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When the green woods laugh with the voice of joy,
And the dimpling stream runs laughing by;
When the air does laugh with our merry wit,
And the green hill laughs with the noise of it.

WILLIAM BLAKE, Laughing Song

We often refuse to accept an idea merely because the tone of
voice in which it has been expressed is unsympathetic to us.

FRIEDRICH NIETZSCHE, Human, All Too Human
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Abstract

As social animals, humans communicate with each other by transmitting various types of informa-
tion about the world and about themselves. At the heart of this process, the voice allows the trans-
mission of linguistic messages denoting a strict meaning that can be decoded by the interlocutor.
By conveying other information such as attitudes or emotions that connote the strict meaning, the
voice enriches and enhances the communication process. In the last few decades, the digital world
has become an important part of our lives. In many everyday situations, we are moving away from
keyboards, mice and even touch screens to interactionswith voice assistants or even virtual agents
that enable human-like communication with machines. In the emergence of a hybrid world where
physical and virtual reality coexist, it becomes crucial to enable machines to capture, interpret, and
replicate the emotions and attitudes conveyed by the human voice.

This research focuses on speech social attitudes, which can be defined - in a context of interac-
tion - as speech dispositions towards others and aims to develop algorithms for their conversion.
Fulfilling this objective requires data, i.e. a collection of audio recordings of utterances conveying
various vocal attitudes. This research is thus built out of this initial step in gathering raw material
- a dataset dedicated to speech social attitudes. Designing such algorithms involves a thorough
understanding of what these attitudes are both in terms of production - how do individuals use
their vocal apparatus to produce attitudes? - and perception - how do they decode those attitudes in
speech? We therefore conducted two studies, a first uncovering the production strategies of speech
attitudes and a second - based on a BestWorst Scaling (BWS) experiment - mainly hinting at biases
involved in the perception such vocal attitudes, thus providing a twofold account for how speech
attitudes are communicated by French individuals. These findings were the basis for the choice of
speech signal representation as well as the architectural and optimisation choices for the design
of a speech attitude conversion algorithm. In order to extend the knowledge on the perception of
vocal attitudes gathered during this second study to the whole database, we worked on the elab-
oration of a BWS-Net allowing the detection of mis-communicated attitudes, and thus provided
clean data for conversion learning. In order to learn how to convert vocal attitudes, we adopted
a transformer-based approach in a many-to-many conversion paradigm with mel-spectrogram as
speech signal representation. Since early experiments revealed a loss of intelligibility in the con-
verted utterances, we proposed a linguistic conditioning of the conversion algorithm through in-
corporation of a speech-to-text module. Both objective and subjective measures have shown the
resulting algorithm achieves better performance than the baseline transformer both in terms of
intelligibility and attitude conveyed.

Keywords: speech attitudes, voice conversion, transformer network, production strategies, best-
worst-scaling experiment
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Résumé

En tant qu’animaux sociaux, les humains communiquent entre eux en se transmettant divers types
d’information sur le monde et sur eux-mêmes. Au cœur de ce processus, la voix permet la trans-
mission demessages linguistiques dénotant un sens strict qui peut être décodé par l’interlocuteur.
En transmettant d’autres informations telles que des attitudes ou des émotions qui connotent le
sens strict, la voix enrichit et facilite le processus de communication. Au cours des dernières dé-
cennies, l’importance des technologies numériques dans nos vies n’a cessé de croître. Dans de
nombreuses situations quotidiennes, nous délaissons les claviers, les souris et même les écrans
tactiles au profit d’interactions avec des assistants vocaux oumême des agents virtuels qui perme-
ttent de communiquer avec lesmachines commeon le fait avec nos congénères. Avec l’émergence
d’un monde hybride où coexistent réalités physique et virtuelle, il devient crucial de permettre aux
machines de capter, d’interpréter et de reproduire les émotions et les attitudes véhiculées par la
voix humaine.

Cette recherche se concentre sur les attitudes sociales de la parole, qui peuvent être définies
dans un contexte d’interaction commedes dispositions vocales envers les autres, et vise à dévelop-
per des algorithmes pour leur conversion. Pour atteindre cet objectif, des données - c’est-à-dire une
collection d’enregistrements audio d’énoncés véhiculant diverses attitudes vocales - sont néces-
saires. Cette recherche est donc construite à partir de cette étape initiale de collecte d’une matière
première, à savoir un jeu de données dédié aux attitudes sociales de la parole. La conception
d’algorithmes de conversion des attitudes vocales implique de comprendre ce qui les définit, à
la fois en termes de production - comment les individus utilisent-ils leur appareil vocal pour pro-
duire des attitudes ? - et de perception - comment décodent-ils ces attitudes dans la parole?. Nous
avons donc mené deux études, une première mettant en évidence les stratégies de production des
attitudes vocales et une seconde - basée sur une expérience de Best Worst Scaling (BWS) - met-
tant principalement en évidence les biais impliqués dans la perception de ces attitudes vocales,
fournissant ainsi une double compréhension de la manière dont les attitudes vocales sont com-
muniquées par les individus français. Ces résultats nous ont permis de motiver notre choix de
représentation du signal vocal ainsi que nos choix d’architecture et d’optimisation pour la concep-
tion d’algorithmes de conversion des attitudes vocales. Afin d’étendre à l’ensemble de la base de
données les connaissances sur la perception des attitudes vocales recueillies lors de cette seconde
étude, nous avons travaillé à l’élaboration d’un BWS-Net permettant la détection des attitudes mal
communiquées, fournissant ainsi des données propres pour l’apprentissage de la conversion. Afin
d’apprendre à convertir les attitudes vocales, nous avons adopté une approche basée sur un réseau
transformer dans unparadigmede conversionmany-to-many utilisant lemel-spectrogrammecomme
représentation du signal de parole. Les premières expériences ayant révélé une perte d’intelligibilité
dans les échantillons convertis, nous avons proposé un conditionnement linguistique de l’algorithme
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de conversion en lui incorporant un module de reconnaissance de parole. Des mesures objectives
et subjectives ont montré que l’algorithme résultant obtient de meilleures performances que le
transformer de référence aussi bien en termes d’intelligibilité et d’attitude véhiculée.

Mots clés: attitudes sociales, conversion de la parole, réseau transformer, stratégies de production,
expérience best-worst-scaling
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1.1 Context

This research on the conversion of social attitudes into speech was conducted at the IRCAM-STMS
lab, a singular place at the intersection of academic research and creation, making it possible to
address the dual demand posed by the need to thoroughly understand speech social attitudes, as
well as the technical challenge of voice conversion. This document is the result of inter-disciplinary
and collaborative research.

1.1.1 Foreword

As social animals, humans communicate with each other by transmitting various types of infor-
mation about the world and about themselves, thus creating a common meta-consciousness of
their being in the world. At the heart of this process, the voice allows the transmission of linguistic
messages denoting a strict meaning that can be decoded by the interlocutor. By conveying other
information such as attitudes or emotions that connote the strict meaning, the voice enriches and
enhances the communication process. In other words, a subtle and complex meaning can be con-
veyed by a speaker using only a few words uttered with specific vocal traits that are informative to
the recipient. In the last few decades, the digital world has become an important part of our lives.
Although it is a world in and of itself, with its own set of rules, functioning and aesthetics, it cannot
escape its creator’s desire to shape it in his image. The desire to make orality the primary modality
of our interactions with machines is at the heart of the anthropomorphic process through which
we conceive the digital world. In many everyday situations, we are moving away from keyboards,
mice and even touch screens to interactions with voice assistants or even virtual agents that en-
able human-like communication with machines. In the emergence of a hybrid world where physical
and virtual reality coexist, it appears crucial to enable machines to capture, interpret, and replicate
the emotions and attitudes conveyed by the human voice.

This research focuses almost exclusively on speech social attitudes, which can be defined -
in a context of interaction - as speech dispositions towards others. More specifically, the aim of
this research is to develop algorithms that convert these attitudes in speech while preserving other
aspects of speech such as what is said and the vocal identity of the speaker. Designing such algo-
rithms involves a thorough understanding of what these attitudes are both in terms of production -
how do individuals use their vocal apparatus to produce attitudes? - and perception - how do they de-
code those attitudes in speech?. Without addressing these two questions, it cannot be guaranteed
that the algorithm is effectively converting the attitudinal aspects conveyed by the speech. Once
designed, these algorithmswould allow for attitude conversion in recordings of actual human voice
but can also be integrated into speech synthesis modules, thus extending the expressive spectrum
of synthesized voices. This research has been supported by the French Ph2D/IDF MoVE project on
Modelling of Voice Expressivity and application to an expressive conversational agent and funded
by the Ile-De-France region and the car manufacturer Stellantis. This research was done with an
eye on the existing and potential uses of speech conversion algorithms, although being situated
upstream from their actual application in daily life.

1.1.2 IRCAM - A Unique Place Dedicated to Music, Speech and Sound

The IRCAM - or Institute for Research and Coordination into Acoustics & Music - created in 1977
on the initiative of the French composer Pierre Boulez and the French Ministry of Culture brings
together composers, musicians, and researchers for the study and creation around music, speech
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and sound. IRCAM is organisationally linked with and located next to the Centre Pompidou in the
heart of Paris. Hosted at IRCAM, the STMS lab - or Sciences et Techniques de laMusique et du Son -
is a joint research unit which brings together staff from CNRS, Sorbonne University, FrenchMinistry
of Culture, and IRCAM focusing on a vast but clearly identified field - music, speech and sound - in a
unique context where contemporary creation meets scientific and technological research. The lab-
oratory participates in the renewal of musical expression through the contributions of computer
science, acoustics, signal processing, cognitive sciences, neuro-sciences and musicology. Con-
versely, specific problems posed by contemporary creation give rise to original scientific advances,
be they theoretical, methodological, or practical, the scope of which goes far beyond the musical
field. Created only a few years ago, IRCAM amplify is the industrial branch of the IRCAM. It creates
a bridge between the recognized excellence of research at STMS lab and its potential real-life ap-
plications by taking on the process of industrializing and marketing promising lab findings in close
collaboration with the researchers.

The human voice, whether spoken or sung, has historically been regarded as a priority research
area in interaction with significant concerns about music and artistic creation, building on Pierre
Boulez’s original idea and the inspiration of emeritus researcher and former head of the Analysis-
Synthesis team Xavier Rodet. The original focus of voice research was on the study and synthesis
of the singing voice, which led to the creation of the CHANT singing voice synthesizer (Rodet et al.,
1984; Mathews and Pierce, 1989) and culminated with the restoration of the castrato Farinelli’s
singing voice (Depalle et al., 1994). Later, in response to the increasing demand of composers and
artists, research on speech gradually evolved (Röbel, 2003; Schwarz, 2003) with the introduction of
high-quality speech technologies - ircamAlign, ircamTTS, ircamHTS, and SuperVPTrax - and count-
less implications for artistic production (Fineberg, 2006; Rohmer, 2007; Gervasoni, 2008; Parra,
2009; Lanza and Pasquet, 2009). The recent advent of neural networks has given a new lease of
life to research in voice conversion - which consists in modifying one attribute of the speech while
preserving the others - and has led to numerous proposals within the team for speaker identity
conversion (Ferro et al., 2020), emotion conversion (Obin et al., 2019) and pitch conversion (Bous
and Roebel, 2022).

One of the IRCAM’s greatest strengths is that it brings together researchers who study speech
frommany angles. The perception and sound design team, in particular, featured psycho-acoustics
and cognitive neuroscience researchers whose knowledge on speech (Aucouturier et al., 2016;
Arias Sarah, 2018; Ponsot et al., 2018b,a; Goupil et al., 2019, 2021a) may enhance the scientific and
technical advances that occur in the Analysis-Synthesis team. Within this unique context, the re-
search work therefore tends towards trans-disciplinary collaboration between the different teams.

1.2 General Background

Human vocal expressions have evolved as signals to communicate with others. By continuously
modulating the phonatory and articulatory structures of their vocal apparatus, individuals encode
a considerable amount of non-verbal information, communicating their emotions such as joy or
anger, their attitudes, towards a person such as friendliness or dominance or towards an object
such as irony or doubt. In this research work, we propose to investigate social attitudes - i.e. atti-
tudes towards a person - as one component of this non-verbal oral communication. This decision
was not made at random and was the outcome of a thorough literature review that sought to ex-
amine each of these categories. Before we could situate any of these categories in a study of their
oral modality, that is, insofar as they are expressed or communicated vocally, we had to understand
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them in a broader sense.

1.2.1 Emotions & Attitudes

Emotion is derived from the Latin exmovere, composed of ex which means "out of" and movere
which means "move" or "raise". Thus literally emotion can be understood as a change, a movement
from one state to another. In this part, we will see that this change can be observed and under-
stood on different scales : physiological, psychological, neural and cognitive. Historically regarded
by the majority of scientists and philosophers as an organic instability caused by a disruption of
consciousness - an irrelevant epiphenomenon (Skinner, 1953) - emotion has gained great interest
among the scientific community from the second half of the 20th century, leading to a considerable
amount of research across various disciplines such as biology, psychology, philosophy, anthropol-
ogy, sociology and, more recently, neuroscience. Without properly attaining a solid consensus,
researchers have attempted for centuries to define emotion in a way that is widely accepted (Izard
et al., 2006).

Attitude is derived from the Latin aptus, which means "fitness" or "adaptedness." Like its by-
form aptitude, attitude also denotes a state of readiness for action. However, the term took on
a very distinct meaning as a result of its application in the area of art; it referred to the outward
or visible posture (the body position) of a figure in statuary or painting. Like emotions, attitudes
are primarily related to a physical lexical field, thus underlying their physical manifestations. It
must be noted, however, that attitudes are originally associated with a static posture, whereas
emotions are related to dynamics. In modern psychology, the first meaning was preserved in what
are frequently referred to as "mental attitudes," and the second meaning in "motor attitudes". The
first use of attitude dates back to Spencer and in his First Principles (Spencer, 1860). The concept
of attitude, much less important in the history of ideas than that of emotion, became established
with the development of social psychology (Allport, 1935) in the early 20th century. However, there
is no unambiguous definition of attitude, and the concept has long been criticised for the variety of
realities it covers.

Over the course of time, research in many fields has uncovered certain characteristics of both
emotions and attitudes, sometimes seeking to distinguish them and sometimes stressing their
mutual influence. The following is an attempt to synthesize these findings.

Bodily Evidence of our Emotions & Attitudes

The first material examined in the process of defining emotions was their physiological signature.
The sensational theory of emotions, which dates back to Spencer (Spencer, 1881), describes emo-
tions as aggregates or effects whose constituents or causes were sensations. In this line, the
Jamesian tradition focuses on the corporeal manifestation of emotions. James stated in 1884
that the human body could be thought of as a reverberation chamber in which even the smallest
physical changes resonate until they result in the conscious experience of emotion (James, 1884).
Our bodies undergo physiological changes in response to a variety of situations, and our experience
of these changes is what we refer to as emotion. According to James, emotions would manifest
themselves in abrupt physiological changes such as gastrointestinal motility, somatic fluctuations,
sweating, pupil dilation, heart rate, cutaneous blood flow (blushing or becoming pale), piloerection,
and skin conductance. If we specifically observe the physiology of vocal apparatus, we may see
that emotions are experienced as a variety of vocal changes, such as a trembling voice or quick
changes in intonation. Emotions would therefore occur as a result of physiological responses to
events.
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Initially, attitudes were almost exclusively thought of as motor, i.e. as physical manifestations.
Lange developed a motor theory according to which the phenomenon of perception was largely
a consequence of a certain physical configuration, a motor attitude.(Lange, 1888). Later, Baldwin
suggested that motor attitudes were the basis for an understanding of emotional expression (Bald-
win, 1895). From this point of view, attitudesweremainly considered as the physicalmanifestations
of emotions. From this perspective, friendliness might be viewed as a certain configuration of fa-
cial muscles, for instance involving smiling, along with certain typical vocal traits. To this initial
vision, new theories considered attitudes as based on a mental component. The underlying dual-
ism eventually disappeared in favour of a more global view of attitudes.

A whole branch of study known as cognitive evaluation theory was born out of these early the-
ories, which put the observation of physical changes at the center of understanding emotions and
attitudes.

Cognitive Evaluation Theory of Emotions & Attitudes

The cognitive evaluation - or appraisal - theory postulates that emotions arise from a personal ap-
praisal of the events experienced. According to these theories, emotion would be a cognition i.e.
a complex symbolic processing of information, whether conscious or not. At the heart of those
models is the procedure for evaluating the emotional significance (Arnold, 1960; Lazarus, 1968;
Scherer, 1999). The standard approach, based on early research by Arnorld and Lazarus (Lazarus,
1968), suggests that individuals employ a limited set of criteria to assess the situations they expe-
rience (Frijda, 1999). Depending on how well the individual can handle the so-called circumstance,
these criteria that reflect the personal relevance and significance of the encountered situation may
lead to either a favorable or negative overall judgment.

Similarly, attitudes have been defined as overall evaluation processes - that is roughly, deter-
mining the degree to which an issue, object, or person is liked or disliked (Petty et al., 1981; Eagly
and Chaiken, 1993). Attitude may thus also be thought of as a cognition as the evaluation involves
processing and summarizing different types of information. There is a close correlation between
a person’s attitude and the beliefs (Petty et al., 1993) and affects Bodenhausen (1993) they iden-
tify with the subject of their attitude. Yet, the affects encompass a broad range of feelings that
people can experience such as emotions and moods. Consequently, from this point of view, atti-
tudes are directly linked to emotions. For instance, it appears that the emotions an individual feels
towards another person partly determine their attitude towards that person (Mackie et al., 2000).
This shows how attitudes and emotions are intertwined, making it challenging to discriminate be-
tween the two.

This cognitive theory is based on experiments in which participants are asked to recall past
emotional experiences or behaviours, they might also be placed in the conditions to feel such an
emotion or to change attitude through stimuli exposure. The inability to distinguish between the
antecedents of an emotional experience and its real content - or between those of a specific atti-
tude change and the proper meaning of this attitude - is one shortcoming of these methodologies.
Even though it is now acknowledged that a particular stimulus can cause a multitude of subjective
emotional experiences (Barrett, 2017), the physiological changes are still regarded as a crucial part
of understanding emotions and attitudes.

However, numerous studies are now appearing to cast doubt on the Darwinian idea that it is pos-
sible to infer the emotion felt by an individual from a straightforward analysis of the physical signals
he or she conveys (Barrett, 2011). As a result, an important distinction between what is genuinely
felt - and materialized by a certain neural activity - and what occurs through various physiological
signs, whether physical or audible, has to bemade in the comprehension of emotions and attitudes.
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Ancient Neural Pathways of Emotions & Attitudes

In the quest for a definition of emotions, affective neuroscience - which examines the neurologi-
cal underpinnings of affects 1 - has brought new insights uncovering specific brain systems that
are, at least partially, devoted to emotion. In 1986, Panksepp suggested the existence of several
distinct brain circuits linked to primary emotions (Panksepp, 1987). Panksepp’s research on non-
human animal emotions led to uncovering seven systems located in the diencephalon 2, each of
which is dependent on distinct neural substrates and is essentially similarly present in allmammals:
seeking, rage, fear, lust, care, panic and play. Causal stimulation (electrical or chemical) of such
systems - in both humans and animals - has been shown to influence emotional feelings and be-
haviours (Panksepp et al., 2004). Panksepp postulates that these circuits enable the collection of
information coming fromboth inside and outside the bodywhich is then processed and transmitted
to sub-circuits responsible for individual’s behaviour. Only a thin line seems to exist between what
Pranksepp refers to as emotions and specific attitudes like being careful or playful. Meanwhile,
Ekman proposed six basic emotions (Ekman, 1999) - sadness, happiness, fear, anger, surprise and
disgust - providing evidence for distinctive patterns of autonomic nervous system (ANS) activity
for anger, fear and disgust (Ekman et al., 1983) as well as for sadness (Levenson et al., 1991).

The existence of such distinctive patterns - at a neurological level - tends to highlight the role of
emotions - and attitudes to a lesser extent - in the evolution of the human species. Indeed, humans
have experienced a plethora of issues throughout evolution, including those brought on by birth,
death, conflict, and even seduction. In some of these circumstances, deliberating carefully and
logically about how to respond is not always the best course of action. However, experiencing an
emotion - such as fear or an attitude - such as being seductive - would facilitate quicker contextual
adaptation with minimal conscious cognitive effort (Tooby and Cosmides, 2008).

Furthermore, it appears that these neural patterns fall well short of accounting for the wide
range of emotions experienced by human individuals throughout time and between cultures (Izard,
2007). A consensus emerged among scientists on a distinction between basic emotions - men-
tioned above and which refers to affective processes generated by evolutionarily old brain sys-
tems (Izard, 2007) - and more subtle emotions referred to as emotion schemas - that involve high
order cognitive processes such as complex cognitive processing of the stimulus based on con-
ceptual construction. According to Izard, emotion schemas can be defined as dynamic interac-
tions between cognitive components (Izard, 2008) that differ across individuals and cultures (Izard,
2007). These schemas depend on each person’s subjective experience and personality, and usually
emerge during early development (Izard, 2007, 2008).

A Constructivist Theory

The theory of constructed emotions constitutes the last significant contribution on emotions. Pro-
posed by Barrett, this theory (Barrett, 2017) is part of a broader understanding of how the human
brain operates. The brain interprets information coming from the world, including the rest of the
body, by constructing concepts, i.e. collections of embodied, whole-brain representations that pre-
dict upcoming sensory environment events and the appropriate course of action to deal with them.
The so called interoceptive network - that involves several regions of the human brain - organizes
all the sensory data coming from environment, from internal tissues and organs, from hormones
in the blood and also from the immune system, labels them, and relates them to concepts. Once
formed, a concept allows for a perception or an experience thus explaining the cause of sensory
events and directing action, i.e. the concept categorizes the sensory event. In this way, the brain

1Affect is a broad concept that encompasses emotions, moods and even attitudes.
2The diencephalon (or interbrain) is a division of the forebrain (embryonic prosencephalon).
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uses past experience to construct a categorization (Barrett, 2006, 2015) that best fits the situation
to guide action. According to Barrett, emotions do not stray from this functioning. We might expe-
rience an emotion in many different contexts and circumstances, each of which will be a unique
instance of that emotion. To categorize andmake sense of the impending sensory inputs, the brain
produces a concept of this emotion.

This theory gives a glimpse of other aspects of the role played by emotions - and attitudes - in
human functioning. For instance, emotions act as a glue for our memories, imbuing each moment
with the emotion we were experiencing at the time. Emotions also have an impact on our thought
processes, sometimes in positive ways and sometimes not (Matsumoto et al., 2006). Thus, emo-
tions can no longer be seen as reactions or interpretations to external stimuli. They are constructed
by the brain fromacondensed summary of the information it receives. Within this perspective, emo-
tions not only influence immediate behavior but also forecast future behavior. Emotions also play
an orchestration role by interacting with various systems (perception, attention, inference, learn-
ing, etc.), activating some while deactivating others, preventing cognitive chaos (multiple compet-
ing systems operating at once), and enabling individuals to respond to environmental cues in a
coordinated manner (Levenson, 1999).

From Cognition to Social Cognition

In The Politics (Aristotle. and Lord, 1984), which dates back to the fourth century BC, Aristotle refers
to humans as political animals. Indeed, since the dawn of time, humans have lived in groups, form-
ing large or small social and political communities. This social appetite of humans is reflected in
theirmultiple and varied interactionswhether they occur in family, professional or political contexts.
Individuals evolve in various social spheres where theymust communicate with others for a variety
of purposes such as to persuade the other or to provide the other information. This communica-
tion process - which can occur through several channels or modalities (such as orality) at a time -
involves a twofold movement of expression and perception. The foundations of this process will
be detailed in the following section. Both emotions and attitudes are the object of communication
processes, we express them to others - through modulating our facial muscles, body postures and
vocal traits - and we perceive those of others - by decoding cues from face and body movements
and speech acoustic signals (Elfenbein and Ambady, 2002).

Social cognition aims to understand the cognitive mechanisms that govern this social order.
Warmth and competence have been uncovered as main dimensions underlying social cognition
(Fiske et al., 2007). When interacting with someone, we first consider whether they have good
intentions - warmth - and then consider whether they have the capacity to act on their judgment
- competence. Both attitudes and emotions can be understood within this paradigm. However,
it is clear that we are no longer talking about these categories as cognitions - mechanisms of
information processing - or the feeling associated with it, we are talking about what transpires of
it in the social sphere. As pointed out by Ekman in (Ekman, 1999), emotions obviously do occur
without any evident signal, because individuals can at a very large extent, inhibit the appearance of
a signal. He also adds that emotional expression can occur without actual emotional feeling. An
important distinction then appears, between what is felt by individuals, and what they chose and
are able to express whichmay be totally different. Sometimes, we express emotions that we do not
genuinely feel, we portray emotions which potentially relate to totally different neural bases (Anikin
and Lima, 2017). The expression of emotions involves a delicate balance between the desire to
communicate or not a specific emotional content - that we feel for real or not - and the ability to
control one’s vocal apparatus, face and body muscles to achieve this.

In the light of social cognition, emotions and attitudes take on a different role for us humans,
as their communication influences what the receiver is likely to feel or behave. For instance , they
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can be seen as regulators of social interaction (Bradshaw, 1986). Emotions and attitudes inform us
about the others and interpersonal relationships and provide incentives for desired social behavior
(Keltner et al., 2003).

1.2.2 Speech Communication

Communication is derived from the Latin communicarewhich covers several meanings : "take part",
"share", "be in communionwith", "transmit" or even "propagate". This polysemy reflects the variety of
theories that aim to explain the underlying mechanisms that govern communication. This section
aims to provide the keys to understanding the communication of emotions and attitudes. This
implies considering, in the first instance, the communication process as a whole.

Human Communication - A Mechanistic View

From a mechanistic point of view, communication can be described as the complex process in
which a message is transmitted from an emitter to a receiver. Throughout the development of
information theory in the 1940s, Shannon built a formal model of communication, accounting for
systems dedicated to information transmission. As depicted in Figure 1.1 : to communicate, an
emitter encodes a message into a signal which is transmitted through a channel and decoded by a
receiver. During transmission the message is more or less altered depending on the quality of the
encoding, decoding and transmission channel. 
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Figure 1.1: Schematic diagram of a communication system, after [Shannon, 1948]

This mechanistic view of the transmission process has constituted a starting point for numer-
ous studies trying to describe human communication. In 1954, Wilber Schrammpointed out amajor
limitation to Shannon’s model: unless and until a receiver is able to understand or decode the in-
formation the sender wants to communicate, the communication is compromised. Following this
observation, he proposed a model - depicted in Figure 1.2 - inspired by Shannon’s in which inter-
personal communication was described as a two way process involving at least two individuals.
From that point onwards, the understanding of human communication will include what is referred
to as retroaction process: a feedback loop that allows the sender to know whether the message
has properly been decoded. Human communication is no longer akin to a simple transmission
process but must be understood as a collaborative process.

Human Communication - A Cognitive View

The enaction theory, at the core of human communication, was proposed by the neurobiologist
Francisco Varela in the 1980’s. This theory states that knowledge about the world is not prede-
fined data that individuals produce representations of, but rises during sensorimotor interactions
between individuals and their environment (Varela, 1996). Studies on the development of language
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Figure 1.2: Schematic diagram of a communication system, after [Schramm, 1954]

in children, from gestation onwards, show how languages are enacted in humans: they emerge in
the mutual and reciprocal rooting of perception and action, through the tactile, sonic and rhythmic
experience of the child with its environment (Aden, 2013). By naming things in the world to share
an experience with others, we perceive ourselves as perceiving at the same time as we create a
shared social space. While communicating, an individual is at the same time a sender and a re-
ceiver, a speaker and a listener of his/her own message. Within this scope communication can be
understood as a meta-consciousness of our being in the world. Communication can no longer be
understood as a simple transmission of information, it is the action of making a common world
emerge and thus cannot be thought outside the specific context in which it occurs. During an inter-
action, two individuals communicate conditionally to their mutual past experience as well as the
present context of speech and thus construct a meaning - i.e. an interpretation - which is specific
to that interaction.

Language - A Human Ability to Communicate

To communicate, humans encode information using sign systems - i.e. sets of symbols that are
shared among the individuals involved in the communication process. As soon as they are shared,
these systems, potentially of all types, can make inter-individual communication possible. For in-
stance, language is the ability of people to express their thoughts and communicatewith each other
by means of a system of conventional vocal and/or graphic signs. This system - referred to as a
tongue - is formed by a lexicon (a set of words) and a grammar (a set of operating rules). While lan-
guage, as ability, is innate and universal in humans, language, as sign system, is learned and differs
between groups of individuals, there are more than 6000 of them around the world. Although it has
been challenged by the case of sign language, the fundamental particularity of language lies in the
ability to associate a sound with a unit of meaning. For example, the vocalization yum-yum means
I am hungry in English. In linguistics - the study of language - the concept of sign developed by
Ferdinand de Saussure is formed by a signified and signifier, the first designating the mental rep-
resentation of the concept associated with the sign - vorstellung which means the idea - and the
latter designing the mental representation of the form and material aspect of the sign - lautbild
literally the auditory image . The signified of a sign is distinguished from its referent, the object
(or set of objects) designated by the sign (de Saussure, 1916). The signified can take two forms:
denotation, the literal meaning of a term and connotation, all the elements of meaning that can be
added to this literal meaning. According to Saussure, the relationship between the signifier and the
signified is arbitrary, e.g. the concept of water (signified) has several signifiers throughout world
(eau in French, agua in Spanish ...).
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Multi-Modality of Human Communication

As themost usual context for inter-human communication, face-to-face interaction is also the con-
text in which human language is learned and evolves. Within this context, communication not only
conveys information through a single channel but is about exchanging a plethora of multimodal
signals. We communicate through a complex orchestration of multiple articulators and modali-
ties: messages are dispatched and received, potentially, via all anatomical and cognitive means
available to humans to communicate (Mehrabian, 1972; Andersen, 1999). The communicated sig-
nals are mainly produced through gesture, speech, and touch modalities, and symmetrically per-
ceived through vision, hearing, and touch perceptual senses. Articulators, in the classical sense,
refer to the vocal organs above the larynx (i.e., the tongue, lips, teeth, and hard palate). In a multi-
modal perspective, the definition can be extended to other body organs such as the head, the face
including the forehead and eyebrows, the upper and lower eyelids, the muscles around the nose,
cheeks, and mouth, the hands, arms, and shoulders, the upper torso, and, in principle, the lower
torso, legs, and feet, although they are less systematically involved in the communication process.
Each conveyed information is processed through a hierarchy of representational levels. In oral
language modality, for instance, information is encoded by speakers through semantic, syntactic,
morphologic, phonetic levels and symmetrically decoded according to this same inverted hierarchy
through complex psycholinguistic processes (binding of multiple, temporally offset signals under
tight time constraints posed by a turn-taking system (Holler and Levinson, 2019)). Human com-
munication is therefore made of the co-production of a set of signs conveyed through different
modalities (speech, gesture, ...) which are co-intergrated through different human sensory dimen-
sions within a mutual dynamic process.

Vocal Communication

Among all the dimensions of human communication, orality is the one that has been studied the
most, mostly through the analysis of its different transcripts. Historically, research on communi-
cation initiated in the West and therefore focused on Western languages. Having the particularity
of being transcribable (through writing) - i.e. immediate access to the language - these languages
were an opportunity to study the oral dimension of communication. With the arrival of sound record-
ing technology the analysis of audio signals wasmade possible, thus reinforcing the research com-
munity’s interest in vocality. In contrast, the study of the non-vocal dimensions of communication
has proved to be more challenging because they are not strictly speaking governed by a language
although gestural modality is mistakenly referred to as body language.

If language, as a system of signs, is a pre-requisite invariant for any communication, conversely,
modulation is also essential to it. At the heart of voice communication, modulation allows seman-
tic differentiation (Uriel et al., 1968) : each acoustic modulation - i.e. variation of a set of vocal
parameters - has a potential communicative value that results in the modulation of the meaning of
the utterance itself. We modulate our voice to produce meaning. Modulation therefore occurs at
different levels, from semantics to acoustics, the variations of a given level being bijectively related
to those of the others. For instance there is a bijective relationship between the speed of vibra-
tion of the vocal cords (anatomic mechanism) and the fundamental frequency variations (speech
parameter). In order to understand these modulations, we have to go back to the anatomical func-
tioning of the vocal apparatus. If we divide this functioning anatomically, we can distinguish two
sub-parts : 1) the glottal source at the origin of the so-called prosodic modulations associated with
vocal parameters such as intonation, rhythm or intensity and 2) the vocal tract that causes timbral
and articulatory modulations associated with the spectral envelope of the speech signal.
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Anatomy Signal Domain Information

1. glottal source pitch, rythm, intensity prosody
1.1. linguistic (focus, syntax)
1.2. paralinguistic (emotion)
1.3. extralinguistic (speaking style)

2. vocal tract spectral enveloppe timbre, articulation 2.1. linguistic (phonemes)
2.2. extralinguistic (speaker identity)

Table 1.1: Overview table of the functioning of speech

Studies in general linguistics generally distinguish three main domains in speech communica-
tion: namely linguistics, paralinguistics and extralinguistics. As developed in the Table 1.1, each
of these domains is related to specific anatomic regions of the human vocal apparatus as well as
specific speech signal parameters conveying different types of information.

• The linguistic domain governs all information conveying the strict meaning, i.e. the linguistic
message. This message is acoustically encoded into a series of temporal acoustic units re-
ferred to as phonemes, i.e. sounds associated with textual units. The temporal articulation,
within and between these different units, is governed by prosodic patterns (accent, focus,
syntax, ...) that are specific to the linguistic content of the encoded message.

• The para-linguistic domain governs any information that contributes to the meaning but is
not determined by mere linguistic content i.e. any contextual information that specifies the
meaning such as emotions or attitudes. This information is acoustically encoded through
prosody, notably intonation, rythm and intensity (Puts et al., 2006, 2007; Chen et al., 2004; Li
and Wang, 2004; House, 2005; Feinberg et al., 2005; Xu et al., 2013) although it may also in-
volve specific vocal tract behaviour (Feinberg et al., 2005; Puts et al., 2007). Long considered
to interfere with vocal communication, certain para-verbal phenomena (hesitations, repeti-
tions, breathing or even laughter) have been rehabilitated by recent studies in their commu-
nicative function (Brennan and Schober, 2001; Vettin and Todt, 2004; Campbell and Erickson,
2004). Another example is speaking style as an adaptation to the audience, for example in a
professional setting.

• The extra-linguistic domain governs any information relating to individual characteristics of
the speaker such as identity, individual speaking style and socio-geographical origin. Recent
studies have highlighted the prevalence of individual characteristics such as personality traits
in speech signals and furtherly shown that by listening to a basic speech sample such asHello
, individuals can predict personality traits of an unknown speaker (McAleer et al., 2014).

1.2.3 Vocal Expression of Emotions & Attitudes

The ability to vocally express emotions or attitudes is crucial for human communication. Themean-
ing of a phrase is connoted by emotion, and thus significantly enhances communication bymaking
it easier and more fluid. Understanding how emotions are expressed through speech is essential
if we work to make it possible for machines to capture, interpret, and reproduce them.
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Modulation on Top of Linguistic Message?

As suggested by Fonagy in the double speech coding scheme shown in Figure 1.3, emotions com-
municated vocally can be seen as a modulation of linguistic information, an overlay of encoding
that connotes - or suggests an interpretation of - strict meaning. The linguistic content of an ut-
terance determines its overall acoustic form : phonemes are temporally articulated according to
specific prosodic patterns. Multiple variations can be applied to this basic form : para-linguistic
(emotions, ...) but also extra-linguistic (speaker identity, ...). Thus, the acoustic realisation of the
emotion is conditional on that of the linguistic content.
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Figure 1.3: Double speech coding scheme, after [Fonagy, 1983]

An Oral Language of Emotions & Attitudes?

Unlike linguistic information, emotional information is not strictly speaking reducible by means of
a language and this is so for many reasons. If wemake the analogy with linguistics, we would have
a signified, the concept associated with an emotion, and a signifier, its acoustic realisation. Can we
say that all concepts of emotion, including themost elaborate ones (schemas), have an associated
acoustic form? The answer seems to be no, insofar as individuals have neither a lexicon nor a
grammar that allows the communication of the full range of their emotions. There is not a proper
meaning-sound equivalence, as we know it in most languages. Moreover, vocal communication
of emotions has been shown to be highly individual, which is also consistent with an absence of
emotional language - which would imply that it is shared among individuals.

However, it is a fact that individuals are able to capture emotional information in speech signals.
Therefore, there must exist a number of signs - more or less elaborate acoustic signifiers - shared
within larger or smaller cultural communities and which allow individuals to decode the emotions
communicated. Individuals are said to share strategies (neural, cognitive, anatomical) that they
use to transcribe their emotions into acoustic signifiers.

Acoustic Signature of Emotions & Attitudes

Emotions are known to be conveyed mostly by affective prosody according to three main speech
parameters: intonation (through pitch contours), rhythm (speech rate, syllable durations) and in-
tensity (airflow energy). Among these parameters, intonation has particularly been identified for
its role in speech emotional (Banse and Scherer, 1996; Bachorowski and Owren, 1995; Bänziger
and Scherer, 2005) and attitudinal (Ponsot et al., 2018b) expression. In fact, algorithmically ma-
nipulating an individual’s voice in real-time by incrementing their mean pitch and pitch variation
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(with dynamic inflections) can change the emotional state of the speaker (Aucouturier et al., 2016).
Speech rate is also linked to mood, to the extent that there are significant negative correlations
between depression tests and speech-rate (Cannizzaro et al., 2004), with slower speech-rate as-
sociated with higher levels of depression. Finally, timbre, studied for instance by the presence of
rough cues, the production of which by the vocal apparatus is usually due to the saturation of the
vocal folds, is an acoustic cue often used as an expression of arousal in humans, but also across
species, extending to mammals (Fitch et al., 2002).

Universality of Speech Emotions & Attitudes

Several studies have revealed evidence of universality for basic communicative signals. For in-
stance, individuals from a culturally isolated Namibian village in southwest Africa and westerners
can both recognize the archetypal vocalizations conveying Ekman’s fundamental emotions (anger,
disgust, fear, joy, sadness, and surprise) (Sauter et al., 2010). This universality seems to extend
beyond the domain of emotions, in (Bryant et al., 2018) listeners from 21 societies across six world
regions were able to differentiate whether laughter produced by English speakers was fake or real.

On the other hand, a lot of research works tend to relativize or at least restrict the universalist
thesis to a few fundamental signals, like laughter. According to Barrett, emotions are not universal,
but vary from culture to culture (Barrett, 2006), they are not triggered by any event but built out of
sensations at large. Emotions emerge as a result of a complex interaction between the physical
characteristics of the body, a flexible brain that adapts to any environment it develops in, and the
culture and upbringing that create that environment. Vocally, this theory translates into a diversity
of strategies used by individuals to produce emotions. These strategies may depend on individ-
ual criteria (Bachorowski, 1999) such as lived experience, tastes and, in general, habitus (Bourdieu,
1972). In particular, an emotion that has never been experienced cannot be conceptualised or per-
ceived, let alone produced and communicated, by an individual. Emotion is not a given in human
beings, individuals do not all have the same emotional granularity. For a given emotion some will
have (and have learned) a very rich concept, including for instance different degrees of intensity,
while others will have a poor concept allowing only few nuances. This granularity is reflected in the
way emotions are communicated vocally, through the level of complexity of the strategies - notably
anatomical - employed to produce emotions.

1.3 Scope of the Thesis

In this section we first present the main research questions which this work attempts to answer in
the light of current issues in Voice Conversion (VC). In a second part, we give a non-exhaustive list
of current and potential applications of voice conversion.

1.3.1 Current Issues & Research Questions

Two main questions underpin this research: What is a vocal attitude? and How to convert the atti-
tude conveyed in a speech signal?

Answering these questions requires data, i.e. a collection of audio recordings of utterances
conveying various vocal attitudes. Since there was no database specifically dedicated to vocal
attitudes available on the first day of this thesis, the gathering of such data was a requirement for
any attempt to provide a response to any of these concerns. Thus, this thesis is built out of this
initial step in gathering raw material - a dataset dedicated to speech social attitudes.
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What Is a Vocal Attitude?

First of all, it should be stated that we will essentially restrict the scope of this question to the field
of speech signal acoustic analysis. In this context, we will not undertake the ambitious task of
questioning the ontology of vocal attitudes - i.e. what they are in general. Instead, we will attempt
to glean what can be inferred about its substance from the available data, following a phenomeno-
logical approach. Furthermore, we will leave aside the psychological, cognitive and neurological
aspects that underlie the existence of these vocal attitudes. It is important to note that the quest
for such a definition is primarily intended to guide our choice of a speech signal representation
that is suited to the attitude conversion task, i.e. a representation that feeds attitude conversion
algorithms.

In the first place, wemay answer this question by identifying the speech parameters that encode
attitudinal information in the speech signal and how they encode it, we would thus identify acoustic
correlates of vocal attitudes. Presently, there are two questions that underlie the determination of
these correlates. The first is to ask how individuals produce these attitudes, i.e. how do individuals
use their vocal apparatus to produce acoustic signifiers of the attitudes they want to communicate
to others? Within this scope, attitudes are no longer just defined through their acoustic correlates
but through the cognitive and anatomical mechanisms that underlie their production and that re-
veal people’s social intentions. The second question aims to understand how individuals perceive
the attitudes communicated to them, i.e. to determine the vocal parameters and their variations
that allow individuals to decode the attitude conveyed in an utterance. By understanding the mech-
anisms at work at each end of the communication chain, we expect to provide a definition of vocal
attitudes as communicated.

Establishing such a definition makes it possible, on the one hand, to provide knowledge about
vocal attitudes. In particular, for each attitude studied we expect a stereotypical profile - i.e. an
acoustic signature that ensures the attitude is efficiently communicated on average between indi-
viduals - to emerge. This would also enable us to take a reflective look at the data collected, and
in particular to assess the overall content of the database with respect to the attitudinal profiles
uncovered. An attempt may also be made to identify samples in the database that do not meet the
established definition of vocal attitudes. In addition, such a definition ought to be the basis upon
which wemodel vocal attitudes for conversion purposes, i.e., how attitudinal data is represented in
order to be efficiently processed by a conversionmodel. In particular, such a representation should
at least reflect the variations in the parameters underlying the production and perception of vocal
attitudes. Finally, we may consider assessing the effectiveness of our voice attitude conversion
models by comparing the yielded converted utterances with the established attitude definition.

How to Convert the Attitude Conveyed in a Speech Signal?

To begin, we must define what is meant here by convert. Similar to a transformation, a conversion
focuses on a single or several characteristics of an object that are meant to be changed. However,
a conversion differs from a transformation in that it maintains consistency between the character-
istics of the altered object and unaltered ones so that the object’s global nature is preserved. In this
case, converting the attitude conveyed by a speech signal means transforming that attitude while
preserving all other aspects of that signal and the intrinsic consistency of the signal. This last point
is the most critical, it ensures that the converted signal sounds as the same speaker pronouncing
the same linguistic message but with a different attitude in a natural way. The preserved aspects
thus include the linguistic content, i.e. what is being said, but also the identity of the speaker, his or
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her accent and individual speaking style as well as anything else that is part of speech signal but
which differs from the attitude. Given how many different and varied attributes a single utterance
can express, this constraint is very strong and makes speech conversion challenging.

In order to perform attitude conversion, we adopt the voice conversion neural paradigm which
consists in learning a conversion function - in this instance a neural model - that maps source and
target representations of speech signals. In most cases, the learning of such a function will be
performed on so-called parallel data - i.e. each source utterance matches a target one conveying
the same linguistic message and pronounced by the same speaker but conveying another attitude.
Voice Conversion is thus formalized as a three-step process: 1) Representations are extracted from
speech signals, 2) a mapping is learnt between source and target representations, 3) the converted
signal is synthesized from the converted representation. In this specific framework, a twofold ques-
tion arises: what type of representations and algorithm will we use to learn this mapping?

The answer provided to the first research question we asked - i.e. what is a vocal attitude? -
would have shed light on the parameters and their variations involved in the communication of
attitudes. This acoustic signature should then guide our choice of speech signal representation
in the context of attitude conversion. A first option is to adopt a parametric approach - we may,
for instance, represent speech signals by using certain speech parameters such as fundamental
frequency or spectral envelope and thus convert attitudes by learning to change those parameters.
The main issue with this approach is that it is then incumbent on the conversion algorithm to learn
how tomaintain consistency between these parameters within the converted representation. To do
so it must learn an implicit coupling between those, which is not straight forward and often implies
telling the model about the relative importance of different parameters in the conversion learning
optimization. In the case of an incomplete multi-parametric representation - i.e. one that does not
allow for signal reconstruction on its own - or even a single-parametric representation, signal re-
construction involves the use of other parameters from the source sentence that have not been
modified and are therefore inconsistent with the converted representation. The synthesis of the
converted speech signal will therefore necessarily be incoherent and exhibit sound artefacts. De-
spite these apparent shortcomings, parametric representations have been and still are widely used
for the speech conversion task (Sisman et al., 2017; Sisman and Li, 2018; Luo et al., 2019; Kameoka
et al., 2021, 2020). A secondoption is to adopt a non-parametric representation of speech signal, i.e.
that makes no assumptions about the parameters underlying speech signal. Among those, com-
plete representations designate the ones fromwhich original speech can recovered accurately such
as the linear spectrogram. Another one is the mel-spectrogram which presents the advantage of
representing all aspects of the speech signal that are perceptually relevant. The mel-spectrogram
representation is homogeneous - i.e. each of its components are conceptually similar and there-
fore of equal importance for conversion learning and there is no conceptual difference between
the successive temporal frames that compose it, unlike the F0 which has two definitions depend-
ing on whether the temporal segment is voiced or unvoiced. These two qualities make it an ideal
representation for the task of speech conversion (Zhang et al., 2020; Qian et al., 2019, 2020; Bous
et al., 2022; Bous and Roebel, 2022).

The choice of speech signal representation is decisive as towhat can be expected to be changed
within the signal, and a fortiori as to how the conversion model works. If, for instance, the estab-
lished definition of speech attitudes entails considering how various temporal segments - such as
phonemes - are compressed or expanded so that a specific attitude is conveyed, then converting
such attitudes will require learning tomap representations of the speech signal of various duration.
Technically speaking, this implies that the conversion model’s input and output would not be the
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same size. This illustration shows how the design of a neural architecture intended for conversion
is influenced by the choice of representation of the speech signal. Answering this second research
question is therefore essentially amatter of interpreting the definition of vocal attitudes in technical
terms - that is, in terms of neural architecture. This involves determining the set of neural layers
to be employed, their type, their location within the architecture and their intrinsic characteristics
according to the role they are assigned in the speech attitude conversion task. Inherent machine
learning issues related to the amount of data, computational resources or training time are very
important to be taken into account when developing a conversion algorithm.

1.3.2 A Wide Range of Applications

While the original motivation of voice conversion could be simply novelty and curiosity, the techno-
logical advances from statistical modeling to deep learning made a major impact on many real-life
applications. Here is an attempt to give a non-exhaustive list of those - existing and potential - ap-
plications. It should be noted that the ethical criterion is set aside here, the idea is to say what is
technically possible. Moreover, it seems obvious that some of these applications are potentially un-
desirable, do not answer any need and are object of potential totalitarian drifts and anthropological
mutations (Guerouaou et al., 2021).

Understanding Human Interactions

Firstly, voice conversion algorithms constitute a powerful tool for artificially recreating so-called
ecological - daily-life - situations in order to understand the social and cognitive mechanisms that
govern our social interactions. One can imagine that studies, for now exclusively based on signal
processing to transform speech attributes such as smiling (Ponsot et al., 2018a; Arias2020 et al.,
2020) or dominance and trustworthiness (Ponsot et al., 2018b), can benefit from deep learning
and the impetus it gives to voice conversion. While many technical issues - e.g. real-time - remain,
the ability of deep learning-based voice conversion algorithms to faithfully transform high-level
attributes of speech such as emotion or gender is a boon to identifying theirmental representations
and the role they play in inter-human interactions.

Enhancing Inter-Human Interactions

A wide range of applications for voice conversion systems is dedicated to inter-human distant in-
teraction. Voice conversion algorithms are meant to enhance - if not improve - communication in
such interactions. For a call center employee who spends hours speaking with unpleasant or ir-
ritable clients, a voice conversion system can be used to make the interaction more comfortable
for both parties. In this use case, it is usually the call center customer’s voice that is converted so
as to be perceived less aggressive or distant by the caller. Conversely, the employee’s voice could
be converted so that it better catches the customers’ attention. In this specific call center context,
many use cases can be imagined leading to several technical achievements. Additionally, a flurry of
applications are to be developed as video conferencing becomes more and more prevalent in our
lives, partially as a result of Covid19 and the effects it has had on our communication habits at work
and in private life. Amongst them, one could imagine auditory equivalents of Instagram and Tik Tok
visual filters, for instance vocal emotional filters could be used to enhance our physically distant ex-
pression (thus deprived ofmany communication aspects) or even hide our anxiety or currentmood.
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Enhancing Human-Machine Interactions

These days, we are more likely to interact with machines as they grow more prevalent in our lives.
This new kind of interaction has given birth to a spate of research works which attempt to under-
stand its specificity. Over the last years, the voice has become the main medium for interaction
with the machines in our environment. We are getting used to talking to what is referred to as vocal
assistants, embedded in phones, cars or TVs, embodied into a robot or an avatar. The number of
use cases is considerable and keeps on growing year after year. In number of those cases, the
conversion algorithm would be integrated into a speech synthesis engine and would govern cer-
tain aspects of speech such as emotion, speaker identity, accent or even gender. As those aspects
are very important to us, humans, in order to fully understand the meaning of an utterance. Within
this scope, voice conversion systems would be employed to humanize the inner voice of machines
thus pursuing a global objective of communication improvement between humans and machines.
For such application, voice conversion algorithms can be used in many different ways such as per-
sonalized speech synthesis (Kain and Macon, 1998; Zhang et al., 2019). Wemight also quote audio
books for which voice conversion can be used to adapt synthesized voice to linguistic content and
characters (Sini et al., 2022). Nonetheless, these improved conversion algorithms have also led
to concerns about privacy and authentication. It thus becomes highly desired to be able to pre-
vent one’s voice from being improperly utilized with such voice conversion technologies. Several
proposals were made in this regard for speaker de-identification (Srivastava et al., 2020) or even
speaker disguise (Huang et al., 2021).

Widening the Scope of Audio-Visual Creations

Voice synthesis and conversion have a wide range of uses in the audio-visual field of audio visual
such as film and musical production, which is particularly relevant at IRCAM. One could imagine
employing a voice system, for example, to alter an actor’s performance after an editing stage of the
film making process. This can be done for many reasons such as artistic purposes or to enhance
poorly played sequences. Moreover, the reproduction of existing voices - through voice mimicry
(Wu and Li, 2014) - for documentaries, movies or TV broadcast may be improved by providing
speech synthesizers with voice modules aiming to control specific speech attribute synthesis like
speaker identity or emotions.

Providing New Therapeutic Approaches

Finally, it has been demonstrated that vocal self-perception plays a role in the emergence of emo-
tions (Goupil et al., 2019), this effect is often referred to as vocal feedback. Consequently, manip-
ulating people’s voice may influence their internal states, at least when people do not detect this
manipulation (Goupil et al., 2021a). This discovery may lead to a range of applications, particularly
in a therapeutic context. For instance, recent unpublished research shows that the recovery of pa-
tients with post-traumatic stress disorder (PTSD) can be enhanced by the use of vocal feedback
processes. Based on these initial case studies, a field of research could be developed that would
lead to many virtuous applications of speech conversion systems. A variety of therapeutic uses of
voice conversion such as communication aids for the speech impaired (Veaux et al., 2013) have
already been proposed and many others are yet to be imagined.
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1.4 Main Contributions of this Thesis

In this section, I list the main contributions made during these three years of research. It should
be noted at this point that this research has been nourished by the permanent desire to take into
account the variety of aspects that make up the richness of the research object that constitutes
vocal attitudes. Some of these aspects led me to move away from my own disciplinary field in
order to better understand the object as a whole.

1.4.1 Designing a French Database of Expressive Speech for Social Attitudes

We propose a new expressive speech database in French dedicated to vocal attitudes: Att-HACK.
We recorded twenty actors - twelve females and eight males — playing a hundred different sen-
tences in four different attitudes — friendly, distant, dominant, and seductive. The originality of this
new database lies in the great variability it offers in terms of production strategies for a given sen-
tence, speaker and attitude. In addition, it features linguistic parallelism, i.e. for a given speaker, the
same linguistic content is played in the four attitudes represented in the database, which makes it
easily usable in the context of learning conversion models.

1.4.2 Uncovering the Production Strategies and Perception of Vocal Attitudes

This contribution was carried out in close cooperation with Pablo ARIAS, post-doctoral researcher
at Glasgow University, Léane SALAIS, PhD student in the Analysis Synthesis team at IRCAM and
Victor ROSI, former PhD student in the Perception and Sound Design team at IRCAM. Additionally,
it provided an opportunity to hone teamwork and communication skills, which are crucial for the
success of group research. I would also like to add that the need to be understood by researchers
working in different fields raises the bar for clarity and aids in a broader understanding of the issue
at hand.

Designing an Anatomically Based Method for Speech Production Strategies Assessment

This contribution is built in two stages. The first step consists in the development of a speech sig-
nal analysis method that aims at understanding vocal production as a global mechanism that goes
from social intent to speech parameters modulation. We mean to exploit the bijective relationship
between physiological behavior and vocal parameter variation, such as the speed of vocal cord
vibration and F0 fluctuation, to identify such production strategies. Our proposed method consists
in the extraction of speech parameters from which certain temporal segments are isolated so as
for such parameters’ variations to be interpreted in the light of vocal apparatus functioning. In par-
ticular, the temporal segmentation is carried out using a neural phoneme-to-audio aligner (Teytaut
and Roebel, 2021) proposed by Yann TEYTAUT (also a PhD student in the team). This method is
fully replicable on any speech data, thus providing a useful speech analysis tool.

Uncovering the Production Strategies of Vocal Attitudes

The second step entails applying this methodology to the Att-HACK data in order to pinpoint the
strategies that underpin the production of vocal attitudes. We thus used speech descriptors and
group statistics to uncover quantitative prototypes reflecting the speakers’ vocal apparatus con-
trol. We showed that French speakers share common production strategies to communicate vocal
attitudes such as friendliness, dominance, seductiveness or distance. Notably, to our knowledge,

26



this is the first study to reveal diverging speech attitude production strategies at the articulatory
level. These findings led us to reconsider the question of how to represent speech signals in order
to learn speech attitude conversion models.

Understanding the Perception of Vocal Attitudes

We conducted a large-scale BWS experiment on a substantial part of Att-HACK in which 100 par-
ticipants - each evaluating only one attitude - were asked about their perception of the considered
attitude. At the end of the experiment, each evaluated speech sample was ranked on a BWS scale
ranging from the less to the most perceived as. First, this study enables to perceptually validate a
large part of Att-HACK, thus providing our conversion models with clean data. Second, it provides
valuable material that can be used to train perceptual regression models, those models being fur-
therly used to extend perceputal assessment to unevaluated data. Third, it can be employed for
perceptual conditioning of attitude conversion algorithms. Fourth, this study revealed that certain
speech attributes such as linguistic content or gender do influence speech attitude perception.
Given those findings, we attempted to understand how individuals decode attitudes without reach-
ing a satisfying answer. It is likely that they process speech parameters - or aspects - temporally.
We look forward to assessing this assumption in future works.

We also plan to complementwith studies on felt attitudes - investigatingmental representations
- to achieve a full-stack understanding of vocal social attitudes.

1.4.3 BWS-Net: Predicting Perceptual BWS Judgements with Neural Networks

The process by which individuals decode attitude in speech signal is highly complex, as our analy-
sis of the perceptual data gathered throughout the Att-HACK BWS experiment has demonstrated.
Although understanding them is very challenging, deep learning based algorithms can be employed
to reproduce this process implicitly. The objective of this chapter is to design such algorithms that
can "artificially" mimic this process.

Vocal Attitude Neural Recognition Based on A Priori Categories

Before considering the collected perceptual data as training material, we wanted to start with a
more classical task of recognizing a priori attitude categories - i.e. labels corresponding to the
attitudes targeted by the actors during the Att-HACK recording - frommel-spectrogram representa-
tions of speech signals. We thus took inspiration from both speech emotion recognition proposals
(Chen et al., 2018) and (Li et al., 2019) to design a baseline architecture dedicated to speech atti-
tude recognition. This contribution features an ablation study that highlights the role of attention
mechanism in this specific task of attitude recognition, as well as its impact on the algorithm’s
performances. The obtained architecture served as a starting point for the following three contri-
butions.

The three following contributions are several attempts to artificially mimic the process by which
people derive the attitude elicited by an utterance from the speech signal. We no longer consider
a priori attitude categories but Att-HACK’s attitudes as perceived by individuals.
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Design of a Perceptual Regression Model Dedicated to Vocal Attitudes

The first attempt is to design a regression model that predicts the perceptual scores obtained
during the BWS experiment carried out on Att-HACK from mel-spectrograms. The model’s per-
formance has been shown to be significantly influenced by speaker identification and linguistic
content. The Gaussian distribution of BWS scores drives themodel to focus on average scores and
causes poor predictions for low and high scores. Despite attempts to overcome this learning bias,
the model’s performance remains relatively modest for the prediction of extreme scores, which
makes it unusable for Att-HACK validation purpose, especially for the identification of sentences
whose attitude has been miscommunicated. This observed limitation led us to raise questions
about the meaning of low and high perceptual scores.

Design of a Perceptual Domain Classifier Dedicated to Vocal Attitudes

This contribution continues where the previous one left off. Here, a domain, or range of scores,
rather than a single score, is what is being sought after. As shown in the case of regression, we
found great influence of speaker identity as well as linguistic content on the model’s performance.
In contrast to the regression model, this classification model enables the identification of poor
outcomes - i.e. utterances in which the attitude is poorly communicated (low BWS scores) - as
well as top ranked outcomes - i.e. utterances that particularily well communicated. In light of
the model’s performances, we discuss the existence of several perceptual domains, highlighting
variations in the nature and degree of the attitude conveyed.

Design of a Perceptual Arranger Dedicated to Vocal Attitudes

Since BWS scores can be considered as projections of actual judgements made by the individuals,
we can make the assumption that the first contain less information than the latter. In other access
proper mental representations of attitudes and the underlying perceptual space formed by the in-
dividuals judgements, we attempted to directly use the raw judgements as training material. We
designed a cost function that enables to interpret these judgments as relationships between the
distances separating specific points - i.e. speech samples - of a latent space. Through optimizing a
model with respect to this custom loss, we have been able to learn a latent space whose structure
reflects the judgements made the participants of our BWS experiment. Although this constitutes
a significant theoretical contribution - a method than can applied to any BWS data - its application
to the perception of attitudes only yields average results. In particular, the model’s performance on
data not seen during training is modest, we present some possible explanations for this limitation.

1.4.4 Sequence-to-Sequence Neural Conversion of Speech Attitudes

Neural Conversion of Vocal Attitudes Based on Speech Fundamental Frequency

We propose an end-to-end architecture to learn efficiently conversions between attitudes from F0
contours only represented by Continuous Wavelet Transforms (CWT). The designed neural archi-
tecture brings together the F0 decomposition and the dual-GAN into a single network, so that the
CWT decomposition is optimized in the sense of the dual-GAN objective, and combining separation
and reconstruction losses of the resulting decomposition. An application to the voice conversion
of social attitudes shows that the proposed approach significantly improves the quality of the con-
version by comparison with the CWT-AS (Luo et al., 2019) approach.
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We first reevaluated how to represent speech signal for conversion purpose in the light of our
careful examination of the strategies used by speakers in Att-HACK to produce speech attitudes.
If the whole signal were to be altered, each component of the speech signal should be reflected in
the representation. We therefore chose to use the mel-spectrogram as an intermediate represen-
tation of the speech signal. A newly proposed neural vocoder (Roebel and Bous, 2022) enables an
accurate reconstruction of the signal from this representation.

Adaptation of a State-of-the-Art Voice TransformerNetwork (VTN) to the Specific Case of Speech
Attitude Conversion

We adapted the transformer based architecture proposed in (Kameoka et al., 2021) in the context
of speaker identity conversion to our attitude conversion issue. We place ourselves in the so-called
many-to-many conversion paradigm, i.e. we learn to convert from any attitude to any other attitude
with a single training. For this and the next contribution, we learnt conversions on a single speaker,
the many-to-many aspect being enough challenging. Despite the already high quality of the con-
versions yielded, we identified a substantial issue with linguistic content loss in several of those
conversions.

Linguistic Conditioning of the Speech Attitude Conversion Algorithm

Intelligibility appears to be the first criterion that a conversion must satisfy. In other words anyone
must be able to decode the linguistic content conveyed in a converted utterance. We have therefore
sought to solve this shortcoming encountered in conversions. In order to achieve this we have
worked on incorporating a speech recognition module, i.e. a speech-to-text, into our conversion
algorithm. Objective measurements have shown the effectiveness of this solution in preserving
the linguistic content of the conversions yielded. We also conducted a perceptual experiment that
confirmed the trends observed through objective assessment. At the end of this thesis, we dispose
of an efficient algorithm for the conversion of vocal attitudes.

1.5 Outline of the Thesis

The document is organized into six interrelated Chapters whose succession is conceptual, i.e the
order of Chapters serves to put forward a global vision of the problem posed. This progression is
therefore not chronological, as many of the works presented in distinct chapters have been carried
out simultaneously.

A state-of-the-art on voice conversion and speech emotion recognition is provided in Chapter 2.
A formalisation of both tasks of speech conversion and speech attribute - e.g. attitudes or emotion
- recognition is proposed as well as a review of the related literature highlighting the neural network
based approaches on which this research is founded. The design of the French dataset Att-HACK
dedicated to speech attitudes as well as a first metadata and data analysis is presented in Chapter
3. This dataset can be seen as the foundation on which this while research is built. Chapter 4 -
as a next logical step - outlines two studies that provides a first twofold account for how speech
attitudes are communicated by individuals. The first one aims to uncover the production strate-
gies of speech attitudes while the other mainly hints at biases involved in the perception of such
attitudes. Those two studies provide invaluable information about the Att-HACK data. In Chapter
5, a first attempt of speech attitude conversion based only on the F0 is proposed, it involves an
end-to-end neural architecture that brings together the F0 decomposition and the dual-GAN into
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a single network. The transition between chapters 5 and the last two chapters - 6 and 7 - of the
document marks a paradigm shift both with regards to the modelling of speech signals and to the
method employed to learn attitude conversions. Then comes Chapter 6 which proposes to design
algorithms to predict attitudinal traits with using the perceptual data gathered in the second study
of Chapter 4. The last Chapter 7 provides a new attempt of speech attitude conversion based on
Voice Transformer Network - fed with mel-spectrograms - that is linguistically conditioned to im-
prove intelligibility of the conversions.

A general conclusion finally gives a clear overview of the whole document, points limitations of
this research and provides insights for future works.

1.6 List of Publications

The research conducted during this thesis led to the publication of four papers in major interna-
tional conferences.

• Le Moine, C. and Obin, N. (2020). Att-HACK : An Expressive Speech Database with Social
Attitudes. In Speech Prosody, Tokyo, Japan.

• Le Moine, C., Obin, N., and Roebel, A. (2021). Speaker Attentive Speech Emotion Recognition.
In Proc. Interspeech 2021, pages 2866–2870. Brno, Czech Republic.

• LeMoine, C., Obin, N., and Roebel, A. (2021b). Towards end-to-end F0 voice conversion based
on Dual-GAN with convolutional wavelet kernels. In EUSIPCO. Dublin (virtual), Ireland.

• Salais, L., Arias, P., LeMoine, C., Rosi, V., Teytaut, Y., Obin, N., and Roebel, A. (2022). Production
strategies of vocal attitudes. In Proc. Interspeech 2022, pages 4985–4989. Icheon, Korea.

Nevertheless, many of the results presented in this paper have not yet been published and will
be submitted for peer review in the comingmonths. In particular, we are working on a journal paper
that deals with the use of perceptual data for enhancement and control of speech attitudes neural
conversion.
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2.1 Voice Conversion

The main objective of this work is to design an algorithm that converts attitude in speech signal
while preserving other speech attributes such as speaker identity and linguistic content. There are
various research paths that might be explored to develop such an algorithm. All of them are more
or less related to the broad research area of speech synthesis, i.e. the study of speech artificial
production. Speech synthesis is declined in many sub domains such as Text-to-Speech (TTS) syn-
thesis, in which speech is synthesized from text, or Voice Conversion (VC), in which every aspects
of speech are kept unchanged except from one that is converted. In this research we will mainly
focus on this specific synthesis sub-genre of voice conversion.

2.1.1 General Scheme for Voice Conversion

In this subsection, we describe the typical speech conversion flow in three steps: speech analysis,
determination of a conversion function that maps source and target representations of speech and
final recovering of speech signal.

Speech Analysis

Here, we will restrict our discussion to speech signal representations intended for speech conver-
sion or transformation. Reconstructibility, or the ability to synthesize a signal from its representa-
tion, is one of the fundamental characteristics thatmust consideredwhen selecting a speech signal
representation. The interpretability of this representation, or whether it makes sense from the per-
spective of the mechanisms of production or perception of the speech signal, is another crucial
consideration. Finally, in the context of speech conversion, the representation used must be com-
pact - that is, it must reflect all aspects of speech and allow for efficient processing by an algorithm.

As a time-varying signal, the speech signal is frequently represented in its time-frequency form,
for instance, by using a Short-Term Fourier Transform (STFT). STFT provides the time-localized fre-
quency information of the speech signal, as its frequency components vary over time. The STFT
of a speech signal is a 2D-matrix of complex numbers whose temporal and frequency components
are called frames and bins respectively. More precisely, each frame is obtained by applying the
Fourier Transform (FT) to a temporal region of the speech signal segmented through windowing.
The real part of this STFT - i.e. the amplitude spectrogram - is commonly used to represent the
speech signal, the imaginary part representing its phase. The STFT is invertible, thus a speech
signal can be accurately reconstructed from its STFT. The mel-spectrogram has become the domi-
nant representation in speech conversion thanks to its advantages of being highly compressed and
reflecting all aspects of speech. It is obtained through frequency filtering by a mel filter bank of the
magnitude spectrogram. In addition to these signal-based representations, which make few or no
assumptions about the mechanisms that govern speech production, model-based representations
of speech signal have been proposed. In this representations, it is assumed that the production of
the speech signal is based on a physical model, e.g. the filter source model (Fant, 1970; Markel and
Gray, 1982), then each frame of the speech signal is described by a set of parameters of this model.

In the following, we introduce a formal framework that will be used throughout this document.
We denote A the function which, to a speech signal x ∈ RT , associates its representation X ∈
RT ′×D such as
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X = A(x) (2.1)

where T ′ and D are respectively the number frames (not necessarily different from T ) and the
number of features of the representation yielded byA. In the following we use T for T ′ for the sake
of clarity.

Conversion or Mapping Function

Once the source and target speech signals xs ∈ RTs and xt ∈ RTt are represented by Xs ∈ RTs×D

and Xt ∈ RTt×D respectively, a conversion function C - also referred to as mapping function -
can be introduced such that its application to the source speech representation yields a converted
speech representationXs←t ∈ RTc×D in which every aspects of the source utterance are preserved
except from the converted attribute of which instance in Xs←t must match the target utterance.
The conversion can thus be formulated as

Xs←t = C(Xs) (2.2)

We will see in the next section that this mapping function can be approximated in various ways
ranging from statistical models to deep neural networks. In particular, those networks can be ei-
ther deterministic, i.e. the model’s output is entirely determined by input utterance, or probabilistic,
i.e. the model’s output matches a probability distribution which is determined by input utterance.
Since deep learning seems to have outperformed all other methods for the speech conversion task
(Desai et al., 2009; Nakashika et al., 2013; Luo et al., 2016), we will almost exclusively focus on this
latest approach in this work. When considering such deep learning approaches, the conversion or
mapping function is referred to as a neural network. Then, as depicted on Figure 2.1, two phases
must be distinguished.

• The training phase : the model C is being fed with pairs of representations {Xs,Xt} which it
uses to learn a mapping between the source and target utterances.

• The inference phase : the trained model C is applied to the source representation Xs and
yields a conversion Xs←t.
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Figure 2.1: General VC scheme with training (left) and inference (right) phase. The red box repre-
sents the training of the mapping function, while the pink one applies the mapping function at the
inference, in a 3-step pipeline process Xs←t = (R ◦ C ◦ A)(Xs)

Depending on the paradigm chosen, the conversion may or may not apply to the temporal di-
mension, thus modifying or not the duration of the source speech signal. Ideally, the conversion
model is able to change this duration such that Tc = Tt.
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Speech Synthesis

Generating the speech signal from the converted source representation is the final step of this
conversion process. Basically, the function that allows to retrieve the original audio signal from its
representation is the inverse function of the speech analysis functionA. Nevertheless, a distinction
must be made between complete representations such as the STFT - from which the signal can
be perfectly reconstructed - and incomplete representations such as the amplitude spectrogram or
the mel-spectrogram - which are not formally invertible. In the case of incomplete representations,
methods allowing amore or less accurate reconstruction of the speech signal have been proposed
- such as the Griffin-Lim algorithm (Griffin and Lim, 1984) for the amplitude spectrogram or neural
vocoders (Airaksinen et al., 2018) for the mel-spectrogam. It should be noted that in our case
the synthesis is performed after the conversion of a signal representation. Synthesis is therefore
performed from a representationXs←t which is itself an approximation of the target representation
Xt. As a result, there are two potential sources of inaccuracy for the converted signal: conversion
and synthesis. DenotingR the reconstruction function, then any speech representation X derived
from A can be - more or less approximately - recovered as

x̂ = R(X) (2.3)

The general scheme for voice conversion can be formulated in the composition of these three
functions (A , C andR) in a three-block sequential process

Xs←t = (R ◦ C ◦ A)(Xs) (2.4)

In the following of this section, we mean to provide a state-of-the art for each of those func-
tions. The analysis and synthesis functions are first introduced. Then we introduce the conversion
functions.

2.1.2 Representing Speech Signals

This part provides a state of the art of speech signal analysis-synthesis (A andR in 2.1.1) methods
involved in the speech conversion context. The vast majority of these methods are derived from
signal-based representations, physical model-based representations being hardly used today.

THE VOCODER. Whether based simply on the signal or derived from a physical model of speech
production, speech representations are yielded through the use of what is called a vocoder. A
vocoder, i.e. a voice encoder, is a model for encoding a speech signal into a temporal parametric
representation fromwhich it can be reconstructedmore or less accurately. Research into vocoders
has a long history, while originally designed using electrical circuits, the majority of the known
vocoders are now implemented in software. The following provides an overview of the methods
proposed from the early 90’ to the present day.

Model-Based Representations

The model-based approach assumes that a speech signal signal can be mathematically repre-
sented by a model whose parameters vary with time. In a vast majority, the speech signal rep-
resentations that are based on physical models derived from the filter source model of speech
production (Markel and Gray, 1982; Fant, 1981) and obtained through the use of a vocoder. The
source-filter model postulates that any speech signal can be described as the filtering via the vocal
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Mechanisms of Voice Production 35

configuration during respiration and for developing pressure in the supraglottal air-
space for consonant production (e.g., for stops, fricatives, and affricates). Abductory 
maneuvers are executed and maintained by contraction of the posterior cricoarytenoid 
muscle (not shown in the figure). In preparation for phonation (or for breath‐holding), 
the arytenoids can be rotated and translated medially by contracting the lateral 
 cricoarytenoid and interarytenoid muscles (also not shown in the figures). These con-
tractions have the effect of moving the vocal fold surfaces toward each other, or 
adducting them, to reduce or eliminate the glottal airspace, as shown in Figure 3.2b.
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Figure 3.1 Schematic diagrams of speech production anatomy. (a) Midsagittal view of 
the upper portion of the trachea, larynx, and vocal tract. (b) Perspective view of laryngeal 
cartilages and cricothyroid muscle. The dashed lines represent structures hidden in the 
view by cartilage.
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Figure 3.2 Diagrams of the larynx and vocal folds. (a) Superior view of larynx when the 
vocal folds are abducted, as during respiration. (b) Superior view of larynx when the vocal 
folds are adducted, as during phonation. (c) Division of the vocal fold into the cover and 
body portions (based on Hirano 1974).
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muscle (not shown in the figure). In preparation for phonation (or for breath‐holding), 
the arytenoids can be rotated and translated medially by contracting the lateral 
 cricoarytenoid and interarytenoid muscles (also not shown in the figures). These con-
tractions have the effect of moving the vocal fold surfaces toward each other, or 
adducting them, to reduce or eliminate the glottal airspace, as shown in Figure 3.2b.
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Figure 2.2: Schematic view of the source-filtermodel of speech production after (Fant, 1970; Markel
and Gray, 1982) and adpated from

tract (filter) of an excitation produced by the larynx (source). An illustration of this model is pro-
posed in Figure 2.3.

Although the source-filter model - on which we based our study of speech attitude production
in Chapter 4 - provides a good understanding of speech production, the representations derived
from it and, in general, physical model-based representations did not prove to be efficient enough
in terms of both calculation and reconstruction quality.

Signal-Based Representations

Since the beginning of the 90’, a large number of vocoders involving signal-based representations
have been proposed. Among the first major proposals, we find the phase vocoder (Flanagan and
Golden, 1966), sinusoidal models (McAulay and Quatieri, 1986), and pitch-synchronous overlap-add
(PSOLA) (Moulines and Charpentier, 1990). Later many more or less elaborate systems were pro-
posed (Quatieri and McAulay, 1992; Kawahara, 1997; Zen et al., 2009; Roebel, 2010; Degottex et al.,
2013; Morise et al., 2016).

STRAIGHTor “SpeechTransformation andRepresentation usingAdaptive Interpolation ofweiGHTed
spectrum", proposed by Kawahara et al. in 1999 (Kawahara, 2006), is one of the popular vocoders
in speech synthesis and voice conversion. It decomposes a speech signal into: 1) a smooth spec-
trogram in which any traces of interference caused by the signal periodicity are eliminated in both
temporal and frequency dimensions 2) a fundamental frequency (F0) contour which is using an
instantaneous-frequency-based technique; and 3) an aperiodicity map which captures the tempo-
ral and frequency characteristics of the noise. It was one of the first vocoders to allowa re-synthesis
whose timbre was no longer described as artificial, thus prompting several attempts at voice con-
version (Toda and Tokuda, 2005; Sisman and Li, 2018). In a similar way theWORLD vocoder (Morise
et al., 2016) breaks down the signal into three parts but calculate the vocal chord vibrations on the
basis of the convolution of the minimum phase response and the extracted excitation signal while
STRAIGHT uses periodic and aperiodic responses independently to compute them. It offers the
same high quality synthesis while limiting the number of calculations, thus reducing the synthesis
computation duration.

The trend in voice conversion has long been to change the speech signal by mean of interact-
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ing with the parameters. In this case, the interactions between altered and unaltered parameters
needed to be handled explicitly but no method was found to achieve this. While the division of a
voice model into a source and a filter allows a simple and schematic representation of the func-
tioning of the vocal apparatus, it has the disadvantage of eluding the complex physical coupling
between these two anatomical entities. For instance and as pointed out in (Roebel and Bous, 2022),
in real life a change in pitchwill generally be accompanied by changes in glottal pulse form, formant
positions, intensity and noise level. Therefore, an important challenge of this research in the quest
of a voice model formulation is the fine representation of the interaction between the source and
the filter.

Neural vocoders

The arrival of deep neural networks gave rise to numerous attempts to represent such complex and
non-linear coupling. The idea is then to approximate the synthesis functionR by a neural network
which, trained on a large amount of speech data, learns to reconstruct the speech signal from its
representation with a minimal error. Due to the training on real world data, neural networks are
expected to reflect all the complex inter-relations between different speech signal components.
Recently, a deep neural network for generating raw audio waveforms calledWaveNet has been pro-
posed (Van Den Oord et al., 2016). The model is fully probabilistic and autoregressive, with the
predictive distribution for each audio sample conditioned on all previous ones. It is composed
of many residual blocks, each of which consists of 2× 1 dilated causal convolutions ensuring the
model cannot use future information, gated activation functions and 1×1 convolutions. Thismodel
has shown remarkable performance for the specific task of neural vocoding. When conditionned
on mel-spectrogram representations of speech, the WaveNet yields syntheses that are almost per-
ceptually indistinguishable from real speech signals (Shen et al., 2018). The neural reconstruction
of the mel-spectrogram’s related time-domain signal makes no assumptions about the model un-
derlying speech production. Nourished by numerous examples during training, the neural vocoder
itself implicitly learns the underlying acoustic structure of speech signal and the complex coupling
of its parameters. Neural vocoding can be referred to as a data-driven method.

The quality of the reconstructions resulting from (Shen et al., 2018) gave rise to strong inter-
est in the quest for a what might be called a universal neural vocoder. A universal neural vocoder
is expected to support perceptually transparent analysis/resynthesis for arbitrary speakers, emo-
tions, languages and voice qualities whether spoken or sung. In line with this objective and beyond
the problems of computing time and costs at training and inference phases, recent research ac-
tivities have started to investigate multi-speaker vocoders (Gibiansky et al., 2017; Park et al., 2019)
demonstrating that multi-speaker neural vocoders can generalize not only to unseen speakers, but
also to unseen languages and expressivity (Jiao et al., 2021). In the specific case of vocal attitude
conversion, having a universal vocoder appears mandatory, insofar as it allows the synthesis of
conversions conveying a variety of attitudes that had not necessarily been seen during at vocoder’s
training.

Hybrid Neural Vocoders

With the aim of designing sober vocoders - i.e. involving affordable computing resources which
does not require the use of a super computer - a new trend today is to create hybrid vocoders
based on both deep neural networks and elementary signal processing blocks, thus avoiding un-
necessary learning of correlation already modelled by proven signal processing techniques. These
systems incorporate signal processing operators implemented in such a way that they are differ-
entiable - e.g. the DDSP python package for differentiable digital signal processing (Engel et al.,
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Figure 2.3: Schematic view of the analysis-synthesis framework based on the Multi-band Excited
WaveNet proposed by (Roebel and Bous, 2022) and used in Chapter 7

2020) - and can be therefore trained in end-to-end. For instance, (Engel et al., 2020) implements an
additive sinusoidal model whose parameters are derived from a deep neural network, the ensemble
being trained in the manner of an auto-encoder. As pointed out in (Roebel and Bous, 2022), these
hybrid models seem to provide a solution to two problems inherent to the representation of speech
signals. First, it solves the issue of high-level control of signal-based speech models. Second, the
filtering carried out by the signal processing blocks allows to significantly reduce the amount of
data required to generate speech signals of similar quality.

Pursuing this double objective of a universal structuring of representation, (Roebel and Bous,
2022) proposed a Multi-band Excited WaveNet introducing an automatic and adaptive signal nor-
malization - allowing the model to work independently from the signal energy - and based on a
source filter speech model. From one hand, the excitation source generation is obtained through
a first convolutional neural network which, feed with a mel-spectrogram, ouputs a F0 contour,
which is turned into a quasi-periodic excitation and passed to a WaveNet - conditioned on the
mel-spectrogram - that properly forms the excitation pulse. On the other hand, a second neural
network generates mel-cepstral filter coefficients which are then converted into a spectral enve-
lope through applying a Discrete Fourier Transform. With addition of a few extra steps, both source
and filter outputs are multiplied to form the desired speech signal. This model has been shown to
compare favorably to the state-of-the-art in its capacity to generalize to unseen voices and voice
qualities.

These latest findings, especially the team-made proposal (Roebel and Bous, 2022), are a real
boon to this research. Wewill therefore use this neural vocoder to synthesise speech signalswhose
conveyed attitude has been converted in the last chapter 7 of this paper.

2.1.3 Voice Conversion Algorithms

Over the past years, a variety of systems have been proposed for the specific task of voice con-
version. In this section we will first present statistical modelling approaches before focusing more
extensively on deep neural network based approaches, which will serve as the research’s preferred
paradigm.

Themain determinant for the development of those algorithms is the the availability of so-called
parallel data. While dealing with conversion of emotion attribute in speech, a parallel set of data
would provide for each utterance X s in attitude as, its corresponding version X t in attitude at, i.e
everything in X t is identical to X s at the exception of attitude, notably both utterances must be
pronounced by the same speaker and convey the same linguistic content. Due of the expense and
time involved in obtaining such databases, this requirement is exceedingly challenging to fulfill.
This is even more true in the case of attitudes where the parallelism is very difficult to control. To
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overcome this need, several methods have been proposed, we present them in a last part.

Statistical modelling for Voice Conversion

The first attempts of Voice Conversion based on statistical approacheswere proposed in the 1980s
(Stylianou and Cappe, 1998). The basic idea behind those systems was to represent the relation-
ship between the source and target utterances by a statistical model. Two broad categories can be
distinguished among these approaches : parametric and non-parametric approaches. The former
make assumptions about the statistical distributions that underlies the considered speech features
and how they are mapped when the latter make only little or none assumptions.

Among the variety of parametric approaches, GaussianMixtureModels (GMM) have extensively
used to model the relation between the source and target sets of features used for the conversion.
To do so, a GaussianMixtureModel assumes that each feature vector can be generated from amix-
ture of a finite number of Gaussian distributions with unknown parameters and thusmodel the joint
probability density of the paired feature vector sequence which represents the joint distribution of
source and target speech signal. The conversion parameters are estimated using Minimum Mean-
Square Error (MMSE) on the source-target pairs of the training set. First introduced for speaker
identity conversion in (Stylianou and Cappe, 1998), GMMs were then employed to model the rela-
tion between source and target speakers acoustic spaces by using HNM-based (Harmonic + Noise
Model) representations of the speech signal. A number of improvements in this approach have
been proposed. Stressing the importance of the analysis-synthesis paradigm underlying voice con-
version, (Kawanami et al., 2003) proposed to use GMMs along with Dynamic Frequency Warping
(DFW) directly on the features produced by STRAIGHT, thus avoiding over-smoothed and muffled
converted speech. Toda (Toda et al., 2007) proposed a voice conversion algorithm based on the
estimation of spectral parameter trajectory thus better considering local correlation of features be-
tween successive frames. Only few proposals focused on the specific case of speech emotion
conversion (Kawanami et al., 2003; Veaux and Rodet, 2011). (Veaux and Rodet, 2011) proposed
an intonation conversion system from neutral to expressive , they only focuses on F0, represented
through Discrete Cosine Transform (DCT) at different temporal scales. Gaussian mixture models
are used to map the prosodic features between neutral and expressive speech, and the converted
F0 contour is generated under the dynamic features constraints.

Conversely, among non-parametric methods, the Vector Quantization (VQ) approach was intro-
duced for speaker identity conversion in (Abe et al., 1988). Themethod consists in mapping source
and target codewords, i.e. approximations of vector features by their nearest vector in a codebook,
source and target being related to different codebooks. To our knowledge it has never been used
for speech emotion conversion. As an examplar-based approach, Non-Negative Matrix Factoriza-
tion (NMF) has been proposed for Voice Conversion. NMF is based on sparse representations,
the observed magnitude spectrogram is represented by a linear combination of a small number of
atoms. Successful implementation includes non-negative spectrogram deconvolution (Wu et al.,
2013), locally linear embedding (LLE) (Wu et al., 2016), and unit selection (Jin et al., 2016; Obin et al.,
2018). In NMF-based approaches, a target spectrogram is constructed as a linear combination of
exemplars which may result in over-smoothing issues. Phonetic sparse representation (Sisman
et al., 2017) is an extension to sparse representation for voice conversion. It is built on the idea
of phonetic sub-dictionaries, and dictionary selection at run-time. The study shown that multiple
phonetic sub-dictionaries consistently outperform single dictionary.

The quality and naturalness of the conversions yielded by these statistical approaches has re-
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mained quite low and has not managed to deceive human perception. Around 2015, the advent of
deep neural networks has been a game changer for the voice conversion task, as it has for many
others leading to an important qualitative leap. Thanks to this new paradigm, the VC research
community has been enabled to adress old and new challenges for converting speech.

Neural Voice Conversion

The use of deep neural networks in voice conversion task has not been straightforward, due to the
specific constraints relative to voice conversion. In particular, deep neural networks based meth-
ods are known to require huge amounts of data, meanwhile, databases dedicated to speech con-
version are generally small, rather rare when it comes to converting speaker identity (Yamagishi,
2017) and extremely rare for other speech attributes such as emotion (Burkhardt et al., 2005; Zhou
et al., 2022) or accent (Kalluri et al., 2021). In addition, the almost systematic need for very costly
and time consuming parallel databases has been a strong limitation for the use of deep neural net-
works to voice conversion tasks. These considerations initially seem to contradict the decision to
use machine learning for speech conversion.

The parallel development of synthesis tasks via neural vocoders and voice conversion has con-
tributed to the decomposition of the voice conversion issue into two sub-problems: 1) learning the
conversion function C from compressed representations and 2) the synthesis via a neural vocoder
R of the converted speech signal from this representation. As a result, the voice conversion is-
sue seen through the prism of deep neural networks must be thought of as an ancillary task to
the more fundamental task of speech analysis-synthesis. Indeed, the recently developed neural
vocoders can now be learnt on huge amounts of data, allowing speech signals to be encoded in
highly compressed representations - such asmel-spectrograms (Shen et al., 2018; Roebel andBous,
2022) - from which they can be recovered very accurately. Therefore, Voice Conversion systems
can refrain from addressing certain issues related to what constitutes the foundations of a speech
signal : What is a phoneme ? or How noise is distributed in the speech signal ?. These tasks are
taken over by the neural vocoder which can then be connected directly to the output of the voice
conversion system. Consequently, the role of the Voice Conversion system is to model high-level
attributes of the speech signal while that of the neural vocoder is to model the low-level attributes.
Deep learning basedmethods have several advantages over standard statistical methods. They al-
low a non-linear mapping between source and target features that can better match the complexity
of the attribute whose conversion is being modelled. This is particularly interesting when dealing
with highly complex attributes such as emotions that cannot be described by basic speech features
taken solely. Such deep models are also less restrictive on the size and number of features that
can be modelled, for instance high-dimensional features, such as mel-spectrogams - for instance
featuring 80 frequency bins.

The early attempts of neural voice conversion were deep neural networks. A speaker identity
conversion based on deep neural networks has been proposed in (Desai et al., 2009) and achieved
better results in transformation than the standard GMM-based methods when applied to spectral
features. In (Nakashika et al., 2013), a deep belief network is employed to learn speaker identity
abstractions from which a deep neural network learns conversions. (Luo et al., 2016) proposed a
system for converting emotion in speech, it involves a deep belief network to learn mel-cepstral
coefficients and a neural network to learn normalized segment-F0 features (NSF0) which allows
for emotional prosody conversion. Those models did not allow for temporal dependencies mod-
eling, which greatly limited their performances, especially in the case of emotion conversion. In-
deed, as described in section 1.2.3, speech prosody such as the time variation of pitch (Banse and
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Scherer, 1996; Bachorowski and Owren, 1995; Bänziger and Scherer, 2005) and rhythm (Mairesse
et al., 2007) is of primary importance in the expression of emotions by speech.

To tackle this limitation, another kind of networks were introduced for voice conversion, namely
recurrent neural networks (RNN). The advent of those recurrent networks enabled voice conversion
systems to model the temporal correlation across speech frames. In particular, the long-short
term memory (LSTM) cells (Hochreiter and Schmidhuber, 1997) were shown to temporally widen
the contextual integration allowed by vanilla recurrent networks and achieved great improvements
in naturalness and temporal consistency of the yielded conversions (Sun et al., 2015; Ming et al.,
2016).

First, recurrent networks do not by themselves allow sequences of different duration to be
mapped. Inmost cases, themapping between source and target utteranceswas learned on aligned,
time-stretched representations. The alignment between the source and target utterances can be
done linearly or with respect to sentence related linguistics e.g. phoneme wise. The need for align-
ment as well as the inability of mapping sequences of different duration is a very limiting factor,
even more when dealing with emotion conversion. The alignment step being error-prone and re-
quiring linguistic knowledge of the data to be efficient.

Second, the newly proposed recurrent networks gave rise to a specific kind of architecture, re-
ferred to as sequence-to-sequence (Seq-2-Seq) modelling (Sutskever et al., 2014). Initially used
for the task of translation, it was later introduced for voice conversion (Obin et al., 2019), the lat-
ter of which could finally be seen as a translation. This architecture maps the complete temporal
sequences rather than just map source and target utterances frame by frame. An encoder pro-
duces fixed-size code representing the aspects of the source representation that are meant to be
preserved. This code, usually the last internal state of the encoder’s last recurrent layer, is then
passed to a decoder that yields the converted representation. The classic problem with this archi-
tecture is that the temporally propagated information tends to vanish for long sequences, i.e. the
last internal state of the encoder’s last recurrent layer no longer contains information about the first
temporal temporal frames.

Third, solving this issue led to the introduction of a second generation of Seq-2-Seq architec-
tures with attention mechanism. The attention mechanism aims to implicitly learn an alignment
between the source and target sentences. No assumptions aremade about how the linguistic units
aremapped, themodel is left to learn the alignment that will maximize the conversion performance
from source to target domain. Most attentive algorithms are based on Seq-to-Seq architecture: an
auto-encoder mediated by an attention mechanism. Within this context, attention is used to learn
a combination of the encoder’s recurrent internal states thus helping to predict each decoder’s
temporal step. By learning such a combination, the attention mechanism focuses on salient tem-
poral information from the encoder and past decoder time steps. With this mechanism, the code
produced by encoder is an actual temporal summary of the whole source sequence, thus improv-
ing the model’s conversion performance. This kind of architecture has been used in (Obin et al.,
2019) for emotion pitch contours conversion, interpolated pitch sequences of different duration are
mapped and conversion is learnt from one emotion to another. In (Zhang et al., 2019), an analog ar-
chitecture is used to learn a mapping of between source and target mel-spectrograms for speaker
identity conversion. The converted signal are recovered from converted mel-spectrograms using
a WaveNet based neural vocoder as introduced in (Shen et al., 2018). Improvements were made
by adding constraints during training (Tanaka et al., 2019), notably on the shape of the attention
matrix with the guided attention loss (Tachibana et al., 2018).

Fourth, while recurrent neural networks represent an effective implementation for voice conver-
sion, recent studies have shown that convolutional neural networks (CNN)with gatingmechanisms
also learn well the long-term dependencies (Gehring et al., 2017; Kameoka et al., 2020). The main
constraint being to force the decoder’s convolutions to be causal so as each frame can be predicted
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only using the already predicted frames (and not the ones in the future) at inference. Moreover, us-
ing dilated convolutions broadens the temporal receptive range of themodel and thus captures the
context at the sentence level (Kameoka et al., 2020).

Finally, the transformer networks (Vaswani et al., 2017), of which principle is a generalization of
attention mechanism that basically replaces all recurrent layers by self attention mechanisms in
a network, have been proposed for Voice conversion yielding noteworthy performance in terms of
sound quality (Kameoka et al., 2021). A variational version has been proposed in (Chen and Zhang,
2021) along with a connectionist temporal classification (CTC) loss used to encode each utterance
phoneme per phoneme. In (Lee et al., 2022) a transformer learns to encode a mel-spectrogram
into a sequence of phoneme-related vectors. From each vector a sequence of converted mel-
spectrogram frames is decoded with controlling each phoneme duration throughout conversion.

Towards Parallel Data Free Voice Conversion Algorithms

Facing the difficulty of obtaining parallel data dedicated to voice conversion, many researchers
have sought to circumvent this constraint. The strategies proposed to get rid of parallel data were
inspired by research on image translation from unmatched images.

Inspired by the field of image-to-image translation, (Kaneko and Kameoka, 2018; Fang et al.,
2018) proposed the first studies with a Cycle-GAN for parallel-free data Voice Conversion. Cycle-
GAN is based on the concept of adversarial learning (Goodfellow et al., 2014), which is to train a
generativemodel to find a solution in amin-max game between two neural networks, called as gen-
erator (G) and discriminator (D). The adversarial loss measures how distinguishable between the
data distribution of converted features and source features Xs or target features Xt. The closer
the distribution of converted data with that of target data, the smaller the loss becomes. The ad-
versarial loss only tells us whether Gs→t(X

s) follows the distribution of target data and does not
ensure that the contextual information, that represents the general sentence structure we would
like to carry over from source to target, is preserved. To encourage that we maintain the consis-
tent contextual information between Xs and Gs→t(X

s), the cycle-consistency loss is introduced.
This loss encourages Gs→t and Gt→s to find an optimal pseudo pair of {Xs,Xt} through circular
conversion. Experimental results shown that, with non-parallel training data, Cycle-GAN achieves
comparable performance to that of GMM-based system that is trained on twice amount of parallel
data (Kaneko and Kameoka, 2018).

Preserving linguistic content while converting a source utterance is one of the key challenge
of voice conversion and a fortiori the main reason for the inescapable need for parallel data. A
text-to-speech system allows to produce speech from text, i.e. linguistic content, it is generally
trained using large speech databases that provides a high-quality speech reconstruction method
given the linguistic content. The databases used for speech conversion are generally much smaller
and thus do not allow VC systems to learn fundamentals of speech signal, e.g. how the phonemes
are formed within the signal, they focus on what they are made to transform. Therefore, it is often
a good strategy to leverage text-to-speech systems to improve a voice conversion algorithm’s per-
formance. Encoder-decoder models with attention have lately demonstrated notable success in
modeling a range of complicated sequence-to-sequence challenges. Tacotron (Wang et al., 2017;
Shen et al., 2018) represents one of the successful text-to-speech implementations, that has been
extended to voice conversion (Zhang et al., 2019; Park et al., 2020). The interplay between text-to-
speech and voice conversion has been made easier by the neural representation of deep learning.
By using text-to-speech systems to adhere to linguistic content, we mean to enhance the train-
ing and run-time inference of voice conversion. Such methods, however, typically require sizable
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training corpus. A framework for developing limited-data voice conversion algorithms by bootstrap-
ping from a speaker-adaptive text-to-speechmodel was recently described in studies (Huang et al.,
2020; Luong and Yamagishi, 2019).

A different tactic is to use the Automatic Speech Recognition (ASR) - or speech-to-text - as a
side task and give it the burden of learning latent linguistic unit representations. The voice conver-
sion algorithm may for instance use the context posterior probability sequence produced by the
automatic speech recognition model to generate a target speech feature sequence (Miyoshi et al.,
2017). For each input utterance, the auto system produces a latent code fromwhich text prediction
is made possible. Trained on a large speech corpus, the speech-to-text model learns fine repre-
sentations of linguistic units (for instance phonemes). Using the linguistic latent representation of
the source utterance, a voice conversion system is more likely to preserve the source’s linguistic
content in the conversion. It also become free from parallel data as non-parallel pair of utterances
can be easily plunged into the speech-to-text’s latent space thus yielding representations that can
be furtherly used to condition the conversion to the matching text.

A last trend referred to as neural disentanglement has also been used for parallel data free voice
conversion. The idea behind voice disentanglement is to consider any speech signal as a compo-
sition of several types of information related to different speech attributes. A speech signal can be
conceptualized as the combination of linguistic content, speaker identity, and expressive content
in the broadest sense (emotions, attitudes, etc.) that are entangled in a complexmanner during the
realization of speech. This is obviously a schematic view and these different types of information
are not independent of each other. For example, the expression of emotions is strongly dependent
on the speaker who communicates them. This view, although not based on an actual partition ei-
ther of the signal or in terms of anatomical mechanisms, allows for effective manipulation of the
various attributes of speech. However, assuming those different attributes are independent from
one another, a model can be learnt to disentangle one attribute from the others, i.e. produce a
representation that isolates this attribute from the others, while still being able to reconstruct the
original signal from these representations. To convert a speech attribute, one just has to manip-
ulate its disentangled representation and then pass it to the decoder along with preserved infor-
mation. Auto-encoder (Larsen et al., 2016) represents one of the common techniques for speech
disentanglement, and reconstruction. There are other techniques such as instance normalization
(Chou et al., 2019) and vector quantization (Tang et al., 2022), (Wu et al., 2020), that are effective
in disentangling speaker from the content. In the auto-encoder paradigm first proposed in (Qian
et al., 2019), the model means to disentangle the information to be converted from the rest. To do
so a first encoder produces a code containing the information that is to be manipulated while a
second encoder yields a code containing the information that allows for the reconstruction of the
speech signal. For the conversion to be effective, the latter code must not contain any information
about the attribute being converted. This is ensured simply by reducing this code’s dimension so
that it cannot contains any other information than what is necessary to reconstruct speech sig-
nal. This both simple and convincing bottleneck principle has shown very good results for identity
conversion (Qian et al., 2019). This idea has also been applied for speech emotion conversion. In
that case, the first encoder is similar to an emotion recognition (SER) system deprived from its
last fully connected layer (endorsing classification task properly). This system can thus be trained
separately as proposed in (Zhou et al., 2021).

Although these attempts are promising, the best performing algorithms (Kameoka et al., 2020,
2021), in terms of the sound quality of the conversions yielded, still require learning on parallel data.
There are still many challenges to be met in the context of speech conversion and specifically for
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the conversion of emotions. In particular, the issues of generalisation to new speakers and to all
linguistic content remain to be addressed and are currently the subject of much research.

2.1.4 Metrics and Methodology for Evaluating Voice Conversion Algorithms

An efficient voice quality assessment is necessary to validate the algorithms, evaluate technical
advancement, and compare a newly proposed algorithm to the best one available. We would like
to quantify and qualify how natural and intelligible the conversions yielded by the model are, to
what extent the algorithm actually does what it was made for. Usual quality assessment involve
both objective and subjective measurements.

Objective Evaluation

In order to provide an objective evaluation of the model performance, each conversion must be
compared to a reference speech which thus required. In the case of a deterministic model learned
on so-called parallel pairs, the reference soundwill be the target sentence of a given pair. The closer
the conversion is from the target, the better themodel performs. However, depending on themodel
architecture, there is a guarantee that the conversion will have the same length than the target ut-
terance. In that case, before computingmetrics, target and conversionmust be aligned frame-wise
using an aligner, through dynamic time warping (DTW) for instance. Mel-cepstral distortion (MCD)
is used for spectral enveloppe while RMSE and PCC are used for prosodic features such as pitch
and energy contours.

MEL CEPSTRAL DISTORTION (MCD). This metric is often used for objective evaluation on spectral
features. It is calculated between the converted and target mel-cepstral coefficients, or MCEPs,
[240], [241], Xt and Ys←t and expressed in dB as follows

MCD(Xt,Ys←t) =
10

Tt ln 100

T∑
n=1

√√√√2

D∑
k=1

(Xt
n,k − Y s←t

n,k )2 (2.5)

whereXt
n,k and Y s←t

n,k are the kth coefficients of the nth frame of Xt and Ys←t respectively.

The prosody of a speech utterance, of main importance in the production of vocal attitudes,
is characterized by many speech parameters such as pitch and energy contours, speech rate and
phoneme durations. Those speech parameters can be either part of the input of the conversion
systems or extracted from the representations or re-synthesized signals. To effectively measure
how close the prosody patterns of converted speech is to the reference speech, objectivemeasure-
ments are provided.

ROOTMEANSQUARE ERROR (RMSE).Thismetric can be used tomeasure differences between target
and converted sequences for all the parametersmentioned above. For instance, if we consider both
target and converted F0 sequences f t and fs←t, RMSE can be computed as follows

RMSE(f t, fs←t) =

√√√√ Tt∑
n=1

(f tn − fs←t
n )2

Tt
(2.6)

PEARSON CORRELATION COEFfiCIENT (PCC). This metric can also be used to quantify differences
between target and converted sequences of speech prosodic parameters. If we consider F0 se-
quences again, the PPC can be formulated as follows
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PCC(f t, fs←t) =
cov(f t, fs←t)

σf tσfs←t

(2.7)

Thesemetricsmeasure quantitative differences in acoustic parameters and are not necessarily
correlatedwith humanperception. In particular, there is not just oneway to pronounce a sentence or
convey an emotion or attitude. Consequently, quantitative measurements from a single reference
only give a rough idea of the quality of the conversion. Since the ultimate criterion for judging a
conversion is whether it sounds convincing to human subjects in general, those measures are of
limited interest.

Subjective Evaluation

Subjective measures are based on the judgements by individuals towards the conversions yielded
by themodel. In that sense, subjectivemeasures anchor the evaluation ofmodels in people’s actual
experience of the resulting applications. These measures are therefore complementary to objec-
tive measures.

The most popular method, widely used in listening test (Kameoka et al., 2021; Qian et al., 2019;
Zhou et al., 2021), is mean opinion score (MOS). In MOS experiments, listeners use a 5-point scale
to assess the converted voice’s quality: “5” for excellent, “4” for good, “3” for fair, “2” for poor, and
“1” for bad. This method involves absolute judgements, which may be demanding for the subjects
of the experiment, but which provide great insights on the conversions obtained. Several methods
were derived from MOS such as DMOS (Tamura et al., 2001), which is a “degradation” or “differ-
ential” MOS test, requiring listeners to rate the sample with respect to this reference. MUSHRA
(Zielinski et al., 2007), which stands for MUltiple Stimuli with Hidden Reference and Anchor, and
requires fewer participants than MOS to obtain statistically significant results. Another standard
method of subjective assessment is the preference test, also called the AB test (Toda et al., 2007).
In AB tests, participants listen to a of sounds and are asked to give a preference with respect to
a specific property; for instance in terms of naturalness, or similarity to a reference sound. This
method involves relative judgements that are often easier for the participant to make. However it
only provides an evaluation of the conversions with regards to presented data and not in general.
A last method called best-worst-scaling (BWS) (Louviere et al., 2015) has gained interest over the
past years. In such an experiment, participants listen to batches of a small number of sounds (4
or 5 usually) and are asked to chose which sound is the best and which is the worst with respect
to a property.

Whatever method is used to collect subjective judgements, we will need to measure how signif-
icant the observed effects or trends are. To this end, we compute a 95% confidence interval I95%
than can be used, along with the average score obtained, for interpreting the test results. Denoting
N the number of participants, x̄ and σ(x), the average and standard deviation of their judgements,
this interval can be computed as

I95% =]x̄− 1.96
σ(x)√
N
, x̄+ 1.96

σ(x)√
N

[ (2.8)

Evaluation with Deep Learning approaches

Common subjective metrics to rate the effectiveness of synthesized or converted speech - such
as MOS test - often uses multiple human judges to analyze each speech utterance. Numerous
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approaches to automatically anticipate MOS test results have been put forth in an effort to lower
labor costs. In order to adress this issue, numerous approaches have been put out to automatically
predict the MOS of an utterance: AutoMOS (Patton et al., 2016) predicted MOS with a recurrent
network based on long short term memory (LSTM) cells. Quality Net (Fu et al., 2018) employed a
frame-level quality constraint thus providing the training procedure with stability. After comparing
various architectures, (Lo et al., 2019) showed that the MOSNet based on stacked convolutional
and bi-directional recurrent network was a better architecture for MOS prediction. Later, (Choi et al.,
2020) incorporated MOSNet with multi-task learning to improve performance. Finally, (Choi et al.,
2021) used global quality token and encoding layer to achieve better prediction accuracy.

2.1.5 Section summary

In this research we focus on the voice conversion paradigm that we intend to apply to speech at-
titude conversion - i.e. we mean to convert attitude in a source speech signal with respect to a
target one while preserving other speech attributes such as speaker identity and linguistic content.
The typical speech conversion flow is composed with three steps: speech analysis - i.e. choice of
speech signal representation, determination of a conversion function that maps source and target
representations of speech and synthesis of the converted speech signal from the converted repre-
sentation.

The question of how to represent speech signal for conversionmust considered closely. Whether
based directly on the signal or derived from a physical model of speech production, speech rep-
resentations are yielded through the use of what a vocoder. The three main characteristics we
need to consider when choosing a speech representation for conversion are: completeness, i.e.
whether the signal can be reconstructed perfectly from its representation or not, interpretability
- i.e. whether it makes sense from the perspective of the mechanisms of production or percep-
tion of the speech signal - and compactness - i.e. whether it allows for efficient processing by an
algorithm while reflecting all aspects of speech. Vocoders such as STRAIGHT (Kawahara, 2006)
or WORLD (Morise et al., 2016) have proven to yield good quality sounding syntheses. However,
the trend in voice conversion based on those representations was to change the speech signal by
mean of interacting with the parameters. Therefore, an important challenge of this research in the
quest of a voicemodel formulation is the fine representation of the interaction between the compo-
nents of speech. The arrival of deep neural networks gave rise to numerous attempts to represent
such complex and non-linear coupling. When conditionned on mel-spectrogram representations
of speech, the WaveNet has been the first vocoder to yield syntheses that are almost perceptu-
ally indistinguishable from real speech signals (Shen et al., 2018). This breakthrough gave rise to
strong interest in the quest for a universal neural vocoder. Computationally sober vocoders based
on both deep neural networks and elementary signal processing blocks - e.g. (Engel et al., 2020) -
have been recently proposed, thus avoiding unnecessary learning of correlation already modelled
by proven signal processing techniques. We will therefore use the team-made proposal (Roebel
and Bous, 2022) to synthesise speech signals whose conveyed attitude has been converted in the
last chapter 7 of this paper.

Once the source and target speech signals are represented, a conversion function can be intro-
duced. Applied to the source speech representation, this function must yield a converted speech
representation in which every aspects of the source utterance are preserved except from the con-
verted attribute of which instance in the conversion must match the target utterance. Formerly
approximated by statistical models, this mapping function is now by deep neural networks thus
yielding way better sounding speech conversions (Desai et al., 2009; Nakashika et al., 2013; Luo
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et al., 2016). We exclusively focus on this latest approach in this work. The main determinant for
the development of such algorithms is the the availability of parallel data, e.g. a dataset that fea-
tures pairs of utterances that only differ in terms of the attitude conveyed. The early attempts of
neural voice conversion were deep neural networks that did not allow for temporal dependencies
modeling (Desai et al., 2009; Nakashika et al., 2013), which greatly limited their performances. To
tackle this limitation, Recurrent Neural Networks (RNN) were introduced for voice conversion and
achieved great improvements in naturalness and temporal consistency of the yielded conversions
(Sun et al., 2015; Ming et al., 2016). Since recurrent networks do not by themselves allow sequences
of different duration to bemapped, the sequence-to-sequence (Seq-to-Seq) architecture (Sutskever
et al., 2014) has been introduced posing the conversion task as a translation problem. This archi-
tecture maps the complete temporal sequences rather than just map source and target utterances
frame by frame. The classic problem with this architecture is that the temporally propagated infor-
mation tends to vanish for long sequences. Addressing this issue, the attention mechanism aims
to implicitly learn an alignment between the source and target sentences without any assumption
about how the linguistic units are mapped (Obin et al., 2019; Zhang et al., 2019; Tanaka et al., 2019;
Tachibana et al., 2018). Although recurrent networks represent an efficient implementation for
sequence-to-sequence, recent studies have shown that Convolutional Neural Networks (CNN) with
gatingmechanismsalso learnwell the long-termdependencies (Gehring et al., 2017; Kameoka et al.,
2020). Finally, the transformer networks (Vaswani et al., 2017), of which principle is a generalization
of attention mechanism that basically replaces all recurrent layers by self attention mechanisms in
a network, have been proposed for voice conversion yielding noteworthy performance in terms of
sound quality (Kameoka et al., 2021; Chen and Zhang, 2021; Lee et al., 2022). Facing the challenge
of gathering parallel data dedicated to voice conversion, many researchers have sought to circum-
vent this constraint. Experimental results shown that, with non-parallel training data, Cycle-GAN
achieves comparable performance to that of GMM-based system that is trained on twice amount
of parallel data (Kaneko and Kameoka, 2018). Other efficient strategies was to leverage text-to-
speech (Zhang et al., 2019; Park et al., 2020) or speech-to-text (Miyoshi et al., 2017) models to
improve a voice conversion algorithm’s performance. A last trend referred to as neural disentan-
glement has also been used for parallel data free voice conversion. It conceptualizes speech signal
as the combination of linguistic content, speaker identity, and expressive content in the broadest
sense (emotions, attitudes, etc.) that are entangled in a complex manner during the production of
speech. Auto-encoder (Larsen et al., 2016; Qian et al., 2019; Zhou et al., 2021) represents one of the
common techniques for speech disentanglement, and reconstruction.

An efficient voice quality assessment is necessary to validate the algorithms, evaluate techni-
cal advancement, and compare a newly proposed algorithm to the best one available. Algorithms
are evaluated objectively by comparing conversions to reference sounds using metrics such Mel-
Cepstral Distorsion (MCD) for spectral envelope or Root Mean Squared Error (RMSE) for pitch or
energy contours. The smaller these errors, the closer the conversion is from the reference and
the better the model performs. Nevertheless, these metrics measure quantitative differences in
acoustic parameters and are not necessarily correlated with human perception. For this reason, al-
gorithms are also evaluated subjectively by asking individuals to judge the conversions they yield.
The most popular method, widely used in listening test (Kameoka et al., 2021; Qian et al., 2019;
Zhou et al., 2021), is mean opinion score (MOS). Another standard method is the preference test,
also called the AB test (Toda et al., 2007), involving relative judgements that are often easier for
the participant to make. A last method, also involving relative judgements but among batches of
several speech samples, called best-worst-scaling (BWS) (Louviere et al., 2015) has gained inter-
est over the past years. Common subjective metrics to rate the effectiveness of synthesized or
converted speech often uses multiple human judges to analyze each speech utterance. Numerous
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approaches to automatically anticipate MOS test results have been put forth in an effort to lower
labor costs (Patton et al., 2016; Fu et al., 2018; Lo et al., 2019; Choi et al., 2020, 2021).

2.2 Speech Attitude Recognition

Human have an outstanding ability to communicate social signals conveying rich and useful infor-
mation, such as emotions or attitudes. This information can be communicated through different
channels, among which speech plays an important role. To perceive emotions, humans process
each modality separately and then recompose units of meaning from each piece of information.
For speech modality, they uses discriminative acoustic features from which emotions are inferred.
Analogously, the speech emotion recognition task aims to mimic this decoding process of vocally
communicated emotions. The key to this task is thus to obtain discriminating features from which
emotions can be distinguished.

2.2.1 General Scheme of Speech Attitude Recognition

In this subsection, we describe the typical speech attitude - or emotion - recognition flow in two
steps: speech analysis and determination of a classification function that enables speech attitude
- or emotion - recognition from a representation of the speech signal.

Speech analysis for speech attitude recognition

Recognizing the attitudes, or emotions, requires identifying the characteristics of the speech signal
that convey and make them distinct. First, a parametric representation of the speech signal can
be used. The fundamental frequency is known to convey emotions in speech, so it can be used
to represent the speech signal for emotion recognition purpose. However, emotions and attitudes
are produced and perceived through complex mechanisms involving many aspects of the speech
signal. In particular, themechanism by which individuals decode attitudes and emotions cannot be
reduced to the capture in the speech signal of variations in independent parameters, many of these
aspects are still unknown. To address this limitation, many approaches have attempted to produce
hand-crafted features adapted to the emotion recognition task (Badshah, 2017). Since the advent
of neural networks, the task of identifying the signal’s salient features has been combined with the
determination of an emotion prediction function. Most contemporary approaches no longer make
assumptions about what conveys emotions in the signal and therefore choose to use complete
and compact mel-spectrogram representations (Chen et al., 2018; Meng et al., 2019).

Finally, the analysis of the speech signal can be formalized in the same way as it is for speech
conversion, i.e. according to the equation 2.1. We denote A the function which, to a speech signal
xaRT conveying an attitude labelled a associates its representation XaRT ′×D such as

Xa = A(xa) (2.9)

Classification or prediction function

Once the speech signal xa ∈ RT is represented by Xa ∈ RT×D , a prediction function P - also
referred to as classification function - can be introduced such that its application to the input speech
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representation yields a label a representing the attitude conveyed. The classification can thus be
formulated as

a = (P ◦ A)(Xa) (2.10)

We will see in the next section that this mapping function can be approximated in various ways
ranging from statistical models to deep neural networks.

prediciton  
function

Speech  
conveying  
atttiude a

Analysis

A : x 7! X P : Xa → a

Xaxa

Label  
related to  
attitude a

a

a

Figure 2.4: General speech emotion - or attitude - recognition scheme. The two-step pipeline pro-
cess begin formulated as a = (P ◦ A)(Xa)

2.2.2 Speech Emotion Recognition Algorithms

Formerly addressed using statistical methods and traditional learning techniques such as Hidden
MarkovModels (HMMs), GaussianMixture Models (GMMs) and Support Vector Machines (SVMs),
the SER task has known significant improvements over the past years with the advent of Deep
Neural Networks (DNNs). Indeed such deep networks have shown excellent abilities tomodelmore
complex patterns within speech utterances by extracting high-level features from speech signal for
better recognition of the emotional state of the speakers.

Deep learning based approaches

Maoet al. (Mao et al., 2014) firstly introducedConvolutional Neural Networks (CNNs) for the speech
emotion recognition task andobtained remarkable results on various datasets by learning affective-
salient features. Recurrent neural networks has also been introduced for speech emotion recogni-
tion purpose with a deep Bidirectional Long Short-TermMemory (BLTSM) network proposed by Lee
et al. (Lee and Tashev, 2015). Several papers have then presented convolutional neural networks
in combination with recurrent networks based on long-short termmemory cells to improve speech
emotion recognition, based on logMel filter-banks (logMel) (Keren and Schuller, 2016) or raw signal
in an end-to-end manner (Trigeorgis et al., 2016).

Recently, attention mechanisms have raised great interest in the SER research area for their
ability to focus on specific parts of an utterance that characterize emotions. (Mirsamadi et al.,
2017) approached the problem with a recurrent neural network and a local attention model used
to learn weighted time-pooling strategies. Neumann et al. (Neumann and Vu, 2017) used an at-
tentive convolution neural network (ACNN) and showed the importance of the model architecture
choice against the features choice. Ramet et al. (Ramet et al., 2018) presented a review of at-
tention models on top of recurrent networks based long-short term memory cells and proposed a
new attention computed from the outputs of an added bidirectional long-short term memory layer.
Chen et al. (Chen et al., 2018) proposed a 3-D Attention-based Convolutional Recurrent Neural Net-
works (ACRNN) for speech emotion recognition with 3-D log-Mel spectrograms (static, deltas and
delta-deltas) as input features. They showed 3-D convolution can better capture more effective
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information for speech emotion recognition compared with 2-D convolution. Recently, Meng et al.
(Meng et al., 2019) outperformed this method by using dilated convolutions in place of a pooling
layer and skip connection.

Attempts to inform emotion classification networks with extra-information involved in the de-
scription of emotions were proposed in the past years. Based on previous works (Ververidis and
Kotropoulos, 2004; Vogt and André, 2006; Zhang et al., 2018), Li et al. (Li et al., 2019) proposed
a multitask learning framework that involves gender classification as an auxiliary task to provide
emotion-relevant information leading to significant improvements in speech emotion recognition.
Analogously, speaker identity has been used to inform emotion classification networks. The prob-
lem was approached by Sidorov et al. (Sidorov et al., 2014) with speaker dependent models for
emotion recognition. Recently, a method for speaker aware SER was introduced by Assunção et
al. (Assunção et al., 2020), a convolutional neural network model VGGVox (Nagrani et al., 2017) is
trained for speaker identification but is instead used as a front-end for extracting robust features
from emotional speech. These first attempts have shown that teaching speech emotion recogni-
tion systems with additional signal-based information can greatly improve performances.

Speech emotion recognition as a voice conversion side task

For several reasons, the specific task of speech emotion recognition can be considered as inherent
to the conversion of emotions in speech. First, it provides information on the ability of a system
to capture emotional information in a specific dataset, it is complementary to a perceptual study
conducted on the same data which would provide information on the ability of humans to distin-
guish these emotions. In a sense, if there is no system capable of predicting the emotions of a
dataset, there cannot be one that allows their conversion either. Second, learning such SER mod-
els results in the implicit learning of a definition of the emotions present in the dataset. The latent
space resulting from this learning is expected to be emotionally structured, each utterance can be
represented by a code that reflects the emotion it contains. These emotion embeddings can then
be used to inform conversion systems as recently proposed by Zhou et al. in (Zhou et al., 2021).

2.2.3 Methodology for Evaluating Speech Emotion Recognition Algorithms

There are two main ways of evaluating emotion recognition systems. The first involves comparing
the model’s predictions to the actual ground truth, while the second involves examining the im-
plicitly learnt latent space structure. One or the other may be preferred depending on the model’s
architecture and optimisation options. However in most cases, these two methods ought to be
applied in concert.

Assessing Prediction Performance

ACCURACY. One of the most used metrics to evaluate classification tasks in machine learning. It
represents the proportion of correct predictions to all examples. Although, this metric is easy to
interpret and compute, it has limitations. For this reason, it is often replaced by another objective
measure called Unweighted Average Recall (UAR). In the following, we set out to explain what this
measure is about.

UNWEIGHTED AVERAGE RECALL (UAR). Depending on its relation with ground truth, a prediction is
given a status of true positive, true negative, false positive, or false negative. When the ground
thruth category is predicted, it is known as a true positive. When the ground truth category is not
predicted, it is knownas a true negative. When a category that differs fromground truth is predicted,
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it is known as a false positive. When the ground truth category is not predicted, it is known as a
false negative. Thus if we denote those status tp, fp, tn and fn respectively, thus with p = tp+ fp
and n = tn+ fn the accuracy can be re-write as follows

accuracy =
tp+ tn

p+ n
=
tp

p
× p

p+ n
+
tn

n
× n

p+ n
(2.11)

The factors tp
p and tn

n are known as recalls on the positive and negative classes respectively,
also known as sensitivity and specificity. Accuracy can thus be seen as a weighted sum of those
factors. The final score is more affected by classes with more samples than by classes with fewer.
Due to this, accuracy is often unfit to determine how well the model performs for class unbalanced
datasets. To tackle this, UAR was introduced as

UAR =
1

nc

(
tp

p
+
tn

n

)
(2.12)

Assessing the Latent Space Structure

Analyzing a latent space’s structure mainly involves examining how its many categories are orga-
nized within this space. To do so, there are several objective measures.

SILHOUETTE COEFfiCIENT. Typically used to evaluate howwell clustering algorithms perform, shows
how separate the categories in the latent space are. Given a distance d : Rdlatent → R, typically
euclidean, it is defined for a latent vector hi in the cluster of index Ck as follows

si =
bi − ai

max(ai, bi)
(2.13)

ai =
1

|Ck| − 1

∑
j∈Ck,j ̸=i

d(hi,hj) (2.14)

bi = min
k′ ̸=k

1

|Ck′ |
∑
j∈Ck′

d(xi,xj) (2.15)

The silhouette coefficient lies between -1 and +1, indicating respectively the limits of a bad and
a good clustering of the data. An overall measure can be obtained through computing the average
silhouette coefficient over all data samples.

DAVIES-BOULDIN SCORE. Defined as the average similarity measure of each cluster with its most
similar cluster, where similarity is the ratio of within-cluster distances to between-cluster distances.
Thus, clusters which are farther apart and less dispersed will result in a better score.

MUTUAL INFORMATION (MI). Computed between two random variables, MI is a non-negative value,
whichmeasures the dependency between the variables. It is equal to zero if and only if two random
variables are independent, and higher values mean higher dependency. The function relies on non
parametricmethods based on entropy estimation from k-nearest neighbors distances as described
in (Ross, 2014).
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2.2.4 Section Summary

Human have an outstanding ability to communicate social signals conveying rich and useful in-
formation, such as emotions or attitudes. To perceive those conveyed through speech, humans
use discriminative acoustic features from which they are inferred. Analogously, the speech emo-
tion recognition task aims to mimic this decoding process of vocally communicated emotions.
The typical speech emotion recognition flow can be formalized in two steps: speech analysis - i.e.
choice of speech signal representation - and determination of a classification function that enables
speech emotion recognition from its representation.

Emotions and attitudes are produced and perceived through complex mechanisms involving
many aspects of the speech signal. In particular, the mechanism by which individuals decode atti-
tudes and emotions cannot be reduced to the capture of variations in independent speech param-
eters, many of these aspects are still unknown. In view of this, many approaches have attempted
to produce hand-crafted features adapted to the emotion recognition task (Badshah, 2017). Since
the advent of neural networks, the task of identifying the signal’s salient features has been com-
bined with the determination of an emotion prediction function. Most contemporary approaches
no longer make assumptions about what conveys emotions in the signal and therefore choose to
use complete and compact mel-spectrogram representations (Chen et al., 2018; Meng et al., 2019).

Formerly addressed using statistical methods and traditional learning techniques such as Hid-
den Markov Models (HMMs), Gaussian Mixture Models (GMMs) and Support Vector Machines
(SVMs), the SER task has known significant improvements over the past years with the advent
of Deep Neural Networks (DNNs). Convolutional Neural Networks (CNNs) were first introduced for
the speech emotion recognition task and obtained remarkable results on various datasets by learn-
ing affective-salient features (Mao et al., 2014). Recurrent neural were then proposed, thus better
exploiting temporal dependances (Lee and Tashev, 2015). Combinations between convolutional
and recurrent neural networks have shown even better performances (Keren and Schuller, 2016;
Trigeorgis et al., 2016). Attention mechanisms have raised great interest in the SER research area
for their ability to focus on specific parts of an utterance that characterize emotions (Mirsamadi
et al., 2017; Neumann and Vu, 2017; Ramet et al., 2018; Chen et al., 2018; Meng et al., 2019). Fi-
nally, attempts to provide emotion classification networks with extra-information involved in the
description of emotions such as speaker identity (Sidorov et al., 2014; Assunção et al., 2020) or
gender (Li et al., 2019) were proposed in the past years. There are two main ways of evaluating
emotion recognition systems. The first involves comparing the model’s predictions to the actual
ground truth using accuracy or unweighted average recall, while the second involves examining
the implicitly learnt latent space structure using silhouette coefficient, davies boudlin score or mu-
tual information. One or the other may be preferred depending on the model’s architecture and
optimisation options. However in most cases, these two methods ought to be applied in concert.
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ATT-HACK : A DATASET FOR SPEECH
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3.1 Genesis of Att-HACK

This section aims to explain the guiding principle behind the creation of a new dataset for expres-
sive voice. Therefore, we will discuss existing databases, their uses, and the issues that make it
necessary to gather more diverse speech data.

3.1.1 A Need for Expressive Speech Data in French

Though the linguistic functions of speech prosody are nowadays well documented in a large num-
ber of languages (phonology, syntax/prosody interface, etc...), its expressive or para-linguistic func-
tions, such as speaking style or speech emotions, does not benefit from the same amount of at-
tention from the speech community. Meanwhile, speech engineers have realized spectacular ad-
vances in the past decade creating extremely realistic synthetic voices (Wang et al., 2017) which
are now integrated into voice interfaces that are increasingly present in our everyday lives, such
as the voice assistants and conversational/virtual agents. However, these intelligible and natural
voices still clearly lack expressiveness and adaptability which greatly limits the interaction between
humans and machines (see for instance (G. Castellano, 2012)). Expressivity is the next frontier of
speech research at the interface of cognitive science, linguistics and technology, as shown by the
recent increase of research in this domain (Wang et al., 2018b; Zhou et al., 2021; Liu et al., 2022).
Consequently, there is a clear need to better understand how humans produce and decode emo-
tions, attitudes and all aspects that enrich vocal communication.

Available Expressive Speech Datasets

Speech expressivity is generally equated to speech emotions though the scope of expressivity in-
cludes but is not restricted to the primary emotions as denoted by Ekman (Ekman, 1992). This
limitation is probably due to the difficulty of converging to an agreement on the terminology used
to describe the various and subtle forms of expressivity in speech. Accordingly, the study of speech
expressivity is generally limited to dedicated speech emotion databases as interpreted by actors
or to audio books read by professional readers - mostly in English (Busso et al., 2008; Zhou et al.,
2022), and sometimes in French (Sini et al., 2018), German (Chen et al., 2015) or Chinese (Zhou
et al., 2022). In the past decade, speech emotion research has mainly focused on acted emo-
tional speech: from its original form in which an actor is asked to interpret a short text with a
given emotion (Burkhardt et al., 2005) to more open and spontaneous forms in which two actors
freely improvise based on a given scenario and then asked to rate their own speech emotions with
categories or on valence/arousal continuous scales (Busso et al., 2008; McKeown et al., 2010).
These databases have been designed only for the purpose of speech emotion recognition, but not
for emotional speech synthesis and voice emotion conversion. They moreover miss an essential
aspect of speech prosody: its variety (Obin et al., 2012). There is always only one realization of
each utterance, while any utterance can be produced with various prosodies, some being function-
ally equivalent, some presenting different degrees of expressivity (Gerazov et al., 2018). Only a few
databases dedicated to emotions can be used for speech conversion (Burkhardt et al., 2005; Busso
et al., 2008; Zhou et al., 2022).

On Gathering More and More Diverse Data in French

Not only, but also specifically for French - a langage for which there is very few resources regarding
emotion in speech - there is a great need for expressive speech databases. Such databases must
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allow a diversification of the research in speech prosody and expressivity, be large enough and of
a sufficiently high quality to allow learning generative models.

3.1.2 In Defense for a Research on Vocal Communication of Social Attitudes

The basic emotions as described by Ekman (Ekman, 1992) have been and still are the subject of
much studies, particularly in identifying the mechanisms underlying their production. The emer-
gence and growth of research in social interaction and social psychology have made it possible to
highlight the main dimensions of social cognition - namely warmth and competence - (Fiske et al.,
2007) opening up new areas of research in understanding the communication of social signals. In
light of these advances in social cognition, social attitudes — long studied in the shadow of emo-
tions — are proven relevant in describing many of our social interactions (Wichmann, 2000). There
is currently no database devoted to social attitudes in speech, and even less so in French.

Emotion vs Attitude

Human interactions are governed by a fantastic interplay of social signals. Although central in
this mechanism, the primary emotions described by Ekman (Ekman, 1992) are undoubtedly not
sufficient to describe the entire expressive spectrum of human speech. For example, a person can
be friendly, distant, seductive or dominant with a stranger they just met, depending on the outcome
they expect from the interaction. Such attitudes differ from emotions, because they do not only hint
at the speakers’ affective state, but are the expression of their social intention (Wichmann, 2000).

Defining Social Attitudes

Many works have attempted to provide a precise definition of these different expressive variants.
For instance, to deal with subtle forms derived from primary emotions, the circumplex model, in
which emotions are categorized in a bi-dimensional space, was proposed by psychologists (Rus-
sell, 1980). Attitudewas firstly equated to the first dimension - i.e. valence - of thismodel (Ajzen and
Fishbein, 1980). A distinction between emotion and attitude was done in (Couper-Kuhlen, 1986) by
defining emotion as a speaker state and attitude as some kind of behaviour. This distinction was
later refined in (Wichmann, 2000), by defining attitude as a predictor of social behaviour. In this re-
spect, the attitudinal aspect of expressivity of course differs from the primary emotions. Although
it must be partly determined by the speaker’s affects (Bodenhausen, 1993). A distinction must be
made between the propositional attitude - towards an utterance: irony, doubt, etc... (Leech, 1983)
- and the social attitudes - towards a person: dominant, friendly, seductive, distant for instance.
This last dimension has been recently investigated in the study of the role of speech prosody in
neurosciences (Ponsot et al., 2018b).

3.1.3 Choice of Speech Attitudes

Following the initial definition in (Wichmann, 2000), we sought to select several vocal attitude labels
- or categories - for designing our dataset.

How to represent Social Attitudes communicated vocally?

Prior to selecting particular attitudes to be featured in our database, the issue of how these vo-
cal attitudes should be represented must be addressed. Two approaches can be employed: the
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categorical approach - the whole range of attitude instances is divided into a number of formally
distinct categories - or the dimensional approach - attitude expressions are represented in a multi-
dimensional space, each of whose dimensions describes some aspect of what distinguishes the
attitude instances from each other.

First, social cognition represents interactions between individuals along twodimensions, namely
warmth and competence (Fiske et al., 2007). Indeed, as shortly as an interaction begins, individuals
must evaluate if the other is a friend or foe - i.e., whether they have good or bad intentions - and,
then, whether the other has the ability to act according to those intentions. This dimensional repre-
sentation constitutes a first approach for us to attempt representing attitudes. Second, the Leary’s
rose model (Leary, 1957) provides a representation of attitudes in a bi-dimensional space, the first
dimension reflects the inclusiveness - hostility or friendliness - towards the other and the second
dimension reflect the position within a social hierarchy - subordination or dominance. This model
served as the basis for an original representation of the musicians performing in duo (Aucouturier
and Canonne, 2017). Since Leary’s and Friske’s models use similar dimensions to describe interac-
tions between individuals, they will be considered as a starting point for our representation of the
speech social attitudes.

Selection of Attitudes

The labels we selected for representing speech social attitudes are directly derived from the two
precursory works (Leary, 1957; Fiske et al., 2007) mentioned above. In this paper, four social atti-
tudes were defined by sampling the warmth and competence - or inclusiveness and dominance -
dimensions during a speech interaction: friendly, seductive, dominant and distant, as represented
in Figure 3.1. This includes one exclusive (distant) and three inclusive (friendly, seductive, domi-
nant) attitudes sampled in the semi-space of neutral to high-hierarchy in the bi-dimensional space.
Indeed, this selection was motivated by the final application of an inboard vocal assistant. In the
scope of specific context, no attitude label related to submission was selected. We therefore as-
sume that we do not encompass the whole spectrum of attitudinal expression. Let us note that,
when sampling such attitude labels in the two-dimensional space depicted in Figure 3.1, we make
no assumptions about the categories that arise from these selected labels. In particular, these cat-
egories may not be distinct from each other or somemay be significantly broader than others. The
uncovering of the production and perception mechanisms that underlie these vocal attitudes may
help to establish the shape of these categories and their interactions.

In line with their dimensional representation, we attempted to provide an informative description
for each of the selected attitudes as follows:

• friendly: you are pleasant and benevolent, you care about others’ preferences, you act to-
wards the others independently from your own situation.

• seductive: everything in your behaviour aims at charming the others, to make them love you,
you do not care about others’ preferences but you are ready for anything to seduce them even
if you have to fake benevolence.

• dominant: you are self confident, sure of your own superiority, you do not care about others’
preferences, everything in your behaviour is dedicated to make the others obey and listen to
you without imposing anything explicitly.

• distant: you (barely) do not care about the others, you are uncommunicative, you do not care
about others’ preferences.
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Figure 3.1: Social attitudes represented in a standardwarmth/competence - or inclusiveness/domi-
nance - bi-dimensional space following early works in psychology (Leary, 1957) and social cognition
(Fiske et al., 2007).

3.2 Design, Methodology and Recording

A proper design of a dataset implies to make assumptions and methodological choices which
affects both thematerial itself and the applications that are built from it. Must the speech attitudes
in the dataset be picked up in real life or portrayed by actors? Should their linguistic support be
pre-scripted or left up to improvisation by the actors if they are performed? In which case, what
requirements should be followed while choosing the sentences that the actors will perform? This
section is dedicated to answering all those questions.

3.2.1 Attitude Communication Context

Themost crucial decision we had to make was whether to ask actors to portray attitudes or to pick
up real life spontaneous utterances.

Portrayed vs Spontaneous Attitudes

First, it is important to highlight that portrayed emotional vocalisations, i.e. produced by actors,
may involve different production and perception mechanisms than those involved in the case of
genuine emotions. In fact, actors’ vocalisations are known to be less authentic than spontaneous
ones (Anikin and Lima, 2017) —which, in the case of e.g. facial expressions of emotions, even seem
to rely on different neural bases (Valente et al., 2017). It has also been revealed that this authenticity
standard differs depending on the emotion considered. In certain circumstances, particularly for
high-stakes emotions like anger or fear, individuals would put greater importance on the criterion
of emotional authenticity (Anikin and Lima, 2016). The explanation would be based on human
evolution; people need to be able to rely on their own and other people’s emotions when they are

56



in danger. Having said that, there is little doubt that choosing portrayed attitudes is not the best
strategy for understanding and modeling what occurs in real life. However, no study have revealed
the significance of authenticity in regard to the particular category of attitudes we have chosen to
investigate. In addition, in the scope of voice conversion, exaggerated or stereotypical expression
can facilitate learning by better marking the difference between the targeted categories. On the
other hand, we can also hypothesize that exaggerated expressions may be more relevant for voice
conversion applications, as they might be communicated more easily - notably better decoded by
human users.

Practical feasibility

The other point to think about is whether it would be possible in practice to gather utterances that
have an attitudinal component in real life situations. For a number of reasons, it is now very diffi-
cult to do so. Even while such records can be retrieved using internet or embedded programs on
smartphones, from anywhere in the globe, it is nearly impossible to manage what is contained in
them. The task of voice conversion, which is the main application for this dataset, necessitates
data annotation, i.e. to know which attitude is communicated for each utterance. To obtain such
annotation, one option is to carry a perceptual test in which subjects are asked to judge the attitude
conveyed by a particular sentence. This preliminary step is a very expensive and time-consuming
process. Conversely, asking actors to portray attitudes givesmuchmore control on what is actually
conveyed through speech utterances.

Final decision towards Portrayed Attitudes

In light of all those arguments, we decided to build a dataset featuring portrayed attitudes. The
main cause for this decision is the fundamental requirement for parallel data, related to the ma-
jority of current voice conversion models, which is essentially incompatible with the spontaneous
alternative. In fact, there is no guarantee that speakers would pronounce the same utterance - in
the sense of linguistic content - in at least two different attitudes. Our goal is then to create a
gender-balanced multi-speaker database which features several repetitions/variants per linguistic
content, speaker and attitude. Provided such a dataset, we would like to be in capacity to study
intra and inter-speaker variability in the production and perception of vocal attitudes.

3.2.2 Set of Sentences

The second decision to make dealt with controlling the linguistic variability in the dataset. In this
regard, several options can be considered. From one hand, actors can be asked to improvise, from
scratch or from given scenario or character description. On the other hand, we can provide them
with a text, in respect to which they are asked to play faithfully. Designing a parallel database in-
volves selecting a series of sentences - distinct linguistic contents - with respect to which each
attitude must be portrayed. Since it would have been impossible to identify linguistically paired
utterances among improvised - linguistically uncontrolled - material, this - strong - requirement
prompted us to chose the second approach. The set of sentences used for the creation of the
database has been designed in French as inspired by the corpus of propositional attitudes pro-
posed by Morlec in (Morlec, 1997). The decision to choose French was quite obvious given the
dearth of French expressive databases.
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Criteria for the Design of Sentences

The proposed sentences have been designed according to the following criteria:

• to avoid introducing a bias due to the affective content suggested by the text - i.e. the sen-
tences have to avoid connoting a particular expressive colouration so that only the vocal
expression carries information.

• to reduce the prosodic variability due to the text structure, the sentences were designed with
a limited and controlled linguistic complexity, by using simple syntactic structures and short
sentences;

• to remain plausible in each social attitude.

Let us note that the first of these criteria cannot be satisfied by any sentence, since no sentence
is absolutely neutral with regards to the emotional content it conveys, a study of sentiment analysis
is therefore carried out on all 100 sentences in the chapter 4.

Design of Sentences

est  
êtes

Il 
Vous

parti 
partis

allé 
allés

pronoun auxilliary

past 
participle

rapidement 
aussitôt

adverb

vers 
à

la 
cette

plage 
mer

nounpreposition specifier

Figure 3.2: Phrase generator functioning for the above quoted phrases, chosen words are in bold,
dotted lines represent possible choices for the algorithm

Accordingly, we constructed a set of 100 sentences - from 2 to 8 syllables - corresponding to
simple everyday life situation - situations that are likely to occur in socialization places like home,
restaurant or workplace. For this purpose, we designed a phrase generator that builds phrases
from semantic nucleus ({pronoun/noun + verb} or {pronoun/noun + auxilliary}) by randomly pick-
ing words in dictionaries in order to guarantee the phrases are always conceived the same way.
We randomly kept 100 phrases among the 10,000 generated ones to build our set of sentences, a
sample of 10 sentences is listed below.

Oui - Yes
Bonjour - Hello

C’est vrai - That’s true
A demain Paul - See you tomorrow Paul

Bonne journée Marie - Have a good day Mary
Il est tard à Londres - It’s late in London

Vous êtes allés à la plage - You went to the beach
Vous êtes partis rapidement - You left quickly

Impossible, attendons un peu - Impossible, let’s wait a bit
C’est vrai, allons prendre un café - That’s right, let’s get a coffee
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Figure 3.2 depicts the functioning of the automatic sentence generator considering the example
of two sentences created from the nucleus “Vous êtes ..." (“You are ...”).

3.2.3 Recording Sessions

To feed this database, twenty actors - coming from different practices of the professional voice
community (dubbing, theatre, advertising) - were recorded in professional studios at Ircam. The
recruitment of actors was carried out via a dedicated website 1 on which various actors are listed.
The website gives access to a number of information such as the actor’s gender and age as well as
recording samples of their voice. It should be noted here that the actors were not asked any ques-
tions about their sexual orientation, nor were they asked to complete a personality questionnaire.
The only important information we kept was their gender, which they themselves declared on the
website where we recruited them.

Recording Procedure

The recordings consisted of 4 hours sessions during which one actor had to play 100 sentences in
the four different social attitudes, proposing from 3 to 6 different versions of each sentence in each
attitude. At the beginning of each session, the four attitudes were shortly described as stipulated
above. Those descriptions have been used as acting options, actors were told to act according to
their own understanding of each attitude label and not necessary in regards to those descriptions.
The actors were told to be as natural as possible, no other information was given during the ses-
sion. At the end of a session, we had at least 2, 500 audio files for each actor.

The recording sessions went the following way : an attitude was picked randomly, the actor
played the sentences in a random order, offering several versions. Once all the phrases had been
played, another attitude was randomly picked and so on until all four attitudes were completed. I
personally took care of half of the recordings, the other half was handled by Darick Lean who was
a trainee in the team at the time.

Technical Details

For the recording, we used a Neumann U87 static microphone plugged into a RME fireface inter-
face synchronized with the ProTools software 2. All audio recordings were made with a sampling
rate frequency of 44.1 kHz and a quantization of 16 bits per sample. The recording were made in
two different studios depending on their availability. A patch implemented with the Max for Live
software 3 was used to provide a visual interface to the actor, displaying on a screen in front of the
actor the sentence to be read and the expected attitude, this display being monitored by a sound
engineer. The patch also allowed to store the time codes corresponding to each sentence, which
were used after the session to segment and name automatically the continuous recording made
with the ProTools software.

The experimentermust press the space bar on the computer keyboard to capture the time codes
related to a sentence’s start and finish. Therefore, it is crucial for the experimenter tomaintain focus
in order to avoid pronunciation (text) or interpretation (attitude) errors, direct or correct the playing,
and eventually do retakes. Sessions used to drag on for a while, and it has been typical for actors

1https://www.castingmachine.com/
2https://www.avid.com/fr/pro-tools
3https://www.ableton.com/en/live/max-for-live/
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to become sidetracked and forget what they had to say or the attitude they had to portray. In a way,
the experimenter has to direct the actor he is recording.

3.3 Processing and Preliminary Analyses

Once collected, these data just waited to be used. Nonetheless, it was essential to first ask: what is
actually contained in these data? This subsection offers a first attempt at answering that question.

3.3.1 Data Cleaning and Formatting

Once the recordings were completed, the collected data needed to be processed in order for it to be
usable effectively. Essentially, this involves doing two things: first, cleaning up the data by removing
any fraudulent examples, and second, formatting it.

Detecting fraudulent samples

At the end of the recording sessions, the audios were run through a click detector called the Hook-
Net. This novel adaptation of the Wave-U-Net for the task of detecting artefacts in audio signals
has been developed in the Analysis Synthesis Team by Daniel Wolff (Wolff et al., 2021). Fed with
raw waveform segments, it can return time series of artefact classification results. The yielded
corrupted audios were either removed from the database or fixed for less serious cases. This
method was still not able to catch all of the fraudulent examples, despite being effective. As a
result, a significant portion of the database has been processed manually, and some new false
samples have been discarded. The database, however, is too big to be fully handled manually. The
database has got cleaner and cleaner as it has been used for different purposes, each use enabling
for the detection of remaining faulty samples. It should be highlighted that this process was solely
aiming at deleting the samples of poor sound quality but has nothing to do with judging the quality
of the actors’ performances.

Data formatting

First, each sound sample in Att-HACK has been stored in wav format in 48kHz and 24b. Further-
more, we employed a neural aligner (Teytaut and Roebel, 2021) proposed by Yann TEYTAUT - also
PhD candidate in the team - to perform phoneme-to-audio alignment on the Att-HACK samples.
Since there is no way to assess the proper performance of this aligner on the Att-HACK samples,
we rely on this aligner’s performance on TIMIT dataset (Garofolo et al., 1992) - in English - for which
this algorithm holds the state-of-the-art. Using this alignement, we have trimmed the examples to
prevent too large silences at the start and end of phrases. Finally, the data formatting and manip-
ulation was done within the pandas data frame framework 4 throughout the entire course of this
research. This format for data manipulation makes it simple to select a subset of the data using a
key, which in our instance could possibly be a speaker, an attitude, or even a sentence.

4https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
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3.3.2 Att-HACK metadata statistics

A first analysis consisted in making basic statistics on Att-HACK by quantifying some of its facets
such as attitude, gender or linguistic content. Such statistics are displayed in Table 3.1. In total
the database represents just over 27 hours of expressive speech in French, which makes it unique.
However, the question of its intrinsic balance must be asked: is there the same number of sound
samples for each attitude? And, is this distribution also balanced betweenmale and female speak-
ers ?

Att-HACK friendly distant dominant seductive
F M F M F M F M

total duration (h) 3.67 2.97 3.82 3.12 3.64 3.01 3.83 3.05
sample mean duration (s) 2.67 2.42 2.74 2.75 2.61 2.52 2.78 2.83
number of samples 4953 4432 5015 4094 5007 4290 4955 3887

Table 3.1: Att-HACK metadata (duration and number of samples) statistics by attitude and
speaker’s gender.

Firstly, it can be seen that there is a roughly equivalent number of speech examples for each of
the attitude categories. There are 9385 samples for friendliness, 9109 samples for distance, 9297
for dominance and 8842 for seduction. It can therefore be said that the database is rather balanced
with regard to vocal attitudes. What about the distribution with respect to the gender of speakers?
First of all, we have to mention that the database is constituted from the recordings of 12 females
and 8 males. As a result, the number of samples associated with male gender (16703) is signifi-
cantly lower than the number of samples associated with female gender (19930). Despite our best
efforts, we were unable to attain perfect parity because only male speakers repeatedly withdrew.
In this regard, the left part of the Figure 3.3 provides a clear account. We can therefore speak of an
over-representation of the female gender in Att-HACK. If we now consider the distribution in regards
of both attitude and speaker’s gender, we see that the balance between attitudes is almost perfect
for females. Conversely, there are differences in representation between attitudes for males. We
acknowledge that creating a balanced database across all of its facets is exceedingly challenging.
The challenge resides in both the logistics — being able to find the speakers we require — and the
method used for recording and database post-processing.

The right part of the Figure 3.3 represents the distribution of duration for each attitude and
each speaker’s gender. As intended, the Att-HACK samples are rather short, thus learning conver-
sion models from entire, unsegmented sound samples will be tractable. In particular, we found an
average duration between 2 and 3 seconds for both female and male speakers. We can already
see that the distributions of duration vary depending on attitudes, indicating that there may differ-
ent production strategies in the speech rate, rhythm, and duration of phonemes depending on the
portrayed attitude. These issues will be discussed further in Chapter 3 of this document.

Future efforts may be made to grow this database, especially by attempting to balance out the
numerical disparity between male and female speakers. Such a balance is crucial in the quest
for a comprehensive understanding of both the mechanisms underlying the production of vocal
attitudes and those governing the perception of these attitudes. It is all the more necessary as we
expect to see differences between male and female speakers in both of these factors.
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Figure 3.3: Representation of the sound samples’s number (left) and duration (right) in Att-HACK
depending on the portrayed attitude and the presumed speaker’s gender.

3.3.3 Investigating pitch patterns underlying the production of vocal attitudes

Prior to making a first attempt to learn to convert vocal attitudes from Att-HACK data, it seems cru-
cial to wonder what aspects of the signal convey these attitudes. Two main study areas underpin
this question. On the one hand, the analysis of the vocal attitude production asks how speakers
employ their vocal apparatus to produce one attitude or another. On the other hand, the analysis of
attitude’s human perception asks how do listeners decode the attitude conveyed by a speech sig-
nal. These two key areas enable us to understand the entire vocal attitude communication chain,
from the intention to alter one’s own voice by modifying one’s body configuration to the capacity to
capture specific elements of the speech signal in order to understand the social signal being com-
municated. A parametric model of vocal attitudes will describe the temporal variations of vocal
parameters involved in the production and decoding of vocal attitudes. Such a model is difficult to
develop in that it involves understanding both ends of the communication process.

We saw in the introduction that both attitudes and emotions, as they belong to the para-linguistic
domain, are mainly encoded in the speech signal via the prosody. In addition, speech prosody
can be broken down into four main phenomena: intonation, rhythm, intensity and voice quality.
In particular, intonation - which is the most prominent component in the communication of para-
linguistic content - is encoded from a signal point of view by the variations of the fundamental
frequency - i.e. pitch or F0. The idea here is to observe pitch variations, the speech parameter
which is commonly the most prominent in the communication of para-linguistic content.

Pitch contours

The prominence of pitch contours in the communication of emotions has been shown many times
(Chuenwattanapranithi et al., 2007; Rodero, 2011; Amir and Globerson, 2014), while only few studies
have dealt with attitudes. For instance, it has been shown that raising one’s pitch helps to produce a
friendly voice in English, Dutch, Chinese and Swedish (Chen et al., 2004; Li and Wang, 2004; House,
2005). The same strategy has been proven to convey dominance for English speakers in (Puts
et al., 2006, 2007). Conversely, findings on vocal attractiveness report a lowered pitch for male
speakers (Collins, 2000; Feinberg et al., 2005; Xu et al., 2013). Note that the attractiveness of a
voice differs from what we call the seductive attitude. An attractive voice may not be seductive. It
is even conceivable that a voice showing shyness or reserve may be attractive to some people.
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Figure 3.5: F0 contours mean (solid line) and
standard deviation (filled with color) for the
phrase "Oui" for a given female speaker

F0 estimation

The fundamental frequency of the speakers was estimated by using the SWIPEP algorithm (Ca-
macho, 2007) with a minimum pitch value of 75 Hz, a maximum pitch value of 450 Hz, and a hop
size of 5 ms, without any post-processing for correcting or smoothing the raw pitch values. The
voiced/unvoiced decision was computed from the pitch strength associated with the pitch value
estimate with a threshold of 0.25 (the pitch strength being a value between 0 and 1 corresponding
to the periodicity of the speech frame).

A F0 contour was extracted for each syllable in order to illustrate the F0 patterns realized by
the actors for the different social attitudes. The F0 contour of a syllable was identified as the one
corresponding the longest sequence of F0 values considered as voiced over the syllable, i.e. the
longest F0 segment for which each F0 value corresponds to a pitch strength value which is above
a given threshold (in this work, 0.3).

F0 statistics on Att-HACK

A preliminary investigation was conducted to compare the F0 statistics of the actors across the
social attitudes. We computed mean and standard deviation statistics on F0 segments extracted
as stipulated above, for each speaker and attitude. We found a main effect of attitude on mean
pitch (χ2(3)=560, p<.001), std pitch (χ2(3)=396, p<.001).

Figure 3.5 illustrates F0 countours distributions obtained for a given sentence with the four atti-
tudes, each attitude being represented by a dedicated color. In each color, the solid line represents
the mean F0 contour obtained by averaging the variations realized by the actor, the area filled with
color represents the corresponding standard deviation around the pattern, and the length of the
pattern the corresponding mean duration. This illustration reveals that distinctive F0 patterns are
associated with the social attitudes, and also highlights the diversity of strategies employed by
actors to communicate a social attitude.
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3.4 Discussion

In line with the above outlined Att-HACK’s metadata statistics, this section provides an insights
about the design of such a dataset and the potential impact of the biases it introduces - or repro-
duces.

3.4.1 Balanced vs Imbalanced Data

A statistical analysis of the Att-HACK metadata allowed to establish the balance of the database
with respect to the vocal attitudes that it intends to represent. On the other hand, there is a slight
imbalance between female speakers and male speakers, which can prove to be problematic in
bringing to light the potential gender effects encountered in both production and perception mech-
anisms that underlie vocal attitudes. This can also cause a slight bias of our conversion algorithm,
in the sense that the algorithm would see more female speakers than male during training. The
implicit definition of vocal attitudes learned by such an algorithm could then be biased in gender,
it would better represent what females express than what males do. Through this conjecture, we
see how the constitution of a database can influence the performance of the algorithm it feeds. In
general, the biases observed when using different systems based on machine learning are almost
always related to the dataset on which they were trained.

3.4.2 On Uncovering Data Biases

Two types of bias should be distinguished here. On the one hand there are those which are intro-
duced by the constitution of a given database, because it does not reflect reality or because it is
partial. We may think in particular of the non-authentic characteristic of the attitudes in Att-HACK
- that have portrayed by actors - which thus potentially distances us from the reality of the vocal
attitudes in the daily interactions between individuals. On the other hand, there are the biases that
pre-exist the constitution of any database - i.e., the structural biases that are inherent in a society,
a culture in a given time frame. We may wonder to what extent algorithms, such as those that this
research proposes to design, should reproduce these biases in their uses. One could imagine using
these algorithms as tools for social or even anthropological change by training them to either limit
biases or even compensate for them. This perspective, as interesting as it is terrifying, deserves to
be discussed a lot more broadly, gathering insights from a variety of disciplines such as machine
learning, cognitive science and psychology. This is the purpose of the collaboration I started with
clinical psychologist and PhD candidate Nadia GEROUAOU of the Perception and Sound Design
(PDS) team at Ircam (Guerouaou et al., 2021).

In order to specifically uncover these biases, we intend to carefully examine the data gathered
in Att-HACK, both from the perspective of the production of vocal attitudes and the perception
of these attitudes by individuals. This is what the following Chapter 4 of this document aims to
accomplish.

3.5 Chapter Summary

Att-HACK constitutes a first attempt to widen the scope of expressivity in speech, by providing a
database of acted speech with social attitudes: friendly, seductive, dominant, and distant. The
proposed database, recorded in French, comprises 20 speakers interpreting 100 utterances in 4
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social attitudes, with 3-5 repetitions each per attitude for a total of around 27 hours of expressive
speech. The Att-HACK is freely available for academic research under Creative Commons Licence.
A publication at Speech Prosody 2021 - in Tokyo - (Le Moine and Obin, 2020) covers the elements
presented in this chapter. A preliminary analysis showed that the pitch contours were involved
in the production of the attitudes represented in Att-HACK. A first attempt at converting speech
attitudes and based on such pitch contours is presented in Chapter 5. In addition, it must be noted
that the attitude labels assigned to all Att-HACK’s utterances only reflect the instructions given to
the actors at recording. We thus do not knowwhat the attitudes in Att-HACK are. In order to assess
those attitudes, a proper uncovering of their production and perception mechanisms is initiated in
the next Chapter 4, thus providing a global understanding of speech attitude communication as
well as useful criteria to clean data for conversion learning.
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PRODUCTION STRATEGIES AND
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4.1 On the need for questioning the term attitude

In this chapter we aim to question the ontology of speech attitudes, i.e. what IS a speech attitude.
A first step would be to question how we feel it, produce it, perceive it... People’s various stances
towards an attitude provide it very different definitions. Schematically, there are four ways to qual-
ify the attitude related to a speech utterance in the scope of Att-hACK. We may speak of either

A PRIORI ATTITUDE. We refer to the instructions given to the actors, for instance "play it seductive",
as a priori attitude. This first aspect is not particularly intriguing insofar as it may be reduced to
an instruction. The direction may or may not have been followed, as more importantly, actors gave
it a specific interpretation. However, at the end of the recording process, this was the only way
to distinguish utterances from one another. We notably used these a priori attitudes for our first
attempt of voice conversion described in chapter 5.

FELT ATTITUDE. One could feel seductive but not be able to infuse seductiveness in one’s vocaliza-
tions. Conversely, one could feel friendly and be perceived as dominant. Therefore there is a gap
between felt attitude and produced/perceived attitude. In this work, we do not access nor focus on
this aspect of attitude, which is related to psychology, as its investigation would require a lot more
information than recordings of the portrayed attitudes. However, it remains important to acknowl-
edge the existence of that a apriori.

PRODUCED ATTITUDE. This aspect of attitude might be of more interest since it refers to how people
intend to behave. A personwill specifically set up their vocal apparatus to produce an attitude when
they want to communicate it vocally. This intentional use, although not necessarily conscious, is
referred to as a production strategy. In a first study (4.3), we attempted to uncover those strategies
through an anatomically based acoustic analysis of the utterances in Att-HACK.

PERCEIVED ATTITUDE. The last definition of attitude deals with how people perceive it. It is notewor-
thy that it emphasizes the function that attitudes play in communication. From this perspective,
unsuccessfully communicated attitudes must be, if not discarded, at least disregarded. In a sec-
ond study 4.4, we try to understand how people decode - or perceive - vocal attitudes.

None of these elements can be excluded from a thorough account of what a vocal attitude is.
Before delving deeper into these two studies, a first section 4.2 provides a schematic description
of the vocal of how the vocal apparatus works. In order to investigate these different aspects, I
decided to initiate a collaborative research thus surrounding myself with researcher and doctoral
students who had different skills than mine and whose access to speech - as a research object -
was also different than mine. While the layout of this chapter is my responsibility, its content is the
result of this collaboration between myself and

• Léane SALAIS, doctoral student in machine learning the Analysis-Synthesis Team at IRCAM.

• Pablo ARIAS, postdoctoral researcher in cognitive (neuro)science at Glasgow University.

• Victor ROSI, doctor in psycho-acoustics formerly in the Perception Team at IRCAM.

67



Mechanisms of Voice Production 35

configuration during respiration and for developing pressure in the supraglottal air-
space for consonant production (e.g., for stops, fricatives, and affricates). Abductory 
maneuvers are executed and maintained by contraction of the posterior cricoarytenoid 
muscle (not shown in the figure). In preparation for phonation (or for breath‐holding), 
the arytenoids can be rotated and translated medially by contracting the lateral 
 cricoarytenoid and interarytenoid muscles (also not shown in the figures). These con-
tractions have the effect of moving the vocal fold surfaces toward each other, or 
adducting them, to reduce or eliminate the glottal airspace, as shown in Figure 3.2b.

Thyroid cartilage

Cricoid cartilage

Trachea

Location of the
vocal folds (hidden)
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(b) Perspective view

Larynx

Trachea
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Figure 3.1 Schematic diagrams of speech production anatomy. (a) Midsagittal view of 
the upper portion of the trachea, larynx, and vocal tract. (b) Perspective view of laryngeal 
cartilages and cricothyroid muscle. The dashed lines represent structures hidden in the 
view by cartilage.

Glottis

Thyroarytenoid
muscle

Thyroid prominence

Thyroid cartilage

Vocal process

Cricoid
cartilage

Arytenoid cartilages

Ligament
Mucosa

(a) Axial view: abducted

Cover

Supraglottal airway

Subglottal airway

Body

(c) Coronal view(b) Axial view: adducted

Figure 3.2 Diagrams of the larynx and vocal folds. (a) Superior view of larynx when the 
vocal folds are abducted, as during respiration. (b) Superior view of larynx when the vocal 
folds are adducted, as during phonation. (c) Division of the vocal fold into the cover and 
body portions (based on Hirano 1974).
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Figure 4.1: Anatomical voice production mechanisms and corresponding acoustic features. To
describe the production strategies of vocal attitudes, we analyse three main categories of speech
descriptors, relating to (1) vocal fold behaviour, (2) vocal tract actuation and (3) phonetic structure.

4.2 Anatomical division of the vocal apparatus

We built our analysis on a list of selected acoustic variables, following previous research on emo-
tional speech (Arias et al., 2021). We split them into three clusters that reflect how the studied
attitudes impact the speakers’ control of their (1) vocal fold behaviour, (2) vocal tract actuation and
(3) phonetic speech structure (Fig. 4.1).

4.2.1 Vocal fold behaviour

To quantify speakers’ control over their vocal folds, we use acoustic descriptors of their vibration
amplitude and rate.

ROOT MEAN SQUARE (RMS). First, we estimate the voice signal’s RMS (dB) and its standard devia-
tion (window size=2048). Although it reflects the general airflow energy which is partly affected by
the activation of the vocal tract, we only look at it for its impact on vocal folds vibration strength.
Indeed our anatomical division is schematic and therefore involves some simplifications.

HARMONICS-TO-NOISE RATIO (HNR). It serves as an indicator of vocal fold saturation in vocalisa-
tions. In speech, HNR measures the energy ratio between harmonics produced by the vibrating
vocal folds and the glottal noise in the spectrum. A sustained and subtle airflow produces har-
monic vocal fold vibrations with a high HNR; in contrast, strong airflow from the lungs makes the
vocal folds oscillate in non-linear or chaotic regimes, resulting in a rough voice (Erhard et al., 1999).
This feature has been previously linked with e.g., aversiveness, arousal, negative valence and to
some extent, emotion intensity (Anikin et al., 2020).

SHIMMER. As a complementary measure of HNR, shimmer (dB) is associated with voice quality.
Shimmer corresponds to the voice’s amplitude variation over glottis cycles: high shimmer is often
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associated with a breathy voice.

PITCH. Finally, we measure vocal pitch (Hz, mean and standard deviation), which reflects the vocal
fold’s vibration speed, i.e. the count of glottis cycles. Its variations summarise the modulations in
intonation, a key feature to communicate vocal intentions, attitudes and emotions (Ponsot et al.,
2018b; Rachman et al., 2018; Piazza et al., 2017).

4.2.2 Vocal tract actuation

Here, we pay particular attention to spectral parameters, which are traditionally less prevalent than
parameters derived from vocal cord behavior in the acoustic analysis of affective signals. By ex-
tracting those parameters, we aim to investigate the speakers’ strategies in terms of articulation.

FORMANTS (F1 AND F2). We measured the first and second formant frequencies (F1, F2, Hz, mean
and standard deviation (?)), which represent the articulatory resonances of the vocal tract: they are
impacted by the lips, mouth and tongue positions. Formants are not only essential to convey pho-
netic information, but also key to convey emotional information such as facial expressions (Arias
et al., 2018).

FORMANT DISPERSION (FD). To estimate the speakers’ dynamic vocal tract elongation, we measure
Formant Dispersion (FD) (Hz) i.e. the averaged difference between successive formant frequen-
cies (F1 to F4). FD reflects the vocal tract length — which is also closely tied to body size (Anikin
et al., 2022). Speakers can extend (lower FD) or shorten (higher FD) their vocal tract (Belyk et al.,
2022) through facial expressions: previous results have reported an association between FD and
expressions of emotions such as smiles (Drahota et al., 2008) and disgust (Chong et al., 2018).
However, FD does not allow for an exhaustive description of the underlying articulatory strategies,
e.g. switching from one articulatory mode to another by shifting only one formant (Pisanski et al.,
2022).

VOCALIC SPACE (VS). To accurately account for those strategies, we examine the vocalic space
(VS), i.e. the space formed by F1 and F2 formants). We consider each vowel-related time frame
in the dataset — extracted using the phoneme-to-audio alignments described in Chapter 3. To
study the topology of this space, we compute the Vowel Space Density (VSD) (Story and Bunton,
2017). We first estimate a probability density function for the count of time frames located in the
neighbourhood of each point in the space, and normalise the density to [0, 1] for each speaker and
attitude. To account for prototypical strategies, we only keep samples located in high density ar-
eas (above a threshold of 0.5). VSD offers a holistic understanding of vocal articulatory strategies.
Positions of attitude clusters in the vocalic space reflect how speakers articulate to convey atti-
tudes (articulatory modes, e.g., closed/open mouth), while the surface covering all samples in the
VS shows how much they articulate: the broader the surface, the easier it is to discriminate the
vowels pronounced (Story and Bunton, 2017).

4.2.3 Phonetic structure

Finally, to investigate speech’s phonetic structure, we take advantage of the phoneme-to-audio
alignments and estimate several time related speech descriptors.

SPEECH RATE (SR). We estimate the Speech Rate (SR) — i.e. the mean number of phonemes per
second in a speech utterance.
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RHYTHMIC IRREGULARITY MEASURE (RIM). The rhythmic irregularity measure quantifies the mean
duration difference between all segments in a sentence (Gibbon and Gut, 2001). This feature yields
indices on the global stability of speech rate. For a given utterance x composed with p phonemes
of durations Dx = {d1, ..., dp}, the RIM is formulated as follows

RIM =
∑
d∈Dx

∑
d′∈Dx

d′ ̸=d

log
d

d′
(4.1)

RHYTHM RATIO (RR). The rhythm ratio is the mean duration difference between contiguous speech
segments (Gibbon and Gut, 2001). Conversely to the rhythmic irregularity measure, the rythm ratio
yields indices on the local stability of speech rate and is formulated as follows

RR =
100

p− 1

p−1∑
i=1

|di+1 − di|
(di+1 + di)

(4.2)

4.3 First Study - Uncovering the production strategies of vocal at-
titudes

In the light of this anatomical division the vocal apparatus functioning and the related measures
we mentioned in the previous section - thus providing a general method for speech production as-
sessment - this section presents an attempt to uncover the strategies that underlie the production
of vocal attitudes. This study has been published at Interspeech 2022 (Salais et al., 2022).

4.3.1 Experiment

In this experiment, we exclusively focus on our Att-HACK dataset in which 20 actors are portraying
4 speech attitudes : friendly, distant, dominant and seductive.

A subset of Att-HACK

As the extraction of all the voice parameters (notably formants) involved in the studywas very costly
in terms of time and computational resources, we chose to use a subset of the of the Att-HACK
database. We randomly sampled two recordings per speaker and per attitude for 62 sentences,
thus obtaining 2400 recordings per attitude. The 62 sentences were selected to maximise seman-
tic diversity, i.e. achieve an optimal coverage of the semantic space yielded by the CamemBERT
(Martin et al., 2020) French languagemodel. The second study on the perception of voice attitudes
also uses the same subset — considered to be representative of the database.

Features extraction and normalization

We have extracted the features using Parselmouth 1, a Python library for the Praat 2software. Praat
(?) is a free scientific software package for the manipulation, processing and synthesis of speech
sounds. It was developed at the Institute of Phonetic Sciences of the University of Amsterdam by

1https://parselmouth.readthedocs.io/en/stable/
2https://www.fon.hum.uva.nl/praat/
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Figure 4.2: Feature analyses for (1) vocal fold behaviour, (2) vocal fold actuation and (3) phonetic
structure on friendliness (green), dominance (orange), distance (blue) and seductiveness (red). ’⋆’
: statistically significant difference (p<0.05), ’•’ : marginally significant difference (p<0.1); paired
t-tests. Error bars represent 95% confidence intervals on the mean.

Paul Boersma and David Weenink. It can run on a wide range of platforms. Praat is written in C++.

In particular, we used the following parameters for extraction: a time step of 10ms and awindow
size of 20ms, a pitch floor and ceilling of respectively 45Hz and 600Hz, a silence threshold of 0.1.
We extracted 5 formants and used until 4 formants to compute formant dispersion. All the features
are averaged over the whole utterance for each utterance - considering voiced parts - except for the
calculation of the VSD which implies considering the temporal segments associated with vowels,
for this metric only we keep temporal series of formants.

So as to observe intra-speaker variations of those features, we applied speaker normalization.
For each speaker s and each acoustic feature x in Hz, we denote x̄s the mean value of x over this
speaker’s utterances. Then the speaker normalized feature xs is obtained through computing the
distance - in cents - to the average value x̄s such as

xs = 1200 log 2
( x
x̄s

)
(4.3)

For all other features not expresses in Hz, we computed the speaker normalized feature xs as

xs = x− x̄s (4.4)

To investigate articulatory strategies and temporal structure, we need to access the segmental
information in speech (i.e. temporal information at the phoneme level). To infer it from Att-HACK
recordings, we generate phoneme-to-audio alignments using a recent deep learning-based pho-
netic aligner (Teytaut and Roebel, 2021).

4.3.2 Results

In this subsection, we present the results obtained throughout the statistical analysis conducted.
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Statistical analysis

To statistically evaluate the differences in vocal production strategies, we analysed acoustic fea-
tures with GLMMs (Generalised Linear Mixed Models). We report p-values, estimated from hier-
archical model comparisons using likelihood ratio tests (Gelman and Hill, 2006), and only present
models that satisfy the assumption of normality (validated by visually inspecting the plots of resid-
uals against fitted values) and statistical validation (significant difference with the nested null
model). To test for main effects, we compared models with and without the fixed effect of inter-
est. We performed post-hoc comparisons with paired t-tests, and applied Bonferroni corrections
to correct for multiple comparisons. We report Cohen-d as a measure of effect size.

For each attitude, we presentmean values of acoustic descriptors over full utterances. Because
we are not investigating inter-speaker variability, but the speakers’ own production strategies, we
normalise features by speaker and get zero-centred values. Thus, variations between the condi-
tions below reflect intra-speaker variations. In consequence, the statistical differences between
attitudes bring out the shared part of the attitude production strategies among the speakers.

Vocal fold behaviour

We foundamain effect of attitude onmeanpitch (χ2(3)=560, p<.001), std pitch (χ2(3)=396, p<.001),
HNR (χ2(3)=83, p<.001), shimmer (χ2(3)=59, p<.001) and std RMS (χ2(3)=905, p<.001). Post-
hoc analyses revealed that mean pitch was higher for dominance and friendliness as compared to
distance and seductiveness (paired t-tests, p<.001, d>0.75). Speakers’ pitch variability was also
smaller for distance than for other attitudes (p=.05, d>0.9). On another line, friendliness and domi-
nance seemed to be opposed to seductiveness and distance in terms of dynamics and roughness.
HNR was significantly higher in dominant speech than in distant (p=.002, d=0.68) and seductive
speech (p=.001, d=0.7); similarly, we found higher RMS variability for friendliness and dominance
as compared to distance and seductiveness (p<.001, d>1.1). In addition, shimmerwas significantly
higher for dominant utterances as compared to seductive ones (p=.001, d=0.7).

Vocal tract actuation

We found a main effect of attitude for Formant Dispersion (FD) (χ2(3)=61, p<.001), F1 (χ2(3)=99,
p<.001), F2 (χ2(3)=37, p<.001), std F1 (χ2(3)=73, p<.001) and std F2 (χ2(3)=24, p<.001). Post-
hoc analyses revealed that speakers significantly decreased their FD when producing dominance
as compared to distance (p=.02, d=0.6). In line with this result, we found significantly lower F1
(p=.005, d>0.8) and F2 (p<.001, d>0.8) frequencies for distance, compared to all other attitudes.
On another line, we found that distant utterances were produced with significantly more F1 vari-
ability as compared to seductiveness (p=.01, d=1.2), but found no significant differences for std F2.
Finally, we only found amarginal difference between the surfaces of VSDs of the attitudes between
seductive and dominant attitudes (p=0.06; see VSD plot in Fig. 4.2).

Phonetic structure

We found amain effect of attitude for Speech Rate (SR) (χ2(3)=81, p<.001) and Rhythmic Irregular-
ity (RIM) (χ2(3)=18, p<.001), but no significant effect on Rhythm Ratio (RR) (χ2(3)=4.2, p=.23). That
is, attitudes influence global rhythmic patterns rather than local ones. Post-hoc analyses revealed
that seductive samples had a significantly lower SR (p<.001, d>1.24) and higher RIM as compared
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to friendliness and dominance (p=.02, d>0.7). The duration of all vowels was also extended ac-
cordingly.

4.3.3 Discussion

In the present study, we investigated how speakers modulate their voice to communicate vocal
attitudes. To do this, we analysed the vocal production of dominant, friendly, seductive and distant
attitudes in a multi-speaker and multi-attitude French database. For each attitude, we reported the
changes in the speakers’ vocal fold behaviour, vocal tract actuation, and phonetic speech structure.

Production strategies of vocal attitudes

In the following we discuss the findings for each attitude in comparison with others when statis-
tically relevant. We obtained two statistically strong prototypes for dominance and seductiveness
and two weaker ones for friendliness and distance.

FRIENDLINESS. Friendliness was produced with a raised and dynamic voice (high pitch, high std
RMS). The speed and regularity of friendly versus seductive speech (higher SR, lower RIM) may
hint at an uncomplicated and extraverted persona (Mairesse et al., 2007). These results are in line
with cross-lingual literature for English, Dutch, Chinese and Swedish (Chen et al., 2004; Li andWang,
2004; House, 2005).

DISTANCE. The production strategies were of particular interest for distant speech. Indeed, dis-
tance was conveyed by fast speech that lacks expressiveness (low and steady pitch, high SR vs.
seductiveness), pronounced with a lowmouth aperture and a shortened vocal tract (low F1 and F2;
high FD compared to dominance). In light of these results, it seems that when producing distance,
speakers do not put much effort into being understood. Their calmness (e.g. high HNR when com-
pared to dominance) suggests that their rendition of distance is close to indifference. Distance is
hence distinct from neutrality, and could be interpreted as a marker of dissent, mistrust, or disgust.

DOMINANCE. In line with previous findings, we found that dominance was expressed through a vo-
cal tract elongation (lower formant dispersion) (Feinberg et al., 2005; Puts et al., 2007) as well as
a rough and dynamic voice (low HNR, shimmer, high std RMS). However, contrary to previous find-
ings, speakers raised their pitch in comparison with other attitudes (Puts et al., 2006, 2007). This
discordance may be explained by the language setting, culturally learned vocal associations, or
more simply by the fact that previous studies contrasted dominance with neutral speech and not
other vocal attitudes (Ponsot et al., 2018b).

SEDUCTIVENESS. We also found strong prototypical strategies for seductiveness, which was pro-
duced with low pitch, low dynamics (low std RMS), and a relatively high harmonic content (high
HNR, low shimmer) in comparison to other attitudes. Importantly, we also found a strong effect of
seduction on speech’s phonetic structure. Specifically, seductive utterances were produced with
a slow and irregular rhythm, as if speakers took time to expose their intentions. Previous findings
on vocal attractiveness report a lowered pitch for male speakers (Feinberg et al., 2005; Xu et al.,
2013). We complement these findings by studying seduction as a modulated vocal attitude, rather
than an intrinsic vocal trait, and highlight the specific modulations that all speakers use to convey
seductiveness.
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Communicative signal of vocal intent

To our knowledge, this is the first study to reveal diverging voice production strategies at the articu-
latory level. Specifically, we found that speakers’ productions were distributed across specific clus-
ters in the vowel space (Fig. 4.2-2). For example, we found that distance had a lower F1 than other
attitudes, suggesting that distance is produced with a more closed mouth. Similarly, analysing the
Vowel Space Density surface revealed that some attitudes spanmore articulatory modes than oth-
ers. For instance, the vowel space for seductiveness was marginally wider than for dominance,
which, in complement with formant dispersion findings, suggests that speakers switched between
articulatory modes to produce vocal attitudes, by e.g, restraining or modulating their articulatory
range. This result suggests that subtle cues in speech articulation can convey a communicative
signal of vocal intent.

Overall, these results shed light on the social intentions behind the production of social atti-
tudes. For example, speakers limited their vocal expressivity to sound distant and hinted at a
larger body size to sound dominant. Such behaviours may be closely interpreted from a social
perspective, revealing the links between attitude-specific vocal behaviours and higher-order cogni-
tive mechanisms (Goupil et al., 2021b). However, it is important to highlight that the vocalisations
analysed herein were produced by actors, and actors’ vocalisations are known to be less authentic
than spontaneous ones (Anikin and Lima, 2017) — which, in the case of e.g. facial expressions
of emotions, even seem to rely on different neural bases (Valente et al., 2017). In any case, these
results uncover the shared strategies used by speakers to volitionally produce vocal attitudes.
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4.4 Second Study - Understanding the perception of vocal atti-
tudes

The study presented in the previous section has shed light on the strategies used by French speak-
ers to produce vocal attitudes. On the opposite end of the communication channel lies the issue of
how people perceive these attitudes. To address it, we conducted a listening experiment to ques-
tion the perception of vocal attitude in a group of 100 participants.

4.4.1 A Perceptual Validation Method Based on Best-Worst-Scaling (BWS)

A variety of techniques could help us to assess the perception of sound attributes such as Rat-
ing Scale (RS) (Friedman and Friedman, 1997) and Best-Worst Scaling (BWS) (Louviere et al., 2015)
methods. We chose to use BWS because it has proven to be very effective for similar tasks such as
the perception of sound attributes like brightness, roughness, roundness and warmth (Rosi et al.,
2022). Applying it to the perception of vocal attitudes is also an opportunity to test it again and
thus to encourage other uses.

Best-Worst-Scaling (BWS)

The BWS technique involves a discrete choice experiment repeated on trials. For each trial, the
subject listens to nt - usually 4 or 5 - sounds and evaluates their perception with respect to a stud-
ied term - in our case a vocal attitude. If we use friendliness as an example, then for each trial, the
subject will have to judge which of these sounds he or she perceives as the friendliest and as the
least friendly. The former will be referred to as the trial’s best, the latter as the trial’s worst. Each
term (attitude) is evaluated independently. Once the BWS experiment is complete, we rank all the
assessed sounds on a scale ranging from 0 to 1. If we get back to using friendliness as an example,
the sounds assessed would sit on a scale going from least perceived friendly to most perceived
friendly. A fundamental point is that the evaluation is relative, e.g. friendliness would only be ques-
tioned with respect to the other in the dataset. The BWS differs from the rating scale in this regard
because the latter entails making absolute judgments, thus making the task more difficult. In fact,
although not experimentally proven, it appears to be fairly harder to determine the friendliness of
a speech utterance by rating it on a scale than by comparing it with another utterance in a binary
way. Therefore, by opting for BWS, we cannot answer the question of how vocal attitudes are per-
ceived generally. The question we ask is undoubtedly less ambitious, but it is more likely to yield
interesting results about the data we have at our disposal. Furthermore, as highlighted in section
4.3, Att-HACK provides a great variety of vocal attitude production strategies (20 speakers, several
versions with fixed sentence, attitude and speaker); this method, at the very least, allows to distin-
guish between sounds whose a priori attitude is well perceived (at the top of the BWS scale) and
those whose related attitude is poorly perceived (at the bottom of the BWS scale). Such a distinc-
tion might enable us to clean up the database by discarding the samples with miscommunicated
attitude. Furthermore, we hope to see prototypical attitude instances emerge.

Designing the trials

Denoting n the number of sounds to assess and nt the number of sounds per trial (here we chose
nt = 4), then the BWS method is likely to converge if 2n 4-tuples are designed with respect of the
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following constraints

• Each 4-tuple cannot contain the same sound twice
• Each sound appears in 8 distinct 4-tuples

Provided that it would be impossible, both in terms of time and financial resources, to validate
the complete database by assessing every sound in it for each attitude, we came up with a two-
stage agenda depicted in Figure 4.3.
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Figure 4.3: Two-step perceptual validation based on BWS experiments. At the time of writing, only
the first step has been completed.

STEP 1 : A priori attitude perceptual assessment

The first phase involves, analyzing solely the perception of its related sounds for each a priori at-
titude, i.e. the ones already produced with aim of conveying this specific attitude. At the end of
this first stage, we obtain four scales ranking the sounds of each a priori attitude. It is expected
that this will bring out the clearest prototypical examples of attitudinal expression as well as the
poorest productions overall.

STEP 2 : Assessment of the interaction between attitudes

We then study the interaction of attitudes with one another, i.e. whether a sound could be perceived
with a different attitude than the one for which it was produced. Sounds from the four a priori at-
titudes are selected for each questioned attitude and submitted for judgment. Again, from a time
and budget viewpoint, interrogating every sound for every attitude is unfeasible. As a result, we
must choose a subsample that still properly reflects the dataset’s diversity. To do this, we sug-
gest sampling the obtained BWS scales uniformly over the whole range. Sampling can be adjusted
to the distribution of sounds within each scale, i.e. for a given sampled BWS value, a number of
sounds would be collected proportionally to the density of sounds present in the area around this
value. After sampling, we obtain a subspace X of the Att-HACK in which the four a priori attitudes
are equally distributed. It remains to test this subspace for each attitude using BWS. At the end of
the experiment, each sound in X would be represented in a quadri-dimensional space.
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4.4.2 Experiment

At the time of writing, only the first step was carried out. The second step dealing with interactions
between attitudes remains to be done due to lack of time andmoney. The completion of Att-HACK’s
perceptual validation procedure hence depends on the strategy adopted by the researchers that will
pursue this work. Thus, we only describe the first step experiment here.

On preparing the experiment

We used the same Att-HACK subset as used in the first study. We sampled each audio at 16kHz
and stored in wav format. For each attitude, we had 120 sets of 4-trials designed from the Att-HACK
subset. These series are indexed in groups of 3 so that each participant examines only one third
of the subset associated with a given attitude.

In order to save time, we retrieved Victor ROSI’s BWS experimental assessment interface for the
investigation of sound attributes (bright, round, warm and rough) (Rosi et al., 2022). This interface,
based on the graphical programming tool Max 3 is depicted in Figure 4.4. At each trial, the partici-
pant is asked to judge four sounds. It is mandatory to listen to the four sounds before moving on
the next trial. If the participant spends too much time on a single trial, a red light flashes. It is also
mandatory to choose distinct best and worst sounds at each trial.

Figure 4.4: Max interface for BWS experiment based on work by Rosi (Rosi et al., 2022).

On conducting the experiment

We conducted the experiment ourselves, so that we could control the experimental setup, meet the
subjects and discuss the their experience of the test.

CENTRE FOR BEHAVIOURAL SCIENCES AT INSEAD-SORBONNE. To do this we collaborated with the
INSEAD-Sorbonne behavioural lab, which provides facilities (isolated cabins, rooms, etc.), equip-
ment (computers, headphones, etc.) and recruitment logistics for scientific experiments. The dis-
ciplines covered range from experimental ethics to neuroscience. Working with this organisation
has the huge advantage of not having to worry with subject recruitment or overall planning.

3https://cycling74.com/products/max
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We had N = 100 subjects recruited. The experiment spanned a full week with 5 to 6 test slots
a day and 3 to 6 booths hosting the experiment in parallel. This experimental set up required us to
be very rigorous and focused, particularly in assigning trial sets to subjects. In fact, as mentioned
above, each sound must be judged eight times in order to be able to rank the sounds, which means
that it is not sufficient to provide each participant with a random set of trials; the entire set of trials
given across participant must match this requirement. Throughout the week, Léane SALAIS pro-
vided me with invaluable assistance, without which it would not have been feasible to conduct the
experiment.

As a basic guideline, we operated as follows. At a given time slot, we first welcomed the sched-
uled participants, seated them in one of the booths and invited them to read and sign a consent
form. They had to watch a short explanatory video, after which we answered any subsidiary ques-
tions and launched the experiment. Halfway through the experiment, the participants had the op-
portunity to go out, perhaps have a drink and stretch their legs. At the end of the experiment -
which lasted for about one hour in average, the participants went out for a debrief. We described
the objectives of the experiment and answered any remaining questions.

On assessing the relevance of the experiment

Before any attempt at analyzing the results of this BWS experiment, we need to answer some pre-
liminary questions. Firstly, we need to check that the participants could actually complete the task.
Thanks to the debriefing sessions at the end of the tests, we were already able to affirm that no
participant was overwhelmed by the task to be accomplished. However, the difficulty level varied
depending on whether the participant had to evaluate one or another attitude. In particular, dis-
tance elicited many reactions describing the task as difficult and tiring, which was not the case for
the other attitudes. In general, the participants found the task feasible and rather interesting. This
matches our observation in terms of the average time taken by the participants to complete the ex-
periment, which varies according to the attitude considered, but is close to one hour, as presented
in Table 4.1. They often pointed out the difficulty of judging only the attitude, as the interaction with
the linguistic content seemed strong to them. Some also mentioned the potential polysemy of the
terms used to describe an attitude. In particular, distance could mean both a form of reserve and
indifference.

friendly distant dominant seductive across attitudes
Average duration (min) 61 60 56 53 57
Compliance 0.81 0.73 0.77 0.79 0.78

Table 4.1: Several indicators related to the conducted BWS experiment for each attitude.

Measuring participant compliance, i.e. the degree to which each participant agreeswith theme-
dian opinion, is necessary to determine how well the experience worked from an objective stand-
point. The compliance is calculated for each participant as follows. For each trial ta given to partic-
ipant for an attitude a, we consider all sound pairs (x, y) such as x, y ∈ ta and at least one sound in
the pair has been judged best or worst. This ensures both sounds in the pair are linked by an order
relation. Let us assume x has been perceived less a than y then x ≺a y denotes the relation induced
by the participant’s judgement between x and y. The idea behind compliance is to compare this
relation to the mean relation across all participants. To do so we use the BWS scores assigned to
each of these sounds sax and say , the compliance for this pair can be computed as follows
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ca(x,y) =

{
1 if sax ≤ say
0 else. (4.5)

The full compliance score is computed for a participant evaluating attitude a as the sumof ca(x,y)
across all pairs satisfying the conditions mentioned above. It is then averaged across participants
as shown in the last row of Table 4.1. Note that a participant giving random answers would receive
a compliance score of 50%. In our case, the outcomes show that participants generally agree with
one another on whether they perceive someone’s voice as friendly, distant, dominant, or seductive.
However, there are differences depending on the attitude being considered. For example, distance
is associated with the lowest compliance (C = 0.73) and, as a result, is the least consensual at-
titude which was already noticed when talking to the participants. On the other hand, friendliness
seems to be the most consensual attitude (C = 0.81).

4.4.3 Preliminary Analysis

The perceptual data collected potentially reflects other speech attributes such as linguistic content
or gender that influence the communication of speech attitudes. Before seeking to understand
the perception of speech attitudes, we need to question these potential biases by analyzing the
interaction between the scores obtained and these different speech attributes.

Perceptual scores x linguistic content

First, we aim to investigate the interaction between the linguistic content of the evaluated sen-
tences and the individual perception of attitudes. Indeed the linguistic content can be found to
interact with attitudes through their suggested emotion. In order to investigate the perception of
attitudes, we first need to evaluate this suggested emotion.

SENTIMENT ANALYSIS. Sentiment analysis captures the dominant emotional opinion in an input text
through a score. This score reflects the emotion suggested by the sentence, i.e. the emotion felt,
on average, by the person reading it. In our case, the vocal attitudes overlay the emotion lying in
the linguistic. To do so, we designed our proper sentiment analysis study asking 65 participants to
rate all Att-HACK sentences’s emotional valence on a 7-point Likert scale with 0 meaning neutral
valence.

The results are depicted on Figure 4.5 in which attitudes are considered independently. For
each attitude, we plot the BWS scores averaged sentence-wise (blue line) and the sentiment analy-
sis scores (red line). Provided this Figure, wemay acknowledge that there is an interaction between
the perception of attitude and the emotion lying in the linguistic content, at least for some specific
attitude. It nonetheless comforting (though rather obvious) to note that this interaction does not
fully account for the obtained perceptual scores. This figure effectively conveys the idea that at-
titudes are perceived conditionally on the linguistic context that partly determines how they are
expressed (encoded) and perceived (decoded).

That being said, certain attitudes seem to be more vulnerable to this interaction with linguistics
than others. To assess this point, we computed the correlation between sentiment analysis and
BWS scores for each of the attitudes. The graphs obtained are shown in Figure 4.6. The statistical
results showed significant effects for friendly - with a Pearson coefficient of 0.47 (p < 0.001) - and
dominant - with a Pearson coefficient of −0.41 (p < 0.001).
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Figure 4.5: Concurrent display of the scores yielded by the sentiment analysis (red) and the BWS
experiment (blue), for each considered sentence (x-axis)
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Figure 4.6: Correlation between the scores yielded by the sentiment analysis and the perceptual
scores from the BWS experiment for friendly and dominant attitudes.

To conclude on this, the sentences in the database cannot be regarded as neutral, they have a
meaning that denotes either a rather positive or negative sentiment. Reflecting this evoked senti-
ment, an emotional valence score is assigned to each sentence through sentiment analysis. Signifi-
cant effects for friendliness and dominance were found when investigating this score in interaction
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with the BWS’s perceptual score, thus showing that attitude perception is influenced by linguistic
content. In particular, perception of friendliness is significantly correlated to the emotional valence
carried by said linguistic content, i.e. the more the sentence evokes a positive emotion, the more
the utterance will be perceived as friendly. Conversely, dominance seems to be negatively corre-
lated with the evoked emotional valence, i.e. the more the sentence evokes a negative emotion,
the more the utterance will be perceived as dominant. We did not find any significant effect for the
other two attitudes, namely distance and seduction.

Perceptual scores x speakers’ vocal gender

We investigated the interaction between the perceptual score obtained and the gender of the speaker
who produced the evaluated utterance. It is important to note that the actors were not asked any
questions about their gender. The gender category mentioned here is therefore what we, as exper-
imenters, can infer from perceived vocal characteristics (pitch, length of vocal tract, ...) as being
classically associated with a female or a male. This category might be referred to as vocal gender.
Given the significant research conducted on gender recently, the association of vocal masculinity
and femininity with particular traits must be challenged. However, this is not the focus of this work;
rather, we question the interaction between the degree to which a vocal attitude is perceived, i.e.,
how effectively it has been communicated, and the presence of specific vocal characteristics that
are usually associated with either masculinity or femininity in the speaker’s voice.

In essence, demonstrating a gender influence on the perception of vocal attitudes entails bring-
ing out the intra-individual perception variations for male and female speakers. There are several
ways to observe this interaction, two of these are depicted in Figure 4.7. A first approach consists in
using raw data, i.e. unnormalized data. This allows to observe intra-individual variations, however
such differences can be either amplified or compensated by inter-individual ones. To account for
this, we adopted another approach (on the right in Figure 4.7) that involves normalizing scores so
that the data related to each speaker, has a zero mean and a unit standard deviation for each atti-
tude.
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Figure 4.7: BWS scores (left) and speaker-wise normalized BWS scores (right) depending on atti-
tude and speaker’s vocal gender.
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When looking at the graph on the left, for raw data, we observe a significant interaction between
vocal gender and attitude perception, i.e. it seems that certain attitudes are better communicated
depending on whether the speakers’ vocal characteristics are classically associated with males or
females. It is also observed that the effect is not the same depending on the attitude considered.
Friendliness, distance and seduction seem to be best communicated by female speakers. Con-
versely, dominance seems to best communicated by male speakers.

As explained above, this representation does not allow one to discriminate the differences re-
lated to intra-individual variations from those related to inter-individual variations. To do this, we
need to consider the graph representing the normalized data per speaker. Firstly, we notice that
the gender effect for distance disappears. This suggests that the effect observed in the left-hand
graph (unnormalized data) is due to inter-individual variation rather than to real differences in intra-
individual perception. Then, it appears that the effects observed for friendliness and seductiveness
persist when looking at the standardised data but are weaker, so some of the effects observed
were due to inter-individual variations in the perception of friendliness and seductiveness. Con-
versely, the effect observed for dominance appears to be even stronger when considering speaker-
normalised data. This suggests that inter-individual variations tended tomask intra-individual ones.

The question we must then ask is: how can we explain this gender effect? We provide two
possible explanations, which are not mutually exclusive. Firstly, it may be that the better communi-
cation of certain attitudes by speakers of one gender is due to a production advantage, i.e. a better
physiological capacity to produce and thus communicate these attitudes. For example, we found in
section 4.3 that dominance was produced by speakers lengthening their vocal tract, and men usu-
ally have a longer vocal tract than women, which can be seen as an advantage of men over women
in producing vocal dominance. Similarly, we observed that friendliness is produced by speakers
increasing their pitch, but it is known that female speakers have a higher average pitch than male
speakers, which can be seen as an advantage of women over men in the production of friendliness.
The second potential cause of this interaction between vocal gender and the attitude perception
is a decoding bias, i.e. a culturally constructed difference in the perception of each of these atti-
tudes depending on whether it is expressed by a male or female speaker. It can be hypothesised
that certain sexist prejudices, culturally constructed, learned and therefore relative to a community
of individuals sharing this culture, imply that we globally perceive female speakers as being more
seductive than male speakers. Similarly, the dominant position of men in a patriarchal society (or
at least one with patriarchal structures) can potentially imply that we perceive male speakers as
more dominant overall than female speakers. Attributing one or the other of these causes to the
different effects observed is very difficult and would require looking at the mental representations
that individuals attribute to different attitudes.

One last question remains: would these gendered differences in the perception of vocal at-
titudes exist outside the experimental framework in which we observe them? The task given to
participants in the BWS experiment may force them to make a decision that they might not nor-
mally make in real life. By requiring participants to choose between sounds, we potentially force
categories to appear. We should mitigate our conclusion by pointing out that gender differences
do emerge in the perception of vocal attitudes within our experimental paradigm, which involves
participants choosing between sounds.
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Attitude perception x participant presumed genre x speaker’s vocal gender

We could even go further and question the interaction between the presumed gender of the par-
ticipant and the vocal gender of the speaker being judged. Prior to anything else, it is critical to
note that participants in the BWS study were not questioned about their gender. As a result, the
gender category that we assign them matches our perception of their gender as experimenters.
Depending on the attitude considered, is a participant more likely to perceive a sentence whose
vocal gender is the same as his or her own as conveying it the best? Or is it otherwise?

The scores that represent the overall average judgment of the participants do not provide an
answer; we therefore need to examine the specifics of the trials. For a particular attitude, each trial
was judged by a single participant. Our idea is to assess the participant’s presumed gender versus
the vocal gender of the utterance that, in his or her opinion, best conveys the attitude considered
within this trial. By collecting this information for all trials and across the four attitudes, we produce
the graph shown in Figure 4.8.
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Figure 4.8: Match and mismatch between the participant’s presumed gender and the vocal gender
associated with the sentence he/she considers best in a trial. The graph represents the proportion
of gender match and mismatch per attitude.

We observe a notable difference between the proportion of matches and mismatches for all
attitudes. Nevertheless, the effect appears to be much more significant for two attitudes. Firstly,
in 53.8% of the trials, participants considered sentences whose associated vocal gender was the
opposite of their own as conveying seduction, compared to only 46.2% if it was the same as their
own. Conversely, in 52.4% of the trials, participants considered sentences whose associated vocal
genre was the same as their own as conveying dominance, compared to only 47.6% if it was the
opposite of their own. Smaller effects are observed for the other two attitudes. In 50.8% of the
trials, participants considered sentences whose associated vocal gender was the same as their
own as conveying friendliness, compared to only 49.2% if it was the opposite of their own. Finally,
in 50.5% of the trials, participants considered sentences whose associated vocal genre was the
opposite of their own as conveying distance, compared to only 49.5% if it was the same as their
own.
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4.4.4 Understanding the human perception of speech attitudes

In the previous section, we asked how speakers use their vocal apparatus to convey different atti-
tudes such as friendliness, distance, dominance and seduction. We showed that speakers share
common strategies for producing these attitudes, which can be observed through statistical anal-
yses of variations in certain speech parameters. Analogously, the question here is about decoding
attitudes communicated through speech signals. What, specifically, are the vocal characteristics
whose variations enable listeners to perceive the attitude being conveyed?

A simplistic response would be to claim that the same signal properties that enable the decod-
ing of the conveyed attitude are also those that encode attitudes, i.e., the properties that make up
the production strategies uncovered in the previous section. The process that enables the decod-
ing of an attitude would thus be the mathematical inverse of the process by which the attitude was
acoustically encoded. This conception of speech communication draws upon the legacy of first
communication thinkers like Shannon.

In section 4.3, we tried to describe the differences between attitudes, in the way speakers used
their vocal apparatus so as to convey them. The resulting attitude production profiles are there-
fore based on a statistical analysis of inter-attitude differences. In contrast, the BWS experiment
conducted on Att-HACK consists of asking participants to make a preference judgment between
different instances of the same attitude. Therefore, the attitude decoding strategies that we expect
to find are based on intra-attitude differences. On the one hand, we wonder what distinguishes the
production of two different attitudes. On the other hand, we wonder what distinguishes the percep-
tion of two instances of the same attitude.

Assessing the participants’ perceptual strategy for each attitude

In this part we try to understand how participants decode attitudes. In particular, we want to deter-
mine which speech parameters allow individuals to perceive an attitude? To do so we mean make
the assumption that, for any utterance, the higher the perceptual score, the more it conveys sig-
nal aspects that are salient for individual attitude decoding. We used a standard XGBoost (Chen
and Guestrin, 2016) - a scalable tree boosting regression model - to learn to predict BWS scores
from various speech features - the same than those used to uncover the production strategies of
attitudes. Each utterance is thus represented by a vector of features x whose each element is a
static feature - i.e. averaged over the temporal dimension. Once the model has learned to predict
the BWS scores - with more or less precision - for a given attitude, we must attempt to interpret its
predictions. We thus sought to determine which feature - and in what extent - the model uses to
predict the BWS scores obtained for each attitude. To do so, we used SHAP-values 4.

SHAPLEY ADDITIVE EXPLANATIONS (SHAP). SHAP is a method for explaining the output of any ma-
chine learning model. It connects optimal credit allocation with local explanations using the clas-
sic Shapley values from game theory and their related extensions (Lipovetsky and Conklin, 2001;
Ribeiro et al., 2016).

The SHAP-values results are depicted in Figure 4.9 for the four attitudes. Two standard regres-
sion metrics are indicated in the up-left corner of each sub-figure: the coefficient of determination
r2 - that measures the variance explained by the model - and the mean absolute prediction error

4https://shap.readthedocs.io/en/latest
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Friendly. 
r2 = 0.05 
mape = 0.23

Distant. 
r2 = 0.06 
mape = 0.16

Dominant. 
r2 = -0.02 
mape = 0.20

Seductive. 
r2 = 0.08 
mape = 0.20

Figure 4.9: SHAP-values for friendly, distant, dominant and seductive.

mape - that measures differences between actual and predicted scores. In addition, the four fea-
tures that helps the model the most for predicting the BWS score are shown. Their value can be
positively - red dots - or negatively - blue dots - correlated to the prediction performance of the
model. Firstly, we find that the model does not succeed - or only slightly - in predicting BWS scores
from the static features it takes as input. In one hand, the coefficient of determination r2 is slightly
above 0, which means that the share of variance in BWS scores that is explained by the regression
model is very small. In the other hand, mape is close to 0.2 but - as most of the utterances are
ranked with average scores (around 0.5) - this does not indicate that the model is able to predict
the BWS score accurately. If some features seem to have significant impact on the model’s predic-
tions, its poor performance prevent from drawing any relevant conclusion out of it.

In conclusion, it is clear that static features - i.e. averaged over utterances’ duration - are not
predictive of BWS scores for speech attitudes as they are for sound attributes such as studied
in (Rosi, 2022). It is likely that individuals use much more complex cues to decode attitudes. In
particular, it is reasonable to hypothesize that temporal variations in different speech parameters
play a crucial role in the perception of speech attitudes. In order to assess this hypothesis, we plan
to adapt this principle of explained regression to the case of temporal sequences. By doing so, we
expect to better understand the mechanisms underlying the perception of vocal attitudes.

4.5 Chapter Summary

Two studies - one uncovering the production strategies of speech attitudes and the other mainly
hinting at biases involved in the perception such vocal attitudes - provided a first twofold account
for how speech attitudes are communicated by individuals. The first study - which have been pub-
lished at Interspeech 2022 (Salais et al., 2022) - allowed for the identification of two strong attitude
production profiles - dominance and seductiveness - and two weaker ones - friendliness and dis-
tance. The second study - still unpublished at the time of writing - led to reveal that certain speech
attributes such as linguistic content or gender do influence speech attitude perception. In partic-
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ular, we found that some attitudes were better communicated by speakers of a given gender. We
also found the sentences of Att-HACK to have strong influence on how people perceive attitude in
speech. Given those findings, we attempted to understand how individuals decode attitudes with-
out reaching a satisfying answer. It is likely that they process speech parameters - or aspects -
temporally. We look forward to assessing this assumption in future works. We also plan to com-
plement with studies on felt attitudes - investigatingmental representations - to achieve a full-stack
understanding of vocal social attitudes.
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The chapter 4 provides a substantial understanding of the communication of vocal attitudes.
The choice of how to model the speech signal for the purpose of speech attitude conversion as
well as how to learn to convert attitude in speech signal should bemade in the light of this analysis.
In this chapter we propose a first algorithm that aims at converting the speech attitude by changing
the F0 of the speech signal. This research has been published at EUSIPCO 2021 (Le Moine et al.,
2021b).

5.1 Related Works on F0 Contours Modelling

Asmentioned above, we chose to focus on pitch contours - acoustically correlated to F0 variations
- as a first - parametric - approach for the modelling of speech attitudes. In this section we review
differentmethods formodelling pitch contours focusing onmulti-levelmodelling such as provide by
the application of the Continuous Wavelet Transform (CWT) to F0 contours, on which our proposal
is based.

5.1.1 Pitch Contours (F0) - A First Parametric Approach

According to the study of both production and perception of vocal attitudes carried out in Chapter
4, pitch contours play a prominent role in the communication of speech attitudes. On the one hand,
we found that distance is produced with low pitch standard deviation when compared with other
attitudes, friendliness and dominance are produced with a raised pitch while speakers lower their
pitch to produce seductiveness. Therefore, in order to convert attitudes, changing F0 is mandatory
even though it is not enough. On the other hand, we have not yet gone far enough in understanding
the individual perception of attitudes to say precisely how the pitch is used by individuals to de-
code attitudes. However, the experiment in learning a regression model on BWS scores from static
features revealed that the mean pitch was an important static parameter for predicting scores.

Modelling speech intonation and related F0 contours is a challenging task that has been faced
in the past decades for a variety of speech applications: from text-to-speech, voice identity conver-
sion, and speech emotion conversion among others. The representation of such pitch variations is
a challenging task for at least twomain reasons. First, the F0 sequence corresponding to a speech
signal is discontinuous by nature - F0 values are only over speech segments that are voiced, and
undefined otherwise. Second, the F0 varies over multiple time scales associated with pre-defined
linguistic units - e.g., syllable, phrase - or with latent units. Each of these temporal scales being as-
sociated with specific functions: linguitic - F0 helps to clarify the syntactic structure of an utterance
or is used for semantic emphasis - and para-linguistic - F0 is used to encode emotional or attitu-
dinal information. Accordingly, a number of models have been proposed to model F0 variations.
First, basically as a linear sequence of F0 values defined at each time step, either from discontin-
uous raw F0 values or from continuous interpolated F0 values over voiced instants. Second, as
a parametric stylization of the defined F0 values over linguistic units, based on the decomposi-
tion of the F0 values over a set of slow time-varying functions, pre-defined as the Discrete cosine
transform (DCT) Teutenberg et al. (2008) or learned from speech datasets Obin and Belião (2018).
Third, using multi-scale modelling, from multi-linear modelsGerazov et al. (2018) to more complex
models such as the continuous wavelet transform (CWT) decomposition of F0 variations over mul-
tiple time scales Luo et al. (2017). These representations have been largely designed and exploited
for generative modelling tasks, such as text-to-speech synthesis (TTS) and voice conversion Black
et al. (2007); Latorre and Akamine (2008); Obin et al. (2011); Obin (2011); Veaux and Rodet (2011);
Yin et al. (2016).
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5.1.2 Multi-level modelling by applying CWT to F0 signals

Following the approach presented in (Luo et al., 2017; Luo et al., 2019), we decided to learn con-
versions from appropriate representations of pitch contours rather than do it directly from raw - or
interpolated - temporal F0 sequences. We expect that by feeding the conversion algorithm with
such salient representation of speech attitudes the conversion task will be made simpler to learn.

Multi-level aspect of F0

The speech prosody, of which intonation - represented by the F0 parameter - is one of the most
important aspects, is characterized by subtle variations at multiple temporal levels. Micro prosody
refers to as little - potentially uncontrolled - variations in speech due to vocal apparatus that appear
at the phoneme level whilemacro prosody designates the global variations at the sentence contour
level. These different levels of temporal variation encode different speech aspects. For example,
the linguistic functions of prosody are rather encoded through global macro-prosodic variations.
Thus, selecting certain levels rather than others can help to focus on certain information while re-
jecting others. The CWT computes a decomposition of the F0 signal over wavelet kernels which
allows a representation of F0 over different temporal scales (Ming et al., 2015), with various appli-
cation in expressive voice conversion (Ming et al., 2015, 2016; Luo et al., 2017; Luo et al., 2019; Zhou
et al., 2020).

Continuous Wavelet Transform (CWT)

As a multi-scale modelling method, the Continuous Wavelet Transform (CWT) is entirely fitting
when trying to represent both long and short-term dependencies, prosody is influenced by. In par-
ticular, the parameters that define the CWT correspond to the temporal levels whose variations the
CWT intends to models. As CWT can only be applied to continuous functions, a simple linear inter-
polation between voiced F0 segments is needed to obtain a continuous phrase-related F0 function,
as depicted in Figure 5.1, which can then be sampled in a vector x ∈ [0, 1]T .
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Figure 5.1: CWT applied to interpolated F0 contours
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Awavelet is a wave-like function of summable square fromHilbertL2(R) space representing an
oscillation, not necessarily sinusoidal, whose envelope width and oscillation frequency are related.
In this work we use the mother wavelet ψw ∈ RT defined for a time vector t ∈ RT as

ψw(t) =
2π− 1

4

√
3

[
1−

(
t

w

)2
]
e−

1
2 (

t
w )2 (5.1)

For the sake of clarity, we will misuse ψw instead of ψw(t) in the following. The projection hw
x

of the F0 signal x on the wavelet ψw represents the F0 variations that occur on the temporal scale
w and is formulated as follows

hw
x = x ∗ψw (5.2)

The CWT representation of a signalx is its decomposition on awavelet basis {ψw}w∈W covering
a range ofN temporal scalesW = {w1, ..., wN} and defined asHW

x = [hw0
x , ...,hwN

x ]. The F0 signal
is therefore represented by an 2D image showing its temporal evolution at different temporal scales,
frommicro-prosody (small scales) tomacro-prosody (large scales). If we denoteAW

cwt the operator
for computing such a decomposition and Rcwt the reconstruction operation, then the analysis-
reconstruction process of a signal x can be written as follows

HW
x = AW

cwt(x) (5.3)

x̂ = Rcwt(Hx) =
dj
√
dt

CdY0

N∑
n=1

hwn
x + x̄ (5.4)

with x̄ the average of x, dt = 1.2, dj = 0.125, Cd = 3.541 and Y0 = 0.867 (for details, see
(Torrence and Compo, 1998)).

5.1.3 CWT Adaptive Scales

Numerous approaches dedicated to speech prosody modelling are based on the use of CWT. A
promising approach called CWT Adaptive Scales (CWT-AS) was proposed by Luo et al. (Luo et al.,
2019).

An adaptive multi-level modelling of pitch contours

F0 modelling with CWT has been specified more recently upgraded with the possibility to compute
the decomposition on arbitrary linguistic scales (e.g., phoneme, syllable, word, and utterance as
described in (Luo et al., 2017)). An Adaptive-Scale (AS) algorithm (Luo et al., 2019) is described
to select an optimal CWT representation for each pair of emotions, by selecting the scales that
maximize in average the distance between the emotions in the CWT space. From these selected
scales, the CWT decomposition of the F0 contours is computed. Finally, the transformation func-
tion between each pair of emotion is learned from those representation using a Dual-GAN.

Limitations

Though this approach appears promising, it suffers from two main limitations. First, the scale
selection is only based on themaximization of the distance between the emotions, but ignores their
reconstruction ability of the F0 signal. This may lead to poor F0 reconstruction which in turn would
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degrade the quality and the naturalness of the transformation. Second, the CWT-AS decomposition
of the F0 signal and the dual-GAN are optimized independently which constitutes a bottleneck for
training. Consequently, the CWT decomposition may not be optimal in the sense of the dual-GAN
objective.

5.2 Related Works on Dual-GAN-Based Voice Conversion

In (Luo et al., 2019), the function that maps source and target CWTs is learnt by a Dual-Generative
Adversarial Network - or Dual-GAN. This section provides a general description of theGANparadigm
and its dual implementation.

5.2.1 Generative Adversarial Network

First introduced by Goodfellow in (Goodfellow et al., 2014), Generative Adversarial Network desig-
nates both a global architecture consisting of two main blocks - a generatorG and a discriminator
D - and a learning mode - i.e. a way to optimise the learning of these two modules. To learn the
generator’s distribution pG over data x we first define a prior on input noise variables pz(z). The
generator is then defined through G(z, θG) where G is a differentiable function represented by a
multilayer neural network whose θG are the learnable weights. The discriminator is defined through
D(θD) where D is a differentiable function represented by a multilayer neural networks whose θD
are the learnable weights. While the output of the generator has the same shape as input data, the
output of the discriminator is a scalar such as D(x) represents the probability that x came from
input data distribution rather than generator’s output distribution. The discriminatorD is trained to
maximize the probability of assigning ones to the input samples and zeros to the samples yielded
by G, thus considering the former as true samples and the latter as false ones. Simultaneously,
the generator G is trained to trap the discriminator so that it can no longer distinguish the gener-
ated samples from the real ones. The whole architecture is depicted in Figure 5.2. Denoting E, the
mathematical expectation,D and G play the following two-player min-max game

min
G

max
D
Ladv(D,G) = Ex∼pdata(X) [logD(x)] + Ez∼pz(z) [log(1−D(G(x)))] (5.5)

Since the adversarial component as a supplementary constraint favorize the convergence to the
true distribution of the original data - conversely to the standard auto-encoding paradigm - GANs
are proven to yield realistic conversion. They also have the advantage of being non-deterministic,
with a fixed input, the addition of noise makes it possible to generate different conversions each
time whose adversarial loss guarantees the quality.
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5.2.2 Dual implementation of GAN

Inspired by dual learning from natural language translation (He et al., 2016), (Yi et al., 2017) pro-
posed a novel dual-GAN mechanism, which enables image translators to be trained from two sets
of unlabeled images from two domains. In our architecture, the primal GAN learns to translate im-
ages from domain U to those in domain V , while the dual GAN learns to invert the task. In 2019,
(Luo et al., 2019) proposed this same architecture to address the problem of voice conversion.
Their system, referred to as dual Supervised Adversarial Network (dual-SAN) is trained to convert
the emotion in the Mel Cepstral Coefficients (MCC) and CWT-F0 features. The duality here is not
to be compared with the mathematical concept but refers to the joint learning of a forward con-
version from emotion as to emotion at and a backward conversion from emotion at to emotion as,
depicted in Figure 5.3. Therefore, the basic GAN functioning described through equation 5.5 can
be extrapolated in a dual version as

min
Gs→t,Gt→s

max
Ds,Dt

Ld−adv(Ds, Dt, Gs→t, Gt→s) = Ladv(Dt, Gs→t) + Ladv(Ds, Gt→s) (5.6)
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Figure 5.3: Schematic view on the dual Generative Adversarial Network (dual-GAN)

This dual mechanism is shown to improve the training performances by leveraging the proba-
bilistic connection between both tasks to enhance the learning.

5.3 Contribution

To overcome the limitations of (Luo et al., 2019), we propose an end-to-end architecture to learn
efficiently F0 transformation between attitudes. The proposed neural architecture brings together
the F0 decomposition and the dual-GAN into a single network, so that the CWT decomposition is
optimized in the sense of the dual-GAN objective, and combining separation and reconstruction
losses of the resulting decomposition.

5.3.1 Wavelet Kernel Convolutional Encoder

This work’s first contribution is our newly proposed Wavelet Kernel Convolutional Encoder (WKCE),
which is a custom layer for learning CWT representations of 1-D sequences and that we use as a
pre-network to encode source and target F0 sequences. As our proposed voice conversion algo-
rithm requires parallel data, sets of utterances X s and X t respectively relative to attitudes s and t
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are considered. A pair of utterances is then sampled and source xs and target xt F0 sequences
are extracted. Aside from the attitude, each utterance in a pair has the same content (linguistic
content, speaker identity).

If we consider x sampled from data distributionP (x), thismodule can be trained for reconstruc-
tion objective with respect to L1 loss formulated as

Lrec(x) =Ex∼P (x) [||Rcwt(Acwt(x)))− x||1] (5.7)

A constraint of classification on the CWTs latent space can be added, Acwt and C are trained
with respect to Lcl, the cross-entropy (CE) loss between actual emotion a of an utterance x and
its prediction by the classifier C applied to its representationAcwt(x). The classification loss Lcl is
formulated as

Lcl(x) =Ex∼P (x) [a log(C(Acwt(x))) + (1− a) log(1− C(Acwt(x)))] (5.8)

5.3.2 Framework overview

Here we present the complete proposed system bringing together this specific F0 encoding mod-
ule (WKCE) with a Dual-GAN architecture, thus forming an end-to-end system for F0 conversion.

CWT-based Pre-Network

The source and target F0 are given to what we called a Wavelet Kernel Convolutional Encoder
(WKCE) denoted Acwt. A classifier, denoted C , whose objective is to predict the expressivity is
fed with WKCE outputs. As shown in Figure 5.4, these two modules must be seen as a pre-network
(pN ) for Dual-GAN (DG) that can be pre-trained as well as trained along with Dual-GAN forming an
end-to-end system for f0 conversion.
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Figure 5.4: End-to-end neural architecture for F0 voice conversion. On the right, F0 decomposition
over 4 of the learned scales obtained for the source (red) and target (green) expressivities.
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Dual-GAN for conversion learning

The algorithm we used for conversion - referred to as Dual-GAN - is based on two concepts: Adver-
sarial learning (Goodfellow et al., 2014) - that involves training a generative model to find a solution
in a min-max game between two neural networks, called as generator G and discriminatorD - and
Dual supervised learning (Xia et al., 2017) - that involves training the models for two dual tasks si-
multaneously, thus exploiting the probabilistic correlation between them to regularize the training
process. Combining those aspects allows to take advantage of the GAN’s ability to produce realis-
tic transformations as well as the significant improvements due to dual supervised learning.

This last point implies that both forward and inverse transformations, respectively
Gs→t : (Acwt(x

s), zs) → xt and Gt→s : (Acwt(x
t), zt) → xs, are learned jointly, where zs and zt are

random independent noises provided in the form of dropout at each layer of Gs and Gt. Two losses
Ls→t and Lt→s are required to train Gs→t and Gt→s respectively

Ls→t(x
s,xt) =E(xs,xt)∼P (xs,xt)(||Rcwt(Gs→t(Acwt(x

s)))− xt||1) (5.9)
Lt→s(x

s,xt) =E(xs,xt)∼P (xs,xt)(||Rcwt(Gt→s(Acwt(x
t)))− xs||1) (5.10)

At the same time, Ds has to discriminate between converted outputs Gt→s(Acwt(x
t)) - con-

sidered false - and actual input CWT representations Acwt(x
s) - considered true. Analogously

- to complete the adversarial mechanism - Dt has to discriminate between converted outputs
Gs→t(Acwt(x

s)) - considered false - and actual input CWT representations Acwt(x
t) - considered

true. Two adversarial losses Ls
adv and Lt

adv are required to train Gs→t, Gt→s, Ds, Dt and Acwt

Ls
adv(x

s,xt) =Exs∼P (xs)[Ds(Acwt(x
s))] + Ext∼P (xt)[1− log(Ds(Gt→s(Acwt(x

t))))] (5.11)
Lt
adv(x

s,xt) =Ext∼P (xt)[Dt(Acwt(x
t))] + Exs∼P (xs)[1− log(Dt(Gs→t(Acwt(x

s))))] (5.12)

A third constraint called Dual loss is added so as to strengthen the intrinsic connection between
Gs→t and Gt→s, it can be understood as a regularization of the process.

Ldual(x
s,xt) = E(xs,xt)∼P (xs,xt)(||Acwt(x

s) ∗ Gs→t(Acwt(x
s))

−Acwt(x
t) ∗ Gt→s(Acwt(x

t))||1)
(5.13)

Therefore two final losses can be formulated for pre-Net pretraining and proper Dual-GAN train-
ing, respectively LpN and LDG with α, β, λ and γ respectively weighting reconstruction, classifica-
tion, transformation and dual objectives.

LpN = αLrec + βLcl (5.14)
LDG = λLa↔b + Ladv + γLdual (5.15)

5.4 Speech Attitude Conversion Experiment

In this section we present an application of our proposed model to speech attitude conversion and
compare it with the baseline CWT-AS approach.
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5.4.1 Implementation Details

Our proposal and the CWT-AS baseline were implemented in Python 3.6 and Tensorflow 2.1. and
trainings were performed on GeForce GTX 1080 Ti GPUs. In the following, we give all details about
the design and implementation of our proposed architecture.

Input pipeline

We extracted fundamental frequency from the speech signal by using SWIPEP algorithm (Cama-
cho, 2007). All F0 sequences are sampled to 1ms (as recommended in (Luo et al., 2019)), passed
to log(F0) and a linear interpolation has been processed between voiced segments. For each pair,
a mapping between syllables starting and ending times has been done to align source and tar-
get. Once pairs are aligned syllable-wise, F0 sequences are padded with zeros up to a value Tmax

corresponding to the longest sentence in the dataset.

Wavelet Kernel Convolutional Encoder

Our WKCE denoted Acwt has been implemented as a Tensorflow custom layer. It is made up of
a convolutional layer whose kernel - which takes the shape of a wavelet - is learnt. The temporal
support of this kernel corresponds to the maximum size of a sequence of F0 in the dataset. This
layer is associated withN learnable variables which are the scales fromwhich the wavelets are de-
rived. A constraint of growth is added on the range of scales to ensure the continuity of the learned
CWTs. The output of this layer is then unpadded and sliced in segments of size Tslice.

PARAMETERS. We chose to use N = 32 learnable scales, thus making good reconstruction of
the original F0 from CWT representation possible with . The slicing length is set to Tslice = 512
what was considered suitable for Dual-GAN processing. Therefore each sliced segment has shape
[32, 512].

Pre-Net classifier for attitude prediction from CWTs

The classifier is built using convolutional blocks composed of nCcnn 2-D convolutional layers. Each
convolution layer has dCcnn filters, kCt and kCf as temporal and feature-wise kernels and sCt and sCf as
temporal and feature-wise strides. Strides are used to reduce time and features dimensions as is
usually done with convolutional networks. Those convolutions are followed by a flatten layer and
two fully connected layers with respectively, dCemb and dCcl. An activation function ϕC is applied to
the last layer.

PARAMETERS. We set nCcnn = 3, chose filters sizes dCcnn starting from 32 up to 128, kCt = kCf = 3,
sCt = 2 and sCf = 4. A dropout ρC = 0.2 is applied for each layer. Padding is set to same (TF
argument for convolution) so that input and output signal has the same shape. For the last fully
connected layers, we set dCemb = 1000 and dCcl = 2. The activation function is ϕC = softmax

The architecture of the Dual-GAN itself as well as the contribution of each module, Gs→t, Gt→a,
Ds and Dt, are taken from (Luo et al., 2019) and described in the following.
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Dual-GAN generators

The generators are made up of nGcnn convolutional and backward convolutional layers with dcnn
filters, kGt and kGf as temporal and feature-wise kernels, sGt and sGf as temporal and feature-wise
strides (used for downsampling and upsampling respectively for convolutions and backward con-
volutions), and a dropout ρG which is used to provide the network with noise, as needed for GANs.
Each layer is followed by an activation function ϕG with the exception of the output layer. Residual
blocks are employed in the middle of convolutional and backward convolutional layers.

PARAMETERS. According to (Luo et al., 2019), we have nGcnn = 2 convolutional layers with filters
sizes dcnn of 128 and 64, kGt = kGf = 3, sGt = sGf = 2. Analogously, we have nGcnn = 2 backward
convolutional layers with filters sizes dGcnn of 64 and 128, kGt = kGf = 3, sGt = sGf = 1/2. A dropout
ρG = 0.5 is applied. We chose a non linear activation function ϕG = ReLU .

Dual-GAN discriminator

Inspired by PatchGAN classifier (He et al., 2016), we designed the same architecture for the dis-
criminator as we did for the pre-Network classifier described in 5.4.1. Only the size of its output,
which is here reduced to a scalar (real : 1 or false : 0), and the activation function ϕD , stand out. The
only constraint being that the output must fall within the range of 0 and 1, which must guaranteed
by the activation.

PARAMETERS. Everything identical to Pre-Network Classifier, excepting from the output dcl = 1 and
the activation ϕD = sigmoid.

5.4.2 A One-to-One Speaker Dependant Conversion Experiment

The purpose of this experiment is to compare different configurations of our model with the base-
line method (Luo et al., 2019) to show the relevance of our contributions in the context of speech
attitudes conversion. We chose a one-to-one paradigm for conversion which means that the map-
ping is learned between specific pairs of attitudes. For a given pair, the source and target utter-
ances share the same linguistic content and are spoken by the same speaker, they only differ in
the attitude produced. For our experiments we used our homemade speech database Att-HACK
(LeMoine andObin, 2020). The design aswell as description of Att-HACK is presented in Chapter 3.

TRAIN-TEST DATA SPLIT. Since prosodic strategies conveying emotion has been shown to be speaker
dependent (Sismanand Li, 2018), wemight assume that each speaker has their ownwayof express-
ing attitudes. To assess the model ability to learn a specific strategy of vocal attitude production,
we chose to learn transformations on two different speakers independently. We thus selected a
female (F08) and a male (M07), representing almost 400 utterances each. The train/valid split was
80/20% and has been done linguistically, i.e. as Att-HACK features 100 different linguistic contents,
we chose 80 sentences for training and 20 for validation.

Configurations

We selected three configurations for comparison, the baseline Dual-GAN featuring CWT Adaptive
Scales (AS) proposed in (Luo et al., 2019) and two configuration of our proposed end-to-end model
with variations of the pre-network pN
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• CWT-AS strictly re-implemented following (Luo et al., 2019)
• WKCE : pN = {Acwt} learns the CWT scales regarding the CWT reconstruction objective
(α = 1, β = 0)

• WKCE-C : pN = {Acwt + C} learns the CWT scales regarding both the CWT reconstruction
and the CWT related attitude classification objectives (α = 10, β = 1)

5.4.3 Training Procedure

The training procedure is divided in two phases. First we pre-train the pre-network to produce CWT
representations of F0 sequences. The full pre-training process, described in Table 5.1, depends on
the configuration considered. Second, we train the Dual-GAN along with the pre-network to learn
transformations between attitudinal pairs of F0 sequences. The process is fully described in Table
5.2.

We chose λ = 5 and γ = 15 as a balance between transformation, adversarial, and dual objec-
tives. For the configuration WKCE-C, we used the classification scores obtained at the end of pre-
training as sample weights for Dual-GAN training. ADAM optimizer with 0.0001 as learning rate has
been used. All codes are written in Python-Tensorflow 2.1, the baseline has been re-implemented.

PreNet pre-training process

Source input tensor is made of b source F0 sequences Bs = {xs
1, ...,x

s
b}

while target input tensor is made with the related target F0 sequences Bt = {xt
1, ...,x

t
b}

Voicing tensors Vs = {vs
1, ...,v

s
b} and Vs = {vt

1, ...,v
t
b} are made voicing sequences,

i.e. ones for voiced segments and zeros for unvoiced segments.

for any {Bs,Bt}
Bs∗ = Vs

Bt∗ = Vt

Acwt(Bs) = {Xs
1, ...,X

s
b}

Acwt(Bt) = {Xt
1, ...,X

t
b}

Acwt(Bs)∗ = Vs

Acwt(Bt)∗ = Vt

LAcwt
= 1

b

[ ∑
x∈Bs

Lrec(x) +
∑

x∈Bt

Lrec(x)

]
if the configuration is WKCE-C:

LAcwt
+ = 1

b

[ ∑
x∈Bs

Lcl(x) +
∑

x∈Bt

Lcl(x)

]
Acwt is optimized to minimize LAcwt

until convergence

Table 5.1: Algorithm1. pretraining process of the pre-network pN
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Dual-GAN training process

Source input tensor is made of b source F0 sequences Bs = {xs
1, ...,x

s
b}

while target input tensor is made with the related target F0 sequences Bt = {xt
1, ...,x

t
b}

Voicing tensors Vs = {vs
1, ...,v

s
b} and Vs = {vt

1, ...,v
t
b} are made voicing sequences,

i.e. ones for voiced segments and zeros for unvoiced segments.

for any {Bs,Bt}
Bs∗ = Vs

Bt∗ = Vt

Acwt(Bs) = {Xs
1, ...,X

s
b}

Acwt(Bt) = {Xt
1, ...,X

t
b}

Acwt(Bs)∗ = Vs

Acwt(Bt)∗ = Vt

Ls
R = 1

b

∑
xs∈Bs,xt∈Bt

(Lt→s(x
s,xt) + Lrec(x

s))

Lt
R = 1

b

∑
xs∈Bs,xt∈Bt

(Ls→t(x
s,xt) + Lrec(x

t))

Ls
ADV = 1

b

∑
xs∈Bs,xt∈Bt

Ls
adv(x

s,xt)

Lt
ADV = 1

b

∑
xs∈Bs,xt∈Bt

Lt
adv(x

s,xt)

LDUAL = 1
b

∑
xs∈Bs,xt∈Bt

Ldual(x
s,xt)

Acwt, Gs→t and Dt are optimized to minimize λLt
R.

Acwt, Gt→s and Ds are optimized to minimize λLs
R.

Acwt, Gs→t and Dt are optimized to maximize Lt
ADV .

Acwt, Gt→s and Ds are optimized to maximize Ls
ADV .

Acwt, Gs→t and Gt→s are optimized to minimize γLDUAL

until convergence

Table 5.2: Algorithm2. Dual-GAN training process

5.5 Results & Discussions

In this section, we assess the performance of the different configurations and baseline to convert
speech attitude by changing pitch contours. We used both objective and subjective criterion and
considered each pair of attitudes (12 pairs) as well as overall results across all the pairs.

5.5.1 Objective Evaluation

In order to validate the outputs of our system, we define two objective measures : 1) ϵR reflects
the reconstruction performance of the pre-network in both configurations WKCE and WKCE-C and
yielded by the CWT-AS scales optimization. 2) ϵT reflects the transformation performance of the
three different models.

ROOT MEAN SQUARED ERROR (RMSE-F0). RMSE is used to compute both measures. A first measure
ϵR is computed between the target F0 sequences and their reconstructions from the CWTs xt and
x̂t respectively. Thus ϵR is computed as follows

ϵR =

√√√√ N∑
t=1

(x̂− x)2
N

(5.16)
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A secondmeasure ϵT is computed between the target and converted F0 sequences xt and xs←t

respectively. Thus ϵT is computed as follows

ϵT =

√√√√ N∑
t=1

(x̂s←t − xt)2
N

(5.17)

Performance in transformation

Let us begin by looking at the overall results shown in Table 5.4, i.e. the results in RMSE between
the target and converted F0 sequences averaged across all attitudinal pairs. First of all, we observe
that the proposed end-to-end system for F0 voice conversion outperforms the traditional CWT-AS,
for both configurations. The best performance is obtained with the most elaborated configuration
WKCE-C. On the other hand, the differences in RMSE remain small and do not allow us to conclude
on the real performance of the two configurations of the proposed model in comparison with the
baseline.

If we now look at the attitude pair-wise results shown in Table 5.3, we observe that our proposal
WKCE-C achieves the best transformation performance four 8 pairs out of 12. For the worst pairs
(do. → fr., di. → do., do. → di. and se. → do.), this configuration achieves comparable or better
performance than the baseline CWT-AS excepting from two pairs (di. → do., do. → di.). These
results make WKCE-C a rather reliable configuration that well captures the attitudinal conveyed
through pitch contours and transform it accurately, when compared to the baseline CWT-AS.

Models fr.→ di. di.→ fr. fr.→ do. do.→ fr. fr.→ se. se.→ fr.

CWT-AS ϵR 15.5 17.1 17.3 19.1 17.2 16.2
ϵT 25.8 19.4 20.2 23.8 19.6 20.7

WKCE ϵR 8.2 8.2 12.3 8.0 9.5 9.0
ϵT 15.8 19.9 23.4 12.3 19.3 18.9

WKCE-C ϵR 11.4 12.2 13.3 15.2 9.1 12.0
ϵT 13.9 14.5 16.2 17.9 16.1 16.3

di.→ do. do.→ di. di.→ se se.→ di. do.→ se se.→ do.

CWT-AS ϵR 18.3 20.1 15.7 17.2 16.0 18.2
ϵT 19.1 20.1 23.5 21.2 22.1 22.5

WKCE ϵR 10.3 7.4 10.2 10.5 9.1 7.3
ϵT 22.2 16.3 21.9 22.8 22.2 15.8

WKCE-C ϵR 16.0 16.3 10.1 15.1 14.3 16.1
ϵT 23.5 25.6 17.1 20.3 21.3 23.2

Table 5.3: Performance results in reconstruction ϵR and transformation ϵT for all considered pairs
of attitudes based on three models : CWT-AS, WKCE and WKCE-C. Friendly, distant, dominant and
seductive being respectively denoted fr., di., do. and se.
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Performance in reconstruction

Across attitude pairs, the configuration WKCE achieves the best results in reconstruction by far,
logically since it is optimised for the reconstruction criterion. The other configuration WKCE-C is
slightly worse but substantially outperforms the CWT-AS baseline.

Examining further into details considering each pair of attitudes, we observe that the configu-
ration WKCE achieves the best results for all pairs excepting from fr.→ se. and di.→ se.. Thus it
interesting to note that, in most cases, the best results in transformation are not obtained with the
same configuration than those in reconstruction. This supports the idea that the representation
given to the network must above all be specifically tailored to the transformation task. Moreover,
our two configurations always yield better reconstruction results than the CWT-AS baseline which
validates the ability of our wavelet kernel convolutional encoder to produce representations from
which F0 sequences can be accurately reconstructed.

« Vous - êtes-a        -        llés      -      à - la        -      plage »

baseline
config_A
config_B

Transformed F0 Target F0

F0
 (H

z)
Time (ms) Time (ms)

« Vous - êtes-a        -        llés      -      à - la        -      plage »
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 (H
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« Vous  -  êtes    -   a     -   llés - à - la              -        plage »
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Figure 5.5: Example of F0 conversion from distant to dominant for speaker M07 for CWT-AS and
ours WKCE and WKCE-C.

Those objective results tend to show an advantage of our proposal in the ability to produce
accurate transformations for most considered pairs of attitudes. An example of conversion is
depicted in Figure 5.5. Asmentioned, since such objectivemeasurements do not necessarily reflect
human perception of those conversions, a subjective study is proposed in the following section to
confirm these trends.

5.5.2 Subjective Evaluation

To assess the perception of converted speech, we conducted a listening experiment.

Test Design

We decided to perform a AB preference test to assess the relative performance of different models
by comparing the average subjective perception of their yielded conversions. The test consists in
repeated trials, for each of which two questions were asked. At each trial, participants started
by listening to a reference speech sample (a target), then they listened to a pair of sounds - two
different conversions supposed to match the target. First, they had to choose the speech sample
from that pair that, in their opinion, most closely resembles the reference in terms of conveyed
attitude. Second they had to judgewhich of the four attitudeswas conveyed in the reference speech
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Models ϵR ϵT

CWT-AS 17.32 21.71
WKCE 9.16 19.15
WKCE-C 13.4 18.83

Table 5.4: A comparison of the RMSE results
of the CWT-AS, WKCE and WKCE-C for recon-
struction and transformation

100


80


60


40


20


0

100


80


60


40


20


0

pr
ef

er
en

ce
 s

co
re

 (%
)

fr.         di. di.         fr. fr.         do. do.         fr. fr.         se. se.         fr.

di.         do. do.         di. di.         se. se.         di. do.         se. se.         do.

0.50


0.25


0.00

0.50


0.25


0.00

fr. - di. di. - fr. fr. - se.

di. - do. di. - se. do. - se.

sc
al

e 
de

ns
ity

pr
ef

er
en

ce
 s

co
re

 (%
) 100


80


60


40


20


0

CWT-AS
WKCE
WKCE-C

CWT-AS 
WKCE 
WKCE-C

Configurations

sc
al

e 
de

ns
ity

Figure 5.7: The XAB preference results with 95% confidence interval between the CWT-AS and ours
WKCE and WKCE-C regarding attitude similarity.

sample 1. We built the speech pairs by choosing a conversion yielded by the CWT-AS configuration
and one of our configurations’ - WKCE-C and WKCE - conversion .

Results - Similarity to the reference attitude

We start by looking at the overall results reported in Figure 5.6, thus assessing general perfor-
mance of our proposals. Compared to baseline CWT-AS, our configurations WKCE and WKCE-C
are respectively preferred by 9% and 23% in terms of similarity to the target attitude. We can thus
confidently state that our approach, particularly the setup that features a classifier WKCE-C, is bet-
ter at converting attitude, in general, than the baseline CWT-AS.

This preliminary conclusion needs to be refined by examining the pair-wise outcomes. Indeed,
our configuration WKCE-C outperforms significantly the baseline for most attitude pairs at the ex-
ception of do. → di. and di. → do.. WKCE is preferred to baseline by listeners in four pairs out
of twelve. This difference in performance between WKCE-C and WKCE tends to highlight the role
played by the classifier in the production of CWT representations of F0 sequences. Since the clas-
sifier forces the attitudinal salience of the representations, themodel seems tomore easily capture
the information to convert. This information beingmore or less reachable depending on the attitude
pair considered.

1When conducting this experiment, the Att-HACK database has not been perceptually validated, i.e. there were no evi-
dence that the attitude categories are actually perceived as such by individuals.
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Results - Attitude recognition

The results in attitude recognition are shown in the form of a confusion matrix in Figure 5.8. The
best recognized attitude is seduction (71%) followed by distance (60%), while dominance (48%) and
friendliness (42%) are recognized as such in less than half of the cases. Friendliness and distance
are often confused, as are friendliness and dominance. An important point should be made here,
what is being measured is a recognition score. This score reflects globally the identification con-
fusion by the subject. This however may be decomposed into various sources of confusion: the
actors’ mental representations of the attitudes, their ability to convey them acoustically, the ability
of listening test subjects to decode them. In particular, in the case of friendliness, it is currently
impossible to say whether friendliness is simply more difficult to recognize than seduction (which
is unlikely) or whether some occurrences of the database have been badly portrayed by the actors,
leading to confusion. Questioning the recognition of attitudes through forced choices allows us to
acknowledge how difficult it is for individuals to recognize the a priori attitude labels attached to
Att-HACK samples. The BWS study conducted in Chapter 4 helped to identify utterances for which
the attitude was miscommunicated. We expect that by removing these samples from Att-HACK,
individuals’ recognition of attitudes will be improved.

0.42 0.23 0.27 0.06

0.30 0.60 0.09 0.04

0.20 0.17 0.48 0.18

0.09 0.00 0.15 0.71

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

Figure 5.8: Normalized confusionmatrix where each row presents the class dependant recognition
performance across all participants.

5.5.3 General discussion

Our model’s validity has been assessed both objectively, using RMSE measures in transformation
and reconstruction, and subjectively through a listening experiment in which participants gave their
preference between pairs of conversions in terms of similarity to a reference speech sample. If both
of our proposed configurations achieve better performance than the baseline in average, looking at
pair-wise results showed that the addition of the classifier in the pre-network led to better adapta-
tion across different attitude pairs. The best results in both objective and subjective terms are thus
obtained with the WKCE-C configuration. In the following we discuss the choices made regard-
ing the modelling of speech attitudes as well as the paradigm employed to learn transformations
between source and target utterances. First, the scale distributions that underlie the learned rep-
resentations of pitch contours are closely examined in order to question the relevance of CWT
representations for modeling pitch contours.
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Examining learned pitch contours’ scales distributions

This part provides an a posteriori comparison of the F0 scales distribution that underlies the F0-
CWT representations used for the speech attitude conversions. Each transformation (forward and
backward) between a pair of attitudes is associated with a set of temporal scales that are used
to compute the CWT representations used for the conversion. Consequently, each transformation
can be described by a distribution of the temporal scales that are used to convert the F0 optimally.
Figure 5.9 presents the distribution selected by the baseline CWT-AS algorithm and learned by our
proposed contribution, as obtained for a specific speaker (F08) for the six pairs of attitudes.

As stated above, the best performance has been obtained withWKCE-C, but what does it mean
in regards with the underlying F0 scales distribution? First, one can clearly observe that the tempo-
ral distribution of the WKCE-C is wider than the others, the transformation covering a wide range
of temporal scales from the micro variations over the phonemes to the global contours of the sen-
tence. Additionally, the distributions associated with the CWT-AS and the WKCE appear mostly in-
dependent with respect to the transformation pair, while the distribution associatedwith theWKCE-
C tend to bemore varied depending on the transformation pair. This suggests that theWKCE-Cmay
adapt more efficiently to the singularity of each pair.
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Figure 5.9: CWTscale distributions for the three considered algorithms: CWT-AS,WKCE andWKCE-
C. For interpretation, P, SY, W and SE markers respectively denote average duration of the phone,
syllable, word and sentence linguistic units.

The scale distributions supporting the encoding of the F0 contours can help to explain transfor-
mation performance, at least in part. Our proposal for modeling pitch contours through learnt CWT
representations therefore appears relevant. It allows a multi-level representation of F0 contours,
thus modeling a wide prosodic spectrum from micro to macro, while enabling a focus on certain
levels rather than others depending on the attitude pair considered. This adaptive method can be
further investigated and applied to other multi-level time varying signals.

On the limitations of F0 modelling for voice conversion

Listening to the generated conversions clearly shows the limitations of using isolated parameters
as modelling for expressive conversion. First, since the conversion only applies to the F0, arte-
facts appear due to the inconsistency between the altered F0 and the rest of the parameters of the
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speech signalwhich have remained unchanged. Second, our Chapter 4 shows that F0 is not the only
parameter involved in the communication of vocal attitudes, both in terms of production strategy
and of perception. Ignoring the other parameters for conversion leads to less realistic conversion.
Voice conversion thus requires modelling and converting all the parameters of the speech signal -
as well as their inter-correlations - to ensure the consistency and quality of the converted speech
signal. In order to better convert speech attitudes, we decide to abandon the parametric represen-
tation - based on F0 - and attempt to model the conversion directly from compact representations
like mel-spectrograms - that prove to encompass every component of the speech signal.

Rethinking the conversion paradigm

With the Dual-GAN framework, a transformation and its inverse are learnt jointly. This goes beyond
the classic case of a one-to-one learning: only six learnings were necessary against twelve in a
standard GAN configuration thus offering a time saving as well as a potential gain in performance.
Another interesting point is the probabilistic nature of the conversions yielded by the Dual-GAN,
i.e. for one source utterance several different conversions can be produced. This is typically at-
tributable to GAN, which operates by filtering random noise. It offers a diversity in conversions
that may be desired, for example to avoid the monotony of responses from a voice assistant. The
paradigm chosen for transformation thus hasmany qualities, yet some limitations need to bemen-
tioned.

First, the training of a GAN ismade difficult by its intrinsic instability due to the addition of noise.
In practice, the best optimization of the model from the point of view of conversions is not neces-
sarily the global minimum of the cost function employed. It is necessary to save the weights of the
model at different checkpoints and compare the conversions from these different sets of weights.
We would like the training criterion, the cost function, to be correlated with what we hear when we
listen to the conversions and therefore be sufficient to determine at what point in the training the
model achieves its best performance. Second, this model’s fundamental drawback is that it disal-
lows the mapping of time sequences with various duration. This point is fundamental, specifically
for the case of the conversion of emotions (close to attitudes in terms of acoustic realisation). The
main way to achieve such a sequence-to-sequence mapping is to employ an attention mechanism
that learns an implicit alignment between the source and target sequences. Finally, we would like
to learn to convert any attitude into any other attitude through a single training procedure, this kind
of learning being referred to as many-to-many. Since learning a conversion and its inverse simul-
taneously appears to improve the overall conversion performance, we might expect to gain even
more by feeding a conversion algorithm with the four attitudes simultaneously.

5.6 Chapter Summary

In line with the findings of Chapter 4, we chose to focus on pitch contours - acoustically corre-
lated to F0 variations - to parametrically model the speech attitudes. To highlight the multi-level
nature of F0 variations, we model it through using the Continuous wavelet Transform (CWT) - that
computes a decomposition of the F0 signal over wavelet kernels which allows a representation
of F0 over different temporal scales. In order to adapt this representation for conversion purpose,
an Adaptive-Scale (AS) algorithm (Luo et al., 2019) has been proposed. It finds an optimal CWT
representation for each pair of emotions, by selecting the scales that maximize in average the dis-
tance between the emotions in the CWT space. Though this approach appears promising, it suffers
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from two main limitations. First, the scale selection is only based on the maximization of the dis-
tance between the emotions, but ignores their reconstruction ability of the F0 signal - which may
affect the quality and the naturalness of the conversions. Second, the CWT-AS F0 decomposition
is optimized independantly from the conversion model - a dual-GAN - which may cause the CWT
decomposition not to be optimal for conversion objective.

To overcome the limitations of (Luo et al., 2019), we propose an end-to-end architecture to learn
efficiently F0 conversions between attitudes. The proposed neural architecture brings together the
F0 decomposition and the dual-GAN into a single network. We compared two setups of our pro-
posal with the baseline CWT-AS in an speech attitude conversion experiment. The experiment is
speaker dependant, two speakers were selected and subjects of independent trainings for con-
verting from any attitude to any other. Both objective and subjective evaluation tends to show
our proposal achieves better conversions than the baseline. However, listening to the generated
conversions clearly shows the limitations of using isolated parameters as modelling for attitude
conversion. First, since the conversion only applies to the F0, artefacts appear due to the incon-
sistency between the altered F0 and the rest of the parameters of the speech signal which have
remained unchanged. Second, our Chapter 4 shows that F0 is not the only parameter involved in
the communication of vocal attitudes, both in terms of production strategy and of perception. Ig-
noring the other parameters for conversion leads to less realistic conversion. Voice conversion
thus requires modelling and converting all the parameters of the speech signal - as well as their
inter-correlations - to ensure the consistency and quality of the converted speech signal. In the
Chapter 7, we chose to use mel-spectrogram as speech representation for attitude conversion.
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PARADIGM SHIFT

At this stage of our research, the various findings we made led us to a paradigm shift both in the
way we model the speech signal and in the way we learn attitude conversion. In the following, we
discuss this paradigm shift, its motivations and implications.

Speech Attitude Modelling for Voice Conversion

Listening to the conversions yielded by our first proposal - presented in Chapter 5 - clearly shows
the limitations of using isolated parameters - in this instance F0 contours - as modelling for atti-
tude conversion. First, because the conversion only affects the F0, artefacts show up as a result of
inconsistencies between the altered F0 and the other speech signal parameters that have stayed
unchanged. Second, our Chapter 4 confirmed that F0 is not the only parameter involved in the
communication of vocal attitudes, in terms of both production strategy and perception. Instead, all
aspects of the speech signal appear to play a role in the speech communication of attitudes. In the
perspective of speech attitude conversion, as every aspect in the signal needed to be changed, we
decided to move from partial parametric representation to complete representation of the speech
signal using mel-spectrogram. The mel-spectrogram constitutes a compelling alternative to stan-
dard multi-parametric representations - e.g. spectral envelope, F0 and aperiodicity - such as used
in STRAIGHT (Kawahara, 2006) or WORLD (Morise et al., 2016) vocoders. First it is perceptually
relevant thanks to representing frequency in mel scale and amplitude dBs that both reflect human
auditory perception. Second, it constitutes a compact representation that can be efficiently used
by conversion algorithm. In addition, we chose to use the neural vocoder proposed in (Roebel
and Bous, 2022) - at different stages of its development - to reconstruct speech signal from mel-
spectrograms. This vocoder has particularly shown to achieve near transparent speech quality
even for out of domain data (Roebel and Bous, 2022).

Speech Attitude Conversion

After the modeling issue has been addressed leading to adopt the mel-spectrogram for represent-
ing speech signals, the question of how to convert vocal attitudes using this representation? must
be considered closely.
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Towards Changing Any Aspect of Speech Signals

By choosing mel-spectrogram as speech signal representation, we account for all the aspects of
the speech signal that convey attitudes. Converting attitudes in properway involves changing those
aspects and thus requires a specific algorithm’s architecture. The main point is about learning a
mapping between speech signal representations of different duration. This strong constraint ex-
cludes frame-aligned mapping algorithms (Ming et al., 2016; Zhou et al., 2021) that does not allow
for temporal integration. We thus focused on sequence-to-sequence architecture introduced in
(Sutskever et al., 2014). At the heart of most of those architectures lies an attention mechanism
that aims to implicitly learn an alignment between the source and target sentences. While recur-
rent neural networks represent an effective implementation for Seq-to-Seq voice conversion (Shen
et al., 2018; Tanaka et al., 2019; Tachibana et al., 2018), recent studies have shown that convolu-
tional neural networks (CNN) with gating mechanisms also learn well the long-term dependencies
(Gehring et al., 2017; Kameoka et al., 2020). Finally, the transformer networks (Vaswani et al., 2017),
lately proposed for Seq-to-Seq conversion, have shown noteworthy performance in terms of sound
quality (Kameoka et al., 2021; Chen and Zhang, 2021; Lee et al., 2022). The main advantage of such
transformers being that it basically replaces all recurrent - or dilated convolution - layers by self
attention mechanisms in a network. This allows for more efficient learning in terms of both time
and computing resources.

Conversion Learning Mode

Another point in this paradigm shift deals with themode of conversion learning. In our first attempt
at converting speech attitudes - chapter 5 - we learned for a given attitude pair, the conversion and
its inverse simultaneously. Here, we intend to learn conversions in a many-to-many fashion, i.e.
we would learn to convert any attitude into any other through a single training procedure. Such
a paradigm would allow to learn an implicit definition of attitudes - as represented in Att-HACK.
(Kameoka et al., 2021) proposed a many-to-many extension to transformer-based speaker identity
conversion allowing for learning conversions between four speakers at once.

Towards Perceptually Conditionned Attitude Conversion

Finally, a question emerged at the end of the BWS experiment on Att-HACK: how can we use the
perceptual data collected to improve the quality of attitude conversions? A first answer comes with
the perceptual validation of Att-HACKdata, in other words, it is crucial to clean the Att-HACKdata so
that it actually represents vocal attitudes as perceived by individuals before feeding our conversion
model. To do so, wemean to extend the judgementsmade by participants during the experiment to
un-evaluated utterances. Going further, one might even ask whether the gathered perceptual data
can be used to control certain aspects of the conversion such as attitudinal intensity which appears
to be one of the aspects effectively reflected in the participants’ judgements. Finally, we would
like to be able to evaluate the subjective perception of converted utterances by inferring from the
evaluated ones in order to avoid the time-consuming and logistically demanding task of a listening
test. These three objectives led us to design algorithms capable of automatically mimicking the
average judgment made by BWS participants. This is the purpose of the next chapter 6.
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SPEECH ATTITUDE RECOGNITION
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Theprocess bywhich individuals decode attitudes communicated vocally is complex - as shown
by the second study of Chapter 4. In particular, it was found that static speech parameter values
alone are insufficient to predict whether or not an attitude can be decoded by individuals - in aver-
age. As a result, it is currently impossible to perceptually validate Att-HACK, in the sense that we do
not have a reliable criterion to extend our knowledge about attitude perception fromwhat has been
judged in the BWS experiment - i.e. barely a third of Att-HACK. From the perspective of attitude
conversion learning - which is the main objective of this research - this lack of proper validation is
a substantial issue as no conversion should be learnt on biased data. In order to tackle this issue,
we propose to design a BWS-Net - i.e. an algorithm that artificially mimic the process by which
individuals decode attitudes by learning on the gathered perceptual data. With such an algorithm,
we intend to enhance the quality of our speech conversion by:

• Validating Att-HACK - and especially the part that has not been evaluated by participants
during the BWS experiment (chapter 4) - and thus provide clean data for speech attitude con-
version learning.

• Conditioning our attitude conversion algorithm on perceptual data by incorporating such a
BWS-Net as depicted in Figure 6.1 and thus providing control on the attitudinal intensity of the
conversions. Doing so, we expect to propose an effective and perceptually relevant algorithm
for speech attitude conversion.

• Validating the conversions - yielded by our conversion algorithms - by application of a BWS-
Net, thus assessing their subjective perception without the need for a listening experiment.
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Figure 6.1: General scheme of the perceptual conditioning of our speech attitude conversion algo-
rithm with attitudinal intensity control. At the time of writing, we conduct experiments with such an
algorithm testing the different BWS-Nets designed in this Chapter.
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6.1 Towards Speech Attitude Recognition

Before addressing the issue of perceptual regression/classification, we start by focusing on amore
standard task of speech attitude recognition. In this sectionwewill use the apriori attitude labels as
ground truth for recognizing the Att-HACK attitudes. Through this recognition task, we introduce
a baseline architecture from which we will experiment in the other sections to model subjective
perceptual judgements. This architecture we used for speech attitude recognition is inspired from
(Li et al., 2019) which proposed to learn to predict emotion and gender jointly. We only kept the
emotion part to build our proposal.

6.1.1 Mel-spectrogram as Speech Signal Representation

We chose to use mel-spectrograms to represent speech signals. Indeed, we saw in Chapter 4 that
many aspects of speech are involved in the communication of attitudes. Reflecting all those as-
pects ismandatory to properly representing speech for both purpose or speech attitude recognition
and conversion. In particular, mel-spectrograms have the benefit of condensing the information in
the speech signal while keeping its fundamental components, including the paralinguistic aspects.
Thus, in the following - including in Chapter 7 - we always use this representation of speech signal
extracted with the exact same parameters as given this section’s experiment part.

PARAMETERS. Themel-spectrogramsare obtained through computing Short-Term-Fourier-Transform
(STFT) of parameters Nft, Rft andMft corresponding to the size of the FFT, the hop and window
sizes respectively. The number of mel channels is set to D. Melspectrograms are then padded
batch-wise up to Tb which corresponds to the longest utterance in the batch. This way, computa-
tion can be performed in an tensorial way.

6.1.2 Model Architecture

This part provides a comprehensive description of the standard Attentive Convolutional Recurrent
Neural Network (ACRNN) architecture - proposed in (Li et al., 2019) - as well as an interpretation of
the role of each block that compose it in relation to the speech attitude recognition task.

A Convolutional Neural Network (CNN)

First, a block of convolutional layers is applied to themelspectrograms in order to extract high-level
features that we expect to be useful for classifying the considered speech attribute. We choose to
use 2D convolutions that incorporate both the time and frequency dimensions. At this stage, cap-
turing the utterance’s temporal context accurately is a key challenge. There are several approaches
to achieve this, such as staking several convolutional layers, expanding the temporal kernel’s size
or using dilated convolutions, thus widening the temporal receptive field. Here, the first and second
options are kept, while the third is omitted to allow for striding over the frequency-dimension, thus
reducing its shape layer after layer. Calculations can be sped up and overall performance improved
by employing temporal pooling to reduce the number of frames after the first layer.

PARAMETERS. The number of convolutions in the block is ncnn. Each convolution layer has identical
dcnn-dimensional output filters, kernels of size kt and kf and strides st and sf , respectively for time
and frequency dimensions. A pooling factor rt is applied on temporal dimension. The padding is
set to same. Then for a batch b, each melspectrogram X of shape [Tb, D] processed by the CNN
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block yields a tensor of high-level features of shape [Tb/rt, D/(sfncnn), dcnn] which is then resah-
ped to [T ′, D′] where T ′ = Tb/rt andD′ = dcnnD/(sfncnn).

A Bi-Long Short Term Memory (LSTM) Network

After being processed by the convolutional block, the features are passed to a recurrent network
whose objective is to produce a temporal summary of those features. Herewe use special recurring
cells called Long-Short-Term-Memory (LSTM) cells . LSTMs employ a number of gates that regu-
late how data in a sequence enters, is stored in, and leaves the network. The forget gate, input gate,
and output gate are the three gates thatmake up a conventional LSTM. These gates each represent
a separate neural network and can be viewed as filters. They are well-known for their capacity to
spread temporal information across extended sequences while avoiding the pitfalls of vanishing
gradients. We use bidirectional LSTMs to collect temporal information processing in both forward
and backward directions. Outputs from both directions are concatenated. This recurrent block is
potentially composed of several layers, however it should be noted that recurrent layers are very
costly in terms of time and computing resources.

PARAMETERS. The number of LSTM layers is nblstm. For each layer, each of the T ′ different LSTM
states have dblstm features produced with a dropout rate ρblstm. Thus the output of the Bi-LSTM
block is a tensor Hblstm of shape [T ′, 2 ∗ dblstm].
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Figure 6.2: Schematic view of the ACRNN neural architecture

The attention block can be configured in a variety of ways, including basic self-attention and
multi-head attention.

Self-Attention (SA)

With a sequence of high-level representations, an attention layer is employed to focus on relevant
features and produces discriminative utterance-level representations for classification, since not
all frame-level CRNN features contribute equally to the representation of the attributes to recognize.

Specifically, with themodel’s BLSTMoutputHblstm ∈ RT ′×2∗dblstm , a temporal vectorαatt ∈ RT ′ ,
representing the per-frame contribution to the target attribute, is computed depending on learnt
weights vector W att ∈ Rdblstm . Then αatt is used to obtain an utterance-level representation by
computing the weighted sum of temporal BLSTM internal states catt often called context vector.
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αatt = softmax(WattHblstmT
) (6.1)

catt = αattHblstm (6.2)

Multi-Head Self Attention

When using the fundamental self-attention approach, the combination derived from αatt may only
focus on one specific aspect of the input information, thus leaving other important aspects aside.
In order to obtain a representation that is both compressed and exhaustive, multiple combinations
of the Bi-LSTM hidden states Hblstm can be computed. This refinement of the basic attentional
principle, known as Multi-Head-Attention, can be obtained through projecting inputs in natt sub-
spaces generated by as many weight matrices {W2

h}h∈J1,nattK. Once obtained for each sub-space,
the weighted sums are concatenated to get the final encoding vector catt often referred to as the
context vector.

αatt
h = softmax(W2

h tanh(W
1HblstmT

)) (6.3)

hatt
h = αatt

h Hblstm (6.4)
catt = hatt

1 ⊕ ...⊕ hatt
natt

(6.5)

PARAMETERS. The multi-head self attention network has natt heads of latent dimension datt. Pro-
vided with an input tensor Hblstm ∈ RT ′×2∗dblstm , the attention outputs a vector catt ∈ R2nattdblstm .

Embedding space projection and classification layer

Through the use of a fully connected layer, a final projection is made to the output catt of the at-
tentional network. It results in a so-called embedding vector hemb on which classification can be
performed properly through another fully connected layer. Finally, an activation function is applied
to this final layer to produce a prediction vector aattr. Depending on the goal being pursued, such
as multi-categorical or multi-label classification or even regression, this vector may take several
shapes. In every instance, it should contain the information that our system is designed to predict.

PARAMETERS. The first and second fully connected layers have demb and dpred as outputs sizes.
The chosen activation function depends on the task performed.

6.1.3 Preliminary experiment

In this part, we use the architecture previously described to tackle the task of speech attitude recog-
nition as a preliminary - but fundamental - experiment.

Input data

We choseNft = 2048,Rft = 200 andMft = 800 respectively for the FFT size, hop size and window
size. The number of mel channels is set toD = 80. Note that those same parameters are used for
mel-specteograms extraction in the following of this document - including the Chapter 7.

112



Ablation Study

Various SER studies have already been conducted, allowing for the emergence of a prototypical
classification architecture : a convolutional block used to extract high-level features is followed
by a recurrent network which captures temporal dependencies, an attention helps to select salient
features, finally two fully connected layers are used to reduce data dimensionality, the last prop-
erly performs classification. However, the vocal attitude prediction task has not been specifically
addressed in any studies. Thus, this initial investigation intends to highlight the relevance of the
various blocks employed in regard to the model’s capacity to predict vocal attitudes. Arguments
in favor of doing such a study include the database’s size in comparison to other databases often
used for the SER, its multi-speaker nature, and the fact that it is in French.

Here, we compare several settings in order to develop a fundamental architecture fromwhich to
derive subsequent experiments. In the following, each configuration uses ncnn = 2 convolutional
layers with dcnn = 64 filters, a temporal kernel kt = 5 and a feature kernel kf = 3, the variation of
these parameters having little impact compared to the others.

• CRNN: The model is deprived of its attention mechanism, thus natt = 0.
• SA-CRNN: The model features a Self-Attention (SA) layer implemented as described in 6.1.2,
thus natt = 1

• MSA-CRNN: The model features a Multi-Head-Self-Attention (MHSA) layer implemented as
described in 6.1.2, following (Li et al., 2019) we chose natt = 8.

Those configurations are examined for three kinds of train-valid splits, if C denotes a given con-
figuration, it is paired with a suffix that indicates the split employed.

• C-r : The dataset is divided randomly with the single restriction of having all the sentences
and speakers present in both training and validation sets.

• C-l : The dataset is divided linguistically, a part of the dataset sentences is never seen by the
model. This division enables assessment of the model’s generalizability to new sentences.

• C-s : The dataset is divided speaker-wise. Also referred to as Leave-One-Speaker-Out (LOSO)
approach, this division enables assessment of the model’s generalizability to new speakers.

• C-oa : This configuration does not refer to a specific split but designs the average over all
three prior splits, reflecting split-independent performances.

Evaluation Metrics

In order to assess howwell these different setups perform, we employ various objective measures.

UNWEIGHTED AVERAGE RECALL (UAR). This metric measures the recognition performance of the dif-
ferent attitude classes, furtherly taking into account the imbalance between classes in terms of the
number of samples.

SILHOUETTE COEFfiCIENT (SIL). This metric reflects the extent to which the different attitude in-
stances are clustered together in the latent space generated by the model.

DAVIES BOULDIN SCORE (DBS). This metric reflects here how similar an attitude cluster is to its most
similar cluster.
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MUTUAL INFORMATION (MI). This metric reflects the extent to which the embeddings yielded for a
given attitude are independent of the ones of other attitudes.

6.1.4 Results & Discussion

In this part, the results obtained are first discussedwith the aim of providing a baseline architecture
dedicated to speech attitude recognition. This architecture will constitute a starting point from
which we will experiment towards perceptual attitude recognition.

Speech Attitude Recognizer’s Performance

The results for all considered configurations and splits are displayed in Table 6.1. We can start by
observing the significant interaction between the model’s performance and the type of split that
is performed on the data. The last few rows at the bottom of the table - denoted MAG for model
agnostic - show model’s performance averaged over configurations. We note that when the split
is performed randomly on speech data, the model reaches its best performance. In particular it
consistently outperforms the linguistic split by 0.02 and the speaker split by 0.12, in terms of UAR.

Configurations UAR SIL DBS MI
CRNN-r 0.60 0.15 2.22 0.13
SA-CRNN-r 0.67 0.20 1.62 0.06
MHSA-CRNN-r 0.78 0.24 1.41 0.21

CRNN-l 0.59 0.14 2.14 0.08
SA-CRNN-l 0.65 0.21 1.61 0.12
MHSA-CRNN-l 0.75 0.22 1.46 0.17

CRNN-s 0.55 0.11 2.46 0.07
SA-CRNN-s 0.55 0.19 1.56 0.09
MHSA-CRNN-s 0.58 0.20 1.58 0.10

CRNN-oa 0.56 0.13 2.27 0.09
SA-CRNN-oa 0.62 0.20 1.59 0.09
MHSA-CRNN-oa 0.70 0.22 1.48 0.14

MAg-r 0.68 0.20 1.75 0.13
MAg-l 0.66 0.19 1.70 0.12
MAg-sp 0.56 0.17 1.87 0.09

Table 6.1: Speeh attitude recognizer’s performance in terms of UAR, silouhette coefficient, Davies
Bouldin score and MI for all considered configurations and splits.

Let us then focus on the elements that make up the model architecture and their impact on the
performance of the model. This experiment aims, among other goals, to assess the relevance of
standard neural attention blocks, namely self-attention and multi-head self attention, for the spe-
cific challenge of speech attitude recognition. To do so, we focused on the penultimate group of
rows in the Table 6.1, considering the average performance independent of the split achieved. The
addition of a basic attention mechanism (SA) to the core CRNN architecture leads to a consider-
able gain of 0.15 in terms of UAR. Turning this block into a Multi Head Self Attention (MHSA), thus
allowing the model to observe several different aspects of the speech signal to compute attention
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scores, yields even better performance (+0.08 in UAR). It should be noted here that the best per-
formance in terms of UAR was obtained for a number of attention heads natt equal to 8. We do not
detail here the numerous attempts to further improve the results by changing the hyper-parameters
of the model.

In a second analysis, let us look at the model’s performance for each of the split types. We ob-
serve, for instance, that the addition of a self-attention block has no impact on the performance in
UAR for the casewhere the data are split by speaker while predictions are improved by 0.07 and 0.06
for random and linguistic split respectively. Although the addition of a multi-head attention block
has a positive impact onUAR, it remainsmoderate compared to the other two splits : 0.3 for speaker
split against 0.08 and 0.06 for random and linguistic split respectively. It can be hypothesised that
the signal’s aspects captured by the attention mechanism in addition are speaker-dependent. This
hypothesis explains why the addition of such a mechanism has little or no effect when the speak-
ers in the validation set have not been seen by the model.

0.35 0.07 0.38 0.20

0.07 0.48 0.23 0.23

0.09 0.04 0.76 0.11

0.08 0.10 0.09 0.74

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

0.66 0.08 0.15 0.11

0.09 0.66 0.14 0.11

0.07 0.05 0.84 0.05

0.08 0.06 0.05 0.81

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

0.62 0.10 0.21 0.07

0.04 0.76 0.13 0.07

0.04 0.04 0.90 0.02

0.05 0.05 0.06 0.84

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

Predicted attitudesPredicted attitudesPredicted attitudes

0.62 0.10 0.21 0.07

0.04 0.76 0.13 0.07

0.04 0.04 0.90 0.02

0.05 0.05 0.06 0.84

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

G
ro

un
d 

th
ru

th
 a

tti
tu

de
s

0.62 0.10 0.21 0.07

0.04 0.76 0.13 0.07

0.04 0.04 0.90 0.02

0.05 0.05 0.06 0.84

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

0.62 0.10 0.21 0.07

0.04 0.76 0.13 0.07

0.04 0.04 0.90 0.02

0.05 0.05 0.06 0.84

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

0.62 0.10 0.21 0.07

0.04 0.76 0.13 0.07

0.04 0.04 0.90 0.02

0.05 0.05 0.06 0.84

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

0.62 0.10 0.21 0.07

0.04 0.76 0.13 0.07

0.04 0.04 0.90 0.02

0.05 0.05 0.06 0.84

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

0.62 0.10 0.21 0.07

0.04 0.76 0.13 0.07

0.04 0.04 0.90 0.02

0.05 0.05 0.06 0.84

fr.. dist.. dom.. sed..

fr.
.

di
st
..

do
m
..

se
d.

.

Figure 6.3: Speech attitude recognizer’s confusion matrices for three split types, random (left),
linguistic (middle) and speaker (right) in its best configuration MHSA-CRNN.

The confusion matrices displayed for what seems to be the best configuration, namely MHSA-
CRNN, in Figure 6.3 enable us to go deeper in the analysis by looking at class dependant perfor-
mance. It can be observed that two of the attitudes - dominance and seduction - are clearly better
recognised than the other two - friendliness and distance. It can be seen that depending on the split
considered, the performance gap between attitudes is not the same. Therefore, the effect caused
by the choice of data split - random, linguistic or speaker wise - is dependent on the attitude con-
sidered. That suggests that the attribute according to which the split is performed does not have
the same role in attitudinal recognition whether we consider one attitude or the other. While the
performance gap remains moderate for the random and linguistic splits, it becomes huge for the
speaker split. In comparison with friendliness, the best recognized attitude - dominant - is bet-
ter recognized by 0.28, 0.18 and 0.41 in UAR for random, linguistic and speaker splits respectively.
Analogously, in comparison with distance, dominant is better by 0.14, 0.18 and 0.28 in UAR for those
same split types. It seems, therefore, that the model is not able to recognize friendliness when it is
communicated by a speaker it has not seen. Even if the effect is less important, the same trend is
also observed for distance.
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Towards Speaker Informed Speech Attitude Recognition

As pointed out by Scherer in (Scherer, 1986), there is an undeniable contradiction between the ap-
parent ease with which listeners judge emotions from speech and the intricacy of finding discrim-
inative features in speech signal for emotion recognition. Indeed, the emotion recognition scores
obtained in the case where the speaker is unknown, i.e. when the speaker has been seen by the
model, are quite low compared to other split settings (random and linguistic). A plausible first ex-
planation is that the model’s learnt definition of what is an attitude is insufficient, in the sense that
it is not always transferable to other speakers.

Let us reconsider how vocal emotion is processed by humans. When we meet someone we
did not meet before, we risk misinterpreting their emotions, notably when vocalized. For instance,
some people’s subtle vocal traits may convey the same emotion as someone who would produce it
much more emphatically. This brings up the issue of personal emotional granularity (Barrett, 2017)
and individual production strategy of emotional - or attitudinal - content. In most cases, this prob-
lem is solved by learning. We come to know the person in front of us and their emotional expression
patterns. The process of mastering this decoding skill takes time, it may take years to master it. If
we use a schema : we inform our decoding of emotions with knowledge about the identity of the
one who expresses them, in order to improve it.

A first step in enhancing the performance of speech emotion and attitude recognition models
might to mimic this human functioning thus informing prediction with speaker identity. We have
conductedmany experiments to try to inform attitude recognition by speaker identity without really
solving the problem at this date. Nevertheless, in (LeMoine et al., 2021a) we show that it is possible
to improve the prediction performances of emotions - through the use of the IEMOCAP database
(Busso et al., 2008) - and of attitudes - through the use of the (Le Moine and Obin, 2020) database
- by informing the classifier with speakers embeddings. However, we have only managed to show
this in the context of a speaker dependent experiment. When the speaker is not seen by the classi-
fication model during training, the model appears uncapable of exploiting the speaker embedding
by which it is informed. Other experiments have shown that learning these speaker representations
from a large multi-speaker database (Yamagishi, 2017) does not solve the problem either. It can
be assumed that the way in which speaker identity and attitudes - or emotions - interact depends
on the speaker that communicates them. In addition, the speaker identity informed attitude recog-
nition algorithm outlined in (Le Moine et al., 2021a) did not reach the performance of the neural
classifier introduced in this section. Although its architecture and functioning was interesting, we
decided not to present it in this document.

6.2 Perceptual Regression Based on BWS Scores

In this section - and the two next ones - we mean to model the perceptual latent spaces that under-
lie the decoding of speech attitudes by individuals, thus having direct access to their mental repre-
sentations of such attitudes. This marks a shift of paradigm as we no longer attempt to recognize
attitudes from their apriori labels neither from their acoustic correlates. To do so, we conducted
experiments using the data collected during the study on the perception of vocal attitudes (Section
4.4 of Chapter 4) using the BWS method. Indeed, this data may potentially be used to train models
for different purposes such as perceptual regression, i.e. a model is trained to predict BWS percep-
tual scores which might allow to assess the perception of new sounds’ attitude. The perceptual
structuring of latent spaces is an another goal that might be pursued, i.e. a model is trained to
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produce utterance embeddings that make sense with regards to the perception of attitudes.

6.2.1 About the Possible Uses of Gathered Perceptual Data

The data collected can be viewed in two ways. The raw data are the judgements made by par-
ticipants, i.e relations between sounds within a trial, and the processed data, i.e. the BWS scores
yielded by the BWS post-processing algorithm described in (Louviere et al., 2015).

Raw Judgements and How They Can Be Interpreted

Each utterance can be represented as a point in a perceptual space. Each sound is compared
to a finite number of other sounds in the BWS paradigm. These comparisons are represented in
the perceptual space by relations between the distances separating the compared point from the
other points. As points cannot be ordered in a space of dimension less than one, the perceptual
space has dimension greater than or equal to one. The data collected do not allow to access this
space whose dimensionality is unknown. However, building such a space could be beneficial in
many ways. For example, to improve our understanding of how attitudes are perceived through
its analysis or even to provide perception-based information for an attitude conversion algorithm.
Such a space could also be used for attitude perception assessment, i.e. news sounds could be
plunged in the space, their perception being inferred from their relative position and distance to yet
assessed utterances.

BWS Scores - A Projection of the Raw Perceptual Judgements

This second data format is a dimensional reduction of the actual perceptual space underlying the
decoding of speech attitudes. In the perceptual space, the BWS scores are the projections of var-
ious utterance-related points on a 1-D space contained in this space. As a result, the information
contained in these scores is: in the best case, a good representation of the participants’ judge-
ments, in the worst case - a rough summary of it. We may hypothesize that this projection, as a
dimensional reduction, results in a loss of information and a simplification of the actual structure
of the perceptual space of attitudes. In this section, we start by directly using the BWS scores as
training data for a regression model. In particular, we will use the architecture presented in section
6.1 as a starting point for this experiment. The next section is an attempt to go beyond those scores
by using raw perceptual judgements as data for model optimization.

6.2.2 Proposal for a Perceptual Regressor

Since the judgements made by participant only have a relative value which prevails only within
trials, the use of raw BWS data involves a technical elaboration that is complex both to formalize
and implement. Less ambitious but safer, the use of BWS scores in a classical neural regression
framework is a good trade-off solution. The regression model shares the same objective as the
participants in the perceptual experiment carried out on Att-HACK. In order to accurately predict
the proper perceptual score, the regression model must be able to exploit the information from the
speech signal that relate with the actual perception judgment. Furthermore, investigations outlined
in 4 revealed significant interactions between BWS scores and both speaker identity and linguistic
content. Thus it seems that individuals use both types of information to judge their own perception
of attitudes. Therefore, it makes sense to explicitly input this data into the model and track how it
affects the performance in regression.

117



Problem Positioning

In this framework, it is not necessary to take into account the experimental trials since the post-
processing of the judgments, which enables the assignment of a perceptual score to each sen-
tence, allows for the relativity issue to be avoided. Hence, each utterance x questioned with re-
spect to an attitude a is being assigned a BWS score sax that represents how a is perceived. It
should be noted that we do not have access to the participants either, in the sense that each score
is an average of the judgements of all participants. A regression model Ra which takes as input
a representation of the speech signal X and produces a scalar p is then introduced. The model is
optimized to yield outputs that match the BWS score sax assigned to the input utterance. Pursu-
ing such a goal, we expect the model to learn an implicit function that represents the underlying
strategy used by individuals to decode speech attitudes. The aspects of speech signal used by
receivers for attitude decoding must be captured by Ra. Be aware that depending on the attitude
decoded, these elements of the signal and, consequently, the implicit function that connects the
signal’s representation to the related perceptual score, may differ. So we learn as many models as
there are attitudes.

Architecture of the Perceptual Regressor
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Figure 6.4: Schematic view of the perceptual regressor’s neural architecture

We propose a perceptual regressor Pa
reg fully based on the ACRNN architecture - presented in

previous section 6.1 - that takes mel-spectrogram representations of speech signal as inputs but
only outputs a scalar in place of a multi-class vector. The selected architecture, depicted in Figure
6.4, slightly differs from the one we used for speech attitude recognition in the previous sections.
As mentioned at the beginning of the chapter, the model consists of four main blocks.

A first convolutional block is used here to capture what is relevant in the signal to decode an
attitude. The difference between this scenario and attitude recognition is that we are now trying
to differentiate between instances of a particular attitude rather than trying to distinguish between
attitudes themselves. In order to forecast a lowBWSscore for poor realizations, themodel will need
to capture the signal elements that convey the attitude being assessed. However, themodel cannot
stop with this fundamental job; it also needs to capture what may be described as an attitudinal
intensity, i.e. it has to learn to differentiate between successful outcomes. The latter task seems
muchmore complicated. Once these elements have been captured over time, themodel produces a
temporal summary of the yielded features using a recurrent block based on BLSTM layers followed
by a self-attention block (potentially multi-headed). These three blocks aim to model the patterns,
i.e. the temporal co-variation of various speech parameters, that underlie the perception of an
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attitude. After the attention block there is a fully connected layer that allows the features obtained to
be projected into a smaller space. By choosing the dimension of this space we make a hypothesis
about the number of global criteria used by individuals to decode an attitude. The regression is
finally performed from this space, i.e. each embedding vector is passed through a fully connected
layer and converted into a scalar.

Towards Informed Perceptual Regression

In order to inform our perceptual regressor with the speaker identity and the linguistic content, we
chose to represent each information by a one-hot-vector encoding. Assuming Att-HACK has finite
number of speakers, each one can be assigned a number and represented as a one-hot-vector. For
instance, if we denote S = {s1, ..., sNsp} the set ofNsp speakers in Att-HACK, then a speaker si can
be represented by a vector hspi = [hspi

1 , ..., hspi

Nsp
] such as

hspi
n =

{
1 if n = i
0 else. (6.6)

Analogously, if we denote S = {s1, ..., sNsent
} the set ofNsent sentences, i.e. linguistic contents,

in Att-HACK, then any sentence si in Att-HACK can also be represented by a one-hot-vector. Both
types of information yield two different vectors that can be tiled along time dimension tomatch the
melspectrogram shape. Once processed in that way, tensors can be concatenated to their related
input melspectrograms and given to the model.

Model’s Optimization

To train this model, we use a standard mean absolute error as cost function. Therefore, for a batch
B, the loss can formulated as follows

LRa =
∑
x∈B
|sax − Pa

reg(X)| (6.7)

6.2.3 Experiments with the Perceptual Regressor

In order to obtain the best algorithm, we tested many configurations varying the number of convo-
lutional layers (from 2 to 8), the size of their filters (from 16 to 256), the number of recurrent layers
(from 0 to 2) and the size of their internal states (from 32 to 256), the size of the latent space (from
8 to 128) but also the number of attention heads (from 1 to 16) and their size (from 32 to 2048). The
purpose of this section is not to report on this quest for the right architecture but rather to report
on the performance of this optimal architecture depending on what is given as input. Nevertheless
we give some keys on what in the model seems to impact the regression performance.

Data Processing

We used exactly the same data involved in the BWS experiment which represents nearly 2400 ut-
terances for each attitude.

We normalized mel-spectrograms speaker wise for each of the four attitudes. We also normal-
ized bws scores so that they properly range from 0 to 1 for each attitude. In fact, the scores were
initially lying within [0, 1] but values were found not to be close to 0 nor 1. Thus, denoting X a the
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set with all sentences questioned with respect to attitude a, for any utterance x ∈ X a, the related
BWS scores were transformed as follows

sax =
sax − min

x′∈Xa
sax′

max
x′∈Xa

sax′ − min
x′∈Xa

sax′
(6.8)

Criteria for Assessing Model Performance

Before launching experiments in order to select a baseline architecture, let us briefly review the
metrics used to evaluate the performance of our model. We chose to use three metrics accounting
three different aspects of model performance.

MEAN ABSOLUTE ERROR (MAE). MAE is at the same time our training cost function and an interest-
ing metric for evaluation. It measures how accurately the model predicts BWS scores in average
over all validation samples. In particular it gives an idea of how far the predicted score of an unseen
utterance is from its actual score.

PEARSON CORRELATION COEFfiCIENT (R). This coefficient quantifies the linear relationship between
the expected values and the actual values. The ideal situation is when the predicted values exactly
match the observed values, their relation is precisely linear, and the correlation coefficient is 1. If
the coefficient is close to 0, the model does not work, it does not manage to capture what in the
signal leads to a rather low or rather high score. If the coefficient is close to 0.5, the model fails
to make good predictions for the whole score scale. For example, it may predict an average score
instead of a rather low score.

COEFfiCIENT OF DETERMINATION (R2). This coefficient, widely used for regression model’s assess-
ment, measures the proportion of variance of the predictions explained by the regression model. It
is important to note that the amount of variability that themodel can account for does not determine
how significant the correlation between the predictions and the actual values is. This significance
is measured through p-value. However it gives insight about how data is distributed around the
linear regression line associated with the correlation coefficient. It would be close to 0 if data is far
from this line and rather close to 1 if close.

Finding the Right Architecture

During this test phase we limited ourselves to the specific case of friendliness perceptual regres-
sion. Indeed, it would have taken too much time to test all the configurations (almost 40) on the
four attitudes. The batch size was set to 80 and the learning rate to 10−5. We trained each config-
uration for at least 200 epochs and stopped training once lowest validation loss was reached. We
found that increasing the number of convolutional layers to the limit of 6 layers as well as decreas-
ing the size of the filters to 32 also significantly improved performance. Changing the number of
recurrent layers radically impacts the r2 score, so we kept 2 BLSTM layers. The size of the internal
states showed little impact on the performance of the model, so we kept a size of 60. The num-
ber and size of the attention heads also have a great influence on the performance of the model,
the chosen configuration uses 8 heads of size 1024. Finally, the size of the latent space has been
drastically reduced to 8 for slightly better performance. The selected regression model is therefore
rather small, using far fewer parameters than the model used for the emotion recognition task. It
is also deeper, 6 convolutional layers compared to 4 for the SER.
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Towards Homogeneous Prediction Performance Across the Full Range of BWS Scores

Amajor problemwe facedwhen experimentingwith perceptual regression is caused by the specific
distribution of the BWS scores. Most of BWS values are close to 0.5 and very few are close to 0.0
and 1.0, i.e. the scores’ distribution is some sort of a Gaussian. Moreover, the model’s objective is
to have the mean absolute error between predictions and actual values averaged over all samples
the lowest as possible. To fulfill this objective the model can barely ignore those extreme values
and just needs to provide accurate predictions for mean values (located around 0.5). The paradox
is that such a perceptual regressor is partly dedicated to identify badly communicated instances
of attitudes, i.e low BWS scores, as well as very well communicated ones, i.e. high BWS scores.
Thus, it appears crucial to give more importance to those extreme valued samples during training
so that the model take them into account.

To enforce this compensation, wemultiply each sample’s loss value by a factor γax that depends
on the actual BWS score of the utterance x. We formulated this factor as follows

γax = 0.5 + α ∗ |0.5− sax| (6.9)

where α is a positive scalar that controls how much we want to give importance to extreme
valued samples during training. The greater α is the more importance extreme valued samples are
being given.

6.2.4 Results & Discussion

In this subsection, we display performance results for the considered configurations of our percep-
tual regressor, REG basically works with melspectrograms, REG-SP is informed by speaker identity
and REG-SP-LING is informed by speaker identity and linguistic content.

Performance Results for Informed Perceptual Regression Models

While the BWS task has been completed by participants without troubles - as proven by objective
measures such as average experiment duration and participant consistency outlined in section
4.4, it appears difficult to artificially mimic these judgements, the main problem encountered being
generalization. The performance results for the four selected configurations REG, REG-SP, REG-LING
and REG-SP-LING across the four attitudes are displayed in Table 6.2.

Model friendly distant dominant seductive

Metric mae r r2 mae r r2 mae r r2 mae r r2

REG 0.14 0.47 0.18 0.14 0.18 0.01 0.14 0.35 0.09 0.13 0.57 0.30
REG-SP 0.14 0.51 0.24 0.13 0.32 0.06 0.13 0.43 0.18 0.13 0.60 0.34
REG-LING 0.15 0.42 0.16 0.13 0.23 0.02 0.14 0.41 0.14 0.14 0.49 0.20

REG-SP-LING 0.12 0.64 0.39 0.12 0.37 0.12 0.13 0.54 0.30 0.13 0.58 0.32

Table 6.2: Performance of the model in terms of mean absolute error (MAE) and r2 score for the
four selected configurations and across attitudes

At first sight, we observe that the last configuration REG-SP-LING informed by both speaker iden-
tity and linguistic content obtains the best results in terms of MAE, pearson correlation coefficient
r and coefficient of determination r2 for all attitudes except seduction that obtains better r and r2
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with REG-SP. We note that observed correlations were all significative (p < 0.001). We found signif-
icant impact of the speaker identity information on the model’s performance in terms of r2. When
compared to basic REG configuration, speaker informed configuration REG-SP achieves improve-
ment of 0.06 for friendliness, 0.08 for distance, 0.09 for dominance and 0.04 for seductiveness. We
found the effect of linguistic information on the model’s performance in terms of r2 to be depen-
dant of the considered attitude. When compared to basic REG configuration, linguistically informed
configuration REG-LING achieves improvement of 0.06 for distance, 0.05 for dominance. Conversely,
linguistically informed configurationREG-LING is lower of 0.06 for friendliness and 0.10 for seductive-
ness in terms of r2. However, the two strong production profiles - namely seduction and dominance
- uncovered in Section 4.3, are those for which the best results are obtained. We have r2 = 0.39 and
r2 = 0.22 respectively for seduction and dominance while only r2 = 0.17 and r2 = 0.11 respectively
for friendliness and distance.

By looking at the latent spaces - which here represent all the data - using a UMAP representation
(McInnes et al., 2018) obtained through mapping the actual latent space with a 2D reduced space,
one can see a polarisation according to the BWS score. High scores tend to be on one side of
the space while low scores tend to be on the other side. We examined correlations between BWS
scores and utterances’ coordinate on the dimension of the reduced space in which polarisation is
observed. We found p = 0.28 for friendliness, p = 0.20 for distance, p = 0.31 for dominance and
p = 0.42.
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Figure 6.5: Regressor’s performance in REG-SP-LING configuration for the four attitudes, friendly,
distant, dominant and seductive. For each attitude, the correlation between actual and predicted
bws scores (left) and a latent space UMAP vizualisation (right), in which darker dots are associated
with higher BWS scores and lighter dots with lower scores, are depicted.

By looking at the graphs that display the predictions as a function of the actual BWS scores,
we can observe that our regression models mostly predict average scores. Notably, our models
make no predictions below 0.2 and almost none above 0.8 (except for friendliness) while some
sentences have scores within these ranges. To explain this drawback, it can be hypothesised that
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the model sees too few examples whose scores fall within these ranges for it to learn to yield
correct predictions for these cases. Indeed the scores are approximately Gaussian distributed, the
majority of the examples have scores between 0.3 and 0.7. In the following we try to take this into
account in order to improve the predictions for the extreme bands of the BWS scale. Note that it
seems essential that our models make good predictions for these extreme intervals, since one of
their objectives is to detect poor achievements - related to low BWS scores - as well as very good
achievements - related to high BWS scores.

On Improving Predictions for Low and High BWS Scores

So as to make up for the model’s incapacity to predict low and high values, we intend to give the
examples related to underrepresented scores more weight when the model is being optimized. To
do so we weight each sample’s x related loss when considering attitude a by a factor γax defined as
formulated in Eq. 6.9.
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Figure 6.6: Regressor’s performance in REG-SP-LING configuration with weighting constraint in
terms of mean absolute error for different BWS bands for the four attitudes, friendly, distant, dom-
inant and seductive. Error bars show 95% confidence interval.

The approach is fair in practice; as shown in Figure 6.6, this adjustment lowers the prediction
error for the marginal bands. However, it also raises the error on the other bands leading to poorer
global performance. As shown in Table 6.3, both mae, r and r2 are worst in the weighted case than
in the basic one.

Model friendly distant dominant seductive

Metric mae r r2 mae r r2 mae r r2 mae r r2

REG-SP-LING 0.12 0.64 0.39 0.12 0.37 0.12 0.13 0.54 0.30 0.13 0.58 0.32
WEIGHTED 0.13 0.60 0.30 0.15 0.29 -0.3 0.13 0.49 0.19 0.13 0.61 0.30

Table 6.3: Performance of the model in terms of mean absolute error (MAE), pearson correlation
coefficient r, and coefficient of determination r2, for the selected baseline and its sample weighted
version across attitudes

How can this be interpreted? The assumption wemake is that there are two different sub-tasks
underlying this seemingly simple regression, and it is likely that the model is being asked to do
something that is too complex. In order to produce accurate predictions, the model must account
for what can be described as an attitude intensity, or a difference in the degree of communication
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of an attitude. However, it should also be able to identify instances where the attitude has been
miscommunicated, or just not perceived as so by the receivers. The model likely needs to cap-
ture a variety of quite distinct signal properties for these two objectives. In one case the attitude is
effectively communicated and it is a matter of distinguishing degrees between instances of this at-
titude. In the other case, it is not successfully communicated, the vocal characteristics underlying
its production are possibly absent. It is likely that the model captures fluctuations around a global
pattern with an associated attitude for the first subtask. Conversely, for the second task, we can as-
sume that the pattern might be completely absent. Therefore, in order to predict, the model would
need to detect its absence. With regard to the high scores, it can be hypothesised that what un-
derlies the individuals’ judgements has more to do with intrinsic characteristics of the voice being
judged than with the attitude being communicated. To make good predictions, the model should
then capture these intrinsic features, e.g. the identity of the speaker. We must emphasize that the
above statements are merely hypotheses, and that they lack any explanatory value until they are
supported by evidence.

We propose to take a step back by considering ranges - or intervals - of scores rather than
scores in order to, on the one hand, question these hypotheses and, on the other hand, try to obtain
a reliable algorithm that can mimic the average perceptual judgment for each of the attitudes. The
problem therefore no longer takes the form of a regression task but of a classification task.

6.3 Perceptual Classification based on BWS scores

It is challenging to develop a model that predicts the BWS score from a mel-spectrogram, as we
have seen in the previous section. The hypothesis we have retained is that several sub-tasks are
intertwined within this seemingly basic regression task. The BWS score, in particular, might be in-
terpreted in two different ways. For instance, a very low score could signify a low intensity of the
attitude conveyed, but it could also denote a realization for which no attitude related pattern can
be identified, a sentence for which the target attitude is not recognized as such by receivers or for
which other aspects are used by receivers to judge. Our attempts of regression were unsuccessful
most likely due to the polysemy of the resulting BWS scale. An efficient model must be able to
discriminate between these two interpretations in the signal as well as what ties a sentence to its
score. This can be seen as a two-stage task: first a classification task that distinguishes interpre-
tations of the BWS score and then a regression task that aims to predict the score accurately.

6.3.1 Proposal for a Perceptual Classifier

In this section, we consider implementing one simpler subtask: the recognition of perceptual do-
mains. For this purpose wemake the following assumption: depending on the BWS ranges consid-
ered, one of the aforementioned interpretations takes precedence over the others. For example, we
will consider that sentenceswith a very low score are bad productions or poorly communicated atti-
tude instances. Sentences with average scores will be considered to have come from the attitude’s
typical production. Differences within this range will be interpreted as variations in the intensity
of attitudes. High-scoring sentences will form the final perceptual domain and will be regarded as
non-typical production. It is considered that in these sentences, some other feature of speech like
the speaker’s identity takes primacy in the decoding process.
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Problem Positioning

A classifier Ca which takes a representation of the speech signal X as input and produces a multi-
class vector d is introduced. Provided BWS scores normalized with respect to Eq. 6.8, we split data
in Nb categories corresponding to samples related to different perceptual bands, i.e. with scores
lying in different bands of the BWS scale. Each band Ba,i is defined by a lower bound sa,il and a
higher bound sa,ih . Thus any sample x assigned with a BWS score sax is ensured to be related with
exactly one band provided

x ∈ Ba,i if
{
sa,il ≤ sax
sax < sa,ih

(6.10)

Each band Ba,i is represented by a one-hot vector ba,i of size Nb which is defined as follows

ba,ik =

{
1 if k = i
0 else. (6.11)

The classifier’s objective is to capture the aspects of speech signal that enable individuals to
distinguish between those Nb domains. Again, we note that depending on the attitude decoded,
these elements of the signal and, consequently, the implicit function that connects the signal’s
representation to the related BWS domain, may differ. So we learn as many models as there are
attitudes.

Architecture of the Perceptual Classifier (PC)
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Figure 6.7: Schematic view of the perceptual band classifier’s neural architecture

We propose a classifier Ca fully based on the ACRNN architecture that takes melspectrogram
representations of speech signal as inputs and outputs a multi-class vector. The selected archi-
tecture, depicted in Figure 6.7, slightly differs from the one we used for speech attitude recognition
in the previous sections. As mentioned at the beginning of the chapter, the model consists of four
main blocks. Since the model’s design is the same as that utilized in the previous part and can be
interpreted in the same way, we won’t go into great detail about it here. The only notable differ-
ences are in the last block, i.e. the classification block. Here the fully connected layer predicts a
vector of size Nb and is followed by a softmax activation. Similar to the regression task presented
in the previous section, we found interesting to provide additional information to the classification
model such as speaker identity and linguistic content. For more details on how this information
is represented and integrated into themodel, please refer to the subsection 6.2.2 of the last section.
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To train this model, we use a standard categorical cross entropy as cost function. Therefore,
for a batch B, the loss can formulated as follows

LCabws
= −

Nb∑
i=1

di log(d̂i) (6.12)

6.3.2 Experiment with the Perceptual Classifier

The number of convolutional layers, the size of their filters, the number of recurrent layers and the
size of their internal states, the size of the latent space, as well as the number and size of attention
heads, were all varied within aforementioned ranges (6.2) to find the optimal algorithm. We do not
think it is worthwhile to report on the influence of any of these parameters here. There are two key
goals for this experiment. The first is to investigate the claims that distinct perceptual domains
exist. The second entails developing a system to validate the Att-HACK database, specifically the
detection of instances of poorly or well-communicated attitudes. Through this second goal, a use
that is dear to us emerges: conditioning a system of attitude conversion with perceptual informa-
tion. In particular, at the time of writing we work on using the information gathered in the BWS
experiment to monitor the intensity of the converted attitude.

Data Processing

The data are processed and normalized is exactly as in the previous section. The only difference
is that we used balanced batches, i.e. with as many examples for each BWS sub-band. We thus
used nearly 2400 utterances for each attitude. Melspectrograms were normalized speaker wise for
each of the four attitudes. BWS scores were also normalized following Eq. 6.8 to have values lying
between 0 and 1 for each attitude.

Proving the Classifier with Additional Information

For this experiment, similar to what was done before, we propose to inform the model with two
types of information: on the one hand the identity of the speakers, on the other hand the linguistic
content. Since we needed to run the model on data that was not evaluated in the BWS experiment,
and hence on other linguistic contents, we had to come up with a different method of providing
the model with linguistic information than through the use of one-hot encoding. Even though every
speaker in the database was evaluated during the perceptual experiment, only some of the sen-
tences, i.e. linguistic contents, were evaluated.

To feed the model with relevant representations of the sentences in the Att-HACK, we used a
semantic content encoding algorithm called CamenBERT. CamemBERT (Martin et al., 2020) is a
state-of-the-art language model for French based on the RoBERTa architecture (Liu et al., 2019)
pretrained on the French subcorpus of the newly available multilingual corpus OSCAR. Although
semantic and linguistic aspects are interdependent, they should not be confused. By immersing the
100 sentences of the database in the language model’s latent semantic space, we obtain a vector
representation hsem of size 768 for each sentence. Obviously, concatenating a sequence of vectors
of this size to the input melspectrogram slows down the training considerably and ultimately gives
too much importance to the semantic information. We therefore reduce the dimension of these
semantic embeddings by projecting them into a smaller space using a fully connected layer.
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Criteria for Assessing the Model’s Performance

Before launching experiments in order to select a baseline architecture, let us briefly review the
metrics used to evaluate the performance of our model. We chose to use two metrics accounting
two different aspects of model performance.

UNWEIGHTED AVERAGE RECALL (UAR). Already used in previous experiments, this metric measures
the average of the recall on the positive class and recall on the negative class.

PRECISION (P). The precision is the ratio between the number of true positives and both true and
false positives. The precision is intuitively the ability of the classifier not to label as positive a sam-
ple that is negative. The addition of this second criterion makes it possible, among other things, to
select the configuration for which sentences with poorly communicated attitude are least misclas-
sified.

Finding the Right Architecture

During this test phase we considered the four attitudes. We did not test as many configurations
as in the previous experiment in the case of regression. We have reduced the batch size to 32 so
that the different BWS bands can be evenly distributed. We kept a learning rate of 10−5. We trained
each configuration for at least 200 epochs and stopped training once lowest validation loss was
reached. We have tested different numbers and values for the low and high limits that define the
BWS bandswewish to be able to identify. We have chosen tomake class prediction on four distinct
bands (Nb = 4) listed below.

• A lower band with scores sax ∈ [0.0, 0.2[ in which badly communicated instances of a as well
as low intensity instances of a can be observed.

• A low medium band with scores sax ∈ [0.2, 0.5[ that can be associated with normally commu-
nicated attitude instances of low intensity.

• A high medium band with scores sax ∈ [0.5, 0.8[ that can be associated with normally com-
municated attitude instances of high intensity.

• A higher band with scores sax ∈ [0.8, 1.0] in which extremely well communicated attitude
instances of a can be observed.

Towards a Lightweight Model for BWS Range Classification

It is conceivable that such amodel could be connected to the output of a speech attitude conversion
system in order to condition the training of the transformation on perceptual data. Note that as
manymodels as attitudes are converted will be required, which can be problematic both in terms of
memory and computing time. So, in order to make these models easily included and still effective,
we must endeavor to make them smaller.

6.3.3 Results & Discussion

In this section, we present the results of our BWS perceptual band classificationmodels. Regarding
the assumptions stated at the beginning of this part, we attempt to analyze their performance.
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Configurations FRIENDLY DISTANT DOMINANT SEDUCTIVE
UAR 0.51 0.43 0.47 0.50
P 0.46 0.29 0.38 0.39

Table 6.4: BWS range classifier’s performance in terms of unweighted average recall and precision
score for each attitude.

BWS Range Classifier’s Performance

In general, the scores obtained are quite modest. In particular, it can be seen that the precision
scores are rather low, especially for distant with P = 0.29, dominant with P = 0.38 and seduc-
tive with P = 0.39. This means that the model cannot avoid to predict false positives. The UAR
scores are literally average (around 0.5) but this must be put into perspective by the variability of
performance depending on the perceptual band being considered.
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Figure 6.8: BWS score band classifier’s confusion matrices for the four attitudes (from the left to
the right) friendly, distant, dominant and seductive with the selected configuration.

If we look at the prediction performance per BWS score range, i.e. BWS domain, we immedi-
ately see that there are big differences depending on whether we consider one band or the other. In
particular, we observe for the four attitudes a clear better prediction performance for the extreme
ranges, namely the range associated with very low scores (< 0.2) and the range associated with
very high scores (> 0.8). This finding supports the hypothesis that there are different perceptual or
communicative domains within the resulting BWS scale. It can be hypothesized that this indicates
a difference in the nature of the attitude communicated for sentences associated with very low
scores and that communicated for sentences associated with scores between 0.2 and 0.8. Simi-
larly, although to a lesser extent, it seems that the attitude communicated for sentences associated
with very high scores is different in nature from that communicated for medium score sentences.
For the average scores, between 0.2 and 0.8, it seems difficult to identify categories, so we can
imagine that this domain is relatively homogeneous, we can think of a continuum of attitude within
which differences of degree could be observed between attitude instances.

Latent Space Visualization

We represented latent spaces yielded by our perceptual classifier Ca using UMAP visualizations
in Figure 6.9. The perceptual domains associated with the different BWS bands are represented
by different colors. In line with the assessment of predictive performance, the domains are not
distinct, they largely overlap. Nevertheless, we can see that the extreme bands are well separated,
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with sentences associated with scores below 0.2 being spatially opposed to those associated with
scores above 0.8. As for the other two categories, while there is a tendency for polarisation, with
sentences with scores between 0.2 and 0.5 being closer to the sentences associated with very
low scores and similarly for high scores, there is also a large part of the space that is blurred and
contains points from both of these categories.

sa
x ∈ [0.0, 0.2[

sa
x ∈ [0.2, 0.5[

sa
x ∈ [0.5, 0.8[

sa
x ∈ [0.8, 1.0]

FRIENDLY DOMINANT SEDUCTIVEDISTANT

Figure 6.9: Latent spaces UMAP visualizations for the four attitudes. The four perceptual domains
are represented using different colors. Note that only validation data is represented.

Preliminary Discussion

We have found that learning a regression from BWS scores is rather challenging. Using such a
regression model, it was specifically found to be difficult to predict extremely low and extremely
high scores. As one of the objectives of this Chapter is to identify bad realizations - i.e. instances of
poorly communicated attitudes - we could not leave it at that. We then adopted a different strategy.
We divided the BWS scale into four categories thus changing the issue into an apparently easier
classification task. Some of these categories - the extreme bands - proved to be easier to predict
than the others, suggesting that they represented radically different things, we therefore speak of
perceptual domains. By identifying the utterances predicted as to be related to the lower perceptual
range, this classification model will also enable a minimal validation of the entire database. As
only a sub-part of the base was judged by the participants. It will be assumed that these identified
samples are essentially poor vocal productions and are therefore not of interest in our attitude
conversion framework.

6.4 Perceptual Metric Learning Based on BWS Raw Judgements

We have shown how challenging it is to design an algorithm - BWS-Net - that mimics human judge-
ments artificially. In the previous two sections we have limited ourselves to training these models
from the BWS scores. These scores vary on four linear scales which can be seen as 1-D sub-spaces
of the actual multi-dimensional space in which the perception of attitudes occurs. From this point
of view, a BWS score is a projection onto one of these sub-spaces of the average judgement about
an attitude instance. The BWS score therefore potentially contains much less information about
the perception of the attitude conveyed by the sentence with which it is associated than the actual
judgment that was made. In the light of this observation, we propose to learn a model to mimic
the process by which an individual decodes a vocal attitude, from the raw judgements of the BWS
experiment.
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6.4.1 Proposal for a Perceptual Arranger

In this section we attempt to develop amethod for learning amodel from the raw BWS judgements.
This method is all the more interesting as it can be transposed to other cases of application of the
BWS such as the perceptual assessment of timbre investigated in (Rosi et al., 2022).

Problem Positioning

A trial is a tuple of N sounds ta = {x1, ..., xN} on which judgements are made with respect to an
attribute a. Here, a can be either friendly, distant, dominant or friendly. Within a trial, one utterance
is judged best, one is judged worst and others can be considered neutral. Those judgements are
denoted b, w and n respectively. We denote T a the set containing all the trials considered for the
BWS experiment that investigates a. Hence, in a given trial ta ∈ T a depicted in Figure 6.10, any
utterance x ∈ ta is being assigned a judgement jt

a

x ∈ {b, w, n} in regards with the attribute a.

ACRNN Cem
Conv3D 

Conv3D x3

Maxpooling 3D

BLSTM

Self Speaker Attention

Fully connected

Batch-Norm
Fully Connected

softmax

predicted emotion

ACRNN Csp
Conv3D 

Conv3D x3

Maxpooling 3D

BLSTM

Self Attention

Fully connected

Batch-Norm
Fully Connected

softmax

hsp

speaker  
embedding

emotion 
embedding

predicted speaker

trained for  
speaker recognition

trained for  
emotion recognition 
conditionally to 
speaker embedding

SSA that combines 
information from the 
speaker identity and 
the emotion

logmels

ACRNN Csp
Conv3D 

Conv3D x3

Maxpooling 3D

BLSTM

Self Attention

Fully connected

Batch-Norm
Fully Connected

softmax

predicted speaker

ACRNN

Conv2D x5 

BLSTM

Multi-Head Self 
Attention

Dense

predicted speaker

ACRNN Cem
Conv3D 

Conv3D x3

Maxpooling 3D

BLSTM

Self Speaker Attention

Fully connected

Batch-Norm
Fully Connected

softmax

predicted emotion

logmels

hsp

speaker  
embedding

back-propagation 
with respect to LCCEsp

LCCEsp

back-propagation 
with respect to LCCEem

LCCEem

fri
en

dly
 

dis
tan

t 
do

m
ina

nt
 

se
du

cti
ve

pe
rce

pt
ive

 tr
ip

le
t l

os
s  

𝐿
bw

s 

latent space in which each 
sound sample is represented 
by a fixed-size vector

deep features extraction 
from melspectrogram

features temporal 
summerization

focus on timbre 
salient information

dimension reduction

melspectrogram 
representation of a sound 
sample

x ∈ [bs, T, D]

hcnn ∈ [bs, T, Dcnn]

hblstm ∈ [bs, T, Dblstm]

cmha ∈ [bs, Dmha]

h ∈ [bs, Dlatent]

negative distance 

positive distances
LATENT SPACE AT 
TRAINING PHASE

LATENT SPACE AT 
INFERENCE PHASE

rond
chaud

rugueux

brillant

LATENT SPACE AT 
INFERENCE PHASE

negative distance 

positive distances

hb

hw

hn1

hn2

hn2

hn1

hb hw

Wor
st

Bes
t

jt
xb

jt
xw

jt
xn1

jt
xn2

xn2

xn1

xb

xw
which sounds are the best and 
worst with respect to a ?

t 2 T a

a 2 A

Figure 6.10: A trial t ∈ T a of N = 4 sounds judged with respect to the BWS paradigm

Touse utteranceswith regards to their BWSstatus, we rename themwith respect to the trial they
lie in and the judgement they have been assigned. The best of trial ta can be indexed as tab , i.e. as
part of trial t investigating attribute a and judged best. Analogously the worst and neutrals of trial ta
can be indexed taw and tani

with i ∈ J1, N − 2K respectively. Thus, depending on the trial considered
and the judgement made, an utterance x could be denoted xt

a
b , xt

a
w or xt

a
ni with i ∈ J1, N − 2K.

We would thus design different instances of a given sound within the BWS experiment. In the
perceptual space related to a, i.e. the space formed by judgements with regards to a, each sound
x is represented by a vector hx. Therefore, the vectors representing the utterances of trial ta can
be denoted for i ∈ {1, ..., N − 2} as follows

htab = hxtab (6.13)

htaw = hxtaw (6.14)

htani = hx
tani (6.15)

Proposal for a BWS-Based Perceptual Arranger

Following our intention to exploit the data obtained from BWS experiment, we thought of devel-
oping a model that captures what underlies the perception of speech attitudes in the signal. The
model would take mel-spectrograms as inputs and generate perceptual embeddings, i.e. perceptu-
ally salient representations of input utterances. For any input mel-spectrogram X, our perceptual
arranger Aa outputs an embedding vector hx. Aa is basically a ACRNN, as introduced in section
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Network Network Network

‖htab − htaw‖ ‖htab − htani ‖ ‖htaw − htani ‖

> >

Lta

RC

xtab xtaw xtani

Figure 6.11: Relative Contrasting (RC) loss structure processing a batch formed with a trial ta. The
structure has to be repeated N − 2 times depending on the size N of each trial that changes the
number of neutrals in a trial. Scheme inspired from the triplet loss structure depicted in (Hoffer and
Ailon, 2015).

6.1 and depicted in Figure 6.2, from which end classifier block is discarded. As a first experiment,
we propose to use the raw judgements made by participants as model training criterion. Thus the
model will explicitly learn a latent space in which representations of utterances are arranged with
respect to the BWS judgements. The BWS judgments are not appropriate for use as such to train a
model. Judgments, however, can be understood as relations between sounds within a trial. For a
given trial, 2(N − 1) relations can be inferred from raw judgements. Denoting≺a the order relation,
i.e. if x ≺a y then x is more perceived as a than y. We can write for i ∈ J1, ..., N − 2K

xt
a
b ≺a x

taw (6.16)

xt
a
ni ≺a x

taw (6.17)

xt
a
b ≺a x

tani (6.18)

To turn those relations understandable by a neural model we can translate them in terms of
distances. Thus, introducing a distance ∥.∥: Rdemb → R, we can write for i ∈ J1, ..., N − 2K

∥htab − htaw∥ ≥ ∥htab − htani ∥ (6.19)

∥htab − htaw∥ ≥ ∥htaw − htani∥ (6.20)

To train the model to match these relations between distances in the latent space, we imagined
a training criterion, a cost function inspired by themetric learning literature and notably the famous
triplet loss (Hoffer and Ailon, 2015).
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RELATIVE CONTRASTING (RC) LOSS. The peculiarity of this case is the relative nature of relations that
must be imposed within the latent space. Analogously to the context of triplet loss, the relations
here involve at least three points in the space, i.e. each of the inequalities written above involves
three points as depicted in Figure 6.11. However there is no guarantee that three utterances, ran-
domly picked in latent space, are linked by a relation. Here there are no absolute relations between
sounds, relations can only be relative, valid within a trial. To avoid themodel to collapse, i.e. turning
all utterances into one single point in the latent space, we introduce a positive margin α. The RC
loss Lta can be defined for all trial ta ∈ T a as

Lta

rc =
1

ntav

N−2∑
i=1

max (∥htab − htani∥ − ∥htab − htaw∥+ α, 0)+

1

ntav

N−2∑
i=1

max (∥htaw − htani ∥ − ∥htab − htaw∥+ α, 0)

(6.21)

where nt
a

v is the number of valid relation, i.e. unfulfilled relation, with the trial ta.

Imposing a fixed margin that is not dependent on the trial under consideration appears prob-
lematic. The best and worst outcomes of one trial may in fact be perceived as being closer than the
best and neutral outcomes of another. We run into the relativity of the judgments made oncemore.
To tackle this issue, we introduce another networkM dedicated to margin learning. This model
takes two parameters as arguments, a mean value µ and an amplitude δ such that any learnt mar-
gin lies between µ− δ and µ+ δ. Taking all the embeddings in the batch as input, it producesN − 2
distinct margins {αb,ni

, αw,ni
}i∈J1,N−2K related to each of the trial’s relations respectively. Details

about the implementation are given in the experiment the next section.
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Figure 6.12: Configurations of the latent space at training (left) and inference phase (right) for a
given trial ta composed with four utterances xt

a
b , xt

a
w , xt

a
n1 and xt

a
n2 respectively judged best, worst,

neutral and neutral. The model explicitly learns a latent space structure that reflects the partici-
pants’ judgements.

DYNAMIC MARGIN RELATIVE CONSTRASTING (DM-RC) LOSS. With this refinement on margins, the RC
loss formulated in equation 6.25 slightly changes as not does it take embeddings as inputs but
also outputs of the margin network. Thus for a given trial ta, the DM-RC loss can be expressed as
follows
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Lta

dmrc =
1

ntav

N−2∑
i=1

max (∥htab − htani ∥ − ∥htab − htaw∥+ αb,ni
, 0)+

1

ntav

N−2∑
i=1

max (∥htaw − htani∥ − ∥htab − htaw∥+ αw,ni
, 0)

(6.22)

We seek to explicitly learn the latent structure underlying speech attitude perception by fitting a
model on raw judgments with respect to those losses. Such amodel should be able to extract from
speech signals the features that people use to decode speech attitudes. Using those discrimina-
tive features, the model rearranges the points in its latent space to move them closer to and farther
away from one another in order to match the BWS judgments. The training and inference phases
are depicted in Figure 6.12 for a given trial.

Initial experiments showed that if the model was given the freedom to learn a dynamic margin,
it systematically tended to learn the smallest possible margin. In reality, however, some sounds are
perceived as very distant and others as very close with regards to the attitude conveyed. Intuitively,
we can assume a Gaussian distribution of distances between sounds in a perceptual space. It can
therefore be assumed that the margins learned by the model also follow a Gaussian distribution,
which means that few margins will be small and large and the majority will be medium.

DYNAMIC MARGIN CONSTRAINT (DMC). In order to counteract the model’s propensity to learn the
smallest margin possible, we decided to impose a constraint dependant on the learned margin.
This constraint can be formalised through a function γ that takes the learned margins as an ar-
gument and produces a scalar that is then added to the total loss of the model. There are many
ways to apply such a constraint, so we tested different functions. The DMC constraint can thus be
formulated for a trial ta as follows

Lta

dmc =

N−2∑
i=1

γ(αb,ni − µ) + γ(αw,ni − µ) (6.23)

One final point to note. The decrease in the DM-RC loss is not sufficient to guarantee an increase
in the number of relationships actually satisfied. Since margins can decrease overall without af-
fecting order relationships. In particular, we observed this behaviour at the end of convergence. To
avoid this, we have added a final loss directly derived from the DM-RC loss.

FULfiLLED RELATIONS (FR) LOSS. This loss corresponds for a given trial ta to the number of unsatis-
fied relationships within the trial divided by the number of elements in the trial N .

Lta

fr =
nt

a

v

N
(6.24)

For any utterance x in the dataset whose perception is questioned with regards to a, we denote
T a
x = {ta ∈ T a | x ∈ ta} the subset of T a in which each trial contains x and T ′ax a subset

containing Nt randomly picked elements of T a
x . From each sound x in the dataset, we generate

batch Bax of size N ∗ Nb by sampling Nb trials within T ′ax. Hence, for a given batch Bax , the total
perceptual arranger loss can be expressed as follows
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LB
a
x

Aa =
∑

t∈T ′ax

Lta

rc (6.25)

In the case of dynamic margin, the loss becomes slightly more complex and is formulated as
follows

LB
a
x

Aa =
∑

t∈T ′ax

Lta

dmrc + λdmcLta

dmc + λfrLta

fr (6.26)

6.4.2 Experiments with the Perceptual Arranger

We carried out experiments using both models introduced in the previous part, namely the percep-
tual arranger and regressor, on the data gathered during the BWS study on Att-HACK described in
4.4. experiment.

Implementation Details

Implementing RC loss was a major challenge as the relationships between sounds are only valid
within a trial. In order to optimize the model, we must execute the computation tensorially, we
cannot just calculate each term of Eq. 6.25 one at a time. To do so, we have been inspired by the
way the triplet loss (Hoffer and Ailon, 2015) is implemented. When questioning attitude a, from
each utterance x a batch Bax is designed as follows

Bax =
⋃

ta∈T a
x

{x′ | x′ ∈ ta} (6.27)

We further denote n the number of elements in Bax. Our custom RC loss takes three tensors as
input. A first tensor H = {hi}i∈J1,nK is made of latent vectors corresponding to each utterance in
the batch, a second tensor t = {ti}i∈J1,nK is made of the corresponding trial names, finally a third
tensor j = {ji}i∈J1,nK is made of each batch element’s corresponding judgement labels (b, w, n).
For instance, if we consider a batch Bax formed by only two trials ta and t′a both containing x, then

H = [htab ,htaw ,htan1 ,htan2 ,ht′b
a

,ht′w
a

,ht′n1

a

,ht′n2

a

] (6.28)
T = [t, t, t, t, t’, t’, t’, t’] (6.29)
J = [b, w, n, n, b, w, n, n] (6.30)

To compute RC loss, we need to compute batch embeddings’ pairwise distances asD. We first
compute the dot product tensor {hihj}i,j ∈ J1,nK between H and its transposition HT from which
diagonal is extracted (operator detoned diag) thus representing the square norm vector of H. The
pairwise squared distances tensor D can be obtained as follows

D = max
(
diag(H⊙HT )[:, newdim]− 2H⊙HT + diag(H⊙HT )[newdim, :], 0

)
(6.31)

The next step is to create appropriate masks that allow for RC loss computation as formulated
in eqs. 6.25 and 6.22. A first mask Mg = {mp,r}p,r∈J1,nK is dedicated to drop any element of D
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which is not involved in the computing of so called great distances ∥htab − htaw∥, i.e. the distances
between embeddings of utterances that had been judged best and those that had been judged
worst. To compute the mask we use both t and j tensors as follows

mg
p,r =

{
0 if jp = n or jr = n
1 else (6.32)

A second mask Ms = {mp,q}p,q∈J1,nK is dedicated to drop any element of D which is not in-
volved in the computing of so called small distances ∥htab −htani∥ and ∥htaw −htani∥ for all i ∈ {1, 2},
i.e. all the other terms in the loss formula. The mask is thus computed as follows

ms
p,q =

{
1 if (jp = n and jq ̸= n) or (jp ̸= n and jq = n)
0 else (6.33)

A last constraint is added to ensure no distance between elements from different trials is in-
volved in the loss computation {

mg
p,r = 0 if tp ̸= tr

ms
p,q = 0 if tp ̸= tq

(6.34)

Provided a first fully connected layer of weights Ws ∈ Rdemb×demb and biases bs ∈ Rdemb , the
network computes a first margin tensorAs. Analogously, a second fully connected layer of weights
Wg ∈ Rdemb×demb and biases bg ∈ Rdemb yields another margin tensor Ag. The biases are tiled as
Bs = [bs, ...,bs] and Bg = [bg, ...,bg] respectively which allows to compute margin tensors as
follows

As = (HWs +Bs)HT (6.35)
Ag = (HWg +Bg)HT (6.36)

Then As and Ag are extended to a new dimension such as

As = As[:, :, newdim] (6.37)
Ag = Ag[:, newdim, :] (6.38)

The final margin tensor A is obtained by addition of As and Ag. The margins in equation 6.22
are specific elements of A = {αp,q,r}p,q,r∈R|Bax| isolated by means of masking such that αb,ni

=
αpb,qni

,rw and αw,ni
= αpw,qni

,rb .

Data for the Experiment

Aswedid not test interactions between attitudes during theBWSexperiment - e.g. questionwhether
an utterance that have been meant to convey distance conveys friendliness, dominance or seduc-
tiveness - trainings must have been conducted on the four attitudes separately. As preliminary
experiments, we tested various configurations for friendliness in order to validate the general ap-
proach outlined here.

For our perceptual arranger, we split the data trial wise as we expect to learn relations between
sounds. In this perspective, a trial that has not been seen by the model is a new bunch of relations
that can bemore or less inferred depending onmodel’s ability to generalize well. Almost 80% of the
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4800 trials are kept for training while the rest is kept for validation. As showed in the second study
of Chapter 4, there is a strong interaction between perceptual judgments and emotion conveyed
by linguistic content, we thus paid a specific attention to including all sentences (100 different lin-
guistic contents) in both training and validation sets. As mentioned above, batches are designed
as follows: for each sound x within both sets we build a batch with all trials in which this sound
lies. As a result we have a variable batch size that depends on the number of trials related to x.
This number of trials in a batch is comprised between 4 and 8 for training set and between 1 and
4 for validation set. Why is this so? When designing a batch for training set from a sound x, some
of its related trials could be attributed to the validation set. Conversely, when designing a batch for
validation set from a sound x, some of its related trials could be attributed to the training set.

For our perceptual regressor, we split the data randomly while paying attention to including all
sentences (100 different linguistic contents) in both training and validation sets. In fact here the
notion of trial is no longer important since each utterance is associated with a score whose validity
is absolute across all the data.

Configurations

We select several configurations of both models, each uses ncnn = 2 convolutional layers with
dcnn = 64 filters, a temporal kernel kt = 5 and a feature kernel kf = 3. We chose the embedding
size to be demb = 32. We tested a fixed-margin configuration and several learnt-margin ones, with
and without dynamic margin (DMC) constraint featuring different functions γ and with or without
a fulfilled relation (FR) loss.

Towards Trial Independent Performance Criterion

In order to assess how well these setups perform, we employ various objective measures. Within
a trial we distinguish two types of distances, the distance between the best and worst that we
expect to be the greatest in the trial, and the other distances that we expect to be smaller. To
assess the model performance, we would like to design a general criterion that does not depend
on the trial considered, i.e. a score that reflects how great and small are the different distances over
the dataset. To obtain great and small distributions of distances across the dataset we normalize
distances trial-by-trial. To do so, we define a custom mean trial distance as follows

d̄ta =
1

2

[
max

i∈J1,N−2K,j∈{b,w}

(
∥htaj − htani∥

)
+ ∥htab − htaw∥

]
(6.39)

Defined this way, the custom trial mean distance d̄ta is ensured to be greater than any small
distance in a trial ta and smaller than its great distance. We thus define Dg and Ds the trial-wise
normalized distributions of great and small distances as

Dg = {∥htab − htaw∥ − d̄ta}ta∈T a (6.40)

Ds = {∥htaj − htani∥ − d̄ta}i∈J1,N−2K,j∈{b,w} (6.41)

Metrics for Evaluation

For quantitative evaluation of our arranger’s performance, we used two metrics, reflecting the ar-
rangement of speech samples in the latent space at two levels:
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• WELL-ARRANGED TRIALS (WAT) : the percentage of trials within the set that are well arranged,
i.e. in which all relations are fulfilled.

• FULfiLLED RELATIONS (FR) : the percentage of relations within the set that are fulfilled.

6.4.3 Results & Discussion

This proposal is first of all a theoretical contribution, a method allowing the learning of a latent
space from raw BWS judgements, i.e. from relative judgements. It is also the subject of numer-
ous more or less successful experiments. The results of these experiments are presented and
discussed in this section.

Perceptual Arranger’s Performance

The objective results of the perceptual arranger Aa are displayed in Table 6.5 for friendliness in
terms of Well Arranged Trials (WAR) and Fulfilled Relations (FR) which respectively serve as strong
and weak criterion for latent space structuring assessment.

Configuration margin λdmc γ λfr WAT FR

A-f fixed - - - 1.46% 20.9%
A-l learnt 0 - 0 - -
A-l-Re learnt 1 x→ ReLU(−x) 0 5.6% 31.1%
A-l-Re-fr learnt 1 x→ ReLU(−x) 1 17.7% 47.6%
A-l-Re2 learnt 1 x→ ReLU(−x)2 0 12.9% 42.1%
A-l-Re2-fr learnt 1 x→ ReLU(−x)2 1 17.3% 44.6%

Table 6.5: Objective results of Aa in terms of well arranged trials (WAT) and fulfilled relations (FR)
computed on the validation set for different configurations on friendliness.

First, we observe that the fixed-margin configuration A-f does not achieve to generalize at all,
the validation loss does not decrease. As expected, as some trials’ best and worst can be either
very distant in the latent space or rather close. Let us now consider the different learnt-margin
configurations. First, we observed for A-l that if no constraint is applied on margins - i.e. if λfr = 0
- all the points in the latent space are collapsing into one single point, thus the distances between
any pair of points is null. In order to make the DM-RC loss decrease, the model has two strategies,
it can both seeks to fulfill more relations within trials or it can diminish the margins. Note that this
last strategy does not ensure any trial relation to be fulfilled.

Let us consider the learnt-margin configurations with the dynamic margin constraint (DMC)
- i.e. λdmc ̸= 0. We tested different functions γ for the DMC. We observe that applying the FR
loss leads to improvements in both WAR and FR which supports the idea that adding this loss
prevents the model from engaging in the second strategy of lowering margins generally. The best
performance is obtainedwithA-l-Re-fr - that features a function γ : x→ ReLU(−x) - with aWAR of
17.7% and a FR of 47.6%. The analog configuration A-l-Re2-fr - with function γ : x → ReLU(−x)2
- achieves slightly worse performance with a WAR of 17.3% and a FR of 44.6%. The figure 6.13
depicts the distances distributions Ds and Dg for the best configuration A-l-Re-fr on both training
and validation sets, thus reflecting the generalization issue.
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Figure 6.13: Distances distributionsDs andDg of A-l-Re-fr configuration for both training (left) and
validation (right) sets on friendliness.

Discussion

Two points can bemade. Firstly, it appears that our model fails to generalize, on the validation set it
satisfies about one out of two relations and barely one out of five trials is well ordered at the end of
the training. However, if we examine the structure of the latent spaces - as depicted in Figure 6.14
through UMAP visualization - in relation to the BWS scores obtained, we can notice a certain order:
the high scores are rather on one side while the low scores are rather on the other. The model thus
seems to learn a certain pattern. At least, it seems to distinguish the top from the bottom of the
BWS scale. Since the BWS scores are projections into a one-dimensional space of the raw judge-
ments, it is logical that their structure appears when learning directly from the raw judgements.

Friendly. 
WAT = 64.8% 
FR = 89.5%

Friendly. 
WAT = 15.0% 
FR = 45.3%

2D_abws_lrnt_m1_demb16_am
p1.0_relu_trialsplit

Friendly. 
WAT = 76.0% 
FR = 93.1%

Friendly. 
WAT = 15.4% 
FR = 43.2%

2D_abws_lrnt_m1_demb16_am
p1.0_relu2_trialsplit

Friendly. 
WAT = 81.8% 
FR = 94.9%

Friendly. 
WAT = 16.3% 
FR = 45.4%

2D_abws_lrnt_m1_demb16_am
p1.0_trialsplit (abs)

Friendly. 
WAT = 87.1% 
FR = 3.5%

Friendly. 
WAT = 3.5% 
FR = 23.2%

2D_abws_lrnt_m1_trialsplit 
(pas de contrainte demb128 

amp0.5)

Friendly. 
WAT = 13.54% 
FR = 44.4%

FRIENDLY - Training set. 
WAT = 81.8% 
FR = 94.9%

FRIENDLY - Validation set. 
WAT = 17.7% 
FR = 47.6%

Great distances 
between best and 
worst speech 
samples

Small distances 
between all other 
speech samples

Distances Distributions

normalized distance

Ds

Dg

normalized distance

di
st

an
ce

 d
es

ni
ty

di
st

an
ce

 d
es

ni
ty

BWS score. BWS score.

Figure 6.14: UMAP visualizations of the validation set’s latent space for A-l-Re (left) and A-l-Re-fr
(right), each point’s color reflecting its BWS score for friendliness.

At the time of writing, we are working on a joint evaluation of these three BWS-Net proposals.
While they appear to be complementary in some respects - detection of low and high scores - it
is questionable which of these models is more suitable for conditioning an attitude conversion
model or for the perceptual validation of converted utterances. Does the last proposal better rep-
resent the perceptual space that underlies the raw judgements made by the participants than does
our regressor Ra or classifier Ca? To answer this question, we could, for instance, apply the two
metrics WAT and FR to the respective latent spaces of these models in order to be able to make
comparison with what we have obtained for our perceptual arranger. The effectiveness of these
different methods can also be assessed through their use in a voice conversion framework. At the
time of writing, we are working on the integration of the perceptual classifier Ca into the furtherly
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described - in Chapter 7 - speech attitude conversion algorithm. The idea is to add a parameter of
attitudinal intensity which makes it possible to yield conversions conveying a more or less intense
attitude. Using such a model to condition the conversion algorithm will hopefully allow to derive
this intensity parameter from the perceptual data collected.

6.5 Chapter Summary

Before addressing the issue of perceptual regression/classification, we start by focusing on amore
standard task of speech attitude recognition using the apriori attitude labels as ground truth. Al-
though various Speech Emotion Recognition (SER) studies have already been conducted, leading
for the emergence of a prototypical classification architecture - a convolutional block followed by
a recurrent network, an attention mechanism and two fully connected layers - the recognition of
speech attitude has not been specifically addressed in any studies, and even less so on a large
multi-speaker dataset in French such as Att-HACK. Thus, an initial ablation study intends to high-
light the relevance of the various blocks employed in regard to the algorithm’s ability to predict vocal
attitudes. To do so we tested different model’s configurations and data splits. The results notably
showed the importance of multi-head attention on the performance of the model but tended to
moderate its impact when the evaluated utterance comes from a speaker who has not been seen
by the model. In general, the performance of the model is much worse when evaluated on utter-
ances coming from a speaker not seen by the model. This supports the idea that the production
strategies of vocal attitudes are highly speaker dependent. In addition, the architecture validated
here constitutes a starting point for our investigations with the aim of establishing a BWS-Net.

The rest of the Chapter marks a paradigm shift outlining three different proposals for the mod-
elling of the perceptual latent spaces that underlie the decoding of speech attitudes by individuals.
By mean of learning such space, we expect to have direct access to the individuals’ mental repre-
sentations of attitudes. To do so, we conducted experiments using the perceptual data collected
during the BWS study we conducted on Att-HACK to understand human perception of vocal atti-
tudes (Section 4.4). The collected data can be viewed in two ways: raw - we consider the judge-
mentsmade by participants, i.e relations between sounds within a trial - or processed - we consider
the BWS scores yielded by the post-processing algorithm described in (Louviere et al., 2015).

The first proposed method involves learning regression models on the BWS scores for each
attitude from mel-spectrogram representations. The regressor has shown to significantly improve
performance in regression when informed with speaker identities and linguistics. In particular, the
two strong production profiles - namely seduction and dominance - uncovered in Section 4.3, are
those for which the best results are obtained. We also observe that our regression models mostly
predict average scores and fail to predict extreme ones, this drawback being likely due to the Gaus-
sian distribution of actual scores. Without being able to enhance the overall performance of the
regression, we attempted to counteract this effect by givingmore weight during training to samples
with extreme scores. At the end of this experiment, we hypothesized a difference in nature between
the attitudes conveyed with average BWS scores and those associated with extreme scores.

In the light of these results, we changed approach by experimenting with the recognition of
perceptual domains. We thus assumed that: samples with very low score are bad productions
or poorly communicated attitude instances, samples with average score represent attitude’s typ-
ical production and high-scoring samples non-typical production in the sense that other speech
traits seem to drive the judgment of individuals. We then divided the BWS scales into four con-
tiguous ranges and trained a classifier to predict which of these categories each sample was as-
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signed to. We obtained a moderate overall performance however significant better for the extreme
ranges, associated with very low and very high scores. Those results support the hypothesis of
distinct perceptual domains co-existing within the BWS scales. Since only a sub-part of Att-HACK
was judged by the participants, the obtained algorithm enables a minimal validation of the entire
database through the detection of speech samples with poorly communicated attitude that are not
of interest in our attitude conversion framework.

These first two proposals involved using the BWS scores as trainingmaterial. These scores vary
on four linear scales which can be seen as 1-D sub-spaces of the multi-dimensional space in which
the perception of attitudes occurs. Therefore, compared to the actual judgment that was made,
the BWS score may contain substantially less information about the perception of the attitude con-
veyed. In the light of this observation, we propose to learn a BWS-Net from the raw judgements
directly by interpreting judgements within trials as distance relations between speech samples in
a latent space in a metric learning fashion. The key point is that the relationships we aim to model
are relative and not absolute, which entails refining standard metric learning approaches such as
triplet loss (Hoffer and Ailon, 2015). We have therefore developed different variants of a cost func-
tion enabling such relative metric learning. the learning of a latent space metric that reflects those
relative relations by constraining the motion of speech samples in the latent space during training.
While we managed to learn the perceptual structure of participants’ judgements for the data seen
by the model, the model’s performance remains modest for the unseen data with about one out of
two fulfilled relations and barely one out of five well arranged trials at the end of the training. The
examination of latent spaces through UMAP visualization revealed some structuring in relation to
the BWS score on unseen data. This metric learning approach to BWS data is thus new, to our
knowledge, and can be transposed to any other issue involving a BWS perceptual assessment.

At the time of writing, we are working on a joint evaluation of these three BWS-Net proposals.
While they appear to be complementary in some respects - detection of low and high scores - it is
questionable which of thesemodels ismore suitable for conditioning an attitude conversionmodel
or for the perceptual validation of converted utterances.
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In this Chapter we propose an adaptation of the algorithm proposed in (Kameoka et al., 2021)
for many-to-many speech attitude conversion based onmel-spectrogram representation of speech
signal.

7.1 Related Work - Transformer-Based Voice Conversion

In this part, we introduce the transformer-based algorithm proposed in (Kameoka et al., 2021) for
speaker identity conversion. We present its architecture, detailing the role and operation of each of
its constituent parts and how the algorithm is optimised. Finally, based on initial experiments, we
point out its limitations in the specific case of voice attitude conversion.

7.1.1 Voice Transformer Network’s Architecture

The architecture proposed in (Kameoka et al., 2021) is depicted in Figure 7.1. The only notable
differencewith (Kameoka et al., 2021) is that it takesmel-spectrograms as inputs instead ofWORLD
features (Morise et al., 2016). In this part, we provide description for each of this architecture’s
components and explain their role with respect to speech attitude conversion.
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Figure 7.1: Schematic view of the Voice Transformer Network Neural Architecture according to
(Kameoka et al., 2021) with mel-spectrograms as input data instead of WORLD features.

Model Inputs

In this (Kameoka et al., 2021), WOLRD vocoder is used to analyse speech signals and extract repre-
sentations combining the mel-cepstral coefficients (MCCs) (spectral enveloppe), log F0, aperiod-
icity, and voiced/unvoiced indicator of speech all stacked into a 2-D representation. The WORLD
vocoder is also used for the synthesis of converted representations. Denoting Aworld the WORLD
analyzer, inputs are obtained from source and target signals xs and xt as Xs = Aworld(x

s) and
Xt = Aworld(x

t). We do not detail parameters for such extraction as WORLD is not used in the
experiments.
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Source and Target Pre-Nets

Source and target representations are passed through their respective Pre-Net so as to extract
temporal features that make sense for attitude conversion. Those networks are formed by ncnn
convolutional blocks. Each block is composed with a 1D convolutional layer proceeding on time
dimension followed by a batch normalization and an activation.

CONVOLUTIONAL LAYERS. The convolutions feature dcnn-dimensional output filters, kernel of size k
for time dimension, no strides are used but a dilation factor δ which allows to increase the layer’s
receptive field thus capturing wider context. The padding is set to same for the source pre-Net
while it is causal for the target pre-Net.

Since time must be preserved throughout the entire network, those modules do not alter the
temporal dimension. Fed with source and target mels Xs and Xt the pre-Nets would yield X̃s ∈
RTs×dcnn and X̃t ∈ RTt×dcnn respectively.

POSITIONAL ENCODINGS. As themodel transformer sees each frame independently, it does not have
any sense of the order of the elements in a temporal sequence. To provide it with this information
we use positional encodings that is a position-dependent signal that helps the model incorporate
the order of frames (Vaswani et al., 2017). Thus, once obtained, high level representations X̃s and
X̃t are added with tensors of positional encodings Ps and Pt. Positional encodings can be either
learnt or fixed, here we use sinusoidal encodings P = {pi,j} defined as follows

pi,j =


sin

(
1

10000
2j

dcnn

)
if p is pair

cos

(
1

10000
2j

dcnn

)
else

(7.1)

Transformer Encoder

The transformer encoder takes X̃s as input andproduces a context vector sequenceZs ∈ RTs×dmodel

which expected to contain the linguistic content that lies in the source utterance. The transformer
encoder is made of Lenc identical blocks. Each block is formed by self-attention (SA) and position-
wise fully connected feed forward network (FFN) layers. Residual connections and layer normaliza-
tions are applied in addition to those two layers. In the following, we detail each of these elements.

MULTI-HEAD SELF ATTENTION (MHSA).Given an input tensorX ∈ RT×dmodel theMHSA layer outputs
a tensor Y ∈ RT×dmodel . DenotingH the MHSA’s number of heads, the input tensor is projected in
3H different sub spaces. Thus for each head h ∈ {1, ...,H}, we compute a queryQh, a keyKh and
a value Vh such as

Qh = XWh,q (7.2)
Kh = XWh,k (7.3)
Vh = XWh,v (7.4)

Those projections are obtained via fully connected layerswith learnableweightsWh,q ∈ Rdmodel×datt/H ,
Wh,k ∈ Rdmodel×datt/H andWh,v ∈ Rdmodel×datt/H . For each head h ∈ {1, ...,H}, a tensor of self at-
tention - measuring the similarity of each frame to each other in the input sequenceXwith respect
to the context observed by the considered head h - can be computed as follows
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Ah = softmax

(
QhK

T
h√

dmodel

)
(7.5)

The attention tensors from different heads are multiplied through their related value tensor and
concatenated along the features dimension. Thus, as depicted in Figure 7.3, the MHSA layer can
be seen as multiple Self Attention (SA) layers stacked and focusing on different aspects of the
input tensor. Finally, the resulting tensor [A1V1, ...,AHVH ] is being passed through a last fully
connected layer with learnable weights W ∈ Rdatt×dmodel thus yielding the output tensor Y

Y = [A1V1, ..., AHVh]W (7.6)
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Figure 7.2: Schematic view of the Multi-Head Self Attention layer fed with input tensor X

POSITION-WISE FEED FORWARD NETWORK (FFN). Given an input tensor X, the FFN is formed with
two fully connected layers of trainable weights W1 ∈ Rdmodel×dffn , W2 ∈ Rdffn×dmodel and biases
b1 ∈ Rdffn , b2 ∈ Rdmodel . Thus, tiling biases tensors such as B1 = [b1, ...,b1] ∈ RT×dffn and
B2 = [b2, ...,b2] ∈ RT×dmodel the output tensor Y can be computed as follows

Y = ϕ(XW1 +B1)W2 +B2 (7.7)
In Equation 7.7, ϕ denotes an element-wise nonlinear activation function such as the rectified

linear unit (ReLU) or gated linear unit (GLU) functions.

LAYER NORMALIZATION (LN). Previous research has suggested that the position of the layer normal-
ization in the transformer architecture has an impact on the training process’ speed and stability
as well as the performance of the trained model. Layer normalization is placed after the SA and
FFN layers in the original transformer architecture, while the architectures shown in (Wang et al.,
2019; Xiong et al., 2020) and the baseline (Kameoka et al., 2021) are designed with LN before those
layers. Though, we decided to do the same, as depicted in Figure 7.1.

Let us taking a step back and consider the lth encoder layer Encl composed with a SA layer
SAl, two normalization layers LN1,l and LN2,l and a FFN layer FFNl. If we denote Xl and Xl+1

the input and output of the lth encoder layer, the process Xl+1 = Encl(X
l) is given by

Ul = Xl + SAl(LN1,l(X
l)) (7.8)

Xl+1 = Ul + FFNl(LN2,l(U
l)) (7.9)
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Transformer Decoder

The decoder takes Zs and Xt as the inputs and produces a converted feature sequence Ys←t =
[Y s←t

1 , ..., Y s←t
Tt

] ∈ RTt×dmodel . Similar to the encoder, the decoder consists ofLdec identical blocks,
each of which has SA and FFN layers, residual connections and layer normalization layers. In ad-
dition to these layers, each block has a multi-head target-to-source attention (MHTSA) layer as
depicted in Fig. 3, whose role is to find which frame in the source melspectrogram contextually
corresponds to each frame in the target melspectrogram and convert the context vector sequence
according to the predicted corresponding temporal positions. All the layers employed in the de-
coder have already been presented except for the attention layer between the decoder and the
encoder, the MHTSA layer, which is therefore introduced in the following.

MULTI-HEAD TARGET-TO-SOURCE ATTENTION (MHTSA). Given a source input tensor Z ∈ RTs×dmodel

and a target tensor X ∈ RTt×dmodel the MHTSA layer outputs a tensor Y ∈ RTt×dmodel . Denoting
H the MHSA’s number of heads, the source input tensor Z is projected in 2H different sub spaces
while the target input tensor X is projected in H different sub spaces. Thus for each head h ∈
{1, ...,H}, we compute a query Qts

h , a key Kts
h and a value Vts

h such as

Qts
h = XWts

h,q (7.10)
Kts

h = ZWts
h,k (7.11)

Vts
h = ZWts

h,v (7.12)

Those projections are obtained via fully connected layerswith learnableweightsWts
h,q ∈ Rdmodel×datt/H ,

Wts
h,k ∈ Rdmodel×datt/H andWts

h,v ∈ Rdmodel×datt/H . For each headh ∈ {1, ...,H}, a tensor of source-
to-target attention - measuring the similarity of each source frame of Z to each target frame of X
with respect to the context observed by the considered head h - can be computed as follows

Ats
h = softmax

(
Qts

h Kts
h

T

√
datt

)
(7.13)

Each produced tensorVts
h Ats

h can be understood as a time-warped version ofVts
h with regards

to the context observed by head h. All these time-warped feature sequences from different heads
are concatenated along the features dimension to produce a resulting tensor [Ats

1 Vts
1 , ...,A

ts
HVts

H ]
which is then passed through a last fully connected layer with learnable weightsWts ∈ Rdatt×dmodel

thus yielding the output tensor Y as depicted in Figure 7.3

Y = [Ats
1 V

ts
1 , ..., Ats

HV
ts
h ]Wts (7.14)

Let us take a step back and consider the lth decoder layer Decl composed with a MHSA layer
SAl, three normalization layersLN1,l, LN2,l andLN3,l, a FFN layer FFNl and aMHTSA layer TSAl.
If we denote Xl and Xl+1 the input and output of the lth decoder layer and Zs the output of the
encoder, the process Xl+1 = Decl(X

l) is given by

U1,l = Xl + SAl(LN1,l(X
l)) (7.15)

U2,l = U1,l + TSA(LN2,l(U
1,l,Zs)) (7.16)

Xl+1 = U2,l + FFNl(LN3,l(U
2,l)) (7.17)
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Figure 7.3: Schematic view of theMulti-Head Source-to-Target Attention layer fed with source input
tensor Z and target input tensor X

7.1.2 Voice Transformer Network’s Optimization

At the core of transformer model lies an autoregressive structure which is here implemented as
a constraint on target-to-source attention matrices. Furthermore, the model in its baseline con-
figuration exposed in (Kameoka et al., 2021) is optimised with respect to two cost functions, a
reconstruction loss that ensures the converted representation matches the target one and another
loss that constrains the structure of target-to-source attention matrices.

Auto-regressive Structure

At inference phase, we want to be able to produce a conversion with only the source sentence
available. To do this, an autoregressive structure is introduced into the model. The feature vector
corresponding to the first time frame is produced from the source and a null vector. Subsequently,
the feature vector associated with time t is produced from the source and output of the decoder
at times t < 1. In order to enable this behavior throughout the model, we must first ensure that the
decoder is not enabled to use future information about the target feature vectors while creating an
output vector at each time step. This can be ensured by simply constraining the convolution layers
in the target pre-Net to be causal and each self attention in the decoder to be triangular matrices.
This latter constraint can be fulfilled by replacing Eq. 7.5 in all the SA layers of the decoder with

Ah = softmax

(
QhK

T
h√

dmodel

+E

)
(7.18)

where E = {ei,j}i,j∈J1,TtK such as

ei,j =

{
0 if i ≤ j
−∞ if i > j

(7.19)

The negative values of E passed in the softmax are turned into zeros which make of Ah a
triangular matrix. Meeting such constraint, the predictions for time step t can depend only on the
known outputs at past instants t′ such as t′ < t.
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Reconstruction Loss

So as for themodel to have an autogressive structure, the output sequenceYs←t must correspond
to the target sequenceXt but time-shifted by one sample, i.e. the prediction of frame t is tensorally
aligned with frame t−1. To meet this requirement, the target mel-spectrogramXt is concatenated
with a null vector of size D. This way, at each time step the decoder has full access to all past
information and is enabled to predict the next time step.

Thus, the model is trained with respect to a L1 reconstruction loss formulated as follows

Lrec = ∥[Ys←t]1:Tt−1,: − [Xt]2:Tt,:∥1 (7.20)

with [X]t : t′, : the slice of tensor X that goes from time step t up to time step t′.

Diagonal Attention Loss (DAL)

Through attentionmatrices yielded by TSA layers, the tranformermodel learns an implicit alignment
between source and target utterances. Therefore, it is then reasonable to hypothesise that these
matrices must have some structure which ensures that a given temporal segment, for instance
a phoneme, in the source sentence is mapped to its counterpart in the target sentence. We will
therefore try to impose amonotonic and quasi-linear diagonal on thesematrices so that the learned
alignment is not a basic time stretch - i.e. linear diagonal matrices - but a mapping between dilated
and compressed temporal regions. Introduced in (Tachibana et al., 2018), a diagonal attention loss
(DAL) is used to penalize the attention matrices for not having a diagonally dominant structure, it
is formulated as follows

Lda =
1

TsTtLdecH

Ldec∑
l=1

H∑
h=1

∥GTs×Tt
⊙Al,h∥1 (7.21)

where Al,h denotes the target-to-source attention matrix of the head h in the TSA layer in the
layer l of the decoder, ⊙ denotes element-wise product, and GTs×Tt

∈ RTs×Tt is a non-negative
weight matrix whose elements gn,m are defined as

gi,j = 1− e−( i
Ts
− j

Tt
)2/2ν2

(7.22)

7.1.3 Limitations

In this section, we point out two limitations, the first one deals with the use of the WORLD repre-
sentation and vocoder in the context of speech conversion. This limitation is mainly conceptual
and discussed in the light of many research works. The second limitation appeared to us as a re-
sult of preliminary experiments of speech attitude conversion based on the transform architecture
presented above and deals with intelligibility of the conversions yielded.

Multi-Parametric Modelling of Speech Signals

The first limitation we point out here is the use of features associated with the WORLD vocoder
in (Kameoka et al., 2021). For many years no vocoder was able to synthesize speech in a natural
way, i.e. the human ear was then able to distinguish between a synthesized speech sample and
an authentic one. The first vocoder to break this rule was the one proposed in (Shen et al., 2018)
based on the conditioning of a WaveNet onmel-spectrogram representations of speech signals. In
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addition, the superiority of the WaveNet over the WORLD vocoder was established in (Wang et al.,
2018a) through a large-scale perceptual test. From the synthesis perspective, it appears that the
mel-spectrogram representation is the most appropriate as it allows for high quality recovering of
speech signals.

However, the use of mel-spectrogram representation in the specific context of speech conver-
sion must also be considered. Since the optimization of the conversion algorithm is performed
independently of the re-synthesis of the speech signal in most of voice conversion works, the im-
portance of each component of the representation - in the conversion learning - must be weighted
according to the impact it has on the perception of the converted utterance. In particular, in the case
of conversion learning from a multi-parametric representation, one must ask how to weight the re-
construction errors of the different parameters (F0, energy and spectral envelope). One should
also consider how to manage the F0 in the invoiced temporal segments of speech. In other words,
this amounts to adding hyper-parameters to the conversion algorithm and tomultiplying tenfold the
number of configurations to be tested in order to find the best one. Conversely, themel-spectrogram
representation fundamentally differs from multi-parametric representations such as employed in
WORLD vocoder in that each of its components represents the same type of information and are
all equally relevant in terms of perception, in particular there is no conceptual difference between
voiced and unvoiced speech temporal segments. The mel-spectrogram representation is both ho-
mogeneous and compact, which enables its direct use by a conversion algorithm without the need
for any weighting in the reconstruction of its various components.

In view of this, many works in voice conversion have used the mel-spectrogram as a represen-
tation of the speech signal (Zhang et al., 2020; Qian et al., 2019, 2020; Bous et al., 2022; Bous and
Roebel, 2022), we thus propose to adapt the architecture in (Kameoka et al., 2021) so that it takes
mel-spectrogams as inputs for conversion learning.

Loss of Intelligibility

Early experiments of speech attitude conversion with the transformer architecture led us to identify
an important issue that is indistinguishable through the standard conversion monitoring based on
error and accuracy measures. Indeed, we found that in a significant number of cases, the conver-
sions did not preserve the linguistic content of the source - some phonemes were badly formed
or not formed at all. There were also cases where a word was changed into another word thus
completely changing the meaning of the utterance. This issue appeared to be very disturbing in
that it compromises the optimal decoding of the message conveyed by the converted utterance.
Facing this issue, we intended to establish a hierarchy between the criteria that conversions gen-
erated by our model must meet. We especially place intelligibility - i.e. the ability to decode the
linguistic message conveyed in a speech signal - at the top of this hierarchy, the faithfulness of
the attitude conveyed to the attitude actually targeted coming in second place. Indeed, we assume
that it is fundamental that the linguistic message be preserved even if it is at the expense of the
attitude conveyed in the conversion which thus might be either unchanged or badly converted.
Strictly speaking, there can be no conversion of attitude if the linguistic message is corrupted. In
the following, we will try to quantify this loss of intelligibility and provide a solution.
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7.2 Contribution - Speech Attitude Conversion

In this section, we first start by reformulating the above presented Transformer architecture in the
scope of speech attitude conversion based on mel-spectrogram representation. Second we at-
tempt to address the main problem encountered in the conversions obtained during early experi-
ments of transformer-based attitude conversion: the occasional loss of linguistic content.

7.2.1 Reformulation in the Scope of Speech Attitude Conversion

The transposition of the proposal in (Kameoka et al., 2021) to our speech attitude conversion issue
necessitates a reformulation. Moreover, as we propose to use mel-spectrograms, so we need to
specify how they are obtained.

Mel-spectrograms as Model’s Inputs

Unlike the proposal by Kameoka et al. (Kameoka et al., 2021) which uses WORLD vocoder features
as representation of the speech signal, we chose to learn conversion between mel-spectrograms.
Orginal speech signals can be retrieved frommel-spectrograms through using the team-made neu-
ral vocoder (Roebel and Bous, 2022). Denoting Amel the melspectrogram extractor, inputs are ob-
tained from source and target signals xs and xt as Xs = Amel(x

s) and Xt = Amel(x
t).

PARAMETERS. Themelspectrogramsare obtained through computing Short-Term-Fourier-Transform
(STFT) of parameters Nft, Rft andMft corresponding to the size of the FFT, the hop and window
sizes. The number of mel channels is set to D. Source and target melspectrograms are then
padded batch-wise up to Ts,b and Tt,b respectively the lengths of longest source and target utter-
ances in the batch. This way, computation can be performed in an tensorial way. In the following
we will use Ts and Tt for the sake of clarity.

Many-to-Many Speech Attitude Conversion

Herewe propose to transpose themany-to-many paradigm, applied to speaker identity in (Kameoka
et al., 2021), to vocal attitude. Let us clarify. Speaker identity conversion is learned across several
speakers in (Kameoka et al., 2021) approach. That is, the same network can convert a sentence
spoken by a speaker A to a speaker B and a sentence spoken by a speaker B to a speaker C. In a way
that the network learns to replace a speaker’s identity by capturing what their identity is generally
rather than just learning to convert one specific identity into another. In contrast to a straightfor-
ward mapping of speech features, it can be claimed that the model learns an implicit definition
of speaker identification. This interpretation must be tempered by the fact that the model only
learns to convert 4 speakers, therefore it is impossible to pretend to any kind of generalization.
Practically speaking, this approach saves time because only one training session is needed. In
many regards, the many-to-many paradigm is interesting.

Similar to this, we propose employing the four pre-existing Att-HACK categories of friendliness,
distance, dominance, and seduction to learn to convert the vocal attitude in general rather than
just learning to convert from one attitude to another. Since it seems ambitious enough to learn
such a model, we limit the problem to one speaker.
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To do so, we assign each attitude a number a and consider paired utterances {Xs,a,Xt,a′}with
the same linguistic content but produced according to different attitudes a and a′. We use one-
hot-encoding representation of the attitude. Having natt attitudes in the dataset, the ath attitude is
represented by a vector sa of size natt with a one at rank a and zeros anywhere else. To provide
the model with attitudinal information, each attitude one-hot-encoding is temporally tiled so that it
matches the shape of its corresponding melspectrogram thus yielding a tensor Sa = [sa, ..., sa] ∈
RT×natt . Each sub layer in the network, namely SA, TSA and FFN , as well as the pre-Nets and the
post-Net are provided with attitudinal information through concatenation of their inputs with tiled
one-hot attitude representations. Then, if the model is fed with a pair {Xs,a,Xt,a′} , thus inputs
of any given sub layer, X ∈ RTs×dmodel related to source and Y ∈ RTt×dmodel related to target, are
modified this way

Xa = concat(X,Sa) ∈ RTs×(D+nsp) (7.23)

Ya′ = concat(Y,Sa′) ∈ RTt×(D+nsp) (7.24)
(7.25)

where concat(., .) denotes the concatenation of two tensors along features axis. The loss func-
tions for such a many-to-many paradigm become

L(a,a′)
rec = ∥[Ys,a←t,a′ ]1:Tt−1,: − [Xt,a′ ]2:Tt,:∥1 (7.26)

L(a,a′)
da =

1

TsTtLdecH

Ldec∑
l=1

H∑
h=1

∥GTs×Tt
⊙A

(a,a′)
l,h ∥

1
(7.27)

where Aa,a′

l,h denotes the target-to-source attention matrix yielded by head h of the TSA layer
related to layer l of the decoder. Denoting λda the weight for controlling the influence of DA loss on
training process, the full model loss can be formulated as follows

L(a,a′)
vtn = L(a,a′)

rec + λdaL(a,a′)
da (7.28)

So as to force the model not to alter speaker identity while source and target are from the same
speaker, (Kameoka et al., 2021) introduced an identity mapping (IM) loss which is equal to L(a,a)

vtn .
Therefore the total training loss including IM loss is

Lvtn =
∑

a,a′ ̸=k

EXs,a,Xt,a′{L(a,a′)
vtn }+

∑
a

EX(s,a),Xt,a{L(a,a)
vtn } (7.29)

Speech Attitude Conversion Process

At inference phase, a source speech mel-spectrogram Xs can be converted to the target attitude
via the following recursion
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Z← Xt,Y ← [0, ..., 0] ∈ RD

for l = 1 to Lenc do
Z = Encl(Z)

end for
form = 1 to Tt do

for l = 1 to Ldec do
Y ← Decl(Y,Z)

end for
Y ← concat([[0, ..., 0],Y])

Ys←t ← Y

where concatdenotes the concatenation along the temporal axis. Once convertedmel-spectrogram
Ys←t is obtained, we pass it to the neural vocoder to yield the converted speech signal such as

ys←t = RMBExWN(Y
s←t) (7.30)

7.2.2 Linguistic Conditioning of Speech Attitude Conversion

To tackle the issue of linguistic loss encountered in a significant number of conversions, wemoved
to the typical research problem of speech recognition. Automatic speech recognition (ASR) con-
sists of transcribing audio speech segments into text. This task can be viewed as a sequence-to-
sequence problem, where the audio can be represented as a sequence of feature vectors and the
text as a sequence of characters, words, or subword tokens. In this case, the speech recognizer -
or speech-to-text - module takes mel-spectrogram representations of speech signals as input. Its
objective is to predict what is being pronounced within the input signal, i.e. the character sequence
related to the linguistic message conveyed.

First, the application of such an ASR module to the conversions resulting from the models out-
lined in the previous section would allow for an objective evaluation of this problem of loss of
linguistic content. Despite the inherent prediction error of the module, such an application would
allow us to determine how much the linguistic content and, consequently, the meaning of the con-
versions produced by our models differ from the one of target sentences they are intended to repli-
cate. Therefore, we first worked at implementing an efficient speech-to-text module and trained it
on Att-HACK.

Second, we considered howwe can use such anASRmodule to enhance the performance of our
conversion model. Our overall plan was to incorporate it into the conversion system and propagate
its prediction error through the conversionmodel’s layers to ensure that the transformedutterances’
linguistic content was preserved. Since there are various ways to put this concept into practice, we
have conducted several experiments, which are discussed in the following part.

Speech Recognizer Architecture

In this part, widely inspired by (Pham et al., 2019), the speech recognizer - or speech-to-text - ar-
chitecture is presented. Most components are not examined in details as they are also used in the
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voice conversion transformer exposed in the last section. However, we will focus on the part of the
model that supports textual data, i.e character sequences, that have yet not been introduced in this
document.
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Figure 7.4: Schematic view of the Speech-to-Text Transformer Network neural architecture

MODEL INPUTS. As said before, the speech-to-text module has two types of input, firstly a represen-
tation of the speech signal, namely a mel-spectrogram computed in the same way than exposed in
the last section. Secondly, the textual transcription of what is said in this signal. Those transcrip-
tions are given to the network as sequences of characters which are encoded into one-hot-vectors.

Denoting Schar = {c1, ..., cnchar
} the set of characters involved in the sentences of Att-HACK,

then any sentence x - i.e. linguistic content - in Att-HACKof length - i.e. number of character -nx, can
be represented by a sequence of integers y = [y1, ..., ynx

] such as yi ∈ Schar for all i ∈ {1, nx}. Then
the one-hot-encoding of y is the sequence of vectorsZ = [z1, ..., znx

]with zi = [zi,1, ..., zi,nchar
] such

as

zi,j =

{
1 if j = yi
0 else (7.31)

SPEECH PRE-NETWORK. The speech representations - mel-spectrograms - are passed to a speech
pre-Net which is exactly the same than the ones used for source and target pre-encoding in the
voice conversion system descibed in the last section. Then the yielded tensors are added to posi-
tional encodings computed as described in Eq. 7.1 in the last section.

SPEECH ENCODER. The speech encoder is formed by nenc standard transformer blocks, each com-
posed of a dropout layer, a layer normalization, amulti-head self attention layer, a dropout layer after
the layer’s input is added (residual connections), a layer normalization and finally a feed-forward
network. Since they were thoroughly covered in the previous section, the role and functioning of
each of these components will not be explained here. Let us only note that this speech encoder al-
lows to produce a representation of the speech signal in which the linguistic content is highlighted
and which furtherly used by the decoder to predict the actual sequence of characters.

CHARACTER PRE-NETWORK. The one-hot-representations of linguistic content are passed to a pre-
network, which consists of a fully connected layer, and whose role is to learn a linguistic space
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formed by the projections of these character sequences, the idea is to adapt the linguistic repre-
sentation for the specific objective of the speech-to-text module. Yielded tensors are then being
added to positional encodings. Note that here the positional encodings are learnt by means of
a fully connected layer and not computed as described in the last section, this choice leading to
slightly better performance in prediction.

DECODER. The decoder is divided in two parts. A first part processes the characters embedding
sequences through a multi-head self attention layer, a dropout layer after which the input is added,
finally a layer normalization is performed. The yielded representation of the text-input is passed to
a multi-head speech-to-text attention along with the representation produced by the encoder. The
outputed tensor is then passed to standard dropout, layer normalizaton and feed forward layers. In
the end, the tensor is passed to a fully connected layer followed by a softmax activation that both
perform character classification properly.

To train this model, we use a standard categorical cross entropy as cost function. Therefore,
for an utterance x of character sequence encoded as Z = [z1, ..., znx ] with zi = [zi,1, ..., zi,nchar

],
the loss can formulated as follows

Lasr = −
nx∑
i=1

nchar∑
j=1

zi,j log(ẑi,j) (7.32)

Overall Text-Conditioned Voice Conversion Algorithm

Once we had a module for predicting text from mel-spectrogram, we wondered how to use it to
preserve intelligibility when converting attitudes in speech. In order to provide an answer, we tried
to find out where the problem came from, i.e. which component of the conversion model was not
working well enough. To find out, we made two different assumptions with distinct technical impli-
cations and tested them.

FIRST VARIANT. Our first assumption was that the encoder of the conversion algorithmwas respon-
sible for this defect. It is, indeed, the network’s component responsible for encoding the linguistic
content of the source speech. In particular, it produces a representation of the source utterance in
which the linguistic content - as well other characteristics such as the identity of the speaker - must
lie. One explanation would be that the encoder does not always fulfil this role which prevents the
decoder to render the linguistic content properly. If this assumption is correct, then it is sufficient
to force the encoder to properly encode the linguistic content of the source utterance so that the
conversions preserve intelligibility.

To test this assumption, we thought of a first option for the integration of the speech-to-text
module in the conversion model. This option involves using the same encoder for speech-to-text
and conversionwhile incorporating the speech-to-text’s decoder as a third branch of the conversion
algorithm. The representation produced by the encoder would then be sent to both the conversion
algorithm’s decoder and the speech-to-text’s decoder. Unfortunately, early experiments with this
three-branch architecture did not yield good results, not only the intelligibility did not appear to be
better preserved but the model did not converge as well as it did without ASR.

SECOND VARIANT. Our second hypothesis was to make the minimal assumption of a global failure
of the whole conversion algorithm. In other words, no assumptions are made about the part of the
model involved in this generation failure. Then, the sufficient condition for the intelligibility of the
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yielded conversions to be preserved is that the ASR model performs as well on the converted data
as it does on the ground-truth data.

We thus thought of a second option for the integration of the speech-to-text module in the con-
version model. We proposed to connect the speech-to-text’s speech input to the output of the
conversion algorithm, in this way we mean to condition the generation of a converted utterance on
a specific linguistic content. Thus, the converted mel-spectrogram is given to the text-to-speech
encoder, and the character sequence corresponding to the target sentence is fed into the decoder.
By propagating the prediction error of the speech-to-text module through the weights of the con-
version network, the latter is forced to generate mel-spectrograms from which the speech-to-text
module can predict the correct character sequence. This added training criterion involves measur-
ing the difference between the text that was actually pronounced in the source (or target) utterance
and the text which is predicted from the conversion. Note that at this stage, the weights of the ASR
module are frozen, only the conversion model is being trained. Indeed, we do not want the ASR
module to learn to predict the actual text despite a lack of intelligibility - which it might succeed
in. Conversely, we want to force intelligibility of the converted utterances. The full architecture of
this ASR-upgraded voice conversion algorithm is presented in the Figure 7.5. The full model’s loss
Lvtn×asr is then the sum between the standard voice conversion transformer network’s loss Lvtn -
of which calculation is specified in the last section 7.1 - and the ASR module’s prediction loss Lasr ,
the balance between both being controlled by means of a factor λasr.

Lvtn×asr = Lvtn + λasrLasr (7.33)
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7.3 Speech Attitude Conversion Experiments

In this section, we present two experiments of many-to-many learning of voice attitude conversion.
The first is a direct application of the Voice Transformer Network proposed in (Kameoka et al.,
2021) with specific adjustments due to the mel-spectrogram representation of speech signals we
chose to employ. The second is to evaluate the impact of incorporating an ASR module into the
speech attitude conversion algorithm, particularly in terms of the intelligibility of the conversions
generated.

7.3.1 Many-to-Many Experiment for Speech Attitude Conversion

The purpose of this first experiment was to bring out a baseline configuration of the voice trans-
former - initially proposed for speaker identity conversion (Kameoka et al., 2021) - that fits the spe-
cific task of speech attitude conversion and which involves learning on data from our database
Att-HACK (Le Moine and Obin, 2020). The fundamental point here is that the speaker identity con-
version does not involve modifying the same aspects of the speech signal than the speech attitude
conversion. Indeed converting speaker identity mainly deals with changing the spectral envelope
while we have shown in section 4.3 that almost everything in the signal, including prosodic and
articulation aspects, was conveying attitudes.

Beyond this task-specific aspect, this experiment was an opportunity to validate the use of
mel-spectrograms in place of multi-parametric representation of speech signal - such as WORLD
vocoder features which are employed in (Kameoka et al., 2021) - for voice conversion purpose.
Nevertheless, in this experiment we do not compare the results obtained from the two different
representations, the arguments in favor of the use of the mel-spectrogram mentioned in section
7.1.3 being sufficient - in our opinion - to justify this choice. In addition, the choice of this represen-
tation implies slightly different choices of parameters for the Voice Transformer Network.

For these reasons, we did not simply apply the parameters specified in (Kameoka et al., 2021)
directly to the conversionmodel but tested different configurations. We could not afford to evaluate
each configuration to determine which was best, i.e. the one that would offer the best objective
performance. The method we used involved radically altering the hyper-parameters to first identify
those that had a major impact on the model’s performance.

Data for Experiment

Since the many-to-many paradigm - i.e. learning the conversion of any attitude to any other at-
titude simultaneously - is an ambitious task in itself and the production of attitudes is individual
(Le Moine et al., 2021a) - i.e. speakers use their own strategies to communicate attitudes - we lim-
ited this experiment to the speaker-dependent case by selecting data coming from only one female
speaker (F03). Although this choice might appear random it is not. This actress in particular had
the highest average perceptual score for friendliness which is the attitude we value most because
of its numerous potential uses in daily life situations. As mentioned earlier, our perceptual domain
classification model allowed us to identify utterances with poorly communicated attitude across
the entire database. These samples were therefore removed and are not used in this experiment.
We are fully aware that such an experiment - with only one speaker - only provides limited support
for the assumptions we made. However, due to time constraint we had to keep the experimental
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evaluation limited and leave a more extensive - multi-speaker - evaluation for future works.

Asmentioned above, wemean here to learn attitude conversion in amany-to-many fashion. This
means that each source utterance in distant yields several pairs whose targets were produced in
different attitudes (including distant) but have the same linguistic content. In order to compute
both terms of the model’s loss as formulated in Eq. 7.29, we have to distinguish two types of pairs,
the so-called intra-attitude pairs - i.e. pairs in which source and target are produced with respect to
the same attitude - and the inter-attitude pairs - i.e. pairs in which source and target are produced
in different attitudes. In the input pipeline we implemented, a batch is built for each type of pairs
and presented to the model thus yielding both terms of the total loss.

TRAIN-VALID DATA SPLIT. For this experiment, we performed random split on data such as to have
all the sentences in both training and validation set. Indeed as shown in chapter 4, attitude pro-
duction can be seen as a modulation of what is already determined by the linguistic content of
the utterances. Though, learning to map attitudes on a bunch of sentences is probably not suffi-
cient to generalize to others. We selected 26,729 pairs for training and 7,923 for validation, which
represents approximately 80% of the pairs kept for training.

Implementation Details

Dropouts with rate 0.1 were applied to the input sequences before being fed into the source and
target pre-Nets and the post-Net only at training time. We chose to use ReLU as nonlinear acti-
vation function in each FFN sub-layer, we found GLU (gated linear unit) which used in (Kameoka
et al., 2021) to yield poorer performance. The two pre-Nets and the post-Net were each designed
using three 1D dilated convolution layers with kernel size k = 5 and dilation factor δ = 3i for the
ith convolutional layer, each followed by a ReLU activation function, where weight normalization
(Salimans and Kingma, 2016) was applied to each layer. The filter dimension d was set to 512 and
the middle channel number dffn was set to 1024. The weighting of identity mapping loss λim was
set to 1 and ν which used to compute DA loss was set at 0.3.

We tested several settings with variable number of layers in both the encoder and the decoder
and different weighting of diagonal attention (DA) loss. The most salient parameter was found to
be the size of themodel, i.e. the number of transformer blocks in both the encoder and decoder, we
thus varied Lenc and Ldec from 1 to 4. Note that beyond 2, the model became too difficult to train
both in terms of memory resources and training time. While the diagonal constraint on attention
matrices has a clear impact, it is difficult to find a gradation of this impact. It seems that the model
simply does not converge for some values when it does for others. After testing different values for
λda from 100 to 10000, we have chosen here to apply a factor λda = 5000 to this diagonal constraint
on attention matrices.

7.3.2 Linguistic Conditioning Experiment

The general purpose of this experiment is not to evaluate the effectiveness of various configura-
tions of the speech-to-text module that were previously presented, but rather to select a configura-
tion of this module that is effective and test its impact on attitude conversion performance when
incorporated in the conversion algorithm. First we intend to select this configuration.
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Training the Speech-to-text Module

The speech-to-text module has first been trained to achieve its goal of predicting the appropriate
texts for every sentence - i.e. a hundred different linguistic contents - in Att-HACK. For this ex-
periment we considered all the sentences of Att-HACK, i.e. a little more than 36000 sounds. The
training/validation split was done in such a way that any speaker and sentence, i.e. linguistic con-
tent, is in both the training and validation sets. predicted - achieved its best performance on the
validation set. We used the same learning rate custom scheduler than for conversion learning - the
architecture also being transformer-based - and batch size of 32. We selected the best configura-
tion by saving weights at best cross-entropy performance on the validation set.

Speech-to-text Selected Architecture

The speech-to-text module itself has not even been experimented with. The configuration we
started with proved to be quite efficient and we chose not to waste time trying to improve it.

The speech-to-text’s encoder and speech pre-network has strictly the same architecture as
those of the selected conversion system, which makes sense since the latters are partly dedicated
to the encoding of the linguistic content of the source utterance. However, preliminary experiments
have shown that the both modules cannot share the same encoder without compromising overall
convergence. With regard to the decoder, we have chosen a dropout rate of 0.1 except for the
dropout layer following the self-attention which has a higher rate of 0.5. The filter dimension d was
set to 200, this also the dimension of linguistic space, i.e. the output dimension of the character
pre-network. The middle channel number df was set to 400. The number of heads in multi-head
self attention layer was set to 2.

Training the ASR-upgraded Voice Conversion Model

Once the experiment has been conducted on the speech-to-text module alone, we come to its in-
corporation into our conversion model. We must keep in mind that this experiment’s goal is to
evaluate how well our speech attitude conversion model performs after incorporating a speech
recognition module. More precisely, we intend to demonstrate that such an addition enables to
force the model’s conversions to be intelligible. In order to solely examine the impact of the in-
clusion of the text-to-speech module, we used the exact same hyper-parameters as for the first
experiment. As mentioned earlier, the ASR module has been pre-trained and all of its layers have
been frozen to prevent it from capturing linguistic content from poor conversions. Indeed, it is con-
ceivable that such amodule would be able to decode linguistic content from a succession of poorly
formed phonemes, where humans would not be able to do so without an undesired effort.

7.3.3 Selected Configurations & Evaluation Process

In the following we present the results of the two experiments described above at the same time,
the main point being to evaluate the impact of incorporating a speech recognition module into the
speech attitude conversion algorithm.

Selected Configurations

We selected two configurations for the first experiment: VTN-s and VTN-l respectively a small and
a large version of the adapted voice transformer network proposed in (Kameoka et al., 2021). For
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the second experiment, we selected three configurations each corresponding to a different level
of influence of the speech-to-text module on the conversion model. For this second experiment,
we used the large voice conversion model’s configuration VTN-l - as it appeared to yield the most
satisfying results. Those configurations are distinct in the impact they grant to the speech-to-text
module on the overall optimisation of the conversion algorithm. We listed all those configurations
bellow:

• VTN-s: a small model with Lenc = 1 and Ldec = 1.
• VTN-l: a large model with Lenc = 2 and Ldec = 2.
• VTN-lxASR-li: the large model with ASR Casr of light impact on intelligibility (λasr = 0.1).
• VTN-lxASR-me: the large model with ASR Casr of medium impact on intelligibility (λasr =
0.5).

• VTN-lxASR-st: the large model with ASR Casr of strong impact on intelligibility (λasr = 1.0).

Evaluation Process and Metrics

To provide such an objective assessment, we chose to use the mean absolute error (MAD-mel)
between the log amplitude target and converted mel-spectrograms and the root mean square er-
ror (RMSE-f0) between F0 contours of target and converted speech signals, synthesized through
neural vocoding (Roebel and Bous, 2022).

MEAN ABSOLUTE DIFFERENCE (MAD-MEL). We do not assume this metric to be correlated with hu-
man perception, i.e. a good performance in MAD does not necessarily lead to a convincing con-
version from a human perception point of view. However computing differences on a mel scale,
which is know to be perceptually relevant, avoid to give too much importance to frequency bands
that are not for human perception. Provided with a target utterance mel-spectrogram Xt ∈ RTt×D

and its related conversion Ys←t ∈ RTt×D , MAD-mel denoted ϵmel is formulated as follows

ϵmel(X
t,Ys←t) =

1

DT t

T∑
n=1

D∑
k=1

|Xt
n,k − Y s←t

n,k | (7.34)

where Xt
n,k and Y s←t

n,k are the nth frame and kth mel bin of Xt and Ys←t respectively. We also
introduce a lower bound ϵ that allows avoiding a strong impact of the perceptually irrelevant small
values that may arise in the noise sections. For the present evaluation, and following (Roebel and
Bous, 2022), we used ϵ = log 10−5 such that any values of Xt and Ys←t under ϵ are set to ϵ.

ROOT MEAN SQUARED F0 ERROR (RMSE-F0). We use the neural vocoder (Roebel and Bous, 2022)
to produce speech signals xt and ys←t from target and source melspectrograms, Xt and Ys←t

respectively. Then we employ an F0 extractor [ref] to obtain F0 contour sequences fx
t

and fy
s←t

.
RMSE-f0 denoted ϵf0 is computed as follows

ϵf0(f
xt

, fy
s←t

) =

√√√√ 1

Tt

Tt∑
n=1

(fxt

n − fy
s←t

n )2 (7.35)

In order to objectively measure the performance of our speech-to-text module, we employ two
standard metrics. These metrics assess how well the linguistic content has been predicted by the
ASR module. They also enable us to assess how well the linguistic content is preserved in the
conversions our model delivers, or how well they are intelligible. In addition, we will use objective
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criteria MAD-mel and RMSE-f0 for assessing the similarity of yielded conversions with target utter-
ances, as done in the past section.

CHARACTER ERROR RATE (CER). This metric indicates the percentage of characters that were incor-
rectly predicted. The lower the value, the better the performance of the ASR system with a rate of
0 being the best performance.

WORD ERROR RATE (WER). Analogously, this metric indicates the percentage of words that were
incorrectly predicted. The lower the value, the better the performance of the ASR system with a
rate of 0 being the best performance. Both metrics respectively denoted ϵc and ϵw are computed
as follows

ϵc =
sc + dc + ic

nc
(7.36)

ϵw =
sw + dw + iw

nw
(7.37)

where s is the number of substitution, d the number of deletion and i the number of insertion, n
being the actual number items, and indices c and w respectively denoting characters and words.

7.3.4 Objective Evaluation

In this subsection, we present the results of our conversion algorithm enhanced by a speech-to-text
module. We evaluate two qualities of the resulting conversions, firstly intelligibility - through CER
and WER - secondly proximity to the target sentence through MAD-mel and RMSE-f0.

Assessing the Intelligibility of the Conversions

First of all, let us specify that the objective here is to show that the addition of an ASR module
makes it possible to better preserve the linguistic content in conversions. Through this we wish
to ensure that it is possible for an individual to understand the meaning of what is being said. If
the overall meaning of a sentence is constructed from the semantic units that are the words, we
can refine this by relying on the ability of individuals to predict the meaning conveyed by an almost
well-pronounced word. This is why we consider both the word error rate, which gives the true ca-
pacity of the model to ensure good semantic decoding, and the character error rate, which is less
demanding.

The results in CER andWER for all the examined configurations are depicted in Figure 7.6. Look-
ing at the average results across the four attitudes, it can be seen that the large model VTN-l per-
formed significantly better than its smaller version VTN-s in terms of CER. However, as already
mentioned, we were able to identify a linguistic loss issue that persisted after random listening
to conversions, which prompted us to think about adding an ASR module to the conversion algo-
rithm. Undoubtedly, the speech-to-text module’s addition significantly lowers the prediction error
at the character level. Furthermore, it is evident that the final error is lower the more important
its influence on the conversion model’s optimization. However, the difference between the config-
urations of ASR-upgraded conversion algorithm cannot be regarded as substantial. In particular,
we find a CER of 3.8 for the configuration with the addition of a higher impact ASR module VTN-
lxASR-st versus 17.3 for the baseline conversion algorithm VTN-l. The aforementioned trends are
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Figure 7.6: Performance of VTN-s, VTN-l, VTN-lxASR-li, VTN-lxASR-me and VTN-lxASR-st with
respect to the character error rate (CER) on the left and to the word error rate (WER) with 95%
confidence interval, on the right for friendly, distant, dominant and seductive and across attitudes.

still noticeable when we break down the results by attitude. However, there are slight differences
in performance depending on the attitude considered. The performance in terms of WER, quite ob-
viously follows the same trend. Although, the effects are less significant, especially if we consider
the attitudes separately. Nevertheless, there is a substantial decrease in WER for the two higher
impact configurations VTN-lxASR-st and VTN-lxASR-me compared to the baseline attitude con-
version algorithm VTN-l.

In summary, it is apparent that adding a speech-to-text module to our conversion algorithm
greatly decreases generating errors from a linguistic perspective. Nevertheless, there remains a
certain proportion of utterances for which the linguistic content is not perfectly rendered by the
ASRmodule. It should be noted that this could be a prediction error from the speech-to-text module
or a generation fault from the conversion algorithm.

Assessing the Proximity of the Conversions to the Target Utterances

Here, we mean to evaluate the performance of the selected configurations of our speech attitude
conversion model in regards with objective criteria. Performance results in MAD-mel and RMSE-f0
are displayed in the Table 7.1 for each conversion attitude pair.

First, we observe that the large configuration VTN-l slightly outperforms the smaller one VTN-s
respectively by 0.2 in terms of MAD-mel and by 4.3 Hz in terms of RMSE-f0. If we now consider the
performance by pair of transformations, we see that no pair escapes this trend except the distant
to dominant transformation for which VTN-s performs slightly better than VTN-l in terms of MAD-
mel, however it is probably not significant. We also find a slightly better performance of VTN-s
than VTN-l in terms of RMSE-f0 for the conversion from friendly to seductive and from dominant
to seductive. The correlation scores between the converted F0 contours and the target contours
were also computed. With the score fluctuating somewhat around 0.9 depending on the pair of
attitudes taken into consideration for the conversion, we found little difference between the two
configurations.

Second we observe that the baseline VTN-l and light impact ASR-upgraded VTN-lxASR-li con-
figurations achieve same performance with 0.76 in MAD-mel and 49.9 in RMSE-f0. Slightly better,
the moderate and strong impact ASR-upgraded VTN-lxASR-me and VTN-lxASR-st configurations
also achieves same performance in terms of MAD-mel with 0.74. VTN-lxASR-st slightly outper-
forms VTN-lxASR-me with respectively 48.2 and 48.8 in RMSE-f0. Considering pair-wise results,
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it can be seen that the best performance is achieved sometimes by VTN-lxASR-st sometimes by
VTN-lxASR-me depending on the transformation pair. It is impossible to determine whether the
addition of the speech recognition module affects the conversion model’s capacity to generate
convincing conversions based solely on these results. It is however observed that the addition of
such a module does not prevent the conversion algorithm from converging.

Model Metric fr.→ di. fr.→ do. fr.→ se. di.→ fr. di.→ do. di.→ se.

VTN-s ϵmel 0.71 0.79 0.80 0.83 0.79 0.80
ϵf0 41.6 49.6 52.7 59.5 49.6 52.7

VTN-l ϵmel 0.69 0.75 0.80 0.78 0.80 0.75
ϵf0 40.5 48.5 54.8 55.6 48.5 54.8

VTN-lxASR-li ϵmel 0.71 0.76 0.77 0.80 0.76 0.77
ϵf0 42.3 48.7 53.0 55.4 48.7 53.0

VTN-lxASR-me ϵmel 0.68 0.75 0.76 0.77 0.75 0.76
ϵf0 40.0 47.1 54.3 54.0 47.1 54.3

VTN-lxASR-st ϵmel 0.67 0.73 0.77 0.78 0.74 0.77
ϵf0 39.6 44.9 53.7 54.7 44.9 53.7

Model Metric do.→ fr. do.→ di. do.→ se. se.→ fr. se.→ di. se.→ do.

VTN-s ϵmel 0.83 0.71 0.80 0.83 0.71 0.79
ϵf0 59.5 41.6 52.7 59.5 41.6 49.6

VTN-l ϵmel 0.80 0.69 0.78 0.80 0.69 0.75
ϵf0 55.6 40.5 54.8 55.6 40.5 48.5

VTN-lxASR-li ϵmel 0.80 0.71 0.77 0.80 0.71 0.76
ϵf0 55.4 42.3 53.0 55.4 42.3 48.7

VTN-lxASR-me ϵmel 0.77 0.68 0.76 0.77 0.68 0.75
ϵf0 54.0 40.0 54.3 54.0 40.0 47.1

VTN-lxASR-st ϵmel 0.78 0.67 0.77 0.78 0.67 0.73
ϵf0 54.7 39.6 53.7 54.7 39.6 44.9

Table 7.1: Performance results with regards to the objective metrics MAD-mel and RMSE-f0 for
VTN-s, VTN-l, VTN-lxASR-li, VTN-lxASR-me and VTN-lxASR-st for each conversion pair of atti-
tudes.

Visualizing Speech-to-Text Module’s Effect on Conversions

In order to illustrate the differences between the basic configuration VTN-l, its version augmented
with a speech recognition module VTN-lxASR-st and what is considered as a reference - i.e. the
target sentence we expect to get close to - Figure 7.7 shows two examples of conversion through
representing the converted mel-spectrogram and the average attention matrix resulting from the
different target-to-source multi-head attention layers that reflects the implicit alignment learnt be-
tween source and target utterances. Although it can be challenging to comprehend what a neural
model does, these representations serve as a useful tool for making decisions about a model’s
construction and optimization. On the mel-spectrograms, the white dotted bars designate the end
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and the beginning of the syllables that make up the spoken sentence, the phonetic transcription of
these syllables is indicated in white at the top of each image. The question marks designate the
syllables that are unintelligible, they are located at the end of the sentence and concern only the
baseline configuration VTN-l.

« C’est vrai           attendons un peu »
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Figure 7.7: Visualization of two conversion examples. At the left, the sentence "C’est vrai attendons
un peu" is converted from distant to dominant and at the right the sentence "Ta soeur a bu toute la
nuit" is converted from distant to seductive. The two first lines show conversions respectively from
VTN-l and VTN-lxASR-st while the last line shows the related target utterance. For each example
and conversion, the mean attention matrix from the target-to-source multi-head attention layers
and the converted mel-spectrogram is depicted.

By observing these two examples, we notice firstly that the addition of the speech recognition
module allows, in both cases, to preserve the linguistic content. Each of the syllables underlying
the formation of the global sentence is preserved by the model with ASR VTN-lxASR whereas the
syllables at the end of the sentence are unintelligible or completely absent - this is the case of
"peu" phonetically denoted "p2" - for the basic model VTN-l. If we leave aside this linguistic aspect,
we can see that in general the mel-spectrogram converted by VTN-lxASR-st is much closer to the
target mel-spectrogram than the one converted by VTN-l. In particular, VTN-lxASR-st seems to
better render the formants’ variations during the course of the sentence than VTN-l. Moreover, the
noise which also plays an important role in speech signal seems to be modelled more finely by
VTN-lxASR-st than by VTN-l.

A final observation is that the average attention estimated from the various layers of target-to-
source multi-head attention is not linear. It is clear that the model captures an implicit alignment
at the sentence level - including the words that make it up - as well as at lower levels - such as
phonemes - reflecting micro-prosody.
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7.4 Perceptual Evaluation of Vocal Attitude Conversion Models

Despite all these so-called objective evaluations of the performance of our voice attitude conver-
sion algorithms, it seems important to us to assert the primacy of the perceptual criterion. Indeed,
whatever the final application of these algorithms, the only criterion that really matters is the av-
erage individual’s opinion of the conversions. This subjective judgement can obviously be broken
down into different qualities such as naturalness or the similarity to a reference - or a label - regard-
ing the attitude conveyed.

7.4.1 Perceptual Experiment

In this part, we describe the listening experiment carried out for the perceptual assessment of the
various configurations’ conversions.

Evaluation Data

For this experiment we have selected four different attitude conversion models among those ex-
posed above. On the one hand, two configurations of the baseline algorithm, the small model
VTN-s and its equivalent twice as large - in terms of number of layers - VTN-l. On the other hand,
two configurations of the algorithm augmented with a speech-to-text module, of low impact VTN-
lxASR-li and of high impact VTN-lxASR-st. Since it was obviously impossible to evaluate all the
validation data perceptually, we selected ten different linguistic contents, related to short, medium
and long sentences. For each of these sentences, we generated a conversion for each of the four
configurations, to which we add the target sentence as a reference. This is done for the twelve
transformation pairs. This amounts to 150 samples to evaluate per target attitude (10× 3× 5) - or
a total of 600 samples.

Experimental Design

The question of the choice of experimental design used to perceptually validate the performance of
our models deserves to be asked. Indeed, we successively conducted a BWS experiment to ques-
tion the perception of attitudes in Att-HACK in Chapter 4 and then conducted an AB preference test
to perceptually evaluate the performance of our F0-based attitude conversion model in 5. These
two designs proved to be effective in revealing relative perceptual differences between sounds on
the one hand and between models on the other. As a consequence, we chose to continue with this
paradigm of relative assessment rather than switching to one of absolute judgment - Rating Scale
(RS) kind - such as Mean Opinion Score (MOS). Since the implementation of a BWS experiment is
very demanding, both from a logistical point of view and from the perceptual data post-processing
perspective, we have opted to conduct an AB preference test.

Throughout this test, we mean to compare different configurations of our conversion algorithm
according to two criteria: 1) intelligibility - i.e. being able to decode the linguistic message con-
veyed and 2) the fidelity of the attitude conveyed to a specific attitude label. These two criteria
seem to assess common qualities, if the linguistic content cannot be decoded it seems difficult to
assess the attitude conveyed. In fact, it is possible that no attitude can be conveyed if the linguistic
content is not preserved. However, conversely, some conversions may preserve the linguistic con-
tent without adequately conveying the target attitude. In this case, it will be interesting to observe
the answers to the two questions asked. In particular for this second criterion, we have chosen
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not to compare the conversions to a reference - i.e. their related target utterance - but rather to an
attitude label. Indeed, wemight claim that the comparison to a reference appears too restrictive as
there is no single way to communicate a vocal attitude given a linguistic message and a speaker
identity. Each participant evaluates twenty randomly picked pairs of sounds that relate to a par-
ticular attitude that is also randomly picked. On each run, participants are asked to listen to two
sounds, which can be either two conversions from different configurations of the speech attitude
conversion algorithmor one conversion and one reference - i.e. the target sentence associatedwith
the conversion. Participants are then asked to answer two questions: 1) which of these sounds is
more intelligible? and 2)which of these sounds conveys more of the attitude being studied? To each
of these questions, participants are asked to answer categorically. If we denote the sounds of a
pair A and B, then participants must choose between Mostly A, Fairly A, In between, Fairly B and
Mostly B.

7.4.2 Results & Discussion

At the end of the test we collected responses from 140 participants, which is fairly substantial
considering that the test was not remunerated.

Assessing the Conversions’ Intelligibility

The first question the participants were asked dealt with intelligibility. They were asked to judge,
for each pair evaluated, which sound was the most intelligible. In this regard, the data collected is
well represented by the confusion matrix shown on the left side of the Figure 7.8. In this matrix,
each row presents the overall preference of a given configuration - or the reference - towards other
configurations - and the target - with regards to intelligibility. Positive scores indicate an overall
preference of the y-label over the x-label, the scale going from −2 to 2 with 0 meaning no decision.
The left-hand side of Figure 7.8 is an attempt to represent the absolute performance of each of
these configurations by measuring the proportion of pairs (in %) for which a given configuration is
preferred over others. Note that this last representation only makes sense if all possible pairs have
been evaluated by participants. However, the interpretation of the data can only be made in the
light of these two representations.

First, the configuration that yields least intelligible conversions is the small model VTN-s, its
twice as large version VTN-l achieving better performance. Second, it appears that the configu-
ration with a strong impact of the speech-to-text module VTN-lxASR-st is preferred to any other
configuration with regards to intelligibility. Note that, the configuration with light-impact of the ASR
module VTN-lxASR-li is also better judged than our baseline algorithms VTN-s and VTN-l for in-
telligibility. Our large baseline algorithm VTN-l is preferred over the smaller one VTN-s. Finally, the
reference is logically always found to be more intelligible whatever the conversion it is compared
to. On the right-hand side of Figure 7.8, the error bars provide an indication of how significant the
observed effects are - i.e. how much one configuration is preferred to the others. We note in par-
ticular the overall superiority of our strong ASR’s impact algorithm VTN-lxASR-st over the smaller
algorithm VTN-s.

To conclude, we can affirm that the incorporation of a speech-to-text module into our attitude
conversion algorithm allows us to globally improve the intelligibility of the conversions produced.
In that sense, it constitutes a solution to the issue of linguistic content loss encountered with the
basic algorithms VTN-s and VTN-l.
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Attitude.Figure 7.8: At the left, we depicted the confusionmatrix where each row presents the overall prefer-
ence towards other configurations and targetwith regards to intelligibility. Positive scores indicates
an overall preference of the y-label over the x-label. At the right, we represented the proportion of
pairs in which each configuration is preferred over the others with regards to intelligibility.

Assessing the Conversions’ Conveyed Attitude

The second question the participantswere asked dealt with the attitude conveyed. Theywere asked
to judge, for each pair evaluated, which sound was conveying the most the attitude studied - i.e.
friendly, distant, dominant or seductive depending on the attitude randomly picked by the partici-
pant. In this regard, the data collected is well represented by the confusion matrix shown on the
left side of the Figure 7.9. In this matrix, each row presents the overall preference of a given config-
uration - or the target - towards other configurations - and the target - with regards to the attitude
conveyed. As for intelligibility, positive scores indicate an overall preference of the y-label over the
x-label. In a similar way, the left-hand side of Figure 7.9 represents the absolute performance of
each of these configurations by measuring the proportion of pairs (in %) for which a given config-
uration is preferred over others.

First off, it appears clear that there are less significant perceptual differences between the vari-
ous configurations than there are for intelligibility. In addition, the left-hand of Figure 7.9 shows that
the target is preferred to other configurations in only 50% of the cases. It can also be seen from the
left-hand side of the Figure that in the best case, the reference is only fairly preferred (mean score
close to 1.0) in terms of the attitude conveyed. These points may be interpreted in two different
ways. First, it is likely substantially harder to evaluate the attitude a sentence conveys than it ap-
pears to be to evaluate its intelligibility. Second, our algorithms perform rather well in regards with
their ability to convert the vocal attitudes.

Let us now dive into details. Firstly, we note that VTN-lxASR-st is preferred to all the other
configurations, that said this preference remains minor, less significant than a "fairly preferred" if
we consider the judgment scale. We also notice a slight preference for VTN-lxASR-li over the two
configurations without an ASR module, VTN-l and VTN-s. Our large baseline algorithm VTN-l is
slightly preferred over the smaller one VTN-s. Note that the reference has only been slightly pre-
ferred to our best performing configuration VTN-lxASR-st. Although this difference is small, the
right-hand side of Figure 7.9 shows that it is significant. The participants seem to agree that the
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attitude conveyed through the conversions from VTN-lxASR-st is less faithful to the associated
attitude label than the reference itself.

As a result, it appears that the participants judged the attitude conveyed in conversions from
algorithms enhanced with a speech-to-text module as being even more true to the associated atti-
tude label. This is potentially partly due to the improved intelligibility offered by these algorithms.
That said, one might have feared that these algorithms, by forcing intelligibility, would inhibit con-
version and produce unconvincing conversions with regards of the attitude conveyed. That is not
the case, which definitely validates the incorporation of this speech-to-text module into our vocal
attitude conversion algorithm. However, it should be noticed that individuals still perceive a signif-
icant difference between the real utterances and the conversions from our best model in terms of
fidelity to an attitude label.
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Figure 7.9: At the left, we depicted the confusion matrix where each row presents the overall pref-
erence towards other configurations and target with regards to the attitude conveyed. Positive
scores indicate an overall preference of the y-label over the x-label. At the right, we represented
the proportion of pairs in which each configuration is preferred over the others with regards to the
attitude conveyed.

A Transformer-based Speech Attitude Converter with Improved Intelligibility

We showed that incorporating a speech-to-text module into our transformer-based conversion al-
gorithm significantly reduced the loss of intelligibility in the conversions. The same trend was ob-
served in terms of objective proximity to the target utterances, although the differences did not
allow to draw conclusion on the naturalness of the attitudes conveyed in conversions. We sup-
plemented this objective assessment with a listening experiment to perceptually assess the con-
versions in which we asked 150 participants to judge the intelligibility of the conversions and the
fidelity of the attitude they convey to a specific attitude label. First, the test results proved that the
incorporation of a speech-to-text module into the transformer-based attitude conversion algorithm
allows to globally improve the intelligibility of the conversions. Second, it appears that the partic-
ipants judged the attitude conveyed in conversions from linguistically conditioned algorithms as
being even more true to the associated attitude label. However, it should be noticed that individ-
uals still perceive a significant difference between the real utterances and the conversions from
our best model in terms of fidelity to an attitude label. However, it is important here to moder-
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ate these conclusions since our experiment involves only one speaker and does not allow us to
validate the performance of such a model in a more general context. Nevertheless, this research
marks a substantial advance in that it makes it possible to learn the conversion of any attitude to
any other simultaneously, i.e. in a many-to-many fashion, which to our knowledge had never been
achieved. We are currently conducting further experiments involving several speakers in order to
observe whether the algorithm can learn to convert speech attitudes independently of the speaker.
At the time of writing, we dispose of a powerful algorithm for the conversion of vocal attitudes and
are working to improve it by extending its scope of validity.

7.5 Chapter Summary

At the end of Chapter 5, in which we outline our first attempt at converting speech attitudes by
changing only F0 contours, we decided to shift paradigm. First, we chose to adoptmel-spectrogram
as speech representation along with the neural vocoder proposed in (Roebel and Bous, 2022) from
which speech can be recovered almost perfectly. Second, we chose to focus on the transformer
architecture (Vaswani et al., 2017) for attitude conversion as it allows to learn a mapping between
utterances of different duration. The main advantage of such transformers being that it basically
replaces all recurrent - or dilated convolution - layers by self attention mechanisms in a network.
This allows for more efficient learning in terms of both time and computing resources.

In line with this paradigm shift, we worked towards an adaptation of the algorithm proposed in
(Kameoka et al., 2021) for many-to-many speech attitude conversion based on mel-spectrogram
representation of speech signal. A first limitation of the approach in (Kameoka et al., 2021) was
the use of WORLD vocoder features as speech multi-parametric representation, we thus proposed
to employ mel-spectrogram instead. Early experiments with the transformer architecture led us to
identify a loss of linguistic content in a significant number of conversions. Some phonemes were
badly formed or not formed at all while in some conversions, a word was changed into another
word thus completely changing the meaning of the utterance. This issue appeared to be very dis-
turbing in that it compromises the optimal decoding of the message conveyed by the converted
utterance. To face this issue, we placed intelligibility - i.e. the ability to decode the linguistic mes-
sage conveyed in a speech signal - on top of the criteria our conversions must meet.

Our contribution first involved reformulating the approach of (Kameoka et al., 2021) for many-
to-many speech attitude conversion based on mel-spectrogram representation. Second, we ad-
dressed the issue of linguistic loss encountered in the early experiments’ conversions with the
transformer. For the latter, we moved to the typical research problem of Automatic Speech Recog-
nition (ASR) which consists in transcribing audio speech segments into a sequence of characters.
First, such a speech-to-text module allows for an objective evaluation of the linguistic loss issue.
Therefore, we first worked at implementing an efficient speech-to-text module and trained it on Att-
HACK. Second, we considered howwe can use such a speech-to-textmodule to enhance the perfor-
mance of our conversion model. We proposed to connect the speech-to-text’s speech input to the
output of the conversion algorithm, in this way wemean to condition the generation of a converted
utterance on a specific linguistic content. By propagating the prediction error of the speech-to-text
module through the weights of the conversion network, the latter is constrained to generate mel-
spectrograms from which the speech-to-text module can predict the correct character sequence,
thus forcing intelligibility. We proposed several versions of this upgraded voice conversion network
with different strengths of the text-to-speechmodule. Undoubtedly, the speech-to-textmodule’s ad-
dition significantly reduces the loss of intelligibility in the conversions. The same trend is observed
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in terms of objective proximity to the target utterances, however the differences did not allow to
draw conclusion on the naturalness of the attitudes conveyed in conversions.

Indeed, whatever the final application of these algorithms, the only criterion that really matters
is the average individual’s opinion on the conversions. We thus conducted a listening experiment
to perceptually assess the various configurations’ conversions. We asked participants to judge
the intelligibility of the conversions and the fidelity of the attitude they convey to a specific atti-
tude label. First, the test results proved that the incorporation of a speech-to-text module into the
transformer-based attitude conversion algorithm allows to globally improve the intelligibility of the
conversions. Second, it appears that the participants judged the attitude conveyed in conversions
from linguistically conditioned algorithms as being even more true to the associated attitude label.
However, it is important here to moderate these conclusions since our experiment involves only
one speaker and does not allow us to validate the performance of such a model in a more gen-
eral context. Nevertheless, this research marks a substantial advance in that it makes it possible
to learn the conversion of any attitude to any other simultaneously, i.e. in a many-to-many fashion,
which to our knowledge had never been achieved. We are currently conducting further experiments
involving several speakers in order to observe whether the algorithm can learn to convert speech
attitudes independently of the speaker. At the time of writing, we dispose of a powerful algorithm
for the conversion of vocal attitudes and are working to improve it by extending its scope of validity.
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Chapter 8

GENERAL CONCLUSION & FURTHER
DIRECTIONS

8.1 General Conclusions

First and foremost, our research has shed light on vocal attitudes by revealing how people use
their vocal apparatus to produce them and, to a lesser extent, how they manage to decode them.
This valuable knowledge has enabled us to thoroughly address the challenge of converting vocal
attitudes. On the one hand, we worked at designing an algorithm that learns to convert speech atti-
tudes with accuracy - by changing all the speech parameters involved in their description - and with
efficiency - through architectural and optimisation choices. On the other hand, the knowledge pro-
vided on attitudes enabled us to feed our attitude conversion algorithm with clean and controlled
data which improved the quality of conversions. The main contributions consist of: 1) the design
of Att-HACK - a French database of expressive speech for social attitudes, 2) the uncovering of the
production strategies and perception of vocal attitudes, 3) the design of a BWS-Net - neural predic-
tor of perceptual judgements on attitudes and 4) the design of a sequence-to-sequence algorithm
for speech attitude conversion.

The main conclusions of the present study are summarized below:

Individuals Share Common Strategies for Producing Vocal Attitudes

In the study presented in Chapter 4.3, we investigated how French speakersmodulate their voice to
communicate vocal attitudes. To do this, we analysed the vocal production of dominant, friendly,
seductive and distant attitudes in Att-HACK. For each attitude, we reported the changes in the
speakers’ vocal fold behaviour, vocal tract actuation, and phonetic speech structure. We obtained
two statistically strong prototypes for dominance and seductiveness and two weaker ones for
friendliness and distance. To our knowledge, we conducted the first study to reveal diverging voice
production strategies at the articulatory level. Specifically, we found that speakers’ productions
were distributed across specific clusters in the vowel space (Fig. 4.2-2). Similarly, analysing the
Vowel Space Density surface revealed that some attitudes spanmore articulatory modes than oth-
ers. This result suggests that subtle cues in speech articulation can convey a communicative signal
of vocal intent.
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Overall, these results shed light on the social intentions behind the production of social atti-
tudes. Such behaviours may be closely interpreted from a social perspective, revealing the links
between attitude-specific vocal behaviours and higher-order cognitive mechanisms (Goupil et al.,
2021b). However, it is important to highlight that the vocalisations analysed herein were produced
by actors, and actors’ vocalisations are known to be less authentic than spontaneous ones (Anikin
and Lima, 2017) — which, in the case of e.g. facial expressions of emotions, even seem to rely on
different neural bases (Valente et al., 2017). In any case, these results uncover the shared strategies
used by speakers to volitionally produce vocal attitudes.

Linguistic Content and Speaker Gender Influence the Perception of Vocal Atti-
tudes

We conducted a Best Worst Scaling (BWS) experiment to assess the perception of attitudes in Att-
HACK. As a first step, we assessed solely the perception of its related sounds for each a priori
attitude, i.e. the ones already produced with aim of conveying this specific attitude. In the end,
we obtained four perceptual scales ranking the sounds of each a priori attitude. The perceptual
data collected potentially reflects other speech attributes such as linguistic content or gender that
influence the communication of speech attitudes. Before seeking to properly understand the per-
ception of speech attitudes, we questioned the interaction between perceptual scores obtained
and other speech attributes such as linguistic content of gender.

The sentences in the database cannot be regarded as neutral, they have a meaning that de-
notes either a rather positive or negative sentiment. Reflecting this evoked sentiment, we assigned
an emotional valence score to each sentence through a sentiment analysis conducted on 60 in-
dividuals. We found a substantial interaction between the perception of attitude and emotional
valence score with significant effects for friendliness and dominance, thus revealing that those at-
titudes perception is influenced by linguistic content. In particular, the perception of friendliness is
significantly correlated to the emotional valence carried by said linguistic content, i.e. the more the
sentence evokes a positive emotion, the more the utterance will be perceived as friendly.

We found that certain attitudes are better communicated depending on the speakers’ vocal gen-
der. Friendliness and seduction seem to be best communicated by female speakers. Conversely,
dominance seems to best communicated bymale speakers. We provide two possible explanations
for this gender effect. First, it may be that the better communication of certain attitudes by speak-
ers of one gender is due to a production advantage, i.e. a better physiological capacity to produce
and thus communicate these attitudes. Second, it may be caused by a decoding bias, i.e. a cul-
turally constructed difference in the perception of each of these attitudes depending on whether
it is expressed by a male or female speaker. Attributing one or the other of these causes to the
different effects observed is very difficult and would require looking at the mental representations
that individuals attribute to different attitudes. Moreover, it is unclear whether these effects would
exist outside the forced-choice experiment involved in the BWS paradigm.

The Conversion of Attitudes Is Improved with Linguistic Conditioning

Early experiments at converting speech attitudeswith the promising transformer approach showed
issue of linguistic loss encountered in conversions. To solve this, we moved to the typical research
problem of Automatic Speech Recognition (ASR) which consists in transcribing audio speech seg-
ments into a sequence of characters. We first worked at implementing an efficient speech-to-text
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module and trained it on Att-HACK for proper objective assessment of the linguistic loss issue. Sec-
ond, we considered how we can use such a text-to-speech module to enhance the performance of
our conversion model. We proposed to connect the speech-to-text’s speech input to the output
of the conversion algorithm, in this way we mean to condition the generation of a converted ut-
terance on a specific linguistic content. By propagating the prediction error of the speech-to-text
module through the weights of the conversion network, the latter is constrained to generate mel-
spectrograms from which the speech-to-text module can predict the correct character sequence,
thus forcing intelligibility. We proposed several versions of this upgraded voice conversion network
with different strengths of the speech-to-text module. Undoubtedly, the speech-to-text module’s
addition significantly reduced the loss of intelligibility in the conversions. The same trend was ob-
served in terms of objective proximity to the target utterances, although the differences did not
allow to draw conclusion on the naturalness of the attitudes conveyed in conversions.

Whatever the final application of these algorithms, the only criterion that really matters is the
average individual’s opinion on the conversions. We thus conducted a listening experiment to per-
ceptually assess the various configurations’ conversions. We asked 150 participants to judge the
intelligibility of the conversions and the fidelity of the attitude they convey to a specific attitude label.
First, the test results proved that the incorporation of a speech-to-text module into the transformer-
based attitude conversion algorithm allows to globally improve the intelligibility of the conversions.
Second, it appears that the participants judged the attitude conveyed in conversions from linguis-
tically conditioned algorithms as being even more true to the associated attitude label. However,
it should be noticed that individuals still perceive a significant difference between the real utter-
ances and the conversions from our best model in terms of fidelity to an attitude label. Since our
experiment only includes one speaker and prevents us from validating the performance of such a
model in a more general context, it is crucial to mitigate these conclusions. However, this research
represents a significant advancement since it allows to learn the conversion of any attitude to any
other simultaneously, i.e. in a many-to-many fashion, which had previously not been achieved to
our knowledge. To determine if the algorithm can learn to convert speech attitudes independently
of the speaker, we are currently conducting more experiments with multiple speakers. As of this
writing, we dispose of a powerful algorithm for converting speech attitudes and are attempting to
improve it by broadening its scope.

8.2 Further Directions

Through pursuing the objective of converting vocal attitudes, many research directions have been
explored. Although this thesis ends, the research continues: many questions remain to be ad-
dressed and many ideas are still to be implemented, the main ones are outlined below.

Understanding the Perception of Speech Attitudes

It is clear that static features - i.e. averaged over utterances’ duration - are not predictive of BWS
scores for speech attitudes as they are for sound attributes such as studied in (Rosi, 2022). It is
likely that individuals use much more complex cues to decode attitudes. In particular, it is reason-
able to hypothesize that temporal variations in different speech parameters play a crucial role in
the perception of speech attitudes. In order to assess this hypothesis, we plan to adapt the prin-
ciple of explained regression to the case of temporal sequences. By doing so, we expect to better
understand the mechanisms underlying the perception of vocal attitudes.
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Better Assessment of Conversions

In Section 4.3, we investigated how speakersmodulate their voice to communicate vocal attitudes.
To do, we analysed the vocal production of dominant, friendly, seductive and distant attitudes in
Att-HACK by reporting the changes in the speakers’ vocal fold behaviour, vocal tract actuation, and
phonetic speech structure. We plan to re-apply this method, which involves a phonemes-to-audio
neural alignment of the speech samples, to the conversions from our attitude conversion model.
By comparing the results with the production strategies uncovered for the actual data, we could tell
exactly which speech parameters were converted and which were not (and to what extent), thus
providing an accurate objective assessment of the model’s performance.

In Chapter 6, we worked at designing a BWS-Net that can mimic the average perceptual judg-
ment of individuals from mel-spectrogram representations of speech signals. We plan to apply
such a BWS-Net to the conversions yielded by our algorithms, thus assessing their subjective per-
ception without the need for a listening experiment.

Perceptually Conditioned Speech Attitude Conversion

We are working on a perceptual conditioning of our speech attitude conversion algorithm that pro-
vides control on the attitudinal intensity of the conversion. At the time of writing, we conduct
experiments with such an algorithm testing the different BWS-Nets designed Chapter 6. These
experiments notably involve considering several speakers, in order to cover the whole perceptual
spectrum for each attitude (and each sentence). In addition, each attitude requires its own BWS-
Net, which makes the training considerably more demanding in terms of resources and computing
time. We hope that these experiments will lead to improvements in our current attitude conversion
system, particularly through attitudinal intensity control.
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