(IE,An):O}.

n—+00 n——+00

(11) The lower limit of (Ap)nen is given by:

lim An::{xeX/ ETE d(x,An):O}.

n—-+o0o

(iii) If lim A, = lim A,, we say that the limit exists and we denote this last by:

n—-+00 n—+0o0

lim A,= lim A4,= lm A,.

n—+o00 n——+o0 n—+oo

Note that the distance application to a fixed subspace A is Lipschitz continuous, and we have the
triangular inequality for all (z,y) € X%

d(z, A) < d(z,y) + d(y, A),

and, reversing the roles, it comes:

|d(z, A) — d(y, A)| < d(z,y).

In particular, if (z,,)nen is a sequence of elements of X converging strongly to z € X, it follows
that d(z,,A) — d(x,A), and, consequently, if x € A, then lim =z, € A.

n—-+00 n—o00
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Theorem A.4.2 (Mrowka). Let X be a metric space and (Ap)nen 6 sequence of subsets of
X. Then, there exists a subsequence (Ap,)n,en 0f (An)nen which convergence in the sense of
Kuratowsks.

Proof. See [21], Theorem 5.2.11.]. O

Theorem (which is even valid on Hausdorff spaces) thus ensures that a sequence of sets
always converges in Kuratowski’s sense, up to an extraction. To rephrase, we can expect a sequence
of graphs to converge to a graph, even if it means extracting. Having in mind a regularized solution
of a threshold fluid, for example, this leads to the fact that if we have strong convergence, hence
regularity on the solution, the sequence of graphs constructed in a Banach space converges to a
graph described by a multivalued function at the origin. But what about weak convergence? The
following theorem provides an answer to this question.

Theorem A.4.3. Let us consider a Banach space X, and also a sequence (xy)nen of X* which
weakly-* converges toward x € X*. Then the graph of x denoted Gr(z) is the Kuratowski limit of
the sequence of the graphs of x,, denoted Gr(x,).

Proof. See [21], Theorem 5.2.19. and Theorem 5.2.17.]. O

Therefore, using a Riesz representation theorem, we deduce that in L? (by [32, Proposition
[11.12.]), graphs described by w,, elements that converge weakly to u do converge to the u graph.
Note that Kuratowski convergence on Hausdorff spaces is more delicate, even when considering
lower semi-continuous functions. In this case, we need to strengthen the assumptions (see [21,
Theorem 5.3.5.]).

For more details on Kuratowski convergence properties, we refer the reader to [21, Chapter 5 and
Chapter 6| for a detailed description of this convergence mode and applications to multivalued
functions, to [58, Appendix B] for a concise presentation of related properties, and to [124] for a
detailed presentation of set-valued analysis.

A.5 Orlicz spaces

Let us look very briefly at the definition and some elementary properties of spaces generalizing
LP gpaces. First of all, it is useful to recall a few notions.

Definition A.5.1 (N-function). An N-function is a function ® : [0,4+00) — [0, +00) such that
there exists ¢ : [0,4+00) — [0,400) satisfying

t
Vit € [0, +00), CI)(t)—/ o(s) ds,
0
where ¢ verifies:

(i) ¢(0) =0,
(i) vt € (0,+00), ¢(t) >0,

(i15) p(t) — oo,

t——+o0

(iv) ¢ is nondecreasing,

(v) ¢ is right continuous, namely it satisfies ¢(t) P o(s).
—S
t>s
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We then have the following result.

Proposition A.5.2. Le ® be an N-function. Then @ is a continuous increasing convex function.
Moreover, it satisfies:

) 2
(Z) : 30

i) 20
() 5 o oo

(111) The function t — @ is increasing over (0, 400).

The proof of Proposition is rather direct and left to the reader.

Example A.5.3. Let us mention some examples of N-functions.

e Ot =1t 1<p<+oo.
o &:t (1+1t)log(l+1t)—t.
e d:tsel —t—1.

Definition A.5.4 (Equivalence of N-functions). Let ®1 and ®o be two N-functions. Then we say
that ®9 dominates ®1 near infinity if there exists ty € [0,4+00) and a constant k > 0 such that:

YVt > to, (I)l(t) < (I)Q(kt).

If to = 0, then we say that the dominance is global. When ®1 and ®5 dominates each other
near infinity (respectively globally), then we say that they are equivalent near infinity (respectively
globally).

Definition A.5.5 (Conditions over N-functions). Let ® be an N-function. Then, we say that ®
satisfies:

o The Ag-condition near infinity if there exists k > 0 and tog € [0, +00) such that

Vt > tg, (2t) < kd(t).

e The Va-condition near infinity if there exists k > 0 and to € [0, +00) such that
LY < g-a+k)
) 3 <2 D(t).

In both of cases above, when to = 0 we say that ® satifies the condition globally.

We mentioned that Orlicz spaces are a generalization of LP spaces. Without going into the future
role of N-functions in the definition of these spaces, let us just say that it is natural to want to
introduce a duality similar to that existing in LP spaces. This motivates the following definition
and results.

Theorem A.5.6 (Complementarity of N-functions). Let us consider an N-functions ® associated
to ¢, this last satisfying assumptions (i)-(v) of Definition |[A.5.1. Then we define the function

¢* 1 [0,400) = [0,400) as being:
Vt € [0,+00), ¢*(t) =sup {s € [0,+00)/ ¢(s) < t}.
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Then, ¢* satisfies assumptions (i)-(v) from Definition and so it defines an N-function ®*,
called the complementary N-function of ®, given by:

O*(t) = /0 &*(s) ds.

Moreover, we have:

(i) (Young inequality) ¥(s,t) € [0,+00)?, st < ®(s) + ®*(2).

(i1) (Legendre transform formulation) ¥Vt € [0, +00), ®*(t) = max (ts — ®(s)).

(iii) ® satisfies the Ag-condition if and only if ®* satisfies the Va-condition.
Proof. The proof can be found in [3], Sections 8.4-8.6] and [154, Chapter II, Theorem 3]. O

We are now able to give the main definition of this section.

Definition A.5.7 (Orlicz space). Let Q be a domain of RN and ® be an N-function. The Orlicz
class K®(Q) is the set of all Lebesgue measurable functions u satisfying:

/ O (|ul) dr < +o0.
Q
The Orlicz space associated to ®, denoted L®(RY), is the linear hull of K® ().

First, let us point out that the letter N in the N-function terminology is not related to the N in
R which is the dimension of the space under consideration. Next, the attentive reader will have
noticed that we distinguish between the definition of Orlicz class and Orlicz space. This is not
without reason: the Orlicz class is not, in general, a vector space, even if it is always a convex set
of functions. It is worth asking whether we can establish a condition guaranteeing that the Orlicz
class and the Orlicz space coincide.

Proposition A.5.8 (A-regularity criterion). Let Q be a domain of RN and ® an N-function.
Then, the pair (®,Q) is said to be A-regqular if ® satisfies a global Ao-condition or if it satisfies a
Ao condition near infinity and Q has a finite volume. Moreover, K® () is a vector space if and
only if (®,Q) is A-regular.

Proof. See |3, Lemma 8.8]. O

Thus, if the previous criterion is verified, then K®(Q) = L®(Q). Let us now state the first
properties of Orlicz spaces.

Theorem A.5.9 (Elementary properties of Orlicz spaces). Let us assume that S is a domain of
RN, and ® is a given N-function. Then, the space L* (), endowed with the Luxemburg norm

defined by
||u||¢ = inf {k € (0,400)/ /Q<I> <|Z’) dx < 1}

is a Banach space. Moreover, the following Hdélder inequality holds:

/uv dzx
Q

Also, if 1 is another N-function, then the continuous embbedding L*(Q2) < L¥(Q) holds if and
only if one of the following assumptions holds:

¥(u,v) € L(Q) x L (%), < 2lullellv]

P
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(i) ® dominates ¢ globally in sense of Definition [A.5.4)

(11) ® dominates v near infinity and |Q] < +oo.
Proof. We refer to [3, 8.10-8.12. O

To close this section, we express a simplified duality result in Orlicz spaces, which is nevertheless
sufficient for our purposes. We refer to [3, Chapter 8] for more details in a general context.

Theorem A.5.10 (Duality in Orlicz spaces). Let us consider Q a domain of RY and an N-
function ®. Then, if the couple (®,9) is A-regular, the dual space of L*(Q) can be identified to
L®(Q). Moreover, the space L®(Q) is reflezive if and only if both of the pairs (®,Q) and (*,Q)
are A-reqular.

Proof. This is an immediate corollary of |3, Lemma 8.17,Theorem 8.19,Theorem 8.20] and Propo-
sition [A.5.8 O

A.6 Useful inequalities

Theorem A.6.1 (Gagliardo-Nirenberg inequality on bounded Lipschitz domain). Assume that €2
is a bounded domain in RN with Lipschitz boundary. Moreover, assume that there exists a couple
(q,7) € [1,+00], 6 € [0,1] and (I, k) € N? such that:

Then, there exists C := C(k,l,N,r,q,0,9Q) > 0 such that the following inequality holds:

19%ull oy < Cllullpen oy lulliny.

Proof. See e.g. [147] or [93]. O

Lemma A.6.2. Assume that u € L5(Q)). Then, for all v € (0,3), the following inequality holds:

r 3—r % r 9
HuHLz@S< ; )rru\Lg(m+(3) el (c). (A6.1)

Proof of Lemma[A.6.9 First, we write for s € (0,2):

2 g = /Q a2~ da. (A6.2)

Now, passing to the power § and using Holder’s inequality in (A.6.2) leads to:

% o
||u||22(Q) < </|u|8p dx) ’ (/ \u|(2_5)q d:c) " (A.6.3)
0 Q

Finally, we apply Young’s inequality into (A.6.3) to obtain:
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ar br
1 1 @
. </ |u|*P d$> T i </ |u|2=9)a d$> t (A.6.4)
Q Q

Fixing successively p = %, 5 = %, and b = % leads to (A.6.1)), that is the result is proved. We
point out that it is necessary to have r € (0, 3) in order to satisfy the necessary conditions in the
inequalities used above:

IN

lull 20

—
(e}
\G][V)
~—

Slsi= S ®

+ + VM
I

H\’I—‘

= = O

O]

Lemma A.6.3 (Nirenberg-Strauss inequality). Let 0 be an open bounded subset of RN with
Lipschitz boundary, then there exists a constant C' > 0 which depends of N and Q0 such that for
N

all u € Wolm(Q) the following inequality holds:
Jull g < CID@I2 0 (A.65)

Proof. We refer to [163, Theorem 1]. O

A.7 Miscellaneous convergence results

In this section, we have gathered a number of eclectic results from functional analysis and measure
theory which we will use in Chapter[3] We start by presenting a notion that is neighbor to almost
everywhere convergence: convergence in measure.

Definition A.7.1 (Convergence in measure). Consider T' > 0 and a family of measurable func-
tions f, fn : [0,T] x T — R, for n > 1. We say that (f,) converges in measure to f if and only
if for all e >0,

meas{|fn — f| > €} — 0 as n — +00.

Remark that convergence in measure is associated to a metric d, defined by

d(f,g) := Z 2inmin (1,meas{]f —g| > 2_n}).

n=1
The next proposition states that the topology of the convergence in measure is complete.

Proposition A.7.2 (Cauchy criterion). Consider T > 0 and a family of measurable functions
fn 2 [0,T] x T? — R. Then the sequence (f,) converges in measure to a measurable function f if
and only if the following Cauchy criterion is satisfied: for all €,¢’ > 0, there exists a rank N > 1
such that, for all m >mn > N we have

meas{|fn — fm| > €} < €.
In other words, the sequence (f,) converges in measure if and only if, for all € > 0, we have

meas{|fn — fm| > €} —0 asm>n>N — 4o00.
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Proof. See [92, Theorem 2.30.]. O

Finally, we gather a few results concerning the links existing between convergence in measure and
convergence almost everywhere.

Proposition A.7.3. Consider T > 0 and a family of measurable functions f, : [0,T] x T* — R,
form > 1. Then the following statements hold:

(i) If the sequence (f,) converges almost everywhere on [0,T] x T%, then the sequence converges
i measure.

(ii) Conversely, if the sequence (f,) converges in measure, then there is an extracted sequence
which converges almost everywhere on [0,T] x TY.

Proof. We refer to [76, Chapter V.13.]. O

A second part of this subsection is concerned with weak convergence, and its relation to almost
everywhere or strong convergence.

Proposition A.7.4. Consider 1 < q,7 < +00, and a sequence of functions f, : Ry x T* — R
such that there is convergence

fn —  f in L"(LY)

n—-+00

fn— g a.e.
n—-4o0o

The both limits must be equal f = g.

Proof. The proof is an application of Mazur’s lemma (see [32 Corollary 3.8.]). The weak conver-
gence (in the reflexive space L"(L?)) provides the existence of a sequence of convex combinations
of the f, which converge strongly in that space. More precisely, there exists a set of coefficients
An(k) >0, with n <k < A, a, > n, and n > 1, such that ), A\,(k) =1 and

An
Ry:=> fr—f  in L7(L9).

k=n

Now consider a point (¢, ) € R, x T? such that the convergence f,(t,x) — g(t, ) holds. Then,
by comparing R,, and g at that point, we obtain

An
k=n
< sup |pi(t,z) — g(t,z)| — 0.
k>n n—
We deduce that R, — g almost everywhere. Since the sequence (R,,) converges almost every-

where to f up to an extraction, uniqueness of the pointwise limit gives f = g. O

Proposition A.7.5. Consider a uniformly convex Banach space X and a sequence (f,) of X
functions such that we have

fn—=f inX
for some f € X and
1fllx — [1fllx-

Then the sequence converges in the norm topology of X.

Proof. See [176, Lemma 3.1.6.]. In the specific case of LP spaces, it can be proved using the uniform
convexity of such spaces (Clarkson’s inequalities), see |31, Proposition 11.2.32.] for details. O
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A.8 About the closed range theorem

In this section, we focus on the closed range theorem, whose statement we recall.

Theorem A.8.1 (Closed range Theorem). Let us consider X and Y two real Banach spaces, and
let A: X =Y be alinear operator such that its domain D(A) is dense in X. Then, the following
statements are equivalent.

(i) R(A) is closed.

(i) R(A) = N(A*)*L.
(i)

Proof. See |32, Theorem 2.19.]. O

(

(ii) R(A*) is closed.
R(
R(

A%) = N(A)*.

This theorem is very useful in practice, not least because of its many corollaries, which are often
immediate. Take, for example, the following result.

Corollary A.8.2. Let Hy and Hy be two Hilbert spaces and A : Hy — Hé be a continuous linear
operator. Then, the following statements are equivalent:

(i) R(A) = H).
(11) R(A*) is closed and A* is onto.
(Z”L"Z) 3Cy > 0, Yu € Ho, ||UHH2 < CbHA*(u)HHi
(iv) 3Ly € L(HY, Hy), Yv € H), A(La(v)) =v and || Lallop < Cp.
Proof. See [32], Theorem 2.20. and Theorem 2.21.]. O

Let us just point out that Corollary can be used in order to prove Lax-Milgram theorem
(see [27, Theorem 4.1.6.]). Sometimes, the existence of a continuous linear operator L4 as given
in the previous result is called a lifting of A.
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La lecture de tous les bons livres est comme une conversation avec les
plus honnétes gens des siécles passés, qui en ont été les auteurs, et
méme une conversation étudiée en laquelle ils ne nous découvrent que
les meilleures de leurs pensées.

René Descartes, Discours de la méthode.

Some results about quasilinear parabolic equations

In this appendix, we recall some important results about quasilinear parabolic equations. We
focus on the results used throughout our presentation, but we encourage the interested reader to
refer to [132] [7T], 5] for a more precise view of the theory.

Let us start with an essential result concerning the existence of solutions to the following equation:

{ Bpu+ A(u) = f (BO)

u‘t:O = Uup.

Theorem B.0.1 (J.L.Lions). Let us consider a real reflexive Banach space X densely and com-
pactly embbedded into an Hilbert space H and such that

XCcCHCX*

where H is continuously embbedded into X™*, which denotes the topological dual of X. Moreover,
we constder an hemicontinuous monotone operator A : X — X* satisfying for some 1 < p < 4o00:

(i) For every u € X, there exists a constant C' > 0 such that || A(u)||x+ < C|lul/x.

(11) For every u € X, there exists C > 0 such that (A(u),u) > Clulk,, where ||x is a seminorm
over X such that there exists (o, ) > 0 satisfying

lulx + allullg = Bllullx-

Then, for every (uo, f) € H X LP%((O,T),X*), there exists a solution v € LP((0,T),X) to
[B0.1).

Proof. We refer to [132, Théoréme 1.2.bis|. O
The previous theorem allows us to prove the existence of solutions for a very large class of quasi-

linear equations. It should be pointed out that, although it is presented in a parabolic framework,
it is also valid in an elliptic one, and also finds an alternative in the hyperbolic case (see [132]
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Chapitre 2, Section 6] by the same author). We will now focus on one of its most notable conse-
quences, namely the existence of solutions for the parabolic p-Laplacian.

Opu — div (|VuP~2Vu) = f  in (0,T) x Q
uw=0 on (0,T) x 99 (B.0.2)
Ujg—o = U in Q.

Corollary B.0.2. Let us consider Q a domain of RN with Lipschitz boundary, and a real number
€ (1,400). We define the Banach space:

Wy (Q) if p>2
X = 9 - B.0.3
{ Wol’p(Q) NL2Q) otherwise. ( )

Then, for every ug belonging to L*(Q), and every f belonging to Lp%l((O,T),X*), there exists
u e LP((0,T),X) solution to (B.0.2)).

Once again, the reader should find the proof (and much more) into [132]. Let us point out that
the proof implies an energy estimate. With the intention of being as clear as possible for the
reader, we will give a class of p-growth systems, encompassing , for which it is possible to
have an accurate energy estimate.

O — div (a(t,z,u,Vu)) = f in (0,7) x
u=0 on (0,T) x 09 (B.0.4)
Ujp—0 = U in €,

2(N+p)
where f € L( p—1 >(QT), and ¢ : Qr x R x RV — R is measurable. Moreover, we as-

sume that there exists (Cop, C1,co,c1) > 0, 7 € [ ,(N+2) ), and two non negative functions

2v(N+p)

2(N+p)
(Yo,9n) € L( z >(QT) X L< p(=1) >(QT) such that both of the following statements hold for
every (t,x,s,6) € Qr x R x RV:

(P1) ColélP — cols|” — vo(t,x) < alt,z,s,&) - &.

(P2) [alt,z,5,6)] < ColelP~" +erls| 7 +n(t, ).

These assumptions can still be generalized, but we have chosen to restrict ourselves to a more
"simplified" framework. We have the following result.

Theorem B.0.3 (Di Benedetto). Let us consider a domain Q of RN with Lipschitz boundary,

an initial datum ug € L*(Q), f € Lﬁ(QT) and that assumptions (P1)-(P2) are satisfied. Then,
every non negative weak solution u to (B.0.4) satisfies the following energy inequality.

o 2 + I 0y S0y + el

T lullJ o + (TIN5
Proof. Thanks, to homogeneous Dirichlet boundary conditions, we can set k = 0 into [71], Chapter
V, Proposition 6.2.] and the estimate used in this last holds for both the negative and positive

parts considered. Then, from our assumptions, the result follows since a weak solution is also a
weak subsolution. O
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Two comments on this result are welcome. Firstly, note that this result is a corollary of a more
general energy estimate, and that it can only be obtained a priori in the case of homogeneous
Dirichlet conditions. The behavior of the gradient of solutions to a quasilinear parabolic equation
in a neighbourhood of the boundary is generally very difficult to establish, and is still a hot topic
of research. Next, mention is made of non-negative weak solutions, the existence of which needs
to be established. Note also that the two solution-dependent terms are bounded by the norms of
the f term and the initial data wuyg.

As you would expect, the regularity of the solutions of a quasilinear equation is generally directly
related, in the case of a homogeneous Dirichlet-type boundary condition, to the regularity of the
free data of the system, i.e. the initial data and the right-hand term. Consider, for example, the
following equation:

Opu — div ((u + |Vu\2)p2;2Vu) =f in (0,7)xQ
u=0 on (0,7) x 99 (B.0.5)

for some fixed ;1 > 0 and p > 1. We can then show the following result.

Theorem B.0.4. Let o € (0,1), Q be a domain of RY such that O has a C*® boundary, and
consider an initial datum ug € C'T/2(Q). Then, there exists a weak solution u € C?t1Te/2(Qr)

of the equation (B.0.5).

Proof. This is a direct consequence of [172, Theorem 10.9.2.]. O

By the previous proposition, we can give a strong meaning to the solutions and as soon as the
free data is C°°, then so is the weak solution by a bootstrap argument. This last observation can
be shown via various methods, notably by demonstrating that these solutions then coincide with
mild solutions (they can be shown to generate a nonlinear contraction semi-group), and classical
regularity theories can then be applied, we refer the reader, for example, to [176, [15] [6), 161, 175]
153] for further details on this aspect of the theory, which we do not cover in this dissertation.

Finally, as we mentioned in Chapter [2| the case p = 1 in the (B.0.5) equation is much more
difficult to handle, as in the case of the parabolic p-Laplacian. Here, this is not due to a singularity
problem, but in particular to the reflexivity defect of the space L!.
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(...) quand les physiciens nous demandent la solution d’un probléme,
ce n’est pas une corvée qu’ils nous imposent, c’est nous au contraire
qui leur devons des remerciements. Mais ce n’est pas tout; la physique
ne nous donne pas seulement ’'occasion de résoudre des problémes; elle
nous aide & en trouver les moyens, et cela de deux maniéres. Elle nous
fait pressentir la solution; elle nous suggére des raisonnements.

Henri Poincaré, La valeur de la Science.

Introduction to continuum mechanics for
incompressible fluid flows

In this final appendix, we turn our attention to the physics associated with the equations discussed
in this dissertation. More specifically, we present the mechanics of continuous media and how these
lead to the models considered.

The genesis of classical mechanics can be found as far back as antiquity, in the writings of the
polymath Aristotle, for example, and took off with the structure introduced by Isaac Newton in
1687 (see [146]). In classical mechanics, it is customary to consider a body as an (infinite) set of
weighted points. In general, this is thought of in the sense that a body is conceived as the limit
when N — 400 of a set made up of N points, which amounts to saying that we can represent a
body as being a countable set of points. If we give ourselves a representation in R?, this does make
sense, if we keep in mind, for example, the density of Q% in the latter for the Euclidean norm.
However, while this framework is relatively well suited to an undeformable solid, for example, it
is less so for a body undergoing deformation. What is more, some properties are not natural: for
example, we may have in mind the relative density of a part of the body under consideration.
Let us imagine, in a two-dimensional setting, a body €2 approached by a sequence of weighted
particles denoted (zp,mp)n>1, where for i € N\{0}, x; denotes the position of the i-th particle
(in R?) and m; its mass. Let us assume that Q is a polygon, and also that w is another polygon
strictly included in the latter. The Wallace-Bolyai-Gerwien theorem (see [104, Theorem 16.3.])
allows us to return to considering two triangles. Let us consider that the first six points define the
points that describe the two triangles. Then at a fixed N > 6, even if we have to rearrange the
terms, we can suppose that the first 6 < k < N terms of the sequence are inside w and the others
outside. Then, at a fixed N > 6, the density of w in Q (more precisely, of their approximations),
could be obtained by intuitively writing the quotient of the densities of w and €2,

k

Doy = €2 > %
w? - N :
|w| 325 @

But what sense would this make when we consider an infinite number of particles in w, and, a

fortiori, in 27 If convergence is possible, it clearly depends heavily on how we choose to approach

the respective weights of w and . To do this, consider a 2 body composed of particles that all

have the same mass (let us say constant and equal to 1). If we take N = 2k, which means, roughly
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Figure C.1: Relative density taken as the quotient limit

speaking that at each step (grower to 6) there are as many particles outside w as inside, then the

relative density is constant and equal to % But it is possible to approach w and Q differently,
and we would then obtain a different relative density at the limit, which makes it clear that the

way we compute has no meaning in this context, at least in the sense of the previous definition.

Note that the previous example is not valid in a three-dimensional framework (Dehn theorem
see [104], Theorem 16.4., Corollary 16.3.]), and is very difficult to adapt to smooth domains
(Laczkovich theorem).

Although it is still possible to give a satisfactory meaning to relative density via classical me-
chanics, this example highlights the difficulty of using it for certain notions, particularly when
considering materials undergoing strong deformation. To be more precise, we have simply pointed
out that in our case, taking the limit of the quotient is sometimes different from taking the quo-
tient of the limits, and that the first way of proceeding is not correct. In fact, showing that
macroscopic models are consistent with microscopic phenomena is a very active area of research,
involving a variety of complex (scaling limit) techniques. A precise analysis of the models and
concepts under consideration is then required. In the context of our subject, we wish to find a
simplified study framework that allows greater flexibility in the computations, i.e. that we need
to establish a continuous framework, in which laws similar to those of classical mechanics can
be established, but which can be adapted to deforming bodies, such as fluids. In fact, a more
general framework needs to be defined, one that links the different approaches. An absolutely
general framework is currently non-existent in physics, but it remains possible to link the general
principles of classical mechanics and continuum mechanics.

The following approach stems from twentieth-century research into Hilbert’s Sixth Problem, whose
alm was to provide a precise axiomatic of physics. Thus, the aim is to provide a mathematical
framework, based in particular on logic, making it possible to provide a mathematical theory
adapted to the physics studied. This is sometimes referred to as rational mechanics. Here, we will
present just a few notions and mention some well-known results, omitting notions that are of no
major use to our presentation. For a detailed presentation of the results, we refer the interested
reader to [167], from which we have drawn the essential elements presented below.

170



C.1 Notion of body

As we suggested earlier, continuum mechanics is no longer concerned with a set of points, each
with a mass, but with a whole, to which it is possible to associate a mass. For the theory to be fully
coherent, it is then necessary to have a means of measuring the mass of a body. It is worth noting
that, while we do nott a priori consider a body to be a countable set of points, the fact remains that
we will intuitively use the possibility of choosing a point in a body when constructing the various
tools we are about to present. In this sense, the established theory considers the axiom of choice.

The starting point of our presentation is therefore to define a set of elements Uyoq, generically
noted ; for ¢ € I, which we will call a body. In addition, we are going to give Upoq a Boolean
algebra structure. Then, we provide Upoq with a partial order relation noted <, verifying the
following relations. The reader may have in mind the relation < as the inclusion in set theory
C. However, we will see that while this is what we will be using in practice, and rightly so, it
does not provide a mathematically correct framework for defining general theory. Let us begin
by some useful notions.

Definition C.1.1. Let us consider (Upoq, <), which is partially ordered. Then, we define:

1. For (21,9Q2) € Upoq the join of Q1 and Qg is the set Qg defined such that
(21 < Q3) & (Q2 < Q3)] & [VQ € Upoa, (21 <Q) & (22 <Q) =03 <.
The join of Q1 and Qg is written 1 V Q9
2. For (Q1,Q2) € Upoq the meet of Q1 and Qq is the set Q3 defined such that
(3 <) & (Q3 <Q2)] & [VQ € Upoa, (2 =<) & (<) =0 =<Q3].

The meet of Q1 and Q9 is written 1 A Qs.

Intuitively, the reader can visualize the join as the union of sets U and the meeting as the in-
tersection N. Again, although we will return to considering these laws later, they are sometimes
insufficient to describe a desirable theoretical framework. We now define the axioms for the set
of bodies.

Axiomatic C.1.2. Let Uyoq be a set, whose elements are called bodies. We provide Uyoq with a
partial order relation noted <, verifying the following relations:

(B1) 3(0,00) € Upoq, VO € Uppg, 0 < 2, 2 < oo.

(B2) ¥ € Upog, Q < 0

(B3) Y(Q1,22) € Upog, (21 < Q) & (22 < Q1) = (1 =Q9).
(B4) V(21,92,93) € Upod, (1 < Q2) & (D2 < N3) = (1 < Q3).
(B5) V(Q1,2) € Upod, 21 A Q2 € Upoq-

(B6) V) € Unod, 30° € Upod, QAQE =0, QV QO = oo,

(B7) Y(,Q2) € Upod, Q5 AQs =0= Qp < Q).
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It is possible to show that the set (Upoq, <, A, V) satisfying the axioms has a Boolean
algebra structure (see [167, (1.2-36)—(1.2-40)]). From now on, we will simply write Upoq to des-
ignate (Upoq, <, A, V) satisfying the axioms An important concept concerns bodies
that are separate, in the sense that they are not in contact. For this purpose, we introduce the
following definition.

Definition C.1.3 (Separate bodies). We will say that two bodies Q1 and Qo are separated if they

verify
Q1A Qy =0.

Example C.1.4. Let us take a look at some of the possibilities for Upeq.

o A first possibility is to consider a set E and U, the set of subsets of E (not to be con-
fused with 2% ). Then we can set <=C, N =0,V = U, 0 = (), co = E, and for every
Q € Upoq, 2° = Q°.

e A second possibility is to consider a topological space X, and Upoq as the set of reqularly
open sets of X, i.e. the set of elements of its topology satisfying

(o]

Q=0Q

Then the axioms |(B1)H{(B7) are generally not satisfied for the operations N and U. It is

therefore appropriate to consider the operations:
VQ1, Q9 € Upog, 21 A Qo =Q1 N0, 1V Qs =01 U,

Note that an example of a set that is open but not regularly open can be given by an open disk
in the plane with an interior point removed. It is also possible to construct examples of sets of
bodies that do not satisfy all the above-mentioned axioms. For erxample, by considering the set
of reqularly open bodies of a Euclidean space with the topology associated with its norm, having
a piecewise smooth boundary. Then it is possible to check that the meet of two bodies does not
always exist (see [167, Chapter 1, 3.3]).

C.2 Mass measure

To return to our initial discussion, we are going to give bodies a mass, rather than isolated points.
We will refer to this as a massy body. The set of massy bodies forms a non-empty subset of Upeq,
but for convenience (and since this will be the case in our talk), we will consider all elements of
Upoq to be massy bodies.

Axiomatic C.2.1. We assume that there exists M : Upoq — R, satisfying for every separate
bodies Q1 and Qo
M(Ql \Y Qg) = M(Ql) +M(Qg),

such that M can be extend as a measure over all Borel sets of Upoq, which is called the measure
of mass.

We point out that this makes sense since from |(B1)| and [(B5)| it follows M(0) = M (0V0) =
2M(0) = M(0) = 0. Also, M is a measure over Upoq as soon as Upoq defines a suitable topological
space (namely, as soon as we can use N = A and U = V).
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Definition C.2.2 (Mass of a body). Let Q € Uyoq be a massy body. Then, the mass of Q is given
by
M(Q) :/ 1dM.
Q

The principle of conservation of mass is naturally taken into account by the axiomatic refax:mass.
Note, however, that the framework we have presented is specific to a sufficiently large scale, which
experimentally corresponds to a mesoscopic or macroscopic scale, since conservation of mass is not
always well verified at very small scales during chemical interactions. Note that it is still possible,
under these considerations, to return (in a sense) to the framework of classical mechanics by
considering the set of Upoq mass bodies as a set of parts of isolated weighted points. This being
said, the identification between Upyq and all its massive bodies would then be abusive.

C.3 Forces acting on a body

Now that we have given a precise meaning to the notion of body and associated mass, we need
to give a meaning to the notion of force applied to a body. In particular, we need to define a
suitable axiomatic to preserve the properties of classical mechanics.

Definition C.3.1 (force exerted on a body). Let Upoq be a set of massy bodies, namely satisfying
azioms and Aziomatic |C.2.1  Then, considering an Hilbert space H, we say that
f : Upoda X Upoq — H is a system of forces. The vector f(1,82) is called the force exerted on
over €g.

In practice, we will take H = RY, i.e. we will consider an Euclidean space.

C.3.1 Case of separate bodies, Noll axiomatic

We now turn to the definition of the axiomatics associated with a system of forces. First, we will
present it in the more intuitive case of separate bodies, then generalize it to the general case.

Axiomatic C.3.2. We consider Upoq and H as in Definition[C.3.1. Moreover, we only consider
separate bodies. More precisely, we assume that for every (Q1,Q2,Q3) € Upoq such that for every
(i,7) € {1,3}, i # j, we have Q; AQ; = 0.

(F1) There exists a system of forces f : Upod X Upoa — H as given by Definition |C.3. 1}

(F2) f(Q1V Qa,Q3) = f(Q1,Q3) + f(Q2,Q3).

(F3) f(01,9Q2VQ3) = f(Q1,92) + f(21,Q3).

(F4) f(-,9Q5) is a vector valued measure over .

The axiom [(F2)| expresses the fact that the force exerted by two separate bodies 27 and €23 on a
third body €23 is equal to the sum of the forces exerted respectively by Q1 and by Qs on 3. The
axiom |(F'3)|expresses that the distributivity property induced by the axiom |(F2)|is true according
to the two variables considered, i.e. we have distributivity on the left and on the right relatively

to the join. At this stage, we even expect commutativity, which is the same as saying that we
would have:

f(Q1,Q2) = —f(Q2, )
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that is, in a sense, we are verifying Newton’s third law. Such a system of forces is said to be
pairwise equilibrated. We have the following result.

Theorem C.3.3 (Noll-Gurtin-Williams). A system of forces is pairwise equilibrated if and only

if the resultant force f(S2,Q°) is additive over separate bodies of Upoq, namely:

V(Q1,Q2) € Upoa, Q1 AQ=0= f(Q21V Q2 (VD)) = f(21,97) + f(Q2,05).

Now, from Axioms |[(F2)|and [(F4), we deduce the following result.

Theorem C.3.4 (Measure relative to two separate bodies). Let Q1 and Q2 be two separate bodies
of Upoa. Then the function w — f(w,QS) defined for w < Qy is a measure on 2. We then denote:

Voo € Upod, @ < 1, f(w, ) = / 1 dfoy,

w

C.3.2 General case, Rizzo axiomatic

In the previous section, we concentrated on the case of two separate bodies. This being said, in
the context of continuum mechanics, we can imagine that two bodies are not always separate,
firstly because we can think of two bodies in contact for a fluid, but we can also think of a complex
fluid whose elements mix, for example. This raises the question of whether the axioms refax:F1-
refax:F4 can be generalized to bodies that are not necessarily separate.

Axiomatic C.3.5. We consider Uyoq and H as in Definition [C.3.1, We assume that for every
(Q1,92,93) € Upoq, the following statements hold.

(F1°) There exists a system of forces f : Upoq X Upoq — H as given by Definition .

(F2°) f(21VQ2,03) = f(Q1,Q3) + f(Q2,Q3) — f(21 A Qa,Q3).

(F37) f(€, Qv Q3) = f(, Q2) + f(Q1, Q) — f(21,02 A Q).

(F4°) f(0,) = f(£1,0) = 0.

Some may question the validity of a Newton’s third law in this context. The following theorem
aims to answer this question.

Theorem C.3.6 (Rizzo). Let us assume that there exists a system of forces satisfying

over a universe of bodies Upoq and relatively to an Hilbert space H. Then, we have:

V(Q1,82) € Upoa, f(21,Q2) = —f(2,Q9),

if and only if
VQ € Upoa, f(2,92) =0.

C.4 Motion

Before going any further, let us have a quick heuristic discussion on a notion that will be useful
to us later on.

When imagining a flowing fluid, it is common to approach it from two angles. On one hand, we
can fix a fluid particle and follow its trajectory, or on the other hand, we can fix a point in the set
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of possible trajectories and observe the particles that pass through this last. The first approach
is known as the Lagrangian description of the flow while the second one is usually refered as
its Fulerian description. We can express each of them by a flow function (in a mathematical
sense) which take its values in different spaces. Indeed, if we denote by g the set (namely, an
element of Uyoq) which is made of the particles that we wish to observe during flow at time ¢ = 0,
and €; the set of the same particles at time ¢, then we can write both of these descriptions as follow.

[0, 4+00) X Qo — U
(Lagrangian description) ¢:
(t, X) — =z,

[0, +OO) X Qt — QO
(Eulerian description) ¢ :

(t,z) — X.
Moreover, we shall assume here that ¢ and ¢ are smooth, which will simplify our presentation
without loss of generality in the physical sense. In order for the above definitions to make sense,

i.e. to try to account for a uniqueness in the flow, we have to consider that ¢ = ¢~ 1.

¢

> time

Figure C.2: Lagrangian and Eulerian descriptions of a flow

Heuristically, by defining the fluid velocity field as the derivative of its position, we obtain in
Lagrangian description the following definition for the fluid velocity field:

a(t, X) = dyp(t, X).

As a result, we have the following definition in the Fulerian description:

Thanks to the assumptions we have made, we are able to establish a link between these last two
descriptions. In terms of evolution, this is done via the notion of material derivative. If we assume
that P represents a physical quantity, this is nothing else than the time rate of change of this
one. That is, if we denote formally by P(t, .) the material derivative of P, we get in Lagrangian

description: _
P(t,X)=0,P(t, X),

and then, using the chain rule, we should obtain in Eulerian description:

P(t,2) = & (P(1,0(t,2)) = P(1, 6(1, ) + (u- V)P(t, (1, ),
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were we use the notation: ((u - V)u), := u;0ju;. So, in the sense of material derivative, we define
the material acceleration of a particle in Eulerian description given by:

a(t,z) := wu(t,x) + (u - V)u(t, ).

Let us return to a more rigorous discussion. First of all, let us note that we have not set a frame
of reference here. We could take several: the set of volume elements described by the flow we
are studying, i.e. Uy 5 where Q := {Q € Upoa / 3t € Ry, Q@ = O}, the ambient space, say for
simplicity the space RV, or a fixed domain of it. When this frame is sufficiently stable, we speak
of a rigid frame. This stability translates into the existence of an isometry between the elements
of the ambient space at each instant t.

Generally speaking, it is worth asking about angle-preserving transformations, i.e. inner product-
preserving tensors.

Proposition C.4.1. A tensor QQ preserves the inner product if and only if it is orthogonal, i.e.
if and only if it verifies:
Q'=Q"

Typically, this is used to give meaning to frame-invariant transformations, known as frame-
indifference.

Definition C.4.2 (Motion, shape). Let Upoq be the set of bodies, H an Hilbert (or euclidean)
space, then a motion is a mapping:

XUpoq * R+ X Ubod — 2H.

For Q € Upoq, the space given by xu,.,(t,Q) is called the shape of Q at time t.

So we can see, for example, that the open sets Q0 = p(¢,) presented above are shapes at time
t for the Lagrangian description mapping ¢, which describes a motion if we define it by looking
at its action on Upeq-

The shape at time t is given by the set of locations in the space considered occupied at time t,
these points sometimes being called substantial points. Thus, we can always write:

XUbod(t’Q) = {X(t>X) / X € Q}>

where x(t, X) = xu,.,(t, {X}). In the following, we will call motion the map xy,,, or one of the
applications it describes, given by x.

Definition C.4.3 (Velocity of a substantial point). Let x be a motion. Then, we respectively
define the velocity and the acceleration of a substantial point X at time t by:
LX) = () and a(X) = Lt X) = D)
U = — x an a = —1u = — .
) th ) ) dt Y dtzx Y
More generally, we define its n-th velocity mode by:

dn
un(taX) = %X(LX)'
Let us note an important fact: we have described bijective motions here, which means that two
substantial points, sometimes referred to as particles (and we will confuse these notions later), do
not simultaneously occupy the same place at the same instant. This property, which is admitted,
is called the aziom of impenetrability.

In the following, we will note x the derivative %X, as is customary in classical mechanics. With
these considerations in mind, we can then define the usual objects of classical mechanics.
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Definition C.4.4. Let Uyoq be a set of massy bodies satisfying the arioms X be a
motion, M be the mass measure given according to the mass function, denoted identically, verifying
the aziom [C.2.1,f a system of forces, and let the aziom of impenetrability be satisfied. Then we
define at time t € Ry, for Q) € Upoq

o The linear moment of Q) relative to the motion x:
m(@x(0) = [ 5(0.¥) dr(v);
o The rotational moment of Q) relative to the motion x and to xo € x(t,§2):
oy (RX(0) = [ (1Y) = 20) A () AM(Y) = =1y (X))

o The kinetic energy of Q0 relative to the motion x:
1 .
Ke (@) = 5 [ [§(6Y)F aM():
o The work energy of fae over Q relatively to the motion x:

W (9 X (1), for) = /Q X(EY) - dfae (V):

e The moment (or the torque) of foe on w < Q relatively to the motion x with respect to
xo € x(t,w):

Fyy (.90 x(1)) = / (\(£,Y) — 20) A dfee (V):

w

The resultant torque being given by Fy, (2, Q°, x(t)).

e The center of mass of Q relative to the motion x:
1
p(t, Q2 :/Xt,Y dM(Y);
(1:9) = 7 X ¥) A (Y)

where we denoted x(t) : Y — x(¢,Y).

The above definitions cover the usual notions of classical mechanics, adapted to the framework
of continuum mechanics. Let us end this discussion with a fact that we mentioned earlier, the
change of frame. In fact, it is possible to characterize a spatio-temporal change of frame, i.e. when
we want to move from a point (¢,x) to a point (t*,2*), as long as it defines a desirable isometry.
In fact, as we said earlier, preserving angles is tantamount to applying an orthogonal tensor, from
which the following result follows.

Theorem C.4.5 (Isometric change of frame). Let us consider a change of frame from Ry x H —

Ry x H, (t,x) — (t*,2%), where:
{x = 0(t,2) (C.4.1)

t*=t+«

0 being an isometry and o € R is a constant. Then, there exists a function Q : Ry — Og(R)
namely such that for each time t, Q(t) is an orthogonal tensor over H, such that (C.4.1) is
characterized by:

{x* = 0(t, z0) + Q(t)(z — wo) (C42)

t"=t+a

where xg s a fized point in the initial frame. If, moreover, the map t — Q(t)QT(t), called the
spin, is continuous, such a change of frame is unique.
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In the end, as we mentioned earlier, this theorem essentially boils down to the characterization
of isometries.

C.4.1 Axioms of mechanics

One of the main ideas of mechanics is that, whatever the observer’s point of view, there are
elements that remain invariant. This idea is embodied in the following assertions, known as the
axioms of mechanics.

Axiomatic C.4.6. Let us consider two different (rigid) frames and a change of frames as given

in Theorem [C4. 5

(Mel) Mass is frame-indifferent, namely if we denote M the mass into the first frame and M* into
the second one, we have:

V(4 2), (¢, 27)) € (Ry x H)2, M(t,x) = M*(t*,2%).

(Me2) Forces are frame-indifferent, namely there exists a function Q as given in Theorem
such that for a system of forces f defined over the initial frame, we get f* = Qf, f* being
the system of forces over the final frame.

(Me8) Work is frame-indifferent, namely we have W* = W over every Q € Upoq and every motion
X-

This raises the question of whether it is still possible to prove, within this framework, an assertion
of the same type as Newton’s third law, which has always been the case up to now. This is the
subject of the following result.

Theorem C.4.7 (Noll). The work of a system of forces is indifferent to the frame if and only if
this system and its associated torques are both balanced. Consequently, for any pair of separate
bodies 1 and Q9, we have:

f(Q1,Q2) = —f(Q2, 1)
Fxo(QhQ2) = _Fxo(Q%Ql)-

C.4.2 Axioms of inertia

So far, we have defined the basic notions, the frame, and alternative formulations of Newton’s
third law of classical mechanics. But the notion of inertia, preponderant in classical mechanics,
must find its place in our theory, and with it Newton’s other two laws. First, we will consider
an isolated system > C Upeq, in the sense that we are not looking at the interactions occurring
in the set of elements of Upoq , but simply at the forces occurring between elements into . For
example, ¥ could be the set of substantial points traversed by a domain wq transported by a flow,
if these points, initially evolving in a larger domain €2y, remain sufficiently close to each other (to
form regularly open sets). As usual, we then note 3¢ the join of the set of bodies outside .

Axiomatic C.4.8 (Inertia). We assume that the two following properties hold.

(I1) There exists a frame such that, being given a body Q € Upoq, and a mation x, if the linear
momentum m(),x) is constant is constant over I C Ry, then f(2,%¢) = 0 in I and
conversely. Equivalently, the center of mass of Q for the motion x, i.e. D(2,t), follows a
rectilinear motion with uniform velocity in this frame if and only if 3¢, the bodies external
to the bodies under study, exert no force on 2. Such a frame of reference is called an inertial
frame of reference.
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(12) In an inertial frame, we assume that we always have

f(8,5) = —mi(9, X)-

The two above-mentioned axioms are equivalent to Newton’s first and second laws respectively.
Note that with our notations and assuming the above axioms, we have for a regular motion y (at
least C'!) and for an integrable function g:

/gdfzez—/giédM.
Q [9]

That is, the measure of the external forces exerted by €2 is equal to the opposite of the measure of
mass weighted by the acceleration function for the motion y. Once again, we find a formulation
analogous to Newton’s well-known second law. The reader should not worry about the present
sign, because of Theorem (i.e., the equivalent of Newton’s third law), it reverses and we
immediately find the usual formulation of the second law. In fact, the preceding axioms imply
the following property, which fully reflects the laws commonly used in classical mechanics.

Theorem C.4.9 (Euler laws of motion). In an inertial frame, let us denote by f° the function
being the force exerted on a body into 3,and similarly by F.% the resultant torque thus obtained.
Then, we have for all € X:

FEQ) =m(Q,x)  and  Fp(Q) = 7 (2, X)-

Namely, this means respectively that the applied force on Q is equal to the rate of change of the
linear momentum, and the applied torque is the rate of change of the rotational momentum.

We draw the reader’s attention to the fact that it is quite possible to define a theory analogous
to that of classical mechanics for energy (potential energy, total energy, conservation law, etc.).
However, we won’t be using it here, so we refer the reader to [167, Section 1.14., Section 1.15.] for
a complete presentation of this aspect of continuum mechanics.

C.5 Kinematics of simple incompressible fluids

We can now introduce the section dedicated to fluid flows. From now on, we will be considering
motions of regularity C' and being global homeomorphisms, which we will sometimes refer to as
placements. Typically, Lagrangian and Eulerian descriptions constitute such motions. We will
also consider H = RY from now on.

Applying the Radon-Nikodym theorem to the measure of mass M, it follows that for any motion
X acting on a body €, there exists a unique function p (which depends on x) such that we have:

M(Q) = /(Q) p dx, (C.5.1)

where dx is the Lebesgue measure, i.e. the volume measure. We immediately deduce the following
result.

Proposition C.5.1. For very motion x defined over 0, if g € L'(Q,dM), then g € L' (x(Q), pdx)

and:
/g dM :/ pg dx.
Q x(2)
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Proof. The proof is an immediate consequence of the definition for a fixed . Now, the invariance
of mass for a body allows us to deduce that for two motions y; and xo, we have the relation:

/ p1g dx = / pog dz.
x1(2) x2(92)

Thus, any pair (x, p) defines the same value, by definition. Note that it is always possible to
switch from one motion to the other by changing variables. O

C.5.1 Axiomatic and consequences

The aim of this section is to establish how forces work in continuum mechanics, i.e. how they
act on bodies. Let us start with a little heuristic discussion specific to fluids. Intuitively, if we
consider a body that is a small parallelepiped of fluid, then a force acting on it can be decomposed,
by applying the spectral decomposition theorem, into orthogonal forces and forces that are in the
planes of the surfaces. The former are called body forces, the latter contact forces. Orthogonal
forces are of two types: either they are directed away from the center of mass, in which case they
are called tension forces, or they are directed towards the center of mass, in which case they are
called pressure forces.

Pressure

Figure C.3: A representation of pressure forces

Contact forces are generally referred to as viscosity forces, from which we distinguish shear forces:
formally, this refers to the way in which the fluid deforms when forces act in two opposite directions
on just two sides of the parallelepiped. When we observe how shear forces act instantaneously,
we refer to this as the shear rate tensor.
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Shear rate

Figure C.4: Shear rate tensor acting over a body which is a small parallelepiped of fluid

Returning to a more rigorous discussion, to be able to establish a good decomposition, we need to
be able to estimate the way in which the separate bodies act on each other. This is the purpose
of the following axiom.

Axiomatic C.5.2 (Axiom of forces in continuum mechanics). Let Qq and Qo be two separate
bodies the contact area of their shapes for a motion x being sufficiently small, as is the mass of
Q. Then, there exists a positive bounded function C(Qs2) such that C(Q2) — 0 when M (22) — 0,
and a positive constant C' such that:

£ (21, Q)| < COx(21) N Ox(Q2)] + C(Q2) M ().

The preceding axiom is not very intuitive, but it does allow us to express, roughly speaking, the
fact that the forces exerted by a body are proportional to their contact surface and their masses.

Ox(§22)

Figure C.5: A contact surface dx(£21) N 9x(£22), between two bodies x(£21) and x(€2).

Theorem C.5.3 (Contact and body forces). Let f be a system of forces over Upoq, then there

exists systems of forces fp and fo such that f = fp 4+ fo and for every QU and Qo in Upoq, we
have:

[/B(21,Q2)] S C(Q)M(21)  and  |fe(fh, Q)| < C|Ox(21) NOX(Q2)].

The systems fg and fo are respectively called systems of body and contact forces.
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Thus, we know that there is a good characterization of forces in terms of contact and body forces.
But how can we characterize contact forces? After all, they act on a surface, so we intuitively
expect their integral characterization to be expressed in terms of the Hausdorff measure of the
contact surface. The following result confirms that this is indeed the case.

Theorem C.5.4 (Gurtin-Williams). Let us consider a system of contact forces fo over Upoq in
the sense of Theorem[C.5.3 Then, there exists a density t, called the traction, such that for every
bodies Q01 and Q9 we get:

fe(1,92) :/ t do,
8X(Q1)Q8X(QQ)
where do is the Hausdorff measure for the hypersurface Ox(21) N Ix(Q2). Moreover, for every
open subset S < Ox (1) NOx(Q2) the restriction of t over S, denoted similarly, satisfies the same
formula, namely:

fo(Q1,Q0)15 = / t do,
s

Finally, if it is true that Theorem [C.4.7] i.e. in a formal sense Newton’s third law, is verified for
bodies, there is nothing to say a priori that it remains true for the contact surfaces induced by
them. The following result confirms once again that this is indeed the case.

Theorem C.5.5 (Noll’s Action and reaction for contact forces). If a system of forces is pairwise
equilibrated, then so are the body and contact force systems, in particular we have for every bodies
Ql and QQ m Ubod N

fB(Q1, Q) = —fp(Q2, )

fo(Q1,Q2) = —fo(Q2, ).

A major consequence of the Theorem is the following.

Theorem C.5.6 (Hamel-Noll). We assume a system of contact forces fo as in the Theorem
and a traction t associated with it via a motion x. Then, for any S < Ox(Q1)NOx(Q2), the traction
t is expressed almost everywhere as a function of x € S and of a normal vector n to S at x only,
i.e. t =t(x,n). Moreover, we have:

t(x,—n) = —t(z,n).

The principle that traction can be expressed pointwise and as a function of a vector normal to the
surface is often referred to as Cauchy postulate. Theorem highlights that in the framework
of rational mechanics, this principle is in fact provable, as is the equivalent of Newton’s third law.

C.5.2 Deformations

In this section, we study deformations in RY. This theory is prevalent in fluid mechanics as well
as in elasticity theory. We consider orientation-preserving motion, which we will denote ¢, and
which in spirit can be thought of as the flow associated with the Lagrangian description of a fluid
(and a fortiori, the Eulerian description). The V¢ tensor is called the deformation gradient, and
orientation preservation translates into Vi > 0 on a considered body. In the following, without
loss of generality, we will take a body Q € Upq-

We also introduce the displacement u, defined by v = ¢ — Id, and the displacement gradient
Vu = V¢ — Id. For simplicity’s sake, we will regularly write ¥ = ¢(x) for x € Q.
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Figure C.6: A deformation in R3. Here, n denotes a outward unit normal vector.

Now we put forward that, according to Proposition angles are preserved by a function
whenever it is expressed as the composite of an orthogonal tensor and a translation. If a motion
¢ satisfies this condition, i.e. ¢ = a + @, where a € RY and Q € On(R), we say that it is a rigid
deformation. Note that if we wish to show that how such motions act locally on the distances,
we are led to observe that, for x € Q and y € Q2 such that x + y € Q, we can write:

oz +y) — () = Vo(@)y + o(|yl),

which implies, taking the matrix inner product:

lo(z +y) — o(@)* =y  V(a) Ve(z)y + o(|y[?).

This motivates the introduction of the tensor C = V! Vo, called the right Cauchy-Green strain
tensor. We have the following result.

Theorem C.5.7. A motion @ is a rigid deformation if and only if the right Cauchy-Green strain
tensor satisfies C' = 1d.
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a translation

Figure C.7: A rigid deformation ¢, which is by definition a translation followed by a rotation
(or vice Yersa). Here, n, 7 and 7 are translations, while () and @) are rotations. We can see that
p=noQon=CQo7n. Angles and distances are preserved.

)

time

Figure C.8: Example of a fluid undergoing non-rigid deformation, angles are not preserved.

Theorem gives us a very convenient way of quantifying the stiffness defect of a motion, by
introducing the tensor:

2F =C —1d.

Note that the coefficient 2 in the left-hand side of the equation is introduced so that the tensor
F is symmetric. By definition, then, we have:
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C=VelVp =1d+ Vu+ Vul + VuVul =1+ 2E,

which then leads to:

E(u) =< (Vu+ Vul + VuVuT) )

N

which is called the Green-St Venant strain tensor. The linearized Green-St Venant strain tensor
is called the strain rate tensor, and is denoted D(u). It is then the symmetrical gradient, namely:

B Vu+ Vul
_f.

D(u)

Figure C.9: The right Cauchy-Green tensor and its link with rigid deformation.

C.5.3 Stress tensors

We have already seen how deformations act on a body. Now we need to focus on how we can
account for the stresses applied to a deformable material, let alone a fluid. To do this, we need
to take up the results set out in Theorem and Theorem

Theorem C.5.8 (Cauchy stress tensor). Let ¢ be a motion and t the associated traction as given
in Theorem[C.5.4 and Theorem such that t : (x,n) — t(z,n) is continuously differentiable
along its first variable and continuous along its second. Then there exists a symetric tensor T on
RN, which depends only on x, and such that:

t(x,n) =T (z)n.
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The tensor T is called the Cauchy stress tensor.

Note that the Cauchy stress tensor depends on ¢ in the sense that it can be rewritten (in the
spirit of the Lagrangian description), introducing 7 which acts only on a body:

T(x) :=T(p(x)).

o(x Ty 162

Tery

T31e3)

€2

t(p(x),e1) = Tinei
e«

Figure C.10: A representation of the Cauchy stress tensor in R3

What’s more, the Cauchy stress tensor can be used to give a precise decomposition of the forces

applied to a small sub-volume, e.g. a parallelepiped, of fluid, which we intuitively described
earlier.

(m>0) (r>0) (¢ >0)

€

—_—

|

l

AN

—

@ T ©

Figure C.11: Special cases from a decomposition of the Cauchy stress tensor. (a) Pressure force,
T% = —7ld; (b) Tension following a direction e, T% = 7e ® e: (c) Shear relatively to e and f;
T? =0(e® f+ f®e)

Nous rappelons le résultat suivant.

Theorem C.5.9 (Reynolds). Let € be a regular domain into RN and ¢ be a motion, so that
there exists Qo such that o(Qy) = Q. Consider u the velocity field associated with varphi along
the boundary, and n an external normal unit vector. Then, for a C' function g over Qy, one gets:

d
(/ gdm)z Gtgdx+/ ug - n do.
dt \Ja, Q o9
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Corollary C.5.10 (Cauchy first law of motion). Consider a fluid flowing from a domain Qo €
Upoq at time t = 0, and let u be its velocity field in Eulerian description. Then, it satisfies for
every (t,z) € Ry x Qy, where Qp = ¢(t, Qo)

p O+ (u-Vu) —div(T) = pfs, (C.5.2)

where T is the Cauchy stress tensor and p is the density of the fluid.

Proof. 1t is a matter of using the balance of linear momentum, then the definition of contact and
body forces, and we can then apply Theorem and Theorem to get the result, applying
in a final step Stokes formula over the surface term since we have:

—/ div(7) dx:/ T -ndo,
Q o
O

It is also possible to show, using the balance of rotational momentum, that 7 = 77, which is
known as Cauchy second law of motion.

C.5.4 Constitutive equations

This brings us to the final section of this chapter. In simple terms, a constitutive equation is a
good expression of the Cauchy stress tensor, in the sense that it is a way of writing this tensor
for the study of a specific type of material. Since we have established an expression for contact
forces using the Cauchy stress tensor, we will henceforth note f for body forces, which we will
also sometimes refer to generically as external forces.

Let us start by presenting the axiomatics we will be using.

Axiomatic C.5.11. Consider a flutd whose flow is described by the Lagrangian motion ¢ : ) —
Q= (o).

(R1) (Principle of determinism) The stresses at a point (t,x), where x = X% (i.e. x is expressed
according to the FEulerian flow description) depend solely on the flow history, i.e. the flow
prior to time t. More precisely, if we note:

' = {y € Unoa / (s, Xo) € [0,1) x Qo, y = (s, Xo)}
Then we can write:
T(t,x) = T#(t, X?) = F(¢'t, ), (C.5.3)
where F is a mapping over the set of histories and substantial spatio-temporal point into the

symetric tensors space.

(R2) (Principle of local action) Let y be a point belonging to a ring centered at x, of smaller radius
Rins > 0. Then the stresses applied to x do not depend on stresses applied to y, nor on the
history of y.

(R3) (Principle of material frame-indifference) Let x be a motion evolving in the same space, and
t* =t+a, a € R. Then there exists a function Q such that for all t € Ry, Q(t) € On(R),
and verifying:

FOXt2) = Q) F (¢ t,2)Q(t)".

187



Let us comment on these axioms: asserts that if we look at a fluid particle, i.e. a substantial
point, then the stresses punctually associated with it over time depend on the flow history of that
particle; asserts that, in fact, the stresses applied depend only on local history and present,
so there is no a priori dependence on distance for constraints, either through particle history or at
present time. This is a major difference between classical mechanics and continuum mechanics,
since in classical mechanics such an axiom would make the use of stress extremely difficult. The
last axiom, , describes the fact that the flow of material is independent of the observer. An
equation of the form is called a constitutive equation.

As the title of this section indicates, we are interested in a certain class of fluids, which satisfy
the following definition.

Definition C.5.12 (Simple material). A material is said to be simple if, associated with motion

©, the history @' depends only on the associated displacement gradient Vu.

Clearly, a simple material is linked a priori to the deformation induced by ¢ motion, according
to what we established earlier. In our framework, we will in fact reinforce the axiom refax:R1,
additionally considering the following property.

Axiomatic C.5.13 (Principal of determinism for simple material subject to constraints). The
Cauchy stress tensor is writlen:
T=7+N, (C.5.4)

where T depends on the history of the material through the displacement gradient Vu, and N
accounts for normal stresses.

As we also mentioned in the title, we are focusing on incompressible fluids, so it is worth clarifying
what we mean. A fluid, initially studied on a domain g, is said to be incompressible if the volume
of any body defined by the flow history is constant for motion, i.e. noting w; = ¢(wy), for any

wp < Qp if:
i / ldx | =0.
dt \ J.,,

Applying the Theorem this is then equivalent to:

/ div(u) dz = 0.

Since this holds for any subdomain wq, and a fortiori arguing by regularity over any subdomain
wy, it follows that for almost all (¢, z), we have:

div(u) = 0. (C.5.5)
The condition given by (C.5.5) is called the incompressibility condition.

The following result establishes the precise structure that the Cauchy stress tensor can have in
the case of a simple material.

Theorem C.5.14 (Stress tensor for incompressible simple materials (Noll)). Let ¢ be a motion
acting on an incompressible simple material. Then assuming azioms |(R1)H(R3) and|C.5.13, we
have that the Cauchy stress tensor is expressed as:

T = (p, D(w)) — 7(p)Id,

where w(p) describes the vector field of pressure forces, and T is frame-indifferent and maps tensors
into tensors.
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At last, we are going to reach our goal. First of all, let us remember that a fluid is a perfectly
deformable material medium, so a simple fluid is a perfectly deformable simple material medium.
This definition remains vague, but intuitively it means that a fluid is a material which can undergo
non-rigid deformations and which can always, under stress, return to a given configuration. To
define a fluid rigorously, we need to translate this assertion rigorously, which is done through the
use of the Peer groupff]

Note that the frame indifference relation expressed in Theorem is referred to as an isotropy
property. Thus, any simple fluid is an isotropic material.

Finally, note that the conservation of mass, which we have obtained by construction, is expressed
in the following form:

d
aM(Wt) = 0,

which, using the Theorem leads to, for u the :

d d :
%M(t)zﬁ </thdx> :/wtatp-i-dlv(pu) dx = 0.

Since the reasoning is valid, as for the incompressibility condition, on any subdomain wy of €2,
we then obtain the following equation, called continuity equation, which is a transport equation
and is valid for almost all (¢, ), and for all by regularity:

Op + div(pu) = 0. (C.5.6)

Now, let us specify that we will always assume that the fluid flows in a parabolic pipe, i.e. we
will consider that for any ¢ € R, we have ; = Qg := Q. In addition, we need to consider how
the fluid flow behaves along the boundary when the latter is a domain (i.e. bounded). We will
always assume no slip, which means that the trace of the velocity field is zero on the boundary,
and translates into the homogeneous Dirichlet condition:

u=0 on R x0. (C.5.7)

For the system of equations to be properly defined, we still need to add initial data for the density
p and the velocity field in Eulerian description wu, i.e. that we consider:

Pli=o = po  and  up—o = up. (C.5.8)

Observing that for the fluid flow in Lagrangian description ¢, we have the displacement gradient
u which coincides with the fluid velocity field in FEulerian description in the Corollary it
comes by applying in it the Theorem considering the incompressibility condition ,
and the continuity equation , then by considering the non-slip condition on the boundary
, and finally by fixing initial data as in , that the flow of a simple incompressible
fluid is translated by the system:

#We refer the reader to [I67, Section IV.12.] for more details on this subject. A fluid is then defined as an
egalitarian non-solid material.
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(8tp+ div(pu) =0 in Ry xQ

p (B + (u- V)u) — div (7(p, D(w))) + V(p) = pf im Ry x O

div(u) =0 in Ry xQ (C.5.9)
u=20 on R4 x 0N

Plt=0 = PO in

Ujp—g = Up n Q.

In the previous case, density is not necessarily constant, so the fluid is said to be non-homogeneous.
Otherwise, if the density is assumed to be constant, the fluid is said to be homogeneous, and the

system ({C.5.9) reduces to:

Ou+ (u-V)u—div(r(D(u))) +Vr=f in Ry xQ

div(u) =0 in Ry xQ (C.5.10)
u=20 on R4 x 0N
u|t:0 = Up in Q.

This assumption will often be made throughout the dissertation. Recall that a fluid is said to
be Newtonian when the tensor 7 is linear relative to the strain rate tensor D(u), non-Newtonian
otherwise. For fluids with shear-thinning or shear-thickening behavior, we then recall that the 7
tensors obtained verify the following relations, where x € {0,1} according to considerations on
fluid viscosity, which comes down to whether or not we add diffusion to the equation.

e Carreau: B
T(M) = kM + (1+|M[>)"= M, p> 1,

Carreau- Yasuda:

p—

(M) = kM + (1+ |M|*)*& M, p>1,a >0,

Ostwald-De Waele (power law):

r(M) = KM + |MPP72M, p > 1,

Cross:

M
M) =M+ ——5— 1

Bingham:
{ o i M[>0
[

0,1] otherwise.

Herschel-Bulkley:
o T IMPTM, p> 1 if [M] >0

T(M) =rM + 7(M), %(M):{ .
[0, 1] otherwise.

We refer the reader to [59, 105, H6, T11) 20, 109, 64, ©69] for detailed discussions concerning the
viscometry and the analysis of such constitutive equations.
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L’essence des mathématiques, c’est la liberté.

Georg Cantor.
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Axiom
Impenetrability, [I76]
of choice,

Basophils,

Behavior
Shear-thickening, [1} [ B [7]
190

Shear-thinning, 27,
B3} B3 B9} [60; 74} [75] [190]
Bony decomposition,
Bounded variations, 50} [I54]

Carathéodory function, 55|
Cauchy first law of motion,
Cauchy postulate, [I82]

Cauchy second law of motion,

Cauchy stress tensor, [I86HISS]
Clarke gradient,
Constitutive equation, [I87] [I88] [I90]
Continuity equation, []
Controllability
Approximate, [x1], [I3] [16] 80} [87] [O1], [96]
Exact, [} (I3 (15, 0 07 B

Convergence
Kuratowski, xkxv], [L0] [I56], [I57]
Tight, [I55]
Vague, [I55]

Deformation gradient,

Degree of freedom, [I07]
Displacement gradient,
Duality map, [40}, [50]

Endothelium, I} 25]
Eosinophil granulocytes,
Erythrocytes, kxxvii] 23]
Euler
Laws of motion, [I79]

Fahraeus-Lindqvist effect, 24

Force

Body, [180]
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Contact,

Pressure, [, 21} [56] [59} [64} [116] [152]
(T80} [186], [188]

Shear, ) (55 5T} 153

Tension, [I80]

Viscosity, 5 B} 231 2 )
(180, [190]

Fourier multiplier, [TT0] [112] [TT3] [I1§]

Frame

Inertial,

Green-St Venant strain tensor, [I85

Hematocrit,
Hemostasis, I} [24]
Hsieh-Clough-Tocher triangle, i} [T0T] [I03]

Incompressibility condition, [I8§]
Inequality
Bernstein, [[11]
Gagliardo-Nirenberg,
Hemivariational, [xxv], [I0] [51]
Hoélder (Orlicz spaces), [159
Korn, 6], [62] [67], [70], [76] 155
Nirenberg-Strauss, [161]
Quasivariational, [3]
Variational, B [l 12} 27,
FE2HI6, £ 53 9% 60} 63, 73

Join, [[71}, [[73} [[7§

Ladyzhenskaya-Babuska-Brezzi conditions,

. 98}, [L00} [10T]

Lions,
Leukocytes, xxxviil], 23]
Lifting,
Lymphocytes, 23

Mass, [I73]

Measure of mass, [I72]

Meet,
Method



Hilbert Uniqueness, [79
Monocytes, Foevid] 7]
Motion,

Multivalued mapping, [35]
Domain,
Graph, [30]
Inverse,
Linear combination, [36]

Range,

N-function,
Neutrophils, 23

Newton

First law, [I79]
Second law,

Third law, [74} [[78} [[52

Norm

Luxemburg, [I59]

Operator, 2§

pLaplacian, 3 13, 16, 25
B9}, B3} [75, B9}, (97} [98) (117, [166} [T67]

p-Laplacian (symmetrized),
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Extension,
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Maximal monotone, [10] 36] 37}
BT} @3} B0, B2, b7, B8]

Monotone, 66 0 76T
16}, B350, 53155} 67 B9} [60} [P0
54, 98} [121], [163]

Potential, [7}
(4, 90} 120} [T21]

Proper,

Pseudomonotone, 28432} B5] [£1], E6}H49]

Radially continuous, B2

Strictly monotone, 28] B2H34] [45] [46], 8]
B3} [120]

Strongly continuous, 29H31] [34]

Strongly monotone,
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Type M,

Uniformly monotone, 28], [34], [£6]

Weakly coercive, A9

Weakly continuous, 29]
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