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Résumé: Le domaine des géosciences vise à com-
prendre de manière exhaustive le système terrestre.
Il intervient dans la compréhension de probléma-
tiques majeures, tel que l’impact du changement
climatique ou les risques liés à des événements
météorologiques extrêmes. Les géosciences bénéfi-
cient considérablement de la massification de don-
nées à grande échelle, ce qui les rend propices
à l’utilisation d’algorithmes de Machine Learning
(ML). Du fait de leurs spécificités, les données
géophysiques nécessitent des formulations et des
méthodologies ML innovantes en vue de leur anal-
yse. Le travail effectué dans cette thèse apporte de
nouveaux outils basés sur le ML adaptés aux dé-
fis des géosciences, ouvrant des perspectives allant
au-delà du seul domaine des géosciences. Dans
la première partie de cette thèse, nous proposons
une approche ML pour estimer la distribution de
variables spatio-temporelles dynamiques à partir
d’observations bruitées et irrégulières. Pour ce

faire, nous introduisons un cadre d’apprentissage
pour estimer à la fois l’état d’un système dy-
namique et les incertitudes sous forme d’une ma-
trice de covariance. Cette méthode trouve des
applications dans les problèmes d’assimilation de
données, pour lesquels on dispose d’observations
bruitées et éparses couplées à des connaissances
sur la dynamique physique. Les modèles de
prévision météorologique ou océanographique sont
concernés. La deuxième partie de cette thèse
présente un modèle génératif ML produisant de
nouveaux échantillons d’une distribution multivar-
iée inconnue à partir d’exemples. Notre simula-
teur fournit des échantillons en dehors des don-
nées d’entraînement et permet d’extrapoler. Cette
approche a des applications directes dans l’étude
des risques environnementaux puisqu’elle permet
la simulation numérique d’échantillons extrêmes
rares.

Title: Statistical learning for geosciences: methods for extreme generation and data assimilation
Keywords: Extreme value theory, Machine Learning, Data assimilation, Geosciences

Abstract: The field of geosciences aims to com-
prehensively understand the Earth system. It ad-
dresses critical challenges, including the impact
of climate change or management of risks from
extreme events. Geosciences benefit significantly
from the influx of large-scale data, making it con-
ducive for machine learning (ML) applications. Be-
cause of its specific features, the analysis of geo-
science data requires innovative ML formulations
and methodologies. The work in this thesis con-
tributes novel ML-based tools tailored for geo-
science challenges, with the potential for broader
applications beyond the geosciences domain. In
the first part of this thesis, we propose a ML ap-
proach to estimate the distribution of dynamically
driven spatio-temporal variables from noisy and ir-

regular observations. To do so, we introduce a
learning framework to estimate both the state of a
dynamical system with associated uncertainties as
a covariance matrix. Such method can finds ap-
plications to data assimilation problems, in which
noisy and sparse observations are available cou-
pled with knowledge about the physical dynamics.
Weather or oceanographic forecast models are con-
cerned. The second part of this thesis presents
a ML-based generative model which produce new
samples of an unknown multivariate distribution
given examples. Our simulator provides samples
outside of the training data and allows to extrapo-
late. This approach has direct applications to the
study of environmental hazards since it allows nu-
merical simulation of rare extreme samples.
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RÉSUMÉ EN FRANÇAIS

Contexte

Le champ de recherche des géosciences vise à fournir une compréhension globale du système terrestre
et de ses composantes. Les géosciences se situent à l’intersection de plusieurs domaines, notamment la
physique, la climatologie, la géologie, l’hydrologie ou encore la chimie.

Notre société est confrontée à des défis considérables liés aux géosciences (Press, 2008; Reid et al.,
2010), dont les impacts sont potentiellement désastreux pour l’humanité. L’étude des conséquences du
changement climatique (Bermúdez et al., 2021), l’évaluation de la qualité de l’air (Holloway et al., 2021) ou
la gestion des risques liés aux catastrophes environnementales (Marchi et al., 2010) comptent parmi ces défis.

Les géosciences, à l’instar de nombreux autres domaines scientifiques, sont modifiées en profondeur par
l’afflux continu de données à grande échelle. Les progrès des technologies de détection, par exemple les
satellites de télédétection, et la multiplication des capteurs opérationnels, ainsi que les améliorations des
capacités de calcul et de stockage, ont fait des géosciences un domaine de recherche riche en données
qui, de plus, sont généralement en accès libre. Cette accessibilité à des ensembles de données substantiels
représente un domaine d’application remarquable pour l’apprentissage automatique (ou Machine Learning),
qui désigne le domaine de recherche consacré au développement d’algorithmes capables d’effectuer une tâche
en généralisant à partir d’exemples. L’apprentissage automatique a eu des répercussions importantes dans
de nombreux domaines de recherche, tels que la médecine (Rajkomar et al., 2019), la robotique (Wang &
Siau, 2019) ou le traitement automatique du langage naturel (Lauriola et al., 2022). Des contributions sub-
stantielles pour relever des défis géoscientifiques ont vu le jour au sein de la communauté de l’apprentissage
automatique (Lam et al., 2023), et d’autres avancées sont espérées (Karpatne et al., 2018).
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Problématiques

Afin d’exploiter des données géophysiques, il convient de garder à l’esprit que les géosciences présen-
tent des caractéristiques qui les différencient nettement de nombreux autres domaines d’application de
l’apprentissage automatique. En particulier, les phénomènes géophysiques sont intrinsèquement régis par des
lois et des principes physiques. Des concepts statistiques spécifiques (Katz et al., 2002) peuvent également
apparaître. Les complexités découlant de ces attributs précis rendent nécessaires de nouvelles formulations
de problèmes et méthodologies dans le domaine de l’apprentissage automatique. Il est important de noter
que ces innovations peuvent être pertinentes bien au-delà du domaine des géosciences, offrant des possi-
bilités d’application à d’autres champs de recherche. Le travail effectué au cours de cette thèse s’inscrit
dans ce cadre. En effet, nous avons développé de nouveaux outils méthodologiques basés sur l’apprentissage
automatique qui abordent des questions pertinentes pour les géosciences, visant en particulier à fournir une
représentation probabiliste des processus géophysiques. Plus précisément, les techniques développées visent
à répondre aux deux questions suivantes :

• Comment estimer la distribution de variables spatio-temporelles dynamiques à partir d’observations
bruitées et irrégulières ? (Question I)

• Comment générer des exemples réalistes d’extrêmes spatiaux multivariés ? (Question II)

Une tentative de réponse aux Questions I et II a été proposée au cours de cette thèse à travers deux articles:

• Lafon, N., Fablet, R., and Naveau, P. Uncertainty quantification when learning dynamical models and
solvers with variational methods. Journal of Advances in Modeling Earth Systems, 15(11), 2023a

• Lafon, N., Naveau, P., and Fablet, R. A VAE approach to sample multivariate extremes. arXiv preprint
arXiv:2306.10987, 2023b, en cours d’examen.

Paradigme

Pour répondre aux deux questions, nous avons dû examiner comment une distribution de probabilité peut
être apprise à partir de données exemples. Notre paradigme est de supposer que les données observées X =(
x(i)
)
i=1:N

peuvent être modélisées par un élément aléatoire X tiré d’un modèle hiérarchique impliquant :

• Un a priori Z ;

• Une vraisemblance X | Z.

A partir de ce modèle hiérarchique, les quantités à estimer dépendent de la question traitée :

• Dans Lafon et al. (2023a), nous souhaitons estimer Z | X, appelée la postérieure ;

• Dans Lafon et al. (2023b), on cherche à estimer l’a priori Z et la vraisemblance X | Z afin de
reproduire artificiellement la génération des données observées.

Ce type de problème relève de l’inférence bayésienne. Pour déduire ces quantités, le domaine de l’inférence
variationnelle (voir, par exemple Fox & Roberts, 2012; Zhang et al., 2018) a émergé. L’inférence vari-
ationnelle est une méthodologie qui permet de résoudre un problème d’inférence bayésienne de manière
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efficace même pour de grands ensembles de données observées. Elle repose sur la résolution d’un problème
d’optimisation, et plus précisément sur la maximisation d’une borne inférieure de la quantité

∑N
i=1 log(pX(x(i))),

où pX est la fonction de distribution de probabilité de X. Cette approche de maximisation est connue sous
le nom de maximisation de la borne inférieure de l’évidence (ou maximisation de ELBO dans la littérature).

Dans l’ensemble, nous utilisons des outils et un formalisme qui sont familiers à la communauté de la
recherche en statistiques. Par ailleurs, nous traitons, à l’aide de méthodes d’apprentissage automatique, des
questions soulevées à l’origine dans le domaine de la recherche en statistiques. Par conséquent, il semble
approprié de considérer notre travail comme une contribution à la communauté de l’apprentissage statis-
tique, comme nous l’avons indiqué dans le titre de ce manuscrit. Bien que la définition de l’apprentissage
statistique ne soit pas univoque (Vapnik, 1999; James et al., 2013), nous considérons que l’apprentissage
statistique partage les mêmes objectifs que l’apprentisage automatique, c’est-à-dire l’apprentissage et la
généralisation à partir de données, mais avec un intérêt plus poussé pour les propriétés statistiques des
objets manipulés.

Contributions

Réponse à la Question I
La Question I est centrale dans les modèles de prévision météorologique (Harper et al., 2007). En

effet, pour ces modèles, des observations bruitées de certaines variables d’intérêt (par exemple, la pluie, le
vent...) sont disponibles en certains points de l’espace à des intervalles de temps donnés. La connaissance
de la dynamique physique de ces variables est intégrée dans les modèles numériques. La combinaison des
observations et des connaissances a priori pour estimer les variables d’intérêt sur l’ensemble de l’espace et du
temps est particulièrement complexe. L’assimilation de données est le domaine de recherche dédié (Evensen
et al., 2022). De nombreuses méthodes ont été développées au cours des dernières décennies pour effectuer
cette estimation, en incorporant récemment des techniques issues de l’apprentissage automatique (Brajard
et al., 2021; Bocquet, 2023). En répondant à la Question I, nous permettons non seulement d’estimer la
variable d’intérêt, mais nous estimons également la distribution de la variable dans son ensemble. Ainsi,
nous pouvons quantifier l’incertitude de notre prédiction. La nouveauté de notre approche réside en ce
qu’elle est entièrement basée sur l’exploitation des données d’observations. De plus, le formalisme que nous
avons développé permet de consolider les ponts entre les communautés de l’assimilation de données et de
l’apprentissage automatique.

L’article (Lafon et al., 2023a) détaille notre réponse à la Question I. Nous proposons une approche basée
sur l’apprentissage automatique pour approximer par une distribution gaussienne la distribution postérieure
de l’état d’un système dynamique compte tenu d’un ensemble d’observations. Cela implique d’estimer à la
fois la moyenne et la covariance de la distribution gaussienne. La figure 1 illustre ce que permet d’obtenir
notre approche lors d’une expérience dans laquelle on s’est intéressé aux mesures journalières de débits
d’affluents du Danube. Pour entraîner notre algorithme, on dispose des points bleus turquoise. A l’aide de
ces points, on estime la moyenne (courbe rouge) et la covariance de la distribution du débit étant donné les
observations. La moyenne constitue notre estimation du débit, à comparer avec les mesures réelles du débit
en bleu foncé. Le calcul de la covariance nous permet de tracer l’ère verte qui correspond à l’intervalle de
confiance à 95 % de notre estimation du débit.
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Figure 1: Pour le mois de juillet 2007, on représente le débit estimé (courbe rouge), etl’intervalle de confiance à 95% associé. Sont également représentées les mesures journal-ières servant à entraîner notre algorithme (points bleus turquoise), ainsi que les mesuresrestantes (points bleus foncés) permettant d’évaluer nos résultats. Les débits sont exprimésenm3/s.
Pour obtenir ces résultats, nous avons étendu le travail de Fablet et al. (2021b) pour estimer la covariance

de la distribution postérieure en plus de la moyenne en tirant profit de formulations issues de l’inférence
variationnelle.

Réponse à la Question II
La Question II trouve des applications directes dans l’étude des risques environnementaux. En effet, par

extrêmes, nous entendons les événements de plus grande amplitude. Une approche répondant à la Question
II permet la simulation numérique d’échantillons extrêmes rares. Ainsi, un système peut être testé pour
s’assurer qu’il peut faire face avec succès à de tels échantillons, dans un processus appelé test de résistance
(Longin, 2000). En outre, l’échantillonnage des extrêmes peut également être utilisé pour évaluer les risques,
car les tirages stochastiques permettent d’estimer la probabilité d’occurrence d’un événement exceptionnel
qui n’a peut-être jamais été observé. La figure 2 illustre la problématique d’évaluation du risque inhérent à
l’occurence d’extrêmes dans un cadre bivarié.

La théorie des valeurs extrêmes est le fondement théorique qui permet de modéliser de manière appro-
priée ces événements extrêmes et d’extrapoler au-delà du phénomène observé de plus grande amplitude.
Les résultats de probabilité asymptotique caractérisent la distribution des événements extrêmes, qu’ils soient
univariés ou multivariés. Ces résultats sont ensuite utilisés dans la pratique pour définir des modèles adaptés
au sous-ensemble des données les plus extrêmes de l’ensemble de données étudié. La philosophie des ap-
proches spécifiquement conçues pour les extrêmes contrastent avec l’objectif généralement recherché dans
le domaine de recherche de l’apprentissage automatique. En effet, les techniques de l’apprentissage automa-
tique visent à apprendre à effectuer une certaine tâche à partir de données exemples, tout en minimisant une
erreur statistique moyenne (Bishop & Nasrabadi, 2006). Les extrêmes étant rares dans un ensemble de don-
nées, ils ont très peu d’influence sur la forme d’une solution minimisant une erreur moyenne. Les extrêmes
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Figure 2: Comment, à partir d’observations (points bleus), peut-t-on échantillonner demanière cohérente dans les régions extrêmes (carré noir) afin d’estimer la probabilitéd’événements rares ?
d’un ensemble de données sont même parfois traités comme des anomalies et supprimés de l’ensemble de
données avant l’apprentissage dans de nombreux algorithmes.

Ainsi, une réponse à la Question II basée sur des algorithmes issus de l’apprentissage automatique
est très utile pour donner à ces algorithmes une cohérence dans les statistiques extrêmes. Les propriétés
d’extrapolation permises par la théorie des valeurs extrêmes s’ajouteraient alors à la formidable capacité
de généralisation offerte par les approches de l’apprentissage automatique. La simulation d’échantillons
à partir d’une distribution inconnue est une tâche que plusieurs études ont abordée avec succès dans la
communauté de l’apprentissage automatique au cours de la dernière décennie, via la création de modèles
génératifs (Kingma & Welling, 2013; Goodfellow et al., 2014). Notre réponse à la Question II s’inscrit
dans le cadre de recherches récentes qui combinent modèles génératifs et théorie des valeurs extrêmes pour
échantillonner des extrêmes multivariés (Huster et al., 2021; Allouche, 2022; Jaini et al., 2020). Ces travaux
contribuent à la création d’un lien entre les domaines de recherche de l’apprentissage automatique et des
valeurs extrêmes. Notre travail est unique en ce sens que, d’une part, la famille d’approches génératives
sur laquelle nous nous concentrons n’avait jamais été adaptée à la génération d’extrêmes (depuis, une autre
tentative de Zhang et al. (2023) utilise cette famille) ; d’autre part, nous faisons un usage intensif de la
théorie des valeurs extrêmes multivariées.
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INTRODUCTION

Context

The research field of geosciences aims to provide a comprehensive view of the
Earth system and its intricate, interrelated components. Geosciences reside at the
intersection of various fields, including physics, climatology, geology, hydrology and
chemistry, to name but a few.

Our society is confronted with substantial challenges that are related to geo-
sciences thematic (Press, 2008; Reid et al., 2010). Examples include exploring
the consequences of climate change (Bermúdez et al., 2021), assessing air quality
(Holloway et al., 2021) or managing risks to critical infrastructure due to extreme
hazards like hurricanes or flooding (Marchi et al., 2010).These examples are of
particular interest due to their potentially disastrous impacts for human beings.

The continuous influx of large-scale data is profoundly changing almost every
scientific field, and geosciences are no exception. Advancements in sensing tech-
nologies, e.g., remote sensing satellites (Nolin, 2010), and the multiplication of
operating sensors, as well as enhancements in computational and storage capabili-
ties, have made geosciences a field of research rich in data from which knowledge
can be extracted.

In geosciences, data sets are often widely available. This accessibility to sub-
stantial data sets presents a remarkable opportunity for machine learning (ML).
This is the research era dedicated to the development of algorithms that can per-
form a task by generalizing from example data. ML has brought significant impacts
in many research fields, such as medicine (Rajkomar et al., 2019), robotics (Wang
& Siau, 2019) or natural language processing (Lauriola et al., 2022). Substantial
ML contributions to geoscientific challenges hold profound societal significance
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(Lam et al., 2023). Further breakthroughs are expected (Karpatne et al., 2018).

Main questions

Considering the array of scientific disciplines contributing to geosciences and
the broad spectrum of questions it addresses, the analysis of geoscientific data
presents several distinctive characteristics that markedly differentiate it from many
other applied data science problems. Notably, geoscientific phenomena are inher-
ently governed by physical laws and principles. They also may encompass objects
that involve specific statistical concepts (Katz et al., 2002). The complexities
stemming from these specific attributes drive the necessity for novel problem for-
mulations and methodologies within the realm of ML. Importantly, these inno-
vations may hold relevance beyond the domain of geosciences, offering broader
applicability to various problem domains. The work carried out during this thesis
falls within this framework. Indeed, we have developed new methodological tools
based on ML that address issues relevant to the geosciences, and in particular to
provide learning-based probabilistic representation of geoscientific processes. More
specifically, the techniques developed aim to answer the following two questions:

• How to estimate the distribution of dynamically driven spatio-temporal vari-
ables from noisy and irregular observations? (Question I)

• How to generate realistic examples of multivariate spatial extremes? (Ques-
tion II)

An attempt to answer Questions I and II has been proposed during this PhD
through two articles:

• Lafon, N., Fablet, R., and Naveau, P. Uncertainty quantification when learn-
ing dynamical models and solvers with variational methods. Journal of Ad-
vances in Modeling Earth Systems, 15(11), 2023a

• Lafon, N., Naveau, P., and Fablet, R. A VAE approach to sample multivariate
extremes. arXiv preprint arXiv:2306.10987, 2023b, submitted.

Geoscientific relevance of main questions and related research
fields

Question I is central to weather forecast models (Harper et al., 2007). For such
models, noisy observations of certain variables of interest (e.g. rain, wind...) are
available at certain points in space at regular time intervals. Additionally, knowl-
edge about the physical dynamics of these variables is integrated in the models.
Coupling between observations and physical information, the research field of data
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assimilation (DA) (Evensen et al., 2022) has developed approaches to estimate the
variables of interest over the whole of space and time. Latest approaches incor-
porate techniques from ML (Brajard et al., 2021; Bocquet, 2023). By answering
Question I, not only the variable of interest is estimated, but also the distribution
of the variable as a whole, which quantifies the uncertainty of the prediction. Our
novelty is to propose a fully data-driven approach and to consolidate bridges be-
tween the DA and ML communities.

Question II has direct applications to the study of environmental hazards. By
extremes we mean events of greatest amplitudes. Answering Question II will allows
numerical simulation of rare extreme samples. Thus, a system can be tested to en-
sure that it can successfully cope with such samples, in the so-called stress-testing
process (Longin, 2000). Additionally, sampling of extremes can also be used to
evaluate risks, as stochastic draws allow to estimate the probability of occurrence
of an exceptional event that may never have been observed. Extreme value the-
ory (EVT) provides the theoretical ground to appropriately model these extreme
events and to be able to extrapolate beyond the observed phenomenon of higher
amplitude (Coles et al., 2001). Asymptotic probability convergence theorems char-
acterize the laws of extreme events, whether univariate or multivariate. These limit
laws are then used in practice to define models that are fitted to the subset of the
most extreme data in the data set under study. The philosophy behind approaches
specifically built for extremes contrast with the objective generally sought in the
field of ML research. ML techniques learn to perform a certain task from example
data, while minimizing an average statistical error (Bishop & Nasrabadi, 2006).
Since extremes are rare in a data set, they have very little influence on the shape
of a solution minimizing an average error. Extremes in a data set are sometimes
even treated as outliers and removed from the data set before training in many
ML algorithms. Thus, an ML-based answer to Question II would be very useful for
giving ML algorithms consistency in extreme statistics. With such an answer, the
extrapolation properties enabled by EVT would be added to the formidable gener-
alization capability offered by ML approaches. Our answer to Question II belongs
to a recent research effort that combines generative models and EVT to sample
multivariate extremes (Jaini et al., 2020; Huster et al., 2021; Allouche, 2022).
These works strengthen the link between the research fields of ML and EVT. Our
work is unique in that, on the one hand, the family of generative approaches on
which we focus has never before been adapted to the generation of extremes (since
then, another attempt by Zhang et al. (2023) uses this family); on the other, we
make extensive use of multivariate EVT.

To adress these two questions, our work has drawn substantially on various
fields of research. The nature of the work carried out in this thesis is therefore
interdisciplinary. Indeed, the themes addressed are partly EVT, partly ML tech-
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niques, and partly DA. As a side comment, note that we sometimes refer to deep
learning as the subset of ML methods which are based on multiple layers of artifi-
cial neural networks (NNs).

Key concept

Answering Question I, we examine how to learn a multivariate distribution
conditionally to observations. Answering Question II, we aim to learn a multivariate
distribution with particular attention to its tail, in order to generate new samples.
Thus, to answer both questions, a probability distribution has to be learned from
data examples. Our key concept is to assume that observed data X =

(
x(i)
)
i=1:N

can be modeled by a random element X drawn from a hierarchical model involving:

• A prior Z;

• A likelihood X | Z.

The quantities to be estimated depend on the problem:

• In Lafon et al. (2023a), we wish to estimate Z | X referred to as the
posterior;

• In Lafon et al. (2023b), we wish to estimate the prior Z and the likelihood
X | Z so we could emulate the generation process of the observed data.

These problems belong to the realm of Bayesian inference. In this context, the
field of variational Bayesiean inference (see, e.g. Fox & Roberts, 2012; Zhang et al.,
2018), often simply called variational Bayes (VB), has emerged. VB is a method-
ology that makes Bayesian inference computationally efficient and scalable to large
data sets. It relies on solving an optimization problem, more precisely maximizing
a lower bound of

∑N
i=1 log(pX(x(i))), where pX is the probability density func-

tion (pdf) of X. This maximization approach is known as evidence lower bound
(ELBO) maximization.

Overall, we use tools and formalism that are familiar to the statistical research
community. To some extent, we address questions that originally arose in the field
of statistical research by means of ML tools. Consequently, it seems appropriate
to consider our work as a contribution to the statistical learning community, as we
have indicated in the title of this manuscript. Although the definition of statistical
learning is not unequivocal, depending on the authors we refer to (Vapnik, 1999;
James et al., 2013), we limit ourselves to considering that statistical learning shares
the same objectives as for Machine Learning, i.e. learning from data, but with a
slightly greater interest in the statistical properties of manipulated objects.
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Outline of the thesis

The thesis is organized as follows. Chapter 1 presents the theoretical elements
necessary to understand the nuts and bolts of the developed methods, including
further details on VB. Additionally, some essential results of the EVT are recalled.
The concepts of some learning methods are also detailed, and more specifically the
so-called generative methods which are particularly relevant to answer Question II.
Finally, we briefly recall the main results of the research field of DA.

Chapter 2 provides a solution to Question I. This chapter reproduces Lafon
et al. (2023a) in its entirety, with a substantial preamble providing additional de-
tails on the background to our work and the methods on which it is based. In
this chapter, we extend the classical prerogatives of DA. Beyond estimating only
the state of a system from observations, we propose an approach that estimates
the probability distribution of the system state. To do so, we took our inspiration
from a data-driven approach which estimates the state from noisy observations.
By exploiting similarities between varational DA and VB formulation, we extend it
to approximate the distribution of the state.

Chapter 3 proposes an answer to Question II. To this end, we present a gen-
erative algorithm based on variational auto-encoders (VAE). The proposed archi-
tecture is based on the EVT and more particularly on the notion of multivariate
functions with regular variations. This chapter contains the complete article Lafon
et al. (2023b), with additional context elements.

At the beginning of each chapter, an overview is inserted. The abstracts of the
articles are also presented at the beginning of Chapter 2 and 3. In addition, red
inserts entitled "Key points" summarize the main elements of sections throughout
the manuscript. The key points insert of Chapter 1 also provide links to subsequent
chapters, detailing where and for what purposes the concepts introduced will be
used.

For whom this thesis is intended

This work is aimed at anyone wishing to delve deeper into one of these three
themes. We have therefore made a special effort to recall theoretical elements in
Chapter 1, aimed at a non-expert audience. In particular, Sections 1.2 and 1.4
on EVT and DA provide an introduction to these two concepts. Since we have
decided to present the complete Papers I and II in this manuscript (Chapters 2 and
3), some elements overlap between Chapter 1 and subsequent chapters.
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CHAPTER 1

BACKGROUND

Overview

Variational Bayes plays a crucial role to formulate the problems we deal
with. Section 1.1 recalls its basics and introduces the evidence lower bound
maximization, scheme that will be the backbone of our inferential strategy.

Additionally, this dissertation exploits extensively three different research
topics: extreme value theory, data assimilation and machine learning. The
aim of this section is to introduce necessary theoretical elements for each
of these research topics.

Section 1.2 recalls some aspects of univariate and multivariate extreme
value theory. With regard to univariate extreme values, the family of
possible limit distributions for the sequence of maxima of a series is
our starting point. Next, we recall a fundamental result about the limit
distribution of threshold exceedances, which has had major implications
in our work. The notion of regular variation is discussed, and its link
with the asymptotic properties of extrema is evoked. Some key results of
multivariate extreme value theory are also detailed, first by defining what an
extreme is in a multidimensional framework, and then by presenting notions
that extend the univariate framework, notably multivariate regular variation.

Section 1.3 introduces methods from the machine learning literature
occupying a significant part of the thesis work. These include generative
models which aim at learning a distribution from an example data set, and
recurrent networks that process sequential data (i.e. time-series).

Section 1.4 is devoted to recalling the building blocks involved in data assim-
ilation. In particular, two classical families of data assimilation methods are
presented: Kalman-based methods and variational assimilation. Moreover,
this section discusses the quantifaction of uncertainties when estimating a
variable of interest in a data assimilation problem.
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CHAPTER 1. BACKGROUND

1.1 . Variational Bayesian inference and evidence lower bound

In Bayesian inference, a common assumption is that observed data X =(
x(i)
)
i=1:N

is sampled from a random element X, and the generative process
involves a latent variable Z and a joint distribution p(x, z) over these two variables
(see, e.g. Zhang et al., 2018). The main object of interest in Bayesian inference is
the posterior distribution of latent variables given observations

p(z | x) = p(x, z)∫
p(x, z)dz

. (1.1)
In most cases, this quantity is intractable. It involves an integral that may prove
hard to compute, especially in high dimensional problems. The central idea of VB is
to approximate the model posterior by a simpler distribution called variational dis-
tribution, denoted q(z ; λ) which involves a set of variational parameters λ. These
parameters are adjusted to achieve the best matching. Ultimately, the optimized
variational distribution serves as an approximation of the posterior. Consequently,
VB transforms Bayesian inference into an optimization problem involving varia-
tional parameters. In practice, denoting zj the latent variables associated with the
observation x(j), we obtain the following approximation of p (z1, · · · , zN | X )

q (z1, · · · , zN ; λ1, · · · , λN ) =
N∏
i=1

q (zi ; λi) , (1.2)
with λj the set of variational parameters associated with the latent variable zj .
This kind of approximation is known as mean field variational inference (see, e.g.
Bishop & Nasrabadi, 2006, section 10.1.1). Usually, it is necessary to optimize
each λi for each data point xi.

For two distributions p(z) and q(z), a divergence D(p(z)∥q(z)) measures the
difference between the distributions, such thatD(p(z)∥q(z)) ≥ 0 andD(p(z)∥q(z))
is equal to 0 only when p(z) = q(z) for all z. VB amounts to minimizing a diver-
gence between the variational distribution and the posterior. The most commonly
used divergence is the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951)
defined by

DKL (p∥q) = Ex∼p(x)

[
log

(
p(x)

q(x)

)]
. (1.3)

For each observation x(i), classical variational Bayesian inference seeks to de-
termine variational parameters λi such that the variational distribution q(zi ;λi)
closely approximates the posterior p(zi | x(i)) in the sense of the KL divergence (see
Wainwright et al., 2008, Chapter 5). The ideal scenario would be to minimize the
KL divergence to zero, ensuring that the variational distribution precisely matches
the exact posterior. In practice, achieving this is seldom feasible: the variational
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distribution typically lacks sufficient flexibility due to under-parameterization, mak-
ing it challenging to capture the complete complexity of the true posterior.
Minimizing the KL divergence is equivalent to maximizing a related quantity, the
ELBO. The ELBO is a lower bound on the log marginal probability of the data,
log p (x). To make this lower bound appear, let us remark that

log p (x) = Ez∼q(z ;λ)

[
log

p (x, z)

p (z | x)

]
,

=Ez∼qϕ(z)

[
log

p (x, z)

p (z | x)
q(z ;λ)

q(z ;λ)

]
,

=Ez∼q(z ;λ)

[
log

p (x, z)

q(z ;λ)

]
+ Ez∼q(z ;λ)

[
q(z ;λ)

p (z | x)

]
,

=L(λ,x) +DKL (q(z ;λ)∥p (z | x)) , (1.4)
where

L(λ,x) = Ez∼q(z ;λ)

[
log

p (x, z)

q(z ;λ)

]
, (1.5)

corresponds to the ELBO. It is definitely a lower bound of log p (x) since the
KL divergence is non-negative. Obviously, maximizing the ELBO is equivalent to
minimizing the KL divergence between q(z ;λ) and p (z | x). For the considered
data set X , the overall ELBO is

N∑
i=1

L(λi,x(i)).

Key points of Section 1.1

▶ The purpose of variational Bayes is to find the best sets of param-
eters (λi)i=1:N to approximate the posterior p (z1, · · · , zN | X ) by
maximizing the evidence lower bound.

▶ The approaches we develop in the subsequent chapters are closely re-
lated to variational Bayes formulation and evidence lower bound max-
imization (see Sections 2.4 and 3.5). Additionally, we detail in section
1.3.1 how the variational Bayes formalism can be used not only to
approximate a posterior distribution but also to learn a generative
model known as variational auto-encoder that samples approximately
X.

1.2 . Elements of extreme value theory

This section delves into the primary outcomes of EVT. This theory focuses on
events that carry significant consequences when their intensity reaches unusually
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high levels. Numerous applications in risk assessment are concerned, ranging from
environmental (Gomes & Guillou, 2015), to industrial (Milutinovic et al., 2017) to
financial fields (Bensalah, 2000). The primary goal of EVT is to quantify the fre-
quency and intensity of these events. However, the challenge arises when studying
events that have rarely or never been observed. This is brilliantly exemplified in
Haan & Ferreira (2006). In the introduction of their book, the authors explain
that in the Netherlands, when building dikes to protect the land from flood, the
government has set a requirement that the probability of a flood, defined as the
seawater level surpassing the height of the dike, should be 10−4 per year, i.e. a
flood every 10000 years on average. How should be chosen the height of the dike,
relying on only a hundred years of data, with no previous example of flood? This
example illustrates the purpose of EVT. From limited available data, which often
lack significant events, one aims to assess the probability of extreme events. In
a multivariate framework, a large event often arises from the joint occurrence of
extreme values across multiple components.

Considering the extensive nature of EVT with its numerous concepts and in-
quiries, the focus is on the essential elements that enable a general understanding
of the subject. Although not all the elements presented will be used as is in the
remainder of the work, we hope that this section will be instructive for the reader
unfamiliar with EVT. To provide an overview of this chapter, we present its struc-
ture as follows.

In Section 1.2.1, we outline the fundamental principles of univariate EVT. We
begin with the crucial finding that the generalized extreme value (EV) distribu-
tions are the sole potential limits for the maximum of a random sample, under
appropriate normalization. Then, moving to limiting distributions of threshold ex-
ceedances, the result stating that this limiting distributions belong to generalized
Pareto (GP) family of distributions is presented. In addition, the notion of heavy-
tailed distributions is recalled since it appears when studying data set with extremes
of considerable intensity. Finally, we need the theory of regular variation and its
links with heavy-tailed distributions.

Section 1.2.2 is devoted to multivariate EVT. We state theorems equivalent
to the univariate framework with regards to the asymptotic properties of multi-
variate distributions. In particular the componentwise maxima of a multivariate
random vector could only converge to a family of distributions called multivariate
EV distributions. At the same time, the limiting law conditioned by at least one
of the variables above an extreme threshold admits the multivariate GP law as its
limiting law. We also present the extension of regular variations to the multivari-
ate setting, and outline several characterizations of random vectors with regular
variations. Characterizations of the family of regularly varying random vectors by
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spectral representation are given. Finally we present an important property of reg-
ularly random vectors: Breiman’s Lemma.

1.2.1 . Univariate framework
Introduction

The study of the extreme behavior of a random variable X entails concentrating on
the tails of X. We are mainly interested in the highest values of X, which means
focusing on the right tail of the distribution. For this purpose, two similar yet dis-
tinct approaches coexist. The first approach deals with max-stable distributions,
which emerge as limits of normalized maxima from an independent and identically
distributed (i.i.d.) sample X1, . . . , Xn with a general distribution X. The second
approach involves analyzing the behavior of X under the condition that it exceeds
a specified high threshold. Thus, studying an extreme event from a data sample
can be accomplished by either investigating the highest values (i.e., the maximum)
of the sample or examining the values above a high threshold. In this section, we
highlight the theoretical equivalence between these two approaches and their close
connection to the concept of regular variation.

This section is largely inspired from reference books such as Beirlant et al.
(2006), Haan & Ferreira (2006) and Embrechts et al. (2013). Other references have
proven particularly useful such as Leadbetter (1991), Mikosch (1999) and Legrand
(2022). The proofs have been omitted and can be found in the aforementioned
books.

Asymptotic limit of partial maxima

Let (Xi)i≥1 be a sequence of i.i.d. random variables. Each Xi is an independent
copy of the generic random variable X. We use the following notations. F is the
cumulative distribution function of X such that F (x) = P(X ≤ x). We define the
sequence of partial maxima (Mn)n≥1 by Mn = max1≤j≤nXj for n ≥ 1. Finally,
xF = sup{x ∈ R, F (x) < 1} denotes the right endpoint of F . The aim of this
section is to recall asymptotic results for the distribution of partial maxima. In other
words, the purpose is to characterize, when n tends to infinity, the distribution of
Mn under suitable normalization, .

First, let us note that the distribution function of Mn is Fn. Then, whatever
x such that x < xF , we have P(Mn ≤ x) = Fn(x), which goes to 0 when n

goes to infinity. Consequently, Mn converges almost surely to xF . In order to
obtain a non-degenerate limit, i.e. a limit distribution which is not deterministic,
a normalization of Mn is required. This is what is meant by the phrase "under
suitable normalization" mentioned above. To do so, a rescaled version of Mn is
considered. In this respect, the following framework is essential.
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Definition 1.2.1. (Max-domain of attraction). Assume that there exist two
real-valued sequences (an)n≥1 and (bn)n≥1, with an > 0, such that a−1

n (Mn − bn)converges in distribution to a non-degenerate random variable Y . This is
equivalent to the convergence

Fn (anx+ bn) → H(x), n→ ∞ (1.6)
for any continuity point x ofH , whereH is the distribution function of Y .
In this case, we say that X belongs to the maximum domain of attraction of
the distributionH .
Remark 1.2.2. If the convergence described in Equation (1.6) holds, then it can
be shown that the distribution of Y is unique up to an affine transformation
(Gnedenko & Kolmogorov, 1954).

If Equation (1.6) holds, then a limit of partial maxima exists. Such a formalism
raises several fundamental questions:

• What are the distributions for which Equation (1.6) holds? And how should
be chosen the sequences (an)n≥1 and (bn)n≥1 to achieve convergence?

• What are the possible limit distributions H?

With regard to the first point, we will always consider Equation (1.6) verified in
our applications. Indeed, the family of distributions satisfying Equation (1.6) is
sufficiently large for this assumption to be generally valid. Additionally, the choice
of the sequences is of no particular importance to our work. Interested readers
are invited to consult the following references: Embrechts et al. (2013) sections
3.1 and 3.3, Aldous (2013). As our main concern is to identify the possible limit
distributions H, the notions and results presented in the rest of this section are
intended to answer the second point, starting with the important notion of max-
stable distributions.

Definition 1.2.3. (Max-stable distribution). A non-degenerate random vari-
ableX and its distribution are said to be max-stable if there exist two real se-
quences (an)n≥1 and (bn)n≥1, with an > 0, such that for any sampleX1, . . . , Xnof i.i.d. random variables with the same distribution asX , the following equal-
ity in distribution is satisfied for all n ≥ 1 :

a−1
n (Mn − bn)

d
= X.

Every max-stable distribution belongs to its own max-domain of attraction.
What is more, max-stable distributions are the exclusive potential limits of Equation
(1.6), as stated by the subsequent theorem.

Theorem 1.2.4. (Embrechts et al., 2013, Theorem 3.2.2). The class of max-stable
distributions coincides with the class of all possible (nondegenerate) limit distribu-
tion for normalized maxima of i.i.d. random variables.
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The final stage involves the identification of max-stable distributions. This is
the primary objective of the following theorem, which serves as the foundation for
univariate EVT.

Theorem 1.2.5. (Fisher & Tippett, 1928; Gnedenko, 1943). The only max-stable
distributions belong to the parametric family of distributions, called generalized
EV distributions, and defined by

Hξ,µ,σ(x) = exp

(
−
(
1 + ξ

x− µ

σ

)−1/ξ

+

)
, (1.7)

for ξ, µ ∈ R, and σ > 0. If ξ = 0, Equation (1.7) has to be interpreted as the limit
when ξ → 0 which givesH0,µ,σ = exp(− exp(−(x−µ

σ ))).

Remark 1.2.6. Hξ,0,1 is the standard generalized EV, shortly denoted Hξ. Inparticular, if ξ > 0, the standard generalized EV is called Fréchet distribution,
denoted Φα which is parameterized by α = 1

ξ .
Remark 1.2.7. If the limit distribution of normalized maximaMn of a randomvariable X converges, it is always possible to choose sequences (an)n≥1 and
(bn)n≥1 such that a−1

n (Mn−bn) → Hξ , for a given ξ (Gnedenko & Kolmogorov,
1954). Thus the study of sample maxima boils down to the study ofHξ.
Definition 1.2.8. Let X be a random variable with Hξ a limit distribution of
sample maxima (see Remark 1.2.7). If ξ > 0, X is said to be heavy-tailed.
Otherwise, if ξ = 0,X is light-tailed, and if ξ < 0 it is bounded.

Heavy-tailed distributions are what particularly interested us during our work.
Samples of heavy-tailed distributions can give rise to high-intensity extremes. More-
over, many crucial real-world data follow this type of distribution, such as hydro-
logical data (Katz et al., 2002).

Threshold exceedances

Instead of focusing on partial maxima, another important approach of univariate
EVT analyses the asymptotic distribution of extremes given that a high threshold
is exceeded. For a random variable X, this threshold exceedances distribution over
a threshold u can be written

Fu(x) = P(X − u ≤ x | X > u).

The basis of this approach rests upon the following theorem stating that the GP
family is the exclusive set of potential limiting distributions for the threshold ex-
ceedances.

38



CHAPTER 1. BACKGROUND

Theorem 1.2.9. (Balkema & De Haan, 1974; Pickands III, 1975). For every ξ ∈ R, X
is in the domain of attraction of a generalized EV distributionHξ if, and only if, the
distribution function of the exceedancesX−u, conditionally onX > u, converges
as follows,

lim
u→xF

sup
0<x<xF−u

∣∣P(X − u ≤ x | X > u)−Gξ,σ̃(u)(x)
∣∣ = 0,

for some positive function σ̃, where xF is the upper end-point of F and Gξ,σ̃(u) is
called the GP distribution function defined as

Gξ,σ̃(u)(x) := 1− (1 + ξx/σ̃(u))−1/ξ. (1.8)
If Theorem 1.2.9 holds true, the limiting generalized EV and GP distributions

have the same shape parameter ξ. Additionally, σ̃(u) = σ + ξ(u − µ). For a
threshold value u > 0 that is considered sufficiently high, the GP distribution
could be used as an approximation of the distribution P(X − u ≤ x | X > u).
This modelling approach is called peaks over threshold method and was originally
introduced by Leadbetter (1991). However, determining what constitutes a high
enough threshold still remains a difficult question. We refer to Embrechts et al.
(2013), Section 6.5, for additional details on this topic.

Remark 1.2.10. An interesting remark about the family of GP distributions is
the stability with respect to thresholding. Namely, if X is GP distributed with
distribution Gξ,σ then, for every u, the conditional distribution X | X > u is
the GP distribution Gξ,σ+ξu.
Remark 1.2.11. The following equation links the expression of GP and general-
ized EV distribution:

1−Gξ,σ(x− µ) = − log (Hξ,µ,σ) . (1.9)
Univariate regular variation

Let us now recall the concept of regular variation, which is closely linked to the
notions presented so far.

Definition 1.2.12. We call f : R → R regularly varying with index α ∈ R if f is
ultimately positive and, for any λ > 0,

lim
t→+∞

f(λt)

f(t)
= λα.

We note f ∈ RVα.

Remark 1.2.13. If a function is regularly varying with index equal to 0, it is re-
ferred to as slowly varying.
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In the following, if X is a random variable with distribution function F , i.e.
F (x) = P(X ≤ x) for x ∈ R, then we denote its survival function by F̄ , which is
defined by

F̄ (x) = 1− F (x) = P(X > x), x ∈ R.

We are now able to introduce the concept of regularly varying random variable.

Definition 1.2.14. A random variable X is regularly varying with index α > 0

if its survival function F̄ is regularly varying with tail index−α. In other words,
F̄ satisfies

lim
t→∞

F̄ (tx)

F̄ (t)
= lim

t→∞

P(X > tx)

P(X > t)
= x−α.

The following theorem links the previous sections to the notion of regular
variation.

Theorem 1.2.15. A distribution function F belongs to the max domain of attrac-
tion of a Fréchet distribution Φα with α > 0 (see Remark 1.2.6), if and only if its
survival function F̄ is regularly varying with tail index −α.

Remark 1.2.16. Regularly varying random variables are in the maximum do-
main of attraction of Fréchet distributions. Consequently, regular variation is
a tool dedicated to heavy-tailed distributions only (see Definition 1.2.8).
Remark 1.2.17. One can show that there is an equivalence between the reg-
ular variation of a non-negative random variable X and the asymptotic con-
vergence of the measure nP (a−1

n X ∈ ·
). To be more precise, let X be a non-

negative random variable then, X is regularly varying with tail index α > 0.
X is regularly varying with tail index α > 0 if and only if there exists a strictly
positive sequence (an)n≥1 such that

nP
(
a−1
n X ∈ ·

) v→ να(·), n→ ∞, (1.10)
where, να is the measure such that να((x,∞)) = x−α. Equation (1.10) is a
vague convergence results, denoted v→, on the space of Radon measures on
(0,∞). A sequence of measure (µn)n∈N converges vaguely to a measure µ if
for any continuous function f ,∫

fdµn −→
n→∞

∫
fdµ.

Equation (1.10) is of the utmost importance, since it is the starting point for
extending the regular variation property to the multivariate setting.
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Key points of Section 1.2.1

▶ Two main and equivalent ways to characterize asymptotic properties
of extreme coexist:

– By partial maxima random variable, which asymptotically ad-
mits a generalized extreme value distribution limit when prop-
erly rescaled,

– By threshold exceedances, which asymptotically admits a gen-
eralized Pareto distribution.

▶ In both cases, an identical parameter called tail index appears and
characterizes the thickness of the tail distribution. In particular, if
it is positive, the distribution is so-called heavy-tailed. The notions
of heavy-tailed distributions and tail index are extensively used in
Chapter 3.

▶ For a heavy-tailed random variable, the asymptotic properties are
equivalent to regular variation of the survival function. Regular vari-
ation of random variable is central in Chapter 3.
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1.2.2 . Multivariate framework
Introduction

The purpose of this section is to extend the univariate notions introduced in Section
1.2.1 to a multivariate framework. All the major concepts covered in the univariate
framework have a multivariate counterpart. Namely, the asymptotic distribution
of sample maxima is replaced by an asymptotic distribution of componentwise
maxima. Besides, the limit distribution of threshold exceedances distribution be-
comes the limit distribution given at least one component excesses a threshold.
A definition of multivariate regular variation emerges and extends the univariate
framework as an asymptotic property of vague convergence of measures. Prop-
erties derived from multivariate regular variation, in particular those expressed in
polar coordinates, prove valuable to understand the spatial distribution of multi-
variate extremes. We emphasize that the elements presented in this section are
intended to give a comprehensive overview of multivariate EVT, even if not all the
tools introduced are used in our work. Indeed, to understand the paper presented
in Section 3, the notion of multivariate regular variation is crucial, whereas asymp-
totic distributions generalizing the GP distribution and the EV distribution are not
involved in our implementation.

In this section, we consider random vectors of the form X = (X1, . . . , Xd)
⊤ ∈

Rd. All operations on vectors are performed element by element. For example, if
x and y are bivariate vectors, then we have

xy = (x1y1, x2y2) , x−1 =
(
x−1
1 , x−1

2

)
.

Besides, in order to compact the equations, we sometimes note x∧ y the compo-
nentwise minima between x and y. In the same way, we consider componentwise
inequalities between vectors. We also denote x ≮ y to indicate that x < y does
not hold. To summarize, when x and y are bivariate vectors,

x ∧ y = (min(x1, y1),min(x2, y2)) ,

x ≤ y ⇐⇒ (x1 ≤ y1) ∩ (x2 ≤ y2),

x ≮ y ⇐⇒ (x1 > y1) ∪ (x2 > y2).

Finally, the notion of cumulative distribution function to the multivariate frame-
work is extended. Thus, if X is a random vector, then its cumulative distribution
function F is defined by F(x) = P(X ≤ x).

The material of this section is largely inspired from the book of Resnick (2007).
Other references have proven particularly useful when writing this part, namely
Rootzén & Tajvidi (2006), Beirlant et al. (2006) and Meyer (2020). Once again,
the proofs are omitted.
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Componentwise maxima

Suppose (Xi)i⩾1 = {(Xi,1, . . . , Xi,d) , i ⩾ 1} are i.i.d. d-dimensional random vec-
tors with cumulative distribution function F. Let Mn be the vector of componen-
twise maxima,

Mn = (Mn,1, . . . ,Mn,d) , (1.11)
with Mn,i the sequence of partial maxima of the ith component, i.e. Mn,i =

max1≤j≤nXj,i for n ≥ 1. We expose in the following the asymptotic distribution
of Mn under suitable renormalization.

Definition 1.2.18. Assume that there exist normalizing sequences of vectors
(an)n≥1 and (bn)n≥1 with an > 0, such that as n→ ∞

P
(
a−1
n (Mn − bn) ⩽ x

)
→ H(x), (1.12)

with the limit distribution H such that each marginal Hi, i = 1, . . . , d, is non-
degenerate. If Equation (1.12) is satisfied, F is said to belong to the domain of
attraction of H, and we write F ∈ D(H). H is called multivariate EV distribu-
tion.
Remark 1.2.19. When all component of x except xi goes to +∞ in Equation
(1.12), it appears that eachmarginalHi ofHmust satisfy a limit property of the
form of Equation (1.6). Consequently each Hi is a generalized EV distributionfunctionHµi,σi,ξi as described in Equation (1.7). In particular, ifMn is such thatthere exist a strictly positive sequence (an)n≥1 such that as n→ ∞

P
(
a−1
n Mn ⩽ x

)
→ H(x),

thenH is amultivariate EV distribution with all marginals identical generalized
EV distribution. This particular case is important when defining multivariate
regular variation.

As in the univariate case (see Theorem 1.2.4), the class of limit distribution
functions in Equation (1.12) is exactly the class of max-stable distributions, where a
distribution function H in Rd is max-stable if, for every integer n > 0, there exist
vectors an > 0,bn such that

Hn(x) = H (anx+ bn) . (1.13)
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Multivariate threshold exceedances

First, we recall an extension to higher dimension of the GP distribution introduced
by Equation (1.8).
Definition 1.2.20. A distribution function G is said to be a multivariate GP
distribution if

G(x) =
1

− log H(0)
log

H(x)

H(x ∧ 0)
(1.14)

for some multivariate EV distribution H (e.g. satisfying Equation (1.13)) with
non-degenerate margins and with 0 < H(0) < 1. In particular, G(x) = 0 for
x < 0 and G(x) = 1 − log H(x)/ log H(0) for x > 0. The convention 0/0 = 1

applies.
Equation (1.14) extends the unviariate link between GP and EV distribution of

Equation (1.9). Defining multivariate GP distributions allows us to state the fol-
lowing theorem, which is exactly the multivariate counterpart of Theorem 1.2.9. It
shows that the multivariate threshold exceedances distribution asymptotically have
a multivariate GP distribution if and only if the partial sequence of component-
wise maxima have asymptotically a multivariate generalized EV distribution. By
multivariate threshold exceedances distribution of a random vector X is meant the
distribution of the random vector Xu defined by

Xu =
X− u

σ(u)
,

for a given d-dimensional curve {u(t) | t ∈ [1,∞)} starting at u(1) = 0 and a
given function σ(u) = σ(u(t)) > 0 with values in Rd.

Theorem1.2.21. (Rootzén & Tajvidi, 2006). LetX be a d-dimensional random vec-
tor with cumulative distribution function F. LetH be a d-dimensional multivariate
EV distribution with 0 < H(0) < 1 and G the multivariate GP distribution such
that

G(x) =
1

− log H(0)
log

H(x)

H(x ∧ 0)
.

Then we have F ∈ D(H) if and only if there exists an increasing continuous curve
u with F(u(t)) → 1 as t→ ∞, and a function σ(u) > 0 such that

P (Xu ⩽ x | Xu ≮ 0) → G(x)

as t→ ∞, for all x.

In Theorem 1.2.21, since F(u(t)) → 1 as t → ∞, the exceedances of d levels
(the components of u) that progressively move deeper and deeper into the tails
of F is examined. Nevertheless, it is important to note that the asymptotic distri-
butions can vary depending on the specific relationships among these levels. The
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curve {u(t)} dictates these levels, and the curve σ(u) delineates how these levels
grow in a suitably coordinated manner.

Remark 1.2.22. Another incentive for introducing Definition 1.2.20 is that the
distribution defined in Equation (1.14) is the unique distribution that remains
unchangedwhen the exceedance levels are adjusted in a suitably coordinated
manner (Rootzén & Tajvidi, 2006, Theorem 2.2). This is the multivariate coun-
terpart of Remark 1.2.10 which states the stability of GP distribution with re-
spect to thresholding. More formally, the multivariate GP distribution is the
only family distributions that satisfies

P (Xu ⩽ x | Xu /∈ 0) = P(X ⩽ x), (1.15)
for appropriate increasing continuous curve u with P(X ⩽ u(t)) → 1 as t →
∞ and function σ(u) > 0.
Multivariate regular variation

In the univariate framework, Definition 1.2.14 of regular variation was proposed. In
the subsequent development, we came to Remark 1.2.17, which states that regular
variation with tail index α > 0 of a random variable X ∈ R+ is equivalent to the
vague convergence of nP

(
a−1
n X ∈ ·

)
to the measure να for some sequence (an)n≥1

such that an →
n→∞

∞. Analogously, we define multivariate regular variation by a

vague convergence results over a−1
n X, for an appropriate sequence (an)n≥1. For

the sake of simplicity, we limit our examination of regularly varying random vectors
to the non-negative scenario, namely for X ∈ Rd

+. This already encompasses a
broad and comprehensive theory of multivariate regular variation.

Definition 1.2.23. (Regularly varying random vector). Let X ∈ Rd
+ be a non-

negative randomvector. Assume that there exists a positive sequence (an)n≥1such that an → ∞ when n → ∞. The vector X and its distribution are said
regularly varying if there exists a non-zero Radon measure µ on the Borel σ-
field of Rd

+\{0} such that
nP
(
a−1
n X ∈ •

) v→ µ(•), n→ ∞. (1.16)
µ is the limit measure of the regularly varying vectorX.

The multivariate regular variation thus defined has a very close link with the
sequence of partial componentwise maxima Mn of Equation (1.11). As detailed
in Remark 1.2.19, the only possible non-degenerate limit Y of a−1

n Mn has a
multivariate EV distribution H with identical marginals Hi. Moreover, each Hi is
Fréchet distributed (see Theorem 1.2.5). This distribution H is called multivariate
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Fréchet distribution. Further, noticing that P
(
a−1
n Mn ≤ x) = P

(
a−1
n X ≤ x)n,

one can even deduce by first taking the log on both side of the equality, then
tending n towards infinity, that the following assertions are equivalent:

(i) The normalized componentwise maximum a−1
n Mn converges to a multivari-

ate Fréchet distribution when n→ ∞,

(ii) For every continuity point x ∈ Rd
+ of H,

nP
(
a−1
n X ∈ [0,x]c

)
→ − log(H(x)), n→ ∞. (1.17)

If H(x) = 0, then the right-hand side is interpreted as ∞.

The convergence in Equation (1.17) must be seen as the convergence of two
measures, on the sets [0,x]c. Indeed, for any continuity point x of H, Equation
(1.17) can be expressed

µn ([0,x]
c) → µ ([0,x]c) , n→ ∞ (1.18)

where µn ([0,x]c) = nP
(
a−1
n X ∈ [0,x]c

)
, and µ ([0,x]c) = − log(H(x)).

As µn and µ can be uniquely extended to measures on Rd
+\{0} (see Caratheodory

extension theorem), the convergence in Equation (1.18) suffices to prove that the
extended measure µn defined by µn(·) = nP

(
a−1
n X ∈ ·

)
converges vaguely to the

extended measure µ (see Resnick, 2007, Lemma 6.1). As a consequence, a random
vector in Rd

+ is multivariate regularly varying if and only if the normalized sequence
of partial componentwise maxima converges to a multivariate Fréchet distribution.

A key property regarding the limit measure µ is that there exists α > 0 such
that for all t > 0,

µ(t•) = t−αµ(•). (1.19)
It is the same α that appears as the parameter of the marginals of the multi-
variate Fréchet distribution to which converges the partial componentwise maxima
sequence. The property described in Equation (1.19) implies that the measure µ
assigns less weight to a set whenever it is translated towards infinity, and this de-
crease follows a power-law behavior. Much like in the univariate scenario, we refer
to the parameter α as the tail index. In this context, we state that the random
vector X exhibits regular variation, with a limit measure µ, and a tail index α.
This homogeneity property is illustrated in a bivariate configuration in Figure 1.1.
A direct consequence of the homogeneity property of Equation (1.19) is that X

regularly varying implies that ∥X∥ is a regularly varying random variable for any
norm ∥·∥. To be convinced, let us consider the infinity norm in Rd, denoted ∥·∥∞,
and note that for all t > 0,

nP (∥X∥∞ > ant) = nP
(
a−1
n X ∈ [0, t1]c

)
.
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Figure 1.1: The limit measure µ of Equation (1.18) satisfies Equation (1.19)with a tail index α > 0. In particular, for the grey set A and t > 0, weobtain µ(tA) = t−αµ(A). Here, we have chosen a t greater than 1.
Then, Equation (1.19) implies that

nP (∥X∥∞ > ant) → µ ([0, t1]c) = t−αµ ([0,1]c) , t→ ∞

By rescaling properly an, i.e. dividing it by µ ([0, t1]c)
1
α , we obtain that a normal-

ized sequences of ∥X∥∞ converges vaguely to να. According to Remark 1.2.17,
this is equivalent with ∥X∥∞ regularly varying with tail index α. Finally, since all
norms are equivalent in Rd, one can show that it suffices to conclude that ∥X∥ is
regularly varying for every norm ∥ · ∥.

In Theorem 1.2.21, we focused on a conditional distribution where the condition
was of the form X ≮ u. Notice that if u has all components equal to u, the
condition X ≮ u is equivalent to ∥X∥∞ > u. More generally, for any norm ∥ · ∥,
we aim to characterize asymptotic distribution of X conditioned by ∥X∥ > u

when u goes to infinity. To this end, decomposing the convergence of Equation
(1.16) into a radial convergence and an angular one is particularly appealing. In
particular, the following proposition establishes the convergence of X in the sense
of Equation (1.16) and the convergence of the polar coordinates of X to a product
norm. To state this proposition, we need additional notations. For a given norm
∥ · ∥, we denote Sd−1

+ the ensemble
{
x ∈ Rd

+, ∥x∥ = 1
}
. This ensemble is the

intersection between the unit sphere and the positive orthant. It is referred to as
the (d− 1)-simplex when the chosen norm is the L1-norm (i.e. the absolute-value
norm). For ease of notations, we also denote (R,Θ) the polar decomposition of
X, i.e. (R,Θ) =

(
∥X∥, X

∥X∥

)
.
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Proposition 1.2.24. Let X ∈ Rd
+ be a non-negative random vector. There exists

a positive sequence (an)n≥1 such that the following assumptions are equivalent.

(i) X is regularly varying with limit measure µ and tail index α.

(ii) There exist α > 0 and a probability measure S on Sd−1
+ such that,

nP
(
(a−1

n R,Θ) ∈ •
) v→ να × S, n→ ∞,

where να is a measure on (0,∞)measure such that να((x,∞)) = x−α.

(iii) R is regularly varying with tail index α (in the sense of Definition 1.2.14) and
there exists a probability measure S on Sd−1

+ such that

P (Θ ∈ • | R > an)
v→ S(•), n→ ∞.

The probability measure S is called the angular measure. If we denote T the
polar coordinate transformation which associates with each vector of Rd

+ the pair
composed of its radius and its angle, we can directly link the spectral measure and
the limit measure. Indeed, for a subset s ∈ Sd−1

+ and a radius r > 0, we have the
following

µ
(
T−1((r,∞), s)

)
= να(r,∞)× S(s),

= r−
α
S(s).

Figure 1.2 helps to visualize the set T−1((r,∞), s) in a bivariate case. Both an-
gular and limit measures convey identical information regarding the dependency
structure of extreme events. However, their key distinction lies in the fact that
the angular measure operates as a probability measure, while the limit measure
does not possess this probabilistic nature. Consequently, in certain circumstances,
working with the angular measure proves more convenient.

Proposition 1.2.24 offers interesting perspective for modelling multivariate ex-
tremes. Indeed, it allows to consider separately the radial distribution and the
angular distribution as they tend to become independent when the radius goes to
infinity.

Remark 1.2.25. An equivalent characterization ofmultivariate regularly varying
random vectors in Rd

+ involves transforming the sequential forms of conver-
gence outlined in Proposition 1.2.24 into a continuous version. Thus, there
exists a function a, with a(t) → ∞ when t→ ∞ such that

(i) R is regularly varying with limit measure µ and tail index α > 0.
(ii) There exist α > 0 and a probability measure S on Sd−1

+ such that,
tP
(
(a(t)−1R,Θ) ∈ •

) v→ να × S, t→ ∞,

where να is a measure on (0,∞)measure such that να((x,∞)) = x−α.
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Figure 1.2: The grey era corresponds to the set T−1((r,∞), s) where wehave considered the absolute-value norm. All the points within this sethave their norm above r and their projection onto S1
+ lies in s, repre-sented by the red segment.

(iii) R is regularly varying with tail index α (in the sense of Definition 1.2.14)
and there exists a probability measure S on Sd−1

+ such that
P (Θ ∈ • | R > b(t))

v→ S(•), n→ ∞.

An additional property we need concerns the tail of the product of a random
vector Z with a regularly varying tail, multiply by a scalar random variable whose
tail is relatively thinner. Such property is used in Chapter 3.

Lemma 1.2.26. (Breiman) Suppose Z is a multivariate regularly varying random
vector with tail index −α and limit measure µ. Suppose further that Y ≥ 0 is a
random variable with a finite moment of order greater than α. This is equivalent
to the existence of ϵ > 0, such that

E
(
Y α(1+ϵ)

)
<∞.

Then the following result holds

nP
[
Y Z

bn
∈ •
]

v→ E (Y α)µ(•).

In particular, if d = 1, we have that

lim
x→∞

P[Y Z > x]

P[Z > x]
= E (Y α) .

49



1.3. SOME TECHNIQUES OF MACHINE LEARNING

Remark 1.2.27. The result for d = 1was first proved by Breiman (1965) whereas
the extension to a multivariate vector Z is from Resnick (1986). In the uni-
variate case, we can roughly say that the distribution tail of the product of
two random variables behaves like the distribution tail of the heavier-tailed
variable. Extensions and refinements of this lemma, whether univariate and
multivariate are numerous. The interested reader could refer for example to
Maulik et al. (2002), Hult & Lindskog (2007) or Fougeres & Mercadier (2012).

Key points of Section 1.2.2

▶ In a multivariate framework, counterparts to the principal univariate
notions and properties can be defined. The following table shows
these equivalences.

Univariate Multivariate
Partial maxima is asymptoti-
cally generalized extreme value
distributed

Partial componentwise maxima
is asymptotically multivariate
extreme value distributed

Threshold exceedances is
asymptotically generalized
Pareto distributed

Multivariate threshold ex-
ceedances is asymptotically
multivariate generalized Pareto
distributed

Regular variation Multivariate regular variation

▶ Multivariate regular variation allows to consider separately a polar
decomposition of the studied vector since the polar coordinates are
asymptotically independent.

▶ According to Breiman’s Lemma, the tail distribution of a product
of random elements behave like the tail distribution of the heaviest
tailed random element.

▶ The aim of Chapter 3 is to sample multivariate regularly varying
random vectors. Consequently, the multivariate regular variation and
in particular the polar decomposition of data as well as the spectral
measure are crucial notions for the following. Breiman’s Lemma also
proves useful.

1.3 . Some techniques of machine learning

ML designates the ensemble of models designed to acquire their own knowl-
edge, by extracting patterns from raw data to reach given goals. Traditionally, in
pursuit of these objectives, one would define a model to encapsulate particular as-
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sumptions, formulate a cost function to gauge the alignment of these assumptions
with data, and employ a training algorithm to minimize this cost function. The
minimization of the cost function is usually operates through stochastic gradient
descent. Goodfellow et al. (2016) offers a brilliant characterization of ML, with the
aim of situating it in relation to other research fields: "ML is essentially a form of
applied statistics with increased emphasis on the use of computers to statistically
estimate complicated functions and a decreased emphasis on proving confidence
intervals around these functions."

ML models have exhibited remarkable achievements and impacts in various
tasks such as computer vision (Davis et al., 2014), speech recognition (Graves &
Jaitly, 2014), agriculture (van Dijk et al., 2021) and medicine (Rajkomar et al.,
2019) in a context of increasing data sets and model sizes.

In this section, we present some techniques from the ML community that have
found an echo in this thesis. These techniques are related to generative model-
ing and sequence modeling. Generative modeling intends to generate new samples
from an unknown distribution given examples while sequence modeling aims at pro-
cessing sequential data. By sequential data is meant a data set of sequences where
a sequence is a collection of objects where order matters. Examples of sequences
include time-series, sentences, video clips... These two categories of techniques are
respectively described in Section 1.3.1 and 1.3.2.

Most of the materials of this section come from the reference book Goodfellow
et al. (2016). Other useful references include Sanchez (2021) and Allouche (2022).

1.3.1 . Generative modeling
Generative models seek to emulate the underlying properties of a variable of

interest from some given sample data. More precisely, generative models are ex-
pected to synthesize realistic looking data from example data. In the past ten
years, a category of generative models has emerged within the realm of ML. In this
context, these models are directly learnt from data and employ random noise as in-
put. They have first earned a reputation with VAEs (Kingma & Welling, 2013) and
generative adversarial networks (GANs) (Goodfellow et al., 2014). Advancements
over the past decade have introduced models like normalizing flows (Rezende &
Mohamed, 2015) and diffusion models (Sohl-Dickstein et al., 2015), which have
garnered considerable attention. The ML-based generative models achieved spec-
tacularly results on complex problems involving high-dimensional data sets. In
particular, interesting applications include molecular discovery (Bilodeau et al.,
2022), data privacy (Qiu et al., 2022), large language models (Fan et al., 2023) or
video synthesis (Liu et al., 2021).
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From an implementation perspective, the availability of open-source libraries
such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) has
simplified the creation and optimization of intricate NN models. This accessibil-
ity has sparked widespread interest across diverse communities and a spectrum of
mathematical backgrounds.

The field of generative models is one of the major focus of Chapter 3. This
chapter presents a VAE approach specifically tuned to sample from heavy-tailed
distribution (see Definition 1.2.8). Consequently, after introducing notations and
general considerations on generative models, a necessary background on VAEs is
detailed, as well as for GANs to which we compare our VAE approach.

Problem statement

Data-driven generative models aim to learn the data distribution from data sam-
ples. Consider a data set X =

{
x(i)
}N
i=1

consisting of N i.i.d. observations of a
given random vector X with a pdf p(x). The purpose of a generative model is to
draw new samples of X. In real world applications, p(x) is unknown. Thus, the
learning is said to be unsupervised in the sense that there is no ground truth to
compare the generative model with.

Variational Auto-Encoders

VAE was introduced independently by two groups: Kingma & Welling (2013) and
Rezende et al. (2014). These seminal papers on VAEs and many subsequent ones
(e.g. Gulrajani et al., 2016; Yeh et al., 2016) have considered image generation and
transformation. More recent examples of speech or music signals transformation
based on a VAE can be found in the literature (e.g. Blaauw & Bonada, 2016;
Roche et al., 2018). Additionally, VAE has been employed as a prior in more com-
plex Bayesian models for, for example, speech enhancement (Leglaive et al., 2018;
Pariente et al., 2019) or source separation (Kameoka et al., 2018). In geosciences,
VAEs have been used to recognize geochemical patterns (Xiong et al., 2022) and
draw up geological maps (Zuo et al., 2022).

Within the VAE framework, the data generation process of the data set X
assumes to involve a latent random vector Z characterized by a pdf p(z). This
generation process is as follows. To produce a single data sample x(i), a sample z(i)

from the prior distribution p(z) is drawn. Subsequently, this z(i) is used to generate
x(i) by drawing from the conditional distribution p(x | z(i)). Furthermore, the VAE
framework assumes that these distributions belong to a parameterized family of
distributions dependent on a set of parameters θ, denoted pθ(z) and pθ(x | z).
pθ(z) is referred to prior or latent distribution, pθ(x | z) to posterior or probabilistic
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decoder. Thus, there exists a set of parameters θ∗ for which pθ∗(z) = p(z) and
pθ∗(x | z) = p(x | z). Additionally, the distributions pθ(z) and pθ(x | z) are
assumed differentiable with respect to both the parameters θ and the samples z(i).
The generative process assumed by the VAE is illustrated in Figure 1.3.

Figure 1.3: Generative process assumed by the VAE. To sample a newelement, a vector z(i) is first sampled from the prior and then passedthrough the decoder pθ(x | z(i)). The new element is obtained by sam-pling from this conditional distribution.
In terms of inference, the parameters θ∗ and the samples z(i) used to generate

the data samples x(i) are unknown. To estimate θ∗, the aim is to maximize the
likelihood function, which means finding the parameters θ that make the observed
data X most probable. This likelihood function is denoted LML and expressed as

LML(θ | X ) =

N∏
i=1

pθ

(
x(i)
)
.

Maximizing LML with respect to θ is equivalent to learn the parameters θ that
maximize the log likelihood function, i.e.

argmax
θ∈Rd

LML(θ | X ) = argmax
θ∈Rd

logLML(θ | X ),

= argmax
θ∈Rd

N∑
i=1

log pθ

(
x(i)
)
. (1.20)

Notice that for N → ∞, we have argmaxθ∈Rd LML(θ | X ) =

argmaxθ∈Rd Ex∼p(x) [log pθ(x)]. Finding the set of parameters θ that maximize
the expectancy of the log-likelihood function on the observed data X is equivalent
to minimizing the KL divergence between p and pθ introduced in Equation (1.3),
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namely

arg min
θ∈Rd

DKL (p∥pθ) = arg min
θ∈Rd

Ex∼p(x)

[
log

(
p(x)

pθ(x)

)]
,

= arg min
θ∈Rd

Ex∼p(x)[log p(x)]− Ex∼p(x) [log pθ(x)] ,

= arg min
θ∈Rd

−Ex∼p(x) [log pθ(x)] ,

= argmax
θ∈Rd

Ex∼p(x) [log pθ(x)] .

Nevertheless, computing the data distribution pθ(x) =
∫
pθ(z)pθ(x | z)dz is

a complex task within this latent model. Typically, this integral is analytically
intractable. Consequently, the posterior distribution pθ(z | x) = pθ(z)pθ(x |
z)/pθ(x) also becomes intractable, as it involves the data distribution pθ(x). In
this context, it is not possible to perform directly the maximum likelihood esti-
mation. In order to overcome this problem, the VAE exploits the formalism of
VB introduced in Section 1.1. The idea is to propose an approximation of the
posterior distribution pθ(z | x) in order to obtain an ELBO cost to maximize. In a
VAE setting, the variational parameters λi introduced in Equation (1.2), instead of
being tuned for each xi which can prove computationally costly, are replaced by a
function f(x) of the data. This function is a NN depending on a set of parameters
ϕ. Consequently, in the framework of VAE, the approximated posterior is denoted
qϕ(z | x), and often called probabilistic encoder. A classical choice is

qϕ(z | x) = N (z ; µ(x),Σ(x)) ,

where N (z ; m,S) designates the pdf of a Gaussian distribution with mean m and
covariance S evaluated in z. In this example, it appears that f(x) = (µ(x),Σ(x)),
with µ and Σ NN functions with parameters ϕ.

Extending Equation (1.4), we can write for a single observation x(i) that

log pθ

(
x(i)
)
= L

(
x(i), θ, ϕ

)
+DKL

(
qϕ

(
z | x(i)

)
∥pθ

(
z | x(i)

))
.

Notice first that L
(
x(i), θ, ϕ

)
expresses the ELBO as in Equation (1.5), where

the variational parameters are replaced by the parameters θ and ϕ to match the
notations. To go further, let us remark that

L
(
x(i), θ, ϕ

)
=Ez∼qϕ(z|x(i))

[
log

pθ
(
x(i), z

)
qϕ
(
z | x(i)

)] ,
=Ez∼qϕ(z|x(i))

[
log

pθ
(
x(i) | z

)
p(z)

qϕ
(
z | x(i)

) ]
,

=Ez∼qϕ(z|x(i))

[
log pθ

(
x(i) | z

)]
− Ez∼qϕ(z|x(i))

[
qϕ
(
z | x(i)

)
p(z)

]
,

=Ez∼qϕ(z|x(i))

[
log pθ

(
x(i) | z

)]
−DKL

(
qϕ

(
z | x(i)

)
∥p(z)

)
.
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Thus expressed, the ELBO L
(
x(i), θ, ϕ

)
involves two terms. The first one,

Ez∼qϕ(z|x(i))
[
log pθ

(
x(i) | z

)]
is an expectancy with respect to qϕ

(
z | x(i)

)
and

is often referred to reconstruction error. Its estimation through samples from the
conditional distribution pθ(x | z) is feasible. The other is a KL divergence which
measures how far the probabilistic encoder qϕ

(
z | x(i)

)
lies from the prior distribu-

tion p(z) in order to maximize the likelihood function. Typically, qϕ
(
z | x(i)

)
and

p(z) are taken in a family of distribution such that the KL divergence term turns
analytical. The most common family is that of normal distributions.

Finally, the overall objective function LVAE is obtained by summing the lower
bound of each log pθ

(
x(i)
)

over the training data set X . LVAE is optimized with
respect to both θ and ϕ. To summarize, we have

θ∗, ϕ∗ = argmax
θ,ϕ

LVAE = argmax
θ,ϕ

N∑
i=1

L
(
x(i), θ, ϕ

)
. (1.21)

Note that even if we focus on the artificial generation of new data samples from
examples, the VAE approach can be used to meet other requirements. Namely,
through the introduction of the probabilistic decoder qϕ, the VAE also provides an
efficient approximate posterior inference of the latent variable z given an observed
value x.

Equation (1.21), although very useful for understanding how the VAE works,
brings identifiability issues. The solutions of argmaxθ,ϕ LVAE may not be a unique
couple of parameters but a set of couples. In general, the VAE generative process
is not identifiable, e.g.

pθ(x) = pθ′(x) for all x ⇏ θ = θ′.

For additional details on parameters identifiability in VAE, we refer to Khemakhem
et al. (2020).

From an implementation perspective, both the probabilistic encoder and the
probabilistic decoder are trained jointly to optimize the ELBO during the training
stage. In practice, the objective function LVAE is approximated by the unbiased
Monte Carlo estimator L̂VAE given by

L̂VAE =
N∑
i=1

L̂
(
x(i), θ, ϕ

)
,

=

N∑
i=1

[(
L∑
l=1

log pθ

(
x(i) | z(i,l)

))
−DKL

(
qϕ

(
z | x(i)

)
∥p(z)

)]
, (1.22)

where L̂
(
x(i), θ, ϕ

)
denotes the Monte Carlo estimator of L

(
x(i), θ, ϕ

)
, and z(i,l)

is drawn from qϕ
(
z | x(i)

)
.
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Although approaches relying on ELBO maximization previously exist, the
main contribution of Kingma & Welling (2013); Rezende et al. (2014) was the
development of a scalable and effective training approach designed to maximize
the ELBO cost function. It relies on a reparameterization trick to sample from
qϕ
(
z | x(i)

)
. To perform this trick, a function gϕ differentiable with respect to ϕ

is introduced such that sampling from the distribution qϕ
(
z | x(i)

)
is equivalent to

sample the random vector gϕ
(
x(i), ϵ

)
, where ϵ is a well-known noise distribution.

Thus, the samples z(i,l) from Equation (1.22) are obtained by first sampling ϵ(l)

from ϵ, then applying gϕ. On the whole, we have z(i,l) = gϕ
(
x(i), ϵ(l)

)
. Using this

reparameterization, the expression
∑N

i=1

[(∑L
l=1 log pθ

(
x(i) | ϵ(i,l)

))]
is easily

differentiable with respect to both ϕ and θ. The overall training strategy of the
VAE is represented in Figure 1.4. For an example of implementation and associate
reparameterization trick where all involved distributions, i.e. pθ(z), qϕ(z | x),
pθ(x | z) are Gaussians, we refer to Chapter 3 Example 3.3.1.
However, some families of distributions cannot benefit from the reparameterization
trick (e.g. Gamma, Beta, or Von Mises distributions). Figurnov et al. (2018)
propose an implicit reparameterization scheme for the gradient to deal with such
distributions. Details of implicit reparameterization can be found in Appendix 3.F
of Chapter 3.

Figure 1.4: Training strategy of the VAE. The solid arrows indicate therequired operations to compute L̂ (x(i), θ, ϕ
) for a given x(i). Reproduc-ing this process for all the elements of the data setX allows to compute

LV AE described in Equation (1.22). The dotted arrows symbolize the up-date of ϕ and θ by backpropagating the gradient of the computed cost.
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Since the inception of VAEs, an increasing array of extensions and varia-
tions has been put forward. We can mention the search of flexible variational
distributions qϕ which leads to the finding of normalizing flows (Rezende &
Mohamed, 2015; Chen et al., 2016). Other works have also focus on improving
the explainability and the data representation of the latent vector Z (Burgess
et al., 2018), as well as identifiability of VAE parameters (Khemakhem et al.,
2020). In Chapter 3, the VAE framework is combined with EVT to generate
samples that are realistic even when sampling the tail of the distribution. Notice
that a competitive approach exploiting both VAE and EVT is also developed in
Zhang et al. (2023).

Generative Adversarial Networks

GANs constitute a class of generative models, which originally appeared in the
context of image generation (Goodfellow et al., 2016). Since then, the GAN
framework has experienced rapid growth in popularity and has been expanded
into numerous diverse domains. This wide range of applications include text-to-
image translation (Zhang et al., 2017), music generation (Mogren, 2016; Guimaraes
et al., 2017), video generation (Vondrick et al., 2016; Villegas et al., 2017), audio
synthesis (Donahue et al., 2018), speech enhancement (Pascual et al., 2017),
among others. In geosciences, GANs have been used to generate geological facies
(Feng et al., 2022), interpolate seismic data (Oliveira et al., 2018) and reconstruct
cloud structure (Leinonen et al., 2019), to name but a few examples.

Apart from the applications, GANs is an active research field, both in terms
of its implementation details and its theoretical properties. For example, various
GAN loss functions have been suggested to enhance training stability (Mao et al.,
2017; Arjovsky et al., 2017; Roth et al., 2017). Diverse techniques have also been
devised to improve GAN model convergence (Gulrajani et al., 2017; Kodali et al.,
2017; Wei et al., 2018), and there have been advancements in architectures which
allow the development of sophisticated GAN models (Zhang et al., 2017; Brock
et al., 2018; Karras et al., 2019). Besides, asymptotic convergence of GANs is
also investigated (Biau et al., 2021) as well as generalization properties (Arora
et al., 2017). We review hereafter the original GAN work and the Wasserstein
GAN of Arjovsky et al. (2017).

Similar to the VAE model introduced by Kingma & Welling (2013), the GAN
framework operates on the premise that data generation incorporates a latent
random vector denoted as Z, characterized by a pdf p(z) from which samples can
be conveniently drawn. Typically, Z is selected to follow a Gaussian or uniform
distribution. In practice, a sample z(i) is drawn from this prior distribution and
then processed through an auxiliary function G to produce a new sample x(i). G
is called the generator. Ideally, G is such that new samples are drawn from the
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data distribution. The purpose of the GAN is to find G such that

G(Z) = X, Z ∼ p(z). (1.23)
The existence of a measurable bijection G which satisfies Equation (1.23) is given
by the Kuratowski’s Theorem (see Bertsekas & Shreve, 1996, Chapter 7). To
find the generator, GANs focus on the family G = {Gθ, θ ∈ Θ} of NN function.
During the training stage, the aim is to find the optimal parameter θ∗ from the
data set X . To sum up, GANs learn a mapping function from the known prior Z
to the unknown target random vector X.

To learn the optimal parameter θ∗, the GAN framework relies on a training
procedure which could be seen as a game between two players: the generator
and the discriminator. Within this game, the generator’s objective is to produce
samples that closely resemble those drawn from p(x). The discriminator, chosen
within a family of NN functions D = {Dϕ, ϕ ∈ Φ}, is tasked with evaluating
samples originating from both the generator and the training set. More precisely,
Dϕ(x) should represent the probability that x is drawn from p(x). Throughout
the training process, the discriminator endeavors to differentiate between samples
from the generator and those from the training data set. Simultaneously the
generator is trained in an adversarial manner in order to fool the discriminator.
In an ideal scenario, the samples generated by the generator should, at the end
of the training stage, conform so closely to the data distribution p(x) that the
discriminator becomes incapable of distinguishing between genuine and synthetic
samples.

The parameters of each player, either generator and discriminator, are learnt
through the optimization of an objective function based on gradient descent. The
discriminator aims to maximize an objective function, denoted as LD(ϕ, θ) with
respect to its own parameter ϕ. Conversely, the generator seeks to minimize an
objective function, denoted as LG(ϕ, θ), with control limited to θ. The solution
to this challenge entails finding a set of parameters, denoted as (ϕ∗, θ∗), which
constitutes a local maximum of LD(ϕ, θ) with respect to ϕ and a local minimum
of LG(ϕ, θ) with respect to θ. This local optimum is often referred to as the Nash
equilibrium in the literature (Goodfellow, 2014). The objective functions LD(ϕ, θ)

and LG(ϕ, θ) of the original GAN are given by

LD(ϕ, θ) = Ex∼p(x) [logDϕ(x)] + Ez∼p(z) [log (1−Dϕ (Gθ(z)))] ,

LG(ϕ, θ) = Ez∼p(z) [log (1−Dϕ (Gθ(z)))] . (1.24)
Overall, the parameters ϕ∗ and θ∗ are such that
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(ϕ∗, θ∗) = min
θ

max
ϕ

LGAN(ϕ, θ)

= min
θ

max
ϕ

Ex∼p(x) [logDϕ(x)] + Ez∼p(z) [log (1−Dϕ (Gθ(z)))] .

(1.25)
Notice that in practice, a slightly modified implementation of LG is used in

order to safeguard against the generator experiencing vanishing gradients, which
occurs when the discriminator exhibits high confidence (Arjovsky & Bottou, 2017).
Indeed, early in learning, when the generator is poor, the discriminator may reject
samples with high confidence because they are clearly different from the training
data. In this case, log (1−Dϕ (Gθ(z))) saturates. To overcome this, Equation
(1.24) becomes LG(ϕ, θ) = −Ez∼p(z) [log (Dϕ (Gθ(z)))]. As for the VAE, the
scores LG and LD are approximated by Monte Carlo estimators L̂G and L̂D for
operational implementation. To be more explicit, given the data set X and samples(
z(i)
)N
j=1

from the prior, their respective expressions are

L̂D(ϕ, θ) =
1

N

N∑
i=1

[
logDϕ(x

(i)) + log
(
1−Dϕ

(
Gθ(z

(i))
))]

, (1.26)

L̂G(ϕ, θ) =
1

N

N∑
i=1

[
log
(
1−Dϕ

(
Gθ(z

(i))
))]

. (1.27)
An illustration of the GAN framework can be found in Figure 1.5.

The discriminator is said to be optimal and is denoted D∗
ϕ if it satisfies

D∗
ϕ(x) =

p(x)

p(x) + pmodel(x)
,

where pmodel is such that the generator samples according to this distribution.
Following Goodfellow et al. (2020), we can rewrite the objective function LGAN in
the following way when the discriminator is optimal

LGAN = Ex∼p(x)

[
log

p(x)

p(x) + pmodel(x)

]
+ Ex∼pmodel(x)

[
log

pmodel(x)

p(x) + pmodel(x)

]
,

= DKL (p(x)∥p(x) + pmodel(x)) +DKL (pmodel(x)∥p(x) + pmodel(x)) .(1.28)
In this case, the GAN objective function attains its global minimum when
pmodel(x) and p(x) are identical distributions. The quantity described in Equation
(1.28) is equal (up to a constant) to a divergence known as Jensen-Shannon
divergence (Menéndez et al., 1997).
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Figure 1.5: Global strategy of a GAN. The blocks in the blue rectangledescribe the generative process. The solid arrows indicate the full pro-cess to compute the objectives L̂D and L̂G of Equation (1.26) and (1.27).In a training setting, the gradients of these costs allow to update ateach training iteration first ϕ then θ. This is represented by the dottedarrows
While leveraging an adversarial objective function is an elegant method to im-

plicitly learn the distribution p(x), GANs pose significant stability challenges in
training. As a result, extensive efforts have been directed towards refining the
GAN objective function to address these stability issues. Notably, an approach
called Wasserstein GAN, introduced by Arjovsky et al. (2017), has emerged in this
context. In this approach, the authors aim to minimize the Wasserstein diver-
gence between the distributions p(x) and pmodel(x), denoted DW (p∥pmodel). The
Wasserstein divergence between two distributions p and q is defined by

DW (p∥q) = inf
γ∈Π(p,q)

Ex,y∼γ [∥x− y∥]. (1.29)
The set Π(p, q) denotes the set of all joint distributions γ whose marginal distribu-
tions are respectively p and q. In Equation (1.29), the joint distribution γ could be
seen as the amount of probability mass to be transported from x to y to transform
the distribution p into the distribution q.

Finding directly an infimum of DW (p∥pmodel) is highly intractable. The idea
of Arjovsky et al. (2017) is to use the the Kantorovich-Rubinstein duality (Vil-
lani et al., 2009, Section I.5), which leads to an equivalent optimization problem
in which the generator and discriminator functions come into play again. This
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optimization problem is given by

min
θ

max
ϕ

LWGAN = min
θ

max
ϕ

Ex∼p(x) [Dϕ(x)]− Ez∼p(z) [Dϕ (Gθ(z))] .

For this formulation to hold, Dϕ has to satisfy a property known as Lipschitz
continuity (see Appendix 3.B.1).

Interestingly, Arjovsky et al. (2017) (Theorem 2) prove that sequences of
distributions may converge using the Wasserstein divergence while failing to
converge using the KL or Jensen-Shannon divergences. This theorem is illustrated
in examples and indicates that the Wasserstein GAN may be particularly suited
for learning distributions.

As a comparative approach to our VAE tuned to sample multivariate extremes
described in Chapter 3, we use a Wasserstein GAN adapted to extreme generation
(see Section 3.6.4). This Wasserstein GAN has been introduced in Huster et al.
(2021) and is called ParetoGAN since the latent variable Z of Equation (1.23) has
GP marginal distributions (see Theorem 1.2.9).

1.3.2 . Modeling sequences with recurrent neural networks
Recurrent NNs (Rumelhart et al., 1986), belong to a class of NNs designed

to handle sequential data. A data set of sequential data is composed of elements(
x(0),x(1), · · · ,x(N)

)
, where the x(i) are not drawn from i.i.d. random elements.

Numerous real-world phenomena can be represented by sequential data, including
time series of real-valued vectors or natural language sentences. In Chapter 2
Section 2.1.1, we consider sequences of gradients that we use for optimization
purposes. Despite the variety of processes sequential data may cover, we will use
the denomination time index for the upper index i of x(i).

Recurrent NNs can scale to much longer sequences than would be practical
for networks without sequence-based specialization. Besides, recurrent NNs can
generally process sequences of variable length. The main idea behind recurrent
NNs is the sharing parameters across different parts of the model. This sharing
of parameters enables the model to adapt to examples of diverse structures while
facilitating generalization.

Recurrent NNs can be built in many different ways which usually use the fol-
lowing recursive equation

h(i) = fω(h
(i−1),x(i)), (1.30)

where h(i) is a hidden unit of the recurrent network and ω the parameters of
the network, which are shared along the sequence. The operating principle is
illustrated in Figure 1.6. The hidden units are used to produce the desired output
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which could either be a sequence or a single output.

Figure 1.6: Scheme of a time-unfolded recurrent NN with a single out-put provided only when the entire sequence is processed.
Equation (1.30) describes what is referred to as a cell of the recurrent NN.

Different choices of function fω lead to different types of cells. The long-short
term memory (LSTM) cell is one of the most used cells in recurrent NNs and its
detailed implementation is delayed to Chapter 2, Section 2.4.2.

Recurrent NNs with LSTM cells have found applications in geoscientific prob-
lems. These include predicting ground movements (Kumar et al., 2021) and re-
constructing groundwater levels (Vu et al., 2021).
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Key points of Section 1.3

Two families of machine learning techniques were introduced:

▶ Generative models. This family of model learn to approximate an
unknown distribution in order to draw new realistic samples. Impor-
tant examples of models are the variational auto-encoder and the
generative adversarial network. Generative models are key ingredi-
ents of Chapter 3 since we design a variational auto-encoder that
is suitable to generate extreme values consistently. Additionally, in
experiments, we compare our approach to a generative adversarial
network belonging to the family of Wasserstein generative adversarial
networks.

▶ Recurrent neural networks. This family of models are designed
to process sequential data (for example time-series). They rely on
weights shared across the sequence to facilitate generalization. The
building blocks of a recurrent neural network are referred to cells,
one of the most famous one being the long short-term memory cell.
Recurrent neural networks will be extensively used in Chapter 2 to
process sequences of gradients in an optimization purpose.

1.4 . Data assimilation background

DA is a discipline that focuses on estimating the most accurate representation
of a dynamical system and its associated uncertainty given prior information from
a physical model and observed data. DA problems belong to the broader class of
inverse problems. Initially rooted in numerical weather prediction and operational
oceanography, DA draws its mathematical formulation from Bayesian inference,
control theory, and variational calculus. In the last thirty years, the field of DA
has developed sophisticated techniques that are now extensively applied across a
diverse spectrum of research disciplines encompassing geosciences (Carrassi et al.,
2018), economics (Zeng & Wu, 2013), traffic management (Xie et al., 2018),
epidemiology (Evensen et al., 2021).

In this section, we review some basis of DA. In Section 1.4.1, we formally
define our objectives when addressing DA problems. More precisely, we focus on
the DA problem known as smoothing which consists in estimating the state of a
system given observations that may be prior to or subsequent to the time step
under consideration. To do so, we introduce appropriate notations and notions.
In particular, we present the state-space models (SSMs) formulation, which is the
most convenient way to formulate a DA problem. The remainder of the section
recalls solutions to the smoothing problem. We group these solutions in two main
families: Kalman-based approaches and variational approaches. Section 1.4.2 is
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dedicated to Kalman-based approaches and Section 1.4.3 to variational approaches.
This section was built with the help of valuable references including Talagrand
(2010); Chau (2019) and Evensen et al. (2022).

1.4.1 . Problem formulation through state-space models
In a DA problem, one has access to a sequence of noisy observations y1:T =

(y1,y2, · · · ,yT ) of a sequence of hidden states x0:T = (x0,x1, · · · ,xT ) of inter-
est. Each xt belongs to Rnt and each yt to Rdt , with nt ≥ dt. In this thesis,
we consider the inference problem known as smoothing (see, e.g. Wiener, 1949;
Carrassi et al., 2017). Solving the smoothing problem involves estimating for each
time step t the distribution p (xt | y1:T ), or at least the mode of p (xt | y1:T ). No-
tice that in Chapter 2, we even consider smoothing given sparse observations,
which equates to estimate the distributions p (xt | yΩT

) or their modes, with
ΩT ⊂ {1 : T}. In this section, we limit ourselves to presenting smoothing in
a classical framework, bearing in mind that extending it to configurations with
sparse observations is relatively straightforward.

To deal with the inference problem of smoothing, DA relies on a formalism
usually called state-space models (SSMs) (see, e.g. Ansley & Kohn, 1985; Com-
mandeur & Koopman, 2007). To take into account information provided by both
the knowledge of the underlying dynamics and the available observations, a SSM
comprises two recurrent equations. The first equation models the dynamical evo-
lution of the hidden state. The other equation models through an observation
operator how the observed variable relates to the hidden state. More formally, in
a SSM, the state sequence x0:T and the observation sequence y1:T are modeled
as drawn from time discretized random processes. Let (Xt)t=0:T and (Yt)t=1:T

denote the hidden state and observation processes respectively, on a coupled space
(X ,Y). For each time step t = 1 : T , a general SSM is defined by the stochastic
recurrent system{

Xt = M (Xt−1, ηt) , [ hidden ]

Yt = H (Xt, ϵt) , [ observed ]

(1.31.a)
(1.31.b)

where (ηt, ϵt) represent stochastic noise processes. Equation (1.31.a) is referred to
as the dynamical model. It characterizes the evolution of the state, and assumes
Markovianity of the hidden process. M is a function mapping the state from time
(t − 1) to (t) and is called the dynamical operator. M is generally obtained by
integrating a differential equation representing knowledge about a continuous-time
physical process. The model error process (ηt)t=1:T accounts for errors that could
be due for example to modeling misrepresentations or parameterization imperfec-
tion. Equation (1.31.b) describes the observation model. H is the observation oper-
ator and describes how observations correspond to the true hidden state. (ϵt)t=1:T

include errors in observations measurement due to device precision, or observation
operator misspecification.
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We can alternatively define the SSM described in System (1.31) by means of
two distributions:

• The Markov kernel p (xt | xt−1), which is the transition distribution of the
hidden state process (Xt)t=0:T ;

• The likelihood p (yt | xt) which stands for the observation distribution of
the process (Yt)t=1:T conditioned by the state Xt = xt.

In order to provide a computable solution to the smoothing problem, additional
assumptions are needed to simplify the general SSM of System (1.31). These
assumptions concern error distributions as well as the dynamical and observation
operators H and M. The following equations give the most commonly used SSM
in DA problems. {

Xt = M (Xt−1) + ηt,
Yt = H (Xt) + ϵt.

(1.32)
In this framework, model errors (ηt)t=1:T and observational errors (ϵt)t=1:T are
assumed to be additive noise, and additionally, are assumed to be Gaussian, namely

ηt ∼ N (0,Qt) , (1.33)
ϵt ∼ N (0,Rt) . (1.34)

The Gaussian distribution with mean µ and covariance Σ is denoted N (µ,Σ).
Model error noises have zero means and Q1:T covariance matrices which may vary
in time or depend on the state value. In the same way, each observation noise
ϵt have zero means and Rt covariance matrix. The dimension of observational
covariance matrices varies according to the dimension of the observation for each
specific time step. The notation of error covariances (Qt,Rt) is replaced by (Q,R)

whenever their values are assumed time-constant.
The SSM described in System (1.32) can also be described by the

Markov kernel p (xt | xt−1) = N (xt ;M(xt−1),Qt), and the likelihood
p (yt | xt) = N (yt ;H(xt),Rt).

In the following, we always consider SSMs with additive Gaussian noise as
defined in System (1.32). Except in some specific cases, it is generally neither
possible to calculate the smoothing distribution explicitly, neither to analytically
find its mode. Numerous methods have been developed to estimate the mode of the
smoothing distribution p (xt | y1:T ). In the remainder of this section, we review
two families of methods for estimating the mode of the smoothing distribution
p (xt | y1:T ): Kalman-based approaches in Section 1.4.2 and variational ones in
Section 1.4.3. Strong links between these families exist.
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1.4.2 . Kalman-based approaches
To estimate the states x1:T given observations y1:T , Kalman-based approaches

provide estimates of the smoothing distributions that are computed through recur-
sions. To highlight these recursions, we first note that for a given time step t,
such that 1 ≤ t < T , we can write the smoothing distribution p (xt | y1:T ) in the
following way,

p (xt | y1:T ) =

∫
p (xt | xt+1,y1:T ) p (xt+1 | y1:T ) dxt+1,

= p (xt | y1:t)

∫
p (xt+1 | xt) p (xt+1 | y1:T )

p (xt+1 | y1:t)
dxt+1. (1.35)

Four different quantities are involved in Equation (1.35):
• p (xt+1 | y1:T ) is the smoothing distribution at time step t+ 1;

• p (xt+1 | xt) is the Markov Kernel;

• p (xt | y1:t) is known as the filtering distribution at time step t;

• p (xt+1 | y1:t) is known as the forecast distribution at time step t + 1 and
is obtained by propagating the filtering distribution at time step t through
the Markov Kernel.

If an estimate of the filtering distributions is available, we can eventually estimate
the smoothing distributions, starting from p (xT | y1:T ) and using the recursion
backward in time given in Equation (1.35).

To estimate the filtering distributions, notice that we can write

p (xt | y1:t) ∝ p (yt | xt) p (xt | y1:t−1) ,

∝ p (yt | xt)

∫
p (xt | xt−1) p (xt−1 | y1:t−1) dxt−1. (1.36)

Thus, up to a scaling factor, the distribution p (xt | y1:t) can be obtained from
Equation (1.36) by a recursion forward in time involving two steps:

• First step, propagate the previous filtering distribution p (xt−1 | y1:t−1)

through the Markov kernel p (xt | xt−1) associated to the dynamical model
to obtain the forecast distribution p (xt | y1:t−1). This step is known as the
forecast step.

• Second step, multiply by the likelihood p (yt | xt). Doing so, the observa-
tions at time t are assimilated to the estimation of the filtering distribution by
leveraging the information from the observation model. This step is known
as the correction step.
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Overall, computing the smoothing distributions of the state is carried out both
forward and backward in time. In the forward pass, one first estimate the filtering
distributions using Equation (1.36). Then, starting from p (xT | y1:T ), the reverse
phase described in Equation (1.35) purposes to adjust the smoothing distributions
including future observed information.

Consider now this special case of the SSM with additive noise of System (1.32){
Xt = MtXt−1 + ηt,
Yt = HtYt + ϵt,

(1.37)
where Mt and Ht are matrices in Rnt ×Rnt and Rdt ×Rdt . It is called linear SSM
since the functions M and H of System (1.32) are linear functions. In this simpli-
fied setting, filtering and smoothing distributions usually admit explicit expressions
or analytic solutions. Due to basic properties of Gaussian distribution regarding
conditioning (see, e.g. Bishop & Nasrabadi, 2006, Chapter 2) and given all dy-
namical and observational operators (Mt,Ht) and error covariances (Qt,Rt), the
conditional distributions appearing in the decomposition formulas (1.36) and (1.35)
are Gaussian distributions with explicit expressions for their means and covariances.
Kalman filter (KF) and smoother (KS) (Kalman, 1960; Rauch et al., 1965) have
been developed to perform optimally within the framework of linear SSMs, as they
respectively allow to retrieve the exact filtering or smoothing distributions, by com-
puting means and covariances of Gaussian distributions. The interested reader may
find applications of KF and KS in navigation and meteorology in Brown (1983);
Dee (1991); Galanis et al. (2006). Given their paramount importance in the field
of DA, and bearing in mind that all other Kalman-based approaches derive from
them, we take a closer look at the operating principles of the KF and KS.

First, we start with the KF, since the KS needs the filtering distributions to
process the backward recursion. The KF operates the forecast and the correction
step described in Section 1.4.1. First, the KF computes the forecast distribution,
p (xt | y1:t−1). Since it is Gaussian, we can express it as N

(
xt;x

f
t ,P

f
t

)
, with xf

t

the mean and Pf
t the covariance of the forecast distribution. As the filtering distri-

bution p (xt | y1:t) is also Gaussian, it suffices to calculate its mean and covariance
to perform the correction step and thus to solve the problem. These mean and
variance are usually denoted xa

t and Pa
t , where the superscript a denotes analysis,

which is a common name of the filtering distribution in the literature. To compute
xa
t and Pa

t , a matrix Kt called Kalman gain is involved which results from a linear
algebra solution balancing the forecast distribution and the observation. The KF
procedure is detailed in Algorithm 1.
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Algorithm 1: Kalman filter
Data: Observations yt

Initialization: Set xa
0 , Pa

0

for t = 1 to T do
Forecast step:

xf
t = Mtx

a
t−1, (1.38)

Pf
t = MtP

a
t−1M

T
t +Qt (1.39)

Correction step:

Kt = Pf
t H

T
t

(
HtP

f
t H

T
t +RT

)−1 (1.40)
xa
t = xf

t +Kt

(
yt −Htx

f
t

)
, (1.41)

Pa
t = (I−KtHt)P

f
t . (1.42)

Algorithm 2: Kalman smoother
Initialization: Run Kalman Filter (Algorithm 1)
for t = T − 1 to 0 do

St = Pa
tM

T
t+1

(
Pf

t

)−1

, (1.43)
xs
t = xa

t + St

(
xs
t+1 − xf

t+1

)
,

Ps
t = Pa

tSt

(
Ps

t+1 −Pf
t+1

)
ST
t .

For the KS, the smoothing distribution p (xt | y1:T ) can be calculated by
making extensive use of the forward-backward recursion presented in Equation
(1.35). Since it is Gaussian, we write p (xt | y1:T ) = N (xt;x

s
t ,P

s
t ), where xs

t

and Ps
t the mean and covariance. Given filtering distributions provided by the

KF, the smoothing distributions are computed by using the Rauch-Tung-Striebel
(RTS) procedure (Rauch et al., 1965). We refer to Algorithm 2 for a detailed
implementation.

KF and KS are optimal only when considering linear SSM with Gaussian noise
and explicit covariances defined in Equation (1.37). Extended Kalman filter (EKF)
and smoother (EKS) have been developed to extend the approach of the KF and
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the KS to non-linear SSMs with additive noise as described in System (1.32). EKF
and EKS are a first-order expansion of KF and KS. The filtering and smoothing
schemes are similar to the KF and KS algorithms (see Algorithm 1 and 2) except
two points. First, the forecast and analysis mean (xf

t and xa
t ) are obtained using the

functions (M,H) instead of linear operators (Mt,Ht). More precisely, Equations
(1.38) and (1.41) of Algorithm 1 become

xf
t = M

(
xa
t−1

)
,

xa
t = xf

t +Kt

(
yt −H

(
xf
t

))
.

Second, the covariances udate uses the linearized model, i.e dynamical and obser-
vation models are locally approximated by their Jacobians. Namely, in Equations
(1.39), (1.40), and (1.42), the matrices Mt and Ht are thus set as

Mt = ∇M
(
xa
t−1

)
,

Ht = ∇H
(
xf
t

)
.

Nevertheless, the use of extended Kalman recursions poses computational
problems. Indeed, the recursions require the computation of the Jacobians of the
model M1:T at each time step, as well as the storage of the full covariances Pf

1:T .
This may prove prohibitive in high-dimensional problems.

To overcome the drawbacks of EKF and EKS, the main idea is to rely on
ensemble-based methods, which consist in Monte Carlo approximations of the KF
or KS. These ensemble-based methods include ensemble Kalman filter (EnKF), en-
semble Kalman smoother (EnKS) originally introduced by Evensen (1994); Evensen
& Van Leeuwen (2000), and their variants (Evensen et al., 2009a; Bocquet, 2011;
Bocquet & Sakov, 2012). In the EnKF approach, for each time step t, an ensem-
ble of size N , denoted by

{
x
a,(i)
t

}
i=1:N

, is run. Each element
{
x
a,(i)
t

}
is called a

member. From this ensemble, an estimate of the filtering distribution is deduced
as follows

N

(
xt ; xa

t ,
1

N − 1

N∑
i=1

(x
a,(i)
t − xa

t )(x
a,(i)
t − xa

t )
T

)
, (1.44)

where the bar operator indicates the mean over ensemble elements. As for the
KF, the standard EnKF algorithm also relies on the forecast and correction step.
Given the mean and covariance estimated at time t − 1, a forecast ensemble{
x
f,(i)
t

}
i=1:N

is created at forecast step. To do so, each member xf,(i)
t is sampled

from the Markov Kernel p
(
xt | xa,(i)

t−1

)
. The covariance matrix at forecast step Pf

t

is set as the empirical covariance of the forecast ensemble. In the correction step,
a Kalman recursion with perturbed observations is applied on each members to
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obtain the analysis x
a,(i)
t . Algorithm 3 shows the update process of the ensemble

at each time step.

Algorithm 3: Ensemble Kalman Filter
Data: Observations yt

Initialization: Sample
{
x
a,(i)
t

}
i=1:N

from initial distribution p0.
for t = 1 to T do

Forecast step:
for i = 1 to N do

x
f,(i)
t = M(x

a,(i)
t−1 ),

x̄f
t = 1

N

∑N
j=1 x

f,(j)
t ,

Xf
t = 1√

N−1

[
x
f,(1)
t − x̄f

t ,x
f,(2)
t − x̄f

t , · · · ,x
f,(N)
t − x̄f

t

],
P̂f

t = XT
t Xt.

Correction step:
Kt = P̂f

tH
T
t

(
HtP̂

f
tH

T
t +RT

)−1,
for i = 1 to N do

Sample ϵ
(i)
t from N (0,Rt).

x
a,(i)
t = x

f,(i)
t +Kt

(
ϵ
(i)
t −Htx

f,(i)
t

).

With regards to the EnKS, the algorithm is run using ensembles obtained by
a forward computation of the EnKF. As for the KS, the EnKS incorporates the
RTS scheme introduced in Algorithm 2 to adjust the analysis ensembles with both
forward and backward observations (see also Raanes, 2016, for details). Equation
(1.43), which computes the product of the analysis covariance and the transpose of
the transition matrix, is approximated by the empirical cross-covariance between
the analysis ensemble at time t and the forecast ensemble at time t+1. Algorithm
4 describes the detailed iterative process.
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Algorithm 4: Ensemble Kalman Smoother
Initialization: Run Ensemble Kalman Filter (Algorithm 3)
for t = 0 to T do

x̄a
t = 1

N

∑N
j=1 x

a,(j)
t ,

Xa
t = 1√

N−1

[
x
a,(1)
t − x̄a

t ,x
a,(2)
t − x̄a

t , · · · ,x
a,(N)
t − x̄a

t

]
for t = T − 1 to 0 do

Ŝt = Xa
t

(
Pf

t+1

)−1 (
Xf

t+1

)T
,

for i = 1 to N do
x
s,(i)
t = x

a,(i)
t + Ŝt

(
x
s,(i)
t+1 − x

s,(i)
t+1

)
,

In practical applications, a relatively small ensemble size (N ≤ 100) is chosen
(Mitchell et al., 2002). This choice enables the EnKF, EnKS, and their extensions
to be applied effectively in high-dimensional real inference problems, particularly
within the domain of geosciences (see, e.g., Evensen, 2003a; Van Leeuwen, 2010;
Carrassi et al., 2018). However, certain issues remain. For instance, in Le Gland
et al. (2009) the authors proved that the asymptotic distribution computed by
the EnKF or the EnKS when N → ∞ do not converge to the true Bayesian
distributions. We also refer to Evensen (1992) for numerical illustrations.

In Chapter 2, dedicated to a learning-based DA model, EnKS is used in numer-
ical experiments (see Section 2.5) as a baseline approach. The aim of this chapter
is to present a method that approaches the smoothing distributions.

1.4.3 . Variational data assimilation approaches
Alongside Kalman-based methods, which estimate the state of the system as

the mean of a Gaussian approximation of the smoothing distributions, variational
methods (see Evensen et al., 2022, Chapter 4 & 5) have also developed widely
in the DA community. Variational methods aim to minimize a cost function, and
comprises in particular the four-dimensional variational DA, known as 4DVar in
the DA literature. Unlike Kalman-based methods, the smoothing distributions are
not explicitly expressed. Variational DA is currently at the core of pipelines in
weather (Rabier et al., 2000; Bonavita et al., 2016) and oceanographic (Madec
et al., 2017) DA.

In the following of this section we introduce the 4DVar (Talagrand & Courtier,
1987; Evensen et al., 2009a) framework. The 4DVar framework has been
extensively used in this thesis since the Deep Learning methods introduced in
Chapter 2 draw inspiration from 4DVar formulations.
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The 4DVar was introduced in Sasaki (1970). This seminal version is de-
nominated as strong constraint 4DVar. The aim is to find the optimum
argminx0:T JStrong, given

JStrong(x0:T ) =
∥∥∥x0 − xb

0

∥∥∥2
B
+

T∑
t=1

∥H(xt)− yt∥2Rt
, (1.45)

subject to: xt = M (xt−1) t = 1, · · · , T, (1.46)
with xb

0 a background estimate of x0, and B a matrix called background error
covariance matrix. The considered norms are Mahalanobis norms (see Appendix
2.A for details).

Minimizing the strong constraint cost JStrong only implies a minimization with
respect to x0. Indeed, from the constraint in Equation (1.46), JStrong(x0:T ) only
depends on x0. This constraint is known as perfect model assumption. Optimiz-
ing the cost JStrong equates to maximize the posterior p(x0:T | y1:T ) under the
assumption of the SSM of System (1.32) where the model error ηt is discarded and
an additional background information is available. This background information is
a Gaussian error N (0,B) over the background error term x0 − xb

0. Maximizing
the posterior is referred to as maximum a posteriori. To retrieve the maximum a
posteriori, we write

p(x0:T | y1:T ) = p(x0 | y1:T ),

∝ p(x0)p(y1:T |x0),

∝ exp

(
−1

2

∥∥∥x0 − xb
0

∥∥∥2
B

)
exp

(
−1

2

T∑
t=1

∥H(xt)− yt∥2Rt

)
.

By taking the logarithm of the right hand side expression, we find back the
expression of JStrong. Notice that the assumption of time uncorrelation of error
process η is crucial to go from the second to the third line of the previous equations.

Further development of the 4DVar led to the emergence of the weak constraint
4DVar (see Bennett, 1992, Chapter 5). In the weak constraint formulation, unlike
the strong constraint 4DVar, the perfect model constraint is relaxed and replaced
by a regularization term involving the dynamics. Namely the purpose is to find an
optimum argminx0:T JWeak, with

JWeak(x0:T ) =
∥∥∥x0 − xb

0

∥∥∥2
B
+

T∑
i=1

∥xt −M (xt−1)∥2Qt
+

T∑
i=1

∥H(xt)− yt∥2Rt
.

(1.47)
The term involving the dynamics is

∑T
t=1 ∥xt −M (xt−1)∥2Qt

, and indicates that
the model is no longer perfect but encompasses a Gaussian error process with zero
mean and covariance Qt at each time step t = 1, · · · , T . The corresponding SSM
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is given in System (1.32). Again, optimizing JWeak equates to find a maximum a
posteriori. Indeed, if the error processes are uncorrelated, we can write

p(x0:T | y1:T ) ∝ p(x0:T )p(y1:t|x0:T ),

∝ p(x0)p(x1:T | x0)
T∏
t=1

p(yt | xt),

∝ p(x0)
T∏
t=1

p(xt | x(t−1)) exp

(
−1

2

n∑
t=1

∥H(xt)− yt∥2Rt

)
,

∝
T∏
t=1

exp

(
−1

2
∥xt −M (xt)∥2Qt

)
exp

(
−1

2

T∑
t=1

∥H(xt)− yt∥2Rt

)

× exp

(
−1

2

∥∥∥x0 − xb
0

∥∥∥2
B

)
.

Once again, the logarithm of the right hand side expression of the last line is
exactly JWeak.

A process that minimizes a given cost is referred to as a solver. The classical
solver for minimizing strong or weak variational cost is a fixed-step gradient-based
descent. Our contribution presented in Chapter 2 falls onto a line of research
which bridges deep learning and DA. In particular our approach extends Fablet
et al. (2021b) (see Section 2.1.1) which have provided a method that learns a
tuned solver of the weak variational cost relying on the framework of recurrent
NNs (Section 1.3.2).

1.4.4 . Uncertainty quantification in data assimilation
This section is devoted to introduce uncertainty quantification and its link with

DA, since both concepts are central in Chapter 2. Uncertainty quantification is
a field of research originally rooted in probability theory, statistics and numeri-
cal modeling (see, e.g. Soize, 2017b). Given a numerical model that emulates
the physical dynamics of a phenomena, some degree of uncertainty is inevitable.
Indeed, the ability of the model to truly describe the physics of interest cannot
be perfect. The data this model uses to assist in describing these physics may
also encompass uncertainty. For these reasons, and because numerical predictions
are often the basis of engineering decisions, uncertainty quantification has been a
subject of concern for many years.

Uncertainties can be classified into two main categories:

• Aleatory uncertainties characterize physical phenomena which are random
by nature;

• Epistemic uncertainties concern the parameters of a computational model,
for which there is a lack of knowledge, as well as the modeling errors, which
arise from a lack of knowledge of the physics itself.
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Numerous methods have been developed to quantify uncertainty such as Monte
Carlo methods (Mezić & Runolfsson, 2008), polynomial chaos (Lucor et al., 2004)
or random matrix factorization (Soize, 2017a).

A natural field of application for uncertainty quantification is DA (D’Elia &
Veneziani, 2013; Cheng et al., 2023). To illustrate this, consider the SSM intro-
duced in System (1.32). In this context, the dynamical operator M is in practice
a numerical model derived from the integration of a differential equation repre-
senting the dynamical evolution of a system. The parameterization chosen for
the numerical model conveys uncertainties. Moreover, differential equations im-
perfectly represent the system in the case of complex, high-dimensional problems
(see Hamill & Whitaker, 2005). The variables of the dynamical system may have
intrinsic stochastic variability. Besides, the data we use are noisy observations y1:T

of the variable of interest, which introduces an additional uncertainty. Applied to
DA, the research field of uncertainty quantification provides methods for assessing:

• The uncertainty of the numerical model parameters;

• The uncertainty of the variable of interest, given observations y1:T .

The second point is essential for assessing the confidence in the estimates x0:T .
As mentioned previously, the Chapter 2 of this PhD thesis focuses on this
point. We can represent the uncertainty of the variable of interest given the
observations y1:T by the distribution p(x0:T | y1:T ) which is the smoothing distri-
bution. Estimation of the smoothing distribution is therefore a quantification of
both the aleatoric uncertainty and the uncertainty associated with modelling errors.

We recall in Section 1.4.2 that the smoothing distributions are estimated as
multivariate normal distributions for Kalman-based methods. In this way, Kalman
methods can be seen as uncertainty quantification methods. A contrario, varia-
tional approaches estimate x0:T by maximum a posteriori based on assumptions of
Gaussianity of the error processes, without any direct quantification of uncertain-
ties. In Chapter 2, we explore the crossroads of variational DA, VB and uncertainty
quantification with neural DA schemes for the estimations of the smoothing dis-
tributions.
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Key points of Section 1.4

▶ Data assimilation is a field of research which aim at informing the
unknown state of a dynamical system given noisy observations and
prior knowledge on the dynamics.

▶ To formalize a data assimilation problem mathematically, state-space
models are particularly relevant.

▶ We consider the smoothing problem. It consists in estimating the
state at given timesteps on the basis of observations that may be
prior to or subsequent to the time step under consideration.

▶ Two main approaches coexist to tackle smoothing, 4DVar approaches
and Kalman-based approaches. 4DVar approaches estimate the state
of the system by minimizing a cost function, while Kalman-based
approaches provide a Gaussian estimate of the posterior of the state.

▶ In Chapter 2, we design a neural data assimilation approach to ap-
proximate the smoothing distribution. Our approach draws inspi-
ration from similarities between variational Bayes and weak 4DVar
paradigms. Ensemble Kalman smoother is used as a baseline ap-
proach in our experiments (see Section 2.5).
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CHAPTER 2

UNCERTAINTY
QUANTIFICATION WHEN

LEARNING DATA ASSIMILATION
MODELS AND SOLVERS WITH

VARIATIONAL METHODS

Overview

The main objective of this chapter is to present a learning-based scheme
based on variational Bayes formulation to jointly address data assimilation
and uncertainty quantification. Smoothing distributions are approximated
by Gaussian distributions. To do so, we extend the state-space model to
the parameter space of Gaussian distributions. Thus, an optimization with
respect to mean and covariance parameters of Gaussian distributions is
performed.

Our work extends to uncertainty quantification previous work on variational
cost minimization by a neural-based solver, in particular the work of Fablet
et al. (2021b). We first present this seminal work and the context of cross-
fertilization between data assimilation and machine learning in Section 2.1.
Subsequently, the paper as published in the Journal of Advances in Modeling
Earth Sciences (Lafon et al., 2023a) will be expounded from Section 2.2 to
2.6.
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Abstract of Lafon et al. (2023a)

In geosciences, data assimilation (DA) addresses the reconstruction of a hid-
den dynamical process given some observation data. DA is at the core of
operational systems such as weather forecasting, operational oceanography
and climate studies. Beyond the reconstruction of the mean or most likely
state, the inference of the state posterior distribution remains a key chal-
lenge, i.e. quantify uncertainties as well as to inform intrinsic stochastic vari-
abilities. Indeed, DA schemes, such as variational DA and Kalman methods,
can have difficulty in dealing with complex non-linear processes. A growing
literature investigates the cross-fertilization of DA and machine learning.
This study proposes an end-to-end neural scheme based on a variational
Bayes inference formulation to jointly address DA and uncertainty quan-
tification. It combines an ELBO (Evidence Lower BOund) variational cost
to a trainable gradient-based solver to infer the state posterior probability
distribution function given observation data. The inference of the posterior
and the trainable solver are learnt jointly. We demonstrate the relevance of
the proposed scheme for a Gaussian parameterization of the posterior and
different case-study experiments, including Lorenz 63 dynamics and river
flow measurements. A benchmark with respect to state-of-the-art schemes
is provided.

2.1 . Preamble to Lafon et al. (2023a): cross-fertilization of
machine learning and data assimilation

ML-based methods have recently emerged as appealing solutions to DA
problems. Although they originate from different backgrounds and serve diverse
purposes, ML and DA share a common trait in their ability to extract knowledge
from data. Similarities between these two research fields have been studies and
identified (Hsieh & Tang, 1998; Geer, 2021). In particular, the link between
ML-based approaches and variational-type assimilation methods such as 4DVar
(see Section 1.4.3) is significant since both domains rely on gradient descent
techniques to minimize a cost function, which quantifies the disparity between
model predictions and observations (Abarbanel et al., 2018; Bocquet et al., 2020a).

Cheng et al. (2023) identified several main types of approach in which ML
techniques are used to address DA challenges. Among those, we can cite attempts
to statistically correct model errors by adding a term learned from observations
to the numerical model (see, e.g. Farchi et al., 2021; Sacco et al., 2022). In
addition, much effort has been made to model error covariances (see System (1.32))
using ML (Vega-Brown et al., 2013; Liu et al., 2018). In this two examples,
learning-based methods are used to improve or replace specific blocks of existing
DA algorithms. In this thesis, we focus on another ML contribution to DA, the
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so-called end-to-end approaches. End-to-end learning refers to training a possibly
complex learning system by applying gradient-based learning to the system as a
whole (Glasmachers, 2017). In a DA context, end-to-end approaches are designed
to provide global solution to DA problem as a whole and thus provide alternative to
standard DA algorithms. To be more specific, end-to-end approaches are fully data-
driven solutions that take observations as inputs and output the state estimation,
or any other variable of interest. Recent work has proposed end-to-end learning
schemes for the entire DA system, taking advantage of the possibilities offered
by deep learning schemes. These end-to-end approaches range from state-of-the-
art neural architecture trained to map the observations to the targeted outputs
(Barth et al., 2020; Manucharyan et al., 2021), to sophisticated DA-inspired neural
schemes (Fablet et al., 2021b; Revach et al., 2022; Boudier et al., 2023).

Recall that in operational DA, the dynamical operator, denoted M in Section
1.4, is a numerical model (potentially complex) that arises from integration
of differential equations. Importantly, the sophisticated end-to-end approaches
usually involve a key component known as a surrogate representation of the
dynamics, which is is a data-driven emulator of the dynamical operator.

Fablet et al. (2021b) introduce an end-to-end framework called 4DVarNet.
It combines a gradient-descent based solver of a variational cost and a surrogate
representation jointly learned in a supervised setting. Our work provides an exten-
sion of the 4DVarNet framework for uncertainty quantification (see Section 1.4.4).
The 4DVarNet approach is presented in more detail in Section 2.1.1. Section 2.1.2
documents the scientific community’s growing interest in bridging the gap between
DA, uncertainty quantification and ML techniques.

2.1.1 . 4DVarNet: an end-to-end framework for variational data
assimilation

The 4DVarNet (Fablet et al., 2021b) is an end-to-end approach which allows
to reconstruct the state of the system from sparse and noisy observations. Thus it
solves a smoothing problem given sparse observations (see Section 1.4.1). Formally,
the 4DVarNet estimates the state x0:T given observations y = yΩT

with ΩT ⊂
{0 : T}. The applications of 4DVarNet to sea surface heights and sea surface
currents reconstruction have achieved state-of-the-art performance (Fablet et al.,
2021b; 2023). As its name suggests, 4DVarNet is inspired by 4DVar method,
more precisely by the weak formulation. It comprises two main blocks: a trainable
solver and a surrogate representation of the dynamics ; both being trained jointly.
The role and function of these blocks are described in detail in this section. The
4DVarNet1 source code is fully available online.

1The open-source code is available at https://github.com/CIA-Oceanix/
4DVarNet-core
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Optimization with learned gradient descent

An important building block of the 4DVarNet is the learnable neural solver. In
Section 1.4.3, we introduce in Equation (1.47) the variational cost JWeak that
we seek to minimize in the weak 4DVar approach. The minimization of JWeak

generally relies on the iterations of a gradient descent of the form

x
(0)
0:T = xInit

0:T ,

x
(k+1)
0:T = x

(k)
0:T − λ∇JWeak

(
x
(k)
0:T

)
, (2.1)

where λ > 0 is a carefully chosen rate. In this framework, each x
(i)
0:T , is an

estimate of the unknown true state starting from a first guess xInit
0:T and updated

iteratively through Equation (2.1).
An idea that comes from the ML community (see, e.g. Andrychowicz et al.,

2016; Hospedales et al., 2021) is to replace the standard iteration of Equation (2.1)
by a learned iteration

x
(0)
0:T = xInit

0:T ,

x
(k+1)
0:T = x

(k)
0:T − fω

(
∇JWeak

(
x
(k)
0:T

))
, (2.2)

where fω is a function depending on a set of learnable parameters ω, typically a
NN. Since

(
x
(i)
0:T

)
i=0:N

is a data sequence, a relevant approach consists in process

it with a recurrent NN and thus to cast fω as a LSTM (see Section 1.3.2).
Training an optimized gradient descent algorithm aims at speeding up the

minimization of the cost, which could be computationally costly and potentially
slow. This strategy applies not only to JWeak but to any differentiable cost
function which one aims to minimize.

In experiments with synthetic data, one may have access to the true values
xtrue
0:T . This is noticeably the case in the experiment described in Section 2.5.

Given a fixed number N of iterations, the existence of ground-truth data allows
optimizing ω with respect to the supervised learning cost

L(ω,xtrue
0:T ) =

∥∥∥x(N)
0:T − xtrue

0:T

∥∥∥ , (2.3)
where ∥.∥ is a norm to specify.

In the next section, we present the end-to-end formulation corresponding to
the 4DVarNet algorithm. To do so, we detail where the surrogate representation
comes into play and how it modifies the weak variational cost. The method
to jointly learn the neural solver and the neural surrogate model is finally explained.
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The joint learning of a surrogate representation of the dynamics and a
solver

Combining Equations (2.2) and (2.3) allows to learn a solver of the weak variational
cost within a supervised learning scheme. In this context, the computation of JWeak

and of its gradient are required and involve the exact computation of the output
of M, which is usually a numerical model. M intervenes in the computation
of JWeak, precisely in the reconstruction term which penalizes the discrepancy
between the estimated state at time t and the forecast of the numerical model
based on the estimated state at time t− 1. This term is

T∑
i=1

∥xt −M (xt−1)∥2Qt
. (2.4)

In a fully data-driven perspective, the numerical model M is replaced by a data-
driven surrogate representation. Indeed, since computing the output of the nu-
merical model M (xt) could be computationally costly, a data-driven surrogate
representation may be an appropriate alternative. In a ML perspective, this sur-
rogate representation is learnt directly from observation data by gradient descent.
There has been an increasing interest in the literature around this topic recently
(see, e.g. Klus et al., 2018; Cai et al., 2021).

Fablet et al. (2020), Beauchamp et al. (2020) and Fablet et al. (2021b) ex-
plored several type of NN architecture as surrogate representations, among which
auto-encoders and convolutional NN. Unlike the standard numerical model M
which takes as input a state xt, the authors explore surrogate representations
which operate on an entire time window. Interestingly, in the experiments with
synthesized data conducted by Fablet et al. (2021b), learning a surrogate model
is preferable to using the true dynamics in terms of reconstruction performance.
Following Fablet et al. (2021b), we denote Φ the NN surrogate representation of
the dynamics. The reconstruction term of Equation (2.4) becomes

∥x0:T − Φ(x0:T )∥2,

where the chosen norm has to be specified. Additional constraints on the
NN impose that [Φ(x0:T )]t does not depend on xt, so Φ learns a meaningful
representation of the dynamic.

On the whole, the new variational cost is given by

JΦ(x0:T ,y) = ∥H(x0:T )− y∥2 + ∥x0:T − Φ(x0:T )∥2. (2.5)
The sparse observations are simply denoted as y. The observation operator is
denoted H to differentiate it with H since it operates on an entire sequence and
project the estimated space onto the sparse space spanned by the observations.
Notice that for the sake of simplicity, the error matrices have been omitted, as

81



2.1. PREAMBLE TO Lafon et al. (2023a): CROSS-FERTILIZATION OFMACHINE LEARNING AND DATA ASSIMILATION
well as the background term. The 4DVarNet framework proposes to jointly learn
a surrogate representation Φ and a solver of the associated variational cost given
in Equation (2.5). To do so, both ω and Φ are jointly optimized with respect to
the supervised criterion of Equation (2.3). Figure 2.1 summarizes the operation of
4DVarNet, detailing the iterations of the solver.

Figure 2.1: Unfolded iterations of the 4DVarNet solver. At the step k−1,
the estimated state is x(k−1)

0:T and the internal state of the recurrent NNis h(k−1) (see Equation (1.30)). At step k, the variational cost (Equation
(2.5)) is computed which involves the calculation of Φ(x(k−1)

0:T

) and the
available observations y. Then, this cost is differentiated with respectto the unknown state. A learned gradient descent is performed. In-
deed, the state x(k)

0:T is updated using a recurrent NN cell that admits asinputs the gradient of the variational cost and h(k−1) the internal stateof the recurrent NN at step k − 1. The resulting end-to-end architec-ture is fully-differentiable and can be trained with respect to any costfunction such as Equation (2.3).
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2.1.2 . Machine learning for uncertainty quantification in data as-

similation problems
In the previous section, we presented the 4DVarNet, which allows to estimate

the state of a system given noisy observations in a supervised setting. Our primarily
goal is to extend this approach from an uncertainty quantification perspective
(see Section 1.4.4). To do so, we provide an approach that approximates the
distributions p(x0:T | y) relying on the joint training of a neural solver of a
variational cost and a surrogate representation of the dynamics. we present some
context and background elements on how ML methods can be used to quantify
uncertainties in DA. Thus, our work is part of a recent effort to combine the fields
of DA, uncertainty quantification and ML techniques. Figure 2.2 from Cheng et al.
(2023) illustrates the increasing interest over the past decade in combinations of
these topics.

Figure 2.2: Number of published articles combining ML, DA and uncer-tainty quantification (abbreviated as UQ) according to Google scholar.’A + B’ denotes the number of articles which include ’A’ in the title and’B’ in the text.
For a detailed review of the mutual enrichment between ML, DA and uncer-

tainty quantification, we refer the interested reader to Cheng et al. (2023)
***

Here begins the article Uncertainty quantification when learning dynami-
cal models and solvers with variational methods (Lafon et al., 2023a).

2.2 . Introduction

The reconstruction and forecasting of dynamical systems from available
observations are key challenges in earth sciences (see, e.g. Welch et al., 1995).
These tasks have been classically addressed by data assimilation (DA) approaches,
especially variational DA and ensemble Kalman schemes (see, e.g. Evensen et al.,
2009b). DA methods have greatly improved over years, especially by accounting
for model error, which is important when dealing with misrepresented physical
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processes (Machenhauer & Kirchner, 2000) and unresolved small-scale processes
(Hamill & Whitaker, 2005) with respect to the space-time model resolution.
Whereas Kalman-based ensemble methods (Gordon et al., 1993; Evensen, 1994)
do take into account model error from the beginning, in a variational setting,
operational systems based on 4D-Var (Rabier et al., 2000) moved from strong
constraints assumptions (Le Dimet & Talagrand, 1986) to weak constraints
one (see, e.g. Trémolet, 2006) to reach this goal. In both approaches, estimat-
ing the model error in the form of a model error covariance matrix becomes crucial.

In many applications, such as risk assessment (see, e.g. Mohsan et al., 2021),
it is critical to evaluate the uncertainty in the state predicted by the DA method.
This is the issue we focus on in this paper. This uncertainty quantification problem
can be viewed as estimating the whole posterior distribution of the state given
observations rather than focusing on the mean or mode of this posterior. However,
standard variational methods do not directly allow to estimate uncertainties of the
predicted state and have to be specifically tuned to this purpose (Isaksen et al.,
2010), while Kalman-based ensemble methods provide a Gaussian estimate of the
posterior distribution of the state through a covariance matrix updated at each
time step (see, e.g. Evensen, 2003b; Evensen & Van Leeuwen, 2000) which is
relevant in Gaussian-linear case and typically fail in cases with strong non-linearity
(Evensen et al., 2022). Particle filters (Gordon et al., 1993; Van Leeuwen,
2009) are the main methods for sampling the full posterior probability density
function (pdf), but they suffer from curse of dimensionality when dealing with
high-dimensional states (Snyder et al., 2008). This may prevent their application
to real-world cases. As Variational Bayes (VB) refers to the field of research
dedicated to approximating the full posterior of latent variables of a Bayesian
model given observation data (Jordan et al., 1999; Blei & Jordan, 2006), we note
that assessing the uncertainties in the predicted state is indeed a VB problem.
Infering the posterior through a VB formulation often requires to maximize
an evidence lower bound (ELBO) (see, e.g. Hoffman et al., 2013). To this
end, learning-based approaches appeared to be particularly relevant (Kingma &
Welling, 2013).

Recently, a rich literature has emerged to apply machine learning (ML)
paradigms to address DA issues. ML schemes are particularly efficient to solve
complex and high-dimensional optimization problems and have achieved numerous
successes including image classification (Le, 2013; Krizhevsky et al., 2012), natural
language processing (Otter et al., 2020), language translation (Sutskever et al.,
2014) computational physics (Raissi et al., 2017; Mohan et al., 2020)... Regarding
DA, ML-based algorithms offer new means to learn the governing equations of the
dynamics (Fablet et al., 2018; Long et al., 2018) and the associated flow operator
(Bocquet et al., 2020b; Scher & Messori, 2019), or model correction terms
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(Farchi et al., 2021), directly from model outputs. Some approaches are even
designed to be used in a plug-and-play manner in state-of-the-art DA schemes
(Fablet et al., 2021b). When considering variational DA, trainable emulators
of the adjoint operator of the dynamics (Nonnenmacher & Greenberg, 2021)
or directly of the gradient-based DA solver (Fablet et al., 2021b) emerged as
appealing solutions. Similarly, recent studies have explored learning-based Kalman
techniques (de Bézenac et al., 2020). The latter is particularly relevant to address
uncertainty quantification. The underlying assumption of the existence of the
linear-Gaussian latent space may however restrict their application in real-world
case-studies. Generative adversarial networks also naturally arose as appealing ML
tools to develop new ensemble DA schemes (Silva et al., 2021).

In this paper, we propose a ML-based approach to consistently approximate
by a Gaussian distribution the posterior distribution of the state of a dynamical
system given a set of observations. This involves estimating both the mean and
the covariance parameters of the Gaussian distribution. Since we are producing
probabilistic predictions, the standard mean square error (MSE) is not appropriate
as a learning cost. Instead, we choose the logarithmic score as the learning function
which is consistent with probabilistic predictions. Our approach relies on a training
stage where both true states and observations are available. To circumvent the
instability when minimizing the chosen learning function, we constrain our output
parameters to be close to an optimum with respect to another cost derived from
a VB inference formulation. We prove that the optimum of this cost should be
a good first-guess of the minimum of our learning function. Our end-to-end
architecture exploits a trainable surrogate representation of the dynamics and a
trainable gradient-based solver. It can therefore be considered as an extension of
Fablet et al. (2021b) to estimate the covariance of the posterior in addition to
the mean. To the best of our knowledge, this is the first study which combines a
trainable solver for variational DA along with a VB formulation. We claim that
our approach could be extended to broader families of posteriors than Gaussian.

This paper is structured as follows. Section 2.3 introduces necessary back-
ground on weak-constraint variational DA. Section 2.4 presents the proposed ap-
proach, based on ELBO maximization, and the associated end-to-end neural frame-
work. Numerical experiments on Lorenz 63 dynamics and discharges on Danube
river network are reported in Section 2.5. Finally, concluding remarks are provided
in Section 2.6.

2.3 . Background on weak-constraint variational formulation

DA relies on state-space formulation for some time-dependent state x and
associated time-dependent observations y. Within a discretized setting, x(t) and
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y(t) are random vectors of respective dimension n and d with n ≥ d for each t.
Given x(t0), the state-space formulation could be set as:

x(t) = M(x(t−∆t)) + η(t) t ∈ ΩT = {t0 +∆t, · · · , t0 +N∆t}
y(t) = H(x(t)) + ϵ(t), t ∈ OT ⊂ ΩT (2.6)

with M the dynamical model and H the observation operator. In the following,
we improperly denote by x and y the concatenation of x(t) and y(t) on each t for
which they exist. Random noise η and ϵ represent respectively the model error and
the observation error. Assuming a zero-mean random noise η, the weak-constraint
variational DA formulation (Sasaki, 1970) states the reconstruction or forecasting
of x given y as the minimization of the following cost:

Uϕ(x, y) =
∑

ti∈OT

||H(x(ti))− y(ti)||2R +
∑

ti∈ΩT

||x(ti)− ϕ(x)(ti)||2Q, (2.7)

where, to match notation of (Fablet et al., 2021b), we have defined ϕ as the
following operator

ϕ(x)(t) = M(x(t−∆t)). (2.8)
Note that in Equation (2.7), we deliberately omit the background term used to

measure the distance to a given background state, which acts as a Tikhonov
regularization term on the minimization issue. We made this choice because
our approach does not require the explicit use of a background term in a cost
function. On the right side of Equation (2.7), the first term represents the data
fidelity term with respect to the observations, whereas the second one penalizes
the discrepancy between the state and the underlying dynamics. The considered
norms are Mahalanobis norm (see 2.A) with respect to covariance matrices R and
Q, of respective shape d × d and n × n. R is the observation error covariance
matrix while Q is the model error covariance matrix. The estimation of these
matrices is of paramount importance (see, e.g. Tandeo et al., 2018; Trémolet,
2007) to correctly estimate x. Lag-innovation (Belanger, 1974), and Bayesian
inference-based methods such as (Stroud et al., 2018; Tandeo et al., 2015)
addressed the estimation of these matrices.

2.4 . Proposed approach

The minimization of the variational cost of Equation (2.7) allows to estimate
the state x but not to approximate the whole posterior distribution p(x|y). We
propose a deep learning scheme which approximates the posterior by a Gaussian
distribution. In Section 2.4.1, we derive a new cost, named stochastic variational
cost, to estimate covariances in addition to the mean state. Then, based on the
work of (Fablet et al., 2021b), we introduce a deep learning scheme in Section 2.4.2
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that imposes its outputs to be close to a minimum of the stochastic variational cost.
Our deep learning scheme consists of two elements, a neural solver of the stochastic
variational cost, and a surrogate model over posterior parameters. Finally, in
Section 2.4.3 we explain how both elements of our approach could be learned jointly
from ground-truth data with respect to a logarithmic score. This score allows us
to evaluate the quality of the approximation we make to the true posterior. In
contrast to Kalman methods (Evensen & Van Leeuwen, 2000), our approach does
not rely on the prior computation of the model error covariance matrix.

2.4.1 . Deriving stochastic variational cost through variational
Bayes formulation

We consider the state-space formulation of Equation (2.6). In the following, H
is a linear operator such that H(x(t)) = Hx(t) with H a d×nmatrix. VB inference
(Kingma & Welling, 2013) relies on the approximation of the true posterior pdf
p(x|y) by a parametric target pdf q(x|y). For any parametric target pdf, the log of
the evidence, in this case the log probability of observations y, admits the following
lower bound:

log p(y) ≥ Ex∼q(·|y) log

(
p(x, y)

q(x|y)

)
,

with equality whenever q(x|y) = p(x|y) for any x. This lower bound is called
ELBO. We can equivalently rewrite this inequality:

log p(y) ≥ Ex∼q(·|y) log (p(y|x))−DKL(q(x|y)||p(x)), (2.9)
where DKL denotes the Kullback-Leibler divergence which measures how two

distributions differ from each other, and is given by:

DKL(q||p) = Ex∼q log

(
q(x)

p(x)

)
.

Maximizing the ELBO can then lead to a computationally-tractable maximization
of a lower-bound of the likelihood p(y) (Hoffman et al., 2013). Thus, VB inference
consists in maximising the ELBO with respect to q, so q approximates the posterior
distribution.
Let us further assume a Gaussian parameterization for target pdf q(x|y) and a
Gaussian additive noise model for observation likelihood p(y|x). In practice, we
set

q(x|y) =
∏

ti∈ΩT

q(ti) (x(ti)|y) with q(ti) (x(ti)|y) = N
(
x(ti) ; µ(ti),Σ(ti)

)
,

and

p(y|x) =
∏

ti∈OT

p (y(ti)|x(ti)) with p (y(ti)|x(ti)) = N
(
y(ti) ; Hx(ti),R

)
.
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Following 2.B, we then derive:

Ex∼q(·|y) log (p(y|x)) = −1

2

∑
ti∈OT

(
Tr
(
HTR−1HΣ(ti)

)
+ ||Hµ(ti)− y(ti)||2R

)
,

(2.10)
up to a function of R. Under the assumption that norm of the posterior covari-

ances is significantly smaller than that of the observation covariance, this term
reduces to −1

2

∑
ti∈OT

||Hµ(ti)− y(ti)||2R.
With regards to the Kullback-Leibler divergence in ELBO expression of Equation
(2.9), an analytic expression is only tractable for some specific priors. By ana-
lytic expression we mean an expression built with well-known operations that lend
themselves readily to calculation. For illustration purposes, let assume a Gaussian

prior whose pdf satisfies p(x) =
∏

ti∈ΩT
N
(
x(ti) ; m,S

)
, then we can derive the

following analytical expression:

−DKL(q(x|y)||p(x)) = −1

2

∑
ti∈ΩT

(
Tr
(
S−1Σ(ti)

)
+ ||µ(ti)−m||2S + log

(
|S|

|Σ(ti)|

))
.

(2.11)
In the general case, i.e. without assuming any specific form for the prior, we can

only state that −DKL(q(x|y)||p(x)) is a non-positive function of the approximate
posterior parameters θ = {θ(ti) = (µ(ti),Σ(ti)) , ti ∈ Ωt}. Let us call g this non-
negative function. To match the generic formulation of the prior term in Equation
(2.7), we consider the following form for g(θ):

g(θ) = −
∑

ti∈ΩT

||Φ(θ)(ti)− θ(ti)||2, (2.12)
where Φ is an operator on time-series space.

This form is widely used in ML regularizing techniques experimented by (Ryu
et al., 2019; Venkatakrishnan et al., 2013) and referred to as plug-and-play methods
for inverse problems. Besides, as detailed in 2.C, we may note that Equation (2.11)
may be rewritten in this form. Since the prior is left unspecified, Φ is unknown, and
we rely on an estimator Φ̃ of Φ to compute g. Overall, from the ELBO formulation,
we infer the cost given by

UΦ̃(θ, y) =
∑

ti∈OT

||Hµ(ti)− y(ti)||2R +
∑

ti∈ΩT

||Φ̃(θ)(ti)− θ(ti)||2. (2.13)

As long as Φ̃ is a valid approximation of Φ, the minimum of such a cost with
respect to θ should be a good solution for the posterior approximation. Notice
that Equation (2.13) can be viewed as a variational cost associated with an
augmented state space formulation on the posterior parameters, which is why we
call it stochastic variational cost.
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2.4.2 . Proposed neural architecture

Within a learning setting, the approximate posterior is parameterized by
a set ω of weights and biases of a NN framework, and is denoted qω(x|y).
Additionally, let us give ourselves an initial state θ(0) for the parameters of the
posterior approximation, which depends on y. For example, we can choose as
initial mean state the linear interpolation between available observations, and as
initial covariance matrix the identity matrix. Then, our approach takes as input
the initial state θ(0) and the observations y, and outputs the parameters of the
target distribution. In our approach, θ, as defined in section 3.1, is a function of
ω, θ(0) and y. We then write the output of our approach θω(θ(0), y). Note that
this implies that each µ(ti) and Σ(ti) are function of ω, θ(0) and y. We make
explicit the dependence on ω by noting in the following µω(ti) and Σω(ti). The
set of parameters ω of the network are trained to optimize an inference score
S(qω(x|y), p(x|y)), that we will detail in Section 2.4.3, which allows to estimate
the proximity between the true posterior and its approximation by the target
distribution.

The rest of this section is devoted to describing our architecture in Section
2.4.2 and the reasons why we chose it in Section 2.4.2.

Neural set-up

Our end-to-end approach is made of two key ingredients : a neural parameteri-
zation for the operator Φ̃, and a trainable gradient-based solver of the stochastic
variational cost defined in Equation (2.13). Φ̃ is parameterized as a convolutional
NN with specific constraints. The neural solver is a recurrent neural network (NN)
with stacked long short-term memory (LSTM) cells which implements a gradient-
based solver for the targeted cost function. As our framework relies on two different
components, remark that we can write ω = {ωΦ̃, ωs} with ωΦ̃ the NN parameters
of Φ̃ and ωs the NN parameters of the solver. From a coding perspective, the
proposed neural architecture was implemented using Pytorch framework. Figure
2.3 shows the working principle of our end-to-end architecture.

Architecture of Φ̃ : Φ̃ is a convolutional NN with specific constraints, known as
Gibbs Energy NN (Fablet et al., 2021a). More precisely, we have Φ̃(θ) = f1◦f2(θ).
f2 is a convolutional layer where the central values of all convolution kernels are
set to zero such that f2(θ)(tj) does not depend on θ(tj). f1 is a convolutional
NN which composes a number of convolution layers with rectified linear unit ac-
tivation, where the kernel size of all convolution layers is 1 along time and space
dimensions. In the experiments, f1 has 3 convolution layers.

Neural solver parameterization: The minimization with respect to θ of the
stochastic variational cost (Equation (2.13)) is performed by means of a neural
solver. We use a residual NN architecture with LSTM blocks (Schmidhuber et al.,
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Figure 2.3: Proposed end-to-end architecture. Illustration comes fromL63 experiment. Given a partial observation piece of data y and aninitial pdf state θ(0), the proposed network calculates the optimized pa-rameters θ(K) after K steps in the solver. On the right-hand side, redcurve contains the mean state and the blue envelope is a rescaled vi-sualisation of the covariance. δ(k) is the difference between the param-eters at iteration step (k) and at iteration step (k−1). GENN stands forGibbs Energy NN and ResNet for residual network.
1997). Each block is fed on one side with the increment between the estimated
parameters at the entry of the block and the input parameters θ(0), and on the
other side by the gradient of the stochastic variational cost with respect to θ ap-
plied on the current estimated parameters. This solver optimizes iteratively the
estimated parameters. To be more explicit, after k iterations in the LSTM-based
solver, the parameters are updated as follow:{

g(k+1) = LSTM(α∇θUΦ̃(θ
(k), y), h(k), c(k)),

θ(k+1) = θ(k) − L(g(k+1)),

with α a scalar parameter, h(k), c(k) internal states of the LSTM model and L a
linear layer. The number of iterations in the LSTM-based solver has been tuned
during experiments and optimal values are comprised between 10 and 20 iterations.

Motivation

Combination of Φ̃ and the neural solver : Optimizing an inference score S can
be very complex, so appropriately constraining the model is a fast and efficient
solution to converge quickly to an optimum. We demonstrate in the developments
of Section 2.4.1 that minimizing the cost of Equation (2.13) approximately equates
to maximize the ELBO inference cost. The chosen architecture allows to constrain
the model by making sure via the learned solver that the output θω(θ(0), y) is close
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to a minimum of the Equation (2.13). To summarize, we look for the best solution
in the sense of inference among the suitable solutions in the sense of stochastic
variational cost. The idea of a learned dynamical operator coupled with a learned
neural solver was introduced in (Fablet et al., 2021b). As the formulation of Equa-
tion (2.13) is somehow similar to that considered in (Fablet et al., 2021b), we adapt
their architecture to our case.

Choice of a Gibbs Energy NN for Φ̃ : From Equation (2.13), we note that the
minimum of the stochastic variational cost with respect to Φ̃ is reached whenever
Φ̃ is equal to the identity, whatever θ is. Letting Φ̃ be equal to the identity sup-
presses the constraint corresponding to the second term on the right-hand side of
Equation (2.13). Thus, UΦ̃ would become a function of µ(ti) and y. Consequently,
Φ̃ would remain equal to Id, and covariance parameters would remain constant
throughout the remainder of the training phase. This has to be prevent since we
want to keep optimizing the covariance parameters during training. To this end, the
Gibbs energy NN forces the convolutional NN to differ from the identity operator.
Additionally, thanks to this constraint parameterization, Φ̃ can be interpreted as a
surrogate model over the mean and covariance parameters of the target distribu-
tion. Notice that other choices of NN representation could have been made, such
as convolutional auto-encoder. For an intercomparison, we refer to (Beauchamp
et al., 2020).

Choice of a LSTM for the solver : NNs with LSTM cells belong to the class of
recurrent NN. They are particularly suitable for processing sequential data. In our
case, our working data is a sequence of time-space series θ(k) obtained by gradient
descent (see Equation (2.14)). LSTM-based updates are the classical parameteri-
zation of learned solver schemes (see, e.g. Andrychowicz et al., 2016; Hospedales
et al., 2021).

2.4.3 . Learning setting
In our experimental setting, we have access during training stage to a data set

of true states x = {x(i) , 1 ≤ i ≤ m}, and corresponding observation data set
y = {y(i) , 1 ≤ i ≤ m}, with x(i) and y(i) realisations of the discretized setting
given in Equation (2.6). The outputs of our approach θω(θ(0),y(i)) is composed of
means and covariances denoted µ(i)ω (tj) and Σ

(i)
ω (tj) for tj ∈ Ωt, where dependence

on y(i) is indicated by upper indices to keep the notation uncluttered. In this
context, a commonly used method to evaluate the performed DA approach is the
MSE. This criterion measures the distance in the mean square sense between the
true state of the system and the average state predicted by the approach. In the
case of our approach, this corresponds for a time series x(i) to the following cost:

MSE(x(i), θω(θ
(0),y(i))) =

1

N

N∑
j=1

||x(i)(tj)− µ(i)ω (tj)||22, (2.14)
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where ||.||2 is the euclidean norm. The score of Equation (2.14) is denoted R-score
in the following, which stands for reconstruction score.

However, this metric only allows us to compare the mean of the random vector
x|y with the mean of our approximated posterior. This is insufficient if we want
to compare our posterior approximation with the whole true posterior distribution.
The right framework to assess statistical forecast is through proper scoring rule
(Gneiting & Raftery, 2007; Tsyplakov, 2013; Dawid & Musio, 2014). A scoring
rule is a function S(q,x) of a pdf q and an outcome x. By extension, we denote
S(q, p) = Ex∼p(x)S(q, x). A scoring rule is, by definition, said to be proper if:

S(p, p) ≥ S(q, p).

It is further strictly proper if the equality holds only for q = p.

Even if the distribution forecast depends on observations as in our approach,
using a proper scoring rule is still consistent, as proved by (Tsyplakov, 2011; Holz-
mann & Eulert, 2014). In this context the logarithmic score defined by

Slog(q,x) = log q(x),

is a strictly proper scoring rule (Dawid & Musio, 2014). That is why we set our
training objective L as the minimization of the opposite of the logarithmic score,
which leads to:

L(x(i), θω(θ
(0),y(i))) = − 1

N
Slog

(
qω(· | y(i)) , x(i)

)
,

=
1

2N

N∑
j=1

(
||x(i)(tj)− µ(i)ω (tj)||2

Σ
(i)
ω (tj)

+ log |Σ(i)
ω (tj)|

)
,

(2.15)
where we have deliberately omitted the constant n

2 log 2π. We denote this
criterion P-score for probabilistic score in the following. The P-score is also
known as negative log-likelihood. Notice that the R-score and the P-score are
proportional only when the covariance of the approximate posterior reduces to a
constant scalar covariance matrix. The mean R-score and P-score over the whole
data set x is given by averaging respectively Equation (2.14) and Equation (2.15)
over the m couples of true states and observations of the data sets x and y.

The parameters ω of our network are optimized to minimize the P-score by
the stochastic gradient descent Adam available in Pytorch. In our experimental
learning setting, we set a batch size of 64 and a maximum number of 1000 epochs.
At predefined epochs, the learning rate is decreased. It ranges from 10−3 to 10−7.
The parameterization for which the P-score is the lowest on the validation data
set is saved. We let the reader refer to the code available online (https://doi.
org/10.5281/zenodo.7729564) for additional details on the implementation.
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2.5 . Numerical experiments

To assess the relevance of the proposed approach, we consider two case-studies:
namely, the Lorenz 63 dynamics and an application to a real data set corresponding
to the monitoring of Danube river discharges. In the following, our approach will
be referred to as 4D-VarnetSto. The baseline approach is the Ensemble Kalman
Smoother and will be abbreviated as EnKS. The different approaches will be eval-
uated against two main criteria: the average P-score (Equation (2.15)) and the
average R-score (Equation (2.14)) over the test data set.

2.5.1 . L63 dynamics
Standard L63 dynamics

The Lorenz dynamics is a system made of the following ordinary differential equa-
tions (Lorenz, 1963):

dx1
dt

= σ(x2 − x1),

dx2
dt

= ρx1 − x2 − x1x3,

dx3
dt

= x1x2 − βx3. (2.16)
We use the following parameterization: σ = 8, ρ = 28, and β = 8

3 . In this
setup, the Lorenz 63 system has a chaotic dynamics. A fourth-order Runge-Kutta
integration scheme (Butcher, 1996) with 0.01 time step enables us to simulate
the time series. Figure 2.4 (a) is a trajectory of this dynamics for 200 time steps.

Stochastic L63 dynamics

In order to introduce model noise in L63 dynamics, we use the stochastic framework
designed by (Chapron et al., 2018). It intends to mimic stochastic behavior in
large-scale geophysical flow dynamics. The ordinary differential equation (Equation
(2.16)) becomes a stochastic differential equation:

dX1 =

(
σ(X2 −X1)−

4

2Γ
X1

)
dt,

dX2 =

(
ρX1 −X2 −X1X3 −

4

2Γ

)
dt+

ρ−X3

Γ
1
2

dBt,

dX3 =

(
X1X2 − βX3 −

8

2Γ
X3

)
dt+

X2

Γ
1
2

dBt.

(2.17)
dBt is a white noise, formally the difference of a standard Brownian motion. Γ is

the new parameter of our model which is fixed to 2 in our experiments. Note that
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if Γ −→ ∞, we recover the original model. Figure 2.4 (b) is a three-dimensional
plot for a time series of this stochastic Lorenz 63 version. Adding the model
noise strongly deteriorate the smoothness and the convergence to standard Lorenz
attractor.

Figure 2.4: Evolution of Lorenz dynamics for (a) standard model (seeEquation (2.16)) and (b) stochastic model of (Chapron et al., 2018) (Equa-tion (2.17)) for 200 time steps of 0.01 length each.

Training setting and results

For both dynamics, we consider a time series of 200000 time steps. From this
time series, we create a training set containing 10000 sub-series of 200 time steps,
and validation and test sets each consisting of 2000 sub-series of 200 time steps.
The sub-series overlap within a data set but do not overlap from one data set
to another. Observations of the true state are made available solely for the first
variable of the system, every 8 time steps, adding a white Gaussian observation
noise of variance set to 2.

Including the parameters of the neural solver and those of Φ̃, our network has
roughly 19000 parameters to learn. We train our NN in two stages. First, for each
time series, the initial state θ(0) = {µ(0) Σ(0)} is initialized as follows:

• µ(0) is the linear interpolation between observations for its first variable and
the mean of the observations for the other variables;

• Σ(0) is the identity matrix.
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We find a first optimum while constraining the estimated covariance matrix to be
diagonal. In a second step, we start a new learning session to find a non-diagonal
covariance matrix using the previously found optimum as initial state θ(0). This
two-step procedure aims to force the covariance matrix to be definite and positive
during the training process. Imposing positive-definiteness directly on the whole
output matrix is not an easy task while in the diagonal covariance matrix case
this is easy to enforce. Indeed, it only requires strictly positive values for the
outputs on the diagonal, and zeros elsewhere. So first we find an optimal diagonal
covariance matrix, then we search for a complete covariance matrix by perturbing
this optimum.

We compare our method with the EnKS of Evensen & Van Leeuwen (2000).
In our experiment, the EnKS has 500 ensemble members and a time lag of 30 time
units. No inflation is used. We have chosen a very large ensemble size because we
want to be sure to correctly represent the approximation of the posterior made by
the EnKS. Indeed, we mainly want to compare the quality of the approximation
of the posterior made by the different approaches. For both dynamics, the EnKS
is run through 20000 time steps and evaluated on the last 15000 time steps to
be sure the calibration phase is over. Notice that in the stochastic dynamics
case, the model error matrix of the EnKS is a diagonal matrix constant over
time which coefficients are obtained by averaging the model error. Thus, in the
stochastic case, we expect our approach to approximate the posterior far better
than the EnKS as it does not rely on a imperfect model and an approximate
model error matrix. Table 2.1 compiles the results for the appropriate scores. If
the first variable is observed for both our approach and EnKS, the 4D-VarnetSto
outperforms the EnKS in each score for both dynamics. By adding observed
variables in EnKS experiment, the R-score and P-score decrease. For the standard
dynamics, the R-score for the EnKS with at least two variables observed become
lower than its value in the 4D-VarnetSto experiment, but the P-score stays above.
This confirms that our posterior approximation is in any case better that the one
proposed by the EnKS. As for the stochastic dynamics, the conclusion are rather
similar. The R-score of our approach with one observed variable is better than
the one of the EnKS. Again, regardless of the number of variables observed, the
P-score is much lower using our approach than using the EnKS, and by even larger
amounts than in the deterministic experiment. To conclude with the results of
Table 2.1, we can state that in identical settings, our approach outperforms by far
the EnKS in both criteria. Adding observed variables to the EnKS allows to obtain
better R-score than our approach but the P-score stays above, which indicates
that our approach is better suited for estimating the whole posterior than EnKS.
As a side remark, our R-score is similar to the one reported by (Fablet et al.,
2021b) (R-score of 1.34 in Table 1). This is a very good thing, as it indicates
that adding complexity to their model does not deteriorate the quality of the state
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Approach Model noise R-score P-score4D-VarnetSto No 1.35 -7.36with x1 observed Yes 10.53 -3.46EnKS No 2.19 0.41with x1 observed Yes 17.32 15.26EnKS No 0.56 -4.25with x1 and x2 observed Yes 3.99 8.89EnKS No 0.24 -6.71with all variables observed Yes 2.81 10.21
Table 2.1: Scores of 4D-VarnetSto and EnKS for L63 simulations for bothdynamics. Model noise sets to "No" indicates standard dynamics (seeEquation (2.16)), "Yes" implies stochastic one (see Equation (2.17)). Onlythe first variable is observed when performing 4D-VarnetSto. In EnKSexperiments, from one to all variables are considered as observed.Two benchmark score are evaluated: the MSE of the reconstruction ofthe true state (R-score, see Equation (2.14)), and the mean of the neg-ative log-likelihood of the predicted parametric distribution applied intrue state (P-score, see Equation (2.15)).
prediction.

Figure 2.5 compares estimated states (orange curve) and the associated
95% confidence interval (green area) with the real states (blue curve) defined
by Equation (2.16) in the context of standard dynamics. Figure 2.6 presents the
same elements for the stochastic dynamics defined by Equation (2.17). Both
figures represent time series for which the attractor changes its wing. The
change of wing is realized when the variables x1 and x2 simultaneously go from
a maximum to a minimum or vice versa. In Figure 2.5, the mean state estimated
by our approach (top three graphs) and the true state of the system are almost
merged. Moreover, the area representing the uncertainty is also very thin but
widens for a given variable when an extremum is reached. The uncertainty is
slightly larger for the unobserved variables x2 and x3 than for the observed
variable x1. Comparatively, the state reconstructed by EnKS when only x1 is
observed (middle three graphs) coincides less well with the true state. The
uncertainty is also larger, especially during the wing change (between t = 50 and
t = 125). When the three variables are observed for the EnKS (bottom three
graphs), the real state and the reconstructed state are difficult to distinguish,
the area representing the uncertainty is very narrow and widens slightly during
the wing change. In Figure 2.6, we first note that the EnKS with only x1
observed performs poorly. It does not succeed in correctly representing the
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Figure 2.5: Experiments with standard Lorenz dynamics (Equation(2.16)). For a set of observations (cyan dots) on given timesteps (lightblue dashes on the time axis), the true state (blue curve) and estimatedstate (orange curve) are plotted for our approach and EnKS with oneor all variables observed. The estimated 95% confidence intervals arerepresented by the green area.
dynamics (middle three graphs). When observing the 3 variables for the EnKS
(bottom three graphs), the estimated state becomes accurate. However, the
true state curve is almost never contained within the confidence interval. This
visually confirms the poor results obtained on the P-score and indicate that the
posterior approximation is not accurate. On the contrary, we observe that the
confidence interval estimated by our approach seems consistent (top three graphs).
The true state curve is globally contained within a fairly narrow confidence interval.
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Figure 2.6: Experiments with the stochastic Lorenz dynamics of(Chapron et al., 2018) (Equation (2.17)). See Figure 2.5 for details.
2.5.2 . Danube river network for discharge measurements

The upper Danube basin is an European river network whose drainage basin
covers a large part of Austria, Switzerland and of the south of Germany. Figure
3.A.2 shows the topography of the Danube basin as well as the locations of
the 31 stations at which daily measurements of river discharge are available.
Stations considered as observed or unobserved in our experiment are colored
differently. The daily measurements series have lengths from 51 to 110 years.
We restrict ourselves to the period 1960-2010 for which all stations have avail-
able measurements. This data set have been widely studied in the community
of multivariate extremes (see for example Asadi et al. (2015); Mhalla et al. (2020)).

This experiment with a real data set aims to meet several objectives. Learning
an unknown dynamics and associated uncertainties is challenging. The data-driven
models that can be learned lacks important variables (precipitation, snow melt) to
be highly reliable, and consequently encompass high error model. Thus, the ability
of our approach to adapt to a high level of model error is studied. Finally, the
approximation of the posterior made by our approach is compared to a Gaussian
approximation which we call constant covariance approach. In this comparative
approach, the mean state is estimated using the approach described in (Fablet
et al., 2021b), and the covariance matrix is a diagonal matrix whose coefficients
are constants and set as the variance of the error at each station.
In this experiment, we consider that the observed data correspond to the state of

the system. It is equivalent to consider no observation noise, namely y(i) = x
(i)
|OT
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Figure 2.7: Topographic map of the upper Danube basin with the 31gauging stations. A data set of 50 years of daily measurements is con-sidered (from 1960 to 2010). In training setting, we assume that somestations are observed (red dots) and the other are unobserved (blacksquares). We further assume that the observed stations have availableobservations only once every four days.
for each i, where x

(i)
|OT

is the restriction of x(i) to OT . To avoid divergence of the
P-score on the set of observations Ot, we modify the P-score slightly by redefining
it as follows:

L(x(i), θω(θ
(0),y(i))) =

1

2Nt

∑
tj∈ΩT \OT

(
||x(i)(tj)−µ(i)ω (tj)||2

Σ
(i)
ω (tj)

+log |Σ(i)
ω (tj)|

)
,

(2.18)
where Nt is the cardinal of ΩT \ OT . Given the spatial dimension of the state,

we limit ourselves to output diagonal covariance matrix. Consequently, our NN
is trained using only the first step of the process described in Section 2.5.1. The
initial state θ(0) is also defined as described in this first step. In order to leave the
stochastic variational cost defined, we set R to the identity in Equation (2.13).
Using the criterion of Equation (2.18), half of the stations are considered to be
observed every four days (see red locations in Figure 3.A.2). We consider time
series of 48 consecutive days. For each time series, our goal is to estimate the
mean and covariance of the approximate posterior distribution of flow on each day
of the time series and at each station, including where observations are missing.
The training data set comprises 9999 time series of 48 days, validation and test
set 1749 each. To construct these data sets, we divided the 51 years of daily
measurement into 550-day blocks. In each block, the first 350 days create 303
time series for the training data set. The 200 remaining days are divided in two
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and create 53 time series for validation set and as many for the test set. Note
that within a data set, time series are overlapping. Figures 2.8 & 2.9 show the
estimated mean state (red curve), the confidence interval (green area) and the
daily measurements (blue dots) for a summer and winter month, respectively. The
stations are identical from one figure to another. Seasonality plays an important

Figure 2.8: For a summermonth (July 2007), we show the estimated dis-charge (red curve), the 95% confidence interval (green area) estimatedby our method for observed and unobserved stations at different el-evations. The daily measurements are also represented according towhether they are available (light blue dots) or unavailable(deeper blue)as inputs. The discharges are expressed inm3/s.
role in discharge analysis, and here, we focus on the summer and winter seasons.
In summer, flows are lower than in winter and subject to important variations
in absolute value. This is linked essentially to snow or ice melts at altitude, as
well as to episodes of heavy precipitation. For similar reasons, different station
elevations, and thus different positions along the river system, were chosen.
Stations upstream of the river system have lower flows than those downstream.
Flows at upstream stations vary greatly depending on local weather and climate
events.
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Figure 2.9: Winter month (January 2000) (see Figure 2.8 for details).

The relative variance estimated by our approach is larger in Figure 2.8 than
in Figure 2.9. This finding is consistent with the initial considerations about
variances in summer and winter. The estimated variance is also more constant
in summer than in winter. One can assume that the model error is such that it
becomes difficult to detect patterns that would reduce the uncertainty. In winter,
on the other hand, the estimated confidence interval varies significantly, and seems
to widen at the peaks reached by the flow. We notice that our predictions are
sometimes biased for a large number of consecutive time steps. This is particularly
true in Figure 2.9 where a negative bias between the observations and the predicted
mean exist. It is visible for downstream and mid-river unobserved stations between
2001-01-21 and 2001-02-01. The presence of available observations drastically
reduces the bias.

In order to compare our approach with the constant covariance approach, we
average the P-score and R-score restricted to Ωt \ Ot over the test data set, for
both our approach and the comparative constant covariance approach. As the
discharges at different stations have not the same order of magnitude, we rescaled
the discharges at each stations to a time series with mean 0 and standard deviation
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Approach R-score P-score4D-VarnetSto 3.4 -0.018Constant covariance 3.38 1.05
Table 2.2: Scores of 4D-VarnetSto and constant covariance approachfor rescaled Danube river discharges. Two benchmark scores are eval-uated: the R-score and P-score on unobserved time steps average ontest data set.
sets to 1 before training both approaches. The scores for the rescaled discharges
are given in Table 2.2. We find that estimating the covariance in addition to the
mean state does not degrade the R-score. Indeed the R-score obtained by our
approach and by the constant covariance approach are almost identical. Moreover,
we significantly improve the P-score over constant covariance approach and we
can infer that the variations of variances given by our approach allow a significant
improvement of posterior approximation.

2.6 . Conclusion

Based on previous works which introduced an end-to-end learning framework
for variational assimilation problems, we extend this approach to uncertainty
quantification. Using a stochastic variational cost derived from an ELBO
maximization with respect to a target Gaussian distribution, we have been able to
find a Gaussian approximation of the pdf of the posterior. The learning framework
comprises a neural-network representation of the dynamics of the parameters and
a neural solver for the considered stochastic variational cost. Both solver and
dynamics of the parameters are learnt jointly in a context of logarithmic score
optimization. This joint learning process offers new perspectives for VB-based
cost minimization in DA problems.

Lorenz 63 dynamics and discharges on Danube river networks have been
studied. As regards the Lorenz dynamics, our approach captures well the dynamics
and the uncertainty. When adding state-dependent model noise, we have been
able to retrieve complex type of uncertainty structure. The experiments on the
Danube river system provide a setting where the dynamics are unknown, and
the data to estimate them incomplete. In this context, our approach allows us
to calculate a consistent estimate of the flow, the associated dynamics and the
uncertainties.

Our findings also underline that beyond state-of-the-art results obtained for
MSE of reconstruction, our approach is well-suited for logarithmic score. This is a
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real improvement over reference ensemble methods which suffer from limitations
and require careful adaptation to achieve good performance on such scores.
This indicates that posterior approximation reached with our approach is more
consistent than those provide by ensemble methods.

We claim that our approach could be applicable to problems of higher
dimension thanks to the versatility of NNs, which could constitute interesting
fields of application. Besides, future works will also focus on improving the
accuracy of the upper quantile of the predicted distribution. A parameterization
of the posterior by heavy tail distribution (see, e.g. Resnick, 2007) could be
an improvement track. Moreover, as discharges are positive values, a Gaussian
parameterization is not ideal to infer uncertainties. More broadly, symmetrical
distribution cannot consistently estimate large uncertainty in this problem as it
could cover negative flow value. Extending our approach to non-symmetrical
distribution would be of interest.

Finally, one limitation of our approach is the need for a data set of true states,
which is generally not possible in practice. Thus, there is still significant room for
further progress with respect to the application of such approach in operational
settings.

Key points of Paper I

▶ We introduce an end-to-end learning framework to estimate both
the state of a dynamical system with associated uncertainties as a
covariance matrix. It extends Fablet et al. (2021b).

▶ Our supervised learning setting involves a cost function derived from
inference.

▶ We establish a variational cost which minima should lie close to those
of the cost function derived from inference.

▶ Our neural architecture combines:

– A neural solver which forces our model outputs to be close to
a solution of the variational cost.

– A NN operator that can be interpreted as a dynamics over both
the estimated state and the estimated covariance matrices.

Both elements are learnt jointly.
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APPENDIX

2.A . Mahalanobis norm

Given a vector z of dimension n and a positive-definite matrix A of dimension
n× n, the Mahalanobis norm of z is denoted ∥z∥A and is given by

∥z∥A = zTA−1z.

2.B . Proof of Equation (2.10)
We first state an important result. Let p(x) = N (x ; m,Σ) be the pdf of

a multivariate Gaussian. For any matrix A, we have (see petersen2008matrix,
Section 8)

Ex∼p[x
TAx] = Tr(AΣ) +mTAm. (2.19)

Let q(x) = N (x ; µ,Σ) and p(y|x) = N (y ; Hx,R). Then, we have

Ex∼q log (p(y|x)) = Ex∼q

[
log

(
1√

(2π)n|R|
exp−1

2
(Hx− y)TR−1(Hx− y)

)]
,

= − log
(√

(2π)n|R|
)
− 1

2
Ex∼q

[
(Hx− y)TR−1(Hx− y)

]
,

= − log
(√

(2π)n|R|
)
− 1

2
yTR−1y + yTR−1Hµ− 1

2
Ex∼q

[
xTHTR−1Hx

]
.

From Equation (2.19), we obtain

Ex∼q log (p(y|x)) = f(R)− 1

2
yTR−1y + yTR−1Hµ− 1

2

(
µTHTR−1Hµ+Tr

(
HTR−1HΣ

))
,

= f(R)− 1

2

(
Tr
(
HTR−1HΣ

)
+ (y −Hµ)TR−1(y −Hµ)

)
.

where f(R) = −1
2(d log 2π + log |R|). Equation (2.10) follows.
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2.C. PROOF OF EQUATION (2.12)

2.C . Proof of Equation (2.12)

We consider the following norm on the space spanned by θ = (µ,Σ):

||(µ,Σ)|| = ||µ||2 +
(
Tr
(
Σ2
)) 1

2 ,

where ||.||2 is the euclidean norm. Then, given

g(θ) = −1

2

(
Tr
(
S−1Σ

)
+ ||µ−m||2S + log

(
|S|
|Σ|

))
,

we obtain g(θ) = −||Φ(θ)− θ||2 if we consider the following expression for Φ:

Φ(µ , Σ) =

(
L(µ−m) + µ ,

1

d
(Tr
(
S−1Σ

)
+ log

(
|S|
|Σ|

)
)Id +Σ

)
,

with L such that L2 = S−1(µ−m)(µ−m)TS−1.
Extending this result, it proves that Equation (2.11) can be written in the form of
Equation (2.12).
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CHAPTER 3

A VAE APPROACH TO SAMPLE
MULTIVARIATE EXTREMES

Overview of Chapter 3

This chapter presents our machine learning generative framework which
allows to sample realistic random draws of an unknown multivariate distri-
bution given example data. This approach is tailored to extrapolate con-
sistently out of the training data set, thus generating realistic extremes.
This work has led to a submitted article presented from Sections 3.2 to
3.8. Beforehand, we propose a brief background to better understand the
context of mutual enrichment of the machine learning and extreme value
theory domains in Section 3.1.

107



3.1. PREAMBLE TO Lafon et al. (2023b) : AN INCREASING INTEREST INBRIDGING MACHINE LEARNING AND EXTREME VALUE THEORY
Abstract of Lafon et al. (2023b)

Generating accurate extremes from an observational data set is crucial when
seeking to estimate risks associated with the occurrence of future extremes
which could be larger than those already observed. Applications range from
the occurrence of natural disasters to financial crashes. Generative ap-
proaches from the machine learning (ML) community do not apply to ex-
treme samples without careful adaptation. Besides, asymptotic results from
extreme value theory (EVT) give a theoretical framework to model multi-
variate extreme events, especially through the notion of multivariate regular
variation. Bridging these two fields, this paper details a variational autoen-
coder (VAE) approach for sampling multivariate heavy-tailed distributions,
i.e., distributions likely to have extremes of particularly large intensities. We
illustrate the relevance of our approach on a synthetic data set and on a
real data set of discharge measurements along the Danube river network.
The latter shows the potential of our approach for flood risks’ assessment.
In addition to outperforming the standard VAE for the tested data sets,
we also provide a comparison with a competing EVT-based generative ap-
proach. On the tested cases, our approach improves the learning of the
dependency structure between extremes.

3.1 . Preamble to Lafon et al. (2023b) : an increasing interest
in bridging machine learning and extreme value theory

Historically, the research fields of ML and EVT were pursuing distant and
even opposite goals. While EVT focuses on tail distribution and extreme events,
typical ML tasks have primarily revolved around capturing and understanding
mean behaviors. Consequently, in many ML algorithms, the largest values within
a data set were often viewed as outliers and excluded from the training process
(Tallón-Ballesteros & Riquelme, 2014; Izzo et al., 2021). Furthermore, the tools
used in each field were completely different. For its implementation, extreme value
analysis heavily relies on parametric statistical models founded on carefully chosen
assumptions (Beirlant et al., 2006). In contrast, the ML community, driven by
flexibility and adaptability, has favored approaches like NN approximations in a
fully data-driven state of mind.

From a theoretical standpoint, a fundamental assumption in the ML literature
has been the sub-Gaussianity distribution of random variables. This assumption
essentially means that the tails of the random variables of interest are not
heavier-tailed than Gaussian distributions, and is thus characterized by a tail index
(see Definition 1.2.14) less than or equal to zero. This assumption is reflected in
the classical cost function minimized in a ML algorithm: the mean square error
(see, e.g. Goodfellow et al., 2016, Chapter 6.2). The minimum of the mean square
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error is exactly the maximum likelihood if the distribution of error is Gaussian.

Nonetheless, understanding extreme events could be crucial in certain ML
problems including anomaly detection (Omar et al., 2013) or predictive main-
tenance (Carvalho et al., 2019). In these contexts, where rare events are by
definition scarce, it becomes relevant to employ extrapolation models rooted in
EVT. As a result, there has been a growing interest in recent times in bridging the
theoretical and practical gap between EVT and ML. This interest, notably in the
past few years, has been particularly pronounced in the domains of dimensionality
reduction and sparse pattern detection, as highlighted in the review by Engelke &
Ivanovs (2021).

Attesting to the points of junction between the two themes, a ML session has
been created since 2019 in the Extreme Value Analysis conference, which brings
together most of the extreme value community every two years. In parallel, a
number of articles are published in conferences and reference journals aimed at the
ML community. Topics explored include extreme quantile estimation (Allouche
et al., 2022a; Pasche & Engelke, 2022), anomaly detection (Jalalzai et al., 2018;
Chiapino et al., 2020) and extreme generation (Huster et al., 2021; Allouche
et al., 2022b), with applications as diverse as fire prediction (Cisneros et al.,
2023), flood risk prediction (Pasche & Engelke, 2022), or cyber claims (Farkas
et al., 2019). For a more detailed background on the interconnection between ML
and EVT, we refer to Sabourin (2021).

The approach we present in the remainder of this section is part of this rap-
prochement between ML and EVT, exploring the generation of extremes. We
adapt the generative model VAE (see Section 3.2) to extrapolate the tail of the
distribution using EVT. Other recent works share the same objectives, notably
Zhang et al. (2023), who also uses a VAE adapted to extreme generation. Other
generative approaches such as GANs (Huster et al., 2021; Allouche et al., 2022b)
and normalizing flows (Jaini et al., 2020) have been adapted to extreme generation
using EVT.

***
Here begins the article A VAE Approach to sample multivariate extremes,

as submitted.

3.2 . Introduction

Simulating samples from an unknown distribution is a task that various studies
have successfully tackled in the machine learning (ML) community during the past
decade. This has led to the emergence of generative algorithms, such as generative
adversarial networks (GAN) (Goodfellow et al., 2020), VAEs (Kingma & Welling,
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Figure 3.2.1: How to sample from observations (blue dots) in extremeregions (black square) to estimate probability of rare events?
2013; Rezende et al., 2014), or normalizing flows (Rezende & Mohamed, 2015)
(NF). As ML tasks usually focus on average behaviors rather than rare events,
these methods were not tailored to generate extremes and extrapolate upon the
largest value of the training data set. This is a major shortcoming when dealing
with extremes. Risk assessment issues in worst-case scenarios imply to accurately
sample extremes for large quantiles, which are beyond the largest value in observed
data sets (Embrechts et al., 1999). We sketch in Figure 3.2 this problem for
a two-dimensional problem case-study. Here, through a VAE approach, we
aim to consistently generate samples in an extreme region (black square) from
observations (blue dots) none of which belong to the extreme region. In this
context, the EVT characterizes the probabilistic structure of extreme events and
provides a theoretically-sound statistical framework to analyze them. Heavy-tail
analysis (Resnick, 2007), in its broadest sense, is a branch of EVT that studies
phenomena governed by multivariate power laws. Data modeled by heavy-tailed
distributions cover a wide range of application fields, e.g., hydrology (Anderson &
Meerschaert, 1998; Rietsch et al., 2013), particle motion (Fortin & Clusel, 2015),
finance (Bradley & Taqqu, 2003), Internet traffic (Hernandez-Campos et al.,
2004), and risk management (Chavez-Demoulin & Roehrl, 2004; Das et al., 2013).
Recently, this area of research has gained some interest in the ML community.
Some work has shown the potential of bridging the gap between ML and EVT on
different aspects, for example dimensionality reduction (Drees & Sabourin, 2021),
quantile function approximation (Pasche & Engelke, 2022), outlier detection
(Rudd et al., 2017), or classification in tail regions (Jalalzai et al., 2018). With
regards to the generation of extremes, ML methods could also integrate EVT tools.

Related works: GANs and NFs have been applied to extreme sampling problems.
As demonstrated in Jaini et al. (2020); Huster et al. (2021), the output random
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variable of a neural network associated with a light-tailed input random variable
cannot be heavy-tailed. This has motivated previous works to adapt and extend
to extremes. Regarding GANs, we can first distinguish GAN based on heavy-tailed
priors, e.g. Feder et al. (2020) and Huster et al. (2021). Huster et al. (2021)
proved that the mapping of a heavy-tailed random input variable by a large
class of neural networks has the same extreme behavior as the input variable. In
Boulaguiem et al. (2022), the proposed GAN exploit a copula-based parameteriza-
tion (Embrechts, 2009) using Pareto distributions (see, e.g., Tencaliec et al., 2019)
for the marginals, so that the GAN learns to sample multivariate distributions
with uniform marginals. Another category of GAN schemes for extremes arise
from the the observation that a neural network with rectified linear units (ReLU)
cannot directly map the interval [0, 1] to the quantile function of a heavy-tailed
law (Allouche et al., 2022b). This study then proposed a GAN to learn a
transformation of this quantile function. The results demonstrated by Allouche
et al. (2022b) support the theoretical relevance of this GAN approximation for
true quantile functions. A last category of GAN schemes proceeded empirically by
recursively training GANs from tail samples up to the targeted return level (Bhatia
et al., 2021). Concerning NFs, Jaini et al. (2020) has also explored heavy-tailed
latent variables using independent Student-t distributions. Extending this work,
Laszkiewicz et al. (2022) proposed an approach which generate marginals with
different tail behaviors.

Main contributions: To our knowledge, our study is the first attempt to bridge
VAE and EVT. Recent studies suggest that state-of-the-art likelihood-based mod-
els, including VAEs, may, in some examples, capture the spread of the true dis-
tribution better than GANs (see, e.g., Razavi et al., 2019; Nash et al., 2021).
This makes VAE an interesting way of explicitly exploiting the EVT framework to
generate realistic and diverse extremes. Our main contributions are as follows.

• First, we demonstrate that VAE with standard parameterization cannot gen-
erate heavy-tailed distributions. Then, we propose a VAE framework to
sample extremes from heavy-tailed distributions.

• The use of the multivariate EVT allows us to introduce the notion of an-
gular measure which characterizes the asymptotic dependence between the
extremes. Our approach allows to sample directly this angular measure
thanks to a polar decomposition of the data. It allows us to better ac-
count for complex and non-singular distributions on the sphere for extremes,
compared to other state-of-the-art generative schemes.

• Numerical experiments on both synthetic and real data sets support the
relevance of our VAE scheme, including w.r.t. a EVT-based GAN approach
(Huster et al., 2021). Especially, we demonstrate the ability to generate
relevant samples beyond the largest values in the training data set.
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Organization of the paper: This paper is organized as follows. We recall the
basic principles of VAE and EVT in Section 3.3. In Section 3, we present our
main theoretical results concerning, on the one hand, the tail distribution of the
marginals generated by a VAE and, on the other hand, the angular measure of
generative methods. All detailed proofs are delayed in Appendix 3.G, listed in
order of appearance in the paper. We detail the proposed VAE framework for
multivariate extremes in Section 3.5 and describe the associated training setting
in Section 3.6. Section 3.7 is dedicated to experiments. Section 3.8 is devoted to
concluding remarks.

3.3 . Background

In this section, we present background knowledge about VAE, and we give an
introduction to univariate and multivariate heavy-tailed distributions.

3.3.1 . Sampling with VAE
To generate a sample from a random variable X, a VAE proposes a two-step

sampling strategy:

• A sample z is drawn from a latent vector (or prior) Z with pdf pα(z) (pos-
sibly) parameterized by α;

• The desired sample is obtained by sampling from the conditional pdf p(x | z).

Since p(x | z) is in general not known, one uses a parametric approximation
pθ(x | z), referred to as the likelihood or probabilistic decoder, with θ a set of
parameters to be calibrated. The purpose is then to find the parameterization which
enables to generate the most realistic samples of X. To do so, VAE framework
introduces a target distribution (or probabilistic encoder) qϕ(z | x) parameterized
by ϕ to approximate the true posterior distribution. The training phase then comes
to maximize the evidence lower bound (ELBO) with respect to the set of parameters
(α, ϕ, θ). Formally, given N independent samples (x(i))Ni=1 of X, we have

− log(p(x(i)) ≥ L(x(i), α, θ, ϕ),

with L the ELBO cost given by

L(x(i), α, θ, ϕ) = −DKL

(
qϕ(z | x(i)) || pα(z)

)
+ Eqϕ(z|x(i))

[
log pθ(x

(i) | z)
]
. (3.1)

The ELBO cost on the whole data set is obtained by averaging Equation (3.1) over
the N samples of X. To infer the set of parameters (α, ϕ, θ) by neural network
functions of the data, Kingma & Welling (2013) and Rezende et al. (2014) derived
a specific training scheme for ELBO optimization. The authors allowed the cost
function defined by Equation (3.1) to be approximated by an unbiased Monte Carlo
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estimator differentiable with respect to both θ and ϕ. This Monte Carlo estimator
is given for a data point by

L̂(x(i), α, θ, ϕ) = −DKL

(
qϕ(z | x(i)) || pα(z)

)
+

1

L

L∑
l=1

log pθ(x
(i) | z(i,l)), (3.2)

where z(i,l) are samples from the approximate posterior qϕ(z | x(i)). To make this
expression differentiable, we have to exploit a reparameterization trick. It comes
to find a function gϕ, such that

qϕ(z | x) = gϕ(x, ϵ), (3.3)
with ϵ a chosen random variable, and gϕ differentiable with respect to ϕ. When ex-
plicit reparameterization is not feasible, we may exploit implicit reparameterization
gradients (see Figurnov et al., 2018). Details about implicit reparameterization
can be found in Appendix 3.F.

Example 3.3.1. The most common parameterization of a VAE with z ∈ Rn and
x ∈ Rm is

p(z) = N (z ; 0, In),

pθ(x | z) = N
(
x ; µθ(z), diag(σθ(z))

2
)
,

qϕ(z | x) = N
(
z ; µϕ(x),diag(σϕ(x))

2
)
,

where diag is the operator that produces a diagonalmatrix whose diagonal el-
ements are the elements of the input vector, andN (z ; µ,Σ) denotes the pdf
in z of the multivariate normal distribution of mean µ and covariance matrix
Σ. In this framework, the reparameterization trick is given by

gϕ(x, ϵ) = µϕ(x) + σϕ(x)⊙ ϵ,

where ϵ is sampled from the centered isotropicmultivariate GaussianN (0, I),
and⊙ is the element-wise product. We refer to this parameterization as Stan-
dard VAE.

3.3.2 . Univariate extremes
When modelling univariate extremes, generalized Pareto (GP) (Pickands III,

1975) distributions are of great interest. The GP survival function is defined for
ξ ∈ R and σ > 0 by

H̄σ,ξ(x) =
(
1 + ξ

x

σ

)−1/ξ

+
, (3.4)

where a+ = 0 if a < 0. The scalar ξ is called the shape parameter. Note that
Equation (3.4) is extended to ξ = 0, with H̄σ,0 survival function of the exponential
distribution of scale parameter σ.
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Given a random variable X with cumlative distribution function F , GP distri-
butions appear under mild condition as the simple limit of threshold exceedance
function given by Fu(x) = P (X − u ≤ x | X > u) when u → ∞ (Balkema &
De Haan, 1974). To be explicit, under mild conditions there exists ξ ∈ R and a
strictly positive function σ(·) such that

lim
u→xF

sup
0<x<xF−u

| Fu(x)−Hσ(u),ξ(x) |= 0,

with xF = sup{x s.t. F (x) < 1} the right endpoint of F , and H the cumulative
distribution function of the GP.

The shape parameter ξ of the GP approximation of Fu encompasses the infor-
mation about the tail of X. In the following, we consider that:

• ξ ≤ 0 corresponds to light-tailed distribution,

• ξ > 0 corresponds to heavy-tailed distribution.

Remark 3.3.2. A simple yet efficient way to sample from a GP distribution with
parameters ξ and σ is to multiply an inverse gamma distributed random vari-
able with shape 1

ξ and rate σ by a unit and independent exponential one.
This multiplicative feature is essential for understanding the pivotal role of
inverse-Gamma random variables in our sampling scheme in Section 3.5.1.
Remark 3.3.3. Notice that, given a light-tailed distribution with survival func-
tion F̄ , all its higher-ordermoments exist and are finite, and limu→∞ uaF̄ (u) =

0 for any a > 0. In particular, Gaussian distribution is light-tailed. At the con-
trary, not all higher-order moments are finite for a heavy-tailed distribution.
In this work, we focus on heavy-tailed distributions, which can be seen as the
distributions for which extremes have the greater intensity. The shape parameter
characterizes how heavy is the tail of a distribution: the larger it is, the heavier
the tail of the distribution.

A final important notion regarding extreme values is the so-called regular vari-
ation property.

Definition 3.3.4. A random variableX is said to be regularly varying with tail
index α > 0, if

lim
t→+∞

P (X > tx | X > t) = x−α. (3.5)
Importantly, X regularly varying equates to X heavy-tailed with α = 1

ξ (see
Bingham et al., 1989, Theorem 8.13.2).
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3.3.3 . Multivariate extremes
By extending notions developed in Section 3.3.2, a multivariate analogue of

the GP distribution (Equation 3.4), referred to as multivariate GP, can be defined
(see Rootzén & Tajvidi, 2006). Under mild conditions, exceedances distribution
asymptotically follows multivariate GP distribution. Additionally, the regular
variation of Definition 3.3.4 can be extended to a multivariate regular property
(see, e.g. Resnick, 2007, for details). For a given random vector, the exceedances
asymptotically have a multivariate GP distribution if the vector has multivariate
regular variation.

Let X be a random vector in (R+)
m. To define multivariate regular variations,

we decompose X into a radial component R = X1 + · · · + Xm = ∥X∥ and an
angular component of the (m− 1)-dimensional simplex Θ = X

∥X∥ .

Definition 3.3.5. X has multivariate regular variation if the two following
properties are fulfilled:

• The radius R is regularly varying as defined in Equation (3.5);
• There exists a probabilitymeasureSdefinedon the (m−1)-dimensional
simplex such that (R,Θ) verifies

P
(
Θ ∈ •

∣∣ R > r
) w−→ S(•), (3.6)

where w−→ denotes weak convergence (see Appendix 3.B.2). S is called
angular measure.

Consequently, the radius is a univariate heavy-tailed random variable as
described in Section 3.3.2. Equation (3.6) indicates that, if the radius is above a
sufficiently high threshold, the respective distributions of the radius and the angle
can be considered independent. Estimating the angular measure then becomes
crucial to address tail events of the kind of {X ∈ C} for an ensemble C such that
u = inf{∥x∥,x ∈ C} is large. This is especially true to assess the probability of
joint extremes.

More generally, the estimation of the angular measure S, although difficult due
to the scarcity of examples (Clémençon et al., 2021), is of great interest for the
analysis of extreme values. It allows, among other things, to determine confidence
intervals for the probabilities of rare events (De Haan & De Ronde, 1998), bounds
for probabilities of joint excesses over high thresholds (Engelke & Ivanovs, 2017)
or tail quantile regions (Einmahl et al., 2013).

3.4 . Tail properties of distributions sample by generative algo-
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rithms

This section is devoted to the theoretical foundations of the tail properties of
distributions sampled by generative approaches in the ML community. We first
stress in Section 3.4.1 that standard VAE cannot generate heavy-tailed marginals.
Then we focus on angular measures that can be obtained using generative algo-
rithms in Section 3.4.2. In particular, we prove that, when restricted to ReLU
activation functions, generative algorithms based on the deterministic transforma-
tion of a prior input (e.g. GANs or NFs) have an angular measure concentrated
on a restricted number of vectors. These theoretical considerations are crucial to
define our VAE approach presented in Section 3.5.

3.4.1 . Marginal tail of a standard VAE
In this section, we establish that a standard VAE only produces light-tailed

marginals. This result extends to VAEs results similar to those established for
GANs with normal prior (see Huster et al., 2021), or with NFs with light-tailed
base distribution (Jaini et al., 2020). We first mention an important property of
neural networks, based on the notion of Lipschitz continuity (see Appendix 3.B.1).

Proposition 3.4.1. (Arora et al., 2016; Huster et al., 2021): A neural network
f : Rn → R composed of operations such as ReLUs, leaky ReLUs, linear layers,
maxpooling, maxout activation, concatenation or addition is a piecewise linear op-
erator with a finite number of linear regions. Therefore, f is Lipschitz continuous
with respect to Minkowski distances.

Given these elements, the following proposition describes the tail of an univari-
ate output of a stardard VAE.

Proposition 3.4.2. For the standard VAE of Example 1 with univariate output
(m = 1), given that the neural network functions µθ and σθ of the probabilistic
decoder are piecewise linear operators, then the output distribution sampled by
the standard VAE is light-tailed.

Corollary 3.4.3. The marginal distributions generated by the standard VAE of Ex-
ample 1 are light-tailed, whenever the neural networks functions µθ and σθ neural
networks are composed of operations described in Proposition 3.4.1.
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3.4.2 . Angular measure of ReLu networks transformation of ran-
dom vectors

In this section, we focus on the angular measures associated with generative
algorithms. We demonstrate that distributions sampled by algorithms based on
the transformation of a random input vector by a neural network with linear layers
and ReLU activation functions have angular measures concentrated on finite set
of points on the simplex. Although not specific to VAEs, these results suggest a
particular focus on the representation of the angular measure in the VAE framework.
Let us consider the following framework for generating multivariate heavy-tailed
data in the non-negative orthant:

X = f(Z), (3.7)
with Z a n-dimensional input random vector with i.i.d. heavy-tailed marginals and
f a ReLU neural network which outputs in Rm.

Generating through heavy-tailed input vector is used by Feder et al. (2020)
and Huster et al. (2021) for GANs, and Jaini et al. (2020) for NFs. The marginals
of the input vector have Pareto distribution in Huster et al. (2021), and t-Student
in the others. As shown in Jaini et al. (2020), light-tailed marginals for the input
vector lead to light-tailed marginals for the output. In the one-dimensional case,
X is heavy-tailed with same shape parameter as Z, whereas it has Gaussian tails
whenever the input variable is Gaussian (Huster et al., 2021).

In the limit of extreme values, one can wonder what are the dependency struc-
tures between the marginals of X that such a model can represent. This corre-
sponds to the angular measure defined in Equation (3.6). If we designate SX as
the angular measure of X, we can state the following Proposition.

Proposition 3.4.4. Under the framework described in Equation (3.7), SX is con-
centrated on a finite set of points of the simplex less than n. In other words, it
means that there exist some vectors {v1,v2, · · · ,vn′} with n′ ≤ n such that for
any subset A of the (m− 1)-dimensional simplex

SX(A) =
n′∑
i=1

piδvi(A),

where δ is the Dirac measure and pi > 0 such that
∑n′

i=1 pi = 1.

Therefore, in the limit of infinite radius, X is almost surely located on a
specific axis. While extracting certain principal directions in extreme regions is
a useful tool for the comprehensive analysis of a data set (Drees & Sabourin,
2021), it is severely lacking in flexibility when it comes to represent more complex
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distributions and generate realistic extreme samples.

To circumvent this difficulty, we consider a polar decomposition, so we can
generate the angle and the radius separately. Namely, we write X = (R,Θ) as
explained in Section 3.3.3. This allows to make explicit the dependency structure of
the data whatever the radius is, especially for large radii. We can then obtain more
varied angular measures than those concentrated on a finite number of vectors as
illustrate in the numerical experiments reported in Section 3.7.

3.5 . Proposed VAE architecture

We propose the following three-step VAE scheme to generate a sample x(i) of
a multivariate regularly varying random vector:

• Using a VAE, a radius r(i) is drawn from a univariate heavy-tailed distribution
R (see Section 3.5.2);

• Conditionally on the drawn radius r(i), we sample Θ(i) an element of the
(m−1)-dimensional simplex from the conditional distribution Θ | [R = r(i)]

while forcing the independence between radiusR and angle Θ for larger value
of the radius. We use a conditional VAE for this purpose (see Section 3.5.3);

• We multiply componentwise the angle vector by the radius to obtain the
desired sample, i.e. x(i) = r(i)Θ(i).

The overall architecture is shown in Figure 3.5. As detailed in Section 3.4.2, the
polar decomposition offers a great flexibility in modeling the dependence between
variables, including for the angular measure, which is not the case for the trans-
formation of heavy-tailed random vectors by ReLU networks (Proposition 3.4.4).
Additionally, one can generate elements of the simplex with a given radius and
study the dependence between variables at a given extreme level. The rest of this
section details the architecture of the proposed VAE scheme chosen to sample the
heavy-tailed radius and the conditional angle.

3.5.1 . Idealized multiplicative framework for sampling heavy-tailed
radii

We model R through a latent variable Zrad. To deal with heavy-tailed distri-
butions introduced in Section 3.3.2, we consider the following two conditions.

Condition 3.5.1. Zrad follows the inverse-gamma distribution defined by the
pdf

fInvΓ(zrad ; α, β) =
βα

Γ(α)
z−α−1
rad exp (−β/zrad), (3.8)

with α and β two strictly positive constants, and zrad > 0.
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Figure 3.5.1: Global architecture of our approach with (a) the proba-bilistic encoders and (b) the probabilistic decoders. Ideally, distribu-tions of x and x′ are similar. Solid arrows show a causal link betweenthe different blocks. Dashed double arrows in (a) indicate that the dis-tributions in the pointed blocks are compared using a Kullback-Leiblerdivergence criterion (Equation 3.2).
Condition 3.5.2. R is linked to Zrad throughout a multiplicative model with a
positive random coefficient A, i.e.

R
d
= A× Zrad,

where d
= corresponds to a equality in distribution and the random variable

A is absolutely continuous and independent of Zrad. We also assume that
0 < E [Aα+ϵ] <∞ for some positive ϵ.

We may recall that the inverse-gamma distribution is heavy-tailed with
tail index α and has a strictly positive support. Above, moment condition
0 < E [Aα+ϵ] <∞ means that A has a significantly lighter tail than Zrad.

Under these two conditions, Breiman’s lemma (Breiman, 1965) guarantees
that the parameterization considered in Condition 3.5.2 leads to a heavy-tailed
distribution of the radius R. Formally, the following proposition holds.

Proposition 3.5.3. If Conditions 3.5.1 and 3.5.2 hold, R is heavy-tailed with tail
indexα. In particular, ifA follows an exponential distributionwith scale parameter
c then R follows a GP distribution (see Equation 3.4 with ξ = 1

α and σ = βc
α )
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3.5.2 . Sampling from heavy-tailed radius distributions
To tailor the VAE framework introduced in Section 3.3.1 to heavy-tailed random

variables, we satisfy Condition 3.5.1, i.e. we set the prior Zrad as an inverse gamma
distribution with parameters α and β. Notice that as if Zrad follows an inverse
gamma distribution with parameters α and β, then for each c > 0, cZrad is an
inverse gamma with parameters α and cβ. Consequently, and without loss of
generality, we set parameter β of Zrad equal to 1. Overall, we replace the light-
tailed system described in Example 3.3.1 by the following heavy-tailed system:

pα(zrad) = fInvΓ(zrad ; α, 1), (3.9)
pθ(r | zrad) = fΓ (r ; αθ(zrad), βθ(zrad)) , (3.10)
qϕ(zrad | r) = fInvΓ (zrad ; αϕ(r), βϕ(r)) , (3.11)

with fΓ (resp. fInvΓ) the pdf of a Gamma (resp. inverse Gamma) distribution.
αθ, βθ, αϕ, βϕ are ReLU neural networks functions with parameters θ and ϕ. We
may stress that the above parameterization ensures the non-negativeness of the
samples both for the target and the likelihood.

Following from the multiplicative framework described in Section 3.5.1, the
following proposition holds regarding the heavy-tailed distributions of this univariate
VAE scheme.

Proposition 3.5.4. We consider the VAE parameterization described by Equations
(3.9), (3.10) and (3.11). If we further assume that the function αθ(.) is a strictly
positive constant and the function βθ(.) satisfies

lim
zrad→+∞

βθ(zrad) ∝
1

zrad
, (3.12)

lim
zrad→0

βθ(zrad) ∝
1

zrad
, , (3.13)

then the univariate output distribution sampled by this VAE scheme is heavy-tailed
with tail index equal to α.

In our implementation, we impose on βθ(.) to satisfy Equations (3.12) and
(3.13) by choosing

βθ(zrad) =
|fθ(zrad)|
z2rad

, (3.14)
where fθ is a neural network with linear layers and ReLU activations.

Concerning αθ(.), we leave it in practice more flexible than a constant function.
We only constrain a strictly positive finite limit at infinity. This corresponds to

αθ(zrad) =
|gθ(zrad)|
zrad

, (3.15)
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where, again, gθ is a neural network with linear layers and ReLU activations.

We choose our parameterization based on an analogy with the ideal multiplica-
tive framework described in Section 3.5.1. Indeed, considering Conditions 3.5.1 and
3.5.2 verified, then

R | [Zrad = zrad]
d
= Azrad, (3.16)

Zrad | [R = r]
d
=
r

A
. (3.17)

As A needs to have a tail lighter than Zrad to satisfy the moment condition
E [Aα+ϵ] < ∞ for some positive ϵ, we choose the approximate likelihood
pθ(r | zrad) in a light-tailed distribution family (i.e. Gamma distribution).
Considering Equation (3.17), we notice that Zrad | [R = r] could be heavy-tailed
if A have non-null probability on each open set containing 0. Thus we choose
a heavy-tailed distribution for the target (i.e. Inverse-Gamma distribution).
Additionally, as R and Zrad are positive random variables, our parameterization
ensures that negative values for either target and likelihood cannot occur.

Besides, by introducing the Inverse-Gamma parameterizations for the prior pα
and the target qϕ in Equation (3.2), we can derive an analytical expression of the
ELBO cost of the proposed VAE.

Proposition 3.5.5. Given expression (3.9) and (3.11) for prior and target distribu-
tions, the KL divergence in Equation (3.2) is given by

DKL (qϕ(zrad | r) || pα(zrad)) = (αϕ(r)− α)ψ(α)− log
Γ(αϕ(r))

Γ(α)

+α log βϕ(r) + αϕ
1− βϕ(r)

βϕ(r)
, (3.18)

where Γ and ψ stands respectively for the gamma and digamma functions.

Interestingly, this proposition provides the basis for learning tail index α from
data, which is a challenging issue in EVT (see, e.g. Danielsson et al., 2016).
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3.5.3 . Sampling on the multivariate simplex
The second component of our VAE scheme involves a conditional VAE (see,

e.g., Zhao et al., 2017) to sample the angle conditionally on a previously sampled
radius, namely conditional distribution Θ | R. This angular VAE with latent
variable Zang exploits a multivariate normal prior. The target is also parameterized
by multivariate normal distributions, with mean and standard deviation function of
the hidden variable and of the observation data. The likelihood is parameterized
by a projection of a normal distribution on the L1 sphere. Formally, let us denote
by Π this projection such that, for any vector s,

Π(s) =
s

∥s∥
,

where the considered norm is the L1-norm. Additionally, we define S(Θ) =

{s, Π(s) = Θ}. Overall, our conditional angular VAE relies on the following
parameterization:

p(zang) = N (zang ;0, In),

pν(Θ | zang, r) =
∫
S(Θ)

N
(
s ; µν(zang, r),diag(σν(zang, r))

2
)
, (3.19)

qω(zang | Θ, r) = N
(
zang ; µω(Θ, r), diag(σω(Θ, r))

2
)
,

where n is the dimension of the latent space, µν , σν , µω and σω are neural
network functions with parameters ν and ω. The dependency on R for the target
and the likelihood has been made explicit to turn the framework conditional.
Notice that we do not explicitly use Equation (3.19) when sampling from pν , but
we rather sample from N

(
µν(zang, r),diag(σν(zang, r))

2
)

and then projecting
on the sphere through Π.

As our inital aim is to sample on the multivariate simplex rather than on the
multivariate sphere, we also use a Dirichlet parameterization of the likelihood.
Details regarding this parameterization can be found in Appendix 3.C.

As we aim to sample from multivariate regularly varying random vectors (Def-
inition 3.3.5), we enforce the independence between the respective distributions of
the radius and the sphere when r → +∞ implies by Equation (3.6). We make sure
that the functions µν and σν satisfy the following necessary condition.

Condition 3.5.6. µν and σν are such that there exist two z-varying functions
µ∞ and σ∞ which verify for each zang

lim
r→+∞

µν(zang, r) = µ∞(zang),

lim
r→+∞

σν(zang, r) = σ∞(zang).
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In practice, we satisfy Condition 3.5.6 using

µν(zang, r) = fν

(
zang,

1

1 + r

)
, (3.20)

σν(zang, r) = gν

(
zang,

1

1 + r

)
, (3.21)

with fν and gν Lipschitz continuous neural networks.

Remark 3.5.7. From Equations (3.20) and (3.21), we deduce
µ∞(zang) = fν(zang, 0),

σ∞(zang) = gν(zang, 0).

Thus, sampling from the angular measure is an easy task as it is
enough to: (i) draw sample zang from the prior N (0, In), (ii) sample from
N
(
µ∞(zang),diag(σ∞(zang))

2
), and (iii) project onto the L1 sphere through

Π.
3.6 . Implementation

This section introduces some implementation details of our approach. We first
give more specifics on the architecture of the trained VAEs in Section 3.6.1, as
well as on the learning set-up in Section 3.6.2. We also introduce in Section 3.6.3
performance metrics used for benchmark purposes as well as in Section 3.6.4 the
approaches with which we compare the proposed VAE scheme.

3.6.1 . Neural network parameterizations
In this section, we detail the chosen parameterization of the neural architectures

for the two VAEs described in Section 3.5, during the various numerical experi-
ments. For the radius generation VAE described in Section 3.5.2, we consider the
following parameterization for fully-connected neural networks:

• For the probabilistic encoder, we set two 5-dimensional hidden layers with
ReLU activation. The output layer is a 2-dimensional dense layer with ReLU
activation. For convergence purposes, we initialize the weights of the dense
layers to 0 and their biases to a strictly positive value sampled from a uniform
distribution between 1 and 2.

• For the probabilistic decoder, we detail the architecture of fθ and gθ of
Equations (3.14) and (3.15). We consider the same architecture as the prob-
abilistic encoder. Regarding the output, one corresponds to the output fθ
and the other one to the output of gθ. The output bias of fθ is initialized as
a strictly positive value (random sample of an uniform distribution between
1 and 2) and the output kernel of gθ is initialized as positive value (random
sample of an uniform distribution between 0.1 and 2).
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For the angular VAE described in Section 3.5.3, we consider the following param-
eterization of fully-connected neural architectures:

• For the encoder, the latent dimension is 4. We consider 3 hidden layers with
ReLU activation, respectively with 8, 8 and 4 output features. The output
layer is a dense linear layer. We exploit the standard initialization for the
encoder.

• For the decoder, the input radius is first transformed according to Equations
(3.20) and (3.21). We use 3 hidden layers with ReLU activation, respectively
with 5, 10 and 5 output features. The output layer is a dense layer. We
exploit the standard initialization for the decoder, except for the bias of the
final layer, which is initially sampled from a uniform distribution between 0.5
and 3.

3.6.2 . Learning set-up
The considered training procedure follows from our hierarchical architecture

with two VAEs and involves two distinct training losses, denoted by LR for the
training loss of the radius VAE and LΘ|R for the angular VAE. For a data set
(x(i))Ni=1 with polar decomposition

(
r(i),Θ(i)

)
, we derive training loss LR from

Equations (3.2) and (3.18) as

LR(α, θ, ϕ) =
N∑
i=1

(
(αϕ(r

(i))− α)ψ(α)− log
Γ(αϕ(r

(i)))

Γ(α)
+ α log βϕ(r

(i)) + αϕ
1− βϕ(r

(i))

βϕ(r(i))

)
+

1

L

L∑
l=1

log fΓ

(
r(i) ; αθ(z

(i,l)
rad ), βθ(z

(i,l)
rad )

))
,

Similarly, training loss LΘ|R writes as

LΘ|R(ν, ω) =
N∑
i=1

((1
2

n∑
j=1

(
1 + log((σjω(Θ

(i), r(i)))2)− (µjω(Θ
(i), r(i)))2 − (σjω(Θ

(i), r(i))2
)

+
1

L

L∑
l=1

logN
(
Θ(i) ; µν(z

(i,l)
ang , r

(i)), diag(σν(z
(i,l)
ang , r

(i)))2
))

,

where we have denoted σjω and µjω the respective j-th component of σω and µω.
In the implementation of these training losses, we sample each z(i,l)rad from the pdf
qϕ(zrad | r(i)), and each z

(i,l)
ang from the pdf qω(zang | Θ(i), r(i)). Overall, our

training loss LExtV AE is the sum

LExtV AE(α, θ, ϕ, ν, ω) = LR(α, θ, ϕ) + LΘ|R(ν, ω). (3.22)
In practice, we first train the radius VAE, i.e. parameters (α, θ, ϕ), and second
the angular VAE, i.e. parameters (ν, ω). Let us note that, depending on the
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experiments, the parameter α of the radius prior can either be supposed known or
unknown. When known, it suffices to set α equal to the desired value in Equation
(3.22). When unknown, α can be directly optimized by gradient descent.

For estimating (α, θ, ϕ), the training is limited to 5000 epochs, and the
learning rate set to 10−4. The same maximum number of epochs is used to
estimate (ν, ω) but the learning rate is fixed to 10−5.

In both cases, we used Adam optimizer (Kingma & Ba, 2014) and a batch
size of 32. From a code perspective, we made extensive use of the Tensorflow and
Tensorflow-Probability libraries. The whole code is freely available.1

3.6.3 . Performance assessment
We present the various criteria used to evaluate the different approaches tested

in our numerical experiments. These criteria can be grouped into three categories,
depending on whether they relate to radius distributions, output distributions or
angular measures.

For the radius distribution, log-quantile-quantile plots (for detailed examples,
see Resnick, 2007, Chapter 4), abbreviated as log-QQ plots, are graphical methods
we use to informally assess the goodness-of-fit of our model to data. This method
consists in plotting the log of the empirical quantiles of a sample generated by our
approach vs. the log of the empirical quantiles of the experimental data. If the fit
is good, the plot should be roughly linear. We use the approximated ELBO cost
(Equation 3.2) on a given data set as a numerical indicator to compare the radius
distribution obtained with our VAE approach to a vanilla VAE not tailored for
extremes. Another criterion that we apply is an estimator of the KL divergence, as
well as one of its variants introduced by Naveau et al. (2014). This variant gives
an estimator of the KL divergence upon a given threshold (see Appendix 3.E.1).

Concerning the whole generated samples, we investigate several other criteria.
We computed the Wasserstein distance between large samples generated by
our model and true samples. If we select a threshold u, we can compute the
Wasserstein distance above this threshold by restricting the samples to the points
which have a radius greater than u. In this context, we consider a rescaled
version of the Wasserstein distance upon a threshold divided by the square of
this threshold (see Appendix 3.E.2). To compute the Wasserstein distances, we
use pre-implemented functions from the Python Optimal Transport package (see
Flamary et al., 2021).2

1The implementation is available at https://github.com/Nicolasecl16/ExtVAE.2The documentation is available at https://pythonot.github.io/quickstart.
html
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3.7. EXPERIMENTS

We have seen that for a multivariate regularly varying random vector, the radius
and the angle can be considered independent in the limit of an infinite radius (see
Equation 3.6). In practice, one can consider the radius and the angle independent
by choosing a sufficiently large radius. Wan & Davis (2019) have established a
criterion to detect whether the respective distributions of the radius and the angle
can be considered as independent, and thus to choose the corresponding limiting
radius. This allows us to compare the limiting radii between the true data and
the generated data. We rely on the testing framework introduced in Wan & Davis
(2019) to calculate a p-value that follows a uniform distribution if the distributions
of the radius and the angle are independent, and that is close to 0 otherwise (see
Appendix 3.E.3).

3.6.4 . Notations and benchmarked approaches
We refer to our generative approach as ExtVAE if we assume that the tail

index α is known, and as UExtVAE if the tail index is learned from data. If we
restrict ourselves to the radii generated by ExtVAE and UExtVAE via the proce-
dure described in Section 3.5.2, we denote respectively ExtVAEr and UExtVAEr.
We compare our approach with standard VAE of Example 3.3.1, i.e. with normal
distribution for prior, target and likelihood, indicated by the acronym StdVAE. We
also compare our approach with ParetoGAN which is the GAN scheme for gener-
ating extremes proposed by Huster et al. (2021). The ParetoGAN is a Wasserstein
GAN (see Arjovsky et al., 2017) with Pareto prior. Given the difficulty of training a
GAN, as well as the number of factors that can influence the results it produces, we
empirically tuned the ParetoGAN architecture to provide a sensible GAN baseline
in our experiments. Though our parameterization may not be optimal, our interest
goes beyond a simple quantitative intercomparison in exploring and understanding
the differences between the proposed VAE approach and GANs in their ability to
represent and sample extremes.

3.7 . Experiments

We conduct experiments on synthetic and real multivariate data sets. The
synthetic data set involves a heavy-tailed radius distribution and the angular distri-
bution on the multivariate simplex is a Dirichlet distribution with radius-dependent
parameters. The real data set corresponds to a monitoring of Danube river network
discharges.
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Table 3.7.1: Mean approximated ELBO cost (see Equation 3.2) on ra-dius R1 training, validation and test data set. These are abbreviatedin Train, Val and Test loss. ExtVAEr denotes the radii sampled by ourproposed approach based on extreme value theory with the knowntail index, while it is called UExtVAEr when the tail index is unknown(see parameterization defined by Equations 3.9, 3.11 and 3.10). StdVAEcorresponds to the Gaussian based approach defined in Example 3.3.1
Approach Train loss Val loss Test lossStdVAE 1.21 4.81 +∞ExtVAEr 0.88 1.10 1.12UExtVAEr 0.95 1.12 1.15

3.7.1 . Synthetic data set
We first consider a synthetic data set with a 5-dimensional heavy-tailed

random variable with a tail index α = 1.5. We detail the simulation setting in
Appendix 3.A.1. The training data set consists of 250 samples, compared to 750
for the validation data set and 10000 for the test data set.

In Table 3.7.1 and Figure 3.7.1, we study the ability of the benchmark VAE
schemes to sample heavy-tailed radius distribution. The results in Table 1
indicate that the evaluated cost remains roughly constant for our approaches
when changing data sets, while it explodes for StdVAE. This indicates that
our approaches, unlike StdVAE, successfully extrapolate the tail of the radius
distribution. The log-QQ plots given in Figure 3.7.1 illustrate further that
ExtVAEr and UExtVAEr schemes relevantly reproduce the linear tail pattern
of the radius distribution while this is not the case for StdVAE. Figure 3.7.2
evaluates, for the compared methods, the evolution of the KL divergence between
the true distribution and the simulated ones above a varying quantile u (Equation
3.27). Again, the StdVAE poorly matches the target distribution with a clear
increasing trend for quantiles u such that P (R1 > u) ≥ 0.3. Conversely, the KL
divergence is much smaller and much more stable for ExtVAEr and UExtVAEr

schemes, especially for large quantile values. Interestingly, for the different criteria,
the results obtained with UExtVAEr are very close or even indistinguishable from
those obtained with ExtVAEr. This suggests that the estimation of the tail index
is accurate. In order to better assess the robustness of this estimation, we report
the evolution of the tail index of UExtVAEr as a function of the training epochs
for randomly chosen initial values (Figure 3.7.3). Given the expected uncertainty
in estimating the tail index (see Appendix 3.D), UExtVAEr estimates are globally
consistent. We report meaningful estimation patterns since the reported curves
tend to get closer to the true value as the number of epochs increase, although
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Figure 3.7.1: Log-QQ plot between the upper decile of 10000 radii sam-ples from StdVAE (blue dots), ExtVAEr (orange dots), UExtVAEr (greendots) and the upper decile of the test data set of R1. The log values ofthe true radius, denoted logR1 is on the x-axis, the log of the estimatedradius, denoted log R̂1, is on the y-axis. The dots should lie close to theblue line

Figure 3.7.2: KL divergence between the radius distribution of thebenchmark VAE models and the target heavy-tailed distribution: wedisplay the KL divergence (see Equation 3.27) above quantile u for
P (R1 > u) varying from 0 to 1 for StdVAE (blue curve), ExtVAEr (or-ange curve) and UExtVAEr. Numerically speaking, we sampled 10000from each distribution and u is taken as the quantile of the sampledreference data set.
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Figure 3.7.3: Evolution of the tail index α of UExtVAEr during the train-ing procedure: we report the value of the tail index as a function of thetraining epochs for training runs from different initial values. The initialvalues of α are sampled uniformly between 0.5 to 3. The true value of
α is 1.5.
it might show some bias when initial value is far from the true tail index value.
The mean value of the estimated tail index is 1.56 with a standard deviation of 0.2.

We now focus on the five-dimensional heavy-tailed case-study. The best
parameterization for the likelihood of the conditional VAE is a Dirichlet pa-
rameterization (see Appendix 3.C). An important advantage of our approach is
the ability to generate samples on the simplex for a given radius as detailed in
Section 3.5.3, and even to sample the angular measure. Figure 3.7.4 displays
the angular measure projected onto the last two components of the simplex for
the true angular measure, our ExtVAE approach and the ParetoGAN. For the
latter, we approximate the angular measure by the empirical measure above a very
high threshold. The ExtVAE shows a good agreement with the true distribution,
though not as sharp. By contrast, the distribution sampled by the ParetoGAN
tends to reduce to a single mode. The spatial direction of ParetoGAN extremes
could therefore be erroneously interpreted as deterministic. This confirms the
result of Proposition 3.4.4.

Beyond the angular measure, we assess the sampling performance of the bench-
marked schemes through an approximation of the Wasserstein distance (Equation
3.28) between 10000 generated items and the test set. The ExtVAE performs
slightly better than the ParetoGAN (5.37 vs. 6.80). This is highlighted for
high quantiles in Figure 3.7.5 where we plot the Wasserstein distance upon a
radius threshold, dividing by the square of the threshold (see Equation 3.29),
for ExtVAE and ParetoGAN. We focus on radius thresholds above 2, which
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Figure 3.7.4: Log probability of the angular measure obtained with a.ExtVAE, b. true distribution, c. ParetoGAN, projected on axes 4 and5 (named θ4 and θ5). For ParetoGAN, the estimation is based on 10000samples at a high value of radius, typically above 10, which correspondsto the upper percentile of R1 distribution.
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Figure 3.7.5: Wasserstein distance upon radius threshold r divided bythe square of r calculated between 10000 samples drawn from gener-ative approaches and test set. In orange, the generative method is theParetoGAN and in blue it is our. The considered thresholds are above
2, which is roughly the upper decile of the radii distribution.
corresponds to the highest decile. The ExtVAE performs again better than
the ParetoGAN, especially for radius values between 2 and 4, corresponding
roughly to quantiles between 0.90 and 0.95. We may recall that the ParetoGAN
relies on the minimization of a Wasserstein metric, whereas the ExtVAE relies
on a likelihood criterion. Therefore, we regard these results as an illustration
of the better generalization performance of the ExtVAE, especially for the extremes.

At last, we estimate the threshold at which the radius and angle distributions can
be considered as independent following the criterion proposed by Wan & Davis
(2019). Although, by construction, there is no radius value from which there is a
true independence, the estimator gives a radius above which one can approximately
consider that some limit measure is reached. We compare in Figure 3.7.6 the p-
values for assessing independence between the radius distribution and the angle
distribution (see Appendix 3.E.3). The p-values are represented as a function of
the chosen threshold for each of the three considered data sets: the test data
set, the data set sampled through the ExtVAE and the data set sampled through
the ParetoGAN. The ExtVAE slightly underestimates the radius of the threshold
compared to the true data (1.3 vs. 1.6), while the ParetoGAN leads to a large
overestimatation (2.7 vs. 1.6). This illustrates further that the ExtVAE better
captures the statistical features of high quantiles than ParetoGAN does. We regard
the polar decomposition considered in the ExtVAE as the key property of the
ExtVAE to better render the asymptotic distributions between the radius and the
angle.
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Figure 3.7.6: P-values for assessing independence between radius andangle distribution at different radius thresholds, computed accordingto Appendix 3.E.3 for the test data set (green points), 10000 samples ofthe ExtVAE (orange points), and 10000 samples of the ParetoGAN (bluepoints). The vertical bars correspond to the threshold below which thep-values are less than 0.45. Above this threshold, the radius and theangle can be roughly considered as independent. We refer to Wan &Davis (2019) for further details.
3.7.2 . Danube river discharge case-study

Our second experiment addresses a real heavy-tailed multivariate data set.
We consider the daily time series of river flow measurements over 50 years at five
stations of the Danube river network (see Appendix 3.A.2 for further details).
River flow data are widely acknowledged to depict heavy-tailed distributions (see
Katz et al., 2002). In reference to the numbering of the stations (see Figure
3.A.2), we note the random variables associated with the considered stations
X23, X24, X25, X26, X27. From the 50-year time series of daily measurements,
we take a measurement every 25 days in the considered stations to form the training
set. The remaining set constitutes the test set. There are 730 daily measurements
in the training set, and 17486 daily measurements in the test set. We have
deliberately chosen a training set size that is significantly smaller than the test set
size. This allows us to stay within a distribution tail extrapolation problem while
retaining sufficient test data to assess the relevance of our distribution tail estimate.

We focus on the question raised in introduction (see Figure 3.2): can we
extrapolate and generate consistent samples in extreme areas not observed during
the training phase? We focus on extreme areas of the form

⋂27
i=23Xi > ui with

ui large predefined thresholds. This corresponds to flows exceeding predefined
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thresholds at several stations. Namely we define

A
(p)
j =

j⋂
i=23

Xi > u
(p)
i , (3.23)

with p a given probability level and u(q)i the corresponding quantile of the flow i

in test set. The estimation of the probabilities of occurrence of such events is key
to the assessment of major flooding risks along the river.

Our experiments proceed as follows. We train generative schemes on the
training set as detailed in Section 3.5. For this case-study, the best parameteri-
zation for the likelihood of the angular part of the UExtVAE is a projection of a
multivariate normal distribution (see Equation 3.19). As evaluation framework,
we generate for each trained model a number of samples of the size of the test
data set, and we compare the proportion of samples that satisfy a given extreme
event to that in the test data set. We consider extreme events corresponding
to quantile values of 0.9 and 0.99. Table 3.7.2 synthesizes this analysis for the
StdVAE, UExtVAE and ParetoGAN. As illustrated, the training data set does not
include extreme events for the 0.99 quantiles. Interestingly, the UExtVAE samples
such extreme events with the same order of magnitude of occurrence as in the test
data set. For instance, the proportion of samples that satisfy A(0.99)

26 and A(0.99)
27

is consistent with that observed in the test data set, respectively 0.2% and 0.18%
against 0.4% and 0.25%. By contrast, the StdVAE cannot generalize beyond
the training data set. The StdVAE truly generates events above 0.9 quantiles.
However, it does not generate any element in A(0.99)

26 and A(0.99)
27 .

ParetoGAN generates samples that satisfy A
(0.99)
25 , A(0.99)

26 and A
(0.99)
27 . Al-

though satisfactory, the sampled proportions are further from true proportions
than for our approach. Moreover, by repeating the experiment, it seems that for
p ≥ 0.9, we always have A(p)

25 = A
(p)
26 . This is probably due to the fact that the

extremes are generated on a specific axis, as stated in Proposition 3.4.4. Note
that the tail index of the radius of the discharge data set is not known a priori.
Asadi et al. (2015) reports an estimate of 3.5 ± 0.5 considering only the summer
months. In our case, the tail index of the trained UExtVAE is of 4.5. It is slightly
higher than the value found by Asadi et al. (2015), which means a less heavy-tail
distribution. Indeed, half of the annual maxima occurs in June, July or August,
typically due to heavy summer rain events. Thus, we expect the summer months
to depict heavier tails than the all-season data set, which is consistent with our
experiments.

3.8 . Conclusion
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Table 3.7.2: Evaluation of the generation of multivariate extremes forthe Danube river data set: we report the proportion (in %) of elements
satisfying A

(p)
j (Equation 3.23) in the training and test data sets as wellas data sets sampled from the trained StdVAE, UExtVAE and ParetoGANwith the same size as the test data set. We report this analysis for both

p = 0.9 and p = 0.99.
p = 0.9Train Test UExtVAE StdVAE ParetoGAN

A
(p)
25 5.9 6.6 5.0 3.8 5.5

A
(p)
26 4.9 6.0 4.6 3.3 5.5

A
(p)
27 3.8 5.1 4.1 2.5 4.4

q = 0.99Train Test UExtVAE StdVAE ParetoGAN
A

(p)
25 0.0 0.48 0.22 0.01 0.13

A
(p)
26 0.0 0.4 0.2 0.0 0.13

A
(p)
27 0.0 0.25 0.18 0.0 0.09

This study bridges VAE and EVT to address the generative modeling of
multivariate extremes. Following the concept of multivariate regular variation, we
propose a polar decomposition and combine a generative model of heavy-tailed
radii with a generative model on the sphere conditionally to the radius. Doing so,
we explicitly address the dependence between the variables at each radius, and in
particular the angular measure. Experiments performed on synthetic and real data
support the relevance of our approach compared with vanilla VAE schemes and
GANs tailored for extremes. In particular, we illustrate the ability to consistently
sample extreme regions that have been never observed during the training stage.

Our contribution naturally advocates for future work, especially for extensions
to multivariate extremes in time and space-time processes (Basrak & Segers, 2009;
Liu et al., 2012) as well as to VAE for conditional generation problems (Zheng et al.,
2019; Grooms, 2021).
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Key points of Lafon et al. (2023b)

▶ We propose a stochastic sampler to generate new samples of an un-
known multivariate distribution given examples. Our simulator pro-
vides samples outside of the training data and allows to extrapolate.

▶ Our model extends the class of ML generative model called VAE.

▶ Our approach integrates the multivariate EVT within the VAE con-
text. It makes the link between VAE and multivariate regular varia-
tion.

▶ The tail index of the unknown distribution as well as the angular
measure are learned from data without threshold selection.
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APPENDIX

3.A . Data sets

This appendix provides details on the two data sets used in the experiments.
One data set is synthetic (3.A.1) and the other is a true data set compiling flow
measurements (3.A.2).

3.A.1 . Synthesized data sets
We sample in a space of dimension 5. We consider a sampling setting for the

radius distribution denoted R1 such that

R1 ∼ 2U× InvΓ(α1 = 1.5 ; β = 0.6),

with U uniform on [0, 1]. From Breiman’s Lemma, the radius distribution is
heavy-tailed with tail index α1.

The detailed expression of the conditional angular distribution Θ1 | R1 = r is
given by

Θ1 | R1 = r ∼ Diri (α1(r), α1(r), α2(r), α2(r), α2(r)) , (3.24)
where α1(r) = 3 (2−min(1, 1/2r)), α2(r) = 3 (1 +min(1, 1/2r)), and Diri

stands for Dirichlet distribution (see Appendix 3.C).
Figure 3.A.1 gives the empirical pdf of R1 based on 1000 samples.
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Figure 3.A.1: Empirical densities of synthesized radii R1 based on 1000samples.
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Figure 3.A.2: Topographicmap of the upper Danube basin with 31 avail-able gauging stations. A data set of 50 years of daily measurements isconsidered (from 1960 to 2010). our training set consists of all measure-ments for the 5 stations indicated by red triangles
3.A.2 . Danube river network discharge measurements

The upper Danube basin is an European river network which drainage basin
covers a large part of Austria, Switzerland and of the south of Germany. Figure
3.A.2 shows the topography of the Danube basin as well as the locations of the
31 stations at which daily measurements of river discharge are available for a 50
years time window. Danube river network data set is available from the Bavarian
Environmental Agency at http://www.gkd.bayern.de. As river discharges usu-
ally exhibit heavy-tailed distribution, this data set have been extensively studied in
the community of multivariate extremes (see, e.g. Mhalla et al., 2020; Asadi et al.,
2015). We consider measurements from a subset of 5 stations (red triangles in
Figure 3.A.2) from which we want to sample.

3.B . Additional notions

We give in this appendix further explanations on some notions discussed in
this article, and sometimes necessary for the development of the proofs (Appendix
3.G).
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3.B. ADDITIONAL NOTIONS

3.B.1 . Lipschitz continuity
Definition 3.B.1. Let (E, dE) and (F, dF) be two metric spaces with dE and dFthe respective metric on sets E and F. A function f : E → F is called Lipschitz
continuous if there exists a real constant k ⩾ 0 such that, for all x1 and x2 in
E,

dF (f (x1) , f (x2)) ⩽ kdE (x1, x2) . (3.25)
Remark 3.B.2. If E and F are normed vector spaces with respective norm ∥.∥Eand ∥.∥F, then f Lipschitz continuous implies that there exists k > 0 such that

dF (f(x), f (0E)) ⩽ kdE (x,0E) .

Consequently, ∥f(x)∥F ⩽ k∥x∥E + ∥f(0E)∥F.
3.B.2 . Weak convergence of measures

Definition 3.B.3. Let E be a metric space and (µn)n∈N be a sequence of
measures, then µn converges weakly to a measure µ as n → ∞, if, for any
f : E −→ R real-valued bounded function,

lim
n→∞

∫
E
fdµn =

∫
E
fdµ.

3.B.3 . Equivalent definition of multivariate regular variation
The following definition of multivariate regularly varying vector is equivalent

to Definition 3.3.5.

Definition 3.B.4. A random vector X has multivariate regular variation if
there exists a function b→ ∞ and a Radon measure µX called the limit mea-
sure such that

lim
t→∞

tP

(
X

b(t)
∈ •
)

v−→ µX(•). (3.26)
Remark 3.B.5. The angular measure SX defined in Equation (3.6) is related
to the limit measure, for any measurable space of the simplex A, and any
measurable space I of R∗

+, by
µX ◦ T−1(I,A) = να(I)× SX(A),

where T is the polar transform define for any vector x by T (x) = (∥x∥ , x
∥x∥

),
and να a measure on R∗

+ such that να([t,∞]) = ct−α, with c and α strictly
positive constants.
The angular measure can be considered as the limit measure projected on
the simplex.
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3.C . Dirichlet parameterization of the likelihood

We start by giving a definition of the Dirichlet distribution.

Definition 3.C.1. Let (ai)mi=1 be strictly positive constants andm ≥ 2. A Dirich-
let distribution with parameters (ai)mi=1 has a pdf defined by

fDiri(x ; (ai)
m
i=1) =

1

B ((ai)mi=1)

m∏
i=1

xai−1
i ,

with x ∈ Rm s.t m∑
i=1

xi = 1,

where B is the multivariate beta distribution.
In particular, it means that the support of a Dirichlet distribution with

parameters (ai)
m
i=1 is the (m− 1)-dimensional simplex.

To use a Dirichlet parameterization of the likelihood, we change Equation (3.19)
into

pν(s | zang, r) ∼ fDiri(s ; aν(zang, r)),

where aν outputs in (R+))
m.

Notice that Condition 3.5.6 must be modified, resulting in the following Condition.

Condition 3.C.2. aν is such that there exists a z-varying function a∞ which
verifies for each zang

lim
r→+∞

aν(zang, r) = a∞(zang).

Again, aν(zang, r) = hν(zang,
1

1+r ), with hν Lipschitz continuous and
a∞(zang) = hν(zang, 0). Similar to Remark 3.5.7, it is then simple to sample
from the angular measure.

3.D . Tail index estimation

Estimating the tail index of an univariate distribution from samples is not an
easy task. To see this, we drew the Hill plot (see e.g Resnick, 2007, Section 4.4),
(Xie, 2017, Section 2.2) for R1 in Figure 3.D.1. The Hill plot is a common tool
in the extreme value community for estimating the tail index of a distribution. If
the graph is approximately constant from a certain order statistics, this constant
is an estimator of the inverse of the tail index. We note that the Hill plot is
of little use in this case because the graph does not exhibit clearly a plateau.
Other methods are also broadly used to estimate the tail index within the extreme
value community such as maximum likelihood estimation. It involves fitting a
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Figure 3.D.1: Hill plot for the 1000R1 samples of train and validation set(blue curve), the dashed line indicates the true value of the tail index,i.e. 1.5.
GP distribution (Equation 3.4) to the subset of data above a certain threshold
(see Coles et al., 2001, for details). For example, on train data set of R1, the
maximum likelihood estimation gives an estimation of 1.28 for the tail index when
the threshold corresponds to a 0.8-quantile while it becomes 1.67 for a 0.9-quantile.

3.E . Criteria

In this section, we present detailed explanations of the different criteria we use
to evaluate the approaches compared in the experiments (Section 3.7). They aim
to compare the radius distributions (3.E.1), in particular for the tail, the overall
distributions in the multivariate space (3.E.2), and to provide useful statistics on
the angular distributions (3.E.3).

3.E.1 . KL divergence upon threshold
Let us assume that we have n samples Rtrue = (R1

true, R
2
true, ..., R

n
true) from

the true radius distribution and m samples Rgen = (R1
gen, R

2
gen, ..., R

m
gen) from a

generative approach. Let denote ˜̄Ftrue, ˜̄Fgen empirical estimators of the tail func-
tions chosen to be non-zero above the upper observed value. Then the empirical
estimate K̂u(Rtrue,Rgen) of the KL divergence beyond a threshold u is given by

K̂u(Rtrue,Rgen) = −1− 1
Nn

∑m
i=1 log

(
˜̄Fgen(max(Ri

gen,u))
˜̄Fgen(u)

)
−1− 1

Mm

∑n
i=1 log

(
˜̄Ftrue(max(Ri

true,u))
˜̄Ftrue(u)

)
, (3.27)

where Nn and Mm are the number of samples above threshold u respectively
among Rtrue and Rgen.

3.E.2 . Wasserstein distance
Assume we have n samples X = (x1,x2, ...,xn) from a random vector X and

m samples Y = (y1,y2, ...,yn) from another random vector with same dimension.
Then, the Wasserstein distance we used is defined by

W (X,Y) =

 min
γ∈Rn×m

+

∑
i,j

γi,j∥xi − yj∥2

 1
2

, (3.28)
with nγ1 = 1 ; mγT1 = 1,
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with 1 a vector filled with ones, and ∥.∥2 the euclidean distance. The rescaled
version of the Wasserstein distance beyond a threshold r is then given by

Wr(X,Y) =
W (Xr,Yr)

r2
, (3.29)

where Xr (respectively Yr) consists of the elements of X (respectively Y) of norm
greater than r.

3.E.3 . Threshold selection
Let us consider X a random vector of Rd with a polar decomposition (R,Θ).

(X1,X2, · · · ,XN) a sequence of observed vector of X, with corresponding polar
coordinates Ri and Θi. Given a decreasing sequence of candidate radius threshold
rk, we want to find the smallest such as R and Θ can be considered independent.
To assess independence between radius and angular distributions, Wan & Davis
(2019) relies on the following hypothesis testing framework:

• H0: R/rk and Θ are independent given R > rk,

• H1: R/rk and Θ are not independent given R > rk.

Considering this, the authors propose a p-value for computing H0 with respect
to H1, such that the p-value follows a uniform distribution if H0 is true and
is close to 0 when H1 is true. Thus, for a given threshold, when we average
the p-values, we should find about 0.5 if H0 is true and closer to 0 when H1 is true.

To compute the p-values, the authors rely on the notion of empirical distance
covariance (Székely et al., 2007).

Definition 3.E.1. The empirical covariance between N observations {Xi}Ni=1of a random vector X and N observations {Yi}Ni=1 of a random vector Y is
given by
TN (X,Y) =

1

N2

N∑
i,j=1

∥Xi −Xj∥2∥Yi −Yj∥2 +
1

N4

N∑
i,j,k,l=1

∥Xi −Xj∥2∥Yk −Yl∥2

− 2

N3

N∑
i,j,k=1

∥Xi −Xj∥2∥Yi −Yk∥2,

with ∥.∥2 the euclidean distance. Notice that X and Y have not necessarily
equal sizes.

For a fixed threshold rk, we consider the data sets

(Rdep,Θdep) = {(Ri,Θi s.t. Ri > rk},
Rindep = {Ri s.t. Ri > rk},
Θindep = {Θi s.t. Ri > rk}.
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We randomly choose a subsample of (Rdep,Θdep) of size nk we denote
(Rnk

dep,Θ
nk
dep). We can then compute Tnk

= Tnk
(Rnk

dep,Θ
nk
dep), which is the

empirical covariance between the radii and angles within the subsample.

To compute a p-value of Tn,k under the assumption that the conditional empir-
ical distribution is a product of the conditional marginals, we take a large number
L of subsamples of size nk of Rindep on the one hand, and of Θindep on the other
hand, respectively denoted Rnk,l

indep and Θnk,l
indep for 1 ≤ l ≤ L. We can compute the

empirical covariances {T̃ l
n,k}Ll=1 = Tnk

(Rnk,l
indep,Θ

nk,l
indep) between radii and angles.

The p-value pvk of Tn,k is the empirical value of Tn,k relative the {T̃ l
n,k}Ll=1, i.e.

pvk =
1

L

L∑
i=1

1R+(Tnk
− T̃ l

n,k),

with 1R+ the indicator function of the set of positive real numbers.

This process is repeated m times, with different subsamples of (Rdep,Θdep)

leading to m estimates of pvk. The considered p-value is then the mean of these
estimates. If the radius and angular distribution are independent, the p-value
should be around 0.5, otherwise it is closer to 0.

3.F . Implicit reparameterization

When it comes to optimization of the cost of Equation (3.2), explicit reparame-
terization (see Equation 3.3) is not feasible for the proposed framework introduced
in Section 3.5.2. Leveraging the work of Figurnov et al. (2018), we use an im-
plicit reparameterization. It consists in differentiating the Monte Carlo estimator
of Eqϕ(Z|r(i))[f(Z)] using

∇ϕEqϕ(Z|r(i))[f(Z)] = −Eqϕ(Z|r(i))[∇zf(z)∇ϕFqϕ(z)(∇zFqϕ(z))
−1],

with Fqϕ the cumulative distribution function of qϕ. An implicit reparameterization
of Gamma distribution, as well as inverse Gamma and many others, is availalble
as a Tensorflow package named TensorflowProbability.3

3.G . Proofs

3Details could be found at https://www.tensorflow.org/probability
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CHAPTER 3. A VAE APPROACH TO SAMPLE MULTIVARIATE EXTREMES

3.G.1 . Proof of Proposition 3.4.2
Proof. In a standard parameterization, we have

Z ∼ N (0, In),
X | [Z = z] ∼ N

(
µθ(z), σθ(z)

2
)
,

according to Example 3.3.1.
The survival function ofX is

P (X > u) =

∫
z
P (X > u | Z = z)p(z)dz

=

∫
z

1

(2π)
n
2

(∫ +∞

u

1√
2σθ(z)2

exp

(
−(x− µθ(z))

2

σθ(z)2

)
dx

)
exp(−zTz)dz

=

∫
z

1

(2π)
n
2

erfc

(
u− µθ(z)

σθ(z)

)
exp(−zTz)dz,

where erfc is the complementary error function defined for y ∈ R by erfc(y) =
1− erf(y) with

erf(y) =
2√
π

∫ y

0
e−t2dt.

Let Ω(u) = {z ∈ Rn s.t. u − µθ(z) > 0). We can write the survival function of
X this way:

P (X > u) =

∫
z∈Ω(u)

1

(2π)
n
2

erfc

(
u− µθ(z)

σθ(z)

)
exp(−zTz)dz

+

∫
z∈Ω(u)

1

(2π)
n
2

erfc

(
u− µθ(z)

σθ(z)

)
exp(−zTz)dz,

= f1(u) + f2(u).

We provide upper bounds for f1 and f2. Notice first that f2(u) ≤ P (z ∈ Ω(u)).
As µθ is Lipschitz continuous, there exists constants k > 0 and b ∈ R such that
µθ(z) ≤ k∥z∥+ b (see Remark 3.B.2).
It implies that, for u > b,

f2(u) ≤ P

(
∥z∥ ≥ u− b

k

)
≤ 1

2
erfc

(
u− b

k

)
≤ exp

(
−
(
u− b

k

)2
)
. (3.30)
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where we have used the inequality (Chiani et al., 2003)
erfc(y) ≤ e−y2 , for y > 0. (3.31)

Equation (3.30) is the upper bound of f2 we will use.
Concerning f1, we use again inequality (3.31) to provide

f1(u) ⩽
∫
z∈Ω(u)

exp

(
−
(
u− µθ(z)

σθ(z)

)2
)
p(z)dz.

As σθ is Lipschitz continuous, there exists constants k′ > 0 and b′ ∈ R such
that σθ(z) ≤ k′∥z∥+ b′. Then, we can state that

f1(u) ⩽
∫
z∈Ω(u)

exp

(
−
(
u− µθ(z)

k′∥z∥+ b′

)2
)
p(z).

For any a > 0, we define the function
gu(z) = ua exp

(
−
(
u− µθ(z)

k′∥z∥+ b

)2
)
.

The following holds:
lim

u→+∞
gu(z) = 0.

Additionally, gu(z) is maximal with respect to u when u = u∗(z) with
u∗(z) =

µθ(z)±
√
µθ(z)2 + 2a (k′∥z∥+ b′)2)

2
.

Then, there exists k′′ > 0 and b′′ ∈ R such that
|gu(z)p(z)| ⩽ |u∗(z)p(z)| ⩽

(
k′′∥z∥+ b′′

)
p(z).

By dominated convergence theorem, we can state that
lim

u→+∞
uaf1(u) = 0. (3.32)

From Equations (3.30) and (3.32), and consideration of Remark 3.3.3, we can
conclude thatX is light-tailed.
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3.G.2 . Proof of Proposition 3.4.4
Proof. In this proof we will extensively use the limit measure of multivariate
regularly varying vector as defined in Definition 3.B.4. Remind from Remark
3.B.5 that the angular measure defined in Equation (3.6) is nothing else than
the limit measure projected on the simplex. Consequently, proving that the
angular measure is concentrated on some vectors of the simplex equates to
prove that the limit measure is concentrated on some axes.

The proof proceeds by a series of step. First, we note that the prior Z
has a limit measure located on the basis axes. Then, we prove that the limit
measure of some transformations of a random vector with limit measure
concentrated on some axes, have still limit measure concentrated on axes.
The studied transformations are: multiplication by a matrix, addition of
a bias, mapping with a ReLU unit. By applying iteratively this steps, we
prove that X has a limit measure concentrated on axes, or equivalently an
angular measure concentrated on vectors, for any ReLU neural network f .
Additionally, it appears that the number of axes (or vectors) is less than the
dimension n of the input space.
First the limit measure µZ of Z is concentrated on the basis axes. To be more
explicit,

µZ (Rn\ ∪n
i=1 {tei, t > 0}) = 0

with, for i = 1, · · · , n ei = (0, · · · , 1, · · · , 0).
A proof is given in Resnick (2007), Section 6.5. This proof exploits the fact that
the marginals of Z are i.i.d.
The following lemmas give, for some operations on a multivariate vector, the
resulting transformation of its limit measure.
Lemma 3.G.1. If the d-dimensional random vector Y has multivariate regular
variation with limit measure concentrated on some axes, andW is a d×nmatrix,
then (WY)+ has regular variation and its limit measure is concentrated on some
axes.

Proof. In this proof, we define, for any Borel set A, the inverse set in the non-
negative orthantW−1(A) = {x ∈ (R+)n, Wx ∈ A}.

lim
t→∞

tP

(
(WY)+
b(t)

∈ •
)

= lim
t→∞

tP

(
Y

b(t)
∈ W−1(•)

)
= µY ◦W−1(•)
= µWY(•).

(WY)+ has regular variation.
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Moreover if the limit measure of Y is concentrated on n′ ≤ n axes⋃n′

i=1{tvi, t > 0}, then for any measurable space A,
µWY(A) ̸= 0 =⇒ µY ◦W−1(A) ̸= 0

=⇒ W−1(A) ∩

(
n′⋃
i=1

{tvi, t > 0}

)
̸= ∅

=⇒ A ∩

(
n′⋃
i=1

{tWvi, t > 0}

)
̸= ∅.

Consequently, the limit measure of WY is concentrated on⋃n′

i=1{t(Wvi)+, t > 0}. Notice that the limit measure of WY is then
concentrated on a number of axes less or equal to n′.

Lemma 3.G.2. If the d-dimensional random vector Y has multivariate regular
variation with limit measure concentrated on axes, and b is am-dimensional vec-
tor, then (Y + b)+ has multivariate regular variation and its limit measure is
concentrated on axes.

Proof.

lim
t→∞

tP

(
(Y + b)+

b(t)
∈ •
)

= lim
t→∞

tP

(
Y

b(t)
∈ •
)

v−→ µY(•).

From Lemma 3.G.1 and Lemma 3.G.2 we get that for any random vector
with multivariate regular variation and limit measure concentrated on some
axes, any matrixW and bias b, (WY+b)+ has multivariate regular variation
with limit measure concentrated on some axes. This transformation corre-
sponds to a layer of a ReLU neural network. Applying iteratively this transfor-
mation to the input random vector Z, we obtain thatX = f(Z) has multivari-
ate regular variation with limit measure concentrated on axes, or equivalently
angular measure concentrated on some vectors of the simplex. Additionally,
the number of axes (or vectors) is less than n.
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3.G.3 . Proof of Proposition 3.5.3
Proof. Let us consider A an exponential distribution with scale parameter c
and Zrad an inverse-gamma distribution with parameters (α, β). The cumula-
tive distribution function of R is given by

P (R ≤ t) =

∫ +∞

0
P (A ≤ z)× t

z2
fInvΓ

(
t

z
; α, β

)
dz,

= 1− βα

tαΓ(α)

∫ +∞

0
zα−1e−

z
c e−

βz
t ,

= 1− βα

tα

(
1

c
+
β

t

)−α

,

= 1−
(
1 +

t

βc

)−α

,

= 1− H̄σ,ξ(t),

with σ = βc
α and ξ = 1

α . Consequently,R follows a GP distribution. Notice that
we use the change of variable u = z

(
1
c +

β
t

) from the second to the third line
of the above equations.

3.G.4 . Proof of Proposition 3.5.5
Proof. Let α1, α2, β1 and β2 strictly positive constants. The following holds.
DKL (fInvΓ(z;α1, β1) |InvΓ (z;α2, β2)) = Ez∼InvΓ(α1,β1)

[
log

(
fInvΓ(z;α1, β1)

fInvΓ(z;α2, β2)

)]
= Ey∼Γ(α1,β1)

[
log

(
fInvΓ(

1
y ;α1, β1)

fInvΓ(
1
y ;α2, β2)

)]

= Ey∼Γ(α1,β1)

[
log

(
fΓ(y;α1, β1)

fΓ(y;α2, β2)

)]
= DKL (fΓ(z;α1, β1) |InvΓ (z;α2, β2)) .(3.33)

Equation (3.18) holds from Equation (3.33) and the following result (?):
DKL (fΓ(z;α1, β1) |Γ (z;α2, β2)) = (α1 − α2)ψ(α1)− log

Γ(α1)

Γ(α2)

+α log
β1
β2

+ α1
β2 − β1
β1

.
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3.G.5 . Proof of Proposition 3.5.4
Proof. The pdf of R is given by

p(r) =

∫ +∞

0
pθ(r | zrad)pα(zrad)dzrad,

=

∫ +∞

0
f(r, zrad)dzrad,

with
f(r, zrad) = fΓ (r ; αθ(zrad), βθ(zrad)) fInvΓ(zrad ; α, 1),

=
raθ−1

Γ(α)Γ(aθ)
z
−(α+1)
rad βθ(z)

aθe−rβθ(z)− 1
z .

From Equations (3.12) and (3.13), we can state the existence of m andM two
strictly positive constants such that, for any z,

m

z
≤ βθ(z) ≤

M

z
.

Consequently,
f1(r, zrad) ≤ f(r, zrad) ≤ f2(r, zrad)

with
f1(r, zrad) =

raθ−1

Γ(α)Γ(aθ)
z
−(aθ+α+1)
rad maθe

−r M
zrad

− 1
z ,

f2(r, zrad) =
raθ−1

Γ(α)Γ(aθ)
z
−(aθ+α+1)
rad Maθe

−r m
zrad

− 1
z .

We can obtain analytical expressions of ∫ +∞
0 f1(r, zrad)dzrad and∫ +∞

0 f2(r, zrad)dzrad,∫ +∞

0
f1(r, zrad)dzrad =

raθ−1maθ

Γ(α)Γ(aθ)

∫ +∞

0
z
−(aθ+α+1)
rad e

−r M
zrad

− 1
zrad dzrad,

=
raθ−1maθ

Γ(α)Γ(aθ)
Γ(aθ + α)(1 + rM)−aθ−α,

where we used the change of variables u = 1+rM
zrad

. Using same arguments,
we also obtain∫ +∞

0
f2(r, zrad)dzrad =

raθ−1Maθ

Γ(α)Γ(aθ)
Γ(aθ + α)(1 + rm)−aθ−α.

We have the asymptotic results when r → ∞,∫ +∞

0
f1(r, zrad)dzrad ∝ r−α−1,∫ +∞

0
f2(r, zrad)dzrad ∝ r−α−1.
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Consequently, rα+1p(r) is bounded away from 0 when r → ∞. Thus,
rα+1P (R > r) is also bounded away from 0 when r → ∞. The only possi-
ble value of the tail index of regular variation of the survival function of R is
α.

151





CHAPTER 4

SOME DIRECTIONS FOR
FUTURE WORK

During this thesis, we have mainly leveraged three different fields of expertise,
namely EVT, DA and ML, with a special applicative focus on geosciences. We de-
veloped and studied methodological links between these themes. A common thread
was the use of a hierarchical formulation and the maximization of an ELBO cost
derived from inference. This chapter describes the main perspective we imagine
for future works.

4.1 . Another generative model for extremes: the score-based
generative model

In Chapter 3 a generative VAE model for sampling heavy-tailed distributions
was presented. Other models, such as GANs or NFs (see Section 3.2), were
also adapted for this purpose. Newcomers to the family of generative models in
the ML community are score-based generative models (see, e.g. Song & Ermon,
2019; Ho et al., 2020; Song et al., 2020). Their growing popularity is due to
their outstanding results in a number of standard image-generation tests (Song
& Ermon, 2019). Some geoscience-related applications of diffusion models are
now emerging (Bischoff & Deck, 2023), and their ability to generate heavy-tailed
distributions may be questioned in the same way as it has been for competing
generative approaches.

We briefly present the framework of Sohl-Dickstein et al. (2015);
Ho et al. (2020). A training data set of i.i.d. samples of a distri-
bution pdata(x) is considered, as well as a sequence of positive noise
scales (βi)i=1:N such that for each i, 0 < βi < 1. Given x0 an ele-
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4.2. BRIDGING DATA ASSIMILATION AND EXTREME VALUE THEORYFROM A THEORETICAL GROUNDING
ment of the training data set, a Markov chain {x0,x1, · · · ,xN} is con-
structed such that p (xi | xi−1) = N

(
xi;

√
1− βixi−1, βiI

)
, and therefore

p (xi | x0) = N
(
xi;

√
αix0, (1− αi) I

)
, where αi =

∏i
j=1 (1− βj). Conse-

quently, we can write p(xi) =
∫
p (xi | x) pdata (x)dx. The noise scales are

prescribed such that xN is approximately distributed according to N (0, I).

Knowing the reverse Markov chain p (xi−1 | xi) would allow to sample from
pdata (x) since it would suffice to sample first from xN and then recurrently
sample the reverse Markov chain. However the exact reverse Markov chain
is intractable and is approximated through the Markov chain qθ (xi−1 | xi) =

N
(
xi−1;

1√
1−βi

(xi + βisθ (xi, i)) , βiI
)
, where sθ is referred to as the score. sθ is

a NN with parameters θ. Using ELBO, one can show that the optimal parameters
θ∗ verify

θ∗ = argmin
θ

N∑
i=1

(1− αi)Epdata (x)Ep(xi|x)

[
∥sθ(xi, i)−∇xi log pαi(xi | x)∥22

]
(4.1)

After performing the optimization described in Equation (4.1), samples can be
generated by starting from xN ∼ N (0, I) and following the estimated reverse
Markov chain qθ∗ (xi−1 | xi).

Investigating the tail distribution generated by such an approach would be
a natural extension of our work. A first result would establish that only light-
tailed distributions can be learned if sθ is Lipschitz continuous, which is a mild
assumption for a NN operator (see Proposition 3.4.1). To allow this approach to
sample heavy-tailed distributions, one possible avenue would be to parameterize qθ
by a heavy-tailed Markov chain.

4.2 . Bridging data assimilation and extreme value theory from
a theoretical grounding

Consider (Xt)t∈N and (Y t)t∈N two discrete-time random processes, respec-
tively Rdx-valued and Rdy -valued. (Xt)t∈N is a latent Markov process, while
(Y t)t∈N is the observation process whose realizations are available. Both processes
are characterized by the general SSM described in System (1.31) with dynamical
model M and observation model H, ϵt and ηt the noise processes. In a DA prob-
lem, as previously described in Section 1.4, one often tries to infer the hidden
state given certain observations or the posterior distribution of the hidden state
given certain observations. In Chapter 2, we presentes our approach which aims
at approximating the smoothing distributions by Gaussian distributions. However,
we mentioned in Section 2.6 that Gaussian parameterization does not provide sat-
isfactory results for predicting high quantiles of the estimated distribution. Thus,
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an analysis of tail distribution in general SSM would be of interest. A possible
pathway would be to establish relations between the distributions of the extremes
of the observed and hidden processes, focusing on heavy-tailed distributions. In
particular, the following questions seem relevant to us:

• What is the relationship between the tails of (Xt)t∈N and (Y t)t∈N?

• If we assume that (Xt)t∈N is a heavy-tailed stationary process, what condi-
tions must satisfy M?

• Which results can we exhibit for conditional distributions of the form
P (Xt ∈ • | ||Y 0|| > u) with u a high threshold? At which condition
on H?

In this context, the extension of multivariate regular variation to time series
may help. Following Kulik & Soulier (2020), (Xt)t∈N is said to be jointly regularly
varying if for each finite subset S of N, (Xt)t∈S is multivariate regularly varying.

The asymptotic properties of extremes in univariate Markov chains have been
extensively studied (Smith, 1992; Perfekt, 1994) and have shown that excursions
of a Markov chain beyond a high threshold following an extreme event behave like
a multiplicative random walk. Indicators such as the extremal index have also been
developed to characterize the temporal persistence of extremes (Chavez-Demoulin
& Davison, 2012). Asymptotically, therefore, extremes of a stationary sequence
occur in clusters of a mean size which is the inverse of the extremal index. The
extension of asymptotic properties to multivariate Markov chains has also been
studied (Perfekt, 1997; Basrak & Segers, 2009; Janssen & Segers, 2014). These
works mainly focus on the limit law when x → ∞ of Xt

x (respectively Xt
||X0||)

given ||X0|| > x, which is called the tail process (respectively spectral process).
Special cases of stationary Markov chains have also been widely studied in the
literature such as the so-called GARCH (generalized autoregressive conditionally
heteroskedastic) models (Basrak et al., 2002; Gomes et al., 2004).

To the best of our knowledge, the study of extremes in general SSM has not
been the subject of any particular treatment in the DA community so far. It
would be however relevant to study general SSMs under this prism since heavy-
tailed distributions are found throughout many naturally occurring phenomena
(Blanchard et al., 2011), which are in turn considered as latent Markov chains in
a classical DA formalism.
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