
HAL Id: tel-04482091
https://theses.hal.science/tel-04482091

Submitted on 28 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability of welded I-section steel members
Maxime Lebastard

To cite this version:
Maxime Lebastard. Stability of welded I-section steel members. Civil Engineering. INSA de Rennes,
2022. English. �NNT : 2022ISAR0015�. �tel-04482091�

https://theses.hal.science/tel-04482091
https://hal.archives-ouvertes.fr


STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 1 - 

THESE DE DOCTORAT DE 

 
 

 

L’INSTITUT NATIONAL DES SCIENCES  

APPLIQUEES RENNES  

 

 
ECOLE DOCTORALE N° 602  

Sciences pour l'Ingénieur  

Spécialité : Génie civil 

 
Par 

Maxime LEBASTARD 

 

 

Stability of welded I-section steel members 
 
 
 
Thèse présentée et soutenue à l’INSA de Rennes, le 29/11/2022 
Unité de recherche : Laboratoire de Génie Civil et Génie Mécanique 
Thèse N° : 22ISAR 30 / D22 - 30 

 

  

Rapporteurs avant soutenance : 
 
Prof. Nicolas BOISSONNADE Université Laval (Canada) 
Prof. Jean-Pierre JASPART Université de Liège (Belgique) 

 
Composition du Jury :  
 

Président  Prof. Abdelhamid BOUCHAIR  Université Clermont Auvergne (France) 
Examinateurs   Prof. Luis SIMOES DA SILVA  Universidade de Coimbra (Portugal) 

Dr. Laurence DAVAINE   Ingérop (France) 
Dir. de thèse  Prof. Mohammed HJIAJ  INSA de Rennes 
Co-dir. de thèse Associate Prof. Maël COUCHAUX INSA de Rennes 
 

Invité 
Alain BUREAU  Chef du Service Recherche Construction Métallique – CTICM (France) 



 

- 2 - 

  



STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 3 - 

 

 

Intitulé de la thèse :  

Stability of welded I-section steel members. 

- 

Stabilité des Profilés en acier Reconstitués en I par Soudage 

 

 

 

Maxime LEBASTARD 

 

 

 

 

 

 

 

 

 

 

 

 

Document protégé par les droits d’auteur 

 



 

- 4 - 

 

  



STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 5 - 

Abstract 

Welded I-section members are of common use in steel structures where they are employed as columns 

and beams. Consequently, such members are subjected to compression force and/or bending moment 

and may therefore fail owing to out-of-plane buckling. 

The present work is organized in two Parts. Elastic buckling is investigated in Part I where lateral-

torsional buckling (LTB) with or without web distortion is studied. Analytical expressions are 

recommended in Chapter II to compute the elastic critical bending moments for both buckling modes 

based on existing formulations. Chapter III focuses on the elastic LTB of beams with warping restraints 

at both ends. The derivation of an analytical model yields propositions for the critical bending moment. 

Elasto-plastic buckling is studied in Part II. After a review of design rules in Chapter IV, the distribution 

of residual stresses in welded members is investigated in Chapter V. An influence of the flange 

fabrication process is noticed and a new model is proposed for members with flame-cut flanges. This 

model is based on the results of an experimental programme that also included four LTB tests described 

in Chapter VI. Test results are used to validate the numerical model developed in Chapter VII. Numerical 

results highlighting a clear influence of the flange fabrication process on the buckling resistance, a 

parametric study is led. The results are used to propose adaptations of the Eurocode 3 rules for welded 

members with flame-cut flanges in Chapter VIII. 

 

Keywords: Welded members, Elastic buckling, Residual stresses, Buckling resistance. 
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Résumé étendu 

Grâce à la liberté de conception qu’ils offrent théoriquement, les Profilés en acier Reconstitués par 

Soudage (PRS) sont couramment employés pour la construction de portiques de bâtiments. En effet, 

contrairement aux profilés laminés à chaud, les PRS permettent une optimisation de la matière, le choix 

des dimensions des sections transversales et de leurs éventuelles variations étant libres. 

Utilisés en tant que poteaux ou bien traverses de portique, ces éléments sont généralement soumis à des 

efforts de compression uniaxiale et/ou de flexion dans leur plan de forte inertie. Les composants 

structuraux de bâtiments métalliques pouvant être relativement élancés, leur ruine résulte généralement 

d’instabilités telles que le flambement (cas des poteaux) ou le déversement (poutres et poteaux). Lors 

de la conception de ces éléments comprimés et/ou fléchis, il convient alors de se prémunir contre tout 

risque d’instabilité en appliquant les prescriptions de la norme de calcul européenne, l’Eurocode 3 Partie 

1-1. 

Le calcul de la résistance élasto-plastique d’un PRS vis-à-vis du flambement et/ou du déversement Rb,Rd 

selon l’Eurocode 3 Partie 1-1 est basée sur les aspects suivants : 

 La détermination d’un effort critique d’instabilité élastique Rcr et 

 La prise en compte des imperfections inhérentes à la fabrication d’un PRS à travers un facteur 

d’imperfection α. 

L’objectif du présent travail portant sur la stabilité des PRS de bâtiments est d’améliorer la pratique 

actuelle concernant ces deux aspects comme décrit au Chapitre I. Par conséquent, la présente thèse est 

divisée en deux parties : la Partie I concerne les instabilités élastiques et la Partie II traite le cas des 

instabilités élasto-plastiques. 

En s’appuyant sur la méthode énergétique, les expressions des efforts critiques les plus courants sont 

rappelés au Chapitre II. Celles-ci concernent le flambement par flexion (voir Figure 1a)) suivant les 

deux directions principales, par torsion ou bien par flexion-torsion des poteaux, et le déversement des 

poutres (voir Figure 1b)). L’expression exacte de cette dernière charge critique est obtenue dans le cas 

simple d’une distribution uniforme des moments alors que d’autres distributions sont plus fréquemment 

rencontrées en pratique.  

  

a) Flambement latéral d’un poteau uniforme b) Déversement d’une poutre en fuseau 

Figure 1 : Modes d’instabilité élastique (déplacements totaux) 
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Des modèles analytiques existants permettant de déterminer le moment critique de déversement 

élastique d’une poutre à section mono-symétrique (symétrie par rapport au plan de flexion) sont alors 

présentés. Ils concernent différents cas de chargement : moments d’extrémités, charge(s) transversale(s) 

ponctuelle(s) ou répartie. Les prévisions de ces modèles sont comparées à des résultats de référence 

obtenus par l’intermédiaire d’analyses par éléments finis réalisés en utilisant des éléments de type 

poutre. De ces comparaisons résulte la recommandation d’un modèle analytique, principalement basé 

sur les propositions de l’Eurocode 9 Partie 1-1 qui s’appliquent à l’acier en utilisant les caractéristiques 

matériaux adéquates. 

Les instabilités élastiques des éléments uniformes comprimés et fléchis et/ou à inertie variable sont 

également évoquées. Du fait de la complexité des phénomènes, il est recommandé de procéder à un 

calcul par éléments finis, de type poutre (via le logiciel LTBeamN par exemple) ou coque. 

Alors que le déversement est caractérisé par le déplacement latéral et la rotation de torsion des sections 

transversales (voir Figure 2a)), la ruine de certaines poutres présentant des âmes très élancées et/ou de 

larges et épaisses semelles est causée par un déversement avec distorsion d’âme. Ce type d’instabilité 

est investigué dans le cas de poutres à section doublement symétrique et soumises à un moment constant, 

pour lesquelles l’âme se déforme en double courbure (voir Figure 2b)). Un état de l’art des expressions 

existantes de ce moment critique d’instabilité élastique est proposé. Parmi ces expressions, différentes 

approches sont adoptées : 

 L’utilisation de l’expression du moment critique (âme non déformée) avec des rigidités 

équivalentes pour la torsion, le gauchissement et éventuellement la flexion hors du plan de 

sollicitation ; 

 L’utilisation de l’expression du moment critique (âme indéformée) multipliée par un coefficient 

réducteur, en négligeant éventuellement l’inertie de torsion ; 

 L’utilisation d’une expression obtenue par la méthode énergétique basée sur des champs de 

déplacement et rotation adaptés. 

   

a) Âme non déformée b) Âme en double courbure c) Âme en simple courbure 

Figure 2 : Section transversale initiale et à la ruine d’une poutre ayant déversé 

Par comparaison à des résultats numériques obtenus en utilisant des éléments finis de type coque, les 

modèles analytiques résultant de la dernière approche offrent les meilleurs résultats. L’utilisation de 

rigidités équivalentes en torsion et gauchissement (seulement) peut également produire des résultats 

satisfaisants. L’un des modèles développés à partir de la méthode énergétique est exploité pour 

déterminer une limite quant à l’influence de la distorsion de l’âme sur le déversement, dans le cas d’un 

moment constant. 
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L’influence de la forme du diagramme de moment sur la distorsion d’âme est ensuite analysée. Alors 

que différents modèles analytiques existent pour déterminer le moment critique de déversement avec 

distorsion d’âme dans le cas d’un moment constant, un manque de propositions est noté pour d’autres 

diagrammes de moments. Les prédictions des modèles analytiques satisfaisants pour un moment 

constant sont étudiées pour un moment linéairement variable en faisant intervenir le coefficient de 

moment uniforme équivalent C1. La comparaison au calcul par éléments finis de type coque montre que 

ces modèles sont acceptables lorsque le ratio ψ entre moments d’extrémités est élevé. L’âme se déforme 

toujours en double courbure. Pour des valeurs plus faibles de ψ, l’âme se déforme en simple courbure 

(voir Figure 2c)) et aucun modèle analytique existant n’est satisfaisant. Ce problème très complexe 

requiert la détermination de champs de déplacement et de rotation adaptés pour appliquer la méthode 

énergétique et obtenir des expressions analytiques adéquates. Puisque de telles expressions font 

actuellement défaut, l’utilisation du calcul par éléments finis de type coque reste la meilleure option 

pour déterminer le moment critique de déversement d’une poutre dont l’âme est susceptible de se 

déformer. 

Le moment critique de déversement d’une poutre est généralement calculé en supposant des appuis à 

fourches à ses extrémités avec le gauchissement et la rotation hors plan libres. Néanmoins, la présence 

d’assemblages poteau-poutre ou de continuité de poutres peut induire un maintien significatif vis-à-vis 

du gauchissement. Cet effet est couramment négligé bien que son incidence sur le moment critique ne 

soit pas neutre. Ainsi, l’influence de maintiens vis-à-vis du gauchissement aux extrémités d’une poutre 

à section doublement symétrique sur son moment critique de déversement est étudiée (voir Figure 3) au 

Chapitre III. Des expressions existantes sont présentées mais se limitent généralement à un cas de 

chargement. Le modèle plus général de Piotrowski (2019) est présenté mais les expressions 

correspondantes sont lourdes à utiliser. Par conséquent, un modèle analytique est développé en utilisant 

la méthode énergétique basée sur des expressions du déplacement latéral et de la rotation de torsion 

adaptées faisant usage de fonctions trigonométriques. 

  

a) Platine d’extrémité b) Platine et raidisseurs 

Figure 3 : Assemblages poteau-poutre permettant un maintien vis-à-vis du gauchissement 

L’utilisation d’un unique terme pour les champs de déplacement de rotation est acceptable dans le cas 

d’un moment constant ou bien d’un chargement transversal ponctuel à mi-portée ou réparti le long de la 

poutre. Pour un diagramme des moments linéairement variable, les champs de déplacement et de rotation 

sont enrichis d’un second terme. Quel que soit le diagramme des moments, la raideur cw des maintiens 

au gauchissement est explicitement prise en compte dans les expressions de C1 et du coefficient de 
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gauchissement kw. L’expression de kw est unique quel que soit le chargement alors que C1 dépend 

également de la forme du diagramme des moments. 

Des expressions simplifiées sont également proposées pour C1 correspondant à la multiplication de : 

 Un facteur dépendant uniquement du diagramme des moments, par 

 Un facteur dépendant uniquement de la raideur des maintiens au gauchissement. 

Les prédictions du modèle analytique développé sont comparées aux résultats de simulations par 

éléments finis réalisés en utilisant des éléments finis de type poutre ou coque. La comparaison à ces 

résultats de référence permet de valider le modèle analytique développé comme le montre la Figure 4 

dans le cas d’un moment constant. Celle-ci expose un net gain du moment critique Mcr lorsque des 

maintiens au gauchissement sont pris en compte par rapport à sa valeur Mcr,0 qui les néglige. Lorsque le 

gauchissement est totalement bloqué, le moment critique peut être doublé par rapport au cas où il est 

supposé libre. 

 

Figure 4 : Augmentation du moment critique en fonction de la raideur des maintiens au gauchissement 

Pour compléter cette étude, une valeur limite de la raideur cw est développée à partir de laquelle le 

moment critique de déversement peut être déterminé en supposant le gauchissement totalement bloqué 

aux extrémités. La raideur de différentes configurations de maintiens au gauchissement communément 

mis en place est rappelée et celle d’un pied de poteau encastré en flexion est développée. La possibilité 

d’étendre le critère pour supposer le gauchissement totalement bloqué à une seule extrémité est étudié. 

Des résultats analytiques sont comparés à des résultats de référence obtenus numériquement en faisant 

intervenir des éléments finis de type poutre, validant une adaptation de ce critère. 

Comme suite à l’étude des instabilités élastiques, la seconde partie de ce travail porte sur les instabilités 

élasto-plastiques, prenant en compte les différentes imperfections des éléments « réels ». Dans un 

premier temps, le Chapitre IV rappelle l’ensemble des règles de calcul permettant de déterminer la 

résistance d’un PRS vis-à-vis du flambement et/ou du déversement. Les règles de l’actuel Eurocode 3 

Partie 1-1 et de sa révision sont présentées avec leurs adaptations dans son Annexe Nationale Française. 
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La résistance vis-à-vis du flambement ou du déversement peut s’obtenir en utilisant l’une des courbes 

de flambement de l’Eurocode 3 Partie 1-1 représentées à la Figure 5. La résistance Rb,Rd à un effet donné 

se calcule alors en diminuant la résistance caractéristique en section RRk en fonction de (i) l’élancement 

de l’élément et (ii) la courbe de flambement utilisée. Chaque courbe de flambement étant associée à un 

facteur d’imperfection, le choix de la courbe dépend du niveau d’imperfection affilié à l’élément étudié. 

Ainsi, ce choix dépend du mode de fabrication de l’élément, de sa nuance d’acier, de ses dimensions 

transversales et du mode d’instabilité étudié, la stabilité hors plan des PRS étant associée aux deux 

courbes les plus pénalisantes (c et d). D’autres méthodes de vérification des éléments simplement fléchis 

peuvent faire intervenir un coefficient d’imperfection dépendant des propriétés géométriques de la 

section transversale ainsi que la forme du diagramme des moments. 

 

Figure 5 : Courbes de flambement de l’Eurocode 3 Partie 1-1 

Pour la vérification des éléments simultanément comprimés et fléchis, l’Eurocode 3 Partie 1-1 propose 

deux méthodes. Une première méthode n’est utilisable que dans le cas de poteau-poutres à section 

uniforme et doublement symétrique. Dans ce cas, il convient de vérifier parallèlement deux formules 

d’interaction correspondant à des directions de ruine différentes et indépendantes (dans le plan et hors 

du plan de forte inertie). La seconde méthode permet de s’assurer de la stabilité d’un élément comprimé 

et fléchi n’ayant pas nécessairement une section uniforme et doublement symétrique. La combinaison 

du flambement et du déversement est interprétée comme une instabilité globale hors plan mais cette 

méthode implique un couplage des comportements suivant les deux directions principales. Cette seule 

méthode proposée pour vérifier la stabilité d’un élément non uniforme étant discutée, des méthodes de 

calcul récentes sont décrites. 

L’une des trois approches détaillées propose notamment de déterminer la résistance vis-à-vis du 

déversement en utilisant le coefficient d’imperfection pour le flambement d’axe faible et les propriétés 

en torsion de la section transversale (voir Naumes (2009)). Cette méthode manque toutefois 

d’indications concernant le traitement de poutres à inertie variable. Une autre approche propose 

d’étudier les éléments comprimés et/ou fléchis à inertie variable en suivant les règles de l’Eurocode 3 
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Partie 1-1, initialement adaptées aux éléments uniformes, moyennant quelques modifications (voir 

Marques (2012 a)). Une adaptation des formules d’interaction aux éléments à inertie variable est alors 

proposée en utilisant des indications résultant d’études paramétriques. 

Enfin, une méthode de calcul plus générale est décrite permettant d’attester la stabilité d’un élément 

comprimé et/ou fléchi, présentant des conditions de maintiens arbitraires et une section uniforme ou non 

(voir Tankova (2018a)). Cette dernière méthode utilise une approche très réaliste mais requiert la 

détermination de la forme du mode propre d’instabilité élastique de l’ensemble étudié, c’est-à-dire de 

l’élément et des conditions de chargements et maintiens. Pour ce faire, l’utilisation de logiciels de calcul 

par éléments finis, tels que LTBeamN est possible. Néanmoins, la dérivée seconde de la forme du mode 

propre doit également être connue, ce qui limite le déploiement de cette méthode pour un usage régulier. 

Selon l’ensemble des méthodes de calcul existantes, la résistance d’un PRS est identique quel que soit 

son mode de fabrication. Cependant, différents modes de fabrication des semelles impliquent différentes 

contraintes résiduelles, faisant l’objet du Chapitre V. Ces imperfections de matériau sont, avec les 

imperfections géométriques (défaut de rectitude global, imperfections locales), les deux types 

d’imperfections influençant la stabilité élasto-plastique d’un élément structural. Les règles de calcul 

actuelles correspondent aux PRS ayant pour semelles de larges plats laminés à chaud alors que d’autres 

étapes de fabrication supplémentaires sont couramment utilisés en pratique, comme l’oxycoupage. Les 

semelles de PRS étant de larges plats laminés sont appelées « semelles laminées ». Celles correspondant 

à des plats laminés séparés sur leur largeur par oxycoupage sont appelées « semelles oxycoupées ». La 

forme des contraintes résiduelles est présentée à la Figure 6a) pour les PRS à semelles laminées et à la 

Figure 6b) pour ceux à semelles oxycoupées. 

  

a) Semelles laminées b) Semelles oxycoupées 

Figure 6 : Distribution des contraintes résiduelles dans un PRS 

Un recensement des modèles existants de contraintes résiduelles de PRS à semelles laminées ou 

oxycoupées sur leurs deux bords est donc entrepris. Bien que les modèles varient suivant les références, 

l’oxycoupage des semelles a un impact significatif sur les contraintes résiduelles. En effet, alors que les 

bords libres des semelles laminées sont initialement en compression (voir Figure 6a)), ceux des semelles 

oxycoupées sont en traction (voir Figure 6b)), les intensités de ces contraintes variant suivant les études. 

Compression 

Traction Traction 

Compression 
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La présence de traction initiale aux bords libres de semelles permet de retarder le début de leur 

plastification entraînant la ruine par instabilité hors plan du PRS. L’oxycoupage présente alors un intérêt 

bénéfique vis-à-vis de la stabilité d’un PRS. 

Les différents modèles de contraintes résiduelles pour PRS à semelles oxycoupées présentant de nettes 

divergences, une campagne expérimentale visant à mesurer les contraintes résiduelles dans huit PRS est 

menée à l’Université de Liège. Les caractéristiques des éprouvettes sont déterminées de sorte à être 

représentatives de la pratique courante. Ainsi, les poutrelles étudiées sont fabriquées en acier S355. 

Alors que les dimensions des âmes sont identiques entre les 8 spécimens, les dimensions des semelles 

et leur mode de fabrication varient. Des épaisseurs de 12, 15 et 20 mm sont étudiées pour des largeurs 

de 200 et 250 mm. Deux couples de spécimens présentent des dimensions similaires avec, dans chaque 

cas, un PRS à semelles oxycoupées et l’autre à semelles laminées. Les quatre autres spécimens 

présentent tous des semelles oxycoupées dont une section mono-symétrique. 

L’analyse des résultats montre une incidence significative du mode de fabrication des semelles sur la 

distribution des contraintes résiduelles. Par ailleurs, la largeur des semelles influe légèrement sur cette 

répartition contrairement à leur épaisseur. Les distributions expérimentales mesurées dans les PRS à 

semelles oxycoupées s’avèrent différentes des modèles existants. En conséquence, les résultats 

expérimentaux sont étudiés avec une vingtaine d’autres résultats issus de la littérature concernant des 

PRS à semelles oxycoupées représentatifs de la pratique courante. 

L’ensemble de ces résultats montre que l’intensité de la contrainte de compression dans les semelles 

diminue lorsque leur élancement augmente. De même une diminution de l’intensité de la contrainte de 

traction aux bords libres des semelles est observée lorsque le rapport hauteur/largeur de la section 

transversale augmente. La largeur relative en traction de la partie centrale des semelles augmente 

également avec ce ratio. Cette analyse a permis d’aboutir à un nouveau modèle de contraintes résiduelles 

adapté aux PRS à semelles oxycoupées représenté schématiquement à la Figure 6b). Ce modèle est 

constitué de blocs de contraintes dont les largeurs et intensités dépendent : 

 Du rapport largeur/épaisseur de semelle, 

 Du rapport hauteur totale/largeur de la section transversale, et 

 De l’auto-équilibre des contraintes. 

Le flambement et le déversement expérimental de PRS sont ensuite investigués au Chapitre VI. Un 

recensement des campagnes expérimentales concernant des PRS comprimés et/ou fléchis dans leur plan 

de forte inertie, décrites dans la littérature, est présenté. Certains essais confirment un gain significatif 

de résistance apporté par l’oxycoupage en comparaison à des PRS à semelles laminées de dimensions 

équivalentes. Cette revue de la littérature montre néanmoins un manque de résultats expérimentaux 

concernant des PRS à semelles oxycoupées à section non-uniforme et/ou mono-symétrique 

représentatifs de la pratique courante. 

Un nouveau programme expérimental réalisé à Polytech’ Clermont est alors présenté, visant l’étude du 

déversement de quatre poutres PRS ayant des semelles oxycoupées. Parmi ces spécimens, fabriqués en 

acier S355, se trouvent : 

 Une poutre à section constante et doublement symétrique (représentée à la Figure 7a)), 

 Une poutre à section constante et mono-symétrique, 

 Une poutre à section variable et doublement symétrie, et 

 Une poutre à section variable et mono-symétrique (représentée à la Figure 7b)). 
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Pour simplifier la mise en place expérimentale, les spécimens à section mono-symétrique présentent des 

semelles de même largeur, 200 mm, ce qui correspond à une partie de la pratique courante. Dans ce cas, 

les épaisseurs de semelles varient, la semelle comprimée étant de 20 mm et la semelle tendue de 15 mm, 

soit la même épaisseur que les deux semelles de chaque spécimen à section doublement symétrique. La 

variation de hauteur d’âme est similaire dans les deux poutres à inertie variable (voir Figure 7b)). 

 

a) Poutre à section uniforme et doublement symétrique 

 

b) Poutre à section variable et mono-symétrique 

Figure 7 : Spécimens d’essais au déversement 

Le schéma statique des quatre essais est similaire (voir Figure 7). Les poutres reposent sur des appuis à 

fourche à leurs extrémités, le gauchissement et la rotation hors du plan de sollicitation étant libres. Une 

section intermédiaire est maintenue latéralement sur toute sa hauteur et chargée par un vérin hydraulique 

appliqué au centre de la semelle comprimée. 

Pour les quatre spécimens testés, le mode de ruine correspond au déversement comme le montre la 

Figure 8 dans le cas de la poutre à section variable et mono-symétrique. Par ailleurs, une distorsion de 

l’âme dans le domaine post-pic est observée dans le cas de la poutre à section constante et mono-

symétrique. Les ruines sont observées à la frontière des domaines élastique et élasto-plastique, sauf pour 

le spécimen à section constante doublement symétrique dont la ruine a eu lieu dans le domaine élastique. 

Alors que les charges de ruine des deux spécimens à section doublement symétrique sont proches, 

l’augmentation de 5 mm de l’épaisseur de la semelle comprimée accroît de plus de 20% la charge de 

ruine dans le cas de sections constantes. L’augmentation de la charge de ruine est plus mesurée dans le 

cas des spécimens à inertie variable, la différence étant de 8%. 

Pour l’ensemble des spécimens, la comparaison de la charge de ruine expérimentale à celle obtenue 

analytiquement en suivant les prescriptions de l’Eurocode 3 Partie 1-1 en utilisant les courbes de 

flambement montre des écarts de 62 à 81%. La prise en compte explicite du diagramme de moment à 

l’aide du facteur f réduit l’écart qui se situe alors entre 42 et 58%. Les méthodes de calcul actuelles, qui 

ne prennent pas en compte l’effet bénéfique de l’oxycoupage des semelles, sont excessivement 
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sécuritaires. Ce constat a motivé la nécessité de prendre en compte explicitement le mode de fabrication 

des semelles d’un PRS dans le calcul de la résistance aux instabilités hors plan. 

 

Figure 8 : Ruine de la poutre à section variable et mono-symétrique 

Le développement de méthodes de calcul adaptées aux PRS à semelles oxycoupées doit s’appuyer sur 

un grand nombre de résultats de référence. Ceux-ci sont obtenus par des essais réalisés en laboratoire, 

ou bien par des simulations numériques équivalentes, réalisées à partir d’éléments finis de type coque 

permettant d’obtenir un plus grand nombre de résultats à moindre coût. Ces analyses intégrant les non-

linéarités géométriques et de matériau prennent en compte les imperfections géométriques et contraintes 

résiduelles de l’élément étudié. Alors que le modèle de contraintes résiduelles pour PRS à semelles 

oxycoupées précédemment proposé est utilisé pour les imperfections de matériau, les imperfections 

géométriques sont basées sur les modes propres d’instabilité appropriés. Une description détaillée du 

modèle numérique est exposée au Chapitre VII. 

Le modèle numérique ainsi développé est adapté à la campagne d’essais de déversement. Les contraintes 

résiduelles, lois de matériau et amplitudes des imperfections géométriques mesurées expérimentalement 

sont intégrées au modèle numérique avec les conditions aux limites expérimentales. La comparaison des 

résultats numériques et expérimentaux valide le modèle numérique développé. Les charges de ruine sont 

en effet similaires à 5.6% près et les mesures de déplacements et rotations montrent des raideurs 

analogues, aussi bien lors de la phase de chargement que dans le domaine post-pic. L’évolution des 

déplacements verticaux expérimentaux et numériques, mesurés dans le vérin lors de l’essai sur la poutre 

uniforme et bissymétrique, présentés à la Figure 9, sont caractéristiques de la bonne concordance entre 

les deux modèles. 

Des analyses par éléments finis correspondant aux essais sont également menées en remplaçant les 

contraintes résiduelles mesurées (résultats numériques de référence) par le modèle normatif 

correspondant aux PRS à semelles laminées ou par le nouveau modèle développé au cours du présent 

travail. Alors que les résultats numériques de référence sont 4 à 6% supérieurs à ceux obtenus avec le 

nouveau modèle pour PRS à semelles oxycoupées, l’intégration de contraintes résiduelles pour PRS à 

semelles laminées fait chuter les résultats d’environ 14% par rapport aux valeurs de référence. Le calcul 

numérique, réalisé en utilisant le nouveau modèle pour PRS à semelles oxycoupées, donne des résultats 

légèrement inférieurs aux résultats expérimentaux, l’écart ne dépassant pas 7%. L’utilisation de 
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contraintes pour PRS à semelles laminées produit des résultats 9 à 16% inférieurs aux résultats 

expérimentaux. 

 

Figure 9 : Courbe force-déplacement du vérin pour l’essai sur PRS à section uniforme bissymétrique 

L’effet bénéfique de l’oxycoupage des semelles est également montré à travers une étude de sensibilité 

concernant le déversement d’un PRS simplement fléchi où différents modèles sont utilisés. L’influence 

du mode de fabrication des semelles, et plus généralement du modèle de contraintes résiduelles, sur la 

résistance vis-à-vis du déversement est significative pour un élancement réduit faible ou moyen. Lorsque 

l’élancement réduit dépasse une valeur comprise entre 1 et 1.2, les résultats obtenus sont très proches 

quel que soit le modèle utilisé. Par ailleurs, des analyses numériques complémentaires montrent que 

l’amplitude de l’imperfection géométrique globale a une influence limitée sur la résistance au 

déversement d’un PRS à semelles oxycoupées. L’incidence des imperfections locales de plaque est à 

peine notable. 

En utilisant le modèle numérique calibré par les résultats expérimentaux, un grand nombre de 

simulations non-linéaires utilisant des éléments finis de type coque sont menées. Alors que la grande 

majorité de ces simulations concernent des PRS à semelles oxycoupées, la stabilité des poutres et 

poteaux PRS à semelles laminées est également explorée. Les éléments étudiés sont maintenus vis-à-vis 

des déplacements dans le plan et hors plan et de la rotation de torsion au droit de leurs extrémités (appuis 

à fourche). Le gauchissement et la rotation hors plan sont laissés libres. Les éléments sous charge axiale 

sont soumis à une compression uniforme alors que les éléments fléchis sont soumis à un diagramme de 

moment linéairement variable. Les dimensions des sections transversales ainsi que leur type sont jugés 

représentatifs de la pratique courante. Par conséquent, des composants à section constante ou en fuseau 

sont étudiés, les sections étant doublement ou mono-symétriques. 

Les résultats de cette étude paramétrique sont ensuite exploités au Chapitre VIII. Le cas des éléments 

uniformément comprimés, flambant hors plan, est traité dans un premier temps. L’influence du mode 

de fabrication des semelles est significative lorsque l’élancement réduit est faible ou intermédiaire 

comme le montre la Figure 10 pour les poteaux à section uniforme bissymétrique. Les résultats 

numériques montrent également que plus l’élancement augmente, moins l’effet des imperfections de 

l’élément est significatif. Le calcul de coefficients partiels de sécurité γM1 associés à la méthode de calcul 
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actuelle de l’Eurocode 3 Partie 1-1 montre que celle-ci est excessivement sécuritaire. Il convient de 

préciser que la détermination d’un coefficient partiel de sécurité est effectuée selon les prescriptions de 

l’Eurocode 0 et les recommandations du projet RFCS SAFEBRICTILE. Des adaptations de la méthode 

de calcul actuelle sont alors proposées pour les PRS à semelles oxycoupées. Deux méthodes alternatives 

sont exposées : 

 L’utilisation d’une courbe de flambement plus favorable ; 

 L’utilisation d’un facteur d’imperfection dépendant de l’élancement réduit de l’élément et de 

ses dimensions. 

Les coefficients γM1 associés à ces deux méthodes sont satisfaisants, la deuxième alternative produisant 

les résultats les plus fidèles aux résultats de référence. 

 

Figure 10 : Résultats de l’étude paramétrique pour poteaux PRS uniformes bissymétriques 

Le cas des PRS simplement fléchis est ensuite étudié. A nouveau, les résultats numériques montrent une 

influence du mode de fabrication des semelles pour des élancements faibles ou intermédiaires (voir 

Figure 11 pour des poutres uniformes bissymétriques sous moment constant). Puis, l’impact des 

imperfections sur la résistance diminue lorsque l’élancement augmente. Enfin, une incidence de la forme 

du diagramme des moments sur la résistance est notée, le cas du moment constant produisant les résultats 

les plus défavorables. 

Les niveaux de sécurité et de précision apportés par la méthode de calcul de l’Eurocode 3 Partie 1-1 

faisant intervenir les courbes de flambement sont analysés. Les coefficients partiels de sécurité obtenus 

montrent que cette méthode produit des résultats trop conservatifs, particulièrement dans les gammes 

d’élancements intermédiaires et élevés. La nouvelle méthode de calcul présente dans la révision de 

l’Eurocode 3 Partie 1-1 est nettement plus précise et toujours sécuritaire pour les poutres à section 

constante et doublement symétrique, ce qui correspond à son domaine d’application. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nb,Rd/NRk

Elancement

PRS semelles oxycoupées

PRS semelles laminées

a0 

a 

b 

c 

d 



RESUME ETENDU 

- 20 - 

De même que pour les éléments comprimés, des adaptations de la méthode de calcul basée sur les 

courbes de flambement sont développées pour les poutres PRS à semelles oxycoupées. Les deux 

approches sont similaires au cas du flambement d’axe faible : 

 L’utilisation d’une courbe de flambement plus favorable ; 

 L’utilisation d’un facteur d’imperfection dépendant de l’élancement réduit de l’élément et de 

ses dimensions, couplée à une prise en compte de la forme du diagramme des moments. 

Les coefficients partiels de sécurité correspondant à ces deux méthodes sont adéquats. La première 

alternative est associée à un niveau de sécurité important dans les élancements intermédiaires et élevés 

alors que la seconde option produit des résultats plus précis. 

 

Figure 11 : Résultats de l’étude paramétrique pour poutres PRS uniformes bissymétriques sous moment constant 

Le domaine d’application de la nouvelle méthode de calcul de la résistance au déversement du 

prEurocode 3 Partie 1-1 étant limité aux poutres à section constante et doublement symétrique, son 

extension est proposée. En utilisant des hypothèses semblables à celles ayant conduit à cette méthode 

(voir Taras (2010a/b)), des développements analytiques montrent la possibilité de l’utiliser pour des 

poutres en fuseau à section mono-symétrique, moyennant quelques étapes supplémentaires de calcul. 

Un coefficient d’imperfection légèrement modifié est proposé pour adapter cette méthode de calcul aux 

PRS à semelles oxycoupées. A nouveau, les coefficients partiels de sécurité associés à cette méthode de 

calcul s’avèrent satisfaisants. 

Enfin, les résultats de l’étude paramétrique concernant la stabilité des poteau-poutres sont analysés. Les 

résultats des éléments simultanément comprimés et fléchis montrent également que, pour des 

élancements réduits intermédiaires ou élevés, l’effet des imperfections sur l’instabilité diminue. 

L’incidence de la forme du diagramme des moments est en revanche peu significative. Les coefficients 

partiels de sécurité associés aux deux méthodes de vérification de l’actuel Eurocode 3 Partie 1-1 et de 

sa révision sont évalués. 
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L’utilisation des formules d’interaction négligeant l’oxycoupage des semelles, limitées aux poutres à 

section constante et doublement symétrique, montre un certain niveau de sécurité. La prise en compte 

de l’oxycoupage des semelles en utilisant les propositions faites pour les éléments sous chargement seul 

est alors étudiée. D’après les résultats d’une analyse statistique, la combinaison des propositions faites 

pour les éléments sous chargement seul produit des résultats acceptables. 

La seule méthode permettant d’attester la stabilité d’un élément non uniforme selon l’Eurocode 3 Partie 

1-1 et sa révision montre un excès de sécurité lorsque le mode de fabrication des semelles est négligé. 

Une amélioration de cette méthode est proposée (i) en découplant les effets dans le plan et hors du plan 

de sollicitation, aucun maintien intermédiaire n’étant appliqué, et (ii) en prenant en compte le mode de 

fabrication des semelles. Celui-ci est intégré en utilisant les propositions faites pour les poteaux 

uniformément comprimés et les poutres simplement fléchies. Une analyse statistique des résultats 

confirme la validité de cette approche. 

Le Chapitre IX conclut ce travail, précisant ses contributions majeures et les aspects à développer 

s’agissant de la stabilité des PRS. La résistance d’un PRS aux instabilités dépend de son effort critique 

d’instabilité élastique et de ses imperfections. Au cours de la Partie I consacrée aux instabilités 

élastiques, des modèles analytiques permettant de prendre en compte certains effets fréquents dans la 

pratique de poutres PRS sont étudiés, tels que : 

 La mono-symétrie de la section transversale ; 

 La distorsion de l’âme ; 

 La présence de maintiens au gauchissement aux sections d’extrémités. 

La Partie II traite des instabilités élasto-plastiques, notamment influencées par les imperfections régnant 

au sein des PRS. Ainsi, les contraintes résiduelles des PRS à semelles laminées ou oxycoupées sont 

étudiées. En complément d’essais de déversement, un modèle numérique adapté aux PRS à semelles 

oxycoupées est développé, les deux modèles donnant des résultats très proches. Ce modèle numérique 

est alors utilisé pour réaliser de nombreuses simulations non-linéaires concernant des PRS comprimés 

et/ou fléchis. Les résultats sont finalement utilisés pour proposer des modifications des méthodes de 

calcul actuelles afin de les adapter aux PRS à semelles oxycoupées. 
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I. Introduction 

I.1  Context and motivation 

Steel welded I-section members are commonly used in practice. Contrary to hot-rolled steel members, 

built-up ones may be defined with any arbitrary dimensions. Besides, the employed steel welded 

members may present cross-sections defined as doubly or mono-symmetrical (i.e. symmetrical about 

the bending plane only). Cross-sections may also vary along a welded member length (see Figure I-1) 

depending on the distribution of the acting loads. 

 

Figure I-1: Tapered column in a steel building (Lisses (91), France) 

Steel building members are usually subjected to compression forces and/or bending moments about their 

major axis. Owing to medium or high distances between restraints against out-of-plane displacements 
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and/or twist rotations, such members generally fail in global out-of-plane buckling. Flexural or flexural-

torsional buckling of columns (see Figure I-2a)) and lateral-torsional buckling of beams (see Figure I-

2b)) are accounted for when assessing the stability of a steel member according to current design codes. 

To that end, second order internal forces and moments are included in the design methods which depend 

on imperfection factors. These are conditioned by the members dimensions and fabrication process but 

they also vary between design standards. 

  

a) Flexural buckling of a uniform column b) Lateral-torsional buckling of a tapered beam 

Figure I-2: Out-of-plane buckling modes (global displacements) 

The present work was initiated following the general observation made by French steel manufacturers 

that the Eurocode 3 design rules yields less economical steel building members than the previous French 

standards (CM66 and Additif 80). Indeed, the comparison of these codes shows that the Eurocode 3 

design methods provide more conservative design resistances than the previous French ones. 

 

Figure I-3: Reduction of the resistance to compression of a welded building column due to lateral buckling 
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Such result is exposed in Figure I-3 where the resistance to compression Nb,Rd of a uniform doubly-

symmetric column, normalized to its cross-sectional characteristic resistance NRk, is shown to decrease 

while its length increases. The decrease of the member resistance is more pronounced when using the 

prescriptions of Eurocode 3 than when using the CM 66 code for usual lengths. 

The choice of the buckling curve obviously impacts the member resistance. In addition, design methods 

also depend on its elastic critical load for the investigated buckling mode through (normalized) 

slenderness. The critical bending moment of a beam and the critical axial load of a column depend on 

the cross-sectional properties and length of the member and on the position and distribution of the acting 

loading. All these aspects are accounted for within the different existing analytical models. 

However, additional restraints present at the member ends cannot always be explicitly accounted for 

when analytically computing a critical load. In particular, some beam-to-beam or beam-to-column 

connection configurations significantly restrain warping by binding the out-of-plane rotations of both 

flanges. Such restraints affect the critical bending moment and the buckling behaviour but a lack of 

guidance can be noticed when analysing existing formulations. 

Besides, the stability of welded members is assessed according to the Eurocode 3 design rules using 

imperfection factors developed for those made hot-rolled flanges. Yet, nowadays the flanges fabrication 

process of welded members frequently involves longitudinal flame-cuts to separate a wide hot-rolled 

plate into several flanges or web plates, resulting in different material imperfections. Flanges 

corresponding to wide hot-rolled plates are then referred to as “hot-rolled flanges”. Wide plates divided 

into several member flanges using flame-cuts are referred to as “flame-cut flanges”. 

The influence of the flanges fabrication process on the ultimate load carrying capacities of welded steel 

members was studied by Beyer (2019b) and Couto (2019) using shell finite elements. The former found 

that the Eurocode 3 Part 1-1 rules provide an accurate lower bound of reference results for welded 

members made of hot-rolled flanges having a low normalized slenderness while being safe-sided 

whatever the slenderness. In addition, both investigations concluded on the significant impact of the 

flanges fabrication process on the members resistance. Indeed, deviations between the ultimate loads 

for welded members with flame-cut or hot-rolled flanges were noticed in both references, especially for 

low and medium slenderness that are of common use. Beyer (2019b) found even greatest resistances for 

welded members made of flame-cut flanges than for equivalent hot-rolled profiles. 

These preliminary observations have motivated the investigation of the stability of welded I-section steel 

members to provide guidance helping practitioners making more economical members while 

maintaining an adequate safety level. 

I.2  Scope and objectives 

The present work focuses on the stability of I-section welded steel members corresponding to the current 

common practice of steel buildings. Therefore, the studied steel welded members are: 

 Uniform or not along their length with a doubly or mono-symmetric cross-section; 

 Subjected to an axial load and/or in-plane bending moment; 

 Resting on fork supports at both ends, i.e. in and out-of-plane displacements are prevented along 

with twist rotation, longitudinal displacement being fully restrained at one of the member end; 

 Made of usual steel grade, up to S460; 

 Made of hot-rolled or flame-cut flanges. 
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Analytical methods yielding a reduced utilization of material for such members when compared to the 

actual design methods are investigated. Consequently, various approaches are investigated that consist 

in: 

 A better inclusion of connection configurations at a beam ends. In particular, the influence of 

warping restraints on a beam elastic critical lateral-torsional buckling bending moment is 

studied; 

 An enhanced consideration of the members cross-section type. The characteristics of double or 

mono-symmetry of the cross-section, uniform or tapered along their length are explored, their 

integration into accurate design methods being sought; 

 A distinction between the most usual flanges fabrication process when determining the 

resistance of a welded member. Indeed, for welded members made of flame-cut flanges, design 

methods different from those adapted to welded members with hot-rolled flanges are pursued. 

 

These analytical approaches rely on consistent numerical and experimental investigations. An 

experimental study is performed, the results of which being employed to develop an accurate numerical 

model. Finite element analyses are led in order to comprehend the actual out-of-plane buckling 

behaviour of welded steel members. The numerical results are operated to validate the derived analytical 

approaches. 

The analytical developments are led based on a consistent mechanical background using the formalism 

of Eurocode 3 Part 1-1 and other existing approaches. Indeed, the developments should yield analytical 

expressions easily applicable in design offices. In addition to their ease of use, the accuracy and safety 

level of the proposed analytical methods must reveal satisfactory. 

I.3  Structure of the dissertation 

Following Chapter I introducing the motivation, scope and objectives of the present work, the 

dissertation is organised in two general parts: 

 Part I: Elastic buckling, 

 Part II: Elasto-plastic buckling. 

 

Part I focusing on the computation of elastic critical loads is composed of two chapters. In Chapter II, 

well-known elastic critical loads are derived in the simple case of uniform members subjected to either 

a constant axial load or uniform bending moment. An analytical model is recommended for the critical 

bending moment of mono-symmetric beams based on existing formulations. The complex cases of 

uniform members subjected to compression and bending, and non-uniform members subjected to 

compression or bending are discussed. Chapter II continues with the investigation of lateral-torsional 

buckling featuring web distortion. When compared against the results of finite element analyses 

performed using shell elements, some of the existing formulations reveal satisfying. Using an accurate 

existing model, a boundary between the significant and the negligible influence of web distortion on 

lateral-torsional buckling is proposed. 

Part I then proceeds to Chapter III concerning the elastic lateral-torsional buckling of uniform doubly 

symmetric beams with warping restraints at both ends. Existing expressions for the critical bending 
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moment of such members and for the stiffness of some common connection configurations are 

presented. Consistent analytical expressions are then derived for various bending moment distributions. 

In addition, a limit stiffness between semi-rigid and rigid warping connections is proposed. 

Part II regarding the elasto-plastic buckling behaviour of welded I-steel members comprises five 

chapters. Firstly, Chapter IV presents the existing and future design rules provided by Eurocode 3. The 

single design method adapted to non-uniform members, i.e. the General Method, presenting 

controversial features, recent analytical developments on non-uniform members are presented. 

Chapter V investigates residual stresses in welded I-section steel members. Existing models are listed 

in two sub-sections depending on the flange fabrication process. Owing to visible differences between 

existing models adapted to welded members made of flame-cut flanges, an experimental programme is 

described. The sectioning method was used to measure the residual stresses distributions in eight welded 

specimens, made of hot-rolled or flame-cut flanges. In addition to the flanges fabrication process, the 

incidence of their widths and thickness is investigated. Differences being noticed between the measured 

distributions and existing models, a new residual stress pattern for welded members made of flame-cut 

flanges is proposed. 

Next, Chapter VI focuses on the experimental buckling behaviour of welded steel members subjected 

to bending moment and/or compression force. In particular, a new experimental programme is presented 

that consists in lateral-torsional buckling tests of four specimens. The welded beams studied, made of 

flame-cut flanges are uniform or tapered, with a doubly or mono-symmetric cross-section. A single load 

jack was applied at an intermediate restrained location while the specimens were resting on fork supports 

at both ends. 

The experimental results are then exploited in Chapter VII to validate the numerical model based on 

shell elements. Using the experimentally measured imperfections and material laws, the numerical 

results show a good agreement with experimental ones. The numerical model is generalized to welded 

members made of hot-rolled or flame-cut flanges using idealized material laws and imperfection models. 

The residual stress model developed in Chapter V is employed for welded members made of flame-cut 

flanges. The numerical model is further used to perform a large number of non-linear finite element 

analyses on welded members deemed representative of the current practice. 

Chapter VIII concludes Part II where the results obtained using the numerical model described in 

Chapter VII are exploited. Analytical developments are led relying on similar mechanical background 

as the current and future Eurocode 3 Part 1-1. The predictions of the derived analytical models are 

compared against the numerical results and adequate partial safety factors γM1 are determined. The 

analytical models developed for welded members made of flame-cut flanges reveal better suited than 

the Eurocode 3 design rules with satisfactory resulting safety levels. 

Eventually, Chapter IX summarizes the present work. Major conclusions are presented along with the 

propositions developed in Parts I and II. Research work broadening the findings of this dissertation are 

finally discussed. 
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II. Elastic critical loads 

II.1 Introduction 

Slender members that are of common use in steel structures usually fail owing to global buckling, 

leading many researchers to investigate the stability resistance of steel members. The current European 

standard Eurocode 3 Part 1-1 makes use of elastic critical loads to determine the resistance of a steel 

member against flexural, torsional, flexural-torsional or lateral-torsional buckling. Since Euler (1744) 

who proposed the first expression of an elastic critical load, in the case of a uniformly compressed 

member pinned at both ends, analytical models have been developed to estimate the elastic critical loads 

of a steel member subjected to an axial load NEd and/or a bending moment My,Ed about the y-axis. 

The energy method is commonly used to derive analytical expressions of elastic critical loads, as shown 

by Timoshenko (1963). This resolution method is firstly recalled in the general case of a uniform steel 

member unrestrained between both ends and subjected to both an axial load and a bending moment 

distribution. This method is then adapted to the specific case of uniform members subjected to an axial 

load only (My = 0), yielding well-known elastic critical loads. Similarly, the resolution method is 

adjusted to the case of uniform members with a mono-symmetric cross-section, resting on fork supports 

subjected to a bending moment distribution only (N = 0). The common expression of the critical bending 

moment in the case of a constant bending moment is derived. Besides, existing analytical models to 

determine the critical bending moment of mono-symmetric members are presented. The predictions of 

these models are compared against the results of finite element analyses, resulting in recommendations. 

Then, the case of beam-columns that are simultaneously subjected to an axial load and bending moment 

is mentioned. The evaluation of the elastic critical loads of a non-uniform steel member is discussed 

afterwards. 

Eventually, the case of bent members failing in a lateral-distortional mode is studied. Such failure mode 

corresponding to lateral-torsional buckling supplemented with web distortion is of interest in the case 

of welded beams that generally present a slender web and possibly one or two stocky flange(s). Existing 

analytical expressions for the critical bending moment are presented for a constant distribution, their 

predictions being confronted against the results of finite element analyses. The influence of the bending 

moment distribution is then discussed. 

II.2 General case 

II.2.1 Total potential energy 

The energy method that can be employed to obtain the elastic critical loads of a steel member consists 

in the minimisation of the total potential energy Π, which is the difference between the elastic strain 

energy U and the work performed by the external loads W. The member reaches an unstable equilibrium 

when subjected to the critical values of the applied loads, which corresponds to: 

( ) 0U W      (II.1)   
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Using the axis and notations from Figure II-1, the elastic internal strain energy U of a member is: 

2 2 2 22 2 2
y w tz

2 2 20 2 2 2 2

L d w d v d d

dx dx dx dx

EI EI GIEI
U dx
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        

        

     (II.2)   

with: 

E: Modulus of elasticity 

G: Shear modulus, depending on the modulus of elasticity and Poisson’s ratio ν: 

 2 1

E
G





 

(II.3)   

Iy: Second moment of area about the y-axis (see Figure II-1) 

Iz: Second moment of area about the z-axis (see Figure II-1) 

Iw: Warping constant 

It: Torsional constant 

L: Distance between supports 

w: vertical displacement (see Figure II-1) 

v: lateral displacement (see Figure II-1) 

θ: twist rotation (see Figure II-1) 

 

Figure II-1: Coordinate system and notations 

In addition, the elastic strain energy of continuous or discrete restraints must be accounted for in the 

total potential energy of the studied member 

As fully derived by Beyer (2017), the work performed by the external loads is given in Table II-1 for 

some usual loading conditions. A linear combination of these loading conditions would result in a linear 

combination of the corresponding work of the external loads. The works presented in Table II-1 
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correspond to members unrestrained between both ends. At both ends, lateral and vertical displacements 

are restrained along with twist rotation. 

Load case #1 from Table II-1 corresponds to the usual case of a uniformly compressed member having 

a doubly symmetric cross-section where io is the polar radius of gyration, determined with: 

y z2
0i

A

I I
  (II.4)   

where A is the cross-section area. 

Load case #2 relates a common set up corresponding to a beam having a mono-symmetric cross-section 

subjected to end moments. The ratio between both end moments is ψ (comprised between -1 and 1). The 

Wagner factor zj explicitly accounts for mono-symmetry of the member. The determination of this 

parameter is discussed in sub-section II.4.2. 

Load case #3 corresponds to a doubly symmetric beam subjected to a uniformly distributed load applied 

at the compression flange along with a point load applied at the shear centre of the mid-span section. 

The distance zg between the shear centre and the location of the uniformly distributed load application, 

resulting in a stabilizing or destabilizing effect, is considered in the work expression. A shift in the 

vertical position of the point load application would be accounted for in the expression of W. Details 

about the sign of zg are provided in section II.4. 

# Loading condition W 

1 

 

2 2 2

2
0

0
2

L
N d d d

W dxi
dx dx dx

v w       
         
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    
   

  

3 

 

   
2

2

gy z2 0
0

1

2

L
Ld v

W M x dx x dxq z
dx

 
 

   
 
   

Table II-1: Work performed by various external loading conditions  

The total potential energy of a member having been provided for different load cases, one can obtain 

the elastic critical load(s) of a member using the resolution method described next. 
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II.2.2 Resolution method 

A good approximation of an elastic critical load can be obtained using the Rayleigh-Ritz method (see 

Ritz (1908)) employing linearly independent admissible functions that fulfil both kinematic and static 

conditions. The case of a member resting on fork supports at both ends without any intermediate 

restraints and subjected to an arbitrary bending moment and axial load distributions is studied hereafter. 

In such case, admissible functions for the lateral v and vertical w displacement, and for the twist rotation 

θ are described by infinite series of sine functions: 

n

k

1

( ) sin




 
  
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
k

x
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 (II.5)   
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 (II.7)   

where vk, wk and θk are the lateral and vertical displacement and twist rotation magnitudes associated 

with the kth sine-shape function. 

The amplitudes vk, wk and θk are the unknown constants to be determined using the minimum potential 

energy principle. Substituting v(x), w(x) and θ(x) into the expression of the total potential energy Π 

given by (II.1) and performing the integration with respect to x yields an algebraic expression of such 

energy. The values of the magnitudes minimizing the total potential energy Π should therefore satisfy: 

k k k

0,  0,  0
v w 
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  
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 (II.8)   

deriving as the following eigenvalue problem: 
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The elastic critical buckling load (amplifier) of a steel member is found when the determinant of the 

matrix from equation (II.9) is equal to zero, matching with non-trivial solutions for the magnitudes vk, 

wk and θk. Equating to zero the determinant of the matrix leads to an equation having 3n solutions, the 

lowest corresponding to the first elastic critical buckling mode, which is associated with a corresponding 

elastic critical load Rcr or load amplifier αcr. 

In the following section, existing expressions for the elastic critical loads of a compressed member are 

provided resulting from the energy method. Then, existing expressions of the elastic lateral-torsional 

buckling load of a bent member having a mono-symmetric cross-section derived from the energy method 

are given. 

II.3 Flexural and/or torsional buckling of columns 

The energy method is applied to uniform members with a doubly symmetric cross-section and subjected 

to a constant axial load. Such members may undergo flexural or torsional buckling which are 

independent from each other, distinct critical loads characterizing each phenomenon. 

When investigating flexural buckling about the z-axis of a doubly symmetric member subjected to a 

constant axial load and pinned at both ends, one may assume that the exact solution for the lateral 

displacement is half a sine wave: 

1( ) sin
x

v x v
L

 
  

 
 (II.10)   

Figure II-2 shows the buckled shape of a doubly symmetric column failing in a lateral buckling mode. 

The out-of-plane displacement v is highlighted in both flanges. 

The contribution of both the twist rotation and the vertical displacement being zero, the total potential 

energy reads: 

4 2

2 2z
1 1

2 2 2 2

L N L
v v

L L

EI     
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   
  (II.1)   

Expression (II.1) depends on the magnitude v1 only. Equating to zero the potential energy leads to the 

well-known expression for the elastic critical value of the axial load for flexural buckling about the z-

axis: 

2
z

cr,z 2
N

L

EI
  (II.2)   
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Figure II-2: Lateral buckling of a compressed member 

Similarly, the buckled shape of a doubly symmetric compressed member pinned at both ends undergoing 

flexural buckling about the y-axis is half of a sine wave. Applying the energy method leads to the 

following elastic critical load: 

2
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Half a sine wave also stands for the exact buckled shape of a doubly symmetric compressed member 

pinned at both ends that may experience torsional buckling: 

1( ) sin
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x
L


 

 
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 
 (II.4)   

The buckled shape of a column failing in a torsional buckling mode is exposed in Figure II-3. 

 
 

a) Initial configuration b) Buckled shape 

Figure II-3: Torsional buckling of a doubly symmetric column 
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The contributions of the vertical and lateral displacements being zero, the total potential energy is: 

4 2 2
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The only unknown in equation (II.5) is the magnitude of the twist rotation. Equating to zero the total 

potential energy results in the following common expression for the elastic critical value of the axial 

load for torsional buckling (see Timoshenko (1963)): 
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  (II.6)   

Boundary conditions that differ from end restrains against vertical and lateral displacement and against 

twist rotation must be accounted for. For this purpose, the length L is multiplied with a relevant buckling 

length factor in the expressions of the elastic critical axial loads. 

Mono-symmetric members commonly used in practice present a single axis of symmetry corresponding 

to the z-axis. Therefore the flexural buckling about the y-axis of such member is characterized by the 

elastic critical load Ncr,y, given by expression (II.3). However, the torsional and lateral flexural buckling 

modes combine in a flexural-torsional buckling mode owing to the difference between the second 

moments of area about the z-axis of both flanges. 

Owing to the cross-section mono-symmetry, the work performed by the external load given in load case 

#1 from Table II-1 is modified as: 
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where zs is the vertical distance between the cross-section shear centre and centroid. 

The flexural-torsional buckling mode of a mono-symmetric steel member can be characterized by half 

of a sine wave for both the lateral displacement and the twist rotation (see expressions (II.10) and (II.4), 

respectively) while the vertical displacement is zero. The total potential energy therefore reads: 
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  (II.8)   

Equating to zero the derivatives of the total potential energy with respect to both amplitudes v1 and θ1 

leads to a 2×2 matrix. The critical value of the applied axial load, is obtained by equalling to zero the 

matrix determinant leading to a second order equation. The lowest of the two roots is Ncr,TF: 
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(II.9)   

The critical loads for flexural buckling about the z or y-axis, torsional buckling or flexural-torsional 

buckling of uniform members pinned at both ends subjected to a constant axial load are given by 
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expressions (II.2), (II.3), (II.6) and (II.9). These formulae are similar to those provided by the 

background document from TC 250/SC 3. Besides, Kováč (2019) and Annex I from Eurocode 9 Part 1-

1 provide similar expressions involving buckling length factors. They account for the members boundary 

conditions regarding vertical and lateral displacement and twist rotation. 

The global buckling of compressed uniform members having been investigated, next section deals with 

the global buckling of uniform members subject to bending moment. 

II.4 Lateral-torsional buckling of beams 

II.4.1 General expression 

The lateral-torsional buckling of a uniform beam having a mono-symmetric cross-section, subjected to 

a uniform bending moment distribution My,o is investigated. When resting on fork supports at both ends, 

out-of-plane rotation and warping being free, such beam exhibits a mode shape where the exact solutions 

for the lateral displacement and twist rotation are half a sine wave: 

1( ) sin
x

v x v
L

 
  

 
 (II.10)   

1( ) sin
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x
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  

 
 (II.11)   

The buckled shape of a doubly symmetric beam subjected to a uniform bending moment distribution is 

presented in Figure II-4a). The typical twist rotation θ and lateral displacement v of the mid-span cross-

section are displayed in Figure II-4b). 

 

 

a) Buckled shape b) Cross-sectional displacements 

Figure II-4: Lateral-torsional buckling of a doubly symmetric beam 
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The contribution of the in-plane displacement w is ignored, being generally negligible when compared 

to the out-of-plane displacement and twist rotation. The total potential energy therefore reads: 
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  (II.12)   

Taking the derivative of the potential energy defined by expression (II.12) with respect to the magnitudes 

and employing the minimum potential energy principle yields the following system of linear equations: 
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 (II.13)   
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 (II.14)   

The usual ratio between both amplitudes in the case of a uniform bending moment distribution arises 

from expression (II.13): 
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(II.15)   

Inserting expression (II.15) into (II.14) results in the common expression for the critical bending moment 

of a uniform mono-symmetric beam under a constant bending moment distribution and resting on fork 

supports at both ends: 
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 (II.16)   

The previous expression is generalized to account for an arbitrary bending moment distribution, 

transverse load(s) application outside the shear centre, and elastic end restraint(s) against warping and 

out-of-plane rotation: 
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 (II.17)   

The warping and the out-of-plane rotation coefficients, kw and kz, respectively, vary between 0.5 when 

fully restrained and 1 when unrestrained. Coefficients C1, C2 and C3 account for the bending moment 

distribution. The distance zg between the location of the transverse loading application point and the 

cross-section shear centre is defined as positive when the transverse loading applies towards the shear 

centre (destabilizing effect) and negative when in the opposite direction. Besides, the Wagner factor zj 

accounts for the cross-section mono-symmetry, its computation being treated in the next sub-section 

II.4.2. 
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While Eurocode 3 Part 1-1 does not provide any guidance on how to determine the elastic critical lateral-

torsional buckling bending moment, the general expression (II.17) can be found in the experimental 

version of Eurocode 3 Part 1-1 (ENV) and in Part 1-1 of Eurocode 9. The French National Annex to 

Eurocode 3 Part 1-1 also provides some guidance to determine the critical lateral-torsional buckling 

bending moment but restricted to the case of doubly symmetric beams. Expression (II.17) is therefore 

proposed without the term C3zj that vanishes (zj being zero). 

Values for the three Ci coefficients from expression (II.17) accounting for the variations in the bending 

moment distribution are proposed for common bending moment diagrams in ENV, Eurocode 9 Part 1-

1 and in the French National Annex to Eurocode 3 Part 1-1, the latter providing values for C1 and C2 

only. 

It is worth mentioning that contrary to a usual assumption, the constant bending moment distribution 

does not always lead to the lowest value of the critical bending moment of an arbitrary beam. Indeed, as 

exposed by Camotim (2012), the critical bending moment of a mono-symmetric I-beam might be lower 

when subjected to a uniformly distributed loading applied at the shear centre than under a constant 

bending moment distribution. Therefore, the cross-section mono-symmetry should be properly 

accounted for through the Wagner factor, which is detailed next sub-section II.4.2. 

II.4.2 Wagner factor 

The expression of the Wagner factor zj is: 
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where zs is the location of the shear centre with respect to the cross-section centroid. 

The integral in the previous expression can be decomposed as follows: 
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where the geometric parameters are depicted in Figure II-5. 
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Figure II-5: Cross-section dimensions 

Expression (II.18) used along with (II.19) provides the exact value of the Wagner factor for welded 

members. The flange-to-web fillets in hot-rolled members are neglected, but such profiles are mostly 

doubly symmetric in practice (leading to zj=0). 

Annex I from Eurocode 9 Part 1-1 proposes to approximate zj using: 

j f s0.45z h  (II.20)   
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Ifc and Ift are the second moment of area about the z-axis of the compression and tension flanges, 

respectively. 

Eurocode 9 Part 1-1 assigns a positive sign to zj when the flange having the greatest second moment of 

area about the z-axis is compressed at the cross-section located: 

 At the end subjected to the maximal bending moment intensity when the bending moment 

distribution is linear, or 

 At mid-span when subjected to a transverse load. 

Annex F of ENV 1993-1-1 provides the following approximation for zj: 
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The sign convention given in ENV and Eurocode 9 are similar for a linear bending moment distribution. 

However, both sign conventions are slightly different for beams subjected to a transverse loading. 

Indeed, ENV defines zj as positive when the flange having the largest second moment of area about the 

z-axis is compressed at the location of the maximal bending moment intensity. 

The results of both approximations provided by Eurocode 9 and ENV are compared against the Wagner 

coefficients obtained using expression (II.18) and numerical integrations computed with the software 

PropSection, which is used as a reference model, for the mono-symmetric beams presented in Table II-

2. The dimensions of one flange are labelled with the exponent “1” while those of the second flange are 

labelled with the exponent “2”. 

The beams depicted in Table II-2 concern two hot-rolled members #B – corresponding to an IPE 330 – 

and #B_M having web-to-flange fillets with a 18 mm-radius. The remaining beams are welded, solely 

one being doubly symmetric. Within mono-symmetric beams, the flanges thickness always varies with 

a ratio up to more than 2. In addition, in some cases the flanges width varies, the maximum ratio between 

the flanges width being 1.56, for specimen #B_M. Only the Wagner factor being investigated for beams 

#C_M to #H_M, no length is defined for these members. 

Designation hw (mm) tw (mm) b (mm) tf (mm) L (m) 

#A 780 8 200 15 2; 6; 12 

#B 307 8 160 11.5 1.5; 4; 9 

#A_M 780 8 200 301; 152 2; 6; 12 

#B_M 310 8 2501; 1602 251; 122 2; 4; 9 

#C_M 900 6 250 251; 182 / 

#D_M 900 6 3501; 2502 351; 182 / 

#E_M 600 6 3001; 2002 251; 162 / 

#F_M 600 10 3001; 2002 301; 202 / 

#G_M 450 5 230 241; 122 / 

#H_M 450 5 2301; 1502 241; 122 / 

Table II-2: Geometry of the beams studied in section II.4 

The Wagner factors of the mono-symmetric beams are determined using expressions (II.18), (II.20) and 

(II.21) and by numerical integration using PropSection. Beam #B_M is also studied with and without 

the flange-to-web fillets – designated as #B_M_Ø. The results are given in Table II-3 where it can be 

seen that the presence of flange-to-web fillets have a negligible influence on the Wagner coefficient 

according to the reference values (less than 0.1% deviation). The difference is slightly greater when 

using expression (II.18), being 3%. This deviation can be attributed to the shift of the shear centre and 

centroid locations between the calculations performed accounting for the fillet and neglecting the fillets. 
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Calculation 

method 

Numerical 

integration 
Analytical 

Approximation 

(II.20) 

Approximation 

(II.21) 

Reference PropSection Exp. (II.18) Eurocode 9 ENV 

#A_M 117.0 mm 117.0 mm 120.4 mm 107.0 mm 

#B_M_Ø 113.3 mm 113.3 mm 
124.2 mm 110.4 mm 

#B_M 113.1 mm 109.6 mm 

#C_M 67.2 mm 67.2 mm 67.4 mm 59.9 mm 

#D_M 294.4 mm 294.4 mm 285.2 mm 253.5 mm 

#E_M 196.3 mm 196.3 mm 190.1 mm 168.9 mm 

#F_M 192.6 mm 192.6 mm 188.2 mm 167.3 mm 

#G_M 71.4 mm 71.4 mm 70.2 mm 62.4 mm 

#H_M 162.7 mm 162.7 mm 159.2 mm 141.5 mm 

Table II-3: Wagner coefficients according to different calculation methods 

For welded members, the predictions of expression (II.18) match perfectly with the numerical results. 

Using the approximated expression of the Wagner coefficient provided in Eurocode 9 Part 1-1 causes 

a deviation up to 3% from the reference values, except for #B_M where the difference is almost 10%. 

The Eurocode 9 expression can over or under estimate the value of zj while the ENV expression 

underestimates its value in every case. The predictions of the ENV 1993 Part 1-1 expression are 8.6 to 

14 % lower than the reference results except for #B_M where the difference is below 3%. 

For the studied welded members, that are preferably slender, the approximation proposed in Eurocode 

9 produces more accurate results than that from ENV. However, expression (II.18) producing exact 

values of the Wagner factor for welded members should be employed. 

II.4.3 Ci Coefficients 

II.4.3.1. Linear bending moment distribution 

The values of the coefficient C1 proposed by the French National Annex to Eurocode 3 Part 1-1 and 

Eurocode 9 Part 1-1 for a beam subjected to a linear bending moment distribution are very close, being 

less than 1% different. ENV 1993-1-1 suggests values of C1 greater than the two other standards (up to 

+15%), as shown in Table II-4 as a function of the ratio ψ between end moments. The values of C1 

extracted from Eurocode 9 presented in Table II-4 are those provided in the safe case where: 
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The French National Annex to Eurocode 3 Part 1-1 does not provide any value for C3 since solely 

doubly symmetric members entre its scope. Eurocode 9 and ENV propose to use different values of C3, 

presented in Table II-4. It is worth mentioning that the ECCS’s Technical Committee 8 (TC8) (2006) 

recommends the same values as Eurocode 9 Part 1-1 for C1 and C3. 
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ψ 

Eurocode 9 Part 1-1 ENV 1993-1-1 

C1 

C3 

C1 C3 

f
0.9 0    

f
0 0.9   

1.00 1.000 1.000 1.000 1.000 

0.75 1.139 1.000 1.141 0.998 

0.50 1.312 1.000 1.323 0.992 

0.25 1.522 1.000 1.563 0.977 

0.00 1.770 1.000 1.879 0.939 

-0.25 2.047 1.000 0.850 2.281 0.855 

-0.50 2.331 1.000 f
1.3 1.2  2.704 0.676 

-0.75 2.547 1.000 f
0.55   2.927 0.366 

-1.00 2.555 f
  2.752 0.000 

Table II-4: Coefficients C1 and C3 for a linear bending moment distribution 

Eurocode 9 proposes a constant value of 1 for C3 when both end moments have the same sign. When ψ 

< 0, the value of C3 can depend both on the cross-section dimensions, through the parameter ψf, and on 

the ratio between end moments. When ψ = -1, the cross-section from which ψf must be determined is 

not specified. However, a consistent calculation implies to determine ψf and the sign of zj at the same 

location. 

ENV proposes values of C3 ranging from 1 to 0 as ψ varies from 1 to -1. C3 is very close to 1 when the 

ratio between end moments is positive. In this case, the differences with the Eurocode 9 values are 6% 

at most, which is still admissible. However, when ψ is negative, the deviation between the values of C3 

recommended by both standards increases as ψ tends towards -1, the difference becoming significant 

when ψ < -0.5. 

The maximum deviation between the values of C3 is found when the bending moment distribution varies 

between M and –M. In such case, ENV considers no impact of the cross-sectional mono-symmetry upon 

the lateral-torsional buckling behaviour. Such assumption implies that the elastic critical lateral-

torsional buckling mode shapes of a doubly and a mono-symmetric beam are similar, to the amplitudes, 

and symmetrical about the beam mid-span. The twist rotation θ and lateral displacement v corresponding 

to the elastic critical buckling mode are determined using the software LTBeamN (see Beyer 2015a/b), 

which makes use of two-noded beam finite elements. The results for beams #A and #A_M subjected to 

end moments with ψ = -1 are shown in Figure II-6. 
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a) Lateral displacement b) Twist rotation 

Figure II-6: Components of the elastic critical mode shape of a doubly and a mono-symmetrical beam 

Figure II-6 exhibits significant differences between the mode shapes of both beams. Neither the twist 

rotation nor the lateral displacement of the mono-symmetric beam are symmetrical about mid-span. 

Besides, the rotations and displacements maximum intensities are not found at the same position along 

the doubly and the mono-symmetrical beams. The cross-section being mono-symmetric has a significant 

impact on the elastic lateral-torsional buckling behaviour of a beam: C3 being zero when ψ = -1 

according to ENV is therefore inconsistent. 

For a linear bending moment distribution, the differences between C1 and C3 proposed by Eurocode 9 

and ENV, along with inconsistencies of the latter standard were pointed out in the past, e.g. by Mohri 

(2000) and Braham (2001). Both references detailed the derivations of the coefficients C1 and C3 given 

by ENV. It is worth mentioning that the values of C1 proposed by ENV are similar to those from the 

former French standards CM 66 and Additif 80 (to 1%). Those values were obtained using the Galerkin 

method assuming that, whatever ψ, the twist rotation could be approximated using solely half a sine 

wave (see expression (II.4)), which is inconsistent with the distribution of the torsional twist shown in 

Figure II-6b) for a mono-symmetric beam. The questionable assumption regarding the torsional twist 

distribution results in the following expressions for the coefficients C1 and C3: 
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Expressions (II.23) and (II.24) were used to obtain the tabulated values of C1 and C3, respectively, given 

by ENV. A simplified expression (II.23) can be found in the former CM 66 and Additif 80. In addition 

to tabulated values, ENV also contains an analytical expression for C1 differing from (II.23) while having 

an upper bound of 2.70, which is lower than some of the tabulated values. 
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Mohri (2000) and Braham (2001) used a few examples to show the ENV rules could reveal significantly 

unsafe. To supplement their studies, the elastic critical lateral-torsional buckling bending moments of 

beams #A, #A_M, #B and #B_M from Table II-2 subjected to a linear being moment distribution with 

ψ = -1 are determined numerically, using LTBeamN. These reference results are compared in Table II-

5 against the analytical critical bending moments obtained using coefficients C1 and C3 from Eurocode 

9 Part 1-1 and ENV 1993-1-1. The Wagner factors are determined by numerical integrations performed 

using the software PropSection. 

Beam L (m) MEC9/MFE MENV/MFE 

#A 

2 0.926 0.997 

6 0.935 1.007 

12 0.944 1.017 

#B 

1.5 0.932 1.003 

4 0.937 1.009 

9 0.953 1.026 

#A_M 

2 0.989 1.169 

6 0.993 1.154 

12 1.008 1.143 

#B_M 

2 0.843 1.707 

4 0.958 1.625 

9 1.046 1.431 

Table II-5: Critical bending moments for a distribution varying from M to -M 

For doubly symmetric beams, Table II-5 shows that the critical bending moments obtained using the 

coefficients from Eurocode 9 are slightly on the safe side. The results obtained using the ENV 

coefficients are closer to the reference ones, but some are slightly on the unsafe side. For doubly 

symmetric members, the difference between the results using the coefficients from both standards is 8%, 

corresponding to the difference on the C1 coefficient. 

In the case of mono-symmetric beams, the difference between the critical bending moments obtained 

using both standards coefficients can be more than 100%. The use of the ENV coefficients provides 

significantly unsafe results since the deviation from the reference numerical results are up to 70%. As 

stated by Mohri (2000) and Braham (2001), the analytical computation of the elastic critical bending 

moment of a beam having a mono-symmetric cross-section subjected to a linear bending moment 

distribution should not be performed using the coefficients C1 and especially C3 proposed by ENV, those 

from Eurocode 9 Part 1-1 being valid. 

II.4.3.2. Transverse loading 

Presentation 

The Ci coefficients for a beam subjected to a linear bending moment distribution having been analyzed, 

the case of mono-symmetric beams subjected to a transverse loading, applied or not at the shear centre, 

is investigated hereafter. The coefficients C1, C2 and C3 given in Table F.1.2 from ENV 1993-1-1, Table 

I.2 from Eurocode 9 Part 1-1 and Table M.2 from the French National Annex to EN 1993-1-1 (except 
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for C3) are presented in Table II-6 for the corresponding load cases. It is worth mentioning that the TC8 

from ECCS (2006) recommends the same values as Eurocode 9 Part 1-1 for members pinned at both 

ends, no values being provided for beams fixed at both ends. 

# Boundary conditions 

FNA to EN 

1993-1-1 
Eurocode 9 Part 1-1 ENV 1993-1-1 

C1 C2 C1 C2 C3 C1 C2 C3 

F_a 
 

1.35 0.45 1.348 0.553 0.411 1.365 0.553 1.730 

F_e 

 

1.69 1.50 1.683 1.388 -0.716 1.565 1.267 2.640 

q_a 
 

1.13 0.45 1.127 0.459 0.525 1.132 0.459 0.525 

q_e 
 

2.57 1.55 2.576 1.562 -0.859 1.258 1.562 0.753 

FF_a 

 

Not provided 1.038 0.431 0.562 1.046 0.430 1.120 

Table II-6: C1, C2 and C3 coefficients for a beam under transverse load(s) 

Table II-6 shows that the values of C1 proposed by the French National Annex are very close to those 

given in Eurocode 9. Some deviations are noticed for C2 in the case of a point load applied at mid span. 

The Ci coefficients given in ENV and Eurocode 9 are similar in load case #q_a, while only C3 varies 

distinctly in load cases F_a and FF_a. In both cases of beams fixed at both ends, the values of C2 

proposed by ENV and Eurocode 9 are very close whereas C1 and C3 vary significantly. Opposite signs 

between the values of C3 fixed at both ends are linked with the different sign conventions used for zj. 

For a beam fixed at both ends subjected to a distributed loading, the ratio between the values of C1 

proposed by Eurocode 9 and ENV is close to 2. The former associates the critical bending moment with 

the bending moment at supports while the latter associates it with the bending moment at mid-span – 

having an intensity twice as low as that at supports. However, the critical bending moment is related to 

the maximum intensity of the bending moment distribution, corresponding to the Eurocode 9 approach. 

Load application at the shear centre 

Finite element analyses are employed to estimate the safety level provided by ENV and Eurocode 9 

when at least C1 or C3 are different in the two references. The elastic critical bending moments of beams 

#A to #B_M from Table II-2 are determined numerically, using LTBeamN, and analytically using the 

coefficients C1 and C3 from Eurocode 9 Part 1-1 and the ENV 1993-1-1. The Wagner factors are 

determined by numerical integrations performed using the software PropSection. In beams having a 

mono-symmetric cross-section, the flange having the greatest second moment of area about the z-axis 

is compressed at mid span, corresponding to the common practice. The results are presented in Table II-

7. 

It is worth mentioning that the sign of zj for load case #F_e according to ENV is determined from the 

end cross-section. Determining this sign using the cross-section at mid span – where the bending 

a a 2a 
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moment intensity is similar – would lead to extremely unsafe values of the critical bending moment (up 

to 8 times greater than the results of finite element analyses). 

Table II-7 shows that the critical bending moments determined using the Ci coefficients from Eurocode 

9 are close to the numerical ones, the maximum deviation being 5.6%. On the contrary, the critical 

bending moments determined with the ENV coefficients can result in values significantly deviating from 

the numerical results. 

Beam 
L 

(m) 

F_a FF_a F_e q_e 

MEC9/ 

MFE 

MENV/ 

MFE 

MEC9/ 

MFE 

MENV/ 

MFE 

MEC9/ 

MFE 

MENV/ 

MFE 

MEC9/ 

MFE 

MENV/ 

MFE 

#A 

2     0.970 0.902 0.948 0.473 

6     0.977 0.908 0.988 0.493 

12     0.982 0.914 0.994 0.496 

#B 

1.5     0.978 0.909 0.993 0.495 

4     0.968 0.900 0.988 0.493 

9     0.981 0.912 0.990 0.494 

#A_M 

2 1.053 1.883 1.048 1.230 1.046 0.599 0.967 0.497 

6 1.041 1.696 1.048 1.196 1.039 0.643 1.052 0.537 

12 1.035 1.466 1.043 1.145 1.026 0.715 1.039 0.527 

#B_M 

2 1.000 3.421 1.014 1.510 1.003 0.350 1.008 0.542 

4 0.994 2.739 1.011 1.375 1.008 0.410 1.056 0.558 

9 0.989 1.866 1.002 1.194 0.990 0.543 1.042 0.537 

Table II-7: Critical bending moments for a transverse load at the shear centre 

Determining the critical bending moment of doubly symmetrical beams fixed at both ends using the 

values of C1 proposed by ENV leads to slightly safe-sided results when under point load and very safe-

sided results when the load is uniformly distributed. In this load case, the ratios of analytical to numerical 

results are close to 0.5, the actual value of C1 is therefore approximately twice the value proposed by 

ENV. 

The analytical evaluation of the critical bending moments of beams having a mono-symmetric cross-

section carried out using C1 and C3 given in ENV leads to very unsafe results for beams pinned at both 

ends. Their values are up to more than three times greater than those determined numerically. On the 

contrary, the results are very safe for beams fixed at both ends. 

In load case #F_e, the value of C3 increases the safety level of the critical bending moment determined 

using the coefficients from ENV. In the other load cases, the coefficient C3 decreases the safety level of 

the critical bending moment. 

The safety level resulting from the analytical determination of the critical bending moment involving 

the Ci coefficients provided by Eurocode 9 Part 1-1 is acceptable. The same cannot be said regarding 

the results obtained using the ENV coefficients. 
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Load application outside the shear centre 

The French National Annex to EN 1993-1-1, ENV 1993-1-1 and Eurocode 9 Part 1-1 propose different 

values of C2 for a point load applied at mid-span, whether the beam is fixed or pinned at both ends. In 

both load cases, the critical bending moments of beams #A to #B_M from Table II-2 are computed using 

finite element analyses (LTBeamN) and analytically using the Ci coefficients from the three standards. 

The Wagner factors are determined via numerical integrations performed with PropSection. The 

calculations are run considering that the load is applied at the top flange – having the greatest Ifz – and 

directed towards the shear centre (zg > 0) or away from it (zg < 0). 

Beam L (m) 

zg > 0 zg < 0 

MFNA/ 

MFE 

MEC9/ 

MFE 

MENV/ 

MFE 

MFNA/ 

MFE 

MEC9/ 

MFE 

MENV/ 

MFE 

#A 

2 0.936 0.993 0.994 1.028 0.960 0.830 

6 0.943 0.999 0.996 1.041 0.974 0.845 

12 0.960 1.011 1.001 1.034 0.974 0.851 

#B 

1.5 0.938 0.995 0.994 1.056 0.987 0.854 

4 0947 0.999 0.991 1.036 0.974 0.849 

9 0.972 1.010 0.984 1.016 0.970 0.861 

#A_M 

2 

Outside 

the 

scope 

1.097 0.778 

Outside 

the 

scope 

1.004 1.223 

6 1.081 0.784 0.995 1.187 

12 1.060 0.806 1.005 1.143 

#B_M 

2 0.982 0.425 1.214 2.411 

4 0.977 0.464 1.183 2.168 

9 0.980 0.567 1.118 1.672 

Table II-8: Critical bending moments for a transverse load applied outside the shear centre – load case #F_e 

Table II-8 shows the results obtained in load case #F_e while Table II-9 presents those in load case #F_a 

For doubly symmetric members, Table II-8 shows that the critical bending moments determined using 

the coefficients from Eurocode 9 are very close to the reference values, regardless of the direction of 

the point load. The results obtained using the ENV coefficients are also very close to the numerical ones 

for a load applied towards the shear centre. They reveal safe when the load is applied outside the shear 

centre, the mean deviation being 15%. The results obtained using C1 and C2 from the French National 

Annex are slightly conservative when the transverse load is destabilizing while being slightly unsafe in 

the case of a stabilizing effect. 

The critical bending moments of mono-symmetric members subjected to load case #F_e determined 

using the Ci coefficients from ENV are very safe when zg is positive and very unsafe otherwise. The ratio 

with the reference value is in some cases lower than 0.5 and greater than 2, respectively. The results 

obtained with the coefficients from Eurocode 9 are closer to the reference values but some deviations 

on the unsafe side can be noticed. The maximum difference reaches more than 20% when the load is 

applied away from the shear centre. 
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Table II-8 shows that for doubly symmetric members in load case #F_e, using the Ci coefficients from 

Eurocode 9 results in the best level of safety. However, for mono-symmetric members the safety level 

provided by Eurocode 9 is not satisfactory when zg and zj are simultaneously non-zero. In such case, the 

determination of the critical bending moment for lateral-torsional buckling should be performed by 

means of finite element analyses. 

Table II-9 shows that for doubly symmetric beams pinned at both ends subjected to a point load at mid-

span outside the shear centre, the critical bending moments obtained using the Eurocode 9 and ENV Ci 

coefficients are close to the numerical results. Using the coefficients from the French National Annex 

to Eurocode 3 Part 1-1 produces slightly unsafe results when the load acts with a destabilizing effect. 

The results are slightly conservative when the load is applied away from the shear centre. The maximum 

deviation from the numerical values is 10% in both cases. The results obtained using the Eurocode 9 Ci 

coefficients present the best safety level. 

Beam L (m) 

zg > 0 zg < 0 

MFNA/ 

MFE 

MEC9/ 

MFE 

MENV/ 

MFE 

MFNA/ 

MFE 

MEC9/ 

MFE 

MENV/ 

MFE 

#A 

2 1.090 0.992 1.005 0.903 0.989 1.001 

6 1.088 0.998 1.011 0.909 0.988 1.001 

12 1.080 1.006 1.019 0.926 0.991 1.004 

#B 

1.5 1.090 0.994 1.007 0.905 0.989 1.002 

4 1.074 0.997 1.009 0.920 0.988 1.001 

9 1.049 1.001 1.014 0.946 0.988 1.000 

Table II-9: Critical bending moments for a transverse load applied outside the shear centre – load case #F_a 

II.4.4 Summary 

The general expression of the elastic lateral-torsional buckling bending moment (II.17) can be employed 

for mono-symmetric members resting on fork supports at both ends employing expression (II.18) along 

with (II.19) for zj – using the sign convention from Eurocode 9 Part 1-1 – and the coefficients C1, C2 

and C3 given in Table II-10. 

When studying a beam subjected to a bending moment distribution different from that of Table II-10, 

one should determine its elastic critical bending moment performing finite elements analyses, e.g. via 

LTBeamN, ANSYS, ABAQUS, FINELG... 
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Linear bending moment distribution 
Transverse loading 

ψ C1 

C3 

f
0.9 0    

f
0 0.9   Boundary conditions C1 C2 C3 

1.00 1.00 1.00 

 
1.35 0.55 0.41 

0.75 1.14 1.00 

0.50 1.31 1.00 

 

1.68 1.39* -0.72* 
0.25 1.52 1.00 

0.00 1.77 1.00 

 
1.13 0.45 0.53 

-0.25 2.05 1.00 0.85 

-0.50 2.33 1.00 
f

1.3 1.2  

 
2.57 1.55 -0.86 

-0.75 2.55 1.00 
f

0.55   

-1.00 2.55 
f

  

 

1.04 0.43 0.56 

    

Table II-10: Ci coefficients 

*: Load case where the analytical computation of the critical bending moment is not recommended for 

beams with a mono-symmetric cross-section under a transverse load applied outside the shear centre. 

The elastic critical loads of steel members subjected to either compression or bending having been 

investigated, members simultaneously bent and compressed are studied in the next section. 

II.5 Buckling of beam-columns 

A uniform doubly symmetric member subjected to a constant bending moment distribution My,0 and a 

constant axial load N0, unrestrained between both ends where resting on fork supports, generally buckles 

in a lateral-torsional way owing to the fact that Iz << Iy. The mode shape is composed of half a sine wave 

for both the lateral displacement and twist rotation: 

1( ) sin
x

v x v
L

 
  

 
 (II.25)   

1( ) sin
x

x
L


 

 
  

 
 (II.26)   

The elastic critical buckling happens when both the acting bending moment and axial load are multiplied 

by the amplifier αcr. The total potential energy is then: 

 
2 2 2

2 2 2 2 2 2
y,01 1 1 cr 0 0 1 1z w t 1 12

4

L
vv N i vM

L L L
EI EI GI

  
   

       
              

       

  (II.27)   

a a 2a 
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Employing the minimum potential energy principle results in the following coupled equations: 

2

y,0cr 0z 1 1 1

1

0 v vNM
v L

EI



  

       
  

 (II.28)   

2

2 2
y,0cr 0 0 1w 1 t 1 1

1

0 v N iM
L

EI GI


   


  
          

 (II.29)   

Reorganizing expression (II.28) leads to the relationship between both amplitudes of the lateral 

displacement v1 and twist rotation θ1: 

cr,z cr 0

1 1

y,0cr

N N
v

M







  (II.30)   

where Ncr,z is given by expression (II.2). 

Inserting expression (II.30) into equation (II.29), one obtains the critical load amplifier αcr: 

2
2

y,00 0 0 0

2
y,crcr,z cr,T cr,z cr,T

cr
22

y,00

2
y,crcr,z cr,T

4

2

MN N N N

N N N N M

MN

N N M



   
      

   


 
 

 

 (II.31)   

where Ncr,T and My,cr are given by expressions (II.6) and (II.16) (with zj = 0), respectively. 

Even in the simplest case of a uniform doubly symmetric member, resting on fork supports and subjected 

to constant axial and bending loadings, determining the critical load amplifier analytically is a tedious 

process. When confronted to steel beam-columns with more complex boundary conditions, one should 

perform Linear Bifurcation Analyses (LBA) using shell or beam finite elements to determine the critical 

load amplifier. 

The specific case of uniform members has been studied, the determination of elastic critical loads of 

non-uniform members will be discussed next section. 

II.6 Non-uniform members 

II.6.1 Flexural buckling 

Non-uniform steel members are of common use in practice but determining their elastic critical loads 

can be a challenging step when computing their buckling resistance. Nowadays, finite elements analyses 

can be performed to obtain the minimum amplifier of the in-plane loads to reach the elastic critical 

resistance of a non-uniform member subjected to compression and/or bending. However, several 

analytical methods were developed in the past to estimate the elastic critical loads of a non-uniform 

member. 
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The elastic critical load for flexural buckling about the y-axis of a tapered column has been investigated 

e.g. by Ermopoulos (1986, 1997). In the case of a quadratic variation of the in-plane second moment of 

area along the member, solutions were proposed making use of a buckling length coefficient to be 

determined involving abacus. For such members pinned at both ends, Serna (2011) proposed to compute 

the elastic critical load for flexural buckling about the y-axis of a tapered column subjected to a variable 

distribution of the axial load using: 

2
y,m

cr,y 2
N

L

EI
C


  (II.32)   

where Iy,m is the minimum second moment of area about the y-axis along the column and C is a factor 

accounting for the variable axial load distribution and cross-section dimensions, which can be 

approximated by (see Serna (2011)): 

   
max max

max max 1 1 4 4 2 2 3 3

21

4 6

c N
C

c N c N c N c N c N


   
 (II.33)   

where N1 to N4 are the values of the axial load acting at every L/3 of the column and: 

0.30 0.30 0.15 0.30

,m ,1 ,2 ,3

0.30 0.75

,max

( )

( )

y y y y

y y

I I I I
c x

I x I

  (II.34)   

The powers applied to the second moments of area were fitted using the results of finite element 

analyses. 

II.6.2 Lateral-torsional buckling 

Elastic critical loads for lateral-torsional buckling of non-uniform beams have also be studied in the 

past. Using the minimum potential energy principle on a tapered doubly symmetric beam resting on fork 

supports at both ends subjected to an arbitrary bending moment diagram, Galéa (1986) derived an 

expression for an equivalent height. The equivalent uniform member is supposed to have the same elastic 

critical bending moment as the actual tapered member. Considering half a sine wave for the twist 

rotation, the equivalent height heq is: 

2

min min
eq max

max max

0.283 1 0.434
h h

h h
h h

  
    
   

 (II.35)   

where hmax is the maximum web height and hmin is the minimum web height. 

Braham (1993) noticed that expression (II.35) led to an equivalent height close to the mean of the heights 

at both end sections. Ignoring the contribution of the Saint-Venant torsional constant, Braham (1993) 

proposed to determine the elastic critical bending moment of a mono-symmetric tapered beam subjected 

to a linear bending moment distribution using: 
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2

z,fc fi fs
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EI t t
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L

  
  

 
 (II.36)   

where heq is the mean of the web heights at both ends, Iz,fc is the second moment of area about the z-axis 

of the compressed flange of the beam and C1 is a coefficient accounting for the bending moment 

distribution and the cross-section variation. No expression is provided for C1 but values are given as a 

function of the ratio ψ between end moments when the ratio between heights at both ends is 1, 3 and 5. 

For a beam subjected to a linear bending moment distribution that is tapered on a portion ηL between 

restraints – the remaining part being uniform –, Galéa (2010) proposed a different expression of the 

equivalent web height. This expression was suggested using numerical critical bending moments 

obtained by means of the LTBeam software: 

max
eq m min

min

1 1
2

h
h h h
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 
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 (II.37)   

with: 
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min

1 0.12 1 1    if  0.5
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h

h
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h

  
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  
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  
 

 
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As exposed by Andrade (2010), these approaches considering that the critical bending moment of a 

tapered beam can be determined using an equivalent prismatic member fail to capture the impact of the 

web tapering on the bimoment behaviour as expressed by Kitipornchai (1972, 1975). 

Later, Boissonnade (2002a) demonstrated the impact of the tapering of the member on its total potential 

energy Π. This taper effect, affecting the torsional behaviour of the beams, was accounted for when 

defining the new beam finite element resulting from this work. Besides, this effect was quantified on 

few examples by comparing the elastic critical loads of two similar tapered members. One was treated 

as an addition of uniform elements having different heights (see Figure II-7a)) while the other was 

divided in tapered elements (see Figure II-7 b)). In the case of a tapered member subjected to a bending 

moment acting at its highest end, neglecting the taper effect yielded a critical load up to 16% lower than 

that accounting for that effect. 

 

a) Neglecting the flanges inclination 

ψ M
y
 

M
y
 

1 element 
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b) Accounting for the flanges inclination 

Figure II-7: Discretization of a tapered beam 

Accounting for the flanges gradient, Benyamina (2013) developed an expression for the critical bending 

moment of a doubly tapered beam resting on fork supports and subjected to a uniformly distributed 

transverse load (see Figure II-8) applied, or not, at the cross-sections shear centres. Using the energy 

method and considering that half a sine wave is an accurate solution for the lateral displacement and 

twist rotation of the buckling mode, Benyamina (2013) obtained: 

 
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 (II.38)   

with: 
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where Iy and Iz are the values corresponding to the mid-span cross-section while coefficients Aij, 

presented in Table II-11, depend only on the taper ratio α. 

 

Figure II-8: Doubly tapered beam (Benyamina, 2013) 
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Coefficient Expression 
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Table II-11: Coefficients Aij from Benyamina (2013) 

with: 

s,min

s,max

1
h

h
    

The elastic critical loads of a non-uniform member can be approximated using hand calculation in some 

simple cases but performing finite element analyses is better suited whatever the boundary conditions. 

LBA type calculations of non-uniform members must account for the taper effect using shell elements 

or appropriate beam elements. 

The elastic critical loads for members with non-deformable sections have been presented when subjected 

to compression force and/or bending moment. In the following section, the failure mode of beams 

including web distortion is studied. Existing analytical models, developed for a constant bending 

moment distribution are depicted. 

II.7 Lateral-distortional buckling 

II.7.1 Presentation 

While welded I-section beams usually fail in a Lateral-Torsional Buckling (LTB) mode, they generally 

present slender webs and possibly one or two very stocky flange(s), which may induce a Lateral-

Distortional Buckling (LDB) mode. The lateral-torsional buckling failure mode represented in Figure 

II-9a) corresponds to the cross-sectional lateral displacement and twist rotation. They are supplemented 

by web distortion in the lateral-distortional buckling failure mode. Web distortion can correspond to a 

single (see Figure II-9b)) or a double curvature (see Figure II-9c)). 
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a) LTB b) LDB – single curvature c) LDB – double curvature 

Figure II-9: Lateral-torsional and distortional buckling modes 

Under a constant bending moment diagram, doubly symmetric members resting on fork supports at both 

ends undergoing lateral-distortional buckling would preferably buckle in double curvature. For such 

members, existing analytical models to determine the elastic critical bending moment for LDB are given. 

Using an adequate existing formulation, a boundary between LTB and LDB is then derived. The 

predictions of the analytical formulations are compared against the results of finite element analyses 

using shell elements performed with ANSYS software. The influence of the bending moment distribution 

on the LDB behaviour and critical bending moment is then discussed. The possibility to extend the 

existing analytical formulations to linear bending moment distributions is confronted to Finite Element 

results. 

II.7.2 Analytical models for a uniform bending moment distribution 

II.7.2.1. Critical bending moment for LTB with equivalent stiffness 

When subjected to a uniform bending moment distribution, the elastic critical load for LTB of a doubly 

symmetric I-section steel member resting on fork supports at both ends obtained using expression (II.17) 

reduces to: 

22

w tz
cr,LTB 2 2

z z

I L GIEI
M

L I EI




   (II.39)   

For such members and boundary conditions, Dekker (1998) proposed to evaluate the elastic critical 

bending moment for LDB, Mcr,LDB, using the previous expression with equivalent stiffness. The modified 

values of the warping constant Iw, torsional constant It and z-axis second moment of area Iz were 

determined employing equivalent spring systems (see Figure II-10). 
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Figure II-10: Spring model employed by Dekker (1998) 

The equivalent spring systems for the warping and torsional constants and for out-of-plane stiffness 

proposed by Dekker (1998) are depicted in Figure II-11a), Figure II-11b) and Figure II-11c), 

respectively. 

 

 

 

a) Warping constant b) Torsional constant c) Lateral stiffness 

Figure II-11: Simplified spring systems for equivalent stiffness 

with: 

w,L w,θw
1 2
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The equivalent stiffness to the three above systems are obtained, and their ratios with the spring stiffness 

of one flange are shown by Dekker (1998) to be equal to the equivalent Iw, Iz and It divided by that of 

one flange or the global cross-section: 

warping,eq w,eq 1 2

f w 1 2 1

K I R R

K I R R


 

 
 (II.40)   
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 (II.41)   
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θ,eq t,eq 2

θ,L t,f 2

1
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K I R
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
 (II.42)   

where Iz,f is the second moment of area about the z-axis of a single flange and It,f is the torsional constant 

of a single flange. 

Besides, Dekker (1998) derived the coefficients R1 and R2: 
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Using the relationship between the modulus of elasticity E and the shear modulus G that depends on 

Poisson’s ratio ν (see expression (II.2)), one can rewrite expression (II.44) as: 
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 (II.45)   

The equivalent stiffness approach was also adopted by Pi (2000) to determine the elastic critical bending 

moment for LDB. Indeed, it was suggested to estimate the critical bending moment for LDB in the case 

of a constant bending moment using: 
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where the effective torsional rigidity (GIt)eq is: 
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(II.47)   

with:  
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and the warping distortion effective length factor kwd is: 
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Pi (2000) also proposed to use expression (II.46) but with the distortion effective length factor kwd equal 

to 1. The predictions of such expression showed a good agreement with finite element and finite stripe 

results for flanges having a substantial torsional rigidity. The predictions of expression (II.46) showed 

a good agreement with the reference numerical results for a wider range of flanges dimensions. 

Both analytical models proposed by Dekker (1998) and Pi (2000) consist in the use of equivalent 

rigidities to determine the elastic critical bending moment for LDB. This approach leads to expressions 

adapted to hand calculation but the consistency between LTB and LDB critical loads is questionable. 

Indeed, a lack of transition between both critical bending moments is noticed and one may wonder which 

buckling mode is the most relevant when confronted to an arbitrary case. 

Other existing approaches are depicted within the next sub-sections. 

II.7.2.2. Modified critical bending moment for LTB 

Besides the equivalent stiffness method, one may determine the critical LDB bending moment by 

multiplying the critical bending moment for LTB (exp. (II.39)) by a reducing coefficient. Using the 

results of finite element analyses, Bradford (1985) proposed expression (II.49) for monosymmetric 

members under a bending moment gradient. This expression concerns beams having flanges of equal 

thickness but different widths. 
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 (II.49)   

 

Figure II-12:Cross-section studied by Bradford (1985) 

where bc and bt are the compression and tensile flanges widths, respectively (see Figure II-12). 

Expression (II.49) is applicable when: 
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Bradford (1985) recommended to use expression (II.49) when the largest flange is in tension. In the 

opposite case, conservative results should be obtained by setting bc / bt = 1 in expression (II.49). 

No current design standard explicitly accounts for LDB but the AISC rules consider the impact of the 

web distortion on the elastic critical bending moment for LTB. Indeed, for doubly and mono-symmetric 

I-section beams having a slender web, the American code proposes to determine the elastic critical LDB 

bending moment using: 

 cr,LDB pg cr,LTB 0tM R M I   (II.53)   

where the bending strength reduction factor Rpg is: 
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 (II.54)   

The parameter aw corresponds to the ratio of the web area to the compression flange area with a 

maximum value of 10. The factor Rpg is generally comprised between 0.9 and 1.0. Indeed, when aw is 

equal to 10, Rpg is lower than 0.9 if: 

w

w

170 42
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t
   (II.55)   

For S355 beams, the previous web slenderness limit value is 180, corresponding for instance to a web 5 

mm thick and 900 mm high not commonly used in practice. 

It is worth mentioning that the AISC standard defines webs as slender when: 

w

w
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t
  (II.56)   

with: 

y

235

f
   

The previous criterion is adapted to the Eurocode 3 Part 1-1 cross-section classification formalism 

assuming that the elasticity modulus E is equal to 210 000 MPa. Slender webs according to the American 

code correspond to Class 4 webs in pure bending according to Eurocode 3 Part 1-1, which are defined 

by: 
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The AISC code implicitly proposes a lower limit value of the web slenderness (170ε) above which the 

web distortion may influence the global buckling of the beam. However, a lack of consistency between 

the critical bending moments for beams having a web slenderness slightly under and right above 170ε 

is noted. Besides, the AISC limit value does not account for the flanges dimensions which can have a 

significant impact on the distortional buckling mode, as shown by Bradford (1985). The predictions of 

the AISC expressions were compared against results of finite strip analyses conducted by Zirakian 

(2008). Very conservative results were obtained neglecting the member torsional constant when 

compared to the reference results. 

Similarly, Naderian (2014) used results obtained employing the finite strip method to conclude that 

expression (II.53) from AISC was overly conservative. The following expression was proposed as an 

alternative: 

 cr,LDB pg cr,LTB1.02 0tM R M I   (II.58)   

The previous expression corresponds to that proposed by the American code increased by 2%; the 

difference between both expressions for the critical bending moment is negligible. 

For mono-symmetric members subjected to a constant axial load and bending moment distribution, 

Wang (1991) expressed the total potential energy using an appropriate expression for the web lateral 

displacement vw: 
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 (II.59)   

where the αi coefficients depend on the displacements and twist rotation of both flanges. 

The energy method was then employed to perform a numerical parametric study. The results of this 

parametric study were then used to provide a fitted expression for the LDB critical bending moment, 

which is for doubly symmetric members: 
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where the distortion factor CLDB is: 
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For mono-symmetric beam-columns, a more general expression is provided by Wang (1991). 

In addition to the equivalent rigidities approach, one can determine the critical bending moment for LDB 

multiplying that for LTB with a coefficient lower than 1, and possibly assuming that the torsion constant 

is zero. However, no expression depicted in this sub-section relies on a solid mechanical background, 

the results of numerical studies being employed. 
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The following sub-section II.7.2.3 concerns the analytical model derived by Hancock (1980). The 

approach was similar to that of Wang (1991), based on the energy method computed using appropriate 

displacement and rotation fields. The energy method is fully derived leading to a consistent analytical 

expression for the elastic critical bending moment for lateral distortional buckling. 

II.7.2.3. Energy method with appropriate displacement and rotation fields 

In the case of doubly symmetric members subjected to both a constant axial load and bending moment, 

Hancock (1980) employed the energy method using appropriate functions for the displacement and 

rotation fields (see Figure II-13). Indeed, the web lateral displacement was approximated using 

expression (II.59) while the flanges vertical and lateral displacements were approximated by half sine 

waves with appropriate magnitudes. 

  

a) LDB displacements b) Studied loading condition 

Figure II-13: Hancock's (1980) assumptions 

In the case of a constant bending moment acting without axial load, and assuming that Iz is negligible 

when compared to Iy, the minimum potential energy principle results in the following expression for the 

critical bending moment for LDB: 
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 (II.62)   

where It,w is the torsional constant of the web and: 
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One can notice the following relationship between K and R2 from Dekker (1998): 
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The expression for the critical bending moment for LDB derived using Hancock‘s (1980) approach 

proposes a continuity between LTB and LDB. Indeed, when K tends towards the infinite, the critical 

bending moment obtained is similar to that for LTB while if K = 0, the flanges torsional constants are 

neglected. A limit lower value of K above which the elastic critical bending moment of a beam under a 

constant moment distribution can be determined assuming that web distortion is negligible is therefore 

discussed in the next sub-section II.7.2.4. 

II.7.2.4. Boundary between LTB and LDB 

For a constant bending moment distribution, expression (II.62) that relies on a strong theoretical basis 

can be employed to determine the critical bending moment of a beam that may undergo lateral torsional 

buckling with possible web distortion. This expression depends on a coefficient K given by expression 

(II.63). For the extreme cases where K tends towards the infinite or zero, the critical bending moment 

obtained corresponds to a LTB or LDB mode, respectively. A lower limit value of K can therefore be 

derived above which one may neglect the web distortion when computing the critical bending moment. 

When K is greater than a limit value Klim, the deviation of the critical bending moment determined using 

expression (II.62) from that determined using (II.39), neglecting web distortion, is lower than a value ε: 
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with: 
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When χt goes to infinity, the ratio between Mcr,LDB and Mcr,LTB tends to 1. No deviation between both 

critical loads is obtained, therefore web distortion is negligible and one may employ expression (II.39). 

The minimum value of the square root in the previous expression is obtained when χt goes to zero, 

yielding: 
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Assuming that a 10% deviation on the critical bending moment is still admissible, the previous 

expression rewrites: 
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One may conservatively simplify the previous criterion as: 

1K   (II.68)   

which corresponds to the case where: 
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For the vast majority of welded steel members, the preceding inequality is valid. In particular, beams 

that are susceptible to web distortion when undergoing global buckling generally present flanges having 

a greater torsional constant than their web. 

Introducing the value of K given by expression (II.63) and assuming that the Poisson’s ratio is 0.3, the 

criterion given by (II.68) rewrites as a function of the member dimensions: 
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 (II.70)   

Eventually, the critical bending moment of beams under a uniform moment distribution that verify the 

previous criterion may be computed neglecting web distortion, i.e. using expression (II.39). 

For a beam subjected to a constant bending moment distribution, the predictions of the presented existing 

expressions are compared against the results of finite element analyses using shell element in the 

following section. 

II.7.3 Finite element analyses 

Linear Bifurcation Analyses (LBA) are performed using a shell element model developed with ANSYS 

software. The shell elements possess 8 nodes, each of them presenting 6 degrees of freedom. The 

numerical analyses are led for a constant bending moment distribution, end moments being enforced by 

nodal forces varying linearly between both flanges, as depicted in Figure II-14. This figure also shows 

the boundary conditions corresponding to fork supports: the lateral and vertical displacements are fully 

prevented along with the twist rotation at both ends. To prevent any rigid body motion, the longitudinal 

displacement is fully prevented at one end. 

For obvious reasons web distortion is unrestrained along the beam length. 

A large number of LBA calculations were led on beams having cross-section dimensions entering the 

scope defined in Table II-12. The numerical simulations are performed considering a Young’s modulus 

E = 210 000 MPa and a Poisson’s ratio ν = 0.3. 

hw (mm) tw (mm) hw/tw b (mm) tf (mm) b/tf L (m) 

400 to 1000 4 to 8 48 to 165 160 to 280 10 to 46 4.3 to 28 4 to 8 

Table II-12: Scope of the parametric study for LDB 

The numerical results are used as reference values and compared against the predictions of the analytical 

models proposed by Dekker (1998), Pi (2000), Bradford (1985), the AISC code, Wang (1991) and 

Hancock (1980). The results obtained using expression (II.39) neglecting web distortion are also 

compared to the reference values. 
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Figure II-14: Numerical boundary conditions 

The comparison between analytical predictions and finite element results is shown in Figure II-15 where 

the dimensionless critical bending moment mcr is given as a function of the distortion coefficient K 

calculated with expression (II.63). The dimensionless ratio mcr corresponds to the ratio of the analytical 

prediction Mcr,analytical to the numerical reference value Mcr,FEA: 

cr,analytical

cr
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M
m

M
  (II.71)   

Figure II-15a) shows that for values of K greater than unity, neglecting web distortion yields critical 

bending moments very close to the numerical results. Web distortion is therefore insignificant when K 

is greater than 1, which corresponds to the limit value of this parameter set in sub-section II.7.2.4. 

Besides, for lower values of K, the prediction of expression (II.39) are unsafe when compared to FEA 

results. Most of the results obtained using the expression from AISC are equal to the predictions 

neglecting web distortion, except for slender webs for which the analytical predictions are up to 20% on 

the safe side. However, the K coefficient for members having slender webs scarcely falls under 1: the 

criterion proposed by the American standard is therefore inconsistent. 

The results obtained using Wang’s (1991) model are similar to the reference values when K is greater 

than 1. For lower values of this parameter, the predictions of such model are on the safe side. The 

deviation from the numerical values slightly increases as K diminishes, the maximum deviation being 

16%. The predictions of Dekker‘s (1998) expression are overly conservative for low values of K, while 

as this coefficient increases, analytical predictions get closer to the numerical results but with an average  

deviation close to 20% on the safe side. 
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a) Exp. (II.39), AISC, Dekker and Wang 

proposals 
b) Pi, Bradford and Hancock proposals 

Figure II-15: Mcr,LDB analytical predictions compared to FEA results for a constant bending moment distribution 

Figure II-15b) shows that the predictions of Bradford‘s (1985) proposal are overly conservative when 

K is lower than 1 For higher values of K, the analytical predictions are closer to the reference results, 

laying on the safe side with a maximum deviation from the reference results greater than 15%. On the 

contrary, the results obtained using Pi’s (2000) and Hancock’s (1980) proposals are very close to the 

reference results, particularly for low values of K. When K > 10, the predictions of Pi’s (2000) proposal 

become safe while the results obtained using Hancock’s (1980) proposal are very close to the numerical 

results whatever K. The maximum deviation on the unsafe side is then 3% which is still admissible. 

  
Exp. 

(II.39) 
AISC 

Dekker 

(1998) 

Wang 

(1991) 

Pi 

(2000) 

Bradford 

(1985) 

Hancock 

(1980) 

K < 5 
M 1.049 1.036 0.707 0.979 0.965 0.913 1.010 

SD 0.0789 0.0915 0.0581 0.0260 0.0144 0.1590 0.0062 

K < 2 
M 1.167 1.167 0.659 0.945 0.973 0.695 1.020 

SD 0.1323 0.1323 0.0951 0.0477 0.0197 0.2803 0.0090 

Table II-13: Comparison between analytical and numerical results for a uniform bending moment distribution 

The mean (M) and standard deviation (SD) of the ratios mcr obtained using the predictions of the 

analytical models proposed by Hancock (1980), Bradford (1985), Wang (1991), Dekker (1998), Pi 

(2000), the AISC code and expression (II.39) are given in Table II-13. The results are presented for 

beams where K < 5 and 2. 

Table II-13 shows that neglecting web distortion (using expression (II.39)) results in significantly unsafe 

and scattered critical bending moments for low values of K, as for the predictions of the American code. 

On the contrary, the predictions of Dekker’s (1998) proposal are very safe, the mean deviation from the 

numerical results being approximately 30%. The results obtained using Dekker‘s (1998) model present 

a low standard deviation when K < 5 while it increases for lower values of K. Using Bradford’s (1985) 
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expression yields safe results, especially when K < 2 where the mean deviation from the numerical 

results is 30%. Besides, for the lowest values of K, the standard deviation is overly high. 

The predictions of Wang’s (1991), Pi’s (2000) and Hancock’s (1980) expressions are very close to the 

numerical results, the mean deviation being 5% at most. The analytical model derived by Hancock 

(1980) is slightly better suited than those of Wang (1991) and Pi (2000), the results presenting a lower 

standard deviation that is less than 1%. 

A second set of finite element analyses was performed considering the numerical model previously 

introduced but where the web distortion is prevented along the beam enforcing kinematic constraints. 

The critical bending moment thus obtained corresponding to a LTB mode is Mcr,LTB. The critical bending 

moments for LTB and LDB having been computed for a large number of beams, their ratio is expressed 

as a function of K in Figure II-16. 

 

Figure II-16: Ratio of the numerical critical bending moments for LDB and LTB 

One can notice that web distortion influences the critical bending moment when K < 1 while for greater 

values, the deviation of the critical bending moments for LDB from that for LTB is at most 5%. The 

FEA results depicted in Figure II-16 are in line with the lower limit value of K (see expression (II.63)) 

above which the critical bending moment of a beam can be computed neglecting web distortion. 

In the simple case of a constant bending moment distribution, one may determine the critical bending 

moment for lateral distortional buckling of a uniform doubly symmetric beam resting on fork supports 

at both ends using expression (II.62). Expression (II.60) may also be used although providing safe results 

for low values of K with a deviation up to 16% from the numerical results. The analytical model from 

Pi (2000) can also be employed though a lack of consistency between LDB and LTB is noticed. 

Furthermore, if criterion (II.68) is satisfied for the studied member, its critical bending moment can be 

computed assuming no web distortion. 

The uniform bending moment distribution having been investigated, the influence of the bending 

moment distribution on the buckling behaviour is discussed in the following section. The possibility to 
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extend the existing models adapted to a constant moment diagram to a linearly varying bending moment 

distribution is then studied. 

II.7.4 Linear bending moment distribution 

II.7.4.1. Buckling mode 

In addition to the constant bending moment distribution case, FEA were performed for beams from 

Table II-14 subjected to a linear bending moment distribution. The ratios ψ between end moments 

studied are 0.5, 0, -0.5 and -1. Two types of FEA were run: 

(i) Unrestraining web distortion (thus obtaining Mcr,LDB), and 

(ii) Fully preventing web distortion by implementing kinematic conditions (Mcr,LTB). 

# hw (mm) tw (mm) b (mm) tf (mm) L (m) K (II.63) 

B1 400 6 200 27 4 0.513 

B2 400 8 200 36 4 0.513 

B3 400 6 200 34 4 0.257 

B4 400 8 200 43 4 0.301 

B5 800 8 200 46 8 0.492 

B6 800 6 200 34 8 0.514 

B7 800 8 200 20 4.5 1.894 

B8 800 6 200 18 6 1.948 

B9 800 8 200 20 5 2.338 

B10 800 6 200 18 8 3.464 

B11 800 8 250 18 6 3.695 

B12 800 8 200 20 7 4.583 

Table II-14: Geometry of the studied beams under a linear bending moment distribution 

Figure II-17 shows the cross-section displacement of beam #B7 for different values of ψ. The cross-

section displacements are shown at a specific location along the beam which varies between L/2 and L/4 

as ψ fluctuates from 1 to -1. For beam #B7, K is 1.894, therefore greater than the lower limit value of 1 

defined by expression (II.68) above which web distortion is negligible. 

The criterion is in good agreement with the cross-section displacement shown in Figure II-17a) (ψ = 1) 

where web distortion is barely visible. The same can be said in the case where ψ = 0.5 (see Figure II-

17b)) while for ψ = 0 (Figure II-17c)), web distortion slightly appears in single curvature. For negative 

values of the ratio between end moments, web distortion gets more pronounced as ψ diminishes to -1. 

For a beam with K > 1, Figure II-17 shows that when the ratio between end moments ψ is lower than a 

limit value ψlim, web distortion can be observed in single curvature. Similarly, for beams with K < 1, 

when ψ is lower than a certain limit value ψlim, web distortion corresponds to single curvature. Therefore, 

for such members, when ψ > ψlim, web distortion matches with double curvature while when ψ < ψlim, 

web distortion in single curvature appears. 
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x = 0.5L 

a) ψ = 1 

x = 0.4L 

b) ψ = 0.5 

x = 0.33L 

c) ψ = 0 

x = 0.38L 

d) ψ = -0.5 

x = 0.25L 

e) ψ = -1 

Figure II-17: Cross-section displacements for beam #B7 (K>1) 

Accordingly, in the following sub-section II.7.4.2 the predictions of Hancock‘s (1980), Wang‘s (1991) 

and Pi’s (2000) proposals multiplied by the equivalent uniform moment factor C1 (see equation (II.17)) 

are compared against the results of FEA performed for various ψ. In addition, the ratio between both 

FEA results for each beam, Mcr,LDB and Mcr,LTB, are also provided. 

II.7.4.2. Critical bending moment 

In the present sub-section, the predictions of the analytical models provided by Hancock (1980), Wang 

(1991), Dekker (1998) and Pi (2000) to determine the critical LDB bending moment are compared to 

the results of FEA calculations. The analytical critical bending moments being derived in the case of a 

linear bending moment distribution, their values are multiplied by the coefficient C1 having the values 

suggested in sub-section II.4.4. The ratios mcr between the analytical critical bending moment and the 

reference value (FEA with unrestrained web distortion) are depicted in Figure II-18 as a function of K. 

It is worth mentioning that some FEA with unrestrained web distortion have resulted in a local buckling 

mode, particularly for low values of ψ in the case of beams with K < 1. Those results are not reported in 

Figure II-18. 

Figure II-18 shows very close results in the cases of ψ = 1 or 0.5, the analytical models of Hancock 

(1980), Wang (1991), and Pi (2000) providing accurate results. When ψ ≥ 0, the analytical expressions 

of Hancock (1980) and Pi (2000) yield similar values of the critical bending moment as the reference 

ones, the maximum deviation being 11% when ψ = 0. The predictions of Wang’s (1991) model are 

similar to those from the previously cited ones except for very low values of K (< 0.35). In such case, 

this model provides results on the safe side with a deviation comprised between 10 and 16% from the 

FEA values. The results obtained using Dekker‘s (1998) proposal are safe-sided with an average 

deviation of 28%. The comparisons between analytical and numerical results when ψ is 0.5 or 0 show 

results similar to the constant bending moment distribution case. 

When ψ = -0.5, similar results are noticed for beams with K < 1 though the predictions of all proposals 

except Dekker’s (1998) become slightly unsafe. For beams having K > 1, the results obtained using these 

models can be very unsafe (deviation up to 40%) while for some beams, the analytical and numerical 

critical bending moments are similar. Using Dekker’s (1998) expression produces safe-sided results 

whatever K with a mean deviation of 18%. 
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a) ψ = 1 b) ψ = 0.5 

 

 

c) ψ = 0 d) ψ = -0.5 
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e) ψ = -1 

Figure II-18: Mcr,LDB analytical predictions compared to FEA results for a linear bending moment distribution 

In the case where ψ = -1, the results are more scattered than for the other values of ψ. For beams 

presenting K < 1, the analytical predictions of Hancock’s (1980) and Pi’s (2000) proposals are on the 

unsafe side with a 20% deviation from the reference results However, when K > 1 these analytical 

predictions can reveal significantly unsafe, the deviation being up to 90%. Similar results are obtained 

using Wang’s (1991) model when K > 1. For lower values of K, this analytical model yields slightly 

unsafe results with a 14% mean deviation from the numerical results. The predictions of Dekker’s (1998) 

model can be unsafe with a maximum deviation from the numerical results of 19% though the mean 

deviation is zero. 

In addition, the ratios of the numerical critical bending moments Mcr,LDB to Mcr,LTB are given in Table II-

15 for each beam as a function of ψ. The empty cells correspond to beams failing in an elastic web local 

buckling mode. 

Table II-15 shows that as ψ diminishes, the ratio Mcr,LDB / Mcr,LTB gets lower, and therefore web distortion 

gets more important though almost similar values are obtained when ψ = 1 or 0.5. When ψ ≥ 0.5, the 

ratios are greater than 0.95 for beams with K > 1 but their values range between 0.85 and 0.95 when ψ 

= 0. For negative values of ψ, the results are found between 0.50 and 0.87 for these members. 

The results given in Table II-15 are in agreement with those depicted in Figure II-18. Indeed, when ψ = 

0.5, the failure mode is associated with a web in double curvature for beams with K < 1 while no web 

distortion appears when K > 1 When ψ = 0, web distortion slightly appears in some of the beams with 

K > 1 while the LDB mode remains unchanged for the other members. Besides, for negative values of 

ψ, all beams with K > 1 fail in LDB with single curvature, though web distortion is smaller in beams 

#B10 and #B12. Beams with K < 1 fail in LDB with a web in between single and double curvature. 
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# K (II.63) 
Mcr,LDB / Mcr,LTB 

ψ = 1 ψ = 0.5 ψ = 0 ψ = -0.5 ψ = -1 

B1 0.513 0.874 0.865 0.820   

B2 0.513 0.846 0.841 0.818 0.741 0.653 

B3 0.257 0.793 0.784 0.736   

B4 0.301 0.779 0.775 0.751 0.672  

B5 0.492 0.808 0.805 0.790 0.739 0.667 

B6 0.514 0.839 0.834 0.805 0.716  

B7 1.894 0.974 0.955 0.854 0.636 0.504 

B8 1.948 0.971 0.958 0.884 0.703 0.574 

B9 2.338 0.976 0.963 0.888 0.708 0.581 

B10 3.464 0.976 0.971 0.940 0.849 0.759 

B11 3.695 0.986 0.973 0.900 0.722 0.595 

B12 4.583 0.982 0.978 0.951 0.868 0.786 

Table II-15: Comparison between LDB and LTB numerical critical bending moments 

Eventually, when K < 1, ψlim is lower than 0.5 and expressions (II.46), (II.60) and (II.62) multiplied by 

the appropriate value of C1 can be employed to determine the critical LDB bending moment. For beams 

with K > 1, web distortion is negligible when ψ is 0.5 and the value of ψlim is not unique but lower than 

0.5. When ψ < ψlim, the analytical models of Hancock (1980), Wang (1991) and Pi (2000) are very unsafe 

and should therefore not be used. The predictions of Dekker’s (1998) model, which are overly 

conservative for double curvature, are the closest to the numerical results but a maximum deviation of 

19% is noticed on the unsafe side when ψ = -1. 

II.7.5 Summary 

Existing formulations for the critical bending moment for lateral-distortional buckling have been 

presented for doubly symmetric members under a constant bending moment distribution. In such case, 

steel beams may undergo web distortion in double curvature. The use of equivalent rigidities is 

suggested by Dekker (1998) and Pi (2000). On the contrary, Bradford (1985), Wang (1991), the AISC 

standard and Naderian (2014) propose to use the critical bending moment for LTB with a reducing 

coefficient. For slender webs, the American code and Naderian (2014) suggest to equate the torsional 

constant to zero. The energy method was employed by Hancock (1980) using adapted expressions for 

the displacement and rotation fields yielding an expression depending on a distortion coefficient K. A 

limit lower value of K has been established above which web distortion is negligible under a constant 

bending moment. When compared against the results of finite element analyses, the predictions of 

Hancock’s (1980), Wang’s (1991) and Pi’s (2000) models are the most accurate. The formulations from 

the AISC and Naderian (2014) can be unsafe while those from Bradford (1985) and Dekker (1998) are 

overly conservative. 

For a linear bending moment distribution, the analytical models of Hancock (1980), Wang (1991) and 

Pi (2000) and the limit value of K are accurate above a certain value of the ratio between end moments. 
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Indeed, for lower values of the ratio between end moments, steel members may fail in a LDB mode with 

web distortion in single curvature. In such case, none of the depicted analytical models provides accurate 

results when compared to numerical values. 

Besides critical bending moments for LDB, design resistances should be investigated accounting for 

web distortion. A lack of analytical models predicting the ultimate strength of beams undergoing LDB 

can be noticed though Rossi (2022) lately developed formulae for a few load cases. However the 

proposed expressions, based on artificial neural network, reveal very tedious for a daily use. 

II.8 Conclusion 

Existing analytical expressions for the elastic critical loads of uniform members subjected to bending 

and/or compression have been derived using the energy method that involves the strain energy and the 

work performed by the external loads. Compressed members having a doubly symmetric cross-section 

may undergo in-plane or out-of-plane flexural or torsional buckling. Mono-symmetric members 

subjected to an axial load may fail either in a flexural-torsional or in-plane flexural buckling mode. The 

elastic critical loads corresponding to such buckling modes were provided for columns pinned at both 

ends subjected to a constant axial load. 

A general expression of the elastic critical bending moment for lateral-torsional buckling adapted to 

mono-symmetric members is given. In the case of fork supports at both ends, existing values of the 

coefficients C1, C2 and C3 on which the critical bending moment depends are presented. Analytical 

critical bending moments were computed using the Ci coefficients, which account for the bending 

moment distribution, provided by different standards. The analytical results were compared against 

reference values obtained using beam finite element analyses. Within the existing values from different 

design codes, Ci coefficients that provided the best safety level when compared to finite element analyses 

were suggested for beams resting on fork supports at both ends and subjected to various bending moment 

distributions. 

The analytical determination of the elastic critical load of a uniform member subjected to either 

compression force or bending moment can be direct. However, obtaining that of a uniform member 

subjected simultaneously to compression and bending is not a straightforward process. Indeed, though 

hand calculation can be employed when both the axial load and bending moment intensities are uniform 

and the steel beam-column rests on fork supports at both ends, finite element analyses are required when 

the boundary conditions are not that trivial. 

The treatment of non-uniform members has been discussed, existing propositions to determine the 

critical axial load for in-plane buckling or lateral-torsional buckling being given. As already shown in 

the past, one can notice that accurately accounting for the taper of the member leads to cumbersome 

expressions even for simple boundary conditions. Similarly to the case of uniform beam-columns, the 

elastic critical loads of a tapered member subjected to bending and/or compression should be obtained 

employing finite element analyses, e.g. using the software LTBeamN. 

Eventually, the lateral-distortional buckling of doubly symmetric beams have been investigated. 

Existing formulations proposed in the case of a uniform bending moment distribution were depicted, 

their predictions being compared against numerical results. Expressions relying on a consistent 

derivation of appropriate displacement and rotation fields provide critical bending moment in good 

agreement with the numerical ones. The use of equivalent stiffness may produce a good approximation 
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of the numerical results (Pi (2000)) or provide overly conservative results (Dekker (1998)). A boundary 

between LDB and LTB failure modes have been derived using an existing analytical model of Hancock 

(1980) for a constant bending moment and validated against numerical results. 

Besides, the bending moment distribution has a significant impact on the distortion mode, the web being 

either in single or double curvature. However, the comparison against numerical results highlighted that 

none of the depicted formulation can be employed in the case of an arbitrary bending moment 

distribution. Indeed, the accurate analytical models for a constant distribution provide unsafe results for 

end moments having opposite signs. 

Expressions for the elastic critical bending moment for lateral-torsional buckling were presented 

assuming fork supports at both ends, warping and out-of-plane rotations being unrestrained. However, 

the presence of end restraints may affect the critical bending moment. Consequently, next chapter 

focuses on the elastic critical bending moment of doubly symmetric beams with warping restraints at 

supports. 
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 Elastic lateral-torsional buckling 

of I-beams with warping restraints 

III.1 Introduction 

While the elastic lateral torsional buckling of a doubly symmetric uniform I-section beam is commonly 

investigated considering free warping and out-of-plane rotation at supports, the presence of welded 

transverse stiffeners or connection may maintain the opposite flange out-of-plane rotations, significantly 

reducing warping at supports. However, except for a beam with unrestrained or fully restrained warping, 

a lack of close-form solutions for lateral-torsional buckling of simply supported beams that account for 

warping restraints is noticed in the literature. 

The current Eurocode 9 Part 1-1 and French National Annex to Eurocode 3 Part 1-1 provide analytical 

models, as depicted in Chapter II, of the elastic critical lateral-torsional buckling bending moment for 

different loading conditions but are restricted to fork supports. Despite a substantial impact on the 

buckling behaviour, the influence of connection typologies, such as bolted end plates or column base 

plates on warping is usually neglected. 

As explained in Chapter II, the warping coefficient kw is present in the expression of the critical bending 

moment to account for warping restraints, however no standard provides any guidance on how to 

evaluate this coefficient. Expressions for kw can be found in the literature as depicted in section III.2. 

Eurocode 9 Part 1-1 points out the increase of the equivalent uniform moment factor C1 with warping 

restraints. Existing formulations for such coefficient are therefore provided in section III.2 mainly in the 

case of warping fully restrained at both ends, few researches having investigated the case of elastic 

restraints. 

The lack of existing analytical models concerning the elastic lateral-torsional buckling of doubly 

symmetric beams with warping restraints at both ends led to the analytical model derived in section III.4 

for members subjected to a linear bending moment distribution or a pointwise or uniformly distributed 

transverse load. The energy method is applied using appropriate trigonometric series for the twist 

rotation and lateral displacement, along with infinite power series based solutions for the shape 

functions. The buckling shapes obtained using the two methods are compared against those resulting 

from finite element analyses. Besides, the warping stiffness of some end connections are derived.  

Since significant warping stiffness can be encountered in practice, a criterion for a limit stiffness is 

proposed to consider fully restrained warping at both ends when determining the elastic critical bending 

moment. In the case of column bases, the criterion is enriched to assume warping as fully restrained at 

one of the two ends. Finite element analyses permit to validate this simplification. 

It is found that the critical bending moment depends on the stiffness of the warping restraints through 

both kw and C1, the latter depending also on the bending moment distribution. The comparison of the 

analytical results against the numerical ones obtained using 8-noded shell elements in ANSYS and 2-

noded beam elements in LTBeamN software shows a good agreement. 
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III.2 Existing formulations 

III.2.1 Critical bending moment 

As depicted in Chapter II, the French National Annex to Eurocode 3 Part 1-1, Eurocode 9 Part 1-1 and 

TC8 from ECCS (2006) the elastic critical bending moment expression accounts for warping restraints 

through the warping coefficient kw for which no expression is provided in the codes. The elastic critical 

bending moment of a uniform beam having a doubly symmetrical cross-section subjected to a linear 

bending moment distribution or to a transverse load applied at the shear centre and resting on fork 

supports, the out-of-plane rotations being unrestrained at both ends, is: 

22

w tz
cr 1 2 2 2

z w z




 

I L GIEI
M C

L I k EI
 (III.1)   

The warping coefficient kw varies between 0.5 and 1 for fully restrained to unrestrained warping at both 

ends. Due to the lack of knowledge regarding the evaluation of kw, a safe value of 1 is usually adopted 

in practice. 

Kováč (2019) suggested adopting a value of kw based on the twist rotation boundary conditions similarly 

to the evaluation of the kz coefficient from the kinematic constraints on the out-of-plane rotations at 

supports. 

The C1 coefficient is generally assumed to be related to the bending moment diagram only and the 

French National Annex to EN 1993-1-1 does not consider any influence of the elastic warping restraints. 

However, Eurocode 9 Part 1-1 provides values of C1 for fully restrained warping in the case of a 

transverse loading that increase comparatively to unrestrained warping. Besides, Gosowski (2007) 

showed a significant influence of different types of end restraints against warping on the experimental 

distribution of the twist rotation. Wierzbicki (2019) noticed, by means of finite element analyses, that 

the critical bending moment can be multiplied by up to 6 when end transverse stiffeners are present 

parallel to the web to restrain warping. Existing warping restraints can hardly be explicitly accounted 

for when evaluating the critical bending moment despite their recognized significant influence. 

Živner (2012) employed finite element analyses to develop expression of the warping stiffness cw and 

connect them to the warping coefficient kw for hot-rolled IPE 200 and HEB 400 cross-sections. Based 

on the work of Lindner (1984), ECCS’ TC8 (2006) proposed an expression for the warping coefficient: 
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with: 
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cw: Stiffness of the warping restraints. 

In presence of end transverse stiffeners at supports (see Figure III-1), the warping stiffness is: 
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where tp is the end plate thickness and hs the distance between the flanges centres. 

 

Figure III-1: Beam and end plate geometries 

Expression (III.2) of the warping coefficient depends on the beam warping stiffness EIw and length L, 

and on the spring warping stiffness cw. The bending moment distribution for which expression (III.2) is 

valid is not specified and neither is the coefficient C1. For a uniform bending moment distribution, Pi 

(2000) proposed to estimate the warping coefficient using: 
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Under the same bending moment distribution, Trahair (1993) suggested to use: 
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In the case of different warping restraints at both ends, Wierzbicki (2020) provided an expression of the 

warping coefficient, no bending moment distribution being specified: 
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where the coefficients Kw,I of the fixations stiffness at each end restrain against warping vary between 0 

and 1 for fully restrained and unrestrained warping, respectively: 
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Details on the derivation of expressions (III.2) and (III.4) to (III.6) are missing in the corresponding 

references. 

In the case of cantilever beams, Khanh (2021) proposed an expression of the warping coefficient 

determined using the results of finite element analyses performed for a uniform bending moment 

distribution. The numerical expression, which does not account for the influence of the warping restrains 

on C1, is: 

w
w
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 (III.8)   

The equivalent uniform moment factor has also been studied for fully restrained warping at both ends. 

Using the finite differences method, expression for C1 were proposed by Djalaly (1974) for beams with 

fully restrained warping at supports subjected to end moments, their ratio ψ being comprised between -

1 and +1, or a uniformly distributed load (UDL): 
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UDL C1 = 1.581 (III.10)   

The finite differences method has also been employed by Serna (2006) to derive an expression for C1 

considering a general bending moment distribution and warping restraints. The expression is however 

restricted to the specific case of equal warping and out-of-plane coefficients (kw = kz = k): 

2

1 2 2

1

1

1 1

2 2

  
  
 



k k
k A A A

C
A

 
(III.11)   

with: 
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where M1 to M5 are the values of the bending moment acting at every L/4 and Mmax the design bending 

moment. 

Sherbourne (1989) employed the Galerkin method to derive an expression of C1 for beams subjected to 

end moments and with fully restrained warping and unrestrained out-of-plane rotation at both supports: 
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 (III.12)   

Assuming similar boundary conditions, Lim (2003) employed a beam finite element model to develop 

an expression of the equivalent uniform bending moment factor: 



STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 87 - 

   
1

2 2

2

0.8 1 0.1 1

C

 


  

 
(III.13)   

Bresser (2020) used the energy method to develop an expression of C1 in the case of beams with full 

warping restraints at both ends and simultaneously subjected to a point load F located along the beam 

length L and to end moments αFL and βFL: 
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(III.14)   

where factors D3 to D5 depend on the location of the point load along the beam, a transverse load applied 

at mid-span resulting in -0.1925 for D3 and D4 and 0.0388 for D5. 

In addition, Piotrowski (2019) employed the energy method to derive a general expression for the elastic 

critical bending moment explicitly accounting for warping restraints. The lateral displacement v and 

twist rotation θ were approximated using power polynomial shape functions. For a beam subjected to a 

linear bending moment distribution with unrestrained out-of-plane rotation, Piotrowski (2019) proposed 

to use: 
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where the coefficients C1, C2, C3 and D1 are given in Table III-1. 

 1 0.5     0.5 1    

C1  2

w w
347.75 1.457 2.4     2

w w
57.6 1.457 2.4    

C2  w
4149 1.2    w

691.2 1.2   

C3   2

w w
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w w
1.018 0.000297 0.009    

d2 
6

w w
1.704 0.099 0.215    

6

w w
0.108 0.001 0.014    

Table III-1: Coefficients C1 to C3 and D1 (Piotrowski 2019) 

The index of fixity against warping κw varying from 0 to 1 for unrestrained and fully restrained warping, 

respectively, is given by: 
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The warping coefficient can be identified from equation (III.15): 
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In addition, the C1 coefficient is extracted form expression (III.15) and depends on the bending moment 

distribution and the warping stiffness. For a linear bending moment distribution, C1 is determined using 

expression (III.15) for unrestrained and fully restrained warping at both ends. The values are given in 

Table III-2 along with those provided by Table M.1 from the French National Annex to EN 1993-1-1 

(FNA) for unrestrained warping. For fully restrained warping, the increase of C1, when compared to the 

unrestrained case, varies between 10% and 30% when ψ varies between 1 and -1. For unrestrained 

warping, the FNA provides values of C1 that are lower than those of Piotrowski (2019), particularly for 

negative values of ψ. 

Reference Warping 
ψ 

1 0.5 0 -0.5 -1 

French NA Unrestrained 1.00 1.31 1.77 2.33 2.55 

Piotrowski 

(2019) 

Unrestrained 1.01 1.32 1.82 2.53 2.71 

Fully 

restrained 
1.11 1.46 2.04 3.01 3.57 

Table III-2: C1 for unrestrained and fully restrained warping 

The C1 coefficient provided for fully restrained warping in case of a linear bending moment distributions 

provided by several authors (Djalaly (1974), Sherbourne (1989), Lim (2003), Serna (2006) and 

Piotrowski (2019)) are compared in Figure III-2 as function of the ratio between end moments that 

ranges between -1 and +1. The values provided by the FNA are also given in the case of unrestrained 

warping. 

The values provided by Sherbourne (1989), Lim (2003) and Piotrowski (2019) are very close, the 

discrepancy being less than 10%. The predictions of Djalaly (1974) are close to the previously cited 

ones for positive values of ψ while they fall significantly below for negative values of the ratio. The 

proposal of Serna (2006) was developed for fully restrained warping and out-of-plane rotation at 

supports. The obtained values are significantly different from those provided by the former approaches. 

However, these values are very close to the values provided by the FNA in the case of unrestrained 

warping (and out-of-plane rotation) at supports. Finite element analyses must therefore be employed to 

assess the accuracy of the different methods. 
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Figure III-2: C1 for fully restrained warping 

Expressions were proposed for the warping coefficient kw in the case of a uniform bending moment 

distribution and for the coefficient C1 in the fully restrained warping case, mainly for a linear bending 

moment distribution. Piotrowski (2019) developed an analytical mode explicitly accounting for warping 

restraints but which involves equations too cumbersome for a daily use. Simple expressions based on 

the consistent derivation of an analytical model are therefore developed in section III.4. 

III.2.2 Stiffness of warping restraints 

III.2.2.1. Beam ends connection configurations 

Gil (2019) derived the warping stiffness of non-reinforced bolted end plate beam-to-column joints (see 

Figure III-3a)) employing the component method improved by specifically-derived new components. 

The model was extended by Gil (2020) to cover bolted end-plate beam-to-column joints reinforced with 

additional web plates (see Figure III-3b)). The reinforcement multiply by 3 the warping stiffness of the 

connection. Besides, the warping stiffness of the non-reinforced joints is 2.4 to 9.7 times greater than 

those of typologies using stiffeners at beam ends. 
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a) Non-reinforced solution b) Reinforced solution 

Figure III-3: Bolted end-plate beam to column joint 

Živner (2012) proposed estimates for the warping stiffness of some beam-to-column joints involving 

specifically hot-rolled HEB and IPE members that depend on the torsional constant of the column and 

the beam depth. In the case of portal frames built with IPE 500 and HEA 500 members having specific 

lengths, Masarira (2002) gave numerical values of the warping stiffness of the beam-to-column joints. 

Besides, Pi (2000) derived analytical expressions for the stiffness of the warping restraints induced by 

some connection configurations that are developed hereafter. These expressions rely on the 

displacements and rotations presented in Figure III-4. 

 
 

a) Warping of an end plate b) Torsional rotation of an I-member 

Figure III-4: Displacements due to torsion 

One can analyze warping as out-of-plane bending moments Mf,z acting in both flanges, the bending 

moments intensities being similar in both flanges while the sign differs. The out-of-plane bending 

moments produce in each flange a rotation θf having different signs (see Figure III-4a) in the case of an 

end plate). The work performed by the bending moment Mf,z acting in each both flanges is: 
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Besides, the torsional moment producing the twist rotation of an I-section member can be interpreted as 

the lateral displacement vf of each flange having the same intensity but directed towards opposite 

directions (see Figure III-4b)), therefore the following expression arises: 

s
f

2

h
v   (III.19)   

In addition, owing to kinematic compatibility: 

f
f

dv

dx
  (III.20)   

The derivative of the twist rotation can thus be expressed as a function of the rotation θf in the flanges: 

f

s

2d

dx h


  (III.21)   

When warping is elastically restrained at the member ends, the spring stiffness cw can be expressed as a 

function of the bimoment B and the derivative of the twist rotation θ is: 

0,L
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0,L

x

x

B

d dx
c
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



  (III.22)   

along with the conservation of energy stating that the sum of the work W and the strain energy U stored 

in the warping restraints is zero. 

In the case of end plates, the strain energy Up is: 
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  (III.23)   

with: 
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The end plate warping stiffness is therefore: 
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(III.24)   

The stiffness of warping restraints were given by Pi (2000) for other connection configurations that are 

depicted in Figure III-5. The strain energy corresponding to each connection configuration is derived in 

Table III-3 along with the corresponding warping stiffness. 
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# Strain energy U Warping stiffness cw 
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Table III-3: Strain energy and warping stiffness of connection configuration from Figure III-5 

with: 
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For web open stiffeners, Pi (2000) provides an expression of the warping stiffness in the specific case 

of tp,1 = tp,2 while a contribution of the strain energy of torsion stored in the flanges is accounted for in 

the case of additional web plates. This contribution is neglected here because when twp tends towards 0, 

the warping stiffness must as well tend towards 0.  

 
 

a) Web open stiffeners b) Web box stiffeners 
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c) Additional web plates 

Figure III-5: Connection configurations investigated by Pi (2000) 

III.2.2.2. Fixed column base 

A column base considered as fixed regarding out-of-plane rotation induces also a significant restrain 

against warping, the stiffness of which being derived hereafter. The warping restraints present at one of 

the column ends can be symbolised as rotational springs about the z-axis, having different stiffness, 

present at both flange-to-web junctions, as depicted in Figure III-6. The acting bending moment about 

the y-axis induces compressive stresses in a flange and tensile stresses in the other flange. Hence, the 

stiffness of the rotational springs at the top and bottom flanges, Sj,t and Sj,b, are different. Their values 

can be calculated as exposed by Amaral (2014). 

  

a) Torsional springs b) Torsional rotation 

Figure III-6: Fixed column base 

Owing to the difference between both stiffness Sj,t and Sj,b, the flanges lateral displacements vf,t and vf,b 

are unlike, their boundary conditions being: 
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f,zf,b 0
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  (III.26)   

Besides, the flanges displacements are related to the cross-section twist rotation by: 
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Combining expression (III.27) with (III.25) and (III.26), one obtains: 
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Eventually, the warping stiffness of a fixed column base is: 
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(III.29)   

The warping stiffness induced by a fixed column base may be significant enough to assume warping as 

fixed at the member end(s). A lower limit on the stiffness of the warping restraints is therefore 

investigated in sub-section III.5.3 to assume warping as fixed at both ends when computing the elastic 

critical bending moment. 

III.3 Resolution method 

The energy method described in Chapter II is employed in the case of a doubly symmetric beam 

subjected to either a linear bending moment or a transverse load applied at mid span or uniformly 

distributed at the shear centre and having warping restraints at supports. The strain energy is composed 

of a part stored in the beam and a part stored in the warping springs: 

U U U beam springs  (III.30)   
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Besides, the work performed by a uniform bending moment distribution My,0 is: 
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   (III.31)   

For a beam resting on fork supports at both ends, the lateral and vertical displacements and twist rotation 

being fully restrained, and with free out-of-plane rotation, the boundary conditions concerning the lateral 

displacement v and twist rotation θ are: 

(0) = ( ) = 0v v L  (III.32)   
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 (III.33)   

(0) = ( ) = 0  L  (III.34)   

Besides, when the beam ends are elastically restrained against warping, the spring stiffness being cw, the 

bimoment B at the beam ends is: 

w

0

(0)
x

d
B c

dx





   (III.35)   

w( )
x L

d
B L c

dx





  (III.36)   

In addition, the distribution of the bimoment along the beam is related to the second derivative of the 

twist rotation and to the beam warping stiffness with: 
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 (III.37)   

Combining expressions (III.35) and (III.36) with (III.37) leads to the following boundary conditions 

regarding the twist rotation: 
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 (III.39)   

In the specific case of unrestrained warping (cw = 0), the bimoment vanishes at the beams ends resulting 

in: 
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 (III.41)   

In the other specific case of fully restrained warping where cw tends towards infinity, the right hand side 

of expressions (III.38) and (III.39) tends towards zero leading to: 
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The principle of minimum total potential energy (see expression (II.1)) employed with the boundary 

conditions regarding out-of-plane displacements, twist rotations and warping restraints (see equations 

(III.32) to (III.34), (III.38) and (III.39)) results in the following coupled equilibrium equations: 
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Integrating twice the previous equation (III.45) and combining with (III.44) yields the uncoupled 

differential equilibrium equations: 
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 (III.47)   

The differential equations are linear with a non-constant term as the bending moment which is assumed 

to be a polynomial function of order p. An exact closed-form solution for the twist angle lie in the form 

of an infinite power series (see Timoshenko (1963)), as developed in the upcoming section III.4. 

III.4 Infinite power-series based solution 

III.4.1 Solution method 

The resolution of the differential equation (III.47) is investigated hereafter for beams subjected to a 

polynomial shaped bending moment distribution. The dimensionless form of equilibrium differential 

equation (III.47) reads: 
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with: 
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The primary unknown in the previous equation is the twist rotation that can be expressed as an infinite 

power series. The twist rotation dimensionless boundary conditions are in the case of elastically 

restrained warping: 
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The bending moment distribution assumed to be a polynomial function of order p is given by: 
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Therefore, the dimensionless term m2 from equation (III.48) can be expressed as: 
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with: 
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The twist rotation is expressed as an infinite power series: 
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The nth derivative of the twist angle is then: 
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Combining expressions (III.53) and (III.54) yields: 
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k 0 q=0
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A general expression for the power series terms θk can eventually be obtained combining equations 

(III.48), (III.55) and (III.56): 
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III.4.2 Fully restrained warping 

In the specific case of fully restrained warping at supports, enforcing the boundary conditions at s = 0 

in expression (III.54) yields: 

0 0   (III.58)   

1 0   (III.59)   

The power series terms θk can then be determined as a function of θ2 and θ3 using the recursive 

expression (III.57) yielding: 
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Applying the boundary conditions of the twist rotation at s = 1 leads to: 
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The following homogenous system of linear equations can therefore be obtained by expressing θk using 

θ2 and θ3: 
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 (III.65)   

The matrix coefficients are non-linearly dependent on the polynomial coefficients corresponding to the 

applied bending moment. The elastic buckling load factor, associated with the critical bending moment 

is found when the determinant of the 2×2 matrix is zero. The corresponding eigenvector of the linear 

system can be then employed to determine the direction of the eigenvector containing the terms θ2 and 

θ3 and therefore the remaining θk. The exact solution for the beam buckled shape can then be known. In 
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practice, the solution can be obtained only to an arbitrary level of precision by truncating the infinite 

series at a given order n and computing the resulting linear system. 

III.4.3 Elastically restrained warping 

Considering the general case of partially restrained warping at supports, implementing the boundary 

conditions at s = 0 in expression (III.54) leads to: 

0 0   (III.66)   
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The remaining terms of the power series are now related to terms θ1 and θ3 using: 

k k 1 k 3   a b  (III.68)   

where the ak and bk coefficients are obtained using expressions (III.61) and (III.62), respectively. 

Applying the boundary conditions of the twist rotation at s = 1 leads to the homogenous system of linear 

equations relating the terms θk to θ1 and θ3: 
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 (III.69)   

The resolution method is similar to that presented in sub-section III.4.2. Again, given a polynomial 

shape for the bending moment, the elastic critical load (amplifier) is obtained by setting the determinant 

of the 2×2 matrix to zero. The buckling shape of the beam can be obtained by determining the 

eigenvector containing θ1 and θ3 and therefore the remaining θk using the eigenvector of the linear 

system associated with the null eigenvalue. Again, the solution in practice can only be obtained to an 

arbitrary level of precision by truncating the infinite series at a given order n and computing the resulting 

linear system. 

III.5 Analytical model 

III.5.1 Shape functions 

Computing the exact solution for the elastic critical bending moment using the pseudo infinite power-

series-based solution for the twist rotation is very challenging: simplest analytical solutions are required 

for a daily use. The derivation of the minimum potential energy principle is therefore performed in sub-

section III.5.2 using approximate trigonometric series for the lateral displacement and twist rotation. 

Whatever the bending moment distribution, for unrestrained warping and out-of-plane displacement at 

both ends, kinematically admissible for the lateral displacement v and twist rotation θ are infinite series 

of sine waves: 
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where vk and θk are the magnitudes of the out-of-plane displacement and twist rotation, respectively, 

associated with the kth sine shape function. 

In the specific case of a uniform bending moment distribution, the exact solutions for the lateral 

displacement and twist rotation are half a sine wave when warping and out-of-plane rotation are 

unrestrained at supports: 
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where v1 and θ1 are the magnitudes of the out-of-plane displacement and twist rotation, respectively. 

In the case of fully restrained warping at both supports, obtaining an admissible shape function is not 

trivial. Vlasov (1961) and Djalaly (1974) for a uniform bending moment distribution, and Bresser (2020) 

for a beam subjected to end moments and a transverse load, proposed to use a single admissible 

trigonometric function to approximate the twist rotation: 
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Therefore, a combination of expressions (III.73) and (III.74) is used for a beam with elastic warping 

restraints at both ends when subjected to a constant bending moment diagram. The following expression 

is employed for the twist rotation, fulfilling the boundary conditions given in equations (III.34), (III.38) 

and (III.39): 
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(III.75)   

Expression (III.75) is generalized by considering a linear combination of infinite number of base 

functions: 
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2 1

 
  

     
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

n k x x
x k c k

k L L
 

(III.76)   

The magnitudes vk and θk from expressions (III.70) and (III.76) are the unknown to be determined from 

the minimum potential energy principle depicted in Chapter II. 
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III.5.2 Critical bending moment 

III.5.2.1. Uniform bending moment distribution 

The buckled shape of a beam subjected to a uniform bending moment can be described using a single 

shape function for the twist rotation θ and the lateral displacement v, which are the first term of infinite 

series (III.76) and (III.70), respectively: 

1( ) sin
 

  
 

x
v x v

L
 (III.77)   

1 w( ) 4 sin 1 cos
 

  
     

       
     

x x
x c

L L
 

(III.78)   

The distribution of the twist rotation predicted by expression (III.78) is compared against that given by 

the beam finite element code LTBeamN and the Power-Series-Based (PSB) solution, using 50 terms, in 

Figure III-7. The example consists in 8 m-span doubly symmetric beam subjected to a constant bending 

moment. The steel cross-section is an I-profile with a web of 800×8 mm and flanges of 200×14 mm. At 

its both ends, the beam is connected to steel plates of 30 mm thickness. The warping stiffness is 

determined using equation (III.3). 

  

a) Twist rotation b) Warping 

Figure III-7: Twist rotation and warping fields for a uniform bending moment 

Figure III-7 shows that the analytical and numerical results match very well except for the warping near 

supports where some differences are noticed. The results using the PSB solution and FEA match 

perfectly for both the twist rotation and warping. 

Inserting expressions (III.77) and (III.78) into the expression of the total potential energy described by 

(III.30) and (III.31) results in the following expression: 
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with: 
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Differentiating the potential energy with respect to amplitudes θ1 and v1, one obtains: 
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 (III.80)   
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 (III.81)   

Equation (III.80) provides the following relationship between both amplitudes: 
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(III.82)   

Equations (III.81) and (III.82) are combined together to derive the expression of the elastic critical 

bending moment: 

22 2

t w w s tz
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M z t t w z
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 
 (III.83)   

Expressions for the equivalent uniform moment factor C1 and the warping coefficient kw are identified 

from the previous equation: 
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 (III.84)   
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 (III.85)   

The coefficient C1 ranges from 1 to 3π/8 (≈ 1.18) for unrestrained and fully restrained warping, 

respectively while kw varies between 1 and 0.5 in the same conditions. The elastic critical bending 

moment of a doubly symmetric beam subjected to a uniform bending moment with warping restraints 

at both ends using expression (III.1) where C1 and kw are given by expressions (III.84) and (III.85), 

respectively. 

III.5.2.2. Linear bending moment distribution 

Using the distribution of the lateral displacement and twist rotation expressed by (III.77) and (III.78), 

respectively, the critical bending moment of a beam subjected to end moments – their ratio being ψ – is 

derived, resulting in the following expressions for the coefficients C1 and kw: 
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 (III.86)   
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 (III.87)   

The warping coefficient remains unchanged while the equivalent uniform moment factor is the product 

of a factor C1,ψ depending only on ψ and a factor C1,w depending only on the stiffness of the warping 

restraints that is similar to expression (III.84). 

For free warping at supports, expression (III.86) leads to inconsistent values of C1 for negative values 

of ψ since C1 goes to infinity when ψ = -1. This inconsistency is a consequence of the choice of 

displacement and rotation fields assuming half a sine wave which is not appropriate when ψ is lower 

than 0.5. 

Both the displacement and rotation fields are therefore enhanced with the second term of the series 

(III.70) and (III.76), respectively: 

1 2
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 (III.88)   

1 2( ) ( ) ( )   x x x  (III.89)   

with: 
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The distributions of the twist rotation predicted by expression (III.89) are compared to those given by 

FEA, using the LTBeamN programme, and the PSB solution, using 50 terms, in Figure III-8. The 

example consists in the same beam as employed to obtain the results shown in Figure III-7 but subjected 

to a linear bending moment distribution with the ratio between end moments ψ being 0, -0.75 and -1. 

  

a) ψ = 0 b) ψ = -0.75 

 

c) ψ = -1 

Figure III-8: Twist rotation for a linear bending moment distribution 

For every value of ψ, Figure III-8 shows an almost perfect match between the results obtained using 

FEA and the PSB solution. Besides, the numerical and analytical results coincide when ψ is -1. For ψ = 

0 or -0.75, the numerical and analytical results estimate a similar peak value but which is not obtained 
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at the same position x along the beam. Indeed, according to FEA the position of the peak value varies 

with the ratio between end moments while the proposed analytical expression is symmetric about mid-

span. This difference may induce small deviations between the value of the critical bending moment 

computed numerically and analytically. 

Expressions (III.88) and (III.89) are inserted into the total potential energy Π. Performing the integration 

along the beam length, an algebraic expression for the potential energy arises, allowing for the 

calculation of its derivatives about the magnitudes. The minimum potential energy principle yields the 

following homogenous system: 
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(III.90)   

Where the Kij coefficients are: 
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Equating to zero the determinant of the 4×4 previous matrix results in a 4th order equation on Mcr where 

the terms associated with the 1st and 3rd order are zero. Expression (III.1) is inserted in the 4th order 

equation from, identifying the same expression as (III.85) for kw and the following equation on C1: 

4 2

1 1 2 1 3 0  AC A C A  (III.91)   

One obtains the lowest value of C1, providing conservative results, assuming that: 
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This assumption leads to the following values for the Ai coefficients: 
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The positive solution to the previous equation is provided in Table III-4 as a function of the ratio between 

end moments. 

ψ = -1 1 < ψ < 1 ψ = 1 
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Table III-4: Expression of C1 for various ψ 
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The C1 coefficient depends both on the bending moment distribution, through ψ, and on the warping 

stiffness, through the ξi parameters. The values of C1 for fully restrained and unrestrained warping at 

both ends are given in Table III-5 along with the values provided by the FNA in the unrestrained case. 

The FNA values are lower than those calculated using the analytical model in the case of free warping. 

Besides, the increase of the C1 coefficients provided by full warping restraints ranges between 9.4 and 

20%. The highest values are found as ψ approaches -1. 

ψ C1,0 (free warping) 
C1,∞ (fully restrained 

warping) 
C1,∞ / C1,0 

C1 (Table 

M.1, FNA) 

1.00 1.000 1.094 1.094 1.00 

0.75 1.141 1.249 1.094 1.14 

0.50 1.324 1.451 1.097 1.31 

0.25 1.563 1.723 1.102 1.52 

0.00 1.880 2.095 1.115 1.77 

-0.25 2.275 2.597 1.141 2.05 

-0.50 2.665 3.146 1.181 2.33 

-0.75 2.813 3.377 1.200 2.57 

-1.00 2.612 3.134 1.200 2.55 

Table III-5: C1 for free and fully restrained warping 

The expressions for C1 given in Table III-4 are too cumbersome to be used in a day-to-day design, 

simplifications being very much required. The coefficient C1 is approximated as the product of a factor 

C1,ψ depending only on the bending moment distribution and a factor C1,w depending only on the stiffness 

of the warping restraints: 

1 1,w 1,ψC C C  (III.96)   

The C1,w factor corresponds to that given in Table III-4 in the case of a uniform bending moment, 

providing the lowest value of the ratio C1,∞ / C1,0: 

2 3 4

w w w w
1,w 2 3 4

w w w w

7458 2879 447.7 34.64 1.196

7458 2879 443.9 32.93

c c c c
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c c c c

   

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 (III.97)   

Besides, the factor C1,ψ is expressed in a similar format to that adopted by existing expressions (see 

French National Annex to EN 1993-1-1, Djalaly (1974), Sherbourne (1989), Lim (2003)): 
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(III.98)   

where the αi coefficients are determined using the value of C1 for free warping when ψ = 1, 0 and -1, 

which results in: 

1,ψ
2

1

0.209 0.427 0.283
C

 


 
 (III.99)   

The predictions of the proposed expression (III.85) for the warping coefficient kw are compared against 

those from Lindner (1984) and ECCS (2006), Trahair (1993), Pi (2000), Piotrowski (2019) and 

Wierzbicki (2020) in Figure III-9. 

 

Figure III-9: Warping coefficient 

Similar results are found using these approaches except for that of Trahair (1993) standing slightly 

below the results obtained according to the analytical model and the expressions suggested by ECCS 

(2006), Pi (2000) and Piotrowski (2019). The predictions of Wierzbicki (2020) are even lower. Besides, 

deviations are noted in the case of warping fully restrained where the predictions of Pi’s (2000) and 

Piotrowski’s (2019) expression tend toward 0.44 and 0.48, respectively, which are slightly below 0.50 

obtained with other methods. 

III.5.2.3. Beam under transverse loading 

The present sub-section deals with the elastic critical bending moment of beams with warping restraints 

at both ends subjected to either a uniformly distributed load or a mid-span pointwise force, applied 

without eccentricity with respect to the shear centre. For such bending moment distributions the critical 

bending moment is derived assuming a single shape function for both the lateral displacement and twist 

rotation, given by expressions (III.77) and (III.78), respectively. 
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The twist rotation and warping distributions determined using the analytical model are compared in 

Figure III-10 against those resulting from FEA, preformed with LTBeamN, using the example studied 

in sub-sections III.5.2.1 and III.5.2.2 but subjected to a mid-span point load. It can be seen that the twist 

angle and warping distributions obtained numerically and analytically match very well, justifying the 

choice of the twist rotation fields. The same conclusion can be drawn when analysing a beam subjected 

to a uniformly distributed load applied at the shear centre. 

  

a) Twist rotation b) Warping 

Figure III-10: Twist rotation and warping fields for a pointwise force at mid-span 

Using expressions (III.77) and (III.78) for the lateral displacement and twist rotation fields, the 

minimization of the total potential energy yields the following expression for the warping coefficient, 

which is similar to that derived in the case of linear bending moment distribution: 
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 (III.100)   

In addition, in the case of a pointwise force at mid span, the C1 coefficient is: 
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 (III.101)   

while in the case of a uniformly distributed load, C1 is: 
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 (III.102)   

The previous expressions for C1 are simplified in the case of pointwise force and uniformly distributed 

load, respectively, in expressions (III.103) and (III.104): 

2

w w
1 2

w w

39.48 10.67

21.16 6.24 0.465

c c
C

c c

 


 
 (III.103)   

2

w w
1 2

w w

39.48 10.67

30.78 8.81 0.643

c c
C

c c

 


 
 (III.104)   

Closed form expressions for the elastic critical bending moment have been derived in the case of a linear 

bending moment distribution, a transverse pointwise force at mid span or a uniformly distributed along 

the beam. It has been demonstrated that both the warping coefficient kw and the equivalent uniform 

moment factor C1 depend on the stiffness of the warping restraints, the latter depending also on the 

bending moment diagram. 

The warping stiffness induced by common connection configurations (see sub-section III.2.2) being 

significant, warping might be assumed as fixed at the member end(s). A lower limit on the stiffness of 

the warping restraints is therefore derived next to assume warping as fixed at both ends when computing 

the elastic critical bending moment. 

III.5.3 Limit stiffness for fully restrained warping 

For many connections used in practice, warping may be assumed as fully restrained at both end. A lower 

limit of the warping stiffness cw,lim to consider warping as fully prevented at both supports is thus 

proposed. When the stiffness of the warping restraints is greater than cw,lim, one may compute the 

warping coefficient kw and the equivalent uniform moment factor assuming warping as fully restrained 

at both ends. The limit stiffness is determined using the same approach as that adopted for the rotational 

stiffness of connection in Eurocode 3 Part 1-8 for column base plate by Jaspart (2008) and for beam-

to-column joints by Bijlaard (1991). 

For a stiffness cw of the warping restraints greater than the limit value cw,lim, the deviation of the critical 

bending moment assuming elastic restraints Mcr,cw from that assuming full warping restraints Mcr,∞ is 

lower than a certain value ε: 

cr,cw 1,cw

22

tcr, 1, w,cw
2 2 2
w, t w,

1 1 1
1

1 1
1





 

 

   

 

M C

M C k

k k

 
(III.105)   

Assuming that C1,cw = C1,∞, the previous expression can be rewritten as: 
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(III.106)   

The minimum value of the limit warping coefficient (kw,cw)lim is obtained when the parameter χt goes to 

infinity, resulting in: 

  w,

w,cw lim 1

k
k







 (III.107)   

Besides, using expression (III.2) of the warping coefficient given by Lindner (1984) and ECCS TC 8 

(2006) yields: 

  
w w

w w lim w,cw lim

1 1

24 1

EI EI

c L c L k

 
   

 
 (III.108)   

which combined together with expression (III.107) produces the following criterion on the warping 

stiffness: 

 

 w,w w
w

w w,lim

4 (1 )/

/ 2 (1 )









 
 

 

kEI L EI
c

EI L L k
 (III.109)   

The value of the warping coefficient for fully restrained warping, i.e. 0.5 is employed for kw,∞ while 

assuming that a 10%-deviation on the warping coefficient is admissible, resulting in as deviation up to 

10% on the critical bending moment, one may assume warping as fully restrained at both ends provided 

that: 

w
w 16

EI
c

L
 (III.110)   

Eventually, if the stiffness cw of the warping restraint present at both ends fulfils the previous condition, 

the critical bending moment of the beam can be computed assuming warping as fully prevented at both 

ends. 

Applying the criterion (III.110) for a warping stiffness determined using expression (III.29), one obtains: 

2 2

s sz z

j,t j,b j,t j,b

1
16 4

41 1 1 1

h hEI EI

L L

S S S S

  
   

    
   

 

(III.111)   

In the particular case where Sj,b = Sj,t = Sj, the previous expression rewrites: 

z
j 8

EI
S

L
  (III.112)   
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Besides, in the other particular case where Sj,t is negligible when compared to Sj,b, expression (III.111) 

becomes: 

z
j,t 4

EI
S

L
  (III.113)   

The possibility to extend the criterion for fully restrained warping at both ends (III.110) to fully 

restrained at one end, e.g. using expression (III.111) for fixed column bases, will be confronted to FEA 

in section III.6. 

III.5.4 Summary of the propositions 

Deriving the analytical model has resulted to a single expression for the warping coefficient kw that 

depends only on the stiffness of the warping restraints while expressions for the coefficient C1 depend 

both on the stiffness of the warping restraints and the bending moment distribution. Besides, the warping 

stiffness of some connection configurations has been developed along with a lower limit value for such 

stiffness to assume warping as fully prevented at both ends. 

The warping coefficient can be obtained whatever the bending moment diagram using: 

2
2 w

w

w
2 2

w w

8

3 4
20

3





 



 

c
c

k

c c
 (III.114)   

In the case of a linear bending moment distribution, the value of C1 can be obtained using the expressions 

provided in Table III-4 or the simplified expression: 

1 1,w 1,ψC C C  (III.115)   

where C1,ψ depends only on the bending moment distribution and C1,w depends only on the stiffness of 

the warping restraints: 

2 3 4

w w w w
1,w 2 3 4

w w w w

7458 2879 447.7 34.64 1.196

7458 2879 443.9 32.93

c c c c
C

c c c c

   


   
 (III.116)   

1,ψ
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C

 


 

 
(III.117)   

In addition, for a pointwise force and a uniformly distributed load, equations (III.101) and (III.102), 

respectively, are given to compute the C1 coefficient, which are simplified as, respectively: 

2

w w
1 2

w w

39.48 10.67

21.16 6.24 0.465

c c
C

c c

 


 
 (III.118)   
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w w

39.48 10.67

30.78 8.81 0.643
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 
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 (III.119)   

The kw and C1 coefficients both depend on the stiffness of the warping restraints, their determination 

assuming warping as fully prevented at both ends being admissible provided that the restraints stiffness 

cw complies with: 

w
w 16

EI
c

L
 (III.120)   

The critical bending moments determined using the expressions derived from the analytical model will 

be compared against the predictions of finite element analyses using either beam or shell elements, 

making use of the programmes LTBeamN and ANSYS, respectively. Besides, the accuracy of the limit 

stiffness value proposed in the case of a fixed column base to consider warping as fixed at one of the 

member end will be investigated using Finite Element Analyses. 

III.6 Numerical analyses 

III.6.1 Models 

Finite elements analyses have been computed using either a beam-element model with LTBeamN or a 

shell-element model with ANSYS. While the beam elements contain 2 nodes, each having 7 degrees of 

freedom that includes warping, the shell elements possess 8 nodes, each having 6 degrees of freedom. 

In both cases, the Linear Bifurcation Analyses (LBA) were carried out considering a Young’s modulus 

E = 210 000 MPa and a Poisson’s ratio ν = 0.3. 

In both the beam and the shell models, the fork supports are implemented by fully preventing the lateral 

and vertical displacements along with the twist rotation at both ends while the longitudinal displacement 

is blocked at one end to avoid any rigid body motion (see Figure III-11 for the shell model). 

 

Figure III-11: Fork support conditions and pointwise load 
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In the beam model, the degree of freedom corresponding to warping can be free, fully fixed at supports, 

or connected to a warping spring having a stiffness cw defined using expression (III.3) corresponding to 

end plates. In the shell model, end plates restraining warping having the width and height of the flange 

and web, respectively, are modelled at supports using shell elements. To fully restrained warping, rigid 

beam elements are implemented at both end sections, imposing the same out-of-plane rotation within 

these cross-sections. Besides, distortion modes along the beam are prevented by enforcing appropriate 

kinematic conditions in the shell model. 

 

Figure III-12: Uniformly distributed loading and end moment 

In the shell model, a mid-span transverse pointwise force is applied at the shear centre where a transverse 

stiffener is added to avoid unwanted local effects (see Figure III-11). The uniformly distributed loading 

are also enforced at the cross-sections shear centre while nodal forces varying linearly with the section 

depth are applied at the beam ends to produce end moments (see Figure III-12). 

Designation hs (mm) tw (mm) b (mm) tf (mm) L (m) 

P1 600 6 200 14 6 

P2 800 10 280 14 10 

P3 800 6 280 12 10 

P4 650 6 180 14 5 

P5 650 6 180 10 5 

P6 650 5 200 12 4 

P7 650 5 200 16 4, 6 & 8 

P8 800 8 200 15 6 

P9 500 8 200 15 6 

P10 300 4 100 6 6 & 9 

P11 300 6 100 10 6 & 9 

P12 347.3 8 170 12.7 6 

P13 337.5 12.5 300 22.5 3 & 6 

Table III-6: Geometry of the studied beams 



STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 115 - 

Table III-6 provides the dimensions of the beams studied in the present chapter. The lengths are ranging 

between 3 and 10 m while the web and flange slenderness vary between 27 and 131, and between 6.1 

and 11.4, respectively. At both ends, warping is either free, fully restrained, or partially restrained by 

end plates having 7 to 70 mm-thick to extend the study beyond common practice. 

III.6.2 Elastic critical buckling 

III.6.2.1. Linear bending moment 

 Coefficient C1 

The values of C1 determined using the analytical model (see Table III-4), the simplified model (see 

expression (III.96)), the FNA and FEA – using LTBeamN –are depicted in Figure III-13 as functions of 

the ratio ψ for beams P1 to P7, P12 and P13. The results are given in the two extreme cases of free 

warping and fully restrained warping (labelled “fixed”). 

The predictions of the analytical model in the unrestrained warping are in good agreement with the 

numerical results though the analytical model slightly overestimates C1 (by less than 3%) when the ratio 

between end moments is comprised between -0.5 and 0. The deviations between the twist rotation 

distributions depicted in Figure III-8 may explain the differences between the values of C1. The 

predictions of the simplified expression are similar to those of the analytical model. Besides, the 

predictions of the FNA are conservative, C1 being underestimated by up to 10%. 

  

a) Free warping b) Fully restrained warping 

Figure III-13: C1 for free and fully restrained warping 

In the fully restrained warping case, the predictions of the analytical model match very well the FEA 

results when ψ is greater than -0.75. For lower values of the ratio, the analytical model lays on the safe 

side with a deviation up to 15% from the numerical predictions. The simplified expression provides 

values similar to the analytical and numerical ones for ψ >-0.5 while for lower values, the simplified 

expression provides values lower than those of the analytical model, therefore laying on the safe side. 

The difference between the simplified and analytical expressions can be attributed to the C1,w factor that 
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produces a 9.4% increase of C1 from the unrestrained to the fully restrained case whatever ψ while Table 

III-5 exhibits an incidence of the value of ψ on the C1 increase. 

 Critical bending moment 

The elastic critical bending moments obtained using FEA are compared against the predictions of the 

analytical model using Table III-4 for C1 or using the simplified expression (III.96) for beam P2 in 

Figure III-14 where the dimensionless ordinate axis is Mcr/Mcr,0 with Mcr,0 being the critical bending 

moment for the unrestrained warping case. The predictions of the analytical and simplified models are 

shown in solid lines for warping restraints corresponding to end plates (up to 70 mm) and by empty 

triangular markers for the fully restrained warping case. 

  

a) ψ = 1 b) ψ = 0 

 

c) ψ = -1 

Figure III-14: Ratio Mcr/Mcr,0 for beam P2 under a linear bending moment distribution 
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Figure III-14 shows that the critical bending moment increases significantly when warping is fully 

restrained, its value being almost twice that obtained in the free warping case for all values of ψ. For ψ 

comprised between 0 and 1, the predictions of the different methods are very close for values of the 

dimensionless stiffness up to 1.50. For greater stiffness, the analytical model slightly overestimates (by 

less than 5%) the critical bending moment when compared to numerical results. When warping is fully 

prevented, the predictions of the analytical model are on the safe side while being close to the numerical 

ones, the difference being 3% at most. Besides, using the simplified and the analytical expressions yields 

similar results in the uniform bending moment case. When ψ = 0 small differences are observed for fully 

restrained warping, the predictions of the simplified model being in every case lower than those of the 

analytical model. 

For ψ = -1, the results obtained using the different methods coincide for small-to-medium values of the 

warping stiffness. As the stiffness increases, the analytical model slightly deviates from the numerical 

model but lays on the safe side, the predictions of the simplified model being safer. In the fully restrained 

case, the analytical and numerical predictions exhibit differences close to 12%, placing the analytical 

model on the safe side. 

Table III-7 provides the mean and standard deviation of the ratio between the predictions of the 

analytical or simplified model and the numerical values of the critical bending moments (Mcr) as well as 

the relative critical ones (Mcr/Mcr,0) for beams P1 to P11 subjected to end moments. 

The relative critical bending moments determined using the analytical and the simplified models are 

very close to the numerical ones. The mean deviation is less than 1.5% and 3% whatever ψ, respectively. 

The standard deviation of predictions of the dimensionless critical bending moment using the simplified 

model increases as ψ decreases as a consequence of the factor C1,w that does not account for the bending 

moment distribution while numerical analyses have shown an impact of the bending moment diagram 

on this factor. 

ψ 1 0.5 0 -0.5 -1 

 

 
cr cr,0 analytical

cr cr,0 FEA-shell

M M

M M
 

M 1.012 1.013 1.014 1.009 0.987 

SD 0.0253 0.0252 0.0256 0.0413 0.0385 

cr,analytical

cr,FEA-shell

M

M
 

M 1.024 1.027 1.047 1.064 0.961 

SD 0.0277 0.0275 0.0281 0.0298 0.0366 

 

 
cr cr,0 simplified

cr cr,0 FEA-shell

M M

M M
 

M 1.012 1.012 1.010 0.993 0.970 

SD 0.0249 0.0253 0.0283 0.508 0.0626 

cr,simplified

cr,FEA-shell

M

M
 

M 1.024 1.028 1.042 1.043 0.947 

SD 0.0273 0.0276 0.0299 0.0405 0.0593 

M: Mean 

SD: Standard Deviation 

Table III-7: Comparison between analytical, simplified and numerical predictions for linear bending moment 

distribution 
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Small differences are noticed when comparing the analytical and numerical critical bending moments, 

particularly for values of ψ comprised between -0.5 and 0, the mean deviation being 6.4% at most. This 

acceptable difference results from the use of symmetrical shape functions as approximate solutions for 

the mode shapes which cannot reproduce the shift of the peak value of the twist rotation as the bending 

moment distribution varies. The predictions of the simplified model are slightly lower than those of the 

analytical model for negative values of ψ with 4.3% deviation on the unsafe side and a 5.3% deviation 

on the safe side. Besides, the standard deviation between the simplified and numerical models increases 

as ψ decreases, similarly to the comparison between the analytical and numerical models. 

Enhancing the shape functions with a third term would increase the complexity of the expressions for 

kw and C1 without a significant difference in the critical bending moment values. In addition, a maximum 

6% deviation on the critical bending moment is reduced when computing the lateral-torsional buckling 

resistance according to Eurocode 3 Part 1-1 design rules. 

III.6.2.2. Beam under transverse loading 

The critical bending moments resulting from finite element analyses using both the shell and beam 

models are confronted to those calculated using the analytical model. The results are presented in Figure 

III-15 for beam P2 subjected to a transverse load, either uniformly distributed (UDL) or applied at mid-

span, without eccentricity with respect to the shear centre. Similarly to the linear bending moment 

distribution case, the critical bending moment increase between free and fully restrain warping is 

substantial, being almost doubled. 

  

a) Point load at mid-span b) Uniformly distributed loading 

Figure III-15: Ratio Mcr/Mcr,0 for beam P2 under transverse loading 

In both load cases studied in Figure III-15, the different methods give similar results for very low values 

of the dimensionless warping stiffness while for increased thickness, the analytical model slightly 

overestimates the critical bending moment by up to 8%. When warping is fully restrained, the analytical 

and numerical models give similar results. 
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Transverse loading 
Point 

load 
UDL 

 

 
cr cr,0 analytical

cr cr,0 FEA-shell

M M

M M
 

M 1.028 1.030 

SD 0.0293 0.0314 

cr,analytical

cr,FEA-shell

M

M
 

M 1.036 1.037 

SD 0.0297 0.0318 

Table III-8: Comparison between analytical and numerical predictions for a beam subjected to transverse 

loading 

Table III-8 gives the mean and standard deviation of the ratio between the predictions of the analytical 

model and the numerical values of the critical bending moments (Mcr) as well as the relative critical ones 

(Mcr/Mcr,0) for beams P1 to P5 under transverse loading. The results obtained with both methods are very 

close, the mean difference between them being approximately 3% in both cases. 

III.6.3 Limit stiffness for fully fixed warping at one end 

Expression (III.111) that provides a lower value for the limit warping stiffness to consider warping as 

fully prevented at a fixed column base is derived from the limit value proposed to consider warping as 

fixed at both ends. FEA are therefore employed to assess the accuracy of the criterion for fully fixed 

warping at a single end by comparing the critical bending moments: 

 Mcr,w computed assuming that warping is free at one end while a warping spring is connected to 

the other end. Two values are used in turn for the stiffness of the warping spring. A value 

corresponding to the lower bound of expression (III.110) is firstly used, i.e. assuming a 10% 

deviation from the warping coefficient for fully restrained warping at both ends: 

w
w 16

EI
c

L
  (III.121)   

An alternate value is also used assuming a 5% deviation from the warping coefficient for fully 

restrained warping at both ends (see equation (III.109)): 

w
w 36

EI
c

L
  (III.122)   

 Mcr,∞ calculated assuming that warping is free at one end and fully prevented at the other end. 

The comparisons are performed for a IPE 400 cross-section member having a length ranging from 3 to 

6 m and for P2 (see Table III-6) having a length ranging from 3 to 9 m. In both cases, the studied 

members are subjected to a linear bending moment distribution with ψ = 1, 0 and -1. In the case of a 

triangular bending moment (ψ = 0), the bending moment is zero at the end where warping is free, in line 

with the common practice. The ratios Mcr,w / Mcr,∞ are given in Table III-9 where Mcr,90 is associated with 

the warping stiffness computed using expression (III.121), Mcr,95 being related to (III.122). 

Whatever the stiffness of the warping restraints, results are very close when ψ = 1 or -1, lower values of 

Mcr,w / Mcr,∞ being found in the case of a triangular bending moment distribution. Using expression 
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(III.121) for the warping stiffness provides values of Mcr,w / Mcr,∞ greater than 0.9 except when ψ = 0 

where slightly lower values are obtained, the maximum deviation being 3%. When a greater value of 

the warping stiffness is introduced, using expression (III.122), all the ratios are greater than 0.9, the 

results being comprised between 0.93 and 0.97. 

Cross-

section 
L (m) 

Mcr,90 / Mcr,∞ Mcr,95 / Mcr,∞ 

ψ = 1 ψ = 0 ψ = -1 ψ = 1 ψ = 0 ψ = -1 

IPE 400 

3 0.915 0.876 0.920 0.955 0.933 0.959 

3.5 0.917 0.879 0.925 0.957 0.934 0.963 

4 0.920 0.880 0.926 0.958 0.935 0.963 

4.5 0.923 0.884 0.928 0.959 0.937 0.964 

5 0.925 0.886 0.931 0.960 0.938 0.965 

5.5 0.927 0.888 0.933 0.961 0.939 0.966 

6 0.930 0.891 0.935 0.962 0.940 0.966 

P2 

3 0.908 0.868 0.916 0.952 0.930 0.958 

4 0.908 0.869 0.917 0.952 0.930 0.958 

5 0.910 0.873 0.913 0.952 0.932 0.953 

6 0.910 0.873 0.916 0.953 0.931 0.957 

7 0.911 0.872 0.917 0.954 0.932 0.960 

8 0.912 0.874 0.919 0.954 0.932 0.960 

9 0.914 0.875 0.921 0.955 0.933 0.961 

Table III-9: Ratio Mcr,w/Mcr,∞ for a linear bending moment 

The criterion (III.110) was proposed assuming a maximum deviation on the critical bending moment of 

10%. Because the use of expression (III.121) provides deviations greater than 10%, the same criterion 

cannot be applicable for members with warping prevented at a single end. A more restrictive criterion 

is therefore to be used, based on expression (III.122): 

w
w 36

EI
c

L
  (III.123)   

One may compute the critical bending moment of a doubly symmetrical I-profile with a warping 

restraint at a single end assuming fully restrained warping at that end provided that the previous 

expression (III.123) is satisfied. 

III.7 Summary 

The elastic lateral-torsional buckling of doubly symmetric beams have been investigated in this chapter 

where an analytical model has been developed, resulting in a general expression for the critical bending 

moment. The stiffness of the warping restraints is explicitly accounted for when computing the critical 

bending moment within the warping coefficient kw and the equivalent uniform moment factor C1. Beams 
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resting on fork supports with free out-of-plane rotation and warping springs at both ends were studied 

when subjected to a linear bending moment distribution, a pointwise transverse load at mid-span, or a 

uniformly distributed load along the member. Transverse loading is applied without eccentricity with 

respect to the shear centre. 

The use of two trigonometric base functions for both the lateral displacement and twist rotation was 

shown to be consistent with the distributions obtained numerically though small differences were 

noticed, particularly when looking at the position of the peak value of the twist rotation along the 

member. 

Employing the principle of minimum potential energy, a single expression for kw has been obtained 

whatever the shape of the bending moment diagram and depending on the warping stiffness of the beam 

and the restraints and on the member length. Besides, expressions for C1 have been derived that depend 

both on the bending moment diagram and on the stiffness of the warping restraints. For a linear bending 

moment distribution, C1 is simply expressed as the product of two terms, one related to the bending 

moment distribution and the other to the stiffness of the warping restraints. When confronted to 

numerical results, computed using either a shell or a beam model, the predictions of the analytical and 

simplified models showed a good accuracy. 

The stiffness of some connection configuration restraining warping at a beam ends has been given based 

on the work of Pi (2000) while the warping stiffness of a fixed column base has been derived. Some 

connection configurations inducing significant warping restraints, the possibility to compute the critical 

bending moment assuming warping as fully prevented at both ends was investigated. For members with 

warping restraints at both ends, a proposition has been made for a lower limit of the warping stiffness. 

Above this limit, the critical bending moment may be computed assuming fully restrained warping at 

both ends. This simplification results in a maximum 10% deviation on the critical bending moment. 

Based on the results of finite element analyses, this limit value is adapted to warping restraints present 

at one end only. 
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 Stability design rules for welded 

steel members 

IV.1 Introduction 

The resistance of an ideal member subjected to compression and/or bending can be determined as the 

minimum value between its cross-section resistance and its elastic critical buckling load. However, in a 

“real” member, the structural and geometrical imperfections resulting from its fabrication reduce this 

resistance. Determining the reduction from the ideal resistance depending on the shapes and magnitudes 

of the structural and geometrical imperfections is the most critical point to assess the stability of a steel 

member. 

In 1966, the former French CM66 design rules made use of a single buckling curve whatever the cross-

sectional dimensions and the fabrication process, but the distribution of the bending moment was 

accounted for when determining the lateral-torsional buckling resistance. In the years 1960-70, an 

extensive European experimental campaign on compressed steel columns was led, as described by 

Sfintesco (1970), and has resulted in several buckling curves. Maquoi (1978) and Rondal (1979) have 

developed an analytical model based on the work of Ayrton and Perry (1886) and Robertson (1925) to 

determine the flexural buckling resistance of a compressed member based on three, then five buckling 

curves. 

The use of three buckling curves was adopted in 1981 in the French standard Additif 80 to determine the 

buckling resistance of a member subjected to compression or bending. The current Eurocode 3 Part 1-

1 guidelines for members subjected to compression and/or bending are described in section IV.2 were 

one can notice that the number of buckling curves has then been extended in the European standard to 

five curves for compressed members and four curves for members in bending. The complementary 

prescriptions of the French National Annex to EN 1993-1-1 are also provided. 

Using the formalism of Eurocode 3 based on an Ayrton-Perry type derivation, a new verification format 

developed by Taras (2010a/b) is proposed in prEN 1993-1-1 to determine the lateral-torsional buckling 

of a beam. Based on a strong mechanical basis, this new method does not make use of the current 

buckling curves but requires the determination a buckling curve per cross-section and bending moment 

diagram. This novel method along with the modified Simplified method of the equivalent compression 

flange are exposed within subsection IV.2.2.6. Besides, the design rules of the former French standards 

Additif 80 and CM66 are mentioned in section IV.3. 

Determining the buckling resistance of a uniform steel member according to EN 1993-1-1 can be direct 

using the buckling curves. However, the buckling resistance of a tapered member according to the 

European standard is more difficult to determine because tapered members fall beyond the scope of the 

verification formats employing the buckling curves in EN 1993-1-1. The stability of tapered steel 

members has captivated of many researchers in the last few years, leading to new analytical methods as 

in the work of Naumes (2009), Marques (2012a) and Tankova (2018a) that will eventually be depicted 

in section IV.4. 
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IV.2 Eurocode 3 design rules 

IV.2.1 Members in compression 

The resistance of a compressed steel member (see Figure IV-1a)) is given in §6.3.1 of Eurocode 3 Part 

1-1 where clause (6.46) applies, stating that the stability of the member is verified if: 

Ed

b,Rd

1.0
N

N
  (IV.1)   

Rk
b,Rd i

M1

N
N 


  (IV.2)   

with: 

NEd: maximal applied axial force; 

NRk: characteristic value of the member resistance to compression; 

χi: reduction factor considering the appropriate buckling mode. 

  

a) In compression b) In bending 

Figure IV-1: Uniform members 

The reduction factor is determined using expression (6.49): 

i 22

i i i

1
1.0

  

 
 

 (IV.3)   

  2
iii i

0.5 1 0.2      
 

 (IV.4)   

where i Rk cr,iN N   is the normalized slenderness for flexural buckling and αi the imperfection 

factor for flexural buckling given in Table IV-1, corresponding to Table 6.1 of Eurocode 3 Part 1-1. 

Buckling curve d c b a a0 

Imperfection factor αi 0.76 0.49 0.34 0.21 0.13 

Table IV-1: Buckling curves imperfection factors 

N 

z 

x 

z 

x 

F
z
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The buckling curve must be chosen according to the member fabrication process, cross-section shape 

and dimensions, steel grade and the buckling mode analyzed. The relevant buckling curve to use for a 

welded I-section member is given in Table IV-2, extracted from Table 6.2 of EN 1993-1-1. 

Limits Buckling axis Buckling curve 

tf ≤ 40 mm 
y-y b 

z-z c 

tf > 40 mm 
y-y c 

z-z d 

Table IV-2: Buckling curve selection for flexural buckling of welded I-columns 

Using the appropriate elastic critical load, the buckling curve related to the z-axis should also be used 

for torsional or torsional-flexural buckling according to Eurocode 3 Part 1-1. 

IV.2.2 Members in bending 

IV.2.2.1. Introduction 

The lateral-torsional buckling resistance of a member in bending (see Figure IV-1b)) must be assessed 

according to §6.3.2 of Eurocode 3 Part 1-1. Either (i) the General case based on the buckling curves 

for flexural buckling; (ii) the Special case based on modified buckling curves; or (iii) the Simplified 

method that consists in the verification against lateral buckling of the equivalent compressed flange can 

be employed. The three approaches are presented next, along with the modifications suggested in the 

French National Annex to Eurocode 3 Part 1-1. 

Eventually, the new verification format developed by Taras (2010a/b) that replaces the Special case in 

prEN 1993-1-1 will be presented along with the modified Simplified method of the equivalent 

compressed flange in prEN 1993-1-1 based on the work of Schaper (2019). 

IV.2.2.2. General case 

According to Eurocode 3 Part 1-1, the stability of a uniform member in bending according to the 

General case or the Special case requires clause (6.54) to be satisfied: 

y,Ed

b,Rd

1.0
M

M
  (IV.5)   

y,Rk
b,Rd LT

M1

M
M 


  (IV.6)   

with: 

My,Ed: maximal applied bending moment about y-y; 

My,Rk: characteristic value of the member resistance to bending about y-y; 

χLT: reduction factor for lateral-torsional buckling. 

The General case defines the reduction factor in expression (6.56): 
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LT 22

LT LT LT

1
1.0

  

 
 

 (IV.7)   

  2
LTLTLT LT

0.5 1 0.2      
 

 (IV.8)   

where LT y,Rk y,crM M   is the normalized slenderness for lateral-torsional buckling and αLT the 

imperfection factor for lateral-torsional buckling given in Table 6.3 of Eurocode 3 Part 1-1 which is 

similar to Table IV-1 without curve a0. 

The buckling curve selection of a welded member depends on the h/b ratio of its cross-section according 

to Table IV-3 extracted from Table 6.4 of Eurocode 3 Part 1-1. 

Limits Buckling curve 

h/b ≤ 2 c 

h/b > 2 d 

Table IV-3: Buckling curve for lateral-torsional buckling of welded I-beams 

IV.2.2.3. Special case 

The Special case for “equivalent welded sections” proposes to use the reduction factor given by 

expression (6.57): 

2LT 22
LTLT LT LT

1.01

1/


  


  

  

 (IV.9)   

  2
LT LT, 0LTLT LT

0.5 1         
 

 (IV.10)   

Values of 0.4 and 0.75 are recommended for LT, 0  and β, respectively, along with the use the 

imperfection factor αLT from the General case. Those parameters are modified in the French National 

Annex. 

A modification of the reduction factor given by expression (6.58) is allowed to account for the bending 

moment distribution using a coefficient f: 

LT
LT, mod

1.0
f


    (IV.11)   

   
2

LTcf 1 0.5 1 1 2.0 0.8 1.0k  
     

  
 (IV.12)   

The coefficient f depends on the normalized slenderness and on the bending moment distribution through 

the correction factor kc given in Table IV-4 extracted from EN 1993-1-1 (Table 6.6). 
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Bending moment distribution kc 

 

1.0 

1 1    

1

1.33 0.33
 

 
0.94 

 
0.90 

 
0.86 

 
0.77 

Table IV-4: Correction factors according to EN 1993-1-1 

IV.2.2.4. Simplified method 

The approach of the Simplified method differs from the General and Special cases because lateral-

torsional buckling of a beam is analyzed as the lateral buckling of an equivalent compressed part of the 

beam composed of the compression flange and a third of the compressed part of the web (see Figure IV-

2). The buckling resistance determined according to the Simplified method is given by: 

y,Rk y,Rk
b,Rd fl

M1 M1

M M
kM 

 
   (IV.13)   

with: 

kfl: modification factor; 

χ: reduction factor of the equivalent compression flange. 

The reduction factor χ is determined using the normalized slenderness of the equivalent compression 

flange f given by: 

cc
f

f,z 1

k L

i



  (IV.14)   

with: 

Lc: distance between lateral-torsional restraints; 

ifz: radius of gyration of the equivalent compression flange about the minor axis of the section; 

1

y

E

f
   

M cst 

ψM 
M 
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Figure IV-2: Lateral buckling of the equivalent compression flange 

The reduction factor χ is determined using buckling curve d for welded sections for which the method 

applies provided that: 

f

44
h

t
  (IV.15)   

The previous criterion is quite restrictive for welded building beams. Indeed, for a S355 member with 

flanges thickness of 15 mm, the simplified method can be applied only if the height does not exceed a 

medium value of 537 mm, regardless of the cross-sectional classification. 

The modification factor kfl, increases the resistance of the beam against lateral-torsional buckling 

because of the supposed conservatism of the Simplified method. Eurocode 3 Part 1-1-proposes a value 

of 1.10 for this factor, which is modified in the French National Annex. 

IV.2.2.5. Adaptations in the French National Annex 

The French National Annex to Eurocode 3 Part 1-1 does not propose changes regarding the design of 

the buckling resistance of compressed member but suggests some modifications in the verification 

methods against lateral-torsional buckling. The General case remains unchanged but the French 

National Annex allows its reduction factor to be modified with the coefficient f using expression (IV.11). 

Parameter Eurocode 3 Part 1-1 French NA to Eurocode 3 Part 1-1 

LT  Similar to General case 
2

LT
0.5 0.25 0

b

h
   

LT, 0  0.4 0.3
b

h
 

𝛽 0.75 1.0 

flk  1.10 f
1 1.20

10


   

Table IV-5: Parameters of the Special case and the Simplified method according to EC3 and its French NA for 

welded beams 

Equivalent 

compression 

flange 

θ 

v 

v
fl
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The modifications proposed in the French National Annex regarding the Special case and the Simplified 

method are given in Table IV-5 for welded I-section beams. The scope of the modified Special case is 

extended from doubly symmetric to mono-symmetric I-section beams for which the ratio between the 

second moments of area about the minor axis of the two flanges is between 0.80 and 1.25. The 

modifications are however valid only if the thickness ratio between the thickest flange and the web is 

lower than or equal to three. 

The French National Annex does not provide a significant change in the Simplified method, but the 

modifications are significant regarding the Special case. Buckling curves c and d according to the 

Special case from Eurocode 3 (referred to as Sc) are plotted in Figure IV-3 along with buckling curves 

determined according to the prescriptions of the French National Annex for welded sections having a 

ratio h/b equal to one and five (referred to as FNA). The buckling curves to be used according to the 

General case from Eurocode 3 for welded sections (referred to as Gc) are also represented. 

 

Figure IV-3: Buckling curves for welded members in Eurocode 3 and its French National Annex 

Major differences can be seen on Figure IV-3 between the buckling curves to use for a welded section 

according to the three methods. When / 5h b  , the Special case provides the most favourable buckling 

curve, especially for a low slenderness range. Despite a very short plateau length, the FNA provides a 

higher resistance than the General case except for very low slenderness. When / 1h b  , the General 

case prescripts the lowest buckling curve while the FNA provides the highest curve except for low 

slenderness for which the Special case give the most favourable buckling resistance due to its important 

plateau length. 

IV.2.2.6. Verification methods in prEN 1993-1-1 

New verification format 

The new Eurocode 3 contains a verification format based on the work of Taras (2010a/b) where the 

reduction factor of doubly symmetric I-section beams resting on fork supports at both ends is: 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5

c_Gc

d_Gc

c_Sc

d_Sc

FNA_h/b=1

FNA_h/b=5

Euler 
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(IV.16)   
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 (IV.17)   

The factor fM, always greater than unity, accounts for the bending moment distribution and its value is 

given for some bending moment diagrams in Table IV-6 extracted from Table 8.6 of prEN 1993-1-1 

while the imperfection factors 
LT  are given in Table IV-7 for welded beams. 

Bending moment distribution 
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1.0 0.77 

3

0 0

h h

1 1.25 0.3
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 1.1 

Table IV-6: Factors fM and kc in prEN 1993-1-1 

where M0 is the free bending moment at mid-span which can be determined on an equivalent member 

with simply supported end conditions. 
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Limits αLT 

tf ≤ 40 mm 
el,y

el,z

0.21 0.64
W

W
  

tf > 40 mm 
el,y

el,z

0.25 0.76
W

W
  

Table IV-7: Imperfection factor for welded members according to the new verification format 

Modified Simplified method 

Beyer (2019a) highlighted that the Simplified method could be unsafe for mono-symmetric beams or 

beams subjected to a transverse load applied out of the shear centre and causing destabilizing effects (zg 

≥ 0). Modifications of the Simplified method have then been proposed by (i) omitting the modification 

factor kfl and (ii) choosing the imperfection factor αLT according to the General case. Schaper (2019) 

have proposed supplementary modifications based on an extensive finite element parametric study that 

led to the modified Simplified method of prEN 1993-1-1. 

The design resistance according to the revised Simplified method of a doubly or mono-symmetric I-

cross-section beam is given by: 

y,Rk
b,Rd c, z

M1

M
M 


  (IV.18)   

The buckling resistance depends on a reduction factor χc,z determined from the normalized slenderness 

c, z, mod  using the buckling curve d for welded members. 

c
cc ccc, z, mod c, z

f,z 1

L
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i
  
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   (IV.19)   

with: 

f,max

c
f,min

c, z
f,max

0.06

1.0

h
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



 



 

The factor βc accounts for the possible mono-symmetry and the torsional properties of the cross-section 

while the correction factor kc accounts for the bending moment distribution. Values of kc given in Table 

IV-4 extracted from EN 1993-1-1 still apply in prEN1993-1-1, but more complex bending moment 

distributions are treated in Table 8.6 of prEN 1993-1-1, some of them being depicted in Table IV-6. 
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IV.2.3 Members in bending and compression 

IV.2.3.1. Interaction formulae for uniform members 

The stability of uniform members having a doubly symmetrical cross-section subjected to bi-axial 

bending and compression can be assessed provided that clauses (6.61) and (6.62) from §6.3.3 of 

Eurocode 3 Part 1-1 are satisfied: 

y,Ed y,Ed z,Ed z,EdEd
yy yz

z,Rky,RkRky LT

M1M1M1

1
M M M MN

k k
MN M 


  
    

(IV.20)   
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1
M M M MN

k k
MN M 
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  
    

(IV.21)   

with: 

Mz,Ed: maximal applied bending moment about z-z; 

Mz,Rk: characteristic value of the member resistance to bending about z-z ; 

ΔMi,Ed: bending moments due to the shift of the centroidal axis for Class 4 sections. 
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Interaction 

factor 
Class 3, Class 4 Class 1, Class 2 
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Table IV-8: Interaction factors for welded I-section members 

The interaction factors kij can be conveniently determined according to Annex A or Annex B of the 

current Eurocode 3 Part 1-1 but its new version requires the use of the current Annex B. Analytical 

derivations leading to Annex A can be found in Greiner (2006) while Boissonnade (2002b, 2004) 

presents the derivation of Annex B. The interaction factors for welded I-section steel members that are 

susceptible to torsional deformations proposed in Annex B are given in Table IV-8. They make use of 

equivalent uniform moment factors Cm,i, that account for the bending moment distribution. Factors Cm,i 

should be determined according to the appropriate bending axis (z-z for Cmz and y-y for Cmy and CmLT) 

and the relevant direction of the bracing points (z-z for Cmy and y-y for Cmz and CmLT).using expressions 

given in Table IV-9 corresponding to Table B.3 of Eurocode 3 Part 1-1. 
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Moment diagram Range 
Cmy, Cmz and CmLT 

Uniform loading Concentrated load 

 

1 1    0.6 0.4 0.4   

.

 

s hsα M M  

s0 1α   1 1    s0.2 0.8 0.4α   

s1 0α    

0 1   s0.1 0.8 0.4α   s0.8 0.4α   

1 0      s0.1 1 0.8 0.4α      s0.2 0.8 0.4α    

 

h ssα M M  

h0 1α   1 1    

h0.95 0.05α  h0.9 0.1α  

h1 0α    

0 1   

1 0     h0.95 0.05 1 2α     h0.9 0.1 1 2α    

Table IV-9: Equivalent uniform moment factors according to Annex B of Eurocode 3 Part 1-1 

IV.2.3.2. General Method 

Design method 

The design resistance of a uniform steel member subjected to compression force and/or bending moment 

about the y-axis can be determined using §6.3.1 to §6.3.3 of Eurocode 3 Part 1-1. To minimize the 

amount of steel in a building, tapered members, mainly built-up, are commonly used and can be designed 

using the General Method from §6.3.4 of EN 1993-1-1. Bases of this design method can be found within 

the work of Müller (2003). 

The General Method can be applied on isolated structural components with doubly or mono-

symmetrical cross-sections, built-up or not, uniform or not, with complex support conditions or not, or 

plane frames or subframes composed of such members. The overall out-of-plane stability of such 

components is satisfied provided that clause (6.63) is verified: 

ult, kop

M1

1.0
 


  (IV.22)   

where αult,k is the minimum amplifier of the design loads to reach the characteristic resistance of the 

most critical cross-section of the component. Flexural and lateral-torsional buckling are not taken into 

account but the in-plane behaviour of the component (global and local in-plane geometrical deformation 

and imperfections) is considered. Besides, χop is the reduction factor for the normalized slenderness 𝜆ҧop 

that accounts for lateral and lateral-torsional buckling: 

ult, k
op

cr, op





  (IV.23)   
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where αcr,op is the minimum amplifier for the in-plane design load to reach the elastic critical resistance 

of the component accounting for lateral and lateral-torsional buckling without considering in-plane 

flexural buckling. 

According to Eurocode3 Part 1-1, the reduction factor can be conveniently determined considering 

either the minimum value between χz and χLT, each calculated for the normalized slenderness 𝜆ҧop, or an 

interpolated value between both reduction factors. Using the interpolation option, which will no longer 

be permitted in prEN 1993, rewrites expression (IV.22) as: 

y,EdEd

y,RkRkz LT

M1 M1

1.0
MN

N M 

 

   
(IV.24)   

where the reduction factors are determined for the slenderness 𝜆ҧop, and the design loads account for in-

plane global and local geometrical deformation and imperfections. 

Discussion 

Using the General Method on tapered members raises some difficulties. For such structural components, 

determining the ultimate load amplifier αult,k is not direct, but a simplified method has been presented 

by Bureau (2007). The analytical determination of the critical load amplifier αcr,op is also a challenging 

step, but the software LTBeamN that uses beam finite elements may provide some help. 

The reliability of the General Method has been extensively discussed in the past. Taras (2010a) has 

shown for uniform hot-rolled members that using the minimum value between the two reduction factors 

could lead to over-conservative results while using the interpolation alternative could result in unsafe 

estimates of the buckling resistance for low slenderness. However, studying the accuracy of the General 

Method on uniform hot-rolled IPE or HE-section beam-columns, Hadjú (2018, 2022) concluded that the 

use of the interpolation alternative is suitable, the maximum deviation on the unsafe side being 5%. 

Again, it was demonstrated that the minimum reduction factor could reveal overly-conservative. 

The treatment of hot-rolled or welded uniform members has also been investigated by Simões da Silva 

(2010). It was concluded that determining the reduction factor using the interpolation option leads to 

more accurate results than using the minimum value of the reduction factors, which can turn out to be 

overly conservative. The General Method applied to tapered members has been studied by Marques 

(2012a), particularly for hot-rolled sections. The design method could be unsafe even when the reduction 

factor was the minimum reduction factor. This result is obtained considering different positions of the 

critical cross-section for compression and bending, one related to NEd and the other related to My,Ed. 

As pointed out in the previously cited references, the lack of mechanical background of the General 

Method results in some inconsistencies. While using the General Method for a uniform member 

subjected to bending leads to the same clause as expression (IV.5), when designing the same member 

but compressed according to the General Method yields: 

Ed

b,Rd

1.0
N

N
  (IV.25)   
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Rk
b,Rd y

M1

N
N z 


  (IV.26)   

In expression (IV.25), the reduction factor χz is determined from the normalized slenderness op that 

accounts for in-plane effects: 

Rk
op y

cr,z

N

N
   (IV.27)   

The reduction factor χy being lower than or equal to unity, 𝜆ҧop is lower than or equal to 𝜆ҧz. Due to a lack 

of consistency, prEN 1993-1-1 will impose to determine the reduction factor as the minimum value 

between χz and χLT, which can result in very safe results as shown in the past (Taras (2010a)); (Simões 

da Silva (2010)). The stability of a structural component according to the General Method imposes a 

coupling between in-plane effects and out-of-plane buckling while the interaction formulae detailed in 

§IV.2.3.1 propose separate verifications for out-of-plane and in-plane stabilities. The latter approach 

could be sought to improve the consistency of the General Method. 

The current and future design verification formats for the global buckling of compressed and/or bent 

steel members having been detailed, the previous French rules are depicted next section before 

investigating the recent developments on non-uniform members. 

IV.3 Former French standards 

IV.3.1 Members in compression 

In the previous French CM66, the verification formats involved stresses because the cross-section 

resistance of a member was based on its elastic capacity. According to §3,41 of the former code, the 

stability of a compressed member subjected to the design stress σN,Ed had to satisfy: 

N,Ed yk f   (IV.28)   

 
2

222
i,CMi, CM i,CM

0.5 0.65 0.5 0.65k   
     

 (IV.29)   

with: 

i, CM cr,iyf  , the critical stress σcr,i corresponding to the axial critical load Ncr,i. 

The buckling coefficient k can be seen as the inverse of the reduction factor χz, leading to major 

differences between both standards regarding the imperfection term ηi: 

 iii,EC3 0.2    (IV.30)   
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2
i,CM66 i, CM

0.15   (IV.31)   

The former CM66 standard proposed a single buckling curve that is compared to the five buckling curves 

form Eurocode 3 Part 1-1 in Figure IV-4. It is worth mentioning that the Additif 80 proposed a design 

method for compressed members using buckling curves a, b and c from Eurocode 3. Figure IV-4 shows 

that the buckling curve from CM66 provides, for usual slenderness, an equal or higher resistance than 

buckling curves c and d that must be used for the lateral buckling of welded members in Eurocode 3 

Part 1-1. 

However, as the normalized slenderness increases, the buckling curves from both standards do not tend 

towards the same asymptote, (see Villette (2014)). Indeed, as the normalized slenderness goes to infinity, 

the Eurocode 3 design rules yield: 

i, EC3 2

i

1



  (IV.32)   

while the CM66 standard yielded: 

i, CM 2

i

1 1

1.3k



   (IV.33)   

Because members with a very high slenderness (i.e. > 2.5) are barely found in practice, the former CM66 

standard resulted in higher buckling resistances than the Eurocode 3 rules for welded columns. 

 

Figure IV-4: Buckling curves form CM66 and Eurocode 3 Part 1-1 
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IV.3.2 Members in bending 

The stability of a member in bending was analyzed in CM66 using §3,61 as the lateral buckling of the 

compressed flange. A beam subjected to the design stress σM,y,Ed resulting from symmetrical loading and 

boundary conditions had to satisfy: 

d M,y,Ed yfk    (IV.34)   

0
d

d
0

y

1 ( 1)

k
k

k
f




 

 
(IV.35)   

where k0 is the lateral buckling coefficient determined applying expression (IV.29) using the 

slenderness: 

2
d

0

y

1
y

w

IL

CB fI




 
  
 
 

 (IV.36)   

and the “no lateral-torsional buckling” stress σd is given by: 

2 2
z t

d 2 2
y z z

2.6

2

wh E G hI I I L
CB

EI IL I






 
   

  

 (IV.37)   

where C depends on the bending moment distribution and B on the bending moment distribution and 

the vertical position of a transverse load, similarly to C1 and C2zg in the expression of Mcr. 

For a beam subjected to end moments, the lateral-torsional buckling coefficient kd is given by: 

d0
d

d0

1
1

5

Ck
k

C k


    (IV.38)   

where kd0 is the buckling coefficient kd for the same member subjected to a uniform bending moment 

distribution. 

The buckling curves are different for every cross-section dimensions and bending moment distribution 

according to the CM66 rules. They are compared against the Eurocode 3 buckling curves for a beam 

having a specific cross-section that consists in a 800×10 web and 200×20 flanges and subjected to a 

linear bending moment distribution (with ψ = 1, 0, -1). The curves are presented in Figure IV-5 with 

those obtained using the new verification format from prEN 1993-1-1 for the same member subjected 

to the same load cases. The design method proposed in Additif 80 for bent member makes use of buckling 

curves a, b and c from Eurocode 3. 
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Figure IV-5: Lateral-torsional buckling curves from CM66 and Eurocode 3 Part 1-1 

In the common case of a beam having a Class 3 cross-section in bending, Figure IV-5 shows that the 

CM66 buckling curve for the constant bending moment distribution is very close to that for flexural 

buckling prescribed by the same code (see Figure IV-4). Such buckling curve lies significantly above 

Eurocode 3 buckling curves c and d, particularly for low and medium slenderness. 

The curves from CM66 when ψ = 0, -1, which are similar, exhibit a large plateau length that ends for a 

slenderness close to 0.75, and decreases down to curve b in the worst case for a slenderness up to 2. 

Obviously, the buckling resistance obtained using the CM66 rules is considerably greater than that 

determined using the General case from Eurocode 3 in the most common slenderness range (0.5 to 1.2). 

Similarly to the case of columns, it is worth mentioning that the CM66 buckling curves remain distant 

from the Euler curve for very high slenderness, the buckling curves asymptote depending on the bending 

moment distribution. 

According to the new verification method, the buckling curve obtained for a constant bending moment 

distribution lays between buckling curves c and d. For ψ = 0 or -1, both curves are very close and present 

a plastic plateau up to a normalized slenderness close to 0.5 then decrease down to curve b for medium-

to-high slenderness. 

IV.3.3 Members in bending and compression 

In the former French code, the stability of a member subjected the design stresses σN,Ed, σM,y,Ed and σM,z,Ed 

due to compression and bending about y and z-axis respectively, had to be verified both in-plane and 

out-of-plane, similarly to Eurocode 3 interaction formulae: 

1y N,Ed fy d M,y,Ed fz M,z,Ed yfk k k k      (IV.39)   
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1z N,Ed fy d M,y,Ed fz M,z,Ed yfk k k k      (IV.40)   

Where kfy and kfz, both greater than unity, depend on the bending moment diagram about y and z-axis 

respectively and the flexural buckling coefficient kli, lower than k is given by: 

cr,i N,Ed
1z

cr,i N,Ed1.3
k

 

 





 (IV.41)   

The design rules for members subjected to compression or/and bending according to the current and 

future Eurocode 3 Part 1-1 and according to the former French CM66 and Additif 80 have been depicted. 

The buckling curves from CM66 were significantly more favourable than those from the current 

Eurocode 3, especially for beams subjected to a linear bending moment distribution. The new 

verification format in prEurocode 3 will increase the lateral-torsional buckling resistance of welded 

beams when compared to the General case. 

For non-uniform members, the single General Method applies according to EN 1993-1-1 but presents 

some inconsistencies, leading many researchers to develop new analytical methods that are described 

next section. 

IV.4 Recent developments on non-uniform members 

IV.4.1 Introduction 

While the design rules for the stability verification of prismatic members given in Eurocode 3 Part 1-1 

are easy to use, the same cannot be said for tapered members for which only the General Method applies. 

The lack of mechanical background and accuracy of the General Method has encouraged many 

researchers in the recent years to pursue an accurate and safe method to evaluate the resistance to out-

of-plane buckling of a non-prismatic column, beam, or beam-column. 

An extensive work conducted at RWTH Aachen and TU Delft led Naumes (2008 and 2009), Feldmann 

(2009) and Bijlaard (2010) to develop new methods for prismatic members or not, adapted from 

Eurocode 3. Their propositions include a different value of the imperfection factor for lateral-torsional 

buckling αLT based on the torsional properties of the design cross-section. Based on these studies, 

Wieschollek (2012) proposed alternative expressions of the second order analyses proposed in Eurocode 

3 Part 1-1, applicable to non-prismatic members provided that the elastic buckling mode shape is 

known. 

Kim (2010) proposed to evaluate the lateral-torsional buckling of a non-uniform beam according to AISC 

rules considering an equivalent prismatic beam with the same elastic critical bending moment and a 

different length. Similarly, Badari (2015) exposed a new method to estimate the resistance against 

lateral-torsional buckling of a non-prismatic member by dividing the beam into a sufficient number of 

segments. Each segment is separately considered as an equivalent uniform beam with the same 

slenderness as the tapered segment. The imperfection factor determined for each segment is modified to 

account for the relative importance of its displacements in the elastic buckling mode. 

In Coimbra, modifications of the current Eurocode 3 were proposed by Marques (2012a/b, 2013 and 

2014) to assess the stability of tapered members subjected to compression force and/or bending moment. 
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The interaction formulae along with Annex B have been modified to apply to non-uniform members. 

Later, Tankova (2018a and 2018b) developed a general formulation standing out from the Eurocode 3 

Part 1-1 design rules. Previous developments yielded a design method to assess the overall out-of-plane 

stability of uniform members (Tankova (2017)). Non-prismatic members come within the scope of the 

proposed method, derived from second order analyses using the work of Szalai (2010) considering 

equivalent uniform members. 

More recently, numerical solutions have been used to evaluate the buckling resistance of a non-uniform 

member. Kucukler (2019) and White (2020) have developed a stiffness reduction method that consists 

in performing Linear Bifurcation Analyses (LBA) on a Finite Element Model (FEM) with beam 

elements. Steel material law has to be implemented to each element with a reduction factor – depending 

on the boundary conditions and the bending moment distribution – to minimize the Young’s and shear 

moduli E and G. It can be noted that analytical expressions were developed by Chiorean (2020) based 

on a stiffness matrix adaptation to be used with MatLab to evaluate the elastic critical amplifier of a 

beam-column, tapered or not. The software LTBeamN performs the same numerical calculations (Beyer 

(2015a/b)). 

In the following sections, the most refined methods, proposed by Naumes (2008 and 2009), Feldmann 

(2009) and Bijlaard (2010); by Marques (2012a, 2012b, 2013 and 2014); and by Tankova (2018a and 

2018b) are detailed. 

IV.4.2 Members in compression 

The verification format of a non-uniform compressed column (see Figure IV-6) against flexural buckling 

is: 

II
i,EdEd

i,RkRk

( ) ( ) ( ) 1.0
MN

x x x
N M

     (IV.42)   

The utilization ratio ε depends on the applied axial force NEd provoking a second order bending moment 

Mi,Ed
II. The second order bending moment depends on the second derivative of the deflection δ: 

2
II

ii,Ed 2
( ) ( )x EI xM

d

dx


   (IV.43)   

The deflection δ due to buckling can be determined from the initial imperfection δ0 which can be 

assumed to have the same shape as the buckling mode δcr. The amplification relationship expressed by 

Marques (2012a) and Tankova (2018a) is: 

 
2 22

0 cr
02 2 2

cr cr

1 1
( ) ( )

1 1
x x xe

d dd

dx dx dx

 

 
 

 
 (IV.44)   

Using the previous equation and the common assumption that: 

 
II

Rk c II II
0 c cII

y,Rk c

( )
( ) ( ) 0.2

( )

N x
e x x

xM
    (IV.45)   
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Marques (2012a) rewrites expression (IV.42) at the second order failure location xc
II where the 

utilization ratio equals to unity, proposing the verification format: 

 
II
cII II II II

c c c c2II II
c c

( )
( ) ( ) ( ) 0.2 ( ) 1.0

1 ( ) ( )

x
x x x x

x x


   

 

  


 
(IV.46)   

with: 

2
crII II

c ci 2

II
c II

cr Ed c

( ) ( )

( )
( )

EI x x

x
N x

d

dx






  

  

a) Centrally loaded column b) Column undergoing flexural buckling 

Figure IV-6: Non-uniform member in compression 

A parametric study was performed by Marques (2012a) resulting in guiding expressions for of xc
II and 

β(xc
II). They depend on the first order xc

I the failure location and geometrical properties of the column. 

A further simplification is proposed replacing β(xc
II) by its maximum value of 1.0 with some guidance 

to determine the corresponding limit failure location xc,lim
II. 

An alternative form of equation (IV.46) is then proposed to get the design method closer to Eurocode 3 

Part 1-1. This alternative consists in the evaluation of the reduction factor at the location xc
I using an 

« over-strength » factor φ that depends on the dimensions of the smallest and largest cross-sections: 
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 
i 22 I

ci i i

1.0

x




  

 
 

 
(IV.47)   

    2I I
i c cii i

0.5 1 0.2x x       
 

 (IV.48)   

The ease of use of the design method proposed by Marques (2012a) relies on a strong mechanical 

background and an extensive parametric study. 

Some of those derivations were performed by Naumes (2009) who proposed to check the stability of a 

compressed member using §6.3.1 of Eurocode 3 Part 1-1 (see equations (IV.1) and (IV.3)) at the failure 

location xc
II. No direct expression is given to evaluate xc

II which must be evaluated performing a series 

of iteration using: 

 
II II

i,RkRk c cri

2 II II II II
i,Rkc Rk c cr ci

( ) ( )( )( ) ( )
( ) ( ) 0.2 1.0

( ) ( ) ( ) ( )1 ( ) ( )

xEI xx xN xM
x x

EI xx N x xMx x

 
  

 

 
   

   

 (IV.49)   

An alternative verification format, similar to expression (IV.47), is also proposed but Naumes (2009) 

provides no guidance to evaluate the buckling shape and the over-strength ratio making this design 

method tricky to apply. 

Along with expressions (IV.43) and (IV.44), the second order bending moment is analyzed by Tankova 

(2018a) as a result of the applied axial load on an equivalent uniform member: 

  Ed,maxIIII
c Ed,max 0 0i,Ed

cr

( )
1 1/

N
x N eM  


  


 (IV.50)   

Equating expressions (IV.43) with (IV.44) related to the real member to (IV.50) associated with the 

equivalent uniform member leads to the amplitude of the imperfection: 

cr Ed,max
0 02

crII II
c ci 2

( ) ( )

N
e

EI x x
d

dx





  

(IV.51)   

The utilization ratio can then be rewritten considering the second order bending moment given by 

equation (IV.43) where the deflection is considered similar to the elastic buckling shape with an 

amplitude given by expression (IV.51), leading to the equivalent imperfection factor: 

 Rk
0 cr

y,Rk

( )
( ) ( ) 0.2

( )

xN
x xe

xM
     (IV.52)   

The maximum value of the displacement shape being equal to unity, expressions (IV.45) and (IV.52) 

are identical when calculating at the position xc
II where the deflection reaches its maximum. The 

buckling resistance of a compressed member is obtained when: 
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 
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( ) ( )1 ( ) ( )

( )

x x
EI xx N

x x
EI x N xx x

x

d

dx

d

dx





  

 

 
 
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 
 
 

 (IV.53)   

The method developed by Tankova (2018a) relies on a consistent theoretical background that requires 

the determination of the second derivative of the elastic buckling shape, which can be an obstacle for a 

daily use. Some help may be found using software packages like LTBeamN to compute the elastic critical 

mode shape and its first derivative. 

IV.4.3 Members in bending 

The verification format of a beam bent about the major axis (see Figure IV-7) is: 

II II
y,Ed z,Ed Ed

y,Rk z,Rk Rk

( ) ( ) ( ) ( ) 1.0
MM B

x x x x
M M B

      (IV.54)   

 

a) Initial configuration 

 

b) Beam undergoing lateral-torsional buckling 

Figure IV-7: Non-uniform member in bending about the major axis 
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Marques (2012a) proposed to assume that the relationship between the magnitudes of the torsional 

rotation θ and the out-of-plane displacement v is similar for prismatic and non-prismatic beams, which 

is for a tapered beam under uniform bending moment: 

y,cr,tap

cr,z,tap

v M

N
  (IV.55)   

Similarly to expression (IV.44), amplification relationships are given considering the coupling between 

the magnitudes by: 

y,EdII II
0

y,cr,tap y,Ed

( ) ( )
M

x x
M M

 


 (IV.56)   
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 (IV.57)  

The second order contributions are given by: 

2
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The initial imperfection proposed by Marques (2012a) is weighted to account for the variation of the 

cross-section: 

22
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(IV.60)   

Where δcr,h,min is the magnitude of the lateral displacement measured at the height of the compressed 

flange from the smallest cross-section in the critical mode. 

After some algebraic manipulations, Marques (2012a) proposed to determine the buckling resistance of 

a tapered beam equating to unity the utilization ratio at the failure location xc
II: 
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 (IV.61)   

with: 
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Again, an alternative method was developed to simplify its use and consists in the verification of the 

utilization ratio at the first order failure position xc
I using an over-strength ratio φ and the limit failure 

position xc,lim
II: 
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 (IV.62)    

An extensive parametric study led by Marques (2012a) has resulted in expressions to determine the limit 

failure location and the over-strength ratio that depend on the geometrical properties of the smallest and 

largest cross-sections and on the bending moment distribution. This simplified alternative is easy to use 

provided that the beam is subjected to a bending moment distribution treated during the parametric 

study: a linear distribution of the bending moment or a uniformly distributed load. 

Tankova (2018a) proposed a general formulation for the stability of a tapered beam using expression 

(IV.58) for the second order bending moment about the z-axis and an expression of the second order 

bimoment accounting for the inclination of the flanges, as developed by Kitipornchai (1975): 
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 (IV.63)   

The second order out-of-plane bending moment and bimoment were also studied considering the applied 

bending moment on an equivalent prismatic member having the cross-section of the real member at the 

location xc
II. Amplification relationships are used to express the torsional rotation and out-of-plane 

displacement of the equivalent uniform member: 
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 (IV.65)  

Equating the second order forces for the equivalent uniform member and the real beam at the failure 

location xc
II, the amplitude of the imperfection arises: 
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(IV.66)   
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The imperfections associated with the lateral displacement and the torsional rotation are assumed to 

have the same amplitude δ0 and shapes similar to that of the critical buckling mode. 

The utilization ratio is rewritten considering the second order forces given by expressions (IV.58) and 

(IV.63) assuming that the equivalent geometrical imperfection factor is: 

 Rk fl
z0 crLT
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( )
( ) ( ) 0.2 ( )

( )
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x x xe
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    (IV.67)   

The verification format proposed by Tankova (2018a) is then: 
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with: 
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where the equivalent normalized slenderness z, eq ( )x is given by: 
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(IV.69)   

Similarly to the flexural buckling case, the general formulation proposed by Tankova (2018a) to assess 

the stability of a tapered beam relies on an important mechanical background and can be applied 

whatever the boundary conditions and bending moment distribution. However, this method is hardly 

applicable in design offices since it requires to know the second derivative of the buckling mode shape 

though existing programs like LTBeamN already provide the mode shape and its first derivative. 

The method developed by Naumes (2009) is based on the modification of the imperfection factor αLT in 

the General and Special cases (see §IV.2.2.2 and §IV.2.2.3). The verification format was studied as the 

lateral buckling of the compressed flange, leading to the following utilization ratio: 

II
Ed,Fl z,Ed,Fl

z,Rk,FlRk,Fl

( ) ( ) ( ) 1.0
MN

x x x
N M

     (IV.70)   

Equation (IV.70) is equivalent to equation (IV.54) since the second order bending moment about the z-

axis in the flanges accounts for the bimoment and: 
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  (IV.71)   

Considering fork supports at both ends of the uniform beam, the critical mode is assumed to be 

composed of a torsional rotation and out-of-plane displacement that are both a half sine wave: 
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where
2

t
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w

1 1
GI L
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


   is a parameter accounting for the torsional properties of the cross-section. 

Expressing the relationship between both amplitudes of the critical buckling mode given by expressions 

(IV.72) and (IV.73) leads to the common value of this ratio for uniform beams with a doubly 

symmetrical cross-section subjected to a uniform bending moment distribution and resting on fork 

supports at both ends: 
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The second order bending moment about the weak axis acting in the compressed flange is determined 

using expressions (IV.43) and (IV.44), leading to the design value: 
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(IV.75)   

The utilization ratio then becomes: 

y,Ed y,Edcr,z,Fl
0

y,Edy,Rk z,Rk,Fl cr

cr

1
1.0

1

M MN
e

MM M M

M

 



 
(IV.76)   
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The previous equation is similar to expression (IV.7) from the General case with a modified 

imperfection factor: 
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 (IV.78)   

The modification of the imperfection factor relies on a solid mechanical background in the simple case 

of a uniform beam with a doubly symmetric cross-section subjected to a uniform distribution of the 

bending moment and resting on fork supports at both ends. This method is adapted to non-prismatic 

beams according to Naumes (2009) by performing the verification at the failure location. However, no 

guidance is provided to determine the failure location. 

IV.4.4 Members in bending and compression 

The verification format of a member subjected to compression and bending about the y-axis against 

overall out-of-plane buckling is: 

II II
y,Ed z,EdEd Ed

y,Rk z,Rk RkRk

( ) ( ) ( ) ( ) ( ) 1.0
MM BN

x x x x x
N M M B

       (IV.79)   

Marques (2012a) proposed a design method adapted form Eurocode 3 interaction formulae that can be 

used for tapered members, which is for a member subjected to axial force and in-plane bending: 
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with: 

xc,N
I: first order failure position due to the design axial force acting alone; 

xc,M
I: first order failure position due to the design bending moment about y-y acting alone. 

The reduction factors χi are determined according to the methods proposed by Marques (2012a) 

described in the previous sections. The proposed design method makes use of interaction factors 

determined using Annex B from Eurocode 3 adapted to tapered members, modifying expressions from 

Table IV-8 with the following assumptions: 

 The equivalent uniform moment factors Cm,I depend on the first order bending moment 

utilization; 

 The terms related to the compressed member are determined at the location xc,N
I. 

The approximations employed to develop the adaptation of Annex B and the parametric studies 

performed to derive this simplified method soften its mechanical background but simplifies its use, 

provided that the member falls into the scope of the parametric studies. 
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The verification format developed by Tankova (2018a) for a beam-column against lateral-torsional 

buckling relies on the same assumptions as the verification of a beam, with some adjustments due to the 

presence of the axial load. The utilization ratio is: 

I II
MN MN( ) ( ) 1.0x x f    (IV.82)   

where the value of coefficient f is given by expression (IV.68) and the first εMN
I and second order εMN

II 

utilization ratios are: 
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When the member is mainly compressed, expression (IV.82) tends towards expression (IV.53) proposed 

to assess the stability of a tapered member subjected to axial force, while for a member mainly bent, it 

tends towards expression (IV.68) developed to evaluate the stability of a tapered member subjected to 

bending. To simplify the determination of the second order utilization ratio, one may use: 
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  (IV.85)   

where the critical load amplifier αcr,op can be easily obtained by numerical analyses, using LTBeamN. 

The imperfection factor αop(x) is determined as an interpolated value of the imperfection factors for 

flexural and lateral-torsional buckling αz(x) and αLT(x) considering the first order utilization: 
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with: 
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The comments expressed about the verification format proposed by Tankova (2018a) regarding 

members subjected to compression or bending are valid for member subjected to both loadings. 

Naumes (2009) proposed a modification of the General Method where the reduction factor χop only 

depends on the imperfection factor for lateral-torsional buckling αLT that accounts for flexural buckling 

and the torsional properties of the cross-section. A new verification format is also proposed for members 

subjected to axial force, bi-axial bending moments and bimoment: 
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Similarly to the lateral-torsional buckling case, a non-prismatic member can be verified using expression 

(IV.87) either (i) at the failure location, when known, or (ii) considering the maximum values of the first 

order utilization ratios (Mz,Ed and BEd) and the minimum value of αult,k along the member. 

IV.5 Summary 

Calculating the resistance of a welded uniform member against flexural or lateral-torsional buckling is 

a straightforward process using the buckling curves from Eurocode 3 Part 1-1. Accounting for the 

bending moment distribution to increase the lateral-torsional buckling resistance of a beam is an option 

in Eurocode 3 and remains possible in the new verification format from prEN 1993-1-1. The latter, only 

applicable to doubly symmetric beams, come with an imperfection factor that depends on the cross-

section dimensions. Besides, buckling coefficients provided in the former French standard CM66 half a 

century ago were more favourable than those from Eurocode 3 Part 1-1 to assess the stability of a welded 

member against flexural or lateral-torsional buckling. 

Designing a non-uniform member using the European code involves the General Method which 

combines both in-plane and out-of-plane behaviours. It has been shown in the past, including by Taras 

(2010a), Simões da Silva (2010) and Marques (2012a), that the General Method could reveal unsafe or 

significantly conservative because of the light mechanical background on which the design method rely. 

This observation motivated researchers to develop more accurate design methods to assess the overall 

stability of tapered members. 

Naumes (2009), Marques (2012a) and Tankova (2018a) have developed analytical methods to assess 

the stability of a tapered member subjected to compression force and/or bending moment using different 

approaches. Naumes (2009) and Marques (2012a) have proposed modifications to Eurocode 3 design 

rules in order to include tapered members, Marques (2012a) adapting interaction formulae and Naumes 

(2009) the General case. Both methods rely on a consistent theoretical background with calibrated 

expressions given by Marques (2012a) for common bending moment distributions while a lack of 

guidance in the method proposed by Naumes (2009) makes its use challenging for tapered members. 

Tankova (2018a) have developed a general formulation based on strong mechanical bases that can be 

applied whatever the loading and boundary conditions. This design method requires the elastic buckling 

shape to be known that can be obtained numerically, e.g. using LTBeamN also providing the first 

derivative of the mode shape. However, the method developed by Tankova (2018a) also involves the 

second derivative of the mode shape, which can question its use in design offices. Numerical 

programmes performing finite element analyses may be developed to obtain such information 

concerning the buckling of non-uniform steel members. 
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Newly developed analytical methods to assess the stability of a non-uniform member can be employed 

in simple cases but the General Method should also be enhanced to cope with the shortcomings 

discussed above. Besides, no existing method account for the welded member fabrication process 

however it will be shown next chapter that it affects the residual stresses distribution, and consequently 

the overall buckling behaviour. Accurate design method should therefore be developed considering the 

fabrication process. 
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 Residual stresses in welded steel 

members 

V.1 Introduction 

The fabrication process of a steel member induces both geometrical and material imperfections that 

influence its buckling behaviour and resistance. Geometrical imperfections in steel members are visible 

and easily measurable to ensure that the requirements of EN 1090-2 are fulfilled. However, evaluating 

residual stresses requires specific measurements. The residual stresses distribution depends on the 

fabrication process of the steel member (ECCS, 1976). 

Residual stresses are in self-equilibrium and do not result from external loads but from the differential 

cooling rates of a cross-section during the fabrication process. The longest cooling generates tension 

and the fastest cooling compression. In a steel member built-up from hot-rolled plates, the longitudinal 

welds create a tension zone at the flange-to-web junctions, equilibrated by compression zones in the 

remaining parts as shown in Figure V-1a). Similarly, flame cuts at a plate tips create tension zones where 

cooling is slower than at the plate centre. This phenomenon is explained by ECCS (1976) and presented 

in Figure V-1b). A distinction should be done between the residual stresses distribution in welded 

members made of hot-rolled flanges and flame-cut flanges. 

  

a) Welded at its centre b) Flame-cut 

Figure V-1: Residual stresses in a plate 

Residual stresses have a major impact on the overall buckling of a steel member by inducing an early or 

late first yielding of the member. Indeed, yielding of a member that may undergo out-of-plane buckling 

initiates at a tip of a single or both flanges. An initial compressive stress at the flanges tips is therefore 

less favourable than a tensile one. In addition to their distribution, the stresses intensity have an impact 

on out-of-plane buckling, leading many researchers to provide residual stresses models. 

After a description of existing models for welded members made of hot-rolled or flame-cut flanges, a 

new experimental programme is described that aimed to measure residual stresses in eight welded 

members. Two beams are composed of hot-rolled flanges and the remaining six of flame-cut flanges. 

Experimental distributions have been evaluated using the sectioning method. The results of this 
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experimental campaign are then analyzed along with existing experimental data and a new model 

adapted to welded members made with flame-cut flanges is eventually proposed. 

V.2 Existing models 

V.2.1 Hot-rolled flanges 

In prEurocode 3 Part 1-14, a single model for welded members is proposed based on that from ECCS 

(1984) but corresponds to members made of hot-rolled flanges. The yield strength fy is reached at the 

web-to-flange junctions (see Figure V-2). A compressive stress having a magnitude of a quarter of the 

yield strength develops in the remaining parts. 

 

Figure V-2: Residual stresses given in prEurocode 3 Part 1-14 

The Swedish code BSK 99 (2003) proposes a similar distribution presented in Figure V-3a). The tension 

zone widths depend on the thicknesses tf and tw and the compressive stresses in the flanges and web is 

determined using self-equilibrium. An adaptation of this model was proposed by Gozzi (2007) where 

the stresses are stepped and the width of the tension zones are equal to 2.25 tf in the flanges and 2.25 tw 

in the web (see Figure V-3b)). 

Kwon (2012) proposed a stepped model where the magnitudes of the tensile and compressive stresses 

are equal to fy and 0.3fy, respectively. The widths are determined from self-equilibrium. Trahair (2012) 

proposed stress distributions for mono-symmetric members by reducing the compressive stress 

magnitude in the smaller flange using the ratio between both flanges widths (see in Figure V-4a)). The 

absence of residual stress in the web is a noticeable feature of this model, justified by the negligible 

influence of web yielding on out-of-plane buckling. 
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a) Original model b) Model adapted by Gozzi (2007) 

Figure V-3: Residual stresses given in the Swedish code BSK 99 

Chernenko (1991) proposed a shape for the residual stresses distribution based on measurements 

performed at Lehigh University in the 1960s on stocky sections e.g. by Estuar (1962) and Cranston 

(1967). The web heights were lower than 250 mm and plates thicknesses greater than 10 mm. This model 

using linear distribution of the residual stresses is enhanced by Kabir (2018) providing values for the 

peak tensile and compressive stresses of fy and -0.25fy, respectively (see Figure V-4b)).  

Residual stresses measurements performed on welded tapered members by Prawel (1974) lead to the 

model presented in Figure V-4c). The specimens, which had a yield strength of approximately 290 MPa, 

were built-up using longitudinal welds placed on one side of the web and involved web and flanges of 

2.7 mm and 6.4 mm thickness, respectively. This model stands out from the previously cited models for 

welded members because the magnitude of the compressive stress in the flanges reaches half the yield 

strength. This important compression is due to a wide b/3 tension zone at the flange centre where the 

yield strength is reached. 

Because the model proposed by Prawel (1974) contains a high magnitude of the compressive stress in 

the flanges, Kim (2010) used a modified version referred to as “best-fit Prawel” residual stress model. 

In this alternate model, the stresses magnitudes in the flanges are divided by two, except for the 

compressive stress near the flanges centres that becomes a tenth of the yield strength. The distribution 

in the web remains unchanged with a value of -0.176 specified for parameter k. 
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a) Trahair (2012) b) Kabir (2018) c) Prawel (1974) 

Figure V-4: Residual stress models for welded members with hot-rolled flanges 

The choice of the residual stress pattern for welded sections made of hot-rolled flanges has an impact 

on the out-of-plane buckling behaviour. This topic was investigated by Couto (2019) who depicted a 

series of Geometrically and Materially Non-linear Analyses with Imperfections (GMNIA) using models 

from ECCS (1984), Gozzi (2007), and the best-fit Prawel pattern. Employing the ECCS (1984) model 

resulted in the most conservative results, up to 10% lower than that using Gozzi‘s (2007) model. Using 

the latter or the best-fit Prawel model yielded close results. 

  

a) Hot-rolled flanges b) Flame-cut flanges 

Figure V-5: Residual stress models proposed by Schaper and Tankova (2022) 
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Among previously mentioned patterns, only those used by Prawel (1974) and Kabir (2018) rely on 

experimental measurements performed on limited geometries. The lack of experimental background in 

most of existing patterns has conducted Schaper and Tankova (2022) to develop a novel residual stress 

model. The proposed model is based on experimentally measured distributions using the sectioning 

method in twenty-five welded members having a steel grade between S355 and S690 among which one 

had hot-rolled flanges while the rest had flame-cut flanges. 

The model is developed analysing also the distributions measured in almost forty specimen found in the 

literature, made of flame-cut or hot-rolled flanges and steel grades from S235 to S890. Data from the 

literature included the mean experimental distribution measured by Fukumoto (1981) with the sectioning 

method on thirty-four 250×100 mm welded members. Using the same experimental method, the residual 

stress measurements performed by Kubo (1988) on small welded members made of hot-rolled flanges 

should also be mentioned. The specimens had cross-section dimensions comprised between 250×125 

mm and 300×150 mm but no residual stress model resulted from this study. Similarly, the residual 

stresses measured by Avent (1982) on seven welded members with hot-rolled flanges should be 

highlighted. The members were 229 to 610 mm height and 127 to 254 mm wide and fabricated from 

steel plates having a nominal yield strength of 345 MPa. The plates thicknesses ranged between 3.2 and 

6.4 mm in the webs, and from 5.6 to 15.9 mm in the flanges. The welding procedure, particularly 

amperage and volts, varied between specimens but did not impact the residual stresses distribution. 

Liu (2017) investigated numerically the impact of various parameters on the residual stresses 

distributions in S355 and S690 welded members. Tests results obtained for S690 welded members using 

the hole drilling method validate the use of a numerical model. The parametric study highlighted an 

impact of the web and flanges thickness on the residual stress distribution. In particular, numerical 

results showed a decrease of the magnitude of the flanges compressive stresses as the b/tf ratio increases. 

The study analyzed the effect of the welds on the stress distribution and disregarded the impact of 

thermal cuts made at the flange tips. 

Schaper and Tankova (2022) proposed residual stress models for welded members made of hot-rolled 

flanges and flame-cut flanges, presented in Figure V-5a) and V-5b), respectively. Contrary to the other 

models depicted in the present sub-section, the one presented in Figure V-5a) exhibits tensile stresses at 

the web-to-flange junctions that do not reach the yield strength when greater than 235 MPa. Involving 

ε, no stress is linearly dependent on the yield strength, contrary to existing models. 

The models developed by Schaper and Tankova (2022) show differences at the flanges tips where flame-

cuts provoke a tensile stress having a magnitude of 0.5fyε, which is half the magnitude of the tensile 

stress at the flange centres. The compressive stress in the flanges being determined from self-

equilibrium, the resulting stress of the model for welded section with hot-rolled flanges is lower than in 

the model for flame-cut flanges. 

 Conclusions 

The existing residual stress patterns adapted to welded members made of hot-rolled flanges present 

similar features. Indeed, except in the model of Schaper and Tankova (2022), the tensile stress reaches 

fy at the flange-to-web junctions while the magnitude of the compressive stresses generally range 

between 25 and 30% of fy. The models of Prawel (1974) and Kabir (2018) rely on experimental 

measurements but the latter lack parameters and using the former yields overly conservative results. 

Besides, these models were developed employing a limited number of experimental data, unlike that of 

Schaper and Tankova (2022) that rely on the most important experimental background. 
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In the following sub-section V.2.2, residual stress models for welded members with flame-cut flanges 

are described. 

V.2.2 Flame-cut flanges 

The residual stresses distribution proposed by ECCS (1976) for welded members with flame-cut flanges 

is presented in Figure V-6a). Expressions were given to determine the widths ci of the stress blocks, but 

the resulting tension units at the flanges ends are very narrow while the stress magnitude reaches the 

yield strength, making challenging its use in finite element analyses. For this reason, Barth (1998) and 

Chacón (2009) proposed modified versions of the ECCS model presented in Figure V-6b) and Figure V-

6c), respectively. 

The patterns presented in Figure V-6b) and V-6c), which do not rely on experimental data, exhibit a 

tensile stress reaching a third of the yield strength at the flanges centre significantly lower than the yield 

strength proposed by ECCS (1976, 1984) and commonly assumed for welded members having hot-

rolled flanges. Tensile stresses at the flange corners are similar in both models proposed by Barth (1998) 

and Chacón (2009), reaching 18% of the yield strength which is lower than the value proposed by 

Schaper and Tankova (2022). 

   

a) Original b) Barth (1998) c) Chacón (2009) 

Figure V-6: Residual stress models from ECCS (1976) 

It can be noticed that the residual stress pattern proposed by Chacón (2009) is not self-equilibrated, an 

axial tensile load resulting from the stress distribution in the flanges. This is due to a large central tension 

zone, while the tension blocks at the flanges ends are narrower than in Barth’s model. Performing 

numerical non-linear analyses on bent members, Couto (2019) obtained lower results using Chacón’s 

pattern than using Barth’s model, highlighting that the tension zone at the tips and the compressed zone 

have a greater impact on the buckling behaviour than the central tension zone. 

Chernenko (1991) suggested a shape for a residual stress pattern presented in Figure V-7a). This 

proposition is based on experimental results from Lehigh University performed in the 1960s, e.g. by 
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Cranston (1967), Kishima (1969) or Tebedge (1973). The specimens tested were composed of stocky 

welded H-members with flame-cut flanges having cross-section dimensions up to 400×400 mm with 

thicknesses of 10 mm at least. More recently, residual stresses distributions were measured by Wang 

(2012) in three S460 H-members. The cross-section dimensions were between 168×156 and 320×314 

mm with thicknesses of 11 mm for the webs and 21 mm for the flanges. Along with the sectioning 

method, the distributions were measured using the hole-drilling technique. The semi-destructive hole 

drilling method consists in measuring the stress field released by the drilling of a small hole that has a 

diameter and depth of 1.5 and 2 mm, respectively. The hole-drilling method, measuring membrane 

stresses, has provided more scattered results than the sectioning method but the mean compressive 

stresses are similar. Based on these test results, Wang (2012) proposed the stepped residual stress shape 

presented in Figure V-7b). The magnitude of the tensile stress at the web-to-flange junctions is between 

0.73fy and 1.04fy while the magnitudes at the tips vary between 0.08fy and 0.49fy. Compressive stresses 

have magnitudes comprised between -0.20 fy and -0.41 fy in the flanges and -0.13 fy and -0.24 fy in the 

web. 

  

a) Chernenko (1991) b) Wang (2012) 

Figure V-7: Residual stresses shapes for welded members with flame-cut flanges 

Thiébaud (2014) measured residual stresses using the sectioning method in isolated flame-cut plates, 

welded or not at their centre. The flame-cut plates corresponding to bridges beam flanges were 615 or 

730 mm-wide with a 60 mm-thickness while the perpendicular welded plates, representing the beams 

webs were 20 mm-thick. Results showed that the central welds have an influence on the compressive 

stress but the tensile stresses at the plate tips due to flame-cut remain unchanged. Using its experimental 

results for S355 welded bridges beams having flame-cut flanges, Thiébaud (2014) proposed the residual 

stress model given in Figure V-8a). 

The sectioning method was again used by Yang (2017) on four welded specimens with flame-cut flanges 

having cross-section heights between 300 and 400 mm, involving 8 and 10 mm-thick webs and flanges, 

respectively. Three 200 mm-wide doubly-symmetric specimens were analyzed along with a mono-

symmetric member having 180 and 220 mm-wide flanges, all specimens having a nominal yield strength 

of 345 MPa. The resulting residual stress model, presented in Figure V-8b), suggests linear transitions 

between tensile and compressive stresses but no widths or slopes are provided. The pattern proposed by 

b/20 
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Yang (2017) is less favourable than those proposed by Barth (1998) and Chacón (2009) due to a higher 

compression magnitude in the flanges and a lower tension magnitude at the flanges ends. 

  
 

a) Thiébaud (2014) b) Yang (2017) c) Unsworth (2021) 

Figure V-8: Existing models for welded members with flame-cut flanges 

Unsworth (2020) performed residual stress measurements using the sectioning method in four welded 

members having cross-section dimensions comprised between 536×300 mm and 749×430 mm, with 

web and flanges thicknesses of 12.7 and 25.4 to 31.8 mm, respectively. Three of the specimens had 

plasma-cut flanges while the last had flame-cut flanges. Using these results along with experimental 

data on twenty-five specimens from the literature that mostly concerned stocky cross-sections (with a 

maximum total height of 430 mm and a minimum web thickness of 6 mm) made of high strength steel, 

a residual stress model have been proposed by Unsworth (2021). This model is presented in Figure V-

8c) where the compressive stresses are found from self-equilibrium while widths are given by: 
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where α is the coefficient of linear thermal expansion that can be taken as equal to 15×10-6 C-1. 
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It is worth mentioning that the model proposed by Unsworth (2021) was developed based on the stepped 

residual stress model proposed by Dwight (1969) for welded members with hot-rolled flanges. The width 

of the tension zone in the web ηw remains unchanged while the width of the central tension zone 

proposed by Dwight (1969) corresponds to that proposed by Unsworth (2021) with B = 0. 

However, the model of Unsworth (2021) provides high values of the magnitudes of the compressive 

stress for small cross-sections. As an example, the case of a S355 welded member having the cross-

sectional dimensions of an IPE 300 member is studied, its total height and width being 300 and 150 mm, 

respectively. The flanges and web thickness are 10.7 and 7.1 mm, respectively, with an area Aw = 25 

mm². The resulting residual stresses distribution in the flanges according to Unsworth’s (2021) model 

is presented in Figure V-9. 

 

Figure V-9: Residual stresses in the flanges of an IPE 300 type welded member using Unsworth’s (2021) model 

The compressive stresses reach almost half of the yield strength. This value is significantly greater than 

those from the other models for welded members made of flame-cut flanges. 

 Conclusions 

Within the many existing residual stress models, Thiébaud (2014) has developed a pattern adapted to 

bridges members that presents the most favourable magnitude of the compressive stress in the flanges 

while Chacón (2009) has suggested a model that is not self-equilibrated. Both patterns should not be 

employed to perform finite element analyses on building members. The same conclusion can be drawn 

regarding the residual stress shapes given by Chernenko (1991) and Wang (2012) that lack general 

values for stress magnitudes and widths. Appropriately using the model from Yang (2017) in finite 

element analyses seems challenging due to small width of the stress gradient at the flanges ends. The 

same can be said regarding the small width of the tension blocks at the flanges tips in the model proposed 

by ECCS (1976) for which a modified model proposed by Barth (1998) can be used despite a lack of 

experimental background. The model developed by Unsworth (2021) relies on a consistent experimental 

background but seems unfavourable in small section, the compressive residual stress being very 

important when compared to other models. Similarly, Schaper and Tankova (2022) proposed a model 

based on strong experimental bases that include high strength steel but a scarcity of specimens having a 

height greater than 500 mm can be noticed. However, in practice the height of welded members is greater 

and generally comprised between 500 and 1200 mm in buildings. Experimental results are clearly 

needed for steel members having usual dimensions and steel grades. 

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

σ/fy

y/b



RESIDUAL STRESSES IN WELDED STEEL MEMBERS 

- 164 - 

An experimental programme is described next consisting in residual stress measurements in eight S355 

welded members chosen to match the current common practice, two having hot-rolled flanges and six 

flame-cut flanges. The novel experimental results are then analyzed along with existing experimental 

data, resulting in a new residual stress model adapted to welded members in buildings that have flame-

cut flanges and a usual steel grade. 

V.3 Experimental programme 

V.3.1 Full-scale specimens 

The experimental programme consists in residual stress measurements performed on eight S355-welded 

members at the University of Liège. The web of 780×8 mm is identical for the 8 specimens. The 

parameters studied are the flanges dimensions (width and thickness) and their fabrication process. The 

nominal dimensions and steel grade of the specimens are depicted in Table V-1. Three flange thicknesses 

have been studied 12, 15 and 20 mm as well as two widths 200 and 250 mm. The objective was to study 

the impact of the flanges slenderness on the residual stresses distribution. In addition, two specimens 

using hot-rolled flanges have been tested to analyze the influence of the flanges fabrication. The 

specimens were fabricated by welding first one side of the web with both flanges, then turned over 

before adding fillet welds connecting the other side of the web to both flanges. 

The test specimens having a 3 m-length are assumed long enough to prevent the residual stresses 

measurements from any boundary effects in agreement with the requirements of Aschendorff (1983): 

specimen t3.5hL   (V.4)   

where the maximum total height ht is 820 mm within specimens from Table V-1. 

Designation hw (mm) tw (mm) b (mm) tf (mm) L (m) 
Steel 

grade 

Flanges fabrication 

process 

Wfc_200-15 780 8 200 15 3 S355 Flame-cut (FC) 

Wfc_200-

15/20 
780 8 200 15, 20 3 S355 FC 

Wfc_250-15 780 8 250 15 3 S355 FC 

Wfc_250-12 780 8 250 12 3 S355 FC 

Wfc_200-20 780 8 200 20 3 S355 FC 

Wfc_200-12 780 8 200 12 3 S355 FC 

Whr_200-15 780 8 200 15 3 S355 Hot-rolled (HR) 

Whr_200-20 780 8 200 20 3 S355 HR 

Table V-1: Nominal properties of the specimens for residual stresses measurements 

In addition to the residual stresses, the real cross-section dimensions and material properties have been 

measured. The material properties have been measured according to standard ISO 6892-1 on three 

coupons from each thickness. These coupons were cut from specimens Wfc_250-12 for 8 and 12 mm-

thick plates and Wfc_200-15/20 for 15 and 20 mm-thick plates. The mean (M) and standard deviation 
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(SD) of the measured elasticity modulus E, the yield strength fy and the ultimate tensile strength fu are 

presented in Table V-2. The yield strength, corresponding to the proof strength for 0.2% plastic 

extension Rp0.2, increases as the thickness decreases. It can be noted that the measured yield strength is 

11 to 20% - depending on the thickness – higher than its nominal value of 355 N/mm² while the 

variations of the modulus of elasticity do not exceed 5%. 

The cross-section dimensions have been measured on three transverse sections of each specimen having 

a constant spacing. In Table V-3 the measured dimensions are divided by their nominal values and 

expressed as means and standard deviations. A negligible deviation on the flanges width and web height 

are noticed due to the precision of cutting methods currently used by steel manufacturers. Slight 

differences, which are still acceptable, are noted concerning the plates. 

Thickness 

(mm) 

E (N/mm²) fy (N/mm²) fu (N/mm²) 

M SD M SD M SD 

8 201501 2483 427 0.7 552 3.8 

12 203732 2202 410 9.8 545 6.0 

15 211527 6559 417 1.9 549 0.7 

20 205627 806 395 3.1 541 1.1 

Table V-2: Material properties of the steel plates from the residual stress specimens 

An extensive description of the most common existing residual stress measurement techniques is 

presented by Rossini (2012) where mechanical – destructive or semi-destructive – methods are separated 

from non-destructive techniques that can involve diffraction. Despite preserving the specimens, the non-

destructive methods such as X-ray or neutron diffraction, or ultrasonic method require advanced 

calibration, expensive equipment and are hardly applicable to large welded members. Destructive or 

semi-destructive methods, that include the deep hole, the contour, the hole-drilling and the sectioning 

methods, consist in measuring the released strains associated with a drilled hole or a cut that must be 

performed without influencing the existing stress field. 

Among existing destructive methods, the sectioning one has been widely used, as noticed in section V.2. 

Indeed, this method combines a certain ease of use with accuracy despite measuring longitudinal strains 

only. Because strains in other directions hardly affect a member buckling behaviour when compared to 

the longitudinal ones, the sectioning method is very well suited for welded beams. Therefore, the 

sectioning method has been used to measure residual stresses. 

Dimension M SD 

Web height 1.000 0.0019 

Web thickness 1.022 0.0113 

Flanges width 1.001 0.0041 

Flanges thicknesses 1.009 0.0092 

Table V-3: Statistical parameters of the actual dimensions of the residual stress specimens 

Residual stresses are measured at mid-span where longitudinal strips that are approximately 100 mm-

long are firstly depicted to measure their initial lengths Li using the numerical extensometer shown in 

Figure V-10. The second step has consisted in sawing transversally in each piece a 200 mm-long central 
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zone, that includes the smaller strips, using a band saw cooled by a liquid containing water and oil. The 

central zone is then longitudinally cut according to the initially depicted strips of which the final length 

Lf is eventually measured, as shown in Figure V-10. From the initial and final lengths, the residual 

uniaxial strain in each strip εx is obtained then used along with Hooke’s law to calculate the residual 

uniaxial stress σx: 

i f
x

i

L L

L



  (V.5)   

x xE   (V.6)   

The strips initial and final lengths are measured on both sides of the plates, except at the flanges centres 

were the length cannot be measured on the inner face of the flanges due to the presence of the web and 

welds. The resulting residual stress of each strip is defined as the mean between the values measured on 

both faces of the plate. At the flanges centre, the residual stress is defined as the mean between the outer 

face value and the mean value in the strip located at its immediate vicinity in the web. 

 

Figure V-10: Measurement of the strips final lengths 

V.3.2 Measured distributions 

V.3.2.1. General results 

The residual stresses distributions are presented in the following sections V.3.2.2 and V.3.2.3 where the 

effects of the flanges fabrication process and slenderness are studied. The theoretical self-equilibrium 

resulting from the residual stresses in each specimen is analyzed calculating the sums of both the net 

internal and total internal forces Fnet and Ftotal in every strips as defined by Unsworth (2020) and using 

the cross-section plastic resistance to an axial load Npl: 

n

net ires,i

i=1

F A  (V.7)   
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n

total ires,i

i=1

F A  (V.8)   

n

ipl y,i
i=1

fN A  (V.9)   

where n is the number of strips, Ai, σres,i and fy are the transverse area, the measured residual stress and 

the material yield strength in strip i. 

Results of expressions (V.7) and (V.8) are obtained using the simplifying assumption that the residual 

stress is uniform in a strip and given in Table V-4, tensile stresses being negative. 

Specimen 
Fnet/Ftotal Fnet/Npl 

Top flange Bottom flange Web Cross-section Cross-section 

Wfc_200-15 13.8% 14.5% -15.5% 1.53% 0.19% 

Wfc_200-15/20* -13.9% -49.3% -43.5% -37.12% -5.73% 

Wfc_250-15 -34.2% -9.1% -8.0% -16.05% -1.73% 

Wfc_250-12 55.5% 62.3% -25.1% 19.95% 2.28% 

Wfc_200-20 -39.3% 13.4% -42.6% -26.87% -4.01% 

Wfc_200-12 18.3% -12.4% 2.2% 1.06% 0.16% 

Whr_200-15 28.0% 12.8% 38.8% 26.49% 3.95% 

Whr_200-20 -36.8% -37.7% -31.4% -34.82% -5.71% 

Table V-4: Net and total internal forces compared with plastic resistance 

*: The top flange of specimen Wfc_200-15/20 is 15 mm-thick. 

Owing to the precision of the experimental measures and the limited number of strips in each specimen 

– eleven in each flange plus twelve in the web – the maximum value of the Fnet-to-Npl ratio is 5.7%. 

Further parameters are determined to characterize the residual stresses distribution in the six specimens 

having flame-cut flanges that are defined by Unsworth (2020) as the parametric compressive stress σpc 

and the width of the high stress gradient (HSG) region η at the flange-to-web junctions. The parametric 

compressive stress can be seen as the average stress in the “uniformly” compressed part of the web or 

flange: 

pc rc,i rc

1

1 n

in
  



   (V.10)   

where σrc are the residual stresses in the plate that are lower than the mean residual stress minus a quarter 

of their standard deviation: 
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The HSG region width is defined by Unsworth (2020) as the central width in the flanges between the 

locations of the two closer compressive stresses σpη given by equation (V.12). In the web, the widths are 

defined from the location of such compressive stress to the flange junction. Linear interpolations are 

employed to determine the HSG widths. 

 
2

pη res res,i res

1

1
1,5

n

in
   



    (V.12)   

The mean parametric compressive stresses and HSG width due to welding in the flanges and webs are 

presented in Table V-5 for all specimens with flame-cut flanges along with the mean stresses σtip 

measured at the flanges tips. 

Specimen 
σpc/fy η/plate width 

σtip/fy,f 

Flanges Web Flanges Web 

Wfc_200-15 -0.17 -0.08 0.37 0.08 0.02 

Wfc_200-15/20 -0.19 -0.14 0.41 0.07 0.00 

Wfc_250-15 -0.12 -0.06 0.34 0.08 0.03 

Wfc_250-12 -0.06 -0.08 0.41 0.08 0.06 

Wfc_200-20 -0.17 -0.14 0.46 0.10 0.05 

Wfc_200-12 -0.16 -0.09 0.42 0.08 -0.04 

Table V-5: Parameters of the residual stresses distributions 

Table V-5 shows that the parametric compressive stress are lower in 250 mm-wide flanges than in 200 

mm-wide flanges where values are found between 16 and 19% of the yield strength. In the webs, the 

parametric compressive stresses, ranging between 6 and 14% of the yield strength, seem to slightly 

decrease with the flange width. Keeping in mind the results from Table V-4, no correlation seems to 

link the compressive stresses and the flanges thicknesses. The HSG region widths are constant in the 

webs, ranging between 7 and 10% of the web height. However, in the flanges the variation is more 

pronounced, fluctuating between a third and almost half of the flange width. The wider flanges provides 

among the lowest HSG region widths. Stresses measured at the flanges tips are found between 0 and 6% 

of the yield strength with a specimen that presents compressive residual stresses having a magnitude of 

0.04fy. 

Experimental results show that the predictive tensile stresses at the flanges tips are over estimated by 

most residual stress models presented in section V.2.2, except for Yang (2017) and Unsworth (2021) 

with values of 0.03fy in tension and 0, respectively. Compressive stresses in the flanges are closer to the 

predictions of the models of Barth (1998), Chacón (2009) and Yang (2017) that range between 17 and 

22% of the yield strength. The model proposed by Thiébaud (2014) presents a lower magnitude of the 

compressive stress, 0.11fy. The resulting parametric compressive stress in the webs experimentally 

measured are found between the predictions of the models of Barth (1998), Chacón (2009) and Thiébaud 

(2014) proposing 0.07fy or 0.15fy while Yang (2017) proposes to use 22% of the yield strength, which is 

almost four time the lowest measured value. 

Comparing the width of the HSG region at the flanges centres given in Table V-5 to the width of the 

central tension zones proposed in residual stress models would not be relevant if the model proposes a 
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uniform tension block, e.g. in models by ECCS (1976), Barth (1998), Chacón (2009), Wang (2012), 

Thiébaud (2014) and Schaper and Tankova (2022). The HSG region widths determined with expressions 

(V.1) and (V.2) from Unsworth (2021) yields widths of 0.38b in the flanges of Wfc_200-15 and 0.07hw 

in the web of the same specimen. Both predictions correspond to the experimental data given in Table 

V-5. 

The influence of the flange fabrication process and slenderness on the stress distribution is analyzed in 

§V.3.2.2 and §V.3.2.3, respectively. 

V.3.2.2. Effect of the flanges fabrication process 

The influence of the flange fabrication process on the residual stresses can be analyzed comparing the 

experimental distributions measured in specimens Wfc_200-15 and Whr_200-15 that have similar 

dimensions but either flame-cut or hot-rolled flanges. Likewise, the distributions in Wfc_200-20 and 

Whr_200-20 that present similar dimensions are compared. The distributions in the 15 and 20 mm-thick 

flanges are presented in Figure V-11 and Figure V-12, respectively while in the webs of the 

corresponding specimens the stresses are presented in Figure V-13. 

 

Figure V-11: Residual stresses in 200×15 mm for hot-rolled and flame-cut flanges 

Both Figure V-11 and Figure V-12 exhibit significant differences in the residual stresses distributions 

between welded members having hot-rolled or flame-cut flanges. The differences are particularly visible 

at the flanges ends where flame-cut flanges present low tensile stresses while hot-rolled flanges present 

compressive stresses that reach their maximum values. The 15 mm-thick flanges present similar 

magnitudes of the compressive stresses but the peak values are attained at different locations. In the hot-

rolled flanges, the maximum compressive stresses are measured at the flanges tips while they are 

attained closer to the centre for flame-cut flanges. The same observations can be made concerning the 

location of the maximum compressive stresses in the 20 mm-thick flanges. However, the compressive 

stresses magnitude is greater in the hot-rolled than in the flame-cut flanges. The width of the central 

tension zone is larger in hot-rolled than in flame-cut flanges where the maximum tensile stress near the 

welds is slightly lower. 
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Figure V-12: Residual stresses in 200×20 mm hot-rolled and flame-cut flanges 

Residual stresses distributions in the webs illustrated in Figure V-13 show lower compressive and a 

greater magnitude of the tensile stresses in pieces having hot-rolled flanges. The influence of the flange 

fabrication process in the web is more pronounced within the 15 mm-thick flanges specimens than in 

those having 20 mm-thick flanges. 

  

a) Specimens with 15 mm-thick flanges b) Specimens with 20 mm-thick flanges 

Figure V-13: Residual stresses in the webs of specimens with hot-rolled or flame-cut flanges 

Figure V-11 to Figure V-13 highlight the impact of the flange fabrication process on the residual stresses 

distribution in a welded member, proving relevant the development of distinct design methods. 

Within members made of hot-rolled flanges, one can note that the measured distributions are quite 

different from the existing models. Indeed, in each model except that of Schaper and Tankova (2022), 

the yield strength is reached at the flanges centre. However, in Figure V-11 and Figure V-12 the 

maximum tensile stress is 59% of fy, in 15 mm flanges. For this test specimen, the tensile stress predicted 

by the model of Schaper and Tankova (2022) is 0.75fy, which is closer to the experimental data than the 
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propositions of the other models. Besides, the maximum compressive stress, measured at a tip of a 20 

mm flange, is 25% of the yield strength. This value corresponds to that proposed by the models of 

prEC3-1-14 and Kabir (2018) while the other models overestimates it. 

V.3.2.3. Effect of the flanges slenderness 

Among welded members with flame-cut flanges, the effect of the flanges dimensions on the residual 

stresses configuration is studied. The experimental distributions measured in specimens having 200 and 

250 mm-wide flanges with the same thickness are therefore compared. The results are then depicted for 

both couples of specimens Wfc_200-15 and Wfc_250-15; and Wfc_200-12 and Wfc_250-12. 

Besides, the influence of the flanges slenderness being investigated, the effect of mono-symmetry is 

analyzed comparing results of specimens Wfc_200-15, Wfc_200-20 as well as Wfc_200-15/20. 

 

Figure V-14: Residual stresses in 12 mm-thick flame-cut flanges 

Figure V-14 and Figure V-15 show the experimental residual stresses distribution in the flame-cut 

flanges that have a thickness of 12 and 15 mm, respectively. In agreement with results presented in 

Table V-5, both figures show that the magnitude of the compressive stresses decreases as the flange 

width increases. Within 15 mm-thick flanges, a larger central HSG zone is noted in the shortest flanges 

while being similar in all flanges having a thickness of 12 mm. In Figure V-14, stresses at the flanges 

tips are more favourable in the widest flanges where they attain approximately 30 MPa in tension. At 

the tips of the 200 mm-wide flanges, residual stresses are either compressive or in tension with a 

magnitude lower than 10 MPa. No effect of the flange widths on the tips stresses arises from distributions 

presented in Figure V-15. 

 

Figure V-15: Residual stresses in 15 mm-thick flame-cut flanges 
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Residual stresses in the web of specimens having two 12 or 15 mm-thick flanges are depicted in Figure 

V-16a). The thinner flanges result in lower magnitude of the tensile stress and in a slightly higher 

magnitude of the compressive stress. The link between the flanges width and the residual stresses 

distribution in the webs is not highlighted. 

  

a) Specimens with 12 or 15 mm-thick 

flanges 
b) Specimens with 15/20 mm-thick flanges 

Figure V-16: Residual stresses in the webs of specimens having flame-cut flanges 

Figure V-16b) shows the residual stresses distribution in the web of specimens having (i) two 200×15 

mm flanges, (ii) two 200×20 mm flanges and (iii) a 200×15 and a 200×20 mm flange for which the top 

flange is 15 mm-thick. Tensile stresses being alike in both doubly symmetric specimens, no effect of 

the mono-symmetry can be observed on the web tensile stresses. 

In doubly symmetric members, the compressive stresses are lower in the specimen made of 15 mm-

thick flanges. The compressive stresses in Wfc_200-15/20 being slightly more important near the thicker 

bottom flange, an impact of the mono-symmetry is noted. 
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Figure V-17: Residual stresses in 200×15 flame-cut flanges 

Residual stresses measured in both flanges of specimen Wfc_200-15 and in the thinnest flange of 

specimen Wfc_200-15/20 are presented in Figure V-17. No major differences are noticed between the 

three flanges that present similar magnitudes of the compressive and tensile stresses at every location, 

except near the flanges right end (y>0) where differences can be noted. 

 

Figure V-18: Residual stresses in 200×20 flame-cut flanges 

Figure V-18 exhibits the residual stresses distributions measured in both flanges of specimen Wfc_200-

20 and in the thickest flange of specimen Wfc_200-15/20. Similarly to the distributions shown in Figure 

V-17, no major differences can be noticed between the three 20 mm-thick flanges that present similar 

stresses at every position. 

Both Figure V-17 and Figure V-18 show that the residual stresses in each flange of a mono-symmetric 

cross-section are not influenced by the distribution in the other flange while a small influence on the 

compressive stresses in the web can be seen in Figure V-16b). The same conclusions were drawn by 

Schaper (2019) where the residual stresses measurements showed no effect of the mono-symmetry in 

the flanges while in the web an impact was observed. 

As explained in sub-section V.2.2, the model from Chacón (2009) is not self-equilibrated, while that of 

Thiébaud (2014) is adapted to bridge beams. In addition, the model of Unsworth (2021) revealed 

inappropriate to certain cross-sectional geometries. Neither of these models should therefore be 

considered to perform large parametric studies of GMNIA computations. Besides, the experimental 

distributions show that the models of Barth (1998) and Schaper and Tankova (2022) visibly 

overestimate the magnitude of the tensile stresses at the flanges ends. On the opposite, the model of 
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Yang (2017) clearly overestimates the magnitude of the flanges compressive stress. Using either of these 

models may produce inaccurate numerical results when performing GMNIA computations. 

Consequently, a new residual stress model for welded members with flame-cut flanges is proposed in 

the following section V.4. 

V.4 Development of a model for welded I steel members 

with flame-cut flanges 

The shortcomings of existing models led to the development of a new residual stress model. To that end, 

experimental results are accompanied by experimental data from the literature presented in Table V-6. 

Source 
Specimen 

designation 
hw (mm) tw (mm) b (mm) tf (mm) 

Steel 

grade 

fy,w 

(N/mm²) 

fy,f 

(N/mm²) 

Yang 

(2017) 

H1 280 8 200 10 Q345 398 458 

H2 380 8 200 10 Q345 398 458 

H3 380 8 200 10 Q345 398 458 

H4 332 8 
220* 

180** 

10* 

8** 
Q345 398 

458* 

398** 

Tankova 

(2019) 

RS_1 317 12 100 12 S355 377 377 

RS_2 230 6 110 12 S355 362 371 

RS_5 311 10 100 16 S355 451 386 

RS_6 143 10 100 16 S355 443 392 

Schaper 

(2019) 

Pos. 1 370 8 350 20 S355 365 357 

Pos. 3-1 370 8 200 20 S355 351 340 

Pos. 4-1 370 8 350 12 S355 402 444 

Pos. 5 370 8 
200* 

350** 

20* 

40** 
S355 462 334 

Pos. 1* 370 8 350 20 S355 363 357 

Pos. 3-1fy 370 8 200 20 S460 554 452 

Pos. 4-2 370 8 350 40 S355 356 353 

Pos. 3-2 370 8 350 20 S355 365 450 

Pos. 1fy 370 8 350 20 S460 552 444 

Pos. 2-2 800 8 350 20 S355 338 347 

Unsworth 

(2020) 
SP2_2 600 12.7 430 31.8 350W 364 347 

Schaper & 

Tankova 

(2022) 

B1 468 8 200 16 S460 / / 

B4 278 8 300 16 S460 / / 

Table V-6: Specimens analyzed from the literature 
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These results have been published during the ten last years and comprise welded members made with 

flame-cut flanges and steel grade up to S460. The web thickness ranges between 5 and 15 mm, and the 

flange thickness between 8 and 40 mm. 

The twenty-one specimens from Table V-6 present a nominal steel grade comprised between 345 and 

460 MPa and concern mostly H-shapes sections with only three pieces having a web height greater than 

400 mm while the smallest web is less than 150 mm-high. A wider spectrum is noticed concerning the 

other cross-section dimensions, thicknesses of the web plates varying between 6 and 12.7 mm while the 

flanges plates are 8 to 40 mm-thick. Most of the flanges widths are comprised between 100 and 350 mm 

while specimen SP2_2 from Unsworth (2020) present 430 mm-wide flanges. 

Source Specimen σpc,f/fy,f σpc,w/fy,w ηf/b ηw/hw σtip/fy,f 

Yang 

(2017) 

H1 -0.14 -0.25 0.33 0.15 0.06 

H2 -0.09 -0.20 0.36 0.10 -0.02 

H3 -0.12 -0.13 0.36 0.11 0.02 

H4 
-0.11* 

-0.20** 
-0.18 

0.37* 

0.40** 
0.13 

0.07* 

0.00** 

Tankova 

(2019 

RS_1 -0.25 -0.43 0.55 0.15 0.08 

RS_2 -0.12 -0.12 0.29 0.22 -0.03 

RS_5 -0.15 -0.31 0.48 0.14 0.22 

RS_6 -0.31 -0.39 0.36 0.31 0.11 

Schaper 

(2019) 

Pos. 1 -0.21 -0.04 0.13 0.11 0.33 

Pos. 3-1 -0.26 -0.18 0.32 0.11 0.17 

Pos. 4-1 -0.14 -0.10 0.33 0.11 -0.09 

Pos. 5 
-0.25* 

-0.14** 
-0.03 

0.27* 

0.28** 
0.19 

0.08* 

0.12** 

Pos. 1* -0.15 -0.09 0.18 0.11 0.36 

Pos. 3-1fy -0.22 -0.09 0.21 0.11 0.33 

Pos. 4-2 -0.14 
Tensile 

stresses 
0.24 0.32 0.35 

Pos. 3-2 -0.13 -0.06 0.14 0.11 0.41 

Pos. 1fy -0.13 -0.08 0.16 0.11 0.46 

Pos. 2-2 -0.11 -0.10 0.08 0.06 0.48 

Unsworth 

(2020) 
SP2_2 -0.14 -0.17 0.20 0.26 0.03 

Schaper & 

Tankova 

(2022) 

B1 -0.20 -0.20 0.39 0.12 0.15 

B4 -0.15 -0.21 0.36 0.17 0.07 

Table V-7: Parameters of the residual stresses distributions from literature 
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The parametric compressive stress in the flanges σpc,f and web σpc,w along with the HSG zone widths in 

the flanges ηf and web ηw and the mean tensile stress at the flanges tips σtip calculated for specimens of 

Table V-6 are presented in Table V-7. 

The parametric compressive stresses in the flanges are mostly comprised between 12 and 15% of the 

yield strength while some specimens exhibit a significantly higher value, up to 31% of the yield strength. 

Specimens RS_1 and RS_6 that present a flange parametric compressive stress of 25 and 31% of the 

yield strength correspond to members having unusual cross-section dimensions. RS_1 have 12 mm-thick 

web and flanges and RS_6 very stocky 100×16 mm flanges. Specimens Pos. 3-1 and Pos. 5 exhibit 

compressive stresses of 26 and 25% of the yield strength that are compensated by a low magnitude of 

the compressive stress in the web or important tensile stresses at the HSG region. Most of the web 

compressive parametric stresses are found between 8 and 14% of the yield strength. However, higher 

magnitudes are encountered in uncommon stocky webs at least 10 mm-thick or having a slenderness of 

35 in the case of specimen H1. 

Table V-7 shows that the width of the HSG region in the flanges varies a lot, most of them being 

comprised between 16 and 36% of the flange width. The width of the HSG is greater in the 100 mm 

flanges of specimens RS_1 and RS_5 as well as in the shortest flange of specimen H4. In the webs, most 

HSG widths are comprised between 10 and 15% of the plate height. This proportion increases up to 31% 

in specimens RS_2 and RS_6 due to small heights of 230 and 143 mm. Specimen SP2_2 having 12.7 

and 31.8 mm-thick web and flanges present a HSG width greater than a quarter of the web height. In 

specimen Pos.4-2 having 40 mm-thick flanges, only tensile stresses are measured in the web, leading to 

a wide HSG zone. 

Most residual stresses at the flanges tips are in tension, with extremely varying magnitudes which are 

null in a flange of specimen H4 while reaching almost half of the yield strength in specimens Pos. 1fy 

and Pos. 2-2. Some tips stresses are found slightly in compression, e.g. in specimens H2 and RS_2 where 

either low compressive stresses magnitude is measured in the flange (H2) or low tensile stresses 

magnitude is measured at the flanges centre (RS_2). Compressive stresses are measured at the tips of 

the slender flanges of specimen Pos. 4-1. However, these flanges are uncommon in practice because 

they are defined as Class 4 flanges according to Eurocode 3 Part 1-1. 

A new residual stress model is developed for welded members with flame-cut flanges and compared to 

experimental results presented in Table V-5 and Table V-7. The new model is presented in Figure V-19 

where stepped stress blocks are suggested to simplify its implementation in finite element analyses. The 

width of the tensile stresses at the flanges tips are set to a twentieth of the flange width, matching the 

width of the strips at the flanges tips from the experimental programme where tensile stresses has been 

measured and corresponding to the smallest width proposed in existing models. 

The three parameters characterizing the model distribution from Figure V-19, σc, σt,tip and bHSG should 

be firstly calculated according to equations (V.13), (V.14) and (V.15): 

c y y
f

0.25 0.005 0.14
b

f f
t


 

     
 

 (V.13)   

t
t,tip y y0.70 0.35 0.03

h
f f

b


 
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 
 (V.14)   
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t
HSG 0.1 0.036

h
bb

b

 
  

 
 (V.15)   

 

Figure V-19: Proposed residual stress model for welded members with flame-cut flanges 

The compression block width bc and the central tensile stress in the flange σt,HSG are determined from 

the plate equilibrium: 

HSG
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  (V.16)   

c c t,tip
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(V.17)   

The tensile stress in the HSG region σt,HSG is identical in the flanges and web, and so are the compressive 

stresses in the web and the flanges σc. The widths of the tension and compression zones in the web are 

determined from the plate equilibrium. 

The proposed pattern is applicable to mono-symmetric cross-sections equating the tensile stresses 

magnitude in the web σt,w to the mean value of the tensile stresses in the HSG region of both flanges 

(see equation (V.18)). Similarly, the compressive stress in the web of a mono-symmetric member σc,w is 

set as the mean value of that in both flanges (see equation (V.19)). 

t,HSG,f1 t,HSG,f2
t,w

2
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  (V.18)   
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c,f1 c,f2
c,w

2

 



  (V.19)   

The stresses calculated with equations (V.13) and (V.14) are proportional to the yield strength and 

dependent on the cross-section dimensions through the web slenderness b/tf and the total height-to-width 

ratio ht/b. The same can be said concerning the width of the central tension block that also depends on 

the ratio ht/b according to equation (V.15). 

The parametric compressive and tip stresses, calculated according to the proposed equations, are 

presented in Figure V-20 and Figure V-21 and compared against experimental results given in Table V-

5 and Table V-7. The magnitude of the compressive stresses increases as the flange slenderness 

decreases, equation (V.13) representing a relevant higher bound. However, some experimental results 

present more compression than obtained using equation (V.13). As explained before, these results 

correspond to specimens having flanges stockier than the common practice or where the important 

compressive stresses are compensated on the rest of the cross-section. 

 

Figure V-20: Compressive stress in flanges 

Stresses at the flanges tips displayed in Figure V-21 show a global trend, decreasing while the height-

to-width ratio increases. The predictions of equation (V.14) are in good agreement with most 

experimental results while being a lower bound to the greatest number of results. However, some 

experimental values are below, especially when in compression. 
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Figure V-21: Stress at the flange tips 

The width of the central tension block in the flanges calculated with equation (V.15) is compared to 

experimental results in Figure V-22. A linear increase of the stress block width with ht/b is visible, 

equation (V.15) corresponding to a mean increase. It is worth mentioning that bHSG is different from ηf, 

the former width corresponding to the width of an “ideal” uniform tension block while the latter 

corresponds to the width of the “real” tension block, which is between a rectangular and a bi-triangular 

region. 

 

Figure V-22: Width of the central tension zone in flanges 
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Statistical parameters of the differences between the experimental parametric compressive stresses and 

those obtained using expression (V.13) are presented in Table V-8. The results concerning stresses at 

the flange tips are also given (see expression (V.14)). The mean and standard deviation of the difference 

between the experimental and analytical stresses normalized to the yield strength are given in Table V-

8. 

The mean deviation for the compressive stresses is very small and corresponds to 1.5% of fy. In the case 

of the stresses at the flange tips, the mean value is also very small, being lower than 3% of fy. Keeping 

in mind that compressive stresses are negative, positive values of the differences place the analytical 

stresses on the safe side for both studied parameters. 

In addition, the standard deviation for the compressive stress is very low, being lower than 5% of the 

yield strength. However, as shown in Figure V-21, the results are more scattered for stresses at the 

flanges tips. Thus, the standard deviation for this parameter is more important, standing just under 16% 

of fy. 

Parameter of the model   

c,exp c,(V.13)

yf

 
 

M 1.5% 

SD 4.52% 

t,tip,exp t,tip,(V.14)

yf

 
 

M 2.7% 

SD 15.62% 

Table V-8: Comparison between experimental results and the model values 

In spite of the scarcity of experimental data, particularly concerning members having a height greater 

than 400 mm, the proposed model is based on measurements performed in members having a total 

height-to-width ratio ranging between 1.03 and 4.10 and flanges slenderness comprised between 6.25 

and 29.17, which covers most of the steel building members in practice. 

V.5 Conclusion 

Experimental tests have been performed at the University of Liège to determine the residual stresses of 

eight welded members made from S355 steel with 780×8 mm webs while the flanges widths are 200 or 

250 mm. The flange thicknesses range between 12 and 20 mm to analyze the impact of the flange 

slenderness on residual stresses. Both flame-cut and hot-rolled flanges are investigated to confirm the 

influence of the fabrication process on the stress distribution. Besides, a mono-symmetric cross-section 

was studied. 

The tests results have shown significant differences between hot-rolled and flame-cut flanges, 

particularly at the flanges tips. Indeed, members with flame-cut flanges present more favourable residual 

stresses distributions because flanges tips are in tension. Besides, within members made of flame-cut 

flanges, those with the widest flanges present a (slightly) lower magnitude of the compressive stress. 

The flange slenderness has a negligible impact on the stress distribution in the web. However, unlike in 

the flanges, the mono-symmetry has a slight effect on the stress distribution in the web. 

Experimental distributions in members having flame-cut flanges are not in line with the predictions of 

existing models (Barth (1998), Chacón (2009), Thiébaud (2014), Yang (2017), Unsworth (2021), 
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Schaper and Tankova (2022)). Therefore a residual stress model is developed, adapted to welded 

members having flame cut-flanges made using common steel grade. This new model is based on 

experimental results and on data concerning nineteen specimens from the literature. The flange 

compressive stress decreases as the flange slenderness increases while the tensile stress at the flanges 

tips decreases as the height-to-width ratio increases. Besides, the HSG region width increases with the 

latter ratio. Linear expressions are therefore proposed to determine the compressive stress in the flange 

depending on the flange slenderness and to obtain the tensile stress at the flanges tips and the width of 

the central tension block based on the height-to-width ratio of the cross-section. The width of the 

compressed part as well as the magnitude of the tensile stresses at the flanges centre are determined by 

self-equilibrium. The stresses in the web having a negligible influence of the buckling behaviour, their 

values are similar to those in the flanges. The widths of the compressive and tensile zones are determined 

from the plate equilibrium. In addition, the model is applicable to mono-symmetric members by 

implementing in the web the average values of the compressive and of the tensile stresses in both flanges. 

The new model is then employed in the following chapters to perform GMNIA type calculations of 

welded members made of flame-cut flanges subjected to a compressive force and/or bending moment. 
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 Lateral-torsional buckling of 

welded steel members: Experimental 

tests 

VI.1 Introduction 

The resistance of a steel member against overall out-of-plane buckling is defined in Eurocode 3 Part 1-

1 based on numerous experimental and numerical results. However, as explained in Chapter IV, the 

existing European design rules, which rely on a consistent mechanical background can exclusively be 

applied to members having a constant cross-section. However, the General Method, that lacks a coherent 

background, can be used with non-uniform members. Unlike the elastic buckling behaviour of a steel 

member, its elasto-plastic behaviour cannot be apprehended without experimental tests that are further 

used to calibrate a numerical model. Many researchers performed therefore experimental tests on bent 

and/or compressed steel welded members. 

Some of the experimental programmes on welded steel members found in the literature are described 

first. The original experimental programme is then detailed consisting in four welded members with 

flame-cut flanges bent by a single hydraulic jack and resting on fork supports at both ends. The main 

results of the experimental programme are eventually depicted. 

VI.2 Experiments from the literature 

In Europe, an extensive experimental programme was performed in the 1960s on compressed members, 

as described by Sfintesco (1970) that led to the current Eurocode 3 Part 1-1 buckling curves. 

Experiments were also performed at Lehigh University, by Estuar (1962) and Cranston (1967). 

Respectively two and twelve welded I-members having compact cross-sections as described in Chapter 

V and nominal yield strengths ranging between 207 and 345 N/mm² were uniformly compressed. The 

geometrical out-of-plane slenderness λz of the welded specimens were comprised between 32 and 103. 

Specimens with hot-rolled flanges were studied by Estuar (1962) while both hot-rolled and flame-cut 

flanges tested by Cranston (1967). The latter study concluded that the specimens with flame-cut flanges 

had better resistances than the identical ones with hot-rolled flanges. As described in Chapter V, this 

difference comes from the residual stresses distribution in the member mainly influenced by the flange 

fabrication process. 

Later, Prawel (1974) exposed an experimental programme that consisted in three tapered beams under 

a linear bending moment and resting on fork supports and twelve tapered or uniform inclined cantilevers 

subjected to a vertical load at their free end. The ratio between the cross-sections heights at both ends 

of the beams were 2.67. The values for this ratio were 1, 2 and 3 for the beam-column specimens where 

half of the specimens were made of flame-cut and half of hot-rolled flanges. The flanges width were 

102 and 152 mm while the smallest cross-section had an overall height of 152 mm. Similarly to the 
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conclusions drawn by Cranston (1967), Prawel (1974) concluded that the specimens with flame-cut 

flanges had a higher stability resistance than analogous specimens with hot-rolled flanges. 

Fukumoto (1981) led an extensive experimental programme on sixty-eight S235 welded uniform beams 

having the same cross-section dimensions consisting of 100×8 mm hot-rolled flanges and 234×6 mm 

webs. The specimens were split in two equal groups of 1.8 and 2.6 m-long members, falling in the 

inelastic range with normalized slenderness of 0.84 and 1.10, respectively. Initial in-plane, out-of-plane 

and twist rotational geometrical imperfections were measured at mid span, resulting in mean values of 

L/8000, L/3378 and 0.03°, respectively. Using the two series of thirty-four results yields that the standard 

deviation, when compared to the mean experimental resistance, is slightly greater in the group of 2.6 m-

long specimens than within the shortest specimens, being 11 and 10%, respectively. Besides, owing to 

a greater magnitude of the compression residual stresses and geometrical imperfections, it was 

concluded that the ultimate resistances of welded members was lower than those of similar hot-rolled 

members. 

Avent (1982) described an experimental programme that consisted in testing eight welded columns with 

hot-rolled flanges. Two sets of four specimens having similar cross-section dimensions were tested. One 

set involved stud tests for which the length was thrice the column height. The other set concerned 

inelastic buckling, normalized slenderness ranged between 0.74 and 1.11. The uniform members had a 

nominal yield strength of 345 MPa. The web heights were 229 or 305 mm and the flanges widths 127 

or 152 mm. The thickness were 3.2 and approximately 6 mm, respectively. It is found that the resistance 

of these thin-walled welded columns is more important than those suggested by the European buckling 

curves. 

Kubo (1988) investigated the interaction of local and lateral-torsional buckling by testing twenty-two 

welded uniform specimens made with hot-rolled flanges. The measured yield strengths ranged between 

262 and 316 MPa. The overall height of the specimens varied between 200 and 300 mm while their 

widths were comprised between 125 and 151 mm. The length was chosen to obtain out-of-plane 

geometrical slenderness λz approximately equal to 50, 70 and 100 and thus inelastic buckling. The load 

jack was applied 25 mm above the top flange at mid span were a thin 3.2 mm stiffener was placed. 

Failure modes governed by lateral-torsional buckling were found for the longest beams while combined 

local and global buckling was observed for the other specimens. Initial in-plane and out-of-plane 

geometric imperfections were measured with mean values of the amplitudes of L/7300 and L/5320, 

respectively. The results were used by the authors to propose an interaction formula based on the 

effective width method. 

The interaction between local and lateral-torsional buckling was also investigated in the Master thesis 

presented by Richter (1998) depicting an experimental programme of twenty-eight welded members 

subjected to a uniform bending moment distribution. All members had either 127×7.8 or 152×6.5 mm 

flanges. The web height was comprised between 305 and 762 mm with a thickness of 4.1 mm. The 

length of the test specimens varied between 0.92 and 7.35 m. No information is given about the flange 

fabrication process but one may assume that the test specimens were made of hot-rolled flanges. Indeed, 

Kim (2010) performed finite element analyses using the best-fit Prawel residual stress model (see 

Chapter V) and obtained an average 10% deviation from the experimental results of Richter (1998). The 

tests results were used to propose adaptation of the American design rules AISC regarding the local-

global buckling interaction. 

As part of the ESCS Steel RTD Programme (2001) that concerned the lateral-torsional buckling of steel 

beams, four S355 tapered beams were tested at the University of Liège (see Figure VI-1a)). The 

specimens had 180×10 hot-rolled flanges while web height was varying from 300 to 600 or 900 mm 
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with thickness of 8 or 10 mm. The beams were almost 6 m-long and subjected to a linear bending 

moment distribution. Three of the specimens were reversed upside down after testing to perform again 

a lateral-torsional buckling test. The initial out-of-plane imperfections were measured using a virtual 

reference line, the distance to which being measured at seven cross-sections along the specimen. The 

maximum lateral imperfection in a compressed flange was equal to L/1087 prior to any loading while 

within the three reversed specimens, the lateral imperfection were ranging between L/1365 and L/748. 

The results of this research project were employed to develop the software LTBeam that provides the 

elastic critical bending moment of a bent I-member having, or not, a uniform and doubly symmetric 

cross-section. 

 

a) Beam test from ESCS Steel RTD Programme (2001) 

 

b) Beam-column test from Tankova (2018a/b) 

Figure VI-1: Test set-ups for non-uniform members from the literature 

Later, Kwon (2007) investigated the interaction of local and global inelastic buckling testing in 

compression five welded I-section members. The specimens had hot-rolled flanges and were fabricated 

from 6 mm-thick plates having a nominal yield strength of 240 MPa. The web slenderness varied 

between 67 and 92 while the flanges slenderness were comprised between 8 and 13. The members length 

ranged between 1.4 and 2.4 m. The test results were used to develop for welded members the Direct 

Strength Method (DSM) derived initially for cold-formed members. Kwon (2012) again studied the 
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local-global buckling interaction on fifteen beams loaded in bending fabricated from 6 mm-thick hot-

rolled plates having a nominal yield strength of 315 N/mm². The webs slenderness were similar to those 

of the compressed members but the flanges slenderness were more important, ranging between 13 and 

33. The members length were 3, 5 or 10 m. The test results were employed to adapt the DSM to welded 

steel members subjected to bending. A summary of DSM adaptations proposed by Kwon (2007, 2012) 

on welded members is exposed in 2014 by the same author. 

More recently, Tankova (2018a) described an experimental programme that concerned six specimens, 

three being compressed and two bent. The last one was compressed with eccentricity, resulting in both 

bending and compression in the member. The beam-column test set-up is presented in Figure VI-1b), 

extracted from Tankova (2018b). The six S355 tapered welded specimens were fabricated from flame-

cut flanges. The flange widths of the columns and the beam-column were 100 and 110 mm with 

thicknesses of 12 or 16 mm while both beams had 200×16 mm flanges. The beams had a web height 

varying from 250 to 1000 m over their length, with a thickness of 6 or 15 mm. In the four other 

specimens, the webs at their smallest ends were 120 or 185 mm-high and the ratio between the web 

height at both ends was 2, 3 or 4. Two of the tapered columns, where in-plane buckling was investigated, 

had both flanges inclined while the four other specimens had a single flange inclined. The global in-

plane and out-of-plane out-of-straightness of the columns and the beam-column were measured using a 

nylon string tied to the members ends and maximum values of the imperfection amplitudes of L/2727 

and L/1333, respectively, were found. A 3D Laser system was used to map the geometric imperfections 

in the two beams and a maximum imperfection of L/1039 was measured, corresponding to combined 

local and global geometrical imperfections. This study resulted in a new design method to assess the 

stability of a steel member having, or not, a uniform and doubly symmetric cross-section, which is 

depicted in Chapter IV. 

Schaper (2019) described an experimental programme that consisted in eight uniform welded members 

made of flame-cut flanges. One specimen had a mono-symmetric cross-section while the other seven 

had doubly symmetrical cross-sections. The specimens all had a 370×8 mm web with 200 or 350 mm-

wide flanges that were 12, 20 or 40 mm-thick. The distance between supports was 6 or 10 m. Using a 

Laser scanner, the initial in-plane, out-of-plane and twist rotation were measured and maximum values 

of L/828, L/2125 and 0.46° were found. The transverse load applied at mid-span was introduced using 

a hydraulic jack located under the bottom – compressed – flange, as depicted in Figure VI-2a) extracted 

from Schaper (2019). A roller rail system was being employed to allow for a lateral displacement of the 

hydraulic jack. The test results were used as an experimental background for the modified method of 

the equivalent compression flange included in prEN 1993-1-1. 

Ji (2019, 2022) depicted a series of eleven uniform welded members subjected to bending moment 

having either flame-cut or plasma-cut flanges. The specimens had a nominal yield strength of 350 MPa. 

The webs height were comprised between 600 and 900 mm with thicknesses of 9.5 or 12.7 mm. The 

flanges were 300 to 470 mm-wide with thicknesses of 25.4 to 31.8 mm. The beams were resting on fork 

supports at both ends, the buckling length being 9.75 m. Eight hydraulic load jacks were placed on the 

beams compression flange with a constant spacing of 1.22 mm except near both ends where the distance 

was 0.61 m to the fork supports, as depicted in Figure VI-2b) extracted from Ji (2019, 2022). Initial 

global geometrical imperfections were measured in five regularly spaced cross-sections using a string 

for out-of-plane imperfection, a Laser line for in-plane imperfection and a digital protractor for the twist 

rotation. The maximum twist rotation was 1.3° while the maximum initial out-of-plane imperfection 

measured in the compressed flange was L/1389 and a maximum in-plane imperfection of L/1000 was 

found. The experimental results showed a negligible difference between the resistances of the specimens 
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made of flame-cut and plasma-cut flanges. Besides, most experimental results are close to those obtained 

using the Canadian standard CSA S16-14. However, the analytical resistance of one specimen is 

significantly overestimated while that of a different specimen is underestimated. 

 

a) Beam test from Schaper (2019) 

 

b) Beam test from Ji (2019, 2022) 

Figure VI-2: Test set-ups for uniform members from the literature 

Previous experimental programmes focusing on the stability of welded steel members have been 

depicted in the present section. From the results of the experimental studies arose the greater resistance 

of welded members made of flame-cut flanges when compared to those having hot-rolled flanges, 

proving relevant the use of distinct design methods. However, a scarcity of experimental data concerning 

welded members with flame-cut flanges having usual dimensions is noticed. 

Indeed, since the experimental programme from Prawel (1974), only Tankova (2018a), Schaper (2019) 

and Ji (2019, 2022) have tested members made of flame-cut flanges. The latter programme contained 

only uniform doubly symmetric beams though mono-symmetric and/or non-uniform members are of 

common use for steel buildings. Schaper (2019) also presented an experimental programme concerning 

exclusively uniform members, only one of the tested beams having a mono-symmetric cross-section. 

Besides, the specimens presented an overall height of approximately 400 mm, which is smaller than the 

common practice. The stability of non-uniform welded members made of flame-cut flanges was 
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investigated recently only by Tankova (2019a), but all test specimen had a doubly symmetric cross-

section. 

A new experimental programme is therefore performed and described next, investigating the effects of 

mono-symmetry and tapering of a welded member made of flame-cut flanges. 

VI.3 Experimental tests description 

VI.3.1 Full-scale specimens 

The experimental programme, conducted at Polytech’ Clermont, aims to a better understanding of the 

global out-of-plane buckling behaviour of welded members with flame-cut flanges. It included lateral-

torsional buckling tests on two uniform and two tapered members, one having a mono-symmetric cross-

section while the other is doubly symmetrical within both groups. The length of the four S355 beams as 

well as the test set up was similar. One load jack applied a downward force on the top flange of a laterally 

restrained cross-section located at 2.18 m from a fork support – defined as left support. The load jack is 

applied at Ld = 6.25 m from the other support. The nominal dimensions of the tested members are given 

in Table VI-1. They are also presented in Figure VI-3 with the set up. 

Both uniform members U-DS and U-MS present Class 3 webs according to Eurocode 3 Part 1-1, being 

786×8 mm. In both non-uniform members, the web height varies linearly from 286 to 836 mm. All 

flanges are 200 mm-wide while their thickness in both doubly symmetrical members are 15 mm. The 

tension flanges of both mono-symmetric members are also 15 mm-thick, their compression flanges 

being 5 mm thicker. In addition, on both sides of the web 30 mm-thick transverse stiffeners are placed 

at the 3 laterally restrained cross-sections. Besides, a longitudinal 20 mm-thick stiffener is positioned 

on both sides of the web along the 2.18 m-long segment. 

In addition, in both non-uniform beams, 20 mm-thick transverse stiffeners are placed 200 mm away 

from the loaded section. They are located at the cross-section between the uniform and the tapered parts 

of the members. The distance of 200 mm was chosen to ensure the jack application on a horizontal 

surface. 

Designation hw (mm) tw (mm) b (mm) tf (mm) 
Steel 

grade 
Ld (m) 

Total length 

(m) 

U-DS 786 8 200 15 S355 6.25 8.83 

U-MS 786 8 
200* 

200** 

20* 

15** 
S355 6.25 8.83 

T-DS 286 to 836 8 200 15 S355 6.25 8.83 

T-MS 286 to 836 8 
200* 

200** 

20* 

15** 
S355 6.25 8.83 

Table VI-1: Nominal properties of the specimens for lateral-torsional buckling tests 

*: Compression flange 

**: Tension flange 
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The specimens dimensions as well as their steel grade are chosen to cope with current practice of steel 

building. The mono-symmetry is implemented by modifying the compressed flange thickness only, its 

width being unchanged when compared to the tension flange. This choice matches with common 

practice and leads to simpler lateral restraints set up when compared to different flanges widths. The 

global out-of-plane buckling being investigated, local and shear buckling have been avoided using 8 

mm-thick webs that places only a small portion of specimen T-DS in Class 4 according to Eurocode 3. 

 

a) Specimen U-DS 

 

b) Specimen U-MS 

 

c) Specimen T-DS 

 

d) Specimen T-MS 

Figure VI-3: Specimens tested (dimensions in mm) 
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A fork support and the load introduction set-ups are presented in Figure VI-4. 

  

a) Fork support b) Load introduction 

Figure VI-4: Test set-up 

VI.3.2 Measurements prior to loading 

The cross-section dimension of the test specimens have been measured along with the global and local 

geometrical imperfections. The material properties have been measured according to standard ISO 6892-

1 on three coupons from 8 and 15 mm-thick plates and on four coupons from 20 mm-thick plates. The 

8 and 15 mm-thick- plates and two of the 20 mm-thick coupons are collected from extra 300×400 mm 

plates delivered with the beams. Two 20 mm-thick coupons were extracted from the compressed flange 

of specimen T-MS after the test. 

Thickness 

(mm) 

E (N/mm²) fy (N/mm²) fu (N/mm²) 

M SD M SD M SD 

8 203283 2937 421 1.6 550 3.4 

15 209049 1426 411 6.2 542 3.5 

20 197821 4678 390 6.1 539 6.3 

Table VI-2: Material properties of the steel plates 

The mean (M) and standard deviation (SD) of the measured elasticity modulus E, the yield strength fy 

and the ultimate stress fu are given in Table VI-2. The yield strength increases as the thickness decreases. 

The actual yield strength is 10 to 19 % greater than its nominal value, the standard deviation being close 

to 6 N/mm² in 15 and 20 mm-thick plates. 
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a) Thickness measures b) Width measures 

Figure VI-5: Location of the dimensions measurement 

The cross-section dimensions have been measured on four transverse cross-sections located at 1.75, 3.5, 

5.25 and 7 m from the left fork support. The dimensions have been measured as exposed in Figure VI-

5. 

The actual dimensions are divided by their nominal values, the results being used to calculate the mean 

(M) and standard deviation (SD) for each measured dimension which are given in Table VI-3. The mean 

deviation is at most 1%. Standard deviations are lower than 1% except for the web thickness where a 

larger deviation of 2.3%, which is still admissible, can be assigned to its small dimension. 

Dimension M SD 

Overall height 1.000 0.0062 

Web height 0.999 0.0063 

Web thickness 1.005 0.0227 

Flange width 1.003 0.0075 

Flange thickness 1.011 0.0080 

Table VI-3: Statistical parameters of the actual dimensions of the test specimens 

Angles at the junction between the web and the compression flange have also been measured within the 

four cross-sections of interest, the results being given in Table VI-4. The sum of both angles is comprised 

between 178.4 and 178.9°, characterizing a local imperfection in the flanges shown in Figure VI-6. 

Although a slight tile shaping of the flanges is noticed, other flange local imperfections exist. Indeed, 

the sum of all flanges local imperfections yields a greater distance between the flanges tips than their 

centres, as exposed in Table VI-3 when relating the average overall and web heights and the flanges 

thickness. 
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Specimen U-DS U-MS T-DS T-MS 

Angle on the left side of the web (°) 88.1 87.8 88.5 88.7 

Angle on the right side of the web (°) 90.3 91.3 90.4 90.2 

Table VI-4: Mean angles at the web-to-compression flange junction 

In addition to cross-sectional dimensions, web local geometrical imperfections have been measured in 

the same cross-sections using a steel ruler associated with five callipers. Two callipers were located 

close to the web-to flange junctions, one at mid-height and the last two at a sixth of the web height from 

the web centre towards each flange. The magnitudes of the web plate local imperfections in all 

specimens are given in Table VI-5 along with their values compared to the web height measured at the 

corresponding cross-section. 

 

Figure VI-6: Local imperfection of a tile shaped flange 

Table VI-5 shows that the amplitude δ of the local imperfections is lower than or equal to 4.83 mm 

(approximately hw/164) in all specimens, corresponding to the fabrication tolerance according to EN 

1090-2 given by: 

2
w

w16000

h

t
    (VI.1)   

which is applicable when: 

w

w

80 200
h

t
   (VI.2)   

The imperfection amplitude is significantly lower in specimens U-DS and T-MS than in the two other 

specimens where values between hw/200 and hw/300 are found. 

Specimen U-DS U-MS T-DS T-MS 

Amplitude of the web local 

imperfection (mm) 
1.3 3.7 2.1 1.6 

Amplitude of the web local 

imperfection in function of hw 

hw/584 hw/214 hw/293 hw/485 

Table VI-5: Amplitude of the plate local imperfection measured in the webs 
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Eventually, global geometrical imperfections have been measured on the four test specimens using a 

Laser line joining the centre of the top flange at two consecutively laterally restrained cross-sections, 

the Laser being drawn from a cross-section close to the loaded section and directed to a first fork support, 

then reversed and pointed at the second fork support. The global imperfection measurement in specimen 

U-DS was slightly different, the Laser line being placed next to the left fork support and pointing at the 

right fork support. The position of the Laser line was marked on the beams flange every fifty centimetres, 

providing the resulting amplitudes given in Table VI-6 where their values are also compared to the 

buckling length Ld. 

Specimen U-DS U-MS T-DS T-MS 

Amplitude of global imperfection 

(mm) 
3.4 4.0 3.3 5.0 

Amplitude of the global imperfection 

in function of Ld 

Ld/1860 Ld /1547 Ld /1911 Ld /1263 

Table VI-6: Amplitude of the global out-of-plane imperfection measured in the compression flange 

Table VI-6 shows that the magnitude of the global out-of-plane imperfection of all specimens is lower 

than Ld/1000 that corresponds to the fabrication tolerance defined in EN 1090-2. The maximum 

measured imperfection amplitude is Ld/1263. It is worth mentioning that the web local and global 

imperfection amplitudes are very close in specimens U-MS and T-DS, the difference being 0.3 and 1.2 

mm, respectively. 

VI.3.3 Tests implementation 

During the tests, global displacements were continuously measured using steel wires connected to the 

web centre of four cross-sections regularly spaced of Ld/6. This distance corresponds to that between the 

loaded section and the closest cross-section where the global displacement is measured, as shown in 

Figure VI-7. The twist rotation was measured in the middle of the top flange at the cross-section located 

at Ld/3 from the loaded section where significant values are expected, as shown in Figure VI-7. 

 

Figure VI-7: Location of the global displacement and rotation measurements 

Figure VI-8a) and Figure VI-8b) show the measurements, prior to buckling test of a uniform specimen, 

of the global displacement and the twist rotation along with vertical displacement, respectively. 
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a) Global displacement b) Twist rotation and vertical displacement 

Figure VI-8: Means of continuous measurements during the tests 

In-plane displacements have also been measured as shown in Figure VI-9. Displacements were recorded 

at the centre of the top flange at both fork supports and at the centre of the compression flange at Ld/6 

from the loaded section towards the right support. The vertical displacement of the hydraulic jack was 

measured along with the vertical displacement at the centre of the bottom flange of the loaded section 

for comparison. At the cross-section located at Ld/3 from the loaded section, where the twist rotation 

and a global displacement is being measured, the vertical displacement is measured at the four flange 

tips to put in perspective the measured twist rotation. 

 

Figure VI-9: Location of the vertical displacement measurements 

In addition to displacements and rotations, uniaxial strains were measured continuously in three cross-

sections. One was defined a priori as the critical cross-section that is 2.3 and 2.8 m away from the load 

jack for uniform members and non-uniform members, respectively. Strain gauges at the critical cross-
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section were placed at the location of each orange triangle presented in Figure VI-10. Nine strain gauges 

were located on the compression flange, two being placed on the inner. Three gauges were placed on 

the web, two being close to the junctions with the flanges and the third in the web centre. Eventually, 

three gauges were placed on the tension flange, two at the tips and the last at the flange centre. The 

numerous strain gauges in the compression flange were placed so as to study its progressive yielding. 

Those located in the web and tension flange permitted to determine experimentally the internal forces 

and bending moments. 

 

Figure VI-10: Location of the strain gauges 

Strains were recorded in two other cross-sections located at Ld/5 of the critical one (see Figure VI-11). 

As there were less cross-sections with strains recording than with global displacement recording, the 

distance between the cross-sections with strain gauges was increased when compared to that between 

displacements measurements. Five strain gauges were placed in both cross-sections located as shown 

by the orange triangles having an exterior black contour in Figure VI-10, namely at the flanges tips and 

the centre of the compressed flange. 
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Figure VI-11: Cross-sections with strain gauges 

The four beam tests were carried out using the same loading protocol divided in three steps: 

 Step A consisted in three cycles of loading and unloading up to 40% of the Ultimate Limit State 

(ULS) design load F0.40; 

 Step B contained two cycles of loading and unloading. The targeted load in the first cycle 

corresponds to 70% of the ULS design load F0.70 while in the second cycle the ULS design load 

F1.00 was applied; 

 Step C, beams were loaded until failure. 

The value of the targeted peak load in steps A and B, corresponding to 40, 70 and 100% of the ULS 

design loads are given in Table VI-7 for the four tested beams. 

Specimen U-DS U-MS T-DS T-MS 

F0.40 (kN) 154 173 163 197 

F0.70 (kN) 269 303 285 345 

F1.00 (kN) 384 433 407 493 

Table VI-7: Peak loads during steps A and B of the loading protocol 

VI.4 Experimental results 

VI.4.1 Overview 

The failure mode of the four tests corresponds to lateral-torsional buckling. This buckling mode was 

observed at the peak load, as shown in Figure VI-12 for all specimen while some web distortion was 

noticed at post peak in specimen U-MS, as shown in Figure VI-13 where a rigid steel ruler is used as a 

comparison. 

The ultimate loads, Fult, of the four tests are presented in Table VI-8, along with the elastic and plastic 

cross-section resistances, Fel and Fpl, determined at the loaded section using the nominal dimensions and 

the measured yield strength for each thickness involved. The table also contains analytical results 

obtained using Eurocode 3 Part 1-1 buckling curve d, FEC3,d, based on the elastic critical loads resulting 

from Linear Bifurcation Analyses (LBA) performed with shell finite elements. The LBA type 
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calculations were employed to determine the normalized slenderness, presented in Table VI-8. The 

design load calculated using buckling curve d is determined using the measured dimensions and material 

properties. The simplifying assumption that the yield strength of a member is that of its compression 

flange is employed. This design load is divided by f computed using expression (IV.12) and the 

corresponding results are added to Table VI-8. Owing to normalized slenderness comprised between 

0.74 and 0.93, the coefficient f is approximately 0.88 for all specimens. 

  

a) U-DS b) U-MS 

  

c) T-DS d) T-MS 

Figure VI-12: Observed failure of the test specimens 

Table VI-8 shows significant differences between experimental ultimate loads and analytical design 

loads according to buckling curve d from Eurocode 3 Part 1-1. The ultimate loads are 62 to 81% higher 

than the design loads despite intermediate normalized slenderness (0.74 to 0.93). Accounting for the 
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bending moment distribution using the coefficient f increases the analytical results. The deviation from 

the experimental ultimate loads then range from 42 to 58% on the safe side. 

 

Figure VI-13: Post-peak web distortion in U-MS 

The ultimate load of specimen U-MS is greater than its design cross-section resistance that is its elastic 

resistance, U-MS being a Class 3 beam in bending. The failure loads of the three other specimens are 8 

to 18% lower than the elastic resistance of the loaded cross-section. This deviation can be attributed to 

the fact that the elastic resistance of the loaded cross-section differs from the actual design resistance of 

the failure cross-section. This is obvious for specimens T-DS and T-MS owing to the cross-sectional 

variation while U-DS is a Class 4 beam in bending, its cross-sectional design resistance is therefore 

reduced when compared to its elastic resistance. In addition, in the small to intermediate range of 

slenderness, the impact of the member imperfections increases with the slenderness. Specimen U-MS 

having the lowest normalized slenderness, its buckling resistance is closer to the characteristic resistance 

of the failure cross-section than for the other specimens. 

Specimen U-DS U-MS T-DS T-MS 

LT  0.830 0.736 0.927 0.809 

Fult (kN) 747.6 903.6 720.6 775.8 

FEC3,d (kN) 450.8 499.9 428.7 479.5 

FEC3,d/f (kN) 514.6 570.0 487.2 547.4 

Fel (kN) 808.6 796.8 874.3 859.1 

Fpl (kN) 940.2 1021.2 1021.2 1091.8 

Table VI-8: Design and experimental ultimate loads 

Besides, the experimental results depicted in Table VI-8 show a significant influence of the cross-section 

mono-symmetry, particularly in the case of uniform members. Indeed, the ultimate load of specimen U-

MS is 20% greater than that of U-DS. Within the non-uniform members, increasing the compression 
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flange thickness yields a smaller difference in the ultimate load, being 8%. Besides, the ultimate loads 

of U-DS and TDS present a small 4% deviation. A more important difference is noticed between the 

ultimate loads of both mono-symmetric specimens. The deviation of the T-MS failure load from that of 

U-MS is 14%. This result can be attributed to the somewhat lower yield strength measured in the 

compression flange of specimen T-MS that is more than 20 N/mm² lower than in other 20 mm thick 

coupon tensile tests. Besides, the distribution of the internal forces being different in the four types of 

beam, one may assume that the failure location is closer to the smaller end in T-MS than in T-DS. 

In addition to results given in Table VI-8, it should be mentioned that the failure load determined 

according to the new method of prEN 1993-1-1 and derived by Taras (2010a/b) is equal to 658.8 kN for 

specimen U-DS. This value is 12% lower than the experimental failure load and 46% higher than 

buckling curve d ultimate load. The analytical determination of the prEC3 failure load cannot be 

performed for the three other specimens which do not enter the scope of this method, limited to uniform 

members having a doubly symmetrical cross-section. 

The substantial differences between experimental and design loads partly result from the flange flame 

cuts. The design load determination using the General case from Eurocode 3 Part 1-1, i.e. buckling 

curve d, which does not account for the favourable bending moment linear distribution except when 

determining the critical load amplifier, can also be pointed out. 

VI.4.2 Displacements and rotations 

The applied force is presented in Figure VI-14 as a function of the load jack vertical displacement for 

the four tests. Initial stiffness are alike, though members with a mono-symmetric cross-section are 

slightly stiffer than the doubly symmetric ones. Some differences can be noted post peak where 

unloading is more sudden in tapered members (dashed lines) than in uniform members (solid lines). In 

particular, a drop of 100kN is observed right after the peak for specimen T-DS that can correspond to a 

quasi-elastic lateral-torsional buckling behaviour. 

Figure VI-15a) exhibits the global displacements measured by H2 (see Figure VI-7) considering a similar 

buckling direction. The buckling directions of the four tests were in line with the initial global 

imperfection. Specimen U-DS buckled towards the left side of the web, i.e. towards y < 0 (see Figure 

VI-11) while the three other beams buckled towards the opposite direction. 

Prior to lateral-torsional buckling, global displacements are mainly associated with in-plane bending 

while as buckling initiates, global displacements are mainly composed by out-of-plane displacements. 

Figure VI-15b) presents the measured twist rotation, again considering a similar buckling direction. 

The displacements and rotations are characteristic of the lateral-torsional buckling behaviour observed 

for the test beams. Indeed, during loading the displacements and rotations are very small to negligible 

with an almost constant stiffness. However, in the last 50 to 100 kN before the ultimate load, both the 

global displacement and twist rotation initiate a clear increase in all tests. As of the ultimate load, they 

both increase significantly with barely variable slopes, except regarding the twist rotation measured in 

U-MS where the post-peak stiffness varies visibly. This result may owe to the web distortion observed 

at this stage, the twist rotation being measured in the middle of the compression flange. 
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Figure VI-14: Force-vertical displacement curves 

Figure VI-15a) shows that specimen T-DS presents a quasi-infinite initial stiffness up to approximately 

700 kN which is very close to the failure load of 721 kN. Then, the displacement suddenly increases fast 

and significantly. In addition, the greatest initial stiffness for twist rotation is obtained for specimen T-

DS (see Figure VI-15b)). Both observations are in line with a failure close to elastic critical buckling 

with equilibrium bifurcation, as the drop in the force-displacement curve of Figure VI-14 suggests. 

The evolutions of the global displacements exposed in Figure VI-15a) are characteristic of the 

measurements in H1 to H4. 

  

a) Global displacement measurements in H2 b) Twist rotation measurements in R 

Figure VI-15: Overall displacements and twist rotations 
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The global displacement u measured at locations H1 to H4 are presented in Figure VI-16a) to Figure VI-

16d) when under three levels of loading: 

 85% of the ultimate load during loading, 

 the ultimate load, 

 90% of the ultimate load during unloading. 

In Figure VI-16, the loaded cross-section is positioned at x = 0 while the right end fork support is located 

at x = 6.25 m. H1, H2, H3 and H4 are located at x = 1.04, 2.08, 3.13 and 4.17 m, respectively (see Figure 

VI-16a)). 

  

a) Specimen U-DS b) Specimen U-MS 

  

c) Specimen T-DS d) Specimen T-MS 

Figure VI-16: Distribution of the global displacement 
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Figure VI-16 shows distributions of the global displacements along the beams, led by the lateral 

displacements, corresponding approximately to half sine waves at the ultimate load. The maximum 

values are obtained close to H2 in the case of uniform members. In tapered beams, the failure cross-

section is located closer to the smaller end owing to the height variation that results in different 

distributions of the bending moments and bimoment utilizations than in uniform beams. Consequently, 

the maximum displacements in both tapered specimens are close to H3, placed at mid-span. 

The buckling shapes when under the ultimate load and during unloading are very close in every 

specimen. Differences are noticed for the displacements measured at H3 in beam U-MS and H1 in T-DS. 

In the former case, the mid-span (H3) displacement is the more important under the peak load owing to 

pre-buckling displacements. However, during the unloading phase, the displacement at H2 becomes the 

greatest. In specimen T-DS, the differences noticed at H1 result from the changing of the sign of the 

global displacements. 

The magnitudes of the global displacements are of similar order for all test specimens except T-DS. 

Values close to 15 mm are obtained when under the ultimate load and 50 mm in the unloading stage. In 

beam T-DS, the magnitudes are approximately twice as low as in the three other test specimens. This 

phenomenon may result from the variation of the global displacements sign as buckling starts. 

VI.4.3 Strains  

The strain measurements recorded at the two tips of the compressed flange of the “critical” cross-section, 

i.e. by strain gauges J1 and J7 (see Figure VI-10) are shown in Figure VI-17a) and Figure VI-17b), 

respectively. To provide a consistent comparison of the experimental results, J1 is for every specimen 

the gauge located at the flange end corresponding to the buckling direction (see Figure VI-18). Negative 

values stand for compressive strains. The initial stiffness are close when looking at J7 strains. However, 

at the flange other tip, initial stiffness are similar in mono-symmetric members only while those 

observed in specimens T-DS and U-DS stand slightly apart. 

  

a) J1 b) J7 

Figure VI-17: Force strain curves 
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These differences must be seen for the couple of strain gauges (J1;J7). They can then be attributed to 

different values of the second order internal out-of-plane bending moment Mz
II and bimoment BII. These 

second order bending moment and bimoment are more important in the doubly symmetric members 

than in both mono-symmetric beams. 

 

Figure VI-18: Strain gauges locations for Figure VI-17 

Figure VI-19 shows the distributions of the strains measured along the width of the compression flange 

of the critical cross-section for each test specimen. The strains are presented for the loading levels used 

for the global displacements presented in Figure VI-16. In addition, the strains corresponding to the 

boundary between the elastic and plastic zones εy are depicted using purple solid lines. 
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The out-of-plane buckling behaviour is featured in the distributions measured in the four specimens. As 

clearly shown in specimen U-MS, during loading the compressive strains are uniform along the flange 

width up to the peak load. Then, the compressive strain at one of the flange tips increases while 

decreasing at the other tip. This phenomenon intensifies post peak yielding tensile strains and important 
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a) Specimen U-DS b) Specimen U-MS 

  

c) Specimen T-DS d) Specimen T-MS 

Figure VI-19: Strains distribution in the compression flange of the critical section 

When the peak load is reached, the strains at the most compressed fibre of the compression flange are 

similar in all specimens except in U-DS where a lower value is measured. The maximum strain is close 

to 0.002 in the compression flanges of specimens U-MS, T-DS and T-MS which corresponds 

approximately to εy = fy/E. Therefore, the experimental failure was found at the boundary between the 

elastic and inelastic ranges for all specimen except U-DS that failed in the elastic range. 
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VI.5 Summary 

The experimental overall buckling behaviour of welded members has been investigated in the past as 

described in the first section of this chapter. Existing experimental data mostly concern uniform 

members having hot-rolled flanges. Already in the 1960s, experimental tests showed greater ultimate 

capacities for welded members made of flame-cut flanges when compared to similar members made of 

hot-rolled flanges, owing to a more favourable residual stresses distribution. In the recent years, a 

scarcity of experimental programmes concerning welded members having common dimensions and 

made of flame-cut flanges is noticed. In particular, very few experimental data concerned mono-

symmetric and/or non-uniform members. A new experimental programme is therefore presented 

investigating the stability of uniform or tapered members having a doubly or mono-symmetric cross-

section. 

The novel experimental programme led at Polytech’ Clermont included lateral-torsional buckling tests 

performed on four S355 welded beams having flame-cut flanges. Two specimens presented a doubly 

symmetric cross-section and two had mono-symmetric cross-sections. Each couple of test specimens 

contained a uniform and a tapered member. The experimental failures, that featured lateral-torsional 

buckling, were found in the elastic range for the uniform specimen with a doubly symmetrical cross-

section and at the boundary of the inelastic range for the three other test specimens.  

The experimental results highlighted the benefits of thickening the compression flange of a uniform 

doubly-symmetric member. Indeed, a 5 mm thickness difference yielded a 20% increase of the ultimate 

load. The difference is less pronounced within non-uniform members, the exact failure locations 

corresponding to different cross-sectional dimensions. The ultimate load of the mono-symmetric tapered 

member is 8% greater than the doubly symmetric one. Besides, the ultimate loads of both doubly 

symmetric members were very close. 

The ultimate design loads determined according to the General case from Eurocode 3 Part 1-1, which 

makes use of buckling curve d, are found significantly below the experimental failure loads. The 

difference is slightly reduced when accounting for the bending moment distribution through the factor 

f. The deviation from the experimental ultimate load is even lower when using the new method in 

prEurocode 3 Part 1-1. However, this design method can only be employed for the uniform and doubly 

symmetric specimen. The General case verification format can then be questioned. In addition to a 

safety margin, some deviation between experimental and analytical results may be attributed to the 

beneficial effect of the flame-cuts, which is not accounted for in existing verification formats. 
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 Numerical model 

VII.1 Introduction 

To determine the actual resistance of a steel member subjected to bending moment and/or compression 

force, the most accurate method consists in performing a large-scale experiment which is a tedious time-

consuming process. To obtain a large amount of reference results, experimental results are generally 

supplemented with numerical GMNIA type calculations that comprehend the behaviour of actual 

members. Indeed, Geometrically and Materially Non-linear Analyses account for the member 

geometrical and material Imperfections. The current and future design methods of Eurocode 3 rely on a 

large number of GMNIA calculations. Comprehensive parametric studies are employed to validate 

analytical design methods and complete experimental results. 

Firstly, the numerical model used in the present work is described. The major assumptions on which the 

numerical model is based are described, i.e. the steel mechanical properties, the residual stress model 

and the distribution of the geometrical imperfections. The enforced boundary conditions are also 

depicted. 

The lateral-torsional buckling tests described in Chapter VI are then reproduced with this Finite Element 

Model. Numerical and experimental results are in good agreement. The finite element model is therefore 

used to perform a parametric study described in section VII.4. 

VII.2 Finite Element Model 

VII.2.1 Ideal member 

The numerical model, developed with ANSYS software v.2020, makes use of 4-noded shell elements 

with 6 degrees of freedom per node and 5 integration points through the thickness. The steel member is 

meshed using 20 elements over its width and 30 elements over its height. The longitudinal mesh density 

depends on the length of the member, one meter of the member being divided by 30 to 40 elements. 

The used steel mechanical properties are characterized by the constitutive law depicted in Figure VII-1 

which was suggested by ECCS (1984) The material law is multilinear isotropic with a plastic plateau 

when strains are comprised between εy and 10εy. For greater values, the strain hardening response is 

lower with a slope of E/50. 

Similarly to the LBA calculations depicted in Chapters II and III, the elastic mechanical properties are 

characterized by a modulus of elasticity E = 210 000 MPa and a Poisson’s ratio ν =0.3. 
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Figure VII-1: Steel stress-strain curve 

VII.2.2 Geometrical and material imperfections 

Material and geometrical imperfections in actual steel members are accounted for in numerical analyses 

using simplified models. 

The residual stresses distributions introduced in the numerical model are presented in Figure VII-2. The 

residual stress pattern adapted to welded members with hot-rolled flanges is that recommended by prEN 

1993-1-14 (see Figure VII-2a)). As shown in Chapter V, the measured distributions in welded members 

made of hot-rolled flanges exhibit similar magnitude of the compressive stresses in the flanges (0.25 fy) 

as the prEurocode 3 model. This maximum value is reached at the flanges tips while the stresses 

magnitude diminishes near the flanges centre. The measured magnitude of the tensile stress at the flanges 

centre being 0.59 fy is lower than that suggested by the employed model, corresponding to the yield 

strength. The use of the residual stress pattern presented in see Figure VII-2a) is assumed to accurately 

stand for the measured distributions (see Chapter V), stresses being close especially in the compression 

areas. 

The new initial stress model derived in Chapter V is used for welded members made of flame-cut flanges 

(see Figure VII-2b)). 
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a) Hot-rolled flanges b) Flame-cut flanges 

Figure VII-2: Residual stress models for welded members 

The following key parameters of the model depicted in Figure VII-2b) are reminded (see Chapter V): 
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The residual stresses introduced are constant in each element, the assigned stress corresponding to that 

of the element centroid according to the employed model. Linear interpolations are employed when the 

centroid is located between a uniform tension and the uniform compression zones. 

In addition to residual stresses, geometrical imperfections are applied to the numerical members. The 

geometrical imperfections comprise both a global and a local component. As recommended by Couto 

(2019), the shape of the global imperfection is proportional to the Linear Bifurcation Analysis (LBA) 

mode shape (see Figure VII-3), scaled to unity. It therefore depends on the actual loading conditions. A 

lateral imperfection for all loading cases, affine to the elastic out-of-plane flexural buckling mode shape, 

could also be used. However, Couto (2019) obtained slightly lower lateral-torsional buckling ultimate 

capacities using the actual elastic critical buckling mode shape than using a lateral imperfection. 

Despite a recommended value of L/1250 according to both Annex C of Eurocode 3 Part 1-5 and prEN 

1993-1-14, the global imperfection is scaled to the amplitude of L/1000, L being the distance between 

supports. Indeed, the value recommended by the European standard is 80% of the fabrication tolerance 

defined in EN 1090, which was modified from L/750 to L/1000 in the 2018 revision of the standard. 

However, a magnitude of the global imperfection of L/1000 provides more conservative results than 
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L/1250 and was recommended by Boissonnade (2012) and Couto (2019), both relying on the former 

version of EN 1090. 

  

Figure VII-3: Shape of the global imperfection (member subjected to bending) 

Plate local imperfections are enforced using sine waves applied by plate, as depicted in Figure VII-4. 

As recommended by both Annex C of Eurocode 3 Part 1-5 and prEN 1993-1-14, the local imperfections 

are scaled to an amplitude of hw/200 in the webs and b/200 in the flanges. Besides, to maintain the plates 

perpendicular, the sine-wave period is similar in both flanges and the web as suggested by Gérard 

(2019). Indeed, the half-period is set as the average between the flanges widths and web height, as 

proposed by Gérard (2019). The number of half waves along the member length is however 

approximated to the closest integer. 

 

Figure VII-4: Shape of the local imperfections (amplified) 

Since both global and local imperfections are used, the amplitude of the plate local imperfection is 

reduced to 70% of its original value. This reduction is in line with the recommendations from Annex C 

of Eurocode 3 Part 1-5 and prEN 1993-1-14. Both references recommend to perform two numerical 

analyses where each imperfection type is reduced in turn, the lowest result being defined as the ultimate 

capacity. However, it has been chosen to reduce only the amplitude of the local imperfections to spare 

a significant amount of computation time and because global buckling is of major interest. 

VII.2.3 Boundary conditions 

The kinematic boundary conditions are applied at the centroid of the end sections (see Figure VII-5). 

The end fork supports are imposed by fully restraining vertical and lateral displacement (w and v) as 

well as twist rotation (θ) at both ends. In addition, the longitudinal displacement (u) is fully prevented 

at a single end. These restraints are applied simultaneously at the end cross-section centroids. 
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Figure VII-5: Kinematic boundary conditions 

In order to prevent any local instability at both ends while warping and out-of-plane rotations remain 

free, beam elements are added to stiffen the cross-sections at supports, as presented in Figure VII-6. The 

2-noded beam elements, adapted to non-linear analyses, are enforced by defining cross-sectional 

properties where the torsional constant It = 0 and in-plane and out-of-plane second moments of area Iy 

and Iz have significant values. 

In addition, for LBA computations, distortion modes along the members are prevented by imposing 

suitable kinematic conditions to the model. 

 

Figure VII-6: Beam elements (in purple) preventing local failure of the shell elements (blue) 

External axial loading is applied at the centroid of the end section free to displace longitudinally (see 

Figure VII-7). Besides, end moments are also applied at the centroid of the members end sections. To 

enforce a ratio ψ between both end moments, the applied end moments present a ratio –ψ (see Figure 

VII-7). The non-linear analyses are performed using the Newton-Raphson resolution method proposed 

in the ANSYS software. 
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Figure VII-7: Load introduction 

The numerical model is employed to perform GMNIA calculations of the lateral-torsional buckling tests 

depicted in Chapter VI using specific features that are described in the following section VII.3. The 

numerical results are then compared against the experimental ones. 

VII.3 Comparison with experimental tests 

VII.3.1 Specific features of the numerical model 

One of the main objectives of the experimental programme described in Chapter VI was to assess the 

accuracy of the numerical model. Major experimental results need therefore to be compared against their 

numerical equivalents. Consequently, the numerical model described in the two previous sections is 

adjusted in order to account for the specific features of the specimens and test set-up. 

The actual material properties of the test specimens having been determined, the material laws 

implemented in the numerical model are presented at Figure VII-8 for each thickness involved. The 

numerical values are reproduced in Table VII-1. Each material law corresponds to the average result of 

the tensile tests performed for each thickness. The shell elements employed accounting for the change 

in thickness in non-linear analyses, experimental data have been modified to comprehend the true stress 

– true strain behaviour. The following expressions provided in Annex C of Eurocode 3 Part 1-5 and 

prEN 1993-1-14 are consequently used: 

 true 1     (VII.4)   

 true ln 1     (VII.5)   

It is worth mentioning that different material laws are used for the 20 mm flange in specimens U-MS 

and T-MS. Indeed, the material law employed for T-MS is determined from the results of the tensile tests 
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performed on the coupons extracted from this beam. The yield strength is more than 20 N/mm² lower 

than the mean of that obtained with the other 20 mm-thick coupons, which are used for U-MS. 

 

Figure VII-8: Material laws used for the test beams 

Besides, the actual residual stresses measured in specimens Wfc_200-15 and Wfc_200-15/20 are 

included in the numerical model of the test beams. Both doubly symmetric specimens (U-DS and T-DS) 

make use of the distribution measured in Wfc_200-15. The mono-symmetric beams (U-MS and T-MS) 

are computed using the experimental distributions measured in Wfc_200-15/20. The residual stresses 

distributions used, presented in Figure VII-9, are averaged in order to be symmetric about the members 

and flanges web centres. 

t = 8 mm t = 15 mm t = 20 mm 

ε (%) σ (MPa) ε (%) σ (MPa) ε (%) σU-MS (MPa) σT-MS (MPa) 

0.23 424 0.22 414 0.20 396 378 

1.82 424 2.00 414 1.79 396 393 

5.09 500 5.23 500 5.86 500 500 

15.34 551 15.35 546 15.3 540 540 

Table VII-1: Strains and stresses used for the test beams 

Geometrical imperfections are introduced using the shapes described in sub-section VII.2.2. However, 

the amplitudes of the imperfections are set to those measured in the specimens (see Chapter VI). The 

relative amplitudes of the flanges local imperfections are supposed to be similar to those measured in 

the webs. The imperfections amplitudes are presented in Table VII-2. 

The amplitude of the global imperfection is in every cases lower than Ld/1000 assumed in sub-section 

VII.2.2. The amplitudes of the local imperfections are also lower than hw or b/200, as defined in sub-

section VII.2.2. 
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a) Flanges b) Webs 

Figure VII-9: Residual stresses used for the test beams 

At both supports, the vertical displacements (w) of the bottom flange nodes are prevented. The lateral 

displacements (v) of the transverse stiffeners free ends are fully restrained on both sides of the web. 

Similarly, the latter displacements are prevented at the loaded cross-section. The longitudinal 

displacement (u) is fully restrained at the centre of the bottom flange of the cross-section located at the 

left support to prevent any rigid body motion. 

Imperfection U-DS U-MS T-DS T-MS 

Global Ld/1860 Ld/1547 Ld/1911 Ld/1263 

Local: web hw/584 hw/214 hw/293 hw/485 

Local: flanges b/584 b/214 b/293 b/485 

Table VII-2: Amplitude of the geometrical imperfections 

The load jack is represented by a linear loading (for LBA computations) applied along the width of the 

top flange at the loaded section. A single row of nodes is loaded. For GMNIA calculations, the linear 

set of point loads is replaced with uniform displacements in order to investigate the numerical post-peak 

behaviour obtained with the Newton-Raphson resolution type. 

VII.3.2 Results 

VII.3.2.1. General 

Using the numerical model described in the previous VII.3.1, the GMNIA load-carrying capacities of 

the four test beams are presented in Table VII-3 along with the experimental ones. The numerical values 

are also normalized to the experimental ultimate loads. The normalized slenderness are also reminded. 
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 U-DS U-MS T-DS T-MS 

LT  0.830 0.736 0.927 0.809 

FGMNIA (kN) 753.6 898.4 708.1 819.6 

Fexperimental (kN) 747.6 903.6 720.6 775.8 

FGMNIA/Fexperimental 1.008 0.994 0.983 1.056 

Table VII-3: Numerical and experimental load capacities 

The results show a good agreement, especially for both uniform beams and for specimen T-DS. Indeed, 

the deviation of the numerical ultimate load from the experimental one is negligible, being less than 1% 

for both uniform specimens. A very small deviation of 1.7% is found for the tapered beam having a 

doubly symmetric cross-section. The comparison between both load bearing capacities of specimen T-

MS shows a 5.6% difference, which is still acceptable. 

  

a) Experimental b) Numerical von Mises stresses (MPa) 

Figure VII-10: Buckled shape of specimen U-MS under peak load 

The experimental and numerical buckled shapes of specimen U-MS under peak load are presented in 

Figure VII-10. A significant lateral displacement of the compression flange can be seen in both the 

numerical and experimental buckled shape. Figure VII-10b) shows that the maximum von Mises stresses 

are found very close to the loaded section while the maximum compression flange displacement can be 

found close to mid-span. Such result can be attributed to the beneficial effect of the bending moment 

distribution. Indeed, the first order in-plane bending moment My is maximum at the loaded section while 

the second order out-of-plane bending moment Mz and bimoment B are maximum close to mid-span. 

Assuming that these three effects reach their maximal value at the same cross-section is therefore 

inconsistent when the bending moment distribution is not uniform. The bending moment distribution 

Load 

jack 
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should be accounted for when computing the bending moment resistance of a beam against lateral-

torsional buckling. 

The GMNIA calculations of the lateral-torsional buckling tests are also performed using alternative 

models of residual stresses. The numerical analyses are performed considering: 

 No residual stresses (labelled ØRS); 

 Residual stresses according to prEN 1993-1-14 (see Figure VII-2a)) for welded members with 

hot-rolled flanges (W-hr); 

 Residual stresses according to the new model (see Figure VII-2b)) for welded members with 

flame-cut flanges (W-fc). 

The corresponding GMNIA ultimate loads are compared against those obtained using the measured 

stress distributions presented in Figure VII-9 and the experimental results. The normalized results are 

presented in Table VII-4. The results obtained without residual stresses are 3 to 6% greater than the 

numerical reference values. Implementing residual stresses for welded members with flame-cut flanges 

provides 4 to 6% lower results than the numerical reference ones. 

When compared against experimental results, neglecting residual stresses provide results in good 

agreement, except for T-MS for which a deviation of 12% is noticed. Besides, using the residual stress 

model for welded members made of flame-cut flanges yields ultimate loads slightly lower than the 

experimental ones, the deviation being 7% at most. 

Reference value  U-DS U-MS T-DS T-MS 

Numerical model 

calibrated 

FFEA,ØRS /FFEA,Measured 1.031 1.029 1.037 1.063 

FFEA,W-hr /FFEA,Measured 0.860 0.860 0.855 0.860 

FFEA,W-fc /FFEA,Measured 0.965 0.961 0.950 0.943 

Experimental tests 

FFEA,ØRS /FExperimental 1.039 1.023 1.019 1.123 

FFEA,W-hr /FExperimental 0.867 0.855 0.841 0.909 

FFEA,W-fc /FExperimental 0.972 0.955 0.933 0.997 

Table VII-4: Numerical load capacities for different residual stress models 

Significant differences of 14% are obtained between the numerical reference values and those obtained 

when using a residual stresses distribution for welded members made of hot-rolled flanges. The 

deviation from the experimental results range from 9 to 16%. Besides, one can notice an approximately 

10% deviation between the numerical results obtained using the two different models. This deviation is 

attributed to the flanges fabrication process only. Distinct design methods should therefore exist for 

welded members depending on their flanges fabrication process. 

VII.3.2.2. Displacements and rotations 

The experimental and numerical load-vertical displacement (w) curves measured at the loaded section 

are presented in Figure VII-11 for each specimen. The numerical and experiment force-displacement 

curves are in good agreement. Indeed, the experimental and numerical initial stiffness are very close, as 

well as the post peak behaviour. 
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a) U-DS b) U-MS 

  

c) T-DS d) T-MS 

Figure VII-11: Force-displacement curves at the loaded section 

Besides, all numerical failures are attributed to lateral-torsional buckling. Indeed, no web distortion is 

noticed when under the ultimate load but appears in the post-peak stage. This phenomenon is presented 

in Figure VII-12 in the case of U-MS for which web distortion was visible during the test when 

unloading. 
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a) Under ultimate load b) Post-peak 

Figure VII-12: Total displacement of U-MS during and after buckling 

In addition, the evolution of the global displacements (δ) measured at web centres are presented in Figure 

VII-13 as a function of the applied force. The cross-sections of interest are located at 1.04 (H2) and 2.08 

m (H3) from the loaded section (see Figure VI-7). 

The numerical and experimental curves are in good agreement, especially in the cases of U-DS and T-

MS where the numerical and experimental initial and post-peak slopes are similar. The comparisons of 

the results for U-MS show a slightly greater experimental initial stiffness when compared to the 

numerical one for H2. The post peak slopes are also slightly different, being more pronounced for the 

experimental results, but the predictions of the numerical analyses are still sufficiently accurate. 
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c) T-DS d) T-MS 

Figure VII-13: Force- displacement curves 

For specimen T-DS, small differences are noticed during the loading phase. Indeed, the sign – and 

direction – of the experimental displacements changes while it remains constant in the numerical 

analyses. The post-peak numerical and experimental behaviour are similar in T-DS as for the other 

beams. 

The comparisons between numerical and experimental twist rotation are shown in Figure VII-14 as a 

function of the applied force. The studied twist rotations are recorded at the centre of the top flange of 

the cross-section located at 2.08 m from the loaded section. 
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c) T-DS d) T-MS 

Figure VII-14: Force-twist rotation curves 

The numerical and experimental results match very well for all beams except U-DS where deviations 

are noticed. Indeed, during the loading phase of specimen U-DS, the twist rotation is negative while its 

sign and direction change when undergoing buckling. On the contrary, the sign of the numerical twist 

rotation is similar at every load step. However, both post-peak slopes are close. For the three other tests, 

the initial and post-peak experimental and numerical slopes are similar, though small differences may 

be noticed in the early part of the loading phase, especially for T-MS. While numerical rotations are 

always equal or very close to zero during the loading phase, small rotations can be measured 

experimentally during the loading phase which can be associated with slight rigid body motion of the 

specimens. 

The comparisons between numerical and experimental displacements or rotations match very well. 

Some results exhibit small differences, especially when the direction of the displacement or rotation has 

changed during the test.  

VII.3.2.3. Strains 

Eventually, Figure VII-15 shows the numerical plastic von Mises strains for every test specimen under 

its ultimate load. In all specimens, no plastic strains are noticed except at the vicinity of the loaded cross-

section, where lateral-torsional buckling is restrained. These results are in line with the experimental 

strain distributions measured in the compression flange at critical cross-sections (see Figure VI-19). 

Indeed, under ultimate load, all strains were found in the elastic region, at the vicinity to plasticity, 

except in specimen U-DS where the maximum elastic strain was significantly lower than εy. 
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a) Specimen U-DS 

 

b) Specimen U-MS 

 

c) Specimen T-DS 

 

d) Specimen T-MS 

Figure VII-15: Plastic von Mises strains under ultimate loading 

The numerical model having been validated using experimental data, GMNIA calculations are 

performed, applied to a benchmark case. Indeed, the influence of the geometrical and material 

imperfections on the lateral-torsional buckling behaviour is investigated in the following section. 
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VII.4 Sensitivity analyses 

VII.4.1 Residual stresses 

The calibrated model is used to perform GMNIA calculations on a uniform doubly symmetric beam 

subjected to a uniform bending moment distribution and resting on fork supports at both ends. The 

studied beam, made of S355 steel, presents a 800×6 mm web, connected to 200×20 mm flanges. 

Firstly, the influence of the residual stress model on the lateral-torsional buckling resistance is 

investigated. Indeed, similar geometrical imperfections (see VII.2.2) are implemented while different 

residual stress patterns are used in turn. The following residual stress models are studied: 

 No residual stresses (noted No RS), 

 prEN 1993-1-14 (see Figure VII-2a)), 

 New model from Chapter V (see Figure VII-2b)), 

 Barth (1998) (see Figure VII-16a)), 

 Unsworth (2021) (see Figure VII-16b)), 

 Schaper and Tankova (2022) (see Figure VII-16c)). 

In addition to both models presented in Figure VII-2 used as references, three models adapted to welded 

members with flame-cut flanges are used, presented in Figure VII-16. Besides, a series of GMNIA 

calculations is performed without residual stresses. 

The additional three models from Figure VII-16 correspond to the models for flame-cut flanges 

presented in Chapter V for which each parameter of the model is defined. The models of Chacón (2009) 

and Thiébaud (2014) are not included in the present study, the former not being self-equilibrated while 

the latter was calibrated for bridge members. 

   

a) Barth (1998) b) Unsworth (2021) 
c) Schaper and Tankova 

(2022) 

Figure VII-16: Additional residual stress models studied 
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The parameters of Unsworth’s (2021) model are reminded: 

w
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where B is empirically set to 53, Aw is the cross-sectional area of a single weld and: 
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 (VII.8)   

where α is the coefficient of linear thermal expansion that can be taken as equal to 15×10-6 C-1. 

The numerical results are depicted in Figure VII-17 using the χ-λ formalism. Buckling curves a and d 

are also plotted, along with the buckling curve determined using the new verification format from prEN 

1993-1-1 for the studied member. It is worth mentioning that the current and future Eurocode 3 Part 1-

1 impose to assess the studied beam using buckling curve d when using the General case design method. 

 

Figure VII-17: Member resistance for different residual stress models 

Figure VII-17 shows a major influence of the residual stress model on the numerical ultimate bending 

moment for normalized slenderness up to 1.35.For greater values of the normalized, the results are quite 

close whatever the residual stress model. Though the results are very close for high slenderness, making 

use of models adapted to flame-cut flanges provides the greatest ultimate bending moments due to the 

favourable initial stresses at flanges tips. 

For low and medium slenderness, the results obtained using the models of Unsworth (2021), Schaper 

and Tankova (2022) or the new model are very close. The differences between the ultimate bending 
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moments computed using the model from Unsworth (2021) and the new one lie between 2 and 3%. The 

differences between the results based on the model of Schaper and Tankova (2022) and the new model 

are between 3 and 5%. 

For low and medium slenderness, the ultimate bending moments obtained using the model of Barth 

(1998) are noticeably greater than those obtained using the three other models adapted to flame-cut 

flanges. The results of Barth’s (1998) model are up to 10% greater than those obtained with the new 

model. This important difference can be attributed to the width of the tension zone at the flanges tips. 

Indeed, these stress blocks are much wider in the model of Barth (1998), being b/10, than in the new 

model or in that of Schaper and Tankova (2022) (up to b/16). Making use of Barth’s (1998) model yields 

ultimate bending moments very close to those obtained without residual stresses, the maximum 

difference between both cases being 4%. 

Using the model for welded members with hot-rolled flanges produces results up to 12% lower than 

those obtained with the new model adapted to flame-cut flanges. For the studied member, the flange 

fabrication process has a visible influence on the ultimate bending moment when the normalized 

slenderness is lower than 1.1 to 1.3. 

A good agreement can be seen in Figure VII-17 between the numerical results with the model of prEN 

1993-1-14 and the buckling curve of prEN 1993-1-1 for the low slenderness range. When the normalized 

slenderness is greater than 0.8, the analytical buckling curve provides conservative results. Buckling 

curve d lies under that of the new verification format and provides very conservative results for medium 

to high slenderness. Both analytical design methods provide even more conservative results when 

compared to welded members made of flame-cut flanges. Indeed, the ultimate bending moments 

computed using buckling curve d are 40% lower than the numerical ones using the new model when the 

normalized slenderness is greater than 1. 

For welded members with flame-cut flanges, the current and future European design rules are overly 

conservative when compared to GMNIA results. An extensive parametric study is therefore needed to 

develop design methods for overall out-of-plane buckling better suited to welded members with flame-

cut flanges. The outline of this parametric study that includes over one thousand GMNIA computations 

are depicted in section VII.5. 

VII.4.2 Geometrical imperfections 

Besides the residual stresses, the influence of the magnitude of the geometrical imperfections on the 

ultimate bending moment is of interest. Firstly, three sets of GMNIA calculations are performed 

implementing different magnitudes of the global imperfection: L/500, L/1000 and L/2000. The residual 

stress model used is that given in sub-section VII.2.2 considering flame-cut flanges (see Figure VII-

2b)). No local imperfections are enforced while the global imperfection remains scaled to the elastic 

critical lateral-torsional buckling mode (see VII.2.2). 
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Figure VII-18: Member resistance for different global imperfection amplitudes 

The numerical results are presented in Figure VII-18 along with buckling curves a and d for comparison. 

Implementing a magnitude of L/1000 or L/2000 produce similar results except for intermediate-to-high 

slenderness (1.2 to 1.8) where differences up to 6% are noticed, the lowest magnitude of the imperfection 

yielding the greatest ultimate bending moments. Differences are visible between the results using L/500 

and L/1000 whatever the normalized slenderness. The maximum deviations are found for intermediate-

to-high slenderness, reaching 10%. Implementing the greatest magnitude of the global imperfection 

produces the lowest results. 

A second series of three sets of numerical analyses are performed varying the magnitude of the plate 

local imperfections. The implemented residual stress model and geometrical global imperfection 

(amplitude and shape) are those defined in sub-section VII.2.2 adapted to flame-cut flanges. The shape 

of the local imperfections is unchanged when compared to that defined in sub-section VII.2.2 while 

different magnitudes are implemented: hw/50 and b/50, hw/200 and b/200, hw/400 and b/400. The 

GMNIA results are presented in Figure VII-19 where buckling curves a and d are plotted for 

comparison. 
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Figure VII-19: Member resistance for different amplitudes of the local imperfections 

Figure VII-19 shows a negligible influence of the magnitude of the local imperfections on the buckling 

resistance though the studied beams present a Class 4 web in bending. Similar results are obtained when 

using the plate width /400 or /200. Small differences are noticed with the results obtained implementing 

the plate width /50 for low to intermediate slenderness. The highest difference of 2% is found when the 

normalized slenderness is equal to 0.7. The greater magnitude yields the lowest ultimate bending 

moments. 

While the amplitude of the global imperfection has a small influence on the ultimate bending moment, 

that of the accompanying local imperfections is barely visible. The magnitude of the global imperfection 

has an impact on the buckling resistance when its value is at least L/1000. While being not 

recommended, using lower magnitudes for both geometrical imperfections would only slightly affect 

the ultimate bending moments in the studied case. 

In the upcoming section, the scope of the parametric study is defined. This study is based on the 

numerical model described in section VII.2 that has been confronted to experimental results. The 

parametric study comprises more than a thousand of GMNIA computations, the results of which will be 

analyzed in Chapter VIII. 

VII.5 Scope of the parametric study 

VII.5.1 Presentation 

The numerical model previously described and validated against experimental tests is used to perform 

a large parametric study. This study aims to investigate global out-of-plane buckling of welded steel 

members. Therefore, the studied members are subjected to bending moment or/and compression force 

without intermediate restraints. 
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As shown in sub-sections VII.3.2.1 and VII.4.1, the flange fabrication process have a significant impact 

on the stability behaviour and ultimate capacity of welded members. The parametric study focuses on 

welded members made of flame-cut flanges to propose consistent and adapted design rules. 

VII.5.2 Out-of-plane buckling of welded columns 

Using the validated numerical model, 377 GMNIA computations are performed on welded members 

subjected to constant compression. The members lengths are chosen to obtain normalized slenderness 

up to 2.5 or 3. 

The main part of this study concerned welded members made of flame-cut flanges, their cross-section 

being: 

 Uniform and doubly symmetric, 

 Uniform and mono-symmetric, or 

 Web-tapered and doubly symmetric. 

The dimensions and properties of these members are presented in Table VII-5, the cross-sectional 

dimensions being defined in Figure VII-20. It is worth mentioning that both flanges of the web-tapered 

columns are inclined with the same angle. Besides, in the case of tapered columns, the ratios ht/b and 

hw/tw are determined at the largest cross-section. 

hw,max (mm) 300, 450, 600, 700, 800, 900, 1000 

γh 1, 1.5, 1.7, 2, 2.2, 3 

tw (mm) 5, 6, 8, 10 

hw,max/tw 45, 60, 90, 100, 117, 125, 133, 150 

b (mm) 170, 200, 230, 250, 300, 350 

ht,max/b 

1.3, 1.4, 1.9, 2, 2.1, 2.4, 2.6, 3.2, 3.3, 3.4, 3.5, 

3.6, 3.7, 3.8, 4.2, 5.3 

ρb 1, 1.5, 1.75 

tf (mm) 12, 16, 18, 20, 24, 25, 30, 40 

ρtf 1, 1.56, 1.67, 2 

(b/tf)c 

7.5, 8, 8.3, 8.5, 9.6, 10, 11.5, 12, 12.5, 13.9, 14, 

14.2, 17.5, 19.2, 20.8 

Material S275, S355 

Table VII-5: Scope of the parametric study for welded columns with flame-cut flanges 

with: 

w,max
h

w,min
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h
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f,1
tf

f,2

t

t
   (VII.11)   

where the subscript “f,1” is assigned to the dimensions of the flange having the greatest second moment 

of area about the z-axis, “f,2” corresponding to the other flange. 

 

Figure VII-20: Cross-section dimensions 

The members dimensions are chosen to be representative of the common practice of steel buildings. 

Indeed, the web height varies between 300 and 1000 mm with a slenderness ranging between 45 and 

150, most are Class 4 webs in pure compression according to Eurocode 3 Part 1-1. In addition, the 

flanges width ranges between 170 and 350 mm, most of them being Class 1 or 2 flanges in pure 

compression. The cross-section mono-symmetry is characterized by flanges width ratios up to 1.75 and 

thickness ratios up to 2. Besides, S275 and S355 steel that are of common use in steel buildings are 

employed in the present study. 

Besides, 62 of the GMNIA calculations are led on uniform doubly symmetric welded members made of 

hot-rolled flanges. The scope of dimensions is depicted in Table VII-6. These studied members are also 

investigated in parallel with flame-cut flanges. 
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hw (mm) 300, 450, 600, 800, 900 1000 

tw (mm) 5, 6, 8 

hw,max/tw 60, 90, 100, 125, 133, 150 

b (mm) 170, 200, 230, 250 

ht/b 1.9, 2.1, 3.2, 3.7, 4.2, 5.3 

tf (mm) 12, 16, 18, 20, 25 

b/tf 8, 10, 12.5, 13.9, 14.2, 19.2 

Material S275, S355 

Table VII-6: Scope of the parametric study for welded columns with hot-rolled flanges 

VII.5.3 Lateral-torsional buckling of welded beams 

The ultimate resistance of welded beams subjected to bending is determined by computing 961 GMNIA 

calculations. The studied bending moment distributions, presented in Table VII-7, are linear with ratios 

between end moments varying from -1 to 1 commonly used in practice. Similarly to the columns case, 

the beams lengths are set so that the normalized slenderness go up to 2.5 to 3. 

Bending moment diagram ψ 

 

1, 0.5, 0, -0.5, -1 

Table VII-7: Studied bending moment distributions 

Most of the GMNIA calculations led on bent members are related to those having flame-cut flanges. 

The cross-section type of the studied beams are: 

 Uniform and doubly symmetric, 

 Uniform and mono-symmetric, 

 Web-tapered and doubly symmetric, or 

 Web-tapered and mono-symmetric. 

The studied values of their dimensions are presented in Table VII-8. Only the compression flange (under 

positive bending moment) of the web-tapered beams is inclined if not mentioned otherwise. Similarly 

to the case of compressed members, the ratios ht/bmin and hw/tw are determined at the largest cross-section 

of the tapered beams. 
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hw,max (mm) 300, 450, 600, 634, 750, 800, 900, 1000 

γh 1, 1.5, 1.7, 2, 2.8, 2.9, 3, 3.3 

tw (mm) 5, 6, 8, 10 

hw,max/tw 45, 60, 90, 100, 120, 125, 127, 133, 150 

bc (mm) 170, 200, 230, 250, 300, 350 

ht,max/bmin 

1.3, 1.9, 2, 2.1, 2.4, 2.5, 2.9, 3.2, 3.3, 3.4, 3.5, 

3.7, 3.8, 4.2, 5.3 

ρb 0.57, 0.67, 1, 1.5, 1.75 

tfc (mm) 12, 15, 16, 18, 24, 25, 30 

ρtf 0.5, 0.6, 0.64, 1, 1.33, 1.56, 1.67, 2 

(b/tf)c 

8, 8.3, 8.5, 9.6, 10, 11.5, 12, 12.5, 13.3, 13.9, 

14, 14.2, 17.5, 19.2, 20.8 

Material S275, S355 

Table VII-8: Scope of the parametric study for welded beams with flame-cut flanges 

With: 

c
b

t

b

b
   (VII.12)   

fc
tf

ft

t

t
   (VII.13)   

where the subscript “c” is assigned to the dimensions of the compression flange under positive bending 

moment, “t” corresponding to the tension flange. 

Like for columns, beams dimensions are chosen correspondingly to the common practice of steel 

buildings. Indeed, the web height varies also between 300 and 1000 mm with a slenderness ranging 

between 60 and 150. Most cross-sections present a Class 3 or Class 4 web in pure bending. Similarly, 

the flanges width ranges between 170 and 350 mm, most of them being Class 1 or 2 flanges in pure 

compression. Within mono-symmetric members, the ratios between the flanges widths goes up to 1.75. 

The ratio between the flanges thickness of mono-symmetric beams is up to 2. The vast majority of mono-

symmetric beams are studied with the greatest flange in compression under a positive bending moment. 

However, some mono-symmetric beams are studied with the greatest flange in tension under a positive 

bending moment. 

Within the GMNIA computations performed on welded beams, 154 refer to members made of hot-rolled 

flanges. For such members, only uniform and doubly-symmetric cross-sections are investigated. The 

studied cross-sectional dimensions and properties are presented in Table VII-9. The dimensions of the 

investigated members with hot-rolled flanges are included in the parametric study for beams with flame-

cut flanges. 
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hw,max (mm) 300, 450, 600, 800 

tw (mm) 5, 6 

hw,max/tw 60, 90, 100, 133 

b (mm) 170, 200, 230 

ht/b 1.9, 2.1, 3.2, 4.2 

tf (mm) 12, 16, 20 

b/tf 10, 12.5, 14.2, 19.2 

Material S275, S355 

Table VII-9: Scope of the parametric study for welded beams with hot-rolled flanges 

VII.5.4 Out-of-plane buckling of welded beam-columns 

Eventually, 168 GMNIA computations are performed on welded members with flame-cut flanges 

subjected to both compression and bending moment simultaneously. While the axial compression is 

uniform in the studied members, the bending moment distribution is linear, with a ratio between end 

moments equal to 1, 0.5 or 0. Table VII-10 presents the investigated distributions of both the bending 

moment and axial load, along with the studied ratios of the applied moment M to axial force N. 

Distribution of the external loading ψ M/N (mm) 

 

1, 0.5, 0 

15, 75, 

150, 500 

 

1 

Table VII-10: Studied bending moment and axial force distribution 

Like in the case of welded members subjected to either compression or bending, the studied lengths are 

defined to yield normalized slenderness up to between 2.5 and 3. 

The studied beam-columns present a doubly symmetric cross-section which is either uniform or web 

tapered. The scope of their dimensions is presented in Table VII-11. Like for columns, both flanges of 

the web-tapered beam-columns are inclined. Again, the ratios ht/b and hw/tw are determined at the largest 

cross-section of the tapered beams. 

  

ψM M 

ψN N 



NUMERICAL MODEL 

- 232 - 

hw,max (mm) 438, 680, 800, 1000 

γh 1, 2, 2.5, 3.2 

tw (mm) 5, 6, 10 

hw,max/tw 88, 100, 113, 133, 136 

b (mm) 200, 230, 350 

ht,max/b 2, 2.1, 3.1, 4.2, 5.3 

tf (mm) 12, 20, 25 

b/tf 8, 10, 11.5, 17.5, 19.2 

Material S355 

Table VII-11: Scope of the parametric study for welded beam-columns (flame-cut flanges) 

The chosen dimensions of the studied columns, beams and beam-columns are deemed to match with the 

common practice of steel buildings. The results of these studies are exploited in Chapter VIII. 

VII.6 Summary 

In the present chapter, the numerical model created to perform GMNIA simulations has been described. 

The employed material properties and imperfections were presented, using the outcomes of Chapter V 

in the case welded members made of flame-cut flanges. The shapes and amplitudes of both local and 

global geometrical imperfections were defined based on the recommendations of Boissonnade (2012), 

Couto (2019), Gérard (2019) and prEN 1993-1-14. 

The numerical model was further adjusted to perform non-linear analyses of beams tested presented in 

Chapter VI. Using the experimentally measured material laws, residual stresses distributions and 

imperfection amplitudes yielded a very good agreement between the numerical and experimental results. 

While the load carrying capacities match very well for 3 of the tests, the difference is still acceptable for 

the last test, being 5.6%. In addition, the numerical and experimental course of key displacements and 

rotations are very similar for all of the test beams. 

The numerical model being validated using key experimental results, GMNIA computations are 

performed on a benchmark case. The impact of the geometrical and material imperfections on the LTB 

behaviour under a constant bending moment is studied. The flange fabrication process has an influence 

on the ultimate bending moment for low and medium slenderness. Members with flame-cut flanges 

obtain ultimate bending moments up to 12% greater than those with hot-rolled flanges. The numerical 

results for flame-cut flanges showed that buckling curve d and the predictions of the new verification 

format in prEurocode 3 are overly conservative. Better suited design methods should therefore be 

employed for welded members made of flame-cut flanges. 

An extensive parametric study is therefore performed that includes 1506 GMNIA computations. These 

calculations study out-of-plane buckling of columns, beams and beam-columns. Most of the non-linear 

analyses are led on members made of flame-cut flanges, 216 being adapted to members with hot-rolled 

flanges. In order to assess the accuracy and safety of the current and future European design rules, the 

dimensions of the studied members are considered representative of the common practice of steel 

buildings. Uniform and web-tapered members having either a doubly or mono-symmetric cross-sections 
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are therefore investigated. The results of these parametric studies are operated in the upcoming Chapter 

VIII. 
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 Design guidelines for welded 

members with flame-cut flanges 

VIII.1 Introduction 

The numerical model depicted in the preceding Chapter VII, uses the new residual stress model defined 

in Chapter V for welded members with flame-cut flanges and have been confronted to experimental 

results of Chapter VI. Good agreement was obtained between the numerical and experimental results. 

The significant impact of the flange fabrication process on the LTB resistance was also highlighted using 

a benchmark case. The current and future Eurocode 3 Part 1-1 design rules revealing overly 

conservative for the few studied welded members made of flame-cut flanges, a large parametric study 

has been computed. The outlines of these GMNIA computations were presented in Chapter VII. This 

parametric study investigated the overall out-of-plane buckling of welded members subjected to 

compression force and/or bending moment. While members with flame-cut flanges were of major 

interest, more than 200 non-linear analyses investigated those made of hot-rolled flanges for 

comparison. In the present chapter, the results of these computations are analyzed. Design methods 

adapted to welded members with flame-cut flanges and based on the current and future Eurocode 3 are 

proposed. 

Firstly, the determination of a partial safety factor corresponding to design resistances of members to 

instabilities is developed in section VIII.2. This process is then employed to validate the safety of two 

approaches that are suggested for members subjected to compression force in section VIII.3. A simple 

method makes use of the current flexural buckling curves while a more enhanced alternate one proposes 

to define a buckling curve per member. 

These two approaches are then expressed for members subjected to major axis bending moment in 

section VIII.4. The partial safety factors for both proposed design rules are determined, revealing 

satisfactory safety levels. In addition, adaptations of the new verification format of prEN 1993-1-1 are 

proposed. Analytical derivations are performed to extend the scope of this method that is restricted to 

uniform beams with a doubly symmetric cross-section in prEN 1993-1-1. 

Eventually, the design methods proposed for flexural and lateral-torsional buckling are included into the 

verification format of beam-columns relying on design methods proposed in prEurocode 3 Part 1-1. 

When compared against numerical results, the predictions of the analytical model adapted to flame-cut 

flanges show a good accuracy. Satisfying safety levels validate the use of design methods adapted to 

welded members made of flame-cut flanges allowing increased resistance. A summary of the proposed 

design methods concludes the present chapter. 
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VIII.2 Determination of a partial safety factor γM1 

VIII.2.1 Presentation 

The computation of partial safety factors within the present work is based on the prescriptions of Annex 

D of EN 1990 and the recommendations of the European RFCS project SAFEBRICTILE. It is worth 

mentioning that the prescriptions of Annex D of Eurocode 0 for the determination of partial safety factors 

remain unchanged in its future version prEN 1990. 

The general procedure is composed of five major steps: 

 Step 1: Determination of the input parameters: resistance function (rt,i), actual experimental or 

numerical resistance (re,i) and statistical information about the basic variables (Xj); 

 Step 2: Estimation of the accuracy of the resistance function; 

 Step 3:Analysis of the sensitivity of the resistance function to the variability of the basic input 

variables; 

 Step 4: Computation of design resistances (rd,i) yielding values of partial factors γM1*; 

 Final step: Estimation of acceptance levels for γM1 based on the variations of the resistance 

function. 

The specific content of each step is briefly presented in the following sub-sections. 

VIII.2.2 Step 1: Input data 

Firstly, the resistance function rt,I is defined for each set of the studied basic variables and corresponds 

to a specific failure mode. In the present work investigating stability, the basic variables Xi are: 

 The yield strength fy and Young’s modulus E, 

 The cross-section height ht and web thickness tw, 

 For doubly-symmetric members: 

o Both flanges width b and thickness tf, 

 For mono-symmetric members: 

o The top flange width bs and thickness tfs, 

o The bottom flange width bi and thickness tfi. 

The cross-sectional dimensions are reminded in Figure VIII-1. 
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Figure VIII-1: Cross-section dimensions 

The resistance function can be written as: 

 t,i 1 2 krt,i , ,...,gr X X X  (VIII.1)   

The statistical information concerning the basic variables used in this study correspond to that provided 

in Annex E of prEurocode 3 Part 1-1. The mean value and coefficient of variation (c.o.v.) of the input 

variables previously described are presented in Table VIII-1. These values are extracted from Table E.1 

and E.2 of prEN 1993-1-1. 

Input variable Xi Mean value 

Xi,m 
c.o.v.i 

fy (275 MPa) 1.25 fy,nom 5.5% 

fy (355 MPa) 1.20 fy,nom 5.0% 

E 210 000 N/mm² 3.0% 

ht 1.0 ht,nom 0.9% 

b 1.0 bnom 0.9% 

tw 1.0 tw,nom 2.5% 

tf 0.98 tf,nom 2.5% 

Table VIII-1: Assumed variability of input parameters 

where, the coefficient of variation can be expressed as a function of the standard deviation σi and the 

mean value Xi,m: 
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i
i

i,m

c.o.v.
X


  (VIII.2)   

Besides, the actual resistances re,i are obtained for each specimen of interest based on the GMNIA results 

obtained using the numerical model previously depicted. 

VIII.2.3 Step 2: Accuracy of the resistance function 

The accuracy of the resistance function is assessed by computing the mean value of the correction factor: 

t,i e,i

1

2
t,i

1

n

i

n

i

r r

b

r










 (VIII.3)   

where n is the number of specimens within the studied set. 

Then, the c.o.v. of the error Vδ is determined as follows: 

e,i
i

t,i

r

br
   (VIII.4)   

 i iln   (VIII.5)   
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
  (VIII.6)  

 2
δ Δ

exp 1V s   (VIII.7)   

VIII.2.4 Step 3: Sensitivity of the variation of input data 

The third step consists in calculating the c.o.v. Vrt characterizing the sensitivity of the theoretical 

resistance function to slight variations of the input data. For each specimen, Vrt,i is determined by 

 

 
2

2 1 krt,i
jrt,i 2

11,m k,mrt,i

,...,1

,...,

k

jj

g X X
V

Xg X X




  
  

    
 

  (VIII.8)   

The partial derivatives are obtained using the following approximation: 

     1 j k 1 j n1 k rt,i rt,irt,i ,..., ,..., ,..., ,...,,..., j

j j

g gg X X X X X X XX X

X X

  


 
 (VIII.9)   
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VIII.2.5 Step 4: Design resistance and partial factor 

In the case of a large number of results (n > 100), the design resistance rd,i of each specimen is obtained 

using: 

   d,i 1,m k,m d,rt,i i i,..., exp 0.5 ²bg Q Qkr X X     (VIII.10)   

with: 

 2

r,ii ln 1Q V   (VIII.11)   

2 2 2

r,i rt,i δV V V   (VIII.12)   

For a limited number of tests, the design resistance is determined using: 

 
2 2

rt,i δ
d,i 1,m k,m d, d,nrt,i i

i i

,..., exp 0.5 ²
Q Q

bg Qk kr X X
Q Q



 
    
 
 

 (VIII.13)   

with: 

 2

rt,irt,i ln 1Q V   (VIII.14)   

 2

δ δ
ln 1Q V   (VIII.15)   

The parameters kd,n and kd,∞ are the design fractile factors for n and infinite single test results, 

respectively. The values of kd,n are presented in Table VIII-2, extracted from Table D.2 of Eurocode 0 

(Annex D). 

n 4 5 6 8 10 20 30 ∞ 

kd,n 11.40 7.85 6.36 5.07 4.51 3.64 3.44 3.04 

Table VIII-2: Values of kd,n 

Eventually, partial factors γM1,i* are determined for each specimen using: 

t,i
M1,i

d,i

*
r

r
   (VIII.16)   

An average partial factor is then obtained for each set of results: 

M1 M1,i
1

1
* *

n

in
 



   (VIII.17)   
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VIII.2.6 Final Step: Acceptance level 

In agreement with the current practice, it has been chosen to have a unique partial safety factor with a 

target value of 1.0: 

M1,target 1.0   (VIII.18)   

Besides, it has been shown in the SAFEBRICTILE project that values of the partial safety factor slightly 

greater than the target one can be employed with almost no incidence on the reliability level. Therefore, 

acceptance levels fa,i are defined, for each specimen, as: 

M1,i

a,i
M1,target

*
f




  (VIII.19)   

Expressions of the acceptance levels depend on the value of Vr,i (see Eq. (VIII.12)), as recommended in 

the SAFEBRICTILE project and presented in Table VIII-3. 

Range of Vr,i fa,i 

0.00 < Vr,i < 0.04 1.03 

0.04 < Vr,i < 0.20  r1.03 0.75 0.04V   

0.20 ≤ Vr,i 1.15 

Table VIII-3: Acceptance levels 

The final partial safety factor for each studied member is then: 

M1,i

M1,i
a,i

*

f


   (VIII.20)   

Consequently, the average partial safety factor for each set of results is: 

M1 M1,i
1

1 n

in
 



   (VIII.21)   

For each studied design method, partial safety factors are computed for several sub-sets of results. In 

agreement with expression (VIII.18) of the target value, the partial safety factors corresponding of each 

sub-group of data associated with a design method should not exceed 1.05 to provide a satisfying level 

of safety. 

In addition, a partial safety factor associated with each design method is computed using the full set of 

results at once. In such cases, values greater than 1.05 are acceptable though characterizing design 

methods lacking accuracy or having a variable sensitivity. 
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VIII.3 Out-of-plane buckling of columns 

VIII.3.1 Numerical results 

The numerical analyses performed on welded columns in the framework of the parametric study have 

resulted in two sets of axial loads: 

 Ncr,LBA: elastic critical load corresponding to out-of-plane flexural buckling for doubly-

symmetric members or flexural-torsional buckling for mono-symmetric members; 

 Nult,GMNIA: ultimate axial load for flexural or flexural-torsional buckling. 

 

In addition, analytical values of the characteristic cross-sectional resistance to compression NRk are 

determined using the prescriptions of Eurocode 3 Parts 1-1 and 1-5. The two following key parameters 

are determined using these three values: 

Rk
i

cr,LBA

N

N
   (VIII.22)   

ult,GMNIA

i,GMNIA
Rk

N

N
   (VIII.23)   

where the subscript i stands for the buckling mode. For flexural buckling about the z-axis, χi is replaced 

with χz while for flexural-torsional buckling, the reduction coefficient is χFT. 

The numerical results are plotted using the χ-λ formalism of Eurocode 3 Part 1-1. Figure VIII-2 shows 

the numerical results for uniform members having a doubly symmetric cross-section. The five European 

buckling curves for compressed members (a0, a, b, c and d) are also plotted for comparison. 

The prescriptions of Eurocode 3 Part 1-1 require the use of buckling curve c to compute χz for all of the 

studied welded columns because for all of them tf ≤ 40 mm. However, it can be seen that numerical 

results obtained for welded columns made of flame-cut flanges fall above curve a when the normalized 

slenderness is greater than 1. For shorter members, most of the flame-cut numerical results lie between 

curves a and b while a few results are found slightly under buckling curve b. Numerical results for 

welded members with hot-rolled flanges are comprised between buckling curves c and d in the low 

slenderness range (< 0.8). As the slenderness increases, the numerical results get closer to Euler’s curve 

and are found above curve a for high slenderness (> 1.5). 

For intermediate slenderness, the use of the buckling curve c, as prescribed by the code, seems very safe 

in the case of hot-rolled flanges and overly conservative for flame-cut flanges. For high slenderness, 

buckling curve c appears to provide overly safe results whatever the flange fabrication process. 

The accuracy of the Eurocode 3 Part 1-1 prescriptions is analyzed in sub-section VIII.3.2 for welded 

members made of flame-cut flanges. Then, design methods adapted to such members are proposed, the 

use of the current buckling curve c being overly conservative, especially for medium and high 

slenderness. 
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Figure VIII-2: Numerical results for flexural buckling of uniform doubly symmetric columns 

Figure VIII-3 shows the numerical results for welded columns having a uniform and mono-symmetric 

cross-section. The results lie between buckling curves b and c for slenderness up to 0.8 while they get 

closer to Euler’s curve as the slenderness increases. Indeed, for intermediate slenderness, between 0.8 

and 1.2, the numerical reduction factors are comprised between buckling curves a and b. When the 

slenderness is greater than 1.2, the numerical results are found above buckling curve a. It is worth 

mentioning that for the studied members, Eurocode 3 Part 1-1 imposes the use of buckling curve c.  

 

Figure VIII-3: Numerical results for flexural-torsional buckling of uniform mono-symmetric columns 
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Eventually, the numerical reduction factors for flexural buckling of tapered doubly-symmetric welded 

columns are presented in Figure VIII-4. These results are obtained computing NRk for the cross-section 

where the load amplifier αult,k reaches its minimum value. No in-plane imperfection being introduced in 

the numerical model, the in-plane behaviour of the column is neglected when determining αult,k: 

Rk
ult, k

Ed

( ) ( )
N

x x
N

   (VIII.24)   

Because the acting design load NEd is uniform along the tapered column, the load amplifier αult,k is always 

minimal at the smallest end despite a varying cross-section classification along the column length. 

Figure VIII-4 shows that for low slenderness (<0.75), the numerical reduction factors match with 

buckling curve b. When the slenderness increases up to 1, the numerical results are found between 

buckling curves a and b while for higher slenderness, the numerical results lie above curve a then above 

a0. Similarly to the case of uniform doubly symmetric members, Figure VIII-4 exhibits an over 

conservatism of the Eurocode 3 Part 1-1 design rules that imposes the use of buckling curve c for the 

studied cases. 

 

Figure VIII-4: Numerical results for flexural buckling of tapered doubly symmetric columns 

In the following sub-section VIII.3.2, the accuracy of the design methods given in Eurocode 3 Part 1-1 

are evaluated for doubly symmetric welded members made of flame-cut flanges. In the next sub-section 

VIII.3.3, new design methods adapted to this type of columns are proposed and validated by the 

calculation of partial safety factors. 
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VIII.3.2 Assessment of the Eurocode 3 design methods for 

flexural buckling 

As detailed in Chapter IV, the current and future Eurocode 3 Part 1-1 impose to determine the resistance 

Nb,Rd of a member subjected to compression force using: 

Rk
b,Rd i

M1

N
N 


  (VIII.25)   

For a doubly symmetric member unrestrained between both ends, failure is governed by out-of-plane 

flexural buckling. The corresponding reduction factor χz is determined by: 

z 22

z z z

1
1.0

  

 
 

 (VIII.26)   

  2
zzz z

0.5 1 0.2      
 

 (VIII.27)   

For welded members having flange thickness up to 40 mm, the imperfection factor αz corresponding to 

buckling curve c should be used, corresponding to αz = 0.49. 

 

Figure VIII-5: Numerical and Eurocode 3 reduction factors for uniform columns 

The reduction factors determined using the prescriptions of Eurocode 3 (see Eq. (VIII.26)) are compared 

against those resulting from GMNIA computations for members with flame-cut flanges. Figure VIII-5 

shows the comparison between the analytical and numerical reduction factors for uniform members. 

The same results are presented in Figure VIII-6 for tapered columns with NRk computed at the smallest 

cross-section, where αult,k is minimum. 
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Figure VIII-6: Numerical and Eurocode 3 reduction factors for tapered columns 

Figure VIII-5 and Figure VIII-6 show an acceptable agreement between the analytical and numerical 

results for high reduction factors (> 0.8) corresponding to low slenderness. For smaller reduction factors, 

i.e. increased slenderness, the analytical results are clearly on the safe side. An average deviation of 15% 

from the numerical values can be seen in Figure VIII-5 for uniform members. In the case of tapered 

members, the results exhibit a larger deviation. 

The partial safety factors associated with the Eurocode 3 design methods for both types of members are 

determined for: 

 The low slenderness range: z 0.8  ; 

 The intermediate slenderness range: z0.8 1.5  ; 

 The high slenderness range: z1.5  . 

The results are presented in Table VIII-4 for uniform members and Table VIII-5 for tapered members. 

Slenderness range n γM1 

z 0.8   59 0.945 

z0.8 1.5   55 0.814 

z1.5   75 0.817 

All range 189 1.030 

Table VIII-4: Partial safety factors associated with Eurocode 3 design method for uniform columns 

In both cases of uniform and tapered welded columns made of flame-cut flanges, the partial safety 

factors associated with the Eurocode 3 design rules are low to very low for every slenderness range. For 

low slenderness, the partial safety factors are close to 0.94 while for medium and high slenderness, 

values about 0.80 are obtained. 
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Slenderness range n γM1 

z 0.8   18 0.939 

z0.8 1.5   17 0.805 

z1.5   28 0.779 

All range 63 1.008 

Table VIII-5: Partial safety factors associated with Eurocode 3 design method for tapered columns 

These values being very low, the European design rules are clearly overly conservative, particularly for 

intermediate and high slenderness. Design methods adapted to such welded columns made of flame-cut 

flanges are therefore proposed and validated in the upcoming sub-section VIII.3.3. 

VIII.3.3 Propositions for rules adaptations for flexural buckling 

The proposed design resistance of a doubly symmetric welded column made of flame-cut flanges is 

obtained using expression (VIII.25).The buckling curves formalism is kept in a seek of simplicity. The 

reduction factor is therefore determined by expression (VIII.26) with (VIII.27). The deviation from the 

Eurocode 3 rules concerns the imperfection factor αz for which two alternative expressions are proposed: 

z 0.34   (VIII.28)   

t
z

z

0.15 h

b



  with 

z0.13 0.34   (VIII.29)   

The imperfection factor proposed by expression (VIII.28) corresponds to buckling curve b and is 

referred to as Proposition I. Similarly to the propositions of Tankova (2022) for high strength steel, it 

has been decided to provide a simple Proposition I design method corresponding to an existing buckling 

curve. 

A more precise value is proposed by expression (VIII.29), providing a buckling curve per studied 

member. This proposition, then referred to as Proposition II, is based on a αz value inversely proportional 

to the normalized slenderness. This choice was motivated by the numerical results presented in sub-

sections VIII.3.1 and VIII.3.2. The numerical reduction factors get closer to Euler’s curve as the 

slenderness increases, corresponding to a reducing impact of the members imperfections. An 

imperfection factor decreasing as the slenderness increases is therefore supposed more accurate than a 

constant value. 

Besides, the reduction factor of Proposition II depends on the square root of the ratio between the overall 

height ht and width b. The choice of proposing a buckling curve per cross-sectional dimensions was 

motivated by the scatter of the numerical results presented in sub-sections VIII.3.1 and VIII.3.2. The 

use of the height-to-width ratio was selected because existing expressions for imperfection factors 

depend on this ratio. Indeed, as depicted in Chapter IV, the French National Annex to Eurocode 3 Part 

1-1 proposes the following imperfection factor for lateral-torsional buckling of welded beams: 

2
LT LT

0.5 0.25 0
b

h
     (VIII.30)   



STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 247 - 

In addition, Taras (2010a) noticed that imperfection factors for lateral-torsional buckling of beams are 

approximately proportional to the square root of the height-to-width ratio. This ratio has been replaced 

with that of the elastic section moduli Wy,el/Wz,el in prEurocode 3 Part 1-1, both ratios being 

approximately proportional. 

Proposition II contains upper and lower limit values of αz corresponding to the imperfection factors 

associated with buckling curves a0 and c, respectively. While the lower limit value corresponds to the 

Proposition I imperfection factor, an upper limit is defined as the most favourable buckling curve for 

members in compression. Though for high slenderness many numerical results lie above buckling curve 

a0, such higher bound is introduced for safety reasons producing a minimum deviation from the Euler 

curve. 

The reduction factors obtained using the two proposed values for the imperfection factor are compared 

against the numerical ones for members with flame-cut flanges. The evolution of the analytical reduction 

factors with the numerical ones are depicted in Figure VIII-7 for uniform members and Figure VIII-8 

for tapered ones. 

    

a) Proposition I b) Proposition II 

Figure VIII-7: Numerical and analytical reduction factors for uniform welded columns 

Both Figure VIII-7 and Figure VIII-8 show similar results. The analytical results obtained using 

Proposition I match very well with the numerical ones for high values of the reduction factors (> 0.8) 

i.e. low slenderness. For lower values of the reduction factor, the Proposition I results are on the safe 

side with a deviation up to 15% from the numerical results. 
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a) Proposition I b) Proposition II 

Figure VIII-8: Numerical and analytical reduction factors for tapered welded columns 

The predictions of Proposition II match very well with the numerical results whatever the range of 

reduction factors in both Figure VIII-7b) and Figure VIII-8b). The maximum deviation on the unsafe 

side being 4% is still acceptable. 

The partial safety factors associated with both proposed design methods are determined for the same 

slenderness ranges as in Table VIII-4 and Table VIII-5. Those obtained for uniform members are 

presented in Table VIII-6 while the results for tapered members are given in Table VIII-7. 

Design method Slenderness range n γM1 

Proposition I: 

z 0.34   

z 0.8   59 0.968 

z0.8 1.5   55 0.901 

z1.5   75 0.879 

All range 189 1.051 

Proposition II: 

t
z

z

0.15
0.13 0.34

h

b



    

z 0.8   59 0.968 

z0.8 1.5   55 0.941 

z1.5   75 0.972 

All range 189 0.996 

Table VIII-6: Partial safety factors associated with both proposed design methods for uniform columns 

Both Table VIII-6 and Table VIII-7 show similar results. The safety factors associated with Proposition 

I range between 0.95 and 0.97 for low slenderness (< 0.8). For intermediate and high slenderness, the 

partial safety factors range between 0.83 and 0.90, which are characteristic of a particularly safe design 

method. The partial safety factors associated with Proposition II are comprised between 0.94 and 0.99 
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in every studied slenderness range, corresponding to an accurate design method. The low variation of 

the partial safety factors are characteristic of a design method yielding very slightly scattered results. 

Design method Slenderness range n γM1 

Proposition I: 

z 0.34   

z 0.8   18 0.951 

z0.8 1.5   17 0.889 

z1.5   28 0.831 

All range 63 1.031 

Proposition II: 

t
z

z

0.15
0.13 0.34

h

b



    

z 0.8   18 0.965 

z0.8 1.5   17 0.990 

z1.5   28 0.945 

All range 63 1.006 

Table VIII-7: Partial safety factors associated with both proposed design methods for tapered columns 

Both proposed design methods provide acceptable safety levels and could be employed as alternatives 

to the Eurocode 3 Part 1-1 rules for welded columns made of flame-cut flanges. The simple Proposition 

I that suggests the use of buckling curve b instead of c is still clearly safe-sided for intermediate and 

high normalized slenderness. The more accurate Proposition II suggests the use of a buckling curve per 

member but provides results in very good agreement with the numerical ones and a satisfactory level of 

safety. 

In the upcoming section VIII.4, the numerical results obtained for members in bending are presented. 

The accuracy of the Eurocode 3 design rules are evaluated along with that of improved design methods, 

adapted to welded members made of flame-cut flanges. 

VIII.4 Lateral-torsional buckling of beams 

VIII.4.1 Numerical results 

VIII.4.1.1 Uniform members 

Doubly symmetric beams 

Similarly to the case of compressed members, the numerical analyses for members subjected to bending 

have yielded two sets of numerical bending moments for uniform beams: 

 My,cr,LBA: elastic critical bending moment for lateral-torsional buckling; 

 My,ult,GMNIA: ultimate bending moment (for lateral-torsional buckling). 

 

Besides, analytical values of the characteristic cross-sectional resistance to bending about the major axis 

My,Rk are determined using the prescriptions of the current Eurocode 3 Parts 1-1 and 1-5. These values 

are employed to compute: 
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y,Rk
LT

y,cr,LBA

M

M
   (VIII.31)   

y,ult,GMNIA

LT,GMNIA
y,Rk

M

M
   (VIII.32)   

The numerical reduction factors determined using the preceding expression (VIII.32) are plotted as a 

function of the normalized slenderness obtained using expression (VIII.31) in Figure VIII-9 for uniform 

doubly symmetric members. The results are presented along with the four European buckling curves a 

to d that are used for members subjected to bending according to the General case from Eurocode 3. 

For a great number of studied beams – when ht/b > 2 –, Eurocode 3 Part 1-1 imposes the use of buckling 

curve d when computing the reduction factor according to the General case. However, Figure VIII-9 

shows that numerical results for members with flame-cut flanges match with buckling curve c in the 

least favourable cases. The lowest results are obtained in the case of a constant bending moment 

distribution (see Figure VIII-9a)) where for low slenderness (< 0.8), numerical results are in line with 

buckling curve c. As the slenderness increases, the results get closer to Euler’s curve, lying above curve 

a for medium to high slenderness (> 1.1). 
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c) ψ = 0 d) ψ = -0.5 

 

e) ψ = -1 

Figure VIII-9: Numerical results for lateral-torsional buckling of uniform doubly symmetric beams 

The numerical results for flame-cut flanges are always above buckling curve a for the other values of 

the ratio ψ between end moments, except in a few cases when ψ = -1. Indeed, the results obtained when 

ψ = -1 are influenced by internal shear forces for members having a short to intermediate length. The 

results plotted in Figure VIII-9e) correspond to beams that did not fail due to shear, i.e. the following 

criterion is satisfied for the studied members: 

Ed bw, Rd
V V  (VIII.33)   

where the acting shear load VEd is: 
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y,Ed
b,RdEd

1M
V M

x L

 
  


 (VIII.34)   

where the design buckling resistance moment Mb,Rd is obtained using the General case of Eurocode 3, 

i.e. buckling curve c or d. 

The design buckling resistance for shear Vb,w,Rd is determined according to the prescriptions of Eurocode 

3 Part 1-5: 

w,Rk

wbw, Rd
M1

V
V 


  (VIII.35)   

with: 

Vw,Rk: characteristic value of the web resistance to shear; 

χw: reduction factor for shear buckling (see Eurocode 3 Part 1-5). 

Though no failure can be fully attributed to shear, its effects influence the failure mode and slightly 

diminishes the ultimate bending moment. The interaction of shear and lateral-torsional buckling is 

highlighted in Figure VIII-10 where von Mises stresses are shown at failure of a beam subjected to equal 

end moments with opposite signs. The S355 beam presented in Figure VIII-10 is 6 m long and present 

a 1000×8 mm web with 200×25 mm flanges. The stress distribution in the web exhibits inclined zones 

with a high magnitude that is characteristic of shear. 

 

Figure VIII-10: von Mises stresses at failure of a beam under a linear bending moment distribution with ψ = -1 

Eventually, Figure VIII-9 shows lower results for welded beams with hot-rolled flanges when compared 

against those presenting flame-cut flanges. The influence of the flanges type becomes less significant as 

ψ diminishes, differences being clear when both end moments present the same sign. In the case of a 

constant bending moment distribution, the numerical results for welded beams with hot-rolled flanges 

are found between curves c and d when the slenderness is lower than 0.9. Similarly to welded beams 

made of flame-cut flanges, as the slenderness increases, the impact of the imperfections on the buckling 

resistance diminishes, i.e. the results get closer to Euler’s curve. For high slenderness (> 1.5), all results 

lay above buckling curve a. 
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The results plotted in Figure VIII-9a) for the least favourable bending moment distribution show that 

the use of buckling curve d, as very often prescribed by the General case of Eurocode 3 Part 1-1, is 

overly conservative for welded members made of flame-cut flanges. For medium and high slenderness, 

buckling curve d provides clearly overly safe sided results. Besides, Figure VIII-9 b) to VIII-9e) show 

a significant influence of the bending moment distribution on the ultimate bending moment. Accurate 

design methods should therefore account for the bending moment distribution other than in the 

normalized slenderness. 

Mono-symmetric beams 

The numerical reduction factors obtained for uniform mono-symmetric beams are plotted with respect 

to the normalized slenderness in Figure VIII-11. The results obtained for a constant bending moment 

distribution are presented in Figure VIII-11a) while those obtained under a linear distribution are 

displayed in Figure VIII-11b). In the case where ψ = 1, two types of GMNIA computations are 

performed, depending on the sign of ψf given by: 

fc ft
f

fc ft

I I

I I






 (VIII.36)   

The common practice corresponds to ψf > 0, i.e. the larger flange is compressed under a positive bending 

moment. Thus, in the case of a linear bending moment, the larger flange of the end cross-section 

subjected to the greatest magnitude of the bending moment is subjected to compressive stresses. 

  

a) Uniform bending moment distribution b) Linear bending moment distribution 

Figure VIII-11: Numerical results for lateral-torsional buckling of uniform mono-symmetric beams 

When the larger flange is compressed, Figure VIII-11a) shows very scattered results for beams subjected 

to a constant bending moment. If the compression flange is the smaller one, the reduction factors are 

less scattered but also lower than in the other case. The influence of the type of compression flange (i.e. 

larger or smaller flange) is very pronounced in the low slenderness range while results get closer as the 

slenderness increases. Whatever the compression flange, the reduction factors lie above buckling curve 

c for low slenderness (<0.7) then get closer to Euler’s curve as the slenderness increases. 
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In the case of a linear bending moment distribution, the results show a very low influence of the members 

imperfections on the buckling behaviour. Indeed, the reduction factors are always found above curve a 

and very close to Euler’s curve for intermediate and high slenderness (> 0.9). 

One may notice that the numerical reduction factors plotted in Figure VIII-11 (uniform mono-symmetric 

beams) when the larger flange is compressed are greater than those presented in Figure VIII-9 (doubly 

symmetric members) for the same normalized slenderness. This is more obvious for a linear bending 

moment distribution, where the effect of the member imperfections is very limited. 

Similarly to the case of doubly symmetric beams, Figure VIII-11 shows that the use of buckling curve 

d, as generally required according to the General case is overly conservative for members with flame-

cut flanges. These observations will be confronted to the safety assessment of this design method in sub-

section VIII.4.2. 

VIII.4.1.2 Tapered members 

In the case of tapered beams, the numerical analyses have yielded two sets of numerical load amplifiers: 

 αcr,LBA: elastic critical load amplifier for lateral-torsional buckling; 

 αop,GMNIA: ultimate load amplifier (for lateral-torsional buckling). 

 

Besides, analytical values of the load amplifier αult,k to reach the characteristic resistance of the most 

critical cross-section are computed using: 

y,Rk

ult, k
y,Ed

( ) ( )
M

x x
M

   (VIII.37)   

The minimum value of αult,k along the beam is used with both load amplifiers resulting from numerical 

analyses to compute: 

ult,k
LT

cr,LBA





  (VIII.38)   

op,GMNIA

LT,GMNIA
ult,k





  (VIII.39)   

The location where the load amplifier is minimal depends both on the bending moment distribution and 

on the cross-section resistance along the beam. 

The numerical results obtained for tapered beams presenting a doubly symmetrical cross-section are 

presented in Figure VIII-12. Most numerical analyses concern type A beams where only the compression 

flange is inclined, as depicted in Table VIII-8. Some analyses were however led for type B beams where 

only the tension flange is inclined (see Table VIII-8). 
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Type of tapered 

beam 
Representation 

A 

 

B 

 

Table VIII-8: Type of doubly symmetric beams 

Figure VIII-12 shows no influence of the type of beam on the reduction factor. Besides, all results lie 

above buckling curve b, and above curve a in the case where ψ = 0 or 1. The results obtained for a 

uniform bending moment distribution are very favourable because αult,k is minimal at or close to the 

smallest cross-section while the actual failure happens at a larger cross-section. 

 

Figure VIII-12: Numerical results for lateral-torsional buckling of tapered doubly symmetric beams 

The numerical results obtained for tapered beams having a mono-symmetric cross-section are plotted in 

Figure VIII-13. All numerical reduction factors are found above buckling curve a. Besides, the results 

obtained under a constant bending moment are slightly more favourable when the larger flange is 

compressed (ψf > 0) than when the smallest one is compressed. In both cases, tapered beams are of type 

A (see Table VIII-8), i.e. only the compression flange is inclined. 
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Figure VIII-13: Numerical results for lateral-torsional buckling of tapered mono-symmetric beams 

Both Figure VIII-12 and Figure VIII-13 show that for tapered welded beams made of flame-cut flanges, 

the use of buckling curve d as generally required according to the General case from Eurocode 3 is 

overly conservative. This observation, similar to the case of uniform members, is confronted to the actual 

partial safety factors corresponding to this design method in the following sub-section VIII.4.2. Design 

methods better suited to welded beams made of flame-cut flanges are then exposed in sub-section 

VIII.4.3. 

VIII.4.2 Assessment of the Eurocode 3 design methods 

VIII.4.2.1 Uniform beams 

General case 

As developed in Chapter IV, the current and future General case from Eurocode 3 Part 1-1 (see §6.3.2.2) 

states that the resistance My,b,Rd of a uniform I member, doubly symmetric or not, subjected to bending 

is: 

y,Rk
b,Rd LT

M1

M
M 


  (VIII.40)   

where the reduction factor for lateral-torsional buckling χLT is determined using: 

LT 22

LT LT LT

1
1.0

  
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(VIII.41)   
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 (VIII.42)   

For welded members, the imperfection αLT is associated with either buckling curve c or d, depending on 

the height-to-minimum width ratio: 

t
LT

min

2: 0.49
h

b
   (VIII.43)   

t
LT

min

2: 0.76
h

b
   (VIII.44)   

The reduction factors for lateral-torsional buckling determined according to the General case are 

compared against those calculated numerically for uniform members made of flame-cut flanges. Figure 

VIII-14 shows the the results for uniform and doubly symmetric members while Figure VIII-15 presents 

those obtained for mono-symmetric members. 

 

Figure VIII-14: Numerical and EC3 – General case reduction factors for uniform doubly symmetric beams 

Both Figure VIII-14 and Figure VIII-15 highlight that making use of the General case provides overly 

conservative reduction factors in most cases. Besides, both figures show scattered results for high values 

of the reduction factors, i.e. low slenderness. The results obtained for mono-symmetric beams are more 

scattered than those obtained for doubly symmetric members and greater deviations on χLT are noticed 

on the safe side. 
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Figure VIII-15: Numerical and EC3 – General case reduction factors for uniform mono-symmetric beams 

The partial safety factors associated with the General case from Eurocode 3 are computed for doubly 

and mono-symmetric members. The results are presented in Table VIII-9 for the low slenderness range 

(≤ 0.8), the high slenderness range (> 1.5) and the intermediate one. 

Cross-section type Slenderness range n γM1 

Doubly-symmetric 

LT 0.8   107 1.003 

LT0.8 1.5   180 0.807 

LT1.5   100 0.809 

All range 387 0.982 

Mono-symmetric 

LT 0.8   62 1.108 

LT0.8 1.5   77 0.821 

LT1.5   57 0.848 

All range 196 1.001 

Table VIII-9: Partial safety factors associated with the General case from Eurocode 3 for uniform beams 

For the intermediate and high slenderness ranges, the current General case is overly conservative; the 

partial safety factors obtained being comprised between 0.81 and 0.85 for both cross-section types. The 

factor obtained for the low slenderness range is very close to unity for doubly-symmetric members. That 

obtained in the case of mono-symmetric members is greater than 1.05 while no analytical result is found 

on the unsafe side. This discrepancy is a consequence of the very scattered results (see Figure VIII-15), 

some analytical results being extremely conservative. A value greater than 1.10 shows that the current 

design methods is not adequate for uniform mono-symmetric welded beams with flame-cut flanges 

having a low slenderness though producing only safe-sided results. 
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a) Before Tail approximation b) After Tail approximation 

Figure VIII-16: Quantile plot for EC3 design resistances – uniform mono-symmetric beams (low slenderness) 

Owing to high values of the partial safety factor despite an absence of unsafe results, the quantile plot 

for the current Eurocode 3 method for uniform mono-symmetric beams with a low slenderness is 

presented in Figure VIII-16a). The design procedure to compute partial safety factors assumes that the 

results are distributed following a (log-) normal distribution (see Annex D of Eurocode 0 and 

SAFEBRICTILE project deliverable D1.1). Therefore, the quantile plot associated with an accurate 

design method should exhibit individual results very close to the regression line of the studied values. 

Figure VIII-16a) shows that owing to overly conservative results, the regression line is quite away from 

the lowest values of re/rt. A “Tail approximation” is thus performed that consists in neglecting the overly 

conservative results to bring the remaining significant results closer to a normal distribution as described 

as part of the SAFEBRICTILE project. Using the quantile plot of Figure VIII-16a), it was chosen to 

remove the contributions for which re/rt is greater than 1.20. The resulting quantile plot is depicted in 

Figure VIII-16b). 

The partial safety factors associated with the current Eurocode 3 method for low slenderness in the case 

of uniform mono-symmetric beams are presented in Table VIII-10 before and after the Tail 

approximation. Using the Tail approximation, the partial safety factor becomes lower than 1.05. 

Slenderness range 
Tail 

approximation 
n γM1 

LT 0.8   
Without 62 1.108 

With 20 1.017 

Table VIII-10: Partial safety factors associated with the General case for uniform mono-symmetric beams 

The results obtained according to the General case from Eurocode 3 Part 1-1 are not very well suited 

for welded beams made of flame-cut flanges being overly conservative for most members employed in 

practice. Improved imperfection factors adapted to this type of beams will be introduced in sub-section 

VIII.4.3.1. 
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New verification format from prEurocode 3 

The new verification format appearing in prEN 1993-1-1 is based on the work of Taras (2010a/b). As 

presented in Chapter IV, this design method can be employed solely in the case of uniform doubly 

symmetric members. For such members, the resistance against lateral-torsional buckling My,b,Rd 

according to the new verification format is similar to that given by expression (VIII.40). However, the 

reduction factor is given by: 

M
LT 22

MLT LT LT

1.0
f

f


  

 
 

 (VIII.45)   

 
2

LT 2
zLTMLT LT

z

0.5 1 0.2f


  


   
      
     

 (VIII.46)   

where the factor fM accounting for the bending moment distribution is given, in the case of a linear 

bending moment distribution, by: 

2
M 1.25 0.1 0.15f      (VIII.47)   

The imperfection factor αLT for welded members with tf ≤ 40 mm is: 

el,y

LT
el,z

0.21 0.64
W

W
    (VIII.48)   

The analytical results obtained using equations (VIII.45) to (VIII.48) are compared against the numerical 

results in Figure VIII-17 for doubly symmetric welded beams made of flame-cut flanges. 

 

Figure VIII-17: Numerical and prEC3 reduction factors for uniform doubly symmetric welded beams 
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The analytical results are on the safe side, except for a couple of beams, with an average deviation 

between 10 and 15%. Besides, the scatter is low when compared to that obtained with the General case 

(see Figure VIII-14). 

The partial safety factors corresponding to the new design method from prEN 1993-1-1 are computed 

for the low, intermediate and high slenderness ranges. The results are presented in Table VIII-11 for the 

welded beams entering the scope of this design method, i.e. doubly symmetric members. 

Cross-section type Slenderness range n γM1 

Doubly-symmetric 

LT 0.8   107 0.947 

LT0.8 1.5   180 0.987 

LT1.5   100 0.991 

All range 387 1.044 

Table VIII-11: Partial safety factors for the new design method from prEurocode 3 for uniform beams 

The partial safety factors are comprised between 0.95 and 0.99, showing a good accuracy of the design 

method. A modified version of this new design method is derived in sub-section VIII.4.3.1 to be 

applicable in the case of mono-symmetric and/or tapered beams. In addition, an enhanced expression 

will be exposed for the imperfection factor adapted to welded members made of flame-cut flanges. 

In the following sub-section VIII.4.2.2, the numerical results are used to assess the safety of the current 

Eurocode 3 design rules for welded tapered members. 

VIII.4.2.2 Tapered beams 

According to Eurocode 3 Part 1-1, the stability of a non-uniform beam subjected to bending must be 

assessed using the General Method, as detailed in Chapter IV. The resistance against lateral-torsional 

buckling of a non-uniform beam is then obtained using expression (VIII.40). The characteristic cross-

sectional resistance to bending is computed at the location where αult,k is minimal (see Eq. (VIII.37)). 

Non-uniform members do not enter the scope of the new verification format, but their design resistance 

can be computed using the General case (see Eq. (VIII.41) to (VIII.44)) when applying the General 

Method. Then, the imperfection factor is determined for the cross-section where αult,k is minimal. 

The analytical reduction factors are compared against the numerical ones in Figure VIII-18 for doubly 

symmetric tapered beams. Similar results are presented in Figure VIII-19 for mono-symmetric tapered 

beams. 
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Figure VIII-18: Numerical and EC3 – General Method reduction factors for doubly symmetric tapered beams 

Figure VIII-18 highlights very safe-sided results when employing the General Method with the General 

case for the computation of the reduction factor. Some scatter is noticed and analytical results are up to 

60% on the safe side. 

In the case of mono-symmetric members, Figure VIII-19 exhibits also extremely safe analytical results. 

The scatter is more significant than within results presented in Figure VIII-18 for doubly symmetric 

members, similarly to the case of uniform beams (see Figure VIII-14 and Figure VIII-15). The analytical 

results obtained for mono-symmetric tapered beams are up to almost 100% on the safe side. 

 

Figure VIII-19: Numerical and EC3 – General Method reduction factors for mono-symmetric tapered beams 

The partial safety factors corresponding the General Method are computed for the low, intermediate and 

high slenderness ranges. The results are presented in Table VIII-12 for tapered welded beams made of 

flame-cut flanges and presenting either a doubly or a mono-symmetric cross-section. 
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The slenderness ranges studied in the case of mono-symmetric tapered beams are not similar to those 

investigated for other members due to a limited number of results for very high slenderness. Indeed, the 

boundary between the medium and the high slenderness ranges is set to 1.25, because only 18 of the 

studied beams present a normalized slenderness greater than 1.5. 

Cross-section type Slenderness range n γM1 

Doubly-symmetric 

LT 0.8   26 0.977 

LT0.8 1.5   42 0.790 

LT1.5   61 0.850 

All range 129 0.913 

Mono-symmetric 

LT 0.8   38 0.911 

LT0.8 1.25   28 0.728 

LT1.25   29 0.825 

All range 95 0.850 

Table VIII-12: Partial safety factors associated with the General Method for tapered beams 

The partial safety factors obtained for intermediate and high slenderness are significantly lower than 

unity. The results are closer to one in the low slenderness range. Safety factors varying visibly between 

the different slenderness ranges with some values lower than 0.8, the current design method is not well 

suited for the type of studied beams. 

In the upcoming sub-section VIII.4.3, improved expressions are proposed to determine the imperfection 

factors for welded beams made of flame-cut flanges. The safety levels provided by the enhanced design 

methods are then assessed. Besides, adaptations of the new verification format from prEN 1993-1-1 are 

derived. The partial safety factors associated with this improved design method validate the approach. 

VIII.4.3 Propositions for rules adaptations 

VIII.4.3.1 Adaptation of the General case 

Uniform beams 

Two design methods are adapted from the current and future General case from EN1993-1-1 to welded 

members made of flame-cut flanges. A first proposal makes use of equations (VIII.40) to (VIII.42), with 

the imperfection factor: 

LT 0.49   (VIII.49)   

This design method, referred to as Proposition I, corresponds to the use of buckling curve c for welded 

beams made of flame-cut flanges in steel buildings. Thiébaud (2014) also proposed the use of buckling 

curve c for bridge girders when flame-cuts are involved though no partial safety factors were computed. 

A second proposition is made, according to which the design resistance of a uniform member subjected 

to bending is slightly different than that obtained using equation (VIII.40), being: 
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y,Rk
b,Rd LT, mod

M1

M
M 


  (VIII.50)   

with: 

LT
LT, mod

1.0
f


    (VIII.51)   

The previous expression (VIII.51) can currently be employed when using the Special case from 

Eurocode 3 (see §6.3.2.3) but this alternative is not maintained in prEN 1993-1-1, as exposed in Chapter 

IV. The coefficient f accounts for the influence of the bending moment distribution on the ultimate 

bending moment, being: 

   
2

LTcf 1 0.5 1 1 2.0 0.8 1.0k  
     

  
 (VIII.52)   

where the correction factor kc is, for a linear bending moment distribution: 

c

1

1.33 0.33
k





 (VIII.53)   

To keep the design method simple, the impact of the bending moment distribution is expressed through 

equation (VIII.51) with the coefficient f that already exists in the current Eurocode 3. Using this factor, 

i.e. accounting for the bending moment distribution, was deemed necessary when analysing the 

distribution of the numerical results. Indeed, Figure VIII-9 and Figure VIII-11 highlighted a major 

influence of the bending moment diagram on the numerical reduction factors. In addition, the influence 

of the bending moment distribution on the reduction factor is accounted for in other existing design 

methods from Eurocode 3: the current Special case and the new verification format. 

Proposition II requires the computation of a reduction factor χLT using expression (VIII.41) along with 

(VIII.42). The method deviates from the General case in the determination of the imperfection factor 

αLT, computed using: 

t
LT

LT min

0.23 h

b



  with LT0.21 0.49   (VIII.54)   

Similarly to the case of welded columns, a Proposition II is introduced where the imperfection factor 

depends on the member slenderness and height-to-width ratio, corresponding to expression (VIII.54). 

This more precise imperfection factor implies the determination of a buckling curve per member. The 

motivations to come with such expression are similar to those expressed in the case of welded columns 

(see equation (VIII.29)). Indeed, in both cases the numerical results show that the reduction factors get 

closer to Euler’s curve as the slenderness increases, i.e. the imperfections impact on the member stability 

diminishes. The use of the height-to-width ratio, resulting in a buckling curve per member was motivated 

by the scattered numerical results for beams, similarly to that observed in the case of columns. 

Eventually, it has been chosen to use Proposition II imperfection factors using similar formats for 

columns and beams to ensure a consistency and an ease of use in design offices. 
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The Proposition II imperfection factor comes with lower and upper limits, corresponding to buckling 

curves c and a, respectively. The lower limit corresponds to the buckling curve of Proposition I. The 

upper limit corresponds to the highest buckling curve that can currently be used according to the General 

case from Eurocode 3 for members in bending. Like for columns, the upper bound is introduced for 

safety reasons, a minimum deviation from the theoretical Euler curve is always provided. 

The analytical reduction factors resulting from both Propositions are compared against those obtained 

by means of GMNIA computations in Figure VIII-20 for uniform doubly symmetric beams. The results 

of Proposition I all lie on the safe side with a mean deviation comprised between 5 and 10% for low 

slenderness, i.e. high reduction factors. As the members get slender, the design method provides safer 

results, with an average deviation close to 20%. 

The results obtained with Proposition II are in vast majority on the safe side with a deviation lower than 

15% from the numerical results. This second proposition provides more accurate results than 

Proposition I. One can notice a few results on the unsafe side corresponding to members subjected to 

end moments having the same magnitudes but opposite signs. The maximum deviation on the unsafe 

side is 10%. 

  

a) Proposition I b) Proposition II 

Figure VIII-20: Numerical and analytical reduction factors for uniform doubly symmetric welded beams 

The comparison between analytical and numerical reduction factors are presented in Figure VIII-21 for 

uniform beams presenting a mono-symmetric cross-section. Both methods show only safe-sided results 

with an average deviation close to 15% for high reduction factors i.e. low slenderness. For slender 

members, using Proposition I yields safer results than Proposition II, with a mean deviation from the 

numerical results comprised between 15 and 20%. The results obtained using Proposition II are closer 

to the numerical ones, with a mean deviation comprised between 10 and 15%. 
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a) Proposition I b) Proposition II 

Figure VIII-21: Numerical and analytical reduction factors for uniform mono-symmetric welded beams 

The partial safety factors associated with both proposed design methods are presented in Table VIII-13 

for uniform doubly symmetric beams. The partial safety factors are acceptable in each slenderness range 

for both methods. The variations of γM1 are small within the different slenderness ranges for Proposition 

II that provides safe and accurate estimations of the member resistance. The partial safety factors 

associated with Proposition I are quite different within the slenderness ranges. The results obtained for 

Proposition I are characteristic of a design method providing scattered results. 

Design method Slenderness range n γM1 

Proposition I: 

LT 0.49   

LT 0.8   107 0.999 

LT0.8 1.5   180 0.914 

LT1.5   100 0.913 

All range 387 1.016 

Proposition II: 

t
LT

LT

0.23
0.21 0.49

h

b



    

LT 0.8   107 0.954 

LT0.8 1.5   180 1.018 

LT1.5   100 1.021 

All range 387 1.025 

Table VIII-13: Partial safety factors for both proposed design methods – uniform doubly symmetric beams 

The partial safety factors associated with uniform mono-symmetric members are presented in Table 

VIII-14. Those for Proposition II are acceptable in every slenderness range, being comprised between 

0.96 and 1.04. In the case of Proposition I, the partial safety factors are small for medium and high 

slenderness while being greater than 1.10 in the low slenderness range The high value obtained in the 

low slenderness range is attributed to the important results scatter (see Figure VIII-21). 
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Design method Slenderness range n γM1 

Proposition I: 

LT 0.49   

LT 0.8   62 1.111 

LT0.8 1.5   77 0.923 

LT1.5   57 0.933 

All range 196 1.033 

Proposition II: 

t
LT

LT

0.23
0.21 0.49

h

b



    

LT 0.8   62 1.036 

LT0.8 1.5   77 0.959 

LT1.5   57 1.031 

All range 196 1.014 

Table VIII-14: Partial safety factors for both proposed design methods – uniform mono- symmetric beams 

To cope with the high value of the partial safety factor associated with Proposition I for mono-symmetric 

beams having a low slenderness, the corresponding quantile plot is presented in Figure VIII-22a). 

Similarly to the current Eurocode 3 guidelines (see Figure VIII-16), the results are not in line with a 

(log-) normal distribution. A Tail approximation is then performed removing re/rt values greater than 

1.1 (see Figure VIII-22b)). 

  

a) Before Tail approximation b) After Tail approximation 

Figure VIII-22: Quantile plot for Proposition I – uniform mono-symmetric beams (low slenderness) 

The partial safety factors associated with Proposition I for mono-symmetric beams with a low 

slenderness are presented in Table VIII-15. Performing the Tail approximation diminishes the partial 

safety factor to 1.02 which is now acceptable. 
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Slenderness range 
Tail 

approximation 
n γM1 

LT 0.8   
Without 62 1.111 

With 18 1.017 

Table VIII-15: Partial safety factors associated with Proposition I for uniform mono-symmetric beams 

The adaptation of both Proposition I and II to non-uniform beams is discussed in the following 

paragraph. The computation of partial safety factors is then performed, validating the employed 

approach. 

Tapered beams 

The lateral-torsional buckling resistance of a tapered beam according to both proposed methods is 

determined using expressions (VIII.49) to (VIII.54) with the following specific features: 

 The characteristic bending moment resistance My,Rk and the ratio ht/b that intervene in the 

imperfection factor of Proposition II are computed at the cross-section where αult,k is minimal 

(see equation (VIII.37)). Besides a term accounting for the tapering of the member is introduced 

in the expression of this imperfection factor which becomes: 

t
LT

LT min

0.23 0.10 h

b







  with 

LT0.21 0.49   (VIII.55)   

with: 

s,min

s,max

1
h

h
    

 The ratio ψ between end moments is replaced with the ratio ψε between the bending moment 

utilization at both ends (see Figure VIII-23) in expression (VIII.53) of the correction factor kc: 
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 

   

 (VIII.56)   

Because numerical results exhibit an influence of the bending distribution on the lateral-torsional 

buckling resistance of tapered beams (see Figure VIII-12 and Figure VIII-13), the use of coefficient f 

was also adopted. The design methods are then consistent with those proposed for uniform beams. 

Making use of a correction factor that depends on the bending moment utilization diagram is similar to 

the approach employed by Marques (2014) when adapting the interaction formulae from Eurocode 3 to 

tapered members. 



STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 269 - 

 

Figure VIII-23: Acting and resisting characteristic bending moment distribution on a tapered beam 

The numerical reduction factors are compared against those obtained analytically using both proposed 

design methods in Figure VIII-24 for tapered doubly symmetric beams. It is worth mentioning that the 

analytical reduction factors correspond to the decrease of the cross-section resistance to bending at the 

location where αult,k is minimal. 

All analytical results are on the safe side with more conservative results obtained using Proposition I. 

This first alternative yields also more scattered results, especially in the low slenderness range, 

corresponding to high reduction factors. The mean deviation from the numerical results is greater than 

15% when using Proposition I. Most results obtained using Proposition II present a 10 to 15% deviation 

from the numerical values. The second alternative provides more accurate results than Proposition I. 

  

a) Proposition I b) Proposition II 

Figure VIII-24: Numerical and analytical reduction factors for tapered doubly symmetric welded beams 

Figure VIII-25 shows the comparison between the numerical and analytical reduction factors for tapered 

mono-symmetric beams. Both design methods provide scattered results all lying on the safe side. 

Making use of Proposition I produces safer results with an average deviation from the numerical results 

of approximately 25%. The deviation is reduced when using Proposition II, being 15 to 20%. 
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a) Proposition I b) Proposition II 

Figure VIII-25: Numerical and analytical reduction factors for tapered mono-symmetric welded beams 

Eventually, the partial safety factors associated with both proposed design methods are determined and 

presented in Table VIII-16 for doubly symmetric beams. Partial safety factors are close to unity for all 

slenderness ranges for both design methods. Deviations from 1 are up to 8 % for Proposition I and 4% 

for Proposition II, characterizing adequate design methods. 

Design method Slenderness range n γM1 

Proposition I: 

LT 0.49   

LT 0.8   26 1.003 

LT0.8 1.5   42 0.921 

LT1.5   61 0.945 

All range 129 0.975 

Proposition II: 

t
LT

LT

0.23 0.10
0.21 0.49

h

b







    

LT 0.8   26 1.003 

LT0.8 1.5   42 0.958 

LT1.5   61 1.038 

All range 129 1.015 

Table VIII-16: Partial safety factors for both proposed design methods – tapered doubly symmetric beams 

It is worth mentioning that the Proposition II design method would not provide a satisfactory level of 

safety if using the imperfection factor of equation (VIII.54). Indeed, in such case the partial safety factors 

would be these presented in Table VIII-17. The partial safety factors would then be acceptable in the 

low and intermediate slenderness ranges only, the value obtained for high slenderness being greater than 

1.05. 
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Imperfection factor Slenderness range n γM1 

t
LT

LT

0.23
0.21 0.49

h

b



    

LT 0.8   29 0.984 

LT0.8 1.5   42 0.981 

LT1.5   61 1.070 

All range 129 1.022 

Table VIII-17: Partial safety factors for tapered doubly symmetric beams – initial Proposition II 

The partial safety factors for both design methods are also computed for tapered mono-symmetric 

beams, the results being presented in Table VIII-18. The partial safety factors are comprised between 

0.93 and 0.99 in all slenderness ranges for Proposition II while the Proposition I partial safety factors 

are lower, ranging from 0.85 to 0.94. Therefore, the two proposed methods provide a satisfactory safety 

level for beams made of flame-cut flanges. 

Design method Slenderness range n γM1 

Proposition I: 

LT 0.49   

LT 0.8   38 0.940 

LT0.8 1.25   28 0.848 

LT1.25   29 0.925 

All range 95 0.911 

Proposition II: 

t
LT

LT

0.23 0.10
0.21 0.49

h

b







    

LT 0.8   38 0.970 

LT0.8 1.25   28 0.929 

LT1.25   29 0.993 

All range 95 0.972 

Table VIII-18: Partial safety factors for both proposed design methods – tapered mono-symmetric beams 

In the following sub-section VIII.4.3.2, the new verification format appearing in prEurocode 3 is derived 

in the general case of a tapered beam having a mono-symmetric cross-section. An adaptation of this 

design method to welded members made of flame-cut flanges is then proposed and validated by 

satisfactory values of partial safety factors. 

VIII.4.3.2 Adaptation of the new verification format from prEN 1993-1-1 

Scope extension 

In the present sub-section, the derivation of the new verification format from prEurocode 3 Part 1-1 is 

extended to the case of tapered beams having a mono-symmetric cross-section, as presented in Figure 

VIII-26. The consistent derivation of this new design method is expressed by Taras (2010a/b) in the 

case of uniform doubly symmetric beams. 
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Figure VIII-26: Studied configuration 

The design method relies on the expression of the first yield criterion for a member subjected to a 

uniform bending moment distribution: 

II II
y,Ed z,Ed Ed

y,Rk z,Rk Rk

( ) ( ) ( ) 1.0
MM B

x x x
M M B

    (VIII.57)   

The distributions of the first and second order internal stresses due to in-plane bending moment My, out-

of-plane bending moment Mz and bimoment B are presented in Figure VIII-27. In mono-symmetric 

members, the first yielding of the cross-section may happen at the most compressed end of the 

compression flange (see Figure VIII-27), resulting from compressive stresses due to 1st and 2nd order 

bending moments and bimoment. Failure may also occur owing to overly important tensile stresses in 

the tension flange. Such phenomenon may exist when the same end of the tensile flange undergoes 

tensile stresses owing to Mz and B. 

To cope with the two possible failure types, the verification format is simplified as: 

II II
y,Ed z,Ed Ed

y,Rk z,Rk Rk

( ) max ( ) max ( ) 1.0
MM B

x x x
M M B

   
     

    

 (VIII.58)   

y,Ed
Mz B

y,Rk

( ) max ( ) max ( ) 1.0
M

x x x
M

      (VIII.59)   

The effects of My, Mz and B are then treated separately with the safe-sided assumption that failure 

happens when the utilizations of the three effects reach their maximal values. 

M
y,Ed

 

x = 0 
x = L 



STABILITY OF WELDED I-SECTION STEEL MEMBERS 

- 273 - 

 

Figure VIII-27: Stresses in beam flanges 

To determine both the second order out-of-plane bending moment Mz and bimoment B, one may assume 

that: 

y,crcr 0

cr 0 cr,z

v v M

N 
   (VIII.60)   

where the index “cr” refers to the elastic critical mode shape while “0” refers to the initial imperfections. 

The relationship between both amplitudes of the critical mode expressed by equation (VIII.60) is 

acceptable for doubly or mono-symmetric members having a constant or tapered cross-section since 

both shape functions are assumed to correspond to half a sine wave. The previous expression comes 

with the common assumption that the initial imperfections are similar, scaled to the amplitudes, to the 

critical mode shape. 

The following amplification relationships can then be used: 

 0
cr

1
( )

1
v x xv





 (VIII.61)   

 0
cr

1
( )

1
x x 





 (VIII.62)   

Besides, the second order internal moments are: 
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2
II

zz,Ed 2
( ) ( )

v
x E xM I

d

dx
   (VIII.63)   

2
II

wEd 2

2
( ) ( ) ( ) ( ) ( )

( )

d dh
x E x x x xB I

h x x x

d

d ddx

  
    

 

 (VIII.64)   

The bimoment expression accounts for the flanges inclination, as developed by Kitipornchai (1972, 

1975) in the case of doubly or mono-symmetric members. 

The distribution of the distance between the flange centroids along the beam is linear, being given by: 

s,max( ) ( )h x h xh  (VIII.65)   

with: 

( ) 1
x

h x
L

   

s,min

s,max

1
h

h
    

The previous expression states that the largest cross-section is located at x = 0, the smallest being 

encountered at x = L (see Figure VIII-26). 

The expressions of the lateral deflection and torsional twist given by (VIII.61) and (VIII.62), 

respectively, are inserted along with (VIII.60) in expressions (VIII.63) and (VIII.64). The second order 

internal moment and bimoment therefore become: 

2
y,crII

0zz,Ed
y,crcr,z

y,Ed

1
( ) sin

1

xM
x EM I

M L LN

M

 


   
    

   


 
(VIII.66)   

2
y,Edz wII

0Ed
y,Edy,cr z

y,cr

( ) 2
( ) sin cos

( )
1

x x xMEI I
xB

L M L Lh xM I

M

   




      
       

      

 
(VIII.67)   

Besides, the elastic cross-sectional resistance to out-of-plane bending moment and bimoment for doubly 

or mono-symmetric cross-sections are: 

z,Rk z yfWM   (VIII.68)   

w
Rk y

max

( )
( )

( )

xI
x fB

x
  (VIII.69)   

In the case of a mono-symmetric cross-section, the following expressions hold: 
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 
z

z
max ; 2t c

I
W

b b
  (VIII.70)   

 
max

max ;
( ) ( )

4

t cb b
x h x   (VIII.71)   

Using expressions (VIII.66) to (VIII.69) and (VIII.71), the maximal values of the utilization ratios for 

the out-of-plane bending moment and bimoment are: 

y,Ed
0Mz

y,Edz y

y,cr

1
max ( )

1

M
x

MfW

M

 



 
(VIII.72)   

  y,Eds,maxcr,z
0B B 0 0

y,Edy,cr z y

y,cr

max ;
max ( ) ( ) ( )

4
1

t cb b MhN
x x g x

MfM I

M

  



 
(VIII.73)   

with: 

0 0
0 0

2
( ) ( )sin cos

x x
g x h x

L L

 



   
    

   
 (VIII.74)   

The location x0 where the bimoment utilization reaches its maximal value is obtained when: 

0 0
0 0

3
( ) 0 ( )cos sin 0

x xg
x h x

x L L

 



    
      

    
 (VIII.75)   

The value of x0/L is plotted in Figure VIII-28 as a function of the parameter γ that accounts for the 

tapering ratio only. The exact values of this location are plotted along with those obtained using the 

following linear approximation: 

0 0.5 0.29
x

L
   (VIII.76)   
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Figure VIII-28: Location of the maximal bimoment utilization along a tapered beam 

The greatest difference between the exact and approximated values of x0/L is 7% which is still acceptable 

considering that the verification format (VIII.58) provides safer results than the general expression 

(VIII.57). 

Inserting expression (VIII.76) into (VIII.74), one obtains: 

     2
0

2
( ) 1 0.5 0.29 cos 0.29 sin 0.29 ( )g x f


    


      (VIII.77)   

Eventually, equation (VIII.58) rewrites as: 

y,Ed y,Ed cr,z s,max
0

y,Edy,Rk y,crz y

y,cr

1
1 ( ) 1.0

( ) 2
1

M M N h
f

x MfWM M

M

 
 

   
  

 
(VIII.78)   

Besides, as assumed by Taras (2010a/b) the initial torsional twist amplitude can be expressed as a 

function of the amplitude e0 of the imperfection measured in the compression flange (see Figure VIII-

29): 

y,cr
0 0 0fc fcz z0

cr,z

( ) ( )
M

e v x xz z
N

 
 

     
 

 (VIII.79)   

where xz is the location of the cross-section where the initial lateral displacement δfl of the compression 

flange is maximal (see Figure VIII-29). The distance zfc between the compression flange centroid and 

the cross-section shear centre is given by: 

z,ft
fc

z

( ) ( )
I

x h xz
I

  (VIII.80)   
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Figure VIII-29: Perfect member and member with initial imperfections 

Rigorously, the right side of equation (VIII.79) should be multiplied with: 

sin zx

L

 
 
 

 (VIII.81)   

However, in a seek of simplicity, it is assumed that: 

sin 1zx

L

 
 

 
 (VIII.82)   

The previous simplification is acceptable provided that the actual value of xz is close to mid span. If xz 

(slightly) diverges from mid span, expression (VIII.81) becomes lower than unity. Then, the “actual” 

amplitude e0 obtained by multiplying the right side of equation (VIII.79) with (VIII.81) would be lower 

than the value obtained using equation (VIII.79) alone. Results obtained with equation (VIII.79) can 

therefore not lie on the unsafe side. 

Using the previous assumptions, the initial displacement of the compression flange can be expressed 

using: 

y,cr
0fcfl

cr,z

( ) ( ) sin
xM

x xz
LN


 

   
        

 (VIII.83)   

Therefore, xz is obtained when: 

fl ( ) 0 tanz z
z

x x
x K

x L L

  


  
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 (VIII.84)   

with: 
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The exact value of xz/L is plotted against parameter K in Figure VIII-30 along with the predictions of 

the following approximation: 

z 0.146
0.5

x

L K
   (VIII.85)   

Both expressions (VIII.84) and (VIII.85) yield similar values for xz. Besides, Figure VIII-30 shows that 

xz/L is very close to mid span in the most common cases, which is consistent with the previous 

simplification of equation (VIII.82). 

Inserting expression (VIII.85) into (VIII.65) yields: 

0.146
( ) 1 0.5zh x

K


    (VIII.86)   

 

Figure VIII-30: Location of the maximal initial displacement of the compression flange 

Expression (VIII.78) finally rewrites: 

cr,z s,max

y,Ed y,Ed y,cr
0
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 (VIII.87)   

which can be further developed as: 

yy,Ed y cr,z0

y,Edy,Rk y,crz y

y,cr

( )( )
1 1.0
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1

x fWe A xM N
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 
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 
 

 (VIII.88)   

where the parameter ξ that accounts for the tapering and mono-symmetry of the member is: 
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y,cr s,max

cr,z

y,cr z,ft
s,max

zcr,z

( )
2

( )z

M h
f

N

M I
h xh

N I


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





 (VIII.89)   

In the specific case of a uniform beam, one notices that: 

( ) 1f    (VIII.90)   

( ) 1zh x   (VIII.91)  

Therefore, expression (VIII.89) reduces to: 

y,cr s

cr,z

y,cr z,ft
s

zcr,z

2

M h

N

M I
h

N I









 (VIII.92)   

In the even more specific case of a uniform beam having a doubly symmetric cross-section, the previous 

expression further simplifies as: 

1   (VIII.93)   

The following normalized parameters are introduced: 

y,Rk
LT

y,cr

( )
( )

xM
x

M
   (VIII.94)   

Rk
z

cr,z

( )
( )

xN
x

N
   (VIII.95)   

y,Ed

LT
y,Rk

( )
( )

M
x

xM
   (VIII.96)   

Equations (VIII.94) to (VIII.96) are inserted into (VIII.88), yielding: 

2

LTLT
LT 2

zLT LT

( ) ( )
( ) ( ) 1.0

( )1 ( )

x x
x x

xx

 
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 

 
  

  
 (VIII.97)   

with: 

0
z
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( )

A x
x e

W
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The preceding equation (VIII.97) is similar to that obtained by Taras (2010a/b) in the particular case of 

uniform doubly symmetric members. Using a large number of GMNIA computations, Taras (2010a/b) 

proposed to use the following expression for the generalized imperfection η: 

 zLT 0.2    (VIII.98)   

where the imperfection factor αLT is given by expression (VIII.48) for most welded members designed 

for buildings (tf ≤ 40 mm). 

Besides, a coefficient fM, given by expression (VIII.47) for a linear bending moment distribution, is 

introduced in equation (VIII.97) to account for the bending moment distribution. 

To obtain a design method easy to use and consistent with that existing for uniform doubly symmetric 

members, it has been chosen to employ expression (VIII.98) for the generalized imperfection. Besides, 

the fM factor is also adapted to non uniform members using, for a linear bending moment distribution: 

2
M,ε ε ε1.25 0.1 0.15f      (VIII.99)   

where the ratio ψε between end moment utilizations is given by expression (VIII.56). 

To overcome the tedious computation of the design value of the lateral-torsional buckling resistance 

Mb,Rd at a large number of cross-sections, one may simply verify the beam stability at the cross-section 

xα where αult,k is minimal. 

Eventually, the new design method from prEurocode 3 Part 1-1 adapted to tapered beams having a 

mono-symmetric cross-section requires the following clause to be satisfied: 

 

 
y,Ed α

b,Rd α

1.0
xM

xM
  (VIII.100)   

with: 
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 (VIII.103)   

where the imperfection factor for welded members having tf ≤ 40 mm is: 

 
 el,y α

αLT
el,z
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xW

x
W
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In the following paragraph, an expression for the imperfection factor αLT better suited to welded 

members made of flame-cut flanges is proposed. The partial safety factors associated with the derived 

design method are then presented. 

Improved imperfection factor 

The design method previously derived is adapted to welded members with tf ≤ 40 mm and made of 

flame-cut flanges by replacing the imperfection factor given by (VIII.104) with: 

 
 el,y α

αLT
el,z

0.21 0.49 0.15
xW

x
W

     (VIII.105)   

To maintain the formalism of the current imperfection factor and provide a simple adaptation, expression 

(VIII.105) is similar to (VIII.104) except for the upper bound value. While a value of 0.64 is prescribed 

in prEurocode 3, a smaller value varying between 0.49 and 0.64 is proposed in the present work. The 

limit value depends on the tapering of the beam, being equal to 0.49 for uniform members. 

The comparison between numerical and analytical reduction factors is presented in Figure VIII-31 for 

uniform beams. The results obtained for doubly symmetric members are close to those obtained using 

the imperfection factor given by expression (VIII.104) (see Figure VIII-17). Small differences are 

noticed for intermediate slenderness, using the design method adapted to flame-cuts resulting in lower 

differences between analytical and numerical results. 

For mono-symmetric beams, Figure VIII-31b) shows no result on the unsafe side. The scatter is greater 

than in the case of doubly symmetric members but the mean deviation between analytical and numerical 

results is comprised between 10 and 15%. 

  

a) Doubly symmetric b) Mono-symmetric 

Figure VIII-31: Numerical and analytical (adapted prEC3) reduction factors for uniform welded beams 

The comparison between analytical and numerical results are presented in Figure VIII-32 for the studied 

tapered beams. All results are found on the safe side for doubly symmetric beams. The results are not 
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very scattered, most of them being less than 20% safe-sided. Mono-symmetric beams present more 

scattered results with a larger mean deviation on the safe side. 

  

a) Doubly symmetric b) Mono-symmetric 

Figure VIII-32: Numerical and analytical (adapted prEC3) reduction factors for tapered welded beams 

The partial safety factors associated with the modified verification format from prEN 1993-1-1 are 

computed for the studied welded members with flame-cut flanges. The results are presented in Table 

VIII-19 for uniform beams. In the case of doubly symmetric beams, the partial safety factors are 

satisfactory in the low and high slenderness ranges. 

Cross-section type Slenderness range n γM1 

Doubly symmetric 

LT 0.8   107 0.965 

LT0.8 1.5   180 1.052 

LT1.5   100 1.036 

All range 387 1.078 

Mono-symmetric 

LT 0.8   62 1.051 

LT0.8 1.5   77 0.987 

LT1.5   57 1.028 

All range 196 1.044 

Table VIII-19: Partial safety factors for adapted prEC3 method for uniform beams 

However, in the medium slenderness range, a value slightly greater than 1.050 is obtained. Similarly, 

when analysing the partial safety factor computed considering all the results obtained, an important 

value is obtained. These combined observations can reveal a variation of the accuracy of the design 

method within the medium slenderness range. Therefore, the studied slenderness range is split in two 

sub-groups, the boundary between them being 1.20. A partial safety factors is computed for each case, 
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the corresponding results are presented in Table VIII-20. In both sub-ranges, the partial safety factor is 

comprised between 1.045 and 1.050, which is acceptable. 

Slenderness range n γM1 

LT0.8 1.2   96 1.048 

LT1.2 1.5   84 1.045 

Table VIII-20: Partial safety factors for adapted prEC3 method for uniform doubly symmetric beams 

For mono-symmetric cross-sections, Table VIII-19 shows acceptable values of γM1 in the cases of 

medium and high slenderness. Yet, that obtained for the low slenderness range is slightly greater than 

1.050. Similarly to the current Eurocode 3 and Proposition I design rules, a Tail approximation is 

performed (see Figure VIII-33a) and Figure VIII-33b)). 

  

a) Before Tail approximation b) After Tail approximation 

Figure VIII-33: Quantile plot for adapted prEC3 – uniform mono-symmetric beams (low slenderness) 

The partial safety factors associated with the design method adapted from prEurocode 3 for mono-

symmetric beams with a low slenderness are presented in Table VIII-21. Using a Tail approximation 

reduces the partial safety factor to an acceptable value of 1.01. 

Slenderness range 
Tail 

approximation 
n γM1 

LT 0.8   
Without 62 1.051 

With 25 1.010 

Table VIII-21: Partial safety factors associated with adapted prEC3 for uniform mono-symmetric beams 

The partial safety factors associated with the design method corresponding to equations (VIII.100) to 

(VIII.103) adapted to flame-cuts are presented in Table VIII-22 for tapered beams. For both types of 
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cross-sections, the partial safety factors are lower than 1.05 whatever the slenderness range, validating 

the design method. 

Cross-section type Slenderness range n γM1 

Doubly symmetric 

LT 0.8   26 1.039 

LT0.8 1.5   42 0.974 

LT1.5   61 1.040 

All range 129 1.059 

Mono-symmetric 

LT 0.8   38 0.954 

LT0.8 1.25   28 0.960 

LT1.25   29 1.018 

All range 95 0.972 

Table VIII-22: Partial safety factors for adapted prEC3 method for tapered beams 

The isolated effects of flexural buckling and lateral-torsional buckling having been treated, the 

upcoming section VIII.5 deals with the combined effects of both buckling modes. Numerical results are 

employed to assess the accuracy of combined approaches making use of the proposed methods adapted 

to welded members made of flame-cut flanges. 

VIII.5 Out-of-plane buckling of beam-columns 

VIII.5.1 Numerical results 

The numerical analyses performed on members simultaneously subjected to bending and compression 

have produced two sets of results for each studied member: 

 αcr,op,LBA: minimum amplifier of the in-plane design loads to reach the elastic critical resistance 

of the studied member with regards to out-of-plane buckling; 

 αult,op,GMNIA: minimum amplifier of the in-plane design loads to reach the member out-of-plane 

buckling resistance. 

 

In addition, the minimum amplifier αult,k of the design loads to reach the characteristic resistance of the 

most critical cross-section is computed analytically. This amplifier, which does not account for flexural 

or lateral-torsional buckling, is computed at each cross-section using: 

ult, k
y,EdEd

RkRk

1
( )

( ) ( )

x
MN

x x
N M

 



 
(VIII.106)   

where the acting design loads do not account for in-plane geometrical deformation and imperfections, 

global and local. Indeed, the studied beam-columns are isolated and present no intermediate restraints: 

the in-plane and out-of-plane buckling behaviour do not interact with each other. Besides, as depicted 
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in Chapter VII, the global imperfection included in the numerical model is shaped as the elastic critical 

buckling mode that corresponds to out-of-plane buckling. 

Using the three load amplifiers, the following parameters are obtained for each member: 

ult, k
op

cr, op, LBA





  (VIII.107)   

ult, op, GMNIA

op,GMNIA
ult, k





  (VIII.108)   

The numerical reduction factors determined using expression (VIII.108) are plotted with respect to the 

normalized slenderness obtained with expression (VIII.107) in Figure VIII-34 and Figure VIII-35. 

Again, the four Eurocode 3 buckling curves a to d are added for comparison. 

 

Figure VIII-34: Numerical results for out-of-plane buckling of uniform doubly symmetric beams-columns 

Both Figure VIII-34 and Figure VIII-35 show that the reduction factors all lie above buckling curve c, 

with a large number of results above buckling curve b as well. Again, it can be seen that the reduction 

factors get closer to Euler’s curve as the slenderness increases. One can notice that the uniform bending 

moment distribution provides the lowest reduction factors in the case of uniform beams while yielding 

among the highest reduction factors for tapered beams. 
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Figure VIII-35: Numerical results for out-of-plane buckling of tapered doubly symmetric beams-columns 

Using the numerical results, the design methods for uniform or non-uniform beam-columns prescribed 

by prEurocode 3 Part 1-1 are assessed in the upcoming sub-section VIII.5.2. Then, design methods 

better suited to the numerical results are exposed, statistical analyses of the results validating its use. 

VIII.5.2 Assessment of the design methods in (pr)Eurocode 3 

VIII.5.2.1 Interaction formulae 

The current and revised Eurocode 3 Part 1-1 propose to employ interaction formulae to assess the 

stability of beam-columns provided that their cross-section is constant. Expressions (IV.20) and (IV.21) 

must be verified simultaneously for members resting on fork supports. The load amplifier αult of the 

axial force NEd and in-plane bending moment My,Ed to reach the ultimate capacity of the beam-column 

is the minimum of αult,1 and αult,2: 

 y,Ed y,EdEd ult,1ult,1
yy

y,RkRky LT

M1M1

1
M MN

k
N M



 
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(VIII.109)   
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(VIII.110)   

All of the studied uniform members present Class 4 webs in combined bending and compression. 

Consequently, the interaction factors are: 
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(VIII.112)   

Expression (VIII.112) is that given for members susceptible to lateral-torsional buckling, which are of 

common use. It is specified that open sections, such as I/H members, are assumed to be susceptible to 

lateral-torsional buckling when: 

2
LT LT, 0 zz

1     (VIII.113)   

with: 

LT, 0 0.4   (VIII.114)   

The load amplifier αult is obtained following a recursive process, the interaction factors depending on 

the design load. 

The comparison between the numerical and analytical ultimate load amplifiers is presented in Figure 

VIII-36 where αGMNIA stands for αult,op,GMNIA. All analytical results lie on the safe side with an average 

deviation close to 15%, results being somewhat scattered. 

 

Figure VIII-36: Numerical and prEC3 – Interaction formulae load amplifiers for uniform doubly symmetric 

members 

The stability assessment of a member subjected simultaneously to compression force and bending 

moment depend on its resistance to flexural and lateral-torsional buckling. The current and future 
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proved satisfactory for welded members made of flame-cut flanges, with a visible safety margin. 

However, a lack of studies including the computation of partial safety factors for members subjected to 

compression force and bending moment is noticed. Statistical analyses are conducted instead, as exposed 

by ECCS (2006), Simões da Silva (2010, 2016) and Hadjú (2022). The procedure detailed in section 

VIII.2 is indeed hardly applicable for beam-columns as explained by ECCS (2006). Consequently, 

statistical analyses are performed hereafter to assess the safety level of the prEurocode 3 and proposed 

design methods. The acceptance criteria set by Hadjú (2022) were: 

 None of the re/rt values can be more than 15% on the unsafe side; 

 No more than 20% of the re/rt values can lie on the unsafe side; 

 The average of the re/rt values must be greater than unity. 

The first criterion is not deemed sufficiently restrictive for the common engineering practice. It is 

therefore replaced for the safety assessment of the prEurocode 3-1-1 interaction formulae with: 

 None of the re/rt values can be more than 5% on the unsafe side. 

In addition to the average re/rt ratios, their standard deviation is computed. For instance, similar 

statistical analyses are presented in Table VIII-23 concerning the Eurocode 3 rule and both Propositions 

for the buckling resistance doubly symmetric members in compression. The number n of results and the 

number of results on the unsafe side n<1 are also given. It is worth reminding that these results are 

obtained for welded columns made of flame-cut flanges and having a uniform or tapered cross-section. 

As detailed in section VIII.3, these methods highlighted satisfying safety levels. 

Parameter prEurocode 3 Proposition I Proposition II 

Average 1.203 1.121 1.046 

Standard deviation 0.108 0.086 0.039 

Min 0.999 0.961 0.959 

Max 1.366 1.263 1.157 

n 189 189 189 

n<1 1 19 22 

Table VIII-23: Statistical evaluation of prEurocode 3 and Propositions for flexural buckling 

In line with the corresponding partial safety factors, Table VIII-23 shows that the prEurocode 3 method 

for flexural buckling of welded columns made of flame-cut flanges is very conservative, the average 

result being 20% on the safe side. Besides, the standard deviation is characteristic of scattered results. 

Both Propositions exhibit average results closer to unity with lower values of the standard deviation, 

especially Proposition II. Minimum values of 0.96 are found for both Propositions which is acceptable 

for engineering practice. 

The results for the prEurocode 3 interaction formulae are presented in Table VIII-24. No result is on the 

unsafe side and the average value is almost 30% on the safe side. Results are very scattered, as shows 

the standard deviation of 14% while maximum and minimum values are very different, being 1.04 and 

1.64, respectively. The stability verification format is overly conservative for welded beam-columns 

made of flame-cut flanges using the prescriptions from prEurocode 3. 
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Parameter  

Average 1.285 

Standard deviation 0.142 

Min 1.037 

Max 1.637 

n 80 

n<1 0 

Table VIII-24: Statistical evaluation of prEC3 interaction formulae for uniform doubly symmetric members 

The statistical evaluation of the interaction formulae making use of the propositions for columns (see 

sub-section VIII.3.3) and beams (see sub-sectionVIII.4.3) made of flame-cut flanges is studied in sub-

section VIII.5.3.1. 

VIII.5.2.2 General Method 

As explained in Chapter IV, the overall stability of a non-uniform steel member subjected 

simultaneously to an axial load NEd and bending moment My,Ed can be assessed using the General Method 

from Eurocode 3 only. The same can be said regarding the revised standard prEurocode 3. The General 

Method states that the stability of a member is satisfactory when: 

ult, kop

M1

1.0
 


  (VIII.115)   

where the reduction factor χop is obtained from the normalized slenderness: 

ult, k
op

cr, op





  (VIII.116)   

In the current Eurocode 3, the reduction factor can be obtained using either: 

 The minimum value between χz and χLT computed for the global normalized slenderness; 

 An interpolated value between χz and χLT, therefore rewriting expression (VIII.115) as: 

y,EdEd

y,RkRkz LT

M1 M1

1.0
MN

N M 

 

   
(VIII.117)   

Using expression (VIII.106) for the load amplifier αult,k, expression (VIII.115) can be expressed as: 

y,EdEd

y,RkRkop op

M1 M1

1.0
MN

N M 

 

   
(VIII.118)   

Equating expressions (VIII.117) and (VIII.118) yields the following expression for the overall 

interpolated reduction factor: 
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(VIII.119)   

with: 

RkEd

y,EdRk

N M

N M
   

In the case of a tapered member, the parameter Φ is computed at the cross-section where αult,k is minimal. 

The interpolation alternative consists in verifying criterion (VIII.115) where the reduction factor is 

computed using expression (VIII.119). However, as explained in Chapter IV, the upcoming prEurocode 

3 does not maintain the possibility to compute χop as the interpolation between χz and χLT. The minimum 

value between both reduction factors must then be used, providing lower reduction factors χop. The safety 

assessment of this design method is studied hereafter. 

According to both the current and future Eurocode 3, the load amplifier αult,k must be computed 

accounting for all effects due to in-plane (global and local) geometrical deformation and imperfections. 

However, to provide a consistent comparison between analytical and numerical results, αult,k is computed 

similarly for both sets of results, i.e. neglecting all in-plane effects. 

 

Figure VIII-37: Numerical and prEC3 – General Method reduction factors for doubly symmetric members 

The comparison between the numerical and analytical reduction factors determined according to the 

General Method from prEurocode 3 is displayed in Figure VIII-37 for all studied beam-columns. The 

results lie on the safe side with an average deviation comprised between 25 and 30%. 

The results depicted in Figure VIII-37 exhibit an over conservatism of the design method prescribed in 

prEurocode 3 for welded members made of flame-cut flanges. Similarly to the interaction formulae, a 

statistical assessment of the General Method is presented in Table VIII-25. The average deviation 

between the analytical and numerical results is 36% on the safe side. No result is found on the unsafe 
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side, the minimum re / rt value being 1.09. The General Method verification format provides overly 

conservative results. 

Parameter  

Average 1.361 

Standard deviation 0.122 

Min 1.090 

Max 1.727 

n 168 

n<1 0 

Table VIII-25: Statistical assessment of the General Method (prEC3) for doubly symmetric members 

The design method prescribed in prEurocode3 to assess the stability of uniform, or not, beam-columns 

is overly conservative in the case of doubly symmetric welded members made of flame-cut flanges. 

Therefore, better-suited design methods are proposed in sub-section VIII.5.3.2. These include the 

Propositions for flexural buckling (see sub-section VIII.3.3) and lateral-torsional buckling (see sub-

section VIII.4.3). A statistical assessment of the proposed design methods is then performed. 

VIII.5.3 Propositions for rules adaptations 

VIII.5.3.1 Interaction formulae 

Interaction formulae are employed for uniform welded beam-columns made of flame-cut flanges using 

existing guidelines, i.e. expressions (VIII.109) to (VIII.112). An adaptation to flame-cuts is performed 

when computing the reduction factors for out-of-plane flexural buckling χz and lateral-torsional buckling 

χLT. 

Interaction formulae being applicable for uniform members only, the Propositions I, II and III methods 

are summarized in Table VIII-26, Table VIII-27 and Table VIII-28. Proposition I corresponds to the 

use of buckling curve b for flexural buckling and buckling curve c for lateral-torsional buckling. 

Buckling 

mode 
FB LTB 

χi 22

z z z

1
1.0

  


 

 
22

LT LT LT

1
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  


 

 

i   2
zz z

0.5 1 0.2    
 

   2
LTLT LT

0.5 1 0.2    
 

 

αi 0.34 0.49 

Table VIII-26: Proposition I – reduction factors of the proposed design method (Interaction formulae) 

The second method to compute the couple of reduction factors is similar to Proposition I with key 

differences lying in the imperfection factors. Proposition II makes use of imperfection factors that 

depend on the member dimensions thus defining specific buckling curves per member for both flexural 

and lateral-torsional buckling. 
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Buckling 

mode 
FB LTB 

χi 22

z z z

1
1.0

  


 

 
22

LT LT LT

1/
1.0

f

  


 

 

i   2
zz z

0.5 1 0.2    
 

   2
LTLT LT

0.5 1 0.2    
 

 

αi 
t

z

0.15
0.13 0.34

h

b
   t

LT

0.23
0.21 0.49

h

b
   

Table VIII-27: Proposition II – reduction factors of the proposed design method (Interaction formulae) 

In addition, Proposition II makes use of the coefficient f when computing χLT to account for the bending 

moment distribution: 

   
2

LTcf 1 0.5 1 1 2.0 0.8 1.0k  
     

  
 (VIII.120)   

with, in the case of a linear bending moment diagram: 

c

1

1.33 0.33
k





 (VIII.121)   

The design methods proposed in Table VIII-26 correspond to those associated with Proposition I for 

flexural buckling (see Eq. (VIII.28)) and lateral-torsional buckling (see Eq. (VIII.49)). On the contrary, 

the methods proposed in Table VIII-27 rely on those associated with Proposition II for columns (see 

Eq. (VIII.29)) and beams (see Eq. (VIII.55)). 

Finally, the last proposed methods to compute the couple of reduction factors is summarized in Table 

VIII-28. The reduction factor χz is similar to that of Proposition I while χLT is determined using the 

adapted prEurocode 3 design method (see sub-section VIII.4.3.2). 
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Table VIII-28: Proposition III – reduction factors of the proposed design method (Interaction formulae) 

where the factor fM is obtained for a linear bending moment distribution using: 
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2
M 1.25 0.1 0.15f      (VIII.122)   

The analytical results obtained using each Proposition are compared against the numerical ones in 

Figure VIII-38. Whatever the method employed to compute the load amplifiers, the analytical results lie 

on the safe side, the deviation on the unsafe side being up to 1%. Most results present a deviation lower 

than 15% on the safe side, especially for Propositions II and III. 

  

a) Proposition I b) Proposition II 

  

c) Proposition III 

Figure VIII-38: Numerical and proposed ultimate amplifiers for uniform doubly symmetric beam-columns 

A statistical evaluation of the results obtained using each of the three Propositions is presented in Table 

VIII-29. The Proposition I provides only safe-sided results, with a mean deviation between the 
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accurate than those of Proposition I. Indeed, average values of the re/rt ratio correspond to a 8% 

deviation on the safe side with standard deviations of 7 to 8%. Besides, only 3 and 6 results out of 80 

are found on the unsafe side with a maximum deviation on the unsafe side of 1%. The statistical 

evaluations of Proposition I, II and III are satisfactory according to the criteria exposed in sub-section 

VIII.5.2.1. 

Parameter 
Proposition I 

Table VIII-26 

Proposition II 

Table VIII-27 

Proposition III 

Table VIII-28 

Average 1.161 1.078 1.082 

Standard deviation 0.107 0.068 0.077 

Min 1.002 0.992 0.990 

Max 1.409 1.273 1.287 

n 80 80 80 

n<1 0 3 6 

Table VIII-29: Statistical evaluation of the proposed design methods for uniform beam-columns 

Consequently, the prEurocode 3 interaction formulae may be applied for welded members made of 

flame-cut flanges using either of the three Propositions corresponding to those made to compute the 

flexural and the lateral-torsional buckling resistances. 

VIII.5.3.2 General Method 

The current General Method from Eurocode 3 Part 1-1 is improved to provide better-suited results. 

Similarly to that from the code, the proposed method requires the following condition to be satisfied: 

ult, kult, op op

M1 M1

1.0
 

 
   (VIII.123)   

where the reduction factor is obtained using an interpolated value between both reduction factors for 

flexural and lateral-torsional buckling (determined for the global normalized slenderness), i.e.: 

op

LTz

1

1












 
(VIII.124)   

Three alternatives methods are proposed to compute the couples of reduction factors for flexural 

buckling χz and lateral-torsional buckling χLT. In the case of tapered beam-columns, the reduction factors 

are computed using the geometrical properties of the cross-section located at xα where αult,k is minimal. 

The Propositions are summarised in Table VIII-30, Table VIII-31 and Table VIII-32. 
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Buckling 

mode 
FB LTB 

χi 22

z z op

1
1.0

  


 

 
22

LT LT op

1
1.0

  


 

 

i   2
opz op

0.5 1 0.2    
 

   2
opLT op

0.5 1 0.2    
 

 

αi 0.34 0.49 

Table VIII-30: Proposition I – reduction factors of the proposed design method (General Method) 

Proposition I, similarly to Table VIII-26, corresponds to the use of a more favourable buckling curve 

for both flexural and lateral-torsional buckling. 

Likewise, Table VIII-27 and Table VIII-31 contain similar methods. In both cases, a buckling curve per 

member is defined for flexural buckling and for lateral-torsional buckling. Imperfection factors are 

similar in both tables except for the term accounting for the tapering of the member. 

Buckling 

mode 
FB LTB 

χi 22

z z op

1
1.0

  


 

 
22

LT LT op

1/
1.0

f

  


 

 

i   2
opz op

0.5 1 0.2    
 

   2
opLT op

0.5 1 0.2    
 

 

αi 
t

op

0.15
0.13 0.34

h

b
   t

op

0.23 0.10
0.21 0.49

h

b






   

Table VIII-31: Proposition II – reduction factors of the proposed design method (General Method) 

Besides, expression (VIII.121) of the correction factor in the case of a linear bending moment 

distribution is adapted for tapered members. Indeed, ψ is replaced with the ratio ψε between the bending 

moment utilization at both ends: 

 

 

 

 

y,Ed y,Ed

y,Rk y,Rk

ε
y,Ed y,Ed

y,Rk y,Rk

0
min ;

0

M M
x x LM M

M M
x L xM M






 
  

  
 

   

 (VIII.125)   

Finally, Proposition III methods from Table VIII-28 and Table VIII-32 are also analogous. In both cases, 

the reduction factors are obtained using prEurocode 3 rules with imperfection factors accounting for the 

beneficial effects of flame-cuts. 
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Buckling 

mode 
FB LTB 

χi 22

z z op

1
1.0

  


 

 M,ε

22
M,εLT LT op

1.0
f

f  


 

 

   2
opz op

0.5 1 0.2    
 

  
2

op 2
zLTM,ε op

z

0.5 1 0.2f


  


   
     

   
    

 

αi 0.34 
el,y

el,z

0.21 0.49 0.15
W

W
   

Table VIII-32: Proposition III – reduction factors of the proposed design method (General Method) 

Similarly to the case of Proposition II, fM (see Eq. (VIII.122)) is replaced with fM,ε for tapered members: 

2
M,ε ε ε1.25 0.1 0.15f      (VIII.126)   

The comparison between numerical and analytical reduction factors is presented in Figure VIII-39. The 

results obtained for Propositions I and III lie on the safe side whatever the slenderness with a mean 

deviation lower than 10%. The scatter is low in both cases though some results are very conservative, 

especially for Proposition I where the maximum deviation from the numerical results is almost 30%. 

Proposition II yields very good results, most of them lying between 0 and 15% on the safe side. 

  

a) Proposition I b) Proposition II 
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c) Proposition III 

Figure VIII-39: Numerical and proposed reduction factors for doubly symmetric beam-columns 

The statistical assessment of the three Propositions is presented in Table VIII-33. Proposition I produces 

only safe-sided results with an average deviation from the numerical results of 14%. The mean deviation 

between analytical and numerical results is lower with Proposition II or III being 6 and 8%, respectively. 

Both Propositions II and III provide more accurate analytical predictions than Proposition I though 17 

and 9 results, respectively, out of 168 are not safe-sided. The maximum deviations on the unsafe side 

are then only 3 and 2% for Propositions II and III, respectively. According to the criteria set in sub-

section VIII.5.2.1, either of the three Propositions may be used to assess the stability of a welded beam-

column made of flame-cut flanges. 

Parameter 
Proposition I 

Table VIII-30 

Proposition II 

Table VIII-31 

Proposition III 

Table VIII-32 

Average 1.138 1.056 1.077 

Standard deviation 0.076 0.056 0.065 

Min 1.000 0.974 0.982 

Max 1.391 1.337 1.342 

n 168 168 168 

n<1 0 17 9 

Table VIII-33: Statistical evaluation of the proposed design methods for beam-columns 

In the last section, a summary of all the design methods proposed in the present chapter is given. They 

permit to assess the stability of welded members made of flame-cut flanges against flexural and/or 

lateral-torsional buckling. The accuracy and safety level of these proposed methods having proven 

satisfactory. 
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VIII.6 Summary of the propositions 

VIII.6.1 Flexural buckling of columns 

Firstly, flexural buckling of doubly symmetric columns pinned at both ends was investigated in the case 

of a constant axial load distribution. According to the proposed design methods, the stability of a uniform 

or tapered column is satisfactory provided that: 

 

 
Ed α

b,Rd α

1.0
xN

xN
  (VIII.127)   

where xα is the location of the critical cross-section, i.e. where αult,k is minimal. This amplifier of the 

design loads to reach the characteristic resistance of each cross-section is computed neglecting all in-

plane effects. In the general case of a member simultaneously subjected to bending about y-y and 

compression, αult,k is obtained using: 

ult, k
y,EdEd

RkRk

1
( )

( ) ( )

x
MN

x x
N M

 



 
(VIII.128)   

The member resistance to compression Nb,Rd with regards to out-of-plane flexural buckling can be 

obtained using: 

Rk
b,Rd z

M1

N
N 


  (VIII.129)   

where the reduction factor χz is: 

z 22

z z z

1
1.0

  

 
 

 (VIII.130)   

  2
zzz z

0.5 1 0.2      
 

 (VIII.131)   

where z Rk cr,zN N   is the normalized slenderness for flexural buckling. 

Two expressions are proposed for the imperfection factors αz which are depicted in Table VIII-34. They 

correspond to either a more favourable buckling curve, or a buckling curve defined per member. 
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Proposition αz αLT 

I 0.34 0.49 

II 
t

z

0.15
0.13 0.34

h

b
   

t

LT min

0.23 0.10
0.21 0.49

h

b






   

III No 3rd proposition 
el,y

el,z

0.21 0.49 0.15
W

W
   

Table VIII-34: Imperfection factors of the proposed design method 

These propositions were developed within the framework of the parametric study depicted in section 

VII.5.2. Uniform or tapered doubly symmetric columns made of S275 or S355 steel were studied under 

a constant axial load. The studied dimensions are reminded in Table VIII-35. 

hw,max (mm) hw,max/hw,min tw (mm) b (mm) tf (mm) b/tf 

300 to 1000 1 to 3 5 to 10 170 to 350 12 to 40 7.5 to 20.8 

Table VIII-35: Dimensions of the studied columns with flame-cut flanges assessing the Propositions safety levels 

VIII.6.2 Lateral-torsional buckling of beams 

Then, lateral-torsional buckling of doubly and mono-symmetric beams resting on fork supports at both 

ends was studied under a linear bending moment distribution. Distinct design methods have been 

proposed, either based on the General case from Eurocode 3 (Propositions I and II) or on the new 

verification format from prEurocode 3 (Proposition III). According to all proposed methods, the 

stability of a uniform or tapered beam is satisfactory when: 

 

 
y,Ed α

b,Rd α

1.0
xM

xM
  (VIII.132)   

where the member resistance to bending My,b,Rd is obtained using: 

y,Rk
b,Rd LT

M1

M
M 


  (VIII.133)   

The reduction factor χLT is obtained according to Proposition I using: 

LT 22

LT LT LT

1
1.0

  

 
 

 
(VIII.134)   

  2
LTLTLT LT

0.5 1 0.2      
 

 (VIII.135)   

where LT y,Rk y,crM M   is the normalized slenderness for lateral-torsional buckling. 

The Proposition I imperfection factor αLT is given in Table VIII-34. 
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Proposition II diverges from Proposition I within the expression of the reduction factor: 

LT 22

LT LT LT

1/ f
1.0

  

 
 

 
(VIII.136)   

where LT is obtained using equation (VIII.135) with the imperfection factor presented in the second 

line of Table VIII-34 and: 

   
2

LTcf 1 0.5 1 1 2.0 0.8 1.0k  
     

  
 (VIII.137)   

where in the case of a linear bending moment distribution: 

c

ε

1

1.33 0.33
k





 (VIII.138)   

The ratio ψε between the bending moment utilization at both ends is: 

 

 

 

 

y,Ed y,Ed

y,Rk y,Rk

ε
y,Ed y,Ed

y,Rk y,Rk

0
min ;

0

M M
x x LM M

M M
x L xM M






 
  

  
 

   

 (VIII.139)   

As an alternative to expressions (VIII.134) to (VIII.138), one may compute the reduction factor for 

lateral-torsional buckling using Proposition III: 

M,ε

LT 22
M,εLT LT LT

1.0
f

f


  

 
 

 (VIII.140)   

 
2

LT 2
zLTM,εLT LT

z

0.5 1 0.2f


   


   
      
     

 (VIII.141)   

where, in the case of a linear bending moment distribution: 

2
M,ε ε ε1.25 0.1 0.15f      (VIII.142)   

Expression (VIII.141) makes use of the parameter ξ that is equal to unity in the specific case of a uniform 

and doubly symmetric beam. In the more general case of a tapered mono-symmetric beam, ξ is given 

by: 

y,cr s,max

cr,z

y,cr z,ft
s,max

zcr,z

( )
2

( )z

M h
f

N

M I
h xh

N I











 (VIII.143)   
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with: 

     2 2
( ) 1 0.5 0.29 cos 0.29 sin 0.29f


    


     (VIII.144)   

z

0.146
( ) 1 0.5h x

K


    (VIII.145)   

s,min

s,max

1
h

h
    (VIII.146)   

with: 

y,cr z

z,ftcr,z s,max

1
1

M I
K

N hI

 
  

  

 

The imperfection factor αLT associated with this design method is presented in the last line of Table 

VIII-34. 

Again, these improved design methods were developed within the framework of the parametric study 

depicted in section VII.5.3. Uniform or tapered beams, having a doubly or mono-symmetrical cross-

sections were investigated. These members, made of S275 or S355 steel studied under a linear bending 

moment distribution with a ratio between end moments varying between -1 and 1. The studied 

dimensions are reminded in Table VIII-36. 

hw,max (mm) hw,max/hw,min tw (mm) b (mm) tf (mm) b/tf bc/bt tf,c/tf,t 

300 to 1000 1 to 3.3 5 to 10 170 to 350 12 to 30 8 to 20.8 0.57 to 1.75 0.5 to 2 

Table VIII-36: Dimensions of the studied beams with flame-cut flanges assessing the Propositions safety levels 

VIII.6.3 Out-of-plane buckling of beam-columns 

Eventually, the stability of doubly symmetric beam-columns resting on fork supports at both ends was 

explored, again under a linear bending moment distribution. To assess the stability of uniform or tapered 

members, the proposed design method adapted from the General Method requires the following criterion 

to be verified: 

ult, kult, op op

M1 M1

1.0
 

 
   (VIII.147)   

where the imperfection factor χop is obtained using χz and χLT determined for the global normalized 

slenderness: 

ult, k
op

cr, op





  (VIII.148)   

The imperfection factor χop results from an interpolation between χz and χLT determined using: 
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op

LTz

1

1




 

 

 
(VIII.149)   

with: 

RkEd

y,EdRk

N M

N M
   

The couples of reduction factors for flexural χz and lateral-torsional buckling χLT should be computed 

making use of the global out-of-plane normalized slenderness and using either: 

 The Proposition I design methods for both flexural and lateral-torsional buckling (see 1st line of 

Table VIII-34); 

 The Proposition II design methods for both flexural and lateral-torsional buckling (see 2nd line 

of Table VIII-34); 

 The Proposition III design method for lateral-torsional buckling and the Proposition I design 

method for flexural buckling (see 3rd and 1st lines of Table VIII-34). 

The stability of uniform doubly symmetric beam-columns can alternatively be assessed using the well 

known interaction formulae: 

y,Ed y,EdEd
yy

y,RkRky LT

M1M1

1
M MN

k
N M 



 
   

(VIII.150)   

y,Ed y,EdEd
zy

y,RkRkz LT

M1 M1

1
M MN

k
N M 

 

 
   

(VIII.151)   

where the interaction factors kyy and kzy may be determined following the prescriptions of prEurocode 

3 Part 1-1. 

Again, the interaction formulae should be computed making use for χz and χLT of either: 

 The Proposition I design methods for both flexural and lateral-torsional buckling (see 1st line of 

Table VIII-34); 

 The Proposition II design methods for both flexural and lateral-torsional buckling (see 2nd line 

of Table VIII-34); 

 The Proposition III design method for lateral-torsional buckling and the Proposition I design 

method for flexural buckling (see 3rd and 1st lines of Table VIII-34). 

The three Propositions were developed within the framework of the parametric study depicted in section 

VII.5.4. Uniform or tapered doubly symmetrical members were studied under a constant axial load. A 

linear bending moment was also applied with a ratio between end moments comprised between 0 and 1. 

The studied dimensions of the S 355 members are reminded in Table VIII-37. 
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hw,max (mm) hw,max/hw,min tw (mm) b (mm) tf (mm) b/tf 

438 to 1000 1 to 3.2 5 to 10 200 to 350 12 to 25 8 to 19.2 

Table VIII-37: Dimensions of the studied beam-columns with flame-cut flanges assessing the Propositions safety 

levels 

The stability of welded building members have been extensively investigated in the present work. 

Numerous results of GMNIA computations have been employed to estimate the accuracy and safety 

levels of the current European design standard. The current (and future) design methods proving overly 

conservative for welded members made of flame-cut flanges, new design methods have been proposed. 

They provide expressions to determine the overall buckling resistance of a welded member made of 

flame-cut flanges subjected to compression and/or bending. The partial safety factors γM1 corresponding 

to these methods were determined using the procedure from Annex D of Eurocode 0 along with the 

prescriptions of the SAFEBRICTILE project. The safety assessment being satisfactory, the proposed 

design methods are associated with γM1 = 1.0. 
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 Conclusions 

IX.1 Summary 

The present work investigated the stability of welded I-section steel members. The main objective was 

to develop analytical approaches resulting in more economical welded members than the existing ones. 

Improvements were sought both for critical and ultimate loads when compared to existing formulations, 

especially Eurocode 3 Part 1-1. Consequently, this dissertation was organised in two major parts, Part 

I dealt with elastic buckling while Part II covered elasto-plastic buckling. 

In Chapter II, well-known analytical expressions for the elastic critical loads of uniform members under 

compression or bending were introduced. These expressions were obtained using the energy method 

applied in the case of a constant axial load or bending moment distribution. Existing analytical 

approaches were exposed for the critical bending moment of a uniform beam having a mono-symmetric 

cross-section. The comparison against finite element results has yielded a recommended analytical 

model, mostly based on the prescriptions of Eurocode 9 Part 1-1. However, for mono-symmetric beams 

fixed at both ends and subjected to a pointwise transverse load applied at mid span outside the shear 

centre, the numerical analyses exhibited important shortcomings. Owing to overestimate values of the 

critical bending moment, the use of current analytical model is not recommended. Instead, one should 

employ finite element analyses to compute the critical bending moment in this case. Similarly, no simple 

and accurate analytical model exist to determine the critical load (amplifier) of non-uniform and/or 

beam-column members other than in simple cases. Elastic critical buckling should then be studied by 

means of finite element analyses. 

Chapter II then discusses elastic lateral-distortional buckling (LDB) of doubly symmetric beams. This 

buckling mode includes web distortion that can correspond to single or double curvature. Various 

existing analytical approaches were presented, all of them being developed in the case of a constant 

bending moment distribution where web distortion occurs in double curvature. The use of appropriate 

displacement and rotation fields along with the energy method yielded very good agreement with 

numerical results. Other accurate predictions were encountered when equivalent torsional and warping 

stiffness are employed. The use of a reduction coefficient multiplying the critical bending moment 

provides acceptable results for only one of the studied approaches. Based on an adequate expression for 

the critical bending moment, a boundary between LTB and LDB is exposed, validated by numerical 

results. In the case of a linear bending moment distribution, the web distortion mode depends on the 

ratio ψ between end moments. The most accurate existing formulations can be extended to a linear 

bending moment distribution for high values of ψ, corresponding to web distortion in double curvature. 

However, for lower values of ψ, i.e. web distortion in single curvature, none of the analytical approaches 

revealed satisfactory, being unsafe. 

The following Chapter III presents the elastic buckling behaviour of uniform doubly symmetric beams 

with warping restraints at both ends. Using appropriate displacement and rotation fields, the energy 

method was again employed. Expressions for the critical bending moment were obtained for a constant 

and linear bending moment distribution and in the case of a pointwise force applied at mid-span or 

uniformly distributed loading. The presence of warping supports affects both the equivalent uniform 

moment factor C1 and the warping effective length factor kw. The predictions of the derived analytical 
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model showed a good agreement with the numerical results obtained using either beam or shell finite 

elements. 

In addition, warping restraints have a major influence on the critical bending moment. Indeed, when 

compared to free warping at both ends, the critical bending moment can be multiplied by a factor greater 

than 2 when warping is fully prevented at both ends. The warping stiffness of some common connection 

configurations are reminded based on existing formulations, while that of a fixed column base is derived. 

Accordingly, a limit value of the warping stiffness cw as computed above which the critical bending 

moment may be computed assuming warping as fully restrained at the beam ends. Numerical analyses 

have yielded the possibility to adapt this criterion to members with warping fully restrained at a single 

end. 

Part II began with Chapter IV introducing the design rules prescribed by the current and revised 

Eurocode 3 Part 1-1. Specifications of the French National Annex were developed, showing adaptations 

of some Eurocode 3 methods to compute the resistance of a member subjected to bending. The only 

design method from Eurocode 3 adapted to non-uniform member being open to discussion, recent 

analytical developments on non-uniform members were developed. Despite solid mechanical 

backgrounds, the presented methods are easily applicable in simple case while for complex boundary 

condition, some exhibit a lack of guidance. Besides, no existing proposition explicitly accounts for the 

flange fabrication process. 

Thus, Chapter V focused of the residual stresses distributions in welded members. Very distinct patterns 

exist for members with hot-rolled or with flame-cut flanges. Residual stresses obtained for flame-cut 

flanges exhibit tensile stresses at the flanges tips while members involving hot-rolled flanges present 

compressive stresses. The distribution in members with flame-cut flanges is more favourable, initial 

tensile stresses delaying the early yielding of the flanges tips. A literature review showed distinct 

residual stress model for welded members made of flame-cut flanges, an original experimental 

programme was therefore led. 

The residual stresses distributions were measured at the University of Liège in eight specimens having 

cross-sectional dimensions corresponding to the common practice of steel building members. The 

impact of the flange fabrication process, flanges width and thickness was studied. While the model from 

prEurocode 3 Part 1-14 revealed a good fit for the distributions measured in welded members with hot-

rolled flange, those measured in the members with flame-cut flanges showed discrepancies with existing 

models. Therefore, a new residual stress model was developed for welded members made of flame-cuts. 

The width and magnitude of the stress units of this model depend on the flange height-to-width ratio b/tf 

and on the cross-section height-to-width ratio ht/b. 

In Chapter VI, the experimental buckling behaviour of members subjected to compression and/or 

bending is developed. Past experimental programmes were described, a scarcity of experimental data 

regarding mono-symmetric or non-uniform welded members made of flame-cut flanges arising. An 

original experimental programme was therefore developed at Polytech’ Clermont, investigating the 

lateral-torsional buckling behaviour of four welded beams presenting flame-cut flanges. Two specimens 

were tapered and two uniform, with a doubly and a mono-symmetric cross-section for each type of 

specimen. All specimens failed in a lateral-torsional buckling mode, while web distortion was noticed 

post-peak for the uniform beam with a mono-symmetric cross-section. The experimental failure was 

found in between elastic and elasto-plastic range for three specimens, specimen U-DS failing in the 

elastic range. When compared to these experimental results, the predictions of the current Eurocode 3 

design rules revealed overly conservative. The difference diminishes when using the new verification 

format from prEurocode 3 but some of the deviation can be attributed to the flanges fabrication process. 
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The experimental results were used to develop a numerical model in Chapter VII. Numerical and 

experimental results showed in good agreement, validating the developed numerical model. Sensitivity 

analyses were performed, exhibiting the major influence of the residual stress model on the resistance 

of welded members, especially in the low and intermediate slenderness range. Indeed, replacing the 

measured residual stresses distributions with the model for welded members made of hot-rolled flanges 

in the numerical analyses produced 14% lower ultimate load bearing capacities. 

The numerical model was developed in the general case of welded steel members resting on fork 

supports at both ends and subjected to bending and/or compression. The residual stress model developed 

in Chapter V was used for welded members made of flame-cut flanges while that prescribed by 

prEurocode 3 Part 1-14 was employed for members with hot-rolled flanges. A large number of 

numerical analyses were then performed for members representative of the current practice of steel 

structures subjected to compression and/or bending. The web height varied between 300 and 1000 mm 

while the flanges width ranged between 170 and 350 mm, the studied members being made of S275 or 

S355 steel. 

The results of this parametric study were exploited in Chapter VIII where resistance models adapted 

from the Eurocode 3 design rules were developed with imperfection factors better suited to flame-cut 

flanges. Partial safety factors were determined according to the prescriptions of Eurocode 0 and the 

recommendations of the SAFEBRICTILE project, validating the analytical approaches. Two 

propositions were made for out-of-plane flexural buckling, one consisting in the use of buckling curve 

b while the other relies on an imperfection factor inversely proportional to the slenderness and depending 

on ht/b. 

Similar propositions were developed concerning the lateral-torsional buckling of uniform or tapered 

beams having a doubly or mono-symmetric cross-section. Indeed, the use of buckling curve c was 

proposed, along with an imperfection factor depending on the member dimensions and on the bending 

moment diagram. The latter approach makes use of the coefficient f which accounts for the bending 

moment distribution. An adaptation of the new verification format from prEN 1993-1-1 was also derived 

to broaden the scope of this method to tapered beams having a mono-symmetric cross-section. An 

improved imperfection factor better suited to flame-cuts was proposed. 

For welded members made of flame-cut flanges subjected to axial force and bending moment, a design 

method adapted from the current General Method of the current Eurocode 3 Part 1-1 has been proposed. 

This method makes use of a load amplifier αult,k that neglects the in-plane effects and a reduction factor 

interpolated between those obtained for flexural and for lateral-torsional buckling. The reduction factors 

previously proposed for both buckling modes can be combined. The prEurocode 3 interaction formulae 

may also be adapted to flame-cut flanges making use of the proposed modifications for the flexural and 

lateral-torsional buckling reduction factors. The safety levels prove satisfying, validating the analytical 

approaches. 
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IX.2 Original contributions 

The major original contributions developed in the present work are: 

Elastic critical buckling loads: 

 A recommended analytical model for the determination of the critical bending moment for LTB 

of uniform mono-symmetric beams. This recommendation is based on the comparison to 

numerical results of existing formulations. 

 A recommended expression to compute the critical bending moment for lateral-distortional 

buckling in the case of a constant bending moment distribution, along with a boundary between 

LTB and LDB. Again, the proposition results from the comparison of existing models against 

numerical results. 

Elastic buckling of beams with warping restraints: 

 For uniform doubly symmetric beams with warping restraints at both ends: 

 Theoretical solutions for the elastic critical bending moment based on the energy 

method in various load cases; 

 A unique closed form expression of the warping coefficient kw; 

 Closed form and approximate expressions for the equivalent uniform moment factor C1 

using the formalism of the French National Annex being the product of: 

o A factor depending on the bending moment distribution only, and 

o A factor depending on the stiffness of the warping restraints only. 

 A limit value of the stiffness of the warping restraints between semi-rigid and rigid 

joints. 

 An analytical expression for warping stiffness of fixed columns. A limit between semi-rigid and 

rigid joints in the case of a warping restraint at a single end has also been proposed using 

numerical results. 

Residual stresses: 

 Experimental residual stresses distributions in welded members made of either hot-rolled or 

flame-cut flanges. These results, along with experimental distributions from the literature 

yielded a new residual stress model for welded members made of flame-cut flanges. 

Experimental buckling behaviour 

 The description of a novel experimental programme that included lateral-torsional buckling tests 

on 4 welded beams made of flame-cut flanges. The studied beams were uniform or tapered and 

presented either a doubly or a mono-symmetric cross-section. 

 Numerical sensitivity analyses that showed the significant impact of the flange fabrication 

process on the out-of-plane buckling resistance of a welded member. 

Analytical elasto-plastic resistances 

 Original analytical expressions to determine the resistance of uniform or tapered doubly 

symmetric welded columns made of flame-cut flanges against out-of-plane flexural buckling. 

A proposal makes use of an improved buckling curve when compared to the current and future 

Eurocode 3. The second proposal corresponds to the use of a specific buckling curve per 

member. Both propositions are validated against appropriate partial safety factors. 
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 Original analytical expressions to determine the resistance of uniform or tapered welded beams 

with a doubly or mono-symmetric cross-section made of flame-cut flanges against lateral-

torsional buckling. Again, a proposal uses an improved buckling curve when compared to the 

current and future Eurocode 3. A second proposal corresponds to the use of a specific buckling 

curve per member. The latter proposition includes a factor accounting for the bending moment 

distribution. Both propositions are associated with satisfactory partial safety factors. 

 Analytical derivations widening the scope of the new design method from prEurocode 3 that 

provides lateral-torsional buckling resistance of uniform doubly symmetric beams. The 

analytical developments yielded guidance to employ this method for mono-symmetric tapered 

beams. An imperfection factor adapted to welded members made of flame-cut flanges is 

proposed. The resulting partial safety factors are satisfying. 

 An analytical method to assess the out-of-plane stability of uniform or non-uniform members 

subjected to compression force and bending moment adapted from the current General Method 

from Eurocode 3. The proposed methods for welded columns and beams made of flame-cut 

flanges may be combined, providing satisfactory safety levels. 

IX.3 Future research 

Some advances were developed in the present thesis regarding the stability of welded I-section steel 

members. To supplement this work, appropriate analytical expressions should be sought to compute the 

elastic critical bending moment of a mono-symmetric beam fixed at both ends and subjected to a 

pointwise load at mid-span outside the shear centre. Such expressions must be based on appropriate 

displacement and rotation fields. 

Besides, a better understanding of the lateral-distortional buckling behaviour must be sought. 

Appropriate displacement and rotation fields should be developed for an arbitrary bending moment 

distribution. At least, load cases differing from a constant bending moment distribution should be 

investigated. Then, accurate analytical expression(s) for the elastic critical LDB bending moment could 

be derived whatever the web distortion mode using the energy method.  

Regarding the elasto-plastic buckling behaviour of welded members, the scope of the parametric study 

could be broaden. The proposed analytical expressions to compute the resistance of a member made of 

flame-cut flanges subjected to bending moment and/or compression force is limited to the following 

boundary conditions: 

 Fork supports at both ends, without intermediate restraints; 

 Uniform distribution of the axial load; 

 Linear bending moment distribution. 

Though these hypotheses correspond to a vast majority of steel building members, supplementary 

GMNIA computations need to be performed. These should include transverse loading, applied at the 

cross-section shear centre, or not; variable axial load distribution; end restraints against out-of-plane 

rotation and/or warping; discrete intermediate restraints, etc. Besides, the present study is limited to 

beam-columns subjected to compression force and bending moment about the major axis. The buckling 

behaviour of welded members with flame-cut flanges and subjected to compression force and bi-axial 

bending needs to be addressed. 

While new propositions for design resistances adapted to welded members made of flame-cut flanges 

were proposed, other flanges fabrication process should be studied extensively. Indeed, the Eurocode 3 
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design rules could reveal significantly conservative in the case of welded members with hot-rolled 

flanges for medium and high normalized slenderness. Better-suited design methods could therefore be 

pursued based on the results of a large GMNIA parametric study. 

Plasma or laser-cut flanges should not be ignored, their use being somewhat common in steel building 

components. Numerical non-linear analyses should also be performed for such members to assess the 

accuracy and safety level of existing design rules. To that end, adequate residual stress models should 

be employed, based on numerous experimental distributions measured in welded members 

representative of the common practice of steel buildings. 

IX.4 Publications 

The following publications have resulted from the present work: 

International Journal 

Lebastard, M.; Couchaux, M.; Santana, M.; Bureau, A.; Hjiaj, M. (2022) Elastic lateral-torsional 

buckling of beams with warping restraints at supports. Journal of Constructional Steel Research, vol. 

197, 107410. 

http://doi.org/10.1016/j.jcsr.2022.107410 

Conference proceedings 

Lebastard, M.; Couchaux, M.; Bureau, A.; Hjiaj, M. (2021). Lateral-Torsional Buckling of beams with 

warping restraints at supports. Proceeding of the Conference Eurosteel, vol. 4, n°2-4, pp 2262-2270. 

 

Lebastard, M.; Couchaux, M.; Bureau, A.; Hjiaj, M. (2022). Residual stresses in welded I-section 

members with flame-cut flanges. Proceedings of the International Colloquium on Stability and Ductility 

of Steel Structures vol. 5, n°4, pp 999-1007. Aveiro, Portugal. 

French national Journal 

Lebastard, M.; Couchaux, M.; Bureau, A.; Hjiaj, M. (2021). Moment critique de déversement élastique 

d’une poutre partiellement maintenue au gauchissement sur appuis. Revue Construction Métallique 

n°1, pp 131-160. 

 

Lebastard, M.; Couchaux, M.; Bureau, A.; Hjiaj, M. (2022). Déversement élastique de poutres en I à 

section mono-symétrique. Revue Construction Métallique n°1, pp 3-15. 
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Titre : Stabilité des Profilés en acier Reconstitués en I par Soudage.................................................. 

Mots clés : Profilés Reconstitués par Soudage, Instabilités élastiques, Contraintes résiduelles, 
Résistance aux instabilités. 

Résumé : Les Profilés en acier Reconstitués par 
Soudage (PRS) sont d’usage courant pour la 
construction de portiques de bâtiments. Etant 
généralement comprimés et/ou fléchis, ceux-ci 
sont sujets aux instabilités (flambement, 
déversement). 
Le présent travail est divisé en deux Parties, la 
Partie I concernant l’étude des instabilités 
élastiques. Des modèles analytiques sont 
recommandés au Chapitre II pour déterminer le 
moment critique de déversement d’une poutre 
avec ou sans déformation de l’âme à partir de 
formulations existantes. Le déversement de 
poutres avec maintiens au gauchissement à leurs 
extrémités est étudié au Chapitre III. Un modèle 
analytique est développé permettant de calculer 
leurs moments critiques. 

La Partie II traite des instabilités élasto-
plastiques, les méthodes de calcul actuelles 
étant rappelées au Chapitre IV. Les contraintes 
résiduelles sont étudiées au Chapitre V où 
l’impact de l’oxycoupage est noté. Un nouveau 
modèle est proposé pour les PRS à semelles 
oxycoupées. Le modèle est basé, avec quatre 
essais au déversement décrits au Chapitre VI, 
sur les résultats d’une campagne 
expérimentale. Les résultats de ces essais 
permettent la validation du modèle numérique 
décrit au Chapitre VII. Les résultats numériques 
montrent une influence du mode de fabrication 
des semelles. Une étude paramétrique est 
menée dont les résultats sont exploités au 
Chapitre VIII pour adapter les méthodes de 
calcul aux PRS à semelles oxycoupées. 

   

Title: Stability of welded I-section steel members............................................................................... 

Keywords: Welded members, Elastic buckling, Residual stresses, Buckling resistance. 

Abstract: Welded I-section members are of 
common use in steel structures where they are 
employed as columns and beams. Consequently, 
such members are subjected to compression 
force and/or bending moment and may therefore 
fail owing to out-of-plane buckling. 
The present work is organized in two Parts. 
Elastic buckling is investigated in Part I where 
lateral-torsional buckling (LTB) with or without 
web distortion is studied. Analytical expressions 
are recommended in Chapter II to compute the 
elastic critical bending moments for both buckling 
modes based on existing formulations. Chapter 
III focuses on the elastic LTB of beams with 
warping restraints at both ends. The derivation of 
an analytical model yields propositions for the 
critical bending moment. 

Elasto-plastic buckling is studied in Part II. After 
a review of design rules in Chapter IV, the 
distribution of residual stresses in welded 
members is investigated in Chapter V. An 
influence of the flange fabrication process is 
noticed and a new model is proposed for 
members with flame-cut flanges. This model is 
based on the results of an experimental 
programme that also included four LTB tests 
described in Chapter VI. Test results are used 
to validate the numerical model developed in 
Chapter VII. Numerical results highlighting a 
clear influence of the flange fabrication process 
on the buckling resistance, a parametric study is 
led. The results are used to propose adaptations 
of the Eurocode 3 rules for welded members 
with flame-cut flanges in Chapter VIII. 

 


