
HAL Id: tel-04482228
https://theses.hal.science/tel-04482228

Submitted on 28 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time flexible and virtualized transponders for
optical telecommunications

Alexandre Gouin

To cite this version:
Alexandre Gouin. Real-time flexible and virtualized transponders for optical telecommunications.
Signal and Image processing. INSA de Rennes, 2022. English. �NNT : 2022ISAR0011�. �tel-04482228�

https://theses.hal.science/tel-04482228
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’INSTITUT NATIONAL DES
SCIENCES APPLIQUÉES RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Télécommunications

Par

Alexandre GOUIN
Transpondeurs temps-réel flexibles pour les télécommunications
optiques et virtualisés

Real-time flexible and virtualized transponders for optical communications

Thèse présentée et soutenue à Rennes, le 31/05/2022
Unité de recherche : IETR
ISAR 12 / D22 - 12

Rapporteurs avant soutenance :

Olivier ROMAIN PR, Université de Cergy Pontoise
Cédric WARE PR, Télécom Paris

Composition du Jury :
Présidente : Christelle AUPETIT-BERTHELEMOT PR, XLIM
Examinateurs : Cédric WARE PR, Télécom Paris

Olivier ROMAIN PR, ETIS
Matthieu GAUTIER MCF-HDR, IRISA
Angélique RISSONS PR, ISAE - SUP AERO
Jean-Christophe PREVOTET PR, IETR

Dir. de thèse : Fabienne NOUVEL MCF-HDR, IETR
Co-dir. de thèse : Patricia LAYEC Ingénieure de recherche, Nokia Bell Labs

Invité :

Arnaud DUPAS Ingénieur de Recherche, Nokia Bell Labs

CONTENTS

Abstract vi

List of publications viii

List of Figures ix

List of Tables xix

Acronyms xxi

Résumé étendu en Français xxiii
Réseaux de transport optique . xxiv

Couche physique . xxiv
Plan de contrôle . xxvii

Généralités sur le transpondeur optique et le transpondeur optique reconfigurablexxviii
Prototypage d’un transpondeur optique flexible pour réseaux SDN xxxii

Protocole d’auto-négociation pour transpondeur optique xxxiii
Monitoring embarqué . xxxvi
Validation du prototype complet . xl
Intégration avec un setup temps-réel . xliii

Service d’accélération et transpondeur . xliv
Réseau de neurone sur FPGA . xlvi
Validation en simulation . xlviii
Validation en implémentation . l

Conclusion . liii

1 Introduction 1

2 The optical transport network and the optical transponder 5
2.1 Optical transport networks . 6

2.1.1 Optical layer architecture . 6

iii

2.1.2 Optical line equipment . 10
2.1.2.1 Optical Transponder . 10
2.1.2.2 OADM . 12
2.1.2.3 Amplifiers . 15

2.1.3 Optical link impairment . 15
2.1.4 Optical transport network control plane 17

2.2 Optical Transponders . 20
2.2.1 Architecture . 20
2.2.2 Digital and Analog conversion . 21
2.2.3 Digital signal processing . 22

2.2.3.1 Transmitter side DSP . 23
2.2.3.2 Receiver side DSP . 25

2.2.4 Transmitter . 26
2.2.5 Receiver . 27
2.2.6 Physical optical interface . 28

2.3 Conclusion . 30

3 Flexibility and reconfigurable transponders 31
3.1 System flexibility . 31

3.1.1 The FPGA hardware . 32
3.2 Network flexibility . 37

3.2.1 SDN and Hardware Virtualization 38
3.3 Reconfigurable optical transponders . 41

3.3.1 The Sliceable Bandwidth Variable Transponder 42
3.3.1.1 Bandwidth Variable Transponder 42
3.3.1.2 Sliceability and virtualization 45

3.3.2 Automatic hitless reconfigurable transponders for flexible optical
networks . 48

3.4 Conclusion . 51

4 Real-time optical flexible transponder prototype for software defined
networks 52
4.1 Introduction . 52
4.2 Prototype transponder presentation . 53
4.3 Auto-Negotiation Protocol . 55

iv

4.3.1 Design . 55
4.3.2 Implementation . 56
4.3.3 Validation . 59

4.4 Embedded monitoring processing and decision-making 63
4.5 Network Controller Interfacing . 68
4.6 Prototype transponder validation . 70
4.7 Integration with a baud-rate variable setup 78

4.7.1 Transmitter . 79
4.7.2 Receiver and deframer board . 82
4.7.3 Validation . 87

4.8 Conclusion . 90

5 Transponder and acceleration services 92
5.1 Neural network-based power monitoring 93

5.1.1 Generalities on neural network algorithms 93
5.1.2 Neural network-based optical nonlinearity monitoring and launch

power optimization . 96
5.2 FPGA implementation . 101

5.2.1 Data set and neural network generation 102
5.2.2 Logical Implementation . 107

5.2.2.1 Neuron and network hardware structure 107
5.2.2.2 Simulation validation and resource utilization 113

5.2.3 Network weights update . 117
5.2.4 Implementation and validation . 122

5.3 Conclusion . 125

6 Conclusion and perspectives 126

Bibliography 129

v

ABSTRACT

Optical transport networks, the high capacity network where optical links span from
hundreds to thousand kilometers, have undergone major changes in recent years to accom-
pany the ever growing demands in bitrate, service reliability and reduction in latency. The
Elastic Optical Network paradigm is under a lot of development, taking advantage of the
higher reconfigurability of optical hardware and increases of the control plane automation
capabilities to make the networks more reliable and flexible.

In this manuscript, we focus on the optical transponder, the optical equipment that
bridges the access networks where client signals come from and the optical transport
network that routes them to their destination. This equipment has followed the trend of
flexibility and is more reconfigurable than ever. From the modulation format, the optical
launch power, the central frequency of the signal, the error correction code, etc. . . One
can tune an optical transponder parameter to the current needs of the network. Also, the
transponder is following the adoption of the virtualization techniques inside the optical
network, which allows more advanced handling of its resources by the control plane and
increases the automation capabilities of the optical network.

However fully flexible optical networks are not yet a reality, as some challenges have yet
to be resolved. Firstly, the hardware is reconfigurable but has its limitations, especially the
necessity to be put offline for the reconfiguration to be applied. As a change in the emitter
can require adaptations in the receiver, efficient and synchronous changes of parameters
are still a challenge. Also, the over centralization of monitoring and decision making in
the control plane creates performance bottlenecks, which leads to higher time to detect
a failure in the network and propose a change of configuration to resolve it. This makes
reconfigurations rare and operational margins high for optical transponders, which will
not run at their maximum potential.

We believe that to alleviate the aforementioned challenges for fully flexible optical
networks, optical transponders should be given more decision power. By bringing more
intelligence to the device, allowing it to process its own monitoring data, make decisions
on the ideal set of parameters to resolve a degradation in quality of service and triggering
itself a synchronous change of parameters with another transponder of the network will

vi

allow for more active and frequent reconfigurations in the optical networks, increasing the
networks overall flexibility and reliability.

Firstly, we provide in this thesis work an auto-negotiation protocol for optical transpon-
ders that allows for fast synchronous change of parameters. Integrated with a commercial
transponder and an embedded monitoring and decision-making solution we have vali-
dated our solution against a centralized control plane in a network testbed in terms of
fault detection and resolution times. We also validate our auto-negotiation solution with a
real-time baud-rate variable setup and showcase a synchronized change of baudrate from
14GBaud to 7GBaud with the help of the protocol.

Secondly, we provide a neural network solution for embedded monitoring in the optical
data plane. By allowing for a reconfiguration of the neurons weights of the network we
believe that this solution can both provide advanced monitoring techniques for the optical
equipment and allow smarter fault detection and reconfigurations in the data plane and
provide computational resources for the optical control plane for remote monitoring which
would accelerate decision making for the whole network.

vii

LIST OF PUBLICATIONS

[i] A. Gouin, A. Dupas, and P. Layec, « In-Line Transmission Parameters Synchro-
nization Protocol for Hitless Optical Coherent Communication », in 2020 International
Conference on Optical Network Design and Modeling (ONDM), may 2020, p. 1-3. doi:
10.23919/ONDM48393.2020.9132995.

[ii] A. Gouin, A. Dupas, L. G. Renom, A. Benabdallah, F. Boitier, and P. Layec,
« Dynamic auto-negotiation with real-time transponders in software defined optical net-
works », in 2021 Optical Fiber Communications Conference and Exhibition (OFC), june
2021, p. 1-3., doi: 10.1364/OFC.2021.W6A.6

[iii] A. Gouin, A. Dupas, L. Gifre Renom, A. Benabdallah, F. Boitier, and P. Layec,
« Real-time optical transponder prototype with autonegotiation protocol for software
defined networks », Journal of Optical Communications and Networking (JOCN), vol. 13,
n. 9, p. 224, sept. 2021, doi: 10.1364/JOCN.427938.

[iv] A. Gouin, A. Dupas, , F. Boitier, F. Nouvel, J.C. Prévotet and P. Layec, “Real-
time optical transponder prototype with auto-negotiation protocol for software defined
networks”, GDR SOC2, Juin 2021, p. 2.

[v] E. Dutisseuil, A. Dupas, A. Gouin, F. Boitier, and P. Layec, « Hitless Transmission
Baud Rate Switching in a Real-Time Transponder Assisted by an Auto-Negotiation Pro-
tocol » (Top Scored), in 2022 Optical Fiber Communications Conference and Exhibition
(OFC), march 2022, p. 4.

viii

LIST OF FIGURES

1 Représentation de la technologie de Multiplexage en Longueur d’Onde
(WDM) . xxv

2 Structure d’une trame OTN (Optical Transport Network). Plusieurs sous
structures cohabitent dans la trame : OTU (Optical Transport Unit), ODU
(Optical Data Unit) et OPU (Optical Payload Unit), chacun comprenant
leurs propres champs (permettant le monitoring, le concaténation, etc. . . des
signaux clients). xxv

3 Représentations de (a) la grille de fréquence fixe traditionnellemnt utilisée
dans les réseaux de transport optique, et (b) la grille flexible utilisée dans
les réseaux modernes élastiques. xxvi

4 Réprésentation de la couche physique d’un réseau de trasnport optique. . . xxvi
5 Représentation simplifée d’un plan de contrôle centralisé SDN (Software

Defined Network) . xxviii
6 Exemple de sous-réseau optique virtuel avec un contrôleur SDN instancié

spécifiquement et des fonctions virtuelles VNF. xxix
7 Représentation graphique d’un transpondeur optique. xxx
8 Représentation des constellations pour les modulations (a) QPSK, (b) 16-

QAM et (c) PM-QPSK. xxx
9 Représentation d’un transpondeur multi-flow, où le trafic client provenant

de quatre ports à 100Gb est reparti sur deux ports ligne. xxxi
10 Représentation de la virtualisation du transpondeur multi-flow de la Figure

9 en deux transpondeurs virtuels. xxxi
11 Exemple d’implémentation de white box avec des transpondeurs. xxxii
12 Représentation de notre prototype de transpondeur avec monitoring et

auto-négociation. xxxiii
13 Séquence des opération de notre protocole d’auto-négociation. xxxiv
14 Représentation schématique de l’implémentation temps-réel de notre pro-

tocole d’auto-négociation. xxxv

ix

15 Représentation de notre palteforme de test pour la validation de notre pro-
tocole d’auto-négociation, avec deux FPGAs pour l’insertion et la détection
des messages d’auto-négociation, séparés par 2m ou 10km de fibre simple
mode, et un Spirent pour générer et analyser du traffic Ethernet à 100Gbps. xxxvi

16 Temps d’aller-retour (RTT) moyen en µs, selon les différentes tailles de
trames en fonction de la charge en %, pour les setups avec et sans le pro-
tocole d’auto-négociation. Les cartes sont séparées par (a) 2m de fibre et
(b) 10km de fibre. xxxvii

17 Prototype de monitoring embarqué avec un transpondeur Nokia PSI-2T. . xxxviii
18 Coefficient β de la courbe de puissance de réception en fonction du nombre

de samples utilisés pour le calcul pour (a) une dégradation rapide et (b)
un dégradation lente. xxxix

19 Représentation de notre prototype complet avec FPGA, transpondeur com-
mercial et Raspberry Pi. xl

20 Intégration de notre transpondeur prototype au sein d’un banc de test réseau. xli
21 Résultats agrégés de 100 répétitions de notre protocole de validation pour

(a) le setup où notre transpondeur prototype se charge de la détection et de
la résolution de la dégradation induite par l’augmentation de l’atténuation
dans l’atténuateur variable et (b) quand le plan de contrôle SDN s’occupe
de la détection et la résolution. Les courbes représentent les valeurs mé-
dianes des métriques capturées, les parties transparentes représentent les
15.8 et 84.2 quantiles. Sous les courbes on a tracé les histogrammes de ré-
ception par le plan de contrôle des messages de notification Reconf. Start
et Reconf. End. xlii

22 Setup expérimental pour le changement de baudrate synchrone et sans
perte de trafic en utilisant le protocole d’auto-négociation. Il est composé
d’un Transmetteur (Tx) et d’un Récepteur (Rx) cohérents. Une voie de
contrôle est mise en place entre la carte FPGA gérant le protocole d’auto-
négociation et le Tx pour simuler une communication bidirectionnelle pour
le protocole. Tous les FPGA du setup sont liés un ordinateur via un lien
UART. xliv

23 Capture du FPGA gérant le protocole d’auto-négociation. On voit un
changement de baudrate de 14GBaud à 7GBaud synchronisé grâce au pro-
tocole. Le message ALERT a été envoyé avant les trames capturées. xlv

x

24 Structure d’un réseau de neurone avec une couche cachée. xlvi
25 Structure d’un neurone de réseau de neurone avec quatre entrées. Les en-

trées sont multipliées avec des poids correspondants, sommées avec un biais,
et passent dans une fonction d’activation. xlvi

26 Spectre optique dans le régime fortement linéaire et dans le régime forte-
ment non-linéaire. Le canal modulé est représenté en noir, en bleu les con-
tributions linéaires et en rouge les contributions non-linéaires. En vert est
représenté le spectre total. xlvii

27 Représentation du SNR d’un signal optique en fonction de la puissance
d’émission. En bleu est représenté le système en régime fortement linéaire
et en rouge en régime fortement non-linéaire. Il faut trouver la bonne puis-
sance d’émission pour avoir la valeur de SNR au sommet de la courbe en
cloche. xlvii

28 Structure de notre réseau de neurones logique pour FPGA. La Figure (a)
représente la gestion des flux de données circulent des entrées jusqu’à la
sortie et dans la Figure (b) la logique de mise à jour des poids des neurones.xlix

29 Implémentation sur FPGA d’un neurone, avec en rouge la logique pour la
mise à jour des poids et en noir les signaux de contrôle. l

30 Captures de simulation fonctionnelle (a) d’un neurone (b) du réseau de
neurones. li

31 Schéma de notre banc de test avec un processuer logique Microblaze, le
réseau de neurone et un serveur web pour récupérer les spectres et les poids. lii

32 Capture of the implemented neural network. liii

1.1 Global IP traffic growth in Exabytes per Month measured and forecasted
by Cisco. Measurements pulled from Virtual Networking Indexes of their
respective years, and forecasts from the Virtual Networking Index 2017-
2022 [1]. 1

1.2 Impact and growth of video application traffic and influence of the defini-
tion on this impact. Source [1] . 2

2.1 Simple representation of the WDM technology 8
2.2 Structure of an OTN frame . 8
2.3 Representation of an OTU3 frame transporting 4 ODU2 frames using time

multiplexing. 8

xi

2.4 Example of spectral slot allocation in a)fixed and b)flex grid scenario, with
a 12.5GHz granularity for b) . 9

2.5 Example of a spectral slot assignment causing overlapping in a flex-grid
scenario . 9

2.6 Example of a super channel in the flexgrid, where two 200G signals are
combined into a 400G super channel . 10

2.7 Representation of an optical transport networkd data plane. 11
2.8 Optical line in transport networks, with Transponders, OADMs and amplifiers 11
2.9 Basic representation of an optical transponder 12
2.10 Implementation example of a parallel OADM 12
2.11 Implementation examples of a parallel modular OADM 13
2.12 Implementation example of a parallel two-degree OADM 13
2.13 Example architecture of a 3-degree CDC ROADM with example signals.

Blue signals are signals going through the ROADM to be dropped at a
later point and red signals are signals added and dropped in the device . . 14

2.14 Optical link between two OADMs, with amplifiers placed at entry and exit
points of the equipment and in the middle of the link. The fiber portion
between two amplifiers is called a fiber span. 15

2.15 Representation of the effects of Chromatic Dispersion. 16
2.16 Effects of cascaded filtering on the spectrum of a received signal. 17
2.17 Simple representation of the a) traditional control plane architecture and

b) the SDN architecture. 18
2.18 Representation of an optical transponder 21
2.19 Basic representation of the operation of a DAC and an ADC converting a

ramp signal (the blue line), with (a) 2-bit resolution and ∆t sampling rate,
(b) 3-bit resolution and double sampling rate. The orange line represents
the output waveform from the DAC and the ADC conversion is represented
by the bit vectors. 22

2.20 Representation of (a) the QPSK, (b) 16-QAM and (c) PM-QPSK modula-
tion formats . 23

2.21 Representation of the digital pre-emphasis processing. Hdesired represents
the ideal signal spectrum, HT xT otal the transfer function of the DAC, Hpre

the transfer function of the DPE filter and Hout the resulting spectrum
after the DPE . 24

xii

2.22 Representation of DSP steps on the reception of a PM-QPSK signal, with
on the left the Horizontal polarization and on the right the Vertical one. (a)
is the signal coming from the ADC, (b) is the signal after CD compensation,
(c) is the signal after CMA, and (d) is after carrier and phase recovery . . 25

2.23 Basic structure of a Mach-Zender Modulator 27
2.24 Coherent I/Q modulator using multiple MZMs 27
2.25 Representation of a coherent receiver . 28
2.26 Photograph of (a) a SFP Module and (b) a QSFP module 29
2.27 Photograph of (a) a CFP module, (b) a CFP2 module 29

3.1 Architecture example of a CLB with four inputs. 33
3.2 Representation of the routing inside an FPGA. The blue diamonds repre-

sent the switches, the red arrows show a dataflow example, coming in the
FPGA, processed by and routed to the CLBs and going out the die. 34

3.3 Example layout of an FPGA. 36
3.4 a)Representation of controller-equipment communication b)Example of a

server asking a client to give him his list of modulation formats and the
current format in use. The answer sent to the server is coded into an xml
file for this example, but the answer can be coded in any language the
protocol for server/client communication supports 40

3.5 Base principle of hardware virtualization using partition and aggregation . 41
3.6 Example representation of a VON in an optical network with VNFs 42
3.7 Classical use case for BVTs, decreasing the modulation format order to

increase the transmission/reception resiliency to degradations in the optical
path . 43

3.8 Representation of the principle of a multi-flow transponder 46
3.9 Restoration after a link failure using a multi-flow transponder 46
3.10 Representation of how the multi-flow transponder in Figure 3.8 can be

virtualized into two virtual optical transponders by the control plane . . . 47
3.11 Representation example of a white box using transponders, each one of

them possibly from different vendors. An software agent handles communi-
cation with the control plane, and software helps handling and monitoring
the array of transponders. 48

xiii

4.1 Representation of our prototype transponder with auto-negotiation capa-
bilities. 54

4.2 Sequence of operations of our auto-negotiation protocol 55

4.3 Schematic representation of the real-time implementation of our auto-negotiation
protocol, that will be integrated with an optical transponder in the full pro-
totype (Figure 4.1) . 57

4.4 Composition of the frames of the protocol in our implementation 58

4.5 Log extracts of the MicroBlaze processor on the FPGA cards during pro-
tocol operations. Indexes refer to Figure 4.2 59

4.6 Representation of our setup to validate our protocol implementation from
4.6, using two FPGA boards and one Spirent Network Analyzer to generate
traffic and measure packet loss and latency 60

4.7 Photograph of the setup with the two FPGA boards connected to each
other and separated by 10km SMF. The Spirent is not pictured but is
connected to the FPGA with the MPO (Multi-Fibre Push On, blue on the
photo) fiber. 61

4.8 Average Round Trip Time (RTT) in µs for frame sizes from 128 bytes to
1518 bytes, as a function of port load in %. The two FPGAs are separated
by a) 2m, b) 10km SMF . 62

4.9 Embedded monitoring and decision making prototype for commercial transpon-
der Nokia PSI-2T . 64

4.10 Setup to analyze the influence of the degradation of signal quality on the
value of the slope coefficient β. 66

4.11 Annotated photograph of the setup, with two FPGA boards, two PSI-2Ts
and two Raspberry Pi, connected to the Spirent (not pictured). 67

4.12 Slope coefficient β value depending on the number of samples for the com-
putation for a (a) fast, (b) slow Rx Power degradation. 68

4.13 Example of an auto-negotiation procedure between two of our prototype
optical transponder (see Figure 4.15) with the integration of notifications
to the control plane . 69

4.14 Example of a centralized reconfiguration using the UDP message to stop
our prototype from creating conflicts . 70

xiv

4.15 Representation of the prototype (presented in Figure 4.1) full implemen-
tation, with FPGA, Raspberry Pi and Nokia PSI-2T commercial optical
transponder. 71

4.16 Integration of our real-time prototype transponder from Figure 4.15 with
auto-negotiation inside a network testbed 72

4.17 Workflow for validation in a network testbed, with (a) FPGA-controlled
setup and (b) SDN controller-controlled setup 73

4.18 Aggregated experimental results for auto-negotiation setup (a) and SDN
setup (b). At the top of each figure we plotted the median values of the
monitored metrics. The confidence interval of the pre-FEC BER and output
power corresponds to the 15.8 and 84.2 quantiles. At the bottom we plotted
the histogram for the notification messages "Reconf. Start" and "Reconf.
End". Timing results are also gathered in Table 4.2. 75

4.19 Representation of the resource utilization of our design in the FPGA die . 77
4.20 Experimental setup for the synchronous hitless change of baud-rate using

the developed protocol. It is composed of a coherent transmitter (Tx) and
a coherent receiver (Rx). A feedback channel is setup between the Rx and
the Tx for bidirectional auto-negotiation protocol operations. All the FPGA
boards in the setup are managed using an UART link that is connected in
our experiment to a computer. 78

4.21 Representation of the variable baud-rate transmitter 79
4.22 Photograph of the variable baud-rate transmitter 80
4.23 Frame structure sent by the transmitter for this experiment. 80
4.24 Eye diagram of the optical signal sent by the transmitter at (a) 14GBaud

and (b) 7GBaud. 81
4.25 Constellation of the PM-QPSK signal, for the Horizontal and Vertical po-

larizations, at 14GBaud. 81
4.26 Full representation of the Receiver with the coherent receiver and the ADC,

the DSP FPGA and the deframer FPGA board. 82
4.27 Structure (a) of a traditional FIR-CMA architecture and (b) the used ar-

chitecture for the real-time receiver of this experiment. On the right side
of both figures, s0 is given as an example of a recovered symbol at half
baud-rate. 83

xv

4.28 Capture of header detection and removal by the deframing logic in simula-
tion. The header in this example is the header indicating 14GBaud trans-
mission. The clock period is 2.86ns (350MHz). 86

4.29 Capture of RQST message header detection and removal by the deframing
logic in simulation. After the message is detected, we delay the answer until
the next frame is received. 86

4.30 Annotated photograph of the variable baud-rate receiver 87
4.31 Labview developed interface to pilot the deframer board, connected via

UART. 88
4.32 Capture from the Deframer FPGA board showcasing a change of baudrate

from 14GBaud to 7GBaud with the auto-negotiation protocol. The ALERT
message was sent before the first pictured frame. 89

4.33 Capture from the Transmitter showcasing a change of baudrate from 14GBaud
to 7GBaud synchronized with the auto-negotiation protocol. Below the cap-
tures, we inserted oscilloscope captures of the eye diagram before and after
the change of baudrate. 90

4.34 Capture from the Receiver showcasing a change of baudrate from 7GBaud
to 14GBaud. 90

5.1 Basic structure of an Artificial Neural Network with a single layer of five
neurons in the hidden layer, eight inputs and six outputs. 94

5.2 Structure of a neuron of an artificial neural network with four inputs. Inputs
are multiplied by their weights, summed altogether with an additional bias
and processed through an activation function. 94

5.3 Schematization of the training of a neural network. 96
5.4 Optical spectrum on a single channel in highly linear and highly nonlinear

regime. The modulated channel is showed with the black line. In blue is
represented the white linear noise, in red the nonlinear effects, and in green
is the received spectrum with contributions of both linear and nonlinear
effects. 97

5.5 Representation of the SNR of a received spectrum as a function of the
launch power. In blue is shown the highly linear regime and in red the
highly nonlinear regime. Atop the bell curve is the optimal launch power
to maximize the SNR. 98

xvi

5.6 Proposed Artificial Neural Network for power monitoring. The input is
a normalized Power Spectral Density (PSD) of a single channel on 315
samples. The hidden layer is composed of a single layer of ten neurons. The
single output produces an estimation of the power correction to apply to
maximize the SNR ∆̂P . Biases are always equal to one. 99

5.7 Neural network self-test prediction scattered plot. The black line represents
the perfect theoretical power correction ∆P and circles represent the pre-
diction ∆̂P out of the ANN. Blue circles represents when the system was
operating in the linear regime, and in red when the system was operating
in nonlinear regime. 100

5.8 Error histogram of the ANN, AVG labeling the average error, STD the
standard deviation and MAX the maximum absolute error. 100

5.9 Resulting gain in SNR when applying the predicted power correction ∆̂P ,
compared to the maximum achievable gain when applying the ideal power
correction ∆P . The blue circles show when the correction results in a SNR
gain, and in red when it results in a loss. Maximum achievable SNR gain
with the test set is around 1dB, and loss around -0.1dB. 101

5.10 Plot of the PSD for all lengths at (a) 10dBm launch power, (b) at 20dBm
launch power. 102

5.11 Plot of the SNR as a function of then launch power with its associated bell
curves for distances from 300 to 1200km. The solid lines represent the fit
line from a polynome of degree 3. 103

5.12 Plot of the logarithmic sigmoid and the hyperbolic tangent functions. . . . 104
5.13 Plot of the evolution of the neural network performance on the data set

as more epochs are being realized. The green circle represents the point at
which the early stopping mechanism is triggered. 105

5.14 Plot of the predicted result ∆̂P from the neural network as a function of
the the expected result ∆P . The blue dots represent when the system was
in highly linear regime and the red dots when the system was in highly
nonlinear regime. The black line represents the ideal fit line where ∆P =
∆̂P , and dashed lines the standard deviation of the neural network output. 105

5.15 Error histogram after a training of the neural network. Orange vertical line
shows 0 error. 106

5.16 Resulting gain in terms of SNR after a training of the neural network. . . . 106

xvii

5.17 Plot of the weights (a) for the ten neurons of the hidden layer, (b) for the
output layer neuron, with their average value and their maximum absolute
value (index 0 is the bias weight wi

0 as noted in Figure 5.6, 1 is the weight
for the first input wi

1 etc. . .). 109
5.18 Schematization of the logical implementation of a neuron. Control signals

are represented in black. 109
5.19 Rules of the signed fixed point arithmetic for (a) addition and (b) multi-

plication. 110
5.20 Representation of the adaptations made on the bit vector from the accumu-

lator to fetch the value from the value from the activation function ROM.
As an example we took initial signed vectors with four bits integer part
and three bits fractional part and a ROM depth of 6. 112

5.21 Structure of the neural network logical implementation for FPGA. Neurons
in the hidden layer refer to the neuron structure presented in Figure 5.18,
output layer neuron is the same, but with no activation function ROM. . . 112

5.22 Simulation setup to validate our neural network and measure its perfor-
mance in terms of timing and precision. 114

5.23 Extract of the simulation results focused on a neuron of the network. . . . 115
5.24 Extract of the simulation result of the FPGA neural network. 115
5.25 New logical implementation of the neuron allowing for weights re-writing. . 119
5.26 Highlight on the weight update logic for the FPGA ANN. 120
5.27 Simulation extracts of the validation of the logical neural network wrapper. 121
5.28 Schematization of our setup with a Microblaze soft processor, the logical

neural network and a web server to collect test sets and weights. 122
5.29 Tasks developed in the Microblaze to handle our validation scenario. 123
5.30 Capture of the implemented neural network. 125

xviii

LIST OF TABLES

1 Taux de trames perdues en ‰ selon les tailles de trames à 100% de charge,
pour (a) 2m de séparation entre les cartes et (b) 10km de séparation. Les
trames perdues sont nulles pour toutes les autres charges. xxxvii

2 Erreur quadratique moyenne (MSE) de notre implementation FPGA du
réseau de neurones comparé à celui généré dans Matlab pour différentes
tailles en bit des poids et la fonction d’activation (width) et différents nom-
bre de valeurs de fonction d’activation (depth). li

3 Résultats d’implémentation récupérés du Microblaze. Un tick processeur
correspond à 10ms. liii

4.1 Frame loss in ‰ for multiple frame sizes from 128 bytes to 1518 bytes,
at 100% port load with a) 2m, b) 10km SMF separating the two FPGAs.
Frame loss is null for all other loads . 63

4.2 Minimum, average and maximum time for notification messages Reconf.
Start and Reconf. End for both setups. 74

4.3 Resource Utilization Report for our FPGA design 77

5.1 Mean Square Error of our FPGA Artificial Neural Network versus the same
one generated in Matlab (lower is better) with various weights ROM width
and activation function ROM depth and width. 116

5.2 Summary of FPGA resource utilization of the implemented neural network
design. Setup (X,Y)/Z corresponds to the depth of the activation function
ROM (2X values stored), the width of the activation function bit vectors
(Y bits) and the width of the weights bit vectors (Z bits) respectively.
BRAM (Block RAM, 18kb or 36kb) usage is given as an indicator, as the
implementation tool will fall back into using only the URAM (Ultra RAM,
288kb) indicated for our case. In short, the BRAM usage corresponds to
the usage if the FPGA didn’t have access to URAM. 118

xix

5.3 Validation and timing results from the Microblaze processor. A tick corre-
sponds to 10ms. Ticks to receive whole test sets ommits the time to receive
the HTTP header from the web server (1 tick for Initial Set, 2 for Final Set).124

xx

ACRONYMS

ADC Analog-to-Digital Converter. xxviii, 21, 22, 25, 27, 82, 84, 87

ANN Artificial Neural Network. 4, 20, 92–96, 98–101, 107, 113, 117, 118, 120–125,
127

BER Bit Error Rate. xxxiii, 19, 37, 50, 64, 65, 67, 72, 74

BVT Bandwidth Variable Transponder. 4, 42–44, 46

CMA Constant Modulus Algorithm. 26, 82, 84, 85

DAC Digital-to-Analog Converter. xxix, 21, 22, 24, 26, 102

DDR Double-Data-Rate. xxxv, 35, 57, 122

DSP Digital Signal Processing. xiii, xxix, xliii, 2, 11, 21, 22, 24–27, 29, 30, 35, 41, 44,
45, 47, 50, 53, 82, 85, 87, 117, 118

EDFA Erbium Doped Fiber Amplifier. 15, 102

FEC Forward Error Correction. xxix, 7, 23, 38, 45, 48, 64–67, 72, 74, 85, 88

FIFO First In First Out. li, 35, 121, 122

FPGA Field Programmable Gate Array. xxiv, xxxiv–xxxvi, xl, xliii, xlv–xlviii, li, lii,
4, 31–36, 40, 44, 45, 47, 53, 57–61, 63, 64, 70, 72, 76, 79, 80, 82, 85, 87, 88, 90, 91,
93, 101, 107, 109, 113–115, 117, 120, 122, 123, 125, 127

GMPLS Generalized Multi-Protocol Label Switching. 18, 37

LUT Look Up Table. 33, 34, 36, 44, 113, 117, 118

MAC Medium Access Controller. xxxiv, xxxv, 35, 57

MSE Mean Square Error. 95, 104, 114–116

OADM Optical Add-Drop Multiplexer. xxvii, 3, 10–13, 15, 41, 47

ODU Optical Data Unit. 7, 55, 56

xxi

OTN Optical Transport Network. xxiv, xxv, xxxiii, 3, 6, 7, 45

PRBS Pseudo Random Binary Sequence. 79, 85

PSD Power Spectral Density. 98, 99, 102

QPSK Quadrature Phase Shift Keying. xxix, 23, 26, 44, 49, 50, 52, 80, 84, 102

RAM Random Access Memory. xxxv, 35, 36, 76, 113, 117–119, 122

ROADM Reconfigurable Optical Add-Drop Multiplexer. xl, 13, 14, 17, 38, 41, 45, 71

ROM Read-Only Memory. 79, 107, 110, 111, 114–117, 119, 123

S-BVT Sliceable Bandwidth Variable Transponder. xxx, 4, 31, 42, 46, 47, 49

SDN Software Defined Network. xxvii, xxviii, xxxii, xl, 3, 18, 19, 37, 39, 41, 45, 50,
71, 73, 74, 76, 91, 92, 126

SNR Signal-to-Noise Ratio. xlv, 97–99, 103, 113, 125, 127

SSH Secure Shell. xxxvii, 64

tanh Hyperbolic Tangent. 103, 107, 110

UART Universal Asynchrounous Receiver-Transmitter. xxxvii, li, 64, 72, 87, 122, 123

VHDL Very High Speed Integrated Circuit Hardware Description Language. 36, 57

WDM Wave Division Multiplexing. xxiv, xxv, xxvii, xxviii, 3, 6, 7, 10, 12, 13, 16, 44

YANG Yet Another Next Generation. 38, 46

xxii

RÉSUMÉ ÉTENDU EN FRANÇAIS

Les réseaux optiques sont devenus le moyen privilégié de faire transiter l’information à
très grande vitesse et sur des grandes distances. Ils interconnectent les usagers, les villes,
pays et régions et continents entre eux et leur utilisation ne cesse de croître, tandis que
les besoins en débit et en réduction de latence ne cessent d’augmenter, notamment dans
le contexte d’adoption de la 5G, des services dans le cloud et de l’internet des objets.

Pour subvenir à l’augmentation incessante des besoins, de nouvelles fonctionnalités
et de nouvelles façons de concevoir les réseaux optiques ont émergées. Tout d’abord,
l’adoption des communications cohérentes a permis d’augmenter sensiblement les débits
possibles pour les communications optiques, en utilisant l’amplitude la phase et la po-
larisation du signal optique pour transmettre l’information. Aussi, les développements
modernes des équipements ont permis de pouvoir reconfigurer le matériel, afin de pouvoir
répondre à une baisse de qualité de service efficacement, en changeant un paramètre de
transmission ou en reroutant le trafic dans le réseau. Aussi, l’adoption du plan de contrôle
centralisé a permis le développement des capacités d’automatisation et de virtualisation
des ressources dans les réseaux. Toutes ces évolutions sont à la base du développement
des réseaux optiques flexibles d’aujourd’hui.

Si les réseaux ont gagné en flexibilité, il reste néanmoins des axes d’améliorations
avant l’arrivée des réseaux réellement flexibles et automatisés. Tout d’abord, reconfigurer
le matériel conduit encore souvent à des interruptions de service pendant que le matériel
change ses paramètres, ce qui fait que les adaptations dans le réseau sont encore rares.
De plus, la centralisation du plan de contrôle permet certes de gagner en efficacité et
en automation, mais l’hyper concentration des tâches de surveillance et de prise de dé-
cision crée des délais et des pertes de performance pour la détection et la résolution des
dégradations dans le réseau.

Dans cette thèse et au vu de ce contexte, nous nous sommes concentrés sur le transpon-
deur optique, équipement faisant le lien entre les réseaux d’accès d’où proviennent les don-
nées client et les réseaux de transport optique. Cet équipement est au centre des récents
développements de flexibilité et de virtualisation.

Dans une première partie nous allons développer le contexte des réseaux de transport

xxiii

optique, et des concepts de flexibilité et de virtualisation. Nous allons aussi présenter
plus en détail le transpondeur optique et de ses évolutions modernes. Nous allons ensuite
présenter une solution d’auto-négociation et de monitoring embarqué permettant le dé-
clenchement de reconfigurations rapides et synchronisées pour compenser une dégradation
en qualité de service. Nous allons mesurer ses performances et les comparer à un plan de
contrôle centralisé pour résoudre une dégradation au sein d’un banc de test réseau. Nous
allons aussi présenter une solution de monitoring avec réseau de neurones embarquée sur
Field Programmable Gate Array (FPGA). Cette solution possède une fonctionnalité de
reconfiguration des poids des neurones afin de changer la fonction effectuée par le réseau,
permettant au plan de contrôle centralisé de réaliser du monitoring déporté, notamment
sur des métriques sous utilisées et demandant un grand flux de données. Nous avons validé
cette solution en termes de performances et de précision en réalisant un monitoring des
contributions nonlinéaires à partir des spectres optiques.

Réseaux de transport optique

Couche physique

Les réseaux de transport optiques recouvrent les réseaux métropolitains (distance entre
nœuds optiques de quelques dizaines à quelques centaines de kilomètres environ) et coeurs
de réseaux (milliers de kilomètres entre nœuds), et sont au cœur des transformations
récentes dans les réseaux optiques et des besoins croissants en débit et en fiabilité [2]. Ils
sont basés autour de deux technologies majeures, le Multiplexage en Longueur d’Onde ou
Wave Division Multiplexing (WDM), et le standard OTN (Optical Transport Network).
Le WDM permet à une fibre optique de porter plusieurs longueurs d’onde multiplexées
sur un signal. Cela permet d’augmenter significativement la capacité des réseaux optiques.
Les signaux des clients du réseau optique peuvent être ajoutés ou retirés du signal WDM
selon leur point d’arrivée ou de destination dans le réseau. Le WDM est représenté dans
la Figure 1.

Le standard OTN est un groupe d’outils permettant de gérer les signaux clients et
leurs longueurs d’onde du réseau de transport optique, et est basé sur un format de
trame avec un grand nombre de champs permettant de monitorer, router et concaténer
les signaux. Plusieurs générations de trames OTN existent et sont adaptées au débit
maximum supporté (par exemple l’OTU4 supporte le transport de signaux client jusqu’à

xxiv

Figure 1 – Représentation de la technologie de Multiplexage en Longueur d’Onde (WDM)

Figure 2 – Structure d’une trame OTN (Optical Transport Network). Plusieurs sous struc-
tures cohabitent dans la trame : OTU (Optical Transport Unit), ODU (Optical Data Unit)
et OPU (Optical Payload Unit), chacun comprenant leurs propres champs (permettant le
monitoring, le concaténation, etc. . . des signaux clients).

100Gbps), avec la possibilité de multiplexer plusieurs trames de générations inférieures,
pour transformer plusieurs signaux à faible débit en un signal à haut débit. La structure
d’une trame OTN est représentée dans la Figure 2.

Aujourd’hui, le paradigme principal dans les réseaux de transport optique est le Réseau
Optique Elastique (Elastic Optical Network, EON), qui a été rendu possible grâce à
l’introduction de plusieurs principes. Le premier changement ayant permis l’arrivée des
réseaux élastiques est l’introduction des équipements reconfigurables au sein du réseau
de transport optique, permettant d’adapter la configuration de chaque équipement aux
besoins du réseau en débit ou en robustesse par exemple. L’autre changement a été
l’utilisation de la grille flexible (flexgrid) de fréquence dans les réseaux WDM. Contraire-
ment à la grille dite fixe traditionnellement utilisée, qui répartissait les signaux optiques
dans un emplacement de 50GHz de large dans la bande de fréquence, la flexgrid permet
une plus grande granularité en utilisant des slots plus fins (par exemple 12.5GHz de largeur
de bande), qui peuvent être remplis de façon plus intelligente et plus adaptées aux besoins
de chaque signal [3], comme montré dans la Figure 3. Cela permet aussi d’économiser de
la bande spectrale et d’utiliser des signaux à bande passante plus large que 50GHz sans
gâcher inutilement de l’espace.

xxv

a)

b)

Figure 3 – Représentations de (a) la grille de fréquence fixe traditionnellemnt utilisée dans
les réseaux de transport optique, et (b) la grille flexible utilisée dans les réseaux modernes
élastiques.

Figure 4 – Réprésentation de la couche physique d’un réseau de trasnport optique.

xxvi

La Figure 4 montre une représentation de réseau de transport optique, avec ses dif-
férents équipements. Tout d’abord les transpondeurs optiques, qui font la liaison entre les
réseaux d’accès, d’où proviennent les signaux des clients, et le réseau de transport optique.
Ils multiplexent les signaux client sur un signal compatible WDM et envoient ce dernier
à un Optical Add-Drop Multiplexer (OADM) qui routera ce signal vers sa destination
dans le réseau optique, où le signal sera démultiplexé par le transpondeur en sortie. Dans
les chemins optiques se trouvent aussi des amplificateurs qui permettent d’augmenter la
distance maximale de transmission du signal optique, mais ajoutant des effets indésirables
dans la transmission en contrepartie. Ces différents éléments ont pu évoluer au gré des
avancées techniques, proposant différentes possibilités de configuration, et pouvant être
reconfigurés à distance par un opérateur ou par un élément du plan de contrôle.

Plan de contrôle

Pour orchestrer efficacement et automatiquement les différents éléments du réseau,
l’approche la plus commune aujourd’hui est de mettre en place un plan de contrôle optique
centralisé. Ce plan de contrôle possède des fonctions de monitoring qui surveillent l’état des
différents éléments de la couche physique afin de proposer des configurations appropriées
pour les équipements optiques. Le paradigme actuel d’organisation du plan de contrôle
est le Software Defined Network (SDN) [4]. Il se base sur une grande centralisation des
fonctions de contrôle au sein d’un groupe d’entités séparé de la couche physique. La
Figure 5 montre une représentation simplifiée d’un plan de contrôle SDN. Pour connaître
précisément l’état du réseau, le plan de contrôle récolte régulièrement les données de
monitoring des équipements optiques, comme par exemple la puissance de réception, le
taux d’erreur (ou Bit Error Rate) avant et après code de correction d’erreur (Forward
Error Correction, FEC). Plusieurs techniques de récupération des données de monitoring
existent, les plus récentes se basant sur des flux des données, permettant une récolte rapide
des données de monitoring et permettant au plan de contrôle de pouvoir s’abonner ou de
se désabonner à ces flux et d’adapter ses stratégies de monitoring selon les besoins [5].

Influencés par l’informatique dans le cloud, les réseaux optiques ont commencé à inté-
grer de la virtualisation dans la gestion du réseau et des équipements. Le principe de la
virtualisation est de découpler les fonctions logicielles du matériel, ce qui permet par exem-
ple au plan de contrôle de créer des sous-réseaux avec des besoins particuliers (en latence,
en sécurité, en débit, etc. . .). Les équipements peuvent être partitionnés en plusieurs
équipement virtuels ou agrégés en un seul super équipement, des fonctions spécifiques

xxvii

Figure 5 – Représentation simplifée d’un plan de contrôle centralisé SDN (Software De-
fined Network)

peuvent être déployées à distance (VNF, Virtual Network Functions), et même une in-
stance de contrôleur réseau SDN peut être déployé pour répondre aux besoins spécifiques
de ce sous-réseau [6], voir la Figure 6.

Dans ce contexte où la flexibilité des équipements optiques et du réseau tout entier a
augmenté considérablement, et avec les besoins en débit croissants, les transpondeurs ont
subi plusieurs changements pour s’intégrer aux nouvelles générations de réseaux optiques.

Généralités sur le transpondeur optique et le trans-
pondeur optique reconfigurable

Le transpondeur est un équipement servant de point d’entrée et de sortie pour les
signaux client dans les réseaux de transport optique. Dans les réseaux WDM, les signaux
clients en entrée sont convertis en signaux électriques, traités, agrégés et transformés en
signal optique dont la longueur d’onde est compatible avec la technologie WDM. Ce signal
est envoyé sur le port ligne du transpondeur. A l’inverse, le signal reçu sur le port ligne
est de son côté déconcaténé en plusieurs signaux client après traitement.

La Figure 7 représente l’architecture de base d’un transpondeur optique. On y trouve
les convertisseurs analogiques-numériques (Analog-to-Digital Converters, ADCs) et nu-

xxviii

Figure 6 – Exemple de sous-réseau optique virtuel avec un contrôleur SDN instancié spé-
cifiquement et des fonctions virtuelles VNF.

mériques-analogiques (Digital-to-Analog Converters, DACs), les éléments de traitement
du signal (Digital Signal Processing, DSP), avec le code de correction d’erreur (Forward
Error Correction, FEC), de pré-compensation de distorsion (Digital Pre-Compensation,
DPC et Digital Pre-Emphasis, DPE), d’égalisation (EQ), de synchronisation, et la ges-
tion de la modulation. On y trouve aussi les émetteurs et récepteurs optiques. Plusieurs
types de modulations existent pour les transpondeurs optiques, qui se sont complexifiées
avec les années. Les modulations de phase et d’amplitude sont très communes, comme la
modulation à quadrature de phase QPSK ou la modulation d’amplitude en quadrature
16 états 16-QAM, les systèmes optiques profitent aussi des propriétés du signal lumineux
avec notamment les modulations multiplexées sur la polarisation de la lumière, comme la
PM-QPSK (voir Figure 8).

Si les transpondeurs étaient des éléments statiques du réseau optique à leurs débuts,
ne supportant qu’une configuration pendant leur durée de vie, ils ont gagné de nom-
breuses possibilités de configuration. La longueur d’onde d’émission et de réception est
devenue changeable, et le choix de fréquence a gagné en granularité pour être plus adapté
à l’utilisation de la grille flexible dans les réseaux optiques. Les formats de modulation sont
aussi un élément pouvant être reconfigurés pour s’adapter aux conditions changeantes du

xxix

Figure 7 – Représentation graphique d’un transpondeur optique.

Figure 8 – Représentation des constellations pour les modulations (a) QPSK, (b) 16-QAM
et (c) PM-QPSK.

réseau optique. Passer d’une transmission en 16QAM à une transmission en QPSK permet
d’augmenter la résistance de la communication aux perturbations dans la fibre optique,
au prix d’une baisse en débit. Ces changements de format de transmission doivent être
répercutés sur les algorithmes de traitement de signal lors de la réception, pour éviter les
incompatibilités.

L’intégration des concepts de virtualisation a aussi eu un impact majeur sur la con-
ception des transpondeurs optiques. L’adoption des transpondeurs multi-flow, représenté
en Figure 9, où le trafic client peut être librement distribué sur plusieurs ports lignes [7]
selon la destination du signal, les besoins en distance de propagation ou en débit. Cela
permet par ailleurs la création de transpondeurs virtuels dans le réseau pour s’adapter aux
besoins de façon très flexible, voir Figure 10. Ces transpondeurs multi-flow reconfigurables
et virtualisables sont appelés les Sliceable Bandwidth Variable Transponder (S-BVT).

xxx

Figure 9 – Représentation d’un transpondeur multi-flow, où le trafic client provenant de
quatre ports à 100Gb est reparti sur deux ports ligne.

Figure 10 – Représentation de la virtualisation du transpondeur multi-flow de la Figure 9
en deux transpondeurs virtuels.

Un autre sujet de recherche actif autour des transpondeurs optiques est la création
de boîtes blanches ("white boxes"), où des transpondeurs de un ou plusieurs vendeurs
sont intégrés et complètement virtualisés. Le plan de contrôle ne s’adresse qu’à des agents
spécifiques qui s’occuperont de transmettre les instructions aux différents transpondeurs.
C’est un changement assez important dans la conception de ce qu’est un transpondeur et
dans la manière dont ils sont opérés, réduisant possiblement les coûts mais répercutant
certaines phases de développement aux opérateurs et non plus aux constructeurs [8]. Une
représentation simplifiée d’une white box est présente en Figure 11.

La prochaine étape pour les transpondeurs optiques est l’adoption de techniques per-
mettant de faire des changements de paramètres plus rapides, idéalement instantanés,
ainsi que de pouvoir synchroniser ces changements dans le réseau. En effet, comme énoncé
plus haut, changer un paramètre de transmission peut nécessiter des adaptions à la ré-
ception. Néanmoins aujourd’hui, avec la centralisation de la prise de décision au niveau

xxxi

Figure 11 – Exemple d’implémentation de white box avec des transpondeurs.

du plan de contrôle qui doit superviser l’entièreté du réseau à chaque instant, respecter
des délais raisonnables et synchroniser des opérations à travers le réseau s’avère être une
tâche particulièrement ardue. Ces deux facteurs font que les reconfigurations du réseau se
font majoritairement dans des périodes de maintenances ou lors de la rupture d’un lien
optique à la suite d’une dégradation. Permettre des changement rapides et synchronisés
est une piste prometteuse pour rendre le réseau optique plus flexible et plus robuste.
On pourrait aussi envisager des reconfigurations pour optimiser l’utilisation des appareils
optiques, et ainsi réduire leurs marges d’opérations. Cela serait possible en augmentant
l’autonomie des transpondeurs optiques, afin de leur permettre de réagir rapidement et
efficacement en cas de dégradation de qualité de service. Ce genre d’architectures partielle-
ment décentralisée a été étudiée dans [9, 10], et ne remettent pas en cause le paradigme
SDN.

Prototypage d’un transpondeur optique flexible pour
réseaux SDN

Dans cette section nous présentons un prototype de transpondeur flexible se basant
sur un protocole d’auto-négociation que nous avons développé, déclenché lors de la dé-
tection d’une dégradation de la qualité de service. La base du prototype est représentée
en Figure 12. Elle est composée d’un transpondeur optique, dont les données de mon-

xxxii

Figure 12 – Représentation de notre prototype de transpondeur avec monitoring et auto-
négociation.

itoring (par exemple la puissance de réception et le taux d’erreur binaire ou BER, Bit
Error Rate) sont récupérées et traitées par un bloc fonctionnel de monitoring, qui envoie
aussi des commandes de reconfiguration au transpondeur et qui permet de déclencher un
protocole d’auto-négociation. Le protocole d’auto-négociation sert à synchroniser rapide-
ment un changement de paramètres entre deux transpondeurs communicants de façon
bidirectionnelle. Nous allons présenter les différentes sections de ce prototype.

Protocole d’auto-négociation pour transpondeur optique

Dans la Figure 13 nous présentons les différents messages du protocole d’auto-négo-
ciation. Les messages du protocole sont échangés entre deux transpondeurs qui commu-
niquent de manière bi-directionnelle. Les messages sont insérés dans le trafic Ethernet ou
OTN, au début de la payload et dans des champs spécifiques respectivement. Le premier
message est lorsque le transpondeur en réception détecte une dégradation de la qualité
de service. Il envoie au transpondeur émetteur un message ALERT, lui indiquant qu’il
doit changer un de ses paramètres pour rétablir la qualité de réception. Une fois que le
transpondeur émetteur a décidé d’un nouveau paramètre à mettre en place, il envoie un
message de requête RQST, indiquant quel paramètre va changer et à quelle valeur. Cette
requête peut être acceptée au non par le récepteur, selon s’il est capable de s’adapter à ce
changement ou non. La réponse est envoyée dans un message d’acknowledgement ACK, et

xxxiii

Figure 13 – Séquence des opération de notre protocole d’auto-négociation.

si le changement est accepté, le transpondeur émetteur envoie un message de déclenche-
ment START juste avant de se reconfigurer, et le transpondeur émetteur se reconfigure
une fois ce message reçu. Pendant la reconfiguration, le transmetteur peut être capable
de stocker le trafic, qu’il redistribuera une fois la reconfiguration terminée. Si jamais le
récepteur prend plus de temps à se reconfigurer, un délai pour la reprise du traffic peut
être négocié entre les deux transpondeurs. Le but de ce protocole est de synchroniser les
changements de paramètres et les différents messages nous permettent de mettre en place
des mécanismes pour empêcher les incompatibilités entre matériels, tout en permettant de
transformer des changements rapides de paramètres en changements sans perte de trafic,
ce qui serait idéal pour améliorer la flexibilité des réseaux optiques.

Nous avons développé une plateforme de test pour valider notre solution d’auto-négo-
ciation sur Field Programmable Gate Array (FPGA), représentée en Figure 14. Un pro-
cesseur logique Microblaze [11] sur le système d’exploitation temps réel FreeRTOS [12] est
implémenté. Le trafic 100G est réceptionné dans et envoyé par le FPGA via des modules
QSFP28 (Quad Small Form Factor Pluggable) et des cœurs logiques Medium Access Con-

xxxiv

Figure 14 – Représentation schématique de l’implémentation temps-réel de notre protocole
d’auto-négociation.

troller (MAC). De la mémoire Random Access Memory (RAM) DDR4 est utilisée pour
stocker le trafic pendant les reconfigurations. Deux modules logiques d’Insertion et de
Détection des messages du protocole ont été développés. Dans cette implémentation, les
messages du protocole sont de 32 bits, et sont insérés et extraits du trafic 100G Ethernet.
L’insertion des messages se fait entre deux registres clockés à 322MHz et sont détectés
directement. Cela doit donc ajouter un total de 12ns d’ajout de latence dans le temps
d’aller-retour si on utilise deux FPGA pour la communication bidirectionnelle :

2 ∗ (2 ∗ 1
322MHz

) = 12.4ns (1)

Nous avons validé notre implémentation du protocole d’auto-négociation en mettant
deux FPGAs avec notre design en communication bi-directionnelle, séparés par 2m ou
10km de fibre simple mode (Single Mode Fibre, SMF). Nous avons aussi un analyseur de
réseau Spirent qui va générer et analyser le trafic Ethernet à 100G. La taille des trames
Ethernet générées est variable, entre 128 et 1518 octets. Ce setup est représenté dans la
Figure 15.

Pour la validation, le Spirent va générer pendant 10s du trafic Ethernet, à différentes
charges de trafic (de 10 à 100%). Dans le même temps notre système insère 100 messages
de protocole par secondes pour vérifier son fonctionnement. Cela est fait pour 2m ou 10km
de fibre entre les FPGA. On analyse ensuite le trafic reçu par le Spirent en latence et en
pertes de trames. Les résultats sont regroupés dans les Figures 16 (a) et (b) et dans les

xxxv

Figure 15 – Représentation de notre palteforme de test pour la validation de notre protocole
d’auto-négociation, avec deux FPGAs pour l’insertion et la détection des messages d’auto-
négociation, séparés par 2m ou 10km de fibre simple mode, et un Spirent pour générer et
analyser du traffic Ethernet à 100Gbps.

Tableaux 1 (a) et (b) pour 2m et 10km de séparation respectivement. On va comparer ces
résultats à un setup où la partie de gestion du protocole d’autonégociation est absente
(les parties en rouge dans la Figure 15).

Comme attendu, la latence entre le design avec et le design sans la gestion du protocole
d’auto-négociation est de 12ns en moyenne, quelles que soient la charge de trafic, la
taille des trames ou la longueur de fibre entre les cartes FPGA. On remarque aussi une
augmentation de la latence et du nombre de trames perdues lorsque le charge de trafic
est de 100%, ce qui est plus dû aux limitation de notre FPGA que du design de notre
protocole et de son implémentation.

Monitoring embarqué

Pour déclencher le protocole d’auto-négociation de manière pertinente, il faut pouvoir
détecter quand la qualité de service se dégrade. Nous avons donc réalisé un prototype de
monitoring embarqué pour un transpondeur commercial Nokia PSI-2T (Photonic Service

xxxvi

a) b)

Figure 16 – Temps d’aller-retour (RTT) moyen en µs, selon les différentes tailles de
trames en fonction de la charge en %, pour les setups avec et sans le protocole d’auto-
négociation. Les cartes sont séparées par (a) 2m de fibre et (b) 10km de fibre.

a)
Frame size 128B 256B 512B 1024B 1280B 1518B
Reference 0.012 0.009 0.01 0.009 0.013 0.048
Processing 0.013 0.01 0.012 0.01 0.016 0.052

b)
Frame size 128B 256B 512B 1024B 1280B 1518B
Reference 0.013 0.011 0.013 0.011 0.015 0.051
Processing 0.013 0.01 0.012 0.01 0.016 0.052

Table 1 – Taux de trames perdues en ‰ selon les tailles de trames à 100% de charge,
pour (a) 2m de séparation entre les cartes et (b) 10km de séparation. Les trames perdues
sont nulles pour toutes les autres charges.

Interface-2T), représenté dans la Figure 17. Il est composé d’un FPGA avec un processeur
logique Microblaze utilisant FreeRTOS, un transpondeur Nokia PSI-2T et un Raspberry
Pi pour faire le lien entre le FPGA, relié par un lien Universal Asynchrounous Receiver-
Transmitter (UART), et le transpondeur, avec qui il communique avec le protocole Secure
Shell (SSH) via le port d’Interface en Ligne de Commande (Command Line Interface,
CLI). Le temps d’aller-retour entre le FPGA et le PSI-2T est en moyenne de 108ms, et
ce temps est majoritairement compris dans la communication SSH (environ 100ms en
moyenne). Grâce au Raspberry Pi, il est possible de récupérer les données de monitoring
du PSI-2T et de lui envoyer des commandes de reconfiguration depuis le Microblaze.

Pour notre prototype nous allons proposer de mesurer sur le PSI-2T la puissance de
réception et le taux d’erreur binaire pré-FEC. Nous pensons qu’il s’agit de deux métriques
simples et fiables pour détecter une baisse de qualité de service. Nous avons décidé de
déclencher le processus d’auto-négociation quand la courbe de la puissance de réception

xxxvii

Figure 17 – Prototype de monitoring embarqué avec un transpondeur Nokia PSI-2T.

décroit au-delà d’un certain seuil et quand le taux d’erreur binaire dépasse un autre seuil.

La courbe de puissance de réception est calculée selon une fonction de régression
linéaire, décrite dans [13]. La ligne de régression a pour équation :

ŷ = α + βx̂ (2)

Avec β la pente de la ligne de régression, qui a pour valeur :

β =
∑

i

βiyi (3)

Avec i = 0, 1, 2...N −1 où N est le nombre de samples utilisés pour le calcul. Suivant [13], et
puisque nous avons avec notre système une fréquence de monitoring périodique (garantie
par le système d’exploitation temps réel) on obtient comme valeur de βi :

βi = 12 · i − 6(N − 1)
N(N2 − 1) (4)

Qui est une fonction facile à implémenter dans notre Microblaze, puisque la valeur de βi

ne dépend que du nombre de samples utiles pour le calcul, et il suffit de les multiplier avec
les valeurs de puissance de réception capturées pour avoir la valeur de β. Pour pouvoir
déclencher l’auto-négociation de façon pertinente il faut ensuite choisir un seuil pour
la valeur β pour pouvoir détecter la dégradation et ne pas déclencher de fausses alertes.
Nous avons réalisé des tests, en plaçant deux prototypes de la Figure 17 en communication

xxxviii

bidirectionnelle séparés par 10km de fibre, un Spirent pour générer du trafic Ethernet, et
avec un Atténuateur Optique Variable (Optical Variable Attenuator, VOA) dans le chemin
pour déclencher une dégradation de qualité de réception. Nous avons donc déclenché deux
dégradations différentes : une rapide où l’atténuation passe de 10dB à 17dB en une fraction
de seconde et une où l’atténuation est réalisée en 8 secondes. Pour les deux dégradations
nous avons mesuré la puissance de réception et calculé les valeurs de β, en faisant varier
le nombre de samples N entre 2 et 6. La Figure 18 montre les résultats pour (a) la
dégradation rapide et (b) la dégradation lente.

a)

b)

Figure 18 – Coefficient β de la courbe de puissance de réception en fonction du nombre
de samples utilisés pour le calcul pour (a) une dégradation rapide et (b) un dégradation
lente.

De nos mesures nous avons pu voir que le nombre de samples N influe fortement les
valeurs minimales du coefficient β et le nombre de samples où la valeur de β reste basse

xxxix

lors d’une dégradation. Moins il y a de samples, plus la valeur minimale de β est basse,
mais en contrepartie la valeur de β reste basse moins longtemps. On voit aussi que si la
dégradation est lente, la valeur minimale de la pente est moins élevée. Il faut donc choisir
les seuils de façon réfléchie, selon le type de fautes à détecter.

Validation du prototype complet

Nous allons donc pouvoir présenter le prototype complet de transpondeur avec auto-
négociation, qui est représenté en Figure 19. Nous avons les modules logique pour le pro-
tocole dans le FPGA, le PIS-2T et le Raspberry Pi pour faire le lien entre le transpondeur
commercial et le Microblaze.

Figure 19 – Représentation de notre prototype complet avec FPGA, transpondeur com-
mercial et Raspberry Pi.

La validation se passe au sein d’un banc de test réseau présenté en Figure 20, avec dans
le plan de données deux transpondeurs prototypes en communication bidirectionnelle,
4 ROADMs (R1 à R4) et un VOA dans le chemin entre R1 et R2 pour déclencher à
distance une dégradation de service et un Spirent pour générer et analyser le trafic 100G
Ethernet. Dans le plan de contrôle il y a trois entités : le contrôleur SDN, le monitoring

xl

system qui traite les données de monitoring et suggère des configurations du réseau au
contrôleur SDN et l’Open Device Agent qui interface le plan de contrôle aux équipements
du plan de données. Pour interfacer notre prototype au plan de contrôle nous avons
développé un système de messages UDP (User Datagram Protocol) pour notifier quand
une reconfiguration de notre prototype sera effectuée via auto-négociation et quand cette
dernière a été effectivement effectuée, pour prévenir les conflits entre le plan de contrôle
et notre solution.

Figure 20 – Intégration de notre transpondeur prototype au sein d’un banc de test réseau.

Nous pouvons profiter de ces notifications et les comparer à des notifications simi-
laires dans le plan de contrôle entre l’Open Device Agent et le contrôleur SDN pour faire
des comparaisons de performance entre notre prototype et le plan de contrôle pour la
résolution de dégradation de qualité de service.

Pour les deux setups, où la résolution de dégradation se fait par le prototype ou le plan
de contrôle, nous avons choisi ces valeurs de seuils pour la détection de la dégradation : la
courbe de puissance de réception (β) est calculée sur 4 samples et son seuil est de -1dB.s−1

et pour le BER pré-FEC le seuil sera de 1.10−6. L’envoi de la commande d’augmentation
de l’atténuation pour le VOA sera le t0 de notre setup. Les messages de notre prototype
et du plan de contrôle indiquant que la reconfiguration va avoir lieu est labelisée Reconf.

xli

a)

b)

Figure 21 – Résultats agrégés de 100 répétitions de notre protocole de validation pour
(a) le setup où notre transpondeur prototype se charge de la détection et de la résolution
de la dégradation induite par l’augmentation de l’atténuation dans l’atténuateur vari-
able et (b) quand le plan de contrôle SDN s’occupe de la détection et la résolution. Les
courbes représentent les valeurs médianes des métriques capturées, les parties transpar-
entes représentent les 15.8 et 84.2 quantiles. Sous les courbes on a tracé les histogrammes
de réception par le plan de contrôle des messages de notification Reconf. Start et Reconf.
End.

Start et la notification indiquant que la reconfiguration s’est terminée est labélisée Reconf.
End. La reconfiguration choisie pour nos tests est une simple reconfiguration de puissance
d’émission pour compenser l’augmentation de l’atténuation, qui n’est pas une reconfigu-
ration impressionnante techniquement mais qui permet de ne pas avoir d’interruption de
service dans notre cas qui nous empêcherait d’avoir des résultats pendant des dizaines

xlii

de secondes. Les résultats médians de 100 répétitions de dégradation sont représentés en
Figure 21.

On peut voir que notre prototype est bien capable de détecter et de résoudre la baisse
en qualité de réception induite par l’augmentation de l’atténuation dans le VOA, nous pou-
vons aussi remarquer que notre prototype est de plus capable de résoudre la faute environ
deux fois plus rapidement que le plan de contrôle centralisé, et avec moins de variabilité
dans le temps. Cela est dû au fait que notre système, par sa localisation au plus près du
matériel peut détecter plus vite la dégradation que le plan de contrôle qui est physique-
ment loin du matériel (et qui serait encore plus loin dans un réseau tel qu’implémenté par
les opérateurs). De plus le plan de contrôle doit récolter toutes les données de monitoring
de toutes les entités du réseau et les traiter ce qui crée des délais supplémentaires. Le
protocole permet aussi de résoudre plus rapidement la dégradation que de passer par le
plan de contrôle.

Intégration avec un setup temps-réel

Nous avons ensuite intégré notre solution d’auto-négociation au sein d’un ensemble
émetteur-récepteur temps-réel capable de changer le baudrate de la communication sans
interruption de trafic. Le setup est représenté en Figure 22. Le transmetteur est capable
de passer d’une transmission de baudrate nominal à demi baudrate grâce à une technique
d’entrelacement réalisée dans son FPGA, le Récepteur quant à lui peut décoder le trafic
à baudrate nominal et demi baudrate sans adaptation grâce à une implémentation par-
ticulière de l’algorithme d’égalisation de module constant (Constant Modulus Algorithm,
CMA) dans son FPGA réservé au DSP. Dans le Récepteur nous avons intégré une carte
FPGA séparant les entêtes de la payload du trafic et permettant de gérer les messages
de notre protocole d’auto-négociation. Une voie de contrôle est mise en place entre le
Récepteur et le Transmetteur pour l’échange de message d’auto-négociation.

Nous avons donc déclenché grâce à notre protocole d’auto-négociation une reconfigu-
ration du baud rate de 14GBd à 7Gbd. Les résultats capturés dans le FPGA sont dans
la Figure 23. Le changement est effectué et synchronisé en 3 trames de 128 octets, notre
système est capable de continuer à extraire des trames les entêtes et la payload aux deux
baudrates.

Maintenant que nous avons pu montrer et quantifier les avantages de donner plus
d’autonomie aux transpondeurs optiques pour permettre une plus grande réactivité et
flexibilité pour les réseaux de transport optique, nous pouvons développer autour de cet

xliii

Figure 22 – Setup expérimental pour le changement de baudrate synchrone et sans perte de
trafic en utilisant le protocole d’auto-négociation. Il est composé d’un Transmetteur (Tx)
et d’un Récepteur (Rx) cohérents. Une voie de contrôle est mise en place entre la carte
FPGA gérant le protocole d’auto-négociation et le Tx pour simuler une communication
bidirectionnelle pour le protocole. Tous les FPGA du setup sont liés un ordinateur via un
lien UART.

aspect, en développant des fonctions de monitoring plus élaborées, en donnant la possi-
bilité au plan de contrôle d’exploiter les ressources computationnelles dans le réseau pour
réaliser du monitoring complexe et de gagner en efficacité en déléguant certaines de ces
tâches.

Service d’accélération et transpondeur

La recherche autour des techniques de monitoring dans les réseaux optiques montre
un grand intérêt pour les techniques de Machine Learning [14], notamment les réseaux de
neurones. Pour rappel, en Figures 24 et 25 nous avons représenté un réseau de neurones et
la structure d’un neurone. Un réseau de neurones est structuré en plusieurs couches : une
couche d’entrée, une couche intermédiaire dite cachée où à chaque neurone de cette couche
chaque entrée est multipliée par un poids associé, sommées entre elles et avec un biais,
puis passent dans une fonction d’activation. Les sorties des neurones de la couche intermé-
diaire vont ensuite dans la couche de sortie, où elles passent dans des neurones faisant les
mêmes opérations. Les avantages des réseaux de neurones sont de pouvoir déceler des liens
entre des données d’entrée et des phénomènes difficiles à modéliser mathématiquement, à
condition d’être entraînés correctement, et d’être faciles à implémenter une fois entraînés.

xliv

Figure 23 – Capture du FPGA gérant le protocole d’auto-négociation. On voit un change-
ment de baudrate de 14GBaud à 7GBaud synchronisé grâce au protocole. Le message
ALERT a été envoyé avant les trames capturées.

Dans les réseaux optiques par exemple, il est possible de déceler à partir des spectres
optiques si le système est en régime fortement linéaire ou fortement non linéaire, voir Fig-
ure 26, mais il est très compliqué de quantifier précisément les contributions participant
à chaque régime. Ce qui peut être intéressant car trouver le point d’équilibre entre les
deux régimes permet de maximiser le ratio signal à bruit (Signal to Noise Ratio, SNR),
voir Figure 27. [15] propose un réseau de neurones, prenant en entrée un spectre optique,
avec une couche cachée de 10 neurones, et en sortie proposant une correction de puissance
d’émission pour être au plus près possible du maximum de la courbe de SNR. Nous allons
implémenter ce réseau de neurone sur FPGA et proposer un mécanisme de mise à jour
des poids des neurones à distance pour permettre la mise à jour de la fonction proposée
par le réseau de neurone, ce qui est une fonctionnalité intéressante dans le contexte des
réseaux optiques virtualisés.

xlv

Figure 24 – Structure d’un réseau de neurone avec une couche cachée.

Figure 25 – Structure d’un neurone de réseau de neurone avec quatre entrées. Les entrées
sont multipliées avec des poids correspondants, sommées avec un biais, et passent dans
une fonction d’activation.

Réseau de neurone sur FPGA

Dans la Figure 28 nous présentons notre implémentation FPGA du réseau de neurone
de [15], avec dix neurones dans la couche cachée et un neurone de sortie. Dans la Figure
(a) nous montrons comment les flux de données circulent des entrées jusqu’à la sortie et
dans la Figure (b) la logique de mise à jour des poids des neurones. Les données arrivent
en série à l’entrée du réseau de neurone avec un signal de contrôle indiquant que les
données sont valides. Dans notre implémentation les spectres optiques, nos entrées, sont
samplées sur 251 symboles de 32 bits. Les entrées sont distribuées parallèlement à tous
les neurones. Les sorties des neurones arrivent toutes en même temps grâce aux capacités

xlvi

Figure 26 – Spectre optique dans le régime fortement linéaire et dans le régime fortement
non-linéaire. Le canal modulé est représenté en noir, en bleu les contributions linéaires et
en rouge les contributions non-linéaires. En vert est représenté le spectre total.

Figure 27 – Représentation du SNR d’un signal optique en fonction de la puissance
d’émission. En bleu est représenté le système en régime fortement linéaire et en rouge
en régime fortement non-linéaire. Il faut trouver la bonne puissance d’émission pour avoir
la valeur de SNR au sommet de la courbe en cloche.

de parallélisme du FPGA et doivent donc passer par un sérialiseur avant d’être envoyées
au neurone de sortie. Les poids arrivent aussi de manière sérialisée dans le réseau de
neurone, avec leur signal de contrôle. Les poids du premier neurone de la couche cachée
sont envoyés du premier au dernier poids puis le biais, puis le second neurone de la couche
cachée etc. . . . Les poids du neurone de sortie arrivent en dernier. Les poids sont envoyés à
tous les neurones en même temps, mais le signal de contrôle est réparti entre les neurones
grâce à un démultiplexeur contrôlé par un compteur.

La structure des neurones de la couche cachée est présentée dans la Figure 29. Les
neurones sont composés d’une mémoire contenant les poids. Pour multiplier les entrées
avec leurs poids correspondants, un compteur permet de parcourir la mémoire séquen-

xlvii

tiellement. Le compteur permet aussi de mettre à jour la mémoire lorsque des nouveaux
poids arrivent dans le neurone. L’opération de lire la mémoire ou d’écrire dans la mé-
moire est décidée selon le signal de contrôle qui arrive dans le neurone. Les données
hors du multiplicateur sont envoyées dans un accumulateur. Lorsque toutes les données
d’entrées sont passées dans le neurone, le biais est ajouté à l’accumulateur. Puis la sor-
tie de l’accumulateur est transformée et transférée à une mémoire contenant la fonction
d’activation. La fonction d’activation des neurones de la couche cachée est la fonction
tangente hyperbolique (tanh) qui est écrite comme :

tanh(x) = 2
1 + e−2x

− 1 (5)

Dans notre implémentation, les valeurs de fonction d’activation tanh(x) stockées sont
bornées suivant :

f(x) =

2

1+e−2x − 1, if x ∈] − 8, 8[,

−1, if x ≤ −8,

1, if x ≥ 8.

(6)

Pour le neurone de la couche de sortie, la fonction d’activation est la fonction identité,
donc dans notre implémentation la différence entre un neurone de la couche cachée et le
neurone de la couche cachée est l’absence de cette mémoire.

Validation en simulation

Pour la validation en simulation de notre réseau de neurone sur FPGA, nous allons
comparer les résultats en sortie de notre implémentation aux résultats d’un réseau de
neurone généré sur Matlab. Nous allons faire passer 176 spectres dans les deux réseaux de
neurones, et comparer la précision du réseau de neurone FPGA et le réseau de neurone
Matlab en calculant l’erreur quadratique moyenne entre les deux. Nous allons faire aussi
varier les tailles en bits des poids et de la fonction d’activation, ainsi que le nombre
de valeurs stockées dans la mémoire contenant la fonction d’activation. Pour rappel, les
valeurs en entrée sont codées sur 32 bits.

Tout d’abord, dans la Figure 30 nous présentons des captures de simulation fonction-
nelle pour mesurer les performances en temps de notre réseau de neurone. On peut voir
dans la Figure (a) qu’il y a 5 coups d’horloges entre la dernière valeur d’entrée et la sor-
tie du neurone, ce qui est cohérent avec les opérations réalisées (à partir de la dernière

xlviii

a)

b)

Figure 28 – Structure de notre réseau de neurones logique pour FPGA. La Figure (a)
représente la gestion des flux de données circulent des entrées jusqu’à la sortie et dans la
Figure (b) la logique de mise à jour des poids des neurones.

entrée : un coup d’horloge pour la multiplication avec le poids, un coup d’horloge pour
l’accumulateur, un coup d’horloge pour l’ajout du biais, un coup d’horloge pour adapter
la sortie de l’accumulateur et un coup d’horloge pour la fonction d’activation). On peut
aussi voir dans la Figure (b) qu’il faut 2570ns entre la première donnée d’entrée et la sortie
du réseau de neurone, et 200ns entre la dernière entrée et la sortie. A titre d’indication,
Matlab donne un temps médian de 3.6ms pour réaliser les mêmes opérations, même si
cette valeur est dépendant de nombreux facteurs le rapport est fortement à l’avantage de
notre solution.

xlix

Figure 29 – Implémentation sur FPGA d’un neurone, avec en rouge la logique pour la
mise à jour des poids et en noir les signaux de contrôle.

Dans le Tableau 2 nous montrons les résultats en précision comparé au réseau de
neurone généré sur Matlab, selon différentes tailles en bits des poids et de la fonction
d’activation et le nombre de valeurs de la fonction d’activation stockées. On voit que
l’erreur quadratique moyenne au plus élevée, avec les paramètres les plus bas, est de
1.926 · 10−3. La plus basse est de 5.572 · 10−6, et n’est pas avec les paramètres les plus
élevés. On voit bien la faible influence de l’augmentation de la taille en bit des valeurs
de la fonction d’activation. La valeur récupérée dans la mémoire étant fortement liée aux
calculs précédents, et le neurone de sortie ne possédant pas de fonction d’activation, la
taille des poids a un impact beaucoup plus significatif sur la précision de la valeur finale
en sortie du réseau de neurone. Le choix des différents paramètres doit donc être pris
en considération lors du déploiement de la solution, car elle impacte non seulement la
précision du réseau de neurones mais aussi l’utilisation de ressources de notre design.

Validation en implémentation

Pour la validation en implémentation, nous proposons un banc de test permettant de
récupérer des spectres et des nouveaux poids à distance pour valider notre implémentation
de réseau de neurones. Ce setup est représenté en Figure 31.

Dans ce setup nous avons un processeur logique Microblaze, tournant sur le système
d’exploitation temps-réel FreeRTOS. Nous avons implémenté un cœur Ethernet à 1G

l

a)

b)

Figure 30 – Captures de simulation fonctionnelle (a) d’un neurone (b) du réseau de neu-
rones.

(avec un cœur Direct Memory Access DMA et de la mémoire DDR4 pour gérer l’envoi et
la réception de paquets) afin de pouvoir communiquer avec un serveur web qui contiendra
les spectres pour la validation ainsi qu’un deuxième set de poids pour mettre en œuvre
la réécriture des poids du réseau de neurones. Le premier set de poids sera appelé le set
initial (Initial Set) et correspond au set de poids utilisé pour la validation en simulation,
et le deuxième set sera appelé le set final (Final Set). Pour interfacer le Microblaze et le
réseau de neurones, nous avons développé un wrapper compatible avec le protocole AXI-
4 Stream et ajouté des First In First Outs (FIFOs). Le FPGA transmet les valeurs de
sortie du réseau de neurones à un ordinateur via un lien UART. Comme précédemment
les entrées sont encodées sur 32 bits, et pour les deux sets de poids il y a 176 spectres qui

Activation
Function /
Weights

Depth:
210

Width:
16

Depth:
211

Width:
16

Depth:
212

Width:
16

Depth:
210

Width:
32

Depth:
211

Width:
32

Depth:
212

Width:
32

Width: 16 1.926.10−3 1.768.10−3 1.704.10−3 1.927.10−3 1.768.10−3 1.705.10−3

Width: 32 8.773.10−5 2.234.10−5 5.572.10−6 8.773.10−5 2.238.10−5 5.604.10−6

Table 2 – Erreur quadratique moyenne (MSE) de notre implementation FPGA du réseau
de neurones comparé à celui généré dans Matlab pour différentes tailles en bit des poids
et la fonction d’activation (width) et différents nombre de valeurs de fonction d’activation
(depth).

li

Figure 31 – Schéma de notre banc de test avec un processuer logique Microblaze, le réseau
de neurone et un serveur web pour récupérer les spectres et les poids.

passeront dans le réseau de neurones. Les poids et la fonction d’activation sont écrits sur
8 bits, et 1024 valeurs de fonction d’activation sont stockées.

Dans le Tableau 3 nous avons regroupé les résultats pour cette validation. Toutes les
valeurs de sortie du réseau de neurone sont bien récupérées, et ces valeurs correspondent
bien aux valeurs obtenues en simulation. Le temps moyen entre la réception d’un spectre
complet et la réception de la valeur en sortie du réseau de neurones est très proche,
ce qui suppose un résultat quasi instantané, ce qui est confirmé par la capture de la
logique d’entrée et de sortie du réseau de neurones, où il y a 230ns entre la dernière
entrée et la sortie du réseau de neurone. Les 30ns ajoutées par rapport à la validation en
implémentation proviennent exclusivement du wrapper.

Nous avons donc présenté et validé un réseau de neurone sur FPGA permettant la
reconfiguration des poids des neurones, permettant donc de reconfigurer la fonction du
réseau. Intégré à un transpondeur avec auto-négociation, cela permettrait d’avoir accès
à des fonctions de reconfigurations avancées et donc procéder à des reconfigurations plus
intelligentes, tout en ouvrant la possibilité au plan de contrôle de pouvoir utiliser ces
ressources computationnelles pour réaliser du monitoring déporté. Cette solution pourrait
être encore améliorée en permettant la reconfiguration dynamique du nombre d’entrées,
du nombre de neurones de la couche cachée et du nombre de neurones de sortie, pour

lii

Initial Set Final Set
Number of values acquired
from NN 176 (100%) 176 (100%)

Correspondence with simu-
lation values 100% 100%

Ticks to receive whole test
set from webserver 474 466

Average ticks to receive one
spectrum 2.693 2.648

Ticks to get all NN values 475 466
Average ticks between NN
values 2.699 2.648

Table 3 – Résultats d’implémentation récupérés du Microblaze. Un tick processeur corre-
spond à 10ms.

Figure 32 – Capture of the implemented neural network.

permettre d’augmenter les possibilités de fonctions réalisables.

Conclusion

Dans ce manuscrit de thèse, nous avons proposé des solutions pour apporter plus
d’intelligence au transpondeur optique dans le contexte des réseaux de transport optiques
flexibles. Nous pensons que ces possibilités supplémentaires permettront d’augmenter la
flexibilité et la réactivité des réseaux optiques. Les possibilités offertes par l’ajout de
ressources computationnelles dans le réseau et exploitables par le plan de contrôle pour-
ront permettre au plan de contrôle de réaliser du monitoring délégué sur des ressources

liii

sous-utilisées du réseau et nécessitant des gros flux de données. Ces solutions pourraient
participer au développement et à l’adoption de réseaux optiques flexibles et hautement
automatisés.

liv

Chapter 1

INTRODUCTION

Optical fiber is currently the most commonly used medium to transport information at
extremely high speed and at great distances. Since the boom of Internet usage at the end
of the 90s, with the greater than ever number of devices capable of connecting themselves
to the Internet and with applications requiring higher data-rates and greater reliability,
optical networks have replaced the copper networks, and are deployed closer and closer to
the homes of the end-users. Furthermore they are still considered the most suitable way
to build networks for the forseeable future.

Figure 1.1 – Global IP traffic growth in Exabytes per Month measured and forecasted by
Cisco. Measurements pulled from Virtual Networking Indexes of their respective years,
and forecasts from the Virtual Networking Index 2017-2022 [1].

In [16], Cisco foresees that two thirds of the global population will have internet access
and that the number of devices connected to IP networks will be three times the global

1

population by 2023, from 51% and 2.4 times the global population respectively in 2018.
And with video having a big impact on data consumption and considering the adoption of
Ultra HD video streaming (see Figure 1.2) and remote working favoring video calls [17],
demands in capacity are expected to skyrocket in the upcoming years, see Figure 1.1.
The adoption of 5G for the end-user and for the industry is also expected to increase the
overall data consumption and create demands for low latency connection.

If backbone (or long-haul) links that connect countries and continents are concentrat-
ing a lot of data traffic, regional and metropolitan links are under more and more pressure.
As [1], traffic within metropolitan networks will grow from 27% in 2017 to 33% in 2022,
which means that over one-third of the Internet traffic will stay close to the end-user
in the upcoming years. This is due to the increase of population in metropolitan areas,
the adoption of Fiber To The Home which boosts data rates for users and changes their
usage of the Internet, and the development of edge-cloud and edge-computing which puts
application services closer to the end-user to reduce latency.

In response, optical network and optical equipment design have to adapt themselves
to sustain these growths.

Figure 1.2 – Impact and growth of video application traffic and influence of the definition
on this impact. Source [1]

Increase in computing resources available in optical equipment, deployment of coherent
optical communication and research on advanced Digital Signal Processing (DSP) tech-
niques has resulted in a boost of the maximum achievable data rates and the maximum
achievable distances without added amplifiers. Other works have focused on increasing the
possible configurations of the optical equipment. Being able to use a wide array of parame-
ters depending on the circumstance can be extremely beneficial and allow for adaptations

2

during the whole equipment lifecycle. In the end these adaptations can lead to better
reliability in the network overall and an increase in average capacity, if the equipment is
frequently reconfigured to adopt an ideal set of parameters depending on the situation.
These equipment that are able to reconfigure themselves to another set of parameters are
qualified as flexible. However, increasing the possible configurations of the equipment of
the network brings two main problems: it increases the network complexity and reconfig-
uring the equipment is beneficial only after the equipment is reconfigured, as during the
operation it is most likely to be in a maintenance mode which renders it out of service.
The former problem can be alleviated by introducing automated centralized intelligence
in the network, that can oversee the equipment and their condition and propose automat-
ically new set of parameters. This requires adaptation in the device so that it is able to
communicate with a centralized intelligence and be remotely piloted. By doing this, the
centralized control can interact in novel ways with the hardware by virtualizing it, i.e.
separating the equipment hardware and software (or application). This allows the com-
plete reorganization of the network to fulfill specific conditions (for example low latency,
higher throughput, better security, etc. . .) at a global or a local scale. The latter problem
can be solved by designing hardware that can be reconfigured quickly, and even better
if it is able to be reconfigured quickly enough to avoid any loss of traffic, which can be
qualified as hitless.

These solutions are currently being implemented, some even in commercial products,
and have lead to a great number of structural changes in optical networks. The introduc-
tion of the flexible grid in optical Wave Division Multiplexing (WDM) transport networks
and the adoption of the Optical Transport Network (OTN) toolbox has increased the pos-
sibilities for routing and managing the client traffic, the optical transponders (the entry
and exit points of the client signals into the optical transport networks) and the Optical
Add-Drop Multiplexers (OADMs, the switches of the transport networks) have evolved to
gain more (re)configuration possibilities and the deployment of the Software Defined Net-
work (SDN) control plane architecture has enabled more automation and novel hardware
management techniques such as the virtualization. All these progresses have enhanced the
capabilities of optical networks at the metropolitan and regional levels but more work has
to be done to attain full programmability at a high speed and take advantage of the SDN
architecture.

This manuscript will, in regard to this context, elaborate on the subject of real-time
flexible and virtualized transponders for optical communications. This thesis work has

3

been realized under an industrial grant between the IETR lab of INSA Rennes and Nokia
Bell Labs Paris-Saclay. This manuscript is organized in 4 chapters presenting the three
years of research work.

Chapter 2 develops the overall context of the thesis work. This chapter opens by de-
scribing the optical transport network, with the relevant current technologies and equip-
ment. Following this is a detailed description of the optical transponder, which is at the
center of the research work of this manuscript.

Chapter 3 centers around the notion of flexibility, at the hardware and network levels,
which are relevant for this thesis work. This is followed by a review of the evolutions of
the optical transponders that have happened in the last decade, which has enabled the
Bandwidth Variable Transponder (BVT) and the Sliceable Bandwidth Variable Transpon-
der (S-BVT) and a state of the art on the current research on hitless and automatically
reconfigurable transponders.

In Chapter 4 we present a real-time transponder prototype with monitoring and auto-
negotiation capabilities for automated fast and synchronized reconfigurations. We present
our prototype and its different elements, and validate it inside a network testbed and mea-
sure its performance against a centralized control plane in term of time to detect a degra-
dation in quality of service and resolve the degradation by reconfiguring the transponder.
We also integrate our auto-negotiation setup with a real-time transmitter and receiver able
to instantaneously reconfigure the communication baudrate, and showcase a synchronized
change of baudrate.

In Chapter 5 we present an embedded Artificial Neural Network (ANN) solution on
Field Programmable Gate Array (FPGA), and validate it by implementing a function
to monitor nonlinear contributions by analyzing optical spectra. We asses its timing and
precision performance, and develop a function to update the network’s neurons weights to
reconfigure the performed function. This reconfiguration could be used so that the control
plane can perform remote monitoring to speed up fault detection.

We finally conclude this manuscript by providing a overall summary of the work
achieved and finishing on prospects on possible further developments.

4

Chapter 2

THE OPTICAL TRANSPORT NETWORK

AND THE OPTICAL TRANSPONDER

Optical networks are at the center of modern telecommunications, carrying traffic for
a whole range of applications, interconnecting uncountable numbers of users and services
at high speed. But with the increase in number of end-users, the development of new
wireless communication technologies and the ever increasing data-hungry cloud services,
optical networks had to evolve to sustain this non-stopping growth in network capacity
demands.
Since the first optical fiber under a 20dB/km loss in 1970 [18], that kickstarted the devel-
opment of optical networks, optical fibers has kept improving, using different materials
for the core, with the currently most common using silica, allowing for long reach reli-
able transmission of the light, with losses around 0.15 dB/km [19]. These evolutions have
been coupled with improvements in optical equipment design, allowing higher than ever
capacities at greater distances. Optical signal detection used direct detection, recovering
only light intensity, but improvements on signal processing has allowed around 2008 the
on field deployment of coherent detection and communication [20]. In coherent detec-
tion the information is mapped onto the light intensity, phase and polarization, which
greatly improves the spectral efficiency, the rate of transmission of information over a
given bandwidth (in bits per second per hertz) and is now the standard in high speed
optical communications.

With fast coherent optical communication possible, the next evolution of optical sys-
tems is the integration of flexibility concepts, allowing the tuning of the parameters of
the equipment to better match the needs in capacity and/or reliability. These changes
can range from the tuning of a laser to a different wavelength, the change of modula-
tion format to achieve better bitrate or higher reach without added amplification or the
rerouting of one or multiple signals across the whole optical network, and they can be
triggered remotely or by an internal function inside the equipment. Alongside the increase

5

of possibilities in the data plane came in the control plane an increase in processing power
and improvements in overall architecture. Where optical networks were globally extremely
static, the 2010s have started the transition into fully automatic flexible optical networks,
where the control plane collects the monitoring data of the equipment, detects drop in
quality of service and acts accordingly, sending reconfiguration and routing commands.
Coupled with the new telemetry services, boosting the rate of monitoring data collecting,
and the implementation of more complex algorithms to process the data, future optical
networks will become much more reliable and efficient.

This chapter presents in more details the context of the thesis work. The first section
describes the optical transport network with its current technologies on the data plane
and the control plane that are relevant for the work presented. Following this is a section
covering the optical transponder equipment, the optical device at the center of this thesis
work, with a comprehensive description of its structure and its components.

2.1 Optical transport networks

2.1.1 Optical layer architecture

Optical transport networks are the network high capacity highways between node
pairs of the network. Organized in rings or meshed topologies, they can cover from tens
to hundreds of kilometers for metropolitan (or metro) networks, or thousands of kilometers
for core networks and are at the center of the exponential traffic growth [2].With the ever
growing bandwidth and reliability needs with the implementation of 5G and the increasing
number of device connected to the internet, optical transport networks have evolved to
sustain this trend.

Today’s main optical technologies for transport network are the Wave Division Mul-
tiplexing (WDM) equipment and the Optical Transport Network (OTN) standard, that
are prevalent in modern operators networks. WDM is represented in Figure 2.1 and is
a technology where a single optical fiber is carrying several multiplexed signal or signals
over different wavelengths, and its usage helped boost significantly the capacity of optical
networks, multiplexing multiple client signals that are then carried along the network and
demultiplexed and dropped at their destination. The OTN standard works as a toolbox
for optical networks, allowing to manage client signals and wavelengths in the network,
providing a frame format with overhead carrying useful information for client signals

6

monitoring, routing and grooming over optical channels. The standard for OTN is pub-
lished by the ITU (International Telecommunications Union) in [21]. As seen in Figure
2.2, the OTN frame is composed of multiple sub-headers and sections that encapsulates
the client data. The OPU (Optical Payload Unit) encapsulates the client data and its
header details the type of data that is transported. The Optical Data Unit (ODU) over-
head has segments that helps monitoring the optical path and switching the data from
a working optical path to a restoration path in case of a failure in the working optical
path. The OTU (Optical Transport Unit) adds further monitoring of the optical link and
error correction. A frame alignment sequence and a error correction code are added for
more reliable communication. OPU, ODU and OTU are often accompanied with an index
k representing the standard of the OTN signal, with a higher index indicating higher
maximum bitrate. Also, k-indexed frames are able to transport multiple frames of lower
indexes by time-multiplexing them, see Figure 2.3 and [22]. As an example, ODU3 frames
are used to transport 40 Gigabit Ethernet frames in the optical transport network or up
to four ODU2 signals, that are suitable to transport 10 Gigabit Ethernet Frames. 100 Gi-
gabit Ethernet frames are currently transported in ODU4 frames, that can also transport
up to two ODU3 frames. This structure allows the transportation of multiple low speed
signals into a single high speed entity.

Furthermore, to accompany the ever-growing increase in traffic in transport network
and the greater number of possible configurations of optical equipment, multiple tech-
niques have enabled Elastic Optical Networks (EON), which is the new paradigm in
optical network design [23]. The basis of EON is that the hardware is not considered as a
static device but can be programmed during its lifetime in the network, possibly allowing
the tuning of equipment parameters to match the current needs in capacity and/or relia-
bility, for example the modulation format, the Forward Error Correction (FEC) code, the
central frequency of the transmission etc. . . This freedom in the choice of configuration
adds a much needed layer of flexibility to optical transport networks.

The other key technology enabling elastic optical networks is the introduction of flexi-
ble grid in WDM-based optical networks. While WDM networks traditionally use a fixed
grid where client signals are allocated on a specific 50GHz slot, flexible grid allows for a
finer granularity in frequency slots. The flexible grid motivation was to allow mixed bit
rate or mixed modulation format systems to allocate frequency slots [3], enabling better
spectrum occupation in regards to the network needs in capacity and possibly savings
in spectrum occupancy as shown in Figure 2.4. However as the spectrum slots allocated

7

Figure 2.1 – Simple representation of the WDM technology

Figure 2.2 – Structure of an OTN frame

Figure 2.3 – Representation of an OTU3 frame transporting 4 ODU2 frames using time
multiplexing.

across the whole network mustn’t overlap each other if they take the same lightpath,
because it degrades the quality of reception at the optical node, spectrum allocation be-
comes much more difficult in a flex-grid scenario, because of the increased number of
signal that can be allocated on the spectrum [24, 25]. An example of signal overlapping
on the flexgrid due to poor slot assignment can be seen in Figure 2.5. Coupled with the
introduction of the super channel technique, see Figure 2.6 that allows multiple signals
to be modulated, multiplexed and transmitted as a single entity, creating a signal with
possibly greater bandwidth than 50GHz [26], spectrum allocation requires very mindful
orchestration to ensure a good quality of service in network.

Figure 2.7 is a schematic representation of an optical transport network data plane. We
can see multiple network segments. Firstly the access segment is the part of the network
closer to the end-user, providing connectivity for wireless mobile network base stations,

8

a)

b)

Figure 2.4 – Example of spectral slot allocation in a)fixed and b)flex grid scenario, with a
12.5GHz granularity for b)

Figure 2.5 – Example of a spectral slot assignment causing overlapping in a flex-grid
scenario

enterprises and residential endpoints for example. The traffic coming to and from the
access segments is named the client signal in transport networks and is received by an
optical transponder that serves as an entry and exit point for the signal in the metro
network segment. The client signal is multiplexed onto a single carrier and sent to the

9

Figure 2.6 – Example of a super channel in the flexgrid, where two 200G signals are
combined into a 400G super channel

metro segment, where it is multiplexed on WDM signal, transported and dropped at its
destination out of the metro segment by Optical Add-Drop Multiplexers (OADMs), where
it is demultiplexed by an optical transponder and go to its final destination in the access
segment. If the final destination is in another metro ring, the signal can go through the
core segment, interconnecting multiple metro networks together, and go if necessary to
another core segment by going through submarine cables for example. Traditionally, the
metro segment’s topology is organized in rings and the backbone network’s is meshed, the
meshed topology allowing for more restoration possibilities in case of a degradation [27],
though it is more and more common to see the metro segment organized in the meshed
topology.

2.1.2 Optical line equipment

In this subsection we will present the optical equipment composing the optical line in
transport networks (see Figure 2.8)

2.1.2.1 Optical Transponder

The optical transponder, represented in Figure 2.9 is an optical-electrical-optical equip-
ment, that gathers the low speed signals, called "colorless signals", on client ports to mul-
tiplex them on a WDM-compatible carrier, or "colored signal", that is going to be sent to

10

Figure 2.7 – Representation of an optical transport networkd data plane.

Figure 2.8 – Optical line in transport networks, with Transponders, OADMs and amplifiers

an OADM where it will be routed to its destination. The reverse operation is done when
receiving a signal on a line side. At transmission and reception, Digital Signal Processing
(DSP) is applied to the signal, to compensate for the degradation on the optical link, map
the information on modulation formats and help the detection of the received signal. The
optical transponder is going to be more thoroughly described in Section 2.2 as it is the
optical equipment at the center of this thesis work.

Advancements in system design have permitted the implementation of reconfigurable
transponders capable of multiple bit rates, which is ideal to adapt the communication in
regards to the current condition of the network and the demand in capacity, by adapting
the modulation format, changing the error correction code, etc. . . This system will be more
thoroughly described in section 3.3.

11

Figure 2.9 – Basic representation of an optical transponder

2.1.2.2 OADM

OADMs act as optical switches in the network. When one WDM signal is going through
an OADM, the wavelengths that have to be dropped are sent to an output port to an
optical transponder, wavelengths from optical transponders at the add ports are added
to the traffic and transported further into the network. An implementation example of a
parallel OADM is represented in Figure 2.10.

Figure 2.10 – Implementation example of a parallel OADM

In an OADM, the signal is demultiplexed and the channels are added dropped at the
same time, and re-multiplexed and transmitted with the added channels. The parallel
implementation is suitable when a great number of channel is to be added and dropped,
but is very costly when it is not the case as you need to pass the full signal into the
de/multiplexers, which filter the signal [28] and impacts the quality of communication as
will be discussed in 2.1.3. Another possibility is to make band selective implementation of
OADMs, as seen in Figure 2.11 to alleviate some drawbacks of the demultiplexing of the

12

Figure 2.11 – Implementation examples of a parallel modular OADM

Figure 2.12 – Implementation example of a parallel two-degree OADM

full signal by demultiplexing larger parts of the bandwidth, containing multiple channels.
Another key point of OADMs is the possibility to have multiple entry and exit point

for the WDM signal, called degrees. A two degree OADM having two inputs and outputs,
and a three degree three etc. . . Two degrees OADM are central in ring network topologies,
and three and more degrees OADMs are used in meshed network topologies. Figure 2.12
shows a two-degree OADM implementation.

The new development in reconfigurable optical devices also enabled the implementa-
tion of Reconfigurable Optical Add-Drop Multiplexers (ROADMs), contrary to classical
(called fixed) OADM, ROADMs as their name imply are reconfigurable by the operator
to add and drop signals and support the flexible grid. They are implemented using Wave
Selection Switches (WSS) and Multicast Switches (MCS). A WSS has one common port
and multiple multi-wavelengths ports. When the WSS is at an output of the ROADM,

13

Figure 2.13 – Example architecture of a 3-degree CDC ROADM with example signals.
Blue signals are signals going through the ROADM to be dropped at a later point and red
signals are signals added and dropped in the device

all wavelengths at the multi-wavelength ports are sent to the common port, when it is
at an input port the wavelengths at the common port are routed to a multi-wavelength
port. A MCS has a multiple input and output ports on each side, and every wavelength
can be routed from and to any port of the device, so they are used for the add-drop ports
of ROADMs. Recent Colorless Directionless Contentionless (CDC) ROADMs allow for
dynamic and efficient switching and routing of the lightpaths of the network, with add
and drop ports that are not wavelength selective (colorless), with any add and drop port
being able to be switched to and from any direction of the ROADM (directionless) with
no wavelength blocking when two ports use the same wavelength (contentionless) [29,30].
Figure 2.13 shows an example architecture of a CDC ROADM, with its add-drop portion
based on Multicast Switches (MCS), and its three degrees with WSS at the transmission
and detection. This opens the possibility to program and reprogram routes and even plan
backup routes in the optical transport network, in the case of for example a degradation
in the link between two ROADMs [31].

14

2.1.2.3 Amplifiers

To increase maximum reach of optical signal and mitigate the attenuation that hap-
pens inside OADMs, amplifiers are placed in the network, increasing the optical power.
Optical amplifiers used in transport networks are mainly Erbium Doped Fiber Amplifiers
(EDFAs), providing good gain and relatively large bandwidth. However, using amplifiers
increases undesirable effects in the transmission. The most important is the addition of
Amplified Spontaneous Emission (ASE) noise in the transmission, which is an additive
noise dependant on the incoming signal power in the amplifier. They are usually placed
at entry and exit point of optical equipment (notably OADMs), and in the optical link
between OADMs to increase the optical reach, as seen in Figure 2.14.

Figure 2.14 – Optical link between two OADMs, with amplifiers placed at entry and exit
points of the equipment and in the middle of the link. The fiber portion between two
amplifiers is called a fiber span.

2.1.3 Optical link impairment

Like any communication channel, the optical link can be subject to many phenomena
that degrade the quality of the transmitted signal, which by extension makes the proper
reception of the information more difficult. We will briefly describe some of the most

15

common effects occurring during the optical signal propagation through the fiber.

Chromatic dispersion As the WDM transmission is using multiple wavelength to
transmit the information on the optical link, the WDM optical signal is susceptible to
Chromatic Dispersion (CD). This comes from the fact that the light’s group velocity and
phase velocity depend on the wavelength. This implies that the further the signal goes,
the more the chromatic dispersion will accumulate, creating a broadening of the WDM
signal and possible bit detection errors, as seen in Figure 2.15. The chromatic dispersion
can be measured at reception of the signal and is expressed in ps/nm·km.

Figure 2.15 – Representation of the effects of Chromatic Dispersion.

Nonlinear effects Another important effect happening in the optical fiber during the
light signal propagation is the nonlinear Kerr effect. It corresponds to the phenomenon
where the refractive index of the fiber (but more generally crystals glass or gas) changes
when light propagates in the material. The light creates an electric field in the fiber, and
the change in refractive index is proportional to the square of the field strength, mak-
ing this perturbation nonlinear and resulting in inter symbol interferences [32]. Another
nonlinear effect of interest is the Raman scattering, where when two signals with differ-
ent wavelengths are propagating in the fiber, the signal with the longer wavelength get
amplified, and in the contrary the shorter wavelength signal loses intensity. This is due
to the response of the optical medium not being instantaneous when light is propagating
through it.

Filtering When propagating in the network, the light signal goes through a variety of
filters, notably when traversing a WSS. As the number of optical node in the network

16

Figure 2.16 – Effects of cascaded filtering on the spectrum of a received signal.

increases, the number of filtering increases, degrading the signal. The more filters the
signals pass through, the more the spectrum is distorted, especially at the lateral parts of
the spectrum [33], as seen in Figure 2.16.

Environmental effects Environmental effects have a noticeable influence on the opti-
cal transmission, as they directly impact the fiber and degrade its capacities. The most
common is if the fiber gets in movement, by the effect of vibration in the close environment
for example, which impacts the intensity and the polarization of the signal going through
the fiber. Other environmental effects such as temperature and pressure can come up and
degrade the quality of transmission, but are more uncommon.

2.1.4 Optical transport network control plane

The management of optical networks has seen enormous changes in the past decades,
enabling not only a more efficient management of optical equipment in the network in
regards to their increase in capabilities and complexity, but also making huge steps towards
autonomous operations.

In optical networks the control plane is a set of control processes that is responsible
for the establishment and the maintenance of the service, supervising the equipment
in the network. By establishing a control loop where the equipment (all or part of the
ROADMs, the transponders and the amplifiers for example) are continuously monitored
and the parameters of the network are frequently re-evaluated, the control plane is able

17

to automatically detect and resolve issues that may arise in the networks lifetime, such
as a degradation of performance, a new lightpath that needs to be created to route the
traffic more efficiently etc. . .

a)

b)

Figure 2.17 – Simple representation of the a) traditional control plane architecture and b)
the SDN architecture.

The most adopted paradigm in optical network control research is currently the Soft-
ware Defined Network (SDN). Its main principle is that a central software program dictates
the overall network behavior [4]. This is an evolution from previous network management
solutions, namely the Generalized Multi-Protocol Label Switching (GMPLS) (General
Multi-Protocol Packet Switching), where the decision making and routing of the network
was very distributed and located near each node of the data plane, making the scalabil-
ity of the management and control of the network complex [34] (Figure 2.17 (a)). This

18

reduction in complexity has done a great deal in enabling flexibility in the network, mak-
ing easier the introduction of new device, establishing new lightpaths and changing the
configuration of an optical device [35]. Figure 2.17 (b) shows a simple representation of
the SDN Architecture, with the clear separation of the data and control plane, the latter
being populated only with the SDN Controller. While this representation shows the cen-
tralization of the control and management functions in a single entity, it is not the only
architecture discussed in recent research. As the number of equipment to supervise and
their complexity increase, the need for a dedicated Monitoring and Data Analytics system
to collect and process the monitoring data in the network has become apparent [36]. This
helps the SDN controller by offloading some functions and processing power, and helps
implementing modern and complex data processing techniques such as Machine Learning.
Coupled with open standards to interface the equipment to the network controller and the
addition of an agent to abstract and expose devices to the controller [37], optical network
can be implemented with equipment from multiple vendors, as from the SDN controller
point of view it interacts only with virtual devices. This allows to dynamically create and
modify subdivision, or slices, of the network to respond to specific demands [6] (eg. a
low latency communication between a node pair of the network). Other works have ques-
tioned the over centralization of the control tasks, proposing more distributed and local
approaches, while not contradicting the SDN paradigm. The implementation of agents to
offload some tasks of the control plane closer to the data plane, creating a distributed or
hierarchical structure shows some benefits in reducing the latency in the decision making
process at the cost of higher complexity in implementation [9, 10].

Monitoring of optical layer

With optical equipment embracing a more flexible way of functioning and with the
optical control plane gaining more and more functionalities, optical monitoring has been
more and more prevalent in enabling autonomous operations in optical networks. With all
the effects occurring in the optical line as described in 2.1.3, it is crucial to keep surveilling
the optical equipment and detect when the impairments are impacting too much the
communication. This can be measured by periodically collecting several monitored values
in the optical equipment and acting accordingly. For example, retrieving the reception
power (or Rx Power) or the Bit Error Rate (BER), the number of bits altered by noise,
is a good way to determine when the communication is degrading when the former is
decreasing and the latter increasing. A lot of parameters are available in modern optical

19

equipment [38] and it is at the operator’s discretion to decide on a set of parameters
that the control plane should closely monitor and at which rate, as collecting all the
monitored values at the maximum achievable rate possible takes a lot of processing power
and memory.

Traditionally, the process of collecting the monitoring data from the equipment to the
control plane used very basic protocols, suitable for the very low pace at which monitoring
was performed in optical devices (usually every 15 minutes) and the processing power in
the optical control plane. But with the increase in computational performance in both
the control plane and the optical equipment, new possibilities have emerged for optical
monitoring. First of all a new generation of protocols have enabled the use of telemetry
services [5]. Network telemetry is the service of real-time streaming the optical monitoring
values from the optical equipment to the control plane. This service can be activated on
demand, over a certain amount of time, and can be at a very fast rates (even below the
second if the optical equipment is able to update its values at this rate). This service can be
used in addition to more traditional (and slower) monitoring services: telemetry focusing
the attention of the control plane on a subset of equipment, helping detecting failures more
rapidly and reliably, while the slower service collects data for long term analysis of the
network or raising alarms for network devices that are under less reliability constraints.
The other benefit of the increase of processing power is that the control plane is able
to use more complex algorithms to process the monitoring data, enabling even machine
learning algorithms [39, 40] to perform performance evaluation or to re-route the traffic
in more efficient ways or after a degradation. Current researches on machine learning
on the control plane are aiming at using more complex models to better represent the
optical network and its complexity to take better decisions [41] or using the more complex
and more powerful Artificial Neural Network [42] for example. Other works are aiming
at implementing machine learning algorithms directly into the optical equipment [43] to
gain efficiency.

2.2 Optical Transponders

2.2.1 Architecture

The optical transponder is an optical/electrical/optical device that serves as an entry
and exit point for the client traffic in the optical transport network. When the optical client

20

Figure 2.18 – Representation of an optical transponder

signal is received on a client port, it is converted into an electrical signal, and processed
and amplified, then optically converted and aggregated with other client signals into a
single WDM-compatible wavelength to a line port that is connected to the WDM network.
The reverse operation is done when the signal is received on the line port, the client signals
are de-multiplexed, processed to compensate for the distortion in the optical channel and
to retrieve the data symbols, and then routed to the proper client ports. Figure 2.18 shows
a basic presentation of an optical transponder and in this following section we will detail
its components and subsections.

2.2.2 Digital and Analog conversion

The DAC or Digital-to-Analog Converter is the electrical component that transforms
the digital data into electrical voltages. In optical transponders it converts the signals of
the DSP that will be sent to the modulators of the transmitter, as it will be explained
in 2.2.4. On the other side, the Analog-to-Digital Converter (ADC) transforms a voltage
into a digital signal, and in the optical transponder transforms the received signal into
data that will be processed in the receiver DSP on the line side.
Both these components are mainly characterized in terms of resolution and sampling
speed. The resolution corresponds to the number of bits available to perform the desired

21

operation and describe the incoming or outgoing waveform, and the sampling speed is the
periodicity at which the sampling is performed. Figure 2.19 shows that augmenting the
sampling rate and the resolution helps better describe the signal in bits (for the ADC)
and in output waveform (for the DAC). However, it is not possible to maximize on both
these characteristics in optical systems and a trade-off has to be made in the design as
in optical systems a converter with a high sampling rate has a low resolution and vice
versa. Another characteristic is the Effective Number of Bits (ENOB) which is the actual
resolution of the equipment when taking in consideration the quantization and electrical
noise of the equipment, and usually decreases with the frequency [44]. Another problem
is the bandwidth of the components, that requires special processing to mitigate, as will
be discussed in 2.2.3.

Figure 2.19 – Basic representation of the operation of a DAC and an ADC converting
a ramp signal (the blue line), with (a) 2-bit resolution and ∆t sampling rate, (b) 3-bit
resolution and double sampling rate. The orange line represents the output waveform from
the DAC and the ADC conversion is represented by the bit vectors.

2.2.3 Digital signal processing

The development of high-speed DAC and ADC coupled with the improvement in DSP
techniques has been key in enabling coherent optical communication. This has enabled the
reception of complex modulation formats using light polarization (that will be discussed
in 2.2.4) and the compensation of optical line impairments. DSP algorithms and applica-
tions are traditionally deployed in optical transponders using ASICs (Application-Specific
Integrated Circuit) specifically designed for this purpose.

22

2.2.3.1 Transmitter side DSP

Modulation formats If the line side of the optical transponders was first using very
simple modulation formats such as OOK (On-Off Keying), the ones primarily used nowa-
days by the device have become more complex, helping achieve greater bitrates. Phase
modulation have become more common in transponders (such as the the Quadrature
Phase Shift Keying, or QPSK), but with the advent of the coherent detection in optical
systems, modulation using the polarization of the light have started to be used with suc-
cess with for example Polarization Multiplexed-QPSK (PM-QPSK) [45] or PM-16QAM
(Quadrature Amplitude Modulation) [46], using the fact that the light can be polarized
vertically or horizontally, see Figure 2.20. However, increasing the bitrate thanks to the
use of a more complex modulation format makes the signal more susceptible to inter-
ferences, which complicates the detection process, and reduces the maximum achievable
reach of the optical signal.

Figure 2.20 – Representation of (a) the QPSK, (b) 16-QAM and (c) PM-QPSK modula-
tion formats

Forward Error Correction Forward Error Correction (FEC) is a technique where
this transmitted data is pre-coded at transmission, and this coding helps at detection
to see if an error is present on the detected signal, and potentially correct this error.
This functions by adding redundancy to the transmitted data. This can greatly improve
the quality of communication between a transmitter-receiver pair, at the cost of reduced
spectral efficiency due to the redundancy added in the data stream. Multiple error coding
schemes exist for optical communications, as reviewed in [47]. This requires a FEC Coder
and a Decoder in the transmitter and the receiver respectively. FEC Codes commonly used
in optical networks are Staircase, Reed-Solomon or LDPC (Low Density Parity Check)
codes [47–50]

23

Pre-Emphasis In DSP, Digital Pre-Emphasis (DPE) is used to reduce the distortions
caused by the low pass response and the limited bandwidth of the DAC in the transponder,
as described in 2.2.2. For DPE, the signal is filtered, resulting in lower peak-to-average
power ratio, as seen in Figure 2.21. If this technique increases the reception quality es-
pecially at higher baud rates [51], it also creates a trade-off in output power and DAC
bandwidth [52].

Pre-Distorsion Compensation On the transmitter side, Digital Pre-Compensation
(DPC) techniques can be used, as it allows to reduce the degradation introduced by optical
components such as the DAC and the transmitter, and increases the spectral efficiency
of the transmission [53]. They are especially useful when using high order modulation
formats and higher baud-rates, that cause additional skew in the transmitter [54] for
example.

Figure 2.21 – Representation of the digital pre-emphasis processing. Hdesired represents
the ideal signal spectrum, HT xT otal the transfer function of the DAC, Hpre the transfer
function of the DPE filter and Hout the resulting spectrum after the DPE

24

Figure 2.22 – Representation of DSP steps on the reception of a PM-QPSK signal, with
on the left the Horizontal polarization and on the right the Vertical one. (a) is the signal
coming from the ADC, (b) is the signal after CD compensation, (c) is the signal after
CMA, and (d) is after carrier and phase recovery

2.2.3.2 Receiver side DSP

On the receiver side, DSP algorithms are used to help the system properly decode
the detected signal coming from the ADC as explained previously, and are separated into
two main categories: equalization and synchronization. The main goal of the equalization
algorithms is to compensate for the phenomenon that take place in the optical channel
between the transmitter and the receiver that degrades the quality of the received signal.
The synchronization aims to correct the timing and frequency differences between the
transmitter and the receiver so that the signal can be finally decoded.

25

Equalization The main equalization techniques in coherent receivers are the static and
the adaptive equalization. The static equalization aims at compensating for example the
losses due to the Chromatic Dispersion (CD) as described in 2.1.4. The adaptive equal-
ization goal is to track and compensate time-varying losses due to polarization effects.
For modulations using a single amplitude (PM-QPSK for example, as described in 2.2.4),
a Constant Modulus Algorithm (CMA) is used to ease the decision on the symbols and
perform polarization demultiplexing [55]. Other algorithms exist for more complex modu-
lation formats, such as Radius Directed Equalization [56]. The static equalization requires
a large static filter, whereas the adaptive equalization is done via a set of adaptive FIR
filters. Both could be done in a single filter but separating the two eases the design of the
system [57].

Synchronization Just equalizing the signal is not enough to make decision on the re-
ceived symbols. As the transmitter and the receivers are not synchronous, it is important
to recover the frequency and the phase of the received signal, using Carrier Phase Estima-
tion (CPE) and Carrier Frequency Estimation (CFE) algorithms. These algorithms can
function in a "blind" manner [56], or with an a-priori knowledge of the incoming signal
("pilot-aided") [58]. A representation of the results of DSP on the reception of a PM-QPSK
signal is represented in Figure 2.22.

2.2.4 Transmitter

To modulate the optical signal, equipment use mainly Mach-Zender Modulators (MZM),
which basic structure is represented in Figure 2.23. The MZM splits the light from a laser
into two paths, and shifts the signal phase with two electrodes, one in each arm. The
electrode is driven by the outputs of the DACs of the transponder. An additional DC
Bias Voltage is used in one arm to introduce an additional phase-shift, allowing I/Q
modulation. To realize I/Q modulations MZM can be stacked (this structure is called
Dual-Parrallel-MZM, or DP-MZM) and for Polarization Multiplexed modulations, an-
other stacked DP-MZM (for the modulation of the second polarization) and both a de-
vice rotating the polarization of the signal and a Polarization Beam Combiner (PBC)
combining the two polarized signals are necessary [59], see Figure 2.24.

26

Figure 2.23 – Basic structure of a Mach-Zender Modulator

Figure 2.24 – Coherent I/Q modulator using multiple MZMs

2.2.5 Receiver

To recover the signal on the line side, coherent optical transponders use 90° hybrids.
They are couplers with two inputs and four outputs with the two inputs being the received
signal and an Optical Local Oscillator (OLO) signal. The outputs of the 90° hybrid are
the received signal mixed with the four quadrature states of the OLO. These outputs
are sent to photodetectors that transform the optical signal into an electrical one, and
are subtracted in pairs. This results in two outputs: the real and imaginary parts of the
signal, that will go into the ADCs and will be processed by the DSP. The mathematics
behind the 90° hybrid are more thoroughly described in [60]. Figure 2.25 represents a
coherent optical receiver where two 90° hybrids are used, one for each polarization, with

27

Figure 2.25 – Representation of a coherent receiver

the incoming signal being split in polarization by a Polarization Beam Splitter (PBS).

2.2.6 Physical optical interface

To physically connect the optical fiber to and from the optical transponder ports, line
or client side, optical pluggable interfaces are often used in commercial equipment. These
interfaces are called transceivers and take care of the emission, reception and optical to
electrical conversion and vice versa 1. The current most common pluggable transceiver for
client signals is the Small Form-factor Pluggable (SFP) and its derivatives that have been
developed to enable greater data-rates. The first SFP module was introduced in 2001 and
was fit to transmit up to 1Gbps [61]. Revisions have come, increasing the bitrate on a
single channel (SFP+ up to 10Gbps, 2009, SFP28 up to 25Gbps, 2014) and quadrupling
the number of channels and the maximum bitrate attainable (QSFP up to 4Gbps, 2006,
QSFP+ up to 40Gbps, 2012, QFSP28 up to 100Gbps, 2014), and since 2016 even offering
8 channels and bitrates up to 400Gbps with the QSFP28-DD (Double Density). SFP
modules come with their set wavelengths and their maximum reach, which separates some
modules in two categories: Short Reach (SR, maximum reach usually around hundreds of

1. Though pluggable modules are called transceivers, the term is used more generally to designate any
system that does the same things

28

meters) and Long Reach (LR, maximum reach usually around tens of kilometers).

a) b)

Figure 2.26 – Photograph of (a) a SFP Module and (b) a QSFP module

a) b)

Figure 2.27 – Photograph of (a) a CFP module, (b) a CFP2 module

For the line ports, the current more common solution of a pluggable transceiver module
is the C form-factor (CFP) [62]. These modules were originally designed circa 2009 to
handle 100Gbps communication (hence C for Centum, hundred), with revisions bringing
even more capacity and/or improving power performance and global footprint (CFP2
up to 200Gbps and smaller form-factor, 2013, CFP4 up to 100Gbps but with an even
smaller form-factor and power consumption, 2014, CFP8 up to 400Gbps, 2017). One of
the main differences with the SFP modules is that the CFP are built from the ground
up to use multiple channel (CFP could make 100Gbps by using 10 channels at 10G or 4
channels at 25G for example), which explains their utility for line port interfacing. As DSP
circuits continue to get smaller and smaller, CFP modules can come in two different types,
DCO (Digital Coherent Optics) which includes the DSP for coherent optical coherent
communication and ACO (Analog Cohernt Optics) which does not, and a transponder

29

needs to be built accordingly to handle only one of these types or both (on separate ports),
which also limits interoperability between CFP-DCO modules of different manufactures
with their own DSP systems.

2.3 Conclusion

In this chapter we provided an overview of the context of this thesis work, that will
be helpful to understand the following chapter around the questions of reconfigurability,
notably in the context of the optical transponder. We discussed the optical transport
network, we started by presenting its data plane and its control plane, with the current
evolution towards elastic optical networks. We then presented and described the opti-
cal transponder, the device that is the primary focus of this thesis work, with its main
component and architecture.

30

Chapter 3

FLEXIBILITY AND RECONFIGURABLE

TRANSPONDERS

The concept of flexibility is not exclusive to communication networks and covers a very
general assumption in engineering: flexibility is the capacity of oneself to meet a varied set
of requirements, ideally depending on the current environment. These requirements can
be power, speed, cost, reliability, security, etc. . . This concept can be applied to a variety
of domains, such as power system design [63], antenna design [64] and more. In all cases,
it is the search for close-to ideal performance even in unpredictable situations, achieved
by designing the subject in a particular manner, usually by allowing structural changes
during the subject lifetime.
In optical communication networks, the concept of flexibility can be studied on two dif-
ferent levels, with their own different requirements and implications: system-wise and
network-wise. We will start by studying what these two approaches are, and for the sys-
tem approach we will present the Field Programmable Gate Array (FPGA) circuit that
will be central for the works of this thesis and its relevance for flexible system design, and
for the network one the evolutions and tools now available in flexible optical networks. We
will then discuss the evolution from fixed transponders to modern Sliceable Bandwidth
Variable Transponder (S-BVT) and the challenges that face optical transponder design
in order to be fully compatible with and facilitate the implementation of flexible optical
networks.

3.1 System flexibility

In [65], the authors characterized a flexible system as "a system designed to maintain
a high level of performance through real-time changes in configuration when operating
conditions or requirements change in a predictable or unpredictable way". In more details
they talk about two main properties that a flexible system possesses: adaptability and

31

robustness. Adaptability is the ability to change one or multiple parameters, with a flexible
system being able to modify at least one. There is also a distinction between systems
able to change their parameters while functioning in real-time (active) or not (passive).
Robustness on the other hand is the set of parameters that are set and not allowed to be
changed. This is due to the high cost of flexible hardware, that does not always allow for
fully programmable devices, and these set parameters lowers the number of uncertainties
in the system.

In summary to develop a flexible architecture for a communication system, emphasis
should be put on enabling reconfigurations of the device. Ideally, a fully flexible device
should be able to change its parameters on the fly, without interruption, and has a great
array of possible configurations (or configuration sets), so that it is able to adapt itself to
any situation. This can be achieved, fully or in part, by smartly designing the equipment
so that it is able to perform a multitude of different operations and/or using reconfigurable
hardware, the latter being investigated thoroughly by researchers.

Reconfigurable hardware is a specific type of hardware that can be programmed and
reprogrammed after production, and is often put against Application Specific Integrated
Circuits (ASICs). Whereas ASICs (or other application specific hardwares such as Do-
main Specific Accelerators) are very specialized and performant, but with lower lifecycle
and higher non-recurring engineering costs, reconfigurable hardware offer more flexibility
and in result more efficiency, at a greater cost per unit [66, 67]. Reconfigurable hardware
also have their advantages against General Purpose Processors or Graphic Processing
Units with their higher energy efficiency, at the cost of a higher specialization. Reconfig-
urable hardware are in conclusion at a middle point, offering flexibility, performance and
efficiency [68], and are a prime candidate for expanding the flexibility of systems [69].

Multiple type of reconfigurable hardware exists, for multiple applications. One such
example of reconfigurable hardware that will be used in this thesis work is the Field
Programmable Gate Array, or FPGA, and will be more thoroughly discussed.

3.1.1 The FPGA hardware

The FPGA is an integrated circuit that is programmable and reprogrammable after
manufacturing, and is one of the most common type of reconfigurable hardware used
in the industry. An FPGA is composed of multiple interconnected and configurable logic
blocks, which allow for a great variety of possible designs and implementations and efficient
performance on precise and/or repetitive tasks, which makes this hardware suitable for

32

flexible hardware design prototyping and even for production.
At their basis, FPGAs are an evolution of the Programmable Array Logic (PAL) of the

70s and 80s. A PAL is a logic device that is composed of inputs, an AND logic gate array
that is programmable, and can combine any input and their inverse with any other input,
and OR logic gates at the output. By programming the logic gate, a variety of operations
can be performed with this simple structure, especially when the output is fed back to
the input. On the other hand, the FPGA is not using an AND array for combinational
operations but is using Configurable Logic Blocks (CLBs). The CLBs are mainly composed
of Look Up Tables (LUTs), registers used as latches or as Flip-Flops (FFs), a carry chain
with logic and multiplexers. An example of a Logic Block is represented in Figure 3.1,
using four inputs and two 3-bit LUT (i.e. a 3-bit input LUT).

Figure 3.1 – Architecture example of a CLB with four inputs.

At the leftmost side of Figure 3.1, you can see the two LUTs. A LUT is a logical
structure that acts like an array or a truth table: depending on the value on the inputs
of the LUT, an output will be fetched (in CLBs this output will be 1-bit). This structure
basically performs a logical operation between inputs by acting as a memory, and can be
programmed to fit the designer’s needs. Having two LUTs with the same number of inputs
side by side is a common practice in modern CLB design. If two 3-bit LUTs are used it
allows to perform either a 4-bit operation (the O4 signal in the figure), thanks to a fourth
input driving a multiplexer at the output of the LUTs, or perform two independent 3-bit

33

operations (using both O4 and O3), giving flexibility to the FPGA architecture. A carry
is going through the CLBs, and is added or subtracted if needed to the outputs of the
LUTs. The carry goes to and comes from other CLBs in the device, and helps realizing
more complex operations without having to mobilize an additional CLB. The outputs
are sent either directly outside of the CLB, or to multiplexers and registers, that can be
used as latches or FFs. The presence of registers in the CLBs allows the pipelining of the
data, which is an essential part of FPGA application design. The structure presented is a
simpler version of the slice structure present in Xilinx 7 Series FPGAs, where each slice
contains 8 5-LUTs (grouped into 4 6-LUTs using the same principle as in the Figure 3.1),
that can be multiplexed with each other to make 2 7-LUTs or one 8-LUT, and with one
CLB containing two slices (so 16 5-LUTs in total) [70].

CLBs in the FPGA are placed in an interconnection matrix, where every one of them
can route their input or outputs to other CLBs (with the help of switches) or into In-
puts/Outputs connected to outside the FPGA, as per Figure 3.2.

Figure 3.2 – Representation of the routing inside an FPGA. The blue diamonds represent
the switches, the red arrows show a dataflow example, coming in the FPGA, processed by
and routed to the CLBs and going out the die.

34

Modern FPGAs are more complex than a collection of logic blocks interconnected with
each other. To ease the design of applications, to gain in efficiency, to save area and/or
allow more complex functions, many other components and hard-coded logic exist in the
FPGA die. The most common ones are the Digital Signal Processing (DSP), the Block
Random Access Memory (RAM)/First In First Out (FIFO), high speed input/outputs
transceivers and the clock routing and generation elements but many more exist, some
allowing very specific functions. For example: an Ethernet Medium Access Controller
(MAC) logic core to encode and decode Ethernet data streams, a Double-Data-Rate
Random Access Memory (DDR RAM) controller to interface RAM modules to the FPGA,
. . . The DSP blocks are logic blocks that perform advanced operations on the signal.
Their main purpose is to perform multiplication of two bit arrays, but they can also
be used for other operations such as floating point operation. They are pipelined and
extremely efficient, making them suitable for FIR filters implementations for example.
The FIFO and Block RAM are memories that can be used in FPGA designs and have
the advantage to be more area efficient than CLBs programmed to perform the same
function and some implementations allow error correction. The high speed inputs/outputs
transceivers provide high speed connectivity to and from the FPGA, going up to 58
Gbps in the latest commercial releases. Clock generation and routing elements are central
in FPGA design. As the logic can be registered across the whole FPGA, proper clock
generation and management is necessary for the logic to perform the desired operations
at the desired timing. Phase Locked Loops (PLLs) are present in the FPGA fabric, so
that from an external clock a or multiple internal clocks are generated at any desired
frequency. Generating clocks internally has advantages, as external clocks can be jittery
and generated clocks can be generated with specific phases, which can be helpful for
FPGA designers. Clock routing areas and resources also allow for very efficient clocking
distribution across the whole die. In Figure 3.3, we represented a modern FPGA structure
where resources are placed in rows which allows for efficient routing for FPGA designs.

All these resources are available for the design of FPGA applications, which has some
specifications. Where processors applications are developed using mainly procedural lan-
guages (single-threaded, or with limited multi-threading capabilities), FPGA applications
are commonly developed using Hardware Description Languages (HDL). These languages
as their name implies describe the behavior of digital logic circuits, which implies that
it focuses on bit-wise operations, takes into account the propagation of the signals (the
main variables) in the circuit and more crucially has an emphasis on timed operations.

35

Figure 3.3 – Example layout of an FPGA.

The two most common HDLs are Verilog and VHDL (VHSIC 1 HDL). The FPGA appli-
cation designer does not need to program its application down to the LUT level, a broad
description of the system behavior and the needed operation is enough as compilers will
translate (synthesize) the HDL program into a netlist, targeting a specific FPGA. 2 The
synthesis operation allows to check if the written application can be implemented onto
the targeted device, preview the resource occupation of the design in the FPGA (how
many LUTs, BRAM, I/Os etc...) and see if the design can be performed correctly timing-
wise or if adaptations are necessary. When the design is fit for the target FPGA, an full
implementation is computed, placing and routing all the logic elements, and a bitstream
is created which will be used to program the hardware. A bitstream stores the entirety
of the design, from the values to be implemented in LUTs to the data that needs to be
stored in RAM at initialization and the routing necessary for the application. It is also
possible to create partial bitstreams, that only reconfigure a part of the FPGA logic,
which allows active reconfiguration of the device, with reconfiguration times between the
ms and the s. With this, FPGAs are suitable for flexible design prototyping, by creating
applications capable of adapting themselves with clever designs to be implemented on
ASICs, or even used in systems and reprogrammed during the device lifetime. They offer
great performance with pipelining and are the principal hardware used in flexible system
design.

1. Very High-Speed Integrated Circuit
2. Though HDLs are most traditional way to program applications for FPGAs, modern tools allow

for higher level programming, using languages such as C/C++ or Matlab, which will be translated into
HDL before synthesis by compilers.

36

3.2 Network flexibility

A flexible network is a network able to dynamically adapt its resources in order to
match the requirements of each connection [71]. It is different than the system flexibility
as it is more a question of planning and orchestration, using the flexible equipment in the
pool of available resources, taking into consideration the addition of new hardware or the
degradation of existing equipment.

The addition of flexibility in routing and flexible hardware in the resource pool changes
the network planning process. Where network planning was aiming to maximize the per-
formance of the network while reducing overall costs, the addition of flexible hardware
changed the dynamic. Now the network planning has to take into consideration the max-
imization of the degrees of liberty of the reconfigurable hardware, so that it is capable
of updating itself in case of an unforeseen event. In [72], authors state that planning the
optical network targeting minimum BER rather than maximum overall performance al-
lows for better flexibility, ensures that the systems operate at optimum performance and
proves more resilient to transmission effects, which in short means that the long terms
benefits of flexibility is more desireable than searching for immediate performance.

As discussed in 2.1.4, the control plane architecture adopted for the new flexibility
paradigm is the Software Defined Network, where a centralized entity is managing the
resources of the network. This structure is more adapted for flexibility against more dis-
tributed approaches because the complexity of path computation and the establishment
of new optimal parameters for flexible hardware is helped by the centrality of the con-
troller which oversees the whole network, or at least part of the network. In the example
of optical networks and citing [73], Generalized Multi-Protocol Label Switching (GM-
PLS) control plane architecture, which was the distributed control plane before SDN,
started implementing a Path Computation Element that computed network routes with
constraints. This Path Computation Element was centralized, and progressively gained
capacities in deciding ideal connection parameters and establishing the paths itself, which
in term made it closer and closer to a SDN controller, underlying the need for centralized
control for this new paradigm. Furthermore, with centralized control comes new possi-
bilities for interacting with the flexible hardware, one of the most important in recent
research is the virtualization.

37

3.2.1 SDN and Hardware Virtualization

Influenced by cloud computing, where computer system resources are available on-
demand, virtualization is the ability to generate virtual networks and virtualized networks
functionalities which are decoupled from the hardware. It allows to create sub-divisions
in the network, or virtual networks, that can run with different requirements as the base
network (low latency, high security, higher performance, etc...) by interacting with the
hardware in specific ways and running specialized applications on the equipment of the
network.

To implement virtualization in a network, it is important to ease the communica-
tion with the central controller and the hardware in the network. Several tools exist for
controller-hardware communication and interaction, where the principle is that the con-
trol plane should be able to retrieve and modify easily the parameters of any equipment in
the network. This is achieved by abstracting the devices under the controller supervision
using data modeling, which is the process of representing a physical or non-physical object
into a list of comprehensible parameters with how they relate to each other. Data mod-
eling has the advantage of exposing clearly the hardware to the controller and to allow
easy manipulation of the parameters. Ideally in an elastic optical network, all equipment
of the same type (transponder, ROADM, amplifier) from any vendor follow the same
data-model so that the control plane can operate them as generically as possible. The
most common data modeling language is Yet Another Next Generation (YANG) [74].
In YANG, the type of parameters and their possible values are listed such as the mod-
ulation format, the type of FEC supported by the equipment, the number of ports of
any type etc. . . Detailed examples are given in [75]. YANG data models are also used in
optical networks to present the monitoring data from the equipment to the network con-
troller [5]. YANG data models can be written in any language that can be supported by
the tools and communication protocols used by the network controller (popular examples
are XML and JSON, among others. . .). To propose common sets of YANG data-models
and interfaces for proper optical network management, operators gathered in collaborative
working groups, which gave the OpenConfig [76] and the OpenROADM [77] initiatives,
with OpenConfig data-model sets being more generic than OpenROADM ones 3 but less
efficient for optical path computation and deployment [78]. To directly communicate with
the optical equipment, protocols such as NETCONF [79] are used, though traditional
protocols are relatively slow for the monitoring data gathering, so as explained in 2.1.4

3. Though OpenROADM is also compatible with optical transponders

38

protocols enabling telemetry services have been developed to palliate this problem. The
two most common for this usage are gRPC [80] and gNMI [81] (an evolution of gRPC).
Figure 3.4 summarizes the communication process between the controller and the optical
hardware. This figure shows the necessity to implement interfaces in the optical equip-
ment for communication with the network controller, and modern optical equipment have
a controller that manages remote communications and protocols.

Now able to communicate efficiently with the hardware and with the help of data
models, the network controller perceives the hardware as "black boxes", ie. an abstract
system producing outputs from inputs, with no concern on how the outputs are produced.
This fully abstracted view of the hardware allows the network controller to virtually
manipulate the equipment and organize the network as it needs. One example of these
manipulations are the partition and the aggregation. As shown in Figure 3.5, partition
is the action of slicing a device into multiple "smaller" virtual devices, and aggregation
is the reverse operation, combining multiple devices into a "bigger" one. By separating
an equipment into multiple virtual ones, it is possible to change the parameters of each
individual virtual device independently, and by aggregating multiple device together it is
possible to create a "super device" who can have for example better throughput or more
inputs and outputs to manage the traffic.

Creating and handling virtual devices allows the operator firstly to handle equipment
from any combination of vendors, creating "disaggregated" networks, this also allows the
network controller to create Virtual Optical Networks (VONs), or network slices, that
are subdivisions of the physical network acting as different networks with different re-
quirements such as security, latency, capacity, reliability,... These VONs are allocated
a number of virtual devices and an amount of frequency slots and can be dynamically
created and deleted depending on the current needs in the network. The allocation of
frequency resources has been facilitated by the introduction of the flexible grid and the
greater reconfigurability of current optical hardware enables fine tuning of the virtual
device parameters to respect the constraints posed on the VON. When a great number of
VONs are expected in the network, the network controller can also allocate resources in
the control plane to instantiate a SDN controller to supervise one or multiple VONs [6].
Another layer of virtualization in the network is the Network Function Virtualization
(NFV) [82], where even the functions of the optical equipment (such as switching, fire-
walls, ...) are also decoupled from the hardware. These virtualized functions or Virtual
Network Functions (VNFs) can be deployed remotely to a server in the control plane or

39

a)

b)

Figure 3.4 – a)Representation of controller-equipment communication
b)Example of a server asking a client to give him his list of modulation formats and
the current format in use. The answer sent to the server is coded into an xml file for
this example, but the answer can be coded in any language the protocol for server/client
communication supports

a free computational resource available in the network depending on the current needs,
which is especially useful for VONs that have requirements in security, latency etc... VNFs
usually run on temporary virtual machines but work is done towards full FPGA-based
VNF functions for packet processing [83] or help accelerate the VNFs [84]. Figure 3.6

40

Figure 3.5 – Base principle of hardware virtualization using partition and aggregation

shows a representation of a virtual optical network.

3.3 Reconfigurable optical transponders

As explained, flexibility is a prevalent concept in modern network design, and this
has enabled and has been enabled by the design of new flexible optical equipment. We
touched on the OADM evolution to ROADM in 2.1.2.2 which became more and more pro-
grammable with the ability to route any wavelength from and to any of its ports, which
became a very important instrument of flexible optical networks, as the control plane
can freely route the wavelength through the whole network by smartly programming the
ROADMs under its supervision. But another equipment that is central in the establish-
ment of flexible optical networks is the programmable (or flexible) transponder. Optical
transponders used to be static devices with a set list of parameters, or a very low number
of configuration possibilities. The progresses in optical technology and DSP techniques
has enabled the optical transponders to have a wide array of possible parameters for the
optical transmission and are able to adapt themselves to the ever changing conditions of
the network. This also allowed the integration of virtualization techniques to better inte-
grate the transponder into the SDN optical networks and increase its capabilities. This
section will cover the advances in hardware and software that enabled this new generation
of optical transponders.

41

Figure 3.6 – Example representation of a VON in an optical network with VNFs

3.3.1 The Sliceable Bandwidth Variable Transponder

The Sliceable Bandwidth Variable Transponder, or S-BVT, is the most adopted ar-
chitecture for optical transponders in optical network design and research. As its name
implies, it is capable of be sliced according to the virtualization paradigm into multiple
transponder, with each sliced transponder having each a different bandwidth depending
on their needs. This optical device is the evolution of Bandwidth Variable Transponders
(BVTs) and classical ("fixed") transponders that preceded them. We will firstly discuss
the advances that allowed for reprogrammability in optical transponders before talking
about the advent of sliceability in optical transponders, that led to the optical devices of
today.

3.3.1.1 Bandwidth Variable Transponder

One of the first steps that led to the S-BVTs that are commonly used today is the
introduction of reprogrammability of the optical transponder. Evolutions in system de-
sign allowed for transmission parameters change, such as laser wavelength, modulation

42

format, data-rate etc... These possibilities when exploited smartly can allow the operator
to increase the quality of reception of the signal by reducing the modulation format order
for example, as pictured in Figure 3.7, and on the other way increase the capacity of
the optical link by increasing it. Having this layer of flexibility in transponder configura-
tion helps better pre-plan the network, increase the capacity of the whole network in the
long-term and reduce the number of equipment needed in the optical network, as a single
transponder can be used for multiple applications [85]. A reconfigurable transponder is
called a flexible transponder or most commonly in the literature a Bandwidth Variable
Transponder or BVT.

Figure 3.7 – Classical use case for BVTs, decreasing the modulation format order to
increase the transmission/reception resiliency to degradations in the optical path

One technology that helped the implementation of the flexible transponders is the
tunable laser. As the name implies it is a laser that is able to change its wavelength. They
were already in used in fixed grid networks, needing only to tune to channels centers that
were periodically spaced due to the 50GHz grid. But the flexible grid scenario and the

43

introduction of the superchannel technique have made necessary for the tunable laser to be
able to virtually generate any wavelengths used in WDM networks [86]. One possibility
is to use an array of reconfigurable lasers, which increases significantly the number of
available wavelengths, which creates higher engineering and energy costs [87].

One way to dynamically increase the capacity or the reliability of the optical com-
munication between two transponders is to change the modulation format. For example,
changing from 16QAM to QPSK, which is more resistant to perturbations in the opti-
cal channel, when the communication quality degrades, or vice versa if there is a need to
boost the capacity of the link. This requires an optical transmitter capable of transmitting
in multiple formats. Several solutions have been proposed. By using a Dual-Drive MZM
(DD-MZM, a MZM whose both arms are driven by two independent electrodes) chained
with a DP-MZM, the author in [88] allows for a switch between QPSK and 16-QAM by
changing the bias voltage and the amplitudes of the DD-MZM or a DD-MZM and a Phase
Modulator to switch between multiple PSK and QAM formats in [89]. Similarly in [90]
by using tunable interleaver filters in an optical transmitter, the author is capable of
switching between QPSK, QPSK-OFDM and 16-QAM. [91] presents a transmitter struc-
ture using a FPGA for traffic processing and a fast programmable PM-16QAM/QPSK
transmitter circuit that can perform a change of modulation format in under a second.
In [92], the author demonstrates a FPGA based transmitter with multi-format generation
by re-writing the contents of a LUT-based structure composing the modulation format
encoder which allows for fast modulation format change (around 5ns) between BPSK
and 64QAM at 28GBd. In [93], authors show in a field trial that a switch of modulation
format using a production-grade 64GBaud transponder from PM-QPSK to PM-16QAM
takes approximately 35s, which shows that even if modulation format reconfiguration is
available is commercial products, fast switching is still far from being a reality.

Having a transmitter capable of switching between multiple formats is good but not
enough to propose a full transponder able to transmit and receive multiple modulation
formats. As the modulation format changes, adaptations are necessary in the DSP of the
transmitter and/or the receiver. From the mapping of the symbols to the phase recov-
ery, most modulation formats require some changes and building the DSP accordingly
is critical. As explained in 2.2.3.2, modulus recovery is different if the modulation for-
mat employs a unique modulus for symbols or not, and carrier and phase recovery can
be performed using algorithms that can adapt themselves depending on the order of the
modulation [94]. The other thing to take into consideration in the DSP of BVTs is the

44

fact that increasing the order of the modulation also decreases the maximum optical
reach of the signal, which in turn increases the amount of impairments that should be
(pre-)compensated to ensure ideal quality of reception of the signal [95]. Algorithms and
their implementations should be flexible and be able to adapt themselves to the change of
modulation format, as employing the "ideal" algorithm for impairment compensation with
the current modulation also reduces the power consumption of the DSP [96]. Another way
to increase the reliability or on the contrary increase the spectral efficiency of the com-
munication between two transponders is to adapt the FEC codes, increasing or reducing
the redundancy depending on the situation. In [97] the author proposes a reconfigurable
FPGA implementation of both TX and RX DSP where the FEC encoding and decoding
can be changed depending on the need of the optical channel.

3.3.1.2 Sliceability and virtualization

With the changes in optical transponder hardware and the push towards more vir-
tualization enabled by the research on SDN controlled optical networks, the concept of
multi-flow, or sliceable transponder has been more and more central. The first important
characteristic of a sliceable transponder is that it is multi-flow, traffic should come from
a N number of client interfaces and should be routed to a M number of line interfaces [7]
and secondly client signals that go to the same destination in the network should be
concatenated using the super channel technique and the possibilities offered by the OTN
framing [98], see Figure 3.8. The multi-flow ability is also extremely helpful in the case of
a link failure to redirect the optical flows and mitigate its impact [99], as shown in Figure
3.9, and in addition their ability to efficiently route the traffic into multiple different paths
helps reducing the number of necessary add/drop ports in ROADMs [100].

With this multi-flow ability, it is now possible to, with the proper setup, create virtual
transponders, slicing the equipment into multiple transponders, each having one or more
line and client interfaces depending on the needs, putting the desired client signals into
the transport network where they will go to their desired destination [101], see Figure
3.10. This flexibility in structure helps using the hardware more efficiently and brings
down the overall costs in the network, notably in the number of used equipment, as a
single sliceable multi-flow transponder can act as multiple classical transponders that
can be configured and reconfigured freely depending on the current needs of the optical
networks [98, 102]. A virtualizable multi-flow reconfigurable transponder is commonly

45

Figure 3.8 – Representation of the principle of a multi-flow transponder

a)

b)

Figure 3.9 – Restoration after a link failure using a multi-flow transponder

called a Sliceable Bandwidth Variable Transponder (S-BVT) 4. To efficiently perform such
operations, the control plane should be able to allocate efficiently the resources of the
network, taking into account the higher degrees of flexibility and complexity allowed
by the S-BVTs [103], and a proper YANG model should be implemented to efficiently
configure and virtualize the hardware [104].

One example implementation of a S-BVT can be found in [105]. It is based on a pro-
grammable multi wavelength laser source that can generate three sub-carriers, i.e. three
channels, with said channels being routed to three different receivers in the network, with
each receiver having a tunable laser used as a local oscillator to receive properly each
sub-carriers. The authors in [106] present a multi-flow transmitter circuit able to oper-
ate with a single or two flows by respectively combining or using independently two IQ
modulators. In [107], the authors propose a S-BVT architecture using a programmable

4. The term V-BVT for Virtualizable BVT can also be found in the literature

46

Figure 3.10 – Representation of how the multi-flow transponder in Figure 3.8 can be
virtualized into two virtual optical transponders by the control plane

distance module, which for each sub-channel of a super channel determines an ideal mod-
ulation order depending on it’s final destination and/or on its dropping point in the link,
saving spectrum resources. Authors in [108] present a S-BVT architecture employing a
FPGA-based DSP allowing generation of a number of channels that can be superior to
the number of sub-carriers generated by the multi-wavelength sources in the system. This
gives the benefit of being able to generate sub-channels with very low capacity, boosting
the flexibility of the device.

Another current topic in transponder virtualization is the introduction of the white
boxes in the optical transport network. White boxes are physical devices that can be
composed of a multitude of optical devices from any number of vendors, with additional
software enabling virtualization of the full device. The white boxes are controlled by a
centralized controller, communicating with software agents in the white boxes. Allowing
the use of equipment of any vendor inside the optical network (where traditionally a single
vendor can take care from the equipment such as the OADMs and the transponders to the
controller) is expected to reduce the overall costs in equipment, at the cost of greater en-
gineering, deployment and supervision costs for the operator, a radical change in how the
optical network is classically operated [8]. One software tool for generic implementation
and deployment of optical hardware and white boxes using transponders is the Transpon-
der Abstraction Interface (TAI) [109] API, which abstracts parts of the hardware, such
as the transceiver modules, to ease the interfacing of multi-vendor components. In Figure
3.11 an example representation of a white box is depicted.

An example of a white box implementation can be found in [110], where the authors
use two transponders (with each having different characteristics), monitoring modules and
filters for add-drop multiplexing and switching and an agent for the network controller

47

Figure 3.11 – Representation example of a white box using transponders, each one of them
possibly from different vendors. An software agent handles communication with the control
plane, and software helps handling and monitoring the array of transponders.

communication using NETCONF. In [111] shows a full 100G and 200G communication
using a white-box transponder and multi-vendors CFP2 transceiver interfaces, with both
DCO and ACO modules (as explained in 2.2.6), using TAI to abstract the hardware
for the network controller. All these solutions for transponder virtualization helped the
network controller better interact the resources available in the network and lead to a
better utilization of the network elements.

3.3.2 Automatic hitless reconfigurable transponders for flexible
optical networks

As we described in the previous subsections, transponders are now more flexible than
ever, and more and more parameters are reconfigurable. However the reconfiguration
process can still be a problem to handle in optical networks: the change of modulation
format, laser frequency, FEC code, etc... leads to the transponder (or at minimum the
port that is reconfigured) being out of service for a period of time that can range from a
few milliseconds to multiple minutes. This is detrimental for the overall flexibility of the
network, as reconfigurations become exceptional events, with transmission and reception
parameters and optical links set in stone until a new equipment is added or a failure occurs.
Even more so, with more and more devices under supervision by the optical control plane,

48

handling efficiently every single deterioration in service quality that can happen in the
network and detecting them before they increase the bit error rate above tolerable levels
is also very challenging logistically. Furthermore, synchronizing a change of parameters
between a transmitter and a receiver to prevent any incompatibilities that may happen
because of a reconfiguration is crucial to make sure the communication can still happen
(eg. the transmitter now uses QPSK modulation after a reconfiguration while the receiver
is still configured to receive 16-QAM or is still reconfiguring itself to handle the change
of modulation). All these problems are creating a bottleneck in the adoption and full
exploitation of flexible networks. One solution to these problems is the development of
automatic and hitless reconfigurable transponders.

Hitless reconfigurable transponders are able to reconfigure themselves without an in-
terruption of traffic, making them ideal for elastic optical networks [2], as reconfiguring
the hardware to a more suitable set of parameters has potentially no drawbacks. A few
transmission parameters have been shown to be reconfigurable hitlessly. In [112] is pro-
posed a multi-wavelength laser source able to tune the spacing of the sub-carriers hitlessly,
which is ideal for an implementation of a hitless reconfigurable S-BVT, allowing hitless
spectrum occupancy adaptation. In [113,114], authors show architectures of flexible trans-
mitter able to hitlessly change baud-rate. Switching from an initial baud-rate to a two
times inferior baud-rate (as in [113] from 14Gbd to 7Gbd) is achieved by repeating a
symbol twice (or four times to achieve a switch from 28 to 7 GBd in [114], with a simu-
lated transmitter). Changing baud-rate by repeating symbols is efficient and a relatively
easy solution to implement compared to a change of modulation order, and keeps the
advantage of increasing maximum reach at the cost of lower data rate.

Even though hitless reconfiguration of the transmission parameters of a transponder
would be ideal for flexible networks, over-reliance on the centralized control plane hampers
the reliability of the communication and reactivity of the systems. Alarms raised by the
equipment and sent to the control plane are added to a queue and delays to process the
degradations in the optical path accumulate even further when the number of optical links
to manage in the control plane increases [115]. Research on alternative and less central-
ized architectures of control plane have shown that allowing some decentralization control
with local monitoring and decision agents placed strategically in the network reduces the
quantity of data that have to be transmitted to the control plane and decreases overall re-
action time in case of a soft failure [10]. Even though it is unrealistic to make transponders
fully independent of the network controller, most notably because the control plane has

49

awareness of the condition of the whole network which is crucial for optical link creation
and management, adding more intelligence to the device is a good solution to get fast re-
configurations and ensure good transmission and reception of the optical signal. Enabling
intelligence in the transponder can be made by exploiting the monitoring data already
collected by the device and having means of taking action based on the available informa-
tion. In [116], the author proposes a concept of autonomous intelligent transponder able
to change its modulation format to increase the capacity of the bidirectional link between
two of the proposed equipment. The transmitters start at a low modulation format order
(in their implementation QPSK) and gradually increases this parameter depending on the
BER of the received signal. While this approach reduces the risk of using a modulation
format that crosses a set threshold of BER, it does not talk about the synchronization
between the two transponders, and supposes the bi-directional link is always the same in
both directions quality-wise. Also progressively increasing the modulation format is good
to increase performance but continuous reconfigurations implies multiple interruption of
traffic and prevents further reconfigurations if the ideal modulation format has been found
and a degradation in the optical path occurs.

In [115], authors propose a solution of pre-programmed transponders to handle degra-
dations in the optical path. The SDN controller pre-computes restoration plans as finite
state machines for transponders (with a set of parameters to apply for a type of optical
link impairment) that the transponders will apply automatically and independently, and
notify the control plane when the reconfiguration is finished. While the pre-programmed
solution offers high scalability and reduces the risks of incompatibility after the recon-
figuration process as the SDN controller has decided on the parameters sets, it does not
tackle again the link between the two transponders, and how the Tx transponder is aware
on the degradation at the reception side.

One way to handle the receiver adaptation problem is to have a receiver capable of
detecting a change of transmission parameter and adapt on-the-fly to the change. In [117]
adds a rate change controller in both Tx and Rx to signal a change of modulation format
by adding symbols in the data stream and let the receiver adapt the DSP algorithms and
hitlessly detect the change of modulation format order. In [118] proposes a 3-DSP system,
with each DSP subsystem able to properly receive a different baudrate (one for nominal,
one for half and one for quarter symbol rate). The output from the DSP for nominal
symbol rate is used as a training sequence for the others, and when a change of baudrate
happens in the transmitter the DSP algorithms can quickly converge and hitlessly detect

50

the incoming signal, though this work does not discuss the actual implementation of such
a system as it is demonstrated offline. While these solutions are convincing, with the fu-
ture of commercial optical transponder being more and more virtualized, with equipment
that can come from multiple vendors with heterogenous capabilities in transmission and
reception, it is very important to ensure that a change of parameters can be performed in
the transmitter and processed in the receiver. This proves to be a challenge if we consider
that the autonomous transponder is a way to go for future flexible optical networks, it
is both important to have as many possibilities of reconfigurations as possible, with as
little impact as possible on the traffic. If these conditions are met, the number of recon-
figurations happening in the optical network would drastically increase, both in number
and frequency, leading to optical equipment being used more optimally and the optical
network being more reliable at the same time.

3.4 Conclusion

This chapter covered the evolutions over the last years of the optical transponder,
the equipment at the center of this thesis work. We reviewed how the drive for flexibility
in system design and in network management has influenced the newer functionalities
of optical transponders. However we also discussed the challenges surrounding optical
transponder design to make fully flexible optical networks a reality, namely the integration
of hitless and automatic reconfiguration capabilities.

51

Chapter 4

REAL-TIME OPTICAL FLEXIBLE

TRANSPONDER PROTOTYPE FOR

SOFTWARE DEFINED NETWORKS

4.1 Introduction

There is a trend to bring more intelligence to the network elements in the last years
to meet the increasing need for bandwidth and reliability in optical networks [2]. Com-
mercial transponders have a great number of adjustable parameters, such as baud-rate,
modulation format, wavelength and more advanced features such as probabilistic shaping,
making them able to adapt to match traffic demands [25]. However, changing a param-
eter on-the-fly is not common due to the necessity to perform an interruption of service
during the change of parameter. In [93], the authors demonstrated in their field trial with
commercial hardware that switching from 100Gb/s with Quadrature Phase Shift Keying
(QPSK) to 200Gb/s with 16QAM takes about 35s. Work has been done towards fast
reconfiguration, e.g. [91] reported about 1s reconfiguration, [113] showed 10µs reconfigu-
ration which allows for zero loss of traffic (hitless behavior). Transponder are still widely
used in a static manner on field and require optical network margins to cover evolutions
along the years such as traffic conditions, physical layer impairments and equipment aging.

Close-to-zero margin network operation, which is now a very active research area
[9, 119, 120], allows to fully unleash this flexibility by reconfiguring a connection after
the detection of a degradation (soft-failure). To do so, monitoring of the physical layer is
therefore required. Data are then generally collected at the management and control plane
to build a significant database for the decision-making process. With streaming teleme-
try [5], it is possible to collect data much faster, in the order of seconds, improving the
accuracy of data correlation between different connections, but also (if available) environ-
mental conditions. This remains limited by the bandwidth of the control plane network.

52

The centralized architectures [121, 122] are very useful (i) for long-term behavior whose
objective is to anticipate any issue with what-if scenarios; (ii) for troubleshooting whose
objective is to understand why a (soft) failure occurs; (iii) for real-time reconfiguration
whose objective is to react fast to prevent outages.

Alternative architectures have emerged to address the latter. Stream processing has
been proposed in [123] to generate alarms from a video and telemetry streams. Pre-
computed instructions can be loaded in network element agents to perform delegated
restoration [124]. In case of transponder reconfigurations, distributed decision is proposed
in [116] based on an offline data-aided DSP knowledge. However, [116] does not tackle the
communication protocol between the two transponders. We believe real-time reconfigura-
tions can benefit from (soft-)failure detection and local decision-making to react faster [10].
It also helps reducing the data that needs to be transmitted to the control plane which may
become cumbersome with the massive monitoring and data-driven paradigms envisioned
for next generation autonomous optical networks.

In this chapter, we evaluate a real-time transponder with local decision and reconfigu-
ration capabilities based on the use of commercial equipment. We start by presenting this
prototype transponder in Section 4.2.We introduce, in 4.3, the proposed auto-negotiation
protocol for optical transponders, which enables fast and synchronous change of parame-
ter. The auto-negotiation protocol is based on the inline insertion of small messages. We
implement it to operate in real-time using an FPGA platform and validate its latency and
packet loss with traffic up to 100 Gbps. In 4.4, we integrate our auto-negotiation FPGA
implementation and a Raspberry Pi with a commercial Nokia PSI-2T transponder, and
we discuss how to locally detect an impairment and trigger the auto-negotiation protocol.
In Section 4.5 we discuss the interfacing of our solution with a centralized control plane,
that will be necessary for Section 4.6 where we integrate our prototype transponder inside
a network testbed. We experimentally measure the time to detect a fault and to restore
the quality of transmission, and compare it to the centralized control plane. In 4.7 we in-
troduce our auto-negotiation setup in a real-time setup with variable baudrate real-time
transmitter and receiver and showcase a synchronized change of rate of transmission.

4.2 Prototype transponder presentation

In Figure 4.1 we introduce our prototype transponder with auto-negotiation capabil-
ities and monitoring data processing. When the prototype transponder detects a degra-

53

Figure 4.1 – Representation of our prototype transponder with auto-negotiation capabili-
ties.

dation in traffic quality, it starts the auto-negotiation process with the transponder it is
in communication with to adjust one transmission parameter and restore the quality of
service to an acceptable level.

It is composed of three main functional blocks. The first one is an optical transponder
in itself, as presented in Section 2.2, with reconfiguration capabilities. A monitoring and
reconfiguration core will retrieve its different monitoring data, process them to detect the
drop in quality of service and send reconfiguration commands using the Command Line
Interface of the transponder. Finally an auto-negotiation core will add and extract auto-
negotiation messages to synchronize the change of parameters with another prototype
transponder it is communicating with.

In the following sections, we will provide further descriptions of the functionalities and
implementation of the auto-negotiation and monitoring and reconfiguration cores of this
prototype transponder, and validate its performance against a centralized control plane
in a network testbed.

54

Figure 4.2 – Sequence of operations of our auto-negotiation protocol

4.3 Auto-Negotiation Protocol

4.3.1 Design

In this section, we design a communication protocol between two transponders to
adjust transmission parameters and to synchronize when this reconfiguration starts. It
can be set off centrally by the effect of a network controller or locally after internal
monitoring and anomaly detection.

Whenever a transmitting transponder has to readjust one of its transmission param-
eters, it sends a message to the receiving transponder by adding a few bytes into the
data stream. It can be located, for instance, just after the header of the Ethernet frame
or in the Optical Data Unit (ODU) header in the EXP (experimental) or GCC (general
communication channel, a channel for designer/manufacturer proprietary communication)

55

fields [21]. In all cases, the messages are required to be kept short: only two to four bytes
are available per ODU header, and it is not desirable to insert too much data into the
Ethernet traffic.
In Figure 4.2 we represent the workflow of our auto-negotiation protocol. If the receiving
transponder T1 detects a drop in quality of received signal thanks to an internal moni-
toring function, it sends an ALERT (step 1) message to warn the transmitter T2 about
the degradation. This step is optional when the procedure is triggered by the centralized
control plane. Then, the transmitter T2 selects a new appropriate transmission parameter
and sends a RQST (request) message (step 2). This message contains the parameter name
and value that will change. It also contains the number of training frames that will be
sent by the transmitter after the change of parameters, if needed. Training frames are
empty data frames that are meant to help the receiver algorithms to converge to the new
set of parameters or delay enough the resumption of communication while the receiver
is reconfiguring itself. Parameter and value identifiers are written in the message and
shared between transponders. When the message is received and extracted, the request is
acknowledged (ACK) (step 3), if the receiver T1 can accept the configuration change and,
when needed, if the number of training frames seems sufficient. When the ACK message
is received by the transmitter T2, the change has been negotiated and the transmitter
T2 sends a START message when it starts its reconfiguration (step 4). If the change of
transmission parameters requires a short-enough interruption of traffic, the traffic is stored
in memories during the process. When the receiver T1 extracts the START message, it
starts its own reconfiguration, if needed. When the transmitter T2 is ready it sends the
negotiated training frames, then sends the stored frames and, finally, normal operations
resume. This protocol ensures the auto-negotiation property of the communication be-
tween two transponders. It can also exhibit a hitless property in specific reconfigurations
(e.g. fast enough change). We chose to implement the auto-negotiation protocol in-line,
i.e. in the header of the Ethernet frame or in the header fields of the ODU frame, to favor
transponder reconfigurations. Usually the network controller needs to address many tasks
at once related to the network devices, making challenging to ensure a tight synchroniza-
tion between the two transponders during a reconfiguration.

4.3.2 Implementation

We designed a system to validate a real-time implementation of our protocol to be
implemented with an optical transponder, illustrated in Figure 4.3. We implemented it

56

Figure 4.3 – Schematic representation of the real-time implementation of our auto-
negotiation protocol, that will be integrated with an optical transponder in the full pro-
totype (Figure 4.1)

using a Xilinx Virtex Ultrascale+ FPGA (see 3.1.1) evaluation board. In the FPGA
a Microblaze [11] soft processor is implemented. It is running the FreeRTOS [12] real-
time operating system (RTOS), an operating system which behave predictably in time-
sensitive operations. All 100G ports are equipped with QSFP28 (Quad Small Form-factor
Pluggable) modules (see 2.2.6). Standard 100G Medium Access Controller (MAC) cores
are used in the FPGAs to properly decode 100G Ethernet traffic. To store the traffic
during the reconfiguration if it requires a short interruption of traffic, we use DDR4
memory (in this implementation, 2GB). We developed in VHDL two logical modules
to handle the protocol operations inside the FPGA. These two logical modules are an
Inserter, that inserts inside the incoming Ethernet traffic a message, according to a set
of parameters transmitted by the processor, and a Detector, that detects, extracts, and
stores the messages that are found on the data path. With the help of AXI-4 Interface, the
MicroBlaze is able to manage and control the modules. As the message insertion takes
place between two 322MHz clocked shift registers, and we will use two FPGA boards
with the two aforementioned logical modules for full communication, we can expect an

57

maximum addition of around 12ns in round trip time:

2 ∗ (2 ∗ 1
322MHz

) = 12.4ns (4.1)

Figure 4.4 – Composition of the frames of the protocol in our implementation

Figure 4.4 describes the protocol frames. We decided to opt for a fast and simple
implementation of 32-bit frames inserted in Ethernet traffic, at the start of the payload.
They are composed of 8-bit header and footer, a 3-bit frame number for control purposes,
a 3-bit Mode field to identify the type of message (ALERT, RQST, ACK, START), and
a 10-bit Parameters field dependent on the mode. The ALERT message Parameters field
is constant. The RQST and START messages have a 3-bit requested parameter identifier
(Pi) field, a 3-bit value identifier (Vi) field detailing to which value the parameter will
change to, and a 4-bit training frames number identifier (Ti) field. The ACK message has
the same Pi and Vi parameter and value identifiers fields and replaces the Ti field to a 4-bit
N/ACK acknowledgement field, where the receiver indicates if the request is acknowledged
or not, or if it needs more training frames to adapt itself. This implementation of the
protocol frame is an example that can be extended depending on the use case. In this
implementation, we chose the parameters and the values that we are able to reconfigure.
This choice should be bounded to avoid creating interferences with adjacent channels.
For example, we use a 50GHz grid with 32GBd signals. Shifting the central frequency
should be compatible with the 50GHz grid or expanding the bandwidth from 32GBaud to
44GBaudd is something common in commercial solutions. The bounding of the parameters
can be done by the control plane, the operator or at implementation.

Figure 4.5 presents log extracts of the FPGA MicroBlaze processor with frames exam-
ples. We can see that we have the same sequence of operation as in Figure fig:chap4:protocolOperations,

58

Figure 4.5 – Log extracts of the MicroBlaze processor on the FPGA cards during protocol
operations. Indexes refer to Figure 4.2

where the frame number field increments for each message sent by a transponder and that
the Pi and Vi identifiers are the same in both devices so they can understand each other.

4.3.3 Validation

To characterize our design with logical modules (labelled as “processing” in our re-
sults), we measured the latency of our system and compared it to a reference design
(labelled as “reference”) which is the same as our real-time implementation but without
the Inserter and Detector logical modules (the parts in red in Figure 4.3). The setup for
validation is represented in Figure 4.6 and pictured in Figure 4.7. It comprises of two of
our FPGA boards with our protocol processing (as in Figure 4.3) separated by either 2m
or 10km Single Mode Fiber (SMF). We use a Spirent Network Analyzer to generate and

59

Figure 4.6 – Representation of our setup to validate our protocol implementation from
4.6, using two FPGA boards and one Spirent Network Analyzer to generate traffic and
measure packet loss and latency

analyze 100Gb Ethernet traffic. The Spirent is able to generate traffic at multiple port
loads and at multiple Ethernet frame lengths, and measure many metrics, with the two
that we will exploit in our setup being the latency (how much time it takes for a packet
to go from its source to its destination) and the packet loss (the number of packets that
are received with errors or not received at all).

In the first experiment, the FPGAs are connected to each other via 2m SMF (Single
Mode Fiber) and are connected to the Spirent network analyzer via 1m MPO (Multi-Fibre
Push On) fiber. With the Spirent, we generate 10s of 100G Ethernet traffic at varying
port loads and frame sizes, respectively from 10 to 100% and from 128 to 1518 bytes.

60

Figure 4.7 – Photograph of the setup with the two FPGA boards connected to each other
and separated by 10km SMF. The Spirent is not pictured but is connected to the FPGA
with the MPO (Multi-Fibre Push On, blue on the photo) fiber.

Our system also inserts the 32-bit auto-negotiation messages into the traffic at the rate
of 100 messages per second. The quantity of messages per second has been chosen to
insert a significant number of messages during the generation of traffic, but we do not
expect real-life applications to insert as many messages in the traffic, as reconfigurations
of transmission parameters are still an exceptional process. After that, we analyze the
outgoing traffic from our systems and the results in latency, measured as a round trip
time (RTT), and in frame loss, measured as parts per thousand frames received with
errors by the analyzer. The results are in 4.8 (a) and Table 4.1 (a), respectively.
A second experiment is realized with 10km of SMF fiber between both FPGA boards,
each equipped with one QSFP28-LR module (see photo in Figure 4.7). The Spirent, our
detector and our inserter behave just as in the previous experiment. The 10km fiber length
has been chosen as it is the maximum distance for our QSFP28-LR modules. The results
for latency and frame loss are compiled in Figure 4.8 (b) and Table 4.1 (b).

In the graphs in Figure 4.8 (a), if we take for example the 512 bytes frame size and we
compare the difference in round trip time for loads at 50% and 100% we obtain for the
reference design a RTT of 1.85µs and 3.082µs respectively, and for the processing design
1.862µs and 3.094µs respectively. If we select the same parameters when the two FPGAs
are separated by 10km SMF (Figure 4.8 (b)) we have a round trip time of 102.88µs and
104.112µs for the reference design, and 102.892µs and 104.124µs for the processing design.

61

a)

b)

Figure 4.8 – Average Round Trip Time (RTT) in µs for frame sizes from 128 bytes to
1518 bytes, as a function of port load in %. The two FPGAs are separated by a) 2m, b)
10km SMF

62

a)
Frame size 128B 256B 512B 1024B 1280B 1518B
Reference 0.012 0.009 0.01 0.009 0.013 0.048
Processing 0.013 0.01 0.012 0.01 0.016 0.052

b)
Frame size 128B 256B 512B 1024B 1280B 1518B
Reference 0.013 0.011 0.013 0.011 0.015 0.051
Processing 0.013 0.01 0.012 0.01 0.016 0.052

Table 4.1 – Frame loss in ‰ for multiple frame sizes from 128 bytes to 1518 bytes, at
100% port load with a) 2m, b) 10km SMF separating the two FPGAs. Frame loss is null
for all other loads

In these cases, the RTT difference is 12ns and is unaffected by the distance and the port
load. On average, the reference design and the design with processing have 12ns of RTT
difference for all frame sizes, with a standard deviation of 1ns. This measurement is in
line with how we implemented our system (see Figure 4.3) and the result of equation 4.1.
Frame loss is comparable between the two designs in both 2m and 10km fiber separation
as the difference is very small, for example for 2m separation 0.01‰ and 0.012‰ for the
reference design and the processing design respectively for a frame size of 512 bytes at
100% load, and is likely to come from our measurement precision. We may conclude on
the frame loss by saying that it is coming from the hardware shortcomings at 100% port
load and not from the implementation of our protocol.

We have validated our implementation of the auto-negotiation protocol, we believe
that this protocol will allow for more reliable and more frequent transponder reconfigura-
tions across the whole network, from metropolitan networks to core networks with longer
transmission distances. But we need to implement a mechanism to trigger it automatically
in case of a degradation in quality of service so that we can show its full potential for
future automatic elastic optical networks.

4.4 Embedded monitoring processing and decision-
making

We implemented a mechanism to automatically detect a failure in the link between
the two transponders. The failure will automatically trigger the auto-negotiation process
presented in Section 4.3.

We made the prototype presented in Figure 4.9 using a FPGA with a Microblaze

63

Figure 4.9 – Embedded monitoring and decision making prototype for commercial
transponder Nokia PSI-2T

soft processor, running FreeRTOS. The Raspberry Pi helps us interface our FPGA easily
with the Command Line Interface (CLI) of the commercial transponder Nokia PSI-2T
(Photonic Service Interface-2T), sending reconfiguration commands from the FPGA to the
transponder and sending the monitoring data from the PSI-2T to the FPGA board. The
FPGA communicates with the Pi via an Universal Asynchrounous Receiver-Transmitter
(UART) link and the Pi communicates with the transponder via Secure Shell (SSH).
This setup with FPGA, Pi and commercial transponder is easy and fast to deploy for
experimental purposes, rather than developing all the features we need directly inside the
product. The round-trip time between the FPGA and the PSI-2T is 108ms on average,
with the RTT between the Pi and the PSI-2T being 100ms on average, mostly due to the
SSH communication. These times would be drastically reduced at the cost of increased
development cost if we opted for developing our solution inside an existing transponder,
but they are sufficiently low for our experimental purposes.

Our experimental setup reconfigures the Tx Power of the commercial transponder.
This reconfiguration needs no interruption of service and can be used to compensate a
loss in quality of reception. This loss can be quantified in terms of Rx Power and Pre-FEC
BER by periodically collecting the monitoring data of the optical receiver transponder.
The RTOS running in the Microblaze soft processor guarantees us that the monitoring
data gathering is triggered periodically and consistently.

64

We can detect a degradation of quality of transmission thanks to the computation of
the slope of the Rx Power with a linear regression function, and we can decide to act
when the slope coefficient goes below a configurable threshold. It can be combined with
a performance metric such as pre-FEC BER; if the Rx Power slope is below a threshold
and if at the same time the Pre-FEC BER is above its threshold, we trigger an alarm and
start the auto-negotiation process described in the previous section. This allows to restore
the quality of transmission to an appropriate level. Ideally these thresholds should ensure
that the received signal BER stays below the FEC limit, the limit at which the FEC
decoder cannot correct all errors in the received signals. This limit depends on the FEC
code used in the equipment, for the PSI-2T it is around 1.10−3, so the BER threshold
should be lower than this to prevent any errors before we trigger any reconfigurations. We
will study the linear regression function that will be used in our failure detection system
and how its coefficients change during a degradation to fix a correct threshold.

The linear regression function that has been implemented is described in [13] with the
regression line:

ŷ = α + βx̂ (4.2)

where ŷ are gathered samples (y0, y1, ..., yN−1) at times x̂ = (x0, x1, ..., xN−1), α the
y-intercept of the regression line and β the slope of the best-fit line. β is given by:

β =
∑

i

βiyi (4.3)

In this equation, βi, is given by:

βi = N · xi − ∑
k xk

N(∑
k x2

k) − (∑
k xk)2 (4.4)

with i and k = 0, 1, 2. . . N − 1, where N is the number of samples used for the com-
putation of the linear regression function. As the collection of the monitoring data of
the optical transponder is triggered periodically by the RTOS, still following [13], we can
write xk = x0 + k and finally:

βi = 12 · i − 6(N − 1)
N(N2 − 1) (4.5)

With equally spaced samples we compared results from Equations 4.5, 4.4 and the
Excel linear function [125]. As they give the same result we only included 4.5 in this thesis,

65

the easiest function to implement in our prototype. We investigate how the number of
monitored samples to process influences the detection performance of the degradation.
We put two PSI-2T in point-to-point communication, separated by 10km SMF fiber. In
the link between the two transponders, a VOA (Variable Optical Attenuator) is placed
to trigger a link fault, decreasing the received power and increasing the Pre-FEC BER in
one of the transponders. We also use a Spirent Network Analyzer to generate Ethernet
traffic at 100Gbps. See Figure 4.10 for a representation of the test setup and Figure 4.11
for a photograph.

Figure 4.10 – Setup to analyze the influence of the degradation of signal quality on the
value of the slope coefficient β.

We tested a fast and a slow degradation, as shown in Figure 4.12. In blue we plotted
the Rx Power in the PSI-2T that will be impacted by the attenuation increase of the
VOA, and we represented in bars the value of the slope coefficient β for N samples. In
Figure 4.12 the VOA attenuation starts at 10dB and goes to 17dB (a) in a fraction of a
second (fast degradation) and in (b) in 8 seconds (slow degradation). In Figure 4.12 (a)
we can see the Rx Power dropping from −25.14dBm at 6s to −31.89dBm at 7s due to
the attenuation increase. As the two PSI-2T are communicating via a direct link, the loss
of around 7dB in Rx Power is in line with the attenuation going from 10dB to 17dB in
the VOA. The β coefficients vary a lot depending on the number of samples used for the
computation. We can note that, first, the coefficients attain their maximum at different
times, at 7s for both N = 1 and 2, 8s for N = 4, 9s for N = 5 and 6. Adding samples for
the computation delays the maximum value in the case of a fast degradation. Secondly,
the higher the number of samples, the longer the β coefficient stays significantly low. For
example, if we take −1 for reference as a low β coefficient, for N = 4, β is lower than −1

66

Figure 4.11 – Annotated photograph of the setup, with two FPGA boards, two PSI-2Ts
and two Raspberry Pi, connected to the Spirent (not pictured).

between 7s and 9s, and for N = 5 between 7s and 10s. Thirdly, having a higher number of
samples for the computation makes the value of β more resistant to noise, which reduces
the risk to trigger false alarms. In Figure 4.12 (b) we can see the Rx Power curve starts
and finishes around the same values than in Figure 4.12(a) and, as intended, the drop in
power takes several seconds. A slow degradation favors smaller β values compared to (a),
with only one value being close to -2 (N = 2 at 11s, β = 1.96). These results show the
importance of the choice of samples and coefficient threshold for our monitoring workflow.
As we want to control the value of the Pre-FEC BER as the Rx Power decreases, we need
to choose the β coefficient and the number of samples accordingly to the type of fault
that we want to detect. If we want to detect a link fault that happens brutally, such as
Q-drops as described in [126], we need to have a number of samples relatively high to
have a greater window of detection for the BER. For a fault that impacts more slowly
the Rx Power, the number of samples is less important, but the slope coefficient should
be chosen with care to ensure the detection of the impairment. Also, the value of the
coefficient should be adapted to the fact that in a real network the values of Rx Power
and its variations are going to be different due to the other equipment in the links.

67

a)

b)

Figure 4.12 – Slope coefficient β value depending on the number of samples for the com-
putation for a (a) fast, (b) slow Rx Power degradation.

4.5 Network Controller Interfacing

To validate our prototype of Figure 4.1, we will integrate it in a network testbed, and
compare its performance against the control plane in detecting and resolving a degradation
in quality of service. However we don’t envision our solution to be totally independent
and replace the control plane, so we need to work on the integration.

Using the Raspberry Pi that is in our platform as presented in Section 4.4, we can
develop a notification solution to prevent conflicts with the control plane.

68

Figure 4.13 – Example of an auto-negotiation procedure between two of our prototype
optical transponder (see Figure 4.15) with the integration of notifications to the control
plane

The first message we implemented is a "Reconf. Start" message. Whenever our proto-
type will reconfigure itself, it sends a small UDP message to the control plane, indicating
which parameter will change and to which value. When the reconfiguration is finished,
a "Reconf. End" message is sent, confirming that the change has been done successfully.
Figure 4.13 represents an example of an auto-negotiation procedure between two of our
prototype transponders, with UDP notifications to the control plane implemented. These
notifications in this case are sent after the acknowledgment of the new set of parameters
and after the reconfiguration respectively. These messages prevent conflicts with the con-
trol plane, receiving a "Reconf. Start" message will prevent it from intervening and the
"Reconf. End" allows it to take actions on the PSI-2T again and allows it to bring its
information on the equipment up to date.

The other message we implemented is a mechanism that allows the control plane to

69

Figure 4.14 – Example of a centralized reconfiguration using the UDP message to stop our
prototype from creating conflicts

stop the alarm triggering and the auto-negotiation process of our prototype transponder.
This is message is useful in the case of a complex reconfiguration that can impact multiple
equipment of the network and where the global view of the network from the control plane
is necessary, such as changing the central frequency of the PSI-2T Line port for example.
Figure 4.14 shows an example of this message exchange.

These messages will help the integration of our prototype transponder in a network
with a centralized control plane, and will help us validate its performance.

4.6 Prototype transponder validation

Now that we have presented and validated the individual blocks of the prototype
transponder as presented in Figure 4.1, we can present our final prototype implementation.
As presented in Sections 4.3 and 4.4, we have a Virtex Ultrascale+ FPGA handling
the auto-negotiation protocol and monitoring operations. The auto-negotiation logic is
clocked at 322MHz, and the Microblaze at 100MHz. The Raspeberry Pi handles the
communication with the commercial transponder, and as presented in Section 4.5, sends

70

Figure 4.15 – Representation of the prototype (presented in Figure 4.1) full implementa-
tion, with FPGA, Raspberry Pi and Nokia PSI-2T commercial optical transponder.

and receives messages from the control plane. The prototype is pictured in Figure 4.15.
We integrated our real-time transponder with auto-negotiation architecture as shown

in Figure 4.15 inside a network testbed for validation.
The testbed and its architecture are shown in Figure 4.16. On the data plane side,

we have a meshed network with four ROADMs (R1 to R4), our two real-time proto-
type transponders T1 and T2 as described in Figure 4.15 and a Spirent network analyzer
that generates and analyzes Ethernet traffic up to 100Gbps. A VOA allows to remotely
trigger a fault in the link between R1 and R2. On the control plane, we have three main
entities: the monitoring system, the ADONIS (Aggregator/Disaggregator for Optical Net-
work equipment) open device agent and the ONOS SDN controller. ADONIS abstracts
the network equipment into logical devices and exposes them to the SDN controller [37].
The Open Network Operating System (ONOS) SDN controller manages the logical de-
vices in the network. The monitoring system receives and processes the data collected by
ADONIS from the different equipment of the network, takes decisions based on collected
data, and submits configuration instructions to the SDN controller. To bring stability on
optical power in each optical port and have a more realistic scenario overall, we stabilize

71

Figure 4.16 – Integration of our real-time prototype transponder from Figure 4.15 with
auto-negotiation inside a network testbed

the testbed with 10 load channels generated through an ASE source and control them by
means of ADONIS emulation capabilities [37].

In Figure 4.17 (a) and (b) we describe the two workflows we developed. Workflow in
Figure 4.17 (a) is used when the FPGAs perform the dynamic auto-negotiation of the
transponders. Every second, the Microblaze inside the FPGA sends an UART message
asking the Raspberry Pi to retrieve monitoring data from the optical PSI-2T. The peri-
odicity of the monitoring is maintained by the RTOS. When data are retrieved by the
FPGA it computes the slope of the last samples of Rx Power using the linear regression
algorithm described in the previous section. If the slope is below a defined value and the
pre-FEC BER is above a threshold at the same time, an alarm is triggered, and the recon-
figuration is prepared to restore the transmission quality to an acceptable level, using the
auto-negotiation protocol described in Section 4.3. As mentioned in Section 4.4, we chose
to reconfigure the Tx Power of T1, as this needs no interruption of service. Changing other
parameters like the modulation format or baud rate with the used commercial transpon-
der would stop the traffic for tens of seconds, preventing us to plot anything significant

72

a)

b)

Figure 4.17 – Workflow for validation in a network testbed, with (a) FPGA-controlled
setup and (b) SDN controller-controlled setup

during the process. Our solution is nonetheless compatible other parameters if these pa-
rameters are able to reconfigure rapidly, for instance in future commercial transponders.
By changing the Tx power in this experiment, this also means only transponder T1 must
reconfigure itself to mitigate the link fault and no adaptation has to be made in transpon-
der T2. At the reception of the ACK message the transponder sends the "Reconf. Start"
(as described in Section 4.5) UDP message to the Open Device Agent. When the recon-
figuration is completed a “Reconf. End” message is sent to let the control back to the
control plane and notify on the changes done to the hardware.

The workflow for the SDN-controlled reconfiguration is showed in Figure 4.17 (b). To
enable comparison, the same reconfiguration algorithm as the transponder auto-negotiation

73

Reconf. Start Auto-neg setup SDN setup Difference
min 0.835s 1.728s 0.893s
mean 1.825s 3.621s 1.796s
max 2.583s 6.535s 3.952s
Reconf. End Auto-neg setup SDN setup Difference
min 1.148s 2.039s 0.891s
mean 2.138s 4.031s 1.8932s
max 2.900s 6.848s 3.948s

Table 4.2 – Minimum, average and maximum time for notification messages Reconf. Start
and Reconf. End for both setups.

setup is used in the SDN controlled setup. Every second the open device agent gathers
monitoring data from the transponders and sends them to the monitoring system to be
processed. If the Rx Power slope and the Pre-FEC BER are crossing set thresholds, the
monitoring system raises an alarm and asks for the SDN controller to adjust the Tx
Power of the transmitter transponder. The SDN controller send the reconfiguration re-
quest to ADONIS through a standard OpenConfig [76] NETCONF edit-config message,
and ADONIS replies when the PSI-2T reconfiguration is completed. We label these mes-
sages as “Reconf Start” and “Reconf End”, respectively. With these two workflows, we
can compare dynamic auto-negotiation with respect to centralized SDN-controlled re-
configurations in terms of latency to detect the link fault and to recover the quality of
transmission by adjusting the TX Power of the transmitter transponders.

We carried out 100 repetitions for each experiment and we aggregated the results.
To aggregate the values, we time-aligned the beginning of each repetition to the trigger
of the link fault induced by the VOA and truncated the fractional part of the samples
timestamp 1. We configured the detection algorithm with the following parameters: the
Rx Power linear regression slope β coefficient threshold is set to −1dB.s−1 and the BER
threshold is set to 10−6. Fulfilling both conditions is interpreted by the algorithm as a
significant power variation affecting BER that needs to be addressed. In Figure 4.18, we
plotted the median values of T1 output power (blue curve), T1 target output power (vio-
let), T2 pre-FEC BER (red) and T2 input power (orange). We also plotted the histogram
of the notification messages times, with detailed results also gathered in Table 4.2. In
Figure 4.18 (a), after the T2 pre-FEC BER crosses the BER threshold we can see the

1. This is made to better align the measurements of Rx Power, Pre-FEC BER, etc. . . for plotting.
However, we kept and analyzed the full timestamp for the notification messages "Reconf. Start" and
"Reconf. End".

74

a)

b)

Figure 4.18 – Aggregated experimental results for auto-negotiation setup (a) and SDN
setup (b). At the top of each figure we plotted the median values of the monitored metrics.
The confidence interval of the pre-FEC BER and output power corresponds to the 15.8
and 84.2 quantiles. At the bottom we plotted the histogram for the notification messages
"Reconf. Start" and "Reconf. End". Timing results are also gathered in Table 4.2.

75

start of the auto-negotiation reconfiguration in dashed blue vertical line. It occurs 1.825s
(mean value) after the trigger of the VOA. Right after, we can see that the mean value of
T1 target output power changes, showing the effectiveness of the reconfiguration. The end
of the reconfiguration, represented in dashed green line, happens at 2.138s (mean value),
resulting in a mean reconfiguration duration of 313ms. Figure 4.18 (b) shows the results
for the centralized reconfiguration with the SDN controller. The start of the centralized
reconfiguration in dashed blue line occurs at 3.621s (mean value) and the reconfiguration
ends at 4.031s, just after the change of the T1 target output power. The mean reconfigu-
ration duration for this setup is 410ms. If we compare results obtained in Figure 4.18 (a)
and (b), we observed that the auto-negotiation reconfigurations start 2 times faster, and
finish 1.3 times faster, with respect to the centralized SDN reconfigurations. Also, the
histograms show the variability of the experiments. We observed that the auto-negotiation
reconfiguration exhibits much less variability of both start and end reconfiguration mes-
sages. For instance, the difference between min and max values equals 1.75s in Figure
4.18 (a) versus 4.81s in (b) for the end reconfiguration messages. As expected, auto-
negotiation reconfigurations accelerate the decision-making process and act faster in the
physical layer. These results are in the context of a network testbed in a lab, but gains
should be noticeable in real-life situation. Even if the transponders would be at a greater
distance from each other increasing the round trip time between the auto-negotiation
processing logic, the control plane would also be at a greater distance from the network
hardware and have a larger number of equipment to monitor and functions to process.
Besides, having a shorter distance is more challenging in our solution as the protocol pro-
cessing needs to react faster as the message exchange is quicker. We believe that future
fast reconfigurable devices would take benefit of our solution by reducing the time needed
by the hardware to recover to acceptable quality of service values and bring forward its
hitless behavior.

In the end, the resources taken by the whole design of the system on the FPGA is
detailed in Table 4.3 and in Figure 4.19. The resource utilization is above 10% for the
block RAM (BRAM, 19.81%), the inputs outputs (IO, 18.03%) and transceivers (GT,
15.38%) and usage is at 5.17% overall. We can conclude that our design takes only a
fraction of the available resources in our die. So, in the future, we can consider adding
more functions in the logic for more elaborate monitoring functions and integrating the
functions of the Raspberry Pi in the FPGA design.

76

Figure 4.19 – Representation of the resource utilization of our design in the FPGA die

Table 4.3 – Resource Utilization Report for our FPGA design

77

4.7 Integration with a baud-rate variable setup

We have validated our prototype transponder with auto-negotiation for synchronous
change of optical parameters with commercial equipment, but we can also show its rel-
evance for future hitless transponders and demonstrate a more elaborate synchronous
change of parameters rather than a change of transmission power.

Changing the baud-rate in an optical network can be beneficial for multiple reasons.
One of them is the possibility to reduce the spectral occupancy of the signal, which is
interesting in case of a degradation that requires to send the traffic down another optical
path, that may have less spectral slots available for example, or more filtering for example.
Optical defragmentation, i.e. the operation of reorganizing and optimizing optical spectra
and routes to reduce the overall spectral occupancy of the network and reduce the blocking
probability of future requests, may also need to change the baudrate of equipment. For
this we are using real-time transmitter and receiver, that allow for hitless change of baud-
rate and no reception error after the change. The setup used in this section is presented
in Figure 4.20.

Figure 4.20 – Experimental setup for the synchronous hitless change of baud-rate using
the developed protocol. It is composed of a coherent transmitter (Tx) and a coherent re-
ceiver (Rx). A feedback channel is setup between the Rx and the Tx for bidirectional
auto-negotiation protocol operations. All the FPGA boards in the setup are managed using
an UART link that is connected in our experiment to a computer.

78

Figure 4.21 – Representation of the variable baud-rate transmitter

This setup is comprised of a real-time coherent transmitter, a real-time coherent re-
ceiver and a deframer FPGA board which is an extension of the receiver that will process
the protocol messages in the receiver. We will now describe more thoroughly each part of
this setup, starting with the transmitter.

4.7.1 Transmitter

The transmitter used for this experiment is represented in Figure 4.21 and pho-
tographed in Figure 4.22. It is based on the prototype transceiver presented in [113],
and used in a defragmentation scenario in [127]. It is implemented on an Xilinx Virtex-7
FPGA, and is able to transmit a signal at either 14GBaud or 7GBaud using a single
clock rate in the FPGA fabric, and to perform this change of data rate hitlessly. For both
rates, the data sent by the Tx is 8192-bit frames composed of a 64-bit header followed
by a PRBS-7 2 (Pseudo Random Binary Sequence) with a word length of 64 bits. The
PRBS is stored in Read-Only Memorys (ROMs) and each polarization and component
of the modulation has its own. The Horizontal polarization will be noted as H, Vertical
as V, the In-phase component as I and Quadrature as Q. This gives us eight PRBS to
store in ROMs: one for for HI, HQ, VI and VQ each, and one for each used baud-rate

2. Which has a period of 27 − 1 words i.e. 127 words

79

Figure 4.22 – Photograph of the variable baud-rate transmitter

Figure 4.23 – Frame structure sent by the transmitter for this experiment.

(14GBaud and 7GBaud). The header is indicating that the transmitter is working at 7 or
14GBaud, or contains the auto-negotiation protocol message from the transmitter. The
frame structure sent by the Tx is represented in Figure 4.23.

A specific channel is set-up between the receiver and the transmitter so that the
receiver can send the ALARM and ACK messages to the Tx and perform the auto-
negotiation. A logical module is handling the reception of the messages for all components
of the QPSK signal (HI, HQ, VI, VQ) and triggers the change of baud-rate in the FPGA
logic. In Figure 4.24 you can see the eye diagrams of a clock signal transmitted by the
variable baud-rate Tx at 14 and 7GBaud and in Figure 4.25 you can see the constellation
of the transmitted signal.

80

a) b)

Figure 4.24 – Eye diagram of the optical signal sent by the transmitter at (a) 14GBaud
and (b) 7GBaud.

Figure 4.25 – Constellation of the PM-QPSK signal, for the Horizontal and Vertical po-
larizations, at 14GBaud.

81

Figure 4.26 – Full representation of the Receiver with the coherent receiver and the ADC,
the DSP FPGA and the deframer FPGA board.

4.7.2 Receiver and deframer board

The receiving element of the setup is separated in two main parts: the receiver that
recovers the symbols at both 7 and 14GBaud, and a deframer board that separates the
header from the payload of the frames and handles the auto-negotiation protocol opera-
tions. It is represented in Figure 4.26.

Receiver DSP The signal recovered by the coherent receiver and sampled from the
Analog-to-Digital Converters (ADCs) goes to an FPGA with a coherent DSP imple-
mented, see Figure 4.26. As explained in 2.2.3, to properly decode the symbols the signal
needs to be processed by algorithms, that recover its amplitude its frequency and its
phase in our case. In this work, the particular implementation of the Constant Modulus
Algorithm (CMA) algorithm is allowing the system to function at both 7 and 14GBaud,
and will be described in the following paragraphs. We will not go over the description of
the CPE and CFE algorithms, that have been introduced in 2.2.3 and which you can find
more information in [128].

In Figure 4.27 (a) we represented a traditional implementation of the CMA algorithm
as a Finite Impulse Response (FIR) filter structure, processing samples of the received

82

a)

b)

Figure 4.27 – Structure (a) of a traditional FIR-CMA architecture and (b) the used ar-
chitecture for the real-time receiver of this experiment. On the right side of both figures,
s0 is given as an example of a recovered symbol at half baud-rate.

83

data from the ADC. As can be seen in the figure, the FIR-CMA is decomposed into
N-parallelized FIR-CMA filters, with N being the number of symbols processed by the
filter at the same time. In the Figure, sk left refers to the first two samples of the kth

symbol, and sk right the third and fourth samples, the incoming signal is at 2 Samples
Per Symbol (SPS). The goal of the CMA algorithm is, for modulation formats employing
a single amplitude for their constellation (as seen in Figure 4.25, it is applicable for PM-
QPSK) to recover said amplitude before phase and carrier recovery (see Figure 2.22).
As a reminder, the output of a FIR-filter can be described as

y[k] = hT s =
N−1∑
i=0

h[i]s[k − i] (4.6)

Where y[n] is the output signal out of the filter, s[k] the received symbols, s = (s[k], s(k −
1), ..., x(k − (N − 1))T , h[i] the tap weights of the filter and hT = (h[0], h[1], ..., h[N − 1]).
For the CMA algorithm, the cost function to minimize is:

ϵ = 1 − |hT s|2 (4.7)

Which corresponds to searching for filter taps that make the output signal amplitude
equal to one. For the CMA algorithm, the gradient of the cost function is estimated
stochastically and tap weights are updated in accordance, following the steepest descent
method (see [129] for more details). This is represented in the bottom of Figure 4.27 (a),
where a sample is passed through a FIR-CMA, and an error function estimates the update
to apply to the taps of the filters of the other FIR-CMA filters. This gives the update
algorithm for the filter taps:

h := h + 2αϵs∗(hT s) (4.8)

With α being the step size, s∗ the conjugate of s, and := being the assignment operation.

In Figure 4.27 (b), we pictured the CMA architecture of the receiver used for these
experiments. This structure is different as the one in (a) and allows the processing of the
data at two baud-rates: nominal and half (for the experiments 14 and 7GBaud respec-
tively). Rather than using a single update structure, two are used, one for the left part
of the symbols and one for the right part. When the (b) implementation will recover the
symbols correctly, the (a) implementation will struggle recovering both parts of a symbol
at divided baud-rate, due to the fact that at half baud-rate the incoming signal will by
at 4 SPS. This principle can be extended for 4, 8, etc. . . times divided baud-rates. The

84

proposed CMA implementation is detailed more thoroughly in [130].

Deframer board After being decoded by the DSP FPGA boards, the symbols go to
an FPGA deframer board, that will handle the auto-negotiation protocol (for HI, HQ, VI
and VQ). The deframer board is represented in the right side of Figure 4.26, and is the
part of the experiment that has been under my supervision.

The first role of the deframer board is to separate the header and the payload from
the incoming traffic. At first this has been implemented by directly detecting the headers.
However, the auto-negotiation protocol should be able to work even at low performance,
because otherwise it is unable to trigger a change of parameters to recover from a degra-
dation. Furthermore for this experiment no FEC code is used, so an altered bit cannot
be recovered by such mean. We decided to rather use correlation to detect the header in
the incoming traffic. The traffic is compared to expected bits of the header, and if the
number of common bits between the incoming data and the expected header is about a
programmable confidence level the header is extracted and processed accordingly. This
is a more taxing operation than direct detection, which can be realized in a single clock
cycle. By doing the operation NOT (datain XOR headertocompare) the resulting bit vector
will be the bits that are in common between the two vectors, which can be counted and
compared against the programmable confidence level. The counting operation is the one
that takes the most time for the logic, the result of the correlation operation (i.e. the
detection or not of the header) can be obtained in 2 clock cycles. We use an additional
clock cycle to extract the header as can be seen in Figure 4.28 to ease the synthesis of the
design complexity-wise. In Figure 4.29, the detection and removal of a RQST message for
the auto-negotiation protocol is captured. We also showed the answer sent on a separate
channel after the reception of the RQST message. This answer is sent to the Tx via the
feedback channel. As can be seen in the figure, the answer is delayed to be sent when the
next frame is received, mostly to simulate propagation time.

After the header extraction, the payload is sent to an error counter, that will count the
number of incorrect bits in the PRBS. If a auto-negotiation protocol message is detected
in the header, it is processed and if necessary an answer is sent in the feedback channel
between the Rx and the Tx.
Additionally, it is extremely important that the frame is arriving in the FPGA properly
aligned. A logical module is handling this operation, by sending a command the the
transceiver (TRx in Figure 4.26) used for the communication between the Rx DSP FPGA

85

Figure 4.28 – Capture of header detection and removal by the deframing logic in simu-
lation. The header in this example is the header indicating 14GBaud transmission. The
clock period is 2.86ns (350MHz).

Figure 4.29 – Capture of RQST message header detection and removal by the deframing
logic in simulation. After the message is detected, we delay the answer until the next frame
is received.

86

and the deframer. This command delays (or "slides") the received data vector out of the
transceiver by one bit, and this can be used until the data vector is properly aligned. This
is either handled automatically by the logical core (sending the slide command until it is
able to recognize the header in the traffic) or manually by the user using the UART link
to trigger the command.
In Figure 4.30 you can see a photograph of the Rx part of the setup with the coherent
receiver, the ADC, the FPGA DSP and the deframer FPGA board.

Figure 4.30 – Annotated photograph of the variable baud-rate receiver

4.7.3 Validation

To validate our setup we will trigger a change of baud rate, synchronized thanks to
the auto-negotiation protocol, and show that it results in no interruption of traffic nor
any additional error in the recovered payload.

The validation setup is as presented in Figure 4.20. The Receiver DSP and the De-
framer FPGA boards are clocked by a 350MHz clock generated by the ADCs, and the
transmitter is clocked at 437.5MHz.

To pilot the setup, human-machine interfaces were developed on Labview to access
easily the UART-accessible parameters on the different FPGA boards of the setup. These
interfaces are also the way we will trigger the auto-negotiation process. In Figure 4.31
we pictured the interface for the deframer board. Different parameters of the board
transceivers can be edited to improve communication between the boards, the frame
alignment procedure can be triggered, correlation thresholds can be changed for the de-
tection of the header, and the ALERT message can be sent to start the auto-negotiation

87

procedure. For this experiment, as boards are separated by only a few meters of fiber
(between the Transmitter and Receiver) or coaxial cables (between the Receiver and the
Deframer and between the Deframer and the Transmitter), we can expect that we will not
have any errors in reception even without FEC, and set the thresholds for the detection
of the headers in the Deframer board at maximum (every 32 bits of the headers need to
be detected).

Figure 4.31 – Labview developed interface to pilot the deframer board, connected via
UART.

In Figures 4.32, 4.33 and 4.34 we show captures from the Deframer board, Transmitter
and Receiver respectively showcasing a synchronized change of baudrate. The captures
are made after an initial frame alignment procedure. The captures from the Deframer and
Transmitter showcase a change from 14 to 7GBaud, and the capture from Receiver showing
a change from 7 to 14GBaud, but the change of baudrate can be done in either way and
does not invalidate our other results. In Figures 4.32 and 4.33 we can see the exchange of
messages between the Deframer board and the Transmitter. The auto-negotiation process
starts when the ALERT message is sent by the Deframer FPGA board and received by the
Transmitter. The Transmitter then sends the RQST message indicating that he is going

88

to change its baudrate from 14GBaud to 7GBaud. When it is received by the Deframer,
it sends its ACK acknowledgement message to confirm the change of parameter. The next
frame, the 7GBaud traffic starts. As can be seen in Figure 4.34, the change of baudrate
(in the case pictured, from half-rate to full-rate, but is valid for the other way) is received
with no visible error, and the the 7G header is detected and removed by the Deframer
board with no problem. The error counter validates the errorless change of baudrate, by
detecting no error before, during and after the change in the payload, for changes from
full to half baudrate and vice versa. The change is negotiated and performed in three
frames from the transmitter (counting from the reception of the ALERT message to the
first 7G frame), which is the minimum delay we would be able to achieve. This is partly
due to the fact that all parts of our setup are close to each other but this is encouraging
for future experimentation, for example in a full network testbed.

Figure 4.32 – Capture from the Deframer FPGA board showcasing a change of baudrate
from 14GBaud to 7GBaud with the auto-negotiation protocol. The ALERT message was
sent before the first pictured frame.

We have validated the hitless change of baudrate of this setup, which shows promises
for the future of reconfigurable optical transponder. This setup could be expanded upon,

89

Figure 4.33 – Capture from the Transmitter showcasing a change of baudrate from
14GBaud to 7GBaud synchronized with the auto-negotiation protocol. Below the captures,
we inserted oscilloscope captures of the eye diagram before and after the change of bau-
drate.

Figure 4.34 – Capture from the Receiver showcasing a change of baudrate from 7GBaud
to 14GBaud.

introducing monitoring capabilities, presenting additional scenarios for reconfiguration of
optical parameters such as the laser wavelength for example, ideally in a network testbed,
and showcase the potential of the auto-negotiation protocol for reconfigurable optical
transponder.

4.8 Conclusion

We presented and validated a prototype of a real-time optical transponder with dy-
namic auto-negotiations triggered by events extracted from optical performance monitor-
ing to quickly restore drops in quality of transmission. We validated our FPGA implemen-
tation of the auto-negotiation protocol at 100Gbps, showing that our protocol processing

90

only adds 12ns in latency, and successfully demonstrated that our solution detects and
resolves link faults two times faster, reconfigures the hardware in 1.3x less time and
with less time variability than a centralized SDN-based control plane with similar mon-
itoring and reconfiguration capabilities, showing the advantages of adding our dynamic
auto-negotiation solution in optical transponders. We also showcased our auto-negotiation
protocol with a real-time fast baudrate reconfigurable setup, which is a promising solution
for the future of optical transponders. We can build on our solution by providing more
elaborate monitoring workflow, which would provide more intelligence to the optical de-
vice, triggering smarter automatic reconfigurations, and work towards full automatic and
reconfigurable optical networks. Our auto-negotiation solution implementation left room
in the FPGA fabric so we can develop on the solution itself and implement logic-based
monitoring functions to have a better knowledge of the network and reconfigure the hard-
ware more intelligently.

91

Chapter 5

TRANSPONDER AND ACCELERATION

SERVICES

The adoption of the Software Defined Network (SDN) paradigm in optical network
has changed how networks are operated. Thanks to intensive monitoring of the optical
layer, the state of the network can be known at each instant or be analyzed over long
period of times to detect unseen phenomena and perform post-failure analysis [38]. Both
of these analyses help perform optimization of the network overall or optimize the quality
of service of a single optical link if desired or necessary. This intense monitoring also
helps resolving or prevent altogether interruptions of traffic by reconfiguring part of the
optical data plane, increasing the network reliability. This has led the path toward fully
automated and elastic optical networks.

Novel monitoring techniques have been developed for modern optical networks to take
advantage of the greater availability of monitoring data in the data plane, the increase
in computational power in the control plane and its orchestration ability. For example,
machine learning techniques (such as Artificial Neural Networks) have gained traction in
recent years, as they are a good set of tools to answer the ever growing complexity of
optical networks [39], notably in the context of Elastic Optical Networks. They are able
to exploit the great diversity of available optical monitoring parameters and allow for
modelization of complex phenomena, such as the nonlinear effects [15], fiber bending [131],
etc. . . It is expected that machine learning will heavily contribute to the full automation
of optical transport networks [14].

However, while it is true that optical network automation is becoming a reality, several
factors are undermining these advancements. First of all, while there is a great number of
different metrics to exploit to measure a great number of different phenomena happening
in the network, the more data we collect from the data plane and send to the control
plane, the more the centralized control plane will be throttled down. Telemetry has been
developed to both decrease data collection time using streaming techniques and allows

92

the possibility to subscribe and unsubscribe from monitoring streams depending on the
current needs [5]. It is a currently popular solution, however it does not resolve all problems
stated earlier. These are partly due to the centralization of the monitoring and decision-
making processes, and novel architectures propose to alleviate this by providing closer to
the device intelligence [10], which can reduce both the quantity of data that has to be
transferred to the control plane and reduces the latency of the network by reducing the
workload of the control plane.

In this section we will present a solution for Artificial Neural Network (ANN) de-
ployment inside a Field Programmable Gate Array (FPGA), both to enable elaborate
monitoring techniques for the optical data plane and for acceleration of machine neural-
based functions of the optical control plane. We will firstly introduce the concept of ANNs
and the neural network-based nonlinearity monitoring function that we will implement
to validate the logical neural structure we will develop. This logical structure will be val-
idated in simulation in terms of precision and timing before we will expand on a weight
update logic to allow for reconfiguration of the implemented function. The setup will be
finally validated at implementation stage.

5.1 Neural network-based power monitoring

5.1.1 Generalities on neural network algorithms

A neural network, or more precisely in our context an Artificial Neural Network (ANN),
is a set of mathematical algorithms which takes inspiration on how data is processed by
the neurons of a biological brain. It comprises neurons, which are structures that take one
or multiple inputs, process them by applying weights, pass the sum of weighted inputs
plus a bias into an activation function, and output a single value that can be sent to
other neurons further in the network. Neurons are organized in layers, the input layer, the
hidden layer (that can contain multiple layers) and the output layer. This basic structure
is represented in Figure 5.1, and the layout of a neuron is represented in Figure 5.2.

An ANN is a practical way to approximate a complex algorithm [132] or perform
efficient pattern recognition [133], provided the network is trained appropriately. There are
several possible ways to train a network, depending on the desired usage of the ANN. For
example, one can train a network to do regression, pattern recognition etc. . . by providing
inputs with their desired outputs and train the network to generalize for future unseen

93

Figure 5.1 – Basic structure of an Artificial Neural Network with a single layer of five
neurons in the hidden layer, eight inputs and six outputs.

Figure 5.2 – Structure of a neuron of an artificial neural network with four inputs. Inputs
are multiplied by their weights, summed altogether with an additional bias and processed
through an activation function.

cases. By calculating the gradient of the network cost function, the weights in the neurons
can be updated, usually following dynamic programming optimization techniques. This
results in the ANN becomes progressively more performant at its task until a stopping
condition is met. This process is called supervised learning.

Identifying the correct set of weights so that the cost function is minimized requires a
great number of data and repetitions. The data can be processed ten, hundreds, thousands

94

or more times until a satisfactory result is found. A full cycle of processing the training data
set is called an epoch. Two common phenomena are important to avoid while training an
ANN: they are called underfitting and overfitting. Underfitting happens when the network
is unable to find a relationship between the inputs and the expected outputs, which results
in a very low performance and high bias network. This can be avoided by increasing the
training time and/or providing a bigger and more varied data set. Overfitting on the
contrary is when the network is overspecialized in finding the relationship between the
inputs and the expected outputs of the data set used for the network training. This results
in an ANN which is unable to generalize to unseen cases.

To prevent overfitting, one popular solution is to separate the data set used for the
training into three subsets. The first and usually the bigger proportion-wise is the Training
Set. This is the data that is going to be passed into the network, have its output compared
to the expected output using a metric such as the Mean Square Error (MSE), and used
to update the weights of the neurons of the network. The second subset is the one used
to limit overfitting and is called the Validation Set. This part of the data is also going
into the network, but its output value will be used to detect when to stop the training of
the ANN. On principle, as the error metric decreases on the Training Set output as more
epochs are performed, the error metric on the outputs of the Validation Set is supposed
to decrease as well. However, when the error on this set is starting to increase, this is the
signal indicating when the training should be stopped to prevent overfitting. The theory
behind this is that if the data set is large in both number and possible cases, a big enough
Validation Set will cover a large enough number of cases to detect when the ANN gets
over specialized. The size of the Validation Set depends on the size of the Test Set, usually
between a tenth and a third of the total data, and is chosen randomly from the entirety
of the data set. Finally, the last subset is the Test Set. It is used to measure the final
performance of the neural network. 1

Detailed mathematical results on neural network training can be found in [134], and
a schematized representation of neural network training is represented in Figure 5.3.

In the end, a well trained neural network is a good way to approximate a function or
perform complex pattern recognition by using a relatively simple mathematical system,
which makes it very suitable for embedded deployment. The main obstacle is the creation
or acquisition of the data set and the training process as a whole. Furthermore, a neural

1. It is noteworthy to understand that a network trained with the same data set from scratch multiple
times will rarely result in the same weights in the neuron and in the same resulting accuracy.

95

Figure 5.3 – Schematization of the training of a neural network.

network with more neurons and layers will tend to be more performant on more complex
tasks 2, but will be significantly more complicated to train. Yet, neural networks see a
lot of traction in optical networks. One advantage that ANN-based monitoring has in
optical networks is that some optical monitoring data retrieved from the equipment can
be complex to exploit due to the interactions between several system parameters [39]. A
well-trained neural network can make relevant assumptions on the state of the network
or an equipment from the raw data at a lower computational cost. On this idea, ANNs
can exploit data that is usually left unused for real-time monitoring. One such example
is the exploitation of the optical spectrum for nonlinearity monitoring.

5.1.2 Neural network-based optical nonlinearity monitoring and
launch power optimization

In this subsection we will present the neural network that will be implemented on
FPGA for optical transponder monitoring. This is based on the paper [15].
Even if in Chapter 4 we provided a solution for reconfiguring the optical launch power to
improve the quality of communication between two optical transponders, this operation

2. While this tends to be true, a more complex neural network may be less efficient than a smaller one.
For example two or more of its neurons in the same layer may have the same weights, which is redundant.
Searching for the ideal size of neural network can be useful.

96

Figure 5.4 – Optical spectrum on a single channel in highly linear and highly nonlinear
regime. The modulated channel is showed with the black line. In blue is represented the
white linear noise, in red the nonlinear effects, and in green is the received spectrum with
contributions of both linear and nonlinear effects.

is not always beneficial for the system. This is due to the fact that increasing the optical
launch power can result in the system going into the highly nonlinear regime, increasing
the contribution of the Kerr nonlinear interference on the channel, resulting in a Signal-
to-Noise Ratio (SNR) degradation. The optimal launch power creates a trade-off between
linear and nonlinear contributions. Examples of linear contributions are noise coming from
amplifiers (Amplified Spontaneous Emission noise, or ASE noise as presented in Section
2.1.2.3) or hardware impairments, and nonlinear contributions are for example Kerr effect
or Raman scattering (see Section 2.1.3). In Figure 5.4, we represented an optical spectrum
in highly linear and highly nonlinear regime. As we can see, the shape of the spectrum is
affected depending on the regime it is in, due to the higher contribution of the linear or
nonlinear impairments. If we represent the SNR as a function of the launch power we can
usually observe a bell curve, with on the left side the linear regime and on the right side
the nonlinear regime. Finding the optimal launch power correction is in short to search
for an ideal power change ∆P so that the resulting SNR is the highest point of the bell
curve, represented in Figure 5.5.

Traditionally, nonlinear and linear contributions had to be measured individually and
independently, with the problem of nonlinear impairments being complex to detect. But
as we can see from Figures 5.4 and 5.5, we are able to determine from the spectrum shape
the regime the system is in, and potentially also estimate a power correction to apply to

97

Figure 5.5 – Representation of the SNR of a received spectrum as a function of the launch
power. In blue is shown the highly linear regime and in red the highly nonlinear regime.
Atop the bell curve is the optimal launch power to maximize the SNR.

attain maximum SNR. This makes this task very suitable for ANNs, as all information
necessary seems to be carried by the spectrum. In extension, training the network should
be perfectly possible by providing it with varied spectrum with a good range of launch
powers and other transmission parameters, so that it has access to multiple relations
between launch power and SNR.

In [15], the authors propose a ANN architecture to detect from the Power Spectral
Density (PSD) of a received signal the regime of the system, linear or nonlinear, and
provide a power correction to maximize the SNR. The proposed ANN architecture in the
article is represented in Figure 5.6. It takes in input a 315-long PSD vector normalized
in the range [0;1] and outputs an estimation on the optimal power correction ∆̂P . The
hidden layer possesses ten neurons that have the sigmoid activation function (f(x) in
Figure 5.6). The single neuron in the output layer has the identity activation function.
The test prediction plot of the neural network is provided from the article [15] in Figure
5.7, and the error histogram is presented in Figure 5.8.

This application has the advantage of that even if the ANN is not perfectly precise, as
seen in Figures 5.7 and 5.8, applying a power correction that is slightly off the ideal one
doesn’t result in a massive detriment in SNR compared to the ideal correction, and even
in worst case scenario when applying the predicted correction ∆̂P results a degradation
in SNR, the degradation is likely to be minimal. This is represented in Figure 5.9, sourced
from [15]. In this figure the SNR is calculated following this formula:

∆SNR = SNR(Plaunch + ∆̂P) − SNR(Plaunch)[dB] (5.1)

98

Figure 5.6 – Proposed Artificial Neural Network for power monitoring. The input is a
normalized Power Spectral Density (PSD) of a single channel on 315 samples. The hidden
layer is composed of a single layer of ten neurons. The single output produces an estimation
of the power correction to apply to maximize the SNR ∆̂P . Biases are always equal to one.

and the black line represents the maximum achievable SNR gain following the Gaussian
Noise Model Theory [135] and is approximately the reverse bell curve. The predicted
power correction results in a great majority of cases in a gain in SNR, and losses are
concentrated around where the ideal power correction was small (less than a dB) and
results in a maximum of -0.12dB loss.

This ANN-based optical power monitoring and its realization proposition is very inter-
esting for our use case. The optical spectrum of a signal can be accessed relatively easily if
in the network an Optical Spectrum Analyzer (OSA) or an oscilloscope has been deployed
to monitor the state of the spectrum in a section of an optical network. And as [15] points
out, the spectral density has a lot of untapped potential to exploit for the future of optical
monitoring. We can imagine further exploitation of the PSD in the future, and maybe
more utilization of ANN-based monitoring.
However, we run into problems we already touched upon previously. With optical mon-
itoring being more prevalent with more and more available parameters and with more
equipment to manage, overall reactivity and efficiency of the network’s control plane re-
sources can be hampered. This is particularly true for the future exploitation of PSD,
as individual channel spectrum can be reduced to a few hundred samples, the PSD can
be captured for multiple channels at the same time over a very long bandwidth, which
requires elaborate pre-processing to retrieve and extract single channels even before ap-
plying the monitoring algorithms. As we pointed out in Chapter 4, providing closer to the

99

Figure 5.7 – Neural network self-test prediction scattered plot. The black line represents
the perfect theoretical power correction ∆P and circles represent the prediction ∆̂P out
of the ANN. Blue circles represents when the system was operating in the linear regime,
and in red when the system was operating in nonlinear regime.

Figure 5.8 – Error histogram of the ANN, AVG labeling the average error, STD the stan-
dard deviation and MAX the maximum absolute error.

hardware monitoring and decision making can make the network more reactive overall.
We can also envision that providing local monitoring can reduce the number of times or
the quantity of information to transfer to the control plane.

Another thing to consider is the genericness of Artificial Neural Networks. By changing

100

Figure 5.9 – Resulting gain in SNR when applying the predicted power correction ∆̂P ,
compared to the maximum achievable gain when applying the ideal power correction ∆P .
The blue circles show when the correction results in a SNR gain, and in red when it results
in a loss. Maximum achievable SNR gain with the test set is around 1dB, and loss around
-0.1dB.

the weights in the neurons, one ANN can produce another function on the same inputs.
Proposing a generic architecture of ANN close to the hardware, employing fast reconfig-
urable hardware such as FPGA could be used both for accelerating monitoring tasks in
the control plane and propose real-time ANN-based monitoring. This solution will be ex-
plored in the following sections, by providing a real-time implementation of the previously
described monitoring algorithm. We will also provide for a method of fast neuron weights
update, which can be exploited by the optical network controller to remotely reconfigure
the function of the implemented ANN.

5.2 FPGA implementation

In this section we will detail the implementation of the ANN presented in Section
5.1.2, from the data set we will use, to the adaptations we had to make on the neural
network and finally to the network implementation in the FPGA.

101

5.2.1 Data set and neural network generation

Data set To start things up, we had to do some changes on the neural network proposed
in [15] due to some limitations. First of all, we are basing ourselves on another data set that
the one presented in the article. Whereas the data capture was made using an oscilloscope,
we are employing a data set realized on an Optical Spectrum Analyzer (OSA), which has a
reduced resolution. This means that the individual channel spectrum will not be sampled
on 315 points, creating a 315 input neural network as in Figure 5.6, but on 251 points,
resulting on a 251 input neural network.

The PSD used for the data set are from a 32.5GBd PM-QPSK (Polarization Mul-
tiplexed-Quadrature Phase Shift Keying) signal, generated with a 1524.32nm external-
cavity laser, with IQ modulators being driven by Digital-to-Analog Converters (DACs)
with 0.01 roll-off factor root-raised-cosine pulse shaping. The signal is sent in a loop of
three 100km single mode fiber spans (i.e. a 300km loop). At the entry of each span the
signal is amplified by an Erbium Doped Fiber Amplifier (EDFA) with a launch power
whose value range from 10dBm to 22dBm. For the data set, 20 acquisitions have been
made for each combination of 22 equally spaced different launch powers and 1 to 4 cycles
of the loop (i.e. for distances from 300km to 1200km). This results in a total of 1760
acquired spectrum. In Figure 5.10 are shown the PSDs for all distances at (a) 10 and
(b) 20dBm launch power. At 10dBm the system should operate in linear regime, at 20 in
nonlinear regime. We can see the impact of the linear and nonlinear contributions on the
edges of the spectra as represented in Figure 5.4.

a) b)

Figure 5.10 – Plot of the PSD for all lengths at (a) 10dBm launch power, (b) at 20dBm
launch power.

102

We can then calculate the SNR of each spectrum and plot the bell curves for each
loop cycle. In Figure 5.11 we plotted the SNR as a function of the launch power for our
data set. For each distance, we interpolated the SNR curve using a polynomial of degree
3, resulting in bell curves, just as in 5.5. We then for each bell curve determine their
maximum, which will be our target value in terms of SNR for each spectrum. This finally
allows us to determine the ideal power correction value for each launch power of each
number of loop cycles. These values are the expected output values of our neural network
that will be used for its training.

Figure 5.11 – Plot of the SNR as a function of then launch power with its associated bell
curves for distances from 300 to 1200km. The solid lines represent the fit line from a
polynome of degree 3.

Neural network generation for FPGA implementation Now that we have a use-
able data set we can generate and train our neural network. While in [15] the neural
network generation and training was handled using TensorFlow [136], a popular software
library, we decided to use the fitnet [137] function in Matlab which was more practical
and fast to use for our needs.
As presented in the previous section, we are generating a neural network with a single
hidden layer of ten neurons, with a single output neuron, but with 251 inputs rather than
315 as touched upon previously. We also changed the activation function of the neurons
in the hidden layer from the logistic sigmoid to the Hyperbolic Tangent (tanh) function,

103

which is the default activation function for fitnet. As a reminder, the sigmoid function is
written as:

S(x) = 1
1 + e−x

(5.2)

The tanh function can be considered a rescaling of the sigmoid function and written as:

tanh(x) = 2S(2x) − 1 = 2
1 + e−2x

− 1 (5.3)

Both functions are plotted in Figure 5.12. Both give similar results for neural network
training [134].

Figure 5.12 – Plot of the logarithmic sigmoid and the hyperbolic tangent functions.

The neuron in the output layer still has the identity activation function.
For the neural network training, the data set is separated between training, validation and
test subsets in 80-10-10 proportions. The neural is trained using the Levenberg-Marquardt
backpropagation algorithm [138]. In Figures 5.13 to 5.16, we present the results of a neural
network training.

In Figure 5.13 we can observe the performance of the neural network after each epoch
of training. We can see that the MSE between the output of the network and the expected
result keeps diminishing, which means that our neural network increases in performance.
We can also observe that the MSE is different between the train, validation and test
subsets, and that when the MSE increases for the validation set the value of the weights
is set. Figures 5.14 to 5.16 show different measurements of performance and error for our
network. If we compare Figures 5.7 and 5.8 with 5.14 and 5.15 respectively, we can see
that our network is less performant than the one in [15]. This is partly due to the fact

104

Figure 5.13 – Plot of the evolution of the neural network performance on the data set as
more epochs are being realized. The green circle represents the point at which the early
stopping mechanism is triggered.

Figure 5.14 – Plot of the predicted result ∆̂P from the neural network as a function of
the the expected result ∆P . The blue dots represent when the system was in highly linear
regime and the red dots when the system was in highly nonlinear regime. The black line
represents the ideal fit line where ∆P = ∆̂P , and dashed lines the standard deviation of
the neural network output.

105

Figure 5.15 – Error histogram after a training of the neural network. Orange vertical line
shows 0 error.

Figure 5.16 – Resulting gain in terms of SNR after a training of the neural network.

106

that the equipment used for the acquisitions of our data set is an OSA with less resolution
than the oscilloscope used in [15]. However as we can see in Figure 5.16, our function still
performs correctly, allowing for good gains in terms of SNR, with only a few losses 3. In
Figure 5.17 we plotted the resulting weights for all the neurons in the hidden layer for all
251 inputs.

5.2.2 Logical Implementation

5.2.2.1 Neuron and network hardware structure

Now that we have a trained network we can design its logical implementation.
One of the first steps in designing an ANN for FPGA is to start by designing the neuron. As
explained previously and shown in Figure 5.2, a neuron is constituted of a multiplication,
addition and an activation function. This is straightforward to implement in logic, except
for some choices in design. The neuron structure is represented in Figure 5.18.

First, the data comes into the neuron serialized and not in parallel, which is much
easier to handle in logic. This does not undermine the main advantage of the FPGA,
which is the parallelization of the operations, as all neurons of a layer can function all at
the same time. This allows for a boost in processing time, as we will demonstrate later.
The first operation is the multiplication of the input with its corresponding weight. The
weights are stored in a Read-Only Memory (ROM), which is read sequentially with the
help of a counter. The weights out of the ROM are multiplied with their respective input.
The output of the multiplier goes into an accumulator, where the bias weight is added
directly. When the summation is done, its result goes in the address port of a ROM which
stores the values of the tanh activation function, and the output of the ROM serves as
the output of the neuron. All these operations are synchronized using control signals,
indicating when the input is valid, when the counter reached the number of inputs (to
redirect the output of the ROM with the weights and more importantly the bias towards
the accumulator) and when the accumulator has reached its final value to and when the
output of the activation function is valid.
This implementation is correct for the neurons of the hidden layer. The single neuron
of the output layer follows the same principle, without the ROM with the activation
function.

3. Performance could be improved by having a better data set to train the network, or fine tuning the
ANN, but this is out of the scope of this thesis work and still perfectly suitable for use.

107

a)

108

b)

Figure 5.17 – Plot of the weights (a) for the ten neurons of the hidden layer, (b) for the
output layer neuron, with their average value and their maximum absolute value (index 0
is the bias weight wi

0 as noted in Figure 5.6, 1 is the weight for the first input wi
1 etc. . .).

Figure 5.18 – Schematization of the logical implementation of a neuron. Control signals
are represented in black.

One important thing to consider is the number of bits used for each operation. We will
work with inputs whose values are in [0;1] and with weights with real decimal values as
can be seen in Figure 5.17. As it is complex to use floating point signals and operations
in FPGA, we will be using fixed point arithmetic. Signed bit vectors will be written with

109

Figure 5.19 – Rules of the signed fixed point arithmetic for (a) addition and (b) multipli-
cation.

the two’s complement method. As a reminder, using a signed fixed point bit vector means
that the most significant bit will be used as the sign bit, and a certain number of bits
will be reserved for the fractional part of the value carried by the bit vector 4. In Figure
5.19 we show how is composed the resulting bit vector of a signed fixed point addition
and multiplication. One area of concern is the accumulation that could overflow the bit
vectors, as theoretically we should add 251 bits to the output compared to the input
bit vector to prevent it completely. In practice, and knowing the range of the weights
produced by the neural network training, if we have enough margin in number of bits in
the integer part at the first operation, the chances that we overflow the bit vector are
low. So finally, rather than adding 251 bits to the bit vector, we decided to treat the
accumulation function like an addition operation and follow the rules as showed in Figure
5.19 (a), and add a single bit to the bit vector out of the accumulator.

To save space in the ROM storing the activation function we firstly set bounds to the
function values. As can be seen in Figure 5.12, the tanh function gets close to its limits
(-1 and 1) very fast, and it is not very interesting to store the values of the function above
a certain point. So we decided to bound the function such as

f(x) =

2

1+e−2x − 1, if x ∈] − 8, 8[,

−1, if x ≤ −8,

1, if x ≥ 8.

(5.4)

4. This implies that the most significant bit of the fractional part will correspond to 2−1, the next one
2−2, etc... for a positive value

110

This means that we only need to check part of the integer portion of the incoming bit
vector and we don’t need to store all the possible values of the activation function past
our bounds. This allows us to use the space we wish to allocate to the activation function
more sparingly.
To reduce further the space taken by the ROMs carrying the activation functions, we have
also chosen to limit the number of values stored, i.e. limiting the depth of the ROMs. We
choose to fix a depth and fill the memories accordingly. As an example, if we set the size
of the ROM address port to X, we will store 2X values, which gives a step size for the
stored values equal to

HighBound − LowBound

2X − 1 = 8 − (−8)
2X − 1 (5.5)

This implies that the address port on the ROMs may not have the same size as the bit
vector out of the accumulator, and a reduction of the bit vector is required. Logically, bits
of the integer part representing values above the bound and extra bits in the fractional
part need to be cut off.
Also, the result of the accumulation function is written as two’s complement but, as design
choice we wrote the activation function in the ROM naturally. This means that the value
of our low bound (-8) is stored at the lower address 0 and the value for our high bound (8)
is stored at the highest address. To convert the vector out of the accumulation function
to the correct address, an inversion of the sign bit is required 5.
A representation of these operations is represented in Figure 5.20.

Logically, the bit vector out of the ROM will have a high fractional part as it will only
need a single sign bit and a single integer bit. This means that we have the possibility to
have a very nice precision for the activation function value. For example if the output of
the activation function ROM is a vector with a 14-bit fractional part (from a bit 16-bit
vector with one sign bit and one integer bit for example), we can have values precise to
the 2−14, i.e. 6.1035 · 10−05.

Now that we have the structure of a neuron, we can deploy them to make our neural
network. In Figure 5.21 we represented our neural network structure.

We can see that we have our ten neurons from Figure 5.18 for the hidden layer that
receive the serial input data, and a single neuron with no activation function ROM at the

5. As an example, for a signed 4-bit vector written as two’s complement, the lowest value -8 is written
1000. Its corresponding address is 0000. For 7, written 0111, the address is 1111. This is true both for
integer and fixed-point bit vectors.

111

Figure 5.20 – Representation of the adaptations made on the bit vector from the accumu-
lator to fetch the value from the value from the activation function ROM. As an example
we took initial signed vectors with four bits integer part and three bits fractional part and
a ROM depth of 6.

Figure 5.21 – Structure of the neural network logical implementation for FPGA. Neurons
in the hidden layer refer to the neuron structure presented in Figure 5.18, output layer
neuron is the same, but with no activation function ROM.

112

output. Between the hidden layer and the output, we put a serializer, as all neurons from
the hidden layer will output their value at the same time, as they all work in parallel.

5.2.2.2 Simulation validation and resource utilization

We will now validate our ANN implementation for FPGA. We will begin by discussing
the different sizes in bits of the different values we are going to employ (inputs, weights,
activation function). It is an important consideration because the bigger the values of
these elements in bits, the more resources will be mobilized in the FPGA to implement
the neural network. As a reminder from Section 3.1.1, operations in an FPGA are carried
by Look Up Tables (LUTs) and data is stored using RAM, which have a limited size and
are in limited number in the fabric. Also the bigger the bit vectors, the harder it will be for
the implementation tools to route the different signals in the FPGA. Even though in our
particular application a relatively bad precision will not have a significant impact on the
SNR gain as shown in Figure 5.9, we still need to demonstrate that our neural network
solution is capable in other scenarios of outputting a precise enough value. Finally, to
potentially avoid the possibility of overflow for the accumulation, the weight bit vectors
should have a big enough integer part as discussed in Section 5.2.2.1.

Firstly, we settled for the inputs for unsigned vectors of 32 bits, with one bit for the
integer part. We based ourselves for the format of this vector from the files outputted from
a Finisar OSA. This led to some adaptation. Before doing any operation, we add a sign
bit to the bit vector to change it from unsigned to signed. This added bit doesn’t change
a lot the base of our system. This means that the bit vector coming in the multiplier of
the hidden layer neurons is 33 bits wide.

For the weights and the activation function, we can experiment and see some impact
from the values we decide to use. As we can see from the structure of the neural network
implementation in Figure 5.21, the size of the output bit vector will depend only on the
sizes of the weights and the activation function vectors. More precisely, following the rules
in Figure 5.19, the size of the output bit vector will be exactly:

Nbitsactivation + Nbitsweights + 1 (5.6)

This means that the precision of the result out of the FPGA will highly depend on the
precision of the weights (i.e. their size) and the precision of the activation function. The
precision on the activation function value will depend both on the size of the vector stored

113

Figure 5.22 – Simulation setup to validate our neural network and measure its performance
in terms of timing and precision.

in the ROMs (the width of the ROM), the number of values stored in the memories (the
depth of the ROM, which determines the step size of the stored function), but also directly
depends on the precision on the weights and the inputs, as they directly impact which
value of the activation function ROM is going to be fetched.

For the simulation validation, we generated and trained a neural network in Matlab. As
previously stated, the data set is comprised of 1760 251-samples spectra and is separated
in 80-10-10 proportions between Training, Validation and Test sets. This trained neural
network has been represented in Figures 5.13 through 5.17. We then put the generated
weights and the activation function into our logical implementation of the network. We
will store the full Test Set (i.e. 176 251-samples spectra) in a ROM that will provide the
input data for our simulation. Samples are already normalized and written as unsigned
32-bit bit vectors with a single bit integer part. We will firstly measure the time it takes for
our implementation to provide an output. Also, for each spectrum, we will compare using
MSE the resulting output ̂∆PF P GA from the FPGA with its corresponding ̂∆PMatlab from
the generated network in Matlab. This will provide us the precision of our implementation.
We will also test different sizes of bit vectors for the activation function and the weights
and numbers of activation function values stored in the ROMs. In all cases, weights are
written as signed bit vectors with 7-bit integer part, the activation function as signed bit
vectors with a one-bit integer part. The setup is represented in Figure 5.22.

In Figures 5.23 & 5.24 we show the simulation results and highlighted the timing
performance for the neurons and for the whole network respectively. As we can see, with

114

Figure 5.23 – Extract of the simulation results focused on a neuron of the network.

Figure 5.24 – Extract of the simulation result of the FPGA neural network.

a 100MHz (10ns period) clock, the neurons take 50ns after the last input has been acquired
by the neuron to have a valid output, or 2560ns if we count starting at when the first input
has been received by the network. Counting from the last input taken by the neuron, this
result is coherent with the data flow: one clock cycle for multiplication between weight
and input, one clock cycle to make the accumulation, one clock cycle to add the bias,
one clock cycle to transform the bit vector from the accumulator and a last one to fetch
the value from the activation function ROM. On the whole network level, it takes 200ns
from the last input fed into the network to the output of the ̂∆PF P GA result. This gives
a total of 2710ns from the first input to the output result. As an indicator we measured
in Matlab the time it takes to make the same operations. The median time to have an
output is 3.6ms 6. This is roughly a 753 times gain when compared to Matlab.

In Table 5.1 we provided the precision measurements in MSE of our FPGA neural
network against the one generated in Matlab. We have 12 different setups. The activation
function ROM depth values are 10, 11 or 12, which give 1024, 2048 and 4096 stored values
respectively, and step sizes of 15.6·10−3, 7.82·10−3 and 3.91.10−3 respectively following

6. Measured using the timeit function. This timing value is heavily dependent on multiple factors,
and as stated is given as indicator.

115

Activation
Function /
Weights

Depth:
210

Width:
16

Depth:
211

Width:
16

Depth:
212

Width:
16

Depth:
210

Width:
32

Depth:
211

Width:
32

Depth:
212

Width:
32

Width: 16 1.926.10−3 1.768.10−3 1.704.10−3 1.927.10−3 1.768.10−3 1.705.10−3

Width: 32 8.773.10−5 2.234.10−5 5.572.10−6 8.773.10−5 2.238.10−5 5.604.10−6

Table 5.1 – Mean Square Error of our FPGA Artificial Neural Network versus the same
one generated in Matlab (lower is better) with various weights ROM width and activation
function ROM depth and width.

Equation 5.5. The width of the activation function and weights ROMs are 16 or 32 bits.
We can see from the results that the MSE is at worst 1.926·10−3, and at best with our list
of setups 5.604·10−6. The precision even at its lowest is satisfactory for our application
as described earlier in 5.1.2, and extremely good at its highest for any other application.
In particular, the width of the weights bit vectors has a huge impact on the precision of
the network, which is expected as they impact both the result out of the network and
the value of the activation function out of each neuron. As an example, for an activation
function ROM with a depth of 10 and width of 16 bits, the MSE has a 21.9 times decrease
from 1.926·10−3 to 8.773·10−5 when switching the weights width from 16 to 32 bits.

Increasing the depth or width of the activation function ROM has limited effects on
the precision of the network comparatively. Increasing the depth of the activation function
ROM from 10 to 12 gives a 1.13 times decrease of MSE of 2.22·10−4 from 1.926·10−3 to
1.704·10−3 with weights at 16-bit width, and when 32 bits the decrease in MSE is 15.6fold
of 8.216·10−5, from 8.773·10−5 to 5.572·10−6, which is not a really substantial gain with
such an already good enough precision.

Lastly, changing the width of the activation function does not have a noticeable impact
on the precision at fixed depth and weights width. As stated before, the activation function
is written as a signed 16 or 32 bit vector with a single integer part bit, which means that
the value of the activation function is precise to the 2−14 and to the 2−30 respectively,
6.104.10−5 and 9.313·10−10 respectively. It is very likely that this increase in precision is
not important, as the starting value can be considered good enough for the operations of
the neural network. Also the weights have more impact on the different operations of the
network and benefit more from an increase in precision. Comparatively, increasing the
weights width from 16 to 32 makes the weights value precise from 2−8 to 2−24, 3.906·10−3

to 5.960·10−8, as they are written as signed bit vectors with a 7-bit integer part.

116

In Table 5.2 we represented the resource utilization results of the implementation of
our neural network. We implemented the ANN with the same set of possible setups as in
Table 5.1. We measured the usage of LUTs, Block RAM or Ultra Ram (in our specific
case, only URAM is used, BRAM is given as an indication if no URAM was available in
the FPGA) and DSP slices of a VCU118 Virtex Ultrascale+ FPGA evaluation board. In
all cases, LUT usage is contained, from 1316 at the lowest (10,16)/16 setup (respectively
the activation function ROM depth 210 bits, width 16 bits and the weights width 16 bits)
to 2407 at the highest (12,32)/32 setup. Also, we can see that increasing the weights
width roughly doubles the number of DSP used in the FPGA fabric from 22 to 42, and
greatly increases the base BRAM usage. However the URAM usage does not increase, and
only increases when we change the width and/or depth of the activation function ROM.
This is likely due to how the memories of our design are handled by the implementation
tool. In any case, the BRAM usage is high, starting at 62.4% usage (1348 cells) with
lowest settings and going up to 99.4% (2147 cells) at higher settings. This highlights that
depending on the targeted environment, memory usage of our design with the proposed
setups can be a problem, and could even prevent the design meeting timing constraints if
no memory with similar or higher density as URAM is available. We can make the same
remark with the DSP slices, whereas usage in our case is low relatively (0.32% or 0.64%),
on lower end FPGAs this could be problematic.

In conclusion, the choice of bit vectors width and ROM depth is a trade-off between
precision and overall occupancy of the resources of the FPGA. Depending on the applica-
tion requirements in precision and the targeted environment and its resource availability,
one must chose these parameters accordingly. But we can definitely say that the choice of
the bit vector weights is the most important of them all, as the gains in increasing the size
of the activation ROM width or depth does not provide a significant increase in precision.

5.2.3 Network weights update

One of the goals we want to achieve with our logical neural network structure is to be
able to remotely perform monitoring tasks for the control plane. The nonlinear contribu-
tions monitoring function we have presented takes as inputs optical spectra, which is a
data heavy metric that may delay the decision-making process, as data has to be retrieved
and processed before a decision can be made. As shown in Chapter 4, providing closer
to the device intelligence and decision power can increase the reactivity and reliability of
the optical network, as the centralized control plane has to monitor the whole network in

117

Setup | Resource Usage LUTs BRAM / URAM DSP
(10,16)/16 1316 (0.11%) 1348 / 7.5 (62.4% / 0.78%) 22 (0.32%)
(11,16)/16 1321 (0.11%) 1357 / 10 (62.8% / 1.04%) 22 (0.32%)
(12,16)/16 1335 (0.11%) 1365 / 15 (63.8% / 1.56%) 22 (0.32%)
(10,32)/16 1613 (0.14%) 1716 / 10 (79.4% / 1.04%) 22 (0.32%)
(11,32)/16 1623 (0.14%) 1726 / 15 (79.9% / 1.56%) 22 (0.32%)
(12,32)/16 1637 (0.14%) 1736 / 25 (80.4% / 2.60%) 22 (0.32%)
(10,16)/32 2087 (0.18%) 1790 / 7.5 (82.9% / 0.78%) 42 (0.61%)
(11,16)/32 2093 (0.18%) 1800 / 10 (83.3% / 1.04%) 42 (0.61%)
(12,16)/32 2105 (0.18%) 1810 / 15 (83.7% / 1.56%) 42 (0.61%)
(10,32)/32 2387 (0.20%) 2127 / 10 (98.4% / 1.56%) 44 (0.64%)
(11,32)/32 2395 (0.20%) 2137 / 15 (98.9% / 1.56%) 44 (0.64%)
(12,32)/32 2407 (0.20%) 2147 / 25 (99.4% / 2.60%) 44 (0.64%)

Table 5.2 – Summary of FPGA resource utilization of the implemented neural network
design. Setup (X,Y)/Z corresponds to the depth of the activation function ROM (2X values
stored), the width of the activation function bit vectors (Y bits) and the width of the weights
bit vectors (Z bits) respectively. BRAM (Block RAM, 18kb or 36kb) usage is given as an
indicator, as the implementation tool will fall back into using only the URAM (Ultra RAM,
288kb) indicated for our case. In short, the BRAM usage corresponds to the usage if the
FPGA didn’t have access to URAM.

real-time, which delays individual monitoring tasks. We believe that this neural network
structure that can be reconfigured by the control plane depending on the current needs
in terms of reliability and reactivity can help improve the optical network performance
overall. To achieve this, we will now implement the elements to update the weights in
the ANN logic to make our architecture more generic and able to reconfigure its current
function.

Neural network optimizations The first step in developing the weights update func-
tions is to allow to write into the memories. This implies some design choices. We based
ourselves on the fact that when updating the weights from one set to another, it is highly
probable that all the weights have to be updated at once. We are not therefore allowing
to cherry pick a weight to update, which would add unneeded complexity. So, to update
the weights of our neural network, one must provide all the new weights, sequentially, and
our logic should handle the addressing and proper writing of the new set.

In Figure 5.25 we pictured the new logical structure of the neuron. The first and
obvious change is to add a writing port to the memory, effectively changing it from a

118

Figure 5.25 – New logical implementation of the neuron allowing for weights re-writing.

ROM to a RAM. By providing the weights sequentially and a control signal indicating
when the weights are valid, we can control the writing of the neuron in the RAM by
re-using the counter used for reading the memory to handle the address, by placing an
OR gate that takes the input valid and weights valid signals before the counter.

On the network level, some other adaptations have to be made, as represented in
Figure 5.26. Contrary to how the serialized inputs are handled, all the weights do not
have to be handled by all neurons. The signal indicating that the weights are valid should
be sent at a neuron when its weights are inputted and be set low in any other case. We
handle this by putting a demultiplexer that sends the weights valid signal to the correct
neuron, thanks to counter that counts from 0 to 251 and which sends the number of full
counting cycles to the demultiplexer. This means that when the weights start arriving to
the logic, the counter is at 0, the number of cycles is null, so the weights are sent to the
first neuron of the hidden layer. Then after all 252 weights (one for each input and one for
the bias) of the first neuron has been sent, the number of cycles increments itself and the
second neuron receives the weights. This repeats for all the neurons of the network, with
the eleventh and last cycle being for the output neuron, as it has less weights to change.

Microblaze and Ethernet interface integration Now that we are able to write a
new set of weights in the logic, we can develop a setup to validate our neural network at
implementation stage. One aspect we want to show from our setup is that the function

119

Figure 5.26 – Highlight on the weight update logic for the FPGA ANN.

of the ANN can be reconfigured by re-writing the weights remotely, for example by a
centralized control plane. For this we can integrate a Microblaze soft processor in our
FPGA to fetch new weights and fetch the inputs of our network from another equipment
(for example an oscilloscope, an OSA etc. . . deployed in a node for example).

Introducing the processor in the design requires some adaptation. As it will provide
for us the inputs and the weights, the Microblaze and the ANN need to communicate with
each other. We have developed a wrapper for our neural network with a specific finite state
machine to handle the AXI4-Stream (Advanced eXtensible Interface 4-Stream) protocol
operations, which is compatible with the Microblaze. Specifications for the protocol are
available in [139]. The base signals for this protocol are the data signal, the transmitted
data that can be multiple bits wide, the data valid signal, that indicates if the data
signal contains valid values that should be captured by the receiver, and the ready signal
indicating that the receiver is able to receive data. Other optional signals can be used,
such as the data last signal, used when sending a packet, a contiguous series of data, and
indicating the end of a packet. This signal is implemented by default on the AXI4-Stream
ports of the Microblaze.

120

First of all, in the wrapper we will implement three AXI4-Stream ports, one for the
inputs of the network, one for the weights writing, and one for the output of the network.
As we used input valid, weights valid and output valid control signals in the logic, we can
directly use them for the protocol. As the number of expected values is known a priori, we
do not need to take into account the data last signal for the input ports. For the output, as
we output a single value, we can map the data valid signal to the data last signal. We only
need to program additional ready signals for the input ports to signify when our system
is able to receive data. We can let a AXI4-Stream First In First Out (FIFO) handle the
ready signal of the Microblaze for the output of the neural network. We handle the ready
signal for the input ports of the network simply by having them raised while nothing is
happening in the neural network, and when we receive data either weights or ANN input,
we put down the other. We do not want the weight update to start while input data are
sent to the neural network and vice versa. We also added a few clock cycles to reset the
logic of the ANN after an output has been produced, while the wrapper keeps the final
value up for the Microblaze. This wrapper finite state machine adds 30ns delay for the
logical ANN to output a value, as you can see in the simulation results of Figure 5.27.
In the Figure you can also see the Weights Ready signal from the wrapper being put to
0 when the Data In Valid is raised, and raised again after an output has been produced
and the logic has been resetted.

Figure 5.27 – Simulation extracts of the validation of the logical neural network wrapper.

Now that we have a way to communicate with the processor, we can integrate the
Microblaze in our design. We represented the full design for our setup in Figure 5.28.

As we can see, between the Microblaze and the logical neural network we will imple-
ment AXI4-Stream FIFOs. They will help us for two reasons. For the output port of the
network they will handle the ready signal of the Microblaze. For the input ports of the

121

Figure 5.28 – Schematization of our setup with a Microblaze soft processor, the logical
neural network and a web server to collect test sets and weights.

network, the FIFOs help concatenate the discontinuous flow of data from the Microblaze
into continuous packets to send to the neural network. Also, we will deploy a Raspberry
Pi with a web server to store the test sets and the weights the Microblaze will send to the
logical ANN. . This means we need to implement an Ethernet core (at 1Gbps in our case)
in the FPGA, coupled with Double-Data-Rate (DDR) RAM and a DMA (Direct Memory
Access) to handle the transfer of data to and from the processor. The Microblaze is run-
ning the FreeRTOS real-time operating system, with the lwip library [140] to handle the
TCP/IP stack and send HTTP request to the Raspberry Pi web server. An UART-USB
link is deployed between the Microblaze and a computer to retrieve data from the logical
processor.

5.2.4 Implementation and validation

We will now validate our setup, in Figure 5.29 we represented the main FreeRTOS
tasks we developed for our scenario. The first task is to handle the acquisition of data and
weights from the web server, the transmission to the neural network and the second to
handle the retrieval of the data from the neural network. We will firstly acquire from the
web server the test set associated with the weights that are set in the neural network at

122

Figure 5.29 – Tasks developed in the Microblaze to handle our validation scenario.

implementation stage and send them to the neural network. We will call this first set the
Initial Set. The weights associated with this Initial Set is from the neural network used
in simulation and represented in Figures 5.13 through 5.17. After all test set spectra for
this set has been sent to the network, we will fetch a new set of weights and send them
to the ANN. We will then fetch the test set associated with this set of weights and do
the same steps as previously. We will call this second test set the Final Set. As we send
the test sets we will collect the values out of the neural network and send them to a PC
via the UART-USB link. The test sets are written as 4 bytes hexadecimal unsigned fixed
point values, with a single bit integer part. The weight sets are written in the Raspberry
Pi test server and the FPGA as 2 bytes hexadecimal signed fixed point values, with 7 bits
integer part. The activation function ROMs is 10 bits deep and 16 bits wide. The main
logic is clocked with a 100MHz clock (10ns period). This gives processor ticks of 10ms for
the Microblaze with FreeRTOS.

In Table 5.3 we gathered the validation and timing results from the Microblaze. We
counted the number of values received from the neural network, their correspondence with
the simulation results, and the time to acquire all spectra from the webserver and all the
results from the neural network. First of all, we can see that we receive the correct number
of values from the neural network, with 100% correspondence with the simulation results.

123

Initial Set Final Set
Number of values acquired
from NN 176 (100%) 176 (100%)

Correspondence with simu-
lation values 100% 100%

Ticks to receive whole test
set from webserver 474 466

Average ticks to receive one
spectrum 2.693 2.648

Ticks to get all NN values 475 466
Average ticks between NN
values 2.699 2.648

Table 5.3 – Validation and timing results from the Microblaze processor. A tick corresponds
to 10ms. Ticks to receive whole test sets ommits the time to receive the HTTP header from
the web server (1 tick for Initial Set, 2 for Final Set).

The timing results show that the time to receive all 176 spectra from a test set from
the web server is near identical to the time to receive all output values from the neural
network. For the Initial Set, 474 ticks (4.74s) are necessary to receive the test set, and
475 ticks are necessary to receive all output data from the neural network. For the Final
Set both actions require 466 processor ticks.

In Figure 5.30 we show an extract from a capture of the transfer of data to and
from the neural network and the Microblaze. The capture was realized by an Integrated
Logic Analyzer clocked at 300MHz (3.33ns period, this clock was solely used for debug
purposes). As we can see, there are 69 clock period between the last input to the neural
network and the output of the ANN, which gives roughly 230ns for the neural network to
give an output, which is coherent with what we designed and validated in simulation in
Section 5.2.3.

We have validated our logical neural network implementation, which can be recon-
figured by changing the neuron weights remotely. We believe that this solution can be
improved upon by allowing the reconfiguration of the number of neurons in the hidden
layer and the number of inputs and outputs of the network and make this structure truly
flexible. This logical neural network could also be validated by being deployed in a net-
work testbed with a centralized control plane, with the control plane "activating" the
neural network by sending the weights, the number of neurons and inputs if such features
have been implemented, and other necessary info. The result of the neural network result

124

Figure 5.30 – Capture of the implemented neural network.

could be sent to the controller and could even trigger a reconfiguration of the optical net-
work hardware, possibly using the auto-negotiation protocol developed in Chapter 4. This
would show if and how this solution could accelerate the monitoring of the neural network
by processing underutilized and data-heavy metrics using FPGA hardware deployed in
the optical data plane. The solution shows promise to make neural networks more reliable
and more reactive, and can be a stepping stone for fully automatic reconfigurable optical
networks.

5.3 Conclusion

In this chapter we have developed and validated a logical ANN structure for FPGA.
We based ourselves on an ANN-based monitoring function that from an optical spectrum
outputs a launch power correction to have an ideal tradeoff between linear and nonlinear
optical contributions and maximize the SNR for the network structure and we allowed
for weights update to remotely change the function performed by the neural network. We
validated the network implementation in terms of precision and timing. We believe this
solution proves promising, as it will enable to provide advanced monitoring functions,
exploit underutilized optical metrics, relieve the control plane of some monitoring and
computing tasks, and would couple well with the auto-negotiation protocol presented
in Chapter 4 to improve the reliability and flexibility of optical networks and optical
hardware.

125

Chapter 6

CONCLUSION AND PERSPECTIVES

In this thesis work we have provided solutions to bring more intelligence to optical
transponder in the context of elastic optical networks. We believe that adding decision
making capabilities and the ability to realize synchronized change of parameters would
increase the whole optical transport network flexibility. We also believe that the control
plane could take advantage of the computational power we provide in the optical equip-
ment and perform remote monitoring tasks to gain performance, notably on underused
and data heavy metrics. The proposed solutions could be useful tools for the adoption of
fully automated and highly flexible optical networks of the future.

In more details, our contributions were:
1. We designed and validated an auto-negotiation protocol for optical transponders,

where changes of parameters can be negotiated, acknowledged and performed by
inserting messages in the traffic. We deigned this protocol so that fast synchronized
changes of parameters can be performed, with incompatibilities prevention and
make possible changes of parameters with no loss of data.

2. We developed an embedded monitoring solution for commercial optical transpon-
ders, and studied the evolution of the received power and the evolution of the
regression function line of this metric in case of a quick or slow degradation, so
that we can trigger our auto-negotiation protocol at the appropriate time to restore
the quality of service.

3. We integrated our auto-negotiation protocol and embedded monitoring setup with
a commercial optical transponder and validated it inside a network testbed with
a centralized control plane. We added a notification service in our setup to make
our solution compatible with SDN optical control plane, and measure our setup
in terms of performance in detecting a degradation and restoring the quality of
service. Our solution proved roughly two times faster than the control plane and
less time variable to perform these tasks, showcasing the possible time gains in
providing close to the hardware intelligence.

126

4. We integrated our auto-negotiation solution with a real-time baudrate variable
setup where we trigger a synchronized change of parameters.

5. We developed an FPGA-based neural network. We based ourselves on an ANN
structure for nonlinear contributions monitoring, by taking optical spectra as in-
puts, and outputting a power correction to maximize the SNR. We validated it in
terms of precision against a Matlab implementation.

6. We implemented a neuron weight update mechanism for our FPGA ANN, which
enables the reconfiguration of the function performed by the neural network and
remote monitoring by the control plane. We validated it using a web server to fetch
both the inputs of our network and the corresponding set of weights.

This work can be extended in multiple ways, notably:

1. The auto-negotiation protocol can be utilized more thoroughly with the baudrate
variable setup. It could be used to reconfigure more parameters than the baudrate,
and we could integrate this setup inside a network testbed with a control plane.
We could trigger different degradations and showcase that we are able to perform
the right adaptation for the degradation to restore the quality of service.

2. We developed a notification solution for control plane interaction, but full data
models development and integration with currently used protocols for data and
control plane interactions would be a plus.

3. The FPGA-based neural network could be developed to be more reconfigurable.
The reconfigurability of the weights is a start for full flexibility, but being able to
reconfigure at least the number of inputs and the number of outputs would help
greatly in allowing more use-cases for it. Ideally, the reconfigurability of the whole
hidden layer, from the number of neurons, the activation functions and even the
number of layers, would enable even more possibilities.

4. The neural network solution could be integrated with the embedded monitoring
and auto-negotiation setup, and be tested in a network testbed environment to
make real-time measurements, and trigger the auto-negotiation solution when a
degradation is detected or an optimization of a transponder parameter can be
performed. This would also be an opportunity to showcase the remote monitoring
possibility for the control plane.

5. A solution for the weights distribution for the developed neural network could be
developed, that could allow for example the deployment and update of the neural

127

network solution at multiple points of the network.

128

BIBLIOGRAPHY

[1] Cisco, “Cisco visual networking indec (2017-2022).” [Online; available 2021]
https://oarklibrary.com/file/2/be52d44d-f201-475b-876d-6649efa14d85/e5235174-
57e4-419c-a1bd-832c9fea6d07.pdf.

[2] P. Layec, A. Dupas, D. Verchère, K. Sparks, and S. Bigo, “Will metro networks be
the playground for (true) elastic optical networks?,” Journal of Lightwave Technol-
ogy, vol. 35, p. 1260–1266, Mar 2017.

[3] I. T. union (ITU), “G.694.1 : spectral grids for wdm applications: Dwdm frequency
grid.” [Online; available 2021] https://www.itu.int/rec/T-REC-G.694.1/en.

[4] H. Kim and N. Feamster, “Improving network management with software defined
networking,” IEEE Communications Magazine, vol. 51, p. 114–119, Feb 2013.

[5] F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi, “Network telemetry stream-
ing services in sdn-based disaggregated optical networks,” Journal of Lightwave
Technology, vol. 36, p. 3142–3149, Aug 2018.

[6] R. Muñoz, R. Vilalta, R. Casellas, R. Martínez, T. Szyrkowiec, A. Autenrieth,
V. Lopez, and D. Lopez, “Sdn/nfv orchestration for dynamic deployment of virtual
sdn controllers as vnf for multi-tenant optical networks,” in Optical Fiber Commu-
nication Conference (2015), paper W4J.5, p. W4J.5, Optical Society of America,
Mar 2015.

[7] M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical
transponder for efficient multilayer optical networking,” IEEE Communications
Magazine, vol. 50, no. 5, pp. 56–65, 2012.

[8] E. Riccardi, P. Gunning, O. G. de Dios, M. Quagliotti, V. Lopez, and A. Lord, “An
operator view on the introduction of white boxes into optical networks,” Journal of
Lightwave Technology, vol. 36, no. 15, pp. 3062–3072, 2018.

[9] K. Christodoulopoulos, C. Delezoide, N. Sambo, A. Kretsis, I. Sartzetakis, A. Sgam-
belluri, N. Argyris, G. Kanakis, P. Giardina, G. Bernini, and et al., “Toward
efficient, reliable, and autonomous optical networks: the orchestra solution [in-

129

vited],” IEEE/OSA Journal of Optical Communications and Networking, vol. 11,
p. C10–C24, Sep 2019.

[10] L. Velasco and M. Ruiz, “Optical network automation [invited tutorial],” in 2020
22nd International Conference on Transparent Optical Networks (ICTON), p. 1–4,
Jul 2020.

[11] Xilinx, “Microblaze soft processor core.” [Online; avalaible 2021]
https://www.xilinx.com/products/design-tools/microblaze.html.

[12] FreeRTOS, “Real-time operating system for microcontrollers.” [Online; available
2021] https://www.freertos.org/.

[13] C. S. Turner, “Slope filtering: An fir approach to linear regression,” IEEE Signal
Processing Magazine, vol. 25, p. 159–163, Nov 2008.

[14] D. Rafique and L. Velasco, “Machine learning for network automation: Overview, ar-
chitecture, and applications [invited tutorial],” Journal of Optical Communications
and Networking, vol. 10, p. D126–D143, Oct 2018.

[15] M. Lonardi, J. Pesic, P. Jennevé, P. Ramantanis, N. Rossi, A. Ghazisaeidi, and
S. Bigo, “Optical nonlinearity monitoring and launch power optimization by artifi-
cial neural networks,” Journal of Lightwave Technology, vol. 38, p. 2637–2645, May
2020.

[16] Cisco, “Cisco annual internet report (2018-2023).” [Online; avail-
able 2021] https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[17] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel, D. Wagner,
M. Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez, O. Hohlfeld, and G. Smarag-
dakis, “Implications of the covid-19 pandemic on the internet traffic,” in Broadband
Coverage in Germany; 15th ITG-Symposium, p. 1–5, Mar 2021.

[18] F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical
waveguides,” Applied Physics Letters, vol. 17, p. 423–425, Nov 1970.

[19] M.-J. Li, “Optical fiber evolution over the past 5 decades,” in Frontiers in Optics /
Laser Science (2020), paper FM4D.1, p. FM4D.1, Optical Society of America, Sep
2020.

[20] H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 gb/s coherent
system,” Optics Express, vol. 16, p. 873–879, Jan 2008.

130

[21] International Telecom Union (ITU), “G.709 : Interfaces for the optical transport
network.” [Online; available 2021] https://www.itu.int/rec/T-REC-G.709/en.

[22] International Telecom Union (ITU), “Series G: Transmission systems and me-
dia, digital systems and networks, supplement 43: Transport of IEEE 10GBASE-
R in optical transport networks (OTN).” [Online; available 2021] https :
//www.itu.int/rec/dologinpub.asp?lang = e&id = T −REC −G.Sup43−201102−
I!!PDF − E&type = items.

[23] M. Jinno, “Elastic optical networking: Roles and benefits in beyond 100-gb/s era,”
Journal of Lightwave Technology, vol. 35, p. 1116–1124, Mar 2017.

[24] B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic
optical networks: A tutorial,” IEEE Communications Surveys Tutorials, vol. 17,
no. 3, p. 1776–1800, 2015.

[25] Y. R. Zhou and K. Smith, “Practical innovations enabling scalable optical transmis-
sion networks: Real-world trials and experiences of advanced technologies in field
deployed optical networks,” Journal of Lightwave Technology, vol. 38, p. 3106–3113,
Jun 2020.

[26] G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance
of nyquist-wdm terabit superchannels based on pm-bpsk, pm-qpsk, pm-8qam or pm-
16qam subcarriers,” Journal of Lightwave Technology, vol. 29, p. 53–61, Jan 2011.

[27] J. M. Simmons, Optical Network Design and Planning. Springer, May 2014. Google-
Books-ID: SlclBAAAQBAJ.

[28] P. G. Arbués, C. M. Machuca, and A. Tzanakaki, “Comparative study of existing
oadm and oxc architectures and technologies from the failure behavior perspective,”
Journal of Optical Networking, vol. 6, p. 123–133, Feb 2007.

[29] L. Zong, G. N. Liu, H. Zhao, T. Ma, and A. Lord, “Ultra-compact contentionless
roadm architecture with high resilience based on flexible wavelength router,” in
Optical Fiber Conference (OFC) 2014, p. 1–3, Mar 2014.

[30] L. Lu, Y. Li, L. Zong, B. Mukherjee, and G. Shen, “Asymmetric cdc roadms for effi-
cient support of bi-directionally asymmetric traffic demands,” Journal of Lightwave
Technology, vol. 39, p. 4572–4583, Jul 2021.

[31] A. Castro, L. Velasco, M. Ruiz, and J. Comellas, “Single-path provisioning with
multi-path recovery in flexgrid optical networks,” in 2012 IV International Congress
on Ultra Modern Telecommunications and Control Systems, p. 745–751, Oct 2012.

131

[32] A. Mecozzi and R.-J. Essiambre, “Nonlinear shannon limit in pseudolinear coherent
systems,” Journal of Lightwave Technology, vol. 30, p. 2011–2024, Jun 2012.

[33] H. Yang, P. Wright, B. Robertson, P. Wilkinson, P. R. Dolan, A. Lord, and D. Chu,
“Impact of wss filtering penalty on the capacity of elastic wdm ring optical net-
works,” in Optical Fiber Communication Conference, p. Th2A.43, OSA, 2018.

[34] R. Alvizu and G. Maier, “Can open flow make transport networks smarter and
dynamic? an overview on transport sdn,” in 2014 International Conference on Smart
Communications in Network Technologies (SaCoNeT), p. 1–6, Jun 2014.

[35] S. Dizdarević, H. Dizdarević, M. Škrbić, and N. Hadžiahmetović, “A survey on
transition from gmpls control plane for optical multilayer networks to sdn control
plane,” in 2016 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), p. 537–544, May 2016.

[36] L. Gifre, J.-L. Izquierdo-Zaragoza, M. Ruiz, and L. Velasco, “Autonomic disaggre-
gated multilayer networking,” Journal of Optical Communications and Networking,
vol. 10, p. 482, May 2018.

[37] L. Gifre, F. Boitier, C. Delezoide, M. Ruiz, M. Buffa, A. Morea, R. Casellas, L. Ve-
lasco, and P. Layec, “Demonstration of monitoring and data analytics-triggered
reconfiguration in partially disaggregated optical networks,” Optical Fiber Commu-
nication Conference (OFC) 2020 (2020), paper M3Z.19, p. M3Z.19, Mar 2020.

[38] Z. Dong, F. N. Khan, Q. Sui, K. Zhong, C. Lu, and A. P. T. Lau, “Optical perfor-
mance monitoring: A review of current and future technologies,” Journal of Light-
wave Technology, vol. 34, p. 525–543, Jan 2016.

[39] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tor-
natore, “An overview on application of machine learning techniques in optical net-
works,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, p. 1383–1408, 2019.

[40] F. N. Khan, C. Lu, and A. P. T. Lau, “Optical performance monitoring in fiber-optic
networks enabled by machine learning techniques,” in 2018 Optical Fiber Commu-
nications Conference and Exposition (OFC), p. 1–3, Mar 2018.

[41] T. Panayiotou, G. Savva, B. Shariati, I. Tomkos, and G. Ellinas, “Machine learning
for qot estimation of unseen optical network states,” in Optical Fiber Communication
Conference (OFC) 2019, p. Tu2E.2, OSA, 2019.

[42] T. Tanaka, S. Kuwabara, H. Nishizawa, T. Inui, S. Kobayashi, and A. Hirano, “Field
demonstration of real-time optical network diagnosis using deep neural network

132

and telemetry,” in 2019 Optical Fiber Communications Conference and Exhibition
(OFC), p. 1–3, Mar 2019.

[43] E. Giacoumidis, Y. Lin, M. Blott, and L. P. Barry, “Real-time machine learning
based fiber-induced nonlinearity compensation in energy-efficient coherent optical
networks,” APL Photonics, vol. 5, p. 041301, Apr 2020.

[44] S. Varughese, J. Langston, V. A. Thomas, S. Tibuleac, and S. E. Ralph, “Imple-
menting dacs in high speed optical link simulations,” in Advanced Photonics 2017
(IPR, NOMA, Sensors, Networks, SPPCom, PS), p. SpTh1F.2, OSA, 2017.

[45] M. Birk, P. Gerard, R. Curto, L. E. Nelson, X. Zhou, P. Magill, T. J. Schmidt,
C. Malouin, B. Zhang, E. Ibragimov, and et al., “Real-time single-carrier coherent
100 gb/s pm-qpsk field trial,” Journal of Lightwave Technology, vol. 29, p. 417–425,
Feb 2011.

[46] C. Li, Z. Zhang, J. Chen, T. Ding, Z. Xiao, F. Shah, J. Mitra, H. Xiang, and
X. Cui, “Advanced dsp for single-carrier 400-gb/s pdm-16qam,” in Optical Fiber
Communication Conference (2016), p. W4A.4, OSA, 2016.

[47] G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos,
“A survey on fec codes for 100 g and beyond optical networks,” IEEE Communica-
tions Surveys Tutorials, vol. 18, no. 1, p. 209–221, 2016.

[48] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase
codes: Fec for 100 gb/s otn,” Journal of Lightwave Technology, vol. 30, p. 110–117,
Jan 2012. arXiv: 1201.4106.

[49] I. Djordjevic, O. Milenkovic, and B. Vasic, “Generalized low-density parity-check
codes for optical communication systems,” Journal of Lightwave Technology, vol. 23,
no. 5, pp. 1939–1946, 2005.

[50] L. Schmalen, D. Suikat, D. Rösener, V. Aref, A. Leven, and S. ten Brink, “Spatially
coupled codes and optical fiber communications: An ideal match?,” in 2015 IEEE
16th International Workshop on Signal Processing Advances in Wireless Communi-
cations (SPAWC), pp. 460–464, 2015.

[51] D. Rafique, T. Rahman, A. Napoli, and B. Spinnler, “Digital pre-emphasis in opti-
cal communication systems: On the nonlinear performance,” Journal of Lightwave
Technology, vol. 33, p. 140–150, Jan 2015.

[52] D. Rafique, N. Eiselt, H. Griesser, B. Wohlfeil, M. Eiselt, and J.-P. Elbers, “Digital
pre-emphasis based system design trade-offs for 64 gbaud coherent data center inter-

133

connects,” in 2017 19th International Conference on Transparent Optical Networks
(ICTON), p. 1–4, Jul 2017.

[53] A. Napoli, P. W. Berenguer, T. Rahman, G. Khanna, M. M. Mezghanni, L. Gardian,
E. Riccardi, A. C. Piat, S. Calabrò, S. Dris, and et al., “Digital pre-compensation
techniques enabling high-capacity bandwidth variable transponders,” Optics Com-
munications, vol. 409, p. 52–65, Feb 2018.

[54] G. Khanna, S. Calabrò, B. Spinnler, E. De Man, and N. Hanik, “Joint adaptive
pre-compensation of transmitter i/q skew and frequency response for high order
modulation formats and high baud rates,” in Optical Fiber Communication Confer-
ence, p. M2G.4, OSA, 2015.

[55] K. Kikuchi, “Polarization-demultiplexing algorithm in the digital coherent receiver,”
in 2008 Digest of the IEEE/LEOS Summer Topical Meetings, p. 101–102, Jul 2008.

[56] I. Fatadin, D. Ives, and S. Savory, “Blind equalization and carrier phase recovery
in a 16-qam optical coherent system,” Journal of Lightwave Technology, vol. 27,
p. 3042–3049, Aug 2009.

[57] M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers em-
ploying multilevel formats,” Journal of Lightwave Technology, vol. 35, p. 1125–1141,
Mar 2017.

[58] M. Pajovic, D. S. Millar, T. Koike-Akino, R. Maher, D. Lavery, A. Alvarado,
M. Paskov, K. Kojima, K. Parsons, B. C. Thomsen, and et al., “Experimental
demonstration of multi-pilot aided carrier phase estimation for dp-64qam and dp-
256qam,” in 2015 European Conference on Optical Communication (ECOC), p. 1–3,
Sep 2015.

[59] R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “Inp
mach–zehnder modulator platform for 10/40/100/200-gb/s operation,” IEEE Jour-
nal of Selected Topics in Quantum Electronics, vol. 19, p. 158–166, Nov 2013.

[60] X. Chen and S. Chandrasekhar, Springer Handbook of Optical Networks, ch. Optical
Transponder Components, p. 137–154. Springer International Publishing, 2020.

[61] Small Form Factor Committee, “Sfp (small formfactor pluggable) transceiver,” 2001.
[Online; avalaible 2021] https://members.snia.org/document/dl/26184.

[62] CFP Multi-Source Agreement, “Cfp specifications.” [Online; available 2022]
https://www.cfp-msa.org.

134

[63] A. Akrami, M. Doostizadeh, and F. Aminifar, “Power system flexibility: an overview
of emergence to evolution,” Journal of Modern Power Systems and Clean Energy,
vol. 7, no. 5, pp. 987–1007, 2019.

[64] M. K. A. Rahim, M. R. Hamid, N. A. Samsuri, N. A. Murad, M. F. M. Yusoff, and
H. A. Majid, “Frequency reconfigurable antenna for future wireless communication
system,” in 2016 46th European Microwave Conference (EuMC), p. 965–970, Oct
2016.

[65] A. Olewnik and K. Lewis, “A decision support framework for flexible system design,”
Journal of Engineering Design, vol. 17, p. 75–97, Jan 2006.

[66] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei, “A survey of
coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and
applications,” ACM Computing Surveys, vol. 52, p. 1–39, Jan 2020.

[67] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing the limits
of accelerator efficiency while retaining programmability,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pp. 27–39,
2016.

[68] F. Berthelot, F. Nouvel, and D. Houzet, “A flexible system level design methodology
targeting run-time reconfigurable fpgas,” EURASIP Journal on Embedded Systems,
vol. 2008, p. 1–18, 2008.

[69] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing architectures,”
Proceedings of the IEEE, vol. 103, p. 332–354, Mar 2015.

[70] Xilinx, “7 series fpgas configurable logic block user guide (ug474),” 2016.
[Online; available 2021] https://www.xilinx.com/support/documentation/user_-
guides/ug474_7Series_CLB.pdf.

[71] I. Tomkos, S. Azodolmolky, J. Solé-Pareta, D. Careglio, and E. Palkopoulou, “A
tutorial on the flexible optical networking paradigm: State of the art, trends, and
research challenges,” Proceedings of the IEEE, vol. 102, p. 1317–1337, Sep 2014.

[72] R. Pastorelli, G. Bosco, S. Piciaccia, and F. Forghieri, “Network planning strategies
for next-generation flexible optical networks [invited],” Journal of Optical Commu-
nications and Networking, vol. 7, p. A511, Mar 2015.

[73] R. Casellas, R. Martínez, R. Vilalta, and R. Muñoz, “Control, management, and
orchestration of optical networks: Evolution, trends, and challenges,” Journal of
Lightwave Technology, vol. 36, p. 1390–1402, Apr 2018.

135

[74] Internet Engineering Task Force, “Yang - a data modeling language for
the network configuration protocol (netconf).” [Online; available 2022]
https://datatracker.ietf.org/doc/rfc6020.

[75] J. Akhtar, “Yang modeling of network elements for the management and monitoring
of elastic optical networks,” in 2015 IEEE International Conference on Telecommu-
nications and Photonics (ICTP), p. 1–5, Dec 2015.

[76] OpenConfig, “Vendor neutral, model-driven network management.” [Online; avail-
able 2021] https://www.openconfig.net.

[77] OpenROADM, “The open roadm multi-source agreement (msa) defines interop-
erability specifications for reconfigurable optical add/drop multiplexers (roadm).”
[Online; available 2021] http://openroadm.org/.

[78] T. Szyrkowiec, A. Autenrieth, and W. Kellerer, “Optical network models and their
application to software-defined network management,” International Journal of Op-
tics, vol. 2017, p. 1–9, 2017.

[79] Internet Engineering Task Force, “Network configuration protocol (netconf).” [On-
line; available 2021] https://datatracker.ietf.org/doc/html/rfc6241.

[80] gRPC, “A high performance, open source universal rpc framework.” [Online; avail-
able 2021] https://grpc.io/.

[81] gNMI, “Unified management protocol for streaming telemetry and configuration
management that leverages the open source grpc framework..” [Online; available
2021] https://github.com/openconfig/reference/tree/master/rpc/gnmi.

[82] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges,” IEEE
Communications Surveys Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[83] T. Lan, Q. Han, H. Fan, and J. Lan, “Fpga-based packets processing acceleration
platform for vnf,” in 2017 8th IEEE International Conference on Software Engi-
neering and Service Science (ICSESS), pp. 314–317, 2017.

[84] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet, “Vnf-aapc: Accelerator-
aware vnf placement and chaining,” Computer Networks, vol. 177, p. 107329, 2020.

[85] N. Rossi, T. Zami, and J. Pesic, “Does ageing of margins become more attractive
in wdm networks with 64 gbaud transponders and regenerators?,” in 45th European
Conference on Optical Communication (ECOC 2019), p. 1–4, Sep 2019.

136

[86] M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and
L. Potí, “A survey of optical carrier generation techniques for terabit capacity
elastic optical networks,” IEEE Communications Surveys Tutorials, vol. 20, no. 1,
p. 211–263, 2018.

[87] A. Napoli, M. Bohn, D. Rafique, A. Stavdas, N. Sambo, L. Poti, M. Nölle, J. K. Fis-
cher, E. Riccardi, A. Pagano, A. Di Giglio, M. S. Moreolo, J. M. Fabrega, E. Hugues-
Salas, G. Zervas, D. Simeonidou, P. Layec, A. D’Errico, T. Rahman, and J. P. F.-P.
Giménez, “Next generation elastic optical networks: The vision of the european re-
search project idealist,” IEEE Communications Magazine, vol. 53, p. 152–162, Feb
2015.

[88] H. Y. Choi, T. Tsuritani, and I. Morita, “Ber-adaptive flexible-format transmitter
for elastic optical networks,” Optics Express, vol. 20, p. 18652–18658, Aug 2012.

[89] H. Y. Choi, T. Tsuritani, and I. Morita, “Multi-format and multi-rate transmitter
for flexible and elastic optical networks,” in 2012 17th Opto-Electronics and Com-
munications Conference, p. 773–774, Jul 2012.

[90] H. Takara, T. Goh, K. Shibahara, K. Yonenaga, S. Kawai, and M. Jinno, “Ex-
perimental demonstration of 400 gb/s multi-flow, multi-rate, multi-reach optical
transmitter for efficient elastic spectral routing,” in 37th European Conference and
Exposition on Optical Communications (2011), paper Tu.5.A.4, p. Tu.5.A.4, Optical
Society of America, Sep 2011.

[91] S. Yan, A. F. Beldachi, F. Qian, K. Kondepu, Y. Yan, C. Jackson, R. Nejabati, and
D. Simeonidou, “Demonstration of real-time modulation-adaptable transmitter,” in
2017 European Conference on Optical Communication (ECOC), p. 1–3, Sep 2017.

[92] R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer,
B. Nebendahl, C. Koos, J. Becker, W. Freude, and et al., “Real-time software-defined
multiformat transmitter generating 64qam at 28 gbd,” IEEE Photonics Technology
Letters, vol. 22, p. 1601–1603, Nov 2010.

[93] Y. R. Zhou, K. v. Smith, S. West, M. Johnston, J. Weatherhead, P. Weir, J. Ham-
mond, A. Lord, J. Chen, W. Pan, and et al., “Field trial demonstration of real-time
optical superchannel transport up to 5.6 tb/s over 359 km and 2 tb/s over a live 727
km flexible grid optical link using 64 gbaud software configurable transponders,”
Journal of Lightwave Technology, vol. 35, p. 499–505, Feb 2017.

137

[94] B. Baeuerle, A. Josten, F. Abrecht, M. Eppenberger, E. Dornbierer, D. Hillerkuss,
and J. Leuthold, “Multi-format carrier recovery for coherent real-time reception
with processing in polar coordinates,” Optics Express, vol. 24, p. 25629–25640, Oct
2016.

[95] A. Napoli, M. Nölle, D. Rafique, J. K. Fischer, B. Spinnler, T. Rahman, M. M.
Mezghanni, and M. Bohn, “On the next generation bandwidth variable transponders
for future flexible optical systems,” in 2014 European Conference on Networks and
Communications (EuCNC), pp. 1–5, 2014.

[96] C. Dorize, P. Layec, and G. Charlet, “Dsp power balancing for multi-format wdm
receiver,” in 2014 The European Conference on Optical Communication (ECOC),
pp. 1–3, 2014.

[97] C. Kachris, G. Tzimpragos, D. Soudris, and I. Tomkos, “Reconfigurable fec codes
for software-defined optical transceivers,” in 2014 13th International Conference on
Optical Communications and Networks (ICOCN), p. 1–4, Nov 2014.

[98] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka,
“Spectrum-efficient and scalable elastic optical path network: architecture, bene-
fits, and enabling technologies,” IEEE Communications Magazine, vol. 47, no. 11,
pp. 66–73, 2009.

[99] N. Sambo, P. Castoldi, A. D’Errico, E. Riccardi, A. Pagano, M. S. Moreolo, J. M.
Fàbrega, D. Rafique, A. Napoli, S. Frigerio, and et al., “Next generation slice-
able bandwidth variable transponders,” IEEE Communications Magazine, vol. 53,
p. 163–171, Feb 2015.

[100] T. Tanaka, A. Hirano, and M. Jinno, “Impact of transponder architecture on the
scalability of optical nodes in elastic optical networks,” IEEE Communications Let-
ters, vol. 17, no. 9, pp. 1846–1848, 2013.

[101] V. Lopez, A. González De Dios, O. Gerstel, N. Amaya, G. Zervas, D. Sime-
onidou, and J. P. Fernandez-Palacios, “Target cost for sliceable bandwidth vari-
able transponders in a real core network,” in 2013 Future Network Mobile Summit,
pp. 1–9, 2013.

[102] J. P. Fernandez-Palacios, V. Lopez, B. Cruz, and O. G. de Dios, “Elastic optical
networking: An operators perspective,” in 2014 The European Conference on Optical
Communication (ECOC), pp. 1–3, 2014.

138

[103] Y. Ou, A. Hammad, S. Peng, R. Nejabati, and D. Simeonidou, “Online and of-
fline virtualization of optical transceiver,” Journal of Optical Communications and
Networking, vol. 7, p. 748–760, Aug 2015.

[104] R. Martínez, R. Casellas, M. S. Moreolo, J. M. Fabrega, R. Vilalta, R. M.
noz, L. Nadal, and J. P. Fernández-Palacios, “Proof-of-concept validation of sdn-
controlled vcsel-based s-bvts in flexi-grid optical metro networks,” in Optical Fiber
Communication Conference (OFC) 2019, p. W1G.5, Optical Society of America,
2019.

[105] N. Sambo, G. Meloni, F. Paolucci, M. Imran, F. Fresi, F. Cugini, P. Castoldi,
and L. Poti, “First demonstration of sdn-controlled sbvt based on multi-wavelength
source with programmable and asymmetric channel spacing,” in 2014 The European
Conference on Optical Communication (ECOC), pp. 1–3, 2014.

[106] V. Katopodis, D. Felipe, C. Tsokos, P. Groumas, M. Spyropoulou, A. Beretta,
A. Dede, M. Quagliotti, A. Pagano, A. Vannucci, N. Keil, H. Avramopoulos, and
C. Kouloumentas, “Multi-flow transmitter based on polarization and optical car-
rier management on optical polymers,” IEEE Photonics Technology Letters, vol. 28,
no. 11, pp. 1169–1172, 2016.

[107] Ujjwal and T. Jaisingh, “Design and development of a new architecture of sliceable
bandwidth variable transponder,” Opto-Electronics Review, vol. 25, p. 46–53, May
2017.

[108] L. Velasco, A. Castro, A. Asensio, M. Ruiz, G. Liu, C. Qin, R. Proietti, and S. J. B.
Yoo, “Meeting the requirements to deploy cloud ran over optical networks,” J. Opt.
Commun. Netw., vol. 9, pp. B22–B32, Mar 2017.

[109] Telecom Infra Project (TIP) Open Optical and Packet Transport (OOPT) work-
ing group, “Tai (transponder abstraction interface) repository and documentation.”
[Online; available 2022] https://github.com/Telecominfraproject/oopt-tai.

[110] N. Sambo, K. Christodoulopoulos, N. Argyris, P. Giardina, C. Delezoide, A. Sgam-
belluri, A. Kretsis, G. Kanakis, F. Fresi, G. Bernini, and et al., “Experimental
demonstration of a fully disaggregated and automated white box comprised of differ-
ent types of transponders and monitors,” Journal of Lightwave Technology, vol. 37,
p. 824–830, Feb 2019.

[111] G. Francia, R. Nagase, W. Ishida, Y. Sone, L. Kumar, S. Krishnamohan, and
V. Lopez, “Disaggregated packet transponder field demonstration exercising multi-

139

format transmission with multi-vendor, open packet optical network elements,” in
Optical Fiber Communication Conference (OFC) 2020, p. Th3A.1, OSA, 2020.

[112] M. Scaffardi, V. Vercesi, A. Sgambelluri, and A. Bogoni, “Hitless reconfiguration
of a ppln-based multiwavelength source for elastic optical networks,” Journal of
Optical Communications and Networking, vol. 8, p. 85, Feb 2016.

[113] A. Dupas, P. Layec, D. Verchere, V. Quan Pham, and S. Bigo, “Ultra-fast hitless
100gbit/s real-time bandwidth variable transmitter with sdn optical control,” in
Optical Fiber Conference (OFC) 2018, Nov 2018.

[114] V. N. Rozental and D. A. A. Mello, “Hitless rate switching for dynamically recon-
figurable optical systems,” IEEE Photonics Journal, vol. 7, no. 2, pp. 1–9, 2015.

[115] N. Sambo, A. Giorgetti, F. Cugini, and P. Castoldi, “Sliceable transponders: Pre-
programmed oam, control, and management,” Journal of Lightwave Technology,
vol. 36, p. 1403–1410, Apr 2018.

[116] B. Spinnler, A. X. Lindgren, U. Andersen, S. Melin, J. Slovak, W. Schairer, K. Pul-
verer, J. Mårtensson, E. De Man, G. Khanna, and et al., “Autonomous intelligent
transponder enabling adaptive network optimization in a live network field trial,”
Journal of Optical Communications and Networking, vol. 11, p. C1, Sep 2019.

[117] Z. Zhang and C. Li, “Hitless multi-rate coherent transceiver,” in Advanced Photonics
2015 (2015), paper SpS3D.2, p. SpS3D.2, Optical Society of America, Jun 2015.

[118] V. N. Rozental, G. Bruno, M. Camera, and D. A. A. Mello, “Novel equalizer archi-
tecture for hitless rate switching in energy-efficient optical systems,” in OFC 2014,
p. 1–3, Mar 2014.

[119] D. W. Boertjes, M. Reimer, and D. Côté, “Practical considerations for near-zero
margin network design and deployment [invited],” Journal of Optical Communica-
tions and Networking, vol. 11, p. C25–C34, Sep 2019.

[120] P. Ramantanis, C. Delezoide, P. Layec, and S. Bigo, “Revisiting the calculation of
performance margins in monitoring-enabled optical networks,” Journal of Optical
Communications and Networking, vol. 11, p. C67–C75, Oct 2019.

[121] S. Yan, A. Aguado, Y. Ou, R. Wang, R. Nejabati, and D. Simeonidou, “Multilayer
network analytics with sdn-based monitoring framework,” IEEE/OSA Journal of
Optical Communications and Networking, vol. 9, p. A271–A279, Feb 2017.

140

[122] L. Velasco, L. Gifre, J.-L. Izquierdo-Zaragoza, F. Paolucci, A. P. Vela, A. Sgambel-
luri, M. Ruiz, and F. Cugini, “An architecture to support autonomic slice network-
ing,” Journal of Lightwave Technology, vol. 36, p. 135–141, Jan 2018.

[123] J. E. Simsarian, M. N. Hall, G. Hosangadi, J. Gripp, W. v. Raemdonck, J. Yu, and
T. Sizer, “Stream processing for optical network monitoring with streaming teleme-
try and video analytics,” in 2020 European Conference on Optical Communications
(ECOC), p. 1–4, Dec 2020.

[124] N. Sambo, A. Sgambelluri, F. Cugini, A. D’Errico, and P. Castoldi, “Enabling locally
automated reconfigurations in disaggregated networks,” in 2019 24th OptoElectron-
ics and Communications Conference (OECC) and 2019 International Conference
on Photonics in Switching and Computing (PSC), p. 1–3, Jul 2019.

[125] Excel Support Team, “Slope function.” [Online; available 2021]
https://support.microsoft.com/en-us/office/slope-function-11fb8f97-3117-4813-
98aa-61d7e01276b9.

[126] C. Delezoide, P. Ramantanis, and P. Layec, “Leveraging field data for the joint
optimization of capacity and availability in low-margin optical networks,” Journal
of Lightwave Technology, vol. 38, p. 6709–6718, Dec 2020.

[127] A. Dupas, D. Verchere, Q. Pham Van, P. Layec, L. Brameriet, A. Carer, B. Haent-
jens, and E. Le Rouzic, “Easy optical defragmentation with sdn controlled tunable
transmitter,” in 2018 European Conference on Optical Communication (ECOC),
p. 1–3, Sep 2018.

[128] S. J. Savory and D. S. Millar, Springer Handbook Of Optical Networks, ch. DSP
for Optical Transponders, p. 156–174. Springer Handbooks, Springer International
Publishing, 2020.

[129] C. Edwin K. P. and Z. Stanislaw H., An Introduction to Optimization, ch. Gradient
Methods, p. 125–153. Wiley, 2008.

[130] E. Dutisseuil, A. Dupas, A. Gouin, F. Boitier, and P. Layec, “Hitless transmis-
sion baud rate switching in a real-time transponder assisted by an auto-negotiation
protocol,” in Optical Fiber Communication Conference (2022), p. 4, OSA, 2022.
(Accepted, not published [Jan. 2022]).

[131] T. Tanaka, T. Inui, S. Kawai, S. Kuwabara, and H. Nishizawa, “Monitoring and
diagnostic technologies using deep neural networks for predictive optical network

141

maintenance [invited],” Journal of Optical Communications and Networking, vol. 13,
p. E13–E22, Oct 2021.

[132] A. Barron, “Universal approximation bounds for superpositions of a sigmoidal func-
tion,” IEEE Transactions on Information Theory, vol. 39, p. 930–945, May 1993.

[133] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, A. M. Umar, O. U. Linus,
H. Arshad, A. A. Kazaure, U. Gana, and M. U. Kiru, “Comprehensive review of
artificial neural network applications to pattern recognition,” IEEE Access, vol. 7,
p. 158820–158846, 2019.

[134] C. C. Aggarwal, Neural Networks and Deep Learning: A Textbook, ch. An Introduc-
tion to Neural Networks, pp. 1–52. Springer International Publishing, 2018.

[135] A. Bononi, N. Rossi, and P. Serena, “On the nonlinear threshold versus distance in
long-haul highly-dispersive coherent systems,” Opt. Express, vol. 20, pp. B204–B216,
Dec 2012.

[136] TensorFlow, “An end-to-end open source machine learning platform.” [Online; avail-
able 2022] https://www.tensorflow.org/.

[137] Mathworks, “Fitnet: Function fitting neural network.” [Online; available 2022]
https://www.mathworks.com/help/deeplearning/ref/fitnet.html.

[138] M. Hagan and M. Menhaj, “Training feedforward networks with the marquardt
algorithm,” IEEE Transactions on Neural Networks, vol. 5, p. 989–993, Nov 1994.

[139] Arm Limited, “Amba axi-stream protocol specification.” [Online; available 2022]
https://developer.arm.com/documentation/ihi0051/b/.

[140] Free Software Foundation, Inc., “lwip - a lightweight tcp/ip stack.” [Online; available
2022] https://savannah.nongnu.org/projects/lwip/.

142

Titre : Transpondeurs temps-réels flexibles pour les télécommunications optiques et virtuali-
sés.

Mot clés : transpondeur optique, temps-réel, flexibilité, monitoring, virtualisation

Résumé :
Les réseaux de transport optique su-

bissent énormément de pression pour satis-
faire les besoins croissants en capacité et en
réduction de latence. Ces dernières années,
l’adoption des concepts de flexibilité et de vir-
tualisation a permis d’augmenter le débit et la
réactivité du réseau.

Dans ce manuscript, nous nous concen-
trons sur le transpondeur optique. Les déve-
loppements récents ont rendu cet équipement
flexible et virtualisable, mais les reconfigura-
tions forcent la mise en arrêt temporaire du
transpondeur et demeurent encore rares. L’hy-
per concentration des prises de décision dans
le plan de contrôle centralisé réduit aussi la
réactivité du réseau en cas de dégradation du
lien optique.

Tout d’abord nous présentons un proto-

cole d’auto-négociation pour transpondeur op-
tique qui permet des changements de para-
mètres rapides et synchronisés. Intégré avec
un transpondeur commercial et une solution
de monitoring et de prise de décision embar-
quée, nous avons validé notre solution face à
un plan de contrôle centralisé dans un banc
de test réseau.

Ensuite nous présentons ne solution de
monitoring embarqué employant un réseau de
neurones pour le plan de données optiques.
Nous permettons avec notre solution de re-
configurer le poids des neurones et nous pen-
sons que cette solution peut permettre des
détection et résolutions de dégradation plus
intelligentes et mettre a disposition du plan
de contrôle des ressources computationnelles
pour accélérer la prise de décision dans l’en-
tièreté du réseau.

Title: Real-time flexible and virtualized transponders for optical telecommunications.

Keywords: optical transponder, real-time, flexibility, monitoring, virtualization

Abstract: Optical transport networks are un-
der a lot of pressure to satisfy the demands in
capacity and in reduction of latency. The adop-
tion of flexibility and virtualization concepts in
recent years has helped increase the overall
throughput and the reactivity of the network.

In this manuscript, we focus on the optical
transponder. Efforts have been made to make
the device more flexible and virtualized, but
reconfigurations of the hardware provoke in-
terruptions of service and are still rare overall.
Overcentralization of the decision making hin-
ders the reactivity in case of a degradation in
the optical link.

Firstly, we provide in this thesis work an
auto-negotiation protocol for optical transpon-

ders that allows for fast synchronous change
of parameters. Integrated with a commer-
cial transponder and an embedded monitor-
ing and decision-making solution we have val-
idated our solution against a centralized con-
trol plane in a network testbed.

Secondly, we provide a neural network so-
lution for embedded monitoring in the opti-
cal data plane. By allowing for a reconfigu-
ration of the neurons weights of the network
we believe that this solution can allow smarter
fault detection and reconfigurations in the data
plane and provide computational resources for
the optical control plane for remote monitor-
ing which would accelerate decision making
for the whole network.

	Abstract
	List of publications
	List of Figures
	List of Tables
	Acronyms
	Résumé étendu en Français
	Réseaux de transport optique
	Couche physique
	Plan de contrôle

	Généralités sur le transpondeur optique et le transpondeur optique reconfigurable
	Prototypage d'un transpondeur optique flexible pour réseaux SDN
	Protocole d'auto-négociation pour transpondeur optique
	Monitoring embarqué
	Validation du prototype complet
	Intégration avec un setup temps-réel

	Service d'accélération et transpondeur
	Réseau de neurone sur FPGA
	Validation en simulation
	Validation en implémentation

	Conclusion

	Introduction
	The optical transport network and the optical transponder
	Optical transport networks
	Optical layer architecture
	Optical line equipment
	Optical Transponder
	OADM
	Amplifiers

	Optical link impairment
	Optical transport network control plane

	Optical Transponders
	Architecture
	Digital and Analog conversion
	Digital signal processing
	Transmitter side DSP
	Receiver side DSP

	Transmitter
	Receiver
	Physical optical interface

	Conclusion

	Flexibility and reconfigurable transponders
	System flexibility
	The FPGA hardware

	Network flexibility
	SDN and Hardware Virtualization

	Reconfigurable optical transponders
	The Sliceable Bandwidth Variable Transponder
	Bandwidth Variable Transponder
	Sliceability and virtualization

	Automatic hitless reconfigurable transponders for flexible optical networks

	Conclusion

	Real-time optical flexible transponder prototype for software defined networks
	Introduction
	Prototype transponder presentation
	Auto-Negotiation Protocol
	Design
	Implementation
	Validation

	Embedded monitoring processing and decision-making
	Network Controller Interfacing
	Prototype transponder validation
	Integration with a baud-rate variable setup
	Transmitter
	Receiver and deframer board
	Validation

	Conclusion

	Transponder and acceleration services
	Neural network-based power monitoring
	Generalities on neural network algorithms
	Neural network-based optical nonlinearity monitoring and launch power optimization

	FPGA implementation
	Data set and neural network generation
	Logical Implementation
	Neuron and network hardware structure
	Simulation validation and resource utilization

	Network weights update
	Implementation and validation

	Conclusion

	Conclusion and perspectives
	Bibliography

