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The impact of air pollution on the society, environment and human health has increased drastically in the recent years mostly due to the increase industrialisation and transportation. Several gases contribute to this effect namely NO2, SO2, O3 and CO2. Microwave gas sensors offer promising avenues for air quality monitoring, due to their cost effectiveness, low energy consumption, robustness, and high frequency facilitating wireless communication. This research delves into the design, simulation, fabrication and characterisation of a dual-channel microstrip interdigitated sensor fabricated on a flexible Kapton substrate, enhanced by several synthesized polymers (EB-PEI, HBPEI Silane, LPEI-COPh, and LPEI-CH2Ph) derived from commercially available polyethyleneimine for accurate gas monitoring. The synthesized sensitive materials were characterised morphologically using SEM and AFM. Revealing the pronounced roughness and porous nature of HBPEI Silane as opposed to the smoother surfaces of the other polymers. Electrical characterisation of the fabricated sensors corroborated the simulation results.

In rigorous controlled laboratory settings, the sensors underwent characterization. Initial tests for atmospheric interferences, humidity (RH) and temperature, indicated pronounced RH sensitivity for COM HBPEI and EB PEI, while LPEI-COPh and LPEI-CH2-Ph displayed minimal sensitivity. However, LPEI-COPh showed higher sensitivity to temperature as compared to RH. Relative to literature benchmarks, COM HBPEI and EB-PEI demonstrated consistent selectivity for RH with limited temperature and the other environmental parameter influence. Interestingly, the sensors demonstrated CO2 sensitivity solely at 0% RH, with HBPEI Silane emerging as particularly more sensitive, attributed to its rough surface fostering enhanced molecular interactions. However, the response to other gases, including NO2, SO2, CO, and O3, remained subdued under targeted ranges. Field tests were carried out over different periods (summer 2021, summer 2022 and winter 2023). Results corroborated laboratory findings, especially the dominant RH sensitivity of EB-PEI and COM HBPEI. Introducing the HBPEI Silane 1:0.5 sensor response to calibration models incorporating known environmental parameters such as RH, temperature, and NO2 improved ozone prediction, highlighting the sensor's secondary ozone sensitivity. This secondary sensitivity and the crucial role of prior NO2 knowledge for accurate ozone prediction, was reinforced during the sensor array winter 2023 deployment. Moreover, utilizing the COM HBPEI-based sensor and LPEI-COPh, known for their respective RH and temperature sensitivity, proved advantageous for ozone prediction over direct usage of RH and temperature data. An analysis of the winter 2023 dataset solidified these findings. The primary limitation during outdoor testing arose from the brief deployment durations, leading to cross correlations among environmental variables, thereby complicating the distinction of individual gas sensitivities. For future endeavours, extended deployments spanning several months are recommended. Furthermore, the exploration of novel sensitive materials, especially those based on conducting polymers and metal oxides, for a more expanded sensor array facilitating the discrimination of gaseous species and reduction of atmospheric interferences. Measurement over a wider frequency range might yield deeper insights. The development of cost-effective wireless sensor instrumentation remains an essential in the future.

Titre : Suivi sélectif de gaz d'échappement par capteurs radiofréquences imprimés Résumé L'impact de la pollution de l'air sur la société, l'environnement et la santé s'est considérablement accru ces dernières années, principalement en raison de l'industrialisation et du transport croissants. Plusieurs gaz contribuent à cet effet, notamment le NO2, le SO2, l'O3 et le CO2. Les capteurs de gaz à micro-ondes offrent des perspectives prometteuses pour la surveillance de la qualité de l'air en raison de leur rentabilité, leur faible consommation d'énergie, leur robustesse et leur haute fréquence facilitant la communication sans fil. Cette thèse se penche sur la conception, la simulation, la fabrication et la caractérisation des capteurs interdigitées à microruban, à double canal fabriqué sur un substrat Kapton flexible, associés à des polymères synthétisés (EB-PEI, HBPEI Silane, LPEI-COPh, et LPEI-CH2Ph) à partir du polyéthylèneimine commercial pour la détection de gaz. Les matériaux sensibles ont été caractérisés morphologiquement à l'aide de SEM et AFM, révélant la rugosité prononcée et la nature poreuse du HBPEI Silane par rapport aux autres polymères. La caractérisation électrique des capteurs fabriqués sont conformes aux simulations.

Les capteurs ont été rigoureusement caractérisées en conditions contrôlées en laboratoire. Les tests initiaux ont été effectuées sous, l'humidité (RH) et température qui sont des interférents atmosphériques. Les mesures ont indiqué une sensibilité RH prononcée pour le COM HBPEI et le EB PEI, tandis que le LPEI-COPh et le LPEI-CH2-Ph ont montré une sensibilité minimale. Cependant, le LPEI-COPh a montré une sensibilité plus élevée à la température par rapport à RH. Comparer à la littérature, le COM HBPEI et le EB-PEI ont montré une sélectivité constante pour RH avec une influence limitée de la température et des autres paramètres environnementaux. Les capteurs ont démontré une sensibilité au CO2 uniquement à 0% RH, le HBPEI Silane se démarquant par sa meilleur sensibilité, attribuée à sa surface rugueuse favorisant des interactions moléculaires accrues. Cependant, la réponse à d'autres gaz, notamment le NO2, le SO2, le CO et l'O3, reste moindre dans les gammes ciblées. Des mesures sur le terrain ont été réalisés à différents moments (été 2021, été 2022 et hiver 2023). Les résultats ont corroboré les conclusions de caractérisation en laboratoire, en particulier la sensibilité RH dominante de l'EB-PEI et du COM HBPEI. L'introduction de la réponse du capteur HBPEI Silane 1:0.5 dans les modèles de calibration, intégrant des paramètres environnementaux connus tels que RH, la température et le NO2, a amélioré la prédiction de l'ozone, mettant en évidence la sensibilité secondaire du capteur à l'ozone. Cette sensibilité secondaire, et l'importance cruciale de la connaissance préalable du NO2 pour une prédiction de l'ozone, a été renforcée lors du déploiement en hiver 2023. De plus, l'utilisation du capteur à base de COM HBPEI et du LPEI COPh, reconnus pour leur sensibilité respective à RH et à la température, s'est avérée avantageuse pour la prévision de l'ozone plutôt que l'utilisation directe des données de RH et de température. L'analyse des données de l'hiver 2023 a confirmé ces résultats. La principale limitation lors des tests en extérieur provient des durées de déploiement courtes, entraînant des corrélations croisées entre les variables environnementales, compliquant ainsi la distinction des sensibilités individuelles aux gaz. Des déploiements prolongés sur plusieurs mois sont recommandés. De plus, l'exploration de nouveaux matériaux sensibles, notamment ceux à base de polymères conducteurs et d'oxydes métalliques, pour l'expansion du réseau de capteurs pourraient améliorer la discrimination des espèces gazeuses et réduire les interférences atmosphériques. Des mesures sur une gamme de fréquences étendue pourraient fournir des informations approfondies. Le développement d'une instrumentation de capteur sans fil à faible cout demeure essentiel pour a l'avenir.
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General introduction

Air quality has emerged as a trivial environmental concern, attracting a lot of attention especially due to rapid urbanization, industrial activities, transportation liberating an immense quantity of toxic gases with affect public health. This leads to an increase in gas sensor market in the recent years. Actually, air quality monitoring in urban cites is mostly operated at stationary stations, which are often expensive, bulky, with high energy consumption. The static nature of this stations, makes is complicated to monitor pollution in localized area for immediate data acquisition. Given the urgent need for expansive and portable air quality stations, there is an increase interest in development of wireless, robust, wireless, low cost, and passive sensors with low energy consumption. With Internet of Things, the large-scale deployment of gas sensor arrays associated to calibration algorithms becomes feasible for air quality monitoring.

In this context, the ANR CARDIF project constituted of the consortium IMS, XLIM, LCPO, University Gustave Eiffel and ISORG was initiated to selectively monitor exhaust and polluting gases (NO2, SO2, O3) used for ATMO air quality index calculation using polymer-based microwave gas sensors. Polymer-based microwave gas sensors are booming due to their cost effectiveness, flexibility inherent high working frequency, robustness, passive nature, making them suitable for non-invasive, non-contact measurements. Also, the ability of the polymer to be easily functionalised. This thesis project follows up on the work on the ANR CAMUS and ANR CARGESSE project which aimed detecting COVs like ethanol and toluene using radiofrequency gas sensor printed on flexible substrates.

The thesis work presented in this document consist of four main chapters:

• Chapter I presents the context, the problematic and our proposed solution address the issues. The various polluting gases and their impact on the environment and human health was stated together with the air quality guidelines proposed by the different governmental organisation. The gas sensing market and the available technologies were analysed and studied to emphasize the interest of polymer-based microwave sensors associated to outdoor in situ calibration algorithms in a sensor array manner for air quality monitoring. • Chapter II focuses on the theoretical framework on electromagnetic waves, dielectric polarisation, planar transmission lines with a focus on multilayer microstrip lines, microwave networks, and finally sensing properties and calibration algorithms. This theory enables the understanding of the choice of the transducer, the sensor geometry, and working principle. It also aids evaluation of the sensor performance and predictive capabilities of the models. • Chapter II is dedicated to sensitive polymer synthesis, sensor design and simulation, fabrication and characterisation. This chapters details the morphological characterisation of the developed sensitive materials and electrical characterisation of the fabricated sensors. It also contains, the microwave sensor equivalent circuit model developed and simulated. • Finally, Chapter IV constitutes of characterisation of the fabricated sensor under controlled laboratory conditions and under uncontrolled outdoor conditions. It details the instrumentation used for data acquisition, the data processing tools and also the experimental setups developed for characterisation under humidity, temperature and the various target gases.

Finally, we conclude this study with a general conclusion and the proposal of future prospects.

Chapter I. Problematic and our proposed solution

I.1.Pollution : sources and impacts

Pollution is the introduction of harmful substances called pollutants into the environment. These pollutants could be the consequence of natural phenomena, such as volcanic eruptions or forest fires, or they could be induced by anthropogenic activities [1]. Various forms of pollution originate from diverse sources, each causing effects on the environment and, subsequently, on society. The detrimental health effects attributable to pollution exceed those resulting from wars, terrorism, malaria, Human Immunodeficiency Viruses (HIV) as shown on Figure 1. The cost of pollution is also a significant economic impact. Due to the gravity of these impacts, it is crucial to continuously monitor and manage these pollution sources [2]. Furthermore, it is important to note that pollution types are usually classified by their environment, water, soil and air.

Figure 1 : Global estimated deaths by major risk factor or cause [START_REF] Fuller | Pollution and health: a progress update[END_REF].

I.1.1.Water pollution: sources and impacts

Water pollution refers to the contamination of water bodies, such as lakes, rivers, oceans with harmful substances called pollutants. These pollutants can be introduced into the water through various human activities and natural processes, leading to a degradation of water quality and negative impacts on aquatic ecosystems, wildlife, and human health [START_REF] Lin | Effects of water pollution on human health and disease heterogeneity: a review[END_REF].

Human-driven activities are the main source of water pollution. Industries such as distilleries, tanneries, pulp, steel, nuclear plants release numerous toxic chemicals [START_REF] Wang | Industrial water pollution, water environment treatment, and health risks in China[END_REF]. Without proper waste treatment harmful pollutants like arsenic, cadmium, and chromium are discharged into wastewater compromising their quality [START_REF] Haseena | Water pollution and human health[END_REF]. Agriculture is another significant contributor to water pollution through pesticides, fertilizers, and organic farm waste. These activities introduce nitrates, phosphorus, pesticides, sediment, salts, and pathogens into water bodies [START_REF] Moss | Water pollution by agriculture[END_REF]. Furthermore, inadequate sewage and waste water management, especially in developing countries exacerbates water pollution. It leads to the spread of infectious diseases, and exposure to industrial chemicals, heavy metals, and toxins. The United Nations has highlighted a concerning fact stating that over 80% of global wastewater flows back into the environment without adequate treatment or reuse [START_REF]Water Quality and Wastewater[END_REF].

Natural factors can also play a role in water pollution. For instance, the Child Loess Plateau exhibits higher trace element concentrations resulting from natural weathering [START_REF] Zongming | A review on the water pollution incidents from 1985 and the application analysis of the online biomonitoring technologies for water pollution[END_REF]. Various physical, chemical, and biological parameters are measured to assess water quality. They include temperature, pH, dissolved oxygen, turbidity, conductivity, nutrient levels (e.g., nitrogen, phosphorus), heavy metals, pesticides, bacteria, and other pollutants of concern.

As impact, unsafe water poses significant risks to human health, leading to detrimental consequences. The UNESCO 2021 World Water Development Report sheds light on the gravity of the situation, indicating that each year, almost 829,000 people succumb to diseases related to polluted water. Among them, nearly 300,000 are children under the age of five, primarily suffering from conditions like diarrhea. Studies conducted in developing countries establish a clear link between cholera and contaminated water, emphasizing that household water treatment and storage methods can reduce cholera cases [START_REF] Madhav | Water pollutants: sources and impact on the environment and human health[END_REF].

I.1.2.Soil pollution : sources and impacts

Soil pollution refers to the contamination of soil with harmful substances introduced through various human activities or natural processes and that adversely affect its quality and fertility, with detrimental effects on ecosystems, agriculture, and human health [START_REF]Soil pollution[END_REF]. Industrial activities, agriculture or, waste disposal are human activities which often cause soil pollution.

Manufacturing industries, mining and chemical production can release pollutants into the soil. Industrial waste, effluents, and emission containing heavy metals, solvents, petroleum products, VOCs and other toxic chemicals can contaminate the surrounding soil. Similarly, agricultural activities can contribute to soil pollution when pesticides, herbicides and fertilizers are improperly managed or overused. Waste disposal mechanisms, such as the mismanagement of solid wastes, seepage from landfills, and inappropriate disposal of electronic waste, further intensify soil pollution.

Natural contributors to soil pollution include phenomena like volcanic eruptions, weathering of rocks containing heavy metals, and natural deposits of minerals can introduce contaminants into the soil [START_REF] Mishra | Soil pollution: Causes, effects and control[END_REF]. The consequences of soil pollution are diverse and significant. Environmentally, it endangers soil-dwelling organisms, leading to disruptions in biodiversity and ecosystems. Contaminated soil can usher in water pollution if pollutants find their way into adjacent water bodies and can add to air pollution through the release of particulate matter and volatile compounds. The overall health of the soil suffers, resulting in erosion, loss of topsoil, and reduced fertility. Moreover, as toxic elements accumulate in crops and plants, their consumption can pose considerable health risks to humans [START_REF] Wołejko | Soil biological activity as an indicator of soil pollution with pesticides-a review[END_REF].

I.1.3.Air pollution : sources and impacts

Air pollution poses profound implications for human health, contributing to conditions like heart disease, stroke, cancer, and asthma etc. It lead to around 6.7 million premature deaths each year with outdoor (ambient) air population which caused 4.2 million premature death worldwide in 2019 compared to household (indoor) [14]. Outdoor air pollution is a major environmental health issue. In cities and rural areas exposure to fine particles and toxic gases causes cardiovascular, respiratory diseases and cancers.

Air pollution primarily comprises small particle concentrations (PM10 and PM2.5), carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), nitrogen oxides (NOx), sulphur oxides (SOx), and volatile organic compounds (VOCs) [START_REF] Mayer | Air pollution in cities[END_REF]. Each of these pollutants possesses unique characteristics and sources. Particulate matter represents a complex mixture of solid and aerosol substances of diverse chemical species. The categorization of these particles is based on their diameter; particles with diameters less than 10 microns (PM10) can be inhaled into the lungs, while finer particles (PM2.5), with diameters less than 2.5 microns, are even more readily inhalable due to their small size. Another significant air pollutant, carbon monoxide (CO), is a highly toxic gas that is colourless, tasteless, and odourless. It is generated through the incomplete combustion of various fuels such as petrol, charcoal, wood, and natural gas [START_REF] Chen | Co-production and its effects on service innovation[END_REF]. CO2 a greenhouse gas emitted through fossil fuel combustion, deforestation, agriculture and industrial processes. While outdoor concentrations of CO and CO2 are typically low, enclosed indoor spaces might expose individuals to higher concentrations, particularly in confine spaces with poor ventilation [START_REF] Alberts | Indoor air pollution: No, No2, CO, and CO2[END_REF]. Ozone, unlike other pollutants, is not directly emitted into the atmosphere. This blue gas with a distinctive, sharp odour is formed in the atmosphere through the reaction of sunlight with substances like nitrogen oxides and volatile organic compounds. While ozone is beneficial in the stratosphere by absorbing the majority of the sun's ultraviolet radiation, it is detrimental to both human health and the environment at ground level [START_REF] Zhang | Ozone pollution: a major health hazard worldwide[END_REF]. Nitrogen oxides, particularly nitrogen dioxide (NO2), are produced from fuel combustion and contribute significantly to air pollution. NO2, a brownish gas, is a common sight in polluted cities. Its primary sources are internal combustion engines, fossil fuel burning in vehicles and generators, and various industrial processes. Sulphur oxides, specifically sulphur dioxide (SO2), a colourless gas with a sharp, burning smell, results from the combustion of sulphur-containing fuels such as coal and oil [START_REF] Chen | Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects[END_REF]. Lastly, volatile organic compounds (VOCs) represent a broad group of organic chemicals that contribute to atmospheric photochemical reactions, leading to the production of secondary pollutants like ground-level ozone. Due to their high vapor pressure and low water solubility, VOCs readily evaporate into the atmosphere at room temperature and pressure. They are primarily emitted from incomplete fuel combustion, fuel and solvent evaporation, and certain industrial processes [START_REF] Brunekreef | Air pollution and health[END_REF]. Figure 2 depicts the percentage distribution of the primary sources of air pollutants in Europe. O3 is not represented since it not directly emitted into the atmosphere. In terms of health impacts, short-term exposure to PM10 (24-hour mean of 50 μg/m³) can exacerbate respiratory conditions like asthma and chronic obstructive pulmonary disease. Extended exposure to finer particles, PM2.5 (24-hour mean of 25 μg/m³), has been linked to premature mortality, particularly in individuals with pre-existing heart or lung diseases [START_REF] Li | Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects[END_REF]. CO, on the other hand, interferes with the body's oxygen delivery system to organs and tissues. High concentrations of CO (8-hour mean of 9 ppm) can induce symptoms such as headaches, fatigue, and nausea. Moreover, individuals with heart disease may experience exacerbated chest pain, diminished exercise capacity, and other cardiovascular complications upon repeated CO exposure [START_REF] Raub | Carbon monoxide poisoning-a public health perspective[END_REF]. Elevated CO2 level in the atmosphere contributes to global warming and climate change. It can also dissolve in oceans to form carbonic acid lowering the ocean's pH. Poor ventilated buildings can have CO2 concentrations exceeding 1000 ppm indoors which can cause discomfort; headaches and respiratory diseases [START_REF] Satish | Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance[END_REF]. Exposure to NO2 especially above 1-hour mean of 100 ppb, a key component of NOx, is associated with an increased risk of respiratory diseases. Beyond health concerns, NOx also exerts detrimental effects on agriculture and natural ecosystems. This is mainly due to its role in the formation of ground-level ozone, which can harm vegetation and contribute to climate change. Sulphur dioxide (SO2) exposure, particularly at high levels (24-hour mean of 40 μg/m³),), can have adverse respiratory health effects [START_REF] Khaniabadi | Human health risk assessment due to ambient PM10 and SO2 by an air quality modeling technique[END_REF].

Moreover, when SO2 reacts with water, it leads to acid deposition which can damage agricultural crops and negatively impact aquatic life, contributing to biodiversity loss. Lastly, VOCs pose a wide array of health risks contingent on the specific chemicals involved, their concentrations, and the duration of exposure. Acute symptoms can include headaches and irritation of the eyes, nose, and throat. Prolonged exposure to certain VOCs has been linked to severe health issues, such as cancer and damage to vital organs like the liver and kidneys, as well as the central nervous system [START_REF] Soni | Effects of VOCs on human health[END_REF]. In summary, the societal implications of air pollution are significant, as it not only affects individual health but also impacts broader ecosystems, agriculture, and biodiversity. The Figure 3 illustrates this issue in Europe [START_REF] Lelieveld | Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions[END_REF]. It highlights the urgent need for air pollution control measures to mitigate these adverse effects [START_REF] Bernstein | Health effects of air pollution[END_REF].

Several guidelines serve as base for monitor air quality. The World Health Organization (WHO) has developed guidelines for outdoor (ambient) air pollution levels, serving as reference tools for policymakers worldwide to establish standards and objectives for air quality monitoring. These guidelines offer health-oriented standards for specific air pollutants that urban areas should embrace as targets for air quality improvement. Initially established in 2005, the guidelines were recently updated in 2021. The updated guidelines feature lower recommended limits for concentrations and exposures across almost all pollutants. This revision acknowledges extensive evidence demonstrating the adverse health effects of air pollution, even at low levels, prompting the need for more stringent standards [START_REF] Organisation | What are the WHO Air quality guidelines?[END_REF].

The European union's (EU) air quality directives (2008/50/EC Directive on Ambient Air Quality) set pollutant concentrations thresholds that shall not be exceeded in a given period of time. The WHO guideline values are set for the protection of health, and are stricter than the comparable politically agreed EU standards [START_REF] Agency | World Health Organization (WHO) air quality guidelines (AQGs) and estimated reference levels (RLs)[END_REF]. The Accredited Associations for Air Quality Monitoring (AASQA) in France calculate and publish a daily air quality index called the ATMO index [START_REF] France | L'INDICE ATMO[END_REF]. Revised in 2021, the ATMO index aligns with the EU air quality index. Table 1 shows the WHO, EU and ATMO Air quality guidelines recommended levels and interim targets for common air pollutants: O3, NO2, and SO2 (The conversion from ug/m 3 is shown in appendix chapter I). CO2 guidelines primarily focuses on indoor air quality rather that outdoor air quality. Indeed, WHO, EU and ATMO don't really have guideline for outdoor CO2 concentration, but they suggest that the concentrations indoors should be below 9.8 mg/m3 (5000 ppm). it is crucial to manage CO2 levels especially due to its long-term impact. Effective monitoring and control of air quality require sensitive and reliable sensing technologies. In this thesis and within the framework of the CARDIF project, our focus was on detecting SO2, NO2, and O3 with detection limits of 200 μg/m 3 , 300 μg/m 3 , and 180 μg/m 3 (105 ppb, 113 ppb, and 90 ppb) respectively. Monitoring indoor CO2 levels with detection limits of 9.8 mg/m3 (5,000 ppm) was also aimed. The market for gas sensors today offers several technologies with high sensitivity and real-time measurement capabilities. Moreover, these technologies suffer from lacks which can be ameliorated especially for robust and wireless air quality monitoring. The choice of the transducer, its functionalization, and the data analysis methods are based on the state of the art presented below.

I.2.1.Gas sensing technologies

Gas sensors operate based on a variety of working principles, each with its own set of advantages and disadvantages. These technologies exhibit distinct applicability and limitations in detecting and monitoring gases. They rely on the variation of the physical or chemical properties of the sensing element in the presence of the target gas. One approach involves the interaction of the target gas with the sensitive material (chemical gas sensors) and another set of methods relies on comparing physical properties (wave propagation, wave speed, vibrations etc) between an ideal reference state and in the presence of the gas (physical gas sensors). Physical gas sensors, also known as physical property-based gas sensors, detect and measure gases based on the physical properties of the gas itself or the physical changes caused by gas interactions. These sensors do not rely on chemical reactions or sensitive materials. Several such technologies are studied, among them, optical gas sensor [START_REF] Sun | A real-time response relative humidity sensor based on a loop microfiber coated with polyvinyl alcohol film[END_REF], photoionization detector [START_REF] Sun | An improved photoionization detector with a micro gas chromatography column for portable rapid gas chromatography system[END_REF], catalytic gas sensor [START_REF] Caucheteur | Catalytic fiber Bragg grating sensor for hydrogen leak detection in air[END_REF], MEMs and micro beams [START_REF] Khater | Binary MEMS gas sensors[END_REF][START_REF] Boudjiet | Preliminary results of the feasibility of hydrogen detection by the use of uncoated silicon microcantilever-based sensors[END_REF] etc.

On the other hand, chemical gas sensors involve physico-chemical interactions. They are typically composed of two primary parts: a sensitive material and a transducer, as depicted in Figure 4. The sensitive material, when exposed to the surrounding atmosphere, interacts with the target gas. This interaction induces a change in one or more physicochemical properties of the material, such as electrical conductivity, permittivity, mass etc, which are in turn converted into an electrical signal or a measurable output by the transducer, resulting in the qualitative or quantitative detection of a specific gas.

Several chemical gas sensor transducers exist such as: electrochemical [START_REF] Park | Solid-state electrochemical gas sensors[END_REF], conductometric [START_REF] Wu | Materials and Wearable Devices for Autonomous Monitoring of Physiological Markers[END_REF], piezoelectric [START_REF] Nikolaou | Inkjet-Printed Graphene Oxide Thin Layers on Love Wave Devices for Humidity and Vapor Detection[END_REF][START_REF] Fauzi | Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials -A mini review[END_REF][START_REF] Devkota | SAW sensors for chemical vapors and gases[END_REF], electromagnetic [START_REF] Yu | Microwave humidity sensor based on carbon dots-decorated MOF-derived porous Co3O4 for breath monitoring and finger moisture detection[END_REF][START_REF] Yu | Design and analysis of ultrafast and high-sensitivity microwave transduction humidity sensor based on belt-shaped MoO3 nanomaterial[END_REF][START_REF] Hallil | Novel Microwave Gas Sensor using Dielectric Resonator With SnO2 Sensitive Layer[END_REF], etc. For gas sensing they are commonly associated to a variety of sensitive materials like metal oxides [START_REF] Chethan | Humidity sensing performance of hybrid nanorods of polyaniline-Yttrium oxide composite prepared by mechanical mixing method[END_REF], carbon nanotubes (CNTs), 2D materials: graphene [START_REF] Cruz-Martínez | Recent developments in graphene-based toxic gas sensors: A theoretical overview[END_REF], and Transition Metal Dichalcogenides (TMDs) [START_REF] Zheng | Emerging van der Waals junctions based on TMDs materials for advanced gas sensors[END_REF],polymers [START_REF] Jang | Radio-Frequency/Microwave Gas Sensors Using Conducting Polymer[END_REF][START_REF] Kang | A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film[END_REF] etc.

Transducers can be categorized into two types: active and passive. Active transducers necessitate a battery source for their operation, leading to increased energy consumption. In contrast, passive transducers do not rely on a battery source; instead, they utilize the excitation signal directly to generate an output response. For example, optical, electrochemical, catalytic and conductometric sensor are active while acoustic and microwave sensor can be used in a passive way. Each transducer has its own sensing mechanism and response. More details about these technologies (Optical, electrochemical, catalytic, conductometric, field effect transistor, acoustic, and photoionization detector) are presented in appendix chapter I. The presented gas sensor transducers show different advantages and disadvantages making them suitable for different gas sensing application. 

I.2.2.Gas and particle sensor market trends

The Gas sensors market is segmented base on the type of gas detected, the application areas, and the technology used. It is primarily driven by advancements in miniaturization and wireless technologies, as well as improved communication technologies that enable for their integration into a wide range of devices. One of the major factors contributing to market growth is the increasing demand due to emission of toxic gases from automobiles, mining and various industrial sectors.

The COVID-19 pandemic had a significant impact on the gas sensors market. Initial challenges arose due to various restrictions, but the pandemic subsequently surged demand in the medical and healthcare sectors, particularly for critical care equipment and oxygen sensors. Additionally, the development of smart multiple gas sensors has created lucrative opportunities for manufacturers. These sensors enable real-time monitoring and remote control, enhancing the efficiency and effectiveness of gas detection and management systems [START_REF] Intelligence | GAS SENSORS MARKET SIZE & SHARE ANALYSIS -GROWTH TRENDS & FORECASTS[END_REF].

It is worth noting that the market for gas sensors extends beyond outdoor pollution monitoring. The growing interest in indoor air quality monitoring, amplified by the COVID-19 pandemic, has led to increased demand for gas and particle sensors. Figure 5 displays market sizes and forecast in terms of value (USD) for different gas sensing applications.

Gas and particle sensors are expected to experience significant market growth, with an estimated value of $2.2 billion in 2026 compared to $1.2 billion in 2020. This represents a compound annual growth rate (CAGR) of 10.9%. Currently, sectors like the automotive powertrain, industrial processes, Heating ventilation and air Conditioning (HVAC) dominate the gas and particle sensor market, contributing to approximately 80% of the total sensor sales. Furthermore, the development of smart home devices and wearable sensors empowers consumers to make informed decisions and decide appropriate actions based on the air quality measurements. As a result, the consumer market segment is anticipated to experience substantial growth momentum, with an estimated growth rate of nearly 40% from 2020 to 2026. The gas sensing market is primarily dominated by three main technologies: electrochemical sensors, NDIR sensors, and MOS sensors. Among them, MOS and NDIR technologies are expected to increase in various domestic applications, such as air purifiers and air monitoring stations in smart homes. Indeed, thanks to the development of smaller and more selective such sensors, the market share of MOS and NDIR is anticipated to grow to 41% by 2026, thus reducing the historical market share of electrochemical detectors. Finally, there is a growing interest in diversifying towards new markets that require small, robust, low-energy consumption, cost-effective, and wireless solutions.

I.2.3.Interest for microwave transduction-based sensors

In addition to the sensors mentioned above, a family of sensors known as microwave sensors has emerged with the arrival of Internet of Things (IoT) and the explosion of low cost, wireless embedded communicating sensors capable of working under harsh environmental conditions.

Microwave gas sensors uses the interaction of microwaves with the gaseous species absorbed by gas sensitive materials. Microwave transduction-based sensors with their high working frequency and robustness are booming since they are suitable for non-invasive, non-contact measurements, they can be fabricated on flexible substrates and can be widely deployed for many applications [START_REF] Hallil | Passive Resonant Sensors: Trends and Future Prospects[END_REF][START_REF] Gugliandolo | A Novel Sensor-Integrated Aperture Coupled Microwave Patch Resonator for Humidity Detection[END_REF]. They are usually based on planar technologies (microstrip line and coplanar wave guides) with a resonator geometry [START_REF] Rossignol | Microwave-based gas sensor with phthalocyanine film at room temperature[END_REF][START_REF] Tanguy | Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils[END_REF][START_REF] Paleczek | Microwavebased nitrogen dioxide gas sensor for automotive applications[END_REF][START_REF] Gharbi | A review of flexible wearable antenna sensors: design, fabrication methods, and applications[END_REF]. These resonators electrical properties (permittivity, and/or conductivity) vary in the presence of the target species.

Many microwave sensors work without sensitive material, the interaction of the microwave with the target species directly affect the electromagnetic wave propagation, thereby causing a change in the sensor's response. For instance, S. Harnsoongnoen et al [START_REF] Harnsoongnoen | A non-contact planar microwave sensor for detection of high-salinity water containing NaCl, KCl, CaCl2, MgCl2 and Na2CO3[END_REF] described a noncontact planar microwave sensor for the detection of high salinity water without sensitive material. The proposed sensor is a split ring microstrip resonator operating in the 0.5 -2.2GHz frequency range. It features a substrate with a hole, allowing the test liquid to be placed in a tube without direct contact with the resonator. Despite high sensitivity (Exponential response with non-linear sensitivity of -1.52 --15.2 dB/(mg/mL) and -2.31 --9.18 kHz/(mg/mL) in yhr concentration rang of 40 -200 mg/mL) and rapid response and recovery times, the sensor suffers from a lack of selectivity, as it could be expected without dedicated sensitive material.

To address this limitation, artificial intelligence algorithms such as principal component analysis (PCA) were utilized for salt classification.

Similarly, a study by Q. Shi et al [START_REF] Shi | Antenna sensor based on AMC array for contactless detection of water and ethanol in oil[END_REF] introduced an antenna sensor working at 6 -7 GHz for the contactless detection of water and ethanol in oil. The sensor employed an Artificial Magnetic Conductor (AMC) array to enhance the antenna's gain and reduce return loss. Again, while the sensor demonstrated high sensitivity of -0.038 GHz/𝛥𝛥ε 𝑟𝑟 for liquid with a permittivity in range 1 -15, and a reproducibility, it suffered from limited specificity. Additionally, W.J. Denget et al [START_REF] Deng | LC wireless sensitive pressure sensors with microstructured PDMS dielectric layers for wound monitoring[END_REF] presented a flexible LC resonator integrated with a magnetically coupled readout coil designed for pressure monitoring in wound healing applications. The LC resonator capacitor varies with pressure thereby causing that changes its resonant frequency. This low-cost, flexible, and wireless sensor demonstrated good sensitivity (approximately -270.8 kHz/mmHg). Nevertheless, the impact of environmental parameters such as temperature, humidity, etc., was not assessed in the study.

Microwave transducers offer distinct advantages over alternative technologies, such as their cost-effectiveness, low energy consumption, passive nature, non-intrusiveness, ability to be flexible (conformable), and wireless readout capability. These transducers can be further enhanced in terms of sensitivity and selectivity by functionalizing sensitive materials and employing artificial intelligence algorithms in conjunction with multiparameter sensor arrays. The literature review highlights the ongoing research efforts and advancements in this field, indicating the growing interest and potential for microwave gas sensors in various applications.

In the case of such transducers, it's important to mention that for enhanced sensitivity and selective chemical monitoring, the interaction of target species with the sensitive material should cause a change in its dielectric properties. Several microwave gas sensors employing different materials have been developed in the recent years [START_REF] Paleczek | Microwavebased nitrogen dioxide gas sensor for automotive applications[END_REF][START_REF] Fonseca | Detection of VOCs by microwave transduction using dealuminated faujasite DAY zeolites as gas sensitive materials[END_REF][START_REF] Bailly | Microwave gas sensing with a microstrip interDigital capacitor: Detection of NH3 with TiO2 nanoparticles[END_REF]. In the following section, we will explore the different types of sensitive materials, their sensing mechanisms, and their performance when paired with microwave transducers.

I.2.4.Sensitive materials for gas sensing

Sensitive material serves as a fundamental component in gas sensors. Its selection is crucial, as it interacts directly with the gas sensing transducer. To qualify as a good sensing material, several criteria must be met, such as affordability and ability to be functionalized. For flexible sensors, the sensitive material must be able to withstand mechanical deformation while maintaining consistent sensing performance during bending or stretching [START_REF] Alrammouz | A review on flexible gas sensors: From materials to devices[END_REF].

Traditionally, gas sensing materials exhibit either conductive or semi conductive properties, with their electrical characteristics altering upon exposure to target gases. Furthermore, continuous advancements have led to the development of a wide range of novel materials specifically designed for gas sensing applications. Notably, polymers (conductive and nonconductive), carbon nanomaterials, metal oxides, hybrid nanomaterials, and 2D materials have showcased remarkable gas sensing capabilities. These sensitive materials are either grown or coated onto the transducer using several deposition techniques such as chemical vapour deposition (CVD), physical vapour deposition (PVD), drop coating, spin coating, etc [START_REF] Palla-Papavlu | Sensitive materials and coating technologies for surface acoustic wave sensors[END_REF][START_REF] Yuan | Research Progress on Coating of Sensitive Materials for Micro-Hotplate Gas Sensor[END_REF]. Some gas sensing applications like flammable gas monitoring necessitate the use of sensitive materials with fast response times (of a few milliseconds), also operating at ambient temperature in this case. In contrast, environmental monitoring can accommodate sensitive materials with longer response time of several seconds or even minutes.

This section provides an in-depth exploration of these distinct categories of gas sensing materials, delving into their properties, characteristics, and potential applications in gas sensing systems with a focus on microwave transduction.

I.2.4.1.Metal oxides

Metal oxides are crystalline ionic compounds of a metal cation and oxygen anions. A variety of metal oxides, particularly transition metal oxides, such as hematite (Fe2O3), cobalt tetroxide (Co3O4), molybdenum trioxide (MoO3), nickel oxide (NiO), titanium oxide (TiO2), and tungsten oxide (WO3), have been rigorously studied for gas-sensing applications [START_REF] Patil | Semiconductor metal oxide compounds based gas sensors: A literature review[END_REF]. Nontransition metal oxides encompass pre-transition metal oxides like alumina (Al2O3) and magnesium oxide (MgO), as well as post-transition metal oxides including zirconia (ZrO2) and tin oxide (SnO2). These metal oxides show different responses towards various target gases. Absorbed gas molecules lead to a charge transfer between the gaseous species and the metal oxide resulting into a change in electronic structure of the metal oxide causing variation in its electrical properties. The conductivity changes of metal oxides are due to redox reactions occurring at the material surface. The sensing mechanism depends on whether the target gas is an oxidizing compound (such as NOx, CO2, SO2, O2, O3 etc.) or a reducing one (such as CO, NH4, CH4, H2, H2S), the metal oxide type, its doping, and operating conditions [START_REF] Wang | Metal oxide gas sensors: sensitivity and influencing factors[END_REF].

Bailly et al. proposed microwave sensors with several geometry (microstrip line and microstrip interdigital capacitor, rectangular spiral antenna, spiral resonator) with TiO2 as sensitive material for ammonia monitoring in the range 100 to 500 ppm in an argon flow [START_REF] Bailly | Microwave gas sensing with a microstrip interDigital capacitor: Detection of NH3 with TiO2 nanoparticles[END_REF][START_REF] Bailly | Influence of the design in microwave-based gas sensors: ammonia detection with titania nanoparticles[END_REF]. Bailly et al. also described Hematite (α-Fe2O3) associated to a coplanar waveguide for ammonia detection [START_REF] Bailly | Microwave gas sensing with hematite: Shape effect on ammonia detection using pseudocubic, rhombohedral, and spindlelike particles[END_REF]. The authors assumed that the formation of NH 4 + species on the metal oxides surface upon exposure to NH3 at room temperature causes a variation in permittivity, leading to a change in measured reflection and transmission coefficients. The authors observed different sensing behaviour of the different Hematite morphologies (pseudocubes, rhombohedra and spindles) upon ammonia adsorption.

Rydosz et al. [START_REF] Rydosz | Metal oxide thin films prepared by magnetron sputtering technology for volatile organic compound detection in the microwave frequency range[END_REF] used several metal oxides (CuO, TiO2, SnO2), thin films prepared by magnetron sputtering technology associated to a 2.4 GHz microwave sensor for VOCs detection. The measurements were carried out at room temperature and 50% RH. Acetone, ethanol and methanol in a range of 0 -200 ppm were tested due to their high interest in industry and biomedical applications. The CuO-based gas sensor in Figure 7a exhibited a good selectivity and sensitivity to acetone, with almost no sensitivity to ethanol and methanol as shown in Figure 7b. The performance of the sensor could be further improved by optimising the metal oxide thickness, changing the material morphology and by adding dopants. Among all metal oxides, WO3 showed the most promising results for NO2 sensing in small concentrations at laboratory scales. WO3 is a typical n-type semiconductor whereby gas detection occurs through the creation of a depletion region at the interface between the grains of the n-type semiconductor metal oxide during the reaction with oxygen. The presence of oxidizing gases such as NO2 leads to a reduction in electron concentration on the metal oxide surface, consequently decreasing the conductivity of the n-type semiconductor. For example, Paleczek et al [START_REF] Paleczek | An NO2 sensor based on WO3 thin films for automotive applications in the microwave frequency range[END_REF] designed a meandered coplanar transmission line (with working frequency 1.5 -4.5 GHz) coated with WO3 thin film deposited by magnetron sputtering for NO2 monitoring in a range of 0 -20 ppm. The sensor illustrated in Figure 8a showed good sensitivity to NO2 with response and recovery times of 10/15 min respectively. The meandered shape used increases the effective length in contact with WO3 thereby increasing the sensitivity. An optimal WO3 thickness for better sensitivity was found to be 410 nm. The effect of RH on the sensor response was also investigated. The sensor showed decreasing response to NO2 upon increasing RH as shown on Figure 8b.

Metal oxides are also effective for humidity sensing. For example, in their study, H. Yu et al. [START_REF] Yu | Design and analysis of ultrafast and high-sensitivity microwave transduction humidity sensor based on belt-shaped MoO3 nanomaterial[END_REF] proposed an ultrafast dual-band resonator humidity sensor based on belt-shaped MoO3 nanomaterial, where sensitivities of 1.93 and 2.06 MHz/ % RH were achieved, for 7.3 and 9.1 GHz resonance frequencies respectively. The designed sensor showed a hysteresis of 0.25% RH, and a response/recovery time less than 5 s. However, the ambient conditions in which the experiment was conducted were not stated. These results agree with a high contact angle and the belt-shape of the MoO3, which provide numerous water absorption sites for the water molecules. However, it's worth noting that while metal oxides are commonly paired with conductometric (resistive) transducers, which generally require higher operating temperatures, they can operate at room temperature when used with microwave transducers. Despite their widespread use in gas-sensing applications, their limited selectivity and requirement for high operating temperatures for optimal functioning have ignited the development of alternative sensitive materials.

I.2.4.2.Carbon nanotubes

Carbon nanotubes (CNTs) have attracted substantial interest due to their distinctive structural and chemical characteristics. They can be classified into two categories: single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs) [START_REF] Pitroda | A critical review on carbon nanotubes[END_REF]. SWCNTs are one atom thick layers of graphite rolled up while MWCNTs comprise multiple layers of graphite interlinked together in a tubular configuration. Owing to their unique structure, CNTs exhibit exceptional electrical, chemical and physical properties. Their high surface to volume ratio and their capacity to be functionalised with other conductive materials and polymers further accentuate their potential [START_REF] Pandhi | A review of inkjet printed graphene and carbon nanotubes based gas sensors[END_REF][START_REF] Singh | Improved methanol detection using carbon nanotube-coated carbon fibers integrated with a split-ring resonator-based microwave sensor[END_REF].

CNTs have been predominantly associated to chemiresistive and transistor-based transducers for gas sensing [START_REF] Han | Carbon nanotubes and its gas-sensing applications: A review[END_REF]. When gas molecules are adsorbed onto the CNTs surface, a charge transfer occurs. For reducing gas like NO2, the charge transfer flows from the CNTs to the NO2 molecules. This results in the depletion of electron carriers in the CNTs, leading to a change in its electrical conductivity [START_REF] Ge | Carbon-nanotube-loaded planar gas and humidity sensor[END_REF]. Some researchers have explored the association of CNTs to microwave transducers for chemical sensing. For instance, S. Correra et al. [START_REF] Correra | Microwave sensor for ethanol fuel analysis based on single-walled carbon nanotubes[END_REF] developed a microstrip patch antenna that employs SWCNTs as sensitive material for detection of ethanol fuel. Upon exposure to an ethanol-water vapor mixture, the sensor witnessed an increase in charge transfer of the SWCNT, leading to changes in resonance frequency and quality factor of the antenna. This sensor demonstrated a good sensitivity and a rapid response, successfully detecting ethanol and water concentrations based on the mixture's complex permittivity. Similarly, Chopra et al [START_REF] Chopra | Carbon-nanotube-based resonant-circuit sensor for ammonia[END_REF] presented microstrip circular disk resonators coated with SWCNTs and MWCNTs for gas detection. Notably, exposure to 830 ppm of NH3 induced resonance shifts of 4.375 MHz and 3.25 MHz for the SWCNTs and MWCNTs, respectively with a response/recovery times of 10 minutes.

While CNTs offer high sensitivity, they often lack selectivity and specificities. One prevalent solution to this challenge is functionalizing the CNTs. For instance, P. Bahoumina et al [START_REF] Bahoumina | Microwave flexible gas sensor based on polymer multi wall carbon nanotubes sensitive layer[END_REF] proposed a microwave flexible sensor using poly (3,4-ethylenedioxythiophen) polystyrene sulfonate -multi wall carbon nanotubes (PEDOT:PSS-MWCNTs) as sensitive material for VOCs detection. The sensor displayed its first resonant frequency near 0.65 GHz. The introduction of ethanol vapor led to a change in the conductivity of PEDOT:PSS-MWCNTs. The sensor indicated significant sensitivity levels to ethanol vapor, of -642.9 Hz/ppm and -7 µdB/ppm within the range of 0-2000 ppm with a response/recovery times of 4 minutes.

I.2.4.3.Graphene

Recently, graphene has gotten a lot of attention due to its significant potential for sensing applications [START_REF] Chakraborthy | A critical review of the use of graphene-based gas sensors[END_REF][START_REF] Iramnaaz | Graphene based RF/microwave impedance sensing of DNA[END_REF]. Graphene is a two-dimensional allotrope of carbon with remarkable properties like high electrical conductivity, flexibility, and its ability to easily conjugate with other nanomaterials and polymers [START_REF] Dhinakaran | Recent developments of graphene composites for energy storage devices[END_REF]. Its high surface to volume ratio allows a large number of molecules to interact with its surface, yielding high sensitivity, even to trace concentrations of target compounds. The two-dimensional structure and thin nature of graphene also enable fast absorption and desorption of gas molecules. Graphene's ability to be functionalised with chemical groups enhances its selectivity towards specific gases. Additionally, its chemical stability qualifies it as an ideal candidate for the development of reliable, long-life gas sensors. Also, graphene gas sensors can operate at room temperature and can be used to develop ultrathin, flexible and miniaturized gas sensors [START_REF] Demon | Graphene-based Materials in Gas Sensor Applications: A Review[END_REF].

Various sensing mechanisms have been proposed for graphene-based sensors, derived from their inherent chemical and electronic properties. Mechanisms such as surface reactions, charge transfers, and charge scattering are prominent. The adsorption of gas molecules onto the graphene surface alters characteristics like charge carrier density and mobility, subsequently influencing the electrical response [START_REF] Tang | Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective[END_REF]. Graphene nanostructures for gas sensing mainly constitute four main categories: graphene nanosheets [START_REF] Zhang | In-situ sulfidation-derived three-dimensional cobalt sulfide nanoflower/graphene nanosheet hybrid for ultrasensitive room-temperature NO2 gas sensor[END_REF], graphene quantum dots (GQDs) [START_REF] Kaur | Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment[END_REF], graphene nanoplatelets (GNPs) [START_REF] Cataldi | Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications[END_REF], and reduced graphene oxide (rGO) [START_REF] Thejas | A review on electrical and gas-sensing properties of reduced graphene oxidemetal oxide nanocomposites[END_REF]. These single and multi-layered graphene allotropes are usually fabricated using various methods including mechanical exfoliation, chemical vapour deposition (CVD), laser ablation, thermal treatment [START_REF] Eletskii | Graphene: fabrication methods and thermophysical properties[END_REF][START_REF] Razaq | Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: From fabrication to applications[END_REF]. Among these fabrication techniques, laser ablation stands out for its simplicity, cost-effectiveness, and lower growth temperature [START_REF] Zhu | Nitrogen dioxide sensing based on multiplemorphology cuprous oxide mixed structures anchored on reduced graphene oxide nanosheets at room temperature[END_REF]. The sensing performance of the graphene is also highly dependent on the fabrication process. For instance, graphene fabricated using CVD process tends to be of better quality, displaying high homogeneity and precise control on the number of layers [START_REF] Huang | Graphene-based materials: synthesis, characterization, properties, and applications[END_REF].

S. Kumar et al introduced a double split ring resonator (DSRR) microwave gas sensor that employs rGO as sensitive material for NO2 and ethanol gas detection [START_REF] Singh | High-sensitive nitrogen dioxide and ethanol gas sensor using a reduced graphene oxide-loaded double split ring resonator[END_REF]. The sensor fabricated on FR4 substrate showed frequency shifts of 130 and 120 MHz in response to 100 ppm of NO2 and ethanol gas, respectively. At 400 ppm of these gases, shifts of 420 and 390 MHz were observed. The sensor showed slightly higher sensitivity to NO2 due to the greater electronegativity of NO2 compared to ethanol. At room temperature and a gas concentration of 100 ppm, the sensor's response and recovery time were 71 s and 37 s, respectively. rGO responded faster to NO2 than to ethanol since NO2 gas molecules diffuse more quickly, which could potentially be used to discriminate between NO2 and ethanol. However, the detected NO2 concentration range is far above the recommended value.

I.2.4.4.Polymers

Polymers have been extensively studied and employed in gas sensing applications due to their lightweight nature, flexibility, cost-effectiveness, and functionalizability [START_REF] Yan | Conducting polymer-inorganic nanocomposite-based gas sensors: a review[END_REF]. They can be categorized into two groups based on their electrical conductivity: conducting and nonconducting polymers. Conducting polymers such as Polyanaline (PANI), Polypyrrole (PPy), Polythiophene (PTh), Poly(3,4-ethylenedioxythiphene) (PEDOT) along with their derivatives, are prevalently utilized in gas sensing, especially with chemiresistive transducers [START_REF] Nasri | Gas sensing based on organic composite materials: Review of sensor types, progresses and challenges[END_REF].

The electrical conductivity of these materials can be altered by the presence of oxidative and reducing gases. They are crucial gas-sensitive materials that operate efficiently at room and low temperatures. However, their somewhat limited conductivity and high affinity for VOCs and water molecules often compromise their stability, selectivity, and sensitivity to the target gas. [START_REF] Wang | Sensors based on conductive polymers and their composites: a review[END_REF]. To enhance their sensitivity and selectivity, these conducting polymers can be merged with other materials [START_REF] Xu | Microfabricated Interdigital Capacitive Sensor and Resonant Sensor Based on Ppy/Moo3 Hybrids for Sensitivity-Enhanced Ammonia Detection at Room Temperature[END_REF].

Several studies have shown the use of these polymers with microwave transducers for gas and VOCs sensing. For instance, B. 9a illustrates the microwave transducer's geometry, which exhibited a linear sensitivity of 3.2 mdB/ppm for PPy-SDS film-coated sensors and 0.98 mdB/ppm for PPy/NiPc-SDS film-coated ones. The former showed 3 to 4 times greater sensitivity, attributed to its hydrophilic nature (contact angle = 5°) compared to the hydrophobic PPy/NiPc-SDS (contact angle between 50° and 70°). The sensor also showed good repeatability, stability with fast response time of 1.5 -5s depending on the NH3 concentration. Nevertheless, given the satisfactory lab-tested results, it's imperative to validate the sensor's efficacy in realistic outdoor environments.

(a) (b) Non-conducting polymers, despite their inability to conduct electricity, have been studied for gas sensing. Their operation relies on the change in permittivity of the polymer upon gas interaction. D. Chen et al. study [START_REF] Chen | Micro-Electromechanical Acoustic Resonator Coated with Polyethyleneimine Nanofibers for the Detection of Formaldehyde Vapor[END_REF], highlighted an acoustic resonator coated with polyethyleneimine (PEI) nanofibers for formaldehyde vapor detection at ppb levels. This sensor rapidly responded within 10 -25 s, demonstrating a linear sensitivity of 1.216 kHz/ppb, especially towards formaldehyde concentrations exceeding 37 ppb. Another study [START_REF] Sohrabi | A novel technique for rapid vapor detection using swelling polymer covered microstrip ring resonator[END_REF], used a swelling polymer, polydimethylsiloxane (PDMS), with a planar RF resonator for detecting VOCs such as ethanol and acetone. The sensing principle is based in the change in PDMS thickness and permittivity upon exposure to the VOCs.

Furthermore, numerous studies showed the association of polymers with microwave transducers for RH monitoring. For example, W.T. Chen et al. [START_REF] Chen | RF Humidity Sensor Implemented with PEI-Coated Compact Microstrip Resonant Cell[END_REF] illustrated a PEI-coated microstrip resonator that functioned as an RF humidity sensor, registering an average sensitivity of 0.01 dB/ % RH and a frequency shift nearing 5 MHz across the 0 to 100% RH range.

Non-conducting polymers are also frequently combined with other materials to amplify their sensitivity. For example, Humidity detection with various sensitive materials such as Polyimide (PI), PI-TIO2 ceramic composite and PI-AG metal composite associated to a DSSR was reported by X. Wang et al. [START_REF] Wang | Microwave detection with various sensitive materials for humidity sensing[END_REF]. Among these, the PI-TiO2-integrated microwave transducer stood out, achieving sensitivities of 0.88 MHz/ % RH and 0.3 dB/ % RH. However, this study did not delve into the hysteresis behaviour or the selectivity of the sensors.

I.2.4.5.Literature review synthesis and sensitive material comparison

A comprehensive synthesis derived from the surveyed literature, showing the various sensing aspects is represented in Table 3. The table presents the different sensitive materials, the target species discerned, and the transducer geometries explored in the literature. Furthermore, essential microwave sensing parameters such as the operating frequencies, the detection ranges, the sensitivities towards the targets, the response/recovery times, and the reversibility are elucidated. The presented sensitive materials display various advantages and disadvantages as outlined in Table 4. The choice of an appropriate sensitive material for gas sensing is contingent upon specific requirements such as the targeted species and the particular application domain. For instance, in the realm of outdoor air quality monitoring, a moderate response time encompassing several minutes may be deemed tolerable. Conversely, for applications regarding safety gas monitoring, a necessity arises for more expedited response times to ensure immediate action and safeguarding measures. Additionally, in outdoor air quality monitoring, the impact of atmospheric interference and the presence of numerous gases necessitate the consideration of selective sensitive materials. The selection process of sensitive materials should be meticulously done, considering the specific objectives and constraints of each gas sensing application to ensure optimal performance and accuracy. 

I.2.5.Algorithms for gas sensor calibration and target recognition

The emergence of Internet of Things (IoT) and low-cost sensing devices has led to the development of more advanced algorithms for sensor calibration and target recognition [START_REF] Topalović | In search of an optimal in-field calibration method of low-cost gas sensors for ambient air pollutants: Comparison of linear, multilinear and artificial neural network approaches[END_REF][START_REF] Ma | Gas recognition method based on the deep learning model of sensor array response map[END_REF][START_REF] Chen | Artificial Intelligence-Based Medical Sensors for Healthcare System[END_REF]. Through machine learning models and advanced algorithms, artificial intelligence (AI) offers transformative solutions for such calibration and recognition tasks.

Calibration is crucial for the accuracy and reliability of sensor readings. Typically, the gas sensors described in the literature are calibrated under laboratory conditions, which allows for the identification of their unique dependencies on parameters such as RH, temperature, or environmental gases [START_REF] Ngoune | Humidity and Temperature Dual Flexible Microwave Sensor[END_REF]. Laboratory calibration shows high accuracy but is time consuming. Also, it might be expensive and since the calibration is not done directly in the sensors operational environment there are often discrepancies in real-world conditions. Calibration can also be made in-situ or out-situ. In-situ or outdoor calibration is made directly in the sensor operational environment. Advanced algorithms enable dynamic in-situ calibrations by comparing sensor readings with expected values or readings from reference sensors [START_REF] Delaine | In situ calibration algorithms for environmental sensor networks: A review[END_REF]. This not only saves time and effort but also ensures that sensors are calibrated under realistic conditions. The drawback is that it can be affected by external factors and interferences which might affect the calibration precision. Out-situ calibration involves placing the sensor into a controlled environment (not mandatory in laboratory) and adjusting the sensor response to produce correct readings [START_REF] Suriano | Assessment of the performance of a low-cost air quality monitor in an indoor environment through different calibration models[END_REF]. Here the calibration standards are often portable which might be less precise contrary to laboratory ones. It offers a balance between accuracy and convenience, potentially more representative of field conditions than laboratory calibration.

Calibration involves the construction of parametric models that relate sensor responses to different variables of interest. This can be accomplished either through the direct identification of the coefficients of an analytical model [START_REF] Yaqoob | Chemical gas sensors: Recent developments, challenges, and the potential of machine learning-A review[END_REF], or by machine learning (ML) algorithms [START_REF] Mahesh | Machine learning algorithms-a review[END_REF]. ML teaches machines how to handle data more efficiently since sometimes data observation don't enable interpretation and extraction of the sensor information easily. These ML calibration algorithms can either be supervised or unsupervised. Supervised learning uses a known labelled data to train a model in order to predict the target variable. Regression and classification are common application of supervised learning they include linear regression (LR), decision trees (DT), Random forest (RF), support vector machines (SVM), Gaussian process regression (GPR), K-nearest neighbours (KNN), neural networks (NN) etc.

Unsupervised learning algorithms on the other hand learns on their own without data labelling. They include principal component analysis (PCA), linear discriminant analysis (LDA), Kmeans clustering, discriminant factor analysis (DFA) etc.

M. Si et al. [START_REF] Si | Evaluation and calibration of a low-cost particle sensor in ambient conditions using machine-learning methods[END_REF] used ML algorithms to calibrate, evaluate of a low-cost particle sensor at ambient field conditions. The low-cost sensor showed root mean square error (RMSE) of 9.93 when compared to the reference instrument before calibration. Large overestimations by the low-cost sensor before calibration were observed in the field and were believed to be caused by the variation of ambient relative humidity. Calibration with ML algorithms helped reduce the RMSE and the variances of the low-cost sensor measured PM2. These algorithms have also started to be applied on microwave gas sensors for gas calibration and prediction. For instance, A. Lasserre et al. [START_REF] Lasserre | From microwave gas sensor conditioning to ammonia concentration prediction by machine learning[END_REF] used ML algorithm associated to the microwave sensor described in [START_REF] Pavel | Microwave Gas Sensors Based on Electrodeposited Polypyrrole-Nickel Phthalocyanine Hybrid Films[END_REF] for NH3 prediction under laboratory conditions. The sensor data was trained using data when the sensor was exposed to NH3 varied using a staircase concentration profile and validated using data when the sensor was exposed to NH3 varied using a random concentration profile without return to zero as shown in Figure 10a Gas sensor arrays (GSA) also known as electronic nose (e-nose) has seen a surge in environmental multiparameter sensing [START_REF] Chen | Smart gas sensor arrays powered by artificial intelligence[END_REF]. They can detect and discriminate a wide variety of gas molecules when associated to advanced algorithms. The collective response from the diverse set of sensors can create a unique recognition pattern for each gas or mixture. GSA are usually array of non-selective gas sensors with overlapping sensitivities to different gases capable of providing a response to the target species. They also usually suffer from high noise and sensitivities to environmental variables. Most of these calibration algorithms presented here enable the accurate prediction of the target species without estimating the uncertainties. To handle uncertainties in predictions and to integrate confidence, G. Perrin et al. [START_REF] Perrin | Uncertainty-Based Calibration Method for Environmental Sensors-Application to Chlorine and pH Monitoring With Carbon Nanotube Sensor Array[END_REF] formulated the calibration-prediction problem using a Bayesian approach. The probabilistic formulation was applied to pH and active chlorine in drinking water monitoring using chemiresistive sensor array. Their algorithm enabled the prediction of the targets together with the uncertainties in the estimations. Their uncertaintybased calibration method considers the sensor inputs measurement errors, a calibration model error and finally the unknown error which may be due to interferences in the calibration environment.

To conclude this chapter, conventional air quality monitoring instruments often have limitations such as bulkiness, energy consumption and high cost. Venturing into novel sensors like microwave transducers combined with polymer sensitive material offers an exciting promise to solve this issue. Microwave transducers being, passive, cost effective, energy efficient and having the ability to be wireless has been a subject of interest [START_REF] Dhall | A review on environmental gas sensors: Materials and technologies[END_REF]. Also, polymers, given their intrinsic advantages such as lightweight, affordability, flexibility as well as their capacity for functional enhancement has gotten greater attention in sensing applications [START_REF] Kumar | Thin film chemiresistive gas sensor on singlewalled carbon nanotubes-functionalized with polyethylenimine (PEI) for $${\hbox {NO}}_{2}$$ gas sensing[END_REF]. This thesis delves into the potential use of polymer-based microwave sensors for air quality monitoring. While microwave gas sensors are quite a novel domain, preliminary laboratory findings are promising. Yet, much of the documented research operates in controlled laboratory settings, positioning them at a Technology Readiness Level (TRL) considerably below other transducer types. While there's a substantial amount of documentation of the benefits of polymer-based microwave sensor, a noticeable void is the lack of testing in uncontrolled real-life conditions. Moreover, the literature is silent on the practical deployability of microwave sensor arrays outdoors. Issues such as in-situ calibration algorithms and discriminating between various polluting gases in real-world conditions are yet to be addressed. This thesis serves as a pioneering attempt to bridge this gap, seeking to understand, evaluate, and enhance the performance of these sensors in real-world outdoor settings. By juxtaposing laboratory results with outdoor evaluations, it aspires to lay down a robust foundation for future research, technological enhancements, and practical applications in the domain of air quality monitoring.

Chapter II. Theoretical Framework

In this chapter, an overview of the theory and the design approach of the microwave transducer will be elaborated. In the first place, the physical concepts related to microwaves and their propagation media, including electrical properties of materials and environment are discussed. Additionally, the choice of the transducer geometry will be justified through a review of existing RF structures. Finally, concepts related to the sensor performances assessment, calibration and target recognition algorithms are explored.

II.1. Microwave and Dielectric Theory

The electromagnetic (EM) spectrum consists of various frequency bands ranging from a few Herts (3 Hz) to several exahertz (EHz = 10 18 Hz). Radiofrequency band corresponds to alternating signals at frequency range from 3 Hz (submarine communications) to 300 GHz (proposed for 6G cellular communications) and Microwave corresponds to frequency band from 300 MHz to 300 GHz. The radio spectrum is the part of the electromagnetic spectrum mostly used for radio communication. Figure 12 shows the electromagnetic spectrum indicating the RF and Microwave frequency bands. 

II.1.1. Electromagnetic wave theory

Faraday in the year 1831 investigated the relationship between electric fields and magnetic fields. Due to the inadequacy of Faraday's law and other static field laws in the explanation of radio waves, James Maxwell introduce his equations who led to the development of numerous RF applications.

The EM field consist of electric field 𝐸𝐸 �⃗ in volts per meter (V/m) and magnetic field 𝐻𝐻 � �⃗ in amperes per meter (A/m). These fields are related to their corresponding flux quantities, electric flux density 𝐶𝐶 � �⃗ in coulombs per meter squared (C/m 2 ), and magnetic flux density 𝐵𝐵 �⃗ in teslas (T) or Weber per square meter (Wb/m 2 ). The flux quantities (𝐵𝐵 �⃗ and 𝐶𝐶 � �⃗ ) are related to the field quantities (𝐻𝐻 � �⃗ and 𝐸𝐸 �⃗ respectively) by the properties of the medium as described by equations (II.1) and (II.2).

𝐵𝐵 �⃗ = µ𝐻𝐻 � �⃗ (II.1)

𝐶𝐶 � �⃗ = 𝜀𝜀𝐸𝐸 �⃗ (II.2)
Where µ denotes the permeability of the medium (ability to store magnetic energy) and ε denotes the permittivity of the medium given by equation (II.3). The over arrows denote vector quantities.

µ = µ 𝑟𝑟 µ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀 = 𝜀𝜀 𝑟𝑟 𝜀𝜀 0 (II.3)
Where µ0 = 4π × 10 -7 H/m is the permeability of vacuum and ε0 = 8.854 × 10 -12 F/m is the permittivity of vacuum. The relative permeability and permittivity of the medium is given by µr and εr respectively. The complex permittivity of a medium is given by:

𝜀𝜀 = 𝜀𝜀 ′ -𝑗𝑗𝜀𝜀 ′′ (II.4)
Where 𝜀𝜀 ′ and 𝜀𝜀′ ′ are the real and imaginary part of the permittivity. The imaginary part account for loss in the medium due to damping of the vibration dipole moments.

In 1873 James Clerk Maxwell hypothesized from mathematical equations the electromagnetic wave propagation theory. The complexities of Maxwell's were reduced by Heaviside due to introduction of vector notation and practical application of guided waves and transmission line. Heinrich Hertz during the period 1887 -1891 validated the Maxwell theory of electromagnetic waves through a series of experiments. Maxwell's electromagnetic theory let to practical applications such as radio communication (radio, radar, television, wireless networking).

Maxwell's equations describe the characteristics and propagation of EM fields. These equations can be written in differential form, integral form and phasor form. The Maxwell's equations written in differential form is given in equations (II.5) -(II.8).

∇ × 𝐸𝐸 �⃗ = - ∂𝐵𝐵 �⃗ ∂t -𝚥𝚥 𝑚𝑚 ����⃗ = - ∂𝐵𝐵 �⃗ ∂t (II.5) ∇ • 𝐶𝐶 � �⃗ = 𝜌𝜌𝜌𝜌 (II.6) ∇ × 𝐻𝐻 � �⃗ = ∂𝐶𝐶 � �⃗ ∂t + 𝚥𝚥 �⃗ (II.7) ∇ • 𝐵𝐵 �⃗ = 𝜌𝜌 𝑚𝑚 𝜌𝜌 = 0 (II.8)
Where 𝚥𝚥 𝑚𝑚 ����⃗, is the magnetic current density in volts per square meter (V/m 2 ), 𝜌𝜌𝜌𝜌 is the electric charge density in coulombs per cubic meter (C/m 3 ), 𝚥𝚥 �⃗ is the electric current density in amperes per square meter (A/m 2 ) and 𝜌𝜌 𝑚𝑚 𝜌𝜌 is the magnetic charge density in webers per cubic meter (Wb/m 3 ). 𝚥𝚥 𝑚𝑚 ����⃗ and 𝜌𝜌 𝑚𝑚 𝜌𝜌 are introduced even though magnetic charges do not exist (𝚥𝚥 𝑚𝑚 ����⃗ = 0 and 𝜌𝜌 𝑚𝑚 𝜌𝜌 = 0) so as to reveal a symmetry in Maxwell's equations. The earlier electrostatics and magnetostatics fields laws (Faraday's law, Gauss's law of electric field, Ampere's law and Gauss's law of magnetic field) are derived by the Maxwell's equations ((II.5) -(II.8) respectively) but not inversely. Maxwell's equations constitute three types of derivatives, the time derivative ∂/∂t which describes how fast a field varies with time, and two partial derivatives ∇ × and ∇ • called the curl and divergence operator respectively. The curl describes how much the field circulates on itself and the divergence describes how it spreads out. For example, equation (II.5) describes how the electric field curls on itself due to changes of magnetic flux over time. The fields time derivatives depend on frequency while their curl depends on the wavelength relative to geometry. Maxwell's differential equations solutions are obtained within particular boundary conditions imposed by conductors.

Sinusoidal electrical signals are often represented using phasor notation. For sinusoidal, time dependent fields, it is convenient to use phasor notation in which the field quantities are assumed to be complex vectors with an 𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗 time dependence. In this case, we can replace the time derivatives (∂/∂t) in Maxwell's equations by 𝑗𝑗𝑗𝑗 and rewrite Maxwell's equation as in equations (II.9) -(II.12).

∇ × 𝐸𝐸 �⃗ = -𝑗𝑗𝑗𝑗𝐵𝐵 �⃗ (II.9) ∇ • 𝐶𝐶 � �⃗ = 𝜌𝜌𝜌𝜌 (II.10) ∇ × 𝐻𝐻 � �⃗ = 𝑗𝑗𝑗𝑗𝐶𝐶 � �⃗ + 𝚥𝚥 �⃗ (II.11) ∇ • 𝐵𝐵 �⃗ = 0 (II.12)
Where the vector field quantities are complex and depends on spatial variables (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). For example, the electric filed vector 𝐸𝐸 �⃗ 𝑥𝑥 in the x-direction considering a cartesian plane would be read 𝐸𝐸 �⃗ 𝑥𝑥 (𝑥𝑥, 𝑦𝑦, 𝑧𝑧). The Fourier transform can be used to convert a solution of Maxwell's equation from frequency domain to time domain.

II.1.1.1.Electromagnetic fields and waves in dielectric and conductors

Generally, microwave components consist of material media through which electromagnetic waves propagates. These material media can either be a dielectric or a conductor (metal). For a dielectric medium of permittivity ε the total flux becomes as shown in equation (II.13). The additional polarization vector is the electric polarization 𝑃𝑃 𝑒𝑒 ����⃗ which expresses the contribution of the media. By analogy, a magnetic field applied to a magnetic material will align magnetic dipole moments to produce a magnetization 𝑃𝑃 𝑚𝑚 ������⃗ .

𝐶𝐶 � �⃗ = 𝜀𝜀𝐸𝐸 �⃗ = 𝜀𝜀 0 𝐸𝐸 ���⃗ + 𝑃𝑃 𝑒𝑒 ����⃗ (II.13)
The electric polarization 𝑃𝑃 𝑒𝑒 ����⃗ in a linear medium is given by:

𝑃𝑃 𝑒𝑒 ����⃗ = 𝜀𝜀 0 𝜒𝜒 𝑒𝑒 𝐸𝐸 ���⃗ (II.14)
In a material of conductivity 𝜎𝜎, the conduction current density is given by equation (II.15).

𝚥𝚥 �⃗ = 𝜎𝜎𝐸𝐸 ���⃗ (II.15)

From all this equations, the Maxwell's equation for 𝐻𝐻 � �⃗ in terms of permittivity and conductivity (equation (II.11) ) then becomes:

∇ × 𝐻𝐻 � �⃗ = 𝑗𝑗𝑗𝑗(𝜀𝜀 ′ -𝑗𝑗𝜀𝜀 ′′ -𝑗𝑗 𝜎𝜎 𝑗𝑗 ) 𝐸𝐸 ���⃗ (II.16)
Where 𝑗𝑗𝜀𝜀 ′ describes the energy storage capability, 𝑗𝑗𝜀𝜀 ′′ the dielectric damping loss and 𝜎𝜎 the conductivity loss. At a constant frequency, these losses are indistinguishable and their sum is referred to as the effective conductivity.

The dielectric loss tangent is defined as the ratio to the imaginary to the real part of the total displacement current as in defined in equation (II.17). It is a measure of how much energy is lost in the form of heat as an EM wave propagates through a dielectric material.

tan δ = 𝑗𝑗𝜀𝜀 ′′ + 𝜎𝜎 𝑗𝑗𝜀𝜀 ′
(II.17)

The complex permittivity of a lossy dielectric can hence be approximated to:

𝜀𝜀 = 𝜀𝜀 ′ -𝑗𝑗𝜀𝜀 ′′ = 𝜀𝜀 ′ (1 -𝑗𝑗 tan δ) (II.18)
Real conductors unlike perfect conductors have finite conductivity, which enables EM fields to penetrate in its interior. But still, 𝜎𝜎 ≫ 𝑗𝑗𝜀𝜀 ′ and 𝜎𝜎 ≫ 𝑗𝑗𝜀𝜀 ′′ making the permittivity of most conductors to be given by (II. [START_REF] Chen | Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects[END_REF]).

𝜀𝜀 = 𝜎𝜎 𝑗𝑗𝑗𝑗 (II.19)

The skin depth δ 𝑠𝑠 describing the penetration of the electromagnetic field in conductors is given by equation (II.20).

δ 𝑠𝑠 = � 2 𝑗𝑗𝜎𝜎µ 0 (II.20)
When electromagnetic waves interact a medium, part of the wave is reflected, absorbed and transmitted. In a dielectric medium the electromagnetic wave becomes attenuated, i.e. its power reduces exponentially with distance travelled by the wave. This attenuation factor α is given by:

𝛼𝛼 = 2𝜋𝜋 𝜆𝜆 � 𝜀𝜀 ′(�1+(𝜀𝜀 ′′ /𝜀𝜀 ′ ) 2 ) -1 2 
(II.21)
The transmitted power 𝑃𝑃 𝑗𝑗𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠 of the electromagnetic wave travelling the z direction is given by and the wave penetration depth 𝐶𝐶 𝑝𝑝 is given by (Metaxas and Meredith 1983):

𝑃𝑃 𝑗𝑗𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠 (𝑧𝑧) = 𝑃𝑃 𝑗𝑗𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠 (𝑧𝑧 = 0)𝑒𝑒 -2𝛼𝛼𝑧𝑧 (II.22) 𝐶𝐶 𝑝𝑝 = 1 2𝛼𝛼 = 𝜆𝜆 0 √𝜀𝜀 ′ 2𝜋𝜋𝜀𝜀 ′′ (II.23)
𝐶𝐶 𝑝𝑝 depends on the wave frequency and the permittivity of the medium. 𝜆𝜆 0 is the wavelength in free space. It represents the depth at which the wave power is reduced to 63%.

II.1.2.Dielectric polarization

Dielectric polarization occurs as a dielectric material is placed in an electric field: the positive and negative charges within the dielectric material separate spatially, resulting in the formation of electric dipoles. This dielectric polarization can occur through different mechanisms such as electronic, ionic, dipolar (orientation) and space charge polarization, depending on material properties and frequency range, as shown on Figure 13. Electronic polarization occurs when an external electric field displaces the electron cloud within an atom relative to the nucleus, resulting in an induced dipole moment. This phenomenon covers a broad frequency range and is usually associated with non-polar molecules. For ionic polarization the external electric field induces a relative displacement of positive and negative ions in an ionic crystal, leading to a distortion in the lattice structure and an induced dipole. It mainly occurs at lower frequencies compared to electronic polarization and is characteristic of ionic materials. Dipolar polarization is specific to materials that already possess permanent dipoles, like polar dielectric materials including some polymers, water, etc. Here, the dipoles tend to align themselves with the applied electric field. This polarization mechanism occurs at lower frequencies than electronic polarization but above those of ionic polarization. Space charge polarization arises from the accumulation of charges at interfaces or boundaries within a material when exposed to an electric field. The charges change their relative positions, creating localized regions of net positive or negative charge. It occurs predominantly in materials with ionic conductivity or at the interfaces of composite materials and contributes to the dielectric response mainly at low frequencies [START_REF] Scaife | Principles of dielectrics[END_REF]. The full frequency dielectric response of a material is a combination of the different polarization mechanisms.

The relationship between dielectric constant and polarizability for crystal structures is described by the Clausius-Mossotti as in equation (II.24).

𝜀𝜀 -

1 𝜀𝜀 + 2 = 𝜌𝜌𝑁𝑁 𝐴𝐴 𝛼𝛼 𝑀𝑀3𝜀𝜀 0 = 𝑅𝑅 (II.24)
Where 𝑁𝑁 𝐴𝐴 is the Avogadro number, M the molar mass, 𝜌𝜌 the density and 𝛼𝛼 is the polarizability of the atoms. For gases at low pressures (where 𝜀𝜀~1) the Clausius-Mossotti equation simplifies to equation (II.25)

𝜀𝜀 = 1 + 𝜌𝜌𝑁𝑁 𝐴𝐴 𝛼𝛼 𝑀𝑀𝜀𝜀 0 (II.25)
In the case of several gas mixture, the equation becomes the sum of the effect of each constituent gas as described in equation (II.26).

𝜀𝜀 -

1 𝜀𝜀 + 2 = � 𝜌𝜌 𝑗𝑗 𝑁𝑁 𝐴𝐴𝑗𝑗 𝛼𝛼 𝑗𝑗 𝑀𝑀 𝑗𝑗 3𝜀𝜀 0 𝑗𝑗=𝑘𝑘 𝑗𝑗=1 (II.26)
The Clausius-Mossotti equation applies to small densities only due to the assumptions made during the derivation of this equation.

Dipolar molecules have their dielectric constant vary in the microwave frequency domain. For dipolar molecules a second term adds to the Clausius-Mossotti equation as in equation (II.27).

𝜀𝜀 -

1 𝜀𝜀 + 2 = 𝜌𝜌𝑁𝑁 𝐴𝐴 3𝑀𝑀𝜀𝜀 0 (𝛼𝛼 + µ 2 3𝐾𝐾𝐾𝐾 ) (II.27)
Where µ is the dipole moment, 𝐾𝐾 is the Boltzmann constant, and 𝐾𝐾 the temperature in Kelvin.

The addition term is due to the dipolar polarization which adds to the electronic and atomic polarization mechanisms. In this case at low pressure the dielectric constant of a gaseous molecule is approximated to equation (II.28).

𝜀𝜀 = 1 + 𝜌𝜌𝑁𝑁 𝐴𝐴 𝑀𝑀𝜀𝜀 0 (𝛼𝛼 + µ 2 3𝐾𝐾𝐾𝐾 ) (II.28)

II.1.3.Dielectric relaxation and analytical models

When a varying electric field is applied to a dielectric material, the electric dipoles within the material attempt to align themselves in the direction of the applied field. Due to their internal dynamics (inertia and collisions) and intermolecular interactions, the dipoles cannot change their orientation instantly. The lag between the electric field stimulus and the dipole response results in dielectric relaxation. The relaxation time τ corresponds to how fast the dipole reorient themselves to the electric field variation. When the frequency of the electric field is lower that the relaxation frequency (1 τ ⁄ ) the dipoles align perfectly and quickly with the field. However, as the field frequency increases near the relaxation frequency, the dipoles start to lag, leading to a decrease in the dielectric constant of the material. Beyond the relaxation frequency, the dipolar polarization no longer contributes to the dielectric constant, which becomes equal to the square of the refractive index of the material. Several analytical models for dielectric relaxation have been developed. We can cite among them, Debye, Cole-Cole, Cole-Davidson, Hayriliak-Negami. Their objective is to describe the relationship between the complex permittivity and the frequency of the applied electric field.

The Debye model ( 1929) is the simplest model for dielectric relaxation of polar materials such as liquids and gases. It assumes that the material has a single relaxation time [START_REF] Debye | Polar molecules[END_REF]. According to the Debye's model, the frequency dependent complex permittivity (𝜀𝜀 * (𝑗𝑗)) is given by:

𝜀𝜀 * (𝑗𝑗) = 𝜀𝜀 ∞ + 𝜀𝜀 𝑠𝑠 -𝜀𝜀 ∞ 1 + 𝑗𝑗𝑗𝑗τ (II.29)
Where, 𝜀𝜀 ∞ is the permittivity at infinitely high frequency, 𝜀𝜀 𝑠𝑠 is the static permittivity (at very low frequency), τ is the relaxation time of the material and 𝑗𝑗 the angular frequency (2πf). When 𝑗𝑗τ << 1 the dipoles easily reorient to the oscillating electric field (𝜀𝜀 ′ ~𝜀𝜀𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀 ′′ ~0). In the case of ideal liquids, the relaxation time depends on temperature and it is given by:

τ = 𝐴𝐴𝑒𝑒 𝐸𝐸 𝑎𝑎 𝐾𝐾𝐾𝐾 (II.30)
Where 𝐸𝐸 𝑡𝑡 is the activation energy of the material 𝐾𝐾 is the Boltzmann constant, and 𝐾𝐾 the temperature in Kelvin.

For materials with a distribution of relaxation times such as polymers or complex fluids, more complex models should be used. The other models are described in appendix chapter II.

II.1.4.Dielectric mixtures: our cases

A mixture of different dielectric materials makes it complicated to estimate their combined dielectric properties. In the context of our study, the gas sensing medium is typically composed of at least three constituents: the sensitive layer, the gas analyte or humidity and air. In cases involving two dielectric components as described in Figure 14, three models proposed by Rayleigh, Bottcher and Kraszewski can be employed to estimate the combined permittivity depending on the specific scenario. The detailed explanation and equations for the estimation of the permittivity of the dielectric mixtures as described by the different models are given in appendix chapter II.

(a) (b) (c) To estimate the dielectric permittivity of a three-or four-component mixture, a more complex model should be proposed.

II.1.5.Geometry choice: theory and design

Several microwave transducer designs have been studied and evaluated. These transducers serve as a critical link in various sensing and wireless communication systems, enabling the transduction of the detected target species into electrical signals that can be analysed. The geometry of the microwave transducer especially in gas sensing applications plays a pivotal role in its performance since it directly impacts the sensitivity.

Planar transmission lines have emerged and have been widely used as microwave transducer geometry. They are interesting for sensing applications due to their ease of fabrication, small size, low cost, ability to be flexible and wireless etc. Unlike waveguides and coaxial lines, planar transmission lines are two-dimensional components, consisting of conductors on dielectric substrates. The most used ones include coplanar lines, strip lines and microstrip lines as depicted in Figure 15. The planar transmission line can be either homogeneous or inhomogeneous depending on whether the conductor is surrounded by a uniform medium or not.

(a) (b) (c) The coplanar line is an inhomogeneous planar transmission line which supports quasi-TEM mode of propagation. The signal carrying conductor and the ground planes are on the same side of the substrate. The EM fields are almost equally distributed between air and the dielectric. Considering the coplanar line in Figure 15a, the effective permittivity 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 and the characteristic impedance 𝑍𝑍 0 is given by:

𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 = 0.5(𝜀𝜀 𝑟𝑟 + 1){tanh [ 1.785 log(ℎ 𝑠𝑠 ⁄ ) + 1.75] + 𝑘𝑘𝑠𝑠 ℎ[0.04 -0.7k + 0.01(1 -0.1𝜀𝜀 𝑟𝑟 )(0.25 + k) ⁄ ]} (II.31) 𝑍𝑍 0 = 30𝜋𝜋 � 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 𝐾𝐾 ′ (𝑘𝑘) 𝐾𝐾(𝑘𝑘) (II.32)
Where,

𝑘𝑘 = 𝑤𝑤 𝑤𝑤 + 2𝑠𝑠 (II.33)
Where 𝑘𝑘 ′ = �(1 -𝑘𝑘 2 ) and 𝐾𝐾 ′ (𝑘𝑘) = 𝐾𝐾(𝑘𝑘 ′ ). 𝐾𝐾(𝑘𝑘) and 𝐾𝐾(𝑘𝑘 ′ )are elliptic integrals.

𝐾𝐾(𝑘𝑘) 𝐾𝐾 ′ (𝑘𝑘) ≈ 1 𝜋𝜋 ln �2 1 + √𝑘𝑘 1 -√𝑘𝑘 � 𝑓𝑓𝑓𝑓𝑟𝑟 0 ≤ 𝑘𝑘 ≤ 0.707 (II.34) 𝐾𝐾 ′ (𝑘𝑘) 𝐾𝐾(𝑘𝑘) ≈ 1 𝜋𝜋 ln �2 1 + √𝑘𝑘 ′ 1 -√𝑘𝑘 ′ � 𝑓𝑓𝑓𝑓𝑟𝑟 0.707 ≤ 𝑘𝑘 ≤ 1 (II.35)
A strip line is a homogeneous planar transmission line which consists of a conductor embedded in a dielectric substrate having the top and bottom layers covered with conducting ground planes as shown on Figure 15b. The TEM mode is the fundamental wave mode of propagation. Here the electric field points from the strip conductor toward the grounds, and the magnetic field circles around the strip embedded in the dielectric substrate. The characteristic impedance of a strip line can be approximated as:

𝑍𝑍 0 = 30𝜋𝜋 √ 𝜀𝜀 𝑟𝑟 𝑏𝑏 𝑊𝑊 𝑒𝑒 + 0.441𝑏𝑏 (II.36)
Where 𝑊𝑊 𝑒𝑒 is the effective width of the strip conductor given by:

𝑊𝑊 𝑒𝑒 𝑏𝑏 = 𝑊𝑊 𝑏𝑏 - ⎩ ⎪ ⎨ ⎪ ⎧ 0, 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 𝑏𝑏 > 0.35 (0.35 -𝑊𝑊 𝑏𝑏 ⁄ ) 2 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 𝑏𝑏 < 0.35 ⎭ ⎪ ⎬ ⎪ ⎫ (II.37)
The above formula assumes a strip with zero thickness.

Microstrip line is the most commonly used planar circuit for high frequency design due to its low-cost fabrication, and its ability to be miniaturized. It is very sensitive to substrate properties variation (thickness, dielectric constant, loss tangent etc). Here the conductor is on the dielectric substrate as in Figure 15c. The field lines are distributed in air and in the substrate. For this reason, a pure TEM wave cannot be supported by the microstrip line since the phase velocity of TEM fields in the dielectric region would be 𝑐𝑐 √ 𝜀𝜀 𝑟𝑟 ⁄ , while the phase velocity in the air region would be 𝑐𝑐. Thus, it will be impossible to achieve a phase-matching condition at the dielectricair interface. The microstrip line gives rise to a TM-TE wave, but since the substrate height (h) is usually electrically thin (h << λ), the mode is quasi-TEM. The phase velocity of a microstrip line is given by:

𝜌𝜌 𝑝𝑝 = 𝑐𝑐 � 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 (II.38)
Where 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 is the effective permittivity for a narrow (𝑤𝑤 < ℎ) or wide microstrip line (𝑤𝑤 ≥ ℎ) approximated by:

𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 = ⎩ ⎪ ⎨ ⎪ ⎧ 𝜀𝜀 𝑟𝑟 + 1 2 + 𝜀𝜀 𝑟𝑟 -1 2 ��1 + 12 ℎ 𝑊𝑊 � -1/2 + 0.04 �1 - 𝑊𝑊 ℎ � 2 � , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ < 1 𝜀𝜀 𝑟𝑟 + 1 2 + 𝜀𝜀 𝑟𝑟 -1 2 ��1 + 12 ℎ 𝑊𝑊 � -1/2 � , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ ≥ 1 ⎭ ⎪ ⎬ ⎪ ⎫ (II.39)
The corresponding characteristic impedance is given by:

𝑍𝑍 0 = ⎩ ⎪ ⎨ ⎪ ⎧ 60 
� 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 ln �8 ℎ 𝑊𝑊 + 0.25 𝑊𝑊 ℎ � , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ < 1 120𝜋𝜋 � 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 × � 𝑊𝑊 ℎ + 1.393 + 2 3 ln � 𝑊𝑊 ℎ + 1.444� � , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ ≥ 1 ⎭ ⎪ ⎬ ⎪ ⎫ (II.40)
The effective permittivity of the microstrip line increases with increasing frequency due to dispersion. The change in effective permittivity with frequency is as a result of the change in the amount of EM energy stored in air and in the dielectric. As frequency increases the fields and EM energy concentrate in the dielectric substrate beneath the strip. The frequencydependent effective permittivity 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 (𝑓𝑓) is given by:

𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 (𝑓𝑓) = 𝜀𝜀 𝑟𝑟 - 𝜀𝜀 𝑟𝑟 -𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 (0) 1 + 𝐺𝐺(𝑓𝑓) (II.41)
Where 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 (0) is the effective permittivity at low frequency and the function 𝐺𝐺(𝑓𝑓) can take various forms in literature.

The effective permittivity of the microstrip line increases with increasing frequency due to dispersion. The change in effective permittivity with frequency is as a result of the change in the amount of EM energy stored in air and in the dielectric. As frequency increases the fields and EM energy concentrate in the dielectric substrate beneath the strip. The frequencydependent effective permittivity 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 (𝑓𝑓) is given by: [START_REF] Svacina | A simple quasi-static determination of basic parameters of multilayer microstrip and coplanar waveguide[END_REF]. Here the dielectrics are assumed to be linear, homogeneous and isotropic.

(a) (b) A multilayer microstrip for sensing is usually of the first or second type as illustrated in Figure 16a and b respectively. For a three-layer microstrip of the first type the effective permittivity computed using conformal mapping is given by:

𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 = 𝜀𝜀 𝑟𝑟1 𝑞𝑞 1 + 𝜀𝜀 𝑟𝑟2 (1 -𝑞𝑞 1 ) 2 𝜀𝜀 𝑟𝑟2 (1 -𝑞𝑞 1 -𝑞𝑞 2 ) + 𝑞𝑞 2 (II.42)
And the corresponding characteristic impedance is calculated as:

𝑍𝑍 0 = ⎩ ⎪ ⎨ ⎪ ⎧ 60 � 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 ln �8 ℎ 𝑊𝑊 � , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ < 1 120𝜋𝜋 � 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 ℎ 𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ ≥ 1 ⎭ ⎪ ⎬ ⎪ ⎫ (II.43)
Where 𝑞𝑞 1 and 𝑞𝑞 2 are the filling factors given by:

𝑞𝑞 1 = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 1 2 + 0.9 𝜋𝜋 ln ℎ 𝑊𝑊 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ < 1 1 - 1 2 ln � 𝜋𝜋 ℎ 𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 -1� 𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 ℎ , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ ≥ 1 ⎭ ⎪ ⎪ ⎬ ⎪ ⎪ ⎫ (II.44) 𝑞𝑞 2 = ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ 1 2 - 0.9 + 𝜋𝜋 4 ln � ℎ 2 ℎ + 1 ℎ 2 ℎ + 𝑤𝑤 4ℎ -1 � • 𝑎𝑎𝑟𝑟𝑐𝑐𝑓𝑓𝑠𝑠 ⎩ ⎨ ⎧ �1 - ℎ ℎ 2 �1 - 𝑤𝑤 8ℎ �� � ℎ 2 ℎ + 1 ℎ 2 ℎ + 𝑤𝑤 4ℎ -1 ⎭ ⎬ ⎫ 𝜋𝜋 • ln 8ℎ 𝑤𝑤 , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ < 1 1 -𝑞𝑞 1 - 1 2 • ℎ -𝑢𝑢 𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 • ln � 𝜋𝜋 ℎ 𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 cos � 𝑢𝑢 2 • 𝜋𝜋 ℎ � 𝜋𝜋 � ℎ 2 ℎ - 1 2 � + 𝑢𝑢 2 • 𝜋𝜋 ℎ + sin � 𝑢𝑢 2 • 𝜋𝜋 ℎ �� , 𝑓𝑓𝑓𝑓𝑟𝑟 𝑊𝑊 ℎ ≥ 1 ⎭ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎫ (II.45)
Where the effective width 𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 is

𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑊𝑊 + 2ℎ 𝜋𝜋 ln �17.08 � 𝑊𝑊 2ℎ + 0.92�� (II.46)
And the quantity 𝑢𝑢 is given as

𝑢𝑢 = 2ℎ 𝜋𝜋 tan -1 � 𝜋𝜋 𝜋𝜋𝑊𝑊 𝑒𝑒𝑓𝑓𝑓𝑓 2ℎ -2 � ℎ 2 ℎ -1�� (II.47)
The corresponding equations for effective permittivity of the multi-layered microstrip line of the second type using the conformal mapping method is described in [START_REF] Svacina | Analysis of multilayer microstrip lines by a conformal mapping method[END_REF].

Microstrip lines for sensing devices are usually of the first type. The sensitive material is deposited on the conductor strip which changes the overall effective permittivity of the line. The variation of the relative permittivity of the sensitive dielectric layer to the target gas will then cause a change in microstrip line effective permittivity. The design topology of the microwave transducer to be used and optimized in this project will be detailed in Chapter III.

These planar transmission lines are often represented using a two-wire line as in Figure 17a since for transverse electromagnetic wave (TEM) propagation at least two wires are needed.

For an infinitesimal length Δz the lumped parameter RGLC model is shown in Figure 17b, where R, L, G and C are the series resistance and inductance, parallel conductance and capacitance per unit length, respectively. R is due to the non-infinite conductivity of the individual conductors and G the shunt conductance is due to the dielectric loss of the material between the two conductors. A transmission line stores magnetic and electric energy distributed in space and alternating between the two forms in time. The resistors 𝑅𝑅 model conductor losses, the inductors 𝐶𝐶 and capacitors 𝐶𝐶 are for magnetic and electrical energy storage, respectively. These parameters depend on the conductor and dielectric material properties and dimensions. The time domain form of transmission line equations is also known as the telegrapher equations, they are described in the appendix chapter II.

Finally, in addition to the theory of microwave transducers, it is important to consider the method for their characterization at microwave frequencies. A microwave network is a system of interconnected high frequency components. Its characterization goes through measuring reflection and transmission coefficients related to power flow and the analysis includes effects like losses, multiple reflections, cascade of transmission lines.

Microwave networks can have 1 to N ports. Figure 18 shows two-port networks with four terminals for non-distributed and distributed circuits. The total port voltages and currents (𝑉𝑉 1 , 𝑉𝑉 2 , 𝐼𝐼 1 and 𝐼𝐼 2 ) are more suitable for lumped-element circuit whereas the travelling voltages and currents (𝑉𝑉 1 , 𝑉𝑉 2 , 𝐼𝐼 1 and 𝐼𝐼 2 ) are more suitable for transmission lines [START_REF] Steer | Fundamentals of microwave and RF design[END_REF].

(a) (b) For networks based on total voltage and current, the voltage is linked to the current by the impedance (𝑉𝑉 = 𝑍𝑍𝐼𝐼) or admittance (𝐼𝐼 = 𝑌𝑌𝐼𝐼) parameters. For distributed networks, scattering parameters (𝑆𝑆 𝑖𝑖𝑗𝑗 ) are used to link the forward and backward voltage and current waves. Scattering parameters englobe reflection and transmission waves at a port terminal. These parameters can be converted to well-known circuit parameters such as impedance and admittances. Referring to appendix chapter II, one can find the calculation of these parameters, including the reflection coefficient and characteristic impedance. Furthermore, for this thesis, programs have been developed to control the network analyzer in order to extract these parameters, which will be useful for interpreting measurements under various gas environments.

II.2.Sensing performances and calibration algorithms

Understanding sensor characteristics and properties is necessary to assess the performance, accuracy and reliability of a sensing system. Novel designed sensors are usually calibrated by comparing its response with that from a reference instrument, that provides known and accurate measurements of the input. Calibration enables the identification and correction of discrepancies between the sensor's response and the reference ground truth. Model-based calibration and machine learning are modern calibration methods that have become widely used compared to more conventional techniques like single point, multi-point or zero-point calibration. 

II.2.1.Sensing characteristics

Sensing characteristics are essential properties used to evaluate a sensor's performance and suitability for various applications. The most crucial characteristics include sensitivity, response and recovery times, hysteresis, reversibility, drift and stability etc. Sensing features on the other hand refer to key attributes and functionalities intrinsic to the sensors that enables them to measure and respond to physical and/or chemical variations. These features are also important in assessing a sensors performance and suitability for different applications. They include, selectivity, range, repeatability, noise, robustness, lifespan, power consumption and cost. These sensing characteristics and sensing features are both necessary for selecting, designing and optimizing sensors for various sensing systems and applications. These concepts on sensing performance assessment are detailed in appendix chapter II as they will be utilized in the measurement and calibration section of the sensors studied in this project.

II.2.2.Model-based calibration

Model-based calibration consists of using analytical models to describe the relationship between the sensor's response and the input stimulus. Analytical calibration models are designed based on the physical and/or chemical principle that governs the sensor's behaviour. It can also be derived empirically by observing the calibration data. Model-based calibration can handle complex, non-linear sensor behaviours; it necessitates the identification of suitable models that accounts for all relevant input parameters. However, constructing an appropriate model can be challenging for sensors operating in uncontrolled environments. Some common types of model-based calibration technique include linear regression, polynomial regression, exponential or logarithmic regression, gaussian process regression and piecewise regression

II.2.2.1.Simple and multiple linear regression (LR)

LR is the simplest regression algorithm which models the relationship between a continuous target variable and one or more variables by fitting it with a straight line [START_REF] Forkuor | High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models[END_REF]. The sensor output response can be related to a single or multiple input stimulus as in equation (II.48).

𝑦𝑦 = 𝛼𝛼 0 + 𝛼𝛼 1 𝑥𝑥 1 + 𝛼𝛼 2 𝑥𝑥 2 + ⋯ + 𝛼𝛼 𝑡𝑡 𝑥𝑥 𝑡𝑡 (II.48)

II.2.2.2.Polynomial regression (PR)

Polynomial regression can be used to calibrate non-linear sensors. The relation between the sensor's response and the input stimulus can be expressed as:

𝑦𝑦 = 𝛼𝛼 0 + 𝛼𝛼 1 𝑥𝑥 + 𝛼𝛼 2 𝑥𝑥 2 + ⋯ + 𝛼𝛼 𝑡𝑡 𝑥𝑥 2 (II.49)
Choosing the polynomial degree is critical since higher degree polynomials can capture more complex relationships but they can also overfit the data degrading the generalizability of the model.

II.2.2.3.Exponential or logarithmic regression (ER)

Some sensors show a non-linear exponential pattern to the input as presented in equation (II.50).

𝑦𝑦 = 𝛼𝛼 1 𝑒𝑒 𝛼𝛼 2 * 𝑥𝑥 (II.50) . ln(𝑦𝑦) = ln(𝛼𝛼 1 ) + 𝛼𝛼 2 𝑥𝑥 (II.51)
The exponential calibration equation can be easily linearized by applying natural logarithm. A logarithm model has the form:

𝑦𝑦 = 𝛼𝛼 1 + 𝛼𝛼 2 ln(𝑥𝑥) (II.52)
Here, the sensor response is related to the natural logarithm of the input stimulus.

II.2.2.4.Gaussian process regression (GPR)

Gaussian process regression is a non-parametric, Bayesian approach to regression problems. It can be used to model complex, non-linear relationships between the sensor's responses and inputs without assuming a specific form. GPR models the underlying function as a realization of Gaussian process, which is a collection of random variables with a joint Gaussian distribution. For a finite number of data points, there are infinite number of possible functions that can fit them. In GPR, the Gaussian processes conduct regression by defining a distribution over this infinite number of functions [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. A random variable has a Gaussian distribution if its probability density function (PDF) is given by:

𝑃𝑃 𝑋𝑋 (𝑥𝑥) = 1 √2𝜋𝜋𝜎𝜎 exp �- (𝑥𝑥 -𝜇𝜇) 2 2𝜎𝜎 2 � (II.53)
Where 𝑋𝑋 is the random variables, 𝑥𝑥 is the real argument, 𝜇𝜇 is the mean and 𝜎𝜎 2 is the variance. The normal distribution of 𝑋𝑋 is usually represented by 𝑃𝑃 𝑋𝑋 (𝑥𝑥) ∼ 𝑁𝑁(𝜇𝜇, 𝜎𝜎 2 ) .

A Gaussian process is parameterized by a mean function 𝜇𝜇(𝑥𝑥) and a covariance function or kernel 𝑘𝑘(𝑥𝑥, 𝑥𝑥 ′ ). The kernel function measures the similarity between the inputs and determines correlation between the function values [START_REF] Williams | Gaussian processes for machine learning[END_REF]. The mean function 𝜇𝜇(𝑥𝑥) is constant, usually assumed to be 0 for simplicity or the mean of the training set. There exists several covariance kernel functions such as constant, linear, squared exponential (Radial basis function (rbf)), or a combination of kernels [START_REF] Bishop | Pattern recognition and machine learning[END_REF]. The mostly used kernel is the rbf kernel given by:

𝑘𝑘(𝑥𝑥, 𝑥𝑥 ′ ) = 𝜎𝜎 2 exp �- ‖𝑥𝑥 -𝑥𝑥 ′ ‖ 2 2𝐶𝐶 2 � (II.54)
Where 𝜎𝜎 2 is the variance and 𝐶𝐶 is the length scale parameter, which can either be a scalar or a vector with the same dimensions as the inputs. GPR uses the Bayesian approach which works by specifying a prior distribution which is converted to a posterior function based on the observed data using Bayes theorem.

𝑃𝑃𝑓𝑓𝑠𝑠𝑃𝑃𝑒𝑒𝑟𝑟𝑃𝑃𝑓𝑓𝑟𝑟 (𝑝𝑝(𝑓𝑓|X, y)) = 𝐶𝐶𝑃𝑃𝑘𝑘𝑒𝑒𝐶𝐶𝑦𝑦ℎ𝑓𝑓𝑓𝑓𝑎𝑎 �𝑝𝑝(y|X, f)� × 𝑝𝑝𝑟𝑟𝑃𝑃𝑓𝑓𝑟𝑟 (𝑝𝑝(𝑓𝑓|X)) 𝑀𝑀𝑎𝑎𝑟𝑟𝑀𝑀𝑃𝑃𝑎𝑎𝑎𝑎𝐶𝐶 𝐶𝐶𝑃𝑃𝑘𝑘𝑒𝑒𝐶𝐶𝑦𝑦ℎ𝑓𝑓𝑓𝑓𝑎𝑎 (𝑝𝑝(y|X)) (II.55)
For a set of input data points X prior 𝑝𝑝(𝑓𝑓|X), the prior distribution is a multivariate Gaussian distribution with mean 𝜇𝜇 and covariance matrix 𝑘𝑘(𝑥𝑥, 𝑥𝑥 ′ ) whose entries are given by the kernel function. The likelihood 𝑝𝑝(y|X, f) is the probability of the observed target 𝑦𝑦 given X and the underlying function 𝑓𝑓. The posterior distribution is a Gaussian process with updated mean and kernel functions. For a new input point 𝑥𝑥 * the predictive distribution of the function value 𝑓𝑓(𝑥𝑥 * ) is given by: 2 𝐼𝐼] -1 𝑘𝑘(𝑋𝑋, 𝑥𝑥 * ), X are the inputs and y are the outputs, 𝑘𝑘(𝑋𝑋, 𝑋𝑋) is the covariance matrix of the inputs, 𝑘𝑘(𝑥𝑥 * , 𝑋𝑋) is a vector of covariances between the new points and the input points, 𝑘𝑘(𝑥𝑥 * , 𝑥𝑥 * ) is the variance of the new point, 𝜎𝜎 𝑡𝑡 2 is the noise variance and 𝐼𝐼 is the identity matrix. The 𝜇𝜇(𝑥𝑥 * ) represents the best estimate of the function value at 𝑥𝑥 * , and the variance 𝜎𝜎 2 (𝑥𝑥 * ) quantifies the uncertainty around this prediction. GPR offers notable benefits due to its inherent ability to quantify the uncertainty associated with predictions, and its good performance even in case of limited datasets [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF].

𝑓𝑓(𝑥𝑥 * )|𝑋𝑋 ~ 𝑁𝑁(𝜇𝜇(𝑥𝑥 * ), 𝜎𝜎 2 (𝑥𝑥 * )) (II.

II.2.3.Machine learning based calibration

There exists two main categories of ML algorithms: supervised and unsupervised learning. Supervised learning uses a known labelled data to train a model in order to predict the target variable. Regression and classification are common application of supervised learning. Machine learning regressions use functions to map the sensor data to the reference values. Linear regression (LR), Support vector machine regression (SVM), Random forest regression (RF), and K-nearest neighbours regression (KNN) are commonly used for sensor calibration [START_REF] Yaqoob | Chemical gas sensors: Recent developments, challenges, and the potential of machine learning-A review[END_REF]. Neural networks are capable of approximating non-linear functions, making them ideal for calibrating more complex sensors. In appendix chapter II, the definitions of these ML algorithms are elaborated more in details.

II.2.4.Calibration evaluation metrics

Evaluating the performance of a calibration model is crucial to ensure its accuracy and reliability. The performance of the calibration methods is assessed through validation and testing on data not seen during training. The following indicators are commonly calculated in order to evaluate the relevance of the predictions of the calibration models:

II.2.4.1.Mean absolute error (MAE)

MAE is the average absolute differences between the predicted and actual values. It quantifies the error on the predictions made by the calibration models.

𝑀𝑀𝐴𝐴𝐸𝐸 = 1 N � |y i -𝑦𝑦 � i | N i=1 (II.57)
Where y i is the true or actual value, 𝑦𝑦 � i is the predicted value and N the total number of data points.

II.2.4.2.Mean absolute percentage error (MAPE)

MAPE is the average of the absolute percentage differences between the predicted and the actual values. Unlike MAE, MAPE is a relative measure of error and is scale-independent, making it useful for comparing predictions across different scales.

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 = 1 N � | y i -𝑦𝑦 � i y i | N i=1 × 100 (II.58) II.2.4.3.Coefficient of determination (𝑅𝑅 2 )
The coefficient of determination provides a measure of how well the predicted values explain the variability of the actual values.

𝑅𝑅 2 = �1 - 𝑅𝑅𝑆𝑆𝑆𝑆 𝐾𝐾𝑆𝑆𝑆𝑆 � × 100 = 1 - ∑ (y i -𝑦𝑦 � i ) 2 𝑁𝑁 𝑖𝑖 ∑ (y i -𝑦𝑦 �) 2 𝑁𝑁 𝑖𝑖 × 100 (II.59)
Where RSS is the sum of square residuals, TSS the total sum of squares and 𝑦𝑦 𝚤𝚤 � is the mean of the true values. The MAE indicates the error on the predicted target values as compared to the true values and the R 2 indicates the level of agreement between prediction and ground truth.

II.2.4.4.Root mean squared error (RMSE)

RMSE is the average of the squared differences between the predicted and actual values. RMSE gives a relatively high weight to large errors.

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = � 1 N � (y i -𝑦𝑦 � i ) 2 N i=1
(II.60)

II.2.5.Calibration transfer techniques

Calibration models are often constrained to the individual sensor deployed in a particular environment at that specific time. Alterations in environmental conditions, time-dependent drifts, or the use of another sensor of the same type, can negatively impact the intended accuracy [START_REF] Rudnitskaya | Calibration update and drift correction for electronic noses and tongues[END_REF]. An effective solution involves recalibrating the sensor under the new environmental and time condition. However, these steps can be resource-intensive and time-consuming. In scenarios where sensors of the same type are deployed, a model that have been trained for the calibration of one sensor can be leveraged as a foundational model for calibrating another sensor. This technique, known as transfer learning, can also facilitate the transition from controlled laboratory measurements to more complex outdoors measurements [START_REF] Rudnitskaya | Calibration update strategies for an array of potentiometric chemical sensors[END_REF]. By reducing the necessity of training models from scratch, this approach contributes to computational efficiency and time savings [START_REF] Mishra | Are standard sample measurements still needed to transfer multivariate calibration models between near-infrared spectrometers? The answer is not always[END_REF].

Calibration transfer can be classified in different categories based on how the model is transferred. It can be made at the level of the sensor response, the calibration model and the calibration prediction results, that can be based respectively on response standardization, model update and model output standardization as shown on Figure 20, or with a simpler technique called Mean correction. 

II.2.5.1.Response standardization

In this methodology the responses from the secondary sensor (S2), is arithmetically modified to resemble the response if it had been produced by the primary sensor (S1). Several techniques have been developed to achieve this transfer. The two most common and simple ones include direct standardization and single sensor standardization.

In Direct Standardization (DS) [START_REF] Khaydukova | Multivariate calibration transfer between two different types of multisensor systems[END_REF][START_REF] Fonollosa | Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization[END_REF], initially a set of transfer standards are selected. These are the target points common to both primary and secondary sensors. Given the response to transfer standards of sensor S1, 𝑆𝑆 1 � and response of sensor S2, 𝑆𝑆 2 � , the transfer matrix is estimated as:

𝐹𝐹 � = 𝑆𝑆 2 � + ⋅ 𝑆𝑆 1 � (II.61)
Where 𝑆𝑆 2 � + represents the pseudo-inverse of the response matrix 𝑆𝑆 2 � . The corrected response will then be estimated as 𝑆𝑆 2,𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑆𝑆 2 ⋅ 𝐹𝐹 � . This 𝑆𝑆 2,𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 response matrix can then be directly used with the calibration models developed with 𝑆𝑆 1 dataset.

In Single Sensor Standardization (SSS) [START_REF] Feudale | Transfer of multivariate calibration models: a review[END_REF], each individual feature from the secondary sensor is linearly related to the respective feature in the primary sensor. For a first-degree linear relationship, 𝑆𝑆 1,𝑖𝑖 = 𝑎𝑎 𝑖𝑖 𝑆𝑆 2,𝑖𝑖 + 𝑏𝑏 𝑖𝑖 ∀ 𝑃𝑃 ∈ 1. . 𝑎𝑎, where n is the number of features. The transfer standards are used to estimate 𝑎𝑎 𝑖𝑖 , 𝑏𝑏 𝑖𝑖 for each feature.

II.2.5.2.Model update

Here the calibration model developed with the primary sensor data, is retrained with few samples from the secondary sensor data. This is applicable for cases when retraining is feasible in the model. The samples from the secondary sensor are given higher weightage for the retraining.

II.2.5.3.Model output standardization

Here the calibration model developed from the primary sensor is used as it is with the secondary sensor response to get the target. This target is then corrected to yield the actual results, which is termed as Slope-Bias correction (SBC). If the calibration model developed with primary sensor dataset is 𝑓𝑓 𝑆𝑆1 , and the model output (which is the target) using the S1 sensor response for transfer standard is 𝑓𝑓 𝑠𝑠1 (𝑆𝑆 1 � ) = 𝐾𝐾 1 , then:

𝑓𝑓 𝑠𝑠1 (𝑆𝑆 2 � ) = 𝐾𝐾 2 (II.62
)

𝐾𝐾 1 = 𝛼𝛼𝐾𝐾 2 + 𝛽𝛽 (II.63) 𝑅𝑅 2 = 𝛼𝛼𝑓𝑓 𝑠𝑠1 (𝑆𝑆 2 ) + 𝛽𝛽 (II.64)
Here 𝛼𝛼 and 𝛽𝛽 are obtained using the model output for transfer standards, and the correct model output for secondary sensor 𝑅𝑅 2 is obtained using the same with primary calibration model 𝑓𝑓 𝑠𝑠1 .

II.2.5.4.Mean correction

The simplest technique where transfer standards are not required is Mean correction, wherein the mean of the secondary sensor response is corrected to match the primary sensor response [START_REF] Malli | Standard-free calibration transfer-An evaluation of different techniques[END_REF]. The mean can be corrected additively (AMC) or multiplicatively (MMC) as given by equations (II.65) and (II.66)) respectively.

𝑆𝑆 2,𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑆𝑆 2 + 𝑀𝑀 𝑆𝑆 1 -𝑀𝑀 𝑆𝑆 2 (II.65) 𝑆𝑆 2,𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑆𝑆 2 * 𝑀𝑀 𝑆𝑆 1 /𝑀𝑀 𝑆𝑆 2 (II.66)
where 𝑀𝑀 𝑆𝑆 1 is the average primary sensor response and 𝑀𝑀 𝑆𝑆 2 is the average secondary sensor response. Apart from the above, there are several other techniques in each category.

To conclude, in this chapter, we presented the tool and methods deployed throughout this thesis and which will be illustrated in the following chapters with a direct application to our experimental needs.

Chapter III. Functionalized RF Sensor Design, Fabrication and Characterisation

As discussed in the previous section, various microwave geometries are commonly employed in gas sensing applications. Among these, planar structures such as microstrip and coplanar waveguides are widely utilized due to their simple fabrication process, cost-effectiveness, compact size, and possible flexibility. In this thesis, prepared as part of the ANR CARDIF project, we exploited and improved geometries already studied by the consortium of this project during the 2 previous theses funded by the ANR CAMUS project and the CARGESE region project between 2015 and 2020 [START_REF] Bahoumina | Développement d'une plateforme de détection de gaz, utilisant un capteur différen tiel flexible imprimé à transducteurs micro-ondes et matériaux composites carbonés[END_REF][START_REF] George | Contributions à l'intégration de capteurs radiofréquences de gaz imprimés sur substrats souples[END_REF]. Indeed, the improved design adopted a multi-layered microstrip line (specifically, of the first type described in section II.1.5) integrated with a polymer sensitive material for gas sensing. The polymer sensitive material acts as a sensitive material, deposited on the microstrip line, as depicted in Figure 21a.

The underlying sensing principle is based on the variation of the sensitive material's permittivity upon the absorption of the target gaseous species. Consequently, the overall effective permittivity (εeff) and the line characteristic impedance (Z0) of the multilayer microstrip line will then vary, as described by equation (II.42) and equation (II.43) respectively thereby altering the sensor response (frequency, magnitude and phase of the measured S parameters).

The proposed microwave sensor comprises two microstrip interdigitated resonators printed on a flexible kapton substrate, as illustrated in Figure 21b. One of the resonators is coated with the sensitive polymer layer (referred to as the sensitive channel), while the other remains uncoated (referred to as the reference channel) to establish a differential configuration. This configuration helps minimize drifts and variations that are not induced by the sensitive materials. This chapter provides a comprehensive overview of the synthesis and characterization of the gas-sensitive polymers used in this study, alongside with a detailed analysis of the flexible substrate's properties. Furthermore, the chapter delves into the simulation, fabrication, and electrical characterization of the microstrip sensor to further elucidate its performance and capabilities.

III.1.Material synthesis and characterisation

Prior to the design and simulation of the microwave sensor, a crucial step involves the characterization of the materials to be employed. This section outlines the synthesis of the different gas-sensitive polymers developed for this study, accompanied by detailed analyses of their morphological and dielectric properties. Additionally, we will conduct a comprehensive investigation of the flexible substrate's dielectric properties (permittivity and dielectric loss tangent) under varying relative humidity.

III.1.1.Sensitive polymers synthesis and structural characterisation

Polymers exhibit numerous advantages over alternative materials in gas sensing applications, owing to their inherent flexibility, cost-effectiveness and their ability to be functionalised in order to increase their sensitivity, selectivity and specificity [START_REF] Yan | Conducting polymer-inorganic nanocomposite-based gas sensors: a review[END_REF]. In the context of this thesis, our partner LCPO, within the consortium, focused on developing sensitive polymers for gas detection, with Polyethyleneimine (PEI) serving as the base polymer. PEI is an amorphous polymer with a highly branched structure. This amorphous nature gives PEI unique properties, such as high solubility and good adhesion to various substrates. Gas sensing abilities of PEI materials primarily rely on the presence of amine groups, whether there are primary, secondary or tertiary amino groups. In order to better handle this parameter and in the context of this thesis, a commercially available hyper-branched PEI (HBPEI) has been functionalized with various molecules resulting in distinct sensitive polymers. Commercial HBPEI (Mw = 10 kDa) purchased from Polysciences inc, Warrington Pennsylvania, USA was used as base product for functionalisation and synthesis of the other sensitive polymers. 1,2-epoxybutane polyethyleneimine (EB-PEI), polyethyleneimine silane (HBPEI Silane), linear polyethyleneimine COPh (LPEI-COPh), and linear polyethyleneimine CH2Ph (LPEI-CH2-Ph) were synthesised and used as sensitive materials. The other chemicals used for synthesis of the various sensitive polymers were purchased from Sigma-Aldrich, St Louis, Missouri, USA. Structural characterisation of the synthesised polymers was made using NMR spectra recorded by using Bruker Advance Spectrometer (400 MHz) from Bruker, Billerica, Massachusetts, USA. The comprehensive account of the synthesis and structural characterisation of the aforementioned polymers is described below.

III.1.1.1.Synthesis of EB-PEI

Commercial HBPEI was functionalized with epoxy butane giving rise to fully tertiary amine composed EB-PEI as shown on Figure 22 [START_REF] Kim | SO2-Resistant Amine-Containing CO2 Adsorbent with a Surface Protection Layer[END_REF]. Commercial HBPEI (4 g, MW = 10 kDa) was dissolved in 15 mL of methanol. Afterwards, 1,2-epoxybutane (12.1 mL, equivalent to the nitrogen content of PEI) was added to the polymer solution under stirring at room temperature. After 24 h, the methanol and the unreacted epoxy butane were removed using a rotary evaporator. The product was dried in vacuum oven at 60 °C for 12 h and used for structural characterisation without further purification.

Figure 22: Synthesis of EB-PEI [START_REF] Ngoune | Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensor[END_REF].

Figure 23 shows the 1 H-NMR (400 MHz) spectrum of EB-PEI in chloroform-d (CDCl 3 ) at room temperature. The objective of this functionalization was dual, making PEI materials easily processable due to the additional butane groups and adding a humidity sensitivity due to the presence of hydroxyl groups giving rise to hydrogen bonds with water. In addition, one can anticipate that the hyperbranched architecture of PEI exacerbates the sensitivity to humidity due to the higher accessibility of the hydroxyl groups. For structural characterization, 1 HNMR, and 13 CNMR were performed in tetrahydrofuran-d8 (THF-d8), and the results are displayed in Figure 25 and Figure 26 respectively. 

III.1.1.3.Synthesis of LPEI-COPh

To synthesise LPEI-COPh, 2-Phenyl-2-Oxazoline (1.33 g, 0.0090 mmol) and Dimethyl sulfate (23 mg, 0.00018 mmol) as an initiator were mixed thoroughly. Three freeze-thaw cycles were applied to the reaction mixture and the reaction flask was closed under argon. Vigorous shaking was applied to ensure complete dissolution of the initiator, and the reaction was allowed to proceed at 140°C for 24 h. Upon completion of the reaction, a very strong and tough orange or yellow solid bulk of polymer was dissolved in chloroform and precipitated in diethyl ether. The precipitate was then dried under vacuum, yielding colorless LPEI-COPh as shown in Figure 27.

The obtained product was further characterized using 1 HNMR, and 13 CNMR to confirm its structure and purity as depicted in Figure 28 and Figure 29. 

III.1.1.4.Synthesis of LPEI-CH2-Ph

The synthesis of LPEI-CH2-Ph is depicted in Figure 30 . To a solution of LPEI-COPh (4 g, 0.08 mmol) in dichloromethane (400 mL) was added LiAlH4 in THF (17 mL, 17 mmol). The reaction mixture was refluxed and stirred for 14 hours. After the completion of the reaction, water was added, and the resulting organic layer was filterd to remove LiOH and Al(OH)3. Subsequently, the solvent was evaporated, yielding a crude product. The crude product was further purified through reprecipitation using diethyl ether as the solvent. The final purified product was then dried and characterised using 1 H-NMR and 13 C-NMR techniques to verify its chemical structure and purity. Hyperbranched PEI demonstrates amorphous characteristics, rendering it sticky and viscous, while also presenting challenges in controlling its functionality. In contrast, Linear PEI showcases a crystalline structure facilitating a higher level of control over its functionality.

III.1.2.Sensitive polymer dielectric properties extraction

The dielectric properties of the synthesized sensitive polymers are important for simulation and understanding its electrical behaviour in the microstrip-based sensing application. These properties are influenced by various factors, such as the polymer's molecular weight, degree of branching, synthesis method etc. PEI, being a viscous polymer, cannot be directly characterised using conventional dielectric characterisation techniques. For this goal, with our partners XLIM and Cisteme, a split ring resonator (SRR) was designed and fabricated to operate at a specific resonance frequency. The synthesized polymer was deposited onto this resonator, leading to a shift in the resonance peak frequency and/or magnitude. Through retro simulation, one can extract the dielectric constant and loss tangent by fitting the measured resonance curve, based on adjustment of the polymer's dielectric properties in simulation.

Figure 33a show the employed SRR geometry for dielectric characterisation of the sensitive polymers. The SRR consists of a copper ring of radius (r), width (w) and thickness (t), printed on a Rogers 4360G2 substrate with height (h), and excited by a feed line via a coupling gap (cg). Rogers 4360G2 substrate glass-reinforced material is known for its low loss properties, possessing a dielectric constant of 6.15 ± 0.15 and a dielectric loss tangent of 0.0038, as specified in the datasheet [START_REF] Corporation | RO4360G2™ High Frequency Laminates[END_REF]. Its low loss characteristic has a minimal impact on the quality factor of the SRR. For the two-port SRR, the resonance frequency can be determined using equation (III.1).

𝑓𝑓 𝑟𝑟 = 𝑎𝑎𝑐𝑐 2𝜋𝜋𝑟𝑟 � 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 , 𝑎𝑎 = 1,2,3, …. (III.1)
Where, c is the speed of light, r the radius of the SRR, and 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 the effective permittivity of the microstrip line as defined in equation (II.39). The sensitive polymers need to be characterised at frequency of interest, which in our case, is around 3.3 GHz. Based on calculations, the SRR dimensions were determined to be h = 1.524 mm, w = 1.8 mm, t =18 μm, r = 7 mm and cg = 3.5 mm. The coupling gap influenced the resonance frequency and the quality factor of the resonance peak [START_REF] Bogner | Planar microstrip ring resonators for microwave-based gas sensing: Design aspects and initial transducers for humidity and ammonia sensing[END_REF].

(a) (b) A weak coupling yields a high-quality factor and thus a good accuracy whereas a strong coupling is better for power transfer. The coupling gap is chosen in order to achieve a transmission coefficient (S21) at -30 dB, which allows a quality factor when loaded with the sensitive material (𝑄𝑄 𝐿𝐿 ), equal to the unloaded quality factor (𝑄𝑄 0 ) with an error of 3%, as it can be calculated from equation (III.2).

𝑄𝑄 0 = 𝑄𝑄 𝐿𝐿 1 -|𝑆𝑆 21 𝑚𝑚𝑡𝑡𝑥𝑥 | 𝑙𝑙𝑖𝑖𝑡𝑡 (III.2)
The SRR was designed and simulated using the finite element ANSYS HFSS TM software. In Figure 33b, the specific region of the circuit where the sensitive polymers will be deposited is represented, 15 mm away from the substrate edges. The access feed line will be soldered with SMA connectors. To compensate for the effects of the feed line and SMA connectors, the SRR was fabricated along with TRL (Thru-Reflect-Line) calibration standards as shown in Figure 34a. The TRL calibration ensures accurate measurements. After TRL calibration, the reference plane is shifted from the SMA plane to the two ends of the SRR where the polymer will be deposited, as indicated by the dotted lines on the image.

(a) (b) In Figure 34b, a comparison between the simulated and measured S21 parameters of the uncoated SRR is presented, both with and without TRL calibration. The measured uncoated SRR exhibits a resonance frequency at 3.3 GHz with an amplitude of -28 dB before TRL calibration. Upon applying TRL calibration, resonance frequency is unchanged at 3.3 GHz but with an amplitude of -27 dB. In comparison, the simulation showed resonance at 3.3 GHz with an amplitude of -26 dB. The process of de-embedding the SRR proved beneficial as it improved the measurement's agreement with the simulation, successfully mitigating the effect of SMA and feed lines. However, the slight difference from the simulation might be attributed to the fabrication process and the minor modification in the ROGERS 4360G2 dielectric properties. Subsequently, SRR devices were coated with the different sensitive polymers using spin coating method by our partner ISORG. Prior to deposition, the substrate underwent a pre-baking process for 4h at 120 °C in an air oven. Following deposition as shown on Figure 35a, the coated SRRs were baked on hotplate under air at 120 °C for 24 h to facilitate reticulation.

Table 5 provides the thickness of the various deposited sensitive materials, as measured by scanning electron microscope. Sij parameters measurements were conducted using a Vector Network Analyzer (VNA) and the extracted dielectric properties at ambient conditions (40% RH and 25 °C). Depositing only a few µm (<10 µm) of the sensitive polymers produces a negligible shift in the SRR resonance frequency and its magnitude which is far below the variance caused by the fabrication process. This minor shift suggests that the polymers possess a relatively low relative permittivity. Given that, the retro-simulation method inherently lacks high precision, a frequency change of approximately 10 MHz is necessary for attaining an adequate level of accuracy. Consequently, the error margins for estimating both the dielectric constant and the dielectric loss tangent are substantial. Nevertheless, the synthesized polymers exhibit dielectric constants in the range of approximately 2 to 4 and dielectric loss tangents between 0.01 and 0.06 at a frequency of 3.28 GHz, under ambient conditions of 40% relative humidity (RH) at 20°C. For the sensor design and simulation, a dielectric constant of 3.2 and a loss tangent of 0.02 at 3.2 GHz were employed as baseline values.

It is essential to be aware that these dielectric properties are subject to significant alterations due to variations in environmental factors such as humidity and temperature, which can substantially impact the performance and reliability of sensors designed for air quality monitoring. A comprehensive evaluation of the effects of these parameters on the dielectric characteristics of the sensitive polymers will be addressed in the next chapter.

III.1.3.Flexible polyimide substrate characterisation (Kapton)

Kapton, a high-performance polyimide film developed by DuPont, was specifically chosen as the substrate for the microstrip gas sensor due to its several unique characteristics. It offers high thermal mechanical strength and good flexibility making it suitable for flexible applications. Moreover, Kapton's resistance to a wide range chemicals and its low outgassing properties further enhance its suitability for gas sensing purposes. Additionally, with exceptional thermal stability, Kapton can endure extreme temperature conditions from -260 °C to 400 °C, making it an ideal choice for designing robust sensors.

The characterization of the substrate dielectric properties is crucial for the sensor design simulations, with a geometry resonating at the desired frequency. Over the years, several techniques have been developed and used to extract the permittivity and dielectric loss tangent of materials at radiofrequencies. These methods encompass free space techniques, parallel plate capacitors, coaxial probes, resonant cavity etc [START_REF] Bolivar | Measurement of the dielectric constant and loss tangent of high dielectricconstant materials at terahertz frequencies[END_REF][START_REF] Khan | A brief review of measuring techniques for characterization of dielectric materials[END_REF]. Free space techniques involve measuring the transmitted and reflected EM waves in free space. This method allows for noncontact, non-destructive characterisation in the frequency range of 50 MHz -30 GHz. However, it can be affected by interference and reflections caused by objects in the measurement setup [START_REF] Ghodgaonkar | A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies[END_REF]. The parallel plate capacitor method involves measuring the capacitance between two parallel plates with the material serving as the dielectric. It is a widely used and straight forward method. However, sample preparation is necessary as air gaps and thickness variations can significantly impact the measurements. This method is less suitable for characterising low permittivity and highly lossy materials [START_REF] Grove | Determining dielectric constants using a parallel plate capacitor[END_REF]. The coaxial probes method measures the complex impedance of a coaxial transmission line with the material under test as dielectric [START_REF] De Langhe | Measurement of low-permittivity materials based on a spectral-domain analysis for the open-ended coaxial probe[END_REF]. This method is commonly employed for liquid or biological samples and requires careful calibration to ensure accurate results.

In this thesis, the cavity resonant method was employed to characterize the dielectric properties of the Kapton substrate, in collaboration with our partner Cisteme. This method involves measuring the resonant frequencies and quality factor of a resonant cavity containing the Kapton material under test [START_REF] Works | Resonant cavities for dielectric measurements[END_REF]. The cavity resonant method offers the advantage of being non-destructive, requiring no material preparation [START_REF] Kumar | Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies[END_REF]. Additionally, it enables accurate measurements of the dielectric properties over a wide frequency range.

To obtain insights into the dielectric properties of the Kapton substrate for sensor design and simulation, a 100 μm Kapton polyimide film was acquired from Würth Electronik [159]. Characterization was conducted using three distinct resonant cavities operating at frequencies of 2, 4.7, and 10 GHz. The substrate was also characterized under different humidity levels (20% RH, 50% RH, and 80% RH) at ambient temperature. To ensure repeatability, measurements were performed on two separate samples. 3.54 ± 0.17 3.55 ± 0.17 3.54 ± 0.17 0.0058 ± 6.9×10 -4 0.0058 ± 6.9×10 -4 0.0063 ± 7.5×10 -4 It was observed that the dielectric properties listed in the datasheet closely matched the measured values. Furthermore, the experiments revealed that humidity had a minimal impact on the dielectric properties of the 100 μm Kapton HN film as shown in Figure 36. The measurement error of the resonant cavity was significantly higher than the variation caused by changes in humidity. However, it was noted from the datasheet that humidity had a more significant influence on a thinner (25 μm) Kapton films [160].

(a) (b) 

III.2.Sensor design and simulation

Before designing the sensor, we carefully selected the resonance frequency for the microstrip resonator, in order to suit our specific application requirements. Since our goal is to develop a RF sensor capable of communicating wirelessly in the future, we opted for an operating frequency of 3.3 GHz. The designed microwave sensor is a five fingered microstrip interdigitated resonator made of 200 μm wide, 20 μm thick copper lines printed on a flexible Kapton substrate. The working principle of the interdigitated resonator relies on the coupling of the resonant fingers. The interdigitated structure was chosen to maximize the surface electric field density, allowing enhanced sensitivity to changes in the dielectric properties of the sensitive materials at the surface when interacting with the target gas.

As represented by equation (III.3), the resonance frequency (𝑓𝑓 𝑟𝑟 ) of a microstrip line is determined by the resonance wavelength (𝜆𝜆 𝑟𝑟 ) which depends on the effective line length and by the effective permittivity which depends on dielectric properties and dimension of the substrate.

𝑓𝑓 𝑟𝑟 = 𝑐𝑐 𝜆𝜆 𝑟𝑟� 𝜀𝜀 𝑒𝑒𝑓𝑓𝑓𝑓 (III.3)
The length of the interdigitated fingers is half a wavelength (λ/2). To achieve an operating frequency of 3 GHz, a Kapton substrate with a thickness of 100 μm and a dielectric constant of 3.5 were used. Using Advance Design System software, the calculated length of the interdigitated fingers was approximately 30 mm, matching half the wavelength.

For the purpose of miniaturization, the interdigitated electrodes were bent to maintain the same electric length while reducing the overall structure's length as shown in Figure 37a. This miniaturization process reduced the interdigitated structure length from 30 mm to 14.6 mm enabling the dual microstrip sensor to fit in the designed test cell described in section III. The bending was done in such a way that the juxtaposed fingers are in opposite directions to allow for an optimal coupling between the two ports. As mentioned earlier, the design sensor consists of two interdigitated resonators, one uncoated will serve as a reference and the other coated with a sensitive material for differential measurement. For a more comprehensive understanding of this structure, the two references [START_REF] Georges | Contributions à l'intégration de capteurs radiofréquences de gaz imprimés sur substrats souples[END_REF][START_REF] Bahoumina | Développement d'une plateforme de détection de gaz, utilisant un capteur différentiel flexible imprimé à transducteurs micro-ondes et matériaux composites carbonés[END_REF] provide alternative geometries, with the latter being the one adopted in this study.

(a) (b) The sensor was designed and simulated using a 3D finite element method software (ANSYS HFSS TM ) for electromagnetic circuits design. The measured dielectric properties of the Kapton substrate were integrated into the simulation using the Debye multipole model input. This configuration allows for the estimation and integration of the dielectric property variation with frequency. Figure 37b displays the electric field density cartography of the interdigitated resonator at its resonance frequency. This cartography shows a maximum electric field density between the electrodes, maximizing the interaction of the electromagnetic wave with the sensitive material [START_REF] Hallil | Differential passive microwave planar resonator-based sensor for chemical particle detection in polluted environments[END_REF]. The simulated bare resonators resonate at 3.3 GHz with a transmission magnitude of -3 dB as illustrated in Figure 38a To investigate the effect and assess the sensitivity of the sensitive material, a polymer coating was added to the resonator in simulation as illustrated in Figure 39a. The dielectric properties used in the simulation were obtained through a retro simulation of the coated split ring resonators.

Initially, a study was conducted to evaluate the effect of varying the thickness of the sensitive material on the resonance frequency of the resonator. Then, another study focused on the resonator sensitivity by varying the dielectric constant and loss tangent of the sensitive polymer, and observing how these variations affect the resonance frequency and its magnitude at different thicknesses.

The thickness of the sensing layer is a crucial parameter that influences the behaviour of dielectric sensors. Thicker films enhance sensitivity to analyte concentration due to an increased number of reaction sites. However, thicker films also lead to longer response times as gas molecules diffuse over greater distances [START_REF] Qu | Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4[END_REF]. These trade-offs result in an optimal thickness for improved sensitivity and response time. To determine an optimal thickness based on the maximum frequency variation associated with changes in dielectric properties, a parametric sweep of the polymer layer thickness was performed using ANSYS HFSS™ software.

Coating the resonator with a polymer layer causes a change in εeff as described by Equation (II.42). The thickness of the deposited layer affects the filling factor 𝑞𝑞 2 and thus the εeff and the resonance frequency. Figure 39b illustrates the simulation results of the effect of the sensitive layer thickness and its relative permittivity (εr) on the designed sensor's resonance frequency. An increase in the sensitive layer thickness leads to a decrease in resonance frequency and an increase in sensitivity to dielectric changes of the sensitive material. As from a certain thickness (around 200 μm), the effect of the thickness on the effective permittivity becomes negligible, reaching a constant value as the filling factor 𝑞𝑞 2 described by Equation (II.45) stabilizes as the superstrate layer ℎ 2 tends to infinity. Simulation results in Figure 40a and b point out the variation of the resonance frequency and the corresponding transmission parameter magnitude to changes in dielectric constant (εr) and loss tangent (tanδ) respectively, for a 1.2 μm thick polymer layer. When εr is varied, tanδ is kept constant and vice versa. The slope of the fitted lines represents the sensitivity to changes in εr and tanδ while the coefficient of determination (COD) provides a measure of the fit's precision.

An increase in dielectric constant of the sensitive polymer leads to an increase in the overall effective permittivity of the microstrip resulting in a decrease in resonance frequency. The S11 parameter representing the magnitude of the reflection coefficient as defined by Equation (III.4) depends on the effective permittivity of the microstrip line

|𝑆𝑆 11 | = 𝛤𝛤 = 𝑍𝑍 -𝑍𝑍 0 𝑍𝑍 + 𝑍𝑍 0 (III.4)
Where 𝛤𝛤 is the reflection coefficient, 𝑍𝑍0 is the characteristic impedance and Z is the load impedance. The characteristic impedance (Z0) of the multilayer microstrip varies inversely with εeff as described in Equation (II.43). Therefore, an increase in the dielectric constant of the sensitive polymer will also increase the overall effective permittivity of the microstrip, leading to a reduction in 𝑍𝑍 0 and consequently causing a decrease in the magnitude of 𝑆𝑆 11 as shown on Figure 40a. The fitted line indicates a sensitivity of -4 MHz and -0.07 dB per unit of εr for a 1.2 μm thick polymer layer.

The loss tangent is a measure of the energy lost as heat as the electromagnetic wave propagates through the material. Increased loss tangent leads to higher energy dissipation which causes a reduction in the quality factor of the microstrip resonator, and a decrease in reflection (S11) magnitude at resonance. The simulation results reveal sensitivity of -1 dB per unit of tanδ. However, the effect of varying the loss tangent on the resonance frequency is unclear, as the fitted line displays a poor COD. The sensitivity to changes in dielectric properties varies with thickness of the polymer layer.

As shown in Figure 41a, the sensitivity to changes in dielectric constant of the polymer increases with thickness. At a certain thickness, the sensitivity becomes constant. Figure 41b illustrates the variation of the resonators sensitivity to changes in dielectric constant for different polymer thicknesses. The exponential fit indicates that the sensitivity increases and tends constant as thickness increases. However, increasing the thickness will also affect the sensor's response time. To find a balance between achieving maximum sensitivity and minimum response time, it is necessary to evaluate the sensor response time to gas absorption. Unfortunately, estimating the response time in simulation under ANSYS HFSS TM is not possible. Further experimental analysis will be required to determine this aspect.

(a) (b) To ensure the compliance with the design specifications, the fabrication made by Würth Electronik was examined under an optical microscope, as illustrated in Figure 43a. On these optical images, copper lines with gold nickel plating can be observed, of width approximately 200 ± 5μm, which is in line with the design requirements. The thickness of the copper metallization and its rugosity, as well as that of the Kapton substrate, were measured using a profilometer as shown in Figure 43b. This led to a thickness of the metal lines of 19.5 μm with a rugosity of ±1 μm, while the Kapton substrate rugosity was measured approximately ±500 nm. The rugosity of the Kapton substrate will enhance the adhesion of the sensitive material once deposited.

(a) (b) Hydrophobicity is a desirable characteristic in gas sensors used for air quality monitoring. Hydrophobic materials repel water and are hence are more resistant to moisture. Furthertmore, in gas sensing applications, the presence of water molecules can significantly impact the performance of the sensors, especially during outdoor measurements. By utilizing hydrophobic materials, the adverse effects of humidity, a major atmospheric interferent in gas sensing, can be mitigated. The hydrophobicity of the substrates obtained from BETALAYOUT and Würth Electronik was evaluated using a contact angle goniometer (Kruss, Germany) shown in Figure 44a. The water contact angle was measured for five samples of each substrate. The substrate obtained from BETALAYOUT exhibited an average water contact angle of 34.8 ± 10.5° as illustrated in Figure 44b. On the other hand, the substrate acquired from Würth Electronik displayed a better water contact angle of 64.4 ± 2.2° as shown in Figure 44c. These results indicate that the substrate from Würth Electronik fabrication exhibited better hydrophobicity compared to the one from BETALAYOUT, making it more suitable for outdoor air quality monitoring.

(a) (b) (c) The fabricated uncoated resonators were electrically characterized for Sij parameters (S11 and S21) by XLIM partner. A picture of the test bench is in Figure 45a. The VNA was calibrated to remove the effect of the coaxial cables and of the probe connected to the test cell with the resonators. The measured Sij parameters were then compared to the simulations as shown on Figure 45b, where the blue and orange lines represent the measurement and simulation, respectively. The straight lines represent the S11 parameters while the dotted ones are for S21.

The measured Sij parameters were found to be compliant to simulations and the slight difference may be attributed to the fabrication process (modification of substrate and conductor properties). For example, the dielectric properties of the double-sided copper-clad Pyralux Kapton substrate provided in the datasheet [START_REF] Dupont | DUPONT™ PYRALUX® AP All-Polyimide Double-Sided Copper-Clad Laminate[END_REF] is slightly different (εr = 3.4, and tanδ = 0.003 at 10 GHz) from those obtained through characterisation of the Kapton HN film (without copper cladding) conducted in section III (εr = 3.5, and tanδ = 0.006 at 10 GHz). This discrepancy arises from the different treatments made for the copper to adhere on the copper cladded Kapton and the characterisation method used. (a) (b) To ensure reproducibility, and variance of the fabrication process, forty (40) fabricated resonator devices were electrically characterized, and their resonance frequencies were recorded. The measured resonators exhibited a mean resonance frequency of 3.28 GHz with a variance of 35 MHz.

III.3.2.Morphological characterisation of the sensitive materials

To analyse and observe the morphology and surface characteristics of the sensitive polymers to be deposited, characterization tools such as scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized by ISORG. SEM is an imaging technique that offers high-resolution visualization and analysis of material surface morphology. SEM can also be employed to measure the thickness of thin films or coatings on a substrate by analysing contrast and intensity variations within its images.

Pictures on Figure 46 display the SEM images of commercial HBPEI, as well as HBPEI Silane, LPEI-COPh, and LPEI-CH2-Ph developed by LCPO. A few micrometres were deposited by the ISORG partner on a silicon wafer by spin coating for analysis. Then a few nanometres film of platinum was deposited on the sensitive polymers to enhance image quality and reduce charging effects. These SEM images reveal the homogeneity of the deposited sensitive polymers. The softness of Commercial HBPEI and HBPEI Silane prevents clear cut of the layer for cross section observations. It causes delamination and folding upon manual scratch. LPEI-COPh tends to form piles upon manual scratch. In contrast, the layer of LPEI-CH2-Ph displayed a distinct sharp manual scratch, as it is comparatively harder than the other materials. It's important to note that Hyperbranched PEI exhibits amorphous characteristics, rendering it sticky and viscous. On the other hand, Linear PEI exhibits a crystalline structure, contributing to its solid nature. The surface roughness of the deposited material was assessed using AFM. This imaging technique is used for nanoscale surface analysis and characterization, allowing the investigation of various surface properties such as roughness, topography, surface interaction with a good precision. To measure the surface roughness, the probe tip scans across the surface with a constant force or height setpoint. The surface roughness is quantified by calculating the root mean square roughness (𝑅𝑅 𝑞𝑞 ) and average roughness (𝑅𝑅 𝑡𝑡 ) from the corresponding height data. 𝑅𝑅 𝑞𝑞 represents the root mean square of the height deviations from the mean surface as defined by Equation (III.5), while 𝑅𝑅 𝑡𝑡 denotes the arithmetic average of these deviations expressed by Equation (III.6).

𝑅𝑅 𝑞𝑞 = � ∑ (𝑧𝑧 𝑖𝑖 -𝑧𝑧̅ ) 2 𝑁𝑁 𝑖𝑖=1 𝑁𝑁 (III.5) 𝑅𝑅 𝑡𝑡 = 1 𝑁𝑁 �|𝑧𝑧 𝑖𝑖 -𝑧𝑧̅ | 𝑁𝑁 𝑖𝑖=1 (III.6)
Where N is the total number of height data points on the surface, 𝑧𝑧 𝑖𝑖 represents the height value at each data point, and 𝑧𝑧̅ is the mean height value of the surface. AFM images of the commercial HBPEI, HBPEI silane, LPEI-COPh and LPEI-CH2-Ph are depicted on Figure 47. AFM measurements were performed on two different formulations of the same sensitive polymer, each prepared separately, with five samples for each formulation. This approach verified the reproducibility of the sensitive polymer's synthesis, formulation, and deposition, along with the repeatability of surface roughness measurement. These images demonstrate the good homogeneity of polymer surfaces, consistent with SEM observations, yet they reveal pronounced roughness. Notably, HBPEI Silane exhibits the highest roughness, visible from the greater distance between black holes in the images. Commercial HBPEI, LPEI-COPh, and LPEI-CH2-Ph display nearly similar surface roughness. Table 7 outlines the mean and variance of the Rq and Ra measured for each sensitive polymer. These values clearly put to evidence that HBPEI Silane has the highest surface roughness approximately 10 times greater than that of the other sensitive polymers. It also exhibits higher variance in measurements. Commercial HBPEI showcases smaller roughness, followed by LPEI-COPh and LPEI-CH2-Ph. The surface roughness of a sensitive material plays a crucial role in its gas sensing performance.

As interactions between the sensitive polymer and target gas molecules occur at the surface level, surface roughness highly influences gas sensing capabilities. A rough surface enhances the surface area for gas molecule interaction, facilitating adsorption and causing more pronounced dielectric property variations, thus increasing sensitivity. Surface roughness might create microchannels that allow gas molecules to diffuse more easily into the material which can improve the overall sensor's response time. Surface roughness can also impact selectivity towards specific gases since different molecules may interact differently to different surfaces. However, excessive roughness can lead to increased noise, challenges in maintaining uniform coatings, reduced sensor stability, and replication difficulties. [START_REF] Kumar | Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique[END_REF].

The diversity of sensitive polymers is interesting for this thesis study, enabling exploration of differences in their performance and facilitating a multisensory and sensor array approach based on their distinct characteristics.

III.3.3.Sensitive polymer deposition

The sensitive polymers (Commercial HBPEI, EB-PEI, HBPEI Silane, LPEI-COPh, LPEI-CH2-Ph) were deposited onto the interdigitated resonators using a spin coating process within the collaboration with LCPO and ISORG. Prior to deposition, the substrates underwent a prebaking process for 4 hours at 120 °C in an air oven. The deposition was achieved by laminating the flexible Kapton substrate onto a double-face adhesive placed over a glass slide. To protect the reference resonator, an adhesive tape was applied before the deposition process. Following the deposition, the coated sensors were baked for reticulation using different methods (hotplate under air, air oven, nitrogen oven). Deposition was also made on a control sample on glass for morphological analysis.

Table 8 provides a summary of the fabricated sensors with the various polymer layers deposited. The table includes information about the characteristics of the sensitive material deposition, such as concentration, solvent, spin coating speed and duration, baking conditions. Additionally, it lists the thickness of the deposited layers measured on the control sample, the sensitive surface area (all surrounding the interdigitated structure with surface -x-mm 2 ), and the contact angle of the sensitive polymers measured using a contact angle goniometer. Notably, 120 µm of EB-PEI was deposited, while the other sensitive polymers were deposited with a thickness of less than 2 µm. This difference in thickness allows for further exploration of the effect of thickness on the sensor's response time. For HBPEI Silane, various concentrations were diluted to study the influence of concentration on its sensing properties.

In the context of humidity sensing applications, a hydrophilic nature of the sensitive polymer is recommended, whereas for air quality monitoring, a hydrophobic sensitive material is required due to the influence of relative humidity (RH) as a major environmental interferent. As a result, several sensitive polymers were synthesized to achieve different contact angles.

Commercial HBPEI, with a low contact angle, was functionalized by LCPO to obtain more hydrophobic polymers. The contact angle measurements demonstrate that Commercial HBPEI has the lowest contact angle, followed by EB-PEI, LPEI-COPh, LPEI-CH2-Ph, and finally HBPEI Silane. Thus, HBPEI Silane is the most hydrophobic, while Commercial HBPEI is the most hydrophilic among the tested sensitive polymers.

III.3.4.Electrical characterisation of the coated fabricated sensors

The electrical characterisation of the reference and sensitive channels of the fabricated sensors was conducted using the test bench shown in Figure 45a. Figure 48a-k, depicts the measured Sij parameters within the resonance frequency range of the fabricated sensors presented in Table 8, under ambient conditions. These figures also include the estimated resonance frequencies at ambient condition for both the reference and sensitive resonators of each sensor. The results show that the resonance frequency of the reference (bare) resonator hovers around 3.28 to 3.3 GHz. Conversely, the sensitive (coated) resonator exhibits a decrease in resonance frequency. This shift implies that the deposited sensitive material induces an increase in the effective permittivity of the microstrip resonators. The shift value depends on the dielectric properties of the material (εr and tanδ) and also on the thickness of the deposited polymer.

To ensure the reproducibility of the fabrication process, we can rely on the observed shift in resonance frequency induced by the deposition of the sensitive material. For EB-PEI based sensors (I11 and I12), with a deposition thickness of 120 µm, a resonance frequency shift of 318 MHz and 281 MHz respectively was noted. This proximity in frequency shift strongly corroborates the consistency of both the sensor fabrication process and the deposition of the sensitive material. Interestingly, I11 and I12 samples showcased a shift approximately 10 times greater than that the other sensors. This pronounced difference is primarily attributed to their deposited thickness, which is 10 times thicker (120 µm) compared to the other sensors which have 1.2 μm thick layers. The minor disparities in the observed shift in resonance frequency among sensors utilizing the same sensitive material can be attributed to the fabrication process, the surface area deposited, the measurement process and ambient condition which may differ across measurements. The effect of the deposition on the magnitude at resonance frequency has not been comprehensively examined due to its relatively minimal variations. It is influenced by factors including cable connections, calibration procedures, and other similar factors. This measured Sij parameters can be used to proposed an electrical equivalent RLC model for the sensors [START_REF] Ngoune | Selective Outdoor Humidity Monitoring Using Epoxybutane Polyethyleneimine in a Flexible Microwave Sensor[END_REF].

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

III.4.Sensor equivalent circuit models

The microstrip interdigitated resonator can be modelled using lumped circuit elements. Considering a simple microstrip interdigitated capacitor of fingers of length L, width W, and gap G, the lumped equivalent circuit models for both low and high frequencies are depicted in Figure 49a and b respectively. These models have been discussed in prior literature, which provides formulas for the various components in the models (i.e., R, C, Cs and L) [START_REF] Beeresha | Design and optimization of interdigital capacitor[END_REF]. For higher frequencies, the lumped circuit is a replication of two low frequency circuit unit pattern put in series [START_REF] Dib | New CAD model of the microstrip interdigital capacitor[END_REF].

(a) (b) In order to design the equivalent circuit of our sensor, we use optimization module in Advance design system software (ADS). A model was proposed by XLIM Lab on ADS and simulated to extract the Sij parameters. These parameters served as optimization input, while the lumped parameters acted as the variables. This was done to ensure the simulated Sij parameters align closely with the measured ones. Figure 50 shows the equivalent circuit model of the designed interdigitated resonator with feed lines. It consists of lumped parameters (R, L, C), transformers and transmission lines. The red frame represents the input and output feed lines. It consists of a resistance element to minimize losses, a transmission line with electric lengths E1 and E2 to encounter for phase shifts due to the feed lines, and a transformer with turns ration T1 and T2 for impedance matching between the input and output port. The dark blue frame features the interdigitated capacitor without the feed lines. It incorporates two stages of lumped elements, the lower block (R1, L1 and C1) to model the resonators low frequency behaviour while the upper block (R2, L2, and C2) extends to high frequency. This model enables to have an equivalent circuit for both the low and high frequency regimes. For optimization we import the Sij parameter measurement of the resonators (coated and uncoated) mainly the transmission (S21) parameter in both magnitude and phase. Each element of the model has been optimized and fine-tuned through iterative adjustments. Table 9 shows the extracted lumped parameters for the uncoated and HBPEI Silane 1:0.5 coated resonators at ambient condition (40% RH and 22 °C). The parameters displayed (R1, R2, C2, T, E1 and E2) are the most relevant parameters that were varied during upon deposition of the sensitive material and turning. Capacitor C2 serves as the primary distinguishing factor between the uncoated and coated resonator. For the uncoated resonator the C2 value obtained through optimization was 2.35 pF. Deposition of the sensitive material causes an increase in C2 value (from 2.35 to 2.4 pF) due to the increased effective permittivity. Also, absorption of gas and water molecules will cause a variation in this C2 value. The resistance value (R1) models the losses due to the sensitive material deposition. The losses influence the magnitude of the resonator at resonances. This model will be used in the next chapter to estimate the variation of these lumped parameters due to the absorption of gaseous molecules.

To conclude, in this chapter, the sensor design, sensing principle, simulation, and fabrication were presented. The electrical and morphological characterisation of the sensors to be used in this thesis were evaluated. All of these will enable a better understanding of the sensing performance of the sensors towards diverse gases.

Chapter IV. Gas sensor characterisation and analysis

This chapter is focused on conducting a thorough evaluation of the developed sensors and their corresponding sensitive materials in terms of sensitivity, specificity, and selectivity. To comprehensively assess the performance of the fabricated sensor and associated sensitive materials, a systematic approach was adopted. Firstly, laboratory and outdoor characterisation testbench were developed followed by the development of autonomous data acquisition and processing for the sensor response extraction. The characterization of the different sensors under gas was made both in laboratory and real-life outdoor condition. The sensing performances of these sensors to different gases under laboratory and outdoor condition will be evaluated. Finally, we will assess and compare various sensors using different sensitive materials, evaluating their performance as a multiparameter system and a network of multisensor array. Calibration algorithms will be employed for this study.

IV.1.Instrumentation and characterisation test bench

In order to evaluate the sensor performance, an appropriate instrumentation had to be set up since the sensor response is extracted from the Sij parameters measurement. We used the closed test cell previously developed [START_REF] Bahoumina | Développement d'une plateforme de détection de gaz, utilisant un capteur différen tiel flexible imprimé à transducteurs micro-ondes et matériaux composites carbonés[END_REF][START_REF] George | Contributions à l'intégration de capteurs radiofréquences de gaz imprimés sur substrats souples[END_REF] as shown in Figure 51, to characterise the sensors. This cell consists of an aluminium base, a connector support, a cover, and gas inlet/outlet tubes. The connector support, with a thickness 1.6 mm equipped with four Sub-Miniature-A (SMA) connectors, is positioned between the base and the cover, which are tightly secured using screws. The base features a recessed area measuring 34x26 mm² with a depth of 70 µm to accommodate the dual microstrip sensor. This design ensures optimal connectivity and accurate sensor positioning. Gas tubes mounted on the cover facilitate the flow of the test gas through a chamber measuring 1.6 mm in height, 26 mm in length, and 34 mm in width, above the sensor. The VNA is the major instrument for measuring the sensor responses. The microstrip interdigitated resonators located in the test cell are connected to a VNA via SMA cables to measure the Sij parameters from which the sensor responses will be extracted. A four-port VNA is employed to measure both reflexion (S11) and transmission (S21) parameters across the sensor's reference and sensitive channels. Conversely, a two-port VNA can be utilized when focusing solely on the sensors S11 parameter of each channel. In this scenario, 50-ohms terminations are connected to the unused ports to ensure impedance matching.

Important VNA parameters such as the number of frequency points, the frequency span and the Intermediate Frequency Bandwidth (IFBW) affect the accuracy, noise and acquisition times of the measurements. Optimizing a balance among these parameters is crucial to achieve precise measurements with minimal noise and short acquisition times. The resolution in frequency is given by the ratio of the frequency span to the number of frequency points. An increase in number of frequency points and a decrease in IFBW causes a decrease in noise but at the same time, an increase in sweep time. For the scope of this thesis, measurements were mainly conducted using an IFBW of 1kHz and within the 2 -4 GHz band, aligning with the sensor's resonance frequency, utilizing a minimum of 4,000 frequency points. Thus, a minimum resolution threshold of 500 kHz was employed in this research, ensuring that acquisition times remained below to 45 s.

The cables, connectors, and fixtures used to connect the sensor to the VNA introduce additional errors. These deviations are corrected through calibration procedures, mainly using the SOLT (Short, Open, Load, Thru) calibration standards. This can either be done using a manual or an electronic calibration kit (ECAL).

This instrumentation was used to test the sensors under gases in laboratory and environmental gases outdoor.

IV.1.1.Laboratory experimental setups

The typical experimental configuration for the characterisation of gas sensor under gas in laboratory condition is shown on Figure 52. This setup includes the sensor placed in a test cell as previously described, a calibration gas generator, a VNA controlled by a Raspberry Pi 4 or a computer to measure the sensor Sij parameters, and a commercial temperature and humidity sensor (SHT85) controlled by an Arduino Uno board. The calibration gas generator produces precise, known gas concentrations to calibrate sensors. Typically, these generators employ a gas source, which can be gas cylinders or permeation tubes. These gas sources release the gaseous analyte, which is then diluted with a carrier gas, such as nitrogen gas or air, to achieve the desired concentration. Mass flow controllers integrated in the system guarantee that gases mix in the correct proportions, ensuring an accurate gas concentration at the output. Permeation tubes offers several advantages over gas cylinders. They contain a small amount of the gas analyte compared to cylinders. Consequently, in case of accidental exposure, the associated risks are minimized. They also have significantly longer lifetimes (up to 2 years) compared to gas cylinders. Permeation tubes are used inside an oven at a specified temperature to achieve a given permeation rate usually expressed in ng/min. The permeation rate quantifies the amount of compound that emanates from the tube over a defined time interval. This rate is often provided by the manufacturer, but it can also be experimentally determined by calibrating the permeation tube gravimetrically at a given temperature. The resulting concentration of the diluted gas can be determined using Equation (IV.1).

𝐶𝐶𝑓𝑓𝑎𝑎𝑐𝑐𝑒𝑒𝑎𝑎𝑃𝑃𝑟𝑟𝑎𝑎𝑃𝑃𝑃𝑃𝑓𝑓𝑎𝑎 (𝑝𝑝𝑝𝑝𝜀𝜀) = 𝐾𝐾 × 𝑃𝑃𝑟𝑟 (𝑎𝑎𝑀𝑀/𝜀𝜀𝑃𝑃𝑎𝑎) 𝐹𝐹 (𝜀𝜀𝐶𝐶/𝜀𝜀𝑃𝑃𝑎𝑎) (IV.1)
Where K is 24.45/Molecular weight of gas, Pr the permeation rate and F the dilution flow.

Varying the dilution flow of the generator enables to vary the concentration of the gas. Some generators enable to vary the concentration without varying the output sample flow but by varying a split exhaust flow. In this case, the dilution flow F is given by the sum of the sample flow and the split exhaust flow.

Four distinct experimental setups were employed to characterise the sensors for RH, temperature and gases under controlled laboratory conditions, as depicted in Figure 53. In each case, experiments are conducted in a fume hood and with personal protective equipment whenever needed to ensure safety.

Figure 53a presents a configuration composed of a 4-port VNA (Keysight, E5080A) alongside a GEN SYS rack from Owlstone Inc [170]. This rack is equipped with two gas generators (V-OVG) with vertical permeation tube ovens for the generation of gases and vapours, and a dedicated humidity generator (OHG). This setup is installed in a 20 °C air-conditioned room for sensor characterisation under SO2, NO2, RH and VOCs such as ethanol and toluene. The V-OVG operates by heating the permeation tube to produce a gas phase, which is diluted into a nitrogen gas with mass flow controller (MFC) to obtain different concentrations at constant output sample flow. The OHG is a versatile humidity generator that produces RH ranging from 1 to 90% RH (±1%). It operates by splitting a controlled flow: one flow passing through a water reservoir (wet flow) and the other bypassing it (dry flow). Downstream, the two flows merge.

The ratio of the two flows is controlled by two needle valves and determines the output humidity.

Figure 53b shows the setup with the 4-port VNA and a climatic chamber (CLIMAT EXCAL 2 ) used to generate humidity (30 -90% RH) in air at different temperatures (20 -90 °C) [171].

The chamber controls humidity by heating water in the reservoir to produce steam. The amount of water vapour determines the humidity content. To reduce humidity the air in the chamber is cooled causing the moisture to condense. Heaters are used to vary the temperature, while builtin blowers ensure uniform temperature and humidity distribution in the chamber. Internal sensors enable the monitoring and adjustment of temperature and humidity using feedback mechanism. The climatic chamber is equipped with a touch screen control panel for programming humidity and temperature sequences. Typically, a ramp function is used whilst changing the RH setpoint in order to avoid spurious vibrations of the climatic chamber.

The two setups illustrated in Figures 53c and53d are based on the IM2NP Lab facilities for gas generation. The setup illustrated in Figure 53c was used to characterize the sensor under CO2, CO and NO2. Here, gas from cylinders with known concentration undergoes dilution with controlled amount of dry air to produce different gas concentrations. This configuration employs a 2-port VNA (Copper Mountain Technologies S5085) to measure the S11 parameters of the resonators. A flow meter is placed at the sensor output to monitor the sample flow and verify the passage of gas in the sensors chamber. Measurement of ambient RH and temperature was conducted using a commercial sensor. Lastly, Figure 53d represents a setup for characterisation under ozone. This setup integrates an ozone generator (Model 306 Ozone Calibration Source TM from 2B technologies) [172], which produces ozone in a range 30 -1000 ppbv by exposing oxygen (O₂) to ultraviolet (UV) radiation. Ambient air containing about 21%

oxygen is used as oxygen source. A UV light source emits UV radiations that dissociate O₂ into individual oxygen atoms as illustrated in Equation (IV.2). The free oxygen atoms react with other O₂ molecules forming ozone (O₃) as expressed in Equation (IV.3). These experimental configurations were used to assess the sensors performances under controlled laboratory settings by characterizing their response to humidity, temperature and various gases. While these assessments provide a calibration and are helpful in foundational understanding of the sensor's behaviour, it is necessary to also test the sensors outdoors in complex and uncontrolled environmental scenarios. The sensor exposure to multiple gases and varying condition offers insights into the combined effects and understanding of the sensor's capabilities.

𝑂𝑂 2 + 𝑈𝑈𝑉𝑉 -> 2𝑂𝑂 (IV.2) 𝑂𝑂 + 𝑂𝑂 2 -> 𝑂𝑂 3 (IV.3) (a) (b) (c) (d)

IV.1.2.Outdoor experimental setup (SENSE-CITY Platform)

Outdoor environmental conditions expose sensors to a broader range of variables than laboratory environments. Ambient gas variations, temperature fluctuations, rain, and sun exposure can influence a sensor's response. Some of these environmental parameters may influence the sensor response, by modifying its sensitivity to the main target species, or overshadowing its intended response. Consequently, numerous studies have highlighted the inaccuracy of environmental sensors, often deviating significantly from their datasheet specifications [START_REF] Karagulian | Review of the Performance of Low-Cost Sensors for Air Quality Monitoring[END_REF]. Testing for every potential interference in the laboratory is neither easy nor economical. A more effective approach is to evaluate and calibrate sensors directly under environmental conditions. This is the objective of Sense-City (https://sense-city.ifsttar.fr/), a large-scale facility built between 2010 to 2019 at Gustave Eiffel university within the COSYS department, which is one of our project partners. Aimed at validating sensing solutions for smart cities at full scale, it replicates the main components of urban systems, such as roads, housing, and vegetation. Air quality monitoring in Sense-City offers two settings: open outdoor measurements and a controlled environment inside a large 20x20x10m climate chamber, as depicted in Figure 54a andb. The entire Sense-City platform is monitored by an array of analysers providing reference measurements for sensor calibration.

During this thesis, we utilized the outdoor configuration, meaning the environmental conditions were uncontrolled (a) (b) Polluting gas concentration was monitored by environmental analysers such as Envea AC32e for NO and NO2, Envea O342e for O3, Envea CO12e for CO and CO2, while the Vaisala WXT536 weather station to track temperature and humidity, rain, and wind (speed and direction). Yet, there was no reference sensor available for SO2.

In Sense-City, sensors were deployed outdoor in two configurations: single microwave sensors and sensor arrays, as illustrated in Figure 55a andb. In single sensor deployment the microstrip sensors were connected to a 2-port VNA (Anritsu MS2724B). This setup was further linked to a Raspberry Pi 4 for continuous instrument control, data collection, and processing. The VNA and Raspberry Pi were kept indoors in the climatic chamber, whereas the sensor was housed in a test cell and installed outdoors on the side of the Sense-City climate chamber near the inlet tubes of the environmental analysers. For the sensor array deployment, a 6-port VNA (Keysight P5026A) was used to monitor several sensors simultaneously. The sensors were placed outdoor in an alcove (to shelter it from the rain and direct sunshine).

specified parameters are applied. Then, the VNA sequentially sweeps the ports, starting with the sensitive channel and moving to the reference channel, the sweep duration is determined by the parameters. In parallel, the Arduino data are recorded. After these measurements, both VNA and Arduino data are saved as SNP and CSV files respectively.

(a) (b) The Raspberry Pi 4 also offers remote access capabilities. Users can control it remotely using a PC or smartphone over Wi-Fi. A Virtual Network Computing (VNC) viewer can also be employed to interface with the Raspberry Pi4 connected to the same network.

IV.2.2.Data processing

The stored Sij parameters data must be processed to extract the sensor responses with precision during characterisation. The response to gas is quantified as a change in the Sij parameters spectrum, both in magnitude and phase. Specifically, this involves extracting the resonance frequency and the corresponding magnitude from the Sij parameter magnitude spectrum or observing the phase at the inflection point in the Sij parameter phase spectrum.

IV.2.2.1.Dynamic response extraction

Resonance can be directly identified by looking at the peak of the S21 magnitude spectrum or the minimum of the S11 magnitude spectrum, as well as by examining the inflection point in the phase spectrum. We define as Method 1 (M1) the identification of the resonance frequency at the maximum of S21 or the minimum of S11 in magnitude directly. The accuracy of this simple method depends on the VNA resolution and the number of sampling points: better VNA resolution yields a more precise response extraction.

A more efficient approach, Method 2 (M2), has been developed to extract the sensor response.

Here, resonance is initially determined using M1. Subsequently, a confidence window is applied to locate the curve minimum in S11, presuming curve symmetry as depicted in Figure 57a. From the point A, corresponding to the minimum obtained directly (using M1), the magnitude is incremented by a constant value (in our case 1 dB) to obtain points B and C. The resonance frequency is then calculated as the average of frequencies at points B and C (𝑓𝑓 𝑟𝑟𝑒𝑒𝑠𝑠 = (𝑓𝑓 𝐵𝐵 +𝑓𝑓 𝐶𝐶 )
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) and the corresponding magnitude is determined by interpolation. The shift in resonance frequency (Δfrequency) and in magnitude (Δmagnitude) are estimated by subtracting preceding values. Δphase (change in phase at constant frequency) and Δphasefrequency (change in frequency at a constant phase) are extracted from the S11 phase spectrum as shown in Figure 57b. The phase shift is assessed at resonance frequency, implying that the resonance frequency is estimated using the magnitude spectrum and fixed on the phase spectrum. The phase shift at this particular frequency is determined by interpolation.

(a) (b) Tracking these responses over time will give the dynamic response of the sensor. The differential response is calculated by differentiating between the sensitive and the reference resonator responses.

IV.2.2.2.Time gating and filtering

Sij parameters, while measured in the frequency domain, can also be analysed in the time domain. An essential application of time-domain analysis involves using time gating to isolate the main signal from other perturbating ones (parasitic reflections, etc.). This can be done by using the "Network.time_gate ()" function available in the Python Scikit-rf library. Gating parameters such as center and span (in ns) must be specified for filtering.

The Scikit-rf library also incorporates an auto-gating feature, which gates the most substantial received signal. In the absence of specified gating parameters, the algorithm identifies the two tallest peaks in the time-domain signal, then centers the gate on the highest one and sets a span equal to the distance between them. The effects of time gating can be viewed by comparing both the raw and gated S11 time domain and frequency domain spectra of the uncoated microstrip interdigitated resonator. A typical example is presented in Figure 58a and b with a time gate defined to limit to the principal reflection (center = 0 ns, span = 200 ns) and eliminate spurious electromagnetic signals, thereby reducing the noise. 

IV.2.2.3.Effect of time gating and response extraction method

To assess the enhancements from time gating and compare the response extraction methods (M1 and M2), the bare interdigitated resonator was exposed to a constant N2 gas flow (0% RH) at room temperature (20°C) for several minutes. The VNA recorded the raw Sij parameters after resonator stabilisation. The dynamic frequency and magnitude response over time were extracted using M1 and M2, from both the raw and time-gated (TG) S11 magnitude spectrum illustrated in Figure 59a Noise in the extracted response can be represented by the standard deviation (SD) of the sensor response. The SD for the frequency response, when extracted with M1, was 1708 kHz for the raw spectrum and 126 kHz for the time-gated spectrum. With M2, the SDs were 27 kHz and 22 kHz for the raw and time-gated spectra, respectively. These results indicate that time gating considerably reduces noise and that M2 is more efficient than M1. The resulting noise when using time gating and M2 is far smaller than the VNA resolution. The influence of time gating and the extraction method on the magnitude response was found to be minimal. Thus, given our primary interest in frequency response, it's important to filter the Sij parameter through time gating and preferentially utilize method M2 for response extraction.

The VNA resolution depends on the number of frequency points as mentioned earlier. To estimate the effect of the VNA resolution on the sensor extracted response, the S parameters measured with 10 000 pts was down sampled up to 100 pts. It can be seen on Figure 60a and b that the number of frequency points has a small effect up to a certain limit on the extracted sensor frequency and magnitude response respectively, when time gating and M2 response extraction algorithm is applied to the raw S11 spectrum.

(a) (b) Whatever the number of points, the SD of the sensor frequency and magnitude response was found to be around 0.05 MHz and 0.002 dB respectively. This implies that the time gating and M2 extraction algorithm shows good working performance without the need for a large number of points, which is interesting in terms of measurement duration, amount of data, also to further facilitate reading of several sensors dedicated to various targets.

IV.2.2.4.Real time sensor response extraction

After the development of the autonomous instrument control tool and data processing system, a real-time sensor response visualization program was created using Python, as depicted in Figure 61. This GUI offers an immediate and user-friendly method to visualize and analyse both the raw Sij parameters and the extracted sensor responses to gases in real-time. IV.3.1.Sensor response to atmospheric interferences (humidity and temperature)

Before testing the RF sensors under various target gases, it was crucial to evaluate their response toward the main atmospheric interferences (relative humidity and temperature).

The sensing characteristics of the sensors to humidity were studied in laboratory conditions in a range of 0-90% RH at constant room temperature using the experimental setups presented in Figure 53a andb. The effect of temperature was also evaluated at constant RH. The sensor responses presented are given by the differential measurement between the coated (sensitive) resonator and the bare (reference) resonator. Frequency phase and phase-frequency responses being strongly correlated, only frequency and magnitude responses are displayed. We first characterised the sensors fabricated on the substrate purchased from BETALAYOUT then those fabricated on that purchased from Würth Electronik.

IV.3.1.1.EB-PEI based sensor response (Sensor I11 and I12)

EB-PEI based sensors (I11 and I12) fabricated on the BETALAYOUT substrate were placed in the test cell for characterization under varying RH and temperature conditions. The measured S11 parameter curves for both the reference and sensitive channels of these sensors are depicted in Figure 62a. The analysis begins by evaluating the response of sensor I11 to RH and temperature before comparing with sensor I12 to validate the reproducibility of sensing performance and the fabrication process.

(a) (b) The static S11 curve of the sensor I1, represented in Figure 62b displays the sensor response to different humidity levels in air over the range 0-90% RH. A decrease in both the resonance frequency and the magnitude at resonance to increasing in RH is noticed. This frequency shift with rising RH is attributed to the increased effective permittivity of the microstrip, resulting from the ab/adsorption of water molecules, which possess a high permittivity, by the sensitive polymer coating. Figure 63a-c The calibration curve of sensor I11, depicting its steady-state response to RH in both frequency and magnitude, is illustrated in Figure 64a andd respectively. Across the 0-90% RH range, the sensor exhibits a nonlinear response with greater sensitivity at high RH levels. The sensor exhibits the different frequency sensitivities of -0.278 ± 0.022 MHz/ % RH, -1.188 ± 0.055 MHz/ % RH and -8.24 ± 0.325 MHz/ % RH in the ranges of 0-30% RH, 35-75% RH and 80-90% RH, respectively, as shown by the fitted lines with their corresponding coefficient of determinations (CODs). In magnitude, the sensitivities were -0.0033 dB/ % RH, -0.0304 dB/ % RH and -0.171 dB/ % RH in the ranges of 0-30% RH, 35-75% RH and 80-90% RH, respectively. Over the whole range 0-90% RH, the change in frequency and magnitude at resonance to RH are best modelled by an exponential function, yielding logarithmic sensitivities of 0.047 log (MHz)/ % RH and 0.026 log (dB)/ % RH as shown in Figure 64b and e respectively.

Hysteresis in RH sensing, defined as the maximum deviation between humidification and dehumidification response curves, is evaluated in Figure 64c andf. These figures show the hysteresis characteristics (sorption and desorption) as well as the reversibility of the sensor in frequency and magnitude when exposed to RH in a range 35-75%. The sensor showed hysteresis of 4% and 1% for the frequency and magnitude response respectively. It is observed that the sensor returns to its baseline state after a humidification and dehumidification cycle, showing good reversibility.

Sensor I11's response and recovery times were assessed by timing the duration it took to attain 90% of the total change in response during water molecule adsorption and desorption processes.

The transition from 1% to 26% RH, and subsequently back to 5% RH, was analysed as an illustrative case, depicted in Figure 65a andd Not surprisingly, the magnitude response/recovery times are very similar to those obtained from the frequency response. The high response/recovery time observed is mainly attributed to the thickness (120 µm) of the EB-PEI coating since the effect of the Kapton substrate cancels out due to the differential measurement (Sen -Ref).

Drift is an undesired feature that may be due to different factors, such as measuring instruments, sensor components, environmental factors such as humidity, etc. Monotonous drift can be partly compensated using numerical correction methods [START_REF] Carlo | Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges[END_REF]. Figure 65b andc respectively, show the sensor frequency responses when exposed to a flow of dry N2 gas at 20 °C and to 45% RH in air at 20 °C for several hours. The former is attributed to residual humidity desorption during stabilisation, while the latter corresponds to humidity sorption drift. The corresponding magnitude is shown in Figure 65e and f. Since the sensor was first under ambient conditions, the time origin on the curves is defined after waiting twice the sensor response time (90 min) when surface interaction mechanisms of the coated resonator are supposed to be in steady state.

When the coated resonator is subjected to a drying flow of nitrogen gas, linear drifts are observed with slopes of 2.1 MHz/h and 0.0145 dB/h. Conversely, the bare resonator demonstrates a greater drift with slopes of 2.8 MHz/h and 0.018 dB/h. This results in a differential response for long-term desorption of -0.7 MHz/h and -0.003 dB/h which could potentially lead to errors in ambient humidity variation estimations of approximately 2.5% RH/h and 0.91% RH/h, respectively. The relatively slower desorption rate is mainly attributable to the hydrophilic nature of the BETALAYOUT Kapton substrate and its own desorption kinetics under dry nitrogen. The use of more hydrophobic substrates like that purchased from Würth Electronik should enable to reduce these effects and improve the sensor's long-term stability.

On the other hand, a linear sorption drift of -0.04 MHz/h (~0.03% RH/h) and -0.002 dB/hour (~0.67% RH/hour) when exposed to constant 45% RH was observed, resulting from -0.39 MHz/h and -0.0017 dB/h for the coated resonator and -0.36 MHz/h and -0.004 dB/h for the bare resonator. Based on these results, it appears that the differential measurement enables to reduce the nonspecific bulk effects of humidity desorption stabilisation and sorption by 66.67% and 90% for dry N2 gas and 45% RH exposure, respectively. This reinforces the results regarding contact angle measurements reported in Chapter II, showing that the EB-PEI is more hydrophilic than the Kapton substrate.

The temperature sensitivity of the I11 EB-PEI sensor was assessed in a climatic chamber with temperature variations from 20 to 35 °C while holding humidity constant at 40% RH. Figure 66a andc show the sensor dynamic differential frequency and magnitude response respectively to temperature. Changing the temperature setpoint causes an abrupt slight change in RH, which introduces a peak in the sensor response (~1 MHz and 0.02 dB) at each step transition. The sensor recorded a linear temperature sensitivity of -0.676 MHz/°C and -0.0178 dB/°C as shown by the calibration curves in Figure 66b and d respectively. A shift of frequency response (ΔF) of -1 MHz will hence correspond approximately to a ΔRH of 0.8% RH (in the 30 -70% RH range) and ΔT of 1.5 °C.

Temperature variations affect the microstrip line's impedance and the dielectric characteristics of the sensing material, causing changes in resonance frequency and magnitude. The variation observed (decrease in resonance frequency with temperature) is compatible with an increase in permittivity of the EB-PEI and/or dilation of the polymer (increase in thickness) with temperature, leading to an increase in effective permittivity of the microstrip line as described by Equation (II.42). Indeed, EB-PEI is known to have three relaxations γ, β and α, attributed to motion of terminal end groups, motion of branches and existence of ionic charges within the PEI network, respectively. Out of these, α relaxation, associated with the glass transition of the material, appears between 0 to 60 °C, which is similar to the temperature window observed in our case. So, dilation could be a reason for variation of effective permittivity within the given temperature range [START_REF] Roman | Study of Hyperbranched Poly(ethyleneimine) Polymers of Different Molecular Weight and Their Interaction with Epoxy Resin[END_REF]. However, the polymer dilation was not measured nor observed, it could be undertaken in further works using advance infrared distance measurements. Also, it is important to note that the temperature sensitivity is independent to the humidity level. However, it is important to deduce from these various experiments that the sensors fabricated by BETALAYOUT and tested under humid conditions use hydrophilic substrates, and their sensitivity to humidity remains significant. This could adversely affect the measurements aimed at low concentrations of the target vapors.

IV.3.1.2.COM HBPEI based sensor response (I21, I22, I29, I30, and I31)

In line with the objective of evaluating the hydrophobicity, we conducted a thorough assessment of the humidity and temperature sensitivities of Com HBPEI-based sensors (I21, I22, I29, I30, and I31), which were fabricated using Kapton substrates sourced from Würth Electronik. First of all, it appears obviously that the reference line is not sensitive to humidity, by comparison with the sensitive one, resulting in a differential response almost identical to the sensitive one. This is related to the high hydrophobicity of the Kapton substrate used here.

Focusing on the sensitive and differential responses, it can be observed that, as the RH increases, the resonance frequency and its magnitude decrease due to the water molecule sorption, which results in an increase in εeff. The impact of temperature on sensor response appears minimal, as observed by the frequency and magnitude calibration curves at different temperatures shown in Figure 69c and d respectively. The sensor exhibits an exponential response to RH across the entire range, minimally influenced by temperature changes.

After applying a median and Gaussian filter to denoise and smooth the raw data, the analytical calibration relationships for the differential response are identified as Δf (MHz)= -20 × e (0.037×RH) + 74 and ΔMag (dB)= -0.19 × e (0.041×RH) + 0.87. The sensor also displays low hysteresis (<5% and <1% in frequency and magnitude, respectively). The sensor recorded a linear temperature sensitivity of -1.55 MHz/°C with a negligible sensitivity in magnitude showed by the poor COD as shown by the calibration curves in Figure 70c and f respectively at 60% RH. Accordingly, a frequency shift (ΔF) of -1 MHz corresponds approximately to a change in relative humidity (ΔRH) of 0.1% within the 50-70% RH range and a temperature change (ΔT) of 0.6°C. These results suggest that the temperature's impact on the I21 COM HBPEI sensor is relatively minor compared to the influence of relative humidity, especially considering that atmospheric RH changes are typically more pronounced than temperature fluctuations.

Reproducibility assessments were conducted with sensors I22, I29, I30, and I31, as summarized in Figure 71. The sensors were subjected to a single RH cycle (increase then decrease) from 0 to 90% RH at room temperature of 22°C. Figure 71a This variability is attributed to incomplete reticulation in the Com HBPEI layer on sensor I21, making it more soluble and thus more RH-sensitive. Nevertheless, the increased sensitivity still adheres to the general exponential RH relationship but is more pronounced. This underscores the utility of transfer calibration techniques in maintaining sensor cost-effectiveness and timeefficiency by obviating the need for individual recalibration.

Additionally, the humidity absorption and desorption drift of the uncoated resonator was found to be minimal, as already observed. This is attributed to the higher contact angle of the Würth Electronik Kapton substrate, compared to that of BETALAYOUT. Such a characteristic implies that there is less necessity for employing differential measurement to minimize this drift. As a result, the sensitive channel's response can be analysed independently of the reference channel's response, allowing for the extraction of maximum information.

IV.3.1.3.HBPEI Silane based sensor response (I25, I27, and I33)

The HBPEI Silane sensors (I25 HBPEI Silane 10%, I27 HBPEI Silane 20% and I33 HBPEI Silane 1:0.5) fabricated on Würth Electronik substrates, were exposed to humidity and temperature evaluations similar to their COM HBPEI counterparts. Dynamic frequency and magnitude responses for I33 are displayed in Figure 72a and b respectively revealing that, like the COM HBPEI sensors, these sensors also exhibit an inverse behaviour between the sensor response and RH, though with a lower sensitivity Furthermore, it can be noticed here a slight variation of the reference sensor responses, with RH when considering the frequency on Figure 72a, though far smaller than the sensitive line, and with the temperature only with humidity-independent thresholds when considering the magnitude on Figure 72b. These slight variations are all the more visible given the lower sensitivity to humidity of both responses, when compared to the previous sensors. Utilizing differential responses and calibration curves, as represented in Figure 72c andd, mitigates these temperature effects and put to evidence that, unlike COM HBPEI sensors, I33 displays distinct temperature-dependent characteristics in frequency but almost maintains temperatureindependent RH sensitivity.

(a) (b) (c) (d)
For I33, the analytical calibration equations for the differential response are Δf (MHz)= -0.36 × e (0.048×RH) + 0.98 and ΔMag (dB)= -0.0037 × e (0.060×RH) + 0.03. For comparison with existing research, the exponential calibration relationships are approximated by piece-wise linear relationships, yielding sensitivities of -0.17 MHz/ % RH and -0.0038 dB/ % RH over the range 30 -50% RH, and -0.34 MHz/ % RH and -0.01 dB/ % RH over the range 50 -70% RH as shown on the sensor's frequency and magnitude characteristic curve at 30°C displayed in Figure 73a and d respectively. The sensor also displays low hysteresis (<2% in frequency and magnitude). Remarkably, all HBPEI Silane sensors exhibit an exponential response to RH. The HBPEI Silane 10% and HBPEI Silane 1:0.5 sensors display similar sensitivities, while both HBPEI Silane 20% sensors exhibit a sensitivity that is approximately twice as high. This is likely due to the increased Silane concentration in the 20% variant, providing more sites for water molecule attachment despite its hydrophobic nature, thus enhancing the sensor's sensitivity through increased surface roughness.

IV.3.1.4.LPEI-COPh based sensor response (I23)

Further investigations were conducted on linear PEI-based sensors, specifically the I23 LPEI COPh, to evaluate its response to relative humidity (RH) and temperature. Dynamic frequency and magnitude responses for this sensor at 25°C are depicted in Figure 75a and d respectively.

As with the previous sensors, the frequency response of I23 inversely correlates with RH, as verified by the SHT85 benchmark sensor.

The calibration curves for I23's frequency and magnitude responses are presented in Figure 75b and e respectively. Again, the sensor exhibits a homogeneous but nonlinear relationship with RH across the 0-90% range, showing increased sensitivity at higher humidity levels. Analytical equations for these differential responses have been formulated as Δf (MHz)= -0.02 × e (0.06×RH) + 0.65 and ΔMag (dB)= -0.005 × e (0.07×RH) + 0.01. Subsequent piecewise linear approximations yield sensitivities of -0.038 MHz/ % RH and -0.001 dB/ % RH between 30-50% RH, and -0.17 MHz/ % RH and -0.004 dB/ % RH between 50-70% RH. These results are encapsulated in the sensor's characteristic curves displayed in Figure 75b ande. Additionally, the sensor demonstrates low hysteresis, registering less than 2% in both frequency and magnitude.

Figure 75c andf show typical examples of the sensor resonator frequency and magnitude response for increasing and decreasing steps of humidity (from 34 to 42% RH and from 71 down to 52% RH as measured with a commercial sensor, respectively). Corresponding response/recovery times of about 44/88 s can be extracted, respectively. Interestingly, these timings align closely with those observed for the HBPEI Silane-based sensors and are approximately twice those for the COM HBPEI-based sensors. Lastly, temperature sensitivities of -0.42 MHz/°C and -0.01 dB/°C have been identified for the LPEI-COPh sensor. A shift of frequency response (ΔF) of -1 MHz will hence correspond approximately to a ΔRH of 5.8% RH (in the 50 -70% RH range) and ΔT of 2.4 °C implying that the variation due to temperature changes surpasses those due to RH.

IV.3.1.5.LPEI-CH2-Ph based sensor response (I34)

Additional analysis was performed on I34 LPEI-CH2-Ph, another variant within the linear PEIbased sensor, to assess its behaviour in relation to RH and temperature.

Figure 76a and d illustrate the sensor's dynamic frequency and magnitude responses at 25°C respectively. As previous ones, these resonators exhibit an inverse frequency relationship with RH, corroborated by data from the SHT85 sensor.

Calibration curves detailing the steady-state frequency and magnitude response of I34 to RH are shown in Figure 76b and e respectively. The sensor demonstrated a nonlinear sensitivity to RH across the 0-90% range, displaying enhanced sensitivity at higher humidity levels.

Analytical expressions for the differential responses have been determined as Δf (MHz)= -0.48 × e (0.04×RH) + 2 and ΔMag (dB)= -0.007 × e (0.036×RH) + 0.03 Approximations of these exponential relationships via piece-wise linear models yield sensitivities of -0.1 MHz/ % RH and -0.001 dB/ % RH for the 30-50% RH range and -0.18 MHz/ % RH and -0.0028 dB/ % RH for the 50-70% RH range as shown on the sensor's frequency and magnitude characteristic curve displayed in Figure 76b and e. The sensor exhibits low hysteresis, registering less than 1% in both frequency and magnitude, close to its predecessors. Regarding the temperature influence, the LPEI-CH2-Ph sensor exhibits sensitivities of -0.08 MHz/°C and -0.007 dB/°C. A shift of frequency response (ΔF) of -1 MHz will hence correspond approximately to a ΔRH of 5.5% RH (in the 50 -70% RH range) and ΔT of 12.5 °C.

IV.3.1.6.Uncoated resonator individual response (Reference channel)

To evaluate the RH and temperature sensitivity of the uncoated resonator fabricated on the Würth Electronik substrate and commonly used as a reference, we plot an uncoated resonator (I33 in this case) frequency and response characteristic curves when exposed to RH at different temperatures (30, 35, 40 and 45°C) as depicted in Figure 77a and b respectively. The red, green, blue and black points represent the different temperatures 30, 35, 40, 45 °C respectively. The dark and pale colours represent the RH absorption and desorption, respectively. The uncoated resonators frequency response varies inversely with RH. Absorption of water molecules by the Kapton substrate in the presence of humidity leads to an increase in effective permittivity, thereby decreasing their resonance frequency.

Contrastingly, the uncoated resonator showed a high degree of hysteresis (>30%) and lower sensitivity to RH, registered at -0.045 MHz/ % RH. This is markedly lower than the sensitivities observed for resonators coated with specific sensitive polymers (except LPEI-COPh at low% RH). While the magnitude response of the uncoated resonator remained fairly stable with respect to RH, it did show variation in response to temperature changes. The temperature calibration curves in frequency and magnitude for the uncoated resonator, represented in Figure 77c and d respectively reveal sensitivity of 0.07 MHz/°C and 0.012 dB/°C. This is due to the slight decrease in permittivity of the Kapton substrate with increasing temperature. From all these results, it can be suggested that the uncoated resonator is suitable for temperature sensing and can be used as a temperature reference, especially using the magnitude response that varies independently from the RH over the measured ranges.

IV.3.1.7.Sensitive material sensing performance comparison

Figure 78a and b show the calibration curves and bar plots for the different sensors tested under RH. The bar plot shows the shift in resonance frequency when the sensors are exposed to RH from 30 to 90% RH. Remarkably, the COM HBPEI and EB-PEI sensors exhibit heightened sensitivity to relative humidity (RH). This heightened sensitivity can be attributed to the presence of hydroxyl (OH) groups in the polymers which form hydrogen bonds with water molecules, as confirmed by the low water contact angles of these polymers reported in Table 8 which further explains this enhanced humidity-sensing performance.

Conversely, the linear PEI variants-based sensors, namely LPEI-COPh and LPEI-CH2-Ph, show diminished sensitivity to RH. Their reduced sensitivity is principally due to inherent hydrophobicity and, a crystalline structure. Unlike the amorphous HBPEI polymers, which are more adhesive and viscous, these crystalline ones are notably more rigid and exhibit reduced solubility to water molecules.

In examining temperature sensitivity at a constant relative humidity (RH), the sensors displayed a range of sensitivities. The COM HBPEI-based sensor exhibited the highest temperature sensitivity, followed by the EB-PEI-based sensor, LPEI-COPh-based sensor, HBPEI Silanebased sensor, and LPEI-CH2Ph-based sensors, with the latter showing the least temperature sensitivity. Table 10 provides a synthesis of microwave humidity sensors reported in the literature and in this work, with different geometries based on various sensitive materials in terms of: sensitivity in frequency and magnitude, RH range, hysteresis, response/recovery times, temperature sensitivity and operation frequency. The COM HBPEI based microwave sensor proposed in this thesis appears as a good compromise as humidity sensor, offering advantages in terms of mass production on flexible substrate and a good sensitivity in frequency and magnitude, especially for high humidity levels. When exposed to unregulated outdoor conditions, RH is a prevalent atmospheric interferent, then similar sensors but coated with HBPEI Silane and LPEI sensors, with their reduced sensitivity to RH, appear as more suitable candidates for reliable outdoor air quality monitoring.

The COM HBPEI-based device will serve as an example to develop an algorithm for predicting these two major interferents, which are humidity and temperature, under controlled laboratory and real-world conditions. Furthermore, for the HBPEI-Silane-based sensor, the extraction of equivalent circuit parameters will be investigated.

IV.3.1.8.COM HBPEI as a RH sensor (calibration and prediction)

Continuing from the optimal performance demonstrated by the COM HBPEI sensor for RH sensing, both analytical and Machine Learning (ML) calibration models were deployed on Sensor I21 to predict humidity at varying temperatures. Two distinct 22-hour experiments were conducted: the first one (labelled E1 presented in Section IV.3.1.2) to determine the sensor's sensing characteristics and calibrate it, and the second one (labelled E2) to test the calibration models constructed on an unseen dataset. Figure 79 illustrates the process of ML applied on the sensor data. The raw data extracted from the VNA Sij parameters is first prepared. Data from E1 is split and used for feature selection, training and validation of the ML models, while the data from E2 is used to test and assess the prediction capabilities of the calibration models on an unseen data set.

The calibration models are built using sensor differential frequency (freqdiff) and magnitude (magdiff) responses as input variables. To denoise and smooth the raw data, we applied both median and Gaussian filters. Standardization of the dataset was performed utilizing the 'StandardScaler' function from the sklearn library. The details for training, testing, and validation datasets are detailed in their respective sections. To assess model performance, we adopted standard metrics including the coefficient of determination (R²), mean absolute error (MAE), and mean absolute percentage error (MAPE), which are elaborated in Appendix Chapter II [START_REF] Delaine | Framework for the simulation of sensor networks aimed at evaluating in situ calibration algorithms[END_REF]. Additionally, computation times are estimated using two different computers. Computer X (Intel(R) Core (TM) i5-10210U CPU @ 1.60GHz, 2.11 GHz 16 GB RAM) is used for analytical models, linear regression (LR), random forest (RF), support vector machine (SVM), and k-nearest neighbors (KNN), while computer Y (11th Gen Intel(R) Core (TM) i7-1185G7 @ 3.00GHz 3.00 GHz 32,0 Go RAM) is utilized for Gaussian process regression (GPR) and generalized linear regression (GLR). The GPR and the GLR calibration was done by our partner university Gustave Eiffel-COSYS department.

The performance of a calibration based on the exponential relationships is compared with that of six additional ML methods: LR, GLR, SVM, GPR, RF, and KNN. All models were initially trained with the dataset from experiment E1 and subsequently validated against the dataset from experiment E2. For KNN, RF, SVM, and LR, the E1 dataset was randomized into an 80:20 split for training and testing, respectively. Results were averaged over four different data splits, and hyperparameter tuning was performed using the grid search approach implemented with the GridSearchCV function (sklearn) using the repeated K-fold cross-validation method. For GLR and GPR, the entire E1 dataset was utilized for training. The average performances of the tuned ML models on the training dataset are presented in Table 11. Table 12 details the performance metrics for the validation dataset E2. Furthermore, Figure 80 illustrate the comparison between the true RH measured by the SHT85 sensor and the predicted RH values on the validation dataset E2. All trained models demonstrate good performance in RH prediction on both the testing (E1) and validation (E2) datasets, with MAE < 2% RH, MAPE < 6%, and R 2 > 95%. The consistency in performance between E1 and E2 datasets underscores the sensor's reliability and the calibrated model's generalizability, reflecting no significant overfitting. Moreover, all models, except LR and the exponential fit on the frequency feature, show comparable performances. The non-linearity of the response (Figure 80a) presents a challenge for LR, while a larger dispersion of the model (Figure 80e) likely causes the difficulty for the model on frequency.

The GPR model outperformed other models on the E1 dataset with a MAE of 0.5% RH and a MAPE of 1.2% RH. Conversely, for dataset E2, the exponential fit applied to the differential magnitude responses showed best results, achieving a MAE of 0.8% RH and a MAPE of 1.8% RH. These performances are on par with the benchmark humidity sensor's accuracy (±1.5% RH) indicated for the benchmark humidity sensor datasheet [183]. Importantly, despite comparable performances, computation time varied among the models, with the magnitudebased exponential fit and GLR being the most time-efficient, followed by the KNN algorithm.

While the exceptional quality of the exponential fit on magnitude allows for analytical calibration in this instance, this is not generally the case for most sensors. The model comparison presented here suggests that using GLR or KNN provides a good balance between prediction quality and computation time when an analytical model is unavailable or underperforms. Figure 81 Illustrates the ground truth RH measured by the SHT85 sensor and the KNN predicted RH. The sensor equivalent circuit model described in Chapter III is optimized in order to extract the lumped parameter variation as a function of RH at constant temperature (22 °C). The I33 HBPEI Silane 1:0.5 sensor sensitive channel and reference channel Sij parameters were used to optimize the lumped elements. Figure 82a-d shows the variation of the C2 and R1 parameters for both the coated and uncoated resonators at different RH levels. We observe that as RH exponentially increases the C2 (pF) value for the coated resonator increases (C2 (pF)= 0.0001 × e (0.06×RH) + 2.4) due to increase in permittivity consequently to the absorption of water molecules. Also, the R1 values increases exponentially (R1 (Ohm)= 0.0001 × e (0.07×RH) + 5.7) indicating the change in the characteristic impedance which depends on the effective permittivity of the microstrip line as in equation IV.4. These C2 and R1 variations match with the exponential resonance frequency and magnitude variation of the sensor in the presence of RH respectively.

(a) ( On the other hand, it was not possible to determine a clear mathematical relationship between the C2 and R1 parameters of the uncoated resonator, indicating that RH has a minimal influence.

IV.3.2.Sensor's response to gases (CO 2 , NO 2 , CO, SO 2 and O 3 )

This section mainly describes tests under varying CO2 concentrations ranging from 0 to 10,000 ppm under dry air, with different levels of humidity and ambient temperature conditions, whereas other gases will be briefly discussed at the end of the paragraph with a reference to results in the appendix, due to far lower sensitivity with the current sensors.

Figure 83a shows the differential frequency response of the I33 HBPEI-Silane sensor (represented by the green line), plotted alongside the corresponding CO2 concentrations (depicted by the grey line) generated by the gas generator setup shown in Figure 53c. A noticeable temperature drift (indicated by the red line) was observed, which is attributable to the night-time temperature decrease, in this case from 34 °C to 23 °C. Since the sensor's temperature sensitivity has already been characterized, and that the reference channel acts as a temperature sensor enabling numerical compensation of temperature variations, this drift correction results in the data shown in Figure 83b. This correction allows for a clear representation of the HBPEI-Silane sensor's frequency response to varying CO2 concentrations.

As the CO2 concentration increases, the resonance frequency decreases, reflecting an increase in effective permittivity, and vice versa. Notably, the sensor shows reversibility without requiring heating (a) (b) The HBPEI-Silane showed a higher sensitivity of -17.3 Hz/ppm (0.17 The standard deviation for the frequency response of the sensors to CO2 concentrations between 0 and 10,000 ppm was 4 kHz. This corresponds to a limit of detection (LOD) of 760 ppm, 9,777 ppm, 2490 ppm and 2328 ppm for the HBPEI-Silane, Com HBPEI, LPEI-COPh and LPEI-CH2-Ph sensor respectively. The LOD is calculated as LOD = 3.3 * 𝜎𝜎 /𝑆𝑆 where σ is the standard deviation of the response at steady state and S is the sensitivity. It was observed that the HBPEI-Silane sensor has higher sensitivity to CO2 in the 0 -1% range compared to the Com HBPEI sensor, inversely to their behaviors with regard to RH, as shown in Figure 85a. This is interesting in terms of complementarity and further discrimination of both compounds.

To further explore the impact of humidity on CO2 sensitivity, the sensors were exposed to CO2 at 60% RH, with results displayed in Figure 85b, which shows the differential frequency response of the HBPEI-Silane-based sensor to varying CO2 concentrations at 60% RH.

(a) (b) At 60% RH, all the Com HBPEI, HBPEI-Silane, LPEI-COPh and LPEI-CH2-Ph-based sensors displayed no discernible response to CO2. This might be due to polymer swelling, alterations in the dielectric properties of the polymer, changes in the polymer's chemical structure, or variations in the diffusion rate of CO2 within the polymer due to the absorption of RH which has a higher permittivity. To mitigate these effects, the employment of an air drying mechanism is recommended prior to the detection process to enhance the reliability of air quality monitoring results.

Furthermore, these sensors underwent tests with various atmospheric gases, including CO in the range of 0-1,000 ppm, NO2 and SO2 up to 5,000 ppb, and O3 up to 1,000 ppb as shown in appendix Chapter IV. These concentration ranges were selected based on typical environmental levels. Characterizations for CO, NO2 and SO2 were performed at different RH levels (0%, 30%, and 60% RH), while for O3, testing was conducted at ambient RH due to limitations of the ozone generator. Notably, the sensors exhibited negligible responses to these gases within the specified concentration ranges, underscoring their specificity towards CO2.

IV.4.Outdoor environment evaluation

To evaluate the sensor performance in a real-world setting, three deployments of microwave sensors were conducted at the Sense-City facility, spanning from summer 2021 to winter 2023. The initial deployment featured the I12 EB-PEI based sensor (sample 2) and took place in August 2021 for a week. Subsequently, the second campaign occurred during the summer of 2022 in August, the I31 COM HBPEI and I33 HBPEI Silane 1:0.5 based sensors were tested for 2 days and for 24 days, respectively. These two campaign deployments followed the outdoor experimental setups described in Figure 55a, which utilized a two-port VNA. Finally, in winter 2023 (February), an array of sensors was deployed, which included the following sensors: I31 COM HBPEI (both reference and sensitive channels), I23 LPEI-COPh (only sensitive channel), I33 HBPEI Silane 1:0.5 (both reference and sensitive channels) and I34 LPEI-CH2-Ph-based sensors (only sensitive channel). This array was configured using the experimental setup illustrated in Figure 55b, employing a 6-port VNA.

Regardless of the chosen model, the transferability of calibration models from laboratory settings to field conditions and across different sensors remains a significant challenge in the literature. When used in field conditions, uncontrollable environmental parameters such as temperature and other gases often degrade performance, thereby limiting the practical implementation of the sensors in industrial scenarios.

IV.4.1. EB-PEI based sensor deployment (Summer 2021)

In this section, we investigate the transfer of sensor sensitivity to humidity from laboratory conditions to a real-world environment.

IV.4.1.1.Sensor response in outdoor conditions and analysis

Figure 86 shows the six environmental gases and interferent parameters (O3, NOx, CO, CO2, RH (%), and T°). Figure 87 presents the four differential responses obtained from the I12 EB-PEI sensor measured from August 26th to September 2nd 2021 at Sense-City. The data acquisition time was 40 s and will be the reference for the time index. The sampling interval was 40 seconds, which serves as the reference for the timeline. The differential magnitude response, labeled ∆Magn in Figure 87c displayed excessive noise on days 4 to 6, so was thus discarded from subsequent analysis. A denoising procedure based on a noisy Gaussian process regression model was then applied to smooth the measured data, followed by a normalization step to avoid scaling effects (subtraction of the mean value and division by the standard deviation) [START_REF] Santner | The design and analysis of computer experiments[END_REF]. The observed daily patterns for O3, CO2, RH, and temperature, as well as for the sensor parameters, are prominent, whereas for NOx (combined NO2 and NO concentrations) and CO, they are not as discernible. For the four differential output parameters of the sensor (depicted in Figure 87) extracted as defined in section (IV.2.2.1), we only consider three parameters (frequency, phasefrequency and phase) that were found to be reliable excluding the Magnitude parameter due to its noise for analysis alongside the six environmental input parameters. As a first analysis, the linear correlation between the 9 parameters (3 outputs and 6 inputs) is portrayed in Figure 88. Correlation values of 1 (or -1) denote perfect positive (or negative) linear correlations between pairs of parameters, and a zero value signifies no linear correlation. The sensor outputs exhibit a strong correlation with each other, which is confirmed when applying a PCA (principal component analysis) on these three parameters: most of the signal's energy (around 85%) appears to be carried by the first principal component, which is close to the average of the three signals, and the second component only brings 10% of the remaining energy. Due to the similarity in sensor output signals, subsequent analysis will concentrate on the "frequency" parameter exclusively

(a) (b) (c) (d) (e) (f)
As expected from the tests in laboratory conditions, the strongest correlation between sensor outputs and environmental parameters is found to be with relative humidity. Weaker correlations are found with temperature, O3, CO2, and NOx, and there is no correlation with CO. This is in agreement with a strong correlation between all the environmental parameters except CO, and can be explained by the presence of ozone and NOX that is strongly related to sunshine, as are temperature and humidity. This pattern presents a challenge in sensor performance analysis: if a sensor is responsive to one environmental variable, it might inadvertently sensitive to other interrelated parameters as well.

To validate the capability of the proposed sensor to serve as humidity sensor in the field conditions, we built a humidity calibration model (detailed in section IV.4.1.2). Using this model, we predicted humidity levels as documented in section IV.4.1.3. We also explored how other environmental parameters might influence both calibration and prediction.

IV.4.1.2. Construction of the calibration model for relative humidity

Calibration models establish the relationship x  𝑦𝑦 𝑖𝑖 (x) between each of the three sensor outputs, denoted 𝑦𝑦 𝑖𝑖 , 1 ≤ i ≤ 3 and the vector x consisting of the input variables of interest. Following the insights gained from prior results, we explored two model variants: one with only relative humidity as the input variable (x = RH) and another incorporating all the environment variables (x= (O3, NOx, CO, CO2, RH, T)). The models were approximated using GPR including an additive error model as detailed in [START_REF] Santner | The design and analysis of computer experiments[END_REF]. The training dataset was composed of data of day 2 and day 3. The marginal improvement upon including additional environmental variables (almost the same Q 2 value) corroborates the findings highlighted in the prior section, which identified relative humidity as the most determining factor to EB-PEI sensor response. For both models, while the true value of the three output falls quasi systematically within the 95% prediction interval, there are significant discrepancies around the extrema of the signals. The most likely explanation to the errors in peak values is the long response time of the sensor, which tends to dampen the sensor responses at extrema of the environmental variables. While introducing other environmental variables doesn't eliminate these discrepancies, it appears to slightly refine the prediction confidence intervals, suggesting a more precise calibration when a broader range of environmental influences is considered.

IV.4.1.3. Humidity prediction

Employing the calibration relationship discussed above, the value of humidity can then be predicted over the testing set (day 2 and day 3) with only the knowledge of the calibration relationship over the training set and the three outputs of the sensor. The corresponding results displayed in Figure 90a, exhibit mean absolute error (MAE) as low as 4.2% for RH ranging from 50% to 95%, with a Q² = 0.845. This shows undoubtedly the capability of the proposed sensor to measure humidity in real environment, despite the presence of various interfering environmental factors.

Analysing the results further, the colour code in the Figure 90a show the probability distribution function (PDF) of RH values around their mean prediction marked by the blue dotted line. The PDF however indicates a large uncertainty for the prediction, especially for the low values of RH. This is attributed to the fact that the sensitivity to RH is higher (-3.68 MHz/ % RH) at higher RH values (>70%) than at lower ones (-0.61 MHz/ % RH), as confirmed on Figure 90b. Interestingly, these sensitivity values are close to lab results: -3.51 MHz/ % RH above 70% RH, -0.95 MHz/ % RH between 50 and 70% RH.

To assess the impact of additional environmental variables on RH sensing accuracy, we performed independent calibration using RH along with each other environmental parameter. Subsequent RH predictions, which incorporated the sensor outputs and each separate environmental variable, aimed to identify any secondary influences on sensor performance. Despite anticipations grounded in laboratory insights regarding the potential impact of temperature, the inclusion of the other environmental variables did not enhance the predictive accuracy, indicating the sensor's remarkable specificity and lack of significant cross-sensitivity in real conditions.

The sensor evaluated under controlled laboratory conditions showed exponential sensitivity to RH between 0 and 100%. This novel application of EB-PEI for humidity measurement has yielded especially promising results at higher RH levels (>80%), as compared to the transducers working frequencies are better than the state of the art. The outdoor sensitivities observed within the 50-70% RH and 70-100% RH where observed to be close to laboratory findings, affirming the sensor's robustness. Furthermore, by using a performant calibration model, the overall results demonstrate the sensor's ability to predict relative humidity under real outdoor conditions with a very little interference from other environmental variables, including temperature. The limitation of outdoor measurements is the short duration of measurement, which leads to a strong correlation (seasonal/weather) between environmental variables which complicates their decorrelation. In the future, a longer exposure to outdoor environmental conditions will be made in order to obtain more data allowing the decor-relation of these climate-related parameters.

IV.4.2.COM HBPEI Silane-based sensor deployment (Summer 2022)

This section investigates the adaptability of sensor performance from laboratory-based tests to real-world outdoor scenarios. Sensor I31 COM HBPEI briefly calibrated in the lab (experiment E3) as described in Section IV.3.1.2 was deployed at the Sense-City platform for a two-day field study (experiment E4). To gauge the influence of various environmental parameters on the sensor's responses and calibration, we compared outdoor calibration models that each incorporated the different environmental variables, to models with RH only as input parameter.

IV.4.2.1. Sensor outdoor response

Sensor I31 with COM HBPEI was set up at the Sense-City platform outdoors from 26th to 28th July 2022. Figure 91a Daily cycles are apparent in both the sensor responses and environmental parameters. A strong correlation exists between the sensor's frequency (freqdiff) and magnitude (magdiff) responses as depicted in the correlation heatmap in Figure 92. Humidity and temperature are the parameters most strongly correlated with the sensor's outputs, suggesting a potential sensitivity to these variables. In contrast, correlations with CO2 and O3 are relatively weaker, and NOx lacks a distinct correlation pattern. Nevertheless, it's important to note the inherent correlations among environmental conditions such as RH, temperature, O3, and CO2 in the ambient environment. For instance, a correlation with CO2 could be due to the sensor's sensitivity to humidity and the correlation between CO2 and humidity. The outdoor RH was predicted using lab data (from experiment E3) via the mathematical calibration relationships, or with LR, generalized linear regression (GLR, 2nd order), or GPR.

The results are summarized in Table 13. The best prediction was achieved with the exponential law on frequency, with a Mean Absolute Error (MAE) of 4.2% RH and a R² of 88%. Here, analytical models outperformed machine learning (ML) calibrations due to the limited data set. 

IV.4.2.3.Identification of interfering factors

The performance reported in Table 13 reveals a minor degradation compared to sensor I21 with COM HBPEI laboratory performances in E3. To decipher the causes behind this increased error, Figure 94a present predicted RH against measured RH using the exponential calibration on frequency. The most significant errors are represented by a series of points below the diagonal line, marked in red. These points are also depicted in Figure 94b in relation to time, which evidently corresponds to intervals of decreasing RH. This pattern aligns with the hysteresis observed in Figure 93.

(a) (b) To assess whether this hysteresis, and more generally the increased prediction error in outdoor environments, could be attributed to environmental factors, a series of two-variable GLR models were constructed. For this, each one of the environmental parameters was tested as a variable in addition to RH, using a 1:1 split (training over day 1, testing over day 2) of dataset E4. The following models were built: 𝜀𝜀𝑎𝑎𝑀𝑀𝑎𝑎𝑃𝑃𝑃𝑃𝑢𝑢𝑎𝑎𝑒𝑒 = 𝑃𝑃 1 (𝑅𝑅𝐻𝐻, 𝐸𝐸𝑉𝑉) and 𝑓𝑓𝑟𝑟𝑒𝑒𝑞𝑞𝑢𝑢𝑒𝑒𝑎𝑎𝑐𝑐𝑦𝑦 = 𝑃𝑃 2 (𝑅𝑅𝐻𝐻, 𝐸𝐸𝑉𝑉), where EV is a second environmental variable among temperature, O3, CO, CO2, NO and NO2 and P1 and P2 are two polynomial functions of RH and EV. Subsequently, with RH assumed to be a known quantity, these two models were employed to predict the secondary variable EV. The coefficient of determination R² for the model 𝐸𝐸𝑉𝑉 𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑐𝑐𝑗𝑗𝑒𝑒𝑝𝑝 = 𝑎𝑎. 𝐸𝐸𝑉𝑉 𝑚𝑚𝑒𝑒𝑡𝑡𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒𝑝𝑝 + 𝑏𝑏 was then calculated (e.g. R² = 100%, a = 1 and b = 0 indicates a perfect prediction).

Results presented in Table 14 suggest that accounting for other variables beside RH only yields a minor increase in R² value at the calibration stage. Additionally, during the inversion stage, the negative R² values indicate a lack of correlation between the predicted and actual measurements of the environmental variables, implying that the models are not predictive. Both I21 and I31 sensors exhibit similar analytical calibration relationships with distinct coefficients, indicating the necessity for unique calibration despite their overall consistency.

The prohibitive cost and time required to conduct extensive calibration like that for I21 in Experiment E1 preclude its feasibility for each sensor prototype. As an alternative, once an accurate calibration model (called primary calibration) is available for one of the sensors, calibration transfer allows to fine-tune it for another sensor based on very few additional data points, called transfer standards. We have investigated whether the models developed on experiment E1 for I21 (Figure 69) can be applied to experiment E3 (I31 lab data, Figure 71a andb) and experiment E4 (I31 outdoor data, Figure 93) using calibration transfer algorithms.

In general, calibration transfer uses one of the following approaches: standardization of the sensor's responses (prior to applying the primary calibration), update of the primary calibration model (using the transfer standards as additional datapoints), or standardization of the model outputs (after applying the primary calibration). As a proof of concept, our partner Gustave Eiffel tested here two classical transfer algorithms, Direct response Standardization (DS), and output standardization by Slope-Bias Correction (SBC) described in Section II.2.4. The performances of these two algorithms were applied to I31's experiments E3 and E4 using as primary calibration a KNN model developed for I21 on experiment E1 (LR, RF and SVM calibrations were also tested and gave similar results). The transfer standards of E3 and E4 were selected to be the RH data points exactly equal to the ones of E1: 64 points out of 414 in E3 (15%), 290 out of 1382 in E4 (21%).

Results are presented in Table 15: the MAE for sensor I31 achieved with the DS and SBC methods are compared to the MAE values derived from directly applying the primary calibration to I31 (direct transfer), calibrating I31 based only on the transfer standards of E3 and E4 (transfer standard-based calibration), calibrating I31 on the entirety of E3 and E4 (full calibration -the best possible result for I31), and using the naïve model that simply returns the mean of the dataset (R² = 0).

The optimal results for E3 are 3.7% RH MAE, while the naïve model provides 28% RH. For E4, it was 3.0% RH MAE and 13% RH for the optimal and the naïve models respectively. Both experiments, direct transfer of I21 model to I31 data, or calibration of I31 only on the transfer standards, improve the results compared to the naïve model, but results remain far from the target. This confirms the need for either I31-specific calibration (with larger amount of data) or for calibration transfer. We observe that SBC and DS algorithms significantly improve MAE compared to direct transfer of I21 model. However, only SBC transfer improves the MAE compared to transfer standards-only calibration (by 22% and 42% in experiment 3 and 4, respectively). While this result validates the added value of calibration transfer for this type of sensors, it underlines the need for careful selection of the transfer algorithms depending on the expected datasets. The COM HBPEI sensors developed during this thesis demonstrated a range of remarkable capabilities, including high sensitivity, quick response/recovery time, repeatability, reversibility, and minimal hysteresis.

The calibration models, based on laboratory data, enabled precise relative humidity (RH) predictions across varying temperatures ranging from 25°C to 45°C, with a low MAE and a high R². Equally, the sensors' outdoor performance revealed an exponential dependency on RH, similar to the lab findings. These lab-based calibrations were also successful in predicting outdoor RH with acceptable MAE and robust R², underscoring the sensors' effectiveness for outdoor humidity monitoring. The influence of other uncontrolled environmental variables such as temperature and gas presence were found to be minor in affecting the sensor's RH sensing performance. However, the limited duration of the outdoor measurements resulted in strong correlations between the environmental variables, complicating the task of distinguishing their individual impacts on the sensor's responses.

Regarding the temperature, several prediction models relying on the introduced ML methods were built to predict it knowing the RH and the sensor outputs. But the inability of all these models to correctly predict it leads us to conclude that the sensor can be considered as not dependent on temperature. Overall, these COM HBPEI-based sensors demonstrated high performance in RH sensing, with negligible temperature cross-sensitivity, resulting in mean absolute errors (MAE) of 0.8% RH in laboratory conditions and 4.4% RH outdoors.

IV.4.3.HBPEI Silane-based sensor deployment (Summer 2022)

The gas sensing performance of the I33 HBPEI Silane 1: 0.5 sensor in real condition was assessed during Summer 2022 for 24 days (from the 28th July to 21th August) in the Sense-City platform.

IV.4.3.1.Sensor outdoor response

Figure 95a-f illustrates the I33 sensor frequency and magnitude response of both the sensitive channel (Figure 95a) and reference channel (Figure 95b), and the environmental variables measured by the reference sensors (Figure 95c-f). The obvious daily cycle are observables on the sensor response and environmental parameters. Figure 95f illustrates the presence of rainy days during the deployment periods. This can be also noticed by looking at the abrupt peak deviation in the sensors freqsen and magsen responses (Figure 95a). The correlation heatmap in Figure 96 emphasises the strong correlation between the sensor's frequency and magnitude responses. The sensitive channel response is mostly correlated to RH while the reference channel response is highly correlated to temperature. O3, CO2 and NO2 exhibit weaker correlations. We can notice an intercorrelation between environmental RH, temperature and O3 in the atmosphere. A correlation of the sensor response with O3 might be due to the sensitivity to RH and temperature.

To study the sensor response to the gases they were normalized to ensure that the scale and the order of magnitude of the sensor were equivalent. Without normalization, the sensor responses with higher magnitudes would weigh more in the sensor calibration. 

IV.4.3.2.Data preparation

The rainy days during the deployment caused deviation in the sensor normal response due to a high amount of humidity absorbed by the HBPEI Silane 1:0.5. Figure 97a shows the normalized frequency response of the reference channel with the rainy periods marked by vertical green lines. After 25,000 minutes, the data from the sensor appears to be compromised, as the sensor is no longer reliable after having absorbed a large amount of water. For the rest of the study the sensor responses were then filtered by removing the rainy days and the data after 25,000 minutes as in Figure 97b with the cyan line representing the retained data. After data filtering we can observe some jumps and gaps in them, resulting in inconsistencies as illustrated by the colour plots in Figure 97c. Four sections were highlighted (black, red blue and green lines). Some calibration algorithms cannot work properly in extrapolation and require consistent data between the training and testing sets. In order to solve this issue, the filtered data were homogenised. As the sensor is highly sensitive to RH and temperature, homogenisation can be made based on RH and temperature. The last three portions (red, blue and green portions) were homogenised based on the first portion (black portion) known as the reference one.

In order to homogenize we assume that we know the RH, temperature and each of the sensor outputs for the first section. This homogenization consists of statistically fitting portions 2, 3 and 4 to portion 1. This involves finding constants 𝑎𝑎 𝑖𝑖 𝑗𝑗 and 𝑏𝑏 𝑖𝑖 𝑗𝑗 for each portion 𝑃𝑃 and sensor 𝑗𝑗 such that 𝑦𝑦 𝑗𝑗 𝐻𝐻 = 𝑎𝑎 𝑖𝑖 𝑗𝑗 + 𝑏𝑏 𝑖𝑖 𝑗𝑗 𝑦𝑦 𝑗𝑗 , where 𝑦𝑦 𝑗𝑗 𝐻𝐻 corresponds to the sensor output 𝑗𝑗 homogenized with respect to portion 1. These constants are searched independently for each sensor output j and are estimated by solving an optimization problem. 

IV.4.3.3.Calibration model

Since the I33 sensor response during this deployment is highly correlated to ozone calibration models have been implemented by University Gustave Eiffel (COSYS partner) for Ozone prediction.

Let 𝑦𝑦 be the sensor outputs, 𝑥𝑥 the variables to be predicted (in this case ozone) and 𝑧𝑧 the influencing environmental variables assumed to be known. Two calibration methods are used: a non-parametric method and a parametric one. Let's also note 𝐶𝐶 = (𝑦𝑦, 𝑥𝑥, 𝑧𝑧), the training set used to learn the model. For this study, the training set consists of the first portion highlighted with the rainy periods. The test set contains the remaining three homogenized parts. In order to consider all possible uncertainties (uncertainties in the measured data, potential errors in the model, etc.), the calibration is carried out within a Bayesian framework. This means that x, y and z are as realizations of random variables. Let 𝑥𝑥 𝑗𝑗 be the value to be predicted (one of the values in the test set), knowing 𝑦𝑦 𝑗𝑗 , 𝑧𝑧 𝑗𝑗 , 𝐶𝐶. In this framework, estimating 𝑥𝑥 𝑗𝑗 amounts to approximating the posterior law of 𝑥𝑥 𝑗𝑗 |𝑦𝑦 𝑗𝑗 , 𝑧𝑧 𝑗𝑗 , 𝐶𝐶.

The non-parametric model has the advantage of not assuming an a priori model, the Kernel Density Estimation (KDE) method was chosen. This method first approximates the joint distribution of (𝑦𝑦, 𝑥𝑥, 𝑧𝑧) on 𝐶𝐶 and then conditions to obtain the distribution of 𝑥𝑥 𝑗𝑗 |𝑦𝑦 𝑗𝑗 , 𝑧𝑧 𝑗𝑗 , 𝐶𝐶.

Unlike the non-parametric model, the parametric one assumes a specific relationship between the sensor outputs and the environmental variables. This relationship has a multiple linear regression basis to which model errors are added, one to quantify the fact that we are approximating the sensor calibration law (this error is calculated from a covariance matrix dependent on the data), the other to quantify the fact that we are not considering unobserved quantities which then act as interferences.

IV.4.3.4.Calibration results

Environmental variables are highly correlated and O3 can be partially predicted by accounting, for example, RH, temperature and NO2. A number of tests have been carried out to see if this sensor can be used to predict ozone. The most relevant is to predict ozone by knowing only the environmental variables (RH, temperature, NO2, or other parameters) and then adding at least one sensor output to the model. If the knowledge of the sensor improves the ozone prediction, this means that the sensor has a secondary sensitivity to ozone. The non-parametric method was initially used as a proof of concept, but the ultimate aim is to use it in order to produce more robust results that can be used practically. In addition, as the non-parametric method was faster, it could be used to test the influence of some variables on the prediction. In particular, we found that a combination of humidity, temperature, NO2 and wind speed improved the ozone prediction. Table 16 shows the RMSE results for ozone prediction for the four variables mentioned (i.e. RH, temperature, NO2, wind speed) with and without the magsen sensor output for both methods. In both cases, there is an improvement with the addition of the sensor output data. This clearly stipulates that the sensor shows secondary sensitivity to ozone despite the fact that its response is highly affect by RH and temperature. This can be explained by the high roughness and the functionalization of PEI with amino groups. This amino groups are indeed sensitive to ozone due to the oxidation reactivity between ozone and amino groups leading to change in properties of the polymer.

IV.4.4. Sensor array deployment (123, I33, I34 and I31) (Winter 2023)

A sensor array is an arrangement of several distinct sensors working together in order to achieve higher accuracy especially in a complex environment. Sensor arrays are not only used to enhance sensitivity but also for multi parameter measurement, using data fusion and information extraction, increasing robustness against environmental parameters, and also acting as backup in case of a sensor failure.

Sensor coated with I23 LPEI-COPh, I33 HBPEI Silane 1:0.5, I34 LPEI-CH2-Ph and I31 COM HBPEI were deployed outdoor in the SENSE-CITY platform as illustrated in Figure 55b. This deployment lasted for 9 days, spanning from 18th to 27th February 2023. For the I33 and I34 sensors, both the sensitive and reference channels were recorded. In addition, only the sensitive channels of the I23 and I31 sensors were measured due to the 6-port limit of the Vector Network Analyzer (VNA). This outdoor experiment, featuring sensors with varied sensitive materials, adopted multi-output calibration models, aiming to enhance the precision in predicting RH, temperature, and concentrations of specific gases. This deployment, carried out in winter, registered a reduced temperature range of -2 to 16 °C compared to other deployments. A prominent pollution peak appears between the 48th and the 96th hour, marked by spikes in NO2, CO2, NO, and CO.

IV.4.4.1.Sensor array outdoor response

Daily cycles are pronounced in both RH and temperature data, as well as the sensor responses. The correlation heatmap between sensor outputs and environmental parameters is presented in These observations echo findings from laboratory evaluations of the sensors, as detailed in sections IV.3.1. RH and temperature remain the most influencing parameters on the sensor array responses. However, we can still notice an intercorrelation among some environmental variables (RH, O3, CO2, NO2, NOx, CO, and NO). This intercorrelation makes it challenging to isolate individual gas sensitivities. For instance, a sensor's correlation with O3 might arise from its sensitivity to RH and the inherent link between O3 and RH. Interestingly, no correlation exists between RH and temperature in this dataset, aiding in differentiating their respective impacts. Previous sections highlighted that the I31 COM HBPEI primarily senses RH with minimal perturbation from other environmental parameters. In contrast, the I33 HBPEI Silane 1:0.5 is primarily sensitive to both RH and temperature but also exhibits a secondary sensitivity to O3. Lab tests showed that the I23 LPEI-COPh-based and uncoated resonators have a high temperature sensitivity compared to their RH sensitivity. Calibration algorithms, developed as outlined in section IV.4.2, enable humidity prediction using the response of the I31 COM HBPEI-based sensor, as evidenced by its deployment in summer 2022. The similarity of the outdoor exponential calibration curve for winter 2023 to that of summer 2022 suggests similar predictive performance of the sensor across these periods.

Given that the sensor's proficiency in humidity sensing has been established, detailed discussion of this aspect will not be included in subsequent sections. The forthcoming section will detail the calibration process and assess the temperature prediction efficacy during the winter 2023 deployment, utilizing the I23 LPEI-COPh sensor, which was identified as the most selective for temperature.

IV.4.4.2.Temperature calibration and prediction

KNN and RF ML calibration models were used to build temperature prediction models based on the I23 LPEI-COPh-based sensitive channel, and the uncoated resonator (I33RE and I34 RE) frequency and magnitude responses. The outdoor dataset was prepared through filtering with median filter, then normalised before being split in a ratio 1:1. The first dataset was used to train the model and the second half to validate it. Table 17 shows the resulting ML model performances (MAE and MAPE) on temperature prediction. The I23 LPEI-COPh-based device shows the best MAE and MAPE for temperature prediction with both the KNN and RF models, followed by the reference resonator I33 and finally I34. The slight difference between reference resonators of sensor I33 and I34 may be due to the test cell or variation in the Kapton substrate during fabrication process. 

IV.4.4.3.Ozone calibration and prediction

Ozone is highly correlated to environmental variables especially RH, and NO2 in this dataset. So, it can be partially predicted using these environmental variables. In section IV.4.3 we noticed that adding the I33 HBPEI Silane 1:0.5-based sensor response as variable to the calibration model with environmental variables (RH, temperature and NO2) ameliorated the ozone prediction capabilities. Using the sensor array consisting of I31 COM HBPEI-based, I23 LPEI-COPh-based and the uncoated resonators could enable to replace the direct use of the environmental variables like RH and temperature since the COM HBPEI-based sensor can serve as reliable RH sensor and that the LPEI-COPh and the uncoated resonators can serve as reliable temperature sensors.

An exhaustive model search was carried out to find the most robust models for ozone prediction. This consisted of testing several combinations of available environmental variables and a combination of the microwave sensor array responses. Table 18 shows the KNN and RF model performance (MAE and MAPE) on ozone prediction using environmental variables and some sensor array magsen responses. Data preparation method (filtering of rainy periods and outliers) was done on the dataset without homogenisation since the dataset is still consistent after filtering. 

Conclusion and perspectives

In this thesis, we explored the feasibility of selectively monitoring outdoor gases used for air quality index calculations using a cost-effective, robust, and flexible microwave sensor. This endeavour was a collective effort of the consortium. The proposed sensors are based on a readily functionalizable polymer associated to a dual channel microstrip sensor with an interdigitated design in order to achieve a differential configuration. The sensing principle is based on the variation of the dielectric properties of the developed sensing polymers upon exposure to the target gases. This variation caused a shift in the resonance frequency, its magnitude and phase which can be measured with a VNA or a VNA-like system. Leveraging sophisticated calibration algorithms, we achieved accurate predictions of target gases under both controlled lab environments and unpredictable outdoor settings. This research is pioneering in reporting on the real-world efficacy of microwave gas sensors outdoors, supplemented with in-situ calibration for gas monitoring.

The sensor was designed and simulated on ANSYS HFSSTM to resonate at 3.28 GHz. The designed sensor was fabricated on a flexible Kapton substrate by BETALAYOUT and Würth Electronik. The fabricated resonators were measured with a VNA and the Sij parameters measurement were complaint to simulation. Several sensitive polymers (EB-PEI, HBPEI Silane, LPEI-COPh and LPEI-CH2-Ph) were synthesized from commercially available hyperbranched polyethyleneimine (COM PEI) and characterized structurally by the LCPO. Morphological characterizations like SEM and AFM were carried out by ISORG, revealing the polymers' surface smoothness. The analysis indicated that HBPEI Silane has an increased surface roughness, augmenting its gas-sensing capabilities. The first devices fabricated by BETALAYOUT were coated with thick layer of EB-PEI (120 µm) while the fabrication by Würth Electronik was coated with 1.2 µm of the other sensitive polymers (COM HBPEI, HBPEI Silane, LPEI-COPh and LPEI-CH2-Ph). Measurement with a VNA showed that depositing the sensitive polymer causes a decrease in resonance frequency due to the increase in effective permittivity of the microstrip line. The effective permittivity variation increases with increased deposition thickness. This was confirmed by a higher resonance frequency shift of the sensor with 120 µm of EB-PEI as compared to those with 1.2 µm of the other sensitive polymers. Collaboratively with XLIM, an electrical equivalent circuit model suitable for low and high frequencies was developed in ADS. This model incorporated feed lines, the interdigitated capacitor, and a capacitor that simulated the effects of polymer deposition and gaseous species absorption by the polymer. The varying capacitance due to gas absorption is attributed to the fluctuation in effective permittivity, and the magnitude changes were represented using resistances.

The instrumentation, data acquisition and analysis tools used to characterize the sensors under laboratory and real-life conditions were presented. The data preparation (time gating and filtering) and sensor response extraction algorithm developed showed good performance with minimum noise for a given VNA resolution, enabling the detection of the smallest variations in frequency, magnitude and phase. The sensors were meticulously tested under both laboratory settings and real-world conditions. Before exposing the sensors to outdoor conditions, they underwent extensive controlled laboratory testing. All the sensors exhibited responses to atmospheric influences like Relative Humidity (RH) and temperature. Specifically, EB-PEI and COM HBPEI-based sensors demonstrated the most pronounced sensitivities to RH, followed by HBPEI Silane, LPEI-COPh and LPEI-CH2-Ph. This is mostly due to the solid crystalline nature of the linear PEI making them less soluble and sensitive to RH, as expected from the water contact angle measurement, unlike the amorphous hyperbranched PEI, which are more viscous with a higher water contact angle. ML and exponential analytical calibration model enabled the accurate prediction of RH from the COM HBPEI sensor with a low MAE (< 3% RH) emphasizing the sensor capability for RH sensing. The 120 µm thick EB-PEI based sensor exhibited higher response/recovery times (>45 minutes) as compared to the other sensors with 1.2 µm of the sensitive polymers (<220 seconds). The COM HBPEI sensors showed the fastest response/recovery times of 22/44s. This put to evidence the impact of the deposited thickness on the response/recovery times. Increased deposition thickness increases the sensitivity as exposed by the HFSS TM simulations and also increases the sensors response/recovery times as stated by the literature which matches our observation from laboratory results. The effect of temperature on the sensor's response/recovery times was also examined, stating that as temperature increases the response/recovery times decreases. The fabricated and functionalized sensors showed good repeatability and reproducibility except for the I21 COM HBPEI one, which showed similar exponential variation to RH but with different coefficients. In such case of little discrepancies in the calibration of a sensor, transfer calibration techniques can be used and showed good results in order not to repeat the extensive calibration step. The sensors fabricated by Würth Electronik showed a minimal drift with high stability especially due to the better quality of the Kapton substrate used for the fabrication process as compared to that from BETALAYOUT. This could be expected from the higher contact angle measurement on the Kapton from Würth Electronik as compared to that of BETALAYOUT. Comparison with literature showed that the COM HBPEI sensor has high performance among recent microwave RH sensors with low response/recovery times, low hysteresis, reversibility and robustness. Calibration algorithms showed a good accuracy (±1.5% RH) under laboratory conditions better than many commercially available sensors, for example the DHT11 sensor with an accuracy of ±5% RH.

The sensors were characterized with series of gases and concentrations (CO2, CO, NO2, SO2 and O3) under laboratory conditions at different% RH. The HBPEI Silane sensors showed good sensitivity to CO2 over the range (0 -10,000 ppm) at 0% RH compared to the other sensitive materials. This is mostly attributed to the high surface roughness of the HBPEI Silane. Despite greater sensitivity to CO2 than to RH over the range 0 -1%, this sensor response to CO2 is affected by RH, and at higher RH the sensor shows no response to CO2. The sensors were also characterized under CO over the range 0 -1,000 ppm, NO2 and SO2 up to 5000 ppb and O3 up to 1,000 ppb. These concentration ranges were selected based on typical environmental levels. Characterization for CO, NO2 and SO2 was performed at different RH while for O3, testing was conducted at ambient RH due to limitations of the ozone generator. The sensors exhibited negligible responses to these gases within the specified concentration ranges. The sensors tested under laboratory condition were tested outdoor in three measurement campaigns (summer 2021 (for 7 days), summer 2022 (for 24 days) and winter 2023 (for 9 days). The outdoor characterization of the EB-PEI based sensor in summer 2021 showed sensitivities mostly to RH, negligible to the other atmospheric parameters. Calibration models constructed accounting for RH only as variable and the other environmental parameters proved that the sensor can be considered a RH sensor and that none of the environmental parameters are major interferents. COM HBPEI based sensor deployed, showed a selective sensitivity to RH with a minimum influence of temperature and other parameters for both the summer 2022 and winter 2023 outdoor deployment. Indicating that the COM HBPEI based sensors are robust and reliable RH sensor.

Ozone in the atmosphere is highly correlated to environmental variables like RH, NO2 and hence can be predicted directly knowing these variables. In order to analyze the sensors sensitivity to ozone, the sensors responses were added to the environmental variables for ozone prediction to see if it ameliorated the predictive capabilities of the models. The outdoors deployments of the I33 HBPEI Silane 1:0.5 sensor during summer 2022 and winter 2023 showed that the sensor response exhibits secondary sensitivity to ozone despite the high influence of RH and temperature. RMSE results for ozone prediction using environmental variables (RH, temperature, NO2 and wind speed) with and without the I33 sensor magsen response during the summer 2022 deployment showed that there was an improvement with the addition of the HBPEI Silane 1:0.5 based sensor response, proving the sensor sensitivity to ozone. From the winter 2023 data best results for ozone prediction were obtained when using the I31 sensitive channel response in the place of RH and I23 LPEI-COPh in the place of temperature as variable for the calibration model since both the I31 and I23 sensor show good RH and temperature sensitivities respectively. Interestingly best results for ozone prediction were obtained when using the I31 sensitive channel response and NO2 as input variables for the calibration model. However, temperature induced low cross sensitivity with the other environmental variables due to the low temperature values during winter 2023 deployment. Moreover, the winter 2023 data confirmed the necessity of knowing NO2 for accurate ozone prediction as noticed from summer 2023 data.

During this thesis we proved the concept of utilizing low cost flexible polymer-based microwave sensors associated to sophisticated algorithms for RH, temperature and ozone monitoring. Table 19 shows the overall summary of the microwave sensor performances described in this thesis in both laboratory and field condition.

The HBPEI Silane showed the best overall performance for gas sensing, while the COM PEI and LPEI-COPh showed the best performance for RH and temperature sensing respectively. However, an industrial NO2 sensor is still needed for accurate ozone monitoring. The humidity sensitivity of the sensors limits the gas sensing capabilities. Despite diligent efforts to enhance the hydrophobicity of the sensitive materials in this thesis, it may be worthwhile to explore further enhancements, aiming to prioritize sensitivity to target species over sensitivity to humidity. Additionally, employing advanced filtering techniques and layers could be advantageous for mitigating the influence of RH, ensuring more accurate sensor responses. One other limitation of this work is the high correlation between the environmental variables, which does not allow us to say with certainty that the sensor is effectively directly sensitive to ozone, although there are several arguments in favor of ozone sensitivity since it is accurately predicted. In the future, this problem could be solved by using the sensor for a longer period (e.g. one year) to observe moments of decorrelation between the environmental variables. This deployment would also have the advantage of improving the calibration law and thus the prediction. Looking forward, analyzing the microwave sensor response over a broader frequency range presents an intriguing avenue of exploration. Different gases interact variably with the sensitive materials at distinct frequencies. Lower frequencies might be dominated by processes like ionic diffusion or electrode polarization. In contrast, at higher frequencies, the alignment of dipoles or short-range hopping mechanisms might play a more substantial role. Understanding these mechanisms by scrutinizing the sensor across a spectrum of frequencies might also help in finding an optimal frequency, or a set of values, for the best sensor response. Additionally, at certain frequency the effect of interference can be minimum as compared to other values.

As a material perspective, the synthesis of other sensitive materials, particularly conductive polymers and metal oxides, is worth taking into consideration. These materials are known for their pronounced sensitivity to reducing and oxidizing gases, resulting in notable conductivity shifts. In contrast, non-conductive polymers primarily operate based on dielectric property variations. Given the low permittivity of many pollutant gases, non-conducting polymers face complexities, particularly as RH, with its higher permittivity, becomes a significant interferent. The geometry of a microwave sensor is typically designed with a resonant structure, playing a crucial role in determining the sensor's sensitivity. The chosen resonator geometry should optimize the interaction area between the resonator and the sensitive material, facilitating straightforward integration of the sensitive material into the resonator geometry. For conductive sensitive materials, certain resonator structures are more suitable, enhancing the sensor's performance. Such structures include the half-wavelength resonator, particularly meandered line, open or short-circuited quarter-wavelength resonators, as well as patch and spiral resonators. These configurations are more aligned with the properties of conductive sensitive materials, thus are more apt for applications involving these materials.

Finally, by pairing multiple sensitive polymers associated to microwave transducers within a sensor array, there's potential for enhanced sensitivity, specificity, and overall calibration performance. In such perspective, several microwave transducer geometries should be developed, on the same basis but working at different frequencies and adapted to be sensitive to changes of a set of electromagnetic parameters, especially electrical permittivity and conductivity, in order to incorporate the diverse sensitive materials. Such complementary devices, combined in a multi-sensor array and with appropriate processing tools, would provide a powerful and low-cost solution for detection of gases in a complex medium such as outdoor air. The developed sensor could be used not only for outdoor are quality monitoring in area with high pollution such as highway.

A modern application of the developed sensor might involve a network of interconnected microwave sensors along a highway, capable of measuring a wide array of pollutants. Data from these sensors could be fed into a central system that uses AI algorithms to predict pollution levels, taking into account traffic data, weather conditions, and time of day. This system could also interface with smart city infrastructure, contributing to traffic rerouting during high pollution episodes or alerting residents to limit outdoor activities. Compared to existing stationary monitoring systems, this application would allow for more responsive and proactive management of air quality and its health implications. Furthermore, the use of flexible, highfrequency microwave gas sensors, as discussed in recent research, could enhance the detection capabilities, making the system more effective than traditional methods. The HBPEI Silane base sensor can also be used to detect deviations from expected CO2 levels in industries, indicating inefficiencies or leaks. This data can be used to adjust the production process in realtime, leading to a more efficient operation. Such a system could also be interconnected with ventilation systems, triggering them to activate when a certain threshold of CO2 concentration is detected, thus maintaining a safe working environment.

Besides, though the initial results are promising, a dedicated instrumentation, both affordable and scalable, is also vital for these sensors to have a broader impact, especially in real-world applications. In this way, collaborative efforts with partners like CISTEME aim to develop instrumentation capable of extracting sensor parameters across desired frequency ranges. The envisaged system would facilitate multi-channel measurements, potentially further incorporating wireless interrogation capabilities, ensuring not only functionality but also ease of use. 

Gas sensing technologies

Optical gas sensors Optical gas sensors are a type of gas sensor that utilize the interaction between light and gas molecules to detect and measure the presence of gases. These sensors operate based on the principle that gases have unique absorption, scattering, or luminescence properties in specific wavelength ranges.

Absorption-based optical gas sensors rely on the absorption of light by the gas molecules. The gas molecules selectively absorb certain wavelengths of light emitted at a specific wavelength or a broad spectrum, leading to a reduction in the intensity of those wavelengths. The remaining light is then detected by a photodetector, and the decrease in intensity is correlated with the gas concentration.

Scattering-based sensors exploit the scattering of light caused by gas molecules in the sample.

As light interacts with the gas molecules, it scatters in different directions. The scattering pattern or intensity of the scattered light is then captured by a detector and analysed to determine the gas concentration. The scattering phenomenon can occur through different mechanisms, such as Rayleigh scattering, Mie scattering, or Raman scattering, depending on the size of the gas molecules and the wavelength of the incident light.

Luminescence-based sensors utilize the emission of light by gas molecules when they are excited by external energy sources. The sensor incorporates a material that can absorb energy, such as ultraviolet (UV) or visible light, and then emit light at a different wavelength. When the target gas interacts with the luminescent material, it modifies the emission characteristics, such as intensity, lifetime, or spectral distribution. These changes can be measured and related to the gas concentration. Figure 105 illustrates the schematic diagram of a Non-Dispersive Infrared (NDIR) gas sensor, which employs the absorption of infrared light by gas molecules to detect and measure gas concentration. [START_REF] Hodgkinson | Optical gas sensing: a review[END_REF]. The detector measures and compares the intensity of the light transmitted through the sample channel (with the target gas) to the intensity transmitted through the reference channel (without the target gas). Optical gas sensors offer advantages such as high sensitivity and selectivity but are generally expensive and bulky.

Photoionization detectors

Photoionization detectors (PID) utilizes photoionization to sense gases. The sensor operates based on the ionization of gas molecules when exposed to ultraviolet (UV) light [START_REF] Verner | Photoionization detection and its application in gas chromatography[END_REF]. Figure 106 describes the working principle of a PID. A UV lamp emits high-energy photons capable of ionizing the gas molecules in the sample. When the gas molecules absorb the UV photons, they undergo ionization, resulting in the formation of positive ions and free electrons. The ionized particles are collected at the detector. The magnitude of the current produced upon collection of the ionized particle is proportional to the gas concentration [START_REF] Sun | An improved photoionization detector with a micro gas chromatography column for portable rapid gas chromatography system[END_REF].

Figure 106: Photoionization detector working principle [START_REF]What is Photoionization Detector (PID)?[END_REF].

PID offer fast response times and a wide detection range of gases especially COVs, but typically have limited selectivity and high cross sensitivity to interferents compared to other technologies.

Electrochemical gas sensors

Electrochemical gas sensors are devices that detect and measure the concentration of gases based on their electrochemical reactions with specific materials. These sensors consist of electrodes and an electrolyte, and they operate on the principle of redox reactions as shown in Figure 107 [START_REF] Park | Solid-state electrochemical gas sensors[END_REF]. The gas passes through a diaphragm filter and reaches the sensing electrode coated with a specific material that undergoes redox reactions in contact to the target gas. These reactions lead to the generation of charged ions in the electrolytes. The concentration of these ions is directly proportional to the target gas concentration [START_REF] Gomes | IoT-enabled gas sensors: Technologies, applications, and opportunities[END_REF]. Most electrochemical gas sensors are amperometric, producing a current that is proportional to the gas concentration. The principle behind amperometric sensors is the measurement of the current-potential relationship in an electrochemical cell where equilibrium is not established. The current is quantitatively related to the rate of the electrolytic process at the sensing electrode whose potential is kept constant using another electrode (reference electrode). Electrochemical gas sensors offer advantages such as low cost and low energy consumption, but they have a relatively short lifespan.

Catalytic gas sensors

Catalytic gas sensors, commonly referred to as Pellistors, are calorimetric devices primarily employed for the detection and measurement of combustible gases or gases with higher thermal conductivity than that of air. These sensors rely on the principle of catalytic combustion. The sensor structure includes a catalytic element as in Figure 108, which undergoes a reaction with the combustible gases, resulting in a temperature increase in the catalytic bead proportional to the gas concentration. As a consequence, this temperature change induces a corresponding variation in the resistance of a temperature-sensitive component, such as a thermistor [START_REF] Caucheteur | Catalytic fiber Bragg grating sensor for hydrogen leak detection in air[END_REF]. Catalytic gas sensors exhibit high sensitivity to combustible gases, have low power requirements and long lifespan. However, catalytic sensors have limited selectivity and may be prone to poisoning by certain compounds. It also required the presence of oxygen limiting their use in oxygen-deficient environments.

Conductometric gas sensors

Conductometric or chemiresistive gas sensors operates based on the changes in conductivity of a sensitive material in the presence of a target gas. This change in conductivity can be measured in terms of resistance and used to determine the concentration of the gas [START_REF] Güntner | Flame-made chemoresistive gas sensors and devices[END_REF]. The sensor structure usually consists of a substrate with electrodes onto which a sensitive material, such as metal oxides or conduction polymers, is deposited [START_REF] Wong | Conducting polymers as chemiresistive gas sensing materials: A review[END_REF]. Figure 109 illustrates this configuration.

Figure 109: Conductometric gas sensor [START_REF] Nazemi | Advanced micro-and nano-gas sensor technology: A review[END_REF].

These sensors are designed to operate at high temperatures and often incorporate a heater element. The transducers used in these sensors have the ability to detect multiple gases, and the operating temperature plays a crucial role in identifying the specific gas being sensed. The gassensing mechanism in metal oxide semiconductor (MOS) sensors is based on the conductivity changes exhibited by the sensitive material when exposed to reducing or oxidizing gases. This change in conductivity arises from variations in the depletion layer at the grain boundaries within the active sensing layer of the device. These grain boundaries are present among interconnected metal oxide grains. When the active sensing layer interacts with the target analytes at elevated temperatures, it leads to modulations in the energy barriers experienced by free charge carriers. Consequently, this results in alterations in the conductivity of the sensing materials [START_REF] Ramgir | Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects[END_REF]. When exposed to the surrounding air, oxygen molecules adsorb onto the surface of the MOS sensor, leading to the formation of an electron depletion layer (EDL) for ntype materials or a hole accumulation layer (HAL) for p-type materials. When an n-type MOS sensor is exposed to an oxidizing gas, its resistance increases, while the resistance decreases for reducing gases [START_REF] Gao | An overview: Facet-dependent metal oxide semiconductor gas sensors[END_REF].

Conductometric gas sensors shows high sensitivities to oxidizing and reducing gases, are characterized by their low cost, quick response time, and long lifespan. Whereas they need an elevated operating temperature for optimal performance which leads to an increase in energy consumption. MOS sensors especially shows high cross sensitivity to interfering gases and usually require heating to operate effectively

Field effect transistor (FET) gas sensors

Field effect transistor (FET) are highly used in gas sensing applications. They utilize the principles of field-effect transistors to sense gases. A typical FET gas sensor consists of source, drain electrode, a sensing material, an insulating gate oxide, and a gate electrode as shown on Figure 110 [START_REF] Zhang | A review on two-dimensional materials for chemiresistive-and FET-type gas sensors[END_REF]. There exist several FET-type gas sensors, such a thin-film transistor, suspended gate FET, catalytic metal gate FET, horizontal floating gate etc. Thin-film transistors the mostly used detect gases. The sensing material that acts as the channel between the source and drain electrodes of the transistor. This sensing material interacts with the gas molecules, causing variations in its conductance or charge carrier concentration. The response of an FET gas sensor is determined by variations in the conductance of the channel materials before or after exposure to the target gas. These conductance changes are primarily influenced by intrinsic properties of the channel materials, including the work function, carrier mobility, layer number, defect density, and band gap. Additionally, selecting appropriate bias voltage values, as well as source and drain electrodes with suitable work functions, can enhance the transduction of electrical signals and ultimately improve the sensing capabilities of FET gas sensors [START_REF] Hong | FET-type gas sensors: A review[END_REF]. Metal oxides, 2D materials, graphene and carbon nanotubes are often used as sensitive materials FET gas sensors. The conductance of these sensing materials with vary depending on the conduction type of the sensing material and the donor/acceptor behaviour of the absorbed gases [START_REF] Lv | Gas sensors based on polymer field-effect transistors[END_REF].

FET gas sensors offer several advantages, including high sensitivity, fast response time, and the ability to detect a wide range of gases. FET-type gas sensors also possess a remarkable advantage in their compatibility with CMOS circuits. This compatibility enables the seamless integration of FET-type gas sensors with CMOS circuits on a single chip, making them exceptionally well-suited for implementing practical and highly accurate gas sensing systems. Furthermore, leveraging CMOS fabrication technology allows these sensors to be manufactured in a compact size at a lower cost. Moreover, these sensors remain relatively more complex and expensive to manufacture and have a higher energy consumption as compared to the other gas sensing technologies.

Piezoelectric gas sensors

Piezoelectric gas sensors utilize the piezoelectric effect to detect and analyse gases. There are two main types of piezoelectric gas sensors: bulk acoustic wave (BAW) sensors and surface acoustic wave (SAW) sensors. When an alternating voltage is applied to a piezoelectric material across electrodes, the material deforms due to direct piezoelectric effect resulting in the propagation of acoustic waves.

The most commonly used acoustic gas sensor is a BAW device called quartz crystal microbalances (QCMs) shown in Figure 111 [START_REF] Liu | Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review[END_REF]. They consist of a quartz disk with electrodes mounted on both surfaces that generate mechanical waves when applied with voltage [START_REF] Fauzi | Gas and humidity sensing with quartz crystal microbalance (QCM) coated with graphene-based materials-A mini review[END_REF].

The wave undergoes multiple reflections between each electrode and vibrates at the regular frequency. The top electrode is coated with a gas sensitive material which interacts with the target gas and causes a change in the QCM's resonance frequency or quality factor due to the absorbed gas mass. More recent developments in BAW devices include film bulk acoustic resonators (FBARs) which can also be used for gas sensing [START_REF] Vashist | Recent advances in quartz crystal microbalance-based sensors[END_REF].

Figure 111: Quartz crystal microbalance [START_REF] Boiadjiev | Thin films deposition on quartz crystal resonators for applications in gas sensors[END_REF].

SAW gas sensors consist of a piezoelectric substrate with interdigitated electrodes (IDTs). The IDTs are used to generate and receive the acoustic. The IDTs are mainly designed in either a delay line or resonator configuration as in Figure 112. A typical 'delay line' SAW sensor consists of two IDTs deposited on a piezoelectric substrate at a certain separation, one for input and one for output of the electric signal. The region between the IDTs is coated with a recognition layer for interaction with the target species as in Figure 112a. When the gas of interest interacts with the gas sensitive material, it causes a change in the wave propagation characteristics, such as phase shift or attenuation. These changes can be experimentally detected in terms of frequency, phase, and insertion loss of corresponding electric signal and correlated to the change concentration of the gas.

The two-port resonator configuration consists of two IDTs for emission and detection of the acoustic waves and grating reflectors are placed outside of each IDT so that a resonating cavity is formed in between. One-port resonators also exist with only one IDT in the middle of the device, with reflective fingers on both sides. The reflective structures of SAW resonators lead to very distinct and sharp resonance frequencies, which can easily be collected by simple and

The fact that magnetic charges do not exist is reflected by Gauss's law for magnetism with parallels Gauss's law applied to electric fields and charges. It states that the closed loop integral of a constant magnetic flux vector (𝐵𝐵 �⃗ ) is equal to zero as shown by equation (0.7).

� 𝐵𝐵 �⃗ 𝑆𝑆

• 𝑎𝑎𝑠𝑠 = 0 (0.7)

These states static field laws are the basis of Maxwell's equations. 

Dielectric analytical models

Cole-Davidson model (1951)

The Cole-Davidson model considers the asymmetric behaviour of relaxation times by introducing the term β (the Cole Davidson parameter) [START_REF] Davidson | Dielectric relaxation in glycerol, propylene glycol, and npropanol[END_REF]. Here the complex permittivity is given by: 𝜀𝜀 * (𝑗𝑗) = 𝜀𝜀 ∞ + 𝜀𝜀 𝑠𝑠 -𝜀𝜀 ∞ (1 + 𝑗𝑗𝑗𝑗τ) 𝛽𝛽 (0.15)

Havriliak-Negami model (1966)

The Havriliak-Negami model is a more generalizable model which combines both of the Cole-Cole and Cole-Davidson models enabling flexibility and a better fit on experimental data [START_REF] Havriliak | Comparison of dielectric theories that explicitly include viscoelastic parameters[END_REF]. It is given by: 𝜀𝜀 * (𝑗𝑗) = 𝜀𝜀 ∞ + 𝜀𝜀 𝑠𝑠 -𝜀𝜀 ∞ (1 + 𝑗𝑗𝑗𝑗τ 1-𝛼𝛼 ) 𝛽𝛽 (0.16)

The described models mostly apply to homogenous dielectric materials. In the case of dielectric mixtures several relaxations can be observed. This is mainly due to the presence of different molecules with their specific relaxation times, the difference in size and density of the molecules, and the presence of different relaxation mechanisms.in each material. Several models have been proposed for heterogeneous materials consisting of two or more material mixtures.

Dielectric spectrum at microwave frequency: case studies: Water and Polymer

The dielectric spectrum of several molecules (solids, water, polymers etc) has been studied all over the years [START_REF] Kaatze | The dielectric properties of water in its different states of interaction[END_REF][START_REF] Singh | Study of dielectric relaxation in polymer electrolytes[END_REF][START_REF] Garcia-Bernabé | Broadband dielectric spectroscopy studies of hyperbranched polyglycerols[END_REF][START_REF] Jonscher | Dielectric relaxation in solids[END_REF]. The dielectric properties of water was mostly studied in order to use it as a reference dielectric material [START_REF] Ellison | Water: a dielectric reference[END_REF]. At room temperature water shows a first dielectric relaxation at 17 GHz [START_REF] Kaatze | The dielectric properties of water in its different states of interaction[END_REF]. Figure 114 shows the dielectric properties of water and ice at 0 °C [START_REF] Artemov | Water and ice dielectric spectra scaling at 0 C[END_REF]. The relaxation time of solid water (ice) are faster as compared to that of water in liquid phase due to the increase in interaction between the molecules. The relaxation frequency of ice is hence lower (kHz) than that of water (GHz).

Relaxation dispersion in polymers and polymer composites usually appear at lower frequencies at room temperature with a few exceptions. The dielectric spectrum of polymers changes in shape and the relaxation frequency also changes with temperature. Figure 115 shows the dielectric spectrum of poly (methyl methacrylate) also known as PMMA a lightweight transparent polymer usually used as a glass alternative [START_REF] Bur | Dielectric properties of polymers at microwave frequencies: a review[END_REF]. The dielectric relaxation here occurs at very low frequency. The dielectric relaxation in gases are mostly slower and weaker as compared to liquids and solids. This is mainly due to their low density and weaker intermolecular forces which leads to a lower overall polarization and longer relaxation times. The dielectric properties of gases are high used for gas sensing applications. The difference in the dielectric spectral signature of each gases can help in gas discrimination which is highly needed in environmental monitoring systems. The relaxation times of gases are very small since the molecules are subjected to very little interaction resulting to a very high relaxation frequency (> 100 GHz). Gases has very low relative permittivity (1) so almost constant from one gas to another. The interaction of gas with the solid will reduce relaxation times drastically to a few GHz. The relative permittivity of the absorbed gas will be greater than 1. The relaxation frequency in the absorbed gas is greater than that at the solid state but less than that at the liquid state. The position of the relaxation depends on the interaction between the molecule and the surface of the solid. The stronger the interaction the closer the relaxation time will be to the that of the solid state. Hence, the relaxation times of molecules absorbed at the surface.

Dielectric mixture models

Rayleigh model

Rayleigh proposed a model for estimating the permittivity of a mixture of two materials with dielectric constant 𝜀𝜀 1 and 𝜀𝜀 2 [START_REF] Rayleigh | LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium[END_REF]. Here the one dielectric material is considered as the host and the other considered as identical spheres absorbed by the host as shown in Figure 116a. The permittivity of the mixture 𝜀𝜀 𝑚𝑚 is given by: 𝜀𝜀 𝑚𝑚 -𝜀𝜀 1 𝜀𝜀 𝑚𝑚 + 2𝜀𝜀 1 = 𝑉𝑉 𝜀𝜀 2 -𝜀𝜀 1 𝜀𝜀 2 + 2𝜀𝜀 1 (0.17)

Where 𝜀𝜀 1 , 𝜀𝜀 2 and 𝜀𝜀 𝑚𝑚 are the dielectric constant of material 1, material 2 and the mixture of both. V is the volume fraction of material 1. 

Bottcher model

An empiric model for estimating the permittivity of a medium composed on two materials as shown in Figure 116b was proposed by Bottcher [START_REF] Looyenga | Dielectric constants of heterogeneous mixtures[END_REF]. This model considers that a mixture of dielectric can be modelized by spheres of different sizes instead of having a host material as described by Rayleigh.

𝜀𝜀 𝑚𝑚 -𝜀𝜀 1 2𝜀𝜀 𝑚𝑚 + 𝜀𝜀 1 = 𝑉𝑉 𝑉𝑉 -1 𝜀𝜀 𝑚𝑚 -𝜀𝜀 1 𝜀𝜀 2 + 2𝜀𝜀 𝑚𝑚 (0.18)

Where 𝑉𝑉 = 𝑉𝑉 1 = 1 -𝑉𝑉 2 , 𝑉𝑉 1 and 𝑉𝑉 2 corresponds to the volume fraction of material 1 and 2 respectively.

Kraszewski model

Also known as the complex refractive index method, this model is based on the superposition of two dielectric materials as shown in Figure 116c. This model neglects the reflections between the materials [START_REF] Kraszewski | Prediction of the dielectric properties of two-phase mixtures[END_REF]. The permittivity of the mixture is given by:

�𝜀𝜀 𝑚𝑚 = (1 -𝑉𝑉)�𝜀𝜀 1 + 𝑉𝑉�𝜀𝜀 2 (0.19)
Where 𝑉𝑉 is the volume fraction of material 1.

The differential form of telegrapher equation is given by equations (0.20)and (0.21). The wave equations can then be derived from the phasor form of the telegrapher equations. 𝑉𝑉(𝑧𝑧) = 𝑉𝑉 0 + 𝑒𝑒 -𝛾𝛾𝑧𝑧 + 𝑉𝑉 0 -𝑒𝑒 𝛾𝛾𝑧𝑧 and 𝐼𝐼(𝑧𝑧) = 𝐼𝐼 0 + 𝑒𝑒 -𝛾𝛾𝑧𝑧 + 𝐼𝐼 0 -𝑒𝑒 𝛾𝛾𝑧𝑧 (0.26)

𝜕𝜕𝜌𝜌(𝑧𝑧

Where γ is the complex propagation constant given by: 𝛾𝛾 = 𝛼𝛼 + 𝑗𝑗𝛽𝛽 = �(𝑅𝑅 + 𝑗𝑗𝑗𝑗𝐶𝐶)(𝐺𝐺 + 𝑗𝑗𝑗𝑗𝐶𝐶) (0.27)

The characteristic impedance 𝑍𝑍 0 , the wavelength on the line λ and the phase velocity 𝜌𝜌 𝑝𝑝 is given by. For a lossless line the overall loss parameter (𝑅𝑅 and 𝐺𝐺) can be neglected ( 𝛼𝛼 = 0). Strip line A strip line is a homogeneous planar transmission line which consist of a conductor embedded in a dielectric substrate having the top and bottom layers covered with conducting ground planes as shown on Figure 15b. The TEM mode is the fundamental wave mode of propagation. Here the electric field points from the strip conductor toward the grounds, and the magnetic field circles around the strip embedded in the dielectric substrate [START_REF] Pozar | Microwave engineering[END_REF]. The characteristic impedance of a strip line can be approximated as:

𝑍𝑍 0 = 30𝜋𝜋 √ 𝜀𝜀 𝑟𝑟 𝑏𝑏 𝑊𝑊 𝑒𝑒 + 0.441𝑏𝑏 (0.31)
Where 𝑊𝑊 𝑒𝑒 is the effective width of the strip conductor given by : The above formula assumes a strip with zero thickness.

𝑊𝑊 𝑒𝑒 𝑏𝑏 = 𝑊𝑊 𝑏𝑏 - ⎩ ⎪ ⎨ ⎪ ⎧

Microwave networks

For two port network the matrix form of the network equation is given by: � 𝑉𝑉 The reflection coefficient Γ is used to describe the amount of incident wave reflected (both amplitude ad phase) at an interface or discontinuity between two different media or transmission lines with different characteristic impedance. These impedance mismatches affect the signal integrity by causing signal distortion, standing waves, power loss etc.

The reflection coefficient of a load 𝑍𝑍 𝐿𝐿 connected to a transmission line network is the ratio of the forward voltage travelling wave to the backward voltage travelling wave. It is given by: Γ = 𝑍𝑍 𝐿𝐿 -𝑍𝑍 0 𝑍𝑍 𝐿𝐿 + 𝑍𝑍 0 (0.35)

High hysteresis affects a sensor reversibility and cause inaccuracies in the sensor's reading Reversibility is the ability of a sensor to return to its original state after a change in the input. A perfectly reversible sensor will have the same output response for a particular input stimulus value, regardless of the previous values or direction of the change in input stimulus. A low hysteresis sensor will hence have a higher reversibility as compared to a sensor with high hysteresis.

Response and recovery times

The response and recovery times describes how fast a sensor response to changes in the input stimuli and how quickly it returns to its original state respectively. The response and recovery time correspond to the time required for a sensor to reach 63% (𝜏𝜏 63 ) or 90% (𝜏𝜏 90 ) of the maximum response change and revert back to its baseline due to changes in input signal respectively. Different sensing applications have different requirements as far as response and recovery times is concerned. Long response and recovery times sensors are limited when it comes to fast changing input stimulus. For gas sensors the response and recovery times describes the absorption and desorption kinetics of the sensing material. Environmental parameters like temperature, humidity and polluting gases typically fluctuates slowly over time. Accordingly, sensors for such applications might have more extended response and recovery times. 

Feature selection

Feature selection is an important step in constructing a machine learning-based calibration model. The quality and relevance of the features can have a significant impact on the model performance. Relevant sensing features are selected using feature selection methods in order to reduce the input variables of the models, since the generalization capability and the accuracy can be affected by redundancy. Correlation coefficient, fisher score, mutual information and decision trees feature importance methods are usually used [START_REF] Pande | Feature selection and comparison of classification algorithms for wireless sensor networks[END_REF]. Correlation is a widely utilized method for feature selection, it measures the linear relationship between each feature and the target variable. Features characterized by a lower correlation coefficient are likely to exert a minimal influence on the calibration model. 
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Figure 25 :

 25 Figure 25: D 1 H-NMR (400 MHz) spectrum of HBPEI Silane in THF-d8.

Figure 26 :

 26 Figure 26: 13 CNMR of HBPEI-Silane in THF-d8.

Figure 27 :

 27 Figure 27: Synthesis of LPEI-COPh.

Figure 28 : 1

 281 Figure 28: 1 HNMR of LPEI-COPh in CDCl3.

Figure 29 :

 29 Figure 29: 13 CNMR of LPEI-COPh in CDCl3.

Figure 30 :

 30 Figure 30: Synthesis of LPEI CH2-Ph.

Figure 31 : 1

 311 Figure 31: 1 HNMR of LPEI-CH2-Ph in CDCl3.

Figure 32 :

 32 Figure 32: 13 CNMR of LPEI-CH2-Ph in CDCl3.

Figure 33 :

 33 Figure 33: (a) SRR geometry and (b) design at 3.2 GHz with area of sensitive material deposition.

Figure 34 :

 34 Figure 34: (a) Fabricated SRR and TRL calibration standard and (b) comparison of simulated and measured S21 parameters of uncoated SRR with and without TRL calibration.

Figure 35b presents theFigure 35 :

 35 Figure 35b presents the measured S21 parameters of the SRR with and without deposition of the different sensitive polymers. Optimization tool was used in ANSYS HFSS TM to adjust the dielectric constant and dielectric loss tangent of the materials in order to fit the simulated S21 parameters to the measured ones. (a) (b)

Figure 36 :

 36 Figure 36: Effect of humidity on the dielectric properties of 100 um Kapton HN film at 2 GHz.

Figure 37 :

 37 Figure 37: Design of the microwave resonators: (a) Microstrip resonators geometry, (b) cartography of the electric field distribution at resonance frequency.

Figure 38 :

 38 Figure 38: Simulation result of the S11 and S21 parameters of the bare resonator (a) Magnitude (b) Phase.

Figure 39 :

 39 Figure 39: (a) Coated interdigitated resonator and (b) effect of thickness on the resonance frequency.

Figure 40 :

 40 Figure 40: Resonance frequency and magnitude variation with changes in dielectric constant (@tanδ =0.02) (a) and loss tangent (@εr = 3.2) (b) for a 1.2 μm polymer layer, including the fitted line and coefficient of determination.

Figure 41 :Figure 42 :

 4142 Figure 41: (a) Variation of resonance frequency to changes in dielectric constant (@tanδ = 0.02) for different thicknesses of polymer layer (b)Variation of sensitivity in MHz per unit of εr to changes in polymer layer thickness.

Figure 43 :

 43 Figure 43: (a) Fabricated sensor viewed under optical microscope (b) Profilometer measurement of the copper lines.

Figure 44 :

 44 Figure 44: (a) Contact angle goniometer, (b) water contact angle measurement on the BETALAYOUT Kapton substrate and (c) water contact angle measurement on the Würth Electronik substrate.

Figure 45 :

 45 Figure 45: (a) Electrical characterisation test bench and (b) Comparison between simulated and measured Sij parameters of the fabricated uncoated resonator.

Figure 46 :

 46 Figure 46: SEM images of (a) Commercial HBPEI, (b) HBPEI Silane, (c) LPEI-COPh, and (d) LPEI-CH2-Ph.

Figure 47 :

 47 Figure 47: AFM images of (a) Commercial HBPEI, (b) HBPEI Silane, (c) LPEI-COPh, and (d) LPEI-CH2-Ph.

Figure 48 :

 48 Figure 48: Measured Sij parameters of the fabricated sensors (a) I11 EB-PEI, b) I12 EB-PEI, (c) I21 Com HBPEI, (d) I22 Com HBPEI, (e) I23 LPEI-COPh, (f) I25 HBPEI Silane 10%, (g) I27 HBPEI Silane 20%, (h), I29 Com HBPEI, (i) I30 Com HBPEI, (j) I31 Com HBPEI. (k) I33 HBPEI Silane 1:0.5; and (l) I34 LPEI-CH2-Ph.

Figure 49 :

 49 Figure 49: Low frequency (a) and High frequency (b) equivalent circuit of microsctrip interdigitated capacitor [168].

Figure 50 :

 50 Figure 50 : Low and high frequency quivalent circuit model of the sensor.

Figure 51 :

 51 Figure 51: Test cell for gas characterisation of the microwave sensors.

Figure 52 :

 52 Figure 52: Experimental configuration for in-lab characterisation under gas.

Figure 53 :

 53 Figure 53: Laboratory experimental setups for sensor characterisation (a) under different gases and vapours, (b) at different RH (30-90%) and temperature, (c) under gases using gas cylinders and (d) under ozone.

Figure 54 :

 54 Figure 54: Sense-city facility (a) exterior view and (b) interior climatic chamber.

Figure 56 :

 56 Figure 56: (a) Graphical user interface for automated VNA control and saving of the measured Sij parameters and (b) acquisition flow chart.

Figure 57 :

 57 Figure 57: Response extraction from (a) S11 magnitude spectrum (b) S11 phase spectrum

Figure 58 :

 58 Figure 58: Raw S11 and time gated S11 in (a) Time domain, and (b) Frequency domain.

Figure 59 :

 59 Figure 59: Comparison of the raw and time gated (a) frequency response and (b) magnitude response extracted using method 1 and method 2 when a bare resonator is exposed to N2 gas for 15 min.

Figure 60 :

 60 Figure 60: Effect of number of frequency points on (a) frequency response and (b) magnitude response extracted from the time gated S11 spectrum using M2.

Figure 61 :

 61 Figure 61: GUI of the acquisition, processing and real time sensor data visualization program developed in Python.

Figure 62 :

 62 Figure 62: (a) S11 parameter curve for bare and coated resonators of sensor I11 and I12, and (b) Sensor I11 coated resonator static frequency response to RH in the range 0-90%.

  illustrates the dynamic differential frequency response of sensor I11 in the ranges 0-30% RH at room temperature (20 °C), 35-75% RH at 25 °C and 80-90% RH at 25 °C, respectively. The corresponding magnitude response is shown in Figure63d-f. The setup presented in Figure53awas used for characterisation in the 0 -30% RH range while setup shown in Figure53bwas used for higher RH ranges. In the range of 35-75% RH, a 30min ramp was used to change the RH setpoints in order to avoid strong vibrations of the climatic chamber. The corresponding reference RH reading made by the commercial SHT85 sensor is superimposed on the figures (grey line).

Figure 63 :

 63 Figure 63: I11 EB-PEI sensor dynamic frequency to RH in the range (a) 0-30% RH, (b) 35-75% RH, (c) 80-90% RH, and dynamic magnitude response in the range (d) 0%-30% RH (e), 35%-75% RH, and (f) 80%-90% RH.

Figure 64

 64 Figure 64 shows the sensor calibration curve, the resulting log sensitivity and the hysteresis curve in frequency and magnitude. (a) (b) (c)

Figure 64 :

 64 Figure 64: I11 EB-PEI sensor differential frequency response (a) RH calibration curve with its different sensitivities and CODs, (b) log sensitivity, (c) hysteresis curve in the range 35-75% RH, and sensor differential magnitude response (d) RH calibration curve with its different sensitivities and CODs, (e) log sensitivity, (f) hysteresis curve in the range 35-75% RH.

  . The response/recovery times of the sensor were observed to be 45/41 min when looking at the frequency response and 45/45 min when looking at the magnitude response at 20 °C.

Figure 65 :

 65 Figure 65: I11 EB-PEI sensor frequency (a) response/recovery times to RH steps at 20 °C, (b) desorption stabilisation when exposed to N2 at 20°C, (c) sensor sorption drift when exposed to constant 45% RH, and sensor magnitude (d) response/recovery times to RH steps at 20 °C, (e) desorption stabilisation when exposed to N2 at 20°C, (f) sensor sorption drift when exposed to constant 45% RH.

Figure 66 :Figure 67 :Figure 68 :

 666768 Figure 66: I11 EB-PEI sensor (a) differential frequency response to temperature at 40% RH and (b) its corresponding sensitivity curve, (c) the differential magnitude response to temperature and (d) its corresponding sensitivity curve. The effect of temperature on the sensor response to humidity is illustrated in Figure 67. The response time is calculated after the end of the 30-min ramp (black dash dot line) used to change the RH setpoint (range 30 -70% RH). Increasing the temperature reduces the sensor response time linearly over this small temperature range, as shown in Figure 67b: tres (min) = (-2.51 ± 0.10) *T (°C) + 94.7 ± 2.7. This is because temperature facilitates the absorption of water molecules into the polymer by making it softer. (a) (b)

  Sensor I21 was exposed to humidity levels varying from 25 to 70% RH at different temperatures(25-45 °C). The frequency and amplitude responses of both sensitive and reference channels, as well as their differential responses across six RH cycles at several temperatures (25 °C, 30 C, 35 C, 40 C, 45 C), are presented in Figure69a and b, alongside the RH measured by the benchmark sensor (SHT85).

ForFigure 69 :

 69 Figure 69: I21 COM HBPE-based sensor responses to RH at different temperatures (25 °C, 30 °C, 35 °C, 40 °C, 45 °C). (a) Frequency and (b) magnitude response; the blue, orange and green lines represent the sensitive, reference and differential responses, respectively, the grey line is for humidity. Corresponding calibration curves of the differential (c) frequency and (d) magnitude.

Figure 70 :

 70 Figure 70: I21 COM HBPEI-based sensor responses, (a) differential frequency and (d) magnitude calibration curves to steps of RH at 30 °C; (b) response and (e) recovery times during steps from 60 to 72% RH and from 86 down to 1.5% RH respectively, at 22 °C; differential (c) frequency and (f) magnitude responses to temperature at 60% RH.

Figure 70b and e

  Figure70band e illustrate the sensor's differential frequency and magnitude responses respectively when relative humidity is increased (from 60 to 72% RH) and decreased (from 86 down to 1.5% RH) at ambient temperature (22 °C). The COM HBPEI sensor demonstrates a response/recovery time of 22 s/44 s, respectively, which is far lower than the EB-PEI based sensor which sensitive layer was 10 times thicker. Thus, reducing the thickness from 120 µm to 1.2 µm (~100 times smaller) enabled to reduce the response/recovery times from 2700/2460 s to 22/44 s (~100 times smaller).

Figure 71 :

 71 Figure 71: I31 COM HBPEI-based sensor differential (a) frequency and (b) magnitude RH calibration curve at room temperature (22°C) with exponential fits and their corresponding COD; the dark and red points show the increasing and decreasing RH phase respectively, the dashed green lines are the exponential fits over the full RH range. (c) Differential frequency response of the I21, I22, I29, I30 and I31 COM HBPEI based sensors to relative humidity over the range (30-90% RH).

Figure 72 :

 72 Figure 72: I33 HBPEI Silane 1:0.5-based sensor responses to RH at different temperatures (25 °C, 30 °C, 35 °C, 40 °C, 45 °C). (a) Frequency and (b) magnitude response; the blue, orange and green lines represent the sensitive, reference and differential responses, respectively, the grey line is for humidity. Corresponding calibration curves of the differential (c) frequency and (d) magnitude.

Figure 73b and e

  Figure 73b and e show typical examples of the I33 sensor resonator frequency and magnitude response for increasing and decreasing steps of humidity (from 30 to 38% RH and from 44 to 33% RH as measured with a commercial sensor, respectively), at ambient temperature (20 °C). Corresponding response/recovery times of about 44/88 s can be extracted, respectively. Both are twice those of the COM HBPEI-based sensors. The longer times for the HBPEI-Silane sensor can be primarily attributed to its hydrophobicity.Temperature calibration curves, shown in Figure73c and f, report the frequency and magnitude sensitivities to temperature at 60% RH. The HBPEI Silane 1:0.5 resonator exhibits sensitivities of -0.192 MHz/°C and -0.0018 dB/°C due to the increase in permittivity of the HBPEI Silane with increasing temperature. A shift of frequency response (ΔF) of -1 MHz will hence correspond approximately to a ΔRH of 3% RH (in the 50 -70% RH range) and ΔT of 5 °C.

Figure 73 :

 73 Figure 73: I33 HBPEI Silane 1:0.5-based sensor responses, (a) differential frequency and (d) magnitude calibration curves to steps of RH at 30 °C; (b)response and (e) recovery times during steps from 30 to 38% RH and from 44 down to 33% RH respectively, at 20 °C; differential (c) frequency and (e) magnitude responses to temperature at 60% RH.

Figure 74a and b

  Figure 74a and b illustrate the differential frequency response of sensors I25 HBPEI Silane 10% and I27 HBPEI Silane 20% at a constant temperature of 25 °C. A comparative analysis of the RH sensing performance across different HBPEI Silane-based sensors is presented in Figure 74c.

Figure 74 :

 74 Figure 74: Dynamic (a, b) and steady-state (c) differential frequency response to RH at constant temperature (25°C) of (a) I25 HBPEI Silane 10% and (b) I27 HBPEI Silane 20% based sensors and (c) I25 HBPEI Silane 10%, I27 and I28 HBPEI Silane 20%, and I33 HBPEI Silane 1:0.5 based sensors.

Figure 75 :

 75 Figure 75: I23 LPEI-COPh-based sensor responses to RH at 25 °C, (a) frequency and (d) magnitude, corresponding characteristic curve in differential (b) frequency and (e) magnitude; (c) response and (f) recovery times during steps from 34 to 42% RH and from 71 down to 52% RH respectively.

Figure 76c and f

  Figure76c and fshow typical examples of the sensor resonator frequency and magnitude response under both incremental and decremental humidity changes (from 10 to 30% RH and from 87 to 1% RH respectively). Corresponding response/recovery times of about 220 s can be extracted. The response/recovery time of the LPEI-CH2-Ph based sensor is similar to that of LPEI-COPh, HBPEI-Silane sensor and about twice that of COM HBPEI based sensors.

Figure 76 :

 76 Figure 76: I34 LPEI-CH2-Ph-based sensor responses to RH at 25 °C, (a) frequency and (d) magnitude, corresponding characteristic curve in (b) frequency and (e) magnitude; (c) response and (f) recovery times during steps from 10 to 30% RH and from 87 down to 1% RH respectively.

Figure 77 :

 77 Figure 77: RH calibration curves for an uncoated resonator (I33), in (a) frequency and (b) magnitude and Temperature calibration curves at 65% RH for the uncoated resonator, in frequency (c) and magnitude (d).

Figure 78 :

 78 Figure 78: Comparison of the fabricated sensor differential frequency response to RH in the range 30-90% RH, (a) calibration curves and (b) bar plot of the corresponding sensitivity based on the frequency variation from 30 to 80% RH.

Figure 79 :

 79 Figure 79: ML flow chart.

Figure 80 :

 80 Figure 80: Scatter plot of true RH% and predicted RH% from the test data based on E2 using (a) LR (b) SVM (c) RF (d) KNN (e) Exp fit on freqdiff and (f) Exp fit on magdiff with their corresponding evaluation metrics (R 2 , MAE and prediction time). The red line is the best fit line (predicted RH% = true RH%) and the blue line is the actual linear fit on the data.

Figure 81 :

 81 Figure 81: Time domain comparison of the true RH and KNN prediction of RH from the test data set (experiment 2).

Figure 82 :

 82 Figure 82: Equivalent circuit model C2 and R1 parameter extraction for the HBPEI (a, b) coated and (c, d) uncoated resonators, respectively.

Figure 83 :

 83 Figure 83: (a) Raw and (b) detrended HBPEI-Silane sensor frequency response to CO2 at 0% RH and ambient temperature.

  MHz/%CO2) as compared to the Com HBPEI, LPEI-COPh and LPEI-CH2-Ph sensor which showed sensitivities of -1.35 Hz/ppm (-0.013 MHz/%CO2), -5.3 Hz/ppm (-0.053 MHz/%CO2) and -5.67 Hz/ppm (-0.056 MHz/%CO2) to CO2 respectively as represented in Figure 83a-d with corresponding fitted lines and CODs.

Figure 84 :

 84 Figure 84: Sensitivity to CO2 at 0% RH at room temperature of (a) HBPEI-Silane, (b) COM HBPEI, (c) LPEI-COPh, and (d) LPEI-CH2-Ph based sensors.

Figure 85 :

 85 Figure 85: (a) Comparison of the sensor sensitivity to CO2 and RH in a range 0-1% and (b) differential frequency response to CO2 at 60% RH.

Figure 86 :

 86 Figure 86: Environmental parameters measured in Sense-City: (a) O3 (ppb), (b) NOx (ppb) (c) CO (ppm), (d) CO2 (ppm), (e) RH (%), (f) Temperature (°C).

Figure 87 :

 87 Figure 87: Sensor I12 differential outputs (a) ΔFreq, (b) ΔPhasefreq, (c) ΔMagn, (d) ΔPhase.

Figure 88 :

 88 Figure 88: I12 EB-PEI sensor outdoor correlation analysis.

Figure 89

 89 Figure 89 displays the results showing the satisfactory predictive capabilities of the models. The model considering only humidity achieves a determination coefficient Q 2 of 0.87 during the testing and prediction phases. When all environmental variables are considered, this coefficient increases marginally to 0.88.

Figure 89 :

 89 Figure 89: Prediction of output ΔFreq using a calibration model accounting for either (a) all the environment variables or (b) RH only. 𝑄𝑄 2 is the coefficient of determination over the prediction phase. The thick black line is the sensor output, the thin blue solid line is the mean prediction of the sensor output using the calibration model learnt over the training phase, and the red dotted lines are the upper and lower bounds of the 95% prediction intervals.

Figure 90 :

 90 Figure 90: (a) Prediction of RH using the sensor outputs only and the calibration relationship previously learnt. The black solid line is the measure of RH, the blue dotted line indicates the mean prediction. The coloured areas indicate the most likely RH values: the closer to dark red, the more likely (according to the calibration relationship) the RH value is in these areas. (b) ΔFreq versus RH (%) over 7 days. The blue (resp. red) line corresponds to data below (resp. above) 70%. The blue (resp. red) dashed line shows the best linear regression fitting the data below (resp. above) 70% RH, with s2 (resp. s3) the corresponding sensitivity (in MHz/%). The black line shows the regression for the full dataset (with s1 the corresponding sensitivity).

  displays the RF sensor's differential response and the environmental variables recorded by the reference sensors (Envea analyzers and Vaisala WXT536) are presented on Figure 91b-d.

Figure 91 :

 91 Figure 91: I31 COM HBPEI-based sensor and reference sensors outputs (a) frequency and magnitude response, (b) RH and temperature, (c) CO2 and O3, (d) NOX and NO2.

Figure 92 :

 92 Figure 92: Correlation heatmap between the I31 COM HBPEI sensor outputs (freqdiff, magdiff) and the environmental variables.

Figure 93 :

 93 Figure 93: Scatter plot of the I31 COM HBPEI sensor differential frequency (a) and magnitude (b) response versus outdoor RH and temperature (color bar) over 2 days. The green lines show the exponential fit on the outdoor data and the dash black lines represent the laboratory calibration.

Figure 94 :

 94 Figure 94: Calibration based on magnitude: a) Predicted RH as a function of measured RH b) Measured and predicted RH as a function of time. Red circles correspond to points with high prediction errors.

Figure 95 :

 95 Figure 95: I33 HBPEI Silane 1:0.5-based sensor and reference sensors outputs (a) frequency and magnitude response of the sensitive channel, (b) frequency and magnitude response of the reference channel, (c) RH and temperature, (d) CO2 and O3, (e) NOX and NO2 and (f) rain intensity and windspeed.

Figure 96 :

 96 Figure 96: Correlation heatmap between the I33 HBPEI Silane 1:0.5-based sensor outputs (freqsen, magsen, freqref, magref) and the environmental variables.

Figure 97 :

 97 Figure 97: (a) I33 Sensor normalized freqref response as a function of time with green lines indicating rainy periods;(b) Filtered data based on rainy period with retained data in cyan and removed data in black and (c) normalized freqref response emphasizing inhomogeneity in the data with the four portions highlighted in black, red, blue and green.

Figure

  Figure 98a-d shows, the scatter plots of a sensor output (normalized freqref response as an example) with temperature (Figure 98a-b) and RH (Figure 98c-d) before and after homogenization respectively. After homogenization superimposing the different portions shows better consistency of the I33 sensor responses. (a) (b)

Figure 98 :

 98 Figure 98: Scatter plot for the sensor normalized freqref response with temperature (a and b) and RH (c and d) before (a and c) and after (b and d) homogenization.

Figure

  Figure 99a-d displays the environmental parameters monitored by the standard sensors on the SENSE-CITY platform. The frequency and magnitude responses of the RF sensor array (comprising I33, I34, I23, and I31) during their outdoor deployment are depicted in Figure 100a-f. (a) (b)

Figure 99 :

 99 Figure 99: Environmental parameters measured in Sense-City: (a) RH (%) and temperature (°C), (b) CO2 (ppm) and O3 (ppb), (c) NOX (ppb) and NO2. (ppb) and (d) CO (ppm) and NO (ppb).

Figure 101 .

 101 As noticed earlier a strong correlation exist between each sensor frequency and magnitude response. The frequency and magnitude response of the sensitive and reference channels of the sensors I31, I33 and I34 are highly correlated while showing minimum correlation with the reference channels, and sensitive channel of sensor I23. The response of the reference channels on their side are highly correlated to the sensitive channel response of sensor I23. This is in line with the fact that the COM HBPEI (I31), HBPEI Silane 1:0.5 (I33) and LPEI-CH2-Ph (I34)-based sensors are highly sensitive to RH while the uncoated resonators (reference channel) and LPEI-COPh-based sensor (I23) are more sensitive to the temperature as shown by the correlation plot.

Figure 100 :

 100 Figure 100: Sensor array frequency and magnitude responses of: I33 HBPEI Silane 1:0.5-based sensor (a) sensitive and (b) reference channels; I34 LPEI-CH2-Ph-based sensor (c) sensitive and (d) reference channels; (e) I23 LPEI-COPh and (f) I31 COM HBPEI-based sensitive channels.

Figure 101 :

 101 Figure 101: Sensor array and environmental parameters correlation heatmap.In the context of sensor array especially with multi responses it is sometimes useful to reduce the dimension of the data and extract the most relevant features. The microwave sensors show several parameters such as magnitude, frequency, phase and phase frequency responses extracted from the raw Sij spectrum. Principal component analysis (PCA) enables data reduction, noise reduction, feature extraction, easy visualization, correlation identification and classification of the extracted sensor array responses. In the case of gas sensors detecting the presence of different gases in the environment, each sensor may respond to multiple gases or environmental parameters, leading to overlapping responses in a complex gas mixture. Applying PCA can help disentangle these overlapping responses by finding orthogonal components in the dataset, making it easier to identify the presence of specific gases. Also, it can help identify redundancies in the sensor array response.

Figure

  Figure102a-c presents the PCA plots of the sensor array data, utilizing different response combinations: magnitude and frequency, magnitude, frequency and phase frequency, and only phase and phase frequency. In these plots, circles in red, green, dark blue, and purple represent

Figure 102 :

 102 Figure 102: Principal component analysis on sensor array using (a) frequency and magnitude responses, (b) frequency, magnitude, phase and phase frequency responses and (c) phase and phase frequency responses. The red, green, dark blue and purple circle represents the sensitive channel of I33, I34, I23 and I31 respectively, while the black and light blue circles represents the reference channel of I33 and I34 respectively.

Figure 103a and bFigure 103 :

 103 Figure103aand b illustrate the I31 COM HBPEI sensor frequency and magnitude response as a function of outdoor RH and of temperature (color bar). Notably, a significant hysteresis is observed in the data. The sensor responses in outdoor settings during the winter 2023 deployment showed exponential variations with RH (𝛥𝛥f (MHz)= -0.47 * e (0.058 * RH) + 7.4 and ΔMag (dB)= -0.007 * e (0.063 * RH) + 0.01) which are similar to the exponential variation observed during the summer 2022 deployment (𝛥𝛥f (MHz)= -0.61 * e (0.053 * RH) -2.81 and ΔMag (dB)= -0.008 * e (0.061 * RH) + 0.03) and the laboratory results (𝛥𝛥f (MHz)= -0.58 * e (0.058 * RH) -0.43 and ΔMag (dB)= -0.015 * e (0.061 * RH) + 0.05) as depicted by the fitted lines in Figure103a and b. This indicates the robustness and the reproducibility of the sensor responses.

Figure

  Figure 104a and b depict the I23 LPEI-COPh-based sensitive channel frequency and magnitude response as a function of temperature and RH (color bar). A linear relationship between the I23 sensor responses and temperature is observable despite the low COD as shown on the figures. The sensor's temperature sensitivities observed outdoor (-0.60 MHz/°C and -0.007 dB/°C) was close to laboratory characterisation results (-0.42 MHz/°C and -0.01 dB/°C), though exploring a slightly different range due to outdoor winter conditions. (a) (b)

Figure 104 :

 104 Figure 104: Scatter plot of the I23 LPEI-COPh-based sensor (a) frequency and (b) magnitude response versus outdoor temperature and RH (color bar) over 9 days winter deployment. The green lines show the linear fit on the outdoor data of the winter deployment.

Figure 105 :

 105 Figure 105: Schematic of a typical NDIR gas sensor.

Figure 107 :

 107 Figure 107: Electrochemical gas sensor working principle.

Figure 108 :

 108 Figure 108: Schematic of catalytic sensor.

Figure 110 :

 110 Figure 110: Field effect transistor gas sensor.

Figure 112 :

 112 Figure 112: SAW gas sensors (a) delay line configuration (b) resonator configuration[START_REF] Devkota | SAW sensors for chemical vapors and gases[END_REF].

Figure 113 .Where

 113 Figure 113. Illustration of static field laws a) Biot savart law, (b) Faraday's law and (c) Amperes's law (d) Gauss's law

Cole-

  Cole model (1941) The Cole-Cole dielectric relaxation model is a modified version of the Debye's model. The model considers a distribution of relaxation times, which makes it suitable for describing dielectric relaxation of real materials as they usually exhibit more complex relaxation processes [201]s. The Cole cole model is given by𝜀𝜀 * (𝑗𝑗) = 𝜀𝜀 ∞ + 𝜀𝜀 𝑠𝑠 -𝜀𝜀 ∞ 1 + 𝑗𝑗𝑗𝑗τ 1-𝛼𝛼 (0.14)Where 𝛼𝛼 is the Cole-Cole parameter (0 ≤ 𝛼𝛼 ≤ 1) which describes relaxation times distribution. When 𝛼𝛼 = 0 the model becomes a Debye model with a single relaxation time.

Figure 114 :

 114 Figure 114: Dielectric spectra of water and ice at 0 °C.

Figure 115 :

 115 Figure 115: Dielectric spectra of poly (methyl methacrylate) at room temperature.

Figure 116 :

 116 Figure 116: Dielectric mixture models a) Rayleigh model, b) Bottcher model and, c) Kraszewsk.

  form is given by:𝑎𝑎𝑉𝑉(𝑧𝑧) 𝑎𝑎𝑧𝑧 = -(𝑅𝑅 + 𝑗𝑗𝑗𝑗𝐶𝐶)𝐼𝐼(𝑧𝑧) (0.22) 𝑎𝑎𝐼𝐼(𝑧𝑧) 𝑎𝑎𝑧𝑧 = -(𝐺𝐺 + 𝑗𝑗𝑗𝑗𝐶𝐶)𝑉𝑉(𝑧𝑧) (0.23)

  the wave equation introduces forward and backward travelling voltage and current waves.

Figure 118 :

 118 Figure 118: Sensor response and recovery times

Figure 119 :

 119 Figure 119: a) Support vector machine regression b) Random forest regression.K-nearest neighbours (KNN)KNN is a simple learning-by-memorizing-based ML algorithm. KNN merely memorizes the training data and predicts the value for new data based on the closest samples. KNN algorithm has different parameters, the main being; the distance metric used (Euclidean, Manhattan etc.) and the number of nearest neighbours (k). The value of response for new data can be calculated using equation (0.39). Where k (𝑥𝑥 𝑡𝑡𝑒𝑒𝑤𝑤 ) is the set of k nearest neighbours of 𝑥𝑥 𝑡𝑡𝑒𝑒𝑤𝑤 . k decides the accuracy of the model so must be chosen optimally[START_REF] Vitola | A sensor data fusion system based on knearest neighbor pattern classification for structural health monitoring applications[END_REF].

Figure 121 : 1

 1211 Figure 121: 1 HNMR of HBPEI-BuOH in CDCl3.

Figure 122 :

 122 Figure 122: 13 CNMR of HBPEI-BuOH in CDCl3.Synthesis of Linear PEI via cationic polymerization of oxazolone derivatives

Figure 123 :

 123 Figure 123: Synthesis of Linear PEI via cationic polymerization.

Figure 124 :

 124 Figure 124: Characterisation under NO2 at different% RH: frequency and magnitude response of I31 COM HBPEI (a,b), I33 HBPEI Silane (c,d), I23 LPEI COPh (e,f), and I34 LPEI-CH2Ph (g,h) respectively.

Figure 125

 125 Figure 125 depicts the characterization under SO2 in the range 0 -3500 ppb. No obvious response in frequency and magnitude were observed to SO2. (a) (b)

Figure 125 :

 125 Figure 125: Characterisation under SO2 at 0 % RH: frequency and magnitude response of I31 COM HBPEI (a,b), I33 HBPEI Silane (c,d), I23 LPEI COPh (e,f), and I34 LPEI-CH2Ph (g,h) respectively.

Figure 126

 126 Figure 126 shows the laboratory characterization results to Ozone in the range 0 -1000 ppb. No significant sensitivity in frequency and magnitude was observation in the specific range. (a) (b)

Figure 126 :

 126 Figure 126: Characterisation under ozone frequency and magnitude response I31 COM HBPEI (a,b), I33 HBPEI Silane (c,d), I23 LPEI COPh (e,f), and I34 LPEI-CH2Ph (g,h) respectively.
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Table 1 :

 1 Outdoor air quality guidelines and directives[START_REF] Agency | Air quality standards[END_REF].

	Pollutant Averaging period	Objective	WHO Air	EU	Air	ATMO
				quality	Quality		index
				guidelines	directives
	O3	Max. daily 8-hour mean	Target value		120 μg/m 3
		8-hour	Target value	100 μg/m 3			120 μg/m 3
		Peak season	Target value	60 μg/m 3		
	NO2	Hourly	Limit value	200 μg/m 3	200 μg/m 3	200 μg/m 3
		Annual	Limit value	10 μg/m 3	40 μg/m 3		40 μg/m 3
		24-hour	Target value	25 μg/m 3		
	SO2	Hourly	Limit value		350 μg/m 3	300 μg/m 3
		24-hour	Limit value	40 μg/m 3	125 μg/m 3	125 μg/m 3

I.2.Our proposal: Air quality monitoring

The scientific approach presented in this manuscript focuses on the development of an intelligent electronic nose for real-time air quality monitoring. This research work is part of the CARDIF project (Selective sensing of exhaust gas using printed radiofrequency (RF) sensors/ Suivi sélectif de gaz d'échapement par Capteurs RaDIoFréquences imprimés), funded by the French National Research Agency (ANR) in 2020. The project consortium includes academic and industrial partners: my Lab IMS (Integration from Material to System-UMR CNRS 5218), LCPO (Organic Polymer Chemistry Laboratory-UMR CNRS 5629), XLIM (Limoges, UMR CNRS 7252), University Gustave Eiffel with LPICM (UMR CNRS 7647) and the industrial SME ISORG as partners.

Table 2

 2 

presents a non-exhaustive list of advantages and disadvantages of various gas sensor types.

Table 2 :

 2 Advantages and disadvantages of gas sensor transducers adapted from[START_REF] Korotcenkov | Handbook of gas sensor materials[END_REF].

	Transducer type	Advantages	Disadvantages
	Optical (Infrared)	• High sensitivity	• High cost
		• Ability to identify individual	• Complex instrumentation
		compound in gas mixtures	• Bulky sizes

Table 3 :

 3 Littérature review synthesis.

	Sensitive		Target	Transducer	Operati	Range	Sensitivity Respon	Rev	Ref
	material		species	geometry	ng			se/reco	ersi
					frequenc			very	bilit
					y (GHz)			times	y
	None		Salinity	SRR	0.5 -2.2 40	-1.52 --	Instanta	Yes [6
			water			mg/mL -200	15.2 dB/(mg/m	neous		0]
						mg/mL	L) and		
							-2.31 --		
							9.18		
							kHz/(mg/		
							mL)		
			Water and	Antenna with AMC	6 -7	ε 𝑟𝑟 : 1 -15	-0.038 GHz/Δε 𝑟𝑟 :	Instanta neous	Yes [61 ]
			ethanol						
			mixtures						
			Pressure	LC resonator	0.65 -	0-200	-270.8	Instanta	Yes [62
				capacitor with	0.85	mmHg	kHz/mmH	neous		]
				readout coil			g		
	Metal	TiO 2	NH 3	microstrip	2 -8	100 -	-	25/100	Yes [64
	oxides			interdigital		500		s		,
				capacitor,		ppm				70]
				rectangular						.
				spiral antenna,					
				and spiral					
				resonator					
		Hema	NH 3	coplanar	4.86	100 -	4.6 × 10-7	-	Yes [71
		tite		waveguide		500	/ppm for			]
		(α-				ppm	the real		
		Fe2O					part and		
		3)					3.4 × 10-7		
		Rhom					/ppm for		
		bohed					the		
		ra					imaginary		
							part of |ΔΓ|		
		CuO, Acetone,	Microstrip line	2.4	0 -200	0.0120	> 50/	Yes [72
			ethanol,	with coupled-		ppm	deg/ppm,	50 min		]
			and	line			0.0013		
			methanol				deg/ppm		
							and 0.0012		
							deg resp.		
		TiO 2	Acetone,	Microstrip line	2.4	0 -200	0.0110		
			ethanol,	with coupled-		ppm	0deg/ppm,		
			and	line			0.0012		
			methanol				deg/ppm		
							and 0.0032		
							deg resp.		
		SnO 2 Acetone,	Microstrip line	2.4	0 -200	0.0075		
			ethanol,	with coupled-		ppm	deg/ppm,		
			and	line			0.0025		
			methanol				deg/ppm		
							and 0.0042		
							deg resp.		

Table 4 :

 4 Advantages and disadvantages of different gas sensitive materials.

	Gas sensitive material	Advantages	Disadvantages
	Metal oxides	• High sensitivity to several gases	• High
		• Low cost	• Low selectivity and specificity
			• Long recovery time as compared to
			response time
			• High temperature needed for
			optimal response
	Carbon nanotubes (CNTs)	• High surface-to-volume ratio	• Limited selectivity if not
		enhancing sensitivity	functionalized
		• Room temperature operation	• Variability in CNTs production
			impacting reproducibility in sensor
			performance
	Graphene	• High surface area increasing	• Limited sensitivity without
		sensitivity	functionalization
		• Broad range of detectable gases	
	Conducting polymer	• Room temperature operation	• Affected by atmospheric
		• Good sensitivity to some	interferences (humidity and
		organic compounds	temperature)
		• Functionalizable and tunable	
	Non-conducting polymer	• Low cost	• Lower sensitivity
		• Flexibility	• Affected by atmospheric
		• Stability	interferences (humidity and
		• Functionalizable and tunable	temperature)
		• Minimual electric interference	• Slower response and recovery times

Table 5 :

 5 Deposited sensitive polymer thickness and spin coating speed.

	Sensitive material Commercial	EB-PEI HBPEI Silane LPEI-COPh LPEI-CH2-Ph
		HBPEI				
	Thickness (μm)	1.2	5.6	1.2	1.2	1.2
	Spin speed (rpm)	1500	1500	1500	1500	1000

Table 6

 6 

presents a comparison between the measured dielectric properties and the dielectric properties data provided in the manufacturer's datasheet for a 125 μm Kapton HN film [160].

Table 6 :

 6 Datasheet and measured dielectric properties of Kapton substrate at different relative humidity.

	Frequency (GHz)	Value type	% RH	Permittivity (εr)	Dielectric loss tangent
					(tanδ)
	1×10 -3	Datasheet	50% RH	3.50	0.0026
	1	Datasheet	45% RH	3.42	0.007
	2	Measured	20% RH	3.48 ± 0.16	0.0065 ± 8.6×10 -4
			50% RH	3.57 ± 0.17	0.0063 ± 9.0×10 -4
			80% RH	3.48 ± 0.16	0.0065 ± 9.1×10-4
	4.7	Measured	20% RH	3.50 ± 0.15	0.0054 ± 8.3×10 -4
			50% RH	3.50 ± 0.15	0.0052 ± 8.3×10 -4
			80% RH	3.52 ± 0.15	0.0055 ± 8.3×10-4

Table 7 :

 7 Sensitive polymers surface roughness measurement using AFM.

	Sensitive material	R q (pm)	R a (pm)
	Commercial HBPEI	298 ± 8	237 ± 8
	HBPEI Silane	4420 ± 1270	3540 ± 1034
	LPEI-COPh	423 ± 119	292 ± 55

Table 8 :

 8 Summary of fabricated sensors and their characteristics.

	Sensor

picture (Sensor name) Sensitive material Thickness Sensitive surface Contact angle (°)

  

	HBPEI Silane 1 :0.5	1.2 -1.3 µm	17×22 mm²	91.± 5.8
	Concentration: 150 mg/ml			
	Solvent: THF			
	Spin coating: 500 rpm/30 s			
	Baking: Hotplate under air			
	120°C for 4h			
	(I33)			
	LPEI-CH2-Ph	1.1 µm	17×20 mm²	98.± 4.7
	Concentration: 150 mg/ml			
	Solvent: CHCL 3			
	Spin coating: 500 rpm/30 s			
	Baking: Hotplate under air			
	120°C for 4h			
	(I34)			
	EB-PEI	120 µm	18×22 mm²	28.2 ± 5.3
	Concentration: 150 mg/ml			
	Solvent: Methanol			
	(I11)			
	EB-PEI	120 µm	17×18 mm²	28.2 ± 5.3
	Concentration: 150 mg/ml			
	Solvent: Methanol			
	(I12)			

Table 9 :

 9 Equivalent circuit parameter extracted for the uncoated and HBPEI Silane 1:0.5 coated resonator at ambient condition (40% RH and 22 °C).

	Type	R1 (Ohm) R2 (Ohm)	C2 (pF)	T	E1	E2
	Uncoated	4.11	2.64	2.35	7.28	282.89	248.18
	Coated	5.79	2.13	2.4	7.31	279.57	252.81

Table 10 :

 10 Comparison of microwave humidity sensors based on different sensitive materials.

	Sensitive Material	Sensitivity (MHz/ % RH)	Sensitivity (dB/% RH)	Range (% RH)	Hysteresis (%)	Response/recovery times (s)	Frequency (GHz)	Ref
			0.278	0.0033	0-30				
	EB-PEI		1.188	0.030	30-70	<4	2700/2460	3.28	This work
			8.24	0.171	>80				
			3.65	0.05	30-50				
	COM HBPEI				<4	22/44	3.28	This work
			7.69	0.12	50-70				
	HBPEI 1:0.5	Silane	0.17 0.34	0.0038 0.010	30-50 50-70	<2	44/88	3.28	This work
			0.038	0.001	30-50				
	LPEI-COPh				<2	220/220	3.28	This work
			0.17	0.004	50-70				
			0.10	0.0010	30-50				
	LPEI-CH 2 -Ph				<1	220/220	3.28	This work
			0.18	0.0028	50-70				
	PEDOT: PSS	0.252	0.0018	20-50				
						Not given	Not given	2.4	[176]
			0.992	0.0058	50-80				
			0.18	0.0049				3.3	
	Polymeric film			30-90	0.0013	Not given		[177]
			0.108	0.0055				5.	
	GO		0.77	0.13	11.3-84.3	0.07	Not given	5.79	[178]
	CeO2		0.12	0.037	11-95	Not given	Not given	1.56	[179]

Table 11 :

 11 Comparison of RH prediction on the training data set: for LR, SVM, RF and KNN, performances are calculated over 20% of the dataset and averaged over 4 random splits; for GLR and GLR, performances are over 100% of the dataset.

	ML models	MAE (% RH)	MAPE (%)	R 2 (%)	Prediction time (ms)
	LR	2.4	5.5	94.1	1
	SVM	0.8	1.7	99.1	202
	RF	0.7	1.6	99.3	32
	KNN	0.6	1.5	99.4	6
	Exponential fit on freqdiff	1.8	4.1	96.3	1
	Exponential fit on magdiff	0.8	1.8	99.2	1
	GLR	1.1	2.5	98.7	1
	GPR	0.5	1.2	99.6	2000

Table 12 :

 12 Comparison of the calibration models on RH prediction from the test data set (experiment 2).

	ML models	MAE (% RH)	MAPE (%)	R 2 (%)	Prediction time (ms)
	LR	2.2	5.5	93.8	2
	SVM	1.1	2.4	98.6	864
	RF	1.0	2.3	98.6	64
	KNN	1.0	2.2	98.7	16
	Exponential fit on	1.9	4.4	95.4	1
	freqdiff				
	Exponential fit on	0.8	1.8	99.2	1
	magdiff				
	GLR	1.1	2.5	98.8	1
	GPR	0.9	2.2	99.1	12000

Table 13 :

 13 Comparison of the performance of the I31sensor laboratory calibration models on RH prediction from the outdoor dataset (experiment 4).

	Laboratory calibration models	MAE (% RH)	MAPE (%)	R 2 (%)
	Exponential fit on freqdiff	4.2	8.2	88
	Exponential fit on magdiff	4.4	8.0	87
	GPR	5.6	11	85
	LR	6.1	12	75
	GLR (order 2)	5.8	10	75

Table 14 :

 14 Comparison of performances of the GLR models integrating a second environmental variable (EV) in addition toRH. -0.43 and ΔMag (dB)= -0.015 * e (0.061 * RH) + 0.051) although the coefficients differ from those of Sensor I21 COM HBPEI (𝛥𝛥f (MHz)= -20 * e (0.037 * RH) + 74 and ΔMag (dB)= -0.19 * e (0.041 * RH) + 0.87). The data from E3 was divided into an 80% training set and a 20% testing set and the results were averaged over four different data splits. The exponential calibration models on sensor I31 yield MAE of 5.5% RH, 10.5% RH and R 2 of 92 % and 68 % on the magnitude and frequency response respectively.

	Variables	Calibration	Calibration	Inversion EV
	(RH, EV)	R 2 Train (%)	R 2 Test (%)	R 2 (%)
	RH	92.9	92.6	
	RH, temperature	93.7	92.9	-15
	RH, CO 2	94.0	92.4	-2200

Table 15 :

 15 Comparison of MAE (expressed in % RH) of sensor I31 depending on the calibration method using KNN algorithm.

	Calibration strategy	Algorithm	MAE on Lab data E3	MAE on Outdoor data E4
			(% RH)	(% RH)
	Calibration transfer from I21	Direct standardization (DS)	15	5.9
		Slope-Bias correction (SBC)	14	4.1
		Direct transfer (No correction)	20	11
	Direct calibration of I31	Calibration on transfer standards	18	5.2
		Calibration of all data	3.7	3.0
	Naïve Model		28	13

Table 16 :

 16 Comparison using the two methods and by adding the sensor magsen response. The MSE indicator is used here.

	Calibration method	RMSE (ppb)	RMSE (ppb)
		Without I33 magsen response	With I33 magsen response
	Non-parametric method	8.17	8.01
	Parametric method	8.11	7.50

Table 17 :

 17 Comparison of MAE (°C) and MAPE (%) of KNN and RF temperature prediction using the sensitive channel response of the LPEI-COPh-based I23 sensor and the reference channels responses of sensors I33 and I34.

		KNN		RF	
	Sensor	MAE (°C)	MAPE (%)	MAE (°C)	MAPE (%)
	I23 LPEI-COPh	3.67	9.2	3.36	9.4
	I33RE (reference resonator)	4.22	12.2	4.19	10.7
	I34RE (reference resonator)	6.45	18.98	6.52	17.6

Table 18 :

 18 Comparison of MAE (ppb) and MAPE (%) of KNN and RF Ozone prediction using environmental variables and sensors magsen responses.This search clearly confirms the importance of knowing NO2 to predict ozone. Using the environmental variables (RH and NO2) enables prediction of ozone with a good MAE and MAPE (11.04 ppb, and 13.18% for KNN and 11.45 ppb and 14.23% for RF). Adding the I33 sensor magsen response improves the MAE and MAPE (10.28 ppb, and 12.61% for KNN and 11.01 ppb and 12.9% for RF) affirming the secondary sensitivity of the HBPEI Silane 1:0.5 to ozone. The KNN algorithm showed slightly better results in this case as compared to RF algorithm. Using I31SE magnitude response instead for RH and the I23SE magnitude response instead of temperature with the I33SE sensor response increases the ozone prediction capabilities of the models. This emphasizes that COM HBPEI-based sensor could be a good replacement for RH variable and that the LPEI-COPh-based sensor could be a good replacement for the temperature variable.

		KNN		RF	
	Variable	MAE (ppb)	MAPE (%)	MAE (ppb)	MAPE (%)
	RH+NO2	11.04	13.18	11.45	14.23
	RH+NO 2 +temp	12.83	9.68	10.76	9.93
	RH+NO2+I33SE	10.28	12.61	11.01	12.9
	RH+NO 2 +temp+I33SE	13.32	11.7	10.95	10.92
	I31SE+NO2	9.76	12.26	10.1	12.54
	I31SE+I23SE+NO 2	12.28	12.43	9.87	12.15
	I31SE+NO2+I33SE	9.71	12.21	10.01	12.43
	I31SE+I23SE+NO 2 +I33SE	11.97	12.5	9.79	12.20

Table 19 :

 19 Summary of Laboratory and field Performances for microwave sensors. ++++ indicate the best performance of a given sensor while ---indicate worst performance.

	Sensitive	Laboratory characterisation	Outdoor deployment
	polymer					(prediction results upon calibration)
		RH	Temp	CO 2	NO 2 , SO 2	RH (%)	Temp (°C)	O 3 (ppb)
		(%)	(°C)	(ppm)	and O 3			
					(ppb)			
	EB-PEI	++++ ++++		---	+++	-	-
	COM	++++ ++++	+	---	++++	-	-
	HBPEI							
	HBPEI	++	++	++++	----	++	++	++
	Silane							
	1:0.5							
	LPEI	+	+++	++	----	+	+++	---
	COPh							
	LPEI-	+	++	++	----	++	++	---
	CH2Ph							

  The individual 𝑆𝑆 𝑖𝑖𝑗𝑗 parameters are determined by measuring the forward and backward travelling waves. The reflection parameters (𝑆𝑆 11 and 𝑆𝑆 22 ) and the transmission parameter ( 𝑆𝑆 21 and 𝑆𝑆 12 ): Where 𝑆𝑆 21 = 𝑆𝑆 12 and 𝑆𝑆 11 = 𝑆𝑆 22 for a reciprocal network.

			1 -𝑉𝑉 2 -� = �	𝑆𝑆 11 𝑆𝑆 12 𝑆𝑆 21 𝑆𝑆 22	� �	𝑉𝑉 1 + 𝑉𝑉 2 + �	(0.33)
	𝑆𝑆 11 =	𝑉𝑉 1 -𝑉𝑉 1 + �	𝑉𝑉 2 + =0 = , 𝑆𝑆 22 = 𝑉𝑉 1 𝑉𝑉 1 + =0 𝑉𝑉 2 -𝑉𝑉 2 + � + � 𝑉𝑉 1 -	𝑉𝑉 1 + =0	, 𝑆𝑆 21 =	𝑉𝑉 2 -𝑉𝑉 1 + �	𝑉𝑉 2 + =0	𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆 12	(0.34)
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IV.2.Data acquisition and processing

The VNA is controlled using automatic data acquisition tool storing the Sij parameters at every sampling time in a USB drive or PC. Then, data processing tools are used for sensor response extraction.

IV.2.1.Automated instrument control and data acquisition

To ensure a real-time automatic saving of Sij parameters measurement conducted by the VNA, we developed a communication program that facilitates the interaction between the VNA and the computer (PC or Raspberry Pi 4). This program is based on the SCPI (Standard commands for programmable instrument) protocol. Connection between the VNA and the computer is established either through Ethernet or USB COM port. The control program was programmed in Python and to enhance user experience, a user-friendly graphical was also created as depicted in Figure 56a. The software controls both the VNA and an Arduino Uno board equipped with reference industrial sensors. It also enables data saving as detailed in the flow chart described in Figure 56b. The interface enables users to choose the specific VNA model in use and the appropriate Arduino port. They can also specify the VNA parameters (number of points, IFBW, start and stop frequency), the VNA calibration filename, and the desired file format for saving. The Sij parameters are stored as SNP files (Touchstone files), where 'N' denotes the number of ports. For instance, a 2-port configuration will use the S2P format.

Upon pressing the "start" button, the program establishes connections with the VNA and the Arduino, retrieving the data input from the GUI. The VNA windows and traces are set up, the Appendix Appendix Chapter I

Conversion of µg/m3 to ppm and ppb

Air pollutants concentration in the atmosphere is typically measured in the mass unit of the substance per volume of air (μg/m 3 ). These concentrations can also be converted to parts per billion (ppb) or parts per million (ppm) using the formula below:

Where Mw is the molecular weight of the gas.

economical electronic setups, such as oscillators. In resonators, sensing layer can be deposited on to the IDTs as shown on Figure 112b.

Mass-sensitive sensors like SAW and BAW are widely chosen due to its small size, high mass sensitivity. However, their complex fabrication process contributes to the higher cost of these sensors compared to other gas sensor. The manufacturing processes often involve precise lithography and deposition techniques, as well as specialized materials, which add to the overall cost of production.

Appendix Chapter II

Static field laws

The Biot-Savart law is the fundamental of magnetostatics, it describes the relationship between magnetic fields and the electric currents generating them. Considering Figure 113a, the static magnetic field (magnitude and direction) at point P due to a curren carrying conductor is inversely proportional to the square distance between the conductor and the point (R) and proportional to the current (I) and infinitesimal conductor segment length (dl) as described by equation (0.2).

Where 𝑟𝑟̂ is the unit vector from the conductor to the point of the magnetic field, is the angle between 𝐼𝐼𝑎𝑎𝐶𝐶 and 𝑟𝑟̂ and |𝑎𝑎𝐻𝐻 � �⃗ | is the magnitude of the field. The direction of 𝑎𝑎𝐻𝐻 � �⃗ is determined by applying the right-hand rule representing the vector product 𝐼𝐼𝑎𝑎𝐶𝐶 × 𝑟𝑟. Since a wire segment current generates a magnetic field at a point, integrating the contributions from each wire segment current will give the total magnetic field from a current on a wire.

The Faraday's law of electromagnetic induction stipulates the relation between an induce voltage around a closed path and the rate of change of magnetic flux. Considering the illustration on Figure 113b, the induced voltage drops (V) around a close loop of length (𝐶𝐶) due to time-varying 𝐵𝐵 �⃗ can be calculated by the closed contour integral of the electric field 𝐸𝐸 �⃗ as defined by equation (0.3).

The relationship between the static magnetic field around a current carrying wire and the direct current itself which serve as its source is stated by Ampere's circuital law. That is, the close loop integral of the magnetic field is equal to the current enclosed by the loop as in equation (0.4). Considering the illustration on c, the magnetic field magnitude at a distance r from the center of the conductor is given by equation (0.5).

� 𝐻𝐻 � �⃗

A gaussian surface is a closed surface with no holes enclosing a volume of in space. Gauss's law states that the total electric flux through a closed surface is proportional to the surface charge. That is, the close loop integral of the constant electric flux vector (𝐶𝐶 � �⃗ ) is equal to the charge (𝑄𝑄) enclosed by the surface as described by equation (0.6).

� 𝐶𝐶 � �⃗

Where 𝑍𝑍 0 is characteristic impedance of the transmission line and 0 ≤ |Γ| ≤ 1. When 𝑍𝑍 𝐿𝐿 = 𝑍𝑍 0 , Γ = 0 meaning there is no reflection. Whereas when there is perfect impedance mismatch Γ = 1 , indicating that all of the incident wave is reflected back and no power is transmitted to the load.

Sensor performance evaluation

Sensitivity

Sensitivity relates the change in the sensor's output response (𝛥𝛥𝛥𝛥) to the change in the input stimulus ( 𝛥𝛥𝑃𝑃). The input stimulus can either be a physical parameter such as temperature, pressure etc or a chemical parameter like gas concentration. High sensitivity implies the ability to detect very small variations of the stimuli.

For sensors with linear response, the sensitivity can be determined by computing the slope of the graph relating the sensor's output response to the input stimulus for sensors. The sensitivity of a non-linear sensor will then vary across the input range. Here, the sensitivity at a given point is calculated by calculating the slope of the tangent at that point.

Hysteresis and reversibility

The direction of variation of the input stimulus may influence the sensor response. Hysteresis describes the difference in the sensor response to increasing and decreasing input stimulus. It is expressed in percentage of the sensor's full-scale output and is usually caused by mechanical and/or chemical properties of the designed sensor. Considering the hysteresis curve in Figure 117 the hysteresis is given by:

Where

Range and limit of detection (LOD)

Sensor detection range is an important sensing feature which defines the sensor's applicability scope and operational utility. It refers to the span of input values over which the sensor can produce a reliable and accurate response. On the other hand, the limit of detection (LOD) is a sensor's smallest measurable input with a significant degree of confidence and accuracy. LOD is a crucial characteristic, especially in application which need the measurement of trace quantities like bio or gas sensing. It is a measure of a sensor's sensitivity: a sensor lower LOD exhibit a higher sensitivity thereby indicating its capability to detect smaller amount of the target. LOD

Where 𝜎𝜎 𝑦𝑦 is the standard deviation of the sensor's response, and S is the slope of the calibration curve (sensitivity). 𝜎𝜎 𝑦𝑦 can be calculated as the standard deviation of the y intercept of the sensor calibration regression line.

Repeatability and reproducibility

Repeatability is a measure of the consistency in a sensor's response for the same input stimulus when measurements are done under the same conditions over a short period of time. This quantifies a sensors degree of precision. Reproducibility, on the other hand, refers to the ability of a sensor to provide a consistence response for the same input stimulus when measurements are done under different conditions and over a long period of time.

Machine learning algorithms

Support vector machine regression

SVM is a ML regressor which finds an optimal hyperplane to categorize data. It is a nonparametric technique that relies on kernel functions (linear, polynomial, radial basis function (rbf) etc.). The rbf kernel is the most used for non-linear relationship between data and target. Kernel coefficient (gamma) and regularization parameter (C) influences the accuracy of the SVM model [START_REF] Mountrakis | Support vector machines in remote sensing: A review[END_REF].

Random forest regression

The RF regressor is an ensemble of decision trees regressors combined with a technique called bagging. Here, the decision trees are used as parallel estimators. Having decision trees combined in parallel can increase the accuracy of the model and reduce overfitting. RF has as important parameters the maximum depth of decision tree, the number of estimators (trees), the minimum sample leaf, which should be chosen carefully to have the most accurate and generalizable model [START_REF] Belgiu | Random forest in remote sensing: A review of applications and future directions[END_REF]. Commercial hyper-branched polyethyleneimine (HBPEI) (4.0 g, 0.93 mol, 1 eq.) of (Polysciences, inc., MW=10 kDa) was dissolved in 15 mL of methanol. Afterwards, 1, 2epoxybutane (12.1 mL, 0.14 mol, 1.5 equiv. with respect to the nitrogen content of PEI) were added to the polymer solution under stirring at room temperature. The excess of epoxy butane was used for converting all the primary and secondary amines into tertiary amines. After one day, the methanol and the unreacted epoxy butane were removed under vacuum at 60°C using a rotary evaporator and finally by using vacuum oven. Quantitative yield of resultant HBPEI-BuOH was obtained and structural characterization was performed by using 1 HNMR, and 13 CNMR.

Appendix chapter IV

Sensor's response to gases (NO 2 , SO 2 , and O 3 ) under laboratory conditions

The sensors were characterized under a variety of atmospheric gases in laboratory, NO2 up to 5,000 ppb, SO2 up to 3500 ppb and O3 up to 1,000 ppb. These concentration ranges were selected based on typical environmental levels. Characterization for CO, NO2 and SO2 was performed at different RH levels (0, 30, and 60% RH), while for O3, testing was conducted at ambient RH due to limitations of the ozone generator.

Figure 124 shows the characterization under NO2 at different RH levels in the 0 to 3500 ppb range. No obvious response in frequency and magnitude were observed to NO2 at 0%, 30% and 60% RH.