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Introduction

0.1 Résumé de thèse (en français)

Cette thèse se situe entre la théorie de Lie et la géométrie à grande échelle à la
Gromov. En une phrase, on s’intéresse à des invariants de nature cohomologique
en géométrie à grande échelle associés à des groupes localement compacts, que l’on
étudie plus particulièrement dans le cas des groupes de Lie et de certaines générali-
sations.

La géométrie à grande échelle concerne l’étude des propriétés asymptotiques des
espaces métriques. Autrement dit, on s’intéresse aux propriétés qui restent invari-
antes sous des applications qui oublient la structure topologique locale et n’imposent
que des conditions sur les grandes distances, telles que les quasi-isométries ou les
équivalences grossières. On peut placer les groupes localement compacts à base
dénombrable d’ouverts sous cette loupe, car ils portent des métriques propres invari-
antes à gauche [Str74] et deux telles métriques restent grossièrement équivalentes
[CdlH16, 4.A.6]. Pour ces groupes on peut définir des notions de cohomologie :
on parle de cohomologie continue à coefficients dans une représentation continue.
Ceci est une construction de nature algébrique qui n’a a priori aucun lien avec la
géométrie à grande échelle. De façon assez surprenante, elle donne des invariants à
grande échelle si on choisit la représentation adéquate. Pour un groupe localement
compact à base dénombrable d’ouverts G et un réel p > 1, la cohomologie associée
à la représentation régulière sur l’espace Lp(G), que l’on appelle cohomologie Lp

continue et l’on note H∗
ct(G,L

p(G)), est un invariant de quasi-isométrie en chaque
degré et pour chaque p > 1. C’est le personnage principal de cette thèse.

Les groupes localement compacts sur lesquels on veut calculer cet invariant sont
les groupes de Lie et certaines de leurs généralisations. Les groupes de Lie les plus
populaires sont les groupes de Lie réels semi-simples en partie à cause de leur riche
structure (contrairement aux groupes de Lie résolubles, plus difficiles à dompter)
mais aussi à cause de leurs actions sur leurs espaces symétriques riemanniens. Une
première généralisation de cette situation consiste à regarder les points des groupes
algébriques semi-simples sur des corps locaux. Les corps locaux se divisent en
deux groupes : archimédiens, c’est-à-dire les nombres réels et les complexes, et
non archimédiens. Les groupes de Lie semi-simples non archimédiens sont notre
deuxième famille de groupes localement compacts sur lesquels on aimerait faire des
calculs de cohomologie Lp. Les géométries sur lesquelles ils agissent sont leurs im-
meubles de Bruhat-Tits, qui sont des structures simpliciales jouant le rôle des espaces
symétriques dans ce nouveau contexte. Une idée générale est que les groupes de Lie
réels et non archimédiens ne doivent pas être si différents les uns des autres.
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La notion d’immeuble est en fait bien plus générale. Un immeuble est un com-
plexe simplicial obtenu en recollant plusieurs fois un même complexe simplicial,
qui représente la combinatoire d’un groupe de Coxeter fixé, sous des conditions
d’incidence inspirées des espaces symétriques. Les groupes de Coxeter apparaissant
dans les immeubles de Bruhat-Tits sont dits affines, c’est-à-dire que leurs géométries
associées sont des pavages d’un espace euclidien. La théorie de Kac-Moody est un
moyen de construire des exemples de groupes (discrets et) localement compacts
comme des groupes d’automorphismes d’immeubles. En particulier, on obtient des
nouveaux exemples de groupes si le groupe de Coxeter de départ n’est ni fini ni
affine. Ces groupes de Kac-Moody non affines sont une troisième famille de groupes
localement compacts associés à la théorie de Lie auxquels on s’intéressera. Cette
fois-ci on s’est éloigné davantage des situations classiques : on peut s’attendre à des
comportements nouveaux et exotiques.

Cette thèse concerne des calculs de cohomologie Lp pour les groupes et les es-
paces présentés ci-dessus. Notre motivation principale est la question suivante due
à Gromov : il prédit un comportement classique de la cohomologie Lp des groupes
semi-simples sur des corps locaux (archimédiens ou pas).

Questions. Soit G un groupe semi-simple de rang r ≥ 2 sur un corps local.
(1) A-t-on H l

ct

(
G,Lp(G)

)
= {0} pour tout l = 1, . . . , r − 1 et p > 1 ?

(2) A-t-on Hr
ct

(
G,Lp(G)

)
̸= {0} au moins pour certaines valeurs de p ?

(3) Est-ce que l’espace Hr
ct

(
G,Lp(G)

)
est séparé pour tout p > 1 ?

Dans les pages qui suivent on présentera les résultats principaux de cette thèse
(pour des préliminaires, voir Chapitre 1). Trois sujets sont abordés. Chacun d’entre
eux correspond à un article. Les deux premiers concernent les questions qu’on vient
d’énoncer, traitant respectivement les questions (1) et (2). Le troisième sujet est
indépendant car il concerne des groupes non linéaires. On termine ce résumé en
présentant des questions et des projets.

Le premier sujet est l’annulation en degré 2 pour des groupes semi-simples de
rang ≥ 3 sur des corps locaux, ce que l’on montre dans la plupart des cas [LN23].
Le deuxième est la non annulation en degré maximal pour des immeubles affines et
pour des immeubles plus généraux [LN22]. Dans le même cercle d’idées, on obtient
des inégalités pour la dimension conforme des immeubles hyperboliques au sens
de Gromov. Le troisième sujet concerne la cohomologie L2 de généralisations des
groupes semi-simples et des applications à l’équivalence mesurable [LN21].

0.1.1 Annulation en degré 2

Un des résultats principaux de cette thèse concerne la question (1) : on montre
l’annulation de la cohomologie Lp en degré 2 pour la plupart des groupes de Lie
semi-simples de rang au moins 3 sur des corps locaux.

On commencera par survoler des contributions antérieures pointant vers une
réponse affirmative à cette question. La plupart d’entre elles concerne le cas du
degré 1. Puis, on donne un énoncé plus précis de notre résultat et on ébauche sa
preuve.

Le cas du degré 1 pour les groupes de Lie L’annulation en degré 1 pour
tout p > 1 pour des groupes semi-simples réels de rang au moins 2 a été montrée

7



par Pansu en 1999 en utilisant la cohomologie Lp de de Rham (d’abord en tant que
prépublication, puis apparu dans [Pan07]). En fait il a démontré un résultat plus
fort.

Théorème 0.1.1. [Pan07, Théorème 1] Soit M une variété homogène. On a une
trichotomie :
• soit le groupe d’isométries de M est une extension compacte d’un groupe de Lie
résoluble unimodulaire,
• soit M est quasi-isométrique à un espace homogène de courbure sectionnelle stricte-
ment négative,
• autrement LpH1

dR(M) = {0} pour tout p > 1.

Ceci donne une réponse affirmative à la question de Gromov dans le cas des
groupes réels semi-simples.

Bader, Furman, Gelander et Monod ont montré l’annulation du premier groupe
de cohomologie continue des groupes de Lie simples de rang au moins 2 sur des corps
locaux (archimédiens ou pas) à coefficients dans des représentations isométriques sur
des espaces de la forme Lp(X,µ), où (X,µ) est un espace de Borel standard et p > 1
[BFGM07]. Leurs techniques marchent aussi pour des groupes semi-simples, mais
où chaque facteur simple est de rang au moins 2.

Finalement, de Cornulier et Tessera étendent la trichotomie de Pansu aux groupes
semi-simples sur des corps de caractéristique zero en adaptant ses arguments à la
cohomologie continue des groupes [dCT11]. Leur trichotomie n’est certes valide que
pour des groupes sur des corps de caractéristique zéro, mais leurs arguments pour
l’annulation pour des groupes semi-simples de rang au moins 2 sont valides aussi en
caractéristique positive.

Théorème 0.1.2. [dCT11, Theorem 1] Soit G un groupe de Lie semi-simple de
rang r ≥ 2 sur un corps local. On a H1

ct

(
G,Lp(G)

)
= {0} pour tout p > 1.

Les démonstrations des contributions présentées ci-dessus ne sont pas équiva-
lentes, mais partagent certains arguments dynamiques. Notamment, le phénomène
de Mautner apparaît dans une de ses plusieurs formes dans tous ces travaux.

Cet énoncé est valable aussi pour les versions correspondantes de cohomolo-
gie Lp des géométries sur lesquelles les groupes semi-simples agissent : les espaces
symétriques et les immeubles de Bruhat-Tits.

Le cas du degré 1 pour les immeubles affines Les immeubles de Bruhat-Tits
sont des immeubles affines sur lesquels les groupes semi-simples non archimédiens
admettent des actions propres et cocompactes. Tous les immeubles affines de di-
mension ≥ 3 proviennent de telles actions. D’autre part, il y a des immeubles
affines exotiques de dimension 2, dont le groupe complet d’automorphismes est pe-
tit (par exemple, discret ou trivial). Lécureux, de la Salle et Witzel montrent que
l’annulation de la cohomologie Lp en degré 1 persiste pour certains de ces immeubles.

Théorème 0.1.3. [LdlSW20, Theorem A] Soit X un immeuble de type Ã2 locale-
ment fini. On a ℓpH1(X) = {0} pour tout p > 1.

La preuve de ce résultat est significativement différente de celle dans le cas des
groupes de Lie puisqu’on ne peut pas invoquer d’arguments dynamiques tels que le
phénomène de Mautner. À la place, on utlise l’harmonicité et les marches aléatoires.
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Degrés supérieurs Bourdon et Rémy montrent l’annulation de la cohomologie
Lp de certains groupes de Lie réels simples de rang supérieur en degrés supérieurs
[BR20]. Plus précisément, pour certains groupes de Lie simples qu’ils appellent
admissibles ils prouvent le résultat suivant : pour plusieurs degrés k il existe des
constantes p(k) > 1 (qui dépendent du groupe) telles que l’on a l’annulation de la
cohomologie Lp en degré k pour tout 1 < p < p(k). La dualité de Poincaré leur
permet d’étendre ce résultat pour p assez grand, au moins pour des degrés assez
élevés (en particulier cet argument de dualité ne concerne pas les degrés au-dessous
du rang). Leur méthodes consistent à montrer une version convenable de la suite
spectrale de Hochschild-Serre pour la cohomologie Lp et d’invoquer la description
de la cohomologie Lp de l’espace hyperbolique réel par Pansu [Pan08]. En fait,
leur preuve s’applique aussi aux groupes réels simples non admissibles, mais leurs
conditions sur la constante p(k) sont bien plus restrictives (dans ce cas la constante
p(k) tend vers 1 à k fixé lorsque le rang tend vers l’infini).

Initialement on voulait montrer un énoncé analogue à celui de Bourdon et Rémy
dans le cas non archimédien. Il s’est avéré que nos méthodes s’appliquent aussi au
cas réel, mais seulement pour des valeurs de p assez grandes. Le résultat qu’on
démontre est le suivant.

Théorème 0.1.4. ([LN23, 0.1], voir Theorem 2.0.1 dans le texte) Soit F un corps
local (archimédien ou pas) et soit G un des groupes suivants :
• SL(4, D), où D est une algèbre centrale à division sur F ,
• un groupe de Lie simple sur F de rang r ≥ 4 qui n’est pas de type D4 ou de type
exceptionnel,
• ou un groupe de Lie semi-simple, non simple sur F de rang r ≥ 3.
Alors il existe une constante p(G) ≥ 1 telle que pour tout p > p(G):

H2
ct

(
G,Lp(G)

)
= {0}.

De plus, quand F est non archimédien on a p(G) = 1.

Dans le reste de cette sous-section, on esquisse la preuve de ce théorème. Trois
types d’arguments sont utilisés : algébriques, dynamiques et combinatoires.

Invariance par quasi-isométrie et suite spectrale La stratégie initiale est
celle de [BR20].

D’abord, on utilise l’invariance par quasi-isométrie de la cohomologie Lp pour
identifier H2

ct

(
G,Lp(G)

)
à H2

ct

(
P,Lp(P )

)
, où P est un sous-groupe parabolique

maximal de G. Ce sous-groupe parabolique admet une décomposition de Lévi,
P = MSU . La version de la suite spectrale de Hochschild-Serre pour la cohomolo-
gie Lp dans [BR20] nous permet d’obtenir un isomorphisme linéaire :

H2
ct

(
P,Lp(P )

)
= H1

ct

(
M,Lp(M,Vp)

)
avec le premier groupe de cohomologie continue H1

ct

(
M,Lp(M,Vp)

)
du facteur de

Lévi M à coefficients dans l’espace Lp à valeurs banachiques Lp(M,Vp). L’espace
de Banach Vp est en fait H1

ct

(
SU,Lp(SU)

)
. Le problème technique principal vient

du fait que le M -module continu Lp(M,Vp) est de croissance exponentielle, avec
un taux de croissance exponentiel qui est trop grand pour appliquer la propriété
(T ) renforcée de Lafforgue (au moins avec les constantes actuelles) et obtenir ainsi
l’annulation voulue.
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Arguments dynamiques Notre substitut à la propriété (T ) de Lafforgue est de
passer à un sous-groupe résoluble R, cocompact dans M et non unimodulaire afin de
créer des contractions grâce à sa fonction modulaire ∆R et adapter des techniques
dynamiques de [dCT11] pour énoncer une version non isométrique du phénomène
de Mautner.

Plus précisément, si on note π la représentation de R sur Lp(R, Vp) et π0 la
représentation de R sur Vp, on a pour chaque g ∈ R :

|||π(g)|||pLp(R,Vp)
= ∆R(g)

−1|||π0(g)|||pVp
.

L’idée est que bien que |||π0(g)|||Vp peut grandit très vite, on espère contrer sa
croissance en utilisant ∆R(g) et ainsi trouver des éléments qui contractent la norme
Lp. La conclusion de cette analyse est que l’annulation de l’espaceH1

ct

(
R,Lp(R, Vp)

)
est entraînée par la présence de deux éléments qui contractent la norme Lp dans
deux directions bien choisies. Ceci n’est pas difficile à faire dans le cas d’un groupe
semi-simple, non simple.

Le plus dur est de montrer l’existence de telles contractions dans le cas d’un
groupe simple. Ceci est une sorte de compétition entre la dilatation exponentielle
de la représentation π0 sur Vp et la contraction exponentielle de ∆R dans certaines
directions. Pour montrer que ∆R gagne cette compétition pour les groupes de
l’énoncé 0.1.4, on contrôle d’abord les normes d’opérateur de π0 par un terme qui
peut être écrit explicitement en fonction des données combinatoires associées au
groupe de départ. Cette étape utilise l’hyperbolicité du groupe de Heintze H =
S⋉U , plus précisément elle utilise des bornes précises sur la distorsion exponentielle
de U à l’intérieur de H.

Combinatoire et théorie de Lie En utilisant la classification des groupes semi-
simples sur des corps locaux, on réduit le problème d’existence d’éléments contrac-
tants à une étude combinatoire au cas par cas de systèmes de racines avec des
multiplicités. La présence des multiplicités dans cette étude nous force à revenir à
des présentations classiques des groupes de Lie simples.

Le point principal de la partie combinatoire de cette preuve est que, pour les
familles infinies de systèmes de racines (Ar, Br, Cr, BCr et Dr) il existe toujours un
choix de sous-groupe parabolique maximal tel que notre contrôle (du logarithme)
de la dilatation exponentielle croît linéairement avec le rang et (le logarithme de)
la contraction exponentielle de la fonction modulaire est quadratique en fonction du
rang (au moins pour ces directions bien choisies). Cette heuristique, qui est a priori
de caractère asymptotique, commence à fonctionner assez tôt : à partir de r ≥ 3
pour Ar, de r ≥ 4 pour Br, Cr et BCr et de r ≥ 5 pour Dr.

0.1.2 Non annulation en degré maximal et dimension conforme des
immeubles hyperboliques

On traite maintenant la question (2), c’est-à-dire, la non annulation en degré égal au
rang. On explique l’évolution de ce phénomène, en commençant par les situations
les plus classiques et en se tournant vers les plus exotiques.
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Non annulation pour les groupes de Lie réels Dans notre formulation de la
question (2), Bourdon et Rémy donnent une réponse affirmative à cette question
pour les groupes semi-simples réels [BR21].

Théorème 0.1.5. [BR21, Theorem A] Soit G un groupe de Lie semi-simple réel de
rang r ≥ 2. Pour p assez grand on a :

Hr
ct

(
G,Lp(G)

)
̸= {0}.

Par ailleurs, dans [BR20] ils montrent aussi l’annulation de Hr
ct

(
G,Lp(G)

)
pour

p > 1 assez petit pour des groupes admissibles. Il y a toujours un intervalle en p
pour lequel le comportement de Hr

ct

(
G,Lp(G)

)
reste inconnu.

Non annulation pour des immeubles affines On montre la non annulation
de la cohomologie Lp en degré égal au rang pour des immeubles affines localement
finis. La situation est maintenant plus simple : la non annulation est valable pour
tout p > 1. Plus précisément :

Théorème 0.1.6. ([LN22, 1.2], voir Theorem 3.0.2 dans le texte) Soit X un im-
meuble affine localement fini de dimension n. On a ℓpHn(X) ̸= {0} pour tout
p > 1. En particulier, tout groupe semi-simple G de rang n sur un corps local non
archimédien satisfait Hn

ct

(
G,Lp(G)

)
̸= {0} pour tout p > 1.

Le résultat 0.1.6 est montré en utilisant une formule d’harmonicité à la Steinberg
sur l’homologie localement finie en degré maximal de l’immeuble et en montrant la
convergence de sa norme ℓp pour tout p > 1.

Immeubles non affines et dimension cohomologique virtuelle On quitte le
monde des groupes simples sur des corps locaux et on s’attaque à des immeubles
localement finis arbitraires.

La première question à se poser dans ce contexte est quelle est notre nouvelle
définition de rang d’un immeuble, vu que l’on n’a plus une action d’un groupe
semi-simple. Si on a une action d’un groupe G sur l’immeuble, on pourrait parler
de la dimension cohomologique virtuelle vcd(G) de ce groupe. Si on n’a pas de
groupe d’automorphismes, on peut toujours parler du plus grand entier pour lequel
la cohomologie ℓp est non triviale, au moins pour certaines valeurs de p > 1. On
montre que cet dernier entier coincide toujours avec la dimension cohomologique
virtuelle vcdR(W ) sur R du groupe de Weyl (W,S) d’un apartement de l’immeuble.

On note eq(W ) le taux de croissance logarithmique pondéré du système de Cox-
eter (W,S). Rappelons que, par l’alternative de Tits forte pour les groupes de
Coxeter, un groupe de Coxeter non affine W est de croissance exponentielle, et ainsi
eq(W ) > 0. Le résultat précis est le suivant.

Théorème 0.1.7. ([LN22, 1.4], voir Theorem 3.3.8 dans le texte) Soit X la réali-
sation de Davis d’un immeuble de groupe de Weyl (W,S) et de vecteur d’épaisseur
finie q+ 1, où q ≥ 2. Soit d = vcdR(W ). Alors :
• pour tout 1 < p < 1 + eq(W )−1 on a ℓpHd(X) ̸= {0},
• pour tout k > d et p > 1 on a ℓpHk(X) = {0}.
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La preuve consiste à utiliser la réalisation de Bestvina de l’immeuble, qui est
définie de façon à ce que sa dimension soit d = vcdR(W ). L’affirmation concer-
nant la non annulation en ce degré a la même preuve que celle du Théorème 0.1.6.
L’affirmation concernant l’annulation provient de l’invariance par quasi-isométries
de la cohomologie ℓp.

Exposants critiques pour quelques immeubles non affines Intéressons-nous
maintenant à la dépendance en p de la non annulation : on peut se demander si
la borne supérieure 1 + eq(W )−1 de non annulation de cohomologie ℓp (réduite) du
Théorème 0.1.7 est optimale. On montre que c’est le cas, sous l’hypothèse où les
appartements sont des complexes simpliciaux proches des variétés orientables.

Théorème 0.1.8. ([LN22, 1.1], voir Theorem 3.2.6 dans le texte) Soit (W,S) un
complexe de Coxeter tel que son complexe de Davis Σ est une pseudovariété ori-
entable de dimension n. Soit X la réalisation de Davis d’un immeuble de groupe de
Weyl (W,S) et de vecteur épaisseur fini q+ 1, où q ≥ 2. Alors on a :

1 + eq(W )−1 = sup{p > 1 | ℓpHn(X) ̸= {0}}.

L’annulation montrée dans ce théorème découle du fait que moyenner sur les
préimages d’une rétraction réduit la norme ℓp, et que notre formule de Steinberg
est déjà moyennée sur ces préimages. De ce théorème et de l’invariance de la coho-
mologie ℓp par quasi-isométries on déduit que le taux de croissance eq(W ) est un
nouveau invariant de quasi-isométrie pour les immeubles de Davis localement finis
dont les apartements sont des pseudovariétés orientables.

On a constaté plus tard que l’exposant critique pour la cohomologie ℓp réduite
en degré maximal apparaissant dans le Théorème 0.1.8 a la même expression que la
dimension conforme d’un immeuble fuchsien [Bou00].

Dimension conforme des immeubles hyperboliques On élabore sur cette
dernière remarque : intéressons-nous au cas des immeubles (localement finis) hy-
perboliques au sens de Gromov. On se demande notamment s’il y a un lien dans
un cadre plus général entre l’exposant critique du Théorème 0.1.8 et la dimension
conforme.

Nos techniques en degré maximal donnent une première borne inférieure de la
dimension conforme d’un immeuble hyperbolique au sens de Gromov dont les ap-
partement sont des pseudovariétés. Clais avait déjà montré des bornes plus fines
pour certains immeubles Gromov-hyperboliques [Cla17]. Ceci nous a motivé à "du-
aliser" nos techniques en homologie ℓp en degré maximal et les adapter au premier
groupe de cohomologie ℓp. Il n’est pas difficile de montrer que pour tout immeuble
hyperbolique au sens de Gromov X de vecteur épaisseur fini q + 1, avec q ≥ 2, il
existe une métrique visuelle dq sur le bord d’un apartement Σ tel que

Confdim(∂X) ≤ Hausdim(∂Σ, dq)(1 + eq(W )−1).

Ceci est la borne supérieure de Clais. Nos méthodes en utilisant la cohomologie ℓp

en degré 1 étendent la borne inférieure de Clais à tout immeuble hyperbolique au
sens de Gromov.
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Théorème 0.1.9. ([LN22, 1.5], voir Theorem 3.0.5 dans le texte) Soit (W,S) un
système de Coxeter hyperbolique au sens de Gromov, Σ le complexe de Davis de
(W,S) et X la réalisation de Davis d’un immeuble de groupe de Weyl (W,S) et de
vecteur épaisseur q+ 1, avec q ≥ 2. On a:

Confdim(∂Σ)(1 + eq(W )−1) ≤ Confdim(∂X).

L’idée de la preuve est, comme en degré maximal, de moyenner sur les préim-
ages des rétractions et estimer la convergence de certaines normes ℓp. L’ingrédient
additionnel est d’utiliser la relation entre dimension conforme et le premier groupe
de cohomologie ℓp par des propriété de séapration d’espaces fonctionnels au bard
[BK15, 3.8].

0.1.3 Groupes simples de présentation finie et équivalence mesurable

Le dernier sujet de cette thèse est indépendant des deux derniers. Il concerne le
problème de distinguer des groupes modulo des relations d’équivalence en utilisant
des invariants cohomologiques. Ici on s’intéresse à distinguer des groupes simples de
présentation finie. À cette date, on connaît peu d’exemples de tels groupes, parmi
lesquels on trouve : les groupes de Higman-Thompson et des variantes [SWZ19], les
groupes de Burger-Mozes agissant sur des produits d’arbres [BM00] et les réseaux
(non uniformes) de Kac-Moody non affines sur des corps finis agissant sur des pro-
duits d’immeubles [CR06]. Une tâche intéressante est de séparer certains de ces
groupes du point de vue de la quasi-isométrie ou de l’équivalence mesurable.

Classes d’équivalence mesurable des groupes simples On connaît déjà des
exemples de familles infinies de groupes simples de présentation finie qui sont deux
à deux non quasi-isométriques : ceci a été fait d’abord pour certains réseaux de
Kac-Moody non affines [CR06] et puis pour des variantes à la Röver-Nekrashevych
du groupe de Thompson [SWZ19]. On montre l’analogue de ces résultats pour
l’équivalence mesurable.

Théorème 0.1.10. ([LN21, 1.1], voir Theorem 4.0.1 dans le texte) Il y a une
quantité infinie de classes d’équivalence mesurable contenant des groupes simples de
présentation finie avec la propriété (T ) de Kazhdan. Les groupes en question sont
des réseaux de Kac-Moody sur des corps finis avec des groupes de Weyl non affines
bien choisis.

Ceci est fait en étudiant l’annulation et la non annulation de leurs nombres
de Betti ℓ2. En effet, Gaboriau a montré que la suite des nombres de Betti ℓ2

(modulo proportionnalité sur la suite) est un invariant d’équivalence mesurable pour
les groupes dénombrables [Gab02]. L’annulation d’un nombre de Betti ℓ2 est un
invariant de quasi-isométrie (et même d’équivalence grossière [SS18]) et ainsi on
récupère une famille infinie de groupes simples de présentation finie deux à deux
non quasi-isométriques comme dans [CR09] ou [SWZ19].

Des groupes discrets aux groupes topologiques Pour montrer ce résultat,
la philosophie générale est de voir nos candidats discrets Λ comme des réseaux à
l’intérieur de groupes topologiques ambiants L et d’utiliser la structure plus riche
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de L pour obtenir de l’information sur Λ. Dans notre cas, Petersen a montré que les
suites des nombres de Betti ℓ2 d’un réseau Λ et de son groupe localement compact
à base dénombrable d’ouverts ambiant L sont proportionnelles [KPV15].

Il reste à comprendre le groupe L et sa suite de nombres de Betti L2. Nos
candidats sont des groupes de Kac-Moody discrets sur des corps locaux. Un groupe
de Kac-Moody discret Λ agit sur un immeuble, et si on note G sa complétion dans
le groupe d’automorphismes de l’immeuble (que l’on appelle groupe de Kac-Moody
complet), alors Λ est un réseau dans L := G×G.

En utilisant un nouveau point de vue sur la méthode de Garland, Dymara et
Januszkiewicz obtiennent une formule pour les nombres de Betti ℓ2 d’un groupe de
Kac-Moody complet G [DJ02]. Ce que cette formule dit est que l’annulation ou la
non annulation d’un nombre de Betti ℓ2 correspond à des conditions de topologie
combinatoire sur le groupe de Weyl W de l’immeuble. On étudie la combinatoire du
groupe de Weyl et on donne un critère pour prescrire la non annulation d’un nombre
de Betti ℓ2 en degré élevé. En jouant avec une famille infinie bien choisie de groupes
de Coxeter, on construit une famille dénombrable de réseaux de Kac-Moody avec
des suites de nombres de Betti ℓ2 non proportionnelles.

0.1.4 Perspectives et questions

On liste des perspectives de recherche future. L’ordre dans lequel les items suivants
sont listés correspond à leur proximité aux sujets présentés ci-dessus.

Annulation en degrés supérieurs pour des groupes semi-simples Une di-
rection naturelle que l’on pourrait suivre est de montrer l’annulation de cohomologie
Lp en degrés ≥ 3 pour des groupes semi-simples de rang au moins 4. Notre méthode
pour montrer l’annulation en degré 2 rencontre un obstacle majeur : on ne peut
utiliser la suite spectrale de Hochschild-Serre que si les espaces de cohomologie Lp

du radical résoluble sont séparés en tout degré. Puisque dans notre cas on travail-
lait avec un parabolique maximal et que la cohomologie Lp du radical résoluble du
parabolique est concentrée en degré 1 (au moins pour p assez grand) et que l’on sait
comment montrer qu’une cohomologie en degré 1 est séparée, on a pu exploiter la
suite spectrale. Le problème est que pour des degrés supérieurs, on voudrait faire
apparaître des espaces de cohomologie en degrés > 1 et on devrait montrer que ces
espaces sont séparés avant d’utiliser la suite spectrale.

À cette date on a deux méthodes capables de faire ceci. D’une part, Pansu a
montré que pour la plupart des valeurs de p la cohomologie Lp de l’espace hyper-
bolique réel est séparée en tout degré en identifiant ces espaces de cohomologie à
des espaces fonctionnels sur le bord [Pan08].

D’autre part, on peut utiliser des méthodes hilbertiennes pour L2, combinées à
l’interpolation de Riesz-Thorin pour passer à Lp. Ceci a été fait pour des variétés
dans [Loh98] et pour des immeubles dans [DJ02]. Cette méthode a des limitations
sur les valeurs de p car elle implique une sorte de stabilité : le comportement pour
Lp est le même que pour L2. Or il est connu dans certaines situations que le
comportement de la cohomologie Lp diffère de la cohomologie L2 si on s’éloigne trop
de p = 2. Par exemple, pour un immeuble fuchsien cocompact triangulaire X, la
formule de [DJ02] donne de l’annulation de ℓpH1(X) pour les valeurs de p à laquelle
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elle s’applique, cependant, pour p > Confdim(∂X) on a ℓpH1(X) ̸= {0}.
Pour résumer, on veut dire qu’avec nos techniques actuelles, la prochaine étape

dans l’étude de la question de Gromov (1) est d’attaquer d’abord la question (3) et
plus généralement d’obtenir des critères pour garantir que des espaces de cohomolo-
gie sont séparés en degrés > 1.

Dimension conforme des groupes de Coxeter et des immeubles hyper-
boliques Concernant nos bornes sur la dimension conforme d’un immeuble hy-
perbolique X, on peut s’intéresser à la relation entre Confdim(∂X) et ses bornes
supérieures ou inférieures. On ne devrait pas avoir égalité en toute généralité pour
un immeuble hyperbolique au sens de Gromov quelconque, mais on pourrait chercher
un critère géométrique/combinatoire sur le groupe de Weyl associé qui garantirait
l’égalité (ou l’inégalité stricte !).

Exposants critiques pour des groupes de Lie réels On peut aussi se deman-
der si le Théorème 0.1.8, sur notre exposant critique pour des immeubles modelés
sur des pseudovariétés orientables a un analogue pour des groupes réels. En effet,
dans [BR21] Bourdon et Rémy montrent la non annulation en degré égal au rang
pas seulement pour des groupes de Lie réels semi-simples, mais aussi pour une classe
plus large de groupes de Lie réels résolubles R de la forme R = Rr ⋉ N où N est
un groupe de Lie nilpotent avec des conditions supplémentaires. On peut consid-
érer l’exposant critique inf{p > 1, LpHr

dR(R) ̸= {0}} (proposé par de Cornulier
[BR21, 0.4 remark 4]), qui est invariant par quasi-isométries (et par équivalence
grossière). Est-ce que cet invariant coïncide avec un autre invariant numérique de
quasi-isometrie de nature géométrique qui peut être défini sans faire référence à la
cohomologie ?

Invariants d’équivalence mesurable à partir de la cohomologie Lp Il est
naturel de se demander si l’invariance projective de la suite de nombres de Betti ℓ2

par équivalence mesurable prouvée par Gaboriau a un analogue pour p ̸= 2. On n’a
certainement pas une théorie des nombres de Betti ℓp, donc ce n’est pas de cette
façon que l’on devrait formuler une adaptation. Le résultat de Gaboriau implique
que l’annulation de l’espace de cohomologie L2 réduite en un certain degré est un
invariant d’équivalence mesurable. La question naturelle est donc : pour p > 1 et
k ∈ N fixés, est-ce que l’annulation de la cohomologie Lp réduite en degré k est
un invariant d’équivalence mesurable ? (ou peut-être il faut changer l’équivalence
mesurable par une version plus quantitative, qui pourrait dépendre de p).

Cohomologie Lp en degré 1 des groupes de Kac-Moody complets non
affines La question suivante m’a été communiquée par Jean Lécureux. La coho-
mologie bornée en degré 2 et la cohomologie Lp en degré 1 partagent des propriétés
semblables. Caprace et Fujiwara ont montré que la cohomologie bornée en degré 2
des groupes de Kac-Moody complets non affines est non triviale. Est-ce que leurs
groupes de cohomologie Lp en degré 1 sont non triviaux aussi pour p assez grand ?
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0.1.5 Structure de la thèse

Ce manuscrit est divisé en quatre chapitres (on ne compte pas cette introduction
comme un chapitre) et est écrit en anglais.

Le premier chapitre introduit les notions qui seront utilisées par la suite. On
définit la cohomologie continue des groupes, la cohomologie Lp et les immeubles.
Après ceci, on compile des résultats connus (la plupart du temps sans preuves)
autour de la cohomologie Lp des groupes semi-simples. On s’intéresse d’abord aux
résultats sur la cohomologie Lp des groupes simples de rang 1 et par extension des
espaces hyperboliques au sens de Gromov, puis aux résultats sur la cohomologie
continue et cohomologie Lp des groupes de rang supérieur.

Les trois autres chapitres sont des reproductions de prépublications et d’articles.
Le deuxième reproduit la prépublication [LN23]. Le résultat principal est l’annulation
de la cohomologie Lp en degré 2 pour la plupart des groupes semi-simples de rang
au moins 3 sur des corps locaux. Le troisième reproduit la prépublication [LN22].
On étudie l’homologie ℓp en degré maximal des immeubles, sa relation avec d’autres
invariants tels que la dimension cohomologique virtuelle des groupes de Coxeter et la
dimension conforme des immeubles hyperboliques au sens de Gromov. Le quatrième
reproduit l’article [LN21], où, à l’aide des nombres de Betti L2 de groupes agissant
sur des produits d’immeubles, on explicite une famille infinie de groupes simples de
présentation finie non mesurablement équivalents.
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0.2 Summary of the thesis

This thesis lies between Lie theory and Gromov’s large scale geometry. In short,
we deal with large scale geometric invariants of cohomological nature associated to
locally compact groups and study them in the case of Lie groups and of some of
their generalizations.

Large scale geometry deals with the study of asymptotic properties of metric
spaces. By this we mean properties that remain invariant under maps that forget
the local topological structure and that impose conditions only on large distances,
such as quasi-isometries or coarse equivalences. The study of locally compact sec-
ond countable groups fits into this framework as they carry left-invariant proper
metrics [Str74] and two such metrics remain coarsely equivalent [CdlH16, 4.A.6].
For these groups one can define continuous cohomology with values in continuous
representations. This is an algebraic construction that has a priori no relation with
large scale geometry. Surprisingly, it gives a large scale invariant if one chooses the
correct representation, which is the right regular representation on Lp-functions on
the group, for any real number p > 1. The associated cohomological invariant, that
we call continuous Lp-cohomology and denote by H∗

ct(G,L
p(G)) (for some locally

compact second countable group G and some p > 1), is the main object of interest
of this thesis.

The locally compact groups on which we want to compute this invariant are Lie
groups and some of their generalizations. The most popular family of Lie groups
are real semisimple Lie groups in view of their rich structure theory (as opposed
to solvable Lie groups, that remain wild) and their actions on their corresponding
Riemannian symmetric spaces. A first generalization of this situation consists in
looking at the points of semisimple algebraic groups over local fields. Local fields
split into two categories: Archimedean, which are real and complex numbers, and
non-Archimedean. Semisimple algebraic groups over non-Archimedean local fields
are the second family of locally compact groups we are interested in. The geometries
on which they act are Bruhat-Tits buildings, these are simplicial structures that
play the role of symmetric spaces in this new setting. The philosophy is that real
semisimple Lie groups and their non-Archimedean counterparts should not be too
different.

The notion of building is in fact much more general. A building is obtained by
gluing many times the same simplicial complex, representing the combinatorics of
a fixed Coxeter group, under incidence relations that are reminiscent of symmetric
spaces. In particular, Coxeter groups arising from non-Archimedean semisimple
groups are said to be affine as their associated geometries are tilings of the real affine
space. Kac-Moody theory is a way to construct examples of (discrete and) locally
compact groups as automorphism groups of buildings, starting from combinatorial
data such as an arbitrary Coxeter group. In particular, we obtain new examples if the
Coxeter group we start from is not affine. These non-affine Kac-Moody groups are a
third family of exotic Lie-related locally compact groups that we will be interested
in this thesis. These groups stray far away from classical Lie theory, in the sense
that they exhibit new properties that their classical counterparts do not have.

This thesis deals with computations of Lp-cohomology for the groups and spaces
we have just introduced. Our main motivation is the following question by Gromov:
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he predicts a classical behaviour of (unreduced) Lp-cohomology of semisimple groups
over local fields for every p > 1 [Gro93]. Here a local field can be Archimedean or
not.

Questions. Let G be a semisimple group of rank r ≥ 2 over a local field.
(1) Do we have H l

ct

(
G,Lp(G)

)
= {0} for all l = 1, . . . , r − 1 and p > 1?

(2) Do we have Hr
ct

(
G,Lp(G)

)
̸= {0} at least for some values of p?

(3) Is the space Hr
ct

(
G,Lp(G)

)
Hausdorff for all p > 1?

In thee following pages we present the main results of this thesis (for prelimi-
naries, see Chapter 1). Three topics are discussed. Each of these corresponds to
an article. The first two are relevant to these questions, dealing respectively with
questions (1) and (2). The third topic is independent as it deals with non-linear
groups. We conclude by presenting questions and future projects.

The first topic is vanishing in degree 2 for semisimple groups of rank ≥ 3 over
local fields, which we show in most cases [LN23]. The second is non-vanishing in
top degree for affine buildings and more general types of buildings [LN22]. Here
we also discuss conformal dimension of hyperbolic buildings. The third deals with
L2-cohomology of generalizations of semisimple groups and applications to measure
equivalence [LN21].

0.2.1 Vanishing in degree 2

One of the main results of this thesis concerns question (1): we show vanishing of
Lp-cohomology in degree 2 for most semisimple Lie groups of rank ≥ 3 over local
fields.

We first recall previous contributions towards a positive answer to this question.
Many of these concern the case of degree 1. Then, we state a more precise version
of the result and outline the main arguments of its proof.

Degree 1 case for Lie groups Vanishing in degree 1 for all p > 1 for real
semisimple groups of rank ≥ 2 was first proven by Pansu in 1999 via de Rham
Lp-cohomology (first unpublished, then appeared in [Pan07]). Actually, he showed
a stronger statement.

Theorem 0.2.1. [Pan07, Théorème 1] Let M be a homogeneous manifold. Either:
• the isometry group of M is a compact extension of a solvable unimodular Lie
group,
• or M is quasi-isometric to a homogeneous space of strictly negative sectional cur-
vature,
• otherwise LpH1

dR(M) = {0} for all p > 1.

Later, Bader, Furman, Gelander and Monod proved vanishing of the first con-
tinuous cohomology of a (real or non-Archimedean) simple group G of rank ≥ 2
acting by isometries on some Lp(X,µ), where (X,µ) is a standard Borel space and
p > 1 [BFGM07]. Their techniques also work for semisimple groups, but with each
simple factor of rank ≥ 2. Lastly, de Cornulier and Tessera extended Pansu’s tri-
chotomy to semisimple groups over fields of characteristic zero via continuous group
cohomology [dCT11]. Their trichotomy is valid only for groups of characteristic 0,
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but their argument for vanishing for semisimple groups of higher rank also works in
positive characteristic.

Theorem 0.2.2. [dCT11, Theorem 1] Let G be a semisimple Lie group of rank
r ≥ 2 over a local field. We have H1

ct

(
G,Lp(G)

)
= {0} for all p > 1.

The proofs of the above mentioned works are not equivalent but rely on sim-
ilar dynamical arguments. Namely, one of the recurring arguments is Mautner’s
phenomenon in one of its many forms.

This statement also holds for the corresponding versions of Lp-cohomology on the
geometries on which semisimple groups act, namely, symmetric spaces and Bruhat-
Tits buildings.

Degree 1 case for affine buildings Bruhat-Tits buildings are affine buildings
on which non-Archimedean semisimple groups act naturally. All affine buildings of
dimension ≥ 3 arise from such actions. On the other hand, there are exotic affine
buildings of dimension 2 with small full automorphism groups (for instance discrete).
Lécureux, de la Salle and Witzel show that vanishing of Lp-cohomology in degree 1
persists for some of these buildings.

Theorem 0.2.3. [LdlSW20, Theorem A] Let X be a locally finite Ã2-building. Then
we have ℓpH1(X) = {0} for all p > 1.

The proof is significantly different from the Lie group case as here one cannot
rely on dynamical arguments such as Mautner’s phenomenon. Instead, what is used
is harmonicity and random walks.

Higher degrees Bourdon and Rémy deal with vanishing of Lp-cohomology of real
simple Lie groups in higher degrees [BR20]. They show that for some real simple
Lie groups they call admissible, there are constants p(k) > 1 (depending on the
group) for every degree k such that there is vanishing of Lp-cohomology in degree
k for all 1 < p < p(k). Poincaré duality allows them to extend this result to large
values of p, at least for large values of k (in particular, this duality argument does not
concern degrees below the rank). Their methods consist in proving a suitable version
of the Hochschild-Serre spectral sequence for Lp-cohomology and invoke Pansu’s
description of the Lp-cohomology of the real hyperbolic space [Pan08]. In fact their
proof also applies to non-admissible real simple Lie groups, but the conditions on
the constant p(k) are much more restrictive (in this case the constant p(k) tends to
1 for fixed k when the rank goes to infinity).

Initially, we wanted to prove a statement similar to that of Bourdon and Rémy
in the non-Archimedean case. It turned out that our methods also apply to the real
case, but only for large values of p. The result we prove is the following.

Theorem 0.2.4. ([LN23, 0.1], see Theorem 2.0.1 in the text) Let F be a local field
and suppose that G is either:
• SL(4, D), where D is a finite dimensional central division algebra over F ,
• a simple Lie group over F of rank r ≥ 4 that is not of type D4 and is not of
exceptional type,
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• or a semisimple, non-simple Lie group over F of rank r ≥ 3.
Then there exists a constant p(G) ≥ 1 such that for all p > p(G):

H2
ct

(
G,Lp(G)

)
= {0}.

Moreover, when F is non-Archimedean we have p(G) = 1.

In the rest of this subsection we outline the proof of this theorem. Three types
of arguments are present: algebraic, dynamical and combinatorial.

Quasi-isometric invariance and spectral sequences The initial strategy is
that of [BR20].

First, we use quasi-isometric invariance in order to identify H2
ct

(
G,Lp(G)

)
to

H2
ct

(
P,Lp(P )

)
, where P is a maximal parabolic subgroup. This parabolic subgroup

has a Levi decomposition P = MSU . The version of the Hochschild-Serre spectral
sequence from [BR20] allows us to obtain a linear identification

H2
ct

(
P,Lp(P )

)
= H1

ct

(
M,Lp(M,Vp)

)
with the first continuous cohomology group H1

ct

(
M,Lp(M,Vp)

)
of the Levi factor

M with coefficients in some Banach-valued Lp-space Lp(M,Vp). The Banach space
Vp is in fact H1

ct

(
SU,Lp(SU)

)
. The main technical problem comes from the fact

that the continuous M -module Lp(M,Vp) has relatively large exponential growth,
forbidding us to (directly) invoke Lafforgue’s strong property (T ) and obtain the
desired vanishing.

Dynamical arguments The next step is to pass to a cocompact, non-unimodular,
solvable group R in order to create contractions thanks to its modular function ∆R

and adapt techniques from [dCT11] to state some non-isometric version of Mautner’s
phenomenon for the R-module (π, Lp(R, Vp)).

More precisely, if we denote by π the representation of R on Lp(R, Vp) and by
π0 the representation of R on Vp, we have for every g ∈ R:

|||π(g)|||pLp(R,Vp)
= ∆R(g)

−1|||π0(g)|||pVp
.

The idea is that even though |||π0(g)|||Vp can grow really fast, we hope to counter its
growth using ∆R(g) and thus find elements that contract the Lp-norm. The upshot
is that vanishing of H1

ct

(
R,Lp(R, Vp)

)
follows from the presence of two elements

contracting the Lp-norm in well-chosen directions. This is not hard to do in the
semisimple, non-simple case.

The non-trivial part consists in showing the existence of such contractions in the
simple case. This is a battle between the exponential dilation of the representation
π0 on Vp and the exponential contraction of ∆R in certain directions. To show that
the contraction of ∆R wins this battle for the groups in the statement of Theorem
0.2.4, we first control some operator norms of π0 by some term that can be written
explicitly in combinatorial terms. This step uses the hyperbolicity of the Heintze
group H = S⋉U , and in particular, precise bounds of the exponential distortion of
U inside H.
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Combinatorics and Lie theory Using the classification of semisimple Lie groups
over local fields, we reduce the existence problem of contracting elements to a com-
binatorial case-by-case study of root systems with multiplicities. The presence of
multiplicities forces us to present our combinatorial study in terms of classical pre-
sentations of simple Lie groups.

The main point in the combinatorial part of the proof is that, for the infinite
families of root systems (Ar, Br, Cr, BCr and Dr) there exists always a choice of
maximal parabolic subgroup such that our control of the exponential dilation grows
linearly in the rank and the exponential contraction of the modular function grows
quadratically in the rank (at least in well-chosen directions). This a priori asymptotic
heuristic works quite fast: starting from r ≥ 3 for Ar, from r ≥ 4 for Br, Cr and BCr

and from r ≥ 5 for Dr. Our current estimates do not seem to create contractions
for exceptional groups.

0.2.2 Non-vanishing in top degree and conformal dimension of
buildings

We now turn to question (2), that is, non-vanishing in degree equal to the rank.
We will explain the evolution of this phenomenon, starting from the more classical
settings and moving towards the more exotic ones.

Non-vanishing for real Lie groups In the formulation we give, Bourdon and
Rémy give a positive answer to question (2) for real semisimple groups [BR21].

Theorem 0.2.5. [BR21, Theorem A] Let G be a semisimple real Lie group of rank
r ≥ 2. Then for p large enough we have:

Hr
ct

(
G,Lp(G)

)
̸= {0}.

In fact in [BR20], they also show that for admissible groups there is vanishing
of Hr

ct(G,L
p(G)) for p > 1 small enough. There is still an interval of values of p for

which the behaviour of Hr
ct

(
G,Lp(G)

)
remains unknown.

Non-vanishing for affine buildings We show that non-vanishing in degree equal
to the rank also holds for general locally finite affine buildings. The situation is now
simpler: non-vanishing holds for all p > 1. More precisely:

Theorem 0.2.6. ([LN22, 1.2], see Theorem 3.0.2 in the text) Let X be a locally
finite affine building of dimension n. We have ℓpHn(X) ̸= {0} for all p > 1. In
particular, any semisimple Lie group G of rank n over a non-Archimedean local field
satisfies Hn

ct

(
G,Lp(G)

)
̸= {0} for all p > 1.

Theorem 0.2.6 is proved by using some Steinberg harmonicity formula on top
dimensional locally finite homology of the building and showing convergence of its
ℓp-norm for all p > 1.
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Non-affine buildings and virtual cohomological dimension We now leave
the world of simple groups over local fields and deal with arbitrary (locally finite)
buildings.

The first question we should ask ourselves in this setting is what is our new
definition of rank of a building, as we do not have anymore an action of a semisimple
group. If we had a nice action of a group G on the building, we could talk about the
virtual cohomological dimension vcd(G) of that group. If there is no automorphism
group, we can still look at the largest integer for which the ℓp-cohomology of the
building is nonzero, at least for some p > 1. We show that the latter always coincides
with the virtual cohomological dimension vcdR(W ) over R of the Weyl group (W,S)
of any apartment of the building.

We denote by eq(W ) the weighted logarithmic growth-rate of the Coxeter system
(W,S). Recall that, by the strong Tits’ alternative for Coxeter groups, a non-affine
Coxeter group W has exponential growth, and hence eq(W ) > 0. The precise result
we show is the following.

Theorem 0.2.7. ([LN22, 1.4], see Theorem 3.3.8 in the text) Let X be the Davis
realization of some building with Weyl group (W,S) and finite thickness vector q+1,
where q ≥ 2. Let d = vcdR(W ). Then:
• for all 1 < p < 1 + eq(W )−1 we have ℓpHd(X) ̸= {0},
• for all k > d and p > 1 we have ℓpHk(X) = {0}.

The proof consists in using the Bestvina realization of the building which is
defined so that its dimension is d = vcdR(W ). The non-vanishing assertion now
has the same proof as Theorem 0.2.6. The vanishing assertion follows from quasi-
isometric invariance of ℓp-cohomology.

Critical exponents for some non-affine buildings In view of Theorem 0.2.7,
we may ask if the upper bound 1 + eq(W )−1 for non-vanishing is optimal. We
show that it is the case, under the assumption that our apartments are simplicial
complexes that are close to orientable manifolds.

Theorem 0.2.8. ([LN22, 1.1], see Theorem 3.2.6 in the text) Let (W,S) be a Cox-
eter system such that its associated Davis complex Σ is an orientable pseudomanifold
of dimension n. Let X be the Davis realization of some building with Weyl group
(W,S) and finite thickness vector q+ 1, where q ≥ 2. Then we have:

1 + eq(W )−1 = sup{p > 1 | ℓpHn(X) ̸= {0}}.

The vanishing assertion in this theorem follows from the fact that averaging
over preimages of a retraction reduces the ℓp-norm, and that our Steinberg formula
is already averaged over these preimages. It also follows from Theorem 0.2.8 and
quasi-isometric invariance of reduced ℓp-cohomology that the growth rate eq(W ) is a
new quasi-isometry invariant among locally finite Davis buildings whose apartments
are orientable pseudomanifolds.

We realized later that the critical exponent for top-dimensional reduced ℓp-
cohomology appearing in Theorem 0.2.8 has the same expression as the conformal
dimension of a Fuchsian building [Bou00].
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Conformal dimension of hyperbolic buildings We now focus on this very
last remark and turn to Gromov-hyperbolic (locally finite) buildings. We wonder if
there is a relation in a more general setting between the critical exponent appearing
in Theorem 0.2.8 and conformal dimension.

Our techniques in top degree yield a first lower bound of the conformal dimen-
sion of Gromov-hyperbolic buildings modeled on pseudomanifold apartments. Clais
had already showed a sharper lower bound for some particular Gromov-hyperbolic
buildings [Cla17]. This motivated us to "dualize" our techniques on top-dimensional
ℓp-homology and work on the first ℓp-cohomology instead. It is not hard to show
that for any Gromov-hyperbolic (Davis) building X of finite thickness vector q+1,
with q ≥ 2, there exists some visual metric dq on the boundary ∂Σ of an apartment
Σ such that:

Confdim(∂X) ≤ Hausdim(∂Σ, dq)(1 + eq(W )−1).

This is Clais’ upper bound. Our methods on the first ℓp-cohomology group generalize
Clais’ lower bound to any Gromov-hyperbolic building.

Theorem 0.2.9. ([LN22, 1.5], see Theorem 3.0.5 in the text) Let (W,S) be a
Gromov-hyperbolic Coxeter system, Σ the Davis complex of (W,S) and X the Davis
realization of a building with Weyl group (W,S) and thickness vector q + 1, with
q ≥ 2. We have:

Confdim(∂Σ)(1 + eq(W )−1) ≤ Confdim(∂X).

The idea of the proof is, as in top degree, to average over preimages of retrac-
tions and estimate convergence of ℓp-norms. The additional ingredient is to use the
relation between conformal dimension and the first ℓp-cohomology groups in terms
of separation properties on the boundary [BK15, 3.8].

0.2.3 Finitely presented simple groups and measure equivalence

The last topic of this thesis is independent from the previous two. It deals with the
problem of distinguishing groups up to equivalence relations using cohomological
invariants. Here we are interested in infinite finitely presented simple groups. To
the date, there are few known examples of such groups, among which: Higman-
Thompson groups and variants [SWZ19], Burger-Mozes groups acting cocompactly
on products of trees [BM00] and non-affine (non-uniform) Kac-Moody lattices over
finite fields [CR06]. An interesting task is to separate some of them from the point
of view of quasi-isometry or measure equivalence.

Measure equivalence classes of simple groups There are already examples
of infinite families of finitely presented simple groups that are pairwise not quasi-
isometric: this was first shown for some Kac-Moody lattices [CR10] and later for
some Röver-Nekrashevych variants of Thompson’s group [SWZ19]. We show the
measure equivalence analogue of this result.

Theorem 0.2.10. ([LN21, 1.1], see Theorem 4.0.1 in the text) There are infinitely
many measure equivalence classes containing finitely presented, Kazhdan, simple
groups. These groups are Kac-Moody lattices over finite fields with well-chosen non-
affine Weyl groups.
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This is done by studying vanishing and non-vanishing of their ℓ2-Betti numbers.
Indeed, Gaboriau showed that the sequence of ℓ2-Betti numbers (up to proportional-
ity on the sequence) is a measure equivalence invariant of countable groups [Gab02].
Vanishing of an ℓ2-Betti number is a quasi-invariant (even a coarse equivalence
invariant) and thus we recover an infinite family of pairwise non-quasi-isometric
finitely presented simple groups as in [CR09] or [SWZ19].

From discrete to topological groups The general philosophy is to view our
discrete candidates Λ as lattices sitting inside an ambient topological group L and
to use the richer structure of L. In our case, Petersen showed that the sequences of
ℓ2-Betti numbers of a lattice Λ and of its ambient locally compact second countable
group L are proportional.

It remains to understand the group L and its sequence of ℓ2-Betti numbers.
Our candidates are discrete Kac-Moody groups over local fields. A discrete Kac-
Moody group Λ acts on a building, and if we denote by G its completion inside the
automorphism group of the building, then Λ is a lattice inside L = G×G.

Using a new point of view on Garland’s method, Dymara and Januszkiewicz
obtain a formula of ℓ2-Betti numbers of a complete Kac-Moody group G [DJ02].
What this formula says is that vanishing or non-vanishing of some ℓ2-Betti number of
G boils down to topological combinatorics on the Weyl group W of the building. We
look closer at the combinatorics of the Weyl group and give a criterion to prescribe
non-vanishing of an ℓ2-Betti number of G in high degree. By playing with an infinite
family of well-chosen Coxeter groups, we construct a countable family of Kac-Moody
lattices with non-proportional sequences of ℓ2-Betti numbers.

0.2.4 Perspectives

We list perspectives for further research. The order in which they are presented
corresponds to how close they are to the works above.

Vanishing in higher degrees for semisimple groups A natural direction one
could follow is proving vanishing of Lp-cohomology in degrees ≥ 3 for semisimple
groups of rank ≥ 4. Our method for vanishing in degree 2 finds a major obstacle: the
Hochschild-Serre spectral sequence requires that the Lp-cohomology of the solvable
factor be Hausdorff in every degree. Since we knew that the Lp-cohomology of the
solvable factor was concentrated in degree 1 and since we know when Lp-cohomology
in degree 1 is Hausdorff, we could use the spectral sequence for treating the case of
degree 2. The problem is that for higher degrees, we need to know how to show that
cohomologies are Hausdorff (without showing they are trivial) in higher degrees > 1
if we want to use the spectral sequence.

To the date there are two methods that have been able to do this. Pansu showed
that for the real hyperbolic space many Lp-cohomology spaces are Hausdorff in
degrees ≥ 2 by identifying the cohomology space to a rather complicated functional
space on the boundary (but still Hausdorff).

A second method consists in using hilbertian methods to show that L2-cohomology
is Hausdorff and then use Riesz-Thorin interpolation to extend this to Lp. This has
been done for manifolds in [Loh98] and for buildings in [DJ02]. This method has
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limitations as it implies some sort of stability in p: the behaviour for Lp is the same
as for L2. There are examples where the behaviour of Lp-cohomology is different to
that of L2-cohomology if p is far away from p = 2. For a triangle Fuchsian building
X the formula shown in [DJ02] implies vanishing in degree 1 (and non-vanishing in
degree 2) for every p for which it holds, but it is known that for p > Confdim(∂X)
we have non-vanishing in degree 1 (and vanishing of reduced cohomology in degree
2).

To sum up, we are saying that, with our current techniques, the next step to
attack Gromov’s question (1) is tackling question (3) and more generally finding
criteria to guarantee that cohomologies in degrees > 1 are Hausdorff.

Conformal dimension of Coxeter groups and of buildings Concerning our
bounds for conformal dimension, it would be interesting to see if there is equality
between Confdim(∂X) and its upper and lower bounds. Equality may not always
hold for a general Gromov-hyperbolic building, but it would be nice to find some
geometric/combinatorial criterion on the Coxeter group that guarantees equality (or
strict inequality!).

Critical exponents for real Lie groups We may also ask if Theorem 0.2.8, on
our critical exponent for buildings modeled on orientable pseudomanifolds, has an
analogue for real groups. Indeed, [BR21] shows non-vanishing in degree equal to the
rank not only for semisimple groups but also for more general types of solvable real
Lie groups R of the form R = Rr ⋉N where N is a nilpotent group with additional
conditions. One may look at the critical exponent inf{p > 1, LpHr

dR(R) ̸= {0}}
(proposed by de Cornulier [BR21, 0.4 remark 4]), which is invariant under quasi-
isometry (and coarse equivalence). Does it coincide with another geometric numer-
ical quasi-isometry invariant that can be formulated without invoking cohomology?

Measure equivalence invariants from Lp-cohomology It is natural to wonder
whether Gaboriau’s projective invariance of the sequence ℓ2-Betti numbers under
measure equivalence (ME) has an analogue for p ̸= 2. We certainly do not have
a theory of ℓp-Betti numbers, so we cannot adapt this result directly in this way.
Gaboriau’s result implies that vanishing of reduced L2-cohomology in any degree is
a ME invariant. The natural question is: for fixed p > 1 and k ∈ N, is vanishing
of reduced Lp-cohomology in degree k invariant under ME ? (or maybe we have to
change ME with a more quantitative version, perhaps depending on p).

Lp-cohomology in degree 1 of non-affine complete Kac-Moody groups
The following question was shared to me by Jean Lécureux. Bounded cohomology
in degree 2 and Lp-cohomology in degree 1 share similar results. Since Caprace and
Fujiwara showed that non-affine complete Kac-Moody groups have nonzero bounded
cohomology in degree 2, do they also have nonzero Lp-cohomology in degree 1 for p
large enough?
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0.2.5 Structure of the thesis

This manuscript is divided into four chapters (we are not counting the present
introduction as a chapter).

The first chapter introduces the concepts that will be needed later. In it, we first
define group cohomology, Lp-cohomology and buildings. We then compile known
results (most of the time without proofs) concerning Lp-cohomology of semisimple
groups. We first deal with results on the Lp-cohomology of simple groups of rank
1 and by extension of Gromov-hyperbolic spaces, and then we deal with results on
continuous cohomology and Lp-cohomology of groups of rank at least 2.

The next three chapters are reproductions of preprints and articles. The second
reproduces the preprint [LN23]. Its main result is vanishing of Lp-cohomology in
degree 2 for most semisimple groups over local fields of split rank at least 3. The
third reproduces the preprint [LN22]. In it, we study top degree ℓp-homology of
buildings, its relation with other invariants such as virtual cohomological dimension
of Coxeter groups and conformal dimension of Gromov-hyperbolic buildings. The
fourth reproduces the article [LN21], where, using L2-Betti numbers of groups acting
on products of buildings, we exhibit a first family of finitely presented simple groups
that lie in infinitely many measure equivalence classes.
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Chapter 1

Lp-cohomology, semisimple groups
and buildings

1.1 Cohomology

We begin by introducing the cohomological invariants we will work with. The most
important for us is Lp-cohomology. This is an invariant that can be defined in dif-
ferent settings: we will define it for simplicial complexes, manifolds, locally compact
second countable groups and metric measured spaces. We are interested mostly in
groups, so the definition for locally compact second countable groups, that we call
continuous group Lp-cohomology, will be our main character. In fact this version of
Lp-cohomology is just a particular case of continuous cohomology. This is a general
procedure to associate cohomology spaces to a continuous representation of a locally
compact second countable group.

This section will begin by introducing continuous cohomology and some of the
advantages that continuous group Lp-cohomology inherits from it. We will then
introduce the many definitions of Lp-cohomology, discuss when these versions co-
incide through comparison theorems and state its main feature (in contrast with
continuous cohomology with values in an arbitrary representation), quasi-isometric
invariance for every p > 1. We close this section by introducing ℓ2-Betti numbers,
which are invariants that can be defined from L2-cohomology and that will also be
of interest for us in view of their applications to measure equivalence.

1.1.1 Continuous group cohomology

We will only deal with continuous group cohomology with coefficients in Banach
spaces. This is defined by applying classical homological constructions in a Banach
setting. Since the category of Banach spaces is not abelian, one cannot use the whole
toolbox coming from homological algebra. More precisely, the image of a continuous
linear map between Banach spaces is not necessarily closed, so cokernels do not live
in this category and many problems arise, such as cohomology not always being
Hausdorff.

Nevertheless, Hochschild developed a theory, called relative homological algebra
that allows to partially recover results from classical homological algebra for this
type of cohomology. In short this theory says that one can recover classical results
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for continuous cohomology under strong topological assumptions, though sometimes
we lose the topologies in the conclusions.

1.1.1.1 Continuous group cohomology

We first define continuous cohomology of a locally compact second countable group
with coefficients in a continuous representation following [BW00, IX].

Let G be a locally compact second countable (that we abbreviate from now
on as lcsc) group. Let (ρ, V ) be a continuous representation of G (we also use
continuous G-module as terminology) i.e. a morphism ρ : G→ B(V ) such that the
map G × V → V defined by (g, v) 7→ ρ(g)v is continuous, where V is some locally
convex topological vector space and B(V ) denotes continuous invertible operators
on V . Here V will always be at least a Fréchet space.

For k ∈ N, we define the space Ck(G,V ) of k-cochains as the set of continuous
maps from Gk+1 to V . Since G is σ-compact, the space Ck(G,V ) equipped with
the topology of uniform convergence on compact subsets is a Fréchet space.

We define the differential dk : Ck(G,V ) → Ck+1(G,V ) by the following formula
on k-cochains:

(dkc)(g0, . . . , gk+1) =

k+1∑
i=0

(−1)ic(g0, . . . , gi−1, gi+1, . . . , gk+1).

The collection d of differentials satisfies dk+1 ◦ dk = 0. The following sequence is
exact:

0 → V
ϵ−→ C0(G,V )

d0−→ C1(G,V )
d1−→ . . .

dk−1−−−→ Ck(G,V )
dk−→ . . .

where ϵ : V → C0(G,V ) is the inclusion of constant maps. The space Ck(G,V ) can
be viewed as a continuous G-module, by endowing it with the action:

(g.c)(g0, . . . , gk) = ρ(g)(c(g−1g0, . . . , g
−1gk)).

We consider the space Ck(G,V )G of invariants in Ck(G,V ) with respect to this
action. Notice that this is just the set of continuous G-equivariant maps from Gk+1

to V , when endowing Gk+1 with the diagonal action by left translation on each
factor and V with the action given by ρ. The differential dk maps Ck(G,V )G into
Ck+1(G,V )G. We call ker(dk|Ck(G,V )G) the space of k-cocycles and denote it by
Zk(G, ρ), we call Im (dk−1|Ck−1(G,V )G) the space of k-coboundaries and denote it by
Bk(G, ρ).

Definition 1.1.1. The k-th continuous cohomology space (resp. k-th reduced con-
tinuous cohomology space) of G with coefficients in (ρ, V ) is the topological vector
space:

Hk
ct(G, ρ) := Zk(G, ρ)/Bk(G, ρ) (resp. Hk

ct(G, ρ) := Zk(G, ρ)/Bk(G, ρ)).

The space Hk
ct(G, ρ) is the largest Hausdorff quotient of Hk

ct(G, ρ). In particular
these two spaces coincide exactly when Hk

ct(G, ρ) is Hausdorff.
For this definition we used a particular resolution of the representation (ρ, V ).

As usual in homological algebra, one wants to show that one could have given this
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definition with any other resolution of ρ. This is possible if we assume strong topo-
logical assumptions on our resolutions (we need relatively injective strong resolutions,
see [BR20, 2.1] for a definition). This is usually how one identifies continuous group
cohomology to other types of cohomology: in particular, this is how one proves that
continuous Lp-cohomology coincides with other versions of Lp-cohomology.

Non-homogeneous cochains For concrete applications and particularly in de-
gree 1, it is sometimes useful to view elements of Ck(G,V )G not as maps from Gk+1

to V , but as maps from Gk to V .
For k = 1, this gives the classical geometric interpretation of the first continuous

cohomology space. We can identify Z1(G,V ) with the space of continuous maps
b : G→ V satisfying the cocycle relation b(gh) = b(g)+ ρ(g)b(h). This space can in
turn be identified with the space of continuous affine actions of G on V with linear
part ρ, via the map b 7→ Ab for b ∈ Z1(G,V ), where Ab(g) : V → V, v 7→ ρ(g)v+b(g)
for g ∈ G. In a similar way, we may identify B1(G,V ) with the space of maps
b : G → V of the form g 7→ b(g) = v − ρ(g)v for some v ∈ V . These maps
correspond to continuous affine actions of G on V having a fixed point.

In particular, H1
ct(G, ρ) = {0} means that every action by affine isometries on

the space V with linear part ρ has a fixed point.

1.1.1.2 Induction of representations

A central concept in representation theory is induction of representations. The
setting is the following. Let G be a lcsc group and H a closed subgroup in G. If we
are given a continuous representation (ρ, V ) of H, the question is first how to cook
a continuous representation of G starting from ρ and second what relation do we
have between the cohomologies of these two representations.

Concerning the first question, we may define the induced representation IndGH(ρ)
of ρ from H to G as the space of continuous functions f : G → V such that
f(hg) = ρ(h)(f(g)) for all g ∈ G and h ∈ H. It is a Fréchet space and a continuous
G-module for the right-translation action.

Proposition 1.1.2. (Shapiro’s lemma) [BW00, IX.2.3] Let H be a closed subgroup
of a lcsc group G. Let (ρ, V ) be a continuous H-module. Assume that the fibration
of G by H admits a local cross section. Then:

H∗
ct(H, ρ) = H∗

ct(G, Ind
G
H(ρ))

This type of induction allows one to study representations of a cocompact lattice
H = Γ through the representations of the ambient lcsc group G. We will not use
this result here because, as we will see later, continuous Lp-cohomology satisfies a
stronger statement: it is invariant under quasi-isometries.

Remark. 1. One can induce representations using other functional spaces (such
as locally p-integrable functions for some p > 1 or smooth functions) and state a
Shapiro lemma for those induced representations [Bla79].

2. Shalom defines induced representations using L2-functions and shows that
Shapiro’s lemma holds in degree 1 also for non-cocompact lattices, under some L2-
integrability assumption on the finite measure fundamental domain [Sha00, 3.3].
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1.1.1.3 Hochschild-Serre spectral sequence

We also have the Hochschild-Serre spectral sequence to decompose the cohomology
of a semi-direct product in terms of the cohomologies of its factors. This is the con-
tinuous group-theoretic analogue of the more classical Leray-Serre spectral sequence.
The main difference is that in our new setting we will require stronger topological
assumptions (namely, that the cohomology of one of the factors is Hausdorff in every
degree) and we may only obtain linear isomorphisms (not necessarily continuous)
between vector spaces.

The setting is the following: let P be a lcsc group such that P = R ⋉H where
R and H are closed subgroups. Let (ρ, V ) be a continuous P -module. We want to
understand the cohomology spaces H∗

ct(P, ρ) in terms of R and H.
The space Ck(H,V ) is a continuous R-module under the action given by:

(g.c)(x0, . . . , xk) = ρ(g)(c(g−1x0g, . . . , g
−1xkg)).

for c ∈ Ck(H,V ) and g ∈ R. The quotient Hk
ct(H, ρ|H) inherits a natural R-action,

we may now view it as a continuous R-module. The Hochschild-Serre spectral se-
quence relates the cohomologies H∗

ct(P, ρ) to the cohomologies H∗
ct(R,H

∗
ct(H, ρ|H)).

Theorem 1.1.3. [BW00, IX.4.1] Let P be a lcsc group and (ρ, V ) a continuous
P -module on a Banach space. Suppose that P = R ⋉ H where R and H are two
closed subgroups of P , such that C∗(H, ρ|H) is homotopically equivalent to a complex
of Banach spaces and such that the cohomology spaces H∗

ct(H, ρ|H) are Hausdorff.
Then there exists a spectral sequence (Er) abutting to H∗

ct(P, ρ) in which:

Ek,l
2 = Hk

ct(R,H
l
ct(H, ρ|H)).

1.1.2 Lp-cohomology: definitions and large-scale invariance

We will now introduce our main object of interest. Lp-cohomology is an invari-
ant that can be defined for different objects: one can talk about simplicial ℓp-
cohomology of a simplicial complex, de Rham Lp-cohomology of a manifold, con-
tinuous Lp-cohomology of a locally compact second countable group or asymptotic
Lp-cohomology of a metric measure space.

Historically, the first to be defined was de Rham Lp-cohomology by Gol’dshtein,
Kuz’minov, and Shvedov in [GKS86]. Pansu introduced asymptotic Lp-cohomology
first in degree 1 [Pan89a] (and later in all degrees [Pan95]) and compared it to its
de Rham version in the uniformly contractible case, this was the first evidence of
the large-scale geometric nature of Lp-cohomology. Simplicial ℓp-cohomology was
introduced by Gromov in his book [Gro93].

We will first define these different notions and point out their advantages in each
case: continuous group Lp-cohomology allows us to use relative homological alge-
bra, simplicial ℓp-cohomology is the easiest to define and manipulate, de Rham Lp-
cohomology satisfies Poincaré duality and asymptotic Lp-cohomology brings quasi-
isometric invariance (we will give more attention to this point later in the text). We
will then state comparison theorems that allow one to pass from one version to an-
other when some space has more than one of these structures. We end this section
by discussing one of the main features of Lp-cohomology: it gives quasi-isometry
invariants for every p > 1 and k ∈ N.
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1.1.2.1 Different versions of Lp-cohomology

We present four definitions of Lp-cohomology in different settings and some proper-
ties that are specific for each one of them.

Continuous group Lp-cohomology Let G be a locally compact second count-
able group endowed with a left-invariant Haar measure µG. We will be interested in
the Banach space V = Lp(G) of p-integrable functions with respect to the measure
µG for 1 < p < ∞. The representation ρp of V we are interested in is the right
regular representation of G on Lp(G), defined by right translation on the argument
of an Lp-function: (ρp(g)f)(x) = f(xg). This defines a continuous representation of
G.

Definition 1.1.4. The continuous group Lp-cohomology H∗
ct(G,L

p(G)) of G is the
continuous cohomology of G with coefficients in the representation ρp.

Notice that ρp is an isometric representation if and only if the measure µG is
also right-invariant, that is, if and only if G is unimodular. In this case ρp is also
continuously conjugate to the similarly defined left regular representation λp via the
continuous linear map Lp(G) → Lp(G) sending f to f̌ : x 7→ f(x−1).

Simplicial ℓp-homology and ℓp-cohomology We first recall the two main points
of view on simplicial complexes. For more details see [Dav08, Appendix A.2].

An abstract simplicial complex is a set X whose elements are finite subsets (that
we call simplices) of some given set X(0) (the set of vertices) such that for every
simplex σ of X, every subset of σ is also a simplex of X. For k ∈ N, a simplex of
cardinal k+1 is called a k-simplex and we denote the set of all k-simplices by X(k).

On the other hand, one can define the geometric realization of an abstract sim-
plicial complex. For every k ∈ N and every k-simplex σ, we consider a copy of the
standard closed k-dimensional simplex ∆k and we identify the vertices in σ to the
vertices of ∆k. The geometric realization X̃ of X is obtained by gluing each of these
copies following the inclusion relation of simplices. The resulting set is endowed with
the weak topology (that is, a subset of X̃ is open if and only if, for every k ∈ N, its
intersection with any of these copies of ∆k is open in the topology of ∆k).

The geometric realization is the object we are interested in, to which we will
refer most of the time by the term simplicial complex. We will not distinguish X̃
and X and we will just write X.

We now introduce simplicial ℓp-homology and simplicial ℓp-cohomology of sim-
plicial complexes of bounded geometry following [Bou16b].

Definition 1.1.5. Let X be a simplicial complex equipped with a metric d (metriz-
ing its topology) so that (X, d) is a length space. We say that such a simplicial
complex (X, d) has bounded geometry if:
(i) there exists a constant C > 0 such that every simplex of X has diameter ≤ C,
(ii) there is a function N : [0,∞[→ N such that for all r > 0, every ball of radius r
contains at most N(r) simplices of X.
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For the rest of this paragraph, let X be a simplicial complex of bounded geom-
etry. For 1 < p <∞, we define:

ℓpCk(X) = {
∑

σ∈X(k)

aσσ, (aσ)σ∈X(k) ∈ ℓp(X(k))},

ℓpCk(X) = {ω : X(k) → R, ω ∈ ℓp(X(k))}.

The standard boundary operators ∂k and dk are defined as usual (after choosing
an ordering on the vertices of X, so that simplices of X are oriented). Since the
complex X has bounded geometry, they define bounded operators:

∂k : ℓpCk(X) → ℓpCk−1(X), dk : ℓpCk(X) → ℓpCk+1(X).

These two operators are related by the simplicial version of Stokes’ theorem: for
c ∈ ℓpCk(X) and σ ∈ ℓpCk+1(X) we have dkc(σ) = c(∂k+1σ).

Definition 1.1.6. Denote ℓpZk(X) := ker ∂k and ℓpBk(X) := Im ∂k+1. The k-th
simplicial ℓp-homology space of X (resp. k-th reduced simplicial ℓp-homology space)
is the space:

ℓpHk(X) := ℓpZk(X)/ℓpBk(X) (resp. ℓpHk(X) := ℓpZk(X)/ℓpBk(X)).

Denote ℓpZk(X) := ker dk and ℓpBk(X) := Im dk−1. The k-th simplicial ℓp-
cohomology space of X (resp. k-th reduced simplicial ℓp-cohomology space) is the
space:

ℓpHk(X) = ℓpZk(X)/ℓpBk(X) (resp. ℓpHk(X) = ℓpZk(X)/ℓpBk(X)).

The closures are considered with respect to the topology of the ℓp-norm. The quo-
tient spaces are endowed with the corresponding quotient topology. Reduced ho-
mology and cohomology spaces are thus Banach spaces.

If X is a finite simplicial complex, then these spaces correspond to classical real
homology and real cohomology spaces Hk(X,R) and Hk(X,R). Thus we obtain
new invariants only when the complex X is non-compact.

We have a duality result relating ℓp-homology and ℓp-cohomology spaces but
only for the reduced versions [Bou16b].

Proposition 1.1.7. For p, r ∈]1,+∞[ such that p−1+r−1 = 1 and k ∈ N, the space
ℓpHk(X) is canonically isomorphic to the dual of ℓrHk(X). Similarly, ℓrHk(X) is
canonically isomorphic to the dual of ℓpHk(X).

For simply connected simplicial complexes, integration over loops allows one to
represent ℓp-cohomology in degree 1 in a simpler way.

Proposition 1.1.8. Let X be a simply connected simplicial complex of bounded
geometry. Then for all p > 1:

ℓpH1(X) = {f : X(0) → R, df ∈ ℓp(X(1))}/(ℓp(X(0)) + R),

ℓpH1(X) = {f : X(0) → R, df ∈ ℓp(X(1))}/(ℓp(X(0)) + R).
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de Rham Lp-cohomology We define de Rham Lp-cohomology following [BR21].
Let M be a Riemannian manifold. We denote by dx the Riemannian volume of

M and for x ∈ M we denote |v|x the Riemannian length of a vector v ∈ TxM . For
k ∈ N, let Ωk(M) denote the space of C∞ differential k-forms on M . We define the
Lp-norm of ω ∈ Ωk(M) as:

||ω||pLp =

∫
M

|ω|px dx

where |ω|x = sup{|ωx(X1, . . . , Xk)|x : Xi ∈ TxM, |Xi|x = 1}. We denote by
LpΩk(M) the norm completion of the normed space {ω ∈ Ωk(M), ||ω||Lp < ∞}.
The differential of some ω ∈ LpΩk(M) may not have finite Lp-norm, hence the
spaces LpΩk(M) with exterior derivatives do not form a cochain complex. This is
why we let for ω ∈ Ωk(M):

||ω||Ωp,k = ||ω||Lp + ||dω||Lp

and we define the space Ωp,k(M) to be the norm completion of the normed space
{ω ∈ Ωk(M), ||ω||Ωp,k < ∞}. The space Ωp,k(M) is a Banach space. The exterior
derivative extends to a bounded operator dk : Ωp,k(M) → Ωp,k+1(M) satisfying
d ◦ d = 0.

Definition 1.1.9. We define the k-th de Rham Lp-cohomology space LpHk
dR(M) to

be the k-th cohomology space of the cochain complex:

Ωp,0(M)
d0−→ Ωp,1(M)

d1−→ Ωp,2(M)
d2−→ . . .

The k-th reduced de Rham Lp-cohomology space LpHk
dR(M) is the largest Hausdorff

quotient of LpHk
dR(M).

We shall state two important results concerning de Rham Lp-cohomology: reg-
ularization of forms and Poincaré duality.

Theorem 1.1.10. [GT06, 12.8] Let M be a Riemannian manifold. Every cohomol-
ogy class in LpHk

dR(M) can be represented by a smooth form.

In particular, this implies that for a compact Riemannian manifold, de Rham
Lp-cohomology coincides with the usual de Rham cohomology.

Theorem 1.1.11. [GT10] Let M be a complete oriented Riemannian manifold and
dimension n and let p, q > 1 be such that p−1+q−1 = 1. For 0 ≤ k ≤ n, the Banach
space LpHk

dR(M) is isometric to the dual of LqHn−k
dR (M). The duality is given by:

LpHk
dR(M)× LqHn−k

dR (M) → R

([ω], [θ]) 7→
∫
M
ω ∧ θ

Asymptotic Lp-cohomology We introduce asymptotic Lp-cohomology following
[Pan95] and [BR21]. First we introduce some vocabulary.
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Definition 1.1.12. We say that a metric space (X, d) with a Borel measure µ (we
call this a metric measure space) is of bounded geometry if there exist two functions
v, V : (0,+∞) → (0,+∞) such that for every ball B(x, r) ⊆ X of radius r we have:

v(r) ≤ µ(B(x, r)) ≤ V (r).

Let (X, d, µ) be a metric space measure space of bounded geometry. For k ∈ N
and t > 0 and define ∆k

t = {(xi)i ∈ Xk+1 : d(xi, xj) < t, ∀i ̸= j}. Now let
LpASk(X) to be the space of (classes of) functions u : Xk+1 → R such that for
every t > 0 one has:

Nt(u)
p :=

∫
∆k

t

|u(x0, . . . , xk)|pdµ(x0) . . . dµ(xk) <∞.

The space LpASk(X) equipped with the family of semi-norms Nt for t > 0 is a
Fréchet space for every k ∈ N. These form a cochain complex where the differentials
dk : LpASk(X) → LpASk+1(X) are the classical simplicial differentials.

Definition 1.1.13. We define the k-th asymptotic Lp-cohomology space LpHk
AS(X)

to be the k-th cohomology space of the cochain complex:

LpAS0(X)
d0−→ LpAS1(X)

d1−→ LpAS2(X)
d2−→ . . .

The k-th reduced asymptotic Lp-cohomology space LpHk
AS(X) is the largest Hausdorff

quotient of LpHk
AS(X).

1.1.2.2 Comparison theorems

We list results relating the different versions of Lp-cohomology that we introduced.
We start with the Lp-analogue of de Rham’s theorem due to Pansu [Pan95] (see

[Seq22, 1.1] and [Gen14, 4.7] for further elaborations). Recall that the classical de
Rham’s theorem states that de Rham cohomology of a manifold can be computed
via simplicial cohomology of a triangulation.

Theorem 1.1.14. Let M be a Riemannian manifold that admits a continuous tri-
angulation X of bounded geometry and such that every simplex of X is bi-Lipschitz
homeomorphic to the standard simplex of the same dimension, where the Lipschitz
constant does not depend on the simplex. Then for every p > 1 we have an isomor-
phism of graded topological vector spaces:

LpH∗
dR(M) = ℓpH∗(X).

Asymptotic Lp-cohomology is hard to compute directly. The next result says
that we can compute it using continuous Lp-cohomology (which can still be hard to
compute, but at least we have more homological tools).

Theorem 1.1.15. [SS18] [BR20, 3.6] Let G be a locally compact second countable
group endowed with a left-invariant proper metric. Then for every p > 1 we have
an isomorphism of graded topological vector spaces:

H∗
ct(G,L

p(G)) = LpH∗
AS(G).
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Notice that both of our previous results do not require strong hypothesis on
our objects. In some sense we can say that on the one hand we have de Rham
and simplicial Lp-cohomology and on the other hand we have asymptotic and con-
tinuous Lp-cohomology. The next results say that we should draw a line between
these two sides. Indeed, as we will see later, asymptotic (and hence also contin-
uous) Lp-cohomology is always invariant under quasi-isometries (and even coarse
equivalences). Quasi-isometries do not take into account the local topology of our
spaces, but de Rham and simplicial Lp-cohomology do. Hence if we want to show
that these two sides coincide, it is necessary to suppose that there is nothing at
local or bounded scale, so that all that remains is of asymptotic nature. The good
hypothesis is uniform contractibility.

Definition 1.1.16. We say that a metric space (X, d) is uniformly contractible if
X is contractible and if there exists a function Φ : [0,+∞) → [0,+∞) such that for
every x ∈ X and r > 0, the closed ball B(x, r) is contractible inside B(x,Φ(r)).

The next result is due to Pansu [Pan95]. It has perhaps the most involved proof
among these comparison theorems. It relies on a bicomplex lemma (used twice) to
identify each of these versions to an Lp-version of Čech cohomology.

Theorem 1.1.17. [Pan95] Let M be a uniformly contractible Riemannian manifold
of bounded geometry. Then for every p > 1 we have an isomorphism of graded
topological vector spaces:

LpH∗
AS(M) = LpH∗

dR(M).

We end this section by stating a standard result that relates continuous group
Lp-cohomology and simplicial Lp-cohomology in the case of a group action. Note
that a contractible space endowed with a cocompact group action is automatically
uniformly contractible.

Proposition 1.1.18. Let G be a locally compact second countable group acting prop-
erly and cocompactly on a contractible simplicial complex X of bounded geometry.
Then for every p > 1 we have an isomorphism of graded topological vector spaces:

H∗
ct(G,L

p(G)) = ℓpH∗(X).

The proof of this proposition is simple: it consists in defining equivariant cochains
and showing that they give a relatively injective strong resolution of Lp(G), hence
the associated cohomology coincides with continuous Lp-cohomology. Then one
should unfold these equivariant cochains (that are defined on a compact fundamen-
tal domain) and show that they are just classical Lp-cochains.

1.1.2.3 Quasi-isometric invariance

The main property that distinguishes Lp-cohomology from continuous cohomology
with values in an arbitrary representation is quasi-isometric invariance. We begin
with a brief discussion on quasi-isometries and coarse equivalences.

Large-scale geometry refers to the study of geometric features that depend only
on asymptotic behaviour of geometric objects. By this we mean that we are inter-
ested in properties that remain invariant under bounded perturbations or rescaling
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of a metric. Bi-Lipschitz equivalence ignores the importance of rescaling, but is still
sensitive to bounded perturbations. We relax the definition of bi-Lipschitz equiva-
lence by allowing some additive constant to obtain the notion of quasi-isometry.

Definition 1.1.19. Let (X, dX) and (Y, dY ) be two metric spaces. We say that
a function f : X → Y is a quasi-isometric embedding if there exist two constants
C > 1 and D > 0 such that for all x, y ∈ X:

C−1dX(x, y)−D ≤ dY (f(x), f(y)) ≤ CdX(x, y) +D

We say that f : X → Y is a quasi-isometry if there exists g : Y → X such that both
f and g are quasi-isometric embeddings and g ◦ f is at bounded distance from the
identity, that is, there exists C > 0 such that for all x ∈ X dX(g ◦ f(x), x) ≤ C.

Many of the features that were historically studied in the framework of quasi-
isometries are in fact invariant under a coarser relation, called coarse equivalence,
that becomes increasingly popular.

Definition 1.1.20. Let (X, dX) and (Y, dY ) be two metric spaces. We say that a
function f : X → Y is a coarse embedding if there exist two non-decreasing functions
ρ−, ρ+ : R+ → R+ with limt→+∞ ρ−(t) = limt→+∞ ρ+(t) = ∞ and such that for all
x, y ∈ X we have:

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y)).

We say that f : X → Y is a coarse equivalence if there exists g : Y → X such
that both f and g are coarse embeddings and g ◦ f is at bounded distance from the
identity.

In this thesis we deal mostly with classical metric spaces that enjoy good prop-
erties. In particular they are often length spaces (see [BH99, I.3.1] for a definition).
In this setting, a coarse equivalence is automatically a quasi-isometry.

Proposition 1.1.21. [DK18, 8.26] Let (X, dX) and (Y, dY ) be two geodesic metric
spaces. Let f : X → Y be a coarse equivalence. Then f : X → Y is a quasi-isometry.

The main feature of Lp-cohomology is that it is invariant under quasi-isometries
in many situations. In fact, it is also invariant under coarse equivalences (see [Pan95],
notice that the definition of quasi-isometry there is in fact what we call here a coarse
equivalence). This is shown first for asymptotic Lp-cohomology and then one uses
comparison theorems (from the previous subsection) to show that other versions are
also invariant.

Theorem 1.1.22. [Pan95] Let M1 and M2 be two metric measure spaces of bounded
geometry. Suppose that F : M1 → M2 is a coarse equivalence. Then for all p > 1,
F induces canonically an isomorphism of graded topological vector spaces:

F ∗ : LpH∗
AS(M2)

≃−→ LpH∗
AS(M1).

This result can also be shown directly in the simplicial setting. This was first
noticed by Gromov in [Gro93] (see [BP03] for a complete proof).

Theorem 1.1.23. Let X1 and X2 be two uniformly contractible simplicial complexes
of bounded geometry. Let F : X1 → X2 be a quasi-isometry. Then for all p > 1, F
induces canonically an isomorphism of graded topological vector spaces:

F ∗ : ℓpH∗(X2)
≃−→ ℓpH∗(X1).
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1.1.3 ℓ2-Betti numbers, L2-Betti numbers and applications

ℓ2-Betti numbers of discrete groups were first defined by Cheeger and Gromov in
[CG86]. Later, Lück gave another point of view by developing a dimension theory
for modules on von Neumann algebras with finite trace. For him, ℓ2-Betti numbers
are just the Murray-von Neumann dimensions of the L2-cohomology spaces [Lüc02].
Petersen extends some of Lück’s work to modules on von Neumann algebras with
semifinite trace, which allowed him to give a definition of L2-Betti numbers for
general unimodular lcsc groups [Pet13], [KPV15].

Let G be a unimodular lcsc group. The von Neumann algebra LG of the group
G is the weak operator closure of the operators λ(γ) for γ ∈ Γ in the space of
bounded operators on L2(G), where λ denotes the left regular representation on
L2(G) [Lüc02, I.1.1]. We say that a vector space V is a right LG-module if V
admits a right action of the algebra LG.

We denote by dim(G,µ)M the Murray-von Neumann dimension of some right
LG-module M , associated to some natural semifinite trace on LG, as defined in
[KPV15, Appendix A].

It remains to see that for a unimodular lcsc group G, the spaces Hk
ct(G,L

2(G))

and Hk
ct(G,L

2(G)) are right LG-modules for any k ∈ N (here L2(G) denotes the
left regular representation on L2(G), since G is unimodular this is equivalent to the
right regular representation). Essentially, this corresponds to the fact that L2(G)
is naturally a right LG-module using the right regular representation and all the
algebraic machinery that is used to define Hk

ct(G,L
2(G)) and H∗

ct(G,L
2(G)) from

L2(G) may only alter the left action, but respects the right action.

Definition 1.1.24. Let G be a unimodular locally compact second countable group
endowed with a Haar measure µ. For k ∈ N, we define the k-th L2-Betti number of
G to be:

βk(G,µ) := dim(G,µ)H
k
ct

(
G,L2(G)

)
.

Changing the Haar measure only rescales the whole sequence of L2-Betti numbers,
so after fixing a Haar measure we may only write βk(G) instead of βk(G,µ).

Remark. One can also define βk(G,µ) := dim(G,µ)H
k
ct

(
G,L2(G)

)
. In fact these two

definitions define the same object for unimodular locally compact second countable
groups [KPV15, 2.2].

Applications We give some applications of L2-Betti numbers to the problem of
distinguishing groups up to different equivalence relations.

We have already seen that Lp-cohomology is invariant under quasi-isometry and
coarse equivalence for every p > 1, so by choosing p = 2, we obtain the following
consequence for L2-Betti numbers.

Theorem 1.1.25. (Sauer-Schrödl) [SS18, Theorem 1] Let G and H be two uni-
modular lcsc groups. Suppose that G and H are coarsely equivalent. Then for every
k ∈ N we have: βk(G) = 0 if and only if βk(H) = 0.

One can study groups up to other equivalence relations, such as measure equiv-
alence. We introduce it as the measurable analogue of quasi-isometry in view of
Gromov’s following characterization of quasi-isometry.
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Theorem 1.1.26. (Gromov) [Gro93, 0.2.C.2’] Two finitely generated groups Γ and
Λ are quasi-isometric if and only if there exist commuting actions of Γ and Λ on
some locally compact space X that are continuous, proper and cocompact.

We now define measure equivalence for countable discrete groups by replacing
topological conditions in the previous statement by measurable conditions.

Definition 1.1.27. Two countable groups Γ and Λ are measure equivalent if there
exist commuting actions of Γ and Λ on some standard (infinite) measure space (Ω,m)
that are measure preserving, free, and with finite measure fundamental domain.

We call the number [Γ : Λ]Ω = m(Ω/Λ)
m(Ω/Γ) the index of the coupling Ω. An example

of two measure equivalent groups are two lattices Γ and Λ inside the same locally
compact group G.

The following statement explains the relation between measure equivalence and
ℓ2-Betti numbers.

Theorem 1.1.28. (Gaboriau)[Gab02, 6.3] Let Γ and Λ be two measure equivalent
countable discrete groups. Then for every k ∈ N we have:

βk(Γ) = [Γ : Λ]Ω · βk(Λ).

In particular, the sequence of ℓ2-Betti numbers of a discrete countable group is in-
variant under measure equivalence up to proportionality on the sequence.

In particular, the sequences of ℓ2-Betti numbers of two lattices inside the same
lcsc group are proportional. This corollary of Gaboriau’s criterion may also be
obtained using the following result, which relates ℓ2-Betti numbers of lattices to the
L2-Betti numbers of the ambient locally compact group.

Theorem 1.1.29. (Kyed-Petersen-Vaes) [KPV15, Theorem B] Let G be a unimod-
ular lcsc group and H a closed unimodular subgroup of G of finite covolume. After
fixing Haar measures on G and H, we have for all k ∈ N:

βk(G) =
1

covolG(H)
βk(H).

These last two results are the ones we will use in [LN21] to distinguish finitely
presented simple groups up to measure equivalence.

1.2 Buildings

We now turn to the objects on which we will compute Lp-cohomology, that is,
semisimple groups over local fields, their geometries and generalizations. In fact
we will focus mostly on the non-Archimedean case and its corresponding general-
izations, as the tools we use for studying real semisimple groups are standard and
can be found in references such as [Hel01] or [Kna96]. The generalizations we are
talking about are buildings.

Buildings were introduced by Tits, first as incidence geometries to show sim-
plicity of some finite groups and later as non-Archimedean analogues of symmetric
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spaces. They are not only tools to study groups that we have already met, as they
can also be used to define new groups with exotic properties.

The main goal of this section is to introduce buildings. We start with a short dis-
cussion on Coxeter systems. We will then define a building as a purely combinatorial
object to which we associate metric realizations. We close this section by introduc-
ing the main examples of groups and buildings that we will work with: these are
semisimple groups over non-Archimedean local fields acting on their Bruhat-Tits
buildings and (complete) Kac-Moody groups acting on their corresponding Kac-
Moody buildings.

1.2.1 Coxeter systems

Before introducing buildings, we define their building blocks, namely, Coxeter sys-
tems.

Definition 1.2.1. A Coxeter system (W,S) is the data of a finite set S and a group
given by generators and relations:

W = ⟨s ∈ S | (st)mst = 1, s, t ∈ S⟩,

with mss = 1 and mst ∈ N≥2 ∪ {∞} for s ̸= t. The matrix M = (mst)s,t∈S is called
the Coxeter matrix of (W,S). For a subset T ⊆ S, we denote by WT = ⟨s ∈ T ⟩ ⊆W
the standard parabolic subgroup of type T of W .

We may separate Coxeter systems in three categories: spherical, affine and non-
affine. Let (W,S) be a Coxeter system. We say that (W,S) is spherical if W is
finite. We say that (W,S) is affine if W is infinite and S acts on some Euclidean
space as orthogonal reflections with respect to hyperplanes (sometimes it is also
asked for them to be irreducible, meaning that they cannot be written as a product
of two non-trivial Coxeter systems, here we do not make this hypothesis). The term
non-affine Coxeter system refers to any Coxeter system that is neither spherical nor
affine.

Both spherical and affine Coxeter systems are completely classified [Bou68]. As
we will see soon after introducing examples of buildings, we will be interested mostly
in infinite Coxeter systems. Among these, there is a sharp dichotomy opposing
affine and non-affine Coxeter systems, which can be stated as a strong version of
the classical Tits’ alternative.

Theorem 1.2.2. [Dav08, 17.2.1] Let (W,S) be an infinite Coxeter system. Then W
is either affine (and hence virtually abelian and of polynomial growth) or W contains
a finite index subgroup that maps onto the free group on two generators (and hence
is of exponential growth).

This dichotomy will also be reflected on their corresponding buildings. Affine
Coxeter groups lead to classical Lie theory associated to simple algebraic groups over
non-Archimedean local fields. The non-affine case leads to new, exotic buildings and
to Kac-Moody groups outside the scope of classical algebraic group theory.
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1.2.2 Buildings

We will now define buildings first as purely combinatorial objects to which we will
associate later topological or metric realizations. In fact we will work with more
than one metric realization for a same combinatorial structure. To some extent, the
main realization for us is the Davis realization, because it is the easiest way to check
the CAT (0)-property.

1.2.2.1 Combinatorial buildings

We define buildings from a purely combinatorial point of view following [Ron89].
A chamber system over a set S is a set C together with a family of equivalence

relations on C indexed by S. The elements of C are called chambers. Two chambers
are s-equivalent if they are equivalent under the relation corresponding to s and
s-adjacent if they are s-equivalent and not equal.

A gallery γ in C is a finite sequence of chambers (c0, . . . , ck) such that ci−1 is
s-adjacent to ci for all 1 ≤ i ≤ n. The gallery is said to have type s1 . . . sk (as a
word on the free monoid on the alphabet S) if ci−1 is si-adjacent to ci for every i.

Definition 1.2.3. Let (W,S) be a Coxeter system. A (combinatorial) building of
type (W,S) is a chamber system C over S such that:
(i) for all s ∈ S, each s-equivalence class contains at least two chambers and,
(ii) there exists a W -valued distance function dW : C × C → W , that is, a map
satisfying that: for each w ∈ W , if w = s1 . . . sk is a reduced word for w in the
alphabet S (that is si ∈ S for every i and the integer k is minimal), then two
chambers c and c′ can be joined by a gallery of type s1 . . . sk if and only if dW (c, c′) =
w.
The group W is called the Weyl group of the building C and the integer |S| − 1 is
the rank of C.

Example 1.2.4. Let (W,S) be a Coxeter system. Then the chamber system C =W ,
endowed with the relations w ∼s w

′ when w = w′s for each s ∈ S and the W -valued
distance dW : W ×W → W defined by dW (w,w′) = w−1w′, is a building of type
(W,S) called the abstract Coxeter complex of W .

A building C of type (W,S) has finite thickness if for all s ∈ S, each s-equivalence
class is finite. In this case, we say that C is regular if for each s ∈ S, each s-
equivalence class has the same number of elements qs + 1. We denote by q the
vector containing the qs’s as coordinates. We say C that has constant thickness if
all the qs’s have the same value q. In what follows all of our buildings will always be
regular. We say that a building is spherical, affine or non-affine if its Weyl group
is respectively spherical, affine or non-affine.

1.2.2.2 Metric realizations of buildings

We now define geometric realizations of combinatorial buildings in a relatively gen-
eral setting following [Dav08, Chapter 18]. This is because in what follows we will
be interested in three different metric realizations of buildings. The classical Tits
realization is easy to define but unpractical outside the affine case (often not locally
finite). The well-known Davis realization carries a CAT (0)-metric and is perhaps
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the most important metric realization of a building. We introduce also the less
known Bestvina realization as it is well-suited for computing cohomology.

General metric realizations A simplicial complex is a topological space ob-
tained by gluing simplices. Essentially, a metric realization of a building is obtained
by gluing the same "local picture" following conditions imposed by the chamber
system. The following definition formalizes what we mean by local picture.

A mirror structure on a CW complex K consists of an index set S and a family
of subcomplexes (Ks)s∈S . The subspaces Ks are the mirrors of K. In this case,
we say that K is a mirrored CW complex over S. We set K∅ = K and for any
nonempty subset T ⊆ S,

KT =
⋂
t∈T

Kt.

For x ∈ K, we set S(x) = {s ∈ S, x ∈ Ks}.

Definition 1.2.5. Let C be a (combinatorial) building of type (W,S) and K a
mirrored CW complex over S. The K-realization of C is the space:

XK = (C ×K)/ ∼,

where [(c, x)] ∼ [(c′, x′)] if and only if x = x′ ∈ K and dW (c, c′) ∈WS(x).

If (K, d) is a geodesic metric space, we can extend d to XK by declaring that
all translates of K are isometric and then by defining a piecewise length metric
on XK . If moreover each Ks is a proper metric space, then (XK , d) is a geodesic
metric space [AB08, Corollary 12.28]. The space (XK , d) has bounded geometry if
and only if the mirror structure satisfies that for every subset T ⊆ S generating an
infinite subgroup WT , we have KT = ∅.

We now introduce some particular metric realizations of buildings.

Tits buildings Let C be a building of type (W,S). Here we choose K = ∆|S|−1

to be the standard simplex of dimension |S| − 1. We endow ∆|S|−1 with a mirror
structure by letting Ks be the codimension 1 faces of ∆|S|−1. The space X∆ =
(C ×K)/ ∼ is called the simplicial or Tits realization of C.

If C has finite thickness, then X∆ is a simplicial complex of bounded geometry if
and only if (W,S) is a finite, irreducible affine or compact hyperbolic Coxeter system
(in the sense of [Bou68, p.133, exercice 14]). The latter are the only infinite, non-
affine Coxeter systems such that every proper parabolic subgroup of (W,S) is finite.
These exist, but there is only a finite number of them and they all have rank ≤ 5
[Bou68, p.133, exercice 15]. For affine Coxeter systems that are not irreducible, it
is better to consider the polysimplicial complex obtained as the product of the Tits
realizations of each irreducible affine subsystem.

The Tits realization is classically used as a definition of building. This is because
historically the first buildings to be introduced and studied were spherical and affine
buildings (for which the Tits realization gives already locally finite complexes for
finite thickness buildings). At this time not too many questions were asked outside
of this scope, so there was no need to introduce further realizations. The classical
definition of a building is the following. A building is a polysimplicial complex X
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obtained by gluing subcomplexes called apartments, under three conditions:
(i) There exists a Coxeter system (W,S) = (W1× . . .×Wr, S1⊔ . . .⊔Sr), where each
(Wi, Si) is irreducible, and each apartment is a copy of the polysimplicial Coxeter
complex Σ = Σ1 × . . .× Σr where each Σi = (Wi ×∆|Si|−1)/ ∼.
(ii) Any two polysimplices in X lie in a common apartment.
(iii) For two apartments A,B in X, there exists a polysimplicial automorphism that
carries A onto B and fixes A ∩B.

The Solomon-Tits theorem states that the Tits realization of a spherical building
with irreducible Weyl group (W,S) is homotopy equivalent to a bouquet of spheres
of dimension |S| − 1, where the number of spheres is the number of apartments
containing a fixed chamber [AB08, 4.73].

Davis buildings We now define the Davis realization XD of a building. The main
reason to introduce this realization is that for any finite thickness combinatorial
building it is locally finite (unlike the Tits realization) and in this case it can always
be endowed with a CAT (0)-metric [Dav94]. We give two different (but equivalent)
constructions of XD.

We first follow [DJ02], where the Davis realization is constructed by taking out
simplices from the Tits realization. Let X be the Tits realization of a non-spherical
regular building C of type (W,S). Recall that the link of a simplex σ in a simplicial
complex is the set:

Lk(σ) = {τ simplex , σ and τ are disjoint faces of the same maximal simplex}.

Definition 1.2.6. Let X ′ be the first barycentric subdivision of X. The Davis
complex XD of X is the subcomplex of X ′ generated by the barycenters of simplices
of X with compact links.

From the algebraic topology viewpoint, the space XD is similar to X in the sense
that it is a deformation retract of X [DJ02, 1.4]. The complex XD is locally finite,
so it is locally compact. Note that with this definition XD is a simplicial complex,
but it is not necessarily purely dimensional, that is, its maximal simplices may not
have the same dimension.

The intersections ∆ ∩ XD are isomorphic for any chamber ∆ in X (because
they are all translates of a given chamber by elements of the Weyl group for some
apartment). We call such an intersection D a Davis chamber of XD.

The main feature of the Davis complex is that it carries a CAT (0)-metric.

Theorem 1.2.7. (Moussong) [Dav08, 18.3.1] There exists a piecewise Euclidean
metric on the Davis chamber D such that its natural extension to XD (by transport-
ing the metric to any Davis chamber via the Weyl group) is CAT (0).

This implies that not only thatXD is contractible, but also thatX is contractible
when (W,S) is non-spherical. Recall that when (W,S) is spherical, the Solomon-Tits
theorem says that X is homotopy equivalent to a bouquet of spheres.

We now describe a second construction of the Davis realization. As the notation
XD suggests, the space XD can also be constructed from the underlying combina-
torial building C and a Davis chamber D, after seeing that D can be endowed with
the structure of a mirrored space [Dav08, Chapter 18].
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Definition 1.2.8. The Davis chamber D = D(W,S) of (W,S) is the (geometric re-
alization of the) barycentric subdivision of the poset of all finite parabolic subgroups
WT =< s ∈ T > for T ⊆ S in W ordered by inclusion. For s ∈ S, define Ds to be
the subcomplex of D corresponding to the poset of all finite parabolic subgroups of
W containing W{s}.

Thus D is a mirrored space over S and both definitions of XD agree:

XD = (C ×D)/ ∼ .

Bestvina buildings We introduce the Bestvina realization of a building following
[Bes93]. The dimension of the Davis realization of a building gives an upper bound
for the virtual cohomological dimension of its Weyl group, but in general there is
no equality. The Bestvina chamber is a topological construction that associates
to every Coxeter system (W,S) a finite contractible CW complex whose dimension
coincides with the virtual cohomological dimension vcd(W ) = vcdZ(W ) of W (see
[LN22, 3.3.2] for a definition). This last property makes it suitable in some contexts
for cohomology.

Denote by F the poset of subsets T ⊆ S such that WT = ⟨T ⟩ is a finite parabolic
subgroup of W ordered with respect to inclusion. For any maximal element F ∈ F ,
define PF to be a point. Assuming that PF ′ has been constructed for every F ′ ⊃ F ,
define PF to be a contractible polyhedron containing

⋃
F ′⊃F PF ′ of the least possible

dimension. Most of the time, we have dim(PF ) = dim(
⋃

F ′⊃F PF ′)+1 and PF is just
a cone on

⋃
F ′⊃F PF ′ , but in some situations (e.g. when there is a unique F ′ ∈ F

such that F ′ ⊃ F and |F ′| = |F | + 1) we have dim(PF ) = dim(
⋃

F ′⊃F PF ′). We
then define the Bestvina chamber B to be P∅ [Bes93].

The Bestvina chamber has a natural mirrored structure given by the subcom-
plexes Bs = P{s}, s ∈ S. We can thus define the Bestvina realization XB of a
building C, as the space:

XB := (C ×B)/ ∼ .

It is not known if this realization carries a CAT (0)-metric as the Davis realization,
but for our purposes we may switch between these two versions as they are quasi-
isometric locally finite simplicial complexes.

1.2.3 BN-pairs

So far we have introduced buildings, but no examples yet. We will now introduce
the most classical examples of buildings. The construction is always the same: we
start with the group we are interested in, to which we attach a building thanks to
a standard procedure using a BN -pair.

Definition 1.2.9. Let G be a group. A BN-pair in G is the data of a pair of
subgroups B and N in G and of a set S of classes modulo T := B ∩ N in N
satisfying:
(T1) G = ⟨B ∪N⟩ and B ∩N ◁ N ,
(T2) elements in S are of order 2 and generate the group W := N/T ,
(T3) sBw ⊂ BwB ∪BswB for s ∈ S and w ∈W ,
(T4) for s ∈ S, we have sBs ̸⊂ B.
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The group W is called the Weyl group of the BN-pair defined by (B,N). One
can show that (W,S) is a Coxeter system [Bou68, IV.2.4 Théorème 2].

The general procedure to construct a building from a BN -pair is given by the
following theorem.

Theorem 1.2.10. [Ron89, 5.3] Let (B,N) be a BN-pair in G. Then the set of left
cosets G/B defines a combinatorial building of type (W,S), where W = N/(B∩N),
with s-adjacency given by:

gB ∼s hB ⇐⇒ g−1h ∈ B⟨s⟩B.

For g, h ∈ G, the W -valued distance between their cosets gB and hB is given by:

dW (gB, hB) = w ⇐⇒ g−1h ∈ BwB.

Notice that in the preceding construction, the action by left translation of G
on the building G/B is transitive, it is even transitive on the pairs of chambers
at fixed W -distance and the stabilizer of any apartment acts transitively on the
chambers it contains (such an action is said to be strongly transitive). Hence all of
the examples we will present have large automorphism groups. Conversely, every
building C admitting a strongly transitive and type preserving (that is, preserves
the adjacency relations) action of a group G comes from a BN -pair in G, where
the subgroup B is the stabilizer of a chamber c ∈ C and N is the stabilizer of an
apartment ccontaining c [Ron89, 5.2].

On the other hand, there are many examples of buildings with trivial full auto-
morphism group. A first family of such buildings are trees with different valences in
each vertex. In [BP07], there are examples of buildings of dimension 2 with affine
Weyl group and trivial full automorphism group.

We now turn to examples of groups with a BN -pair: we start with the more
classical situations and we go towards the more exotic ones.

1.2.3.1 Spherical buildings and semisimple algebraic groups

We first recall some definitions from algebraic group theory, for more details see
[Bor91], [BT65] or [Mar91].

Let F be a field and G be the F -points of a semisimple algebraic group G defined
over F and let g denote its Lie algebra. We suppose that G is isotropic over F , that
is, G contains a non-trivial non-central F -split torus and we let S be a maximal
F -split torus in G (the dimension of such a torus is the split rank of G over F ).
The following idea is fundamental in classical Lie theory: we diagonalize the adjoint
action Ad(s) of each element s ∈ S acting on the Lie algebra g. Since S is abelian,
all of these endomorphisms are diagonalizable in a common basis of eigenvectors,
we call roots the nontrivial characters α : S → F× such that the space

gα = {X ∈ g | ∀s ∈ S,Ad(s)X = α(s)X}

is nonzero. We denote by Φ = Φ(S,G) the set of roots, that we call the root system
of G. The isotropy condition on G ensures that Φ is nonempty. The set Φ is an
abstract root system and as such, it carries a Weyl group (which is finite) and we
can choose a subset of positive roots that we denote by Φ+ [Bor91, 14.7].
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We now consider different subgroups of G, from which the BN -pair will be
constructed. Let Z = ZG(S) be the centralizer of S in G and N = NG(S) be the
normalizer of S inG. Let U+ be the subgroup ofG with Lie algebra u+ =

⊕
α∈Φ+

gα,
it is normalized by Z [Bor91, 21.10]. We set B0 = Z ⋉U+, it satisfies B0 ∩N = Z.

Theorem 1.2.11. [Bor91, 21.15] The pair of subgroups (B0, N) is a BN -pair inside
G, its Weyl group W0 = N/(B0 ∩ N) = N/Z is finite and coincides with the Weyl
group of the root system Φ.

The fact that this is a BN -pair is a way to sum up many previously known results
on the structure theory of algebraic groups, such as the Bruhat decomposition of
the group G =

⊔
w∈W BwB [Bou68, IV.2.3] or properties of parabolic subgroups of

G [Bou68, IV.2.6]. The historical reason to introduce it was that it allowed to run
a uniform proof of abstract simplicity of simple isotropic algebraic groups modulo
their centers (for such a simplicity criterion see [Bou68, IV.2.7]).

The building associated to this BN -pair is called the spherical building of the
semisimple algebraic group G. Historically, these were the first buildings to be
studied. Essentially all spherical buildings of rank ≥ 3 arise from this construction
[AB08, 9.1].

1.2.3.2 Affine buildings and Bruhat-Tits theory

Iwahori and Matsumoto showed that some p-adic semisimple groups carry a second
BN -pair, this time with an affine Weyl group [IM65]. This inspired Bruhat and
Tits to initiate a systematic study of reductive groups over non-Archimedean local
fields, by extending Iwahori and Matsumoto’s results to any such group: this is the
celebrated Bruhat-Tits theory.

Let F be a non-Archimedean local field and G be the F -points of a semisimple
algebraic group G defined over F . The group G is lcsc and totally disconnected when
endowed with the analytic topology coming from F . The fundamental theorem of
Bruhat-Tits theory is that these groups admit good actions on some affine buildings.
The following statement is reconstructed from different parts of [Tit79].

Theorem 1.2.12. Let F be a non-Archimedean local field and G be the F -points of
a simply connected simple algebraic group defined over F of split rank r ≥ 1. Let
N be the normalizer of a maximal split torus in G. There exists a compact open
subgroup B of G (for the analytic topology) such that (B,N) is a BN -pair with
irreducible affine Weyl group (W,S) and |S| = r + 1.

The associated affine building is called the Bruhat-Tits building of the simple
groupG and the groupB is called an Iwahori subgroup ofG. Recall that for buildings
coming from BN -pairs, the group B is the stabilizer of a chamber c and the group N
is the stabilizer of an apartment containing c. This building has constant thickness
q + 1, where q is the cardinal of the residual field of F .

We view it as a metric object via its Tits realization X, which coincides with
the Davis realization and hence it inherits a CAT (0)-metric. Since B is compact,
the group G acts properly and cocompactly on the contractible simplicial complex
X, and hence H∗

ct(G,L
p(G)) = ℓpH∗(X) for all p > 1. In this thesis we will make
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computations on both sides of this equality: in [LN22] we compute the right-hand
side and in [LN23] we compute the left-hand side.

Bruhat-Tits buildings are the non-Archimedean analogues of symmetric spaces
of non-compact type: apartments are isometric embeddings of the Euclidean space
into the building in question and thus correspond to maximal flats in the real case.
The axioms that apartments satisfy (that we introduced for the Tits realization)
encode properties of maximal flats in symmetric spaces.

Any locally finite affine building of dimension ≥ 3 (as a simplicial complex)
arises as the Bruhat-Tits building of some semisimple algebraic group over a non-
Archimedean local field [Tit86]. Recall that there are many exotic affine buildings
of dimension 2 that do not come from this construction as their full automorphism
group is trivial [BP07].

1.2.3.3 Kac-Moody groups

So far our examples of buildings had spherical or affine Coxeter systems. Kac-
Moody theory is a generalization of Lie theory that gives examples of buildings with
(usually) non-affine Coxeter systems and large automorphism groups. Because of
the Strong Tits’ alternative for Coxeter systems (see Theorem 1.2.2 here), one can
expect that the groups acting on these buildings satisfy exotic properties: we will
see that it is the case. We introduce Kac-Moody groups following the presentation
of [DJ02, Appendix TKM].

Definition 1.2.13. A Kac-Moody datum is the data (I,Λ, (αi)i∈I , (hi)i∈I , A) of:
1. A finite set I.
2. A finitely generated abelian free group Λ.
3. Elements αi ∈ Λ, i ∈ I.
4. Elements hi ∈ Λ∨ = Hom(Λ,Z), i ∈ I.
5. A generalized Cartan matrix (Aij)i,j∈I given by Aij = ⟨αi, hj⟩, satisfying

Aii = 2, if i ̸= j then Aij ≤ 0 and Aij = 0 if and only if Aji = 0.

From a Kac-Moody datum (or merely from a generalized Cartan matrix) one
can define a Coxeter matrix M = (mij)i,j∈I as follows:

mii = 1 and for i ̸= j,mij = 2, 3, 4, 6 or ∞ as AijAji = 0, 1, 2, 3 or is ≥ 4, respectively.

We consider the Coxeter group W associated to this matrix:

W = ⟨ri | (rirj)mij = 1, for mij ̸= ∞⟩.

If a Kac-Moody datum is fixed, Tits defines a group functor associating to each
field k a group Λ(k) [Tit87]. The group Λ(k) has two BN-pairs (B+, N) and (B−, N)
such that their Weyl groups N/(B± ∩ N) are isomorphic to the group W coming
from the generalized Cartan matrix.

These BN-pairs define two buildings X+ and X− of thickness |k|+ 1 and Weyl
group W , such that Λ(k) acts transitively on their sets of chambers [DJ02, Appendix
TKM]. These buildings are simplicially isomorphic. Denote by G± the completion
of Λ(k) in Aut(X±) with respect to the compact-open topology.

The following theorem summarizes some properties that make these groups in-
teresting for us.
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Theorem 1.2.14. Let Λ be a Kac-Moody group over Fq with Weyl group W . Then
Λ is finitely generated. Moreover:
1. [CR10] The covolume of Λ in G+ ×G− (diagonally injected) is W (1q ), where

W (t) =
∑
w∈W

tl(w).

In particular for q > |I|, the group Λ is a lattice in G+ ×G−.
2. [CR06] If W is non-affine, irreducible and Λ is a lattice in G+×G−, then Λ/Z(Λ)
is simple, where Z(Λ) is the center of Λ.
3. [AM97] If q ≥ 4 and all the entries of the Coxeter matrix are finite (i.e. the Weyl
group is 2-spherical), then Λ is finitely presented.

If we start with an affine Weyl group, the groups G+ and G− are linear. Hence
so is the lattice Λ (and finitely presented by item 3). By Mal’cev’s lemma, a finitely
generated linear group is residually finite, hence it admits many finite index normal
subgroups. On the other hand, in the non-affine case, Λ can be chosen to be simple,
which is a strong negation of residual finiteness, hence of linearity.

1.3 Lp-cohomology of Gromov-hyperbolic spaces

In this section we compile some results on the Lp-cohomology of Gromov-hyperbolic
spaces. The spaces we will consider will be most of the time simplicial complexes,
manifolds or discrete groups.

Again, we pay particular attention to the case of degree 1, where a numerical
invariant known as conformal dimension plays the role of a critical exponent. Indeed,
for simplicial complexes with positive Cheeger constant, ℓp-cohomology in degree 1
grows with p [LdlSW20, 10.1], so we may look at the infimal value of p for which
these spaces are nonzero. For some hyperbolic spaces, this value turns out to be the
conformal dimension. In more general settings this can fail, but we can still view
conformal dimension as a critical exponent for ℓp-cohomology in degree 1.

Pansu has intensively studied de Rham Lp-cohomology of hyperbolic manifolds
and more precisely non-compact symmetric spaces of rank 1. We close the section
by reviewing some of his results and techniques.

1.3.1 Hyperbolicity and quasi-conformal analysis

In this section we quickly recall some basic notions on Gromov-hyperbolicity and on
metrics on boundaries of Gromov-hyperbolic spaces. For more details on Gromov-
hyperbolic spaces, see [GdlH90], [BH99, III.H], [BS00]. For more details on the
quasi-conformal structure of the boundary and quasi-conformal analysis, see [MT10],
[Hei01], [Väi84].

1.3.1.1 The boundary of a Gromov-hyperbolic space

Definition 1.3.1. Let δ > 0. A geodesic metric space X is δ-hyperbolic if for
every geodesic triangle in X, the union of the δ-neighborhoods of any two sides
of the triangle cover the third side. We say that X is Gromov-hyperbolic (or just
hyperbolic) if X is δ-hyperbolic for some δ > 0.
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Recall that Gromov-hyperbolicity is invariant under quasi-isometries [GdlH90,
5.2.12]. We say that a lcsc group is Gromov-hyperbolic (or just hyperbolic) if it admits
a compact generating set such that its associated Cayley graph is hyperbolic. Notice
that this graph is not necessarily locally finite. In fact, a locally compact group is
hyperbolic if and only if it has a proper cocompact isometric action on a proper
geodesic hyperbolic space [CdCMT15, 2.6].

Example 1.3.2. Some examples of Gromov-hyperbolic spaces are: simplicial trees,
manifolds of strictly negative sectional curvature (in particular Heintze groups and
non-compact symmetric spaces of rank 1) and Fuchsian buildings.

A finite thickness (Davis) building with Weyl group (W,S) is Gromov-hyperbolic
if and only if W is hyperbolic [Dav08, 18.3.9]. If the Davis complex of a Coxeter
group is a hyperbolic manifold, then its dimension is at most 30 [Dav08, 12.6.7].
Nevertheless, there are examples of families of hyperbolic Coxeter groups (Wn)n∈N
such that their Davis complexes are orientable pseudomanifolds of dimension n
[JS03]. Hence we have Gromov-hyperbolic buildings of arbitrarily high dimension.

We can characterize hyperbolicity on a metric space (X, d) using the Gromov
product. For x, y ∈ X, define the Gromov product based at o ∈ X to be:

(x|y)o =
1

2
(d(x, o) + d(y, o)− d(x, y)).

The result is that the geodesic metric space (X, d) is Gromov-hyperbolic if and only
if there exists δ > 0 such that for all x, y, z ∈ X we have:

(x|z)o ≥ min{(x|y)o, (x|z)o} − δ.

The advantage of this characterization is that (X, d) need not be geodesic.
We define now the boundary of a Gromov-hyperbolic space.

Definition 1.3.3. Let X be a proper, Gromov-hyperbolic, geodesic metric space.
Fix a point o ∈ X. We call boundary at infinity of X the set ∂X of equivalence
classes of geodesic rays emanating from o, up to finite Hausdorff distance.

This definition does not depend on the choice of the basepoint o ∈ X. Equiva-
lently, the space ∂X may be defined as the set of equivalence classes of sequences of
points (xn)n∈N in X such that (xi|xj)o → ∞ when i, j → ∞, up to the relation:

(xn)n ∼ (yn)n ⇐⇒ (xi|yj)o → ∞ when i, j → ∞.

We may define a topology on ∂X using the Gromov product. We first extend
the Gromov-product to points in the boundary. For ξ, η ∈ ∂X define:

(ξ|η)0 = sup lim inf
i,j→∞

(xi|yj)o

where the supremum is taken over representatives (xn)n∈N and (yn)n∈N of the classes
ξ and η. A basis of neighborhoods of a point ξ ∈ ∂X is given by, for n ∈ N:

{η ∈ ∂X, (ξ|η)0 ≥ n}.

Endowed with this topology, ∂X becomes a compact topological space.
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1.3.1.2 Metrics on the boundary and conformal dimension

We are interested in metrizing the topology of ∂X. In fact the definition of the basis
of neighborhoods already gives us a hint on how to define a metric on ∂X.

Proposition 1.3.4. [BH99, p.435] Let X be a proper Gromov-hyperbolic metric
space and o ∈ X a basepoint. There exists λ0 > 1 small enough such that for every
1 < λ ≤ λ0, there exists a metric dλ on ∂X metrizing its topology and C > 0 such
that:

C−1λ−(ξ|η)o ≤ dλ(ξ, η) ≤ Cλ−(ξ|η)o ,

for all ξ, η ∈ ∂X. Such a metric is called a visual metric of parameter λ. The
compact metric space ∂X is bounded and complete.

If a proper Gromov-hyperbolic space X carries a proper, cocompact and isomet-
ric action of a group, then visual metrics are Ahlfors-regular, that is, there exists a
constant C > 1 such that for every r < diam(∂X, dλ) and every ball B(r) of radius
r we have:

C−1rQ ≤ µ(B(r)) ≤ CrQ,

where Q is the Hausdorff dimension of (∂X, dλ) and µ is the Q-Hausdorff measure
of (∂X, dλ) [Coo93, 7.4].

The choice of a visual metric on the boundary is not canonical, but at least they
are all pairwise quasi-symmetric.

Definition 1.3.5. We say that a homeomorphism f : Z1 → Z2 between two metric
spaces (Z1, d1) and (Z2, d2) is a quasi-symmetry if there exists a homeomorphism
Ψ : [0,∞) → [0,∞) such that for all a, b, o ∈ Z1 and t ≥ 0:

d1(a, o) ≤ td1(b, o) =⇒ d2(f(a), f(o)) ≤ Ψ(t)d2(f(b), f(o)).

In other words, the image of an annulus (that is, the difference of two balls of
same center and different radius) by a quasi-symmetry is contained in an annulus of
the target space with uniformly controlled ratio of radii. We say that two metrics
d1, d2 on the same space Z are quasi-symmetric if the identity map (Z, d1) → (Z, d2)
is a quasi-symmetry.

The following proposition says that quasi-isometries may be read at the bound-
ary, and that instead of working with a precise metric on the boundary it is more
natural to work with a family of metrics on it (that includes visual metrics).

Proposition 1.3.6. [BS00, 6.5] Let X and Y be two proper geodesic Gromov-
hyperbolic metric spaces, endowed with visual metrics. A quasi-isometry f : X → Y
induces a quasi-symmetric homeomorphism ∂f : ∂X → ∂Y .

Under mild assumptions the converse holds: every quasi-symmetric homeomor-
phism ∂X → ∂Y extends to a quasi-isometry X → Y [MT10, 3.2.13] [BS00, 7.4,
8.2]. In particular the converse holds for discrete hyperbolic groups [Pau96].
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Conformal gauge In view of these results, we may look at the set of metrics on
the boundary that are quasi-symmetric to visual metrics. In practice, it is good to
look only at those that are Ahlfors-regular, but to guarantee that such metrics exist
we need to impose some mild conditions on the boundary [MT10, 7.1]. We first
define those conditions.

Let (Z, d) be a compact metric space. We say that (Z, d) is uniformly perfect if
there exists a constant C > 1 such that for every ballB(z, r) of radius r < diam(Z, d)
we have B(z, r)\B(z, r

C ) ̸= ∅. We say that a measure µ on (Z, d) is doubling if there
exists a constant D ≥ 1 such that for every ball B(z, r) of radius r < diam(Z, d) we
have:

0 < µ(B(z, 2r)) ≤ Dµ(B(z, r)) <∞.

We give the following definition.

Definition 1.3.7. Let X be a proper Gromov-hyperbolic metric space such that
∂X is uniformly perfect and carries a doubling measure. The (Ahlfors-regular)
conformal gauge of ∂X, denoted J (∂X), is the set of all Ahlfors-regular metrics d
on ∂X that are quasi-symmetric to a visual metric on ∂X.

We may give another interpretation of the conformal gauge in terms of shadows.

Definition 1.3.8. Let X be a proper geodesic hyperbolic metric space and fix
R > 0. The shadow cast by x ∈ X on ∂X, denoted S(x), is the set of points ξ ∈ ∂X
such that there exists a geodesic ray from the origin o ∈ X converging to ξ that
intersects the ball of radius R centered at x.

Proposition 1.3.9. (Sullivan’s shadow lemma) [Bou95, 1.6.2 and 1.6.3] Let (X, d)
be a proper geodesic Gromov-hyperbolic metric space with uniformly perfect bound-
ary, endowed with a visual metric. There exists C1 > 0 such that for every x ∈ X,
there exist two balls B(r1) and B(r2) in ∂X, with r1 > 0 and r2

r1
≤ C1 such that:

B(r1) ⊆ S(x) ⊆ B(r2).

Conversely, there exists C2 > 0 such that for any ball B(r) of ∂X, there exist two
points x, y ∈ X with d(x, y) ≤ C2 such that:

S(x) ⊆ B(r) ⊆ S(y).

In other words, shadows are similar to balls of any visual metric. This is pre-
served by quasi-symmetries, and we may characterize the conformal gauge as the
set of Ahlfors-regular metrics whose balls are similar to shadows, in the sense that
they satisfy the statement of the Shadow lemma.

Conformal dimension and examples One may wonder about the right metric
notion of dimension for ∂X. We would like a dimension that is invariant under
quasi-isometries. A metric space carries a Hausdorff dimension, so we may look at
the dimension of (∂X, dλ) with some visual metric dλ of parameter λ > 1. This is
not invariant under quasi-symmetries on the boundary. Indeed, if d is a metric on
∂X and 0 < a < 1 then the snowflake metric da satisfies:

Hausdim(∂X, da) =
1

a
Hausdim(∂X, d).
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Hence when λ→ 1, we have Hausdim(∂X, dλ) → ∞, so this is not the good invariant
to look at. Instead of looking at large dimensions, we look at the infimal dimension.

Definition 1.3.10. Let X be a proper Gromov-hyperbolic space with uniformly
perfect boundary. The (Ahlfors-regular) conformal dimension of ∂X is

Confdim(∂X) = inf{Hausdim(∂X, d), d ∈ J (∂X)}.

Confdim(∂X) is invariant under quasi-isometries. We will now compute it in
some examples.

Let T be a locally finite tree. Its boundary ∂T is a Cantor space. We have
Confdim(∂T ) = 0. Indeed, for all x, y, z, o ∈ T the Gromov product satisfies:
(x|z)o ≥ min{(x|y)o, (x|z)o}. Hence the formula dλ(ξ, η) = λ−(ξ|η)o for ξ, η ∈ ∂T de-
fines a visual metric on ∂T for any λ > 1 (because it satisfies the ultrametric inequal-
ity). By taking λ→ +∞, we obtain that Confdim(∂T ) ≤ Hausdim(∂T, dλ) → 0.

It is hard to compute conformal dimension in more general settings. More pre-
cisely, it is hard to find metrics minimizing the Hausdorff dimension inside J (∂X).
Carnot groups and boundaries of Fuchsian buildings are examples of spaces for which
such a metric is known to exist and its dimension has been computed. We will now
elaborate on these two examples.

A Carnot group is a nilpotent Lie group N endowed with an automorphism α
such that its Lie algebra n decomposes as n =

⊕
i≥1 v

i where v1 is a linear subspace
of n and vi+1 = [v1, vi] for all i ≥ 1 and the derivative of α acts as i·Id on each vi. We
are interested in the Heintze groups (i.e. negatively curved homogeneous manifolds)
of the form H = R⋉αN , where N is a Carnot group with automorphism α [Pan89c].
The boundary ∂H of such a Heintze group carries a Carnot-Carathéodory metric
dCC . The conformal dimension of ∂H is:

Confdim(∂H) = Hausdim(∂H, dCC) =
∑
i≥1

idimR ni

[Pan89b, 5.5]. The rank 1 symmetric spaces Hn
K (where K = R,C, quaternions or

octonions) are particular cases of such Heintze groups, their conformal dimension
is:

Confdim(∂Hn
K) = Hausdim(∂Hn

K, dCC) = nk + k − 2.

and k = dimRK.
Conformal dimension of Fuchsian buildings can be computed explicitly in gen-

eral: if X denotes the Davis realization of a Fuchsian building with Weyl group
(W,S) and thickness vector q + 1, with q ≥ 2, there exists a metric dq in the
conformal gauge of ∂X such that:

Confdim(∂X) = Hausdim(∂X, dq) = 1 + eq(W )−1,

where eq(W ) = lim supn
1
n |{w ∈ W,qw ≤ en}| is the weighted logarithmic growth

rate of (W,S) and for a reduced word w = s1 . . . sn in (W,S), we define qw to be
the product qs1 . . . qsn [Bou00, 2.1].

Conformal dimension remains unknown for other Gromov-hyperbolic buildings.
After stating Theorem 1.3.16 we will see that using ℓp-cohomology in high degree
we can obtain a first lower bound for their conformal dimension. Part of the work
of this thesis consists in improving this lower bound via ℓp-cohomology in degree 1
[LN22, 0.5].
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1.3.2 Conformal dimension as a critical exponent

In this section we review some results relating Lp-cohomology to boundaries of
Gromov-hyperbolic spaces and more precisely to conformal dimension.

1.3.2.1 Degree 1: Besov spaces

For Gromov-hyperbolic spaces, one can read the first Lp-cohomology spaces as func-
tion spaces on the boundary. This is one of the foundational results of the theory.
This was first shown by Pansu in [Pan89a] in the context of de Rham Lp-cohomology
of homogeneous Riemannian manifolds of (strictly) negative sectional curvature.

Let (Z, d) be a metric space, let Q denote its Hausdorff dimension and µ its
Q-Hausdorff measure. Let u be a real valued measurable function on Z and define
the Besov norm of u:

||u||pBp
=

∫
Z×Z

|u(x)− u(y)|p

d(x, y)2Q
dµ(x)dµ(y).

We define the Besov space Bp(Z, d) to be the Banach space of measurable func-
tions u such that ||u||Bp <∞ modulo constant functions [BP03].

Theorem 1.3.11. (Pansu) [Pan89a, 5.2] Let N be a Carnot group with automor-
phism α endowed with its Carnot-Carathéodory metric dCC . Let H = R ⋉α N
be the associated negatively curved Heintze group. Then for all p > 1 there is an
isomorphism of Banach spaces:

LpH1
dR(H) = Bp(N, d).

A similar result holds for simplicial ℓp-cohomology. This is the content of the
following statement. It applies to all discrete Gromov-hyperbolic groups, but does
not require to have a group action in general.

Theorem 1.3.12. (Bourdon-Pajot) [BP03, 0.1] Let X be a Gromov-hyperbolic sim-
plicial complex of bounded geometry and d0 a visual metric on ∂X. Suppose that
(∂X, d0) is uniformly perfect and carries a doubling measure. Let d be any Ahlfors-
regular metric on ∂X quasi-symmetric to d0. Then for all p > 1 there is an isomor-
phism of Banach spaces:

ℓpH1(X) = Bp(∂X, d).

The isomorphism ℓpH1(X) → Bp(∂X, d) is given by taking the limit of a function
following a geodesic ray. More precisely, for f : X(0) → R such that ||df ||p < ∞,
we have that for µ-almost every ξ ∈ ∂X, if ξ = (xn)n∈N, the sequence (f(xn))n∈N
converges to a limit f∞(ξ) (where µ denotes the Q-Hausdorff measure of (∂X, d)
and Q is its Hausdorff dimension).

The inverse map is given by averaging over shadows. More precisely, given a
function u ∈ Bp(∂X, d), one defines a function f : X(0) → R defined by:

f(x) =
1

µ(S(x))

∫
S(x)

u(ξ) dµ(ξ),

where S(x) is the shadow casted by x ∈ X(0). This idea is originally due to Elek
[Ele97]. We view this process as some sort of Poisson transform.
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For any Ahlfors-regular metric d on ∂X and p > Hausdim(∂X, d), the Besov
space Bp(∂X, d) contains Lipschitz functions (for d) and hence it is non-trivial.
Hence Theorem 1.3.12 implies the following result:

Corollary 1.3.13. Let X be a Gromov-hyperbolic simplicial complex as in 1.3.12.
Then for p > Confdim(∂X) we have ℓpH1(X) ̸= {0}.

One can ask if the condition on p > 1 of the previous corollary is optimal. It
is the case if there is a Loewner metric in the conformal gauge of the boundary.
This is a rather restrictive condition that we will not define here (see [Hei01] for
a definition), in particular such a metric minimizes the Hausdorff dimension inside
the conformal gauge.

Theorem 1.3.14. (Bourdon-Pajot) [BP03, 0.3] Let X be a Gromov-hyperbolic sim-
plicial complex as in 1.3.12. Suppose that there exists a Loewner metric d ∈ J (∂X).
Let Q = Confdim(∂X) = Hausdim(∂X, d). Then:

ℓpH1(X) ̸= {0} if and only if p > Q.

In the setting of the previous theorem, conformal dimension is a critical exponent
for ℓp-cohomology in the sense that:

Confdim(∂X) = inf{p > 1, ℓpH1(X) ̸= {0}}.

We can ask if a similar result persists without a Loewner metric. This is the
content of the next theorem. Before stating it, we introduce some notation.

Let ℓpH1
cont(X) be the subspace of ℓpH1(X) consisting of ℓp-cohomology classes

of functions f : X(0) → R whose extensions to the boundary (by taking radial limits)
f∞ : X(0) ∪ ∂X → R are continuous. We denote by

Ap(∂X) := {u : ∂X → R|u = f∞ for [f ] ∈ ℓpH1
cont(X)}

the space of continuous functions on ∂X that may be achieved as limits of ℓp-
cohomology classes in degree 1.

We introduce some vocabulary. We say that a Gromov-hyperbolic space X is
non-degenerate if every x ∈ X lies at uniformly bounded distance from the three
sides of some ideal geodesic triangle. We say that a metric space (Z, d) is approxi-
mately self-similar if there exists L ≥ 1 such that for every ball B(z, r) ⊆ Z of radius
r < diamZ, there exists an open set U ⊆ Z that is L-bi-Lipschitz homeomorphic to
the rescaled ball (B(z, r), 1rd).

The following statement relates simplicial ℓp-cohomology and conformal dimen-
sion in a more general setting.

Theorem 1.3.15. (Bourdon-Kleiner) [BK15, 3.8] Let X be a non-degenerate, Gromov-
hyperbolic simplicial complex of bounded geometry. Suppose that ∂X is connected
and approximately self-similar. Then:

Ap(∂X) separates points of ∂X if and only if p > Confdim(∂X).

The conditions hold in particular for discrete hyperbolic groups with connected
boundary, but we do not need a group action in general. In fact the theorem also
holds for any discrete hyperbolic group, without the connectedness assumption, see
the remark after [LN22, 3.4.3].
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1.3.2.2 Conformal dimension and ℓp-cohomology in degrees ≥ 2

The prototype of a Gromov-hyperbolic space is a simplicial tree. The simplicial ℓp-
cohomology of such a tree is nonzero in degree 1 for every p > 1 (one can construct
by hand some cohomology classes or invoke the results from the previous section)
and it is trivial in every other degree. In particular, it is trivial in degrees ≥ 2.

The following result shows that in fact, for large values of p, most Gromov-
hyperbolic simplicial complexes exhibit the same behaviour as a tree.

Theorem 1.3.16. (Bourdon) [Bou16a] Let X be a non-degenerate Gromov-hyperbolic
uniformly contractible simplicial complex of bounded geometry. Then for every k ≥ 2
and every p > Confdim(∂X)

k−1 we have ℓpHk(X) = {0}.

Notice that for smaller values of p the ℓp-cohomology could be nonzero. We will
see in the next section that sometimes (in particular, for the real hyperbolic space)
the conditions on p in this theorem are optimal.

In this thesis we will show that for a (Davis) building X of finite thickness q+1

and Weyl group W , we have ℓpHd(X) ̸= {0} for 1 < p < 1 + eq(W )−1, where
d = vcdR(W ) [LN22, 0.4]. Hence if moreover W is hyperbolic, then X is also
hyperbolic and combining this result with Theorem 1.3.16 we obtain:

Confdim(∂X)

vcdR(W )− 1
≥ 1 + eq(W )−1.

In [Cla17], Clais obtained a similar but in fact stronger inequality for some families
of Gromov-hyperbolic buildings constructed from graphs:

Confdim(∂X)

Confdim(∂W )
≥ 1 + eq(W )−1.

Indeed, we have vcdR(W ) − 1 ≤ Topdim(∂W ) ≤ Confdim(∂W ) [BM91]. In this
thesis we will use the first ℓp-cohomology spaces to extend Clais’ inequality to all
Gromov-hyperbolic buildings of finite thickness [LN22, 0.5].

1.3.3 Lp-cohomology of pinched Riemannian manifolds

The previous sections focused on simplicial ℓp-cohomology of Gromov-hyperbolic
spaces. We will now discuss results by Pansu concerning de Rham Lp-cohomology
of pinched Riemannian manifolds, not limited to degree 1. We will not really use
this later in the thesis, but we include it to give a more complete picture. We mostly
follow [Pan08] and [BR21, 1].

We say that a negatively curved Riemannian manifold is δ-pinched for δ < 0, if
there exists a > 0 such that its sectional curvature K satisfies: −a ≤ K ≤ δa.

The main result is that, under contraction hypotheses on Lp-differential k-forms
(that are satisfied by pinched negatively curved manifolds for some values of k
and p), one can identify Lp-cohomology in degree k to a function space on the
boundary, which in particular is Hausdorff. The same hypotheses imply vanishing
of Lp-cohomology in the previous degree.

Let M be a Riemannian manifold, φ : M → M be a C∞ map and k ∈ N. The
pullback φ∗ : Ωk(M) → Ωk(M) of differential forms may induce bounded operators
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φ∗ : LpΩk(M) → LpΩk(M), if it does we denote by ||φ∗||LpΩk its operator norm. If
it does not, we set ||φ∗||LpΩk = +∞.

We now introduce the contraction hypothesis from Pansu [Pan08].

Definition 1.3.17. Let M be a Riemannian manifold and ξ be a C∞ complete unit
vector field on M . Denote by φt its flow. Let p > 1 and k ∈ N∗. We say that ξ is
(k, p)-contracting if there exist C > 0 and η > 0 such that for all t ≥ 0 we have:

||φ∗
t ||LpΩk∩ker ιξ ≤ Ce−ηt.

We say that ξ is (k, p)-dilating if −ξ is (k, p)-contracting.

We now state Pansu’s criterion for vanishing and reducedness of Lp-cohomology
under contraction conditions. Stating properly the identification in higher degrees
requires defining currents on manifolds. We will only give a simplified version (see
[BR21, 1.3] for a precise statement and further details).

Theorem 1.3.18. (Pansu) [Pan08, 10] Let M be a Riemannian manifold, ξ be
a C∞ complete unit vector field on M and k ∈ N∗. Suppose that ξ is (k − 1, p)-
contracting and (k, p)-contracting. Then:
• LpHk

dR(M) = {0},
• LpHk+1

dR (M) can be identified to some space of currents on M that are invariant
by the flow of ξ. In particular LpHk+1

dR (M) is Hausdorff.

This identification is what Pansu calls "Künneth formula" for Lp-cohomology.
To the knowledge of the author, this is one of the only known methods to prove
that Lp-cohomology spaces are Hausdorff in degrees > 1, without showing that they
are trivial (the other being studying L2-cohomology combined with Riesz-Thorin
interpolation, see [Loh98] for the Riemannian setting, [DJ02] for buildings).

Both of these results rely on some homotopy operators Bk
t : Ωk(M) → Ωk−1(M)

defined by:

Bk
t (ω) =

∫ t

0
φ∗
s(ιξω) ds.

If ξ is (k − 1, p)-contracting, taking the limit t → +∞ shows that there is a limit
operator Bk

∞ : Ωp,k(M) → Ωp,k−1(M) that informally satisfies, for a closed form ω ∈
Ωp,k, the relation dBk

∞(ω) = limt→∞ φ∗
t (ω)− ω. If ξ is moreover (k, p)-contracting,

then limt→∞ φ∗
tω = 0 and dBk

∞(ω) = −ω, showing the vanishing result. In degree
(k + 1), we have to understand the limit limt→∞ φ∗

t (ω) (that we may define by the
formula dBk+1

∞ (ω) + ω) by defining a space of currents to which it belongs.
The next result is a non-vanishing criterion.

Theorem 1.3.19. (Pansu) [Pan11, 32] Let M be a Riemannian manifold, ξ be a
C∞ complete vector field on M and k ∈ N∗. Suppose that ξ is (k−1, p)-contracting,
(k, p)-contracting, and (k + 1, p)-dilating. Then LpHk+1

dR (M) is non-trivial.

Now everything boils down to verifying when these conditions hold. The main
observation is that pinching of sectional curvature gives a sufficient condition.

Theorem 1.3.20. [Pan08, Proposition 5] Let M be a simply connected, complete
Riemannian manifold of dimension n with sectional curvature K satisfying −1 ≤
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K ≤ δ for some δ < 0. Let ξ be the gradient of a Busemann function on M . For
k = 0, 1, . . . , n− 1 and

1 < p < 1 +
n− k − 1

k

√
−δ, (resp. p > 1 +

n− k − 1

k
√
−δ

)

the vector field ξ is (k, p)-contracting (resp. (k, p)-dilating). In particular:
• LpHk

dR(M) is Hausdorff for 1 < p < 1 + n−k
k−1

√
−δ.

• LpHk
dR(M) = {0} for 1 < p < 1 + n−k−1

k

√
−δ .

Poincaré duality for de Rham Lp-cohomology allows one to deal with large values
of p. In this way, Pansu computes the Lp-cohomology of the real hyperbolic space
Hn

R in all degrees for all but finitely many values of p. Indeed, Hn
R has constant

sectional curvature, so we may choose δ = −1 in the previous theorem and hence we
know exactly when the vector field ξ is (k, p)-contracting or (k, p)-dilating in terms
of k and p, except for the critical values p = 1 + n−k−1

k = n−1
k . In fact, Pansu also

shows that for p = 1 + n−(k−1)−1
k−1 = n−1

k−1 the space LpHk
dR(Hn

R) is non-Hausdorff
[Pan08, Théorème B.1]. We obtain:

Proposition 1.3.21. Let M = Hn
R with n ≥ 2. Let p > 1 and k = 1, . . . , n. We

have:
• LpH0

dR(M) = LpHn
dR(M) = {0}.

• LpHk
dR(M) ̸= {0} if and only if n−1

k < p ≤ n−1
k−1 (with n−1

k−1 = ∞ if k = 1).
• LpHk

dR(M) is Hausdorff if and only if p ̸= n−1
k−1 (void condition if k = 1).

This is one of the only non-trivial full computations of Lp-cohomology known
to date. Notice that for every p > 1, apart for some finite number of values, the
cohomology is Hausdorff in every degree and there exists one unique degree k for
which LpHk

dR(Hn
R) ̸= {0}. These are the conditions that allowed Bourdon and Rémy

to use the Hochschild-Serre spectral sequence to compute Lp-cohomology of some
real simple Lie groups [BR20].

Unfortunately, the real hyperbolic space appears to be the only pinched nega-
tively curved manifold for which these methods are optimal. The situation for the
complex hyperbolic plane H2

C is already much subtler. This is a (−1
4)-pinched neg-

atively curved manifold and the previous methods show vanishing (or reducedness)
for both small and large values of p > 1. There is a strip of intermediate values of
p for which the behaviour of Lp-cohomology remains unknown. In particular it is
not known if, as in the real hyperbolic space, for fixed p > 1 there is a unique k
such that LpHk

dR(Hn
C) ̸= {0}. In [Pan11], Pansu shows that the Lp-cohomology of

symmetric spaces of rank 1 is also reduced on some parts of this strip.

1.4 Vanishing of cohomology below the rank

In this section we compile different results of similar nature, that deal with vanishing
of continuous cohomology (often with unitary coefficients) or Lp-cohomology for
simple or semisimple groups in degrees below the rank. Here a semisimple group (or
a semisimple Lie group) can mean either a real semisimple Lie group or the points
of a semisimple algebraic group over a non-Archimedean local field. Our main
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motivation is the following question by Gromov: he predicts a classical behaviour
of (unreduced) Lp-cohomology of semisimple groups over local fields for every p > 1
[Gro93, p.253].

Questions. (Gromov) Let G be a semisimple group of rank r ≥ 2 over a local field.
(1) Do we have H l

ct

(
G,Lp(G)

)
= {0} for all l = 1, . . . , r − 1 and p > 1?

(2) Do we have Hr
ct

(
G,Lp(G)

)
̸= {0} at least for some values of p?

(3) Is the space Hr
ct

(
G,Lp(G)

)
Hausdorff for all p > 1?

Gromov’s intuition for this question is that a symmetric space of non-compact
type, rank r and without Euclidean factor is similar to a product of r non-compact
symmetric spaces of rank 1. If we had some sort of Künneth formula for direct
products in Lp-cohomology, question (1) would hold at least for such a product.

This is not the only reason to think that such result is true. Indeed, at the
time there were already results due to Garland and Casselman that show vanishing
in degrees below the rank for group cohomology of simple higher rank groups with
values in unitary representations (hence for L2).

We can also ask the corresponding question for unitary coefficients, but this
should only be asked for simple Lie groups. Indeed, the group G = SL2(R)×SL2(R)
is of higher rank and we will see later that H1

ct(G,L
p(G)) = {0} for every p > 1,

but on the other hand this group does not have Property (T ), and hence it does not
satisfy H1

ct(G, π) = {0} for every unitary representation π of G.
Many contributions towards an affirmative answer of question (1) deal with the

case of degree 1. Most of this section will be dedicated to these contributions, both
in the unitary and in the Lp-cohomology setting.

1.4.1 Kazhdan’s property (T ) and higher rank simple groups

We first discuss vanishing of continuous group cohomology in degree 1 for unitary co-
efficients: this is Kazhdan’s Property (T ). Kazhdan’s Property (T ) was introduced
by Kazhdan in [Kaz67]. His original motivation was to find a sufficient condition to
guarantee that some countable group is finitely generated. The examples he had in
mind were lattices in simple Lie groups, which were not known to be finitely gen-
erated to that date. He shows they are, by proving that higher rank simple groups
have property (T ) and that this property passes to lattices.

After giving a definition of Property (T ) and reformulating it in cohomological
terms, we may give the classical proof that higher rank simple groups have Property
(T ). We will end discussing a more recent variant of Property (T ) known as Strong
Property (T ).

1.4.1.1 Definition and cohomological reformulation

Our exposition will be quite short, so we may refer to [BdlHV08] or [Mar91, III] for
a much more complete exposition on the subject. We start with one of the most
classical definitions of Property (T ).

Definition 1.4.1. Let G be a locally compact group. We say that G has Kazhdan’s
property (T ) when for every continuous unitary representation (π,H), if π has almost
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invariant vectors, that is, for every compact subset Q ⊆ G and ε > 0 there exists a
unit vector ξ ∈ H such that

sup
x∈Q

||π(x)ξ − ξ||H < ε,

then π has a nonzero G-invariant vector.

We may interpret this definition in cohomological terms. Indeed, one can show
that if a unitary representation π does not have almost invariant vectors, the space
of 1-coboundaries B1(G, π) is closed in Z1(G, π), and hence H1

ct(G, π) is Hausdorff.
The converse holds when G is σ-compact and π does not have invariant vectors.
Hence a σ-compact group has Property (T ) if and only if H1

ct(G, π) is Hausdorff for
every unitary representation π of G without G-invariant vectors.

The celebrated Delorme-Guichardet theorem states that for σ-compact locally
compact groups, Property (T ) implies Property (FH) [BdlHV08, 2.12.4]. A group
satisfies Property (FH) if every continuous action by affine isometries on a Hilbert
space has a fixed point. This turns out to be equivalent to vanishing of continuous
cohomology in degree 1 for every unitary representation [BdlHV08, 2.2.10].

Later Shalom gave another characterization of Property (T ). He proved that for
compactly generated groups, Property (T ) can be characterized by the vanishing
of the first reduced cohomology space for every unitary representation [BdlHV08,
3.2.1]. We sum up the previous theorems in the following statement.

Theorem 1.4.2. Let G be a compactly generated locally compact group. The fol-
lowing conditions are equivalent:
(i) G has Property (T ),
(ii) H1

ct(G, π) = H1
ct(G, π) for every unitary representation π of G without invariant

vectors,
(iii) Property (FH): H1

ct(G, π) = {0} for every unitary representation π of G,
(iv) Shalom’s criterion: H1

ct(G, π) = {0} for every unitary representation π of G.

1.4.1.2 Property (T ) for higher rank simple groups

The most classical examples of groups with Property (T ) are higher rank simple
groups. In fact, one of Kazhdan’s original motivation to introduce Property (T )
was to show that lattices in Lie groups are finitely generated.

Theorem 1.4.3. (Kazhdan ’67) Let G be a connected higher rank simple real alge-
braic group. Then G (and any lattice in G) has Kazhdan’s Property (T ).

We will give some details on the proof of this theorem. Namely, we will give a
proof of the Howe-Moore property for higher rank real simple groups.

Theorem 1.4.4. (Howe-Moore) Let G be a connected higher rank real simple alge-
braic group with finite center and let (π,H) be a unitary representation of G. If π
has no invariant vectors, then the matrix coefficients of π vanish at infinity, that is,
for every v, w ∈ H we have:

⟨π(g)v, w⟩ → 0 when g ∈ G, g → ∞.
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The idea behind the proof of Theorem 1.4.4 is a general strategy that will appear
again later in this thesis: create and propagate invariance. More precisely: if a
matrix coefficient does not vanish at infinity, one can first create a vector that is
invariant under some element in a root group of G and then one propagates this
invariance to all of G using Mautner’s phenomenon. This is a general dynamical
argument that allows one to propagate invariance in many situations and that we
will use later.

Lemma 1.4.5. (Mautner’s lemma [Mar91, II.3.3]) Let G be a locally compact group
and let (π,H) be a unitary representation of G. Let gn, sn, s′n be three sequences of
elements in G such that gn → g ∈ G and sngns

′
n → e. If a vector v ∈ H is

π(sn)-invariant and π(s′n)-invariant for every n ∈ N, then v is π(g)-invariant.

The proof of Mautner’s phenomenon is a straightforward computation using
matrix coefficients. Let us begin the proof of Theorem 1.4.4.

Proof of Theorem 1.4.4. Let G be a higher rank simple real algebraic group with
finite center and (π,H) a unitary representation of G. Suppose that there exists
a matrix coefficient not vanishing at infinity, that is, there exist v, w ∈ H and a
sequence (gn) such that gn → ∞ but ⟨π(gn)v, w⟩ ̸→ 0. Up to taking a subsequence
we may suppose that ⟨π(gn)v, w⟩ → c, with c ̸= 0. Using the Cartan decomposition
G = KA+K, whereK is a maximal compact subgroup ofG and A+ a Weyl chamber,
we may write gn = knank

′
n, with kn, k

′
n ∈ K and an ∈ A+. Since gn → ∞, there

exists a simple root in the root system α of G such that α(an) → ∞. Up to taking
a subsequence, we may suppose that kn → k ∈ K and k′n → k′ ∈ K.

After replacing v and w by π(k)v and π(k′−1)w we obtain ⟨π(an)v, w⟩ → c. By
weak-compactness of the unit ball of H, we have that π(an)v converges weakly to
some vector v0 ∈ H. We will show that v0 is nonzero, invariant by the root group
Uα associated to α and in fact G-invariant. By weak convergence:

⟨v0, w⟩ = lim
n
⟨π(an)v, w⟩ = c ̸= 0.

Hence v0 ̸= 0. Since π(an)v ⇀ v0, for any u ∈ Uα we have π(uan)v ⇀ π(u)v0 and:

π(an)(π(a
−1
n uan)v − v)⇀ π(u)v0 − v0.

This implies that:

||π(u)v0−v0|| ≤ lim sup
n

||π(an)(π(a−1
n uan)v−v)|| = lim sup

n
||(π(a−1

n uan)v−v)|| = 0,

because a−1
n uan → e as u lives in the root group Uα and α(an) → ∞. Hence v0 is

π(Uα)-invariant. This is the end of the "create invariance" step.
Now we have to propagate this invariance by using Mautner’s phenomenon re-

peatedly. First, by the Jacobson-Morozov theorem, there exists a closed subgroup
S of G containing Uα and with Lie algebra sl2(R). We may extend our invariance to
the subgroup S thanks to Mautner’s lemma and the following matrix computation
in SL2(R). Fix t = p/q ∈ Q∗ and let:

us =

(
1 s
0 1

)
, sn = (u−p

s )n, s′n = (uqs)
n, g =

(
t 0
0 t−1

)
, gn =

(
t 0

t−1
snp t−1

)
.
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We have that gn → g and a computation shows that sngns′n =

(
1 0

t−1
snp 1

)
→ e. By

Mautner’s lemma, v is invariant under the matrix g and hence by the group S.

Let E ∈ S be the element corresponding to the matrix
(
1 0
0 −1

)
under this

isomorphism. Then its adjoint action on the Lie algebra g = Lie(G) can be di-
agonalized as g =

⊕
λ∈R gλ where gl = {X ∈ g, ad(g)X = λX}. Consider the

Lie algebras g+ =
⊕

λ>0 gλ and g− =
⊕

λ<0 gλ and consider the Lie subalgebra n
generated by g+ ∪ g−. Since [g0, gµ] ⊆ gµ, we have that n is an ideal. But the Lie
algebra g is simple, hence either n = {0} or n = g. The first case is not possible as
it would imply that g = g0 and hence E would lie in the center of g, contradicting
the fact that G has finite center.

Mautner’s lemma allows one to extend the invariance to the subgroups G+ and
G− that integrate the Lie subalgebras g+ and g−. But g+ and g− generate g, so G+

and G− generate G and hence v is a G-invariant vector. This proves the Howe-Moore
property for G.

We sketch the proof of Theorem 1.4.3 in the case of G = SLn(k) with n ≥ 3.
First, G contains a closed subgroup Q isomorphic to SL2(k) ⋉ k2. If (π,H) is a
unitary representation of G almost having invariant vectors, then the restriction π|Q
to Q also has almost invariant vectors. One can show that such a representation of
Q has a π(k2)-invariant vector v ∈ H [BdlHV08, 1.4.13], this phenomenon is called
relative property (T ) of the pair (SL2(k) ⋉ k2, k2). Since k2 is non-compact, this
means that the matrix coefficient g 7→ ⟨π(g)v, v⟩ does not vanish at infinity, hence
the Howe-Moore property for G implies that π has an invariant vector.

Remark. Bader, Furman, Gelander and Monod use similar techniques to show van-
ishing of the first continuous cohomology space of higher rank simple groups acting
isometrically on Banach spaces of the form Lp(X,µ), where X is a standard Borel
space, µ a σ-finite measure and p > 1 [BFGM07, Theorem B]. In particular, this
implies vanishing of continuous Lp-cohomology in degree 1 of higher rank simple
groups for all p > 1.

1.4.1.3 Lafforgue’s Strong Property (T )

Higher rank simple groups satisfy a much stronger rigidity property, known as Laf-
forgue’s Strong Property (T ), which implies the fixed point property for many rep-
resentations on Hilbert spaces. This was introduced in [Laf08] with K-theoretic
applications in mind. Lafforgue formulates it as a property of a group on a class
of topological vector spaces, so one can talk about Strong Property (T ) in contexts
other than for Hilbert spaces (in particular for classes of Banach spaces).

What is new here is that the representations in question do not need to be
isometric: one allows them to have small exponential growth. We will not give a
definition of Strong Property (T ), but we will record its consequences in terms of
fixed point properties, after some definitions.

A length function on a locally compact group G is a positive continuous function
satisfying l(g−1) = l(g) and l(g1g2) ≤ l(g1) + l(g2)). We say that a representation
(ρ, V ) of G on a Banach space V has exponential growth if there exists a proper
length function l on G and α > 0 such that |||ρ(g)|||V ≳ eα·l(g) for all g ∈ G.
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Theorem 1.4.6. (Lafforgue) [Laf08, 2.1] Let G be a real simple Lie group containing
SL3(R). For every proper length function l there exists α > 0 such that for every
representation (π,H) of G satisfying |||π(g)|||H ≲ eα·l(g) for all g ∈ G, where H is
a Hilbert space, we have H1

ct(G, π) = {0}.

Theorem 1.4.7. (Lafforgue) [Laf09, 0.3] Let be F a non-Archimedean local field
and G be a simple algebraic group over F containing SL3(F ). For every proper
length function l there exists α > 0 such that for every representation (ρ, V ) of G
satisfying |||ρ(g)|||V ≲ eα·l(g) for all g ∈ G, where V is a Banach space V of type
> 1, we have H1

ct(G, ρ) = {0}.

Remark. 1. Any simple algebraic group over a non-Archimedean local field F con-
tains a copy of a group isogenous to SL3(F ) or Sp4(F ). Liao proved Banach Strong
Property (T ) for Sp4(F ), hence Theorem 1.4.7 holds for all higher rank simple groups
over non-Archimedean local fields.

2. Notice that the statement in the non-Archimedean case is much stronger than
in the real case. For G = SL3(R), de la Salle extended the class of Banach spaces
for which Theorem 1.4.6 holds [dlS14].

3. A (non-trivial) finite dimensional irreducible representation of a (non-compact)
simple Lie group has exponential growth, which is equal to the module of its highest
weight. In particular, since highest weights lie in the weight lattice, Lafforgue’s result
applies at most to a finite number of finite dimensional irreducible representations.

The case of affine buildings Let F be a non-Archimedean local field and G a
simple algebraic group over F containing SL3(F ). The spaces Lp(G) for p > 1 are all
Banach spaces of type> 1 and the right regular representation on Lp(G) is isometric,
hence Theorem 1.4.6 applies and gives another proof of H1

ct(G,L
p(G)) = {0} for

every p > 1. In particular, the group G acts properly and cocompactly on its
Bruhat-Tits building X, and thus we obtain ℓpH1(X) = {0} for every p > 1.

Bruhat-Tits buildings are the main source of affine buildings. All locally finite
affine buildings of dimension ≥ 3 arise in this way. On the other hand, there are
exotic affine buildings of dimension 2 with small full automorphism groups (for
instance discrete). Lécureux, de la Salle and Witzel use techniques similar to those
from [Laf08] to show that vanishing of ℓp-cohomology in degree 1 persists for some
of these buildings.

Theorem 1.4.8. [LdlSW20, Theorem A] Let X be a locally finite Ã2-building. Then
we have ℓpH1(X) = {0} for all p > 1.

1.4.2 Garland’s method

We now deal with vanishing of group cohomology (still with unitary coefficients) in
degrees below the rank, not restricted to the case of degree 1.

Before Gromov, Serre had already formulated a first conjecture of this kind in the
non-Archimedean case: let Γ be a cocompact lattice of the points a simple algebraic
group of rank r over a non-Archimedean local field, do we have H i(Γ,R) = {0}
for 0 < i < r? Garland proved this conjecture in [Gar73] using geometric methods
(that we call today Garland’s method) under the assumption that the residual field is
large enough. In [Cas74], Casselman reproved Garland’s result using representation
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theoretic machinery and took out this assumption. The precise statement (from
Casselman) is the following.

Theorem 1.4.9. (Garland ’73, Casselman ’74) Let F be a non-Archimedean local
field and G be the F -points of a simple algebraic group of split rank r. Let Γ be
a cocompact lattice in G. For every i = 1, . . . , r − 1 and every finite-dimensional
representation π of Γ we have:

H i(Γ, π) = {0}.

Garland’s method consists mainly of two steps: reformulating the problem in
terms of a simplicial version of Hodge theory and obtaining estimates on the Lapla-
cian on links of simplices to show vanishing. We will now present Garland’s ideas
from the point of view of Ballmann and Świątkowski [BŚ97] (which works not only
for finite-dimensional representations but also for unitary representations of the co-
compact lattice).

First, let Γ be a (discrete) group acting properly on a simplicial complex of
bounded geometry X and let (ρ, V ) be a unitary representation of Γ. Suppose
that X is purely n-dimensional, that is, every simplex lies inside an n-dimensional
simplex (which is the case for affine buildings). One works with the Γ-equivariant
cohomology L2H∗(X, ρ) of X. One starts defining:

Ck(X, ρ) = {c : X(k) → V | c(γ.σ) = ρ(γ)c(σ) for σ ∈ X(k), γ ∈ Γ}.

and the usual simplicial differential in every degree d : Ck(X, ρ) → Ck+1(X, ρ).
Using the scalar product of the Hilbert space V , we can define a scalar product
(·, ·) on a subspace of Ck(X, ρ) that we will denote by Lk(X, ρ). In fact Lk(X, ρ) is
the subspace of c ∈ Ck(X, ρ) such that (c, c) < ∞. The space (Lk(X, ρ), (·, ·)) is a
Hilbert space and d : Lk(X, ρ) → Lk+1(X, ρ) is a bounded operator for every k ∈ N.

Definition 1.4.10. We define L2-cohomology L2H∗(X, ρ) of X with respect to ρ to
be the cohomology of the complex obtained in this way. In a similar fashion we can
define L2H∗(X, ρ) the reduced L2-cohomology of X with respect to ρ as the largest
Hausdorff quotient of L2H∗(X, ρ).

If moreover Γ acts cocompactly, then Lk(X, ρ) = Ck(X, ρ) for every k ∈ N and
L∗(X, ρ) gives a resolution of the representation ρ, hence the spaces L2H∗(X, ρ)
compute the group cohomology H∗(Γ, ρ) of Γ.

We may consider the formal adjoint δ of the operator d, that is δ : Lk+1(X, ρ) →
Lk(X, ρ) such that:

(dc, c′) = (c, δc′),

for every c ∈ Lk(X, ρ) and c′ ∈ Lk+1(X, ρ).
The main object of simplicial Hodge theory is the Laplacian ∆ : Lk(X, ρ) →

Lk(X, ρ), defined as ∆ = δd + dδ. We say that a cochain c is harmonic if ∆c = 0.
We denote by Hk(X, ρ) the subspace of Lk(X, ρ) of harmonic cochains. The main
reason to introduce this theory is that it gives many decomposition results. The
most important one is the Hodge decomposition theorem (which is proven in this
simplicial setting by some formal computations).
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Proposition 1.4.11. For every k ∈ N, we have orthogonal decompositions:

ker(d|Lk(X,ρ)) = Hk(X, ρ)⊕ Im (d|Lk+1(X,ρ)).

In particular harmonic cochains compute reduced cohomology:

L2Hk(X, ρ) = Hk(X, ρ).

The second idea from Garland is to use local estimates on the links of simplices.
Recall that the link Xτ of a simplex τ ∈ X(k) is the set of all simplices σ in X that
are disjoint from τ but such that τ ∪σ is a simplex in X. In our setting, if τ ∈ X(k),
then Xτ is a purely (n− k− 1)-dimensional finite simplicial complex. We view it as
some sort of combinatorial neighborhood of τ . Garland looks at the Laplacian ∆τ

on Xτ . The following result says that if we can show that the spectral gap of ∆τ

on 0-cochains is large enough for every τ , then Hk(X, ρ) vanishes.

Theorem 1.4.12. [BŚ97, 2.5] Let 0 < k < n. Suppose that Xτ is connected and
that there exists ε > 0 such that κτ ≥ k(n−k)

k+1 + ε for all τ ∈ X(k−1), where κτ is the
minimal nonzero eigenvalue of ∆τ on 0-cochains. Then Hk(X, ρ) = {0}.

We will not give the proof of this theorem. In the case of degree 1 (k = 1),
estimates on the constant κτ were obtained in previous work by Feit and Higman.
Hence this theorem gives us another proof of property (T ) for higher rank non-
Archimedean simple groups. The rest of Garland’s proof of Theorem 1.4.9 consists
in obtaining such estimates for k ≥ 2 when the thickness is large enough.

1.4.3 Lp-cohomology of semisimple groups

We now compile results on semisimple groups that are particular to Lp-cohomology
and that point towards a positive answer of Gromov’s question on vanishing of
Lp-cohomology for all p > 1 in degrees below the rank.

1.4.3.1 Degree 1

Gromov’s question has a positive answer in degree 1. This was first proved in the
real case by Pansu in 1999 via de Rham Lp-cohomology (first unpublished, then
appeared in [Pan07]). Actually, he showed a stronger statement.

Theorem 1.4.13. [Pan07, Théorème 1] Let M be a homogeneous manifold. Either:
• the isometry group of M is a compact extension of a solvable unimodular Lie group,
• or M is quasi-isometric to a homogeneous space of strictly negative sectional cur-
vature,
• otherwise LpH1

dR(M) = {0} for all p > 1.

Later, de Cornulier and Tessera extended Pansu’s trichotomy to semisimple
groups over fields of characteristic zero via continuous group cohomology [dCT11].
Their trichotomy is valid only for groups of characteristic 0, but their argument
for vanishing of Lp-cohomology of semisimple groups of higher rank also works in
positive characteristic. This is the statement we will be interested in here.
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Theorem 1.4.14. [dCT11, Theorem 1] Let G be a semisimple group of rank r ≥ 2
over a local field. We have H1

ct

(
G,Lp(G)

)
= {0} for all p > 1.

We will sketch a proof of this result following [dCT11], but we will slightly adapt
the final part of it. First, we need the correct space to work with: this is the space
of p-Dirichlet functions or formal coboundaries.

Definition 1.4.15. Let G be a locally compact second countable group and let µ be
a left Haar measure on G. Denote by ρ(g) the action by right translation by g ∈ G on
the space of measurable functions on G. The space of p-Dirichlet functions Dp(G)
is the space of measurable functions u : G→ R such that bu(g) = u−ρ(g)u ∈ Lp(G)
for every g ∈ G and such that the map bu : G→ Lp(G), g → bu(g) is continuous.

The space Dp(G) contains Lp(G) and contains constant functions. The following
proposition can be viewed as an analogue of the fact that simplicial ℓp-cohomology in
degree 1 of a simply connected simplicial complex can be computed using functions
on vertices whose differentials are ℓp, rather than functions on edges. Under this
identification, the coboundaries are ℓp-functions on vertices and constant functions.

Proposition 1.4.16. [Tes09, 5.1] For every p > 1 we have:

H1
ct

(
G,Lp(G)

)
≃Dp(G)/(Lp(G) + R).

The isomorphism is induced by the map u 7→ bu. Hence a second interpretation
of this result is that in every cohomology class of H1

ct

(
G,Lp(G)

)
there exists a

cocycle of the form bu for some u ∈ Dp(G). The cocycle bu looks like a coboundary,
but is not one, which is why we call them formal coboundaries.

Now the general strategy behind the proof of Theorem 1.4.14 is the same as
the one used for proving property (T ) for higher rank simple groups: create and
propagate invariance. We refer to [dCT11] for their proofs.

The first step applies only to non-unimodular groups. Recall that for f ∈ Lp(G)
and g ∈ G, we have ||ρ(g)f ||p = ∆G(g)

−1/p||f ||p. Hence elements g ∈ G such that
∆G(g) > 1 are exactly the ones that contract the Lp-norm.

Proposition 1.4.17. [dCT11, Lemma 2.1] Let ξ ∈ G be such that ∆G(ξ) > 1.
For every u ∈ Dp(G) there exists u∞ ∈ Dp(G) such that u − u∞ ∈ Lp(G) and
ρ(ξ)u∞ = u∞. In other words:

H1
ct

(
G,Lp(G)

)
≃Dp(G)ξ/R.

In particular H1
ct

(
G,Lp(G)

)
is Hausdorff.

The second step is once again Mautner’s phenomenon. We could use the same
statement as the one introduced before, but it is easier to have a contracting version.

Proposition 1.4.18. [dCT11, Lemma 2.4] Let ξ ∈ G be such that ∆G(ξ) > 1.
Define:

Pξ = {h ∈ G, the sequence (ξ−nhξn)n>0 is bounded}.

If some u ∈ Dp(G) is ρ(ξ)-invariant, then u is ρ(Pξ)-invariant.
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Proof of Theorem 1.4.14. Let G be a semisimple group of rank r ≥ 2 and G = KAN
be an Iwasawa decomposition. By quasi-isometric invariance of Lp-cohomology, we
may only look at the non-unimodular solvable group R = A ⋉N . Let σ1, σ2 ∈ A∗

be two different simple roots of the root system of G (this is where we use the
higher rank hypothesis). Then we may choose two coweights ξ1, ξ2 ∈ A such that
|σi(ξi)| < 1 and for i = 1, 2 we have σ(ξi) = 1 for every simple root σ ̸= σi. This
choice is made so that for i = 1, 2, we have ∆G(ξi) > 1 and Pξi ⊃ Uσ for every
simple root σ ̸= σi.

Let u ∈ Dp(G). By 1.4.17, we can suppose that u is ρ(ξ1)-invariant. Now by
1.4.18, u is ρ(Pξ1)-invariant. But ξ1 ∈ A and A is abelian, so A ⊂ Pξ1 and u is ρ(A)-
invariant. Again by 1.4.18, u is Pξ2-invariant. But Pξ1 ∪Pξ2 contains the union of all
root groups of simple roots, which generates N . Hence u is ρ(N)-invariant. Hence
u is constant. This concludes the proof.

1.4.3.2 Higher degrees

In [BR20], Bourdon and Rémy initiate systematically the study of Lp-cohomology
of higher rank real simple Lie groups in higher degrees. They show vanishing of
Lp-cohomology for some real simple Lie groups in many degrees and for some values
of p > 1. The goal of this short paragraph is to make this last sentence more precise.

The strategy of Bourdon and Rémy to study Lp-cohomology of a real simple
(or semisimple) Lie group G is the following. First, quasi-isometric invariance al-
lows one to pass to a maximal parabolic subgroup P . A parabolic subgroup has a
Levi decomposition P = M ⋉ AN , where M is semisimple and AN is the solvable
radical of P . The main idea is to use the Hochschild-Serre spectral sequence on
this decomposition. Since we chose a maximal parabolic subgroup, the group AN is
Gromov-hyperbolic and there is one Gromov-hyperbolic space whose Lp-cohomology
is particularly well-understood: the real hyperbolic space. This motivates the fol-
lowing definition.

Definition 1.4.19. We say that a real simple Lie group is admissible if it admits a
maximal parabolic subgroup P whose solvable radical is quasi-isometric to the real
hyperbolic space Hn

R for some n ≥ 2.

Using Pansu’s description of vanishings of Lp-cohomology of the real hyperbolic
space, Bourdon and Rémy show the following result for real admissible simple Lie
groups.

Theorem 1.4.20. [BR20, 1.4] Let G be an admissible real simple Lie group and
let d + 1 be the dimension of the corresponding real hyperbolic space. Let D be the
dimension of the symmetric space associated to G. Then:

Hk
ct

(
G,Lp(G)

)
= {0} for k ≤ d

p
and for k ≥ d

p
+D − d+ 1.

The integer d is often larger than the real rank of G, but certainly smaller than
D/2. This result shows vanishing of Lp-cohomology for small values of p > 1 in
degrees < d and for large values of p > 1 in degrees close to the dimension D.

Initially, one of the goals of this thesis was to show vanishing of the second Lp-
cohomology space for most non-Archimedean simple groups of rank at least 3 using
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the same strategy. It turned out that our methods also applied to real groups and
to semisimple non-simple groups.

For a non-Archimedean semisimple group G, the solvable radical AN of a max-
imal parabolic subgroup P = M ⋉ AN is quasi-isometric to a locally finite tree.
Lp-cohomology of trees is well-understood. The difference between the real and the
non-Archimedean case comes from the fact that for small values of p > 1, the first
integer k such that LpHk

dR(Hn
R) ̸= {0} is large, allowing the spectral sequence to

give directly vanishing in many degrees. On the other hand, if T is a locally finite
tree, ℓpH1(T ) ̸= {0} for every p > 1, and so this term will always appear in the
spectral sequence, forbidding it to give vanishing directly. Nevertheless, the spectral
sequence still gives the linear isomorphism:

H2
ct

(
P,Lp(P )

)
= H1

ct

(
M,Lp

(
M,H1

ct

(
AN,Lp(AN)

)))
,

which is the starting point of [LN23]. Notice that this isomorphism also works for
real semisimple groups (not necessarily admissible) for p > Confdim(∂(AN)).
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Chapter 2

Vanishing in degree 2 for most
higher rank semisimple Lie groups

Introduction

Lp-cohomology is a natural quasi-isometry invariant introduced first in [GKS86] and
popularized by Gromov in [Gro93]. It is a rather fine one in the sense that it gives
quasi-isometry invariants for every p > 1 and thus uncountably many (and a pri-
ori independent) quasi-isometry invariants. It can be defined in different settings:
we may talk about simplicial ℓp-cohomology for simplicial complexes, de Rham Lp-
cohomology for manifolds, asymptotic Lp-cohomology for metric spaces or continu-
ous group Lp-cohomology for locally compact second countable groups. Comparison
theorems give criteria to guarantee when these different versions coincide (usually
by comparing them to asymptotic Lp-cohomology).

In this article we deal with continuous group Lp-cohomology H∗
ct(G,L

p(G)) of
a locally compact second countable group G, endowed with a left invariant Haar
measure, with coefficients in the right regular representation on Lp(G). See Section
2.1.2 for precise definitions. The main technical advantage of this version of Lp-
cohomology is that we dispose of more algebraic machinery, namely, we may use the
Hochschild-Serre spectral sequence for semi-direct products [BW00, IX].

The first locally compact groups we may probably think about are Lie groups.
Here the term Lie group can refer to either a real or a non-Archimedean Lie group.
The main motivation for this article is the following question by Gromov: he predicts
a classical behaviour of Lp-cohomology of semisimple Lie groups for every p > 1, in
degrees at most equal to the rank [Gro93].

Questions. Let G be a semisimple Lie group of rank r ≥ 2 over a local field F .
(1) Do we have H l

ct(G,L
p(G)) = {0} for all l = 1, . . . , r − 1 and p > 1?

(2) Do we have Hr
ct(G,L

p(G)) ̸= {0} at least for some values of p?
(3) Is the space Hr

ct(G,L
p(G)) Hausdorff for all p > 1?

Question (2) has been addressed in [BR21] for real groups and [LN22] for non-
Archimedean groups. This article deals with question (1). Let us review some
known results towards a positive answer to this question. Most of these results
concern vanishing in degree 1 for all p > 1 for groups of rank ≥ 2.
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First, Pansu proved this result in the real case in some unpublished notes in 1999.
In there, he showed a trichotomy for a homogeneous manifoldM : either the isometry
group ofM is a compact extension of a solvable unimodular Lie group, orM is quasi-
isometric to a homogeneous space of strictly negative sectional curvature, otherwise
LpH1

dR(M) = {0} for all p > 1. Later Bader, Furman, Gelander and Monod proved
vanishing of the first continuous cohomology of a (real or non-Archimedean) simple
Lie group G of rank ≥ 2 acting by isometries on some Lp(X,µ), where (X,µ) is
a standard Borel space and p > 1 [BFGM07]. In fact their result also applies to
semisimple groups whose simple factors have rank ≥ 2. Later, Cornulier and Tessera
extended Pansu’s trichotomy to semisimple Lie groups over fields of characteristic
zero [dCT11] (their trichotomy is stated only for groups of characteristic 0 but
their argument for vanishing for semisimple Lie groups of higher rank also works in
positive characteristic). The present work is heavily influenced by [dCT11].

Another impressive contribution is the one of Lafforgue in [Laf08]. Motivated
by obtaining obstructions to adapt his own proof of the Baum-Connes isomorphism
for hyperbolic groups to the case of SL(3,Z), he defines a strong rigidity condition,
known today as Lafforgue’s Strong Property (T ), that (if proven for a large enough
class of Banach spaces) implies an affirmative answer to Gromov’s question in degree
1. He showed that groups containing SL(3, F ) have this property, where F = R
or a non-Archimedean local field. The main novelty for us is that this condition
implies vanishing of the first continuous cohomology group for non-isometric actions
(more precisely, for representations of small exponential growth on uniformly convex
Banach spaces).

Bourdon and Rémy deal with vanishing of Lp-cohomology of real simple Lie
groups in higher degrees [BR20]. They show that for some real simple Lie groups
they call admissible, there are constants p(k) > 1 for every degree k such that there
is vanishing of Lp-cohomology in degree k for all 1 < p < p(k). Poincaré duality
allows them to extend this result to large values of p, at least for large values of
k (in particular, this duality argument does not concern degrees below the rank).
Their methods consist in proving a suitable version of the Hochschild-Serre spectral
sequence for Lp-cohomology and invoke Pansu’s description of the Lp-cohomology of
the real hyperbolic space [Pan08]. In fact their proof also applies to (non-admissible)
real Lie groups, but the conditions on the constant p(k) are much more restrictive
(in this case the constant p(k) tends to 1 for fixed k when the rank goes to infinity).

Initially, we wanted to prove a statement similar to that of Bourdon and Rémy
in the non-Archimedean case. It turned out that our methods also apply to the real
case, but only for large values of p. The result we prove is the following.

Theorem 2.0.1. (see Theorems 2.2.10 and 2.4.2 in the text) Let F be a local field
and suppose that G is either:
• SL(4, D), where D is a finite dimensional central division algebra over F ,
• a simple Lie group over F of rank r ≥ 4 that is not of type D4 and is not of
exceptional type,
• or a semisimple, non-simple Lie group over F of rank r ≥ 3.
Then there exists a constant p(G) ≥ 1 such that for all p > p(G):

H2
ct(G,L

p(G)) = {0}.

Moreover, when F is non-Archimedean we have p(G) = 1.
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Combining our results with [LN22, 1.2], we obtain a complete description of the
vanishings of Lp-cohomology for p > 1 and in all degrees for SL(4, F ), where F is
a non-Archimedean local field. This gives a positive answer to Gromov’s questions
(1) and (2) for this group.

Corollary 2.0.2. For G = SL(4, F ), where F is a non-Archimedean local field, we
have for any p > 1:

Hk
ct(G,L

p(G)) ̸= {0} if and only if k = 3.

For real admissible simple Lie groups (those for which the results in [BR20]
apply) our result is complementary to that of [BR20]. In degree 2, their result gives
vanishing for small values of p, say for 1 < p ≤ q(G) for some constant q(G). A priori,
there is an interval (q(G), p(G)] for which none of our results show vanishing. The
funny thing is that, for most admissible simple Lie groups, this interval disappears
when the rank is large enough.

Corollary 2.0.3. (see Corollary 2.4.3 in the text) Let G be an admissible real simple
Lie group of rank r ≥ 8 that is not of type Br. Then we have for all p > 1

H2
ct(G,L

p(G)) = {0}.

We outline the proof of Theorem 2.0.1. First, we use quasi-isometric invari-
ance in order to identify H2

ct(G,L
p(G)) to H2

ct(P,L
p(P )), where P is a maximal

parabolic subgroup. This parabolic subgroup has a Levi decomposition P =MSU .
The version of the Hochschild-Serre spectral sequence from [BR20] allows us to
identify the space H2

ct(P,L
p(P )) (at least as an abstract vector space) to the first

continuous cohomology group H1
ct(M,Lp(M,Vp)) of the Levi factor M with coeffi-

cients in some Banach-valued Lp-space Lp(M,Vp). The Banach space Vp is in fact
H1

ct(SU,L
p(SU)). The main technical problem comes from the fact that the contin-

uous M -module Lp(M,Vp) has relatively large exponential growth, forbidding us to
(directly) invoke Lafforgue’s strong property (T ) and obtain the desired vanishing.

We amend this by passing to a cocompact, non-unimodular, solvable groupR and
creating contractions thanks to its modular function ∆R. We then adapt techniques
from [dCT11] to show some non-isometric version of Mautner’s phenomenon for the
R-module Lp(R, Vp). The upshot is that vanishing of H1

ct(R,L
p(R, Vp)) follows from

the presence of enough contractions. Verifying this condition can be done easily in
the semisimple, non-simple case (see Theorem 2.2.10 in the text).

The non-trivial part consists in showing the existence of such contractions in the
simple case. This is a battle between the exponential dilation of a maximal torus A
in M acting on Vp and the exponential contraction of ∆R in certain directions. To
show that the contraction of ∆R wins this battle for the groups in the statement of
Theorem 2.0.1, we first control the operator norms of the action of A on Vp by some
term that can be written explicitly in combinatorial terms. This step requires large-
scale geometric considerations, as our bound depends on the Hausdorff dimension of
the Carnot-Carathéodory metric on U . Then, using the classification of semisimple
Lie groups over local fields, we reduce the existence problem of contracting elements
to a combinatorial case-by-case study of root systems with multiplicities. The main
point in the combinatorial part of the proof is that, for the infinite families of root
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systems (Ar, Br, Cr, BCr and Dr) there exists always a choice of maximal parabolic
subgroup such that our control of the exponential dilation grows linearly in the rank
and the exponential contraction of the modular function grows quadratically in the
rank (at least in well-chosen directions). This a priori asymptotic heuristic works
quite fast: starting from r ≥ 3 for Ar, from r ≥ 4 for Br, Cr and BCr and from r ≥ 5
for Dr. Our current estimates do not seem to create contractions for exceptional
groups.

We do not exclude the possibility that this result could be obtained using Laf-
forgue’s Strong Property (T ). Indeed, Lafforgue extends his results from M =
SL(3, F ) to a higher rank semisimple Lie group G containing M by restricting a
representation of G to M and using that M has strong property (T ). This does
not optimize the constants in the exponential growth of the representation as they
are the same as for SL(3, F ). We expect that showing Lafforgue’s strong property
(T ) directly in G improves the constants so that we can treat the representation ap-
pearing after applying the spectral sequence, at least starting from a certain rank.
Nevertheless, our constants seem to be slightly better since our method already
works when the Levi factor M is SL(3, F ) inside G = SL(4, F ).

The article is organized as follows. Section 1 contains standard preliminaries
concerning algebraic groups, continuous group cohomology and Lp-cohomology. We
also recall the Hochschild-Serre spectral sequence for Lp-cohomology as given in
[BR20]. Section 2 studies the first continuous cohomology group with particular
coefficients in a Banach-valued Lp-space. We show that this space can be identified
to a more classical functional space, on which we can use Mautner’s phenomenon
to state a vanishing criterion. We directly apply this criterion to semisimple, non-
simple groups of rank ≥ 3. Sections 3 and 4 are the technical heart of this article.
In Section 3 we study amenable hyperbolic groups with homotheties and obtain our
concrete estimate for cohomology growth. Section 4 explains how to find contracting
elements using root systems. We use the classification of simple Lie groups over local
fields, study in detail each group to search for contractions and sum up our results in
tables. This proves Theorem 2.0.1. We also prove Corollary 2.0.3 as a consequence
of our combinatorial study.

2.1 Continuous cohomology of Lie groups

This section establishes the setting of the article. We also fix notation for subse-
quent sections. It contains standard preliminaries of algebraic flavor, more precisely,
algebraic groups and continuous cohomology. We also recall the spectral sequence
for continuous group Lp-cohomology.

2.1.1 Lie theoretic notions and Heintze groups

These paragraphs collect the necessary Lie theoretic vocabulary and fix notations
for subsequent sections. We follow standard references on algebraic groups, such as
[Bor91] or [Mar91, Chapter 0].

Roots and root spaces Let G be a semisimple Lie group over an Archimedean
or non-Archimedean local field F of split rank r ≥ 1. Denote by g its Lie algebra.
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Fix a maximal F -split torus S in G and denote by X(S) the group of F -characters
of S. Multiplication in X(S) will be denoted additively. The restricted root system
Φ = ΦF (S,G) is the set of nonzero F -characters α ∈ X(S) such that the space

gα = {X ∈ g | ∀s ∈ S,Ad(s)X = α(s)X}

is nonzero [Bor91, 21.1]. An element α ∈ Φ is called a root relative to F or a root.
The set Φ is a root system in the usual sense [Mar91, 0.26]. The integer dim gα will
be called the multiplicity of the root α, and will be denoted m(α).

Recall that the root system Φ is said to be reduced if for all α ∈ Φ, the element
2α is not a root. The only family of non-reduced root systems consists of root
systems of type BCn for n ≥ 2. The space gα is a commutative Lie subalgebra
when 2α /∈ Φ (this follows from [gα, gβ] ⊆ gα+β), but it may not be a Lie subalgebra
when α, 2α ∈ Φ. We amend this by considering the space g(α) := gα ⊕ g2α, which is
always a Lie subalgebra of g for α ∈ Φ [Bor91, 21.7]. If we define Φnd to be the set
of roots α ∈ Φ such that α/2 is not a root, then the root space decomposition of g
may be written:

g = g0 ⊕
⊕

α∈Φnd

g(α).

where each summand is a Lie subalgebra [Bor91, 21.7].
Let U(α) be the unique unipotent closed Zariski-connected Lie subgroup with Lie

algebra g(α) normalized by the centralizer Z(S) of the torus S [Bor91, 21.9 (i)].
If α ∈ Φ and 2α /∈ Φ, then Uα := U(α) is abelian and F -isomorphic (as an

algebraic group) to gα [Bor91, 21.20]. If θα : gα → Uα denotes such an isomorphism,
then the action by conjugation of some s ∈ S on Uα becomes the homothety of ratio
α(s) on gα, that is: sθα(X)s−1 = θα(α(s)X) for all X ∈ gα [BT65, 3.17].

If α, 2α ∈ Φ then U(α) is metabelian, its center is U2α [Bor91, 21.10 (2)] and is F -
isomorphic (as a variety) to the product U(α)/U2α ×U2α [Bor91, 21.20 Proof of (i)].
The quotient Uα := U(α)/U2α is F -isomorphic (as a variety) to gα. If θα : gα → Uα

denotes this isomorphism, then the action by conjugation of some s ∈ S on Uα

becomes again the homothety of ratio α(s) on gα [BT65, 3.17]. Notice that under
these identifications, the action of s ∈ S on U(α), seen as the product Uα × U2α, is
a homothety of ratio α(s) on Uα and a homothety of ratio 2α(s) on U2α.

In the real case, the isomorphism θα is just the exponential mapping.

Parabolic subgroups and Levi decomposition We fix a choice of simple roots
Σ inside Φ, denote by Φ+ the corresponding positive roots. For any α ∈ Φ and
σ ∈ Σ, set nσ(α) ∈ Z so that

α =
∑
σ∈Σ

nσ(α)σ.

For I ⊆ Σ, denote by ΦI the set of roots in Φ which are linear combinations of
simple roots in I (ΦI is a root system in its own right) and Φ+

I = ΦI ∩ Φ+. In
what follows we will introduce many notations for subgroups of G depending on a
subset I of Σ. If I is in subscript it means that the corresponding subgroup contains
in some way the roots in I, if I is in superscript it means that the corresponding
subgroup avoids in some way the roots in I.
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For I ⊊ Σ, the standard parabolic subgroup PI of type I is the subgroup of G
with Lie algebra

pI = g0 ⊕
⊕
α∈ΦI

gα ⊕
⊕

α∈Φ+\Φ+
I

gα

[BT65, 4.2]. Let SI denote the F -split subtorus of S of rank (r − |I|) defined by
SI = (

⋂
γ∈I Ker γ)0. The group PI admits a Levi decomposition PI = ZI ⋉ U I ,

where ZI = ZG(S
I) denotes the centralizer of the torus SI in G and U I is the

unipotent radical of PI [BT65, 4.2]. We will briefly present some properties of both
factors in this decomposition.

The group ZI = ZG(S
I) is called the Levi factor of PI and has Lie algebra

g0⊕
⊕

α∈ΦI
gα. It is reductive [BT65, 2.15 d)], and so it may be decomposed as the

almost direct product MIT
I where MI = [ZI , ZI ] is a semisimple group of split rank

|I| and T I is the connected center of ZI . The group T I is defined over F [BT65, 2.15
a)] and is the almost direct product of SI with a (compact) anisotropic subtorus
defined over F [BT65, 1.8]. The decomposition PI = (MIT

I) ⋉ U I is sometimes
called the Langlands decomposition of PI .

Remark. The action by conjugation ofMI on U I preserves the volume of U I . Indeed,
volume dilation of this action defines a character of MI , but MI has no nontrivial
characters because it is a semisimple group.

On the other hand, the group U I has Lie algebra uI =
⊕

α∈Φ+\Φ+
I
gα and is

F -isomorphic (as a variety) to the direct product of the corresponding root groups
[Bor91, 21.9 (ii)]: ∏

α∈Φ+
nd\(ΦI)

+
nd

U(α) =
∏

α∈Φ+\Φ+
I

Uα.

Heintze groups and Iwasawa decomposition We are mostly concerned with
(proper) maximal parabolic subgroups, that is, the case where I = Σ \ {γ} for some
γ ∈ Σ. In this case, Sγ := SI≃F ∗ and Φnγ>0 := Φ+ \ Φ+

Σ\{γ} is exactly the set
{α ∈ Φ, nγ(α) > 0}. Conjugation by some s ∈ Sγ on x ∈ Uα, where x = θα(X) and
θα is our S-equivariant identification of Uα with gα, becomes:

s.x := sxs−1 = θα(γ(s)
nγ(α)X).

Thus a fixed s ∈ Sγ either contracts or dilates all the root groups Uα for α ∈ Φnγ>0

(depending on the sign of log |γ(s)|). In the terminology of [CdCMT15], Sγ acts
on Uγ := U I by confining automorphisms (the notation Uγ is ambiguous as it may
also refer to the root group Uγ integrating gγ , but in practice we will never use this
notation in this sense).

Definition 2.1.1. The group Hγ := Sγ ⋉Uγ is the Heintze group associated to the
simple root γ.

By [CdCMT15, 4.6], the solvable group Hγ is an amenable, non-unimodular,
Gromov-hyperbolic locally compact group.

On the other hand, the semisimple part Mγ := MI of the group PI admits
an Iwasawa decomposition KγAγNγ , where Kγ is a maximal compact subgroup
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of Mγ , the group Aγ is a maximal F -split torus in Mγ (hence a group-theoretic
supplementary of Sγ in S) and Nγ is isomorphic to the product

∏
α∈Φ+

I
Uα and has

Lie algebra
⊕

α∈Φ+
I
gα (see [Hel01, IX. 1.3] for the real case and [Mac71, 2.6.11] for

the non-Archimedean case).

Definition 2.1.2. We write Rγ := AγNγ .

The main object of study of the subsequent sections is the semi-direct product
Rγ ⋉ Hγ . By this we mean that we will study the group Hγ and the action by
conjugation of the group Rγ on Hγ . To sum up the relations between the different
groups in this section:

G ≃qi PI ≃qi M
γ ⋉Hγ ≃qi R

γ ⋉Hγ ,

where the metrics on each group are just the metrics induced from G. Moreover, all
of these quasi-isometries are cocompact inclusions.

2.1.2 Continuous group cohomology

We define continuous cohomology of a locally compact second countable group fol-
lowing [BW00, IX].

Let G be a locally compact second countable group. Then G is a countable
union of compact sets (for instance, because G carries a proper metric [Str74]). Let
(ρ, V ) be a continuous representation of G (we also use continuous G-module as
terminology) i.e. a morphism ρ : G→ B(V ) such that the map G×V → V defined
by (g, v) 7→ ρ(g)v is continuous, where V is some locally convex topological vector
space and B(V ) denotes continuous invertible operators on V . Here V will always
be at least a Fréchet space.

For k ∈ N, we define the space Ck(G,V ) of k-cochains as the set of continuous
maps from Gk+1 to V . Since G is a countable union of compact sets, the space
Ck(G,V ) equipped with the topology of uniform convergence on compact subsets
is a Fréchet space.

We define the differential dk : Ck(G,V ) → Ck+1(G,V ) of a k-cochain c as:

(dkc)(g0, . . . , gk+1) =
k+1∑
i=0

(−1)ic(g0, . . . , gi−1, gi+1, . . . , gk+1).

It satisfies dk+1 ◦ dk = 0.
The space Ck(G,V ) can be viewed as a continuous G-module, by endowing it

with the action:

(g.c)(g0, . . . , gk) = ρ(g)(c(g−1g0, . . . , g
−1gk)).

We consider the space Ck(G,V )G of invariants in Ck(G,V ) with respect to this
action. Notice that this is just the set of continuous G-equivariant maps from Gk+1

to V , when endowing Gk+1 with the diagonal action by left translation on each
factor and V with the action given by ρ. The differential dk maps Ck(G,V )G into
Ck+1(G,V )G. We call ker(dk|Ck(G,V )G) the space of k-cocycles and denote it by
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Zk(G, ρ), we call Im (dk−1|Ck−1(G,V )G) the space of k-coboundaries and denote it
Bk(G, ρ).

In homological algebra, group cohomology with values in a representation is
defined as the cohomology of the complex of invariants of any resolution of the
given representation. In this article we will not use other resolutions apart from the
one we already defined (even though we invoke a result by [BR20] obtained using
other resolutions), so the following definition of continuous group cohomology is
enough for our purposes.

Definition 2.1.3. The k-th continuous cohomology group (resp. k-th reduced con-
tinuous cohomology group) of G with coefficients in (ρ, V ) is the topological vector
space:

Hk
ct(G, ρ) := Zk(G, ρ)/Bk(G, ρ) (resp. Hk

ct(G, ρ) := Zk(G, ρ)/Bk(G, ρ)).

The space Hk
ct(G, ρ) is the biggest Hausdorff quotient of Hk

ct(G, ρ). In particular
these two spaces coincide exactly when Hk

ct(G, ρ) is Hausdorff.

Non-homogeneous cochains For concrete applications and particularly in de-
gree 1, it is sometimes useful to view elements of Ck(G,V )G not as maps from Gk+1

to V , but as maps from Gk to V .
For k = 1, this gives the classical geometric interpretation of the first continuous

cohomology group. We can identify Z1(G,V ) with the space of continuous maps
b : G→ V satisfying the cocycle relation b(gh) = b(g)+ ρ(g)b(h). This space can in
turn be identified with the space of continuous affine actions of G on V with linear
part ρ, via the map b 7→ Ab for b ∈ Z1(G,V ), where Ab(g) : V → V, v 7→ ρ(g)v+b(g)
for g ∈ G. In a similar way, we may identify B1(G,V ) with the space of maps of the
form b(g) = v − ρ(g)v for some v ∈ V . These maps correspond to continuous affine
actions of G on V having a fixed point. If the group G is compactly generated, S
is a compact generating set and (V, || · ||V ) is a Banach space, then Z1(G,V ) is a
Banach space with norm ||b|| = supx∈S ||b(x)||V for b ∈ Z1(G,V ).

Continuous group Lp-cohomology Let G be a locally compact second count-
able group endowed with a left-invariant Haar measure µG. In this article we will be
interested in the Banach space V = Lp(G) of p-integrable functions with respect to
the measure µG for 1 < p < ∞. The representation ρp of V we are interested in is
the right regular representation of G, defined by right translation on the argument
of an Lp-function: ρp(g)f(x) = f(xg). This defines a continuous representation of
G. Notice that it is an isometric representation if and only if the measure µG is
also right-invariant, that is, if and only if G is unimodular. In this case ρp is also
continuously conjugate to the similarly defined left regular representation λp via the
continuous linear map Lp(G) → Lp(G) sending f to f̌(x) = f(x−1).

The representation ρp will appear for several different groups, we will not need
to specify the action as it will be enough to specify the corresponding vector space.
In order to avoid (even more) cumbersome notation, Hk

ct(G,L
p(G)) will just mean

Hk
ct(G, ρp).

The most important feature of Lp-cohomology, in contrast to cohomology with
respect to an arbitrary representation, is that it is a quasi-isometry invariant for
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any degree k ∈ N and 1 < p < ∞. This is a phenomenon that has been shown
for different types of Lp-cohomology by different people: see [Gro93, p. 219] for a
sketch of proof in the simplicial ℓp-cohomology setting, [BP03] for a more detailed
proof in the same context, [Pan95] for a proof for de Rham Lp-cohomology. Here we
are interested in quasi-isometric invariance of continuous group Lp-cohomology. It
was first proven by Elek in [Ele98] for finitely generated groups by comparing it with
asymptotic Lp-cohomology. In [SS18], the same idea is used to show that vanishing
of an ℓ2-Betti number is a coarse equivalence invariant. In [BR20], quasi-isometric
invariance of continuous group Lp-cohomology is proven for general locally compact
second countable groups.

Theorem 2.1.4. [BR20, Theorem 1.1] Let G1 and G2 be locally compact second
countable groups, equipped with left-invariant proper metrics d1 and d2. Every quasi-
isometry F : (G1, d1) → (G2, d2) induces canonically an isomorphism of graded
topological vector spaces:

F ∗ : H∗
ct(G2, L

p(G2)) → H∗
ct(G1, L

p(G1))

for every 1 < p <∞. The same holds for reduced cohomology.

Remark. 1. The idea of both [SS18] and [BR20] consists in comparing continuous
group Lp-cohomology to asymptotic Lp-cohomology. The latter is a coarse equiv-
alence invariant [Pan95] and hence, even if not stated explicitly, continuous group
Lp-cohomology is also invariant under coarse equivalences.

2. Continuous cohomology with coefficients in the left regular representation
λp,G is not invariant under quasi-isometries when at least one of the two groups
is not unimodular (when both are unimodular, it is same as considering the right
regular representation). For instance, the groups G = SL(2,R) and B < SL2(R) of
upper triangular matrices are quasi-isometric. One has H1

ct(G,λp,G) ̸= {0} for all
p > 1 (G is unimodular, so H1

ct(G,λp,G) = H
1
ct(G, ρp,G) and G is quasi-isometric to

the real hyperbolic plane H2
R, therefore using comparison theorems between continu-

ous group Lp-cohomology, asymptotic Lp-cohomology and de Rham Lp-cohomology
[BR21, Theorems 6.5 and 6.7] we have H1

ct(G, ρp,G) = LpH1
dR(H2

R) and the latter is
nonzero for all p > 1 [Pan89a, 5.2]). On the other hand H1

ct(B, λ2,B) = {0} [Del77].

2.1.3 Spectral sequence reduction

Let G be a semisimple Lie group over a local field F of split rank r. The idea of
this section is to use quasi-isometric invariance of continuous group Lp-cohomology
[BR20, Theorem 1.1] and the Hochschild-Serre spectral sequence. This reduces the
computation of the second Lp-cohomology group of G to the first continuous group
cohomology of a semisimple factor of a well-chosen parabolic subgroup with values
in a more exotic Lp-module. The following version of the spectral sequence is well-
suited to compute Lp-cohomology:

Theorem 2.1.5. [BR20, Corollary 5.4] Let P be a locally compact second countable
group. Suppose that P = Q ⋉ S where Q and S are two closed subgroups of P ,
such that C∗(S,Lp(S)) is homotopically equivalent to a complex of Banach spaces
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and every cohomology space Hk
ct(S,L

p(S)) is Hausdorff. Then there exists a spectral
sequence (Er) abutting to H∗

ct(P,L
p(P )) in which:

Ek,l
2 = Hk

ct(Q,L
p(Q,H l

ct(S,L
p(S)))).

We keep the same notations as in the previous section. Let γ ∈ Σ be a simple
root of Φ = Φ(S,G). The group G is quasi-isometric to the semi-direct product
Rγ ⋉ Hγ . The spectral sequence will turn out to be useful on this semi-direct
product because the Lp-cohomology of Hγ is sufficiently well-understood.

Corollary 2.1.6. For any simple root γ ∈ Σ, any p > max{Confdim(∂Hγ), 1} and
any integer k ≥ 1, we have linear isomorphisms:

Hk
ct(G,L

p(G)) = Hk−1
ct (Rγ , Lp(Rγ , H1

ct(Hγ , L
p(Hγ)))).

The Rγ-action of g ∈ Rγ on b : Hγ → Lp(Hγ) is defined by:

(π0(g)b)(h)(x) = b(g−1hg)(g−1xg).

The Rγ-action π on f ∈ Lp(Rγ , H1
ct(Hγ , L

p(Hγ))) is defined for g, h ∈ Rγ by:

(π(g)f)(h) = π0(g)(f(hg)).

Proof. Quasi-isometric invariance of continuous group Lp-cohomology [BR20, 1.1]
gives topological isomorphisms:

Hk
ct(G,L

p(G)) = Hk
ct(R

γ ⋉Hγ , L
p(Rγ ⋉Hγ)).

We apply Theorem 2.1.5 to the semi-direct product Rγ ⋉ Hγ . When F is non-
Archimedean, the group Hγ is quasi-isometric to a tree [dCT11, 4.6], so its Lp-
cohomology is Hausdorff and concentrated in degree 1 for all p > 1. In the real
case, if p > Confdim(∂Hγ) then H1

ct(Hγ , L
p(Hγ)) ̸= {0} [dCT11, Theorem 1], is

Hausdorff [Tes08, 11.9] and moreover Hk
ct(Hγ , L

p(Hγ)) = {0} for k ≥ 2 [Bou16a,
Corollaire B]. Thus the Hochschild-Serre spectral sequence collapses in the E2 page
and gives the desired linear isomorphisms.

Remark. This is the only part of the proof where we need p to be large in the real
case. The rest of the proof works uniformly for all p > 1, both in the real and in the
non-Archimedean case. If one would like to study the second Lp-cohomology group
of real simple Lie groups for smaller values of p, the spectral sequence will give us
other isomorphisms. For instance, if Hγ is the real hyperbolic space of dimension d,
Bourdon and Rémy use [Pan08] and obtain vanishing for p ≤ (d− 1)/2 [BR20, 1.4],
and for (d− 1)/2 < p ≤ d− 1, we obtain

H2
ct(G,L

p(G)) = H0
ct(R

γ , Lp(Rγ , H2
ct(Hγ , L

p(Hγ)))) = Lp(Rγ , LpH2
dR(Hγ))

Rγ
.

Adapting the techniques we will introduce further on continuous Lp-cohomology to
de Rham Lp-cohomology may also show that this space vanishes for many groups.
We do not do it because in practice, most of the vanishings obtained in this manner
are contained in Corollary 2.0.3 (except for type Br and some low rank cases).
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2.2 Contracting automorphisms and cohomology in de-
gree 1 of Banach-valued Lp-spaces

In this section, we adapt techniques from [dCT11, Section 2] to show vanishing of
the right hand side of Corollary 2.1.6 when k = 2, under contraction hypotheses
that will be verified in subsequent sections.

The setting for the section is the following (except for the Lie theoretic state-
ments at the very end). Let G be a locally compact second countable group en-
dowed with a left-invariant Haar measure µ and (π0, V ) be a continuous G-module
on some separable Banach space V . Let π denote the action on measurable functions
f : G→ V defined by:

(π(g)f)(h) = π0(g)(f(hg)),

for all g, h ∈ G. For p > 1, we consider the Banach space Lp(G,V ) of Bochner
p-integrable functions, that is, the set of measurable functions f : G→ V such that:

||f ||pp =
∫
G
||f(g)||pV dµ(g) <∞.

We may also denote by πp the restriction of π to the space Lp(G,V ).

2.2.1 Operator norms and the modular function

Our definition of the modular function ∆G of G is given by the following formula: for
any measurable set E of G and g ∈ G we have µ(Eg) = ∆G(g)µ(E), or alternatively,
for any continuous compactly supported function ϕ on G we have:∫

G
ϕ(hg−1)dµ(h) = ∆G(g)

∫
G
ϕ(h)dµ(h).

If (E, || · ||E) is any Banach space and A : E → E is some bounded linear
operator, we define the operator norm of A by:

|||A|||E = sup
v∈E,v ̸=0

||Av||E
||v||E

.

We first obtain the following identity on the operator norms of π. It is central
in our reasoning because it shows that even though the operator norm of π0 can be
really big, we can hope to compensate it using the modular function.

Proposition 2.2.1. For all g ∈ G we have:

|||π(g)|||Lp(G,V ) = ∆G(g)
−1/p|||π0(g)|||V .

Proof. The proof follows from the definition of the modular function:

||π(g)f ||pLp(G,V ) =

∫
G
||π0(g)(f(hg))||pV dµ(h)

= ∆G(g)
−1

∫
G
||π0(g)(f(h))||pV dµ(h)

≤ ∆G(g)
−1|||π0(g)|||pV ||f ||

p
Lp(G,V )
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For the reverse inequality, fix ε > 0 and let v ∈ V be such that ||π0(g)v||V ≥
(|||π0(g)||| − ε)||v||V . Fix some compact K ⊂ G such that µG(K) = 1 and we may
define fv ∈ Lp(G,V ) by fv(x) = v for x ∈ K and f(x) = 0 for x ∈ G \K. We have
||fv||Lp(G,V ) = ||v||V and

||π(g)fv||pLp(G,V ) = ∆G(g)
−1

∫
K
||π0(g)v||pV dµ(h)

≥ ∆G(g)
−1(|||π0(g)||| − ε)p||fv||pLp(G,V ).

2.2.2 Contracting automorphisms and cohomology

We introduce the main object of study of this section, namely, πp-contracting ele-
ments. This subsection is devoted to showing some complementary results that are
not necessary for the proof of Theorem 2.0.1 (though we will need Lemma 2.2.4 for
some cases) but that highlight the importance of contractions.

Definition 2.2.2. We say that ξ ∈ G is πp-contracting if

lim
n→+∞

|||π(ξn)|||Lp(G,V ) = 0,

and πp-bounded if ξ generates a non-relatively compact semigroup and

sup
n>0

|||π(ξn)|||Lp(G,V ) <∞.

A non-compact group G satisfies a linear Sobolev inequality on Lp(G) if and
only if G is not simultaneously amenable and unimodular. The first result we show
is a generalization of the fact that a non-unimodular group satisfies a linear Sobolev
inequality on Lp(G) [Tes08, 11.9], but this time for the representation πp.

Lemma 2.2.3. Suppose that there exists a πp-contracting element ξ ∈ G. Then the
space H1

ct(G, πp) is Hausdorff, that is:

H1
ct(G, πp) = H

1
ct(G, πp).

Proof. Up to changing ξ by some power, we may suppose that |||π(ξ)|||Lp(G,V ) < 1.
Since G is σ-compact, we may write it as an increasing countable union of compact
subsets (Qk)k. For k large enough we have that ξ ∈ Qk and hence for f ∈ Lp(G,V ):

||f ||p,Qk
= sup

g∈Qk

||f − π(g)f ||p ≥ ||f − π(ξ)f ||p ≥ ||f ||p − ||π(ξ)f ||p ≥ C||f ||p

where C = 1− |||π(ξ)|||Lp(G,V ) > 0. Therefore B1(G, πp) is closed in Z1(G, πp).

Lemma 2.2.4. Suppose that there exists a πp-bounded element ξ ∈ G. If f ∈
Lp(G,V ) is π(ξ)-invariant, then f = 0.
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Proof. Let X be any compact subset of G and denote by ||f ||X,p the Lp-norm of
f1X . Since ξ generates a non-relatively compact semigroup and the action of G on
itself is proper, we may take a subsequence (nk)k∈N so that the translates (Xξnk)k>0

are disjoint. Since ξ is π-bounded, let C = supn>0 |||π(ξn)|||Lp(G,V ) <∞. We have:

||f ||pX,p = ||π(ξn)f ||pX,p =

∫
X
||π0(ξn)(f(hξn))||pV dµ(h)

= ∆G(ξ)
−n

∫
Xξn

||π0(ξn)(f(h))||pV dµ(h)

≤ ∆G(ξ)
−n|||π0(ξn)|||pV

∫
Xξn

||f(h)||pV dµ(h)

= |||π(ξn)|||pLp(G,V )||f ||
p
Xξn,p ≤ C||f ||pXξn,p.

But
∑

k>0 ||f ||Xξnk ,p ≤ ||f ||G,p < ∞, hence ||f ||Xξnk ,p → 0 when k → +∞. There-
fore the previous inequality implies that ||f ||X,p = 0 for any compact X ⊂ G, which
gives f = 0 almost everywhere.

Before working towards a criterion for vanishing in degree 1, we point out that
the previous lemma gives an easy criterion for vanishing in degree 0.

Corollary 2.2.5. Suppose that there exists some πp-bounded element ξ ∈ G. Then:

H0
ct(G, πp) = Lp(G,V )G = {0}.

Proof. Every f ∈ Lp(G,V )G is π(ξ)-invariant, hence f = 0 by Lemma 2.2.4.

2.2.3 Mautner’s phenomenon and vanishing criterion

Our next goal will be to give a criterion for vanishing in degree 1 for the repre-
sentation πp using πp-contracting elements. Whenever such an element exists, the
following proposition allows us to create invariance for any cocycle in Z1(G, πp).

Proposition 2.2.6. Let ξ ∈ G be πp-contracting and b ∈ Z1(G, πp). There exists
an element c ∈ Z1(G, πp) such that b− c ∈ B1(G, πp) and c(ξ) = 0.

Proof. We first claim that the sequence (b(ξn))n>0 is Cauchy in Lp(G,V ). To see
this, first notice that this sequence is bounded, as the cocycle relation yields:

b(ξn) =
n−1∑
i=0

π(ξi)b(ξ)

and hence:

||b(ξn)||p ≤
( n−1∑
i=0

|||π(ξi)|||Lp(G,V )

)
||b(ξ)||p ≤ C||b(ξ)||p.

where C =
∑∞

i=0 |||π(ξi)|||Lp(G,V ) < ∞ converges as ξ is πp-contracting and the
operator norm is submultiplicative. Now let n ≥ m ≥ 0. From the cocycle relation
we have:

b(ξn)− b(ξm) = π(ξm)b(ξn−m)
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and hence:

||b(ξn)− b(ξm)||p ≤ |||π(ξm)|||Lp(G,V )||b(ξn−m)||p ≤ C|||π(ξm)|||Lp(G,V )||b(ξ)||p.

Hence the sequence (b(ξn))n>0 is Cauchy in Lp(G,V ) and converges to a limit func-
tion f ∈ Lp(G,V ). The formula c(g) = b(g)− f + π(g)f for g ∈ G defines a cocycle
c such that b− c ∈ B1(G, πp). We now show that c(ξ) = 0. We first see that:

||c(ξn)||p ≤ ||b(ξn)− f ||p + ||π(ξn)f ||p

and hence ||c(ξn)||p → 0 as n→ +∞. From the cocycle relation we have:

c(ξn) = c(ξ) + π(ξ)c(ξn−1).

Since ||c(ξn)||p → 0 and ||π(ξ)c(ξn−1)||p → 0 we have that c(ξ) = 0.

The next step is propagating the invariance created by this proposition. This
involves some non-isometric variant of Mautner’s phenomenon (recall that the clas-
sical Mautner’s lemma concerns unitary, hence isometric, representations [Mar91, II.
3.2]). We formulate this variant in terms of the following dynamical interpretation
of the Levi decomposition [Pra77, 2.2].

Definition 2.2.7. Let ξ ∈ G. We define:

Uξ = {h ∈ G, ξ−nhξn
n→+∞−−−−−→ 1G},

Pξ = {h ∈ G, the sequence (ξ−nhξn)n>0 is bounded},
Zξ = {h ∈ G, ξ−1hξ = h}.

The sets Pξ, Uξ and Zξ are subgroups of G. The subgroup Pξ contains both Uξ

and Zξ and these satisfy Uξ ∩Zξ = {1G}. When G is a semisimple Lie group and ξ
an element of a maximal split torus of G, we have that Pξ is a parabolic subgroup
of G and Uξ is its unipotent radical [Pra77, 2.4 (i)], hence the Levi decomposition
of Pξ may be written as Pξ = Zξ ⋉ Uξ.

Proposition 2.2.8. (Mautner’s phenomenon) Let ξ ∈ G and let b ∈ Z1(G, πp) be
such that b(ξ) = 0.
1. (Classical Mautner’s lemma) If ξ is πp-bounded, then b(h) = 0 for all h ∈ Uξ.
2. (Contracting version) If ξ is πp-contracting, then b(h) = 0 for all h ∈ Pξ.
3. (Commuting version) If ξ is πp-bounded, then b(h) = 0 for all h ∈ Zξ.

Proof. Take h ∈ G. The cocycle relation implies:

b(ξ−1hξ) = b(ξ−1h) = π(ξ−1)b(h).

Hence for all n > 0 we obtain:

||b(h)||p ≤ |||π(ξn)|||Lp(G,V )||b(ξ−nhξn)||p.

1. Suppose that h ∈ Uξ. Since ξ is πp-bounded, there exists C > 0 such that
||b(h)||p ≤ C||b(ξ−nhξn)||p. Since ξ−nhξn

n→+∞−−−−−→ 1G, we have ||b(ξ−nhξn)||p
n→+∞−−−−−→

0. Thus b(h) = 0.
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2. Suppose that h ∈ Pξ. The sequence (ξ−nhξn)n is bounded, so by continuity
of g 7→ b(g) the term ||b(ξ−nhξn)||p is bounded. Since ξ is πp-contracting, we have
limn→∞ |||π(ξn)|||Lp(G,V ) = 0 and hence b(h) = 0.

3. Suppose that h ∈ Zξ. Hence the function b(h) ∈ Lp(G,V ) is π(ξ)-invariant.
Since ξ is πp-bounded, Lemma 2.2.4 gives b(h) = 0.

Remark. 1. In what follows, we will use the contracting version most of the time.
For groups of lower rank, we may not always dispose of enough contracting elements.
In this case the commuting version can be very practical.

2. For semisimple Lie groups, we have Pξ = Zξ ⋉Uξ. Hence in this case point 2
holds even when ξ is only a πp-bounded element, thanks to points 1 and 3.

We come back to the setting of Corollary 2.1.6: let G be a semisimple Lie
group, γ a simple root of its restricted root system, PΣ\{γ} = Mγ ⋉ Hγ the Levi
decomposition of its corresponding maximal parabolic subgroup, Mγ = KγAγNγ

be the Iwasawa decomposition of Mγ and let Rγ = Aγ ⋉Nγ . Recall:

Vp := H1
ct(Hγ , L

p(Hγ)).

We apply the results of this section to the group Rγ acting on Vp via π0 and on
Lp(Rγ , Vp) via π, where π0 and π are given by Corollary 2.1.6.

Theorem 2.2.9. Suppose that there exists some πp-contracting ξ ∈ Aγ and that
for each simple root σ ∈ Σ \ {γ} there exists some πp-bounded ξσ ∈ Aγ such that
Uξσ ∪ Zξσ contains the root group Uσ. Then:

H1
ct(R

γ , Lp(Rγ , Vp)) = {0}.

Proof. Let b ∈ Z1(Rγ , πp). By Proposition 2.2.6, the cocycle b can be chosen (with-
out changing its cohomology class) so that b(ξ) = 0. Since the group Aγ is abelian,
the group Pξ contains Aγ and thus by Proposition 2.2.8 point 2, we have b(h) = 0
for h ∈ Aγ . This implies that b(ξσ) = 0 for all σ ∈ Σ \ {γ}. By Proposition 2.2.8
points 1 and 3, we have that b(h) = 0 for all h the sets (Uξσ ∪ Zξσ) ∩ Rγ , which
contain the root subgroups Uσ for all σ ∈ Σ \ {γ}. The groups Uσ for σ ∈ Σ \ {γ}
generate the group Nγ [Bor91, 21.9 (ii)], therefore b(h) = 0 for all h ∈ Nγ . Thus
b = 0. We conclude that H1

ct(R
γ , Lp(Rγ , Vp)) = {0} for every p > 1.

2.2.4 Vanishing for semisimple, non-simple groups of rank ≥ 3

In this section we apply our vanishing criterion to semisimple, non-simple Lie groups.
The main point is that commutation makes some operator norms of π0 to be equal
to 1, hence we may reason directly as in [dCT11].

Theorem 2.2.10. Let G be a semisimple, non-simple Lie group of rank r ≥ 3
over a local field F . Then there exists a simple root γ ∈ Σ such that for all p >
max{Confdim(∂Hγ), 1} we have:

H2
ct(G,L

p(G)) = {0}.
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Proof. Let G1, . . . , Gk be the simple factors of the group G. We split the proof in two
cases. First suppose that there exists one factor Gi of rank 1, associated to a simple
root γ ∈ Σ. The maximal parabolic subgroup Pγ decomposes as Pγ = Mγ ⋉ Hγ

and in this case Mγ and Hγ live in different factors, hence Mγ and Hγ commute,
so Pγ =Mγ ×Hγ . In particular, the action by conjugation by some element g ∈ Rγ

on Hγ is trivial, and hence Proposition 2.2.1 gives:

|||π(g)|||Lp(Rγ ,Vp) = ∆Rγ (g)−1.

Since r ≥ 3, the rank of Mγ , is at least 2 which means that the split torus Aγ is
of dimension at least 2. It is thus enough to consider two coweights ξ1, ξ2 ∈ Aγ

associated to two distinct simple roots σ1, σ2 ∈ Σ \ {γ} satisfying σi(ξi) < 1. In this
way ∆Rγ (ξi)

−1 < 1 and hence ξ1, ξ2 are πp-contracting for all p > 1. The subgroup
Pξ1 contains all the root groups Uσ for σ ∈ Σ \ {γ, σ1} and Pξ2 contains all the root
groups Uσ for σ ∈ Σ \ {γ, σ2}. Hence the conditions of Theorem 2.2.9 are satisfied
and we showed:

H1
ct(R

γ , Lp(Rγ , Vp)) = {0}

for all p > 1. Then the spectral sequence in Corollary 2.1.6 gives the desired
vanishing for p > Confdim(∂Hγ).

Suppose now that all factors have rank ≥ 2. We may pick any simple root γ in the
root system of G1. The parabolic subgroup Pγ decomposes as Pγ =Mγ⋉Hγ , where
the Levi factor Mγ decomposes again in simple factors M1, . . . ,Mk, with Mi ⊆ Gi

for all i. The main point is that the factor M2 has rank ≥ 2 and commutes with Hγ .
Our hypothesis implies that there are at least two simple roots σ1, σ2 in the root
system of G2. Hence we may consider again coweights associated to these two simple
roots and reason as before to conclude that H1

ct(R
γ , Lp(Rγ , Vp)) = {0} for all p > 1.

Again the spectral sequence gives the desired vanishing for p > Confdim(∂Hγ). This
second part of the proof is independent of the choice of root γ and hence we can
choose γ in order to minimize Confdim(∂Hγ).

2.3 Growth estimates and Heintze groups

In Theorem 2.2.9 we proved that under the presence of enough contractions, we
can show vanishing of cohomology. One would like to have a criterion to guarantee
the existence of contracting elements for the Rγ-module Lp(Rγ , H1

ct(Hγ , L
p(Hγ)))

appearing in Corollary 2.1.6. Thanks to Proposition 2.2.1, the only mysterious
quantity that remains to study is the operator norm of the action π0 of Rγ on the
space H1

ct(Hγ , L
p(Hγ)). In this section we find an upper bound of this norm that

can be computed explicitly in combinatorial terms.

2.3.1 Amenable hyperbolic groups with homotheties

To find an upper bound on the operator norms of the action π0 of Rγ on the space
H1

ct(Hγ , L
p(Hγ)), we will first obtain some preliminary results in the more general

setting of amenable hyperbolic groups and contracting automorphisms developed
in [CdCMT15], with the supplementary condition that we will contract using a
homothety.
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Let U be a locally compact second countable group. By [Str74], the group U
admits a proper left invariant metric d metrizing its topology. Suppose moreover
that (U, d) has a (non-trivial) homothety α ∈ Aut(U), that is, a group automorphism
such that for some λ > 1 we have:

d(α(x), α(y)) = λ−1d(x, y).

By [CdCMT15, 6.5], the group U is nilpotent and unimodular. Denote by Ω the
compact unit ball of (U, d) centered at eU and write ||x|| = dU (x, e). Notice that⋂

k≥0 α
k(Ω) = {eU} and

⋃
k≤0 α

k(Ω) = U .
The set S = {α±1} × Ω generates the group H = ⟨α⟩ ⋉ U . The group H is

amenable and Gromov-hyperbolic when endowed with the word metric | · |S with
respect to S. Denote by BS(n) the closed ball of radius n centered at eH .

The following lemmata come from [CdCMT15] and allow us to estimate distor-
tion of (U, d) inside (H, | · |S). Notice in particular that only the upper bound needs
to have a homothety.

Lemma 2.3.1. [CdCMT15, Lemma 4.7] For m ≥ 0, we have:

α−m(Ω) ⊆ BS(2m+ 1) ∩ U.

Lemma 2.3.2. [CdCMT15, Lemma 4.8] There exists C > 0 such that for all x ∈ U ,
there exist i, j ∈ N with j ≤ C and x1, . . . , xj ∈ Ω such that x = α−ix1 . . . xjα

i and
2i ≤ |x|S + C.

Proposition 2.3.3. There exists C > 1 such that for all x ∈ U :

C−1λ
1
2
|x|S ≤ ||x|| ≤ Cλ

1
2
|x|S .

Proof. Let m be such that x ∈ α−m(Ω) \ α−m+1(Ω). Hence |x|S ≤ 2m+ 1 and:

||x|| ≥ λm−1 ≥ λ
1
2
(|x|S−3).

Write x = α−ix1 . . . xjα
i as a word in the alphabet S given by Lemma 2.3.2. Then

as an element of U we have x = α−i(x1 . . . xj) and so:

||x|| = λi||x1 . . . xj || ≲ λi ≲ λ
1
2
|x|S .

Lemma 2.3.4. Let Q denote the Hausdorff dimension of the metric space (U, d).
1. The Haar measure on U is equivalent to the Q-Hausdorff measure of (U, d).
2. Let ∆H denote the modular function of H. Then we have: ∆H(α) = λQ.

Proof. 1. Fix some left-invariant Haar measure µ on U . Then the measures αk
∗µ

on U are also left invariant for k ∈ Z. Such measures are unique up to positive
scalar, so there exists some s ∈ R∗

+ such that αk
∗µ = skµ for all k ∈ Z. We now

show that µ is an Ahlfors Q-regular measure. For this, let r > 0 and k ∈ Z so that
λk ≤ r < λk+1. We have:

µ(B(λk)) ≤ µ(B(r)) < µ(B(λk+1)).
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Since α is a homothety, we have B(λk) = α−kΩ and thus

µ(B(λk)) = αk
∗µ(Ω) = skµ(Ω).

We have µ(Ω) < ∞ since µ is a Radon measure (and Ω is compact, because d is
a proper metric) and µ(Ω) > 0 because Ω contains an open set as d metrizes the
topology of U . From this we deduce that there exists C > 0 such that:

C−1r
log s
log λ ≤ µ(B(r)) ≤ Cr

log s
log λ .

This implies that µ is Ahlfors ( log slog λ)-regular and that the Hausdorff dimension Q of
the metric space (U, d) must satisfy Q = log s

log λ , that is s = λQ.
2. Since the groups U and ⟨α⟩≃Z are unimodular, the modular function of the

semi-direct product H = ⟨α⟩ ⋉ U is computed by the following formula. For any
measurable set E in U we have:

µ(α−1(E)) = ∆H(α)µ(E).

For E = Ω we have 0 < µ(Ω) <∞ and:

∆H(α)µ(Ω) = µ(α−1(Ω)) = α∗µ(Ω) = λQµ(Ω),

since in the proof of 1. we showed that s = λQ. Hence ∆H(α) = λQ.

2.3.2 Growth estimates for Heintze groups

We can now obtain an upper bound on the operator norms of the action π0 of Rγ

on the space H1
ct(Hγ , L

p(Hγ)). In fact we will only do it for the restricted action
of the torus Aγ , but this will be enough for our purposes. We come back to the
usual Lie theoretic setting and use the usual notation. Our first task is to show
that we can apply the results from the previous subsection. Fix s ∈ Sγ such that
λ := |γ(s−1)| > 1 for the rest of the section.

Proposition 2.3.5. There exists a proper, left-invariant metric dγ on Uγ so that
conjugation by s is a homothety of ratio λ−1 on the metric space (Uγ , dγ).

Proof. In the real case, Uγ is a Carnot group for the gradation on its Lie algebra
Lie(Uγ) =

⊕
α∈Φ+,nγ(α)>0 gα given by

gk :=
⊕

α∈Φ+,nγ(α)=k

gα

for k > 0. This means that Lie(Uγ) is generated by the subspace g1. This is shown
for instance in [Yam93], see there Lemma 3.8 and the discussion at the end of Section
3.4. Since Uγ is a Carnot group, it carries a Carnot-Carathéodory metric [Pan89c,
p. 3], which satisfies the conditions of the Proposition [Pan89c, p. 4].

Suppose now that the local field F is non-Archimedean, consider its ring of
integers O and let Ω be the compact-open subgroup

∏
α∈Φnγ>0

θα(O). Notice that⋂
k≥0 s

k.Ω = {eUγ} and
⋃

k≤0 s
k.Ω = Uγ . These two conditions allow us to define a
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valuation v(x) = sup{k ∈ Z, x ∈ sk.Ω} for x ∈ Uγ . Since Ω is a subgroup, it satisfies
the inequality v(xy) ≥ min{v(x), v(y)} for all x, y ∈ Uγ . We may define the norm

||x||γ := λ−v(x),

on Uγ and the distance dγ(x, y) := ||x−1y||γ for all x, y ∈ Uγ . The distance dγ on
Uγ satisfies the ultrametric inequality, is left-invariant and satisfies:

dγ(s.x, s.y) = λ−1dγ(x, y)

for all x, y ∈ Uγ .

Remark. 1. The construction in the non-Archimedean case also works for a group
U with compact neutral component U0 and with a compacting automorphism α,
meaning that there exists some compact subset Ω such that for any compact subset
K ⊆ U , there exists k0 such that for all k ≥ k0, we have αk(K) ⊆ Ω. By [dCT11,
4.5.ii], we may choose Ω to be a compact-open subgroup such that αk(Ω) ⊆ Ω for
all k > 0. If L =

⋂
k≥0 α

k(Ω), then our proof defines a U -invariant distance on U/L
that satisfies the ultrametric inequality and for which the automorphism induced by
α on U/L is a homothety.

2. We can also consider this construction when Uγ is a real Lie group by replacing
Ω with a product of compact intervals containing 0. A minor problem arises from
the fact that in this case Ω is not a subgroup, so the corresponding valuation will
only satisfy v(xy) ≥ min{v(x), v(y)}−C for some constant C > 0. Thus the formula
||x||γ = e−v(x) defines only a left-invariant quasi-metric dγ . This can be salvaged by
considering a power daγ of dγ for 0 < a < 1 sufficiently small. The main problem is
that we do not have a good control of the Hausdorff dimension of this metric (it can
be really big), as opposed to the Carnot-Carathéodory metric, which has minimal
dimension in the conformal gauge of ∂Hγ .

Suppose again that F is a (real or non-Archimedean) local field. We will consider
a function that is Lipschitz-equivalent to the metric dγ and easier for computations.
To construct it, we first identify Sγ-equivariantly each factor Uα to gα endowed with
some vector space norm | · |α (in the non-Archimedean case, we choose these norms
to be compatible with the absolute value | · | on F such that Hausdim(F, | · |) = 1 in
the sense that |xv|α = |x||v|α for all x ∈ F and v ∈ gα). We decompose an element
x ∈ Uγ in coordinates x = (xα)α∈Φnγ>0 , where xα ∈ Uα, and define:

Nγ(x) := max{|xα|1/nγ(α), α ∈ Φnγ>0}.

In this way Nγ(s.x) = max{|α(s)xα|1/nγ(α), α ∈ Φnγ>0} = λ−1Nγ(x) for all x ∈ Uγ .
Indeed, as s ∈ Sγ =

⋂
σ∈Σ\{γ} kerσ, we have |α(s)| = |γ(s)|nγ(α) and |α(s)|1/nγ(α) =

|γ(s)| for all α ∈ Φnγ>0. As the function Nγ is positive on Uγ \ {1} and s acts on
it as a homothety of ratio λ−1, the left-invariant function Nγ(x, y) = Nγ(x

−1y) is
Lipschitz-equivalent to the metric dγ .

Using the function Nγ we may compute the Hausdorff dimension Qγ of the
metric space (Uγ , dγ). Indeed, we have:

Qγ =
∑

α∈Φnγ>0

Hausdim(gα, | · |
1/nγ(α)
α ) =

∑
α∈Φnγ>0

nγ(α)m(α).
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For g ∈ Aγ define:

||g||γ := max
α∈Φnγ>0

(|α(g)|1/nγ(α)).

Lemma 2.3.6. There exists C > 0 such that for all g ∈ Aγ and all x, y ∈ Uγ we
have:

dγ(g.x, g.y) ≤ C||g||γdγ(x, y)

Proof. Directly from the definitions of Nγ and ||g||γ it follows that for all g ∈ Aγ and
x ∈ Uγ we have Nγ(g.x) ≤ ||g||γNγ(x). Since Nγ and dγ are Lipschitz-equivalent,
there exists c > 0 such that (1/c)dγ ≤ Nγ ≤ cdγ and hence

dγ(g.x, g.y) ≤ cNγ(g.x, g.y) ≤ c||g||γNγ(x, y) ≤ c2||g||γdγ(x, y).

The main result of the section is the following:

Theorem 2.3.7. There exists a constant C = C(p, γ) > 0 such that for all g ∈ Aγ:

|||π0(g)|||pVp
≤ C||g−1||Qγ

γ .

Remark. This inequality is optimal (up to the constant C > 1) in the case of
G = SL(r+ 1,R) with simple root γ = e1 − e2. Indeed, we have MΣ\{γ} = SL(r,R)
acting on Uγ = Rr by the natural linear action and Qγ = r. The space Vp may be
identified (as a continuous MΣ\{γ}-module) with the Besov space Br/p

p,p (Rr), that is,
the Banach space of measurable functions u : Rr → R such that

||u||pBp
=

∫
Rr×Rr

|u(x)− u(x′)|p

d(x, x′)2r
dxdx′ <∞,

modulo constant functions [Pan89a, 5.2]. For g = diag(21−r, 2, . . . , 2) ∈MΣ\{γ}, we
construct the function u ∈ B

r/p
p,p (Rr) such that u(x) = 1 on the cube Q1 = [1, 2]r

and u(x) = 0 on the cube Q2 = [−2,−1]× [1, 2]r−1 disjoint from Q1 and restricting
the previous integral to Q1 ×Q2 we may see that ||π0(gk)u||pBp

≳ ||g−k||r||u||pBp
.

After combining the inequality in Theorem 2.3.7 with Proposition 2.2.1, we
obtain the following corollary.

Corollary 2.3.8. There exists a constant C = C(p, γ) > 0 such that for all g ∈ Aγ:

|||πp(g)|||pVp
≤ C∆Rγ (g)−1||g−1||Qγ

γ .

In particular:
any g ∈ Aγ such that ∆Rγ (g)−1||g−1||Qγ

γ < 1 is πp-contracting for every p > 1,
any g ∈ Aγ such that ∆Rγ (g)−1||g−1||Qγ

γ ≤ 1 is πp-bounded for every p > 1.

In order to prove Theorem 2.3.7 we apply results from the previous section to
the group U = Uγ with its left-invariant metric d = dγ and the automorphism α is
conjugation by some non-trivial s ∈ Sγ such that λ−1 := |γ(s)| < 1. The main idea
of the proof is to use the cocycle relation at each step of a word as in Lemma 2.3.2
and compute the contribution of each step using Lemma 2.3.4.
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Proof of theorem 2.3.7. Here we replace Hγ with its cocompact subgroup ⟨s⟩⋉ Uγ .
Let ρHγ be the right regular representation of Hγ on Lp(Hγ). As Hγ is com-
pactly generated, with compact generating set S = {s±1} × Ω, we may consider
Z1(Hγ , L

p(Hγ)) as a Banach space with norm ||b||S,p = supx∈S ||b(x)||p. Let b ∈
Z1(Hγ , L

p(Hγ)). Since the action by conjugation of Rγ on Hγ preserves the volume,
we have:

||π0(g)b||S,p = sup
x∈S

||b(g−1xg)||p.

Fix some x ∈ S. We suppose that x ∈ {s} × Ω, the situation being similar for
x ∈ {s−1}×Ω. Write x = ys, with y ∈ Ω. Lemma 2.3.2 says that there exist C > 0
and n, j ∈ N with j ≤ C and x1, . . . , xj ∈ Ω such that

g−1yg = s−nx1 . . . xjs
n,

and 2n ≤ |g−1yg|S + C.
Let si ∈ S be the i-th term (in the alphabet S), from left to right, of the word

g−1xg = s−nx1 . . . xjs
n+1.

More precisely,

si =


s−1 for 1 ≤ i ≤ n,

xi−n for n+ 1 ≤ i ≤ n+ j,

s for n+ j + 1 ≤ i ≤ 2n+ j + 1.

Let hi = s1 . . . si for all i > 0 and h0 = 1. Iterating the cocycle relation for b yields:

b(g−1xg) =

2n+j+1∑
i=1

ρHγ (hi−1)b(si).

From here we obtain:

||b(g−1xg)||p ≤
2n+j+1∑

i=1

||ρHγ (hi−1)b(si)||p =
2n+j+1∑

i=1

∆Hγ (hi−1)
−1/p||b(si)||p.

Using Lemma 2.3.4, we have that:

∆Hγ (si)
−1 =


λQγ for 1 ≤ i ≤ n,

1 for n+ 1 ≤ i ≤ n+ j,

λ−Qγ for n+ j + 1 ≤ i ≤ 2n+ j + 1.

Thus:

∆Hγ (hi)
−1 =


λiQγ for 1 ≤ i ≤ n,

1 for n+ 1 ≤ i ≤ n+ j,

λ(2n+j+1−i)Qγ for n+ j + 1 ≤ i ≤ 2n+ j + 1.
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Hence:

||b(g−1xg)||p ≤
n∑

k=0

λkQγ/p||b||S,p + CλnQγ/p||b||S,p +
n∑

k=0

λkQγ/p||b||S,p

≤ C1λ
nQγ/p||b||S,p.

where C1 = 2 1
1−λ−Qγ/p + C. Using 2n ≤ |g−1yg|S + C and Proposition 2.3.3 we

obtain
λn ≤ λ

1
2
|g−1yg|S+C ≤ C2||g−1yg||γ .

Since g ∈ Aγ , Lemma 2.3.6 says that ||g−1yg||γ ≤ C3||g−1||γ ||y||γ . We have that
y ∈ Ω, so ||y||γ ≤ 1 and λn ≤ C4||g−1||γ . From this we may conclude that:

||π0(g)b||S,p = sup
x∈S

||b(g−1xg)||p ≤ C5||g−1||Qγ/p
γ ||b||S,p.

Hence |||π0(g)|||Z1(Hγ ,Lp(Hγ)) ≤ C5||g−1||Qγ/p
γ and the operator induced on the quo-

tient Banach space Vp = H1
ct(Hγ , L

p(Hγ)) has smaller operator norm:

|||π0(g)|||Vp ≤ C5||g−1||Qγ/p
γ .

2.4 Existence of contracting elements for simple groups

In this section we want to show existence of πp-contracting elements as in our van-
ishing criterion (Theorem 2.2.9) via our estimate (Corollary 2.3.8) for simple groups
appearing in the statement of Theorem 2.0.1. We first translate the condition of
Theorem 2.2.9 in combinatorial terms as an inequality depending only on a root
system and the multiplicities of the roots. Then, using the classification of simple
Lie groups over local fields in its more classical form (in the sense that we give a full
list of the groups in the classification), we obtain Theorem 2.0.1 thanks to a case-
by-case verification of the inequality. We sum up these results in tables. Taking
into account multiplicities explains why we cannot stand only by the root system
and why we go back to classical presentations.

We conclude this section by obtaining Corollary 2.0.3 as a byproduct of this
combinatorial study and by comparing our results with those from [BR20].

2.4.1 Combinatorial reformulation

Corollary 2.3.8 says that to guarantee the existence of πp-contracting (resp. πp-
bounded) elements, it is enough to compute the term ∆Rγ (g)−1||g−1||Qγ

γ for g ∈ Aγ

and see that this term is < 1 (resp. ≤ 1). In practice, πp-bounded elements that
are not πp-contracting appear only in some exceptional low rank cases.

Our next goal is to write the expression ∆Rγ (g)−1||g−1||Qγ
γ in terms of root

systems. We may begin with ∆Rγ (g). For g ∈ Aγ , the modular function of Rγ can
be expressed as:

∆Rγ (g)−1 =
∏

α∈(ΦΣ\{γ})+

|α(g)|m(α).
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Choose some simple root σ ∈ Σ, σ ̸= γ. Let g ∈ Aγ ∩
⋂

τ∈Σ\{γ,σ} ker τ such that
|σ(g)| > 1. This choice is made so that the subgroup Pg of Rγ is big. Indeed, g
commutes with Uτ for all τ ∈ Σ \ {γ, σ}, therefore Pg ⊃ Uτ for all τ ∈ Σ \ {γ, σ}.
The modular function of g may be expressed as follows:

∆Rγ (g)−1 =
∏

α∈Φnσ>0∩(ΦΣ\{γ})+

|σ(g)|nσ(α)m(α).

On the other hand, since g ∈
⋂

τ∈Σ\{γ,σ} ker τ , we have that:

|α(g)| = |γ(g)|nγ(α)|σ(g)|nσ(α)

for all α ∈ Φ+, so that:

||g||γ = |γ(g)| max
α∈Φnγ>0

{|σ(g)|nσ(α)/nγ(α)}.

Thus the condition ∆Rγ (g)||g||Qγ
γ < 1 is equivalent to:∑

α∈Φnσ>0∩(ΦΣ\{γ})+

nσ(α)m(α) > Qγ( max
α∈Φnγ>0

{nσ(α)
nγ(α)

}+ log |γ(g)|
log |σ(g)|

).

Since g ∈ Aγ , the terms log |τ(g)| for τ ∈ Σ satisfy a non trivial linear relation.
Moreover, g ∈

⋂
τ∈Σ\{γ,σ} ker τ , so that log |γ(g)| depends linearly on log |σ(g)| and

thus log |γ(g)|
log |σ(g)| =: Cσ is a constant that depends only on the root system Φ and not

on the choice of g. We proved the following criterion:

Proposition 2.4.1. Let σ1, σ2 ∈ Σ \ {γ} be two distinct simple roots satisfying:∑
α∈Φnσi>0∩(ΦΣ\{γ})+

nσi(α)m(α) ≥ Qγ · ( max
α∈Φnγ>0

{nσi(α)

nγ(α)
}+ Cσi)

for i = 1, 2, with at least one of the two satisfying strict inequality. Then hypotheses
of Theorem 2.2.9 are satisfied.

Remark. The left-hand side and the constant Qγ depend on the root system Φ and
the multiplicities of the roots. On the other hand, the second factor of the right-hand
side depends only on Φ.

2.4.2 Vanishing in degree 2 for classical simple groups

We start a case-by-case study of simple Lie groups over a local field F to find those
that satisfy the conditions of Proposition 2.4.1. We restrict ourselves to the so-called
classical groups, leaving the exceptional groups aside.

Classification of classical simple groups over local fields Let F be a local
field. We recall some parts of the classification of (absolutely) simple Lie groups over
F up to isogeny (see [Tit66] for the classification in the more general algebraic group
setting, [Hel01] for the real case and [Tit79] for the non-Archimedean case). We do
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not need the full power of the classification via Satake diagrams as we only use its
phrasing in classical terms. This means that we look at the associated ordinary
Dynkin diagrams and take into account multiplicities. The classification result is
that, apart for groups of exceptional type, the only sources of families of simple Lie
groups over F are the groups SLn and, in the terminology of [Bor91, 23.8], groups
preserving (ϵ, σ)-hermitian forms. The latter split into symmetric, skew-symmetric,
hermitian and skew-hermitian forms and allow to deal with them in a uniform
setting. This classification result applies both to the real and the non-Archimedean
setting, though the restrictions on the parameters of the forms are different in each
case (in most cases, the non-Archimedean case is more restrictive, except for SLn

and the skew-hermitian case).
We now list the families of all (isogeny classes of) classical absolutely simple Lie

groups over F of split rank r. Our list is based on [Tit79, 4.4], though that list only
concerns the non-Archimedean case. For the real groups we mention, we compare
each situation with the list in [Hel01, X, p.532-534].

- The special linear group SLr+1(D) over D, where D is a d2-dimensional central
division F -algebra. In the real case, d = 1 or d = 2, corresponding to SLr+1(R) and
SLr+1(H). In the non-Archimedean case there is no restriction on d.

- The special unitary group SU(h) of a hermitian form h in n variables and Witt
index r over a quadratic extension of F . In the real case there is no restriction on n
and r, giving the groups SU(r, n−r). In the non-Archimedean case, 2r ≤ n ≤ 2r+2.

- The special orthogonal group SO(q) of a quadratic form q in n variables and
Witt index r. In the real case there is no restriction on n and r, giving the groups
SOr,n−r(R). In the non-Archimedean case, 2r ≤ n ≤ 2r + 4.

- The symplectic group Sp2r(F ).
- The special unitary group SU(h̃) of a quaternion hermitian form h̃ in n variables

and Witt index r. In the real case there is no restriction on n and r, giving the groups
Sp2r,2(n−r)(R). In the non-Archimedean case, the Witt index is always maximal,
that is, n = 2r or 2r + 1.

- The special orthogonal group SO(q̃) of a quaternion skew-hermitian form q̃ in
n variables and Witt index r. In the real case we have n = 2r or 2r + 1, giving the
groups SO∗(2n). In the non-Archimedean case, 2r ≤ n ≤ 2r + 3.

Statement of the vanishing theorem The result we will prove is the following:

Theorem 2.4.2. Let G be SL(4, D) or one of the simple Lie groups listed above
with split rank r ≥ 4. If G is not of type D4, there exists a simple root γ such that
H2

ct(G,L
p(G)) = {0} for all p > max{1,Confdim(∂Hγ)}.

In order to prove this theorem, we need to verify the conditions of Proposition
2.4.1. For this, we need to choose a simple root γ to construct our parabolic subgroup
and then two simple roots σ1, σ2 ∈ Σ\{γ} to construct two contractions. Each simple
root γ ∈ Σ partitions the set of positive roots Φ+ into two disjoint sets, Φnγ>0 and
ΦΣ\{γ}. The idea is to choose γ so that |Φnγ>0| is as small as possible and |ΦΣ\{γ}|
is as big as possible (in the corresponding Dynkin diagram, this is done by choosing
an extremal vertex).
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Ar Br Cr BCr Dr

V = X(S)⊗ R {e1 + e2 + . . .+ er+1 = 0} Rr Rr Rr Rr

Choice for γ τ1 = e1 − e2 τ1 = e1 − e2 τ1 = e1 − e2 τ1 = e1 − e2 τ1 = e1 − e2
nγ(α) for α ∈ Φnγ>0 1 1 nγ(2e1) = 2, else 1 nγ(2e1) = 2, else 1 1

Equation for Aγ
∑r

i=1(r + 1− i)τi = 0
∑r

i=1 τi = 0
∑r−1

i=1 2τi + τr = 0
∑r

i=1 τi = 0
∑r−2

i=1 2τi + τr−1 + τr = 0

Choice for σ1 τ2 = e2 − e3 τr = er τr = 2er τr = er τr = er−1 + er
Cσ1 −(r − 1)/r −1 −1/2 −1 −1/2

maxα∈Φnγ>0{
nσ1 (α)

nγ(α)
} 1 2 1 2 1

Dσ1 1/r 1 1/2 1 1/2

Choice for σ2 τ3 = e3 − e4 τr−1 = er−1 − er τr−1 = er−1 − er τr−1 = er−1 − er τr−1 = er−1 − er
Cσ2 −(r − 2)/r −1 −1 −1 −1/2

maxα∈Φnγ>0{
nσ2 (α)

nγ(α)
} 1 2 2 2 1

Dσ2 2/r 1 1 1 1/2

Table 2.1: Root systems and the constant Dσi

SLr+1(D) SU(h) SO(q) Sp2r(F ) SU(h̃) SO(q̃)

ei − ej d2 2 1 1 4 4

ei + ej 0 2 1 1 4 4

ei 0 2(n− 2r) n− 2r 0 4(n− 2r) 4(n− 2r)

2ei 0 1 0 1 3 1

Table 2.2: Multiplicities of roots in terms of classical presentations

Root systems We will start by computing the quantities in the inequality of
Proposition 2.4.1 that depend only on the root system Φ. This is the constant:

Dσi = max
α∈Φnγ>0

{nσi(α)

nγ(α)
}+ Cσi .

The constant Dσi is computed in Table 2.1 for the infinite families of root sys-
tems.

We now explain the contents of Table 2.1. The columns are indexed by the five
infinite families of root systems: Ar, Br, Cr, BCr and Dr.

In the first line, we describe the classical choice for the real vector space V =
X(S) ⊗ R so that the root system Φ is described as in [Bou68, VI, Planches, I-IV]
with simple roots τ1, . . . , τr. In the second line we describe our choice of simple
root γ ∈ Σ, written in terms of the natural description in coordinates of each root
system. The third line computes the constants nγ(α) for α ∈ Φnγ>0. The fourth
line describes the linear equation we choose so that the ambient space X(Aγ) ⊗ R
of the sub-root system ΦΣ\{γ} of Aγ sits naturally inside the ambient space V of Φ.

In the next part of Table 2.1, we first list our choices for σ1 and σ2. We then
compute the preliminary constant Cσi thanks to the equation for Aγ that we com-
puted before. The computation of maxα∈Φnγ>0{

nσi (α)

nγ(α)
} requires to first compute

nσi(α) for α ∈ Φnγ>0 (this can be found in [Bou68, VI, Planches I-IV]), we only
recover the final result in Table 2.1. The computation of Dσi amounts to add the
two last rows.

Multiplicities The multiplicities of the roots in each of the six families listed
above are represented in Table 2.2 and can be found in [Bor91, Chapter V, 23].
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SLr+1(D) SU(h) SO(q) Sp2r(F ) SU(h̃) SO(q̃)

Root
system Ar

Cr if n = 2r Dr if n = 2r
Cr

Cr if n = 2r Cr if n = 2r
BCr if n > 2r Br if n > 2r BCr if n > 2r BCr if n > 2r

Qγ rd2 2n− 2 n− 2 2r 4n− 2 4n− 6

Dσ1 1/r
1/2 1/2

1/2
1/2 1/2

1 1 1 1

M1 (r − 1)d2
(r − 1)2 (r − 1)(r − 2)/2

r(r − 1)/2
(r − 1)(2r − 1) (r − 1)(2r − 3)

2(r − 1)(n− r − 1) (r − 1)(n− r − 2) 2(r − 1)(2n− 2r − 1) 2(r − 1)(2n− 2r − 3)

LHS for σ1 r(r − 1)d2 2(r − 1)(n− r − 1) (r − 1)(n− r − 2) r(r − 1) 2(r − 1)(2n− 2r − 1) 2(r − 1)(2n− 2r − 3)

Inequality
for σ1

r ≥ 3 r ≥ 4 if n− 2r = 0, 1 r ≥ 5 (equality r = 4) r ≥ 4 r ≥ 4 if n = 2r r ≥ 4 if n− 2r = 0, 1
(equality for r ≥ 3 if n− 2r ≥ 2 if n = 2r (equality r = 3) r ≥ 3 if n− 2r ≥ 1 r ≥ 3 if n− 2r ≥ 2
r = 2) r ≥ 4 if n− 2r = 1, 2

r ≥ 3 if n− 2r ≥ 3

Dσ2 2/r 1
1/2

1 1 1
1

M2 2(r − 2)d2 2(n−r)(r−2)
(r − 1)(r − 2)/2

(r − 2)(r + 1) 2(r−2)(2n−2r+1) 2(r−2)(2n−2r−1)
(r − 2)(n− r − 1)

LHS for σ2 r(r − 2)d2 2(r − 2)(n− r) (r − 2)(n− r − 1) (r − 2)(r + 1) 2(r − 2)(2n− 2r + 1) 2(r − 2)(2n− 2r − 1)

Inequality
for σ2

r ≥ 4
r ≥ 4

r ≥ 5 (equality r = 4)
r ≥ 4 r ≥ 4 r ≥ 4(equality r = 3) if n = 2r,

r ≥ 4 otherwise

Table 2.3: Computation of Qγ and
∑

α∈Φnσi>0∩(ΦΣ\{γ})+
nσi(α)m(α)

We rewrite the inequality appearing in Proposition 2.4.1 as follows:

D−1
σi

∑
α∈Φnσi>0∩(ΦΣ\{γ})+

nσi(α)m(α) > Qγ .

In Table 2.3, we compute the two sides of this inequality using the multi-
plicities appearing in Table 2.2 for the choices of γ, σ1 and σ2 made in Table
2.1. More precisely, we first compute the dimension Qγ = Hausdim(Uγ , | · |γ) =∑

α∈Φnγ>0
nγ(α)m(α) and then the term appearing in the left hand side Mi =∑

α∈Φnσi>0∩(ΦΣ\{γ})+
nσi(α)m(α) for our choices of roots σ1 and σ2. The line called

LHS for σi contains the term D−1
σi
Mi = D−1

σi

∑
α∈Φnσi>0∩(ΦΣ\{γ})+

nσi(α)m(α). For
groups preserving some type of form, n denotes the number of variables of the form
and the F -rank r of the group coincides with its Witt index. In the line "Inequality
for σi" we recover the conditions on r so that the condition in Proposition 2.4.1 is
satisfied for σ1 or σ2. Items having two lines correspond to quantities that change
depending on the root system of the group (the only line that does not follow this
is the line "Inequality for σi" where conditions on the rank are slightly more com-
plicated).

Proof of theorem 2.4.2. By looking at Table 2.3, we see that the inequality of Propo-
sition 2.4.1 is satisfied for both roots σ1 and σ2 for r ≥ 4 in all cases, except for SO(q)
where q is a quadratic form in 8 variables and Witt index 4. For G = SL(4, F ),
there is strict inequality for σ1 and equality for σ2. Hence we can apply Theorem
2.2.9 and conclude using Corollary 2.1.6.

2.4.3 Uniform vanishing for admissible simple real Lie groups

In [BR20], Bourdon and Rémy obtain vanishing of Lp-cohomology of many real
simple Lie groups in many degrees, for values of p depending on the degree in
question. The groups for which their result applies are the simple Lie groups for
which there exists some maximal parabolic subgroup such that its solvable radical
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is isometric to some real hyperbolic space of dimension d, for some d ≥ 2. They call
these groups admissible. We state their vanishing result for degree 2.

Theorem 2.4.3. [BR20, Theorem 1.4] Let G be an admissible simple real Lie group.
Let d be the dimension of the real hyperbolic space associated to G. Then

H2
ct(G,L

p(G)) = {0} for p ≤ d− 1

2
.

Their result gives vanishing of the second Lp-cohomology group for small values
of p > 1. On the other hand, when F = R or C, Theorem 2.4.2 gives vanishing of
the second Lp-cohomology group for large values of p. In this section, we address
the question of when these two results combined give vanishing for all p > 1.

In combinatorial terms, the admissibility condition amounts to ask that there
exists some simple root σ such that the coefficients nσ(α) are 1 for all roots α ∈
Φnσ>0. Such a simple root is called a good root. In this case the group Hσ is the
real hyperbolic space of dimension d, with d − 1 = Qσ. Then the previous cited
theorem gives vanishing for p ≤ max{Qσ, σ good root}/2. Theorem 2.4.2 gives the
desired vanishing for p > Qγ , where γ is our choice of simple root, as in Table 2.1.
Then the condition we need to guarantee that H2

ct(G,L
p(G)) = {0} for all p > 1 is

Qγ ≤ max{Qσ, σ good root}/2.

Our choice of simple root γ was made so that Qγ is small, in particular in all our
choices Qγ grows linearly with the rank r of the group G. The previous inequality
has chances to be satisfied for many groups of large rank, since there exists often
some good root σ such that Qσ grows quadratically with r. More precisely, such a
root exists in the root systems Ar, Cr and Dr but not in Br. The following corollary
is obtained using the computation of Qγ present in Table 2.3 and the computation
of max{Qσ, σ good root} that can be found in the tables [BR20, p. 1319 and 1320].

Corollary 2.4.4. Let G be one of the following admissible simple Lie groups:
SLr(R), SLr(C), SLr(H), Sp2r(R), Sp2r(C) with r ≥ 7, or SUr,r(R), Sp2r,2r(R),
SOr,r(R), SO2r(C), SO∗(4r) with r ≥ 8. Then:

H2
ct(G,L

p(G)) = {0} for all p > 1.

Remark. The only classical families of admissible simple real Lie groups missing in
this corollary are SO2r+1(C) and SOr,n−r(R) with n > 2r. These are the admissible
groups with (restricted) root system Br. We cannot obtain vanishing for all p > 1
for these groups by complementing our results with those from [BR20] because our
choice of γ is in fact the only good root in the root system Br and it is not possible
to have Qγ ≤ Qγ/2.
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Chapter 3

Top degree ℓp-cohomology and
conformal dimension of buildings

Introduction

Buildings were introduced by Tits first as incidence geometries allowing to show
simplicity of some families of groups. Later generalizations turned them into non-
Archimedean analogues of symmetric spaces. A building is obtained by patching
together under some incidence conditions, many copies of a same simplicial complex,
which is constructed from a Coxeter system and that we call its abstract Coxeter
complex.

Buildings may be viewed as metric spaces, and as such we may study some
of their quasi-isometry invariants. Here we are interested in their ℓp-cohomology.
Many variants of ℓp-cohomology exist today: de Rham Lp-cohomology, simplicial
ℓp-cohomology or (continuous) group ℓp-cohomology are some of them. These are
quasi-isometry invariants popularized by Gromov in [Gro93] and intensively studied
in hyperbolic settings.

A first intuition on ℓp-cohomology is that its dependence on p should behave
like the dependence on α of α-Hausdorff measures for a given metric space. Indeed,
the first ℓp-cohomology group increases as p grows to infinity, thus there exists a
critical p for which it starts to be nonzero. This critical exponent is a numerical
quasi-isometry invariant first introduced by Pansu [Pan89a] which can be thought
of as some sort of Hausdorff dimension. In higher degrees the situation may be more
subtle, as suggested by the description of the vanishings of Lp-cohomology of the
real hyperbolic space Hn for n ≥ 3 [Pan08].

We are interested in top dimensional simplicial ℓp-cohomology of buildings. In
maximal degree, it is easier to study simplicial ℓp-homology than ℓp-cohomology,
because the former is not a quotient space. Then duality allows us to recover
reduced ℓp-cohomology. Top degree ℓp-homology has the same behaviour as the
first ℓp-cohomology group: it increases with p so there is again a critical exponent
for which this space starts to be nonzero. In the case where the Davis realization ΣD

of the Coxeter complex of the building is an orientable pseudomanifold, we compute
this critical exponent in terms of the combinatorial data describing the building: its
Weyl group (W,S) and its thickness vector q+1. For w ∈W , let qw be the number
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of galleries of type w starting from a given chamber. We call

eq(W ) = lim sup
n

1

n
log |{w ∈W, qw ≤ en}|

the weighted growth rate of combinatorial balls in the building X (see Section 2.3).

Theorem 3.0.1. (See Theorem 3.2.6 in the text) Let (W,S) be a Coxeter system
such that ΣD(W,S) is an orientable pseudomanifold. Let XD be the Davis realization
of a regular building of type (W,S) and thickness vector q + 1, with q ≥ 2. Let
n = dimXD. Then we have:

1 + eq(W ) = inf{p > 1 | ℓpHn(XD) ̸= 0},
1 + eq(W )−1 = sup{p > 1 | ℓpHn(XD) ̸= 0}.

This result is an extension to ℓp-cohomology of [Dym04], with essentially the
same proof (the main idea can be traced back at least to [Gro93, p. 221]). We
obtain two corollaries from it. The first concerns ℓp-cohomology of affine buildings
and semisimple Lie groups over non-Archimedean local fields.

Corollary 3.0.2. (See Corollary 3.2.7.1 in the text) Let X be an affine building
of dimension n and finite thickness. We have ℓpHn(X) ̸= {0} for all p > 1. In
particular, any semisimple Lie group G of rank n over a non-Archimedean local field
satisfies Hn

ct(G,L
p(G)) ̸= {0} for all p > 1.

In [Gro93, 253], Gromov asked: for a semisimple Lie group G of rank n over a
local field, do we have Hn

ct(G,L
p(G)) ̸= {0} at least for some 1 < p < ∞ (where

Lp(G) denotes the right regular representation)? In the real case, this non-vanishing
is shown for large p > 1 in [BR21], the behaviour of Hn

ct(G,L
p(G)) when p > 1 is

close to 1 is still unknown. In the non-Archimedean case, Gromov showed that
Hn

ct(G,L
p(G)) ̸= {0} for 1 < p ≤ 2 [Gro93, p. 255] and expected this non-vanishing

to hold for all 1 < p <∞, which is the content of the previous corollary.
Our second corollary is the description of the set of p’s for which the second ℓp-

cohomology group of a cocompact Fuchsian building X vanishes. The same question
for the first ℓp-cohomology group was already solved in [BP03]: the infimal p for
which this space starts to be nonzero is the conformal dimension Confdim(∂X) of the
boundary ∂X (for the definition of Confdim(∂X) see 3.4.2). Our theorem implies
that this is still the case for the second ℓp-cohomology group. In [Bou00], Bourdon
shows that for these buildings one has Confdim(∂X) = 1 + eq(W )−1. Moreover
[Bou16a], for p > Confdim(∂X), we have ℓpH2(X) = 0. By putting all of these
results together, we obtain the following description of vanishings of ℓp-cohomology
of cocompact Fuchsian buildings in terms of p in degrees 1 and 2.

Corollary 3.0.3. (See Corollary 3.2.8 in the text) Let X be the Davis realization of
a cocompact Fuchsian building of type (W,S) and thickness vector q+1, with q ≥ 2.
• For p < Confdim(∂X) = 1 + eq(W )−1, we have ℓpH1(X) = 0 and ℓpH2(X) ̸= 0.
• For p > Confdim(∂X) = 1 + eq(W )−1, we have ℓpH1(X) ̸= 0 and ℓpH2(X) = 0.

The critical exponent for ℓp-homology 1 + eq(W ) is finite when q ≥ 2, so in
top dimension we have non-vanishing of ℓp-homology for large p. We may ask if
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this holds without the pseudomanifold assumption on ΣD. The problem is that the
dimension of the Davis realization has no direct relation with cohomology and there
are examples where we have uniform vanishing for all p > 1 in degree dimΣD. This
happens because of the local topology of the Davis chamber. This local problem
is solved by considering a different realization ΣB, called the Bestvina realization,
whose dimension is always equal to the virtual cohomological dimension vcdR(W ) of
W over R (which may be strictly smaller than the dimension of ΣD). The Bestvina
realization has poor metric properties but it is well suited for cohomological compu-
tations. We show non-vanishing of ℓp-homology in degree dimXB = vcdR(W ) for
large p.

Theorem 3.0.4. (See Theorem 3.3.7 in the text) Let XB be the Bestvina realization
of a regular building of type (W,S) and thickness vector q + 1, with q ≥ 2. Let
d = dimXB = vcdR(W ). For all p > 1 + eq(W ), we have ℓpHd(XB) ̸= 0.

The Davis and Bestvina realizations are quasi-isometric, so this non-vanishing
result also holds for the Davis realization. We do not know how to compute the
infimal p for which top degree ℓp-homology starts to be nonzero in this more general
setting.

These ideas and particularly the formula of the critical exponent in top dimension
for ℓp-cohomology led us to a further study of conformal dimension of Gromov-
hyperbolic buildings. Few is known about these conformal dimensions. The only
known exact computation is Confdim(∂X) = 1 + eq(W )−1 [Bou00] for a Fuchsian
building X of type (W,S). Our previous non-vanishing result can be compared with
[Bou16a, Théorème A], to obtain the inequality:

Confdim(∂X)

vcdR(W )− 1
≥ 1 + eq(W )−1.

We may compare this to some bounds obtained by Clais for the conformal dimen-
sion of hyperbolic buildings arising from right-angled Coxeter groups [Cla17]. For
these buildings, Clais’ lower bound of Confdim(∂X) is sharper than our inequality
obtained using top-dimensional ℓp-cohomology. We adapt some of our techniques
to the first ℓp-cohomology groups and, combined with a result from [BK15] relat-
ing conformal dimension and the first ℓp-cohomology groups, we generalize Clais’
bounds to arbitrary Gromov-hyperbolic buildings.

Theorem 3.0.5. (See Theorem 3.4.8 in the text) Let (W,S) be a Gromov-hyperbolic
Coxeter system, Σ the Davis complex of (W,S) and X the Davis realization of a
building with Weyl group (W,S) and thickness vector q + 1. Let dq be a visual
metric on ∂Σ induced by a combinatorial distance | · − · |q on the dual graph of X.
We have:

Confdim(∂Σ)(1 + eq(W )−1) ≤ Confdim(∂X) ≤ Hausdim(∂Σ, dq)(1 + eq(W )−1).

The main idea that holds the different sections together is the following: there are
natural maps ρ retracting a building X onto its corresponding Coxeter complex Σ.
Naturally, there is a pushforward ρ∗ : C lf

k (X) → C lf
k (Σ) sending formal chains from

the building to the Coxeter complex. The point is that we can also define a pullback
ρ∗ : C lf

k (Σ) → C lf
k (X) on formal chains that commutes with the boundary operator.
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This is done using a harmonicity formula, which is basically a dual version of the
Steinberg representation. Then we use convexity estimates (in particular Jensen’s
inequality) and growth rates to decide on finiteness of ℓp-norms.

Similar ideas can be applied to the first ℓp-cohomology group. Indeed, cochains
can be seen as functions f : X(0) → R on vertices of X whose simplicial differential is
ℓp. Here the pullback ρ∗ is naturally defined as precomposition by ρ and pushforward
ρ∗ of functions is defined by taking averages on preimages of ρ. The main question
here is: given f : Σ → R with a control on the infimal p > 1 such that ||df ||p < ∞,
what can be said about an r > 1 such that

||d(ρ∗f)||rr =
∑

σ∈Σ(1)

|ρ−1(σ)||df(σ)|r <∞?

Again, convexity gives a partial answer to this question. More precisely, we use a
pressure like function inspired on thermodynamical formalism, that yields the lower
bound of Theorem 3.0.5.

The article is organized as follows. Section 2 contains most of the preliminaries.
We first introduce simplicial ℓp-homology and ℓp-cohomology. Then we recall some
elementary building theory: combinatorial buildings, their geometric realizations
and growth rates. We introduce the maps induced on formal chains by a retrac-
tion. Finally, we give a brief discussion on the Davis realization of a building. All
other three sections are independent from each other. Section 3 introduces the fam-
ily of buildings whose apartments are orientable pseudomanifolds and contains the
computation of the critical exponent on top dimensional ℓp-homology. Section 4
reviews [Bes93] in order to give an R-acyclic version of the Bestvina chamber. Then
we show non-vanishing of ℓp-homology in top degree for the Bestvina realization.
Section 5 first introduces the notion of conformal dimension of Gromov-hyperbolic
spaces and discusses its connection with ℓp-cohomology. Subsequently we prove our
generalization of Clais’ bounds.

Conventions. In what follows p is a real number > 1 and (W,S) denotes a
Coxeter system where W is infinite and S is finite. An affine Coxeter system is the
direct product of finite Coxeter systems and at least one irreducible affine Coxeter
system. Any other infinite Coxeter system is said to be non-affine. By the strong
Tits alternative for Coxeter groups, this is the same as saying that affine Coxeter
systems are infinite Coxeter systems of polynomial growth and non-affine Coxeter
systems are those of exponential growth.

3.1 ℓp-cohomology and buildings

We first introduce ℓp-homology and ℓp-cohomology for complexes of bounded geom-
etry and review some fundamental properties. We then review some combinatorial
theory of buildings and adopt a uniform point of view on their geometric realizations
(as presented in [Dav08, Chapter 18]).

3.1.1 ℓp-homology and ℓp-cohomology

We define ℓp-homology and ℓp-cohomology as presented in [Bou16b].
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First, let X be a simplicial complex equipped with a metric so that it becomes
a length space. We say that such a complex X has bounded geometry if:
(i) there exists a constant C > 0 such that every simplex of X has diameter ≤ C,
(ii) there is a function N : [0,∞[→ N such that for all r > 0, every ball of radius r
contains at most N(r) simplices of X.

Now we define ℓp-homology and ℓp-cohomology for complexes of bounded geom-
etry. For k ∈ N, we denote by X(k) the set of k-simplices of X. For 1 < p <∞, we
define:

ℓpCk(X) = {
∑

σ∈X(k)

aσσ, (aσ)σ∈X(k) ∈ ℓp(X(k))},

ℓpCk(X) = {ω : X(k) → R, ω ∈ ℓp(X(k))}.

The standard boundary operators ∂k and dk are defined as usual (after choosing
an ordering of the vertices of X or equivalently an orientation on simplices of X).
Because the complex X has bounded geometry, they define bounded operators:

∂k : ℓpCk(X) → ℓpCk−1(X), dk : ℓpCk(X) → ℓpCk+1(X).

These two operators are related by the simplicial version of Stokes’ theorem: for
c ∈ ℓpCk(X) and σ ∈ ℓpCk+1(X) we have dkc(σ) = c(∂k+1σ).

Definition 3.1.1. Denote ℓpZk(X) := ker ∂k and ℓpBk(X) := Im ∂k+1. The k-th
ℓp-homology group of X (resp. k-th reduced ℓp-homology group) is the space:

ℓpHk(X) := ℓpZk(X)/ℓpBk(X) (resp. ℓpHk(X) := ℓpZk(X)/ℓpBk(X)).

Denote ℓpZk(X) := ker dk and ℓpBk(X) := Im dk−1. The k-th ℓp-cohomology group
of X (resp. k-th reduced ℓp-cohomology group) is the space:

ℓpHk(X) = ℓpZk(X)/ℓpBk(X) (resp. ℓpHk(X) = ℓpZk(X)/ℓpBk(X)).

The closures are considered with respect to the topology of the ℓp-norm. The quo-
tient spaces are endowed with the corresponding quotient topology. Reduced ho-
mology and cohomology groups are thus Banach spaces. The reduced versions are
the greatest Hausdorff quotients of their non-reduced versions, thus a non-reduced
homology or cohomology group is never Hausdorff unless it is equal to its corre-
sponding reduced version.

If X is a finite simplicial complex, then these spaces correspond to classical ho-
mology and cohomology groups Hk(X) and Hk(X). Thus we obtain new invariants
only when the complex X is non-compact.

We will be mostly interested in the Davis realization of buildings. Since these
are always contractible, all of these spaces are trivial for k > 0 if the building has
finite thickness and its Weyl group is finite.

We review some elementary but important facts on ℓp-homology and cohomology.
First we have a duality result relating ℓp-homology groups and ℓp-cohomology groups
but only for the reduced versions [Bou16b].

Proposition 3.1.2. For p, r ∈]1,+∞[ such that p−1+r−1 = 1 and k ∈ N, the space
ℓpHk(X) is canonically isomorphic to the dual of ℓrHk(X). Similarly, ℓrHk(X) is
canonically isomorphic to the dual of ℓpHk(X).
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Second, ℓp-cohomology is invariant by quasi-isometries. Before stating the result,
we introduce the following condition. A complex of bounded geometry (X, d) is said
to be uniformly R-acyclic if X is R-acyclic and if there is a function Φ : R+ → R+

such that every cycle supported in a ball B(x, r) is the boundary of a chain supported
in B(x,Φ(r)). The following result is due to M. Gromov [Gro93], see [BP03] for a
complete proof.

Theorem 3.1.3. Let X and Y be two uniformly R-acyclic complexes of bounded
geometry. If X and Y are quasi-isometric, then the spaces ℓpHk(X) and ℓpHk(Y )
are topologically isomorphic and the spaces ℓpHk(X) and ℓpHk(Y ) are topologically
isomorphic. This is also true for reduced homology and cohomology groups.

Remark. The original statement needs "uniformly contractible" as a hypothesis,
but by inspecting the proof in [BP03] we see uniformly R-acyclic is enough. We
need to loosen this hypothesis since we will use the Bestvina complex of a Coxeter
system, which is constructed a priori only as an R-acyclic complex. It can be
made contractible, but it may lose the property that its dimension computes a
cohomological dimension when the latter is equal to 2 because of the Eilenberg-
Ganea problem [Dav08, p. 154], [Bes93].

3.1.2 Chamber systems and geometric realizations

We review some basic combinatorial building theory following [Ron89]. Then we
define geometric realizations of buildings (following [AB08, Chapter 12] or [Dav08])
and prove an R-acyclicity criterion which applies to both the Davis realization and
the Bestvina realization of buildings.

A chamber system over a set S is a set C together with a family of equivalence
relations on C indexed by S. The elements of C are called chambers. Two chambers
are s-equivalent if they are equivalent under the relation corresponding to s and
s-adjacent if they are s-equivalent and not equal.

A gallery γ in C is a finite sequence of chambers (c0, . . . , ck) such that ci−1 is
s-adjacent to ci for all 1 ≤ i ≤ n. The gallery is said to have type s1 . . . sk (as a
word on the free monoid on the alphabet S) if ci−1 is si-adjacent to ci for every
i. If each sj belongs to a subset T ⊆ S, then we say γ is a T -gallery. A chamber
system is connected (or T -connected) if any two chambers can be joined by a gallery
(or T -gallery). The T -connected components of a chamber system C are called its
T -residues.

Definition 3.1.4. Let (W,S) be a Coxeter system. A (combinatorial) building of
type (W,S) is a chamber system C over S such that:
(i) for all s ∈ S, each s-equivalence class contains at least two chambers and,
(ii) there exists a W -valued distance function dW : C × C → W , that is, a map
satisfying that: for each w ∈ W , if w = s1 . . . sk is a reduced word for w in the
alphabet S (that is si ∈ S for every i and k is minimal), then two chambers c and
c′ can be joined by a gallery of type s1 . . . sk if and only if dW (c, c′) = w.
The group W is called the Weyl group of the building C.

Example 3.1.5. Let (W,S) be a Coxeter system. Then the chamber system C =W ,
endowed with the relations w ∼s w

′ when w = sw′ for each s ∈ S and the W -valued
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distance dW : W ×W → W defined by dW (w,w′) = w−1w′, is a building of type
(W,S) called the abstract Coxeter complex of W .

A building C of type (W,S) has finite thickness if for all s ∈ S, each s-equivalence
class is finite. In this case, we say that C is regular if for each s ∈ S, each s-
equivalence class has the same number of elements qs+1. In this case we denote by
q the vector containing the qs’s as coordinates. We say C that has constant thickness
if all the qs’s have the same value q. In the next sections our buildings will always
be regular.

We now define geometric realizations of combinatorial buildings in a relatively
general setting. This is because in what follows we will be interested in two real-
izations of buildings: the well-known Davis realization and the less known Bestvina
realization. A mirror structure on a CW complex K consists of an index set S and
a family of subcomplexes (Ks)s∈S . The subspaces Ks are the mirrors of K. In this
case, we say that K is a mirrored CW complex over S. We set K∅ = K and for any
nonempty subset T ⊆ S,

KT =
⋂
t∈T

Kt.

For x ∈ K, we set S(x) = {s ∈ S, x ∈ Ks}.

Definition 3.1.6. Let C be a (combinatorial) building of type (W,S) and K a
mirrored CW complex over S. The K-realization of C is the space:

XK = (C ×K)/ ∼,

where [(c, x)] ∼ [(c′, x′)] if and only if x = x′ and dW (c, c′) ∈ WS(x). For simplicity,
a simplex [(c, σ)] in XK may be written c.σ or cσ.

Let C be a regular building of type (W,S) and finite thickness. If (K, d) is a
geodesic metric space, we can extend d to XK by declaring that all translates of
K are isometric and then defining a piecewise length metric on XK . If moreover
each Ks is a proper metric space, then (XK , d) is a geodesic metric space [AB08,
Corollary 12.28]. The space (XK , d) has bounded geometry if and only if the mirror
structure satisfies that for every subset T ⊆ S generating an infinite subgroup WT ,
we have KT = ∅.

Example 3.1.7. Let C be a building of type (W,S). We can choose K = ∆|S|−1

to be the standard simplex of dimension |S| − 1. We endow ∆|S|−1 with a mirror
structure by letting Ks be the codimension 1 faces of ∆|S|−1. The space X∆ =
(C × K)/ ∼ is called the simplicial realization of C. If (W,S) is not affine, this
realization is not locally finite most of the time.

Recall that an orientation on a simplex corresponds to a total order on its ver-
tices. If one is given orientations on simplices of K, one has a natural orientation
on all simplices of XK by declaring that all translates c.σ of a simplex σ in K by
c ∈ C have the same orientation. Once simplices have an orientation, we can talk of
homology for geometric realizations of buildings.

We now give a criterion for the K-realization of a building to be uniformly R-
acyclic, starting from data on the mirrored complex K. When K is the Davis cham-
ber, the Davis realization X is known to be CAT (0), thus uniformly contractible.
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The main motivation to state this result here is to apply it to the Bestvina complex,
which is not necessarily contractible. This is the same proof as [Dav08, 8.2.8] but
for buildings. First, set K∅ = ∅ and for any nonempty subset T ⊆ S,

KT =
⋃
t∈T

Kt.

Proposition 3.1.8. Let C be a building of type (W,S) and finite thickness and let X
be its K-realization. Suppose that X is locally finite and that K is a geodesic metric
space. If K and KT are R-acyclic for every T ⊆ S generating a finite parabolic
subgroup of W , then X is uniformly R-acyclic.

Proof. Since C has finite thickness, the set of chambers of C is countable. We can
order them c0, c1, . . . , cn, . . . so that c := c0 and l(ck) ≤ l(ck+1), where l(x) =
lS(dW (c, x)) is the length of the W -distance with respect to c. We set:

Pn =

n⋃
i=0

ciK ⊆ X.

We will show that Pn is R-acyclic by induction. Since Pn = Pn−1 ∪ cnK and cnK
is R-acyclic by hypothesis, it is enough to show that the intersection Pn−1 ∩ cnK is
R-acyclic.

The main step is showing the building analogue of [Dav08, 8.1.1]. For w ∈ W ,
we set In(w) = {s ∈ S, l(ws) < l(w)}. For all i ≥ 0, set wi = dW (c, ci). Our goal is
to show the equality Pn−1 ∩ cnK = cnK

In(wn). Let Σ be an apartment containing
both c and cn. The inclusion Pn−1 ∩ cnK ⊃ cnK

In(wn) follows from [Dav08, 8.1.1]
applied to the apartment Σ. For the converse inclusion, we show that for all i < n,
we have ciK ∩ cnK ⊂ cnK

In(wn). Indeed, let ρ : X → Σ be a retraction onto
the apartment Σ, which we identify with the K-realization of the abstract Coxeter
complex of (W,S). Since cnK is contained in Σ, the set ciK ∩ cnK is fixed under
ρ. Thus:

ciK ∩ cnK = ρ(ciK ∩ cnK)

⊂ ρ(ciK) ∩ ρ(cnK)

= wiK ∩ wnK.

Now, l(ci) ≤ l(cn) means that l(wi) ≤ l(wn) and the proof of [Dav08, 8.1.1] shows
that wiK ∩ wnK ⊂ wnK

In(wn) = cnK
In(wn). This shows the converse inclusion and

thus we have that Pn−1 ∩ cnK = cnK
In(wn).

Since WIn(w) is a finite parabolic subgroup of W [Dav08, 4.7.2], our hypothesis
implies that cnKIn(wn) is R-acyclic. Indeed, if WT is a finite parabolic subgroup,
then KT is the union of R-acyclic spaces (the Kt’s for t ∈ T ) whose intersections
are all R-acyclic (the KT ′ ’s for T ′ ⊆ T ) by hypothesis.

Thus Mayer Vietoris says that H∗(Pn,R) = H∗(Pn−1,R) and by induction
H∗(Pn,R) = H∗(cK,R) = 0, so Pn is R-acyclic for all n. Since X is the increasing
union of the Pn, the space X is R-acyclic.

Now suppose that K is a geodesic metric space and endow X with the corre-
sponding piecewise length metric. The space X is uniformly R-acyclic since any

101



cycle supported in a ball B(x, r) is contained, up to changing the chamber c so
that x ∈ cK, in a certain Pn, which is R-acyclic. This Pn can be chosen so that
Pn ⊆ B(x,Cr +D) where C,D > 0 are two constants. Since every chamber is an
isometric copy of K, these constants may depend on r but are independent on the
center x ∈ X.

We can define locally finite k-chains on XK as (possibly infinite) formal sums
of k-simplices in XK with coefficients in R, such that for every compact C in XK

only finitely many simplices intersecting C have non-zero coefficients. Denote by
C lf
k (XK ;R) their space and define the boundary operators as usual. Notice that the

boundary operators only act on the second variable, so if c.σ is a k-simplex in XK ,
we have:

∂k(c.σ) = c.(∂kσ).

The locally finite homology H lf
k (XK ,R) of XK is the homology of the corresponding

complex. In practice, our choice of K guarantees that the complex XK is locally
finite, so we can take sums over all simplices in XK with no restrictions on the
coefficients.

3.1.3 Growth function and growth rate

We come back to a slightly more general setting to define the growth function of a
Coxeter system (W,S). Its corresponding growth rate is a numerical invariant that
we will be compare to other numerical invariants.

For w ∈ W denote by w the conjugacy class of w. Let S = {s, s ∈ S} and let
j : S → {1, . . . , N} be a bijection. For each s ∈ S introduce a variable tj(s). Let
w ∈W and choose a reduced expression s1 . . . sk of w. The monomial

tw = tj(s1) . . . tj(sk)

is independent of the reduced expression s1 . . . sk of w. This follows from their
characterization as minimal galleries from 1 to w. Indeed, a minimal gallery from 1
to w crosses the walls separating 1 and w exactly once, and only the order in which
these walls are crossed depends on the minimal gallery.

Definition 3.1.9. The growth function W (t) of (W,S) is the series:

W (t) =W (t1, . . . , tN ) =
∑
w∈W

tw.

For x ∈ R, we denote by tx the vector (tx1 , . . . , txN ). For a fixed t ∈ RN , we study
the convergence of the series W (t−x) in function of x.

Proposition 3.1.10. The series W (t−x) converges if x > et(W ) and diverges if
x < et(W ), where

et(W ) = lim sup
n

1

n
log |{w ∈W, tw ≤ en}|.
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Proof. Set Qn(t) = {w ∈ W, tw ≤ en}. The power series
∑

n |Qn(t)|e−xn converges
for x > et(W ) and diverges for x < et(W ). On the other hand we have:∑

n

|Qn(t)|e−xn =
∑
w∈W

∑
n∈N

en≥tw

e−xn

and the term
∑

en≥tw
e−xn is equivalent to (tw)

−x 1
1−e−x , so the previous series con-

verges if and only if W (t−x) converges.

Remark. If the ti’s are all equal to some real number t, then the series W (t) depends
only on one variable and may be expressed as

W (t) =
∑
k≥0

ck(W )tk,

where ck(W ) = |{w ∈ W, l(w) = k}|. In this case the radius of convergence of the
series W (t−x) is given by

et(W ) =
1

log t
lim sup

n

1

n
log cn(W ).

The number e(W ) = lim supn
1
n log cn(W ) is also called the growth rate of (W,S).

Since W is finitely generated, e(W ) is always finite.

In practice, if we consider a regular building of finite thickness q+1, the vector
t will be q. The numbers eq(W ) correspond to growth rates of balls in the building
for a combinatorial metric taking into account the thickness q+ 1.

If t = (t1, . . . , tN ) and t′ = (t′1, . . . , t
′
N ) are two vectors with 1 ≤ ti < t′i for all i,

then et(W ) ≥ et′(W ). Indeed, there exists α > 1 such that tαi < t′i for all i. Then:

Qn(t
′) ⊆ Qn(t

α) ⊆ Qn(t)

Since qαw ≤ en ⇐⇒ qw ≤ en/α, we have that Qn(t
α) = Qn/α(t). Thus:

et′(W ) ≤ etα(W ) =
1

α
et(W ) < et(W ).

This implies for instance that if t > 1, then et(W ) is comparable to e(W ).
Indeed, if tmin = min1≤i≤N ti and tmax = max1≤i≤N ti, then we have:

1

log tmax
e(W ) ≤ et(W ) ≤ 1

log tmin
e(W ).

In particular, the growth rate et(W ) is finite for t > 1.

3.1.4 Retractions

We now introduce our main tool: retractions. These are maps first defined at
a combinatorial level, which allow to extend W -invariant metrics from a Coxeter
complex to the whole building. We will use the maps they induce at a homological
level.
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Let C be a regular building of type (W,S) and choose a chamber c ∈ C. The map
ρc : C →W defined by ρc(c′) = dW (c, c′) is the retraction onto the abstract Coxeter
complex of W centered in c. Retractions are naturally defined on K-realizations of
C by acting on the first variable. The set

S(c, w) = ρ−1
c (w) = {c′ ∈ C, dW (c, c′) = w}

is called the W -sphere of radius w centered in c.
Since C is assumed to be regular, denote by qs + 1 the cardinal of s-equivalence

classes for each s ∈ S. If si = sj then qsi = qsj [Dav08, 18.1.16]. Denote by q the
vector containing the qs’s. For w ∈W , let w = s1 . . . sk be a reduced expression for
w as a word in S. By the same argument as in the previous section, the number

qw = qs1 . . . qsk

is independent of the decomposition w = s1 . . . sk. If C has constant thickness equal
to q + 1, we have qw = ql(w).

Lemma 3.1.11. [Dav08, 18.1.17] For all w ∈W , we have |S(c, w)| = qw.

Let (W,S) be a Coxeter system. Let X be the K-realization of a building C of
type (W,S) and Σ the K-realization of the Coxeter complex of (W,S). Choose an
orientation on simplices of K so that all simplices in X and Σ have an orientation.

A retraction ρ : X → Σ centered on a chamber defines two maps between chains
on X and chains on Σ. First, we can consider the pushforward of ρ, retracting chains
on X onto chains on Σ:

ρ∗ : C
lf
k (X) → C lf

k (Σ)

(c, σ) 7→ (ρ(c), σ)

Second, we have the pullback of ρ, extending chains on Σ into chains on X:

ρ∗ : C lf
k (Σ) → C lf

k (X)

(w, σ) 7→
∑

c′∈ρ−1(w)

1

qw
(c′, σ)

Notice that ρ∗ ◦ ρ∗ = IdClf
k (Σ) and that ρ∗ ◦ ρ∗ corresponds to averaging chains

over W -spheres in X.

Proposition 3.1.12. The maps ρ∗ and ρ∗ commute with boundary operators.
The map in homology induced by ρ∗ : H lf

k (Σ) → H lf
k (X) is injective.

The map in homology induced by ρ∗ : H lf
k (X) → H lf

k (Σ) is surjective.

Proof. The maps ρ∗ and ρ∗ act only on the first variable of XK = (C ×K)/ ∼ while
the boundary operators act only on the second variable. Injectivity and surjectivity
of the maps induced in homology follow from the identity ρ∗ ◦ ρ∗ = IdClf

k (Σ).
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3.1.5 Davis complex and Davis chamber

We now define the Davis realization XD of a building. The main reason to introduce
this realization is that it can always be endowed with a CAT (0)-metric [Dav94]. We
give two different (but equivalent) constructions of XD. We first follow [DJ02].

Let X be the simplicial realization of a non-spherical regular building C of type
(W,S). Recall that the space X is endowed with the weak topology, that is, a subset
of X is open if and only if its intersection with any k-simplex of X is open in the
topology coming from the standard simplex in Rk for every k ∈ N (in particular a
subcomplex of X is compact if and only if X is a finite union of simplices). The
spaceX does not enjoy good topological properties as it is often not locally finite and
group actions on X are rarely proper. The following construction gives a simplicial
complex XD that is topologically similar to X but that enjoys better properties.

Recall that the subcomplex generated by a subset of vertices V ⊆ Y (0) in a
simplicial complex Y is the subcomplex of simplices of Y whose vertices lie in V .
Recall that the link of a simplex σ in a simplicial complex is the set:

Lk(σ) = {τ simplex , σ and τ are disjoint faces of the same maximal simplex}.

Definition 3.1.13. Let X ′ be the first barycentric subdivision of X. The Davis
complex XD of X is the subcomplex of X ′ generated by the barycenters of simplices
of X with compact links.

From the algebraic topology viewpoint, the space XD is similar to X in the sense
that it is a deformation retract of X [DJ02, 1.4]. The complex XD is locally finite,
so it is locally compact. Since XD can be endowed with a CAT (0)-metric, both X
and XD are contractible. Note that with this definition XD is a simplicial complex,
but it is not necessarily purely dimensional, that is, its maximal simplices may not
have the same dimension.

The intersections ∆ ∩ XD are isomorphic for any chamber ∆ in X (because
they are all translates of a given chamber by elements of the Weyl group for some
apartment). We call such an intersection D a Davis chamber of XD.

As our notation suggests, the space XD can also be constructed from the com-
binatorial building C and a Davis chamber D, after seeing it can be endowed with
the structure of a mirrored space [Dav08, Chapter 18].

Definition 3.1.14. The Davis chamber D = D(W,S) of (W,S) is the (geometric
realization of the) barycentric subdivision of the poset of all finite parabolic sub-
groups WT =< s ∈ T > for T ⊆ S in W ordered by inclusion. For s ∈ S, define
Ds to be the subcomplex of D corresponding to the poset of all finite parabolic
subgroups of W containing W{s}.

Thus D is a mirrored space over S and both definitions of XD agree:

XD = (C ×D)/ ∼ .

Notice that for T ⊆ S generating a finite subgroup WT , the subcomplex DT is
the cone on the poset of all finite parabolic subgroups of W strictly containing WT ,
thus DT is contractible.
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We will now define an orientation on the simplices of D. All simplices in ∆|S|−1

have the natural orientation given by R|S|−1. Any simplex of its barycentric sub-
division inherits a natural orientation. Now we just consider the restriction of this
orientation to D. This determines an orientation for every simplex in XD.

3.2 Exponent of top ℓp-homology for buildings of type
PM

The first ℓp-cohomology group increases as p grows to infinity, thus there exists a
critical p for which it starts to be nonzero. This is a quasi-isometry invariant first
introduced by Pansu [Pan89a]. Top degree ℓp-homology has the same behaviour
as p grows, so there is again a critical exponent for which this space starts to be
nonzero. We show that in the particular case of buildings of type PM, this critical
exponent can be computed in terms of the Weyl group and the thickness.

3.2.1 The nerve and Coxeter groups of type PM

In this paragraph we define Coxeter groups of type PM. These are Coxeter groups
whose nerve satisfies some natural topological conditions. They can be seen as Cox-
eter systems whose corresponding Davis complex is close to an orientable manifold.
We first introduce the nerve of a Coxeter system.

Definition 3.2.1. The nerve L = L(W,S) of a Coxeter system (W,S) is the poset
of all nonempty subsets T ⊆ S such that the parabolic subgroup WT of W is finite.

Notice that the Davis chamber D of (W,S) is the cone on the barycentric sub-
division of L, with apex the vertex corresponding to the empty set. If we view a
Davis chamber D ⊆ ∆ inside a simplicial chamber ∆, we may also see the barycen-
tric subdivision L′ as the intersection D ∩ ∂∆.

Now we introduce some natural topological conditions on simplicial complexes.
A Coxeter group will be of type PM if its nerve satisfies these conditions.

Definition 3.2.2. Let Y be a locally finite purely n-dimensional simplicial complex.
The space Y is a pseudomanifold if every simplex of codimension 1 is contained
in exactly two maximal simplices. We say that Y is orientable if there exists an
orientation on the simplices of Y so that the sum of all of its maximal simplices
is an n-cycle in H lf

n (Y ). We say that Y is gallery connected if any two maximal
simplices in Y can be joined by a finite sequence of maximal simplices such that any
two consecutive maximal simplices share a face of codimension 1.

Definition 3.2.3. A Coxeter system (W,S) is of type PM if its nerve L is an
orientable, gallery connected pseudomanifold. A building is of type PM if its Weyl
group is of type PM.

For a Coxeter system (W,S) of type PM , the Davis realization of the Coxeter
complex ΣD is a contractible orientable pseudomanifold.
Remark. Due to our orientation choices, the canonical n-cycle on ΣD will not be
the sum of all chambers, but the alternate sum of all chambers∑

w∈W
(−1)l(w)w.D.
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Example 3.2.4. Affine and compact hyperbolic Coxeter groups (in the sense of
[Bou68, p.133, exercice 14]) are of type PM. Indeed, in these cases the Davis chamber
D is just (the barycentric subdivision of) a simplex, and its nerve is a triangulation
of a sphere.

Coxeter groups generated by reflections on codimension 1 faces of a right-angled
polyhedron P , as defined in [DJ02, p. 614], are of type PM (e.g. the tiling of the
hyperbolic plane by compact regular pentagons). The nerve is simplicially isomor-
phic to the dual of the boundary of the polyhedron P , so it is again a triangulation
of a sphere.

In [JS03], Januszkiewicz and Świątkowski exhibit an infinite family of Gromov-
hyperbolic Coxeter groups of type PM whose Davis complexes have unbounded
dimension. However, they also show that if such a group satisfies Poincaré duality,
the dimension of its Davis complex is at most 61.

3.2.2 Computation of the critical exponent

In this section we will suppose the Coxeter system (W,S) is of type PM. Let XD

be the Davis realization of a regular building C of type (W,S) and thickness q+ 1.
This proof is essentially the same as that of [Dym04] for ℓ2-cohomology.

Proposition 3.2.5. Let XD be the Davis realization of a regular building C and
n = dimXD. Let ρ : XD → ΣD be a retraction onto the abstract Coxeter complex.
Let η ∈ C lf

n (XD,R). Then for all p > 1

||ρ∗ρ∗(η)||p ≤ ||η||p.

Proof. Write η =
∑

c∈C,σ∈Dn ac,σc.σ. The operator ρ∗ρ∗ averages over W -spheres,
thus Jensen’s inequality yields the result:

||ρ∗ρ∗(η)||pp =
∑
w∈W

∑
c∈ρ−1(w)

∑
σ∈D(n)

1

qpw

∣∣∣ ∑
c′∈ρ−1(w)

ac′,σ

∣∣∣p
≤

∑
w∈W

∑
c∈ρ−1(w)

∑
σ∈D(n)

1

qw

∑
c′∈ρ−1(w)

|ac′,σ|p

=
∑
w∈W

∑
c′∈ρ−1(w)

∑
σ∈D(n)

|ac′,σ|p = ||η||pp.

Theorem 3.2.6. Let (W,S) be a Coxeter system of type PM . Let XD be the Davis
realization of a regular building of type (W,S) and thickness q+ 1, with q ≥ 2. Let
n = dimXD. Then we have:

1 + eq(W ) = inf{p > 1 | ℓpHn(XD) ̸= 0},
1 + eq(W )−1 = sup{p > 1 | ℓpHn(XD) ̸= 0}.

Proof. Since the Davis realization of the Coxeter complex ΣD is an orientable,
gallery connected pseudomanifold, the n-chain τ =

∑
w∈W (−1)l(w)w.D is the only

non-trivial locally finite n-cycle on ΣD up to a constant. Indeed, the pseudomani-
fold condition implies that if some n-cycle τ ′ =

∑
σ aσσ satisfies aσ0 = 0 for some
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n-simplex σ0 ⊆ D, then for every n-simplex σ adjacent to σ0 we have aσ = 0 (as σ is
the only n-simplex that can contribute to the boundary operator at the codimension
1 face σ∩σ0). Gallery connectedness implies that τ ′ = 0. Hence dimRH

n
lf (ΣD) ≤ 1.

Orientability implies that Hn
lf (ΣD) = Rτ .

Thus ρ∗(τ) is a non-trivial locally finite cycle on XD. We compute its ℓp-norm:

||ρ∗(τ)||pp =
∑
w∈W

∑
c∈ρ−1(w)

1

qpw
=

∑
w∈W

q1−p
w =W (q1−p).

By 3.1.10, this converges for p > 1+eq(W ), so that ℓpHn(XD) ̸= 0 for p > 1+eq(W ).
Let η ∈ ℓpHn(XD) be a nonzero ℓp-cycle. We can choose to center the retraction

ρ on a chamber of XD where η is nonzero. Because of this choice, ρ∗(η) is a nonzero
cycle on ΣD, hence multiple of τ , so we can assume ρ∗(η) = τ . Then by proposition
3.2.5

||ρ∗(τ)||p = ||ρ∗ρ∗(η)||p ≤ ||η||p <∞.

But ||ρ∗(τ)||p diverges when p < 1 + eq(W ). Thus we have ℓpHn(XD) = 0 for
p < 1 + eq(W ).

Results on reduced cohomology follow since in top degree we have ℓpHn(XD) =
ℓpHn(XD) = ℓrHn(XD) where p−1 + r−1 = 1. For such p and r the condition
1 < p ≤ 1 + eq(W ) is equivalent to r ≥ 1 + eq(W )−1.

Because of the thickness assumption, the number eq(W ) is finite and comparable
to e(W ). By the strong Tits’ alternative for Coxeter groups [Dav08, 17.2.1], an
infinite Coxeter group W is affine if and only if W has subexponential growth,
which in turn is equivalent to eq(W ) = 0. We obtain the following results for
ℓp-cohomology:

Corollary 3.2.7. Let XD be the Davis realization of a regular building of type (W,S)
and thickness q+ 1, with q ≥ 2 and dimXD = n.
1. If the group W is affine, ℓpHn(XD) ̸= {0} for all p > 1. In particular,
any semisimple Lie group G of rank n over a non-Archimedean local field satis-
fies Hn

ct(G,L
p(G)) ̸= {0} for all p > 1.

2. If the Weyl group (W,S) is of type PM and non-affine, then 0 < eq(W ) < ∞
so we have ℓpHn(XD) ̸= {0} for all p < 1 + eq(W )−1 and ℓpHn(XD) = {0} for all
p > 1 + eq(W )−1.

The critical exponents 1+eq(W ) and 1+eq(W )−1 are quasi-isometry invariants
for regular buildings of type PM with finite thickness. This follows either from quasi-
isometric invariance of reduced ℓp-cohomology or from the fact that the number
eq(W ) is the growth rate of balls on the dual graph of the building endowed with
Coxeter word length as distance.

3.2.3 Application to cocompact Fuchsian buildings

As an application, the previous theorem completes the computation of all possible
vanishings of ℓp-cohomology for cocompact Fuchsian buildings. A building X of
type (W,S) is said to be cocompact Fuchsian if W is a Fuchsian Coxeter group that
acts properly and cocompactly on the hyperbolic plane H2. In particular, the Davis
realization of (W,S) is a tiling of H2 and thus these buildings are of type PM .
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First we recall what is known in degree 1. In [Bou00], Bourdon computes the con-
formal dimension (see Section 6) of these buildings by the formula Confdim(∂X) =
1 + eq(W )−1. The proof of this result relies on constructing a visual metric on
the boundary ∂X with the right parameter and Hausdorff dimension. Equipped
with this metric, ∂X is Loewner and by [BP03, Théorème 0.3], we obtain that
ℓpH1(X) ̸= 0 if and only if p > Confdim(∂X) = 1 + eq(W )−1. The vanishing part
of this statement is specific to these buildings, while the non-vanishing part holds
for any Gromov-hyperbolic complex with bounded geometry (see Proposition 3.4.4).

In [Bou16a], Bourdon obtained that for p > Confdim(∂X) we have ℓpH2(X) = 0.
Since Confdim(∂X) = 1+ eq(W )−1, Theorem 3.2.6 (in particular its non-vanishing
statement) implies that Bourdon’s vanishing is optimal in this case. We sum these
results in the following statement.

Corollary 3.2.8. Let X be the Davis realization of a cocompact Fuchsian building
of type (W,S) and thickness q+ 1, with q ≥ 2.
• For p < Confdim(∂X) = 1 + eq(W )−1, we have ℓpH1(X) = 0 and ℓpH2(X) ̸= 0.
• For p > Confdim(∂X) = 1 + eq(W )−1, we have ℓpH1(X) ̸= 0 and ℓpH2(X) = 0.

3.3 Non-vanishing of ℓp-homology and virtual cohomo-
logical dimension

The main result of this section is that for large p, the ℓp-homology of a building
with Weyl group W does not vanish in degree equal to the virtual cohomological
dimension vcdR(W ) of W over R. This is a generalization of the non-vanishing
assertion shown for buildings of type PM in the previous section. We begin by
giving a quick review on the notion of virtual cohomological dimension for Coxeter
groups. Then we introduce the Bestvina chamber and the Bestvina realization of a
building following [Bes93] to obtain this non-vanishing result.

3.3.1 Virtual cohomological dimension

First let Γ be any discrete group and R be a PID. The cohomological dimension
cdR(Γ) of Γ over R is the least n such that the trivial RΓ-module R has a projective
resolution of length n:

0 → Pn → . . .→ P1 → P0 → R→ 0

(and is ∞ if there is no such integer). Usually we denote cd(Γ) := cdZ(Γ). One
can show that this number corresponds indeed to some sort of dimension in a more
intuitive way:

cdR(Γ) = sup{n , Hn(Γ;M) ̸= 0 for some RΓ-module M}.

The group Γ is said to be of type FPR if there exists a finite length projec-
tive resolution of R by finitely generated projective RΓ-modules. In this case, the
cohomological dimension of Γ over R can be computed as follows:

cdR(Γ) = sup{n , Hn(Γ;RΓ) ̸= 0}.
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If cd(Γ) < ∞, then Γ is torsion-free. A Coxeter group is never torsion-free, so
cohomological dimension is not directly relevant for such groups since it is always
infinite. A more interesting invariant for Coxeter groups can be obtained as follows.

First we have the following result by Serre [Ser71].

Theorem 3.3.1. Suppose G is a torsion-free group and that Γ is a subgroup of finite
index. Then cdRG = cdR Γ.

Since the intersection of two subgroups of finite index is still of finite index, this
theorem allows us to define virtual cohomological dimension as follows.

Definition 3.3.2. Let G be a group having a torsion-free subgroup of finite in-
dex. We define the virtual cohomological dimension vcdR(G) of G over R as the
cohomological dimension cdR(Γ) of any of its torsion-free subgroups of finite index.

Let (W,S) be a finitely generated Coxeter system. First, Tits showed that W
is a linear group in characteristic 0, so by Selberg’s lemma it admits a torsion-free
subgroup Γ of finite index. Second, such a group Γ is of type FPR, for any PID
R. This is because Γ acts freely and cocompactly on the Davis apartment Σ of W ,
which is contractible, so the spaces Ci(Σ;R) give the desired projective resolution.
This implies:

cdR(Γ) = sup{n , Hn(Γ;RΓ) ̸= 0}.

Serre’s theorem tells us that this integer does not depend on the choice of a torsion-
free subgroup Γ of finite-index in W , but we can see this directly without invoking
this result. Indeed, both W and Γ act properly discontinuously and cocompactly
on the Davis apartment Σ, so Hn(Γ;RΓ) = Hn

c (Σ;R) = Hn(W ;RW ). Thus the
virtual cohomological dimension of W can be computed as follows:

vcdR(W ) = sup{n , Hn(W ;RW ) = Hn
c (Σ;R) ̸= 0}.

3.3.2 Bestvina chamber

The dimension of the Davis realization of a building gives an upper bound for
the virtual cohomological dimension of its Weyl group, but in general there is no
equality. The Bestvina chamber is a topological construction that associates to every
Coxeter system (W,S) a finite acyclic CW complex whose dimension coincides with
vcd(W ) = vcdZ(W ). One can consider variants where the complex is F-acyclic for
a given field F, and in this case the dimension of the complex is vcdF(W ). Since we
are interested in ℓp-cohomology, we will choose F = R.

In this section we review [Bes93] for the construction of the Bestvina chamber
and the computation of its dimension, since it will be useful for non-vanishing of
ℓp-homology.

First, Bestvina describes an inductive construction of the Davis chamber. Denote
by F the poset of subsets T ⊆ S such that WT = ⟨T ⟩ is a finite parabolic subgroup
of W ordered with respect to inclusion. For any maximal element F ∈ F , define PF

to be a point. Assuming that PF ′ has been constructed for every F ′ ⊃ F , define PF

to be a cone on
⋃

F ′⊃F PF ′ . The complex P∅ is the Davis chamber D of W and the
complexes P{s} are mirrors of D.
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Now we construct an R-acyclic polyhedron BR = BR(W ) as follows. For any
maximal element F ∈ F , define PF to be a point. Assuming that PF ′ has been
constructed for every F ′ ⊃ F , define PF to be an R-acyclic polyhedron containing⋃

F ′⊃F PF ′ of the least possible dimension. Most of the time, we have dim(PF ) =
dim(

⋃
F ′⊃F PF ′) + 1 and PF is just a cone on

⋃
F ′⊃F PF ′ , but in some situations

(e.g. when there is a unique F ′ ∈ F such that F ′ ⊃ F and |F ′| = |F |+ 1) we have
dim(PF ) = dim(

⋃
F ′⊃F PF ′). We then define the Bestvina chamber BR to be P∅.

The Bestvina chamber has a natural mirrored structure given by the subcom-
plexes Bs = P{s}, s ∈ S. We can thus define the Bestvina realization XB of a
building C, as the space:

XB = (C ×BR)/ ∼ .

The following lemma gives a more general criterion to guarantee that dim(PF ) =
dim(

⋃
F ′⊃F PF ). We give the proof for completion and also because the hypotheses

are slightly different from those in [Bes93].

Lemma 3.3.3. Let L be a compact n-dimensional polyhedron with Hn(L;R) = 0.
Then L embeds in a compact R-acyclic n-dimensional polyhedron as a subpolyhedron.

Proof. The lemma is true for n = 1. For n ≥ 2 it is enough to show it for L (n− 2)-
connected. Indeed, one can define successively L−1 = L and Li to be Li−1 with the
cone on its i-skeleton attached, we then replace L by Ln−2. This does not modify
Hn(L;R).

Now suppose L is (n − 2)-connected. The only homology group of L with real
coefficients that may not vanish is Hn−1(L;R) = Hn−1(L) ⊗ R. The Hurewicz ho-
momorphism gives Hn−1(L) ≃ πabn−1(L) (which is just πn−1(L) for n ≥ 3). Thus the
group πabn−1(L) is (abelian and) finitely generated, but not necessarily free. Choose
a basis [f1], . . . , [fk] of the maximal free abelian subgroup of πabn−1(L). For each
i = 1, . . . , k, we attach an n-cell to L along the image of the map fi : S

n−1 → L.
Call the resulting space L′. The homology group Hn−1(L

′) is a torsion group and
therefore Hn−1(L

′;R) = 0. This procedure does not affect other homology groups,
thus L′ is R-acyclic.

To show non-vanishing of ℓp-homology of a building, we will use the cycle con-
structed by Bestvina in the proof of vcdR(W ) = dimBR. We write its construction
for completion.

Theorem 3.3.4. Let d = dimB. Then the space H lf
d (ΣB;R) contains a non-zero

locally-finite cycle with bounded coefficients.

Proof. Denote by F the poset of subsets T ⊆ S such that WT = ⟨T ⟩ is a finite
subgroup of W ordered by inclusion. Let F0 be a maximal element in F such that
dimPF0 = d. Therefore U =

⋃
F∈F ,F⊃F0

PF has dimension d− 1 and PF0 is a cone
on U . By lemma 3.3.7, we have Hd−1(U ;R) ̸= 0. Since PF0 is R-acyclic, we also
have Hd(PF0 , U ;R) ̸= 0, so choose τ0 a non-trivial cycle in this space. We see this
element as a chain on BR whose boundary lies in U and such that its stabilizer in
W (with respect to its action on ΣB = (W ×BR)/ ∼) is WF0 .

Consider the set S0 =
⋃

F∈F ,F⊃F0
F \ F0 ⊆ S and its corresponding parabolic

subgroup WS0 in W . Then the chain

τ =
∑

w∈WS0

(−1)l(w)w.τ0
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is a nonzero locally finite cycle in H lf
d (ΣB;R). Indeed, it is a cycle since the only

place where the boundary of τ may be nonzero is in the translates of U by WS0 , and
on each of these translates the boundary of τ gives twice the same contribution but
with opposite sign. The coefficients of τ are bounded since it is obtained by placing
copies of τ0 in different chambers.

Corollary 3.3.5. We have vcdR(W ) = dimBR.

Proof. Let d = dimBR. The group W acts properly and cocompactly on the space
ΣB, so we have H∗(W,RW ) = H∗

c (ΣB,R). Since vcdR(W ) is the greatest n such
that H∗(W,RW ) is non-zero, we have vcdR(W ) ≤ d.

The natural pairing H lf
d (ΣB;R)⊗Hd

c (ΣB;R) → R is non-degenerate, so in par-
ticular Hd(W,RW ) = Hd

c (ΣB;R) ̸= 0. Thus vcdR(W ) = d.

Unlike the Davis realization, the Bestvina realization may not preserve the un-
derlying combinatorial structure of the building. For instance, the Bestvina complex
of any finite Coxeter group is a point. In [Bes93], the example of a 1-dimensional
Bestvina chamber in which the mirrors cover the whole chamber is treated. The
Bestvina realization of the corresponding Coxeter group is a tree and the chambers
are tripods which overlap on segments. Overlapping in top dimension is avoided
exactly when B = P∅ is a cone on its mirrors. Even though the combinatorial struc-
ture of the building may not be respected by the Bestvina complex, the Davis and
Bestvina realization of the same building are still quasi-isometric.

Proposition 3.3.6. Let C be a combinatorial regular building of finite thickness and
denote by XK its K-realization. The complexes XD and XB are quasi-isometric
locally finite uniformly R-acyclic complexes.

Proof. Endowed with its CAT (0)-metric, the Davis realization XD of a building C
is a uniformly R-acyclic (even contractible) complex of bounded geometry. On the
other hand, the Bestvina realization XB of C may be endowed with a length metric
by defining a metric on the Bestvina chamber. By proposition 3.1.8, the space XB

is uniformly R-acyclic.
Since W acts properly and cocompactly on both Coxeter complexes ΣD and ΣB,

if f : ΣD → ΣB is a map sending a simplex in the chamber w.D to some point in
the simplex of w.B of the same type, then f is a quasi-isometry. This map can be
defined in the same way between the corresponding buildings, thus we get a map
F : XD → XB that restricts to a quasi-isometry on each apartment (whose constants
do not depend on the choice of an apartment). Since retractions do not increase
distances [AB08, Proposition 12.18], a geodesic between two points is contained in
an apartment for both realizations, thus F is a quasi-isometric embedding. Quasi-
surjectivity of F follows since the same apartment system covers both buildings.

3.3.3 Non-vanishing of ℓp-homology

Now we show non-vanishing of top dimensional ℓp-homology for large p using the
same idea as in the proof of Theorem 3.2.6.

Theorem 3.3.7. Let XB be the Bestvina realization of a regular building of type
(W,S) and thickness q + 1, with q ≥ 2. Let d = dimXB. For all p > 1 + eq(W ),
we have ℓpHd(XB) ̸= 0.
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Proof. Let
τ =

∑
w∈Wτ

(−1)l(w)w.τ0

be the nonzero locally finite cycle in H lf
d (XB;R) given by theorem 3.3.4, for some

well chosen non-trivial relative cycle τ0 and let Wτ be the parabolic subgroup of
W corresponding to the support of τ . The element ρ∗(τ) is a nonzero locally finite
cycle in XB and

||ρ∗(τ)||pp ≤
∑

w∈Wτ

∑
c∈ρ−1(w)

||τ0||pp
qpw

= ||τ0||pp
∑

w∈Wτ

q1−p
w = ||τ0||ppWτ (q

1−p).

By proposition 3.1.10, the series Wτ (q
1−p) converges for p > 1 + eq(Wτ ). The

number eq(Wτ ) is finite since q ≥ 2. Thus ρ∗(τ) ∈ ℓpHd(XB) for p > 1+eq(Wτ ).

Since ℓp-cohomology is invariant by quasi-isometries (see Theorem 3.1.3), Propo-
sition 3.3.6 implies that this result persists on the ℓp-cohomology of the Davis real-
ization of a building.

Corollary 3.3.8. Let XD be the Davis realization of a regular building of type (W,S)
and thickness q+ 1, with q ≥ 2. Let d = vcdR(W ). Then we have:
ℓpHk(XD) = 0 for all k > d and p > 1,
ℓpHd(XD) ̸= 0 for all 1 < p < 1 + eq(W )−1.

Remark. Non-vanishing of the ℓp-homology of the Davis realization in degree d =
vcdR(W ) can be obtained directly without invoking the Bestvina realization. Indeed,
we have d = max{n,Hn(D,D

T ;R) ̸= 0 for some spherical T} [Dav08, Corollary
8.5.5]. If we pick a non-trivial element in Hd(D,D

T ;R), we can extend it to a cycle
τ ∈ Z lf

d (Σ;R) with bounded coefficients and non-trivial in H lf
d (Σ;R), as in the proof

of 3.3.4. Then the proof of 3.3.7 says that the ℓp-norm of the cycle ρ∗(τ) on XD

converges for p > 1 + eq(W ). If ρ∗(τ) was trivial in ℓpHd(XD), then using that ρ∗
commutes with ∂, we see that τ would be trivial inside H lf

d (Σ,R).
The vanishing part of the corollary may seem trivial without using the Bestivna

complex, but it is not if we do not have a big automorphism group acting on the
building. This is the reason why we introduce the Bestvina complex.

3.4 Conformal dimension of Gromov-hyperbolic build-
ings

In [Cla17], Clais obtains bounds for the conformal dimension of Gromov-hyperbolic
buildings (of constant thickness) coming from right-angled Coxeter groups. These
are formulated in terms of the conformal dimension of an apartment, the parameter
of a visual metric and the combinatorial data of the building. Here, we generalize
these bounds to arbitrary Gromov-hyperbolic buildings of finite thickness. Most of
the proof remains the same, but instead of using combinatorial modulus techniques,
we use a separation property of the first ℓp-cohomology of hyperbolic groups.
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3.4.1 Conformal dimension and ℓp-cohomology

In this subsection let X be a contractible, Gromov-hyperbolic simplicial complex
with bounded geometry, let ∂X be its Gromov boundary and (·|·)o be the Gromov
product on X with basepoint o ∈ X.

A metric d on ∂X is visual if there exist constants λ > 1 and C ≥ 1 such that
for every ξ, η ∈ ∂X we have:

C−1λ−(ξ|η)0 ≤ d(ξ, η) ≤ Cλ−(ξ|η)0 .

The number λ > 1 is the parameter of the metric d. It was shown by Gromov that
such a metric always exists for λ > 1 close enough to 1 [BH99, p. 435]. Moreover, by
a theorem due to Coornaert [Coo93, 5.4 and 7.4], such a metric is Ahlfors-regular,
that is, there exist constants C ≥ 1, Q > 0 and a measure µ on ∂X such that for
every ball B(r) ⊆ (∂X, d) of radius r < diam(∂X, d), we have:

C−1rQ ≤ µ(B(r)) ≤ CrQ.

This implies that µ is equivalent to the Q-Hausdorff measure of (∂X, d) and that Q
is the Hausdorff dimension of (∂X, d).

We define the shadow of a ball B(x,R) ⊂ X as the subset of ∂X:

O(x,R) = {ξ ∈ ∂X, [1, ξ[∩B(x,R) ̸= ∅}.

We are ready to define the conformal gauge J (∂X) of ∂X as the set of metrics
on ∂X whose balls are similar to shadows of balls in X. More precisely:

Definition 3.4.1. [Hei01, Chapter 15] A metric d on ∂X is in the conformal gauge
J (∂X) of ∂X if it is Ahlfors-regular and if it satisfies the following two complemen-
tary conditions for every R > 0 large enough:

(i) There is an increasing function φ : [1,+∞[→ [0,+∞[ such that for every
pair B1 ⊆ B2 of balls of radii r1 and r2, there are shadows O(x1, R) and O(x2, R)
satisfying O(x1, R) ⊆ B1 ⊆ B2 ⊆ O(x2, R) and |x1 − x2| ≤ φ( r2r1 ).

(ii) There is an increasing function ψ : [0,+∞[→ [1,+∞[ such that for every
pair O(x1, R) ⊆ O(x2, R) of shadows, there are balls B1 and B2 of radii r1 and r2,
satisfying B1 ⊆ O(x1, R) ⊆ O(x2, R) ⊆ B2 and r2

r1
≤ ψ(|x1 − x2|).

The conformal gauge is a complete quasi-isometry invariant of X. Indeed, every
quasi-isometry ϕ : X → Y defines a quasi-symmetric homeomorphism ∂ϕ : ∂X →
∂Y , that is, a homeomorphism such that the map sending d ∈ J (∂Y ) to the metric
d(∂ϕ(·), ∂ϕ(·)) on ∂X is a bijection from J (∂Y ) to J (∂X). Conversely, every
homeomorphism from ∂X to ∂Y with this property is the extension on the boundary
of a quasi-isometry from X to Y [BS00].

Definition 3.4.2. The (Ahlfors-regular) conformal dimension of ∂X is:

Confdim(∂X) = inf{Hausdim(∂X, d); d ∈ J (∂X)}.

In what follows we use the following characterization of the first ℓp-cohomology
group for contractible complexes of bounded geometry, obtained by integration over
1-cycles:

ℓpH1(X) = {f : X(0) → R, df ∈ ℓp(X(1))}/ℓp(X(0)) + R.
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Now we present a characterization of the conformal dimension in terms of functions
separating points of the boundary. Define the following subspace of ℓpH1(X):

ℓpH1
cont(X) = {[f ] ∈ ℓpH1(X) | f extends continuously to X(0) ∪ ∂X}

and for [f ] ∈ ℓpH1
cont(X), denote by f∞ the extension of f to the boundary (by

radial limit). We define the space of limit functions of ℓpH1
cont(X) by:

Ap(∂X) = {u : ∂X → R |u = f∞ for some [f ] ∈ ℓpH1
cont(X)}.

We state the main result we are going to use later. We will only need it in the
case of Gromov-hyperbolic groups, so we state it only in this setting in order to have
simple hypotheses.

Theorem 3.4.3. [BK15, 3.8] Let Γ be a Gromov-hyperbolic group with connected
boundary ∂Γ. Then Ap(∂Γ) separates points in ∂Γ if and only if p > Confdim(∂Γ).

Remark. This result holds for any Gromov-hyperbolic group Γ, without connected-
ness assumption. Indeed, connected components of ∂Γ are in bijection with ends
of the group Γ. Combining Stallings’ theorem on ends of groups [Sta68] and Dun-
woody’s accessibility theorem [Dun85], we obtain that if Γ is finitely presented and
has more than one end, then Γ splits as the fundamental group of a finite graph of
groups with finite edge groups, such that vertex groups (Γi)i∈I are either finite or
1-ended. It is known that the Γi are quasiconvex, thus hyperbolic [Bow98, 1.2], and
that any connected component of ∂Γ can be identified either with the boundary ∂Γi

for some 1-ended vertex group Γi or with a point in the boundary of a tree [CM22,
2.4].

With this we can show that Ap(∂Γ) separates points in ∂Γ if and only if Ap(∂Γi)
separates points in ∂Γi for every 1-ended Γi. The direct implication is trivial. For
the converse, it is enough to show that we can separate two points in two different
connected components by some element inAp(∂Γ). Denote by Z the tree of spaces on
which Γ acts by deck transformations, T its associated Bass-Serre tree and p : Z → T
the natural retraction. If x, y ∈ ∂Z lie in two different connected components, there
exists some edge e of the tree such that any geodesic γ going from x to y passes
through the edge space p−1(e). The complement of p−1(e) in Z has two connected
components Zx and Zy (because T is a tree). Let f be the characteristic function of
vertices of Zx. Its differential is nonzero at most on edges of the space p−1(e), which
is bounded. Thus f ∈ ℓpH1(Z), the limit function f∞ is in Ap(∂Γ) and separates x
and y.

By 3.4.3, Ap(∂Γi) separates points in ∂Γi for every 1-ended Γi if and only if
p > maxi∈I Confdim(∂Γi). In [Car11, 6.2], Carrasco shows that either all the Γi’s are
finite and Confdim(∂Γ) = 0 or there is at least one 1-ended Γi and Confdim(∂Γ) =
maxi∈I Confdim(∂Γi).

We finish this subsection by recalling a construction due to Elek of functions
on X(0) starting from functions on ∂X [Ele97]. This also shows non-vanishing of
the first ℓp-cohomology of hyperbolic simplicial complexes for large p > 1. Given
a metric d ∈ J (∂X) and a d-Lipschitz function u : ∂X → R, we define a function
Φ(u) : X(0) → R as follows. Fix R > 0 large enough and for every x ∈ X(0) choose
some ξx ∈ OX(x,R). We set Φ(u)(x) = u(ξx) for every x ∈ X(0). In particular, we
have [Φ(u)] ∈ ℓpH1

cont(X) and (Φ(u))∞ = u.
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Proposition 3.4.4. [Bou16b, 2.3] For p > Hausdim(∂X, d), we have ||dΦ(u)||p <
∞. Moreover, if u is non-constant, [Φ(u)] ̸= 0 in ℓpH1(X). In particular, ℓpH1(X) ̸=
0 for all p > Confdim(∂X, d).

We can think of this construction as a Poisson transform defined by integrating
over shadows with respect to a probability measure. Here we chose a Dirac mass on
an element of the shadow, this choice is not important because the function we are
integrating is Lipschitz.

3.4.2 Upper bound of the conformal dimension of hyperbolic build-
ings

Let X be the Davis realization of a building of type (W,S) and thickness q + 1.
Denote by Σ the Davis complex of (W,S). In this section we assume that W is a
Gromov-hyperbolic Coxeter group, so that X and Σ are Gromov-hyperbolic spaces
(and in fact they can be endowed with a CAT (−1)-metric by [Mou88]). The previous
section applies in this context.

First we obtain an upper bound for Confdim(∂X). To do this, we bound the
Hausdorff dimension of the visual metric associated to a natural distance defined
using the underlying combinatorial chamber system C.

We call G the dual graph ofX, that is, G is the graph where vertices are chambers
of X, and two vertices are joined by an edge when their corresponding chambers
are adjacent. First, notice that G and X are quasi-isometric, so that the boundaries
∂G and ∂X are homeomorphic. This homeomorphism is also quasi-symmetric, so
we can identify their conformal gauges.

We define a combinatorial distance on G using both the W -distance and the
thickness of X. Namely, for x, y ∈ G(0), set |x−y|q = log qdW (x,y). In other words, if
s1 . . . sl is a reduced expression for w = dW (x, y), then |x−y|q = log qs1+. . .+log qsl .
If the thickness is constant and equal to q+1, this is just |x− y|q = l(w) log q. This
distance on G induces a visual metric dq on ∂G of parameter λ(q). We fix an origin
o ∈ G(0) and write |x|q := |x− o|q.

The distance | · − · | naturally restricts to the dual graph of Σ, and induces a
visual metric on ∂Σ with the same parameter λ(q), which we also denote by dq and
which is also the restriction of the visual metric dq on ∂X to the boundary ∂Σ.
From [Coo93, Corollaire 7.6], we know that

Hausdim(∂Σ, dq) =
eq(W )

log λ(q)
.

The following upper bound for the Hausdorff dimension of (∂G, dq) can be seen
as a thickened version of Coornaert’s formula.

Proposition 3.4.5. The visual metric d satisfies:

Hausdim(∂G, dq) ≤ Hausdim(∂Σ, dq)(1 + eq(W )−1).

Proof. Consider the combinatorial sphere Gn = {x ∈ G(0) |n ≤ |x|q < n + 1}. Fix
R > 0 bigger than the diameter of all simplices in G. Cover the boundary by the
shadows OG(x,R) for x ∈ Gn. Since the metric d lies in the conformal gauge of ∂G,
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the shadows OG(x,R) are similar to balls B(ξ, r) in (∂G, dq) of radius r = λ(q)−|x|q .
Denote by µα the α-Hausdorff measure of (∂G, dq). Thus, there is a constant C ≥ 1
such that for every x ∈ G(0):

C−1λ(q)−|x|qα ≤ µα(OG(x,R)) ≤ Cλ(q)−|x|qα.

For fixed α, we compute the α-Hausdorff measure of the cover {OG(x,R), x ∈ Gn}
and estimate its limit when n → ∞. We set Wn = {w ∈ W |n ≤ log qw < n + 1}.
Notice that en|Wn| ≤ |Gn| ≤ en+1|Wn|. Thus, the α-Hausdorff measure of the cover
is comparable to: ∑

w∈Wn

qwλ(q)
−|w|qα =

∑
w∈Wn

q1−log λ(q)α
w

By proposition 3.1.10, this sum tends to 0 when log λ(q)α − 1 > eq(W ) (because
the associated series on n converges). This means that µα(∂X) = 0 when α >

1
log λ(q)(1+eq(W )). This term is just Hausdim(∂Σ, dq)(1+eq(W )−1) by Coornaert’s
formula.

Remark. When the thickness is constant and equal to q + 1, we can erase the de-
pendence on q of the parameter λ(q). Indeed, we may choose the combinatorial
distance on G defined by |x− y| = l(dW (x, y)). Call λ (resp. λ(q)) the parameter of
the visual metric d (resp. dq) associated to the combinatorial distance | · − · | (resp.
| · − · |q). These parameters are related by

λ(q) = λ1/ log q,

and the bound in the proposition can be expressed as:

Hausdim(∂G, d) ≤ Hausdim(∂Σ, d)(1 +
log q

e(W )
)) =

e(W )

log λ
(1 +

log q

e(W )
),

where e(W ) is the growth rate of the group (W,S) with respect to word length.

3.4.3 Lower bound of the conformal dimension of hyperbolic build-
ings

In this section we obtain a lower bound for the conformal dimension Confdim(∂X) in
terms of the conformal dimension Confdim(∂Σ) and the growth of the Weyl group
(W,S), weighted by the thickness q + 1. We keep the same notations from the
previous section.

Remark. Theorem 3.3.8 combined with [Bou16a, Théorème A] already gives a lower
bound for Confdim(∂X):

Confdim(∂X)

vcdR(W )− 1
≥ 1 + eq(W )−1.

By [BM91], we know that vcdR(W ) − 1 ≤ Topdim(∂Σ) ≤ Confdim(∂Σ). In this
section, we obtain a sharper inequality by replacing vcdR(W )− 1 by Confdim(∂Σ).

117



Fix a retraction ρ : X → Σ onto an apartment A. We identify the apartment
A to the abstract Coxeter complex Σ and the boundary ∂A to ∂Σ. For a map
f : Σ(0) → R, we define its pullback by the retraction ρ by ρ∗f = f ◦ ρ.

In a similar way, we can pushforward functions on X(0) through the retraction
ρ, by averaging over preimages. For a map h : X(0) → R, we define for x ∈ Σ(0),

(ρ∗h)(x) =
1

|ρ−1(x)|
∑

y∈ρ−1(x)

h(y).

We want to define a pushforward for functions on the boundary. For this, let
Ao be the set of apartments of X containing an origin o lying in the interior of the
central Davis chamber of the retraction ρ. We endow Ao with a probability measure
ν as in [Bou00, Section 2.2.3], the following proposition sums up its main properties.

Proposition 3.4.6. [Bou00, 2.2.3 and 2.2.4] For y ∈ X(0), let Ay be the set of
apartments containing o and y. There exists a Borel probability measure ν on Ao

such that:
ν(Ay) = |ρ−1(ρ(y))|−1.

We view an apartment in Ao as an isometric embedding p : Σ → X. This induces
a map ∂p : ∂Σ → ∂X. Given d ∈ J (∂X), we denote by Lip(∂X, d) the space of
Lipschitz functions on (∂X, d). For u ∈ Lip(∂X, d), define the function ∂ρ∗(u) on
∂Σ by:

∂ρ∗(u)(η) =

∫
Ao

u(∂p(η))dν(p).

The function ∂ρ∗(u) is continuous and the pushforward ∂ρ∗ factors through ρ∗:

Lemma 3.4.7. The following diagram commutes:

ℓpH1
cont(X) Lip(∂X, d)

ℓpH1
cont(Σ) C(∂Σ)

ρ∗

Φ

∂ρ∗

(·)∞

Proof. Let v ∈ Lip(∂X, d). For y ∈ X(0), let Ay be the set of apartments containing
o and y. Notice that the set Ao is the disjoint union of the sets Ay for y ranging
over a given fiber of the retraction ρ and recall that ν(Ay) = |ρ−1(ρ(y))|−1 [Bou00,
Lemme 2.2.4]. Thus:

ρ∗Φ(v)(x) =
1

|ρ−1(x)|
∑

y∈ρ−1(x)

Φ(v)(y) =

∫
Ao

Φ(v)(p(x))dν(p).

Since v ∈ Lip(∂X, d), we know that for ξ ∈ ∂X, we have limy→ξ Φ(v)(y) = v(ξ).
From this and the dominated convergence theorem we first have for η ∈ ∂Σ:

lim
x→η

ρ∗Φ(v)(x) =

∫
Ao

lim
x→η

Φ(v)(p(x))dν(p) =

∫
Ao

v(∂p(η))dν(p) = ∂ρ∗(u)(η).
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We are ready to state the main result of this section.

Theorem 3.4.8. Let (W,S) be a Gromov-hyperbolic Coxeter system, Σ the Davis
complex of (W,S) and X the Davis realization of a building with Weyl group (W,S)
and thickness q+1. Let dq be a visual metric on ∂Σ induced by the distance | ·−· |q.
We have:

Confdim(∂Σ)(1 + eq(W )−1) ≤ Confdim(∂X) ≤ Hausdim(∂Σ, dq)(1 + eq(W )−1).

Remark. 1. When X is a Fuchsian building, the boundary ∂Σ is a circle and thus
Confdim(∂Σ) = 1. In [Bou00], Bourdon constructs a visual metric dq with param-
eter λ(q) = exp eq(W ), so that Coornaert’s formula gives Hausdim(∂Σ, dq) = 1.
Therefore, the inequalities of the theorem are optimal for these buildings and give
a slightly different proof from that of [Bou00] of the equality:

Confdim(∂X) = 1 + eq(W )−1.

2. In the case of constant thickness the inequalities can be expressed as:

Confdim(∂Σ)(1 +
log q

e(W )
) ≤ Confdim(∂X) ≤ Hausdim(∂Σ, d)(1 +

log q

e(W )
))

where d is the visual metric on the boundary of Σ equipped with the length func-
tion. These are the inequalities obtained by Clais in [Cla17] for some hyperbolic
buildings coming from right-angled Coxeter groups. In particular, they imply that
Confdim(∂X) is comparable to log q.

Proof. The upper bound was already shown in the previous proposition.
We show the lower bound. Choose a metric d ∈ J (∂X) and a family V of Lips-

chitz functions (for d) on ∂X such that the family U = ∂ρ∗V of averages of functions
in V separates points in ∂Σ. In the remark after 3.4.3 we saw that Confdim(∂Σ) is
the infimum of all p’s such that Ap(∂Σ) separates points in ∂Σ. By Lemma 3.4.7,
the limit functions of the family ρ∗Φ(V) are the functions in U . Thus, for every
ε > 0, there exists v ∈ V such that the function f = ρ∗Φ(v) satisfies:

inf{p ≥ 0, ||df ||p <∞} ≥ Confdim(∂Σ)− ε.

Now we consider ρ∗(f), its differential satisfies for each edge [x, y] ∈ Σ(1):

d(ρ∗f)([x, y]) = df(ρ([x, y])).

Thus, the ℓr-norm of its differential is given by:

||d(ρ∗f)||rr =
∑

σ∈Σ(1)

|ρ−1(σ)||df(σ)|r.

Define the function:

Pf (s) = inf{r > 0,
∑

σ∈Σ(1)

|ρ−1(σ)|s|df(σ)|r <∞}

and Pf (s) = +∞ if the corresponding set is empty.
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Claim. We have: (1 + eq(W )−1)(Confdim(∂Σ)− ε) ≤ Pf (1) ≤ Hausdim(∂X, d).

The theorem follows from this claim. Indeed, since it holds for any metric
d ∈ J (∂X) and for any ε > 0, we obtain the lower bound of the theorem. We now
prove separately each of the two inequalities in this claim.
Proof of the upper bound of the Claim. We know that ||d(Φ(v))||p < ∞ for p >
Hausdim(∂X, d) and by definition of f we know that ρ∗f = ρ∗ρ∗(Φ(v)). By Jensen’s
inequality, averaging a function on X(0) over fibers of ρ reduces the ℓp-norm of the
differential, that is:

Lemma 3.4.9. For any h : X(0) → R and p > 1 we have ||d(ρ∗ρ∗h)||p ≤ ||dh||p.

Proof. Denote by E the operator ρ∗ρ∗. This operator can also be defined on func-
tions X(1) → R. We first show that the coboundary operator d commutes with E.
For x ∈ X(0) we have Eh(x) = 1

|ρ−1(ρ(x))|
∑

y∈ρ−1(ρ(x)) h(y). Let σ = [x, x′] ∈ X(1).
Notice that:

|ρ−1(ρ(σ))| = |ρ−1(ρ(x))||{τ ∈ ρ−1(ρ(σ)), x ∈ τ}|.

Thus we have:

d(Eh)(σ) =
1

|ρ−1(ρ(x))|
∑

y∈ρ−1(ρ(x))

h(y)− 1

|ρ−1(ρ(x′))|
∑

y′∈ρ−1(ρ(x′))

h(y′)

=
1

|ρ−1(ρ(σ))|
∑

[y,y′]∈ρ−1(ρ(σ))

(h(y)− h(y′)) = E(dh)(σ).

Now Jensen’s inequality, used as in Proposition 3.2.5, gives directly the result:

||d(Eh)||p = ||E(dh)||p ≤ ||dh||p.

Thus we have ||d(ρ∗f)||p ≤ ||d(Φ(v))||p <∞ for p > Hausdim(∂X, d).
Proof of the lower bound of the Claim. Our goal is to obtain a lower bound for
Pf (1). This will be done using the following convexity lemma, also used in [Cla17].

Lemma 3.4.10. The function Pf is convex on R.

Proof. We have to check that for t ∈ [0, 1], one has:

Pf (ta+ (1− t)b) ≤ tPf (a) + (1− t)Pf (b).

If Pf (a) = +∞ or Pf (b) = +∞, there is nothing to prove. Otherwise, we have to
check that for t ∈]0, 1[ and for every ε > 0, one has:∑

σ∈Σ(1)

|ρ−1(σ)|ta+(1−t)b|df(σ)|tPf (a)+(1−t)Pf (b)+ε <∞.

By definition of the function Pf , we know that the series∑
σ∈Σ(1)

|ρ−1(σ)|a|df(σ)|Pf (a)+ε and
∑

σ∈Σ(1)

|ρ−1(σ)|b|df(σ)|Pf (b)+ε
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converge. Now the lemma follows from Hölder’s inequality:∑
σ∈Σ(1)

|ρ−1(σ)|ta+(1−t)b|df(σ)|tPf (a)+(1−t)Pf (b)+ε

=
∑

σ∈Σ(1)

(
|ρ−1(σ)|ta|df(σ)|tPf (a)+tε

)(
|ρ−1(σ)|(1−t)b|df(σ)|(1−t)Pf (b)+(1−t)ε

)
≤

( ∑
σ∈Σ(1)

|ρ−1(σ)|a|df(σ)|Pf (a)+ε
)t( ∑

σ∈Σ(1)

|ρ−1(σ)|b|df(σ)|Pf (b)+ε
)1−t

<∞.

Proof of the lower bound of the claim (concluded). We define:

s0 = sup{s < 0,
∑

σ∈Σ(1)

|ρ−1(σ)|s <∞} < 0.

This number is defined so that for all s < s0, we have Pf (s) = 0. Since Pf is
continuous, we have Pf (s0) = 0. If σ ∈ Σ(1) and if w denotes the W -distance
from the origin o to the closest chamber containing σ, then |ρ−1(σ)| = qw, so
by Proposition 3.1.10 the sum appearing in the definition of s0 converges for s <
−eq(W ) and diverges for s > −eq(W ). Thus s0 = −eq(W ).

We already showed that Pf (1) < ∞ and Pf (s0) < ∞, thus Pf (s) < ∞ for all
s ≤ 1. Moreover, recall that f was chosen so that Pf (0) ≥ Confdim(∂Σ)− ε.

By convexity of the function Pf , we have for t < 0:

Pf (ts0) ≥ (1− t)Pf (0) + tPf (s0) = (1− t)Pf (0).

In particular, for t = s−1
0 , we obtain:

Pf (1) ≥ (1 + eq(W )−1)Pf (0) ≥ (1 + eq(W )−1)(Confdim(∂Σ)− ε).

121



Chapter 4

Finitely presented simple groups
and measure equivalence

Introduction

Infinite finitely presented simple groups are rare in geometric group theory. To this
date, few examples are known: Burger-Mozes groups acting on products of trees
[BM00], non-affine irreducible Kac-Moody lattices over a finite field acting on twin
buildings [CR06] and variants of Thompson groups [Rö99].

Naturally, we study these groups not up to isomorphism but up to equivalence
relations that are relevant to the theory, like quasi-isometry or measure equivalence.
Some results have been obtained on the quasi-isometry side. All Burger-Mozes
groups are quasi-isometric since they act properly and cocompactly on products
of trees, which are bi-Lipschitz equivalent. It is shown in [CR10] that there is an
infinite family of non-affine irreducible Kac-Moody lattices that are pairwise not
quasi-isometric. Using cohomological finiteness properties, the same result is shown
in [SWZ19] for Röver-Nekrashevych variants of Thompson groups.

We obtain the same result as in [CR10] and in [SWZ19] but for measure equiv-
alence. Namely:

Theorem 4.0.1. There are infinitely many measure equivalence classes containing
finitely presented, Kazhdan, simple groups. These groups are Kac-Moody lattices
over finite fields with well-chosen non-affine Weyl groups.

Theorem 4.0.1 is proven by studying the sequence of ℓ2-Betti numbers (βk)k∈N
of some of these lattices. Indeed, it was shown by Gaboriau that the sequence of
ℓ2-Betti numbers of discrete countable groups is invariant by measure equivalence
up to proportionality [Gab02, 6.3]. More precisely, we find for every n ∈ N, a finitely
presented, Kazhdan, simple (Kac-Moody) group Λn such that βd(n)(Λn) > 0 and
βk(Λn) = 0 for k > d(n), where d(n) → ∞. Vanishing of βk is a coarse equivalence
invariant for any k ∈ N [SS18], so this more precise statement proves the analogue
of Theorem 4.0.1 for coarse equivalence, in particular we recover the corresponding
result of [CR10] concerning quasi-isometry classes. The result concerning coarse
equivalence is not new, as it is implicit in [CR10]: they state that their result may
alternatively be obtained using asymptotic dimension, which is a coarse equivalence
invariant.
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Petersen provides a first family of finitely generated simple (Kac-Moody) groups
having non proportional sequences of ℓ2-Betti numbers [Pet13, 6.8] using an example
by Dymara and Januszkiewicz [DJ02, 8.9]. Unfortunately, the groups in question
are not Kazhdan and it is not known if they are finitely presented. A conjecture
[AG19] says that such groups should never be finitely presented, due to the presence
of ∞’s in the Coxeter diagram of the Weyl group.

Our proof follows the strategy outlined by Petersen but for families of Kac-
Moody groups enjoying better properties, we describe the strategy in two steps.
First, we use Dymara and Januszkiewicz’s formula for L2-Betti numbers of locally
compact groups acting on some buildings ([DJ02, Section 8], here Theorem 4.1.9, see
also [GRO22] for weaker bounds on the thickness). These groups include (products
of) complete Kac-Moody groups, which can be seen as the ambient spaces of Kac-
Moody lattices. Second, we use a result by Petersen [Pet13, 5.9] relating the sequence
of ℓ2-Betti numbers of a lattice to the sequence of L2-Betti numbers of the ambient
topological group. This allows us to prescribe vanishing and non-vanishing of some
ℓ2-Betti numbers of Kac-Moody lattices.

The formula for L2-Betti numbers of complete Kac-Moody groups is explicit
but still hard to manipulate. Roughly, the formula splits into two parts: a topolog-
ical one and a representation theoretic one. As explained in [DJ02], the behaviour
of the representation theoretic part is well understood. Thus, the difficulty comes
from understanding the topological part. More precisely, one has to compute the
cohomology of some subcomplexes of the Davis chamber which encode the combi-
natorial complexity of the groups we consider. The Davis chamber, as explained
later, can be constructed entirely from the Weyl group of the building. This reduces
our study of L2-Betti numbers to a purely combinatorial study of Coxeter groups.
Indeed, this reduces the proof of Theorem 4.0.1 to finding a sequence of 2-spherical,
non-affine Coxeter systems with unbounded virtual cohomological dimension. We
compute the cohomology of some of these subcomplexes, precisely enough to give a
non-vanishing criterion of an L2-Betti number (in high degree) for groups acting on
buildings having a certain Weyl group. The condition we require for the Weyl group
is that the canonical generating set may be partitioned into two parts, such that
one part generates a finite Coxeter group and the other generates an affine Coxeter
group. This is enough to obtain Theorem 4.0.1.

We give explicit families of groups as in Theorem 4.0.1 where we compute all of
these cohomology spaces, thus simplifying the formula for L2-Betti numbers of the
corresponding complete Kac-Moody groups and Kac-Moody lattices. This formula
can be stated explicitly by following the proof, we do not do it because what matters
to us is to determine for which degrees the ℓ2-Betti numbers vanish.

Now we present the contents of the sections.
Section 2 introduces the necessary background for the rest of the paper. We first

define the classes of simplicial complexes and groups discussed in [DJ02], as well as
some combinatorial properties of the Davis chamber. We introduce Kac-Moody
groups and list the results making them interesting for us. We then state the main
theorems from [DJ02], especially the formula for L2-Betti numbers of groups acting
on buildings.

Section 3 deals with the cohomology of some of the subcomplexes Dσ appearing
in the formula of L2-Betti numbers given in Section 2. Using nerves, we first give a
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vanishing criterion for this cohomology, slightly simplifying this formula. We then
give a non-vanishing criterion under a condition on the Weyl group, and apply it to
Kac-Moody lattices. This proves Theorem 4.0.1.

Section 4 gives concrete examples of Coxeter groups where results from Section
3 compute all L2-Betti numbers of the corresponding complete and discrete Kac-
Moody groups.

Section 5 addresses cohomological finiteness properties of the simple Kac-Moody
lattices we study. Our arguments point out that it should not be possible to show
the results of [CR10] using cohomological finiteness criteria as in [SWZ19].

Acknowledgements I would like to thank Bertrand Rémy and Marc Bourdon
for many useful discussions, as well as Damien Gaboriau for pointing out to me
that vanishing of an ℓ2-Betti number is a quasi-isometry invariant. I also thank the
reviewer for multiple comments that improved the exposition of the proofs.

4.1 L2-Betti numbers of groups acting on buildings

This section is mainly a review of some parts of [DJ02]. First, we introduce the
classes of simplicial complexes of [DJ02, Section 1]. We refer to Chapter 1, Section
1.1.2.1 for more details on simplicial complexes.

Let X be a purely n-dimensional countable simplicial complex (every simplex is
a face of an n-dimensional simplex). Top dimensional simplices in X will be called
alcoves. Let Aut(X) be the group of simplicial automorphisms equipped with the
compact-open topology and G be a closed subgroup of Aut(X). We consider the
following properties on the pair (X,G).

B1 0-dimensional links in X are finite.
B2 Links of dimension ≥ 1 in X are gallery-connected: for any two alcoves in

such a link, there exists a path of alcoves connecting them, such that two consecutive
elements meet on a face of codimension 1.

B3 All the links in X are either finite or contractible (including X itself).
The three properties listed above deal with the space X only. The following

condition is the only one that considers both the group G and the space X. Roughly
it requires the group to have the good size: it is big enough to act transitively on
alcoves, and small enough to have a fundamental domain of maximal dimension.

B4 The group G acts transitively on the set of alcoves of X and the quotient
map X → X/G restricts on an isomorphism on each alcove.

The next two properties are spectral conditions on the Laplacian that are fun-
damental in [DJ02] to prove the results presented in Section 2.3. Recall that the
Laplacian ∆f of a complex-valued function f on the vertices of a locally finite graph
is defined by the formula:

∆f(x) = f(x)− 1

|N(x)|
∑

y∈N(x)

f(y),

where N(x) denotes the (finite) set of neighbours of the vertex x.
Bδ Links of dimension 1 are compact and the nonzero eigenvalues of the Laplacian

on 1-dimensional links are ≥ 1− δ.
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B∗
δ For every 1-dimensional link in X, the spectrum of the Laplacian (acting

on square integrable functions for the measure µ({x}) = |N(x)|) is a subset of
{0} ∪ [1− δ,+∞[.

We now begin a brief discussion on buildings, since they are the main source of
examples of spaces satisfying (most of) these conditions. Two standard references
for buildings are [Bro89] and [Ron89]. They are simplicial complexes obtained by
gluing subcomplexes, called apartments, under two incidence conditions: any two
simplices lie in an apartment and their position is independent of the apartment.
Each apartment is a copy of the same Coxeter complex, a purely dimensional sim-
plicial complex with a simply transitive action (on its set of alcoves) of a Coxeter
group called the Weyl group of the building. The number of alcoves containing a
given face of codimension 1 is called the thickness (of that face) and for buildings
we want it to be ≥ 3 for all such faces. The buildings we are interested in have finite
thickness, they satisfy B1.

4.1.1 Davis complex and Davis chamber

Let X be a simplicial complex satisfying B3.

Definition 4.1.1. Let X ′ be the first barycentric subdivision of X. The Davis
complex XD of X is the subcomplex of X ′ generated by the barycenters of simplices
of X with compact links.

This definition is interesting for two reasons. The first, is that XD is a defor-
mation retract of X [DJ02, 1.4] which has the same automorphism group Aut(X),
but the action of the latter becomes proper over XD. The second reason stems from
buildings, and is summarized in the following proposition.

Proposition 4.1.2. Let X be a building. Then the link of every simplex is a build-
ing.
Suppose X is a non-compact building. Then XD can be endowed with a CAT (0)
metric. In particular, X and XD are contractible. □

The first assertion is [Bro89, IV.1 Prop 3] and the second one can be found in
[Dav94]. In particular, this shows that buildings satisfy B2 and B3.

Property B4 is not always satisfied in this setting since one can consider buildings
without automorphisms. However, if G is a group with BN -pair and X is the
building constructed from it, then the pair (X,G) satisfies B4.

If a pair (X,G) satisfies B3 and B4, the intersectionsD = XD∩∆ are simplicially
isomorphic for any top dimensional simplex ∆. We call such an intersection a Davis
chamber of X and we denote it D. We can see D as a cone over D ∩ ∂∆ with apex
the barycenter of ∆, thus D is contractible.

In the case of buildings, the Davis chamber may also be constructed from its
Weyl group. The construction is equivalent to the previous one if the building comes
from a BN-pair.

Let (W,S) be a Coxeter system with |S| = n + 1 and let ∆ be the standard
simplex of dimension n. We associate to each codimension 1 face of ∆ a generator
s ∈ S. This choice determines for each face σ in ∆ a parabolic subgroup Wσ of
W , where Wσ = WJ = ⟨J⟩ and J ⊆ S is the set of generators corresponding to
codimension 1 faces containing σ.
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Definition 4.1.3. Let ∆′ be the first barycentric subdivision of ∆. We define the
Davis chamber of W as the subcomplex D = DW of ∆′ generated by the barycenters
of faces σ in ∆ whose corresponding parabolic subgroup Wσ is finite.

The next definition measures in a certain sense how many simplices we must
remove from ∆ to obtain D.

Definition 4.1.4. Let (W,S) be a Coxeter system. We say (W,S) is k-spherical if
for all J ⊆ S with |J | ≤ k, the parabolic subgroup WJ = ⟨J⟩ of W is finite.

This definition will appear often as a hypothesis on the Weyl group for the results
we will obtain. We will discuss it in more detail in Section 5.

If σ and τ are faces of ∆, then σ ⊆ τ is equivalent to Wσ ⊇Wτ . To describe all
faces σ of ∆ whose corresponding subgroup Wσ is finite, we have to identify those
corresponding to maximal finite parabolic subgroups of W .

If σ is a face of codimension k of ∆, then the subcomplex of ∆′ generated by the
barycenters of faces containing σ is a (simplicial subdivision of a) cube of dimension
k. Each maximal finite parabolic subgroup WJ (J ⊆ S) corresponds to a cube of
dimension |J | in the Davis chamber.

The Davis chamber D is then obtained as follows. We start with the disjoint
union of these cubes, and then we glue some of their faces: if WI and WJ are two
maximal finite parabolic subgroups of W , the intersection of their corresponding
cubes in ∆′ is the cube corresponding to WI∩J .

This gives an equivalent construction of the Davis chamber that is independent
of ∆. From each parabolic subgroup WJ (J ⊆ S) of W we define the flag complex
of parabolic subgroups {WJ ′ , J ′ ⊆ J} contained in WJ ordered by inclusion. We
construct D as the union of all flag complexes of maximal finite parabolic subgroups
of W , where we glue the complexes corresponding to WI and WJ over the flag
complex of WI∩J .

For σ ⊆ ∆, let ∆σ be the union of faces not containing σ and Dσ = D ∩ ∆σ.
Notice ∆σ is always a union of (n−1)-dimensional simplices of ∆ and that ∆σ = ∂∆
if and only if σ = ∆. More precisely, if σ ⊆ ∆ corresponds to the parabolic subgroup
WJ , then ∆σ is exactly the union of codimension 1 faces of ∆ corresponding to the
generators sj for j ∈ S \ J .

4.1.2 Kac-Moody groups

The family of simple groups we want to exhibit in Theorem 4.0.1 are Kac-Moody
groups. We introduce them following the presentation of [DJ02, Appendix TKM]
and then list the properties that make them interesting to us.

Definition 4.1.5. A Kac-Moody datum is the data (I,Λ, (αi)i∈I , (hi)i∈I , A) of:
1. A finite set I.
2. A finitely generated abelian free group Λ.
3. Elements αi ∈ Λ, i ∈ I.
4. Elements hi ∈ Λ∨ = Hom(Λ,Z), i ∈ I.
5. A generalized Cartan matrix (Aij)i,j∈I given by Aij = ⟨αi, hj⟩, satisfying

Aii = 2, if i ̸= j then Aij ≤ 0 and Aij = 0 if and only if Aji = 0.
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From a Kac-Moody datum (or merely from a generalized Cartan matrix) one
can define a Coxeter matrix M = (mij)i,j∈I as follows:

mii = 1 and for i ̸= j,mij = 2, 3, 4, 6 or ∞ as AijAji = 0, 1, 2, 3 or is ≥ 4, respectively.

We consider the Coxeter group W associated to this matrix:

W = ⟨ri | (rirj)mij = 1, for mij ̸= ∞⟩.

If a Kac-Moody datum is fixed, Tits defines a group functor associating to each
field (or commutative ring in general) k a group Λ(k) [Tit87]. The group Λ(k) has
two BN-pairs (B+, N) and (B−, N) such that their Weyl groups B±/(B± ∩N) are
isomorphic to the group W coming from the generalized Cartan matrix.

These BN-pairs define two buildings X+ and X− of thickness |k|+ 1 and Weyl
group W (therefore the dimensions of these buildings is |I| − 1), such that Λ(k)
acts transitively on their sets of chambers [DJ02, Appendix TKM]. These buildings
are simplicially isomorphic, we denote them X when it is not necessary to distin-
guish them. Denote by G± the completion of Λ(k) in Aut(X±) with respect to the
compact-open topology.

The following theorem summarizes the properties that justify the study of Kac-
Moody groups for our purposes.

Theorem 4.1.6. Let Λ be a Kac-Moody group over Fq with Weyl group W . Then
Λ is finitely generated. Moreover:
1. The covolume of Λ in G+ ×G− (diagonally injected) is W (1q ), where

W (t) =
∑
w∈W

tl(w).

In particular for q > |I|, the group Λ is a lattice in G+ ×G−.
2. If W is non-affine, irreducible and Λ is a lattice in G+ × G−, then Λ/Z(Λ) is
simple, where Z(Λ) is the center of Λ.
3. If q ≥ 4 and all the entries of the Coxeter matrix are finite (i.e. the Weyl group
is 2-spherical), then Λ is finitely presented.

Proof. Assertions 1 and 2 are respectively Proposition 2 and Theorem 20 in [CR09].
Assertion 3 is a simplified version of the main corollary in [AM97].

Remark. In what follows we will systematically consider center-free Kac-Moody
groups. This can always be done without further assumptions on the generalized
Cartan matrix by choosing the adjoint root datum, where Λ is generated by the
αi’s.

4.1.3 Cohomology and L2-Betti numbers of groups acting on build-
ings

Dymara and Januszkiewicz state their results for classes Bt and B+ of pairs (X,G)
groups acting on simplicial complexes. The class Bt are pairs (X,G) satisfying B1−4
and B∗

13
28n

, the class B+ are pairs (X,G) satisfying B1−4 and B 13
28n

. For groups with
a BN-pair and their associated buildings, the class Bt corresponds to large minimal
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thickness and B+ corresponds to large minimal thickness and finiteness of all entries
of the Coxeter matrix [DJ02, 1.7], that is, 2-sphericity of its Weyl group.

In particular, a complete Kac-Moody group over a finite field Fq is in Bt for
large q, and is in B+ if all the entries of its Coxeter matrix are finite.

We now mention three important results of [DJ02]. The initial motivation of
[DJ02] is to find examples of Kazhdan groups. The first theorem we state addresses
this question and gives a criterion for the vanishing of the first and also higher
cohomology groups for pairs in B+ with a finiteness condition.

Theorem 4.1.7. [DJ02, 5.2] Let (X,G) be in B+. Suppose the links of X of
dimensions 1, . . . , k are compact. Then for any unitary representation (ρ, V ) of G,
we have:

H i
ct(G, ρ) = 0 for i = 1, . . . , k.

For buildings of finite thickness, compactness of all links of dimension ≤ k is
equivalent to having a (k + 1)-spherical Weyl group. This combinatorial condition
is necessary for cohomological vanishing: one can consider the group D∞ acting
simplicially on a tree X with edge set E, the induced action on L2(E) does not have
a fixed point. Thus we have a space X not verifying the condition of the theorem
(the only link of dimension 1 is X = Lk(∅)) and H1

ct(G,L
2(E)) ̸= 0.

The second theorem we mention is a formula for cohomology spaces of groups
in B+ with values in unitary representations.

Theorem 4.1.8. [DJ02, 7.1] Suppose either that
the pair (X,G) is in B+ and (ρ, V ) is a unitary representation of G, or that,
the pair (X,G) is in Bt and (ρ, V ) is a subrepresentation of

⊕∞ L2(G).
Then

H∗
ct(G, ρ) =

⊕
σ⊆∆

H̃∗−1(Dσ;V
σ).

We draw the attention on the right hand side depending on the classical coho-
mology groups of the spaces Dσ defined at the end of Section 2.1. Theorem 4.1.7
is proven in [DJ02, Section 7] from this formula by noticing that the cohomology
H∗(Dσ) is the cohomology H∗(U) of a simple covering U of Dσ. The combinatorial
condition of Theorem 4.1.7 on the Weyl group implies vanishing of H∗(U) in low
degrees for all σ ⊆ ∆. The proofs given in Section 3 are in the same spirit: under
combinatorial conditions on the Weyl group, we compute H∗(Dσ) for some σ ⊆ ∆.
The difference is that instead of considering all simplices σ ⊆ ∆ and obtaining a
partial description of the cohomology of Dσ, we pick particular σ ⊆ ∆ for which we
can fully describe the spaces H∗(Dσ).

The last theorem we mention is the starting point for this paper, though the
expression we present is obtained directly from the previous theorem. It is a formula
for L2-Betti numbers, as defined in [Sau17, 4.1], of groups acting on buildings of
finite thickness in Bt. As said before, groups in this class include complete Kac-
Moody groups over finite fields of large cardinality.

Theorem 4.1.9. [DJ02, 8.5] Let (X,G) be a building in Bt of thickness q+1. Then
the L2-Betti numbers of G are given by

βk(G) =
∑
σ⊆∆

dimC H̃
k−1(Dσ;C) · dimG L

2(G)σ.

128



Moreover, the sum can be taken for σ with compact links.

The fundamental observation by Dymara and Januszkiewicz is that for q > 2n,
dimG L

2(G)σ > 0 for all σ ⊆ ∆ with compact links [DJ02, p. 612]. Thus, for q
large enough, the problem of determining whether βk(G) is zero or not reduces to
determining if there exists σ ⊆ ∆ such that H̃k−1(Dσ;C) ̸= 0 or not. In the end,
this reduces to the study of the combinatorics of the Weyl group. In the next two
sections we study the topology of Dσ via the combinatorics of the Weyl group of
the building.

Remark. 1. The techniques of [DJ02] are reformulated in [Kas11] in terms of angles
between subspaces. This interpretation allowed Grinbaum-Reizis and Oppenheim
[GRO22] to recover the previous results from [DJ02] under weaker thickness bounds.
For (thick) affine buildings, the thickness bound disappears and thus they recover
a classical theorem by Casselman [Cas74] using geometric methods. This does not
improve the main statement of this article, but allows to slightly extend the range
of our examples.

2. Dymara and Januszkiewicz apply their results to Kac-Moody groups whose
Weyl group WP is the right-angled Coxeter group defined by the intersection rela-
tions of the faces of codimension 1 of a polytope P of dimension n [DJ02, 8.9]. Most
of the associated Kac-Moody lattices are non-affine and irreducible, hence simple.
When P is dual to a triangulation of a sphere (up to considering a barycentric sub-
division), it is shown that all L2-Betti numbers of the completions of such groups
vanish except in degree n. As stated by [Pet13], this gives a first example of an
infinite family of finitely generated simple groups with non-proportional sequences
of ℓ2-Betti numbers. Petersen says such groups should often be finitely presented.
Unfortunately, the Coxeter matrices of their Weyl groups have ∞ entries, so it is not
known whether these groups are finitely presented or not, and a conjecture [AG19]
says that such groups should never be finitely presented. The examples we will give
here are finitely presented in view of Theorem 4.1.6, Assertion 3.

4.2 Cohomology of subcomplexes of the Davis chamber

In this section we elaborate on the formula of Theorem 4.1.9 for L2-Betti numbers
of groups acting on buildings. We study the contribution of the topological part of
this formula to obtain first a vanishing criterion, slightly simplifying the formula,
and then a non-vanishing criterion. We then apply this non-vanishing criterion to
Kac-Moody lattices and prove Theorem 4.0.1.

4.2.1 Cohomology of nerves: vanishing and non-vanishing

In what follows a contractible space is non-empty. Let X be a finite simplicial
complex covered by a finite family of subcomplexes U = {Xi, i ∈ I}. The nerve
N(U) of the cover U is the simplicial complex whose k-simplices are the subsets
J ⊆ I with |J | = k + 1 such that the intersection

⋂
j∈J Xj is non-empty. When

J ⊆ J ′ we have an inclusion of the corresponding simplices. The following result,
kwown as the Nerve Lemma, allows us to compute cohomology using nerves.
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Proposition 4.2.1. [Hat02, Corollary 4G.3] Let X be a finite simplicial complex
covered by a finite family of subcomplexes U = {Xi, i ∈ I} such that for all nonempty
J ⊆ I, the intersection

⋂
j∈J Xj is either empty or contractible. Then X is homo-

topically equivalent to the nerve N(U).

Vanishing results in this article will be obtained using the following particular
case of the Nerve lemma.

Lemma 4.2.2. Let X be a finite simplicial complex covered by {Xi, i ∈ I} a finite
family of subcomplexes such that

⋂
j∈J Xj is contractible for all nonempty J ⊆ I.

Then X =
⋃

i∈I Xi is contractible.

Proof. By Proposition 4.2.1, the space X is homotopically equivalent to the nerve
of the cover {Xi, i ∈ I}, which is just a simplex.

We recall our setting. Let (W,S) be a Coxeter system and ∆ be a simplex of
dimension |S| − 1. Let D be the Davis chamber of (W,S). We defined for σ ⊆ ∆,
the subset ∆σ to be the union of the faces of ∆ not containing σ and Dσ = D∩∆σ.
Notice that ∆σ is always a union of codimension 1 faces of ∆. More precisely, if ∆s is
the codimension 1 face of ∆ corresponding to the generator s ∈ S and σ =

⋂
s∈J ∆s,

then ∆σ =
⋃

s∈Jc ∆s and Dσ =
⋃

s∈Jc Ds. We may apply the Nerve lemma to the
union

⋃
s∈Jc Ds in view of the following remark.

Remark. If σ is the simplex in ∆ corresponding to the parabolic subgroup WJ , then
D ∩ σ is the geometric realization of the flag complex of finite parabolic subgroups
containing WJ . Hence, if D ∩ σ is non-empty, then D ∩ σ is a cone with apex the
barycenter of σ and thus D ∩ σ is contractible. Notice that D ∩ σ is non-empty if
and only if WJ is finite.

The previous lemma takes the following form in our setting.

Corollary 4.2.3. For σ ⊆ ∆, we write σ =
⋂

s∈J ∆s for some J ⊆ S, so that
Dσ =

⋃
s∈Jc Ds. If WJc = ⟨Jc⟩ is finite (or equivalently, if

⋂
s∈Jc Ds is non-empty),

then Dσ is contractible.

Proof. If
⋂

s∈Jc Ds is non-empty, then every sub-intersection
⋂

s∈J ′ Ds is non-empty
for J ′ ⊆ Jc, hence contractible by the previous remark. Now the result follows from
Lemma 4.2.2.

We wish to compute spaces H̃∗(Dσ) for σ ⊆ ∆ that appear in the formula of
Theorem 4.1.9. The sum ranges over σ with compact links, that is, over σ with
finite corresponding parabolic subgroups Wσ. What we said allows us to focus on a
smaller class of simplices σ. Thus, the sum in the formula of Theorem 4.1.9 reduces
to the following.

Proposition 4.2.4. Let (X,G) be a building in Bt of thickness q + 1. Then the
L2-Betti numbers of G are given by

βk(G) =
∑
σ⊆∆

dimC H̃
k−1(Dσ;C) · dimG L

2(G)σ.

Moreover, the sum can be taken over simplices σ corresponding to finite parabolic
subgroups WJ such that WJc is infinite.
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Proof. The proof of Theorem 4.1.9 in [DJ02, 8.5] already shows we can restrict our-
selves to those σ whose corresponding parabolic subgroup WJ is finite (the argument
is that L2(G)σ ⊆ L2(G)Gσ and if the link of σ is non-compact, then L2(G)Gσ = {0}).
Now suppose σ ⊆ ∆ corresponds to a finite parabolic subgroup WJ and that the
parabolic subgroup WJc is also finite. Then by Corollary 4.2.3, the space Dσ is
contractible, so its cohomology does not contribute to the sum in any degree.

We now turn to non-vanishing phenomena. In order to show Theorem 4.0.1, we
will use the following non-vanishing criterion obtained using Proposition 4.2.1.

Corollary 4.2.5. For σ ⊆ ∆, we write σ =
⋂

s∈J ∆s for some J ⊆ S, so that
Dσ =

⋃
s∈Jc Ds. If WJc = ⟨Jc⟩ is infinite, but every proper parabolic subgroup

of WJc is finite (or equivalently, if
⋂

s∈J ′ Ds ̸= ∅ for all nonempty J ′ ⊊ Jc but⋂
s∈Jc Ds = ∅), then Dσ is homotopy equivalent to a sphere of dimension (|I| − 2).

Proof. The nerve of the cover {Xi, i ∈ I} is the boundary of a simplex of dimension
(|I| − 1), which homotopically is a sphere of dimension (|I| − 2). Proposition 4.2.1
gives the result.

Remark. Infinite irreducible Coxeter groups such that every proper parabolic sub-
group is finite are classified: they are exactly affine and compact hyperbolic Coxeter
groups [Bou68, p.133, exercice 14]. Compact hyperbolic Coxeter groups have rank
≤ 5 [Bou68, p.133, exercice 15.c], so in higher rank the only examples are affine
Coxeter groups [Bou68, p.100, Proposition 10].

The following result summarizes the main idea, that is, we have non-vanishing
of an L2-Betti number in high degree for groups acting on buildings whose Weyl
group is obtained as a perturbation of an affine Coxeter group by a finite Coxeter
group.

Theorem 4.2.6. Let (X,G) be a building in Bt of thickness q + 1 and irreducible
Weyl group (W,S). Suppose S admits a partition S = Jsph ⊔ Jaff such that Wsph =
⟨Jsph⟩ is finite and Waff = ⟨Jaff⟩ is an infinite affine Coxeter group. Put |Jaff | =
n+ 1. Then, for q large enough,

βn(G) > 0.

Proof. Let σ be the simplex corresponding to the subgroup Wsph. Hence, Dσ =⋃
s∈Jaff Ds and thus by 4.2.5, the space H̃∗(Dσ) is non-zero in degree n− 1. Recall

that for q > 2|S|, we have dimG L
2(G)σ > 0 [DJ02, p. 612]. Therefore by Theorem

4.1.9 we have
βn(G) ≥ dim H̃n−1(Dσ) dimG L

2(G)σ > 0.

4.2.2 Application to measure equivalence of Kac-Moody lattices

We now apply the previous result to ℓ2-Betti numbers of Kac-Moody groups. Recall
from Section 2.2 that we can suppose our Kac-Moody groups to be center-free
without adding conditions on the generalized Cartan matrix.
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Corollary 4.2.7. Let Λ be a center-free Kac-Moody group over a finite field Fq

with irreducible Weyl group (W,S) as in Theorem 4.2.6, we set S = Jsph ⊔ Jaff with
Jsph ̸= ∅. Suppose also that its Coxeter matrix has finite entries. Put |Jaff | = n+1.
For q large enough,

βk(Λ)

{
= 0 if k ≥ 2|S| − 1
> 0 if k = 2n

Moreover, Λ is infinite finitely presented, Kazhdan and simple.

Proof. Let G be the complete Kac-Moody group associated to Λ. Theorem 4.2.6
applies to G, so βn(G) > 0 for large q. Let X be the building coming from the
BN-pair of G. The group G acts properly cocompactly on the Davis complex XD.
This complex has dimension ≤ |S| − 1, thus [DJ02, 3.4] gives Hk

ct(G, ρ) = 0 for
k ≥ |S| any quasi-complete representation (ρ, V ). Hence the Künneth formula for
L2-Betti numbers [Pet13, 6.5] gives for large q

βk(G×G)

{
= 0 if k ≥ 2|S| − 1
> 0 if k = 2n

For q > n+ 1, the group Λ is a lattice in G×G by Theorem 4.1.6 Assertion 1. By
[Pet13, 5.9], the sequences of L2-Betti numbers of Λ and G×G are proportional.

Since the entries of the Coxeter matrix of (W,S) are finite, Theorem 4.1.7 tells
us G has property (T ) (for the same bound on q), thus so does G×G and any lattice
in G × G. The group Λ is finitely presented and simple in view of Theorem 4.1.6
assertions 2, 3 and because we assumed Z(Λ) = {0}.

The previous corollary gives a control on the vanishing of ℓ2-Betti numbers
for simple Kac-Moody lattices. We can now prove the theorem stated in the in-
troduction using Gaboriau’s projective invariance of ℓ2-Betti numbers by measure
equivalence [Gab02, 6.3].

Proof of Theorem 4.0.1. It suffices to take an affine diagram with n+ 1 generators
s1, . . . , sn+1, add a generator s0, declare that it does not commute with at least
one si, i ≥ 1 and that the products s0si have order ≤ 6. Thus the Coxeter system
(W,S), where Ssph = {s0}, Saff = {s1, . . . , sn+1}, S = Ssph ⊔ Saff and W = ⟨S⟩,
satisfies the conditions of the previous corollary with |S| = n+ 2.

Let Λn be a Kac-Moody group over Fq with Weyl group (W,S) with q as in the
corollary (its Coxeter matrix comes from a generalized Cartan matrix because of
the hypothesis on the order of the products s0si). Then

βk(Λn)

{
= 0 if k ≥ 2n+ 3,
> 0 if k = 2n.

Hence the groups (Λ2n) have non-proportional sequences of ℓ2-Betti numbers, hence
they are pairwise non measure equivalent in view of [Gab02, 6.3].

4.3 An explicit family of Coxeter diagrams

In this section we deal with a concrete family of Coxeter diagrams having a decom-
position as in Theorem 4.2.6. The first aim is to exhibit a concrete family as before.
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However, in this example we can say more: the previous arguments compute all
L2-Betti numbers of a pair (X,G) in Bt with Weyl groups corresponding to these
particular diagrams. Let (W,S) be the Coxeter system defined by the diagram Ãn,2

(with n+ 1 generators and n ≥ 3) as below:

Ãn,2

4.3.1 Maximal finite parabolic subgroups

Let s1, . . . , sn be the generators corresponding to the affine subgroup of type Ãn−1

in W and s0 be the remaining generator, so that ⟨s0, s1, s2⟩ is an infinite affine
Coxeter group of type Ã2. To obtain finite parabolic subgroups one has to consider
subsets J ⊂ S that do not contain these three generators simultaneously.

For simplicity, call Wi = ⟨S \ {si}⟩ and for i ̸= j call Wi,j = ⟨S \ {si, sj}⟩. The
subgroups W1 and W2 are of type An−1, thus finite. Therefore, they are maximal
finite parabolic subgroups of W . The subgroup W0 is of type Ãn−1, thus infinite. It
is affine, so every proper parabolic subgroup of W0 is finite. Therefore the parabolic
subgroups W0,i for 1 ≤ i ≤ n are maximal finite.

Remark. We can proceed in the same way for Kac-Moody groups with Weyl groups
coming from the same alteration of an affine Coxeter diagram.

4 4

4

In each case, the combinatorics of maximal finite parabolic subgroups is the
same, therefore the Davis chamber we obtain is simplicially isomorphic to that of a
Coxeter system of type Ãn,2 and hence the following results also apply to Coxeter
systems having these diagrams.

4.3.2 Cohomology of subcomplexes

The following result completes the computation of the cohomology of Dσ for all
σ ⊆ ∆. More precisely, the simplices σ appearing in the following theorem are
exactly those whose corresponding parabolic subgroup WJ of W is finite but with
WJc infinite. Let ∆i be the face of codimension 1 of ∆ corresponding to the generator
si of W and Di = D ∩∆i.
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Theorem 4.3.1. Let D be the Davis chamber of (W,S) of type Ãn,2.
1. For σ = ∆0, the space Dσ =

⋃
j ̸=0Dj has the cohomology of an (n − 2)-

dimensional sphere.
2. For σ = ∆, the space Dσ = D∩∂∆ has the cohomology of an (n−2)-dimensional
sphere.
Let τ ⊂ ∆ be the simplex such that ∆τ = ∆0 ∪∆1 ∪∆2.
3. The space Dτ has the cohomology of the circle.
4. For τ ⊊ σ ⊊ ∆, the space Dσ is contractible.

Proof. Assertions 1 and 3 follow from 4.2.5 since W∆0 and ⟨s0, s1, s2⟩ are infinite
affine Coxeter groups of type Ãn−1 and Ã2. It remains to prove assertions 2 and 4,
that is, the cases τ ⊊ σ ⊆ ∆. Denote AI = D1∪D2∪

⋃
k∈I Dk, for the corresponding

nonempty I ⊆ {3, . . . , n} so that Dσ = D0 ∪ AI . Denote Dij = Di ∩ Dj and
Dijk = Di ∩ Dj ∩ Dk. Our first goal is to prove that the intersection D0 ∩ AI is
contractible, write it as the following union:

D0 ∩AI = D0,1 ∪D0,2 ∪
⋃
l∈I

D0,l.

First the union A′
I =

⋃
l∈I D0,l is contractible because of 4.2.2 (the group ⟨s0, si|i ∈

I⟩ is finite, so the same argument as in the proof of 4.2.3 works). Again by 4.2.2,
the intersections A′

I ∩D0,1 =
⋃

l∈I D0,1,l and A′
I ∩D0,2 =

⋃
l∈I D0,2,l are contractible

(the groups ⟨s0, s1, si|i ∈ I⟩ ⊆ W1 and ⟨s0, s2, si|i ∈ I⟩ ⊆ W2 are finite). Notice
that D0,1 ∩ D0,2 = (∆0 ∩ ∆1 ∩ ∆2) ∩ D = ∅. By the Nerve lemma, D0 ∩ AI is
homotopy equivalent to the nerve of the cover U = {D0,1, D0,2, A

′
I}, which is the

barycentric subdivision of a simplex of dimension 1. Thus the intersection D0 ∩AI

is contractible.
Therefore Mayer-Vietoris tells us that D0 ∪AI has the same cohomology as AI .

If I = {3, . . . , n}, we have AI = D∆0 so from the first assertion we know AI has
the cohomology of an (n − 2)-dimensional sphere. Thus D∆ = D ∩ ∂∆ = D0 ∪ AI

has the cohomology of an (n− 2)-dimensional sphere. If I ⊊ {3, . . . , n}, then AI is
contractible because of 4.2.2, hence the union Dσ = D0 ∪AI is contractible.

We now recover the corresponding results for L2-Betti numbers of groups in Bt
with Weyl group Ãn,2.

Corollary 4.3.2. Let (X,G) be a building in Bt of thickness q + 1 and Weyl group
of type Ãn,2 with n ≥ 3. Normalize the Haar measure µ on G so that the stabilizer
G∆ of an alcove ∆ has measure 1. Then we have:

βk(G) =

{ dimG L
2(G)∆ + dimG L

2(G)∆0 k = n− 1,
dimG L

2(G)τ k = 2,
0 otherwise.

Proof. The sum in the formula 4.1.9 runs over σ ⊆ ∆ such that its corresponding
parabolic subgroup WJ , J ⊆ S is finite and such that WJc is not finite. Such sim-
plices are exactly the ones treated in the theorem. Their non-vanishing cohomology
groups give the result.

134



Thus, by the same arguments as in the previous section, the Künneth formula
gives the following more precise statement for Kac-Moody lattices Λ having Weyl
group of type Ãn,2. Moreover, the theorems we use are quantitative: they give us an
explicit formula for βk(Λ). We do not give the formulas since the only information
that matters to us is in which degrees βk(Λ) vanishes and it which it does not vanish
for large q.

Corollary 4.3.3. Let Λ be a center-free Kac-Moody group over a finite field Fq with
Weyl group of type Ãn,2. For q large enough,

βk(Λ)

{
> 0 k ∈ {4, n+ 1, 2n− 2},
= 0 otherwise.

Moreover, Λ is infinite finitely presented, Kazhdan and simple.

4.4 Sphericity and cohomological finiteness

In this section we discuss connections between n-sphericity and finiteness properties
Fn and FPn of a Kac-Moody group (over a finite field). Theorem 4.1.6 3, says that
for large q, the 2-sphericity condition implies property F2, that is, finite presentation.
The converse is still a conjecture, but it has at least been proven in particular cases
[AG19]. Much less is known for higher finiteness properties. Abramenko obtained
some partial results in this direction [Abr04].

Discrete Kac-Moody groups with Weyl group of type Ãn,2 are finitely presented
(at least for q > 6) since they are 2-spherical, but they are not 3-spherical because of
the subdiagram of type Ã2 that we introduced. We can ask if it is possible to obtain
stronger finiteness properties for non-affine Kac-Moody groups. Here we present a
family of non-affine Coxeter diagrams that are 8-spherical but not 9-spherical. We
call B̃n,8 the Coxeter diagram with n+ 1 generators as below:

B̃n,8 4

The Davis chamber of a Coxeter group of type B̃n,8 is similar to that of Ãn,2.
It contains a subdiagram of type Ẽ8 when n ≥ 9. If we remove the generator s0 at
the left, we obtain an affine subdigram of type B̃n−1 with generators s1, . . . sn. If
we take out any other generator si (i = 1, . . . , 8) of Ẽ8, we obtain a maximal finite
parabolic subgroup. Hence the Davis chamber consists of an affine part (n cubes
of dimension n − 1) and 8 cubes of dimension n. The result for the diagram Ãn,2

remains valid for B̃n,8.

Theorem 4.4.1. Let D be the Davis chamber of (W,S) of type B̃n,8.
1. For σ = ∆0, Dσ =

⋃
j ̸=0Dsj has the cohomology of an (n−2)-dimensional sphere.

2. For σ = ∆, Dσ = D ∩ ∂∆ has the cohomology of an (n− 2)-dimensional sphere.
3. Let τ ⊂ ∆ be the simplex such that ∆τ =

⋃8
i=0∆i. The space Dτ has the

cohomology of a 7-dimensional sphere.
4. For τ ⊊ σ ⊊ ∆, Dσ is contractible.
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Proof. The proof is almost the same as for Ãn,2: assertions 1. and 3. follow from
4.2.5 while 2. and 4. need some adjustment. We keep the same notations as in
the other proof. The only difference is that in order to show D0 ∪AI has the same
cohomology as AI for some non-empty I ⊆ {9, . . . , n}, one has to show that the nerve
of some cover of D0 ∩ AI by 9 elements is the boundary of a simplex of dimension
8 minus one face of codimension 1, showing that D0 ∩AI is contractible.

Thus we obtain the same corollaries for Kac-Moody groups as in the previous
section. The complete Kac-Moody groups with Weyl group of type B̃n,8 have non-
vanishing L2-Betti numbers (for large thickness) exactly in degrees n − 1 and 8.
At the level of discrete Kac-Moody groups, we obtain an infinite family of infi-
nite finitely presented, Kazhdan, 8-spherical, simple groups that are pairwise non-
measure equivalent. By the Künneth formula, their ℓ2-Betti numbers vanish except
in degrees 16, n+ 7 and 2n− 2.

One cannot have better sphericity properties for a non-affine irreducible Coxeter
diagram. The following proposition has to be stated somewhere. The author did
not find a reference, so we give the proof here.

Proposition 4.4.2. A 9-spherical irreducible Coxeter group is either finite or affine.

Proof. The proof consists of ruling out all possibilities by looking at the classification
of finite and affine Coxeter groups. More precisely, we look at two families of integers:
the valencies of vertices of the Coxeter diagram as a graph and the labelling of edges
of the diagram.

Let (W,S) be a 9-spherical irreducible Coxeter system such that |S| ≥ 9. Its
Coxeter diagram is connected by irreducibility. If the valency of every vertex of the
diagram is ≤ 2, then the Coxeter diagram of W without labelling is of type An or
Ãn with n ≥ 9. If we label edges of a diagram of type An by numbers ≥ 4, the
5-sphericity of W rules out all possibilities, except having extremal edges labelled
by 4: the possible diagrams for W are An, Bn = Cn or C̃n. If we label an edge of a
diagram of type Ãn by a number ≥ 4, the associated group is not 5-spherical, hence
the only possibility for W in this case is to have a diagram of type Ãn.

If not, there exists a vertex y of valency ≥ 3. The valency of y cannot be ≥ 4
since this would give directly an infinite subgroup of rank 5. Frow now on y has
valency 3. Call y1, y2 and y3 the three neighbors of y. None of these vertices can
have valency ≥ 3 since this would give rise to an infinite subgroup of rank 6. The
three neighbors cannot have valency ≥ 2 simultaneously since the Coxeter graph
would contain a subgraph of type Ẽ6 that corresponds to an infinite subgroup of
rank 7. Thus we can suppose y3 has valency 1.

If both y1 and y2 have valency 2, then there is a subdiagram of type Ẽ7 or of
type Ẽ8, which respectively correspond to infinite subgroups of rank 8 and 9. Again,
9-sphericity rules out these possibilities.

We may assume y2 and y3 have valency 1, and y1 has valency ≥ 2. This implies
W is of type B̃n or D̃n. Indeed, the graph of W has to contain B̃n or D̃n as a
subgraph, with possible vertices of higher valency. If such a vertex exists, then
again there is a subdiagram of type Ẽ7 or of type Ẽ8.

Remark. In view of this proposition, Theorem 4.1.7 does not tell us anything about
cohomological vanishing in degrees ≥ 8 for groups with BN-pair acting on a building
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of finite thickness with non-affine Weyl group. When the Weyl group is affine, the
same vanishing result was obtained by Garland in [Gar73].

Remark. In [SWZ19], it is used that properties Fn are invariant by quasi-isometries
[Alo94]. They construct finitely presented simple groups that are Fn−1 but not Fn

for each n. This gives an infinite family of infinite finitely presented simple groups
that are pairwise not quasi-isometric.

If one could prove that property Fn implies n-sphericity for a Kac-Moody group,
then the previous proposition shows that every non-affine Kac-Moody group over a
finite field is at most F8. Thus the method of [SWZ19] could not work for non-affine
Kac-Moody groups if the previous conjecture is true.
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généralise la cohomologie L2. On s’intéresse à la cal-
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types d’immeubles. Ce manuscrit comporte quatre
chapitres. Le premier introduit les concepts de théorie
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nécessaires dans les chapitres suivants. Le deuxième
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