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F O R E W O R D

In 2019, my quest for a research internship led me to meet Michael
Benzaquen, who at that time had freshly founded the EconophysiX lab
together with Jean-Philippe Bouchaud. My initial goal was to explore
a subject interfacing finance and statistical physics. We decided that I
would work on quantitative aesthetics.

In 2020, I recontacted Michael, with whom I had a great research
experience. This time, I was decided to explore a finance-related
project. It was compromised that I would work on poetry generation.

It occurred to me that adaptability was a useful quality, but that I
may also benefit from being more persuasive. Eager to develop that
skill – among the many others that would be of use in my future
career – I started a PhD in late 2020 under the supervision of Michael
Benzaquen, Laurent Ponson and Alexandre Darmon.

During my PhD I had the chance to work on exciting topics, the
most important aspects of which were published in international peer
reviewed journals, see [1–4]. I had the opportunity to give tutorials
on sociophysics, optimization and machine learning at ENSAE and
supervise three interns in the group. I attended two summer schools
at Como and Brunico in Italy, and shared my works at the StatPhys28

conference in Tokyo. I was also invited for 6 weeks in the Quantita-
tive Life Science group of the Abdus Salam International Center of
Theoretical Physics by Matteo Marsili. This Italian interlude gave me
the inspiration to write a short communication paper on Quantitative
Aesthetics for Polytechnique Insights [5].

Finally, the PhD was the opportunity to engage in lab-life activities,
such as the organization of several team dinners and gatherings,
as well as two Lab retreats with my friend and colleague Cecilia
Aubrun. The co-supervision also allowed me to meet people of various
backgrounds at the EconophysiX Lab, LadHyX and Institut Jean Le
Rond D’Alembert.

I must say, these three years have been the most interesting and
fulfilling of my life. Yet, I have no doubts that the best is yet to come.

v



vi



A C K N O W L E D G M E N T S

I want to thank all members of the jury for participating in the evalua-
tion of my doctoral thesis. In particular I am grateful to Emmanuel
Bacry and Camille Couprie for accepting to be examiners; Frédéric
Dufaux and Jean Schmittbuhl for reviewing the manuscript; and Henri
Maître for accepting my invitation.

Doctoral students are first of all students, and the quality of their
supervision will often make the quality of their experience. I want to
thank my supervisors Michael Benzaquen, Alexandre Darmon and
Laurent Ponson for their strong involvement in the supervision of my
thesis. In particular I want to express my gratitude to Michael and
Alexandre for their time, trust and support.

I express my gratitude to Jean-Philippe Bouchaud, Iacopo Mastro-
matteo and Matteo Marsili for their involvement in several projects,
and important discussions. I am grateful to Matteo Marsili for invit-
ing me at the Quantitative Life Science section of the Abdus Salam
International Center of Theoretical Physics in Trieste, Italy.

These three years were the opportunity to meet many people from
EconophysiX, LadHyX and ∂’Alembert. I would like to mention Sarah,
Mahshid, Yutao and Lucas from d’Alembert; Iman and Pratsmesh from
LadHyX; and Jérôme, Cécilia, Salma and Pierre from EconophysiX. In
particular, I want to thank Cécilia and Jérôme for their kindness and
support.

A research lab is first of all a structure that must be managed ad-
ministratively and socially. I want to thank all these people who estab-
lish an environment conducive to research and discussion: Delphine
and Michael from EconophysiX; Sandrine, Toaï, Blaise, Emmanuel
and Lutz from LadHyX; and Simona, Catherine and Pierre-Yves from
∂’Alembert. I want to warmly thank Simona for her systematic involve-
ment in the well-being of every intern, PhD student and postdoctoral
researcher.

The doctoral thesis is the finishing line of a long and studious
path. I am grateful for the involvement of every teacher and principal
I met during those years. In particular, I want to thank Christian
Charrier, Frédéric Lesne, Karim Bouchekoura, Alain Gille, Mme Proux,
Thibault Kerhervé, Christine Weill, Vincent Cros, Mathilde Colin de
Verdière, Sévérine Mensch, Antoine Landart, Dominique Mouhanna
and Nicolas Sator.

Sometimes, the road of studies is rough. Fortunately, having great
friends softens that path. I express my gratitude to my roommates

vii



Antoine and Valentin; to Lorenzo, Paul.R, Bénédicte and Romain from
high school; Badih, Rémi, Jean, Youssef, Maëlys, Baptiste, Rodin, Vicky
and Pierre-Thomas from Lycée Pasteur; and Erwan, Merwan, Anthony,
Gauthier, Vincent, Christelle, Elsa and David from École Normale
Supérieure Paris-Saclay.

I want to thank Patricia, with whom I have shared three wonderful
years, and who expressed constant support.

Finally, I would like to express my gratitude to my family, and in
particular to my mother, father and brother. Their love and support
made all of this possible.

viii



A B S T R A C T

One may argue that the role of the physicist is to describe the uni-
verse by its observation, interpretation, and generalization. In reality,
systems allowing such simultaneity in their approach are rare, and
often simple or made simple by experimental design. In fact, these
approaches are necessarily sequential, and the first one is often phe-
nomenological. It may then consist in harmonic or stochastic forcing
of the system around its equilibrium or stationary points. This method
is all the more interesting for high degrees of freedom, as it allows for
the efficient exploration of the configuration space. Maybe the most
classic example would be of fluid turbulence, the analysis of which
reveals robust statistical of its velocity fluctuations. In this thesis, I
will make strong use of these methods and intuitions by introducing
them to two seemingly different subjects: image processing and sta-
tistical fractography. We will see that these two parts are lying on the
notion of complexity, as a measure of disorder or richness, intrinsic or
interpreted.

In the first part of this thesis, I tackle three distinct problems in im-
age analysis and processing, by establishing fluctuation-based metrics
with straightforward interpretability. First, I revisit the long-standing
question of the relation between visual appreciation and image statis-
tics. Our analysis suggests that there might exist some universal quan-
titative criteria that correlates to aesthetic judgement. Then, I use an
agnostic information-theoretic observable to investigate the statistical
properties of natural images. Overall, the approach appears as a satis-
fying candidate for image analysis and processing procedures, while
providing a good level of physical interpretability. Finally, I address
the specific problem of image color quantization by deriving stochastic
mapping algorithms from maximum entropy principles. I use our pre-
viously defined measures to calibrate these tools, ultimately revealing
satisfying visuals.

The second part of this thesis revolves around the study of frac-
ture surfaces resulting from the complete failure of a material. These
surfaces display universal statistical properties reminiscent of fluid
turbulence, namely scale invariance, non-Gaussian statistics and multi-
affinity. First, I define a minimal class of random fields reproducing
these properties. The comparison with fracture surfaces highlights
slight differences, mainly related to the presence of cliffs on the surface
reminiscent of turbulent dissipation fields filaments. Then, the study
of four fracture surfaces from different rocks materials allows us to
link the correlation length ξ defining the multifractal regime, with the
size of the Fracture Process Zone ℓc, in which dissipative coalescence
mechanisms occur. Some stochastic models of crack propagation are
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ultimately derived, and show the emergence of multifractal scaling
from ad-hoc assumptions based on experimental observations.
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R É S U M É

Le rôle du physicien est de décrire l’univers et les systèmes le consti-
tuant par observation, interprétation, conceptualisation et générali-
sation de leurs comportements. En réalité, les systèmes permettant
de simultanément lier tous ces aspects de la physique sont rares, et
souvent simples ou issus de protocoles expérimentaux. Dans les faits,
ces étapes sont séquentielles, et la première approche est phénoméno-
logique. Elle peut alors consister à caractériser la réponse des systèmes
à des sollicitations harmoniques ou stochastiques autour de leurs états
d’équilibre. Ces méthodes sont d’autant plus intéressantes que les de-
grés de liberté sont élevés, puisqu’elle permettent l’exploration efficace
de l’espace des configurations. Un exemple classique est alors celui
de la mécanique des fluides, dont l’étude du régime de turbulence
révèle un comportement fractal/invariant d’échelle des fluctuations
de vitesse. Dans cette thèse, nous faisons un usage important de ces
méthodes et de ces intuitions en les appliquant à l’étude de sujets
en apparence différents : le traitement d’images et la fractographie
statistique. Nous verrons que la liaison entre ces deux parties repose
sur la notion de complexité comme une mesure de désordre ou de
richesse, intrinsèque ou interprétée.

Dans une première partie, j’aborde trois problèmes distincts du trai-
tement de l’image, mêlant des interprétations visuelles et statistiques
de leur complexité. Tout d’abord, je revisite la question du lien entre
appréciation visuelle et propriétés statistiques des images. Pour ce
faire je déploie une expérience de sondage sur la préférence visuelle
en utilisant des images test abstraites mais d’entropies uniformément
distribuées. Les résultats suggèrent l’existence des critères quantitatifs
universels, fortement corrélés au jugement esthétique. Ensuite, j’aborde
le cas des images naturelles en utilisant une mesure de complexité
structurelle basées sur des représentations statistiques multi-échelles :
la MultiScale Relevance (MSR). Notre analyse montre que cette mesure
reproduit les mêmes tendances que celles observées dans nos expé-
riences de sondage, et met en évidence les particularités statistiques
classiquement observées dans les images naturelles. La MSR permet
également des applications directes en analyse et traitement d’images,
tout en garantissant une interprétabilité physique. Enfin, j’applique
ces méthodes au problème spécifique de la quantification des couleurs,
et consistant à la réduction de la palette des couleurs d’une image (par
exemple de 255 niveaux de gris au noir et blanc). Pour ce faire, nous
établissons des algorithmes de quantification à partir de principes de
maximisation de l’entropie. Ces méthodes sont ensuite calibrées par
optimisation de la MSR, et conduisent à des visuels satisfaisants.
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Dans la deuxième partie du manuscrit, j’étudie les propriétés statis-
tiques des surfaces formées par la rupture d’un matériau. Ces surfaces
présentent des motifs complexes, stigmates d’une physique d’endom-
magement non-linéaire et hors d’équilibre. En particulier, leurs champs
topographique présentent de fortes similarités avec les champs de vi-
tesses observés en turbulence fluide, en particulier par leur invariance
d’échelle et leurs fluctuations non-Gaussiennes. Tout d’abord, nous dé-
finissons une classe de champs aléatoires reproduisant ces régularités
statistiques. La comparaison entre surfaces générées et expérimentales
permet de mettre en évidence les différences de motifs. En particu-
lier, les données expérimentales montrent une organisation spatiale
singulière des zones d’intermittence statistique. Ensuite, l’analyse de
plusieurs surfaces de roches permet de mettre en évidence une lon-
gueur de corrélation de l’intermittence statistique, mesurant la portée
du régime multi-affine des fluctuations. Cette donnée est en faite
directement liée à une longueur mécanique, celle de la Fracture Pro-
cess Zone où les phénomènes de coalescence de l’endommagement se
produisent. Enfin nous développons des modèles stochastiques de pro-
pagation de fissure, montrant l’émergence de la multi-affinité à partir
d’hypothèses simples justifiées par des observations expérimentales.
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I N T R O D U C T I O N

1





In this thesis, I explore two seemingly different topics: image pro-
cessing and statistical fractography. Despite their apparent differences,
we will see that the investigation tools are similar, as they inherit from
the physical description of complex systems. Indeed, one may argue
that the role of the physicist is to establish the rules and universal
behaviors of its environment through experiments, simulation and
models.

The role of this introduction is to discuss the quantitative and
semantic links between the two topics of this thesis. First, I introduce
the concept of complexity, from a classic and scientific. Then, I show
how embracing this concept paves the way for a statistical description
of systems with numerous degrees of freedom through fluctuation
analysis and forcing, for modeling and experimental purposes. Finally,
the third and fourth parts of the introduction will review my work in
image processing and fractography respectively, under the paradigm
introduced earlier.

Note that I will produce systematic comparisons with the statistical
description of turbulent flows. This framework encapsulates the main
fluctuation based tools employed in the following research work.

1
C O M P L E X I T Y: D E F I N I T I O N S A N D C O N C E P T S .

Life is really simple, but we insist on making it complicated.

— Confucius

What does it mean to be "complex"? This term is used to characterize
a myriad of objects, systems and concepts. We use it so much that its
sense and definition seem diluted. We will first review some common
definitions that will bring us to discuss the concept of complexity used
in science.

1.1 complexity in the language

The adjective complex – or complexe in French – originates from the
latin complexus, which means plaited, that is used for example to
describe a braided fabric. The idea of individual constituents forming
an organized whole starts to appear here. The Cambridge Dictionary
provides the following definition:
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Complex (adj): involving a lot
of different but related parts.

Cambridge Dictionary

The etymology and definition seem thus compatible at first glance.
However, complexus is also the past tense of complectere, meaning
to embrace, to comprise, to assess intelligibly. The same dictionary
provides a second definition:

Complex (adj): difficult to
understand or find an answer to
because of having many different
parts.

Cambridge Dictionary

This raises a contradiction, that we also observe in the common
language: complex can be used either in an ameliorative context or in
a pejorative one. An object can either be complex when it displays
informations but also when it hides it, in which case one may prefer
the term complicated in agreement with the following definition:

Complicated (adj):involving a
lot of different parts, in a way
that is difficult to understand

Cambridge dictionary

Interestingly, the etymology of the word complicated is different.
Indeed, it derives from the latin complicat, meaning folded altogether.
This emphasizes the lesser intelligibility of complicated objects, whose
hierarchy is hidden from the observer. This differs from a complex
object whose parts can be assessed, studied and possibly understood.

Of course, systems and objects can switch from one category to
the other depending on the observer. A piece of jazz and a lecture of
advanced physics are complex, but could appear as complicated to
the non-initiated one. This status can also change through time, as to
the keen observer, initially complicated objects can slowly reveal their
complex features.

1.2 complexity in science

The idea of complexity is also largely used in the scientific literature.
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Complex systems – This expression is widespread in physics [6],
sociology [7, 8] or biology [9], to name a few disciplines. The physicist
Alain Barrat proposed the following definition:

Complex systems are composed of a large number of constitutive elements,
interacting without central coordination, without plans from an invisible
architect, and leading to the spontaneous emergence of non-trivial struc-
tures [10]

For such systems, simple interaction rules produce non-trivial effects.
A famous example is the Ising model [11], initially introduced to
understand the ferro-paramagnetic transition observed in magnets.
The model consists in a network of micro-magnets (spins) interacting
in pairs, through a global energy function (the Ising Hamiltonian).
These interactions can be local (e.g. nearest neighbours) and yet lead
to patterns of infinite size for specific values of the control parameters
(e.g. temperature, external field). The model can be directly related to
quadratic minimization problems on discrete state space, a technique
also encountered in biology [12], sociology [13], finance [14], and as we
will see in Chap. 3, in image processing. Another example is borrowed
to fluid mechanics, which provides a quintessential complex system [15]:
while Navier-Stokes equations characterize the local dynamics, highly
non trivial configurations of fluids in motion can appear at a global
scale can appear. We will see later these turbulent flows share many
common features with the systems that we will explore during this
thesis.

We may wonder what a "complicated system" is? This term could
apply to a complex system whose interaction rules are unknown yet.
This could also relate to its etymological origin: a complicated system
is opaque, unpredictable or chaotic. A complicated system in that
sense does not have to contain many parts, as some systems become
non-integrable with only a few elements, as for example the n-body
problem for n ≥ 3.

Complexity measures – The term appears in the literature to describe
quantifiable measures, which can be related to the definitions and
etymologies introduced earlier.
Some complexity measures characterize disorder and could be said
to be entropic. For example in algorithmic theory, the Kolmogorov
complexity measure [16–19] is the minimal length of instructions
needed to reproduce a given object. To reproduce a list of independent
random numbers, one would need to store each one of them: the
complexity is maximal. Possessing an underlying regularity yields
lower complexity: for example, the terms of an arithmetic sequence can
be summed up from the initial state and the difference of successive
terms.
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However, what is perceived as "complex","rich" or "informative"
rarely corresponds to the most disordered objects. This is why some
other complexity measures focus on intelligible features, related to
a priori criteria: distribution of information across scales [3, 20, 21],
robustness to denoising [1, 22], emergence of peculiar structures [22] or
redundancy in the data [23]. These features can also mimic subjective
perceptions, for example in visual assessment: ability to distinguish
features [24], sensitivity to local variations of colors and contrasts [25],
among many other examples. These descriptors have shown excellent
results in visual quality assessment tasks, but this relationship with
more formal complexity measures remains elusive.

In Chapter. 1, this gap is bridged by comparing of entropy-based
measures with large-scale surveys experiments on visual preference.
We will show in Chapter. 2 that this approach leads to more quan-
titative tools of image analysis, with direct applications in image
processing that will be presented in Chapter. 3. Regarding the study of
the morphology of fracture surfaces, we will show that the complexity
of fracture patterns can be mastered using synthetic images reproduc-
ing their main scaling properties in Ch. 4, and ultimately harnessed
to explore the elementary physical mechanisms governing the failure
resistance of materials in Ch. 5.

2
T R A D I N G C O M P L E X I T Y, E M B R A C I N G
R A N D O M N E S S

As we have seen earlier, complexity can manifest in various ways.
The reason is simple: reality is complex and every object possibly
interacts with one another, tangled by the fundamental laws of the
universe. A low level of complexity is already sufficient to produce
erratic or irregular behaviours, for which specific tools must then be
developed.

In this second part of the introduction, we will see first that mod-
elling this complexity from random contributions can provide rich
insights on the system investigated. Then, reciprocally, injecting such
fluctuations may reveal some specific properties of the system. In
the following, we provide a brief review of the methods of random
modeling used in this research work.
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2.1 describing fluctuations

For the majority of systems, the knowledge of the interactions allows
the physicist to make consistent approximations, and reveal universal
behaviors through seemingly different systems.

However, we know since Bachelier [26] that some systems drive or
get driven by fluctuations. An example is a grain of pollen in a fluid:
its erratic displacement is due to convective and diffusive effect of
its surrounding medium. More precisely, its trajectory results from
the continuous bombarding of fluid particles, which can not be di-
rectly derived from first principles. Yet, this does not mean that the
behaviour of the grain of pollen cannot be rationalized: if we can not
derive an exact expression for these fluctuations, we may then model
them as random contributions.

From local fluctuations to Brownian motion – Let us start with a seminal
example: the Brownian motion. We consider a particle in a fluctuating
environment, for example the grain of pollen described earlier, a
colloid in a suspension, or small particles (∼ 1µm) under the effect of
thermal agitation. The idea of Brown in 1827 [27] and later quantified
by Einstein in 1905 [28], was to model such fluctuations by introducing
a random force term F(t). Writing Newton’s second law for the particle
velocity then yields

m
dv
dt

= −γv + F(t), (2.1)

with m the mass and γ a viscous friction coefficient. We know from
the central limit theorem (CLT) that these fluctuations – if reasonable –
average to a Gaussian white noise. We consider the overdamped regime,
where the acceleration term is negligible, and get

r(t) = r(0) +
∫ t

0

1
γ

F(t)dt. (2.2)

The trajectory becomes stochastic and displays a seemingly erratic
behaviour, as is show in Fig. 2.1(a). Further assuming F(t) uncorrelated
in time and ⟨F2(t)⟩ = σ2 with ⟨.⟩ the time or ensemble average yields
the following scaling behaviour:

⟨∥∆r∥2⟩ = ⟨∥r(t + ∆t)− r(t)∥2⟩ = σ2

γ2 t. (2.3)

This result indicates that, during a time ∆t, a particle explores a
surrounding region of average size ∆r ∝

√
∆t around its starting point.

The particle is said to be diffusing, and its displacement is parame-
terized by the diffusion coefficient D = ∆r2/∆t, also found in the
diffusion equation. We see in Fig. 2.1(b) that the particle trajectory
reveals a hidden form of regularity, that would universally manifest
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Figure 2.1: Brownian trajectory in 2D. (a) Trajectory (decimated for lisiblity).
Red and blue dots are initial and final positions.(b) Variogram of
the trajectory.

for similar conditions.

Anomalous scaling – Reasonable fluctuations – meaning white noise
with finite variance – lead to diffusive scaling. What happens if these
conditions are discarded? For example, replacing Gaussian jump with
discrete power-law distributed ones ρ(r) ∝ 1/rα+1 (for e.g. Pareto or
Levy stable [29]) defines so-called Levy-flights, introduced by Mandel-
brot in 1982 [30]. A direct calculation recovers the following scaling of
trajectories:

⟨∥∆r∥q⟩ = ⟨∥r(t + ∆t)− r(t)∥q⟩ ∝ ∆tq/α if q < α, (2.4)

where α ≤ 2, α = 2 corresponding to Gaussian noise. This deviation
from diffusive scaling is said to be anomalous. Here for H = 1/α > 1/2
it is said to be superdiffusive, the case H < 1/2 being called subdiffusive.
In Fig. 2.2, we display the trajectories of several flights for different H
parameters. We see that high values of H introduce high-jumps events,
creating an apparent persistency of the trajectory, as is recovered by
the scaling analysis of (b).

On a more general note, anomalous scaling emerges when the Cen-
tral Limit Theorem breaks down. The sum of random variables (Xi)

does no longer scale as
√

N in the N → +∞ limit. This situation can
be encountered when (i) systems display non-Gaussian properties for
their jumps (e.g Lévy flights) or waiting times (e.g subdiffusive CTRW)
or (ii) when realizations possess long-range correlations, ultimately
changing the effective scaling of the sum. In physical systems, these
behaviours result from memory effects [31], disorder [32] or from inter-
mittent fluctuations. These contributions can be described by adequate
stochastic models that capture experimental observations.

Scaling through time and space – Identically to particle motion, many
systems can display fluctuation and scaling properties, through time
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Figure 2.2: Anomalous diffusion of Levy-flights. (a), (b) and (c), particle
trajectories sampled from Levy-stable distributed jumps with H =
0.83, 0.75, 0.5 respectively. (d) Scaling of trajectories, calculated
from the first order variogram V1(∆t) = ⟨|r(t+∆t)− r(t)|⟩. Black
lines indicate theoretical scalings V1(∆t) ∝ ∆tH .

or space. Maybe the most classic example would originate from the
works of A.Kolmogorov (1941) [33] who observed universal scaling
in turbulent flows, and which was later found to hold for various
fluids and systems [34, 35]. More specifically, Kolmogorov highlighted
the anomalous scaling of the third order moment of velocity incre-
ments ⟨∆v3

∥⟩ ∝ ∆r ( ̸= ∆r3/2), whose behaviour can only be derived
from Navier-Stokes equations after strong simplifying assumptions
(incompressible fluid with local isotropy) [36]. This allowed for the
quantitative description of the energy cascade [35, 37, 38] where kinetic
energy is continuously redistributed from large to small structures, as
qualitatively observed by Lewis Fry Richardson in 1922 [39]. Let us
note that this behaviour can even emerge from human-made represen-
tations such as paintings: a statistical analysis Van Gogh’s Starry Night
(see Fig. 2.3) recovers the universal scaling of turbulent flows [40, 41].

However, this example is only one amongst the many scale-invariant
systems. Indeed, many systems under external constraint [37, 42–50])
or specific control parameters [11, 51, 52] can display power-law ob-
servables. Similarly to the case of random particles, such scaling prop-
erties provide precious insights on the physics at play, e.g. interscale
energy transfers, emergent dissipative scales, range of interactions, etc.
In Chapter. 5, we will see that the scaling properties of the fracture
surfaces can be used as a guideline to decipher their complex geome-
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Figure 2.3: Van Gogh’s Starry Night (1889), MoMa’s online Collection. The
sky displays eddy-like structures, reminiscent of fluid turbulence.

try, and study the mechanisms controlling material resistance.

2.2 forcing fluctuations

When systems do not initially display such fluctuations, one can intro-
duce them through so-called forcing. Let us a consider a given system,
described by a field ϕ(r, t), function of space and time. It can be the
Eulerian velocity v(r, t) in a volume of fluid, the local pressure P(r, t)
in a musical instrument, or the color of pixels h(i, j, t) in a video. A
straightforward way to characterize the system is to apply an external
force and observe its influence on ϕ.

Forcing of linear systems – For linear systems, a harmonic forcing
leads to a frequency-dependent response that can be reported in a
response diagram (e.g. the Bode diagram for electrical or mechanical
systems). The linearity of the system allows one to use any external
force F(r, t), and describe the response from Fourier analysis. This
translates analytically to

A[ϕ](r, t) = F(r, t) (2.5)

where A is a linear operator describing the space-time evolution of the
system. It can include local operators (e.g. derivations, integrations)
and non-local ones (e.g. fractional operators [53] or long-range ker-
nels [48, 54]). Applying the Fourier transform (F ) on Eq. (2.5) yields

ϕ(k, ω) = Ã−1(k, ω)F̃(k, ω), (2.6)
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Figure 2.4: Fractional Gaussian field, H = 0.6. (a) Quantile representation of
the random field ϕ(r) (b) Variogram V2(δr) = ⟨|ϕ(r + δr)− ϕ(r)|⟩.
Theoretical slope V2 ∝ δr2H in red.

showing that the modes of forcing and response are trivially linked to
one another.

Stochastic forcing – Forcing does not restrict to harmonic contribu-
tions, and can further generalize to stochastic one. For example, taking
F as a Gaussian white noise, leads to Gaussian statistics for ϕ. Its
correlation is directly related to the evolution operator:

C(δr, δt) = ⟨ϕ(r, t)ϕ(r + δr, t + δt)⟩ = F−1
[

Ã−1
]
(δr, δt).

Reciprocally, one can sample Gaussian fields of prescribed autocor-
relation by applying the convenient filtering to white noise [55]. We
have made an extensive use of such method in Chap. 1, 2 and 4, where
we generated 2D fields from power-law filters of the form G(k) ∝ 1/kα.
We see in Fig. 2.4 that the resulting fields are fully abstract and yet
display statistical regularity, making them specifically relevant for
image assessment and processing experiments.

Forcing of non-linear systems – A non-linear system exhibits non-
linear responses to external forcing . Equation. (2.6) does no longer
apply, and one may observe non-trivial inter-scale responses from the
system.

In some specific situations, systems respond by displaying scale
invariant properties, e.g. in 3D fluid turbulence, a simple harmonic
forcing at injection scale induces Kolmogorov scaling up to the viscous
dissipation scale. The scaling of non-linear systems can be estimated
from scaling arguments [56], perturbative developments [42, 46] or
other Renormalization Group (RG) approaches [57, 58]. However in the
majority of cases, the scalings are only recovered through numerical
simulations [59–63] and experimental setups [64–66]. We will further
observe in Chap. 4 that the scale invariance of non-linear systems can
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lead to non-Gaussian and intermittent statistics.

Forcing of energy-based models – We have seen that any systems
following motion equations could be constrained to external forcing.
We now consider the case of systems simply described by the energy
functional E[ϕ] of their configuration ϕ(u), with u a relevant index
variable. This approach is very useful for multi-agent systems whose
global energy can account for interaction effects. For example in the
Ising model, the Hamiltonian H[(σi)] describes the nearest neighbour
interactions of the spins micro-configuration (σi). Note that at this
point, we do not prescribe any dynamics to the system, and this
energy should not be related to a mechanical energy that would
recover motion equations. We simply assume that the system evolves
towards the global minimizer

ϕ∗ = arg min
ϕ

E[ϕ]. (2.7)

In reality, we know from optimization that the ability of the system
to reach such minima will highly depend on the dynamics and on
the energy landscape topology. We further add that assuming a com-
pletely isolated system, without self-induced fluctuations, wouldn’t
be realistic. One of the greatest contributions of statistical mechan-
ics is to introduce a way to relax such minimization constraint and
account for fluctuations which can model physical effects (colliding
particles, thermal noise, etc.), or more complicated processes (agent
indecision in opinion models [67]). This can be done by switching
from a deterministic viewpoint to a probabilistic one, under maxi-
mal entropy assumption. The method consists in finding the most
agnostic/entropic distribution, conditionally to specific constraints. If
energy minimization is the only constraint, one recovers the famous
Boltzmann-Gibbs distribution [68–70]:

PT[ϕ] =
1

Z(T)
e−E[ϕ]/T, (2.8)

where Z(T) is a normalization term. The temperature parameter
T tunes the width of the distribution, from PT=0[ϕ] = δ(ϕ − ϕ∗),
up to the uniform distribution PT→+∞[ϕ] = (#{ϕ})−1. We note that
Boltzmann-like distributions are widely used, in Monte-Carlo meth-
ods [71], softmax classifiers [72–74] or generative models [75, 76] and
can even be applied to optimization problems in image processing, as
will be seen in Chap. 3.

In conclusion, many systems can be characterized from the study
of their inherent or induced fluctuations. In the first case, these
contributions spontaneously manifest from noisy environment, self-
organization or microscopic thermal fluctuations. For the second case,
an operator decides to force specific modes of the system, harmonically
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or randomly, in time or space. The influence of these fluctuations can
be assessed trivially for linear systems, but the task is more difficult
for non-linear or energy based models. For these situations, scaling
behaviours may arise unexpectedly and provide essential insights on
the physics at play.

Let us quickly summarize the first two parts of this introduction. We
have seen that complexity refers to a specific scientific concept. Com-
plex systems describe multi-agent frameworks, whose interactions
make analytical derivations difficult. On the other hand, complexity
measures describe the disorder of a given configuration, or its ability
to display features of interest. To study complex systems or complex
configurations, defining observables and characterizing their fluctu-
ations can drastically lower the dimension of the problem and help
one recover strong insights on the mechanisms at play. Even better,
injecting such fluctuations in theoretical or experimental setups con-
stitutes a fruitful tool of investigation. We will see in the rest of this
introduction, how these concepts are employed for the processing of
images, and the deciphering of fracture surfaces.

3
A P H Y S I C I S T A P P R O A C H T O I M A G E P R O C E S S I N G

L’art c’est moi, la science c’est nous.

— Claude Bernard

The first part of the thesis is dedicated to image processing, that
is the algorithmic approach to digital photography. The consistent
progresses in image processing result from several factors: increase
of computational power, increase of optics and display quality [77],
developments of new signal processing and learning frameworks [78–
80], availability of high-quality data [81–83], or better knowledge of
the biological visual process [84, 85]. These have led to the emergence
of tools used in our everyday lives: image filtering, denoising [86],
retrieval [87, 88], labelling [89, 90], among many others. These last
years have been further marked by the training of efficient architectures
with large databases, which notably allows for natural language to
image generation [91]. See Fig. 3.1 for example.

The goal of our research is to take a slight step back from the tumult
of these recent advances, and address three essential questions: What is
the link between image statistics and visual appreciation? What is the
specificity of classic interpretable images, namely natural images? Can

13



Figure 3.1: Painting in Van Gogh’s starry night style of an enthusiastic PhD student
on his computer, with several coffee cups on his desk, obtained from
OpenAI’s Dall-E 2 [91].

we answer these questions from novel statistical tools, to solve concrete
image processing problems? The viewpoints introduced earlier will
allow us to answer these questions in three distinct chapters, for which
we now introduce the context.

3.1 aesthetics and complexity

Aesthetically pleasing objects display a subtle equilibrium of simplicity
and complexity, triviality and originality, respect of rules and their
transgressions. As scientists, we naturally ask ourselves whether it is
possible to quantify such properties and define universal criteria for
aesthetic appreciation [5].

In the context of images, the research of quantitative criteria for the
description of aesthetic assessment is simply called quantitative aesthet-
ics. A recent and extensive review was produced in [92], showing the
diversity of scientific contributions: building of tractable measures [25,
93–99], design of visual assessment experiments [100–105], construc-
tion of databases [83, 106–108], prediction of aesthetic quality [109–
111], aesthetic informed image enhancement [110, 112–115] and gen-
eration [116]. These works have changed the paradigm of image and
optic enhancement procedures, which are now aesthetic informed.

In Chapter. 1 –which is largely based on the published work [1]–
we revisit the long-standing question of the relation between image
appreciation and its statistical properties. We generate two differ-
ent sets of random images well distributed along three measures of
entropy-based complexity (spectral, fractal and algorithmic). These first
complexities measure the visual disorder of the system. We then run
a large-scale survey in which people are asked to sort the images
by preference, which reveals maximum appreciation at intermediate
entropic complexity. We show that the algorithmic structural com-
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plexity of the coarse-grained images, expected to capture structural
complexity, while abstracting from high frequency noise, is a good
predictor of preferences. This second measure assesses intelligible
and meaningful contributions of the image. Our analysis suggests
that there might exist some universal quantitative criteria for aesthetic
judgment, structural complexity being one of them.

3.2 information theory and natural images

The Chapter. 1 introduced a complexity measure relying on the irrel-
evance of small scale features [1, 22], an a priori conditions that may
not be relevant in the context of interpretable images such as natural
ones. These images have long been studied in the literature for their
visual [117, 118], spectral [119–121] and statistical [122–126] properties.

In Chapter. 2 –which reproduces the contents of [3]– we define ag-
nostic observables from a formalism that was recently introduced for
the description of high-dimensional data, and reviewed in [23]. The
method consists in observing the influence of compression procedures
(grid size, number of bits, number of histogram bars, etc.) over sim-
ple entropy metrics. The approach has shown interesting theoretical
developments [127, 128] and promising applications in finance [127],
biology [20], machine learning [129, 130] and statistical physics [23,
131].

In the context of images, we use the Multiscale Relevance (MSR),
which assesses the overall robustness of images to compression at all
scales. We first characterize the MSR of synthetic random textures and
extend the analysis to natural images. We find striking similarities
with log-correlated (H = 0) random textures. We ultimately apply the
MSR in a classic processing context, here the calibration of a denoising
algorithm. Overall, the MSR approach appears to be a good candidate
for advanced image analysis while providing a satisfying level of
interpretability.

3.3 color mapping and maximal entropy

In Chapter. 2 an information theoretic formalism is used to characterize
specific properties of artificial textures and natural images. We wonder
if such measures can be applied in a famous image processing problem:
color quantization.

Color quantization is a long known problem of image processing,
with more than forty years of history [132]. It consists in reducing
the color palette of an image, in two main steps. First the color palette
design groups authorized colors from the statistical analysis of the
original image. The methods usually employ thresholding [133, 134]
or clustering [135–138] procedures relying on the original histogram.
The second step is color mapping, which attributes each pixel to the
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palette. This can be done from a simple nearest neighbour procedure
but stochastic methods can smooth out thresholding artifacts [139–
142].

In Chapter. 3 – the results of which have been presented in [2]–
we apply a maximal entropy viewpoint to the color mapping step.
We find that adding thermal noise to the system improves visual
impressions. To quantify this observation, we introduce a coarse-
grained quantization error, which computes the distance between
convoluted images. The optimal temperature which minimizes this
loss is a good proxy for complexity at different scales. Noting that the
convoluted error is a key observable, we directly minimize it using a
Monte-Carlo algorithm to generate a new series of quantized images.
Adopting the Resolution/Relevance based approach introduced in
Chapter. 2, we are able to determine an optimal convolution parameter
leading to the best visuals. Finally, we test the robustness of our
method against changes in image type, color palette and convolution
kernel.

4
S TAT I S T I C A L A N A LY S I S O F F R A C T U R E S U R FA C E S .

In the second part of this thesis, we study the morphology of fracture
surfaces, which are the surfaces created during the failure of materials,
and whose topographic maps h(r) can be measured by profilometry.
In Fig. 4.1 we display three examples for three different materials,
taken from [143].

All surfaces display repeating patterns, organized in steep cliffs
clearly visible on the gradient map. The size of these cliffs depends
on the material. Yet their scaling properties that we will detail in the
following, are robust and observed in a wide range of materials.

Scale invariance – Fracture surfaces display scale invariance [144,
145], which corresponds to an invariance of statistics through affine
transformations of the space variable. A classic way to assess such
property is by computing the variogram, or roughness function, from
the following expression:

V2(∆r) = ⟨∆2h⟩ = ⟨|h(r + ∆r)− h(r)|2⟩ ∝ ∆r2H. (4.1)
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Figure 4.1: Fracture surface morphology of three seemingly different mate-
rials from [143]. (Top) Height fields h(r) of the fracture surface.
(Bottom) Gradient fields. In both cases, the quantiles of the dis-
tribution are represented by a gray hue, the largest values being
represented by the lightest hue.

This observable measures the amplitude of out-of-plane deviations
∆2h, as a function of the in-plane distance ∆r. A system is scale in-
variant when V2(∆r) ∝ ∆r2H, where H is the roughness or Hurst
exponent, a property observed for many materials [144, 145]. We also
note that failure resulting from the propagation of a crack can induce
anisotropic scaling [44], also reported in [42, 46, 56, 146].

Scaling transition – The scaling exponent H does not vary much with
the material, but can change with the observation scale. In particular,
one observes a transition at material-dependent length ξ between two
scaling different regimes.

At large-scale ∆r ≫ ξ, the scaling roughness exponent H is lower
than 0.5, typically in the range 0.35 − 0.45, corresponding to an an-
tipersistent behaviour. In this regime, the crack front is modelled as
a continuous line, whose interactions are governed by a long-range
elasticity that can be exactly derived from fracture mechanics, a the-
oretical framework that describes failure as a propagation of a crack
line [147–149]. These so-called models of elastic lines in random media
provide a fairly precise description of experimental fracture surfaces
in this regime.
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Figure 4.3: The microscopic view of failure. At large scale, failure results from
the seemingly continuous propagation of a crack. Yet, zooming
at the crack vicinity, one observes that cracks grow by coalescing
cavities in a so-called fracture process zone of size ℓc.
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Figure 4.2: Fracture surface of a metallic alloy, measured by optical profilome-
try. (Left) Quantile representation of the height field h(x, y) in 256

grayscale levels. The resolution is 1000x1000 with 1pixel = 1µm.
(Right) Variogram function for (q = 2) calculated along the prop-
agation direction .

For ∆r < ξ, fractures surfaces display persistent scaling (H >

1/2), as shown in Fig. 4.2. This observation is not consistent with
the predictions drawn from fracture mechanics. It was then proposed
that at this scale, the failure progresses in the material through the
sampling of damage cavities, as illustrated in Fig. 4.3. These cavities
are expected to initially nucleate from defects present in the material
microstructure, and then grow until they finally coalesce to form new
surfaces in the fracture plane.

While fracture mechanics models [46, 56, 146, 150] have been
employed to explain the scaling features of frazcture surfaces at scale
∆ > ξ, discrete coalescence models, based for example on the concept
of gradient percolation [151], have been proposed at smaller scale
∆r < ξ.

Intermittency – A puzzling feature of fracture surfaces is the presence
of intermittent non-Gaussian statistics at small scale ∆r < ξ [143,
145, 152]. This behaviour manifests from the distribution of height
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Figure 4.4: Characterization of intermittent behaviours. (Left) Empirical p.d.f
of jumps increments ∆ϵh for ϵ ∈ 1, 2, 4, 8, 16 pixels (Top to Bot-
tom).(Right) Rescaled variograms q

√
Vq(∆r), showing ζq ̸= qH

increments ρϵ(∆h) = P[h(r + ϵ) − h(r)], as shown in Fig.4.4. This
intermittency ultimately smooths out to Gaussian statistics, as the
observation scale ϵ increases beyond ξ. Intermittency also manifest in
the multifractal scaling of fracture surfaces which can be investigated
from the scaling of the generalized variograms:

Vq(∆r) = ⟨|∆∆rh|q⟩ = Kq∆rζq , (4.2)

where ζq is the so-called scaling exponent spectrum. In the monofrac-
tal case, one gets ζq = qH, and the rescaled variograms q

√
Vq collapse

to one another. This is not the case for fracture surfaces, as shown in
Fig. 4.4. This behaviour, first reported in [145] was further character-
ized in [143].

Big whorls, little whorls – Interestingly, the properties reported above
are reminiscent of fluid turbulence: (i) Velocity increments display
a quasi-universal scale invariance regime (ζ3 = 1) [33, 35]. (ii) This
regime is surrounded by two other ones: smooth at small dissipative
scales (H ≈ 1), and system size dependent at large scales. (iii) Velocity
increments display the same fat-to-thin tail transition, as the observa-
tion scale increases [153]. (iv). The scaling exponent spectrum deviates
from ζq = qH [154]. However, we can observe a striking difference
regarding the dynamical organization of the self-similar structures.
In 1922, Richardson observed that turbulent eddies [39] seemed to
split from one another, forming smaller and smaller structures. This
so-called direct cascade can manifest in various fashions, as Jonathan
Swift beautifully illustrated in his On Poetry: a Rhapsody (1733):

So, nat’ralists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller yet to bite ’em,
And so proceed ad infinitum.

. . .
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Thus every poet, in his kind,
Is bit by him that comes behind:
Who, though too little to be seen,
Can teaze, and gall, and give the spleen.

This construction inspired Richardson [39] in the following:

Big whorls have little whorls,
Which feed on their velocity,
And little whorls have lesser whorls,
And so on to viscosity.

It was found years later by Kolmogorov that the cascade was more
quantitatively related to a kinetic energy transfer, hence making of
Richardson’s works the premises of 100 years of turbulence theory [37,
155].

For fracture problems, damage cavities emerge at a microscopic
scale and the then increases through the coalescence with other cavi-
ties, ultimately leading to failure through a complex process of void
coalescence. The cascade in fracture would then stream in an inverse
direction, and we may instead propose:

As damage voids form in the mass,
They coalesce into small cracks,
And these small cracks merge in large ones,
Persistently building their path.

In the second part of the thesis, we will tackle the characterization
of fracture surfaces by raising the following questions. Can we build a
minimal model of random fields that reproduce the scaling properties
of fracture surfaces? How do these artificial surfaces compare with
experimental ones? How far can we learn about the damage mecha-
nisms at the origin of fracture surface morphology, and can we get
insights on this microscopic dissipation mechanism that ultimately
controls the failure resistance of materials?

Figure 4.5: Synthetic multifractal field. The non-Gaussian statistics appear
under the form of pikes, cliffs and other singularities. However,
we will see in Chapter. 4 that some features of these artificial
fracture surfaces differ from experimental ones.
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In Chapter. 4, a powerful yet simple method for the generation of
multifractal fields is introduced, and allows for direct comparisons
with experimental fields. In Chapter. 5, a more exhaustive investigation
of experimental rock fracture surfaces reveals the peculiar properties
of their steepest structures, and their relation with the mechanical
Fracture Process Zone length ℓc which controls the cohesive properties
materials.

The result of both chapters should be included in forthcoming
publications, Ref. [4] being one of them.
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Part I

S TAT I S T I C A L P H Y S I C S A P P R O A C H T O I M A G E
A N A LY S I S A N D P R O C E S S I N G





1
A F I R S T E X P E R I M E N T O N Q UA N T I TAT I V E
A E S T H E T I C S

When in doubt, optimize for interestingness.

— Paul Graham [156]

This chapter is largely based on [1], written in collaboration with
Alexandre Darmon, Jean-Philippe Bouchaud and Michael Benzaquen,
and the results of which are based on my doctoral and pre-doctoral
works. Some minor changes and additions were implemented, for
overall consistency.

1.1 introduction

What makes a beautiful image? Is there such a thing as universal
beauty? These puzzling yet fascinating questions have been tackled
many times in the past within several disciplines, including philos-
ophy, psychology, arts or mathematics [101, 157–168]. According to
Kant, Is beautiful that which pleases universally without a concept [169].
The idea of an intelligible beauty appeared in ancient Greece, where
Nature was believed to be a cosmos constituting a principle of order
and harmony. The proportions between the constitutive elements of
each being are rightfully defined, whether it is a work of art, a living
organism or a city [170]. Following the Greeks, the Baroque and Re-
naissance artists also believed in a universal beauty, and it is striking
that their arts partially rely on a mathematisation of the artistic rep-
resentation (symmetry [165], proper geometric proportions as given
by the golden number [157], etc.). In other terms, the belief that there
must be scientific grounds to the conception of what is artistic or
beautiful has been out there for quite some time. Yet, the very idea of
a universal beauty is a longstanding debate which has known many
ruptures through the history of art [158] and still opposes a number a
great modern thinkers.

Physicists’ interest in the subject is more recent. Stephens et al. [126]
showed that natural images were critical in the thermodynamic sense
and proposed a theory for the Thermodynamics of Natural Images. While,
as pointed out above, many would consider quantitative aesthetics to
be an oxymoron, and indeed it would be rather nonsensical to aim
at building a fully consistent theory of pictorial art, we, as physicists,
believe there is some room for a quantitative analysis. For example one
could easily argue that an aesthetically appealing image often results
from a subtle balance between regularities and surprises. Indeed, it
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seems rather plausible to think that while one might find dull an
image that is too regular (no surprises), one may also feel lost in front
of an image with no recognisable shapes or structures to hang on to
(too much surprise). As argued in [47], Total chaos is disquieting. Too
much regularity is boring. Aesthetics is perhaps the territory in-between.
Provided one agrees with such statements, these ideas clearly suggest
that one could design an entropy-like function to quantify this subtle
and complex equilibrium.

To address this question we run a large-scale survey in which people
are asked to sort by preference two different sets of random images
well distributed along three measures of entropic complexity: Fourier
Magnitude’s slope, fractal dimension and compression rate.

The chapter is organised as follows. We first introduce simple com-
plexity metrics in Sec. 1.2 that motivate straightforward image genera-
tion methods. We then present and analyse the results of the survey
in Sec. 1.3. Finally in Section. 1.4, we argue that algorithmic complex-
ity of the coarse-grained images is a rather good proxy for image
appreciation. We conclude in Section. 1.5.

1.2 simple complexity measures for images

There exist many possible measures of image complexity, relying on
e.g. their mathematical properties [171, 172], their physical properties
[126, 173, 174], or even their cognitive impact [100, 118, 175]. Here
we choose to work with three simple measures that can be easily
computed unequivocally for any digital 2D image. The first one is
the magnitude slope α defined as the logarithmic slope of the radially
averaged Fourier magnitude S(k) = ⟨û(k, θ)⟩θ , where û(k, θ) denotes
the Fourier Transform of the image grayscale intensity u(r, ϕ), and
S(k) ∼ |k|α. The second is the fractal dimension df computed using the
Minkowski-Bouligand box-counting method [176]. After transforming
the image to B&W using an intensity threshold ensuring two equally-
populated levels [126], the fractal dimension follows N(ϵ) ∼ ϵ−df

where N(ϵ) is the number of boxes of size ϵ containing both black and
white features. The third is the compression rate or algorithmic complexity
τ computed as the ratio between the size of the PNG image and its
uncompressed maximum size equal to Nx × Ny bytes (1 byte = 8 bits
per pixels).

1.3 the experiment

1.3.1 Generating abstract images

In order to remove possible cognitive and cultural biases, we choose
to design our experiment with abstract images randomly generated
using two of the complexity measures presented above. The first set
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of images (Fig. 1.1a) is generated by reverse-engineering the Fourier
Magnitude property: setting û(k, θ) = kαei2πη(k), where η is drawn
from a uniform distribution on [0, 1] with ⟨η(k)η(k′)⟩ ∝ δkk′1, and
taking the inverse Fourier Transform of û allows to produce a series
of random grayscale images |u(r, ϕ)| with controlled Magnitude slope
[100, 102, 177]. Table 1.1 gathers the computed complexity measures

(a1) (a2)

(a3) (a4)

(a5) (a6)

α, df and τ of the 256×256 images displayed in Fig. 1.1a. As one can
see both df and τ are increasing functions of α, comforting our choice

1 We shall see in Ch. 2 that such fields belong to a class of well known random Gaussian
fields.
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of complexity measures and indicating that there is a clear correlation
between the spectral, fractal and algorithmic properties.

The use of a second set of images was motivated by the remarks of
some survey participants. When asked why they had preferred certain
images, they responded their picks reminded them of cloudy skies or
galactic landscapes. With the aim of producing more abstract images,
we used an alternative method, now based on reverse-engineering

(b1) (b2)

(b3) (b4)

(b5) (b6)

Figure 1.1: (a) Fourier Magnitude-generated images, and (b) Box-counting-
generated images, both series with increasing complexity from
left to right. These images were used for our large-scale survey.
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the Minkowski-Bouligand box-counting method (Fig. 1.1b). Black
squares of size ϵ = 2k, k ∈ [1, kmax], drawn from the distribution
Nx(ϵ) = Aϵ−x are randomly added to a white canvas of size 256×256

with the condition that they do not overlap. The upper boundary
kmax is chosen such that the biggest squares occupy at most 1/16th of
the total surface, kmax ≤ log2(256)− 2 = 6. We also enforce that the
total fraction of black pixels does not exceed 1/2

2. Here again the
complexity measures appear to be increasing functions of one another
(see Tab. 1.1).

Table 1.1: Complexity properties of the images presented in Fig. 1.1.

a1 a2 a3 a4 a5 a6

α -3.96 -2.47 -1.95 -1.42 -0.76 0

d f 1.22 1.33 1.58 1.87 1.99 2.0

τ 0.186 0.325 0.472 0.711 0.902 0.956

b1 b2 b3 b4 b5 b6

α -2.14 -1.78 -1.56 -1.32 -1.04 -0.77

d f 1.42 1.51 1.62 1.75 1.88 1.95

τ 0.012 0.014 0.022 0.044 0.095 0.16

1.3.2 Survey design and deployment

In 2013, Spehar and Taylor [177] conducted a survey on twenty-six
academics, using black and white computer generated images with
increasing fractal dimension. They found a reversed U-shaped relation
between image appreciation and fractal dimension, with an aesthetic
optimum for df ≈ 1.5, allowing to argue that we indeed tend to prefer
images with intermediate complexity, see also [100, 102]. Curious of
their results, we conducted a larger scale experiment intended for
a larger panel ( about a thousand participants with different back-
grounds), using the images presented in Fig. 1.1. Our question at this
stage is similar: is there a link between the statistical properties of our
generated images and the tendency of people to appreciate them?

Survey methods design constitutes a strand of research on its own
[178]. For optimal results the selection task must be simple and dis-
play the minimum amount of information to the interviewee. While
the common five-star ratings only take a time proportional to the
number of images to score, these have been shown to be weighted
by extreme grades, the utility given to intermediate grades being far
from linear [179]. Five-star ratings image-by-image can also be rather
disorienting due to the lack of reference. Another option is image

2 Note that while our method is motivated by fractal considerations, x does not match
the measured fractal dimensions displayed in Tab. 1.1, due to both finite size effects
and the non-overlapping boxes constraint.
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classification, where the interviewee is presented with the whole set
of images and is then asked to sort them by preference. While also
time-efficient, presenting all the images at once might strongly induce
people into intuitively recognising other features, such as complex-
ity, and ending by sorting them by something else than preference.
Finally, the Battle survey consists in presenting the interviewee with
two images, asking her/him to choose the one she/he prefers, and
repeating the operation until all possible combinations of two im-
ages have been addressed [160, 180]. While less time-efficient (with
N(N − 1)/2 = O(N2) battles, for N = 6 images one needs 15 rounds
to complete the survey), this method beats the other shortcomings
mentioned above, and people usually feel more comfortable with such
a binary task, intellectually less challenging. We thus choose the latter
method.

We conducted two slightly different surveys. The panel for the first
survey consisted of colleagues from CFM and Ecole Polytechnique as
well as students and relatives, adding up to ≈ 350 people, who were
asked to participate without any financial incentive. While probably
slightly biased population-wise, these are the results as we are most
confident with, since we believe people in such a panel completed
their tasks selflessly and honestly. To run this survey we used the
Zooniverse platform [181] which provides a rather intuitive interface.
The 15 two-image sets for each series were generated using a python
algorithm that concatenated the images in a random order and at-
tributed them a different name so that the interviewee couldn’t find
hidden information. Upon completion of the survey, to establish a
global ranking of the images we attributed them a score according to
the following rule: if image i wins (resp. looses) a battle, its score Si
increases (resp. decreases) by 1/Ni where Ni denotes the number of
battles in which i was involved 3. To obtain a score Si ∈ [0, 1] we then
transform it as Si → (Si + 1)/2.

1.3.3 Results

The results are plotted as a solid black line in Fig. 1.2. Remarkably,
the preferred images appear to be a4 a5, and b4 b5 respectively, both
corresponding to α close to 1. To note, interestingly α ≈ 1 is often
associated to the spectral properties of natural images [121, 126] and
visual arts [171]. Discussions with voters revealed that they found
their favorite images to be the most harmonious and well balanced.

In order to increase the size and diversity of the panel, we ran an
other experiment on the Mechanical Turk platform [183], in which
participants are paid a small amount of money to participate (we
reached ≈ 600 panelists). However, there was a significant risk that

3 Note that Ni was not exactly equal to N since a small number of participants stopped
before completing the 15 battles.
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people would answer randomly as they do not, by definition, partic-
ipate selflessly and in good will as in our first experiment. We thus
formulated the question differently in order to encourage non-random
participation: much like in Keynes’ famous beauty contest [68], people
were asked to pick the image which they thought would be preferred
by the majority and told they would not get paid if their overall choices
fell too far off the average (needless to say, we did process all of the

Figure 1.2: Results of the two different surveys (Zooniverse: solid black
line, Mechanical Turk : dash-dotted gray line). The red diamonds
markers indicate the structural complexity τcg defined below. We
have rescaled and shifted vertically τcg to show that the maximum
scores also correspond to maximum structural complexity. The
blue circles reflect the complexity measure proposed in [25]. Top:
image series of Fig. 1.1(a). Bottom: image series of Fig. 1.1(b).
Error bars reflect the 95% confidence interval using the bootstrap
method [182].
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data, regardless of its distance to the average). Results are presented
in Fig. 1.2 (dash-dotted gray line). While probably introducing other
biases, the results displayed good agreement with that of the initial
selfless survey. Also note that while all results are fully consistent for
the first set of images (Fig. 1.1(a)), the second experiment leads to a
less pronounced maximum for the image series of Fig. 1.1(b), with
scores on average closer to S = 1/2 than they were for the very first
experiment.

1.4 structural complexity

1.4.1 A metric for harmony and equilibrium

Very much like entropy is used to measure the disorder in a physical
system, we would now like to see whether there might exist a statistical
proxy to estimate an image’s harmony and equilibrium, as described
by our survey participants. Given the complexity measures described
above, images with low complexity display very simple shapes (a1

b1), and images with very high complexity display a large amount of
white noise (a6 b6). Our survey revealed that maximum appreciation
is obtained for intermediate complexity suggesting the following
question: could it be that an aesthetically appealing image results from
a subtle balance between complexity and regularity? And if so, can
we find an associated statistical measure? The work of Desolneux et al.
[172] clearly resonates with such questions. Guided by the idea that
there is no perceptual structure in white noise, the authors attempted
to characterise forms and structures and in particular defined unusual
features or Gestalts as sets of points whose (...) spatial arrangement could
not occur in noise. Their ideas can be easily illustrated with the coffee
and cream dynamics [22].

1.4.2 Computing structural complexity

Consider the experiment in which plain cream is left to slowly mix
with plain coffee. While the initial and final states of such a system
display very regular homogeneous structures, the transitional regime
displays interesting and complex mixing patterns as the cream/coffee
interface slowly disappears. So far we have used the term complexity
rather imprecisely and it is now time to distinguish more rigorously
two sorts of complexity. The first is entropic complexity measuring
the amount of information in the image, which in the coffee exper-
iment can only be an increasing function of time according to the
second law of thermodynamics; the second is structural complexity
accounting for the amount of features outside of the noise, which
here is a non-monotonous function of time displaying a maximum at
intermediate stages where the non-trivial mixing patterns are most
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significant. Entropic complexity is well described by α, df or more com-
monly τ. Structural complexity, in a sense, measures noiseless entropic
complexity or interestingness.

Guided by the work of Aaronson et al. [22] we computed structural
complexity as a noiseless entropy. More precisely we apply a coarse-
graining procedure of given radius rcg on the B&W images and then
compute their algorithmic complexity τcg which we call structural
complexity in the following 4. The colour of a given block is deter-
mined by its black to white pixel ratio η ∈ [0, 1]: white if η ≤ δ, gray
if δ < η ≤ 1 − δ, and black for η > 1 − δ where δ ∈]0, 1/2[ is a given
threshold. Figure 1.3 illustrates the procedure on images a1, a4 and
a6; after turning them into B&W (second column), the coarse-graining
procedure is applied (third column). As one can see, image a1 is barely
changed (just a thin gray line at the domain boundaries) and we thus
expect τcg ≈ τ, image a4 is slightly denoised while letting its struc-
tures invariant τcg ≲ τ, image a6 however is strongly denoised as
the coarse-graining procedure has left it almost plain gray suggesting
τcg ≪ τ. The structural complexity computed for both sets of image is
plotted on Fig. 1.2 as dark red diamonds. As expected, τcg(α), or equiv-
alently τcg(df) and τcg(τ), are non-monotonous functions displaying a
maximum for intermediate values of α, df and τ. Note that the y-axis
in Fig. 1.2 is arbitrary (structural complexities and scores don’t have
the same dimensions) and thus only the shape of the curves should be
compared, which we facilitate by superimposing them (vertical linear
transformation τcg → aτcg + b). Furthermore, the scale parameter rcg

and the threshold η can be used as fitting parameters; in particular rcg

acts as the cutoff of a low-pass filter which erases high frequency spa-
tial features, increasing it tends to lowers the right most red markers
and shift the maximum to the left. Up to a multiplicative factor, best
fits are obtained for (rcg, η) = (7, 0.23) for the first set and (13, 0.12)
for the second. The agreement between theory and experiments is
quite convincing. Not only do the maxima coincide, but also the over-
all shape of the curves is similar. Note that such good agreement is not
rcg- and δ-sensitive provided the latter are kept within a reasonable
range. This quantitatively supports the idea that structural complexity
is a good proxy for average image preference. Also note that the alter-
native interesting measure of structural complexity proposed in [25]
(see blue circles on Fig. 1.2), though more ad hoc than ours, appears to
also correlate well with our survey data.

4 Spehar et al. [102] showed that the preference curve was hardly affected by the gray
scale to B&W transformation. For the sake of simplicity we thus choose to apply the
coarse-graining procedure to B&W images.
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Figure 1.3: Illustration of the coarse-graining procedure on images a1, a4

and a6, with rcg = 7 and δ = 0.23.

1.5 conclusion

Let us summarise what we have achieved. Using two random-image-
generation algorithms, we produced two different sets of abstract
images spanning a broad range of entropic complexity, measured by
three different quantities. We then designed and ran a large-scale
experiment for image classification and found that preference peaks
about complexity criteria matching that of natural images, perhaps
indicating that people’s preferences are influenced by their natural en-
vironment. Finally, our main contribution is to show that a “noiseless”
entropy (that captures interesting structural features only) accounts
well for the experimental results on image appreciation. It is interesting
to speculate that, when confronted with images, the human brain may
actually conduct the same kind of geometrical coarse-graining, trying
to extract forms and structures while erasing uninteresting noise, or
as put by the Gestalt theory [184]: filter meaningful perceptions from
chaotic stimuli. As a result, the excess of noise and lack of forms
may lead to unconscious rejection of structureless images. In the next
chapter, we continue our investigation on multi-scale entropy contribu-
tions to analyse natural images. We will introduce a recent formalism
designed to evaluate the information content of high-dimensional
samples.
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1.6 take-home message

An intuitive viewpoint:

Total chaos is disquieting. Too much regularity is boring.
Aesthetics is perhaps the territory in-between.

Low HighIntermediate

Entropy

We test that assertion by building a large scale survey experi-
ment on visual appreciation of abstract images.

We find that image appreciation correlates really well with a
noiseless entropy measure: Structural Complexity.
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Interestingly enough, the spectrum of most appreciated visuals
strongly resembles that of natural images.
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2
M U LT I S C A L E R E L E VA N C E F O R I M A G E A N A LY S I S

La perfection n’est pas de ce monde et certainement pas dans mon métier. En
tout cas, tous les jours on se remet en question, on essaie de s’améliorer,

demain on sera meilleur qu’hier.

— Alain Ducasse

This chapter is a reorganization of the published paper [3], written in
collaboration with Alexandre Darmon, Iacopo Mastromatteo, Matteo
Marsili and Michael Benzaquen, and the results of which are based on
my doctoral works. Some minor rearrangements and supplemental
informations were added, to ensure consistency with Chapter. 3.

2.1 introduction

Recent advances in image processing have benefited from the emer-
gence of powerful learning frameworks combining efficient architec-
tures [185–187] with large high-quality databases [188, 189]. In partic-
ular, neural networks, layering simple linear and non-linear operators
such as convolution matrices or activation functions, have proven to be
very efficient to classify or generate high dimensional data. They are
now able to capture similarities between images with unprecedented
success. However, while their performance increases with the depth
of the architecture, it is generally at the cost of physical interpretation.
Understanding the learning dynamics and the statistical features of
the resulting images remains a challenge for the community [190, 191].

Before the advent of machine learning algorithms, tasks such as com-
pression [192, 193], denoising [86] or edge detection were (and in some
cases still are) performed using signal processing methods. Among
the classical approaches, the first kind is based on specific measures,
such as the widely used Peak Signal-to-Noise Ratio (PSNR) [194], that
are built upon common signal processing metrics (Euclidian distance,
power spectrum, etc.). The second family uses vision based experi-
ments to construct semi-empirical measures of similarities, such as
the Structural Similarity Index Measure (SSIM) [195]. In both cases the
approach is fully deterministic, which means that stochastic properties
like roughness, stationarity, or local correlations are ignored.

In the context of statistical physics, the problem of high dimensional
data inference has recently been addressed using a novel, fully ag-
nostic, approach. Developed to measure specific properties of finite
size samples [23], the approach consists in assessing the influence of
a prescribed compression procedure over simple entropy measures.
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Applications in biological inference [20], finance [127], language mod-
els [23] or optimal machine learning [129, 130] have already shown
exciting results. In this paper, we adapt the latter formalism to image
analysis and image processing, focusing specifically on the case of
natural images. Natural scenes or landscapes have long been studied
as they display distinguishable statistical features such as scale invari-
ance [120, 124, 125], non-Gaussianity [123], or patch criticality [126].

The outline of the chapter is as follows. In Section 2.2, we introduce
the Resolution/Relevance formalism using an illustrative example,
and adapt it to the purpose of image analysis. In Section 2.3, we anal-
yse a class of parameterizable images, that is random 1/ f α Gaussian
fields, and introduce the Multiscale Relevance (MSR). In Section 2.4,
we extend the analysis to natural images and their gradient magni-
tudes. We discuss meaningful statistical similarities with the synthetic
Gaussian fields. In Section 2.5, we show how the MSR approach can
be used in the context of a classic image processing task.

2.2 the resolution/relevance framework

Here we present the information-theoretic framework that was recently
introduced by Marsili et al. [23] for the agnostic analysis of high-
dimensional data samples and their behaviour under compression
procedures. Relevant metrics are derived from simple statistics of the
compressed samples.

2.2.1 Tradeoff precision/interpretability

Let us consider the problem of binning, namely clustering samples
of a random variable X into groups characterized by a similar value
of X. If the sampled data points S = {x1, . . . , xN} all take different
states (e.g. when the distribution of X is continuous) the empirical
distribution is a Dirac comb. In order to gain insight into the sampled
variable, one can visualize the data by using histograms with well
chosen bins/boxes. Indeed, this procedure enforces the emergence of
structure by reducing data resolution through compression, allowing
for more interpretability. One can then make assumptions on the
underlying process and find the optimal parameters to best describe
the data.

We illustrate this intuition by sampling N = 100 realizations of a
Gaussian variable X ∼ N (0, 1) in Fig. 2.1. The data are binned into n
identical boxes, for three different values of n = 5, 23 and 400. We also
define the bin width ℓ as a compression parameter transforming the
original sample S into a compressed sample S ℓ. The compression step
consists in replacing each data point by its corresponding histogram
bar index. Figure 2.1(a1) (large ℓ) displays a situation of oversampling.
With only five bins a considerable amount of data resolution is lost.
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Ĥ
[k

]/
lo

g
2
N

(a1)
(a2)

(a3)

(b) Oversampling Undersampling

Figure 2.1: Relevance analysis of a Gaussian distribution sample (N = 100).
(a) Influence of the number of bins n on the normalized histogram
(black bars), for (a1) n = 5, (a2) n = 23 and (a3) n = 400. The
red curve corresponds to the underlying distribution. The bottom
markers (+) represent the initial sample data points with color
indicating local data density. (b) Resolution/Relevance curve.

On the contrary, Fig. 2.1(a3) (small ℓ) corresponds to an undersampling
regime, with very narrow bins (mostly containing only one data point)
and a resulting distribution close to a Dirac comb. Figure 2.1(a2)
(intermediate ℓ) appears as a reasonable compromise in which the
histogram is visually close to the generator density, indicating we
might be close to the optimal level of data compression. From the
latter observation, one is tempted to go for a Gaussian model, with
suitable estimators for the mean and variance. However such decision
solely relies on a specific compression level, and thus does not make
full use of the sample at play.

The formalism that we introduce in the next section provides a prin-
cipled framework to connect the choice of the compression level with
an optimality criterion that is agnostic to the nature of the generative
model from which the data is sampled.

2.2.2 Resolution and relevance

Previous work from Marsili et al. [127] addressed the issue of the
overampling/undersampling transition by introducing observables that
allow one to monitor changes in a reduced sample S ℓ = {sℓ1, . . . , sℓN}
obtained by compressing S with a parameter ℓ. First, let us consider
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kℓs the number of data points of identical state s and mℓ
k the number of

states appearing k times in S ℓ. It follows that ∑s kℓs = ∑k kmℓ
k = N. For

example, in the compressed sample displayed in Fig. 2.1(a1), values
taken by kℓs are {2, 26, 49, 23, 0}, and since each bar in the histogram
has a different height, one has m2 = m26 = m49 = m23 = m0 = 1 and
mk = 0 otherwise.

One can then define the Resolution Ĥℓ[s] and Relevance Ĥℓ[k] as:
{

Ĥℓ[s] = −∑s
kℓs
N log2

kℓs
N ,

Ĥℓ[k] = −∑k
kmℓ

k
N log2

kmℓ
k

N .
(2.1)

The Resolution is the entropy of the empirical distribution {pℓs =

kℓs/N}s and describes the average amount of bits needed to code a
state probability in S ℓ. The compression clusters data points together
hence reducing the average coding cost. The Resolution is maximal
for raw data and monotonically decreases with ℓ, until it reaches the
minimally entropic fully compressed sample. The Relevance is the
entropy of the distribution {qℓk = kmℓ

k/N}k, that is the probability that
a data point sampled from S ℓ appears k times in the sample. This
is a compressed version of pℓs , where identical frequency states are
clustered, dropping their label s in the process. Knowing qℓk is then
sufficient to build a histogram without labels, and is equivalent to
assuming indistinguishability of states sampled the same number of
times. Sorting them in decreasing frequency values would yield the
famous Zipf plot. In the end, the Relevance encodes the height of each
bar and is maximal when {kmℓ

k/N}k is uniformly distributed, leading
to mk ∝ k−1. We reported in Tab. 2.1 the typical sampling situations
and their corresponding value in Resolution/Relevance.

Coming back to the Gaussian sampling example, Fig. 2.1(b) dis-
plays Ĥℓ[k] as function of Ĥℓ[s], obtained by varying ℓ. Corresponding
values for n = 5 (a1), n = 23 (a2) and n = 400 (a3) are highlighted.
Note that (a2) maximizes Relevance while (a1) and (a3) respectively
correspond to oversampling and undersampling. Let us emphasize at
this point, that, despite the visual impression in this specific example,
the sample (a2) does not necessarily minimize the distance between

Table 2.1: Typical sampling situations.

Situation Sampled States {mk}k H[s] H[k]

Full

Oversampling
Identical

mN = 1

mk = 0
0 0

Full

Undersampling
Distinct

m1 = N

mk = 0
log N 0

Intermediate

sampling
Intermediate mk ∝ k−1 H0 max H[k]
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(a) (b)

(c) (d)

Figure 2.2: Illustration of the segmentation/compression procedure on a
classic benchmark image. (a) Original Image. (b) Thresholded
image at a given quantile value a. (c) Thresholded image with
reduced grid. (d) Reduced sample where each grid cell is replaced
by the average pixel color.

the underlying and empirical distributions. Interestingly, the Resolu-
tion/Relevance properties are only dependent on the raw sample S
and the compression parameter ℓ, making the overall approach agnos-
tic to the generating process. What is most interesting is thus the way
in which the sample evolves with compression, while transitioning
from undersampling to oversampling. As a result, one must choose
a compression procedure that allows to crossover between these two
regimes.

2.2.3 Application to images

Images are usually described as fields h(r) where r ∈ {1, . . . , NX} ×
{1, . . . , NY}. This is equivalent to a sample made of S = {(r, h(r)}
of size N = NX NY, describing the position and color of each pixel.
Naturally, S lies in the full undersampling regime as each data point
is unique.
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To compress grayscale images, we therefore propose a simple proce-
dure consisting in two steps: (i) segmentation, and (ii) spatial compres-
sion, as illustrated in Fig. 2.2. Segmentation means grayscale levels
are transformed into black and white pixels using a threshold level a
(fraction of black pixels), leading to the binary image ha(r) (Fig. 2.2(b)).
This lowers the amount of possible color states in the sample, a neces-
sary condition to reach the full oversampling regime. Note that one
can reconstruct the original image by averaging over all segmentations.
This step is generalisable for colors, for example by using a triplet
(aR, aG, aB) in the RGB space. The second step consists in the compres-
sion of pixel positions (Fig. 2.2(c)). One replaces each coordinate r by
the index rℓ of its position on a grid of stepsize ℓ. One ends up with a
compressed sample:

S ℓ
a = {(rℓ, ha(r))}. (2.2)

Each pixel value is then replaced by its average in the reduced grid
(Fig. 2.2(d)). Finally, kℓ(rℓ,0) and kℓ(rℓ,255) would be defined as the number

of black and white pixels in cell rℓ, and mℓ
k as the number of cells with

k black or white pixels at scale ℓ. Using Eqs (2.1), one can compute the
values of Ĥℓ[s] and Ĥℓ[k] that will be used in the sequel.

One can make a direct analogy between this compression proce-
dure and image processing architectures such as Convolution Neural
Networks (CNN) [185]. First, their constitutive layers usually combine
a spatial compression procedure, that is a first linear convolution,
with a trainable or prescribed layer. Then, a segmentation step is
performed using a nonlinear transformation on pixel values called
activation function. In a similar fashion, our procedure consists in a one
layer network, taking S as input and giving S ℓ

a . Interestingly, we do
not need to specify a particular convolution matrix as an input to the
algorithm, but only a size parameter, by that making our approach
more agnostic. Ultimately, note that any compression procedure al-
lowing the undersampling/oversampling transition could have been
selected. For example, one could use Discrete Fourier or Wavelet co-
efficients, classically used in JPEG compression algorithms [192, 193].
Another approach would consist in using intermediate representa-
tions of trained or untrained networks with binary activation functions
(perceptron-like) and tunable layer size, as in the Resolution/Rele-
vance trade-offs of deep neural architectures [130].

2.3 relevance of 1/ f α
textures

In this section we illustrate the use of the metrics (Ĥℓ[s], Ĥℓ[k]) on a
simple yet widely encountered class of processes: two-dimensional
1/ f α random Gaussian fields. We first recall the properties of such
fields and then study the influence of α on Resolution and Relevance.
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2.3.1 On 1/ f α Gaussian fields

1/ f α Gaussian fields consist in the linear filtering of an initially uncor-
related 2D white noise (see Appendix. A.1). The latter presents a flat
Fourier spectrum that is then multiplied by 1/ f α, therefore leading to
a power spectrum scaling as 1/ f 2α. This leads to the forcing of spa-
tial correlations in the direct space. Such power law filter introduces
scaling properties that are usually described by the roughness Hurst
exponent H := α − d/2 where d is the field dimension (here d = 2).
Depending on the sign of H, one can recover two types of processes.
When H < 0 the random field is stationary, that is with fixed mean
and correlations C(δr) ∝ δr2H at lag distance δr. The specific case
H = −d/2 corresponds to an unmodified spectrum (white noise).
When H > 0, the process is no longer stationary but possesses station-
ary increments with scaling ⟨[h(r + δr)− h(r)]2⟩ ∝ δr2H. We generate
three samples of distinct roughness values H ∈ {−1/2, 0, 1/2}, shown
in Fig. 2.3(a), (b) and (c) respectively. The Hurst exponent influences
the visual aspect of roughness, with images getting smoother as H in-
creases. Figure 2.3(d) shows the azimuthally averaged power spectrum
S( f ) = ⟨|h̃( f , θ)|2⟩θ allowing to check that the generating method is
robust as the expected scaling behavior and exponents are recovered.

2.3.2 Multiscale relevance of random textures

We now perform the segmentation described above on the fields pre-
sented in Fig. 2.3. The resulting textures for threshold value a = 0.5
are displayed in Fig. 2.4(a)-(c) and the corresponding Resolution/Rele-
vance curves (Ĥℓ[s], Ĥℓ[k])ℓ∈{1,...,N} are plotted in Fig. 2.4(d).

One can see that while the patterns remain quasi-identical for H =

−0.5 (Fig. 2.4(a)) and H = 0 (Fig. 2.4(b)), this is not the case for
H = 0.5 (Fig. 2.4(c)) where large areas of uniform tint are created by
the segmentation procedure. This is due to the presence of stronger
spatial correlations, inducing more persistence of patterns and less
fluctuations around the average. Further, one can see that the H = 0
texture displays interesting visual features at all scales, as reported in
visual quality assessment experiments [1], while they appear limited
to small scales for H = −0.5. It is not straightforward to connect
these observations with the Relevance curves in Fig. 2.4(d), as the
relative Relevance varies with Resolution. It thus seems more natural
to consider the Relevance across all levels of compression.

To do so, we introduce a measure that quantifies the overall robust-
ness of a sample to compression called Multiscale Relevance (MSR) and
defined as:

MSR :=
∫

Ĥℓ[k]dĤℓ[s], (2.3)
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Figure 2.3: 1/ f α textures generated from the same white Gaussian noise seed.
(a), (b), (c) Representations of 1/ f α random fields with respective
roughness H = −0.5, 0, 0.5 and spatial resolution 512 × 512. (d)
Azimuthally averaged power spectrum ⟨S( f , θ)⟩θ . Black dashed
lines indicate the theoretical power spectrum decay 1/ f 2α with
α = 1 + H.

which is non other than the area under the Resolution/Relevance
curve. This measure was introduced in [20] as an order parame-
ter characterizing neuronal activity time series, and was success-
ful at distinguishing useful information from ambient noise, as ex-
pected from a complexity measure [22]. Note that while several
measures of complexity based on multi-scale entropy contributions
have already been introduced in the literature [21, 196], the MSR
differs in that the contribution of each scale is naturally weighted
by the Resolution. Other measures generally give identical weights
to each compression level. For the images in Fig. 2.4, one obtains
MSR(H = 0.5) < MSR(H = −0.5) < MSR(H = 0). This is consistent
with our previous visual impression that the texture in Fig. 2.3(b)
seems to contain more information at different scales.
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Ĥ
[k

]/
lo

g
2
N

(d)

O
v
er

sa
m

p
li
n
g

U
n
d
ersa

m
p
lin

g

H = -0.5

H = 0.0

H = 0.5

Figure 2.4: (a), (b), (c) Segmented versions of the textures of Fig. 2.3, with
H = −0.5, 0, 0.5 respectively, and threshold value a = 0.5. (d) Res-
olution/Relevance curves normalized by the maximum entropy
log2 N.

2.3.3 Most relevant segmentation(s)

One naturally expects the segmentation threshold a to influence the
Relevance. Indeed, at given H < 0, most relevant representations do
not seem to correspond to a = 0.5. This is confirmed in Fig. 2.5(a)
where the Relevance curve for H = −0.8 is higher for a = 0.66 than
a = 0.5. Figure 2.5(b) displays the MSR as function of a for three val-
ues of H. For H = −0.8 (dashed curve) one observes two symmetric
maxima at ac = 0.5 ± .13, consistent with Fig. 2.5(a). Interestingly,
breaking the symmetry in the distribution of pixels by choosing a
“background canvas" leads to more interesting samples in terms of
Resolution/Relevance. As one can see in Fig. 2.5(c), there is a bifurca-
tion at H ≈ 0 below which two maxima of MSR coexist. The obtained
values of ac for H < −1/2 fall close to the classic percolation threshold
a∗ = 0.59 on the 2D square lattice [197]. Indeed, our segmented images
are equivalent to samples of the correlated percolation site problem.
In particular, Prakash et al. [24] observed, as we do here, that when
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Figure 2.5: Influence of the segmentation value a. (a) Relevance curves for
H = −0.8 for two values of a. (b) MSR as function of a for
H = −0.8 (black dashed line), H = −0.1 (red dashed dotted line)
and H = 0.5 (black dotted line). (c) Density plot MSR(H, a). The
maxima are signified with black markers.

H → 0 from below both maxima continuously meet at ac = 0.5 while
flattening the MSR(a) curve around such value (see Fig. 2.5(b)). At this
critical point, the information content of images becomes less sensitive
to the segmentation process.

When H ≈ 0, MSR(a) displays one unique maximum at ac = 0.5.
However, as H increases further, so does the range of correlations,
leading to finite-size effects. The resulting ac becomes very noise
dependent as different samples lead to different critical thresholds.
Interestingly, such behavior was also reported in the percolation of 2D
Fractional Brownian Motion [198].

2.4 relevance of natural images

We now focus on natural images, namely pictures of natural scenes
and landscapes. These have long been studied in the literature [119,
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120, 123–126], as they display robust statistical features, such as scale
invariance and pattern distribution criticality.

2.4.1 On the grayscale field

Figure 2.6(a) shows the photograph from Tkacik et al. [199] in the
Okavango Delta in Botswana, described as a “[...] tropical savanna
habitat similar to where the human eye is thought to have evolved". The
image is subdivided into fifteen patches of size 512 × 512 pixels. One
can observe a wide variety of patterns, ranging from uniform shades
of light gray in the sky to strong discontinuities with tree branches
and noisy vegetation textures.

A power spectrum analysis for all patches is shown in Fig. 2.6(b).
The shape in the high frequency limit is due to camera calibration,
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Figure 2.6: (a) Natural grayscale image from [199], segmented in patches of
size 512× 512. (b) Power spectrum for each patch. Dotted line is
a decaying power law with exponent −2. (c) MSR as function of
a for each patch.
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optical blurring, or post-processing procedures, which are indepen-
dent of the patch content. At low frequency we observe a decaying
power law with exponent −2.0 ± 0.1. Note that, although there are
small fluctuations that may be related to patch features [119], the
power spectrum analysis seems rather unable to capture the visual
heterogeneity from one patch to another mentioned above.

This being said, S( f ) ∼ 1/ f 2 translates to H = 0.0 ± 0.1 in terms
of roughness exponents, which is precisely the range in which the
MSR displayed critical and nontrivial behaviour for random textures
in Sec. 2.3. We thus expect that the MSR approach may allow for
a finer characterization of each patch. Another issue with classical
spectral analysis is that the power spectrum of the image is expected
to be extremely sensitive to non-linear transformations of its color
histogram, even monotonous, that keep the visuals identical. With the
MSR method, there is no such issue as the segmentation parameter
a defines the proportion of black and white pixels, regardless of the
shape of the color histogram.

Figure 2.6(c) shows the MSR curves for all patches. First observation
is that the range of MSR values is similar in magnitude to that of
H ≈ 0 textures in Sec. 2.3. Then, one clearly sees significant differ-
ences between the MSRs of each patch. Patches containing mainly
bushy textures with no abrupt changes in patterns display a unique
maximum in the MSR(a) curve. Note that the singularities that appear
in some cases are due to specific colors being disproportionate in the
histogram (uniform sky). Patches containing heterogeneous shades, or
physical objects of different sizes combining tree truncs, branches and
bush (e.g. bottom left in 2.6(a)) tend to display two maxima, similarly
to H < 0 (see Sec. 2.3).

Figure 2.7 focuses on the bottom-left patch of Fig. 2.6(a). This sub-
image seems to display two distinct dominant color levels. Such levels
actually correspond to the maxima of the MSR curve in Fig. 2.7(b).
This is visually confirmed from the segmentations 2.7(c) and 2.7(d)
which capture best the fluctuations at the top and bottom of the image
respectively. We emphasize that the latter representations together
constitute the most informative segmentations of (a). Superimposing
them (Fig. 2.7(e)) indeed leads to a good approximation of the original
image with only three color levels {0,127,255}. The MSR method thus
seems to account well for the diversity of content of natural images,
inaccessible through classical power spectrum analysis.

2.4.2 On the gradient magnitude

To understand further the architecture of natural images, we now
focus on the gradient magnitude field intended to capture strong
spatial irregularities such as contours or borders. In addition, taking
the gradient has the advantage of stationarizing the initial field. The

48



gradient analysis is a fundamental block of various image processing
procedures, from classic edge detection [200], to supervised [201] or
unsupervised [185] classification architectures in machine learning.
From a more perception-based psychophysical perspective, it has been
shown that essential information such as orientations, geometries and
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Figure 2.7: (a) Bottom-left patch of Fig. 2.6(a). (b) MSR as function of a
with highlighted critical thresholds (a1, a2) = (0.42, 0.73). (c)(d)
Corresponding segmented patches. (e) Image obtained by adding
(c) and (d), with three color levels {0,127,255}.
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Figure 2.8: (a) Gradient Magnitude field of Fig. 2.6(a), with j = 0, divided
in 512 × 512 patches. (b) MSR as function of a for the different
patches.

positions could be directly inferred from the visual assessment of the
gradient field [202–204]. We compute the gradients |∇h| from wavelet
convolutions. This method is now extensively used as shows excellent
robustness for signal processing tasks [205–209]. On has:

|∇h| = |h ∗ ψj(r)|2, (2.4)

where ψj := (ψj,x, ψj,y) is a wavelet gradient filter of characteristic
dyadic size 2j. This wavelet consists in mixing gradient and Gaussian
windows, the latter being of standard deviation σj = 2j pixels. The
procedure with j = 0 yields the image in Fig. 2.8(a). As expected,
one obtains a strong signal (bright shades) for fluctuating textures
of vegetation or sharp contours like branches, and low values (dark
shades) for smooth and uniform regions like the sky.

We then conduct the MSR analysis on these new patches (Fig. 2.8(b)),
and observe that most patches give flat MSR curves. This is tantamount
to the critical H ≈ 0 case with logarithmic correlations described in
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Figure 2.9: Influence of the Gradient Wavelet size. (a) Original patch from
Fig. 2.6(a). (b) MSR as function of a for gradient wavelets of dyadic
size (2j), j ∈ {0, 1, 2, 3}. (c)(d) Gradient magnitudes for j = 0 and
j = 2 respectively. (e)(f) Segmented gradient magnitudes at critical
threshold values ac for j = 0 and j = 2 respectively.
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Sec. 2.3 (see Fig. 2.5). One may indeed think of natural images as a
patchwork of objects of various sizes; such superposition of patterns
is reminiscent of additive cascades processes [210] that also display
logarithmic correlations.

We now explore the effect of changing the wavelet size (see Fig. 2.9).
We chose the top middle patch in Fig. 2.8(a) as it contains large objects
and small scale details. As one can see in Figs. 2.9(c) and (d), increasing
j has the effect of coarse-graining small fluctuations to only leave larger
ones. This translates into smaller Relevance at low compression, which
in turn reduces the overall MSR (Fig. 2.9(b)). Finally, the segmented
gradient fields at critical threshold values (Figs. 2.9(e) and (f)) remain
visually close to initial fields (Figs. 2.9(c) and (d)). This is indeed
expected as gradient magnitudes already show a large proportion of
black and white pixels at the contours of physical objects.

2.5 denoising with rudin-osher-fatemi algorithm

Here we illustrate the potential of MSR in the context of a common
digital image processing task: image denoising

Such procedure consists in correcting unwanted noise caused by
signal processing or camera artefacts. To tackle this problem, a classic
algorithm is the Rudin-Osher-Fatemi (ROF) [86] which minimizes the
following functional:

L[ f ] = λ∥∇ f ∥2
2 + ∥h − f ∥2

2 , (2.5)

where h is the original noisy image, f the target denoised image
and λ a regularization/penalty term preventing gradient explosion and
allowing for smooth solutions. The free parameter λ is generally
chosen by the operator through visual assessment.

Here we propose to calibrate such a model using classic signal pro-
cessing metrics, namely the Peak Signal-to-Noise Ratio (PSNR) [194]
and the Structural Similarity Index Measure (SSIM) [195]. PSNR is
directly related to the Mean Squared Error (MSE) between original
and mapped images through PSNR = 10 log10

(
∆2/MSE

)
where ∆

is the range of the signal, that is 255 for typical grayscale encoding.
SSIM is based on the comparison of patches between two images and
takes into account properties such as luminance and contrast. Both
are widely used in the digital image processing community. We also
compute the Multiscale Relevance over the gradient magnitude field
MSR∇ as we expect the denoised image to display the same properties
as natural images. This last measure does not have a priori, and can
hence be used to calibrate the algorithm.

We consider the image in Fig. 2.10(a) obtained by adding a Gaussian
white noise to the patch in Fig. 2.6(a). We intentionally choose a
high noise value to make the denoising procedure difficult, such that
some details from the original image may never be recovered. Our
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Figure 2.10: Denoising. (a) Noisy patch obtained from adding a Gaussian
noise (σ = 100) to the same patch from Fig. 3.4(a). Rescaled
scores as function of λ for different performance measures: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Mea-
sure (SSIM) and MSR over the gradient field MSR∇. (c),(d), (e)
Denoising at optimal regularization parameter λ∗ for PSNR,
SSIM and MSR∇ respectively.

goal is to seek the optimal λ∗ leading to the best visual. The scores
obtained for each method as function of λ are displayed in Fig. 2.10(b).
Optimally denoised images using PSNR, SSIM and MSR∇ are shown
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in Fig. 2.10(c), (d) and (e) respectively. With PSNR, one is left with a
rather high level of noise, while details on the trunk surface or in the
branches are conserved. In contrast, SSIM removes a significant part
of the noise, but at the cost of blurring small scale details. Although
less obvious than for the color mapping procedure, optimal denoising
with MSR∇ seems like a good compromise between a too noisy PSNR
image and an overly smoothed SSIM image.

2.6 conclusion

Let us summarize what we have achieved. We first introduced the
Resolution/Relevance framework through a simple illustrative exam-
ple. We showed how such formalism can be applied to image analysis.
With the aim of investigating the framework in a controlled environ-
ment, we started by studying random textures. We then defined the
Multiscale Relevance (MSR) which measures the entropy contribution
at all compression scales, and obtained statistical features reminiscent
of the correlated percolation problem. In particular, we highlighted
the existence of a critical roughness parameter Hc ≈ 0, corresponding
to logarithmic correlations, and discussed optimal segmentation. We
then extended the analysis to natural images and drew a successful
comparison with random textures; we observed strong similarities
with critical random Gaussian fields. Looking at gradient magnitude
fields revealed an even stronger similarity to roughness criticality. Fi-
nally, we confronted the MSR procedure to a classical signal processing
measure in the context of a simple image processing task: denoising.
We obtained first interesting results that highlights the potential of
the agnostic MSR approach in the context of image processing. This
applicability is further illustrated in Ch. 3, in the case of the classic
color mapping problem.

Future research should also focus on analytically tractable develop-
ments of Relevance and Resolution in simple cases, e.g. Gaussian white
noise with well chosen cascading processes. Also note that we con-
sidered a straightforward compression procedure on the direct space
but equivalent representations, for example Discrete Cosine [192] or
Wavelet harmonics [193], could be used to define the reduced sample
S . Finally, we have seen that the MSR is able to capture the most
relevant segmentation values, which may be used as a pre-processing
method for learning frameworks.
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2.7 take-home message

Natural images display robust statistical properties.

We adapt a recent formalism, intended to describe high-
dimensional data samples, to image analysis.

• Resolution Ĥ[s] and Relevance Ĥ[k] respectively measure
the entropy of the sample and of its frequencies.

• The area under the Resolution/Relevance curve is called
the multiscale relevance (MSR), and measures information
robustness over all compression scales.

Resolution

R
el
ev
an
ce

MSR

Oversampling Undersampling

We find that:

• Gaussian 1/ f α textures display percolative behaviour,
with maximal MSR values around H = α − 1 = 0.

• Natural images fluctuate around H = 0, while displaying
features informing on specific image content.

• Gradient magnitudes, signifying contours of objects, fur-
ther condensate around H = 0.

Enforcing high/robust MSR properties may be an interesting
performance metric for image processing algorithms.
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3
A P P L I C AT I O N T O I M A G E P R O C E S S I N G : C O L O R
M A P P I N G

Think of color, pitch, loudness, heaviness, and hotness. Each is the topic of a
branch of physics.

— Benoit (.B [211]) Mandelbrot

This chapter is a reorganization of [2], written in collaboration with
Alexandre Darmon and Michael Benzaquen, and the results of which
are based on my doctoral works. Some minor rearrangements were
made, to ensure consistency with Chapter. 2.

3.1 introduction

In physics, many problems can be formulated in terms of energy
minimization. However, for complex systems with a large number of
degrees of freedom, analytical minimizers are often difficult to find,
and the ground state is seldom representative of the true physical
state of the system at hand. To overcome such issues, a classical
method in statistical thermodynamics is to slightly relax the energy
minimization constraint and introduce a probabilistic model relying
on entropy maximization [212, 213]. Such an approach has allowed
for the exploration of suboptimal solutions with thermal noise and
led to the emergence of historical results on phase transitions, e.g. for
Ising models [11, 214]. This method has since been popularized in
various fields, for example in biology for inference problems [76] or
in computer science for classifiers (see e.g. the softmax function [74])
and annealing procedures [71].

Let us now consider the problem of field quantization and its ap-
plication for images, that is color quantization. It consists in choosing
a set of authorized states called the color palette and then projecting
each pixel of the original image onto this palette. This method is
naturally very relevant for compression and other problems involving
digital image processing. The first step consists in finding the most
convenient color palette from the original histogram using thresh-
olding levels [133, 134] or clustering methods [135–138]. The second
step, called pixel mapping, is usually achieved by performing a simple
nearest color procedure. Stochastic mapping – or dithering procedures
– are also used to reduce threshold artifacts and improve the overall
visual quality of the quantized image [140–142].

Here, we shall focus on the pixel mapping step by constraining the
color palette a priori. The aim of the present chapter is to use seasoned
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statistical physics tools and novel information theory methods intro-
duced in Ch. 2 to tackle the color quantization problem. We adopt
a field theory approach, based on the exploration of simple observ-
ables at and around optimality using thermal noise. In Section 3.2
we provide a method to explore new solutions to the quantization
problem with a Maximum Entropy based approach. In Section 3.3.1
we show that, in the specific case of color quantization and with the
simplest error measure, this method yields surprisingly good visuals
when varying the temperature of the system. To quantify this obser-
vation, and inspired by [142], we use the convoluted error to look
for optimal thermal noise levels regarding the overall image qual-
ity. In Section 3.3.2 we confront the results for images with different
structural characteristics, and show that the optimal temperatures
are a good proxy for image complexity. In Section 3.4, guided by
[142], we implement a Monte Carlo algorithm to directly minimize the
convoluted error. From the tools introduced in Ch. 2, we determine
in Sec. 3.5 a method to calibrate the temperature and convolution
parameters. Finally, in Section 3.6 we illustrate how the method can
be extended to other types of images, different target color palettes
and alternative convolution kernels.

3.2 state quantization

We consider a field h(r) ⊂ F and want to build its optimal quantized
version ĥ(r) ⊂ F̂ where F̂ is a subset of F. To do so, one usually
minimizes a loss function between ĥ and h. A first natural choice
for the loss function is a site-wise measure of the quantization error
L(h, ĥ) = ∑r LF(h(r), ĥ(r)) where LF is the loss for each site, usually
Euclidean or logical. With such a definition, the field ĥ∗ minimizing
L(h, ĥ) is simply obtained by replacing each original data with the
closest state in F̂. Note that this is what commonly happens during
the sampling of a continuous signal with an instrument, such as
a camera projecting colors in the RGB space [215]. There are cases
where this simple quantization process leads to unsatisfying ĥ∗ fields
deviating too much from the original data. For example, quantizing
a continuous white noise on a grid with a threshold level artificially
generates correlated samples of the site percolation problem [216–218].

To engineer more relevant loss measures, our idea is to explore
suboptimal configurations around ĥ∗ using the Maximum Entropy
approach mentioned above [212]. This allows one to define the most
agnostic – that is the most entropic – classes of distributions with given
constraints, such as normalization. In the context of state quantization
we look for the distributions (P) over quantized fields that maximize
the following functional:
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J(P) = S(P)−µ[∑̂
h

P(ĥ)− 1]−λ ∑̂
h

P(ĥ)
[
L(h, ĥ)−L(h, ĥ∗)

]
,

(3.1)

where the first term S(P) = −∑ĥ P(ĥ) logP(ĥ) is the distribution
entropy, the second term is the normalization constraint, the last one a
constraint on quantization error, and µ and λ their respective Lagrange
multipliers. Differentiating Eq. (3.1) with respect to P(ĥ) and µ allows
to enforce normalization while leaving λ as a free parameter. This
leads to:

Ph,λ(ĥ) =
1

Zh,λ
e−λL(h,ĥ), (3.2)

where Zh,λ is the partition function. By setting T := 1/λ, we recover
a Boltzmann-like distribution where the loss function plays the role
of the energy. In extreme cases such as T → 0 and T → +∞, we
respectively recover the Dirac delta distribution centred on ĥ∗ and
the uniform distribution. As in the study of any Hamiltonian system,
increasing the temperature softens the energy minimization constraint
and is therefore the opportunity to test other basic observables.

3.3 first approach on mapping

3.3.1 Pixel mapping

We now apply the above formalism in the classical image processing
problem of grayscale quantization. The goal is to reduce the amount
of shades taken by the pixels in an image, usually described with
256 levels. In this context, h and ĥ respectively correspond to the
original and reduced images, while F and F̂ respectively correspond
to the initial and quantized sets of grayscale levels. To define the loss
function we use the naive Squared Error, obtained from squaring the
Euclidean distance:

L(h, ĥ) = ∥h − ĥ∥2
2 = ∑

r

[
h(r)− ĥ(r)

]2. (3.3)

This loss function being pixel-wise separable, so is the corresponding
distribution (Eq. (3.2)):

Ph,T(ĥ) = ∏
r

ph(r),T(ĥ(r)) = ∏
r

1
zh(r),T

e−[h(r)−ĥ(r)]2/T, (3.4)

where zh(r),T is the partition function of the marginal distribution
ph(r),T.
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Figure 3.1: Influence of thermal noise on color quantization. (a) Original
benchmark image. (b-d) Quantized versions of the original image
generated at low (T ≃ 0), intermediate (T = 0.3) & high (T = 1)
temperatures using Eq. (3.4). (e) Evolution of the rescaled Mean
Convoluted Squared Error between the original and quantized
images (Eq. (3.5)) with temperature for different values of the
convolution parameter α (Eq. (3.6)).
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To test our method, we use a classical benchmark image taken from
the USC-SIPI database [219], shown in Fig. 3.1(a), and we sample quan-
tized versions by using the marginal distributions defined in Eq. (3.4).
The authorized colors are chosen as black and white, meaning that
F̂ = {0, 255}. Figure 3.1(b) was generated at T → 0, equivalent to
the naive minimization ĥ∗ presented in Sec. 3.2, where any texture in
the [0, 127] or [128, 255] intervals is simply replaced by black or white
pixels respectively. The image, although still recognizable, displays
thresholding artifacts such as contouring effects for shaded textures
and suppresses a vast amount of details. In Fig. 3.1(c), we introduce
thermal noise with intermediate temperature T = 0.3, leading to a
more interesting visual. Parts of the lighter and darker shades are re-
constructed and other details like contours now accurately correspond
to the real physical features of the objects, and no longer to fluctu-
ations around the threshold value. In Fig. 3.1(d), one can see that a
higher thermal noise level no longer represents a positive contribution,
as one excessively randomizes the pixel attribution rule.

Figure 3.1(c) thus interestingly appears to be a better quantized ver-
sion than Fig. 3.1(b)&(d), especially when looking at it from a distance.
Precisely, taking a step back has the effect of coarse-graining/convoluting
the image and erasing the small-scale fluctuations created by thermal
noise. To quantify such an observation, we define the Convoluted
Squared Error Lθ comparing the original and quantized fields after a
convolution through a given kernel θ:

Lθ(h, ĥ) = ∥(h − ĥ)⊛ θ∥2
2. (3.5)

Among the many classes of kernels commonly used in image pro-
cessing, we choose a power-law kernel of the form θγ(r) ∝ ∥r∥−γ, for
the sake of physical interpretability and mathematical tractability. Its
Fourier transform is also a power-law:

θ̃α(k) ∝ ∥k∥−α, (3.6)

with α = d/2 − γ, where d = 2 is the space dimension.
When α = 0, the kernel in the direct space is narrow and leaves the

image invariant. As α increases, the convolution operation replaces
each pixel value with its local average of the field. Figure 3.1(e) dis-
plays the Mean Convoluted Squared Error EPh,T [Lθ ] as a function of
temperature (see Appendix B.1 for the details of the computation
of EPh,T [Lθ ]). As expected, the unconvoluted Squared Error (α = 0,
solid line) increases monotonously with T. For higher values of α,
however, a local minimum appears at a finite temperature T⋆

α . Note
that Fig. 3.1(c) was generated with a noise level T close to the minima
displayed in Fig. 3.1(e), thereby confirming that the Mean Convo-
luted Squared Error is a relevant observable for the color quantization
problem.
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3.3.2 Visual complexity and optimal temperature.

The optimal temperature T⋆
α naturally depends on the color histogram

of the original image, but also on the spatial arrangement of its pixels.
To quantify this last statement, we compare our benchmark image with
its transformation through a histogram-invariant operation. We use
a shuffling procedure that randomly selects two pixels and switches
their position. The procedure is then repeated until the number of
switching operations is equal to the number of pixels in the image, that
is 5122. In Figs. 3.2(a1) and (a2), we respectively display the original
image and its shuffled version, and we plot the temperatures T⋆

α as
function of α in Fig. 3.2(a3). Note that the shuffled image is still recog-
nizable as some pixels are never selected by the procedure. For low
values of α, the kernel is too narrow and the convolution has almost
no effect, unsurprisingly leading to T⋆

α = 0 for both images. Then,
both temperatures monotonously increase with α until they meet at a
plateau where the evolution is independent of the spatial distribution
of pixels. Interestingly, we observe that T⋆

α is systematically higher for
the original image, meaning that the shuffling procedure has strongly
affected its structural properties. Indeed, natural images such as the
peppers present intelligible patterns and strong spatial regularities,
far from the random and uncorrelated rearrangement that the shuf-
fling procedure creates. This behaviour is somehow reminiscent of
several classical physical systems such as the Random Field Ising
Model (RFIM) for which irregularities lower the critical temperature
[220, 221] (see Appendix B.2 for more details on the link between the
Convoluted Squared Error and the RFIM Hamiltonian).

In Fig. 3.2(b), we test another approach by comparing the evolution
of T⋆

α with α for two different benchmark images, each presenting
interesting visual features at different scales. Figure 3.2(b1) presents
less small scale features than Fig. 3.2(b2), resulting in a higher optimal
temperature for low values of α, see Fig. 3.2(b3) (the inset shows
the difference of temperatures ∆T⋆

α between the two images). This
tendency reverses at higher scales. Using this procedure we compared
a number of other types of natural images (forests, fields, buildings,
landscapes), as well as classes of simple abstract textures like those
presented in [1], with the same conclusions. This supports the intuition
that the temperatures T⋆

α may be used as measures of multi-scale
visual complexities and as such, consistent input features for aesthetic
assessment algorithms [92, 106, 222–224].
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Figure 3.2: Evolution of the optimal temperature T⋆
α with the convolution

parameter α for different images. (a) Comparison between the
original image and a shuffled version generated with a randomiz-
ing procedure. (b) Comparison between two benchmark images
(Peppers & Mandrill) displaying structural features at different
scales.
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3.4 monte-carlo image generation

As argued above, the Convoluted Squared Error Lθ in Eq. (3.5) is
a highly relevant observable for the color quantization problem. As
such, it seems reasonable to use it as our effective energy function. An
idea, see e.g. [142], is to directly generate images minimizing this error
function using a Monte Carlo algorithm. This algorithmic approach
is necessary as there is no explicit minimum of Lθ(h, ·). Let us stress
that, while Monte Carlo approaches and other dithering methods
have historically contributed to the image quantization problem, the
last two decades were marked by more evolved developments, using
adaptive kernels [225] and clustering algorithms [226, 227]. Here, for
the sake of physical interpretation, we focus our attention on the
classic Monte Carlo approach as it contains the minimal ingredients
to tackle this problem.

Here we implement a simplified Monte Carlo algorithm where we
use the power-law kernel defined in Eq. (3.6) (rather than the Gaussian
window with simulated annealing procedures used in [142]).

(a) (b)

(c) (d)

Figure 3.3: Monte Carlo image generation. (a) Original benchmark image.
(b-d) Monte Carlo simulations for α = 0.02, α = 0.05, α = 0.5
respectively. Images were initialized with ĥ∗ and the simulation
ran until the loss function reached stability.

64



Images were initialized with the solution ĥ∗, and the algorithm
ran until convergence of the loss functions. For algorithmic effi-
ciency, we use the Parsival equality on Eq. (3.5) to obtain Lθ(h, ĥ) =
∥F [h − ĥ](k) · k−2α∥2

2, with F the Fourier transform calculated using
the FFT algorithm (thereby assuming periodic boundary conditions).
Figure 3.3(a) displays again the original image for reference, and
Figs. 3.3(b-d) the images corresponding respectively to α = 0.02,
α = 0.05, α = 0.5. For Fig. 3.3(b), the kernel function is narrow: small-
scale details like the shadows on the peppers are faithfully reproduced,
while leaving large areas of uniform color. Increasing α helps remov-
ing the latter artefact and improves the overall visual impression
when looked at from a distance, see Fig. 3.3(c). However, too large
convolution windows yield images lacking small-scale accuracy, see
Fig. 3.3(d). A compromise shall thus be found in order to generate the
most faithful quantized image, that is the optimal α providing the best
trade-off throughout different scales.

3.5 optimal pixel mapping

In classical dithering algorithms, calibration is usually achieved using
perception-related functionals, such as the Structural Similarity Index
Measure (SSIM), that mimick human visual quality assessment [195,
228]. Although very good results can be obtained with such met-
rics [229], the method lacks physical interpretability. Here, we wish to
provide a sounder entropy-based approach that captures the ability
of images to retain information during compression, as shown in
recent visual appreciation experiments [1]. To do so, we employ the
formalism introduced in Ch. 2 and establish two approaches: a first
one on the multiscale relevance (MSR) introduced previously, and a
second one information cascading.
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3.5.1 Using the multiscale relevance
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Figure 3.4: Color mapping. (a) Original patch from Fig. 2.6(a). (b) Rescaled
scores as function of temperature for different performance mea-
sures: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), direct Multiscale Relevance (MSR), and
MSR over the gradient field MSR∇. (c),(d),(e), (f) Color mapping
at optimal temperatures T∗ for PSNR, SSIM, MSR and MSR∇
respectively.
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We first consider the algorithm introduced in Sec.3.3.1. Classically,
we found that the good visuals were obtained from temperatures T∗

minimizing the mean convoluted squared error between original and
reduced image. Here we propose an alternative approach consisting
in maximizing the Multiscale Relevance (MSR) introduced in Ch. 2,
and compare it to the same classical metrics as in Sec. 2.5, namely the
Peak Signal-to-Noise Ratio (PSNR) [194] and the Structural Similarity
Index Measure (SSIM) [195].

Figure 3.4(a) displays the original patch extracted from Fig. 2.6(a).
Figure 3.4(b) shows the evolution of each metrics with temperature
T. One sees that the PSNR between the original and mapped im-
ages is maximized at T = 0. This is not surprising as the PSNR is
monotonously related to the MSE by definition. The corresponding
mapping in Fig. 3.4(c) appears too sharp and contrasted, clearly sepa-
rating vegetation from sky while introducing thresholding artifacts.
Optimization of the SSIM yields a non-zero yet small temperature
T = 0.1, barely improving the resulting image (see Fig. 3.4(d)). We
then compute the MSR for both direct and gradient fields. The max-
imization of MSR(T) leads to the image shown in Fig. 3.4(e), which
contains more faithful visual features and a decent similarity to the
original image at large scales, at the cost of artificial small scale fea-
tures. Finally, the maximization of the gradient magnitude MSR 1,
shown in Fig. 3.4(f), seems like a good compromise between (c),(d)
and (e) as it also displays medium scale features (tree trunk details)
without blurring finer ones (small branches).

Hence, for strong color reduction, a Multiscale Relevance approach
can bring better visuals than classical metrics such as the Structural
Similarity Index which, in addition, requires an a priori semantic knowl-
edge of the original image. Note that the analysis could be extended to
more elaborate color mapping procedure such as error diffusion [139,
230] or, Monte-Carlo based algorithms [142]. We shall see in the next
section that a different approach with the same formalism provides
consistent results.

3.5.2 Using information cascading

We get back to the Monte-Carlo algorithm introduced in Sec. 3.4. To
find the most suitable kernel parameter α, we use an other interpreta-
tion of the Resolution/Relevance formalism based on the cascading of
information across undersampling scales.

Here, instead of calculating the MSR, we stick to the two measures
of entropy Ĥℓ[s] and Ĥℓ[k], and recall that they respectively assess
heterogeneity in data and heterogeneity in data redundancy.

1 Note that to compute the gradient magnitude MSR, one has to segment the grayscale
images obtained from the gradient procedure, and average over a.
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Figure 3.5: Influence of the convolution parameter α on the compressing
regime of color quantized images. (a) Plot of (Hℓ[s], Hℓ[k])ℓ for
low, optimal and high convolution parameters α. (b) Regression
coefficient R2 of the linear fit as function of α. (c) Optimally
quantized image, α = 0.054.

In Fig. 3.5(a), we vary ℓ and plot Ĥℓ[k] as function of Ĥℓ[s] for
images generated with different α. Of most interest to us here is
the right part of the graphs, which corresponds to small values of ℓ,
and for which the concavity of the curves is very α-dependent. This
property reminds the shape of Relevance/Resolution curves for 1/ f
random textures, as was shown in Ch. 2 where the Hurst exponent
H influenced the concavity of the Resolution/Relevance curves in the
undersampling regime.

One can show – see Appendix B.3 – that the local slope µ =

dĤ[k]/dĤ[s] actually corresponds to the trade-off rate between rele-
vance and resolution as data is compressed. The idea is then to choose
the convolution parameter such that this trade-off is as stable as possi-
ble across all scales of observations, meaning that µ should be close
to -1 and as constant as possible when varying ℓ. In other terms, the
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right part of the graph should be as linear as possible with slope −1.
In Fig. 3.5(b) we plotted the regression coefficient R2 obtained from
the corresponding linear fit and found that it was maximized for an
intermediate value α = 0.054. The corresponding image is shown in
Fig. 3.5(c) and is indeed a very good visual compromise.

3.6 beyond black & white

In this section, we illustrate how our method can be extended to other
image types, color spaces and convolution kernels. We use four images
from the USC-SIPI image database [219] (see Fig. 3.6, first column).
For each image, we choose a different target color palette, namely
B&W for Man pictures (first row), four grayscale levels for Bridge
pictures (second row), eight colors (corresponding to the vertices of
the RGB cube) for Peppers pictures (third row), and fifteen colors
(corresponding to each point of the face-centered cubic arrangement
in the RGB cube) for Mandrill pictures (fourth row).

First, we consider the T ≃ 0 case (second column). For each image,
as in Sec. 3.3.1, the quantization process suppresses a large amount of
details and produces thresholding artifacts such as contouring effects
for shaded textures. Then, we increase the temperature and find the
optimal T⋆ for each quantized image, see in third column. As it was
the case for the B&W Peppers in Sec. 3.3.1, a clear improvement is
obtained for each image at T = T⋆, with the reconstruction of features
such as contours and shades. However, the latter are not yet fully
consistent with the original image. The level of noise is still quite high
when looking up close. Finally, we generate quantized images with
the Monte-Carlo algorithm (fourth column) and test its robustness by
using classical Gaussian kernels with standard deviation σ instead of
power-law kernels. Using the method described in Sec. 3.5 we find,
for all images, values of optimal σ∗ ≈ 0.5 pixels. The results are then
much more satisfactory as the impression of color saturation and
level of noise are significantly reduced. Note that our optimal kernels
are slightly narrower than the classical error diffusion matrix kernels
historically used in dithering algorithms, such as Floyd-Steinberg (FS)
[139] or Jarvis-Judice-Ninke (JJN) [230]. The latter provide excellent
results but their implementation does not allow for the tuning of the
kernel width. For the sake of visual comparison, we have implemented
the FS algorithm (fifth column) with indeed a slightly larger error
dispersion (equivalent to σ ≃ 0.9 pixels). While the local FS algorithm
takes a pragmatic and very efficient turn, our method is more global
and above all allows for physical interpretability.
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Figure 3.6: Extension to different image types and color palettes. From Left
to Right: Original image, T = 0, T = T∗, σ = σ∗, and Floyd-
Steinberg algorithm. From Top to Bottom: Man onto B&W, Bridge
onto four grayscale levels, Peppers onto eight colors, and Mandrill
onto fifteen colors.

3.7 conclusion

Let us summarize what we have achieved. In the context of color
quantization, we confirmed that the naive approach consisting in a
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simple error minimization does not generally bring satisfactory visu-
als. To overcome this issue, we introduced thermal noise through a
Maximal Entropy based approach and generated quantized images
with more interesting visuals. To quantify this visual impression, and
guided by [142], we introduced the Convoluted Squared Error, which
compares the original and quantized fields after a coarse-graining
procedure. Introducing convolution allowed us to find the optimal
temperatures minimizing the new observable. Interestingly, we found
that such temperatures are a good indicator for complexity at different
scales. Moreover, having confirmed that the Convoluted Squared Error
is a highly relevant observable with respect to color mapping, we
directly minimized it to generate new images using a Monte Carlo
algorithm. In order to find the optimal convolution parameter leading
to the best visuals, we used the Resolution/Relevance approach that
was introduced in Ch. 2. In particular, we explored two slightly dif-
ferent approaches, first enforcing maximal multiscale contributions,
then aiming for uniform information cascading. Finally, we proved the
robustness of our method against changes in image type, color palette,
and convolution kernel. Note that, as mentioned in the introduction
of the chapter, in the present analysis we have chosen the target color
palette ex ante, focusing on simple cases, namely, B&W, 4 grayscale,
RGB vertices and face-centered cubic. It would be interesting to con-
sider extended color palettes where both the dimension and color
values are optimized for a given image. The latter most likely depends
on the features of the color histogram of the original image, but also
their spatial arrangement. Future research should also be devoted to
considering alternatives to the Euclidean distance such as perception
based cost functions [225], structural similarity metrics [195], quality
indices [227], distances including transport terms [231] or edge detec-
tion [225], which take into account a priori the local arrangement of
the pixels.
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3.8 take-home message

The color mapping problem consists in reducing the palette of
an image (e.g passing from 256 to 2 grayscale levels).

However replacing each pixel by its closest color leads to thresh-
olding artifacts.

We introduce noise from a maximal entropy approach. A pa-
rameter T relaxes the loss constraint, an approach at the core of
statistical physics.
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Best visuals correspond to temperatures T∗ minimizing distance
between blurred images (Convoluted Loss).

We minimize this convoluted loss from Monte-Carlo algorithm,
and recover good visuals. The kernel shape can be calibrated
from multiscale entropy arguments, introduced in the previous
chapter.
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Part II

S TAT I S T I C A L A N A LY S I S O F F R A C T U R E
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4
M U LT I F R A C TA L F I E L D S : W R A P P I N G A N D
U N W R A P P I N G

"Do you know what the B in Benoit.B Mandelbrot stands for?"
"Benoit.B Mandelbrot."

This chapter should be included in a forthcoming publication [4],
written in collaboration with Laurent Ponson, Michael Benzaquen and
Jean-Philippe Bouchaud, and the results of which are based on my
doctoral works. The final publication may slightly differ.

4.1 introduction

Whether in the oceans [232], in the sky [233–235], or in the moun-
tains [30], scale invariance is everywhere around us. This feature,
formalized and popularized by Mandelbrot’s under the concept of
fractals [236–238], has reached a general audience, who can recognize
and appreciate their unfathomable beauty. For physicists, systems
are said to be fractal when their observables display deterministic or
statistical invariance under affine transformations of their space-time
variables. In linear systems, this property is straightforward from the
study of momentum equations. For non-linear systems however, the
knowledge of governing equations, rarely allows the prediction of
scale invariance, apart from some specific cases [56]. In such situations,
scale invariance may emerge from a wide range of mechanisms such
as self-organization [239], exotic fluctuations [240], or hierarchical
structures. For that last situation, the most classic example may be of
fluid turbulence, for which the scale invariance originates from the
cascading of energy through large eddies at injection/forcing scale
to small ones at dissipation scale [35, 241]. [35, 241]. These strongly
coupled systems often display unique statistical signatures, including
non-Gaussian fluctuations and multifractal scalings [33, 154], absent
of linear fractal systems. In particular, multifractality occurs when
the fluctuations of an observable h(r), r ∈ Rd can no longer be de-
scribed by a unique scaling parameter. In that case, one introduces a
continuous exponent spectrum ζq that describes the moments of these
fluctuations, which under isotropic statistics translate as the following
variogram property:

Vq(δr) = ⟨|h(r + δr)− h(r)|q⟩δr=∥δr∥ ∼ δrζq , (4.1)

where ⟨.⟩ refers to spatial or ensemble average. A linear spectrum
ζq = qH corresponds to monofractal scaling, described by its Hurst
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exponent H alone. Instead, multifractals are characterized by a non-
linear spectrum ζq ̸= qH, a property reported in many forced non-
linear systems [143, 154, 242, 243].

What are the minimal ingredients leading to the formation of mul-
tifractals? We address this question from a geometrical, algorithmic
perspective, by constructing multifractals using a few basic building
blocks. Yet, we show that the construction and the deconstruction
of multifractal fields – that is, their wrapping and unwrapping – may
provide rich insights about the basic physical processes leading to
their formation.

Algorithms generating fractals can provide essential insights in the
understanding and description of scale invariant phenomena. But syn-
thetic fractals also find multiple applications in physics and engineer-
ing. They serve as test-beds for developing accurate characterization
techniques of scale invariant signals [244]. They are used in computer
visions, to create a myriad of different patterns like landscapes, clouds,
trees... They are also employed in direct numerical simulations of phe-
nomena like frictions between rough surfaces [245], flows in fractured
rocks [246, 247] or financial markets [205]. More recently, generation
algorithms have been used to create unlimited database of perfect
fractal objects to train neural networks that show promises for various
applications, including the recognition and characterization of natural
(imperfect) fractals [248–250]. As a result, various methods have been
developed for the generation of monofractals such as noise filtering,
cellular automaton or iterative methods [55, 251, 252]. For multifractals
however, generation methods are scarce and generally limited (but
see [205] and refs therein). Stochastic differential equations simula-
tions [242] are restricted to some specific scaling properties. While
direct sampling methods suffer from several important limitations
including the lack of symmetry [253], isotropy and continuous scale
invariance [254]. On top of it, extending these methods to d > 1 raises
severe difficulties.

Figure 4.1: Synthetic multifractal field in dimension d = 2.
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In this chapter, we provide a powerful, yet simple method for the
generation of multifractal random fields of any dimensions, an exam-
ple of which is provided in Fig. 4.1 for d = 2. Our model builds on
the work of Bacry et al. [255] who defined a multifractal process with
continuous dilation invariance properties, and that we generalize to
higher dimensions by using fractional operators.

In practice, as described in the first two parts of this chapter, our
method consists of three steps. First, a log-correlated Gaussian field
ω(r) of finite correlation range ξ is defined. Taking its exponential
and forcing its symmetry defines a non-Gaussian fluctuation field δh(r)
which is ultimately integrated into a multifractal fields h(r) of fully
controlled scaling properties, and show how to calculate the density
probability of increments at any scale ∆r < ξ, from the parameters λ

and H alone.
The second part of our chapter is dedicated to the comparison

of these synthetic fields with an experimental multifractal field, the
surface of a fractured metallic alloy. We evidence subtle differences
between both fields, providing insights on the dissipation mechanism
terminating the cascading processes in fracture problems. We conclude
this chapter by discussing the implications of our method for the study
of strongly-coupled processes leading to multifractality, and to the
in-depth characterization of fracture surfaces, a topic that will be
continued in Ch. 5.

4.2 synthesis of monofractal fields

4.2.1 Monofractal fields

Monofractal Gaussian fields ω(r) (r ∈ Rd) can be defined from the
application of fractional operators to white Gaussian noise. In di-
mension d = 1, these operators derive from classic integration and
derivation [256]. For d > 1, one must pass through the Fractional
Laplacian (−∆)α [257] and define the field from

ω(r) = (−∆)−
H+d/2

2 η(r), (4.2)

where η is a white Gaussian noise of dimensions d. In Fourier space,
the operation amounts to use the filter G(k) = 1/kH+d/2 (k = ∥k∥),
which possesses scale and rotation invariance 1. We may distinguish
two main families of power-law correlated fields. For H ∈ [−d/2, 0[,
ω(r) is a zero mean stationary Gaussian fields with power-law corre-
lations C(δr) = ⟨ω(r + δr)ω(r)⟩ ∝ δr2H. For H ∈]0, 1], ω(r) is a frac-
tional Gaussian field [258, 259] of monofractal scaling Vq(δr) ∝ δrqH.
The particular case H = 0, lying at the transition between both cases,

1 In a lattice space of step 1, the Laplacian is expressed in terms of nearest neighbours
increments, which is equivalent in the Fourier space to replacing ∥k∥2 by ∑d

i=1(2 −
2 cos ki).
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corresponds to system size dependent logarithmic scaling when the
self-affine regime is unbounded.

4.2.2 Integral range

To mimic natural fractals that expand over a finite range of length
scales, we introduce an upper cutoff ξ using the modified operator
(−∆) → (1/ξ2 − ∆) that damps long-range correlations. In Fourier
space, this translates as k2 → (2π/ξ)2 + k2, which regularizes low
frequencies. A few calculations [260] provide the correlations of ω,
Cω(δr) ∝ δrHKH(δr/ξ), where KH is the modified Bessel function of
the second kind with parameter H. We retrieve the classic Whittle-
Matérn correlations [261, 262] which behave similarly to unregularized
fields at short scales δr ≪ ξ, and decay exponentially Cω ∝ e−δr/ξ in
the limit δr ≫ ξ. Taking H = 0 recovers logarithmic scaling Cω(δr) ∝
− log(∆r/ξ) over a finite range of length scales δr < ξ.

4.3 multifractal fields from the multifractal random

walk

4.3.1 Building non-Gaussian fluctuations

We now wish to build non-Gaussian fluctuations by applying several
transformations to the Gaussian field ω(r) constructed previously. In
a first step that is amenable to analytical tractability, we introduce

σ(r) = eω(r), (4.3)

which explodes the largest fluctuations of ω while tempering the
lowest ones, see Fig 4.2. Such signals, also referred to as crackling
noise, are observed in driven disordered elastic systems where the
largest fluctuations organize in bursts called avalanches [263]. The
Gaussian statistics allow for the computation of the q-point correlation
function of σ:

Cσ(r1, . . . , rq) :=
〈
σ(r1) . . . σ(rq)

〉
= e−∑1≤i≤j≤q Cω(ri ,rj), (4.4)

where r1, . . . , rq ∈ Rd. This expression simplifies for H = 0 leading
to Cω(δr) = −λ log(∆r/ξ) where the intermittency coefficient λ and
the length scale ξ control the strength and the spatial extension of the
bursts of σ respectively. The resulting process is referred to as a log-
normal continuous cascade [264].For ∥ri − rj∥ ≪ ξ, Eq. (4.4) simplifies
to:

Cω(r1, . . . , rq) ∝ ∏
1≤i≤j≤q

∥ri − rj∥−λ, (4.5)

which displays scale invariance, as applying ri → γri multiplies Cω

by γ− λ
2 q(q−1). We will see that this quadratic scaling in q directly influ-
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ences the multi-affine spectrum of sampled fields.

4.3.2 Synthetic multifractal fields

It was shown in [253, 265] that multiplicative cascades like σ could be
fractionally integrated into multifractal fields. However, such construc-
tion leads to skewed statistics which do not reproduce the symmetry
observed in experimental data, e.g. turbulence velocity fields [153,
266, 267]. The solution introduced by Bacry, Delour and Muzy for the
Multifractal Random Walk (MRW) [255] consists in symmetrizing the
fluctuations using the following operation:

δh(r) = s(r)σ(r), (4.6)

where s is a zero-mean white Gaussian noise that enforces δh → −δh
invariance. Here, σ defines an intermittent volatility envelope in which
δh fluctuates, as shown in Fig. 4.2. For d = 1, δh exactly defines the
increments of the MRW and an integration retrieves a multifractal
signal. For d > 1, multifractal fields are sampled using the fractional
integration of fluctuations:

h(r) := (−∆)−
H+d/2

2 δh(r). (4.7)

Similarly to the construction proposed in [268], these fields display an
asymptotic (∆r ≪ ξ) multifractal scaling of exponent spectrum:

ζq = qH − λ

2
q(q − 2), (4.8)

as shown in Appendix. C.2. In d = 1, taking H = 1/2 provides
the MRW. This corresponds to the MRW scaling for H = 1/2. In
the general case, the constructed field recovers monofractality with
ζq = qH for δr > ξ. Note that introducing a second cut-off ξh in the
last integration step leads to a saturation of the variograms for δr > ξh,
as observed in experimental data [35, 269] and simulations [154, 242].

4.3.3 Intermittency characterization

We verify the effectiveness of our method by generating surfaces of
size 512 × 512 pixels, as the one shown in Fig. 4.3(a) for H = 0.5,
λ = 0.1 and ξω = 32. We first check its multifractal properties: in
Fig. 4.3(c), where the power-law exponents of the rescaled variograms
(Vq)1/q are computed in the multifractal regime ∆r < ξ. We observe in
Fig. 4.3(d) that the generalized Hurst exponents Hq = ζq/q follows the
linear behavior Hq = H − λ/2 (q − 2) expected from Eq. (4.8). Note
that the multi-affine to mono-affine crossover ξ is evidenced from the
collapse of the rescaled variograms (Vq)1/q for r > ξ.
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Figure 4.2: Step-by-step construction of multifractal signals, extracted here
from surfaces of dimension d = 2. From top to bottom, log volatil-
ity ω from Eq. (4.2), volatility σ from Eq. (4.3), fluctuations δh
from Eq. (4.6) and multifractal field h from Eq. (4.7). Horizontal
dotted lines indicate the origin y = 0 of each signal. To go from
one signal to the other, we use the following operations: exponen-
tiation, symmetry forcing and fractional integration.

As shown in the following and as previously reported in [270, 271],
the analysis of h only may be insufficient to ascertain multifractal
properties. This difficulty can be circumvented by studying directly
the field ω introduced previously. For MRW, λ and ξ can be measured
from the local log-volatility field ω̂ϵ = log |δϵh| [272, 273], also called
magnitude [274] or log-dissipation rate in turbulence. For multifractal
fields, h can be unwrapped using the operator [253]:

ω̂(r) = log |(−∆)
H+d/2

2 h(r)|, (4.9)

which differs from previous studies [143, 275] by fully factoring in
the effect of the roughness exponent H. The obtained log-volatility
field, shown in Fig. 4.3(b), displays long-range correlations reminis-
cent of the multifractal properties of the original field h(r) shown in
Fig. 4.3(a). The fit of the correlations of ω̂(r) by C(δr) = −λ log(δr/ξ)

provides λ = 0.15 and ξ = 32, matching fairly well their prescribed
value. In order to assess the versatility of our method, we generate a
wide variety of multifractal fields of size 512 × 512 with prescribed
properties in the range 0 ≤ λ ≤ 0.5 and 0 ≤ H ≤ 1 for a fixed cut-off
length ξ = 30 (see Fig. C.2 and C.3 in Appendix. C.4). The parameter
values λ and H are then measured either from the volatility field ω̂(r)
or the height field h(r). We find a good agreement with the prescribed
values, especially when the ω̂-field is used, suggesting that the study
of the spatial correlations of the volatility field is a more direct, and
accurate way to characterize multifractal fields.

4.3.4 Non-Gaussian statistics of increments

The multifractal scaling directly implies that increments δδrh = h(r +
δr) − h(r) are linked together through a scale invariant cascading
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Figure 4.3: Synthetic multifractal field in dimension d = 2, of size 512 × 512,
with parameters (H, λ, ξ) = (0.5, 0.1, 32). (a) h(r). (b) ω(r).
(c) Rescaled variograms with their power law fits. (d) Gener-
alized Hurst exponents, as obtained from the fit of the var-
iograms and their comparison with the linear prediction of
Eq. (4.8). (e)Distributions of fluctuations computed at scales
ϵ/ξ = 1/32, 1/16, 1/8, 1/4, 1/2 and 1. (Top to Bottom, shifted
for illustration)and their comparison with the distribution com-
puted from Eq. (4.10) using L = ξ as a reference length scale.
(f) Correlations of ω and ω̂ and comparison with the expected
logarithmic correlations.
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rule. Indeed, the fluctuation ratios Wℓ/L = δℓh/δLh are such that
⟨Wq

ℓ/L⟩ = (ℓ/L)ζq and depend on the scale ratios exclusively. As
proposed by Castaing et al. [153], this relation can be used to link the
probability density functions (p.d.f) ρδr(δh) to the following dilation
invariance:

ρℓ(δh) =
∫

Gℓ/L(u)e−uρL(e−uδh)du. (4.10)

The kernel Gℓ/L(u) is the Gaussian p.d.f of log Wℓ/L, that depends
on ζq, and thus on H and λ only. We provide its expression in Ap-
pendix. C.3, as well as the p.d.f of the fluctuation ratio Wℓ/L. In practice,
the statistics of fluctuations is computed at the scale L = ξ from which
the statistics at smaller scales is inferred using Eq. (4.10). This con-
struction provides an alternative characterization of the multifractal
behaviour of h, as it captures quantitatively the ever stronger depar-
ture from Gaussianity as we go deeper into the multifractal regime.
In Fig. 4.3(e), we compute the distributions ρϵ(∆h) on our synthetic
surfaces and observe the expected transition from fat to Gaussian
tail as ℓ increases. The numerical data is in perfect agreement with
Eq. (4.10).

4.4 application to experimental data

We now consider experimental multifractal data, here the height map
of a fractured metallic alloy measured by interferometric profilome-
try (see Fig. 4.4(a)). Fracture surfaces are archetypes of multi-affine
fields [143], even though the physical origin of their complex ge-
ometry is still debated [152, 276, 277]. The analysis carried before
on synthetic fields is implemented in Fig. 4.4 to the experimen-
tal fracture surface, leading to the parameter values (H, λ, ξ, ξh) =

(0.63, 0.15, 33µm, 360µm).
First, we recover all the salient features of our MRW-based mul-

tifractal fields, namely a linear decay Hq = H − λ/2 (q − 2) of the
exponents and a log-correlated ω̂-field. Notice however in Fig. 4.4(c)
the slow transition towards monofractal scaling, a feature that also
manifests in the statistics of height fluctuations shown in Fig. 4.4(e)
that show significant deviations to Gaussian statistics even for ϵ ≃ 2ξ.
This soft crossover towards a Gaussian mono-affine behavior may
result from the particularly marked cliff-like patterns of the fracture
surface, a feature that is investigated in more details below.

This cliff-like organization is highlighted in Fig. 4.5(b) that shows
the 10% largest values of ω̂. The most intermittent clusters organize in
filamental structures, while they are more compact for the synthetic
field shown in Fig. 4.5(a). The difference between both patterns is
reminiscent of the dissipation mechanism in fracture problems that
takes place through a cascading phenomenon culminating through
the formation of mesoscale structures of size ξ. To explore these differ-
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Figure 4.4: Unwrapping of an experimental multi-affine field. (a) Height
map h(r) of a fractured metallic alloy of size 2 × 2 mm2

with 2 µm/pixel. (b) ω̂(r) field, retrieved from Eq. (4.9). (c)
Rescaled variograms. (d) Comparison of the exponents Hq =
ζq/q with the prediction of Eq. (4.8) using H = 0.63 and
λ = 0.15. (e) Distribution of fluctuations computed at scales
ϵ/ξ = 1/16, 1/8, 1/4, 1/2, 1 and 2 and their comparison with the
distributions computed from Eq. (4.10) using L = ξ. (f) Correla-
tions of ω̂ and comparison with the expected correlations using
λ = 0.15 and ξ = 33µm.
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Figure 4.5: Cluster analysis of ω fields. (a) and (b) Volatility fields of artificial
and experimental surface, thresholded at pc = 0.9. (c) Fractal
dimension analysis of clusters, defined from nearest-neighbour
rule. We recover D = (1.65 ± .03, 1.53 ± .02) for synthetic and
experimental clusters respectively. (d) Ratio of the two eigenvalues
of the clusters’ inertia tensor as a function of their size, showing
that larger clusters are more elongated than predicted by the
model.

ences, we first compute the fractal dimension D of these clusters [143],
as shown in Fig. 4.5(c). Their area S and their spatial extension Rg de-
fined as the gyration radius scales as S = RD

g for both types of clusters
with nearly the same exponent, even though the fractal dimension for
the synthetic surface (that display more compact features) is slightly
larger (D ≈ 1.65 instead of 1.53).

We go one step further in Fig. 4.5(d) by comparing the clusters
aspect ratio, defined as the ratio λ⊥/λ∥ < 1 of the lowest and high-
est eigenvalues of their inertia tensor. The lower aspect ratio of the
experimental dissipation clusters features their filamental structure,
a topology reminiscent of kinetic energy dissipation bursts in fluid
turbulence. Understanding the emergence of this filamental topology
from the basic dissipation mechanisms taking place within the fracture
process zone may shed light on the microscopic origin of the fracture
energy of materials, a topic addressed in the next chapter.
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4.5 conclusion and discussion

We now summarize our main findings and discuss their implications
for the study of multifractal phenomena. We first generated monofrac-
tal Gaussian fields of Hurst exponent H and range ξ from which
we built log-normal cascades by exponentiation in the case H = 0.
This constitutive brick was then used to compute symmetric non-
Gaussian fluctuations δh whose fractional integration led to synthetic
multifractal random fields with quadratic scaling exponents ζq. The
fields generated by our method retrieves all the salient features of
classic multifractal random walks, which are quadratic scaling expo-
nent spectrum, log-correlated volatility and a transition from Gaussian
distribution to fat-tail statistics. Our method is limited here to the
generation of isotropic multifractals, but anisotropy observed in many
experimental systems, in particular fractures surfaces [278, 279], can
be retrieved using anisotropic kernels. Our method provides multi-
scaling asymptotically, but exact multiscaling may be recovered by
domain warping [280] of fractional Brownian fields with multifractal
measures [281].2

One important contribution is, we believe, the idea of applying our
methodology “backwards” such as to unwrap experimental multifrac-
tal fields and identify the singularities responsible for multifractality.
In the case of the height map of a fractured material, we identify and
characterize all the basic ingredients used to construct synthetic fields,
but also highlight some fundamental differences, such as the softer
crossover towards monofractality beyond ξ (see Fig. 4.4(f)) and the
non-trivial topology of the intermittent bursts (see Fig. 4.5(d)). This
last property is reminiscent of the inverse cascade in 2D turbulence,
where vorticity filaments appear at large scales [283, 284]. It suggests
that during material failure cooperative coalescence of damage cavi-
ties take place and culminates in the formation of large-scale cliff-like
filamental structures. A next step in that investigation may rely on
coagulation based descriptions [285], where such cavities are continu-
ously absorbed and created in the vicinity of the crack tip.
We will see in Chapter. 5 that, in the case of rock surfaces, these
structures indeed encode rich information about the dissipative pro-
cesses controlling the fracture energy of materials, and in particular
the characteristic size ℓc of the Fracture Process Zone.

2 Circulant embedding and real-time resampling [282] also constitute possible alterna-
tives to generate multifractals with minor discretization and finite size effects.
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4.6 take-home message

Monofractal fields can be built from the fractional laplacian
operator (−∆)α, which simply translates as a power law kernel
in the Fourier space.

Multifractal fields can be built by extending the Multifractal
Random Walk model to higher dimensions.

Sampled fields verify multifractal characterizations on their (i)
variogram scaling, (ii) volatility correlations and (iii) increments
distribution.

(i) (ii) (iii)
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While experimental data can display proper multifractal proper-
ties, the study of intermittency bursts reveals non-trivial topol-
ogy, which depends on the physics at play.
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For fracture surfaces, these clusters are reminiscent of dissipa-
tive structures found in turbulence, and may encode further
informations about the fracture properties of materials.
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5
D E C I P H E R I N G T H E I N T E R M I T T E N C Y O F
E X P E R I M E N TA L F R A C T U R E S U R FA C E S

On ne sort de l’ambiguïté qu’à son détriment.

— Cardinal de Retz

5.1 introduction

Ensuring the mechanical integrity of parts and structures is a nec-
essary component of pretty much all engineering applications. To
address this issue, powerful theoretical frameworks, among which
fracture mechanics and damage mechanics, have been developed and
thoroughly tested experimentally. The ability of materials to sustain
mechanical loads serves as essential input of these predictive models.
For describing the failure behavior under tensile loading, we then
generally introduce two intrinsic properties of solids: their fracture
energy (or toughness) that describes the ability of a material to resist
to crack propagation and their cohesive strength that describes the
ability of a material to resist to crack initiation. Despite the pivotal
role played by these two properties, their microscopic origin remain
partly obscure for a wide range of materials.

At small scale, cracks propagate through the accumulation and then
the coalescence of damage (like e.g. microcracks) within a so-called
process zone located at the crack tip vicinity (see Fig. 5.1). The way
this damage spreads at the microscopic scale and ultimately sets the
fracture properties measured at the macroscopic scale is still out of
reach of fracture models. As a result, understanding quantitatively
what makes a given material tougher than another one remains a very
hard problem.

The morphological features observed on fracture surfaces of failed
materials represent the sequels of these damage mechanisms. As a
result, fractography, the science of examining fracture surfaces, has
been one of the favourite techniques to study damage processes in-
volved in material failure. However, standard fractography can only
provide qualitative insights on microscopic failure mechanisms. As
an alternative, it was proposed, as early as in the 80s [286], that
the rough topography of fracture surfaces and its statistical features
could be used as a field of investigation to unravel quantitatively the
microscopic origin of the failure properties of materials [144, 145]. Un-
fortunately, this expectation has not been fully fulfilled yet. The reason
may lie in the high complexity of the statistics of fracture surface, a
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Figure 5.1: The microscopic view of failure. At large scale, failure results from
the seemingly continuous propagation of a crack. Yet, zooming
at the crack vicinity, one observes that cracks grow by coalescing
cavities in a so-called damage process zone of size ℓc.

feature reminiscent of the high complexity of the mechanisms at the
origin of the failure resistance of materials.

Yet, one systematic observation made on fracture surfaces suggests
that this statistical fractography may ultimately reveal the basic mech-
anisms controlling the failure resistance of solids: roughness displays
robust scale invariant properties observed through a wide range of
seemingly different materials. Even more interesting, fracture sur-
faces display two separate regimes of scale invariance: at large scales,
beyond some material dependent length ξ, the statistics of fracture
surfaces observed at one scale can be inferred from the one observed
at another scale using a unique scaling exponent, ζ ≤ 0.5, also referred
to as the roughness exponent. Such a mono-affine regime reveals an
anti-persistent response of the crack at the largest scales, a behavior
governed by elasticity that tends to maintain the crack trajectory as
straight as possible [147, 287, 288] At small scales, below ξ, the statis-
tics of fracture surfaces is radically different: height variations depart
from a Gaussian behavior and one single exponent is not sufficient
anymore to describe the scale invariant properties. Instead, their com-
plete description requires the introduction of a multi-affine spectrum
ζ(q) ≥ 0.5 that describes the scaling behavior of the different moments
q of the distribution of height variations. This multi-affine regime, in-
vestigated in details in Ref. [143] for several materials, reveals that at
small scales, cracks follow an apparent persistent trajectory. Such a
behavior was conjectured to be reminiscent of damage coalescence.

Here, our first objective is to test such a scenario on experimen-
tal data. The fracture surfaces of four rocks are investigated and the
crossover length between both roughness regimes is compared with
the characteristic size of the damage processes inferred from mechani-
cal tests. To measure ξ, we propose a minimal statistical description of
fracture surfaces that circumvents the complexity observed at small
scales within the multi-affine regime. It relies on the characterization
of the intermittency of the fracture surface, evidenced by the volatility
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field associated with the topographic map of the fracture surface. Our
approach successfully shows that ξ relates to the process zone size
ℓc, and thus that the multi-affine properties of fracture surfaces are
indeed the signature of damage coalescence. We may also see some
exception to thsis general conclusion, for which the short scale damage
roughness is dominated by the presence of microstructural features
like grains.

Our second objective is to unravel the mechanisms driving the
process of damage coalescence at the crack tip vicinity. We propose
a methodology that evidences the spatial distribution of microcracks
from the statistical treatment of the fracture surface roughness. The
size distribution of this microcracks thus obtained is shown to be
reminiscent of a dissipation cascade, resembling to some extent to
the one observed in turbulent flows. This result sheds light on the
cooperative dynamics of microcracks coalescence within the process
zone. The relationship between the cascading process evidenced in
our work and the crack growth resistance of brittle solids is finally
discussed.

5.2 statistical fractography.

We investigate the intermittent properties of the fracture surfaces of
four different rocks produced during the research work of Aligholi et
al. [289]: coarse grain granite, fine grain granite, marble and sandstone.
These surfaces are obtained by tensile failure, see [289] for more details.
The corresponding height fields h(r) are shown in Fig. 5.2, and display
overall similarity.

5.2.1 Multifractal analysis

A first way to assess the statistical properties of fracture surfaces
is to characterize the standard deviation of local jumps δh = h(r +
δr)− h(r) at different scales δr. This exactly defines the variogram or
roughness function, from the following relation:

V2(δr) = ⟨|h(r + δr)− h(r)|2⟩. (5.1)

Note that, while the variogram is computed for a vectorial increment
δr, it can be further averaged over all angles (∥δr∥ = δr), leading to
the so-called isotropic variogram V2(δr).

The results shown in Fig. 5.3 indicate that fracture surfaces display
fractal scaling, with V2 ∝ δr2H where H = ζ is the Hurst or roughness
exponent. This fractal behaviour has been reported for many fracture
surfaces, through direct, spectral or wavelet characterizations [144,
145, 279]. The fitted Hurst or roughness exponent values are shown
in Tab. 5.1. As expected in the literature, the roughness exponent is
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(a) (b)

(c) (d)

Figure 5.2: Quantile representations of fracture surfaces height field, of size
1000 × 1000 pixels with 16 µm/pixels. (a) Coarse-grain granite.
(b) Fine-grain granite. (c) Marble. (d) Sandstone. The horizontal
x-axis and vertical y-axis are respectively orthogonal and parallel
to the front propagation direction.

generally higher over the crack front line direction [150, 279]. However,
the isotropic exponent constitute good approximations. We recover the
commonly observed short-scale persistency (H > 1/2) at the excep-
tion of the sandstone. For this material, the granular structure results
in an inter-granular crack path that might explain such anti-persistent
scaling [148, 287].

CG Granite FG Granite Marble Sandstone

H⊥ 0.59 0.58 0.54 0.49

H∥ 0.58 0.56 0.62 0.49

H 0.57 0.55 0.56 0.46

Table 5.1: Roughness exponents H = ζ2/2, computed along the propagation
direction (H⊥), crack front direction (H∥), and isotropically (H)
over the surface.

Jump distribution and fat-tail statistics – Fracture surfaces are also
known to display multifractality at small scale, as reported in [143, 276,
290]. In particular, the probability density functions (p.d.f) ρϵ(δh) =
P(h(r + ϵ)− h(r)) has been reported to be fat-tailed for ϵ < ξ, and
Gaussian for ϵ > ξ, where ξ defines a crossover length between inter-
mittent and Gaussian statistics. In Fig 5.4, we compute these empirical
p.d.fs, for various values of ϵ. For low ϵ, one observes robust fat tail
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Figure 5.3: Order 2 variograms computed for the different materials. The
variograms are computed along the crack propagation direction
(⊥), front direction (∥), and isotropically. Black dotted lines corre-
spond to power-law fits, values are reported in Tab. 5.1
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Figure 5.4: Probability density functions of jumps, computed perpendicularly
to the propagation direction. Each curve corresponds to different
values of ϵ = 33, 66, 132, 264, 528 µm (top to bottom) that have
been rescaled for visibility. The black curves correspond to the
predictions inferred from the Castaing equation [153] (see Chap. 4

for more details) under log-normal cascade assumption, using
the Castaing equation introduced in Ch. 4.

statistics, that can not originate from metrological limitations alone, as
the spatial resolution δrresolution ≈ 10µm is lower than the pixel size
δrpixel ≈ 16.5µm. The p.d.fs ultimately reach Gaussian statistics as ϵ

increases. We will explain later the theoretical curves reported in black
dotted lines.

Multiscaling of jumps– We go one step further into the statistical
description of these surfaces, by characterizing their multifractal be-
haviour using the generalized variograms, defined as:

Vq(δr) = ⟨|h(r + δr)− h(r)|q⟩. (5.2)

These functions generalize the variance measure used in (5.1) by mea-
suring the different moments of the jumps, and their dependence on
the scale δr. These functions are naturally predictable in the case of
Gaussian statistics, as the Wick theorem ensures V2m ∝ (V2)m, and
one would expect a collapse of the rescaled variograms (Vq)1/q. We
compute these functions in Fig. 5.5 and observe a collapse of the
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Figure 5.5: Rescaled generalized variograms (Vq)1/qcomputed for the differ-
ent surfaces, with q ∈ {1, 2, 3, 4, 5} corresponding to bottom to
top curves. The values of ξ correspond to the fitting parameter of
Fig. 5.8.

rescaled variograms for δr > ξ, as reported in Chap. 4 for a metallic
alloy. On the contrary, the δr < ξ regime deviates from monofractal
scaling. Here, we do not seek to characterize further the multi-affine
properties as the range of length scale δr < ξ over which intermit-
tency is observed is rather limited. Note however that under the same
assumptions of Chap. 4, a convenient prediction of the probability
densities can be made in Fig. 5.4, using the Castaing equation under
log-normal fluctuation ratio rule.

Volatility correlations – The previous characterizations described the
self-similarity and non-Gaussianity of the surfaces. We now focus on
the log-volatility field ω, that contains complementary information.
Following the unwrapping technique developed in Chap. 4, we define
the ω field from the fractional differentiation operation:

ω̂(r) = log |(−∆)
H+d/2

2 h(r)|, (5.3)

which discards the roughness cascade and highlights localized in-
termittent bursts. The corresponding fields are computed using the
isotropic roughness exponent H reported in Tab. 5.1 , and shown
in Fig. 5.6. These fields display correlated structures, which however
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Figure 5.6: Quantile representations of the log-volatility field ω, obtained
from fractional differentiation of the height using Eq. (5.3) for
(a) coarse-grain granite, (b) fine-grain granite.,(c) marble and (d)
sandstone. The image size 16.5 × 16.5 cm2 is identical to the one
of the height fields of Fig. 5.2.

seem to vary from one rock to the other. The first three surfaces display
anisotropic and filamental structures (however smaller than the one
observed on the fracture aluminium surface of Chap. 4), while the last
one displays more compact structures.

To characterize these patterns quantitatively, we run a correlation
analysis, and recover a strongly correlated short range regime, re-
ported in Fig. 5.7. This regime, that decays faster than the logarithmi-
cally correlated regimes encountered previously, can be described by
a power-law fits of the following form,

Cω(δr) = λplδr−γ + C∞
pl, (5.4)

where C∞
pl accounts for residual correlations due to the asymmetrical

statistics of ω, and λpl is an analogue of the intermittency coefficient
recovered for logarithmic correlations. We recover satisfying fits, which
is further confirmed by the collapse of curves in the inset of Fig. 5.7.
The values of C∞

pl are found to be very small.
While the power-law spatial correlations of the volatility field at

small scale is compatible with the multi-scaling behavior observed
in Fig. 5.5 from the variograms, this power law does not provide
any clue about the cutoff length ξ of this multi-affine regime. We
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Figure 5.7: Correlation analysis of ω. (Main figure) Isotropic correlation func-
tions of ω, fitted by power-law functions (black dotted lines).
Values are reported in Tab. 5.2. (Inset) Collapse of correlation
functions around the power-law model.

circumvent this difficulty by fitting the correlations for higher lags
with an exponential function,

Cω(δr) = λexp exp(−δr/ξ) + C∞
exp, (5.5)

where λexp is another quantity analogous to the intermittency coeffi-
cient λ as defined in the MRW model (see Chap. 4), C∞

exp accounts for
the skewness of ω. As shown in Fig. 5.8, the exponential fit provides a
rather accurate description of the correlations of the correlations of ω

in the range 200µm < δr < 1mm, an observation further confirmed in
the semi-logarithmic representation in inset. This defines the cut-off
length ξ of the multi)affine regime, the values of which are reported
in Tab. 5.2. We find that the correlation length ξ is about 10–15 times
the map resolution, which is two times smaller than for the aluminum
alloy, explaining our first visual assessment. Again here, the values of
C∞

exp are found to be very small.

5.2.2 Cluster analysis

The previous analysis revealed the strong correlations of the volatility
field, which ultimately vanish beyond ξ.

We now seek to characterize the topology of the most intermittent
regions of the volatility field by running a cluster analysis. In Fig. 5.9,
we reveal these clusters by thresholding the ω field by keeping only
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Figure 5.8: Correlation analysis of ω. (Main figure) Isotropic correlation func-
tions of ω, fitted by an exponential decay (black dotted lines).
Values of the cut-off length ξ of the multi-affine regime are re-
ported in Tab. 5.2. (Inset) Collapse of the correlation functions
around the exponential model in a semi-logarithmic representa-
tion.

CG Granite FG Granite Marble Sandstone

Power-law fits

λpl .58 0.81 0.63 0.43

γ 0.98 ± 0.01 0.81 ± 0.01 0.73 ± 0.02 0.89 ± 0.01

Exponential fits

ξ (µm) 227 146 202 126

λexp 0.12 0.24 0.19 0.12

Table 5.2: Fitting parameters for the correlation functions of ω, shown in
Fig. 5.7 and Fig. 5.8.
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the (1 − pc) = 10% highest values. We immediately observe the dif-
ference between the first three surfaces – which display filamental
shapes– and the last one (sandstone) which displays compact small
clusters. Here, we proceed to a more quantitative analysis on the frac-
tal dimension, anisotropy and distribution of these clusters.

(a) (b)

(c) (d)

Figure 5.9: Binarized ω fields (pc = 90%), obtained from Fig. 5.6

Fractal dimensions analysis – Similarly to Chap. 4, we study the rela-
tionship between the spatial extension and the surface S of each cluster.
The spatial extension is defined here as the radius Rg of the circle that
fits the cluster. In practice, we use the definition R2

g = λ2
∥ + λ2

⊥ where
λ∥ and λ⊥ are the largest and smallest eigenvalues of the gyration ten-
sor Tg of the cluster, respectively. The results are reported in Fig. 5.10.
We observe a fractal behaviour of clusters, with an overall fractal
dimension D = 1.63 ± 0.05, in agreement with previously reported
results [143].
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Figure 5.10: Fractal dimension analysis of clusters (pc = 90%) The fitting
curve corresponds to S = RD

g with D = 1.63.

Anisotropy analysis – We observed in Chap. 4 that synthetic and ex-
perimental ω fields displayed different topologies in the distribution
of clusters, as experimental clusters display stronger anisotropy. We
repeat here the same procedure, by looking at the ratio r = λ⊥/λ∥,
which ranges from 0 to 1. Low values correspond to filamental clus-
ters, while high values correspond to disk shaped clusters. We observe
in Fig. 5.11 a clear distinction between the first three surfaces and
the sandstone surface. This last one displays more isotropic clusters,
and almost no filamental structure, as observed qualitatively in Fig. 5.9.
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Figure 5.11: Anisotropy analysis of clusters (pc = 90%)

Distribution of cluster sizes – The clusters forming by the most inter-
mittent events of the fracture surfaces have been shown in [143] to
follow a power-law distribution P(Rg) ∝ R−τ

g , with τ ≈ 2.2.
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The analysis of the four rocks shows a similar behaviour, that clearly
appears for low pc values as is shown in Fig. 5.12.
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Figure 5.12: Probability distribution of cluster size (pc = 70%). The black
dotted curve corresponds to a power-law with slope τ = 2.2

However, as one increases pc to conserve only the most intermittent
events, the distributions deviate from one another,. This is well visible
in Fig. 5.13 that shows the cumulative distribution function of clusters
F>(Rg) = ∑

Rg
r=0 P(r). On top of it, the cluster size distribution displays

an exponential cut-off.
Normalizing the horizontal axis by the cut-off length measured in

Fig. 5.8 from the correlations of the ω-fields, we observe a collapse of
these different distributions in the regime Rg > ξ. This implies that the
size of the largest clusters is set by the cut-off length of the multi-affine
regime, defining a single characteristic length ξ of the intermittent
regime. We note however the exceptional case of sandstone, for which
the collapse length corresponds to ξ/2. We expect this discrepancy to
originate from the grains of the material, that ultimately controls the
cluster geometry, rather than the process of damage coalescence.

We now seek to provide a physical interpretation to the multiaffine
length scale ξ.

5.2.3 Physical interpretation of the cut-off length ξ

We now compare the results of the fractographic analysis with the
mechanical properties of materials, measured in [289] and reported in
Tab. 5.3.

As discussed earlier, at small scale, failure proceeds through the
coalescence of damage cavities. This damage is localized at the crack
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Figure 5.13: Cumulative distribution function of Cluster size (pc = 97%).
On the right, the distributions are collapsed using the values
of ξ(values reported in Tab. 5.2). The black curve is a truncated
power law of the form f (u) = u−τ+1e−u, with τ = 2.2 and
rescaled for visibility.

tip, in a region of size ℓc. The fracture process zone size ℓc can be
assessed using the Dugdale–Barenblatt (D–B) formula [291]

ℓc =
π

8

(
Kc

σc

)2

, (5.6)

where Kc is the material fracture toughness and σc is its cohesive
strength. When comparing ℓc with ξ in Tab. 5.3, one observes a linear
relation ℓc = αξ where α ≈ 5, hence indicating that the multi-affine
length scale ξ is set by the damage process zone size ℓc linking fracto-
graphic and mechanical properties.

This also supports the conjecture made by Vernède et al. [143]
that multifractality is reminiscent of damage coalescence processes,
both phenomena being observed on the same range of length scales
δr < ξ ∼ ℓc.

The only exception is of the sandstone, whose process zone size
is much higher than 5ξ. This discrepancy may be explained by two
main factors: (i) sandstone possesses a grain-like structure with a
characteristic size ℓgrain ≈ 100 µm close to ξ value, (ii) sandstone
displays a high level of porosity compared to the other rocks, see
Tab. 5.3. Overall, this implies that crack growth in sandstone is mainly
intergranular. And thus that the morphology of fractured sandstone
surfaces is mainly governed by its inter-granular structure, especially
at small scales δr ≤ ξ ≈ 100 µm where multifractality is observed.

This intuition is further confirmed by our fractographic analysis
which emphasized the different topologies of the most intermittent
bursts. For coarse-grain, fine-grain granite and marble, these bursts
display filamental structures, as they were formed by the merging of
several microcracks, while for the sandstone, clusters are more com-
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CG Granite FG Granite Marble Sandstone

Roughness analysis

ξ (µm) 227 ± 4 146 ± 4 202 ± 3 126 ± 3

Mechanical analysis

σc (MPa) 20 24 15 8.4

Kc (MPa
√

m) 0.97 1.00 0.76 0.43

E (GPa) 45 55 55 18

Gc (J/m2) 19 17 8.3 9.0

ℓc (µm) 1080 800 1180 1200

ℓgrain ≈ 1mm ≈ 500 µm ≈ 1 mm ≈ 100 µm

ρp < 1% < 1% < 1% 5 − 10%

ℓc/ξ 4.75 ± .05 5.5 ± .2 5.8 ± .1 9.5 ± .2

Table 5.3: Summary of the statistical analysis of the fracture surfaces and the
mechanical properties measured by Aligholi et al. [289] for the four
rocks investigated. The ration ℓc/ξ shows an almost constant value
except for the sandstone, suggesting in the granites and marble,
multifractality results from the coalescence process taking place
within the process zone of size ℓc.

pact, as they were formed by the pores present in its microstructure.

Overall, we showed that multi-affinity is closely related to the dam-
age coalescence process driving crack growth at small scale. In the
following section, we embrace this phenomenology and propose mod-
els of failure base on damage coalescence mechanisms.

5.3 crack growth models

In the following section, we propose two simple models of crack
growth based on the coalescence mechanisms revealed in the previous
section. Our objective is to understand better how multifractality
emerges from damage coalescence processes.

In a first model, we build on the discrete statistics of crack jumps,
and we model the front displacement from a Continuous Time Ran-
dom Walk that retrieves the superdiffusivity of crack paths at short
scale.

In a second model, we adopt a continuous growth approach, with
correlated velocity fluctuations, by assuming that these correlations
result from damage coalescence. These correlations encode an effective
behaviour of the complex dynamics taking place within the fracture
process zone, and lead to a transition from superdiffusive multiaffin-
ity to diffusive monofractality, classically observed on experimental
fracture statistics.
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r⃗k

∆xk

∆hk

Figure 5.14: Continuous Time Random Walk Description of the crack propa-
gation. (Left) The crack tip advances by sampling micro-cracks
in the Fracture Process Zone (FPZ).(Right) The dynamics is mod-
elled as the sampling of forward and out-of-direction jumps,
whose statistics are given by Eq. (5.12).

5.3.1 Discrete model with fat-tail statistics

Our previous cluster revealed that cracks propagate through jumps
that are power-law distributed up to a cutoff ξ. Here, the underlying
assumption is that the size Rg of the clusters (i.e. the damage cavities)
provide the jump length expected from a dynamical damage coales-
cence process. We build a (1 + 1)d discrete jump description from the
Continuous Time Random Walk model that retrieves the transition
from non-Gaussian to Gaussian statistics of crack path increments.
The approach adopted here belong to the realm of Quantized Frac-
ture Mechanics, that accounts for the discrete nature of crack growth
process [292, 293] .

Jumps statistics – The crack front is described by its horizontal and
vertical coordinates (xk, hk), where k indexes singular crack events,
see Fig. 5.14. We expect the jumps distributions to display a power-
law shape with an upper cutoff . Here, we choose truncated levy
(α − 1)-stable distributions [270, 294, 295], defined in the following:

{
ψ(∆x) ∝ Lα−1(∆x)1∆x<ℓx

Λ(∆h) ∝ Lα−1(∆h)1|∆h|<ℓh

, (5.7)

where Lα−1 is a Lévy-stable distribution [29, 296] that possesses power-
law tails of exponent α, 1 designates the indicator function and (ℓx, ℓh)

are the cut-off lengths. The probability density Λ(∆h) is symmetric
around ⟨∆h⟩ = 0, while psi(∆x) is completely skewed to prevent
backpropagation.

Continuous Time Random Walk (CTRW) description – At given in-
dex k, the crack tip position results from the sum of all previous
jumps starting from the initial position (0, 0), with xk = ∑k

i=1 ∆ix and
hk = ∑k

i=1 ∆ih (see Fig. 5.14). This allows us to derive a CTRW [297]
description of trajectories, where x plays the role of time. Similarly
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to [298], we derive the balance equation for the density of crack path
ϕ(x, h):

ϕ(x, h) = Ψ>(x)ϕ(h, 0)+
∫ ∫

[0,x]
dh′dx′ψ(h− h′)Λ(x− x′)ϕ(h′, x′),

(5.8)

where the first term of the RHS is defined by

Ψ>(x′) = P(∆x > x′) =
∫

[x;+∞]
dx′ψ(x′), (5.9)

and is the probability that the particle did not move and started at
convenient initial positions with probability ϕ(h, 0) = δ(h − h0). A
Fourier-Laplace transform of Eq.(5.8) yields

ϕ(p, k) =
1 − ψ(p)

p
ϕ0(k) + ψ(p)Λ(k)ϕ(p, k), (5.10)

which recovers the so-called Montroll-Weiss equation [299]:

ϕ(p, k) =
1 − ψ(p)

p
1

1 − ψ(p)Λ(k)
, (5.11)

where each of the transformations are related to the respective charac-
teristic functions of jumps through ψ(p) = ϕ∆x(ip) and Λ(k) = ϕ∆h(k).

Asymptotic scaling and fractional diffusion equation – To understand
the scaling of trajectories, we study the asymptotic scaling regime
of Eq. (5.11) for k, p ≪ 1 (continuous limit). The positive support of
ψ(∆x) immediately yields ψ(p) ≈ 1 − ⟨∆x⟩p, without contributions
of the fat-tail statistics of ⟨x⟩. For Λ(k) however, the symmetry of the
distribution cancels the first order term ⟨h⟩ = 0 and yields two scaling
regimes:

1 − Λ(k) ≈
{

Ckα−1 for ℓ−1
h ≪ k ≪ 1

⟨∆h2

2 ⟩k2 for k ≪ ℓ−1
h < 1

. (5.12)

Injecting these scalings in Eq. (5.11) under continuous limit leads to:

ϕ(k, p) ≈





[
p + C

⟨x⟩kα−1
]−1

, ℓ−1
h ≪ k ≪ 1, p ≪ 1

[
p + ⟨h2⟩

2⟨x⟩k2
]−1

, k ≪ ℓ−1
h < 1, p ≪ 1

. (5.13)

We recognize in the second case the Fourier-Laplace Transform of
the Gaussian distribution ϕ(x, h) ∝ exp(− (h−h0)

2

4Dx ) (D = ⟨∆h2⟩/⟨∆x⟩)
which solves the classic diffusion equation:

∂p(x, h)
∂x

= D
∂2 p(x, h)

∂h2 + δ(h)δ(x) (5.14)
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In the fat-tail regime, the scaling corresponds to the solution of a
fractional diffusion equation [300], where the second derivative term
is replaced by a fractional Laplacian operator.

From superdiffusive Lévy flight to diffusive Gaussian statistics – Now, the
question left is the existence of a crossover scale between non-Gaussian
and Gaussian statistics. The specific case of constant jumps along x
and truncated (α − 1)-Lévy-stable jumps along h was studied in [294].
In that situation, the authors highlighted the existence of a crossover
scale ξ = Aℓα−1

h ℓx where

A =

[
π(α − 1)

2Γ(1/(α − 1))[Γ(α) sin(π(α − 1)/2)/(3 − α)]1/2

]2(α−1)/(α−3)

.

(5.15)

That length separates a Lévy-flight superdiffusive regime and a
Gaussian one both characterized by their variogram Vq(δx) = ⟨h(x +

δx)− h(x)⟩ such that,

{
Vq(δx) ∝ δxζq , δx ≪ ξ

Vq(δx) ∝ δxq/2 , δx ≫ ξ
, (5.16)

where the short scale multifractal spectrum behaves as

ζq =

{
q

α−1 , q < α − 1

1, q > α − 1
, (5.17)

We implement the numerical scheme experiment of [294] in Fig. 5.15

and observe multifractal scaling, that survives up to ξ. The overall
shape of the generalized Hurst exponent spectrum Hq – predicted
in [295] – is very reminiscent of the one observed in the discrete
simulations of non-linear surface growth under power-law distributed
noise [56, 301].
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Figure 5.15: Multifractal analysis of truncated Lévy-flights, for ℓx = 1, ℓh =
300 and α = 2.2. (Left) Variogram analysis, with theoretical slope
of exponent Hα = 1/(α − 1) = .83, and diffusive limit H = 1/2.
Darker colors correspond to low q values, and lighter colors to
high q values. (Right) Generalized scaling exponent spectrum ζq,
with theoretical expectations from Eq. 5.17.

Comparison with experimental results – The superdiffusive scaling
described above exclusively appears for q < α − 1. For q = 2, we
systematically observe diffusive scaling (H = .5). Our predictions
are compared with the scaling properties of experimental fracture
surfaces [292, 302–305] in Tab. 5.4. We use the value of α to predict
the roughness exponent Halpha = 1/(α − 1). The predicted roughness
exponent is then compared to its experimental value in Tab. 5.4. We
find that Hα larger than 1/2, in agreement with experiments, but
systematically overestimates the experimental value. Note that our
model does not predict physical values when α < 2, as reported in
paper sheets fracture, for example.

We also observe the similarity between our model and experimental
surfaces, regarding the multifractal scaling observed at small scale
δx < ξ, and the sharp transition towards monofractal scaling when
δx > ξ. We note however that the multifractal scaling of our model
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Experimental Predicted

α H Hα = 1
α−1

Rapid failure (metals, 3D) 2.2 ± .1 [143] 0.75 ± .03 [279] 0.83 ± .06

Fatigue failure (metals, 3D) [302] 2. 0.55 [305] ≈ 1

Rapid failure (rocks, 3D) 2.2 ± .1 [292] 0.57 ± .06 (Fig. 5.3) 0.83 ± .06

Subcritical crack (paper, 2D) [306] 1.3 ± .1 0.71 ± .01 [304] -

Table 5.4: Comparison of the theoretical roughness exponent Hα inferred
from the experimental crack jump distribution exponent α with the
experimental roughness H for different materials, failure modes
and sample dimensions.

is only apparent, and does not originate from volatility correlations
resulting from collective effects. This apparent multifractality [270] is
here mainly due to the presence of rare events which slow down the
convergence of the Central Limit Theorem (CLT).

5.3.2 A continuous model with correlated fluctuations

We now adopt a continuous viewpoint to model crack growth, we de-
scribe the crack front by its position r(t) = (x(t), h(t)) in the (0x, 0y)
plane, x and h describing in-plane and out-of-plane positions respec-
tively (see Fig. 5.14 for the definition of the axis). We know –from
experimental observations– that crack velocities strongly fluctuate,
while displaying time correlations. We assume the crack velocities
(ẋ, ḣ) to display the following correlations:

{
⟨ẋt ẋt′⟩ − ⟨ẋt⟩2 ∝ |t − t′|−γx e|t−t′|/τx

⟨ḣtḣt′⟩ ∝ |t − t′|−γh e|t−t′|/τh
, (5.18)

where v0 = ⟨ẋt⟩ is the average crack speed. Note that a characteristic
length ξ = τxv0 naturally emerges from such description, and provides
the correlation length of crack trajectories.

An important constraint is that ẋ(t) ≥ 0, in order to prevent
the backpropagation of the crack. We also impose the trajectory
to be ballistic and one must recover ⟨x(t) − x(t′)⟩ = v0|t − t′|. Un-
der these conditions of strict monotonicity, any realized trajectory
(x(t))0<t<T can be reversed into a time trajectory indexed by x, written
as ( ft(x))x(0)<x<x(T) such that ft(x(t)) = t for all t. Our first objective
is to express the stochastic properties of the crack profile h( ft(x))
by eliminating the dependency in time. Let us recall –for intuition –
that the composition of a stochastic process with a strictly increasing
measure is a common way to define multifractal processes [307, 308].
We now study some specific cases in which the properties of such
trajectory can be analytically tractable.
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First model: Superdiffusive to diffusive trajectories – For out-of-plane
fluctuations ḣ(t), a first reasonable assumption of this continuous
framework is to assume Gaussian statistics, resulting from multiple
contributions of the out-of-plane fluctuations. Its statistics are then
summed up by its null average ḣ = 0 and its correlations, defined
in Eq. (5.18). For in-plane fluctuations ẋ(t), we assume the standard
deviation to be negligible in front of v0, leading to a deterministic
speed ẋ(t) ≈ v0 corresponding to a time-trajectory of the form ḟt(x) =
x/v0. The resulting process has Gaussian increments and possesses
two monofractal persistent and diffusive regimes, scaling as Vq(δx) =
⟨|h(x + δx)− h(x)|q⟩ ∝ δxqH where the Hurst exponent verifies

{
H = 1 − γh

2 , δx ≪ v0τh

H = 1
2 , δx ≫ v0τh

, (5.19)

We now increase the standard deviation value of ẋ(t), and observe
the influence on resulting crack profiles.

Second model: Log-normal growth and multifractal scaling – We know
that the growth of surfaces is intermittent and sample power-law
distributed in-plane jumps. Yet, we expect that a sufficient coarse-
graining can allow for continuous approximations. In Ref. [309], the
coarse-graining of in-plane fluctuations seems to reproduce statistics
similar to log-normal distributions. We also know from the literature
that a simple way to build a (i) self-similar, (ii) ballistic and (iii) strictly
increasing measure is to use log-normal fluctuations with power-law
correlations [255, 307]. Hence, we assume in the following that in-plane
fluctuations are log-normal, and correlated according to Eq. (5.18). The
resulting trajectory x(t) defines a proper multifractal random measure,
and we study whether this is also the case for ft(x). We know, from
derivative rules of inverse functions that : ẋ(t) ḟt(x(t)) = 1, which
becomes ḟt(x) = 1/ẋ( ft(x)) and implies log-normality of ḟt. We get
the correlations of ḟt from the following computation:

⟨ ḟt(x) ḟt(x′)⟩ = ⟨ 1
ẋ(t = ft(x))

1
ẋ(t′ = ft(x′))

⟩, (5.20)

which, from the properties of log-normal distributions, leads to:

⟨ ḟt(x) ḟt(x′)⟩ ∝





∣∣∣ x−x′
v0τx

∣∣∣
−λ

|x − x′| ≪ v0τx

1 |x − x′| ≫ v0τx

, (5.21)

In the end, the crack trajectory can be described by y(x) = h( ft(x))
which exactly defines a Brownian process subjected to a log-normal
cascade "time"-change, and consequently defines a Multifractal Ran-
dom Walk (MRW) [255]. In the case τx = τh = τ, one introduced
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ξ = v0.τ and recovers a non-linear scaling exponent spectrum ζq,
verifying:

ζq =

{
q(1 − γh

2 )− γx
2 q(q − 1), δx ≪ ξ

q/2, δx ≫ ξ
. (5.22)

Comparison with experimental data – We now confront the predictions
of these two continuous models with the experimental data found in
the literature.

The difficulty of tracking the velocity of crack fluctuations in real
time explains the scarcity of such data in the literature. In a work from
Tallakstad et al. [309], the local dynamics of a crack front is studied.
In particular, the velocity fluctuations were found to follow truncated
power-laws, with exponent γ̃ = 0.46. Assuming similar correlations
over (0x) and (0y), the first model recovers H = 1− γ̃/2 ≈ 0.78, close
to the roughness exponent of metals and paper reported in Tab 5.4. We
also note that relaxing the Gaussian property of jumps would leave
invariant this exponent for q = 2.

For the second model, we showed that the presence of correlations
for in-plane fluctuations were responsible for the multifractal trajectory
of coefficient λ = γx, under the same assumptions, one recovers
λ ≈ 0.43, significantly higher than the usual range 0 < λ < 0.2 [143,
152]. We expect this prediction to be bounded by the log-normal
assumption of velocity fluctuations over (0x), an hypothesis which
would deserve further investigations.

5.4 conclusion

In this chapter, we have studied four different fracture surfaces, ob-
tained from four different types of rocks. We systematically found
multifractal properties, following the different characterizations in-
troduced in Chap 4. It appeared that the range ξ of the multifractal
regime was material-dependent. Using the mechanical properties of
the rocks, we show that ξ is set by the spatial extension of the Fracture
Process Zone (FPZ), thus leading us to the conclusion that multifrac-
tality emerges from a damage coalescence process, occurring within
the FPZ.

In a second part, we sought to identify the minimal ingredient
required to generate multifractal trajectories. We proposed two simple
models, one taking into account the power-law distribution of jumps
emerging from the coalescence process, and a second one built on the
correlations of crack front speed within the FPZ.

These two toy models – despite their simplicity– reproduce many of
the features reported in our experimental analysis, and show promise
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in capturing the complexity of fracture surface morphology. However,
the ad-hoc features on which these models rely (power-law distribu-
tions of jumps and crack speed correlations) would deserve further
investigations. We believe that this problem could be tackled by a
precise description of the cooperative dynamics of damage growth
and coalescence within the fracture process zone.
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5.5 take-home message

Four fracture surfaces of different rocks are studied. They
display each a specific cut-off ξ separating multifractal and
monofractal scaling regimes. A cluster and mechanical analysis
shows that ξ is directly related to the Fracture Process Zone
(FPZ) size ℓc, where dissipation mechanisms occur.

(a) (b)

(c) (d)

(a) (b)

(c) (d)(a) (b)

(c) (d)

ξ

ℓc

Coarse grain graniteMarbleFine grain granite

We deduce that multifractality emerges from damage coales-
cence occurring in the FPZ.

We test that conclusion by implementing toy models, whose
ad-hoc assumptions are based on experimental observations. A
first discrete model assumes truncated power-law jumps (see
below), and a second one assumes time-correlated crack front
speed fluctuations.

These models retrieve the transition from multifractal persis-
tency to monofractal diffusive scaling, but could be improved
further from a study of the collective dynamics of damage
coalescence.
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C O N C L U S I O N
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In the following conclusion, I first summarize the contributions
presented in this thesis and then highlight some mutual or original
continuations of these works. Note that some perspectives are also
discussed at the end of each chapter.

1
S U M M A RY O F W O R K ( S )

In the first part of the thesis, I produced a fluctuation-based ap-
proach of image analysis and processing. In particular, I employed
quantitative descriptors related to information content and disorder.

In Chapter. 1, the link between visual appreciation and statistical
properties of images was studied. To do so, I deployed a large-scale
experiment on visual appreciation, which relied on abstract images
of different complexities. Doing so allows one to avoid a cultural bias
that would likely manifest for figurative images. It was found that
intermediate complexity maximized appreciation scores, and could
correlate with a structural complexity measure that assesses the ro-
bustness of structures to coarse-graining/blurring. Overall, this study
suggests that some simple quantitative metrics can be used as quanti-
tative criteria for aesthetic judgment. It can also be noted that most
appreciated texture display statistics recovered in natural images.
In Chapter.2, I went further in the quantitative description of image
content. An information theoretical formalism was applied to assess
the influence of image compression over classic entropy metrics. A
first study of power-law correlated images revealed the existence of
two main regimes of power-law correlated (H < 0) and fractal (H > 0)
fields, whose behaviour is reminiscent of the classic percolation theory.
In particular, the case H = 0 – which corresponds to most appreciated
images in the previous social experiment – displays maximal informa-
tion retention. This analysis was ultimately extended to a set of natural
images, and retrieved a wide variety of behaviour, close to the H = 0
case. Ultimately, an application to denoising showed satisfying results,
and opened the door to more applications in image processing.

In Chapter. 3, the methods introduced previously were applied to a
classic image processing problem: color quantization. First, I focused
on the mapping procedure by using a maximal entropy approach,
based on classic L2-norm between original and quantized image. It
was found that noise can yield interesting visuals, even without lo-
cal error diffusion constraint. Implementing this last constraint in a
Monte-Carlo algorithm, and calibrating the kernel range from infor-
mation robustness constraints introduced in Chapter.3 led to excellent
visuals.
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The second part of the thesis was dedicated to the statistical descrip-
tion of the morphology of fracture surfaces, which are obtained by
the complete failure of a material. It was observed that these surfaces
displayed intermittent properties [143, 145, 152], similar to the ones
observed in fluid turbulence [35, 38, 154].

In Chapter. 4, we introduced a class of random fields, defined from
the Multifractal Random Walk model [255]. These fields display the
same multiscaling that is observed on fracture surfaces, below a char-
acteristic length ξ. We applied the construction of such random fields
backwards in order to extract the intermittent contribution ω of ex-
perimental fields, here an aluminium alloy. We found that –unlike
artificial fields– the organization of intermittent events in fracture
surfaces is strongly anisotropic. This is particularly the case for largest
and strongest structures, which organize in cliff-like patterns reminis-
cent of turbulent dissipative structures near the viscosity scale. One
may similarly wonder whether the topology and distribution of these
structures is related to the Fracture Zone Process (FPZ) size ℓc where
dissipation takes place during material failure.

This investigation is made in Chapter. 5, where the fracture surfaces
of four distinct rock materials are studied. A first roughness analysis
indicates the existence of a strong short-range multifractal regime that
crossovers to a mono-affine one at scale ξ. An analysis of intermittent
structures revealed that, while a form of universality emerges in the
distribution and shape of clusters, the hierarchy of most singular
structures is dictated by the crossover scale ξ beyond which their
distribution exponentially vanishes. A mechanical analysis ultimately
allowed us to show a direct relation between ξ and the FPZ size ℓc.
This result is important as it indicates that (i) the clusters observed on
ω correspond to coalescing cavities in the FPZ; (ii) the multifractality
observed on fracture surfaces originates from the collective dynamics
of damage coalescence, whose largest events encode ℓc in the surface
topology. Let us note however the exceptional case of porous and
granular materials such as sandstone, whose intermittent patterns
originates from inter-granular crack growth, and not necessarily from
this collective damage dynamics.

Finally, we note that two seemingly different class of materials in
terms of their failure behavior – namely metallic alloys and rocks
– display similar multi-affine properties. This suggests a common
microscopic mechanism, identified in Chap. 5 as a collective damage
coalescence process. The toy models proposed at the end of Chap. 5

are a first step towards that coalescence based modelling, as they
intend to capture this collective dynamics and assess their impact on
the overall failure properties of materials. Maybe a natural next step
would be the investigation of out-of-equilibrium coalescence models,
that may recover the scaling properties of crack dynamics, and the
intermittent properties of fracture surfaces.
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2
F U RT H E R P E R S P E C T I V E S

On ne fait jamais attention à ce qui a été fait ;
on ne voit que ce qui reste à faire.

— Marie Curie

Here I present a few research directions that I believe could extend
the general aspect of the works presented in this thesis.

Quantitative Aesthetics experiments – In Chapter. 1, I produced a sur-
vey experiment using a finite sample of 1/ f α Gaussian fields. This
work could be extended by introducing a continuous cursor on α

instead of a binary choice. Simultaneously, one could implement a
non-linear propagation of each spectral modes to introduce smooth
structural changes smooth, similarly to wave simulations. Using more
complex images such as the synthetic multifractal fields introduced in
Chap. 5 could also lead to interesting developments, that may relate
to the peculiar properties of natural images gradient seen in Chap. 2.
Note that this would require a user-friendly exploration of the param-
eter space.

How about color? – We have investigated the influence of the grayscale
levels on visual preference. A natural extension would be of colored
images, whose analysis have shown some specific correlations in
pictorial art analysis [41, 310]. Similarly to Chapter. 1, one could
design sets of images with given generation rules and use them in
large-scale survey experiments. For example in Fig. 2.1, we sampled a
random fractal image for which RGB canals were respectively lagged
using a non-linear wave dispersion rule.

Resolution and Relevance of correlated noise – In Chapter. 2, we studied
the influence of the roughness parameter H on the Multiscale Rele-
vance measure (MSR), which captures the robustness of informations
for all compression scales. We found out that H = 0 fields maxi-
mized the MSR, for a prescribed compression of the space coordinates.
However, H = 0 fields also correspond to additive cascade processes,
whose interscale causal properties have been reported in the litera-
ture [210, 259]. An interesting continuation of this work would consist
in studying processes whose correlation structure built conditionally
to the hierarchy of a prescribed compression measure, and evaluate
their ability to maximize the MSR.
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Figure 2.1: Color random surface, generated from the propagation of wave
modes in each color canal, and using the dispersion relation of
ocean waves [311].

Multifractal fields with more layers – The multifractal fields introduced
in Chapter. 4 extend the definition of two-layered stochastic processes
(with stochastic volatility). One may wonder whether this approach
is generalizable to processes with deeper layers, and under which
conditions such process may display scale invariance.

Causality in random surfaces – We have seen in Chapter. 4 and 5 that
fracture surfaces were the result of an incremental growth of damage,
that could be seen at large scale as a line propagation in a 3D ma-
terial. One can wonder whether the position of a line at given time
(an iso-time line) can be inferred from surfaces. This could allow one
to reconstruct the full path of a crack, for example in the context of
material failure investigations. A promising solution – explored dur-
ing the thesis but absent from this manuscript – may employ causal
observables inherited from financial time series analysis[312–315], and
that have been recently translated in terms of wavelet coefficients [205].
These results could be directly compared with the surfaces obtained
from crack propagation simulations [287] or other line growth mod-
els [56].

Numerical investigation of aerodynamic structures through intermittent
forcing – The effect of aerodynamic structures on the local fluid velocity
field can be numerically studied by using inflow boundary conditions.
These limit conditions can be laminar, or reproduce advected tur-
bulence from random Fourier modes methods [316, 317]. However,
the synthetic turbulence used in those experiments does not display
the non-Gaussian statistics observed in experimental flows, and that
may lead to strong local deviations of the fluid behaviour. A way
to bring more predictability would consist in enforcing intermittent
statistics, by using the framework developed in Chapter. 4. Doing so
would allow for the tuning of the non-linear contribution of turbulent

118



flows, and build a wider range of stress tests in computational fluid
dynamics experiments.
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Figure 2.2: Gaussian and non-Gaussian turbulence. (Top) Quantile represen-
tation of turbulent scalar fields (H = 1/3, S = 512 × 512) with
injection scale k−1

inj = 20 pixels. Top-Left is Gaussian. Top-Right
is non-Gaussian of parameters (λ = 0.15, ξ = 20). Bottom-Left
displays the energy spectrum E(k) of both fields, which are al-
most identical, as they display similar second order correlations.
The vertical line indicates the injection scale from which the scale
invariance begins. Bottom-Right displays the probability distri-
bution functions of the underlying fluctuation fields δh(r). The
deviation from Gaussianity manifests in the form of fat-tailed
statistics.
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Part III

A P P E N D I X





A
A P P E N D I X O F C H A P T E R 2

a.1 generation of 1/ f α
gaussian fields

The 1/ f α textures used in Sec. A.1 are generated through a filtering
procedure. Consider a field ϕ(r) of given autocorrelation function C(r).
Using the convolution theorem one has C̃(q) = |ϕ̃(q)|2 in Fourier
space with |q| = f . A natural way to generate a random Gaussian
field ϕ with prescribed correlations is:

ϕ = F−1
(√

|C̃(q)|η̃(q)
)

, (A.1)

where η(r) is a Gaussian white noise. Note that, as a result, the
textures display periodic boundary conditions. Also note that the
H = 0 (equivalently α = 1) case corresponds to logarithmic spatial
correlations of the form (see e.g. [318]):

C(r) = −λ

(
log

r
ξ
+ log 2 − γ

)
, (A.2)

where r = |r|, ξ−1 is a regularizing constant that can be interpreted as
a low frequency cutoff, and γ is the Euler constant.

123



124



B
A P P E N D I X O F C H A P T E R . 3

b.1 mean (convoluted) squared error

Here we derive the expression of the Mean Convoluted Squared Error
(Fig. 3.1(e)). Without convolution, the expectation of the loss function
reads:

EP
[
L(h, ĥ)

]
= EP

[
∥ĥ − h∥2

2

]

= ∑
r

EP

[(
ĥ(r)− h(r)

)2
]

,
(B.1)

where we have used the linearity of EP . Each term inside the ex-
pectation depends on the marginal variable ĥ(r) and can be easily
computed site-by-site, such that Eq. (B.1) can be rewritten as:

EP
[
L(h, ĥ)

]
= ∑

r
Eph(r)

[(
ĥ(r)− h(r)

)2
]

. (B.2)

Applying the same ideas to the Mean Convoluted Squared Error
yields:

EP
[
Lθ(ĥ, h)

]
= EP

[
∥(ĥ − h)⊛ θ∥2

2

]

= ∑
r

EP
[(
(ĥ − h)⊛ θ(r)

)2
]

. (B.3)

Developing the square leads to: EP [Lθ(ĥ, h)] =

∑
r,r1,r2

θ(r − r1)θ(r − r2)EP
[(

ĥ(r1)− h(r1)
) (

ĥ(r2)− h(r2)
)]

. (B.4)

The marginal distributions being independent, non-diagonal second
order terms (with r1 ̸= r2) inside the expectation can be written as
products of order 1 expectations. Rewriting the diagonal in terms of
squared expectations leads to the following expression: EP

[
Lθ(ĥ, h)

]
=

∥EP [ĥ − h]⊛ θ∥2
2 +

(
EP

[
L(h, ĥ)

]
− ∥EP [ĥ − h]∥2

2

)
∥θ∥2

2, (B.5)

where EP [L(h, ĥ)] is the previously defined Mean Squared Error in
Eq. (B.2), and EP [ĥ − h] is the field computed using the marginal
distributions on each site.
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b.2 analogy with the random field ising model

Here we show that the Convoluted Squared Error can be rewritten as
the Hamiltonian of a Random Field Ising Model (RFIM). Developping
the norm in Eq. (3.5), one obtains:

Lθ(ĥ, h) = ∥(ĥ − h)⊛ θ∥2
2 = ∑

r
[(ĥ − h)⊛ θ(r)]2. (B.6)

Rewriting explicitly the convolution product and defining the interac-
tion matrix J as J(r) = ∑r′ θ(r′)θ(r′ − r), one obtains:

Lθ(ĥ, h) = ∑
r,r′

[
ĥ(r)− h(r)]J(r′ − r)[ĥ(r′)− h(r′)

]
. (B.7)

Since the loss is essentially defined up to a constant, one can discard
ĥ-independent terms in Eq. (B.7), such that Lθ(ĥ, h) ≡ Hh[ĥ] where:

Hh[ĥ] := ∑
r,r′

ĥ(r)J(r′ − r)ĥ(r′)− 2 ∑
r′
(h ⊛ J)(r′)ĥ(r′). (B.8)

Interestingly, when replacing ĥ by a spin field ϕ, one precisely recovers
the Antiferromagnetic RFIM Hamiltonian H[ϕ] which, within the bra-
ket formalism writes:

Hh[ϕ] = ⟨ϕ|J|ϕ⟩ − 2⟨h|J|ϕ⟩, (B.9)

where |heff⟩ = 2J|h⟩ is the effective external field. Therefore, spins
and external field in the Ising model respectively play the same role
as the transformed and original images in the color quantization
problem. A well-known property of the Antiferromagnetic RFIM, that
is interactions encouraging alternations between neighbouring spins,
is for example recovered in our observations, see Fig. 3.2(a).

b.3 resolution/relevance formalism

Here we introduce the formalism used to set the optimal convolution
parameter in Sec. 3.5. The idea, detailed in [20, 127, 128], consists in
studying a data sample for different resolution/compression levels
and calculating entropy-based observables.

Let S = (s1, ..., sN) be a sample of data, and ℓ a compression pa-
rameter. One can transform the original sample into a compressed
one S ℓ = (sℓ1, ..., sℓN) such that ℓ = 1 corresponds to no compres-
sion (S1 = S) and ℓ = L to the totally compressed sample (quasi-
degenerate data). At each compression level ℓ, one can easily calculate
the number kℓs of times the state s appears in the sample S ℓ, and
the number mℓ

k of states appearing k times. One can then define the
resolution as the entropy of the empirical distribution of states:

Ĥℓ[s] = −∑
s

kℓs
N

log
kℓs
N

= −∑
k

kmℓ
k

N
log

k
N

. (B.10)
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Another useful observable is the relevance defined as the entropy
computed from the states sharing the same occurrence frequency:

Ĥℓ[k] = ∑
k

kmℓ
k

N
log

kmℓ
k

N
. (B.11)

This measure of relevance is indeed the most direct way to encode
the underlying distribution of the original data. As the latter entropy
takes less bits to encode, one has Ĥℓ[k] < Ĥℓ[s], explaining why the
data in Fig. 3.5(a) is under the y = x line. In order to quantify the
way information spreads across compression levels, we define the
compression rate µℓ→ℓ+1 between two successive compression levels
as the ratio between loss in relevance and loss in resolution:

µℓ→ℓ+1 :=
Ĥℓ+1[k]− Ĥℓ[k]
Ĥℓ+1[s]− Ĥℓ[s]

. (B.12)

In the right part of Fig. 3.5(a) and for the first compression steps
(low values of ℓ), Ĥ[k] is a decreasing function of Ĥ[s], resulting in
negative µ. Interestingly, this means that compressing the sample
increases the amount of relevant information it contains about the
underlying distribution. However, when ℓ increases further, we reach
an oversampling regime (left part of Fig. 3.5(a)) for which further
compression reduces both relevance and resolution.

In the case of color quantization, we wish to gain information rel-
evance as we range from low to higher compression in the most
scale-invariant way possible. This way, we avoid the scale-specific
tradeoff described in Fig. 3.3. Optimality in that regard is therefore
reached by taking µ close to -1 and as constant as possible in the un-
dersampling regime, by that justifying the linear regression introduced
in Sec. 3.3.2.
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C
A P P E N D I X O F C H A P T E R 4

c.1 the case h=0

We generated monofractal Gaussian fields in the case d = 2, H = 0.
Let us note that this case corresponds to both log-correlated Gaussian
fields (LGF) and Gaussian free field (GFF) [210, 319, 320], whose
Lagrangian functional is

L[ϕ] = (∇ϕ)2 +
1
ξ2 ϕ2.

The results are shown in Fig. C.1(a) and (b). The difference of ξ

directly influences the range of correlations and the visuals. The corre-
lation functions in (c), possess asymptotic logarithmic behaviour, and
can be conveniently collapsed in (d). This ability to tune the logarith-
mic range is useful to control the properties of synthetic multifractal
fields.

(a)
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Figure C.1: Influence of ξ on sampled Gaussian fields for d = 2 and H =
0. (a),(b) Quantile representation of 512 × 512 samples for ξ ∈
{4, 32} respectively. (c),(d) Isotropic autocorrelation functions for
several cut-off values with (d) rescaled by ξ over the δr-axis, and
by the pre-exponent λ over the C-axis. Black dotted line is the
logarithmic regime.
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c.2 scaling of the mrf

In this appendix we consider a field h obtained from the construc-
tion described in the main text. We demonstrate that the jumps,
∆ℓh(r) = h(r + ℓ)− h(r) describe a stationary process whose moments
scale with ℓ. We recall that h(r), r ∈ Rd is built from the fractional inte-
gration of δh(r) = sϵ(r)eωϵ(r), where the limit ϵ → 0 is taken here. This
will allow us to make calculations in the continuous field limit. We
consider Gaussian statistics for s and ω and the following correlations:





Cs(r) ∝ δd(r)

Cω(r) ≈ −λ log
r
ξ

, r < ξ.
(C.1)

The relation h(r) = (−∆)−
H+d/2

2 δh(r) rewrites in terms of Riesz poten-
tial [321] as:

h(r) =
∫

Rd
dr1

δh(r + r1)

∥r1∥ d
2−H

. (C.2)

From now on, integrals will always be over the whole domain Rd,
unless specified otherwise.

c.2.1 Stationarity of increments

We calulate the q-th order moments of jumps between r − ℓ
2 and r + ℓ

2 ,
with ℓ = ℓe, (∥e∥ = 1) and q = 2m. Using the symmetry of the kernel,
the order q variogram writes as:

⟨|h(r + ℓ

2
)− h(r − ℓ

2
)|q⟩ =

∫
dr1· · ·

∫
drq

q

∏
i=1

[
∥r +

ℓ

2
− ri∥H− d

2 − ∥r − ℓ

2
− ri∥H− d

2

]
⟨

q

∏
i

δh(ri)⟩. (C.3)

The fields s and ω being independent, one gets:

⟨
q

∏
i

δh(ri)⟩ = ⟨
q

∏
i=1

s(ri)⟩⟨e∑
q
i ω(ri)⟩, (C.4)

which becomes, using the Wick theorem and the characteristic function
of multivariate Gaussian processes leads to:

⟨
q

∏
i

δh(ri)⟩ = ∏
i1,...,i2m

Cs(ri1 − ri2)×

· · · × Cs(ri2m−1 − ri2m)× Be
1
2 ∑2m

i ̸=j=1
1
2 Cω(ri−rj), (C.5)

where B is the variance/diagonal term of the correlation matrix, unim-
portant here as we observe the scaling exclusively. Injecting this last
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expression in the first integral and applying the change of variable
ri → ri + r suppresses r from the expression. The functional now exclu-
sively depends on ℓ, which implies stationarity/translation invariance.
This translates as the following:

Vq(ℓ) = ⟨|h(r + ℓ

2
)− h(r − ℓ

2
)|q⟩ (C.6)

= ⟨|h(ℓ)− h(0)|q⟩. (C.7)

We also note the rotation invariance of Vq(ℓ).

c.2.2 Asymptotic scaling

We establish the scaling of jumps h(ℓ)− h(0) in the ℓ ≪ ξ limit of
Eq. C.3. The moments of order q = 2m write:

Vq(ℓ) =
∫

dr1· · ·
∫

drq

×
q

∏
i=1

[
∥ri −

ℓ

2
∥H− d

2 − ∥ri +
ℓ

2
∥H− d

2

]
⟨

q

∏
i

δh(ri)⟩ (C.8)

Using that s is δ-correlated, we identify successive terms r2i−1 = r2i

and get:

Vq(ℓ) =
∫

dr2· · ·
∫

dr2m

×
m

∏
i=1

[
∥r2i −

ℓ

2
∥H− d

2 − ∥r2i +
ℓ

2
∥H− d

2

]2

× B
m

∏
i ̸=j=1

e−
1
2 Cω(r2i−r2j). (C.9)

Note that this integral is well defined for H < 1. Similarly to [255],
we make the change of variable ri = ℓui and recover:

Vq(ℓ) ∝ ℓ2mH
∫

du2· · ·
∫

du2m

m

∏
i=1

[
∥u2i −

e
2
∥H− d

2 − ∥u2i +
e
2
∥H− d

2

]2

×
m

∏
i ̸=j=1

e−
1
2 Cω(ℓ(u2i−u2j)). (C.10)

To recover the scaling of this last integral term, we split the inte-
gration domain into the reunions of subsets ∥ui − uj∥ < ξ/ℓ. This
allows one to extract the logarithmic correlations of Cω, leading to a
dominant term of the form ℓ−2λ2m(m−1).

Power counting all contributions finally leads to V2m(ℓ) ∝ ℓ2mH−2λ2m(m−1),
which recovers:

Vq(ℓ) =
ℓ≪ξ

Kqℓ
ζq , (C.11)
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where Kq depends on the standard deviation of s and ζq is the scaling
exponent spectrum of expression:

ζq = qH − λ2

2
q(q − 2), (C.12)

which corresponds to the MRW scaling for H = 1/2. Finally, note that
this scaling can be generalized to all q from analytical continuation
arguments.

c.3 self-similarity kernel and fluctuation ratio Wℓ/ L
distribution

The fluctuation ratio ⟨Wq
ℓ/L⟩ = (ℓ/L)ζq is characterized by its moments:

⟨Wq
ℓ/L⟩ = (ℓ/L)ζq = elog ℓ

L (qH− λ
2 q(q−2)), (C.13)

which corresponds to the moments of a log-normal distribution. The
corresponding Gaussian process log Wℓ/L is defined by its average

µ = (H + λ) log ℓ
L and deviation σ =

√
−λ log ℓ

L , leading to the
distribution:

Gℓ/L(u) =
1√

−2πλ log( ℓL )
e
((H+λ) log( ℓL )−u)2

2λ log( ℓL ) . (C.14)

c.4 synthesis and analysis of multifractal fields

In the following, we estimate the multifractal parameters of several
synthetic multifractal fields.

In Fig. C.2, we modify the Hurst roughness exponent H from 0.1 to
0.9. For H ≈ 0.5, estimations from the scaling exponent spectrum ζq

are generally good. For extreme values of H however, the estimated
values of H and λ deviate from entry values. Note however that this
problem can be solved through the power spectrum estimation of
the roughness H = ζ2/2 [244, 322], and the extended self-similarity
estimation of λ [323]. The estimations from ω̂ are in perfect agreement.

In Fig. C.3, we modify λ from 0.01 to 0.50. For 0 < λ < .2, es-
timations from the scaling exponent spectrum ζq or from the local
log-volatility ω̂ recover good agreement. Note that a low value of
λ prevents a correct estimation of ω̂, leading to the discrepancy ob-
served at λ = 0.01. As λ gets higher, the volatility based analysis
should be privileged. Note however that λ rarely goes beyond 0.25 in
experimental data.
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Figure C.2: Influence of the roughness exponent H. (Top) Quantile representation of simulated fields of

size L = 512 for H = {0.1, 0.3, 0.5, 0.7, 0.9}, λ = 0.15 and ξ = 30 pixels. (Bottom) Estimated
parameters. Red (+) markers correspond to Cω estimations. Blue (×) markers correspond to ζq
estimations.

λ =0.01 λ =0.13 λ =0.26 λ =0.38 λ =0.5

0.0 0.2 0.4

λ

0.0

0.2

0.4

λ

0.0 0.2 0.4

λ

0.0

0.2

0.4

0.6

0.8

1.0

H

0.0 0.2 0.4

λ

0

10

20

30

40

50

ξ

Figure C.3: Influence of the intermittency coefficient λ. (Top) Quantile representation of simulated fields of
size L = 512 for λ = {0.01, 0.13, 0.25, 0.38, 0.5}, H = 0.5 and ξ = 30 pixels. (Bottom) Estimated
parameters. Red (+) correspond to Cω estimations. Blue (×) correspond to ζq estimations.
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L I S T O F F I G U R E S

Figure 2.1 Brownian trajectory in 2D. (a) Trajectory (deci-
mated for lisiblity). Red and blue dots are initial
and final positions.(b) Variogram of the trajec-
tory. 8

Figure 2.2 Anomalous diffusion of Levy-flights. (a), (b)
and (c), particle trajectories sampled from Levy-
stable distributed jumps with H = 0.83, 0.75, 0.5
respectively. (d) Scaling of trajectories, calcu-
lated from the first order variogram V1(∆t) =
⟨|r(t + ∆t)− r(t)|⟩. Black lines indicate theoret-
ical scalings V1(∆t) ∝ ∆tH. 9

Figure 2.3 Van Gogh’s Starry Night (1889), MoMa’s online
Collection. The sky displays eddy-like struc-
tures, reminiscent of fluid turbulence. 10

Figure 2.4 Fractional Gaussian field, H = 0.6. (a) Quan-
tile representation of the random field ϕ(r) (b)
Variogram V2(δr) = ⟨|ϕ(r + δr)− ϕ(r)|⟩. Theo-
retical slope V2 ∝ δr2H in red. 11

Figure 3.1 Painting in Van Gogh’s starry night style of an en-
thusiastic PhD student on his computer, with several
coffee cups on his desk, obtained from OpenAI’s
Dall-E 2 [91]. 14

Figure 4.1 Fracture surface morphology of three seem-
ingly different materials from [143]. (Top) Height
fields h(r) of the fracture surface. (Bottom) Gra-
dient fields. In both cases, the quantiles of the
distribution are represented by a gray hue, the
largest values being represented by the lightest
hue. 17

Figure 4.3 The microscopic view of failure. At large scale,
failure results from the seemingly continuous
propagation of a crack. Yet, zooming at the
crack vicinity, one observes that cracks grow by
coalescing cavities in a so-called fracture process
zone of size ℓc. 18

159



160 list of figures

Figure 4.2 Fracture surface of a metallic alloy, measured
by optical profilometry. (Left) Quantile rep-
resentation of the height field h(x, y) in 256

grayscale levels. The resolution is 1000x1000

with 1pixel = 1µm. (Right) Variogram function
for (q = 2) calculated along the propagation
direction . 18

Figure 4.4 Characterization of intermittent behaviours. (Left)
Empirical p.d.f of jumps increments ∆ϵh for
ϵ ∈ 1, 2, 4, 8, 16 pixels (Top to Bottom).(Right)
Rescaled variograms q

√
Vq(∆r), showing ζq ̸=

qH 19

Figure 4.5 Synthetic multifractal field. The non-Gaussian
statistics appear under the form of pikes, cliffs
and other singularities. However, we will see
in Chapter. 4 that some features of these artifi-
cial fracture surfaces differ from experimental
ones. 20

Figure 1.1 (a) Fourier Magnitude-generated images, and
(b) Box-counting-generated images, both series
with increasing complexity from left to right.
These images were used for our large-scale sur-
vey. 28

Figure 1.2 Results of the two different surveys (Zooni-
verse: solid black line, Mechanical Turk : dash-
dotted gray line). The red diamonds markers
indicate the structural complexity τcg defined
below. We have rescaled and shifted vertically
τcg to show that the maximum scores also corre-
spond to maximum structural complexity. The
blue circles reflect the complexity measure pro-
posed in [25]. Top: image series of Fig. 1.1(a).
Bottom: image series of Fig. 1.1(b). Error bars
reflect the 95% confidence interval using the
bootstrap method [182]. 31

Figure 1.3 Illustration of the coarse-graining procedure
on images a1, a4 and a6, with rcg = 7 and
δ = 0.23. 34
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Figure 2.1 Relevance analysis of a Gaussian distribution
sample (N = 100). (a) Influence of the number
of bins n on the normalized histogram (black
bars), for (a1) n = 5, (a2) n = 23 and (a3)
n = 400. The red curve corresponds to the un-
derlying distribution. The bottom markers (+)
represent the initial sample data points with
color indicating local data density. (b) Resolu-
tion/Relevance curve. 39

Figure 2.2 Illustration of the segmentation/compression
procedure on a classic benchmark image. (a)
Original Image. (b) Thresholded image at a
given quantile value a. (c) Thresholded image
with reduced grid. (d) Reduced sample where
each grid cell is replaced by the average pixel
color. 41

Figure 2.3 1/ f α textures generated from the same white
Gaussian noise seed. (a), (b), (c) Representa-
tions of 1/ f α random fields with respective
roughness H = −0.5, 0, 0.5 and spatial resolu-
tion 512× 512. (d) Azimuthally averaged power
spectrum ⟨S( f , θ)⟩θ . Black dashed lines indicate
the theoretical power spectrum decay 1/ f 2α

with α = 1 + H. 44

Figure 2.4 (a), (b), (c) Segmented versions of the textures of
Fig. 2.3, with H = −0.5, 0, 0.5 respectively, and
threshold value a = 0.5. (d) Resolution/Rel-
evance curves normalized by the maximum
entropy log2 N. 45

Figure 2.5 Influence of the segmentation value a. (a) Rel-
evance curves for H = −0.8 for two values of
a. (b) MSR as function of a for H = −0.8 (black
dashed line), H = −0.1 (red dashed dotted
line) and H = 0.5 (black dotted line). (c) Den-
sity plot MSR(H, a). The maxima are signified
with black markers. 46

Figure 2.6 (a) Natural grayscale image from [199], seg-
mented in patches of size 512× 512. (b) Power
spectrum for each patch. Dotted line is a decay-
ing power law with exponent −2. (c) MSR as
function of a for each patch. 47

Figure 2.7 (a) Bottom-left patch of Fig. 2.6(a). (b) MSR as
function of a with highlighted critical thresh-
olds (a1, a2) = (0.42, 0.73). (c)(d) Correspond-
ing segmented patches. (e) Image obtained by
adding (c) and (d), with three color levels {0,127,255}. 49
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Figure 2.8 (a) Gradient Magnitude field of Fig. 2.6(a), with
j = 0, divided in 512 × 512 patches. (b) MSR as
function of a for the different patches. 50

Figure 2.9 Influence of the Gradient Wavelet size. (a) Orig-
inal patch from Fig. 2.6(a). (b) MSR as func-
tion of a for gradient wavelets of dyadic size
(2j), j ∈ {0, 1, 2, 3}. (c)(d) Gradient magnitudes
for j = 0 and j = 2 respectively. (e)(f) Seg-
mented gradient magnitudes at critical thresh-
old values ac for j = 0 and j = 2 respec-
tively. 51

Figure 2.10 Denoising. (a) Noisy patch obtained from adding
a Gaussian noise (σ = 100) to the same patch
from Fig. 3.4(a). Rescaled scores as function
of λ for different performance measures: Peak
Signal-to-Noise Ratio (PSNR), Structural Simi-
larity Index Measure (SSIM) and MSR over the
gradient field MSR∇. (c),(d), (e) Denoising at
optimal regularization parameter λ∗ for PSNR,
SSIM and MSR∇ respectively. 53

Figure 3.1 Influence of thermal noise on color quanti-
zation. (a) Original benchmark image. (b-d)
Quantized versions of the original image gen-
erated at low (T ≃ 0), intermediate (T = 0.3)
& high (T = 1) temperatures using Eq. (3.4).
(e) Evolution of the rescaled Mean Convoluted
Squared Error between the original and quan-
tized images (Eq. (3.5)) with temperature for
different values of the convolution parameter α

(Eq. (3.6)). 60

Figure 3.2 Evolution of the optimal temperature T⋆
α with

the convolution parameter α for different im-
ages. (a) Comparison between the original im-
age and a shuffled version generated with a
randomizing procedure. (b) Comparison be-
tween two benchmark images (Peppers & Man-
drill) displaying structural features at different
scales. 63

Figure 3.3 Monte Carlo image generation. (a) Original
benchmark image. (b-d) Monte Carlo simula-
tions for α = 0.02, α = 0.05, α = 0.5 respec-
tively. Images were initialized with ĥ∗ and the
simulation ran until the loss function reached
stability. 64
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Figure 3.4 Color mapping. (a) Original patch from Fig. 2.6(a).
(b) Rescaled scores as function of tempera-
ture for different performance measures: Peak
Signal-to-Noise Ratio (PSNR), Structural Simi-
larity Index Measure (SSIM), direct Multiscale
Relevance (MSR), and MSR over the gradient
field MSR∇. (c),(d),(e), (f) Color mapping at op-
timal temperatures T∗ for PSNR, SSIM, MSR
and MSR∇ respectively. 66

Figure 3.5 Influence of the convolution parameter α on the
compressing regime of color quantized images.
(a) Plot of (Hℓ[s], Hℓ[k])ℓ for low, optimal and
high convolution parameters α. (b) Regression
coefficient R2 of the linear fit as function of α. (c)
Optimally quantized image, α = 0.054. 68

Figure 3.6 Extension to different image types and color
palettes. From Left to Right: Original image,
T = 0, T = T∗, σ = σ∗, and Floyd-Steinberg al-
gorithm. From Top to Bottom: Man onto B&W,
Bridge onto four grayscale levels, Peppers onto
eight colors, and Mandrill onto fifteen colors. 70

Figure 4.1 Synthetic multifractal field in dimension d =

2. 76

Figure 4.2 Step-by-step construction of multifractal sig-
nals, extracted here from surfaces of dimension
d = 2. From top to bottom, log volatility ω from
Eq. (4.2), volatility σ from Eq. (4.3), fluctuations
δh from Eq. (4.6) and multifractal field h from
Eq. (4.7). Horizontal dotted lines indicate the
origin y = 0 of each signal. To go from one
signal to the other, we use the following oper-
ations: exponentiation, symmetry forcing and
fractional integration. 80
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Figure 4.3 Synthetic multifractal field in dimension d = 2,
of size 512 × 512, with parameters (H, λ, ξ) =

(0.5, 0.1, 32). (a) h(r). (b) ω(r). (c) Rescaled var-
iograms with their power law fits. (d) Gen-
eralized Hurst exponents, as obtained from
the fit of the variograms and their compar-
ison with the linear prediction of Eq. (4.8).
(e)Distributions of fluctuations computed at
scales ϵ/ξ = 1/32, 1/16, 1/8, 1/4, 1/2 and 1.
(Top to Bottom, shifted for illustration)and their
comparison with the distribution computed
from Eq. (4.10) using L = ξ as a reference
length scale. (f) Correlations of ω and ω̂ and
comparison with the expected logarithmic cor-
relations. 81

Figure 4.4 Unwrapping of an experimental multi-affine
field. (a) Height map h(r) of a fractured metal-
lic alloy of size 2 × 2 mm2 with 2 µm/pixel. (b)
ω̂(r) field, retrieved from Eq. (4.9). (c) Rescaled
variograms. (d) Comparison of the exponents
Hq = ζq/q with the prediction of Eq. (4.8)
using H = 0.63 and λ = 0.15. (e) Distribu-
tion of fluctuations computed at scales ϵ/ξ =

1/16, 1/8, 1/4, 1/2, 1 and 2 and their compari-
son with the distributions computed from Eq. (4.10)
using L = ξ. (f) Correlations of ω̂ and com-
parison with the expected correlations using
λ = 0.15 and ξ = 33µm. 83

Figure 4.5 Cluster analysis of ω fields. (a) and (b) Volatil-
ity fields of artificial and experimental surface,
thresholded at pc = 0.9. (c) Fractal dimen-
sion analysis of clusters, defined from nearest-
neighbour rule. We recover D = (1.65± .03, 1.53±
.02) for synthetic and experimental clusters re-
spectively. (d) Ratio of the two eigenvalues of
the clusters’ inertia tensor as a function of their
size, showing that larger clusters are more elon-
gated than predicted by the model. 84

Figure 5.1 The microscopic view of failure. At large scale,
failure results from the seemingly continuous
propagation of a crack. Yet, zooming at the
crack vicinity, one observes that cracks grow by
coalescing cavities in a so-called damage process
zone of size ℓc. 88
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Figure 5.2 Quantile representations of fracture surfaces
height field, of size 1000 × 1000 pixels with
16 µm/pixels. (a) Coarse-grain granite. (b) Fine-
grain granite. (c) Marble. (d) Sandstone. The
horizontal x-axis and vertical y-axis are respec-
tively orthogonal and parallel to the front prop-
agation direction. 90

Figure 5.3 Order 2 variograms computed for the differ-
ent materials. The variograms are computed
along the crack propagation direction (⊥), front
direction (∥), and isotropically. Black dotted
lines correspond to power-law fits, values are
reported in Tab. 5.1 91

Figure 5.4 Probability density functions of jumps, com-
puted perpendicularly to the propagation di-
rection. Each curve corresponds to different
values of ϵ = 33, 66, 132, 264, 528 µm (top to
bottom) that have been rescaled for visibility.
The black curves correspond to the predictions
inferred from the Castaing equation [153] (see
Chap. 4 for more details) under log-normal cas-
cade assumption, using the Castaing equation
introduced in Ch. 4. 92

Figure 5.5 Rescaled generalized variograms (Vq)1/qcomputed
for the different surfaces, with q ∈ {1, 2, 3, 4, 5}
corresponding to bottom to top curves. The val-
ues of ξ correspond to the fitting parameter of
Fig. 5.8. 93

Figure 5.6 Quantile representations of the log-volatility
field ω, obtained from fractional differentiation
of the height using Eq. (5.3) for (a) coarse-grain
granite, (b) fine-grain granite.,(c) marble and
(d) sandstone. The image size 16.5 × 16.5 cm2

is identical to the one of the height fields of
Fig. 5.2. 94

Figure 5.7 Correlation analysis of ω. (Main figure) Isotropic
correlation functions of ω, fitted by power-law
functions (black dotted lines). Values are re-
ported in Tab. 5.2. (Inset) Collapse of correla-
tion functions around the power-law model.
95
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Figure 5.8 Correlation analysis of ω. (Main figure) Isotropic
correlation functions of ω, fitted by an exponen-
tial decay (black dotted lines). Values of the cut-
off length ξ of the multi-affine regime are re-
ported in Tab. 5.2. (Inset) Collapse of the corre-
lation functions around the exponential model
in a semi-logarithmic representation. 96

Figure 5.9 Binarized ω fields (pc = 90%), obtained from
Fig. 5.6 97

Figure 5.10 Fractal dimension analysis of clusters (pc =

90%) The fitting curve corresponds to S = RD
g

with D = 1.63. 98

Figure 5.11 Anisotropy analysis of clusters (pc = 90%) 98

Figure 5.12 Probability distribution of cluster size (pc =

70%). The black dotted curve corresponds to a
power-law with slope τ = 2.2 99

Figure 5.13 Cumulative distribution function of Cluster size
(pc = 97%). On the right, the distributions are
collapsed using the values of ξ(values reported
in Tab. 5.2). The black curve is a truncated
power law of the form f (u) = u−τ+1e−u, with
τ = 2.2 and rescaled for visibility. 100

Figure 5.14 Continuous Time Random Walk Description
of the crack propagation. (Left) The crack tip
advances by sampling micro-cracks in the Frac-
ture Process Zone (FPZ).(Right) The dynam-
ics is modelled as the sampling of forward
and out-of-direction jumps, whose statistics are
given by Eq. (5.12). 102

Figure 5.15 Multifractal analysis of truncated Lévy-flights,
for ℓx = 1, ℓh = 300 and α = 2.2. (Left) Var-
iogram analysis, with theoretical slope of ex-
ponent Hα = 1/(α − 1) = .83, and diffusive
limit H = 1/2. Darker colors correspond to
low q values, and lighter colors to high q values.
(Right) Generalized scaling exponent spectrum
ζq, with theoretical expectations from Eq. 5.17. 105

Figure 2.1 Color random surface, generated from the prop-
agation of wave modes in each color canal, and
using the dispersion relation of ocean waves [311]. 118



Figure 2.2 Gaussian and non-Gaussian turbulence. (Top)
Quantile representation of turbulent scalar fields
(H = 1/3, S = 512 × 512) with injection scale
k−1

inj = 20 pixels. Top-Left is Gaussian. Top-
Right is non-Gaussian of parameters (λ = 0.15, ξ =

20). Bottom-Left displays the energy spectrum
E(k) of both fields, which are almost identi-
cal, as they display similar second order cor-
relations. The vertical line indicates the injec-
tion scale from which the scale invariance be-
gins. Bottom-Right displays the probability dis-
tribution functions of the underlying fluctua-
tion fields δh(r). The deviation from Gaussian-
ity manifests in the form of fat-tailed statis-
tics. 119

Figure C.1 Influence of ξ on sampled Gaussian fields for
d = 2 and H = 0. (a),(b) Quantile representa-
tion of 512× 512 samples for ξ ∈ {4, 32} respec-
tively. (c),(d) Isotropic autocorrelation functions
for several cut-off values with (d) rescaled by ξ

over the δr-axis, and by the pre-exponent λ over
the C-axis. Black dotted line is the logarithmic
regime. 129

Figure C.2 Influence of the roughness exponent H. (Top)
Quantile representation of simulated fields of
size L = 512 for H = {0.1, 0.3, 0.5, 0.7, 0.9}, λ =

0.15 and ξ = 30 pixels. (Bottom) Estimated
parameters. Red (+) markers correspond to Cω

estimations. Blue (×) markers correspond to ζq

estimations. 133

Figure C.3 Influence of the intermittency coefficient λ. (Top)
Quantile representation of simulated fields of
size L = 512 for λ = {0.01, 0.13, 0.25, 0.38, 0.5},
H = 0.5 and ξ = 30 pixels. (Bottom) Estimated
parameters. Red (+) correspond to Cω estima-
tions. Blue (×) correspond to ζq estimations.
133
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Titre : Approches turbulentes de l’analyse d’image et de la fractographie

Mots clés : traitement d’image, esthétique quantitative, théorie de l’information, turbulence, fractographie,
synthèse d’images

Résumé : Le rôle du physicien est de décrire l’univers et
les systèmes le constituant par observation, interprétation,
conceptualisation et généralisation de leurs comporte-
ments. En réalité, les systèmes permettant de simul-
tanément lier tous ces aspects de la physique sont rares,
et souvent simples ou issus de protocoles expérimentaux.
Dans les faits, ces étapes sont séquentielles, et la première
approche est phénoménologique. Elle peut alors consis-
ter à caractériser la réponse des systèmes à des sollicita-
tions harmoniques ou stochastiques autour de leurs états
d’équilibre. Ces méthodes sont d’autant plus intéressantes
que les degrés de liberté sont élevés, puisqu’elle permettent
l’exploration efficace de l’espace des configurations. Un
exemple classique est alors celui de la mécanique des
fluides, dont l’étude du régime de turbulence révèle un com-
portement fractal/invariant d’échelle des fluctuations de vi-
tesse. Dans cette thèse, nous faisons un usage important
de ces méthodes et de ces intuitions en les appliquant à
l’étude de sujets en apparence différents : le traitement
d’images et la fractographie statistique.
Dans la première partie de cette thèse, j’aborde trois
problèmes distincts du traitement de l’image. Tout d’abord,
je revisite la question du lien entre l’appréciation visuelle
et les propriétés statistiques des images. Ensuite, j’aborde
le cas des images naturelles, dont l’analyse repose sur

des observables mesurant l’information contenue dans les
images à toutes les échelles : la Multiscale relevance
(MSR). Enfin, le problème spécifique de la quantification
des couleurs est traité par l’établissement d’algorithmes
basés sur des principes de maximisation de l’entropie.

Dans la deuxième partie du manuscrit, j’étudie les sur-
faces de fracture obtenues par la rupture complète d’un
matériau. Ces surfaces présentent des propriétés statis-
tiques rappelant la turbulence des fluides par leur inva-
riance d’échelle, et leurs fluctuations non-Gaussiennes.
Tout d’abord, je définis une classe de champs aléatoires
reproduisant ces propriétés. Leur comparaison avec une
surface de rupture permet de souligner les similarités, ainsi
que les différences principalement liées à la topologie des
évènements turbulents. Ensuite, l’analyse de quatre sur-
faces de roches permet de mettre en évidence le lien
entre la longueur de corrélation du régime multifractal, et
la taille de la Fracture Process Zone où les phénomènes
de coalescence de l’endommagement se produisent. En-
fin, des modèles stochastiques de propagation de fissure
sont développés, et montrent l’émergence de la multifracta-
lité à partir d’hypothèses simples basées sur des observa-
tions expérimentales.

Title : Turbulent approaches to image analysis and statistical fractography

Keywords : image processing, quantitative aesthetics, information theory, turbulence, fractography, texture
synthesis

Abstract : One may argue that the role of the physicist
is to describe the universe by its observation, interpretation,
and generalization. In reality, systems allowing such simul-
taneity in their approach are rare, and often simple or made
simple by experimental design. In fact, these approaches
are necessarily sequential, and the first one is often phe-
nomenological. It may then consist in harmonic or stochas-
tic forcing of the system around its equilibrium or stationary
points. This method is all the more interesting for high de-
grees of freedom, as it allows for the efficient exploration of
the configuration space. Maybe the most classic example
would be of fluid turbulence, the analysis of which reveals
robust statistical of its velocity fluctuations. In this thesis, I
will make strong use of these methods and intuitions by in-
troducing them to two seemingly different subjects: image
processing and statistical fractography.
In the first part of this thesis, I tackle three distinct pro-
blems in image analysis and processing, by establishing
fluctuation-based metrics with straightforward interpretabi-
lity. First, I revisit the long-standing question of the relation
between visual appreciation and image statistics. Then, an
agnostic information-theoretic observable is employed to in-

vestigate the statistical properties of natural images. Finally,
I address the specific problem of image color quantization
by deriving stochastic mapping algorithms from maximum
entropy principles.

In the second part of the manuscript, I study fracture sur-
faces resulting from the complete failure of a material.
These surfaces display universal statistical properties remi-
niscent of fluid turbulence, namely scale invariance, non-
Gaussian statistics and multi-affinity. First, I define a mini-
mal class of random fields reproducing these properties.
The comparison with fracture surfaces highlights slight dif-
ferences, mainly related to the presence of cliffs on the
surface reminiscent of turbulent dissipation fields filaments.
Then, the study of four fracture surfaces from different rocks
materials allows us to link the correlation length ξ defining
the multifractal regime, with the size of the Fracture Process
Zone ℓc in which dissipative coalescence mechanisms oc-
cur. Finally, some stochastic models of crack propagation
are ultimately introduced, and show the emergence of mul-
tifractal scaling from ad-hoc assumptions based on experi-
mental observations.
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