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Abstract

This thesis explores the challenge of localizing underwater vehicles within pre-
viously explored environments in long-term scenarios, where significant scene
appearance changes may have occurred. Typically, underwater vehicle position-
ing relies on fusing measurements from acoustic and inertial sensors. While these
sensors deliver precise relative pose estimations, their absolute position estimates
exhibit notable biases, resulting in position offsets spanning tens of meters be-
tween different dives. This limitation impedes the practical use of autonomous
underwater vehicles for tasks requiring high precision, like mapping a precise
area of interest. In response, this thesis investigates the use of visual observations
made by underwater vehicles to enhance absolute positioning accuracy. The un-
derwater environment introduces unique sources of variability absent in terres-
trial environments. Consequently, the first contribution of this thesis is a novel
dataset designed for benchmarking long-term visual localization algorithms in
deep-sea conditions. Another obstacle inherent to underwater images is that
their suffer from low contrast and loss of colors because of light propagation in
the water medium. To address this issue, the second contribution of this work
introduces two underwater color restoration methods, specifically designed to
mitigate these phenomena and recover clear images. Independent of the under-
water environment, the third contribution of this thesis is a novel loss function
tailored for camera pose regression within the context of deep learning appli-
cations. This is an important aspect to consider when training visual localiza-
tion networks. Finally, this thesis concludes with a benchmark of several visual
localization methods on the proposed dataset. The obtained results show that
applying our underwater color restoration method improves visual localization
performance. This work also identifies the major problem encountered by visual
localization methods on the proposed underwater dataset, and presents an ap-
proach to improve the accuracy of visual localization techniques by making the
most of a limited size dataset.



Résumé

Cette thèse explore le problème de la localisation de véhicules sous-marins dans
des environnements déjà explorés. Elle s’inscrit dans le cadre de la surveillance
des grands fonds à long terme. Ainsi, l’environnement visité peut avoir subi des
changements significatifs entre plusieurs visites. Traditionnellement, la locali-
sation de véhicules sous-marins repose sur la fusion de mesures provenant de
capteurs acoustiques et inertiels. Alors que ces capteurs fournissent des estima-
tions précises de pose relatives, leurs estimations de position absolue présentent
des biais importants, entraînant des décalages de position de plusieurs dizaines
de mètres entre différentes plongées. Cette limitation entrave considérablement
l’utilisation des véhicules sous-marins autonomes pour des tâches exigeant un
haut degré de précision, telles que la cartographie de zones d’intérêt spécifiques.
En réponse, cette thèse explore l’utilisation des observations visuelles faites par
les véhicules sous-marins pour obtenir une localisation absolue plus précise. Le
milieu sous-marin introduit diverses sources de variabilité qui sont absentes dans
le domaine terrestre. Par conséquent, la première contribution de cette thèse est
la création d’un nouveau jeu de données spécialement conçu pour évaluer des
algorithmes de localisation visuelle à long terme dans les conditions des grands
fonds océaniques. De plus, un autre défi inhérent aux images sous-marines est
leur faible contraste et la perte de couleurs dus à la propagation de la lumière
dans l’eau. Pour remédier à ce problème, la deuxième contribution de cette thèse
présente deux nouvelles méthodes de restauration des couleurs des images sous-
marines spécifiquement conçues pour atténuer ces phénomènes et restituer des
images claires. Indépendamment du milieu sous-marin, la troisième contribution
de cette thèse est la proposition d’une nouvelle fonction de coût, conçue pour la
régression de pose de caméra dans un contexte d’applications à l’apprentissage
profond. Il s’agit d’un aspect important pour l’entraînement des réseaux de neu-
rones dédiés à la localisation visuelle. Enfin, cette thèse se termine par une éval-
uation de plusieurs méthodes de localisation visuelle sur le nouveau jeu de don-
nées proposé. Les résultats obtenus montrent que l’application de notre tech-
nique de restauration des couleurs d’images sous-marines améliore sensiblement
les performances de localisation visuelle. Ce travail identifie également le princi-
pal problème rencontré par les méthodes de localisation visuelle sur le jeu de don-
nées sous-marin proposé, et présente une approche visant à améliorer l’efficacité
des techniques de localisation visuelle en exploitant au mieux un jeu de données
de taille limitée.
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Glossary

Altitude Altitude and absolute altitude are referenced with respect to the Earth’s
surface, using the WGS 84 reference ellipsoid as a standardized model for
the Earth’s shape. The WGS 84 reference ellipsoid provides a precise and
consistent framework for representing altitude, ensuring uniformity in global
positioning measurements1.

Global descriptor A vector characterizing an entire image.

ICP Iterative Closest Point. An iterative algorithm used for aligning two sets of
3D points by estimating rotation, translation and sometimes scale.

Local feature A representation of a 2D point in an image consisting of the pixel
coordinates of that point and a local descriptor characterizing that point
based on its surrounding context within the image.

NeRF Neural Radiance Fields. Neural networks encoding the radiance emitted
from various positions and directions within a scene.

PnP Perspective-n-Point. Problem of estimating the pose of a camera given its
calibration matrix and 2D-3D correspondences.

PSNR Peak Signal-to-Noise Ratio. A metric quantifying an image quality by
comparing it to a reference image. It measures the ratio between the max-
imum value of the reference image and the mean square error between the
two images. It is expressed in dB.

RANSAC RANdom SAmple Consensus. A robust statistical algorithm used to
estimate model parameters from noisy data.

SfM Structure-from-Motion. An algorithm that estimates camera poses, intrin-
sics and a 3D point cloud of a scene given a set of images.

1https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84

https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84


SSIM Structural Similarity Index Measure. A metric quantifying an image per-
ceived quality by comparing it to a reference image. In contrast with PSNR,
it considers not only pixel values but also the structural and luminance in-
formation in the images.

UCIQE Underwater Color Image Quality Evaluation. A no-reference metric in-
troduced by Yang and Sowmya (2015). It weights images properties such
as sharpness and contrast to evaluate the quality of restored underwater
images.

UIQM Underwater Image Quality Measure. Similar to UCIQE, it is a no-reference
metric introduced by Panetta et al. (2016) weighting colorfulness, sharpness
and contrast metrics to evaluate the quality of restored underwater images.
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1.1 Context

The contemporary world faces a multitude of global challenges, such as climate
change and environmental degradation. To overcome these challenges and pave
the way for a better future, it is crucial to gain a deeper understanding of the
world we inhabit. Yet, while it covers the majority of our planet’s surface, the
ocean remains the least explored and understood environment. Long-term moni-
toring of this realm is essential to understand the function of the ocean in climate
change and improve the detection of geological hazards’ early warnings to better
prevent their impact (Ruhl et al., 2011).

To explore the ocean’s depths, we rely heavily on underwater vehicles, which
serve as our eyes and hands in this elusive domain. However, deep-sea explo-
ration with Remotely Operated Vehicles (ROVs) is often prohibitively expensive
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and time-consuming as it requires the ship to be mobilized for the whole dura-
tion of the dive. This necessitates the development of autonomous systems to
efficiently carry out these exploratory tasks using less time and resources. Cen-
tral to the success of Autonomous Underwater Vehicles (AUVs) is their ability to
accurately determine their location within their environment, a process known
as localization. However, due to the high attenuation and limited penetration
of electromagnetic waves in water, Global Navigation Satellite Systems (GNSS)
do not function in underwater environments. Moreover, while acoustic sensors
have traditionally been employed for underwater localization, they are not al-
ways readily available and may lack the necessary precision for certain critical
applications, such as mapping a precise area. In contrast, the visual observations
captured by underwater vehicles offer a promising complement, potentially en-
abling a more accurate localization.

1.2 Underwater navigation

As previously mentioned, existing underwater localization methods may not be
available or accurate enough to carry certain autonomous tasks. In order to un-
derstand why, this section presents a brief overview of the sensors used by Ifre-
mer to localize underwater vehicles (Ferrera, 2019) and makes an overview of
their limitations in the context of autonomous robots.

1.2.1 Sensors for underwater navigation

Several methods and sensing modalities are combined to obtain complementary
cues for localization. Their availability, accuracy and precision varies signifi-
cantly and may depend on the position of the vehicle during a dive.

Pressure sensor. The pressure sensor records the pressure experienced by the
vehicle as it operates. In an underwater environment, the pressure is directly
correlated with the depth of the water column above the vehicle. Consequently,
by solely analyzing the measured pressure, it is possible to retrieve the immersion
level of the vehicle. Subsequently, the vehicle’s absolute altitude can then be
estimated by taking into account the height of the tide.

Doppler Velocity Log. A Doppler Velocity Log (DVL) is an acoustic navigation
device used to estimate velocity with respect to the seabed1 (Figure 1.1). It op-
erates by emitting four acoustic beams in different directions. It then utilizes the

1https://www.nortekgroup.com/knowledge-center/wiki/

new-to-subsea-navigation

https://www.nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation
https://www.nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation


3 Chapter 1. Introduction

Doppler effect to analyze the frequency shift of the echoes reflected off the seabed
and recover the vehicle’s velocity. In the case where a DVL is not within range of
the bottom, it may estimate the velocity relative to the surrounding water as an
alternative — this is referred to as water track.

Figure 1.1: Doppler Velocity Log.

Inertial Navigation System. An Inertial Navigation System (INS) is a device
embedding an Inertial Measurement Unit (IMU) and a computational unit (Fig-
ure 1.2). In the scope of this thesis, we will consider that IMUs consist of 3-axes
accelerometers and 3-axes fiber-optic gyroscopes. The accelerometers provide
information about the linear acceleration of the vehicle in the 3D space. The gy-
roscopes provide information about the angular velocity of the vehicle. Using its
computational unit, the INS integrates the IMU’s measurements to compute an
estimate of the vehicle’s position, orientation and speed. One downside is that
this integration accumulates errors over time, leading to a drift in the vehicle’s
pose estimation. To alleviate this effect, the vehicle has to rely on other sensors,
such as the DVL that can provide an estimate of its velocity.

Figure 1.2: Inertial Navigation System.
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Ultra Short Baseline. An Ultra-Short Baseline (USBL) acoustic positioning sys-
tem is a technology used to determine the absolute position of an underwater ve-
hicle (Figure 1.3). It operates by leveraging acoustic signals transmitted between
an array of transceivers, often mounted on the ship, and a transponder attached
to the underwater vehicle. It works based on the principle of measuring the time
it takes for the acoustic signal to travel from the transceivers to the transponder
and back. The transceivers emit a signal which propagates through the water and
reaches the transponder. Upon receiving the signal, the transponder responds by
sending a reply signal back to the transceivers. By precisely measuring the time
of flight for the signals, the USBL system can calculate the range between the
transceiver and each transponder. This range information, along with the known
positions of the transceivers, is then used to triangulate and determine the posi-
tion of the underwater vehicle.

Figure 1.3: Ultra Short Baseline acoustic positioning system.

1.2.2 Absolute positioning error

The absolute position of the vehicle mostly relies on the estimate provided by the
USBL, as this system offers the sole means of absolute positioning. To gain a per-
spective on the accuracy of this pose estimate, we examine the Posidonia USBL
datasheet from iXblue2, which is incorporated in Ifremer’s vehicles. According
to the datasheet, in conjunction with a high-performance INS, the USBL achieves
an accuracy of 0.06% relative to the slant range of the vehicle. To put this position
accuracy into context, let us consider an idealized scenario: the vehicle is situated
at a depth of 6,000 meters directly beneath the ship, thereby minimizing the slant
range for this specific depth. Additionally, let us disregard any calibration noise
originating from our sensors. In this optimal scenario, the position uncertainty

2https://www.ixblue.com/store/posidonia/

https://www.ixblue.com/store/posidonia/
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amounts to 3.6 meters. Employing the three-sigma rule of thumb, this translates
to a positional margin of ±10.8 meters with a confidence level of 99.7%. Essen-
tially, this signifies that our vehicle’s position can be estimated within a range of
21.6 meters with a confidence level of 99.7%. In practice, the pose estimate pro-
vided by the USBL is fused with the measurements of other sensors to provide
accurate relative pose estimates of the vehicle. However, the vehicle’s absolute
pose is still affected by an offset due to the USBL uncertainty. This error alone
suffices to motivate the need for a more precise underwater vehicle localization.

1.2.3 Limitations for autonomous vehicles

In practice, AUVs might not have access to USBL. In such cases, the robot is only
aware of its position when it is at the surface before its descent. Once the AUV
begins its dive, it must rely solely on the INS, DVL and depth sensor to estimate
its position. In this scenario, the DVL operates in water track mode, where its es-
timation of the vehicle’s velocity can be greatly influenced by the water current.
As a result, there is a significant drift in the pose estimation when integrating
the INS and DVL information. This drift becomes more pronounced as the ve-
hicle travels thousands of meters before reaching the seabed, resulting in highly
inaccurate absolute pose estimation.

In the case where AUVs are equipped with USBL, the vehicles absolute posi-
tion estimates are still affected by an important offset, as previously mentioned.
This offset may impair their capability to perform specific tasks, such as mapping
a precise area.

1.3 A practical use case scenario

To provide a clear understanding of the specific problem we aim to tackle, it is
beneficial to illustrate a use case scenario. Consider a pilot teleoperating a ROV
during an oceanographic campaign. The ROV is exploring an unknown site lo-
cated at a depth of 2,000 meters. During the dive, the ROV acquires some images
of the site and records the sensors’ data. Once the exploration is finished, the
ROV reaches the surface and is picked up by the ship. The data it acquired are
then processed and analyzed — scientists agree that there is an interest in moni-
toring the evolution of this site over the next years. Therefore, one year later, they
release an AUV in the ocean above the site of interest with one mission: dive onto
the site, map a specific predetermined area and return safely to the surface to be
picked up by the ship.
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Where does this thesis step in? Considering the previously mentioned abso-
lute positioning uncertainty, by the time it reaches the seabed, the AUV’s abso-
lute position estimate may deviate significantly from its actual location. Yet, in
order to map precisely the correct area, it needs to accurately determine its posi-
tion with relation to the previously mapped area. To achieve this, the AUV must
rely on the data acquired during the previous dive. More specifically, using on-
board sensors and previously acquired data, it needs to recognize the observed
site of interest and then retrieve its accurate pose in order to map the correct
predetermined area of interest. While some of the previously mentioned navi-
gation sensors might help in providing an estimate of the robot’s absolute pose,
cameras have proven to have the capability of localizing a robot within its envi-
ronment very accurately (Sattler et al., 2017; Sarlin et al., 2019; Brachmann and
Rother, 2022). This thesis focuses on the methods that rely only on the visual ob-
servations of the vehicle to estimate its accurate pose, a process known as visual
localization. A multi-modal approach that relies on the multiple sensors that the
vehicle embeds remains in the scope of future work.

1.4 Challenges

Addressing the visual localization task in deep-sea environments presents two
primary challenges in contrast to solving the same task in terrestrial environ-
ments: specificities of deep-sea images and environment, and data scarcity.

1.4.1 Deep-sea images and environment

Beyond a depth of 1,000 meters, we enter the aphotic zone, where no significant
light from the surface reaches such depths. As a result, deep-sea vehicles must
incorporate an artificial lighting system to illuminate the surrounding scene. This
introduces a continuous variation in the lighting conditions of the scene. Addi-
tionally, the propagation of light through water is influenced by various physical
phenomena, such as scattering. Consequently, underwater images suffer from
reduced contrast and shifting colors based on the distance the light has traveled
before reaching the sensor (see Figure 1.4). Furthermore, the elements present
in the deep-sea environment, such as hydrothermal vents, contrast significantly
with the structures typically encountered in terrestrial applications. These ele-
ments are also subject to diverse sources of variability, including events like boul-
der collapses and shifts in marine populations. These differences pose significant
challenges for existing computer vision methods, which often struggle to handle
underwater images. These difficulties are amplified when images are acquired
during different visits that have a substantial temporal gap between them.
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Figure 1.4: Observing two underwater images of the same region acquired at
different distances reveals that the scene’s appearance shifts as the vehicle moves.
Because of the artificial lights embedded on the vehicle and light propagation in
the water medium, the appearance of the scene strongly depends on the position
of the camera.

1.4.2 Data scarcity

Obtaining data in the deep-sea demands substantial efforts and requires exten-
sive equipment. There are only a limited number of underwater vehicles capable
of operating at depths up to 6,000 meters. Deploying these vehicles often in-
volves large ships and requires the continuous involvement of the ship’s crew
throughout the dive. Moreover, not all institutes and organizations share their
data publicly, and the collected data may not always be suitable for our specific
application. Our application has specific constraints for video recording, such
as the inability to use the camera’s zoom, as it would temporarily modify the
camera’s intrinsics parameters.
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This data scarcity poses two problems for solving the visual localization task.
Firstly, without sufficient data for testing our algorithms, it is difficult to evaluate
their accuracy. Secondly, with the emergence of deep learning, many contempo-
rary methods rely on data-driven approaches, and models optimized for terres-
trial data may not generalize well to underwater images. Moreover, the limited
availability of data makes it challenging to adapt existing solutions to the speci-
ficities of underwater images.

1.5 Contributions

This thesis investigates visual localization in the context of long-term deep-sea
monitoring. As such, it makes the following contributions:

• We introduce a deep-sea dataset for long-term visual localization. It can be
used for the evaluation of localization methods in an underwater environ-
ment as well as for training or fine-tuning neural networks that are used in
the context of visual localization.

• We propose two new methods for restoring the colors of underwater im-
ages, transforming them to appear as if they were captured in-air. The ob-
jective is to enable the use of neural networks pretrained on terrestrial data
to be effectively applied to underwater images.

• We present a novel loss function that defines the error between two camera
poses. This loss function holds a particular significance in the context of
deep learning applied to visual localization, as it forms the foundation for
how localization neural networks can learn.

• We evaluate several visual localization methods on the newly established
dataset. This benchmark includes preprocessing underwater images with
the proposed underwater color restoration approaches, as well as training
a visual localization network using the suggested loss function.

Publications. These contributions were published in the following articles:

Clémentin Boittiaux, Ricard Marxer, Claire Dune, Aurélien Arnaubec, and Vin-
cent Hugel (2022). Homography-based loss function for camera pose regression.
IEEE Robotics and Automation Letters and selected for an oral presentation at the
IEEE International Conference on Robotics and Automation.

Clémentin Boittiaux, Claire Dune, Maxime Ferrera, Aurélien Arnaubec, Ricard
Marxer, Marjolaine Matabos, Loïc Van Audenhaege, and Vincent Hugel (2023).
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Eiffel tower: A deep-sea underwater dataset for long-term visual localization.
The International Journal of Robotics Research.

Clémentin Boittiaux, Claire Dune, Aurélien Arnaubec, Ricard Marxer, Maxime
Ferrera, and Vincent Hugel (2023). Long-term visual localization in deep-sea un-
derwater environment. In ORASIS.

Maxime Ferrera, Aurélien Arnaubec, Clémentin Boittiaux, Inès Larroche and Jan
Opderbecke (2023). Vision-based 3D Reconstruction for Deep-Sea Environments:
Practical Use for Surveys and Inspection. In OCEANS.

Clémentin Boittiaux, Ricard Marxer, Claire Dune, Aurélien Arnaubec, Maxime
Ferrera, and Vincent Hugel (2024). SUCRe: Leveraging scene structure for un-
derwater color restoration. Accepted at 3DV.

1.6 Outline

This thesis is organized as follows:

Chapter 2: An overview of the underwater visual localization problem. This
chapter provides the essential background information that serves as a founda-
tion for the entire thesis. It encompasses two primary aspects: the distinctive
characteristics of underwater imagery and the visual localization challenge. In
the context of underwater images, it delves into the physical phenomena that af-
fect them and introduces models employed to describe these phenomena. It also
provides an overview of the methods developed to mitigate these phenomena
and recover unaltered images. Concerning visual localization, it outlines a global
definition of the problem and conducts a review of common methods related to
this problem.

Chapter 3: Building a deep-sea dataset. This chapter introduces a novel un-
derwater dataset designed specifically for evaluating deep-sea long-term visual
localization. The dataset comprises images captured during four separate visits
to the same hydrothermal vent edifice that span over a five-year period. To es-
tablish reference camera poses for evaluating visual localization techniques, we
design a Structure-from-Motion (SfM) pipeline that leverages the vehicule’s nav-
igation data, and relies on point cloud registration techniques. Additionally, we
conduct a thorough analysis of the dataset to gain insights into the significant
changes observed over the years. This analysis provides valuable information
about the types of changes that can occur in this environment, allowing us to
identify potential challenges that visual localization algorithms may encounter.
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Chapter 4: Underwater image color restoration. This chapter presents two new
methods designed to restore the colors of underwater images, as if they were cap-
tured on the surface without the influence of water-induced light propagation
effects. These methods take into account the impact of absorption and scatter-
ing phenomena, which are strongly influenced by the camera’s position relative
to the scene. To accurately model and invert these phenomena, the proposed
methods make use of the 3D information about the observed scene. More pre-
cisely, they rely on SfM outcomes. Subsequently, we empirically validate these
approaches using synthetic and real-world datasets, encompassing shallow wa-
ter and deep-sea scenarios.

Chapter 5: Pose regression for deep learning. We make a focus on the neural
networks that can directly predict poses from input images. In particular, we
focus on the loss functions that embed the error between two camera poses to
perform deep learning-based camera pose regression. Existing loss functions are
either difficult-to-tune multi-objective functions or present unstable reprojection
errors that rely on ground truth 3D scene points and require a two-step training.
To deal with these issues, we introduce a novel loss function which is based on
a multiplane homography integration. This new function does not require prior
initialization and only depends on physically interpretable hyperparameters.

Chapter 6: Underwater visual localization. This chapter builds upon the re-
search conducted in previous chapters to evaluate a variety of visual localization
techniques using the deep-sea dataset we created. Through our analysis, we iden-
tify steps within the visual localization process that have room for improvement.
We demonstrate that restoring the colors of underwater images can improve vi-
sual localization results when using algorithms initially designed for terrestrial
environments. Furthermore, our analysis identifies the image retrieval localiza-
tion step as the primary weakness in underwater localization. We then show that
we can improve this step by fine-tuning a neural network pretrained on terrestrial
images using a few thousands underwater images.
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Chapter 2

An overview of the underwater
visual localization problem
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2.1 Underwater images

This thesis revolves around the utilization of computer vision algorithms in un-
derwater environments. Within this context, this section describes the effects of
water on the formation of images, aiming to gain a deeper understanding of the
underlying sources of variability specific to the underwater setting. Because these
effects can potentially deteriorate the performance of computer vision algorithms
(Ancuti et al., 2017; Berman et al., 2021), this section also explores how these ef-
fects can be modeled and makes a review of methods designed to compensate
their impact.
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Figure 2.1: The pinhole camera model. Adaptation of an illustration extracted
from the documentation of the Kornia library (Riba et al., 2020).

Within the context of visual localization, two key aspects need to be consid-
ered when working in underwater environments. The first concerns the optical
characteristics arising from the changes in light direction due to water, glass and
air mediums. These characteristics invalidate the conventional pinhole camera
model, which forms the basis of numerous computer vision algorithms. The sec-
ond is the effect of water on light propagation, that leads to low contrast and
color distorted images. Section 2.1.1 details the issues arising from refraction and
strategies to circumvent its impact. Section 2.1.2 details how water alters light
propagation. Section 2.1.3 presents how to model these alterations in underwater
images. Finally, Section 2.1.4 makes a review of algorithms that aim to eliminate
these effects and recover the images as if they were captured in the air.

2.1.1 Optical model

Many 3D computer vision algorithms rely on the pinhole camera model (Hart-
ley and Zisserman, 2003) illustrated in Figure 2.1. This model describes how
elements in a 3D scene are projected onto the 2D image plane of a camera. In
practice, this projection process can be mathematically represented through a ho-
mogeneous calibration matrix. This calibration matrix, KKK ∈ R3×3, encapsulates
the intrinsic parameters of the camera:

KKK =

f 0 u0

0 f v0

0 0 1

 , (2.1)
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with f the focal length expressed in pixels, and (u0, v0) the optical center of the
camera expressed in pixels. For a given 3D point

XXXi =

XY
Z

 (2.2)

in the scene, its corresponding homogeneous 2D pixel coordinate x̃xxi is computed
through the application of the calibration matrix:

x̃xxi =KKKXXXi =

fX + Zu0

fY + Zv0

Z

 . (2.3)

Following this, the projection function π(·) : R3 → R2, converts this homoge-
neous coordinate into a conventional Cartesian coordinate, finalizing the process
of mapping a 3D point in the scene to its corresponding 2D pixel location on the
image:

xxxi = π(x̃xxi) =

[
fX
Z

+ u0
fY
Z

+ v0

]
. (2.4)

In practice, real-world camera images often experience distortion, meaning
that pixels aren’t projected onto the image plane in a perfectly linear fashion. To
account for this effect, two primary types of distortions are commonly modeled:
radial and tangential. Radial distortion is usually characterized using parameters
such as k1 and k2, which quantify the extent of distortion as it radiates outward
from the image center. Tangential distortion is described using parameters like p1
and p2, which account for shifts in the image caused by the camera lens not being
perfectly aligned with the image sensor. Distortion is computed directly in the
camera (x, y) plane, meaning that the de-homogenization process is computed
first: [

X ′

Y ′

]
=

[
X/Z

Y/Z

]
. (2.5)

The distorted coordinates are then computed on X ′ and Y ′:[
X ′′

Y ′′

]
=

[
X ′(1 + k1r

2 + k2r
4) + 2p1X

′Y ′ + p2(r
2 + 2X ′2)

Y ′(1 + k1r
2 + k2r

4) + p1(r
2 + 2Y ′2) + 2p2X

′Y ′

]
, (2.6)

with
r2 = X ′2 + Y ′2. (2.7)

Finally, the 2D pixel coordinate is obtained using the camera intrinsic parameters:

xxxi =

[
fX ′′ + u0

fY ′′ + v0

]
. (2.8)
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(a) Flat glass plane. (b) Dome port.

Figure 2.2: Effects of refraction on a pinhole camera. A properly centered dome
port camera system is essential to compensate refraction when passing through
the air-glass-water mediums. Without a dome port, the linear projection assump-
tion of the pinhole model becomes invalid due to the refraction. In contrast, with
a centered dome port, rays pass through these mediums perpendicularly, attenu-
ating refraction and enabling the use of the pinhole model.

However, in underwater settings, cameras are encased within underwater
housings positioned behind a glass window for protection. This arrangement
results in light rays reaching the sensor after passing through water, then glass,
and finally air, leading to refraction, as illustrated in Figure 2.2a. This refraction
invalidates the pinhole camera model, as it creates distortion patterns that are
dependent on the distance of the observed scene (She et al., 2019; Menna et al.,
2020). To alleviate this effect, a commonly used approach is to place the camera
behind a spherical glass structure known as a dome port. This dome port en-
sures that the light rays pass perpendicularly through the air-glass-water medi-
ums, thus preventing refraction, as depicted in Figure 2.2b. While this approach
requires to precisely position the camera at the center of the sphere to function
optimally, practical experience has demonstrated that given a well-configured
dome port camera setup, it is sufficient to approximate the system as a pinhole
camera model with standard distortion parameters (She et al., 2022), such as the
ones presented above.

Finally, it is important to note that reality is more complex than what is de-
picted in Figure 2.2. Not all light rays that contribute to a pixel’s observation pass
through the dome port perpendicularly. The degree of refraction experienced
by these rays varies with their wavelengths, inducing chromatic aberration on
the edge of the image. The camera’s pinhole is never perfectly aligned with the
center of the dome port. To address these challenges, Ifremer devised a special-
ized camera housing comprising a dome port and two lenses, one of which is
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Figure 2.3: Light propagation under water. Some of the emitted light is absorbed
and converted into other forms of energy as it travels through water. Some pho-
tons collide with particles in suspension on their way to the sensor, acting as
source of light and inducing scattering.

wavelength-sensitive. This configuration effectively mitigates these effects, aim-
ing to replicate the image produced by a thin lens in air.

2.1.2 Light propagation under water

In the underwater environment, the behavior of light is significantly influenced
by both color absorption and scattering phenomena (Duntley, 1963; McGlamery,
1980; Jaffe, 1990; Akkaynak et al., 2017; Akkaynak and Treibitz, 2018), illustrated
by Figure 2.3. Absorption refers to the process by which light energy is converted
into other forms of energy as it interacts with water molecules and dissolved sub-
stances. Different wavelengths of light are absorbed to different degrees. Longer
wavelengths, such as red and infrared, are absorbed more strongly than shorter
wavelengths like blue and green. This phenomenon is responsible for the gradual
loss of color and contrast with increasing distance traveled by the light. Scatter-
ing, on the other hand, occurs when light encounters particles suspended in the
water. These particles can be small suspended solids, phytoplankton, or other im-
purities. When light interacts with these particles, it changes direction and scat-
ters in various angles. This scattering effect can lead to reduced visibility, blurring
of images, and the diffusion of light, causing underwater scenes to appear hazy or
less distinct. Similarly to absorption, this phenomenon varies with wavelengths
and depends on the distance traveled by the light. As illustrated in Figure 2.3,
there are two primary forms of scattering encountered in practice: forward scat-
ter and backscatter. In contrast to forward scatter, backscattered light does not
carry any information about the observed scene (Akkaynak and Treibitz, 2018).
In most instances, especially when dealing with deep-sea images captured by
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Figure 2.4: Pixel intensity vs. pixel distance on the blue channel of a real-world
image. Scattering phenomenon adds light. Absorption phenomenon absorbs
light. If no object is in sight, the observed color tends towards the veiling light,
usually a dark blue in the open ocean.

systems equipped with their own artificial lights, backscatter predominates over
forward scatter. As a result, this thesis primarily focuses on this phenomenon.

In order to observe these phenomena in a practical context, we examine the
relationship between pixel intensities and their corresponding observation dis-
tances. Figures 2.4 and 2.5 effectively illustrate the effects of color absorption and
backscattering in underwater images by plotting the intensity of pixels against
their distance of observation. Using this representation, Figure 2.4 outlines the
effects of color absorption and backscattering on the blue channel of a real-world
image. This visualization illustrates how absorption leads to a decline in pixel
intensity, whereas backscattering introduces an additional source of light inten-
sity. Both of these factors depend on the pixels’ distance of observation and cause
pixel intensities to converge towards a specific intensity known as veiling light.
In open oceans, this veiling light typically manifests as a deep blue shade. In
Figure 2.5, similar plots on red, green and blue color channels illustrate that dif-
ferent wavelengths have different absorption rates, with longer wavelengths like
red being absorbed more quickly than shorter ones like blue.

2.1.3 Image formation model

Now that we have seen the main effects that occur in underwater images, we
will see how these effects can be modeled in the resulting images. Indeed, a key
component of methods that aim to retrieve the appearance of underwater im-
ages without the disturbing effects of water is their underwater image formation
model that describes how the colors of the observed scene are affected by the
water medium.
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(a) Underwater image.
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(b) Distance map.

(c) Pixel intensity vs. pixel distance on red, green and blue channels.

Figure 2.5: Impact of observation distance on pixel intensity. This figure shows
an underwater image along with its corresponding depth map obtained using
COLMAP SfM (Schönberger and Frahm, 2016) and OpenMVS (Cernea, 2020).
Plotting pixel intensities against their distance of observation highlights the ab-
sorption and scattering phenomena encountered in underwater scenarios. Com-
parison between the different color channels highlights how longer wavelenghts,
like red, are absorbed more rapidly than shorter ones, like blue.
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Variable Description Type

III underwater images RN×H×W×C

JJJ restored images RN×H×W×C

zzz distance maps of images RN×H×W

B veiling light RC

β color absorption coefficient RC

γ backscatter coefficient RC

i image index [1..N ]

c color channel index [1..C]

p pixel index [1..H ×W ]

Table 2.1: Underwater image formation model variables. We use subscripts to
index specific images, color channels and pixels, e.g., III i,c,p is the intensity of pixel
p in the channel c of image i. For single-view applications, the image index i is
discarded. Bold symbols are used for variables encoding spatial information such
as images or distance maps. H and W are the height and width of images and C

is the number of color channels, C = |{R,G,B}|.

A revised underwater image formation model for computer vision. Many un-
derwater color restoration methods (Chiang and Chen, 2012; Berman et al., 2017,
2021) rely on the underwater image formation model introduced by Schechner
and Karpel (2005) to model backscatter and color absorption in natural light con-
ditions. The model describes that pixel intensities are driven by the following
equation:

IIIc,p = JJJ c,pe
−αczzzp +Bc(1− e−αczzzp), (2.9)

where α ∈ RC is the wavelength-dependent coefficient weighting the distance de-
pendency of color absorption and backscatter. The other variables are described
in Table 2.1. This model is a simplification of the more complete Jaffe-McGlamery
model McGlamery (1980); Jaffe (1990). This simplification facilitates the practical
application of the Jaffe-McGlamery model to computer vision algorithms. Nev-
ertheless, Akkaynak et al. (2017); Akkaynak and Treibitz (2018) further revised
the model presented in Eq. (2.9) to account for differences between backscatter
and absorption coefficients. The relation between pixel intensities and distance
of observation is rewritten:

IIIc,p = JJJ c,pe
−βczzzp +Bc(1− e−γczzzp), (2.10)

where β and γ are the absorption and backscatter coefficients defined in Table 2.1.
With its two exponential components, one for absorption and one for backscatter,
this model describes the curves depicted in Figure 2.4.
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Figure 2.6: Vignetting effect. The ROV’s artificial lighting system creates a halo
on the seabed. This image was taken from the AQUALOC dataset (Ferrera et al.,
2019).

Deep-sea lighting. The model described above was developed specifically for
natural light conditions. However, in the deep-sea environment, where some of
our target scenarios take place, there is no light from the surface. As a result,
underwater exploration vehicles need to carry their own artificial lighting sys-
tems to illuminate the surroundings. Consequently, the light source becomes an
integral part of the exploring robot, causing the illumination of scenes to change
as the robot maneuvers. Additionally, as illustrated in Figure 2.6, this lighting
system often results in uneven distribution of brightness across the image, com-
monly referred to as vignetting.

Previous research has addressed the challenge of modeling this phenomenon.
An artificial light can be conceptualized as an inverted pinhole camera, project-
ing a light pattern onto the scene rather than projecting the scene onto the camera
view. This light pattern can either be an RGB image Nakath et al. (2021) or ex-
pressed as a function (Arnaubec et al., 2015; Bryson et al., 2015). On the one hand,
using an RGB image to represent the light pattern offers the advantage of being
able to depict various light patterns. On the other hand, it is more challenging to
optimize compared to using a function, as it involves a greater number of param-
eters in the form of an entire image.
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2.1.4 Underwater color restoration

Underwater color restoration algorithms aim to rectify underwater images, mak-
ing them appear as if they were captured in the air, trying to compensate for the
effects of water on light propagation. Numerous approaches have been explored
to address this challenge using various methods. Some studies have approached
the problem from a pure image processing perspective, while others have em-
ployed physics-based models, such as those outlined in Eqs. (2.9) and (2.10). Ad-
ditionally, the required inputs can differ across methods. While many approaches
concentrate on restoring the color of individual images, others incorporate 3D
scene information as input, such as depth maps or SfM results. Due to the wave-
length dependency of the phenomena that affect underwater images, underwater
color restoration methods are usually performed on each channel independently.
We here present the rational of image processing and physics-based methods that
will be evaluated alongside those proposed in Chapter 4.

Image processing methods. Methods that do not rely on any underwater light
propagation model mainly aim to enhance the visual appearance of underwater
images. To this end, some methods have focused on combining different vari-
ants of an input underwater image, like a white balanced or a contrast-enhanced
version of the image. This has been done using either statistical analysis (An-
cuti et al., 2012) or by learning weight maps using neural networks (Li et al.,
2020). Others have leveraged Generative Adversarial Networks to learn a map-
ping from the underwater domain to an underwater-enhanced domain (Islam
et al., 2020; Liu et al., 2022).

Physics-based methods. Methods that rely on underwater light propagation
models usually encounter the problem of constraining an underdetermined op-
timization problem. A notable state-of-the-art approach addressing this specific
issue is the Sea-thru method. It requires high dynamic range images in a raw file
format and their corresponding distance maps (Akkaynak and Treibitz, 2019).
The method consists in inverting the underwater image formation model de-
scribed by Eq. (2.10). With the help of the distance information, the problem
has |IIIc| equations and |IIIc| + |k| unknowns, with k = {βc, Bc, γc} the set of pa-
rameters of the image formation model. Given there are more unknowns than
observations, the problem is underdetermined and requires additional assump-
tions to constrain the optimization. For example, an extreme trivial solution can
be found with JJJ c → IIIc, βc → 0 and Bc → 0. To tackle this, Sea-thru relies
on a distance-based alternative to the dark channel prior (He et al., 2010) to re-
trieve Bc and γc, and an illuminant map estimation (Ebner and Hansen, 2013) to
retrieve βc. JJJ c is then retrieved from Eq. 2.10 using these parameters. On an-
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other hand, Berman et al. (2021) propose an underwater image color restoration
method based on the principle of Haze-Lines (Berman et al., 2016). Relying on
the model outlined in Eq. (2.9), they constrain the estimation of parameters by as-
suming that colors of the restored image are well approximated by a few hundred
distinct colors.

2.2 Visual localization

As mentioned in Chapter 1, improving the localization capability of underwater
vehicles is essential for enabling AUVs to perform critical tasks necessary for the
continuous monitoring of deep-sea environments, such as conducting a precise
survey of a site of interest. Over the past decade, several studies have demon-
strated that the visual data collected by robots present a promising solution for
achieving accurate vehicle localization (Sattler et al., 2012a; Brachmann et al.,
2017; Piasco et al., 2019b; Sarlin et al., 2021; Panek et al., 2022). In this section, we
delve into the specificities of the visual localization problem, introduce relevant
multi-view geometry concepts, and provide an overview of existing methods em-
ployed for visual localization.

2.2.1 Problem definition

Camera pose. Before diving into the definition of the visual localization prob-
lem, it is essential to detail the concept of camera pose. A camera pose is a trans-
formation that maps points from a given reference frame, or world coordinate
system, to the camera frame. It consists in a rotation component and a translation
component, respectively depicting the camera’s orientation and position in 3D
space. A pose has six degrees of freedom, three for the rotation and three for the
translation. Poses are usually represented using a three by three rotation matrix
RRR ∈ SO(3) and a translation vector ttt ∈ R3. Let wXXX be a 3D point expressed in the
world coordinate system. Let [cRRRw,

ctttw] be the 6DoF pose of a camera mapping
points from the reference to the camera frame. The operation mapping a 3D point
wXXX from the world coordinate system to the camera frame is:

c XXX = cRRRw
wXXX + ctttw. (2.11)

This 6DoF pose can also be represented as a four by four homogeneous transfor-
mation matrix:

cTTTw =

[
cRRRw

ctttw

0001×3 1

]
(2.12)
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For this homogeneous representation, we define the operator ⊙ that performs the
same mapping operation described by Eq. (2.11) more succinctly:

cTTTw ⊙ wXXX = cRRRw
wXXX + ctttw. (2.13)

This operator has priority over matrix multiplication.

Visual localization. In essence, visual localization consists in determining the
precise 6DoF pose of a camera within a known environment based on its acquired
image (Sattler, 2013). This challenge finds application in various fields, including
robot localization for AUVs or self-driving cars (Maddern et al., 2017), augmented
and virtual reality experiences (Sarlin et al., 2022), loop closure in Simultaneous
Localization and Mapping (SLAM) (Ferrera et al., 2021), and SfM (Schönberger
et al., 2017). Typically, the camera’s 6DoF pose is expressed within a specific co-
ordinate system. The process of defining this coordinate system is explored in
detail in Section 2.2.2. Furthermore, as the visual localization problem has nu-
merous applications, it has been addressed using various approaches, each rely-
ing on different kinds of input data. These diverse strategies are comprehensively
outlined in Section 2.2.4.

2.2.2 Reference camera poses

As previously discussed, visual localization consists in retrieving the 6DoF pose
of a camera in a specified reference frame. In practice, this reference frame is
established in relation to reference camera poses. These reference camera poses
can be generated using various algorithms dedicated to this purpose (Brachmann
et al., 2021). As detailed in Section 2.2.3, the selection of a particular reference
algorithm is not neutral, and significantly influences the outcomes of visual lo-
calization methods. Here, we describe some of the reference methods used to
compute these reference camera poses.

2.2.2.1 Structure-from-Motion

One of the most popular methods to generate visual localization reference poses
is incremental SfM (Li et al., 2012; Kendall et al., 2015; Sun et al., 2017; Sattler
et al., 2018; Arnold et al., 2022). SfM takes as input a collection of images and
leverages multi-view geometry principles (Hartley and Zisserman, 2003) to es-
timate camera poses, intrinsics and a representation of the scene in the form of
a point cloud. Incremental SfM workflows (Schönberger and Frahm, 2016) typ-
ically comprise several distinct phases, which we outline here in the order in
which they are executed.
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Local feature extraction. The initial step in SfM involves the extraction of local
features from each image. These local features consist of two fundamental com-
ponents: a keypoint, which represents a 2D point in the image denoted in pixel
coordinates, and a visual descriptor, which is a vector characterizing the key-
point based on its surrounding context within the image. These local features can
be either crafted manually (Lowe, 2004; Bay et al., 2006; Tola et al., 2010; Calon-
der et al., 2010; Rublee et al., 2011) or learned through deep learning techniques
(DeTone et al., 2018; Ono et al., 2018; Revaud et al., 2019; Dusmanu et al., 2019;
Tyszkiewicz et al., 2020).

When crafting features manually, various criteria come into play during their
selection, including considerations such as scale, orientation and illumination
invariance, computational efficiency, and the dimension of descriptor vectors.
Garcia-Fidalgo and Ortiz (2015) have conducted a comprehensive survey of local
feature descriptors that find application in localization and mapping algorithms.

Conversely, learned local features are characterized through neural networks.
Schonberger et al. (2017) provide a comparative analysis between handcrafted
and learned features, and demonstrate that advanced handcrafted features may
still perform on par or better than some learned features depending on the spe-
cific application.

Image retrieval. The next phase in the SfM process involves finding images that
observe the same scene elements. This is usually achieved by computing and
comparing global descriptors. In contrast to the local descriptors used in the
previous step, these global descriptors characterize the entire image. A common
approach for computing these global descriptors involves the aggregation of local
descriptors extracted from the image. Approaches for image retrieval vary in
terms of whether they are manually crafted (Sivic and Zisserman, 2003; Philbin
et al., 2007; Jégou et al., 2010; Oliva and Torralba, 2001; Benbihi et al., 2020) or
learned (Arandjelovic et al., 2016; Radenović et al., 2016; Gordo et al., 2016).

A popular method for image retrieval is the Bag of Words (BoW) approach
(Sivic and Zisserman, 2003; Philbin et al., 2007), which is inspired by text docu-
ment research. Given a set of images, BoW extracts local features, such as those
mentioned above, for all these images. These features are then grouped into clus-
ters to obtain a compact representation. Each cluster’s center is referred to as a
visual word. For a given image, BoW assigns each of the image’s local features
to its closest visual word. The image is then represented by a global descriptor
vector whose length is equal to the number of visual words. Each dimension of
this vector is proportional to the frequency of the associated visual word within
the image. Another noteworthy descriptor closely related to BoW is the Vector of
Locally Aggregated Descriptors (VLAD) (Jégou et al., 2010). Unlike BoW, VLAD
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does not perform a hard assignment of local features to their nearest visual word.
Instead, it performs soft assignment by storing the distance between local de-
scriptors and their nearest visual word.

In recent years, neural networks have emerged as powerful tools for image
representation across various applications. Consequently, numerous methods
have focused on employing neural networks to either extract or aggregate lo-
cal features into global descriptors. One such method, NetVLAD (Arandjelovic
et al., 2016), extends the VLAD method by simultaneously learning dense local
features and the assignment of visual words, using Convolutional Neural Net-
works (CNN) for this purpose.

Feature matching. Feature matching consists in pairing two sets of local fea-
tures extracted from different images. In SfM, this step is performed for each
input image between the input image and its previously retrieved similar images.

The most straightforward method for addressing the feature matching chal-
lenge is brute force matching. The following description of this method is in-
spired by Ferrera (2019). Let us consider two images, III1 and III2. During brute
force matching, the system computes the descriptor distances between all local
features extracted from both III1 and III2. The most likely matches are recovered
by looking for the pairs with the lowest descriptor distance. To enhance the ac-
curacy of matches and reduce incorrect pairings, the computation of descriptor
distances is carried out twice — from III1 to III2 and from III2 to III1. Given that a
perfect one-to-one correspondence between features in both images is highly im-
probable, different outcomes may emerge from these two calculation steps. As
a result, the most plausible matches are those with the lowest distances in both
directions. To further fortify the matching process, an additional step involves
examining the second lowest distance for each pair. A pair is only retained if the
difference between the lowest matching distance and the second lowest distance
exceeds a predefined threshold (Lowe, 2004). This method effectively filters out
ambiguous matches, ensuring that only distinctive ones are retained.

Contemporary work has also tackled the matching problem by leveraging
deep learning techniques such as Transformers (Vaswani et al., 2017) and Graph
Neural Networks (GNN) (Gilmer et al., 2017). While some methods solve an op-
timal matching problem between two sets of sparse local features (Sarlin et al.,
2020; Lindenberger et al., 2023; Edstedt et al., 2023a), others focused on extracting
and matching dense local features (Sun et al., 2021; Chen et al., 2022a; Edstedt
et al., 2023b).

Incremental reconstruction. The reconstruction phase of SfM involves a cyclic
process of image registration and bundle adjustment. Image registration en-



25 Chapter 2. An overview of the underwater visual localization problem

tails incorporating a new image into the existing model. This is often achieved
through a pose estimation procedure followed by local optimization. This pose
estimation task centers around solving the Perspective-n-Point (PnP) problem,
typically within a RANdom SAmple Consensus (RANSAC) scheme. The PnP
problem aims to determine the camera’s position and orientation based on its in-
trinsic parameters and a set of correspondences between 3D points and their 2D
projections. To solve this problem, a minimum of three correspondences is re-
quired (Gao et al., 2003). This minimal setting is referred to as the P3P problem.
However, in this scenario, up to four valid sets of position and orientation can be
obtained, necessitating a fourth point to resolve the correct pose. Several algo-
rithms have been proposed to directly estimate a pose solution from four or more
correspondences (Lepetit et al., 2009; Kneip et al., 2014). In practice, 2D-3D pairs
are subject to considerable noise and contain a substantial number of outliers.
To address this challenge, the PnP problem is often initialized within a RANSAC
scheme. RANSAC is a robust statistical algorithm used to estimate model param-
eters from noisy data (Fischler and Bolles, 1981). It iteratively samples minimal
subsets of data points (three or four 2D-3D pairs in this context), fits a model
to each subset, and identifies the model with the best consensus with the data,
making it resilient to outliers and noise. After obtaining an initial pose and a set
of inliers using RANSAC, the final pose is refined through a least squares opti-
mization process applied to the remaining inliers. All registered images are then
refined using bundle adjustment. Bundle adjustment is an optimization prob-
lem that simultaneously optimizes the poses of cameras and the position of 3D
scene points observed by these cameras. In some applications, this optimization
may involve other parameters, such as camera intrinsics. This optimization task
is accomplished by minimizing the distance between the projection of 3D points
in multiple camera views and their corresponding detected 2D keypoints coordi-
nates. A more comprehensive exploration of bundle adjustment is presented in
Section 3.4.3, where we formulate it to incorporate known position priors.

2.2.2.2 Visual Simultaneous Localization and Mapping

An alternative approach to acquiring reference camera poses and scene repre-
sentation is through visual SLAM (Shotton et al., 2013; Glocker et al., 2013). Vi-
sual SLAM is similar to SfM but is tailored for real-time operation (Mur-Artal
et al., 2015; Ferrera et al., 2021), and predominantly uses frames from sequen-
tial video acquisition, whereas SfM handles unordered sets of images. In visual
SLAM, compromises are often made, like conducting bundle adjustment locally
rather than on all images. Additionally, SLAM algorithms may integrate addi-
tional sources of information, such as depth measurements obtained from RGB-D
cameras (Newcombe et al., 2011).
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2.2.2.3 Motion capture systems

An alternative method for acquiring accurate 6DoF reference camera poses is to
employ motion capture systems. These systems use a set of calibrated cameras to
detect and triangulate markers attached to a moving object. Nielsen et al. (2019)
used a motion capture system to gather underwater data within a pool, with the
goal of evaluating the performance of a visual localization algorithm (Kendall
et al., 2015) in underwater scenarios.

2.2.2.4 Leveraging multiple sensors from augmented reality devices

Sarlin et al. (2022) design a full pipeline to estimate ground truth trajectories using
data acquired with augmented reality devices such as the HoloLens. To achieve
this, they leverage images, 3D LiDAR, inertial and radio data.

2.2.3 Pseudo ground truth

We have just discussed various approaches for generating ground truth reference
camera poses using different data inputs. Nevertheless, it is essential to recognize
that these generated references do not provide an absolute ground truth of each
camera’s position with infinite precision. Despite rigorous efforts (Sarlin et al.,
2022), all of these methods, remain approximations with varying accuracy with
respect to the real pose, and most importantly they will be the source of biases.

The different methods used to define the ground truth reference frames are
significant factors to consider in the context of visual localization, as visual lo-
calization approaches are designed to determine 6DoF images poses with respect
to these reference frames. Interestingly, this aspect has only recently gained sub-
stantial attention. In a recent study, Brachmann et al. (2021) demonstrated that
visual localization methods that optimize a similar cost function as the reference
algorithm are more adept at reproducing the local minima and imperfections of
the generated ground truth. Consequently, depending on the application, a vi-
sual localization algorithm may derive greater benefit from minimizing one spe-
cific objective metric over another. Another consequence of this discovery is that
the evaluation of visual localization algorithms should always be interpreted in
conjunction with the specific method employed to construct the ground truth for
benchmark datasets.

2.2.4 A review of visual localization methods

This section makes a review of existing visual localization methods.
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Retrieval-based. Retrieval-based approaches share strong similarities with SfM
techniques (Sattler et al., 2012b; Taira et al., 2018; Sarlin et al., 2019; Humenberger
et al., 2022). They take as input a SfM ground truth database containing images
that observe the same scene as the query image. The SfM database already con-
tains local features extracted from database images along with their correspond-
ing 2D-3D correspondences. Retrieval-based methods proceed through three fun-
damental stages. First, they use image retrieval techniques to identify images
within the database that closely resemble the query image. Then, they perform
feature matching between the local features extracted from the query image and
those from the retrieved images. Finally, they employ a pose estimation algorithm
like PnP/RANSAC to determine the query image’s 6DoF pose.

Direct matching. Direct matching methods also require a SfM ground truth
database as input (Irschara et al., 2009; Sattler et al., 2012a, 2017). However, they
differ in that there is no image retrieval step involved. Instead, 2D-3D corre-
spondences are directly obtained from the pool of 3D points provided by the SfM
database and their corresponding local features. Subsequently, the query image’s
DoF pose is determined using algorithms such as PnP/RANSAC.

Scene coordinates regressors. Instead of relying on an external explicit data-
base, scene coordinates regressors encode scene coordinates, or 3D points, di-
rectly within a neural network’s weights (Brachmann et al., 2017; Brachmann and
Rother, 2018, 2022). This neural network is trained per scene in an end-to-end
manner, from the image to the pose, to learn the scene coordinates correspond-
ing to image patches. The training process still requires a ground truth database
acquired through SfM or RGB-D SLAM. During training, they employ a differ-
entiable version of the PnP/RANSAC scheme to estimate the image’s 6DoF pose
and enable the backpropagation of pose errors throughout the entire network. A
query image’s 6DoF pose can then be retrieved from a single network inference.

Absolute pose regressors. Similarly to scene coordinates regressors, these ap-
proaches implicitly encode the scene’s information in the weights of a neural net-
work (Kendall et al., 2015; Kendall and Cipolla, 2017; Shavit et al., 2021). This
network is trained for each individual scene in an end-to-end manner to directly
estimate a 6DoF pose from an input image. Training this network only necessi-
tates pairs of images along with their associated ground truth poses. However,
Sattler et al. (2019) have revealed that these systems lack the capability to accu-
rately model 3D geometry principles. As a result, these methods only have a
limited accuracy that aligns more closely with image retrieval performance than
precise 6DoF pose estimation.
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Structure-based. Some studies have concentrated on localizing images using
the scene’s structural information. Panek et al. (2022) argue that storing all the
images and local features of a SfM ground truth database is impractical. Instead,
they rely only on a reconstructed 3D mesh to dynamically render images and
conduct feature matching between the query image and these rendered images.
In contrast, Piasco et al. (2019a) leverage learned depth maps to derive a local
3D point cloud for a given query image. Subsequently, they employ the Iterative
Closest Point (ICP) method, an iterative algorithm for aligning two sets of 3D
points, to align the query image’s local 3D point cloud with the global point cloud
of the scene, which was initially generated using SfM or RGB-D SLAM.

NeRF. Moreau et al. (2022) train an absolute pose regressor on a set of both
real-world images and synthesized images obtained with Neural Radiance Fields
(NeRF) (Mildenhall et al., 2020; Martin-Brualla et al., 2021). They show that by
exposing the network to a more extensive range of viewpoints, they significantly
improve visual localization performance. Nevertheless, the applicability of this
approach in underwater settings is somewhat restricted due to NeRF’s difficulties
in modeling radiance fields within scattering media. Nonetheless, recent research
efforts have made considerable progress in adapting NeRF techniques to under-
water scenarios (Sethuraman et al., 2022; Levy et al., 2023).

Map-free. The objective of map-free localization is to determine the 6DoF cam-
era pose of a query image using just a single reference image along with its cam-
era intrinsics. This problem scenario is primarily driven by augmented reality
applications, where a comprehensive scene representation might not be accessi-
ble as an input for localization. However, using only one image does not provide
the necessary information to retrieve the scale of the scene. To address this chal-
lenge, Arnold et al. (2022) employ 2D feature matching (Lowe, 2004; DeTone et al.,
2018; Sarlin et al., 2020; Sun et al., 2021) to estimate the relative pose between the
query and reference images, up to a scale factor. This scale factor is subsequently
determined by leveraging deep single-image depth estimation models (Liu et al.,
2019; Ranftl et al., 2021).

2.3 Conclusion

Within this chapter, we have delved into key notions for long-term visual local-
ization in underwater settings. Specifically, we have presented the physical phe-
nomena influencing the formation of underwater images, encompassing refrac-
tion and light propagation under water. We introduced image formation models
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designed to account for underwater light propagation and discussed methods de-
veloped to mitigate their effects, which range from model-based to statistical and
deep learning approaches. Shifting the focus to visual localization, we provided a
description of the problem in its general form, and offered insights into the math-
ematical foundations and common strategies employed to address it. Notably,
we discussed the algorithms frequently utilized for generating reference camera
poses and conducted a survey of existing visual localization methods, classifying
them into distinct categories.
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Building a deep-sea dataset
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3.1 Introduction

This thesis focuses on visual localization in the context of deep-sea long-term
monitoring. As discussed in Section 2.1, underwater images present distinct
sources of technical and environmental variability that are not encountered in
terrestrial environments. Consequently, existing terrestrial datasets are inade-
quate for evaluating long-term localization performance in underwater scenarios.
Therefore, there is a need for a deep-sea visual localization dataset that accounts
for the specific difficulties faced in this environment, such as those described in
Section 2.1. Such a dataset should cover all the factors that could impair visual
localization algorithms in this environment. More specifically, it should be ac-
quired over an extended period of time and employ diverse acquisition systems
to encompass the full range of topological, environmental, and robotic equipment
variations inherent to deep-sea operations.
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Over the past decade, the problem of visual localization has received signif-
icant attention, primarily driven by the increasing interest in self-driving cars.
Within this context, there has been a particular focus on addressing the chal-
lenges posed by dynamic and changing environments. Consequently, research
efforts have primarily centered on enhancing the robustness of visual localization
in terrestrial settings (Benbihi, 2020). Most of the available datasets for evaluating
visual localization methods consist of terrestrial data (Griffith et al., 2017; Sattler
et al., 2018). These datasets encompass a wide array of environmental variations,
including day-night transitions, seasonal changes, diverse weather conditions,
alterations in natural landscapes, and occlusions caused by vehicles or pedestri-
ans. Yet, they lack some specific characteristics of underwater images, such as
absorption and scattering.

To address the specific challenges of deep-sea environments, we introduce in
this chapter a new underwater dataset to benchmark deep-sea long-term visual
localization. In this context, this chapter makes the following contributions:

• We make a review of existing visual localization datasets, and outline the
requirements for building a deep-sea dataset. Subsequently, we describe
the data acquisition process that was employed for creating this dataset.

• We describe how we estimate reference camera poses for the dataset us-
ing SfM, and delve into the challenges encountered when applying SfM to
deep-sea data, especially when dealing with images from different visits. To
tackle these challenges, we conduct a detailed study of each step in the SfM
process to identify potential difficulties. As a result, we propose a novel
pipeline that facilitates the creation of a unified reference model, consoli-
dating the camera poses from all visits into a common reference frame.

• We conduct an analysis of the proposed dataset to provide insights about
the major changes observed throughout the years. This analysis shows that
the constructed dataset captures long-term naturally occurring transforma-
tions, such as chimney collapse and population shifts, making it highly
valuable for evaluating visual localization algorithms.

This chapter is organized as follows. First, Section 3.2 makes a review of ex-
isting visual localization datasets. Then, Section 3.3 outlines the data collection
process. Subsequently, Section 3.4 outlines the SfM pipeline to generate the refer-
ence camera poses. Finally, Section 3.5 analyses the long-term changes captured
by the dataset.
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3.2 Existing datasets

The benchmark datasets commonly used for evaluating visual localization algo-
rithms primarily consist of terrestrial scenes. Given the large interest in the prob-
lem, there exists a wide range of datasets available that encompass diverse en-
vironments and offer distinct challenges. Aachen Day-Night, RobotCar Seasons,
CMU Seasons (Sattler et al., 2018) and Cambridge (Kendall et al., 2015) datasets
were acquired in outdoor environments while 7-Scenes (Shotton et al., 2013) and
12-Scenes (Valentin et al., 2016) datasets were captured indoor. However, the
availability of similar datasets in underwater environments is limited due to the
high cost of data collection.

Existing underwater datasets (Mallios et al., 2017; Ferrera et al., 2019) pri-
marily focus on supporting the development of underwater SLAM algorithms.
For example, the AQUALOC dataset (Ferrera et al., 2019) offers synchronized
monochromatic underwater images along with inertial and depth data from three
different sites off the coast of Corsica. It includes a harbor site at a depth of ap-
proximately four meters and two archaeological sites at depths of 270 meters
and 380 meters. Although the dataset contains sequences with different trajec-
tories, all the visits were conducted on the same day, limiting the representation
of various environmental changes that can occur under water. For instance, vari-
ations in turbidity and changes in marine populations and sedimentation are not
fully captured. Nielsen et al. (2019) built an underwater dataset within a con-
trolled pool environment. They also provide ground truth camera poses obtained
with an underwater motion capture system. Additionally, there are underwater
datasets available for different tasks like image enhancement and color restora-
tion (Akkaynak and Treibitz, 2019; Li et al., 2020; Berman et al., 2021), but they do
not provide image sequences of the same site covering long periods of time.

3.3 Data collection

Context. Since 2010, the EMSO-Azores deep-sea observatory situated on the
Mid-Atlantic Ridge has facilitated the continuous monitoring of the hydrother-
mal vent field known as Lucky Strike (Figure 3.1). During annual maintenance
cruises (Cannat and Sarradin, 2010), a ROV operated by Ifremer, named Vic-
tor6000 (Figure 3.2), has been deployed to investigate the evolution of hydrother-
mal circulation and associated fauna communities over multiple years (Matabos
et al., 2022). Within the explored area, particular focus has been given to the hy-
drothermal vent edifice named Eiffel Tower, located at a depth of 1700 meters
below the surface. Since its discovery in 1992 (Langmuir et al., 1993), four dives
were dedicated to the 3D reconstruction of this vent, taking place in 2015, 2016,
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Figure 3.1: Location of the Lucky Strike vent field on the Mid-Atlantic Ridge
(Sources: Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geon-
ames.org).

Year Camera Resolution Frame rate

2015 SONY FCB-H11 1920x1080 px 25 fps
2016 SONY FCB-H11 1920x1080 px 25 fps
2018 SONY FCB-H11 1920x1080 px 25 fps
2020 DeepSea Apex 4K Power & Light 3840x2160 px 30 fps

Table 3.1: Camera settings for the four dives. A different camera was employed
for the 2020 dive.

2018, and 2020. These dives have enabled quantitative monitoring of the distribu-
tion and dynamics of the vent community (Girard et al., 2020), and also provide
valuable data for our target application. As such, the data acquired during these
four visits will serve as foundation for constructing our deep-sea visual localiza-
tion dataset.

Acquisition requirements. To construct the reference model using SfM, specific
acquisition requirements must be met during each visit. Trajectories: The edifice
must be fully observed and tracked continuously to ensure that there are suffi-
cient overlapping views for SfM processing. Lighting: Adequate lighting is neces-
sary to illuminate the scene while minimizing the vignetting effect caused by the
artificial lighting system. Refraction: To preserve the linear projection assumption
of the pinhole model, the camera must be equipped with a custom dome port that
corrects the refraction induced by the air-glass-water mediums (see Section 2.1.1).
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Figure 3.2: The ROV Victor6000 operated by Ifremer.

Zoom: Using the zoom should be avoided to maintain the consistency of the pin-
hole model. Navigation: The ROV’s navigation data should be synchronized with
the video recording system to ensure that each frame is associated with a known
position prior, which is helpful for the image pairing and bundle adjustment steps
in SfM.

Acquisition setup. To meet the specified acquisition requirements, the follow-
ing setup is used. Navigation: The ROV Victor6000 embeds an USBL, INS, a DVL
and a depth sensor described in Section 1.2. These sensors are fused similarly to
Guerrero-Font et al. (2016) to compute the navigation data. These navigation data
provide estimates of the ROV’s latitude, longitude and altitude at a frequency of
1 Hz, all synchronized with the video recording. Cameras: Over the years, the
vehicle’s camera was replaced. Details about the camera specifications used for
each year can be found in Table 3.1. Ifremer designed and equipped each camera
with customized housing and special lenses that alleviate refraction effects. As
these lenses significantly mitigate camera distortion, the cameras were calibrated
under water using a simple second-order radial distortion model, as defined on
Section 2.1.1. Lighting: The ROV was equipped with an artificial lighting system
comprising 12 LED panels, each delivering 20,000 lumens.

Acquired data. Following the acquisition setup and requirements listed above,
the ROV conducted four dives into the Eiffel Tower vent in 2015, 2016, 2018 and
2020, recording a total of 17 hours of synchronized video and navigation data.
Navigation data were recorded at a frequency of 1 Hz in a text format similar to:
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timestamp1 lat1 lon1 alt1
timestamp2 lat2 lon2 alt2
. . .

The acquired data satisfies all the requirements listed in Section 3.1 for evaluat-
ing visual localization in deep-sea environments, covering the same site over an
extended period using different recording equipment.

3.4 Building a reference model

Benchmarking datasets for visual localization necessitates reference camera poses
for every image. These poses can be obtained through various approaches. The
most commonly utilized methods, SfM and depth-based SLAM, enable the ac-
quisition of both camera poses and scene geometry. However, underwater appli-
cations face challenges with depth-based SLAM due to the absorption of infrared
light in water, making it more difficult to set up. Underwater LiDAR systems, for
instance, demand additional preparation, and sonar data can be prone to noise.
An alternative approach for recovering camera poses without the scene’s geome-
try is to use motion capture systems. Nonetheless, motion capture are impractical
in deep-sea missions due to the challenges in deploying such a system over vast
areas spanning hundreds of square meters at depths exceeding a thousand me-
ters. Consequently, SfM emerges as a practical solution for estimating camera
poses and a point cloud of the scene in deep-sea environments.

Input data. From the video samples acquired at each dive, we extract one image
every three seconds for a total of 18,082 images. From the navigation data, we
interpolate linearly for each image its estimated latitude, longitude and altitude.

Objective. For all the extracted images, our goal is to retrieve their 6DoF cam-
era poses in a common reference frame, consistent across the four different years.
More specifically, we aim to build a unified reference model using SfM, by ensur-
ing that all SfM processing steps described in Section 2.2.2 can effectively handle
underwater data from different years.

Challenges. When working with underwater data, traditional methods used in
the SfM process encounter limitations at every stage of the reconstruction. Image
retrieval methods encounter difficulties in pairing images from different acquisi-
tions. Feature matching algorithms struggle to generalize to some topological and
environmental changes. Bundle adjustment can benefit from incorporating naviga-
tion data as prior knowledge. Sections 3.4.1 to 3.4.3 provide detailed explanations
of the methods employed to overcome each of these difficulties.
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3.4.1 Image retrieval
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Figure 3.3: NetVLAD performance on cross-years image retrieval. We compute
the 4096-dimensional NetVLAD descriptor of every image. For each query im-
age, we select its retrieved image as the one with the closest NetVLAD descriptor
amongst images of different years. We display the query image’s east and north
position colored with its spatial distance to the retrieved image. Images that have
no retrieval candidates within a five meters distance are rendered grey.

As described in Section 2.2.2, a primary step in the SfM procedure involves de-
termining which images should be paired together. Indeed, as the target model
comprises thousands of images, it is impractical to consider every possible im-
age pair combination for local feature matching. This image pairing step can be
accomplished through various approaches.

One intuitive approach is to make use of the available navigation data and
only pair images that are spatially close to each other. However, this approach
is only applicable for pairing images within the same visit year. As discussed in
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Figure 3.4: Image retrieval with NetVLAD (Arandjelovic et al., 2016). Our goal
is to identify candidate images from the 2015 dive (in blue) that are similar to a
target image from the 2016 visit (in green). We show in red the candidate images
whose NetVLAD descriptors are closest to the descriptor of the target image.

Section 1.2, the navigation data are only consistent within each visit due to the
error of the USBL, which can exhibit offsets of several meters between the frames
of the different visits. As a result, this approach does not enable the pairing of
images from different acquisitions.

Another solution is to use local or global image descriptors. For instance, we
can compute local descriptors for each image and employ methods like BoW to
pair images that have close features (Sivic and Zisserman, 2003). Alternatively,
we can use methods that generate a single global descriptor for each image, such
as NetVLAD (Arandjelovic et al., 2016), to pair images with similar global de-
scriptors. However, as illustrated in Figures 3.3 and 3.4, while these approaches
may yield satisfactory results for pairing images of the same visit year, they ex-
hibit poor performance when pairing images of different dives. In Figure 3.3,
we show the distance between query images and their top cross-years retrieved
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Figure 3.5: Structure-from-Motion pipeline. Initially, independent models are
constructed for each year. These models are then aligned to a common reference
frame, specifically the 2020 reference frame, using TEASER++ (Yang et al., 2021)
and ICP (Zhou et al., 2018). Finally, a global model encompassing images of all
years is generated using spatial matching based on the camera poses of individ-
ual models that now share a common reference frame.

images using NetVLAD. Unfortunately, most retrieved images are situated at a
distance of more than five meters from their query image. There also appears to
be a spatial disparity in retrieval performance, with regions on the vent border
exhibiting lower performance compared to those at the vent’s center. Neverthe-
less, images observing the chimney at the vent’s center are rarely matched with
images on a sub-metric scale. Figure 3.4 shows a query image and its retrieved
images using NetVLAD. Although multiple candidate images could have been
relevant matches, most of the retrieved images are located far from the target im-
age. Similarly to Figure 3.3, there seems to be an ambiguity in determining which
side of the top of the vent was actually observed.

To overcome this problem, we adopt the SfM pipeline outlined in Figure 3.5.
We first build separate models for each year. For each individual model, we per-
form image retrieval based on the interpolated navigation data, specifically pair-
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ing images that are within a proximity of 10 meters and 45 degrees. We then
carry out feature matching, described in Section 3.4.2, followed by bundle adjust-
ment, detailed in Section 3.4.3. These steps result in individual point clouds of
the vent for each visit year. To bring these point clouds into a unified reference
frame, we need to determine the transformations in Sim(3) that align them. The
Sim(3) group represents a 6DoF pose, and adds an extra degree of freedom —
the scale factor, denoted s. This scale factor allows us to account for changes in
size or scale when describing transformations. In other words, we seek to find
three transformations:

B TTTA =

[
s BRRRA

BtttA

0001×3 1

]
∈ Sim(3), (3.1)

such as the projection
BXXX = B TTTA ⊙ AXXX (3.2)

maps the 3D point AXXX from frame A to frame B. Using TEASER++ (Yang et al.,
2021), a robust 3D point cloud registration method similar to the ICP algorithm,
we retrieve 2020TTT 2015, 2020TTT 2016 and 2020TTT 2018, the respective transformations from
2015, 2016 and 2018 models to the 2020 reference frame. As suggested by the
authors, we further refine these transformations using the ICP algorithm (Zhou
et al., 2018). By applying their respective transformation to each model, we ob-
tain an initial coarse estimation of the camera poses from each dive in the same
reference frame. Using these camera poses, we once again pair images that are
spatially close, and perform feature matching and bundle adjustment to generate
a reference global model that encompasses images from all visit years. The final
step involves retrieving the scale, orientation, and location of the unified model.
To achieve this, we employ Umeyama’s algorithm (Umeyama, 1991) to find the
transformation navTTT global ∈ Sim(3) that aligns the camera poses of the 2020 im-
ages in the global model with their interpolated navigation.

On a related topic, Appendix B develops the lie algebra to perform the Sim(3)

alignment between camera poses and their associated depth priors, similarly to
Umeyama’s algorithm, but using only vertical position priors. This development
proves valuable in underwater applications, where complete camera position pri-
ors might not always be available, in contrast to depth measurements which re-
quire only a pressure sensor.

3.4.2 Image matching

To ensure consistency in the estimated camera poses and scene geometry across
different years during the construction of the SfM model, it is necessary to not
only match images from the same visit but also match local features in images
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(a) Brute force matching using SIFT descriptors (Lowe, 1999).

(b) Brute force matching using ORB descriptors (Rublee et al., 2011).

(c) Brute force matching using SuperPoint descriptors (DeTone et al., 2018).

(d) Matching with SuperGlue (Sarlin et al., 2020) using SuperPoint descriptors.

(e) Matching with LightGlue (Lindenberger et al., 2023) using SuperPoint descriptors.

Figure 3.6: Feature matching between cross-year images using different methods.
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Figure 3.7: Number of feature matching inliers between images of different visit
years using different matching methods. We first create a database of image pairs
using the unified model. We pair every image of the 2020 dive with its spatially
closest image amongst the 2015, 2016 and 2018 dives. We filter image pairs that
are not within a radius of five meters and twenty degrees. We then perform fea-
ture matching on the retrieved image pairs. Using the camera calibration matri-
ces, we filter the resulting matches by computing their essential matrix within a
RANSAC scheme with a given pixel distance threshold. This figure reports the
number of inliers resulting from this operation using different pixel thresholds.

from different visits. However, there is no guarantee that feature matching al-
gorithms will generalize well to the significant changes present in deep-sea en-
vironments. Therefore, in order to identify the most suitable feature matching
algorithm for our application, it is essential to conduct benchmarking exper-
iments using various algorithms. Benchmarking feature matching algorithms
relies on quantitative metrics computed from ground truth data. For instance,
the HPatches dataset (Balntas et al., 2017) provides image pairs of planar scenes
along with their corresponding homography. This dataset enables the calcula-
tion of various standard metrics, such as the precision and recall of estimated
matches compared to ground truth matches within a reprojection error threshold
of three pixels (Sarlin et al., 2020; Lindenberger et al., 2023). Unfortunately, we do
not have access to similar datasets with ground truth information to benchmark
these feature matching algorithms in an underwater scenario.

To alleviate this concern, we rely on a practical quantitative and qualitative
survey of different feature matching methods, encompassing different descrip-
tors and feature matchers. We evaluate three different local descriptors com-
monly used in SfM and visual localization pipelines: SIFT (Lowe, 1999), ORB
(Rublee et al., 2011) and SuperPoint (DeTone et al., 2018), with brute force match-
ing. We also investigate the performance SuperPoint in conjunction with two
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feature matching networks: SuperGlue (Sarlin et al., 2020) and LightGlue (Lin-
denberger et al., 2023). Figure 3.6 provides examples of these feature matching
methods on two images extracted from the 2015 and 2020 dives. Figure 3.7 shows
the number of filtered matches obtained using these different feature matching
methods on a set of image pairs from different visits. Our findings indicate that
handcrafted features like SIFT and ORB struggle to generalize effectively in the
face of cross-years changes. In contrast, SuperPoint’s learned descriptors demon-
strate improved generalization capabilities, albeit with noticeable levels of noise
in the feature matching results. A real improvement is observed by combining
these learned descriptors with feature matching neural networks, such as Super-
Glue and the more recent LightGlue approach.

Since LightGlue was not available at the time of creating the dataset, the
pipeline described in Section 3.4.1 and illustrated by Figure 3.5 uses SuperPoint
& SuperGlue for matching local features in image pairs.

3.4.3 Bundle adjustment with position priors

Following the feature matching step, we obtain 2D keypoint pairs measurements.
In the SfM pipeline, the camera poses and a 3D point cloud of the scene are re-
trieved through bundle adjustment by maximizing the likelihood of observing
these measurements (Hartley and Zisserman, 2003). This section details the bun-
dle adjustment problem and provides an alternative cost function to incorporate
known position priors ttti ∈ R3 derived from the navigation data in the optimiza-
tion procedure.

We note Ci the image with camera pose [RRRi, ttti] and camera matrixKKKi. We note
xxxi,j the measured 2D keypoint coordinates resulting from the observation of 3D
point XXXj in image Ci. Let

xxxi,j = π (KKKi(RRRi XXXj + ttti)) (3.3)

be the projection of 3D point XXXj inCi image plane. Given a set of observations xxxi,j ,
we aim to estimate the set of camera poses, intrinsics and 3D scene coordinates:

θ = {RRR, ttt, KKK, XXX}. (3.4)

Traditionally, in bundle adjustment, we make the assumption that these observa-
tions are measured with a zero-mean Gaussian noise:

xxxi,j ∼ N (xxxi,j, ΣΣΣ
x). (3.5)

An estimation of the parameters is then obtained through the maximum likeli-
hood estimator:

θ̂MLE = argmax
θ

∏
i

∏
j

p(xxxi,j | θ), (3.6)
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where p(xxxi,j | θ) is the probability of observing xxxi,j given θ parameters. In the con-
text of our specific scenario, we have access to navigation data that provide valu-
able prior information regarding the camera poses. More specifically, we leverage
the position measurements of the vehicle ttti and their associated uncertainties ΣΣΣt

i.
We make the assumption that these measurements were acquired with a zero-
mean Gaussian noise:

ttti ∼ N (ttti, ΣΣΣ
t
i). (3.7)

To leverage this new source of information, we formulate the bundle adjustment
problem using the maximum a posteriori estimator with p(θ) = p(ttti), since we
only have prior information for the camera’s position:

θ̂MAP = argmax
θ

∏
i

∏
j

[
p(xxxi,j | θ)

]∏
i

[
p(ttti)

]
(3.8)

with

p(xxxi,j|θ) =
1

2π
√

det(ΣΣΣx)
exp

(
−1

2
(xxxi,j − xxxi,j)

T (ΣΣΣx)−1(xxxi,j − xxxi,j)

)
(3.9)

and

p(ttti) =
1√

8π3 det(ΣΣΣt
i)
exp

(
−1

2
(ttti − ttti)

T (ΣΣΣt
i)

−1(ttti − ttti)

)
. (3.10)

This is equivalent to minimizing the negative logarithm:

θ̂MAP = argmin
θ

−
∑
i

∑
j

[
log(p(xxxi,j | θ))

]
−

∑
i

[
log(p(ttti))

]
(3.11)

with

log(p(xxxi,j|θ)) = −1

2
(xxxi,j − xxxi,j)

T (ΣΣΣx)−1(xxxi,j − xxxi,j)− log
(
2π

√
det(ΣΣΣx)

)
(3.12)

and

log(p(ttti)) = −1

2
(ttti − ttti)

T (ΣΣΣt
i)

−1(ttti − ttti)− log
(√

8π3 det(ΣΣΣt
i)
)
. (3.13)

By eliminating the constant terms that do not affect the minimization, we can
rewrite Eq. (3.11) as:

θ̂MAP = argmin
θ

∑
i

∑
j

[
(xxxi,j − xxxi,j)

T (ΣΣΣx)−1(xxxi,j − xxxi,j)
]

+
∑
i

[
(ttti − ttti)

T (ΣΣΣt
i)

−1(ttti − ttti)
]
.

(3.14)

Equation (3.14) describes the cost function minimized during bundle adjustment
that incorporates known position estimates as priors during the optimization.

In Section 3.4.1, we outlined that we use bundle adjustment to build the indi-
vidual models and the unified model. For individual models, we make use of the
available navigation data and perform bundle adjustment using Eq. (3.14). As for
the unified model, considering that navigation data is inconsistent across differ-
ent years due to the USBL bias, we employ the traditional bundle adjustment cost
function described by Eq. (3.6).
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Figure 3.8: Trajectories followed by the ROV during the four different visits. The
figure displays unified camera positions on the aligned individual models.

Model Nb. of
images

Nb. of 3D
points

Mean track
length

Mean obs.
per image

Mean
reproj. error

2015 4,914 525,522 8.48 906.4 1.35 px
2016 3,699 520,320 5.85 823.5 1.32 px
2018 5,493 618,421 7.09 798.1 1.31 px
2020 3,976 464,331 8.35 975.5 1.33 px

Global 18,082 1,971,726 8.24 898.7 1.39 px

Table 3.2: Reconstruction statistics. For each model, we report the number of
registered images, the number of triangulated 3D points, the mean track length
(number of images in which a 3D point is observed), the mean number of 2D
observations per image as well as the mean reprojection error in pixels.

3.4.4 Model statistics

Figure 3.8 illustrates the estimated camera poses in the unified model. To assess
the reliability of the proposed ground truth, Table 3.2 presents statistics on the
obtained reconstructions. Additionally, Table 3.3 reports the percentage of 3D
points matched between each year in the global model. While the majority of 3D
points observations are confined within the same year, a significant proportion of
them were successfully matched across different years, ensuring consistency in
the scene geometry and camera poses between the various visits.
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Observation year 2015 2016 2018 2020

2015 65.9% 10.7% 15.2% 8.12%
2016 20.3% 50.9% 16.2% 12.6%
2018 16.1% 9.05% 63.1% 11.8%
2020 9.79% 8.00% 13.5% 68.8%

Table 3.3: Percentage of 3D points triangulated using cross-years observations.
For each row, given all the 3D observations of the specified year, we report the
percentage of these observations that were triangulated using 2D observations of
other years. Consequently, rows add up to 100%.

3.5 Characterizing changes across years

2015

2020

Figure 3.9: Illustration of a topological modification. The left image shows a
point cloud distance between 2015 and 2020 models. We notice a piece from 2015
missing in 2020. This modification is visible in the images on the right.

This dataset presents significant appearance changes across visits, posing sub-
stantial challenges for the visual-based localization task. These alterations en-
compass various aspects, such as topographic variations, environmental shifts,
and modifications in the ROV’s equipment. During the observation period, sev-
eral changes were detected and measured, indicating alterations in the local ge-
omorphology of the edifice over the years (Van Audenhaege et al., 2023). Chim-
ney collapse, outcrop/boulder detachment or slide resulted in a loss of material.
Meanwhile, areas where the vent is active grew through mineral accretion creat-
ing new outcrops, flanges and spires. Material build-up was twice as important
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Figure 3.10: Evolution of the south-east façade of the vent. A growth in the
mussels’ population significantly alters the visual aspect of the scene, making it
difficult to match specific 2D points.

as the loss, suggesting that the volume of the edifice’s volume is increasing over
time. While these changes can be locally drastic and affect the registration of 3D
models over the years, they represent only 5% of the total surface and are local-
ized in areas of active venting. Furthermore, variations in hydrothermal activity
result in distinct mineralization processes, leading to color changes in deposits
depending on the temperature and chemical composition of the fluid.

Figure 3.9 reveals a modification in the topography of the scene. A chimney
visible during the 2015 dive is missing in 2020. Additionally, a temperature sen-
sor, which was not observed in 2015, was deployed in the vicinity in 2020.

Biological changes were more important and mainly localized in areas of to-
pographic changes. They result from mussel populations that grow and migrate
to colonize newly created habitats (143.97 m2 from 2015 to 2020) (Audenhaege
et al., 2022). Moreover, mussels are dynamically reoriented on a daily basis. Over
the period from 2015 to 2020, there was an overall disappearance of white mi-
crobial mats across the entire edifice (-72.85 m2). Although these changes do not
affect the general topography of the structure, they strongly modify the color and
texture of the model. Figure 3.10 illustrates how the growth in mussels popula-
tion over the years has altered both the topography of the scene and the colors of
the south-east façade of the vent. Due to these organic modifications, matching
3D points between different years on the chimney are scarce, making it challeng-
ing to match specific 2D points. The impact of these biological phenomena on the
global 3D reconstruction are illustrated in Figure 3.11. While most of the vent’s
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(a) West façade.

(b) South-east façade.

Figure 3.11: Distribution of 3D points that are triangulated between images of
different years on the Eiffel Tower edifice. 3D points resulting from cross-years
triangulation are more scarce on the south-east façade due to biological changes.

surface is covered by 3D points triangulated using cross-years observations, this
specific area suffers from this source of variability, and the model mostly relies on
matches between images of the same year.

The vehicle explored uneven regions over different years, with the 2015 dive
covering the least ground compared to other years. This is depicted in Figure 3.12,
which showcases the area explored by the ROV for each year.
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(a) East-North View.

(b) East-Up View. (c) North-Up View.

Figure 3.12: Area covered by the ROV during the different dives.

(a) Red channel. (b) Green channel. (c) Blue channel.

Figure 3.13: Comparison of pixel intensity histograms for each year on each
color channel.

In Figure 3.13, we compare the histograms of pixel intensities in images from
each year. The red channel generally exhibits lower pixel intensities compared
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to the green and blue channels. This is easily explained by the wavelength-
dependent light attenuation caused by the water medium (Akkaynak and Treib-
itz, 2019; Berman et al., 2021). Additionally, a discernible shift in pixel intensity is
noticeable for the 2020 dive, which can likely be attributed to the camera change.

3.6 Conclusion

In this chapter, we have developed a novel dataset specifically designed for eval-
uating long-term visual localization algorithms in deep-sea environments. This
dataset contains 18,082 images captured during four distinct visits to the Eiffel
Tower hydrothermal vent spanning from 2015 to 2020. Throughout the construc-
tion of this dataset, we encountered various challenges closely related to the vi-
sual localization problem.

We investigated the difficulties associated with image retrieval methods, par-
ticularly in pairing underwater images with significant appearance changes. We
conducted a comprehensive benchmark of feature matching algorithms to iden-
tify the most robust ones capable of handling environmental variations effec-
tively. We introduced a maximum a posteriori formulation of the bundle ad-
justment problem that incorporates known camera pose estimates as priors. This
formulation not only enables to retrieve the model’s scale and orientation but also
guides the convergence of the registered images during the optimization.

Following our findings, we built a unified model that embeds images from
all visits. We then provided reconstruction metrics to validate its applicability.
Lastly, we conducted a comprehensive survey of the changes that have occurred
over the years, aiming to gain a deeper understanding of the different sources
of variability encountered in this environment. This analysis represents a key
step in identifying potential factors that may impair the performance of visual
localization algorithms in this challenging underwater setting.

The work presented in this chapter led to a publication in The International
Journal of Robotics Research (Boittiaux et al., 2023b).



50

Chapter 4

Underwater image color restoration

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Gaussian prior for underwater color restoration . . . . . . . . . . 52

4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Leveraging scene structure . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 A partial closed-form solution . . . . . . . . . . . . . . . . 60

4.3.4 Modeling artificial lights . . . . . . . . . . . . . . . . . . . . 63

4.3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Benchmark datasets . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Qualitative evaluation . . . . . . . . . . . . . . . . . . . . . 73

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Introduction

In Section 2.1, we have seen that due to the alteration of light propagation in the
water medium, underwater images suffer from low contrast and distorted col-
ors, mainly due to absorption and scattering phenomena. Consequently, when
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building an underwater dataset for visual localization in Section 3.4, we iden-
tified challenges in every step of the SfM pipeline. To better understand and
alleviate the issues encountered when applying computer vision algorithms on
underwater images, this chapter introduces two new methods that aim to restore
the colors of underwater images as if they were acquired at the surface, without
the effect of water on light propagation. Because absorption and scattering phe-
nomena heavily depend on the position of the camera relative to the scene, the
presented methods take as input 3D information about the scene.

The contributions of this chapter are the following:

• Building upon the success of the Sea-thru method presented in Section 2.1.4,
we propose a new optimization scheme for estimating the parameters of
the underwater image formation model present in Eq. (2.10) from a single
image and its corresponding distance map. It relies on a single assumption,
i.e., pixel intensities are normally distributed within each color channel of
the restored image.

• We then introduce SUCRe (for Structured Underwater Color Restoration),
a multi-view method that proposes to make full use of the 3D information
given by SfM models. It simultaneously estimates the parameters of the
underwater image formation model described in Eq. (2.10) alongside the
restored image by tracking points in multiple images to retrieve their inten-
sities at different distances to the scene. We demonstrate that it alleviates
some of the main issues encountered when using a single image.

• We validate experimentally the developed approaches on both synthetic
and real-world datasets in natural light and deep-sea scenarios. We per-
form extensive objective quantitative evaluation on two datasets containing
reference ground truth data: synthesized underwater images (Zwilgmeyer
et al., 2021) and color charts captured under water (Akkaynak and Treibitz,
2019). The applicability and ecological validity of our method is confirmed
with qualitative analysis on images from two deep dive surveys: the Eiffel
Tower edifice presented in Chapter 3 and a similar private dataset visiting
a submarine wreck.

This chapter is organized as follows. First, Section 4.2 introduces Gaussian
Sea-thru, which is an alternative optimization to the Sea-thru method. Then, Sec-
tion 4.3 proposes a novel method, called SUCRe, for multi-view underwater color
restoration. Finally, Section 4.4 present experiments to illustrate the efficiency of
the proposed methods.



4.2. Gaussian prior for underwater color restoration 52

Figure 4.1: Distance-dependent dark channel prior on the blue channel.

4.2 Gaussian prior for underwater color restoration

4.2.1 Motivation

As we can recall from Section 2.1.4, the Sea-thru method aims at inverting the fol-
lowing underwater image formation model in order to retrieve an unattenuated
version of the image:

IIIc,p = JJJ c,pe
−βczzzp +Bc(1− e−γczzzp), (4.1)

with IIIc,p the acquired underwater image, JJJ c,p the restored image without the ef-
fects of water, zzzp the distance of pixel p to the scene, Bc the veiling light, βc the
absorption coefficient and γc the backscatter coefficient. To achieve this, Sea-thru
requires only a single image and its distance map. Still in Section 2.1.4, we have
seen that inverting this model from a single image and its corresponding distance
map is an underdetermined problem.

To cope with this issue, Sea-thru relies on two additional hypotheses to con-
strain the problem. First, it estimates both the veiling light Bc and the backscatter
coefficient γc using a distance-dependent alternative of the dark channel prior
(He et al., 2010) illustrated in Figure 4.1. Pixel distances are split into 10 evenly
spaced parts. For each of these parts, the authors select the darkest pixels, in the
bottom 1% of pixel intensities. They make the assumption that these pixels are
observations of dark scene elements. This means that, for these pixels, JJJ c,p → 0,
and hence IIIc,p → Bc(1− e−γczzzp). In this setting, the authors estimate both Bc and
γc in a least squares manner. They then rely on LSAC (Ebner and Hansen, 2013),
a costly illuminant map estimation algorithm, to retrieve βc. As a final processing
step, the authors make use of the Gray World Hypothesis to estimate the white
point of the image and perform a white balance. This hypothesis assumes that
the average color of the observed scene should be gray.
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4.2.2 Method

Figure 4.2: Pixel intensities appear to follow a normal distribution whose mean
and standard deviation depend on the distance.

Since Sea-thru uses the Gray World Hypothesis to estimate the white point of
their restored image, we might as well rely on a similar assumption from the start.
Looking at Figure 4.2, we can notice that pixel intensities of underwater images
appear to follow a normal distribution whose mean and standard deviation de-
pend on their viewing distance. Encouraged by this observation and leveraging
the assumption made by the Gray World Hypothesis, we introduce an alternative
optimization method to Sea-thru that relies on the single assumption that pixel in-
tensities are normally distributed within each channel of the restored image, i.e.,
we use a Gaussian prior over each channel of the restored image:

JJJ c,p ∼ N (µc, σ
2
c ), (4.2)

where µc and σc are the channel-wise mean and standard deviation of the restored
image pixel intensities. By shifting and scaling the parameters of Eq. (4.2) accord-
ing to Eq. (4.1), we can deduce that pixel intensities of the acquired image also
follow a normal distribution:

IIIc,p ∼ N (mmmc,p, sss
2
c,p), (4.3)

where
mmmc,p = µce

−βczzzp +Bc(1− e−γczzzp) (4.4)

and
sssc,p = σce

−βczzzp (4.5)
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Figure 4.3: Underwater image formation model parameters estimation using
Gaussian Sea-thru. We assume that pixel intensities are normally distributed
in the restored image. From Eq. (2.10), we deduce that pixel intensities of the
acquired image also follow a normal distribution with mean mmmc,p and standard
deviation sssc,p that depend on the pixels distances to the scene. We illustrate the
estimated parameters on a deep-sea image and its distance map.

are respectively the channel-wise mean and standard deviation of pixel intensi-
ties of the acquired underwater image. Additional information regarding this cal-
culation is available in Appendix C. Following the assumption made in Eq. (4.2),
Eqs. (4.3) to (4.5) describe that pixel intensities in the acquired image also follow
a normal distribution, whose parameters depend on the distance of the pixel to
the scene, as illustrated by Fig. 4.3.

We then retrieve all the parameters of the underwater image formation model
in a single optimization procedure using the Maximum Likelihood estimator.
From Eq. (4.3) and the normal distribution probability density function, we can
express the likelihood of observing IIIc:

B̂c, β̂c, γ̂c = argmax
Bc,βc,γc

∏
p

[
1

sssc,p
√
2π

exp

(
−(IIIc,p −mmmc,p)

2

2sss2c,p

)]
. (4.6)

This is equivalent to estimating the negative logarithm of Eq. (4.6):

B̂c, β̂c, γ̂c = argmin
Bc,βc,γc

∑
p

[
log(sssc,p

√
2π) +

(IIIc,p −mmmc,p)
2

2sss2c,p

]
. (4.7)

An estimation of the restored image is then retrieved using Eq. (4.1):

Ĵ̂ĴJ c,p =
(
IIIc,p − B̂c(1− e−γ̂czzzp)

)
eβ̂czzzp . (4.8)

In summary, we have derived an estimation procedure to estimate the param-
eters of the underwater image formation model described by Eq. (4.1) based on
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Underwater image
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Figure 4.4: Estimated absorption and backscatter using Gaussian Sea-thru.

the single assumption that pixel intensities follow a Gaussian distribution in the
restored image. This procedure involves fewer assumptions when compared to
the Sea-thru method. It is also simpler to implement as it only relies on the min-
imization of a scalar function. In Figure 4.4, we illustrate graphically the image
formation model of Eq. (4.1) using absorption and backscatter parameters esti-
mated with Gaussian Sea-thru. To conclude, in simple terms, Gaussian Sea-thru
stretches the pixel intensity histogram illustrated in Figure 4.3 in a distance-wise
manner based on the image formation model described by Eq. (4.1).
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Figure 4.5: Gaussian Sea-thru processing time on a RTX A5000 GPU using the
simplex algorithm.

4.2.3 Implementation

Our method is applied on each color channel independently. Each resulting com-
ponent is then normalized to obtain the final restored image.

Initialization. Similarly to Sea-thru, our approach requires only a coarse initial-
ization. We initialize the parameters with Bc = βc = γc = 0.1, as if water had a
very light effect on the image formation.

Optimization. The parameters of Eq. (4.1) image formation model have practi-
cal realistic bounds: 0 < Bc < 1 and 0 < βc, γc < 5. In order to incorporate these
constraints into the estimation procedure, we minimize Eq. (4.7) using a bounded
optimization algorithm. We tested successfully different optimization methods:
limited-memory BFGS, trust region constrained and simplex. Over the course of
our experiments, we found that the simplex algorithm (Nelder and Mead, 1965)
provided the most effective minimization of the objective function.

Normalization. As a final processing step, we normalize each color channel by
performing a simple histogram stretching. This is achieved by clipping the pixel
intensities of each color channel between their lowest 1% and top 99% values,
and then normalize the resulting channels between 0 and 1.

Processing time. The processing time of Gaussian Sea-thru mainly depends on
the method used to perform the optimization. Using the simplex algorithm, Fig-
ure 4.5 shows that the method appears to have a processing time in O(|IIIc|2), with
|IIIc| the number of pixels. Restoring an underwater image with a resolution of
1920 by 1080 pixels takes on average 0.75 second on a RTX A5000 GPU.
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4.2.4 Limitations

(a) Underwater image. (b) Gaussian Sea-thru.

Figure 4.6: Quantization limitations of Gaussian Sea-thru. Images are stored in
an 8-bits format. Because of this, there is no sufficient information in the image to
recover distant areas, like in the top-left corner of the image.

(a) Underwater image. (b) Gaussian Sea-thru.

Figure 4.7: Vignetting limitations of Gaussian Sea-thru. The image formation
model we use in Gaussian Sea-thru does not include the vignetting effect created
by artificial lighting systems. Because of this, borders of the image deviate from
the model, resulting in distorted colors.

Quantization. In our experiments , we apply our method to 8-bits images, in
contrast with Sea-thru that processes raw high dynamic range images. As illus-
trated in Figure 4.6, this 8-bits quantization introduces limitations in the restora-
tion process. Due to quantization, there is no information left on distant areas of
the underwater image. Hence, it is not possible to retrieve the unattenuated pixel
intensities of these areas.
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Vignetting. In Figure 4.7, the lights embedded by the deep-sea vehicle induces
a strong vignetting effect (see Section 2.1.3). Since this effect is not included in
the underwater image formation model, applying Gaussian Sea-thru to the image
results on distorted color on the edges.

4.3 Leveraging scene structure
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Figure 4.8: SUCRe pipeline. We use camera poses, intrinsics and depth maps
resulting from a SfM to geometrically pair pixels between different views. We
project pixels from one view to another, enabling us to pair points in low con-
trast areas. We then simultaneously estimate the parameters of an underwater
image formation model along with the restored image. This figure illustrates our
method on a real-world deep-sea dive at a submarine wreck.

4.3.1 Motivation

Distance maps used in Sea-thru or Gaussian Sea-thru are usually estimated using
SfM. Yet, these methods do not exploit all the 3D information given by the SfM.
This section introduces a novel approach, named SUCRe, that overcomes the lim-
itations of single-view underwater image color restoration methods by leverag-
ing multiple observations of the scene, thus eliminating the need for additional
assumptions. Moreover, we may obtain from other views closer observations of
points, adding information that is not available in the image to be restored. Also,
using multiple views of the same scene allows to virtually increase the dynamic
range of the observed pixels. Our method takes as input underwater images to-
gether with their corresponding camera poses, intrinsics and depth maps.
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Figure 4.8 illustrates the core idea of our method. By pairing pixels in mul-
tiple images, we are able to follow the intensity evolution of points at different
distances and estimate the parameters of an underwater image formation model
and pixel intensities at a hypothetical distance of zero meter, implying a lack of
disturbance by the water medium.

4.3.2 Method

The proposed method relies on three components. First, based on multiple im-
ages of the same scene, we compute camera poses, intrinsics and depth map using
SfM and multi-view stereo pipelines. Then, we use this information to pair pixels
geometrically between images. Finally, we simultaneously estimate the parame-
ters of an underwater image formation model along with the restored image in a
single optimization procedure.

SfM pipeline. To obtain the inputs for SUCRe, we first compute a SfM using
the pipeline described in Section 3.4 for individual models. More specifically, i)
we pair images spatially using the navigation data, ii) we use SuperPoint (DeTone
et al., 2018) and SuperGlue (Sarlin et al., 2020) to perform feature matching, iii) we
perform bundle adjustment using navigation priors. Then, by using the resulting
SfM as input, we compute a dense 3D mesh of the scene with the OpenMVS soft-
ware (Cernea, 2020). Finally, depth maps are obtained by ray-casting the images
onto the 3D mesh.

Dense multi-view pixel pairing. The second step of our approach is to pair
pixels in a dense manner between different views. This is accomplished by pro-
jecting pixel coordinates from one view to another using the depth maps as well
as the poses of the cameras and their intrinsics parameters. Let xxx1 be the homo-
geneous coordinates of a pixel in image view i1 with depth d1 ∈ R and homoge-
neous pose matrix wTTT i1 ∈ SE(3). LetKKK ∈ R3×3 be the intrinsic calibration matrix
of images i1 and i2. The projection of xxx1 in image view i2 with pose wTTT i2 can be
obtained by:

xxx2 = π
(
KKK

(
i2TTTw

wTTT i1

)
⊙
(
KKK−1 d1 xxx1

))
. (4.9)

We then back-project xxx2 in i1 view using i2 depth map:

xxx′
1 = π

(
KKK

(
i1TTTw

wTTT i2

)
⊙
(
KKK−1 d2 xxx2

))
, (4.10)

where d2 is the depth of xxx2 in image view i2. The pixels in both images (xxx1, xxx2) are
only paired if xxx′

1 and xxx1 land on the same pixel coordinate, i.e., pixels are matched
to each other in both directions, from i1 to i2 and from i2 to i1. This ensures that
each pixel has only one match in both images. It also filters out points occluded by
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(a) Underwater image. (b) SUCRe.

Figure 4.9: Applying SUCRe from an image of the Eiffel Tower dataset. Pixels
without depth information are left blank.

the structure. This geometry-based approach allows us to robustly pair pixels in
scenarios where feature matching algorithms fail, e.g., in low contrast areas where
most image signal has been attenuated like in the top left corner of Figure 4.6.

Multi-view optimization. With multiple observations of the same pixel JJJ c,p,
our problem becomes well-posed. In SUCRe, we formulate the underwater im-
age formation model described by Eq. (4.1) in a multi-view setting:

III i,c,p = JJJ c,pe
−βczzzi,p +Bc(1− e−γczzzi,p). (4.11)

Parameters of Eq. (4.11) are then estimated by fitting the model in a least squares
manner. We note our residuals:

rrri,c,p = III i,c,p − JJJ c,pe
−βczzzi,p −Bc(1− e−γczzzi,p). (4.12)

We aim to find the parameters that minimize the cost function:

L(JJJ c, Bc, βc, γc) =
∑
i

∑
p

rrr2i,c,p. (4.13)

More precisely, we look for:

Ĵ̂ĴJ c, B̂c, β̂c, γ̂c = argmin
JJJc,Bc,βc,γc

L(JJJ c, Bc, βc, γc). (4.14)

Because some pixels in low contrast areas are matched with closer observa-
tions, we are able to retrieve their color despite insufficient information about
them on the image being restored. This can be observed in the top left corner of
the image presented in Figure 4.9.

4.3.3 A partial closed-form solution

The core of the proposed approach is an optimization problem. Our goal is to
estimate the parameters of an underwater image formation model that fit obser-
vations of paired pixel intensities and distances. Yet, because this optimization
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process involves estimating an entire image, employing Jacobian-based optimiza-
tion techniques, such as the Levenberg-Marquardt algorithm, becomes intricate.
For instance, considering 10 million observations, restoring an image with a res-
olution of 1920 by 1080 pixels would require generating a Jacobian matrix of ap-
proximate dimensions of 10 million by 2 million, demanding a staggering 80 ter-
abytes of memory resources. To overcome this problem, this section reveals that
when solving Eq. (4.14), we can actually represent JJJ c,p and Bc in terms of βc and
γc. This new representation enables us to perform the optimization procedure
solely on the βc and γc parameters.

The first step in attaining this representation involves expressing JJJ c,p in terms
of Bc, βc and γc. To achieve this, we adopt the following notations for the sake of
simplicity:

bbbi,c,p = 1− e−γczzzi,p (4.15)

and
DDDi,c,p = III i,c,p −Bc bbbi,c,p. (4.16)

To retrieve JJJ c,p, we need to find where the partial derivative of the cost function
defined in Eq. (4.13) with respect to JJJ c,p is equal to zero:

∂

∂JJJ c,p

L(JJJ c, Bc, βc, γc) = 0 (4.17)

⇒ ∂

∂JJJ c,p

∑
i

∑
p

[
DDDi,c,p − JJJ c,pe

−βczzzi,p
]2

= 0 (4.18)

⇒
∑
i

[ ∂

∂JJJ c,p

(
DDDi,c,p − JJJ c,pe

−βczzzi,p
)2]

= 0 (4.19)

⇒
∑
i

[
−2e−βczzzi,p

(
DDDi,c,p − JJJ c,pe

−βczzzi,p
)]

= 0 (4.20)

⇒ 2
∑
i

[
JJJ c,pe

−2βczzzi,p −DDDi,c,pe
−βczzzi,p

]
= 0 (4.21)

⇒
∑
i

[
JJJ c,pe

−2βczzzi,p
]
=

∑
i

[
DDDi,c,pe

−βczzzi,p
]

(4.22)

⇒ JJJ c,p =

∑
i

[
DDDi,c,pe

−βczzzi,p

]
∑

i

[
e−2βczzzi,p

] . (4.23)

Then, to retrieve Bc, we first develop Eq. (4.23) using the notation defined in
Eq. (4.16). This way, we can isolate Bc:

JJJ c,p = νννc,p −Bc ξξξc,p (4.24)
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with

νννc,p =

∑
i

[
III i,c,pe

−βczzzi,p

]
∑

i

[
e−2βczzzi,p

] (4.25)

and

ξξξc,p =

∑
i

[
bbbi,c,pe

−βczzzi,p

]
∑

i

[
e−2βczzzi,p

] . (4.26)

After injecting the closed form of JJJ c,p from Eq. (4.24) in the cost function, we need
to find where the partial derivative of Eq. (4.13) with respect toBc is equal to zero:

∂

∂Bc

L(JJJ c, Bc, βc, γc) = 0 (4.27)

⇒ ∂

∂Bc

∑
i

∑
p

[
III i,c,p − (νννc,p −Bc ξξξc,p)e

−βczzzi,p −Bc bbbi,c,p

]2
= 0. (4.28)

For the sake of simplicity let us rewrite Eq. (4.28) as:

∂

∂Bc

∑
i

∑
p

[
ζζζ i,c,p −Bc ηηηi,c,p

]2
= 0 (4.29)

with
ζζζ i,c,p = III i,c,p − νννc,pe

−βczzzi,p (4.30)

and
ηηηi,c,p = bbbi,c,p − ξξξc,pe

−βczzzi,p . (4.31)

We can now develop Eq. (4.29) to express Bc in terms of βc and γc:∑
i

∑
p

[ ∂

∂Bc

(ζζζ i,c,p −Bc ηηηi,c,p)
2
]
= 0 (4.32)

⇒ 2
∑
i

∑
p

[
ζζζ i,c,p ηηηi,c,p −Bc ηηη

2
i,c,p

]
= 0 (4.33)

⇒
∑
i

∑
p

[
Bc ηηη

2
i,c,p

]
=

∑
i

∑
p

[
ζζζ i,c,p ηηηi,c,p

]
(4.34)

⇒ Bc =

∑
i

∑
p

[
ζζζ i,c,p ηηηi,c,p

]
∑

i

∑
p

[
ηηη2i,c,p

] . (4.35)

Equations (4.24) and (4.35) allow to express the cost function with only βc and γc

parameters. Consequently, to enable the use of the Levenberg-Marquardt algo-
rithm, the Jacobian matrix is only computed for βc and γc parameters. This Jaco-
bian matrix can either be obtained by injecting Eqs. (4.24) and (4.35) in Eq. (4.12)
and derive the residuals, or by using an auto-differentiation framework.
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In conclusion, we have demonstrated that it is possible to perform Jacobian-
based optimization procedures on only two parameters, hence avoiding the need
to perform the optimization procedure on an entire image.

4.3.4 Modeling artificial lights

The underwater image formation model described by Eq. (4.1) and expressed
within a multi-view setting in Eq. (4.11) was designed for natural light environ-
ments. Because of this, the model does not incorporate some specificities of deep-
sea imaging. Mostly, it does not model the vignetting effect created by artificial
lighting systems. Consequently, we here extend Eq. (4.11) to incorporate artificial
lighting systems into the image formation model:

III i,c,p = llli,p

(
JJJ c,pe

−βczzz′i,p +Bc(1− e−γczzz′i,p)
)
, (4.36)

where llli,p is a scalar attenuating pixel intensities based on the positions of their
3D observations and zzz′i,p is the distance traveled by the light as it travels from the
light source through the scene to reach the camera. Similarly to previous work
(Arnaubec et al., 2015; Bryson et al., 2015; Nakath et al., 2021), we represent each
light source as an invert pinhole camera. Instead of projecting the scene into the
camera view, we use this camera to virtually project light onto the scene.

Our artificial light’s model consists of the relative 6DoF pose between the light
source and the camera, and the light pattern to be projected on the scene. Here,
we choose to represent the light pattern as a zero-centered multivariate normal,
as it requires only a few parameters to estimate and serves as a suitable approx-
imation for the halo effect created by the artificial light. In practice, the relative
light’s pose lTTT c is represented in se(3) using six scalars {ωlx, ωly, ωlz, ρlx, ρly, ρlz},
such as:

lTTT c = exp




0 −ωlz ωly ρlx

ωlz 0 −ωlx ρly

−ωly ωlx 0 ρlz

0 0 0 0


 . (4.37)

The covariance matrix of the zero-centered multivariate normal ΣΣΣl is represented
using three scalars {σlu, σlv, κl}, such as:

ΣΣΣl =

[
σ2
lu κl

κl σ2
lv

]
. (4.38)

The light’s attenuation factor llli,p is then computed as follows. Let cxxxi,p be the ho-
mogeneous coordinates of a pixel in the camera view. The pixel has an associated
depth d and the camera has a calibration matrix KKK. Without a loss of generality,
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we assume the calibration matrix of the light source is the identity matrix. We
first project the pixel in 3D space into the light’s camera frame:

lXXXi,p =
lTTT c ⊙

(
KKK−1 d cxxxi,p

)
. (4.39)

We then project it into the light’s camera view using the light’s identity calibration
matrix:

lxxxi,p = π
(
lXXXi,p

)
. (4.40)

We now compute llli,p using the multivariate normal probability density function,
but normalize it so that the maximum value is equal to one:

llli,p = exp

(
−1

2
lxxxi,p (ΣΣΣ

l)−1 lxxxi,p

)
. (4.41)

Finally, zzz′i,p is obtained as the sum of the distance between the pixel and the scene
and the distance between the scene and the light:

zzz′i,p = zzzi,p + ∥lXXXi,p∥. (4.42)

The restored image and the parameters of the image formation model are then
estimated similarly to Eq. (4.14) in a least squares manner. In this case, we note
our residuals:

rrrli,c,p = III i,c,p − llli,p
(
JJJ c,pe

−βczzzi,p −Bc(1− e−γczzzi,p)
)
. (4.43)

We aim to find the parameters that minimize the following cost function:

Ĵ̂ĴJ c, B̂c, β̂c, γ̂c,
lT̂̂T̂T c, Σ̂̂Σ̂Σ

l = argmin
JJJc,Bc,βc,γc,lTTT c,ΣΣΣl

∑
i

∑
p

(
rrrli,c,p

)2
. (4.44)

In conclusion, Eqs. (4.36) to (4.42) present a model that incorporate the vi-
gnetting effect created by artificial lighting systems into an existing underwater
image formation model using only nine parameters.

4.3.5 Implementation

Initialization. Our method was tested using various initialization techniques
described below. Yet, practical experiments have shown the method to be robust
even in the case of a rough initialization.

• Local initialization: βc and γc are initialized using Gaussian Sea-thru. JJJ c and
Bc are then initialized using Eqs. (4.24) and (4.35).

• Global initialization: From all the images, the veiling light Bc is initialized
as the mean intensity of pixels without depth information. Indeed, pixels
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with no depth mostly result from very distant observations. In rarer in-
stances, this lack of depth information may be due to holes in the mesh.
In practice, these rare instances have a negligible impact in comparison to
the presence of distant observations and are smoothed out during the com-
putation of the mean intensity. The backscatter coefficient γc is initialized
using the distance-dependent dark channel prior described by Figure 4.1
on all the images. The absorption coefficient βc is initialized using a similar
assumption we call the bright channel prior. Instead of selecting the bottom
1% of pixel intensities, we select the top 99% of pixel intensities. We then
estimate simultaneously the maximum possible value for JJJ c, we call Jmaxc,
along with βc to fit these bright pixel intensities.

• Coarse: We initialize all parameters as if the water had almost no effect on
light propagation. Thus, we set JJJ c = IIIc and Bc = βc = γc = 0.1. This is the
method we use when including the artificial lighting model, as other ini-
tialization methods discard the vignetting parameters. Artificial lights are
initialized with lTTT c = III4×4 and ΣΣΣl = III2×2, i.e., the light is superimposed with
the camera and projects a light pattern whose intensity follows a centered
multivariate normal with identity covariance matrix.

Empirically, we use global initialization, as it needs to be computed only once
for a given dataset. Nevertheless, neither local nor global initializations enable
the initialization of parameters related to artificial lights. Consequently, we use
coarse initialization when employing the model that includes artificial lights.

Optimization. Our method was tested using various optimization schemes.

• Levenberg-Marquardt: Using Eqs. (4.24) and (4.35), we implemented the opti-
mization procedure described by Eq. (4.14) using the Levenberg-Marquardt
algorithm, by estimating only βc and γc. We determined the initial damping
parameter and the damping factor through trial and error. We initialize the
damping parameter to 0.1, and we set the damping factor to 10.

• Simplex: Similarly to our Levenberg-Marquardt implementation, we relied
on Eqs. (4.24) and (4.35) to solve Eq. (4.14) using the simplex algorithm
(Nelder and Mead, 1965). As it gives the possibility of specifying bounds,
we set physically realistic bounds: 0 < βc, γc < 5.

• Gradient descent: We also propose an optimization procedure that does not
rely on Eqs. (4.24) and (4.35). To optimize the many parameters involved
in jointly estimating the restored image along with the underwater image
formation model parameters, we use gradient descent (Paszke et al., 2019)
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with an Adam optimizer (Kingma and Ba, 2015). Each step of the gradi-
ent descent is computed using all matched observations by minimizing the
function described by Eq. (4.14). Specifically, we perform 200 optimization
steps with a learning rate of 0.05. In particular, this is the method we use
when including the artificial lights model, as we did not compute a closed-
form estimation of JJJ c for the model described by Eq. (4.36).
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Figure 4.10: SUCRe processing time. Scatter plot illustrating the relation be-
tween the number of observations in an image and the processing time of restor-
ing it. Each point corresponds to an image of the 2015 Eiffel Tower dive. The
number of observations is the total number of pixels that have been paired to
another pixel in the processed image. The processing time of the optimization
procedure follows a very consistent linear increase w.r.t. the number of observa-
tions. The intercept of approximately 50 seconds is due to the pairing step that
computes pixel pairs for all 4,875 images in the dataset. The optimization was
performed using gradient descent (Paszke et al., 2019), minimizing Eq. (4.14).

Processing time. The processing time of our approach can be divided into two
main components: i) pairing pixels between the image to be restored and every
other images, ii) the optimization procedure described by Eq. (4.14). The pair-
ing step depends on the size of the images and the number of candidate match-
ing images in the dataset. As illustrated by Figure 4.10, the optimization step
evolves linearly with the number of matched observations. To restore an image
from a dataset comprising 4,875 images with a resolution of 1920 by 1080 pix-
els, our approach takes about 50 seconds to compute pixel pairs and 1 minute
and 40 seconds for the optimization procedure using 100 millions matched pixel
observations, for a total of 2.5 minutes processing time. All computations were
performed with 32 Intel Xeon Gold 6226R CPU threads and a RTX A5000 GPU.
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4.3.6 Limitations

SfM quality. As our approach heavily relies on SfM information, its perfor-
mance depends entirely on the quality of the SfM. Incorrect depth maps or cam-
era poses will lead to invalid pixel pairs, deteriorating the optimization proce-
dure.

Static scene. In practice, our method relies on SfM information. Consequently,
non-static objects are often excluded during the SfM pipeline, and more gener-
ally, it is not possible to perform dense pixel pairing of these objects using the
geometric method outlined in Section 4.3.2. As a result, our method is currently
only applicable on static elements of the scene.

Underwater image formation model. The image formation model described by
Eq. (4.1) is based on a minimal set of three parameters. Representing all the fac-
tors influencing light propagation in the observed scene would naturally entail
a much larger number of parameters. The model used here is a simplification
primarily addressing absorption and backscattering phenomena. It assumes, for
instance, that the observed scene is viewed through a water volume with con-
sistent salinity, temperature, absorption, and diffusion properties. However, in
reality, these parameters experience local variations, such as chimneys releasing
hydrothermal fluids or the vehicle lifting off sediment from the seabed.

Vignetting parameters redundancy. There might be a theoretical redundancy
between the roll parameter ωlz of the light’s 6DoF pose and the covariance pa-
rameter κl of the light pattern. Indeed, both parameters only have a 2D rotation
effect in the light’s projection plane.

4.4 Experiments

In this section, we evaluate the performance of the developed approaches on four
different datasets, encompassing both deep-sea and natural light environments.

4.4.1 Benchmark datasets

We evaluate our method on four distinct datasets. Two of these datasets, Varos
(Zwilgmeyer et al., 2021) and Sea-thru D5 (Akkaynak and Treibitz, 2019), offer
respectively reference images and color charts with known colors, enabling the
calculation of quantitative metrics. The remaining two datasets showcase the
real-life practical applicability of our methods for two sites of interest, i.e., the
Eiffel Tower hydrothermal vent presented in Chapter 3 and a submarine wreck.
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Underwater
image

Reference
image

Figure 4.11: Varos dataset. The Varos dataset offers simulated underwater images
along with reference images rendered with uniform lighting.

Color calibration chart

Figure 4.12: Sea-thru D5 dataset. The Sea-thru D5 dataset provides images in a
raw file format with four color calibration charts dispatched across the scene.
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Varos. Varos is a synthetic deep-sea dataset embedding 4,715 images that were
rendered with Blender within a simulated underwater setting (Zwilgmeyer et al.,
2021). The dataset benefits from Blender’s ray tracing technology, which enables
the simulation of scattering and attenuation effects that are commonly observed
in underwater scenes. A notable feature of Varos is its provision of reference
images under uniform lighting conditions, which are useful for assessing the ac-
curacy of color restoration techniques. These reference images offer a consistent
baseline for comparison and facilitate the measurement of standard metrics such
as PSNR and SSIM. Examples of Varos underwater images along with their cor-
responding reference image are provided in Figure 4.11.

Sea-thru D5. The Sea-thru D5 dataset is composed of 43 raw images captured
under natural light conditions, along with their corresponding distance maps ob-
tained through SfM (Akkaynak and Treibitz, 2019). The scene contains four color
calibration charts with known patterns positioned throughout the scene. These
charts, illustrated in Figure 4.12, serve as ground truth for computing metrics
used to evaluate the performance of color restoration algorithms.

Eiffel Tower. We evaluate our methods on the 2015 dive of the Eiffel Tower
dataset presented in Chapter 3.

Submarine wreck. Similar to the Eiffel Tower dataset, the submarine wreck is
a private Ifremer dataset comprising 4,595 images extracted from a ROV’s video
feed during a dive to a submarine wreck at a depth of around 1,150 meters. Due to
the depth, the ROV was equipped with an artificial lighting system to illuminate
the wreck.

4.4.2 Quantitative evaluation

Metrics. Evaluating the performance of underwater color restoration methods
is a challenging task. Ground truth restored colors are generally unavailable for
real-world underwater images. Nevertheless, synthetic datasets like Varos or im-
ages featuring color charts, as found in the Sea-thru D5 dataset can be employed
to provide reference values. These references enable the computation of so called
full-reference metrics (Li et al., 2020). Additionally, proposed no-reference met-
rics can be employed to assess factors such as contrast and saturation (Yang and
Sowmya, 2015; Panetta et al., 2016). However, recent literature has raised doubts
about the ability of these no-reference metrics to accurately measure the correc-
tion of physical phenomena such as attenuation and scattering (Li et al., 2020;
Jiang et al., 2022).
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Method PSNR ↑ SSIM ↑ UCIQE ↑ UIQM ↑

Acquired image 10.71 0.39 0.60 1.40

Fusion (Ancuti et al., 2012) 10.25 0.35 0.51 2.10
Water-Net (Li et al., 2020) 11.20 0.38 0.54 1.96
FUnIE-GAN (Islam et al., 2020) 11.02 0.35 0.62 2.51
Haze-Lines (Berman et al., 2021) 9.64 0.36 0.57 2.00
TACL (Liu et al., 2022) 10.02 0.36 0.44 2.52
Gaussian Sea-thru 10.15 0.39 0.52 1.88
SUCRe 12.13 0.42 0.32 1.99

Table 4.1: Restoration evaluation on Varos dataset. We report PSNR, SSIM,
UCIQE and UIQM on pairs of underwater and reference images illustrated in
Figure 4.11.

In this study we rely on six different metrics: PSNR, SSIM, UCIQE, UIQM,
CIEDE2000 and ψ̄ error. PSNR and SSIM (higher is better) are full-reference mea-
sures of image similarity that are particularly useful when entire ground truth
restored images are available. UCIQE (Yang and Sowmya, 2015) and UIQM
(Panetta et al., 2016) (higher is better) are commonly used no-reference metrics
for evaluating the visual quality of restored underwater images. The CIEDE2000
(∆E00) formula (lower is better) was developed by the International Commission
on Illumination to evaluate color differences (Sharma et al., 2005) and is com-
monly used in underwater color restoration (Ancuti et al., 2017; Li et al., 2021).
We hereby compute it between the restored and expected color patches of the
Sea-thru D5 dataset. The ψ̄ error (lower is better) was introduced by Berman et al.
(2021) and is designed specifically for images with color charts of known colors
distributed throughout the scene. For a given color chart in an image, the ψ̄ er-
ror is defined as the average angle in RGB space between grayscale patches and a
pure gray color. We redefine the error to take into account all twelve color patches
in the color calibration charts used in the Sea-thru D5 dataset:

ψ̄ =
1

12

∑
p∈P

cos−1

(
JJJp ·EEEp

∥JJJp∥ · ∥EEEp∥

)
, (4.45)

where P is a set containing pixel indices of the twelve color patches in the given
color chart andEEEp denotes the expected RGB values of the color patch with pixel
index p.

All quantitative results for the SUCRe method refer to images that were ob-
tained by minimizing Eq. (4.14), not encompassing the vignetting effect of deep-
sea images.
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Method ψ̄ ↓ ψ̄ std ↓ ∆E00 ↓ ∆E00 std ↓

Acquired image 37.14 3.72 36.93 3.68

Fusion (Ancuti et al., 2012) 29.85 6.38 30.60 6.34
Water-Net (Li et al., 2020) 29.12 4.11 31.49 5.89
FUnIE-GAN (Islam et al., 2020) 32.91 3.63 35.55 5.07
Haze-Lines (Berman et al., 2021) 25.80 7.14 28.85 6.89
TACL (Liu et al., 2022) 29.28 4.27 30.50 4.93
Gaussian Sea-thru 27.55 3.68 30.64 5.46
SUCRe 21.45 2.63 22.56 2.84

Table 4.2: Restoration evaluation on Sea-thru D5 dataset. We report the ∆E00

color difference and ψ̄ error in degrees between the restored color charts and their
reference illustrated in Figure 4.12. As a way to evaluate the stability of restora-
tion results, we also report these metrics’ standard deviation for all restored color
charts.
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Figure 4.13: Color chart ψ̄̄ψ̄ψ error vs. distance. Illustrating the relationship be-
tween the color charts’ distance in the Sea-thru D5 dataset and their restoration
results using different methods.

Results. As demonstrated in Table 4.1, Gaussian Sea-thru displays a mixed per-
formance with low PSNR and high SSIM values on the Varos dataset. This dis-
parity between the two metrics could be attributed to the significant vignetting
effect present in Varos dataset images. As discussed in Section 4.2.4, the Gaussian
Sea-thru model does not account for this effect, potentially resulting in decreased
PSNR along the images’ border, while SSIM benefits from the scene structure re-
covery using depth information. Examining Table 4.2, we observe that Gaussian
Sea-thru delivers overall good results on the Sea-thru D5 dataset. This dataset
was captured under natural lighting, which aligns with the settings for which the
image formation model described by Eq. (4.1) was designed.



4.4. Experiments 72

Parameters estimation
PSNR SSIM

Single-view Multi-view

JJJc, βc, Bc, γc — 10.15 0.39
βc, Bc, γc JJJc 11.32 0.42

— JJJc, βc, Bc, γc 12.13 0.42

Table 4.3: Ablation study on Varos. We show the benefits of using multi-view
observations for the estimation of the underwater image formation model pa-
rameters and the restored image. In the first row, estimating all parameters in a
single view setting is equivalent to Gaussian Sea-thru. In the last row, estimating
all parameters in a multi-view setting is equivalent to SUCRe.

1 2 3 4 5 6 7 8
Maximum pixel error (px)

0

100

200

300

400

N
um

be
ro

fi
nl

ie
rs

SIFT & brut force
ORB & brut force
SuperPoint & brut force
SuperPoint & SuperGlue
SuperPoint & LightGlue

Underwater
SUCRe

Figure 4.14: Impact of SUCRe on cross-years feature matching. We extend Fig-
ure 3.7 of Section 3.4.2 by performing feature matching on images restored using
SUCRe. Given cross-years image pairs of the Eiffel Tower dataset, we report the
number of inliers resulting from five feature matching methods using incremen-
tal pixel thresholds.

Both Tables 4.1 and 4.2 indicate that SUCRe outperforms every other method
on all full-reference metrics, encouraging the use of multi-view observations for
underwater color restoration. Also, SUCRe exhibits consistent restoration out-
comes regardless of the observation distance, as highlighted by the low standard
deviations in Table 4.2. This stability is further demonstrated in Figure 4.13,
showing the connection between color chart distance and ψ̄ errors. Notably,
SUCRe showcases lower and more uniform ψ̄ errors compared to other meth-
ods, regardless of the color chart’s distance. This effect can be observed to a
lesser extent for Gaussian Sea-thru. In line with prior studies (Li et al., 2020;
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Jiang et al., 2022), we find limited correlation between PSNR/SSIM criteria and
UCIQE/UIQM metrics. This is because the latter set of metrics, being no-reference
metrics, primarily assess image characteristics like contrast and sharpness, and
therefore, they are not capable of comprehensively evaluating the correction of
scattering and absorption phenomena.

Gaussian Sea-thru serves as a valuable point of comparison with SUCRe, pro-
viding insight into the benefits solely attributed to incorporating multi-view ob-
servations into the optimization process. This is demonstrated in the brief ab-
lation study in Table 4.3, which investigates the impact of employing multiple
views when estimating distinct components of the image formation model. The
first row presents Gaussian Sea-thru results, where both the image formation
model parameters and the restored image are estimated using a single image.
The second row fixes the image formation model parameters to those estimated
using Gaussian Sea-thru and restores the image with multi-view observations,
minimizing the same error as SUCRe using Eq. (4.24). The last row displays SU-
CRe results, where all parameters are estimated within a multi-view context. The
results highlight that the SSIM improvement mainly stems from enhanced recov-
ery of low contrast regions when the restored image is estimated using multiple
views. The observation of PSNR values suggests that utilizing multi-view ob-
servations for estimating both the image formation model parameters and the
restored image is essential for achieving the peak performance demonstrated by
SUCRe.

Insights for visual localization. Utilizing SUCRe as a preliminary step has the
potential to enhance visual localization algorithms. As depicted in Figure 4.14,
applying SUCRe to underwater images leads to an increase in the number of
inliers resulting from deep-based feature matching methods. In contrast, it main-
tains a consistent number of inliers when using brute force matching. This ob-
servation suggests that, on the one hand, deep-based matchers benefit from miti-
gating the impact of underwater light propagation, as they were only trained on
terrestrial data. On the other hand, brute force matching doesn’t yield improve-
ments in cross-years feature matching, primarily because it fails to generalize to
topological changes, while deep-based matchers have learned to effectively adapt
to these structural changes.

4.4.3 Qualitative evaluation

In Figure 4.15, we present restoration outcomes achieved through various restora-
tion methods. Once again, we observe that Gaussian Sea-thru faces difficulties
with the vignetting effect on the Varos dataset, resulting in color distortion along
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Eiffel Tower

Varos

Sea-thru D5

(a) Underwater
image.

(b) Water-Net. (c) Haze-Lines. (d) Gaussian
Sea-thru.

(e) SUCRe.

Figure 4.15: Visual inspection of color restoration results. As mentioned in Fig-
ure 4.9, pixels without depth information are rendered black for Gaussian Sea-
thru and SUCRe.

the borders. SUCRe effectively recovers the colors of distant elements, which is
particularly visible in the final row of images showcasing distant color charts.
SUCRe successfully exploits the virtual increase in dynamic range offered by the
use of multi-view observations to retrieve the colors of color charts that were
considerably attenuated in the original image.
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Original image
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Figure 4.16: Hue vs. distance. Tracking the hue value of the red color patch at
different distances on the Sea-thru D5 dataset using different underwater color
restoration methods.

Figure 4.17: Comparing SUCRe estimated model to deep-sea observations.
Each green curve represents one 3D point observed in multiple images at dif-
ferent distances — curves have been smoothed for visualization purposes. To il-
lustrate how the underwater image formation model used in SUCRe fits these in-
tensities, the black dotted lines show how different initial pixel intensities evolve
with distance according to the estimated model.

In Figure 4.16, we track the hue value of a red color patch across different
distances for distinct underwater color restoration methods. Notably, physics-
based approaches such as Haze-Lines, Gaussian Sea-thru, and SUCRe exhibit
better color recovery for distant elements compared to image processing-based
methods. This difference may be attributed to the incorporation of distance-
dependent underwater light propagation phenomena in physics-based methods.
It is also notable that while single-view methods seem constrained by the 8-bits
quantization for distant patches, SUCRe effectively overcomes this limitation by
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Figure 4.18: Estimation of the light pattern projected by the ROV on the scene.
Modeling the ROV’s artificial lighting system enable the correction of the vi-
gnetting effect and unbalanced illumination when using SUCRe.

leveraging closer observations in its optimization process. Moreover, SUCRe de-
livers consistent restoration results across varying observation ranges.

In Figure 4.17, we showcase how the parameters estimated using SUCRe align
with pixel intensities observed at varying distances. Despite noisy observations,
the model follows the general trend of pixel intensity attenuation.

The light pattern estimated by minimizing Eq. (4.44) is illustrated on two
deep-sea images in Figure 4.18. By taking into account the vignetting effect cre-
ated by the ROV’s artificial lighting system, SUCRe effectively rectifies the un-
even light distribution in the original image. From the two showcased light pat-
terns, we observe that different artificial lighting systems result in diverse scene
illuminations. This is an important factor to consider for the application of long-
term visual localization algorithms to deep-sea environments.

Finally, Figure 4.19 illustrates that applying our approach to restore underwa-
ter images yields significant enhancements when texturing a 3D mesh, including
finer details and coherent colors.
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(a) 3D model textured with underwater images.

(b) 3D model textured with SUCRe images.

Figure 4.19: Texturing the Eiffel Tower hydrothermal vent 3D model with im-
ages restored using SUCRe results in a final model with improved visual quality,
including finer details and more accurate colors compared to the original model.

4.5 Conclusion

In this chapter, we have formulated and introduced two novel methods designed
to restore the colors of underwater images, alleviating the effects of water on light
propagation. Our exploration reveals that underwater color restoration methods
have much to benefit from leveraging multiple observations of the scene. This is
evidenced by the capacity of SUCRe to uncover colors that might be nearly imper-
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ceptible in the original image and to deliver more accurate and consistent color
representations across elements at varying distances from the sensor. Further-
more, we demonstrated that restoration methods have the potential to improve
visual localization algorithms.

The development and analysis of these methods provided valuable insights
into the potential sources of variability that may impair long-term visual local-
ization algorithms in deep-sea environments. For instance, we discovered lim-
itations in working with 8-bit images. We also revealed that artificial lighting
systems not only tie the scene’s appearance to the vehicle’s location but also that
different lighting systems produce diverse illumination patterns.

Considering these findings, it is important to acknowledge that the presented
approaches are limited by their processing time and their requirement of 3D
scene information. These factors render them unsuitable as a preprocessing step
for real-time underwater visual localization applications. Nevertheless, SUCRe
holds promise for generating extensive datasets with reference images from real-
world acquisitions, serving as valuable training data for real-time underwater
color restoration neural networks.

As a perspective, it would be interesting to explore the color restoration of
image pairs acquired using a calibrated stereo rig. Using stereo cameras could
enable the color restoration of non-static elements, as they acquire temporally
synchronized multi-view observations of the scene. Disparity map estimation
networks, such as HITNet (Tankovich et al., 2021), could then be used to retrieve
3D information of the scene and allow the full use of SUCRe using only two
images. Moreover, this approach has the potential of running in real time.

Part of the work presented in this Chapter has been accepted to the Interna-
tional Conference on 3D Vision (Boittiaux et al., 2024).
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Pose regression for deep learning
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5.1 Introduction

In Chapters 3 and 4, we explained how computer vision algorithms face signif-
icant challenges when confronted with the specificities of underwater images.
To address these challenges, Chapter 4 investigated the inversion of underwater
image formation models, to compensate for the effect of water on light propa-
gation. While we have shown that these methods have the potential to improve



5.1. Introduction 80

underwater visual localization, the presented approaches require to have access
to 3D information about the scene. Yet, in the context of visual localization, this
information is not directly available from a single acquired image.

In pursuit of alternative solutions, we turn to deep learning, that has the po-
tential to be robust to the variability produced by these underwater phenomena.
Ideally, we would have access to a large quantity of data, enabling to fine-tune
existing neural networks on underwater images. However, since multiannual un-
derwater data is scarce, we took an interest in the neural networks that are trained
for each scene individually (Kendall et al., 2015; Kendall and Cipolla, 2017; Brach-
mann et al., 2017). These neural networks can be seen as a function — they map
an image to a 6DoF pose. They are trained on sets of images and their corre-
sponding ground truth poses. A pivotal aspect of training these neural networks
lies in their loss functions, that defines the error between the pose estimated by
the network and the ground truth pose. These loss functions have the challeng-
ing task of embedding a pose error in SE(3) into a single scalar, thus enabling the
use of gradient descent.

In this chapter, we set out to address the fundamental problem of embedding
an error between two camera poses into a single differentiable scalar. We aim
to effectively balance the contributions of rotation and translation components
within this final error. To this extent, this chapter makes the following contribu-
tions:

• We conduct a comprehensive review of existing loss functions designed for
camera pose regression. This investigation not only highlights the strengths
of these diverse loss functions but also underscores their limitations. These
limitations can manifest as constraints on parameter tuning, lack of physical
interpretability, or restrictions in their applicability to deep learning frame-
works.

• Building upon this review, we introduce a novel loss function based on the
homography principle. This loss function seeks to approximate the tradi-
tional reprojection error by representing the observed scene as planes rather
than 3D points.

• We assess the performance of the proposed loss function in comparison
to other established loss functions using two popular visual localization
datasets (Shotton et al., 2013; Kendall et al., 2015). We present and discuss
the results obtained from these datasets, which encompass both indoor and
outdoor scenarios and employ different methods to generate ground truth
data, i.e., SfM and depth-based SLAM.

This chapter is organized as follows. First, Section 5.2 makes a review of ex-
isting loss functions and present their characteristics. Then, Section 5.3 presents
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the Homography loss, a novel loss function for camera pose regression. Finally,
Section 5.4 evaluate its performance compared to other losses.

5.2 Existing functions for camera pose regression

Visual localization aims at finding the 6DoF pose of a camera within a specified
reference frame. In this chapter, we use either quaternions or their corresponding
rotation matrices to represent the cameras’ orientation in 3D space. Thus, we
denote camera poses as [qqq|RRR,ttt], where qqq ∈ SO(3) represents the quaternion vector
describing the camera’s rotation RRR ∈ SO(3) in the reference frame, and ttt ∈ R3

represents the camera’s 3D position within the reference frame. In the context
of end-to-end deep learning methods, a central element when training neural
networks is the design of a loss function. For visual localization applications, this
loss needs to embed into a scalar the error between an estimated pose [q̂̂q̂q|R̂̂R̂R, t̂̂t̂t] and
its corresponding ground truth [qqq|RRR,ttt]. In this section we make a review of loss
functions that have been used to train these end-to-end pose regression models
and present their characteristics. Unless specified otherwise, the norm of a vector
∥ · ∥ refers to its euclidean norm.

5.2.1 Loss functions

PoseNet. In PoseNet, rotation and translation errors of the estimated pose are
weighted using a scale factor (Kendall et al., 2015). This enables to embed both ro-
tation and translation errors into a single differentiable scalar. The rotation error
between two camera poses is defined as the euclidean norm of the difference be-
tween the quaternions representing the cameras’ rotations. The translation error
is defined as the euclidean distance between the cameras’ positions. This leads to
the following loss function:

LP =
∥∥t̂̂t̂t− ttt

∥∥+ λ

∥∥∥∥q̂̂q̂q − qqq

∥qqq∥

∥∥∥∥ , (5.1)

where λ is the positive scale factor that weights the importance of the rotation
error over the translation error.

Homoscedastic. Similarly to PoseNet, this loss weights translation and rotation
errors (Kendall and Cipolla, 2017). In contrast to PoseNet loss, it tries to reach
an optimal balance between rotation and translation errors by optimizing global
scalars ŝt and ŝq through backpropagation of the following loss function:

LHU =
∥∥t̂̂t̂t− ttt

∥∥
1
e−ŝt + ŝt +

∥∥∥∥qqq − q̂̂q̂q

∥q̂̂q̂q∥

∥∥∥∥
1

e−ŝq + ŝq, (5.2)
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where ŝt and ŝq respectively represent the natural logarithm of the translational
and rotational homoscedastic task noise variance.

Geometric reprojection. This loss function is derived from the classical repro-
jection error, used for instance in bundle adjustment (Kendall and Cipolla, 2017).
In contrast with other losses, it requires known 3D points observed by the camera
in addition to the camera’s 6DoF pose. This loss computes the distance between
the projection of known 3D points in the ground truth image plane and the pro-
jection of these 3D points in the estimated image plane. It is defined as follows:

LG =
1

|G|
∑

XXXp∈G

∥∥∥π (RRRXXXp + ttt)− π
(
R̂̂R̂RXXXp + t̂̂t̂t

)∥∥∥
1
, (5.3)

where G is the subset of 3D points observed by the current view, and [RRR,ttt] and
[R̂̂R̂R, t̂̂t̂t] are expressed from the reference frame to the camera frame.

MaxError. DSAC (Brachmann et al., 2017; Brachmann and Rother, 2022) train-
ing relies on the following loss function that we will refer to as MaxError:

LME = max
(
∡(qqq, q̂̂q̂q),

∥∥t̂̂t̂t− ttt
∥∥) , (5.4)

where ∡(qqq, q̂̂q̂q) is the measured angle between rotations in 3D space induced by qqq
and q̂̂q̂q. This angle is expressed in degrees, and ttt and t̂̂t̂t are expressed in centimeters.
It is important to note that the DSAC method is a more complex end-to-end visual
localization pipeline than a simple CNN inference. In this work, we will only
evaluate the performance of the loss within a simpler end-to-end pose regressor.

5.2.2 Losses characteristics

PoseNet. One limitation of the PoseNet loss function lies in the challenge of
determining an appropriate value for λ. Specifically, PoseNet rotation error is
defined as the norm of the difference between q̂̂q̂q and qqq unit quaternions, a met-
ric that does not relate to an intuitive geometric phenomenon, making it diffi-
cult to compare rotation and translation components. Additionally, all poses are
optimized with the same relative weight between translational and rotational er-
rors, no matter what the camera observes. Figure 5.1 shows the influence of λ on
PoseNet’s loss function. A small value induces strong translational gradients but
a flat profile in orientation, whereas high λ values assign importance to rotation
over flat translation evolution. Given a scene, a well chosen λ allows optimizing
the parameters in all dimensions. PoseNet is a muti-objective loss and presents
the common problems encountered in such setting. The λ selection is not obvious
and needs to be determined through trial and error. Even with a properly set λ,
stochastic optimization may converge to different optima on the Pareto front.
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(a) λ = 5. (b) λ = 500. (c) λ = 5,000.

Figure 5.1: Effect of λλλ on the PoseNet loss described in Eq. (5.1) for a particular
scene. (a) Low λ values lead to high variation of error with respect to translation
and little change with respect to rotation. (b) Well-chosen λ leads to a clear local
minimum around the optimal parameters. (c) A large λ induces a small variation
of translation.

MaxError. The MaxError loss function solves the compromise between rotation
and translation errors by heuristically fixing a chosen scale between them, i.e., the
rotation error is in degrees and the translation error is in centimeters. While the
scale is physically interpretable, it shares the other issues with PoseNet related to
the multi-objective optimization. In this case, the problem is tackled by minimiz-
ing the highest error at each step. Similarly to PoseNet, it weights rotation and
translation error with the same scale factor for every frame.

Homoscedastic uncertainty. The Homoscedastic loss reveals characteristics sim-
ilar to PoseNet and MaxError losses. However, its parameters are more robust to
the initialization, since they are optimized during training.

Geometric reprojection loss. The Geometric reprojection loss mimics the re-
projection error, hence implicitly solving the weighting problem associated with
rotation and translation errors. The reprojection error consists in measuring the
2D distance between the projection of a set of 3D points into two camera views. If
the poses are identical, then the points are superimposed. As we previously dis-
cussed, particularly in Section 3.4.3, this error has been widely used to solve 3D
computer vision problems, such as bundle adjustment. Its physical meaning is
easy to understand because it can be represented graphically in the image plane.
Furthermore, optimizing this specific error is highly relevant when we aim to lo-
calize camera poses for which the ground truth was generated using SfM, as SfM
also minimizes the reprojection error.

However, its use in deep learning models is more cumbersome for multiple
reasons. It relies on the choice of the 3D points that are projected on the image
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c
ĉ

Figure 5.2: Reprojection error limits. Top view representation of the ground
truth (blue) and estimated (orange) camera views and the scene point cloud. The
grey points are outside the field of view of the ground truth. The green points are
in front of the image planes of the two cameras. The dashed red line represents
the (x, y) plane of the estimated camera frame. The red dots that are close to this
plane are projected to infinity through the pinhole projection model. The black
dots project backward from the image plane of the estimated camera.
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Figure 5.3: Evolution of the reprojection error and our Homography loss when
the relative pose of the ground truth and estimated cameras varies with a rota-
tional movement along the Y axis.
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plane. Depending on the method used to estimate the camera ground truth poses,
3D points of the scene may not be available. This issue can be mitigated by tri-
angulating 3D points from the camera poses and 2D-2D matches if such matches
are feasible. A more substantial problem for this error arises during the neural
network’s initialization. At initialization, the poses predicted by the neural net-
work are usually initialized around an arbitrary value, often far from the ground
truth. As depicted in Figure 5.2, this means that some 3D points can be projected
to infinity if they lie in the camera’s (x, y) plane. Additionally, as shown in Fig-
ure 5.3, the reprojection error may also lead to a local minimum when 3D points
are projected onto the backside of the image plane. To overcome these problems,
the network is usually initialized by first training it with another loss function for
a few iterations. In addition, if a point is projected to infinity during the optimiza-
tion, it results in an infinite loss, causing the model to diverge. In practice, this
problem is often addressed by clipping reprojection error distances that exceed a
threshold. However, in doing so, all clipped points lay on a flat maximum with a
zero-valued gradient, therefore not contributing to the optimization.

Alternatively, the proposed Homography loss function tackles this issue by
approximating the observed scene with a set of virtual parallel planes. It offers a
competitive accuracy and a high numerical stability making a simple single step
learning possible.

5.3 A homography-based loss function for camera pose
regression

5.3.1 Motivation

The purpose of this work is to adapt the reprojection error for camera pose re-
gression within the domain of deep learning applications, leveraging its benefits
while mitigating its drawbacks.

In this study, we propose that the 3D points used to quantify a pose error, like
the reprojection error, do not necessarily need to be real points, but can instead be
a set of designated virtual points. To avoid issues associated with infinite errors,
one approach could be to regularly sample virtual 3D points positioned in front of
both camera image planes. Nevertheless, as the poses become more distant from
each other, shared 3D observations become scarce and virtual point sampling be-
comes increasingly difficult. Building on this line of thinking and eliminating
the challenges related to point selection, we divide the scene into planes that en-
compass an infinite number of these points. These planes induce homographies
between the ground truth and estimated camera views. A homography refers to
the transformation of a plane in 3D space from one projective view to the other.



5.3. A homography-based loss function for camera pose regression 86

Figure 5.4: Illustration of the proposed Homography loss function. We replace
the 3D points (black) observed by the ground truth camera (blue) by a set of par-
allel virtual planes (green). The planes’ normal nnn and the ground truth camera’s
optical axis are co-linear. For a given plane, we express our error directly in the
homography induced by this plane between the ground truth and the estimated
(orange) camera poses. We then integrate this error between xmin and xmax dis-
tances. Planes are infinite, but for the sake of visualization they are represented
as rectangles.

In other terms, given a 3D plane observed in two different camera views, a ho-
mography maps any 2D observation of that plane from one view to the other. For
a given plane, we can compute our error directly in terms of the homography
induced by this plane between the ground truth and estimated camera views.
As illustrated in Figure 5.4, we then integrate this error for all possible planes
between two given boundaries, xmin and xmax, representing the distance of the
observed scene.

5.3.2 Method

In this section, we detail how we can approximate the reprojection error using
homographies and overcome the issues associated with the Geometric reprojec-
tion loss. First, let us establish the computation of a homography matrix from
rotation and translation components (Hartley and Zisserman, 2003):

ĉHHHc =
ĉRRRc −

ĉtttc
cnnnT

x
, (5.5)

where cnnn is the normal to the considered plane expressed in the ground truth cam-
era frame, x is the distance to that plane and [ĉRRRc,

ĉ tttc] are the rotation and trans-
lation of the ground truth camera expressed in the estimated camera frame. For
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the sake of clarity, unless specified otherwise, all future homographies, rotations
and translations refer to transformations from the ground truth to the estimated
camera frame. More specifically: HHH = ĉHHHc, RRR = ĉRRRc and ttt = ĉtttc. Additionally,
we note nnn = cnnn. Let XXX be a 3D point observed by two cameras. Let xxx = [u, v, 1]T

and xxx′ = [u′, v′, 1]T be the 2D homogeneous representations of the projection of XXX
in the ground truth and estimated camera views, respectively. The reprojection
error of xxx is defined as:

repr(xxx) = (u− u′)2 + (v − v′)2 (5.6)

= (xxx − xxx′)T (xxx − xxx′) (5.7)

We now assume that XXX lies in a plane that induces a homographyHHH between the
two camera views. We want to retrieve the reprojection error by expressing xxx′ in
terms ofHHHxxx. Let us explicitHHH components:

HHH =

h11 h12 h13

h21 h22 h23

h31 h32 1

 (5.8)

We note xxx′ the 2D homogeneous point resulting fromHHHxxx:

xxx′ =HHHxxx =

u′v′
s

 (5.9)

where s = h31u + h32v + 1. By the definition of the homography, HHHxxx ∼ xxx′ in
homogeneous coordinates. Thus, in the euclidean space:

xxx′ =
HHHxxx
s

(5.10)

When replacing Eq. (5.10) into Eq. (5.7), we can express the reprojection error in
terms ofHHH :

repr(xxx) =
(

xxx − HHHxxx
s

)T (
xxx − HHHxxx

s

)
(5.11)

= xxxT

(
III − HHH +HHHT

s
+
HHHTHHH

s2

)
xxx (5.12)

where III is the identity matrix. As the estimated pose tends towards the ground
truth pose, s tends towards 1. We will use the approximation s ≈ 1 to simplify
Eq. (5.12). This way, our homographic error will tend to the reprojection error
when poses are close. Then, Eq. (5.12) becomes:

repr(xxx) = xxxT (III −HHH)T (III −HHH)xxx. (5.13)
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Since our error is a scalar, it is equal to its trace:

repr(xxx) = Tr
(
xxxT (III −HHH)T (III −HHH)xxx

)
. (5.14)

Then, we can use the cyclic property of the trace to isolate xxx:

repr(xxx) = Tr
(
xxxxxxT (III −HHH)T (III −HHH)

)
(5.15)

with

xxxxxxT =

u2 uv u

vu v2 v

u v 1

 . (5.16)

While we have expressed repr(xxx) in terms of HHH , this error still relies on specific
2D points in the camera view. As we do not want our loss to rely on any specific
point, we integrate our error on all 2D points of our sensor. Let W and H be the
respective width and height of our sensor, this point integration can be computed
as follows: ∫ W/2

−W/2

∫ H/2

−H/2

Tr
(
xxxxxxT (III −HHH)T (III −HHH)

)
du dv (5.17)

= Tr




HW3

12
0 0

0 WH3

12
0

0 0 WH

 (III −HHH)T (III −HHH)

 . (5.18)

This results in a diagonal matrix simply weighting the dimensions of the repro-
jection according to the size of the sensor. As we want our loss to be generic to
the size of the sensor, we will simply drop this matrix. We finally have our ho-
mographic error which, by definition, because (III − HHH) is real, is equivalent to a
Frobenius norm:

Tr
(
(III −HHH)T (III −HHH)

)
= ∥III −HHH∥2F . (5.19)

We further extend the definition of our single plane homographic error to a full
region between two parallel planes. We integrate Eq. (5.19) over the planes within
a given range of distances and along a particular direction. Let xmin and xmax be
the minimum and maximum distances of the planes containing our observations.
We introduce the analytic form of our Homography loss function:

LH =
1

xmax − xmin

∫ xmax

xmin

∥III −HHH∥2F dx. (5.20)

Note that we normalize the loss by the region of the considered scene dimension
(xmax − xmin). This is because every frame has its own distance range of observa-
tions. By normalizing, we ensure that each frame cost is on the same scale. We
can then solve the integral by substitution of Eq. (5.5) in Eq. (5.20) resulting in our
final loss function:

LH =Tr

(
AAA+BBB

log (xmax/xmin)

xmax − xmin

+
CCC

xmin · xmax

)
, (5.21)
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Figure 5.5: Cumulative histogram of scene points’ depths. xmin and xmax depth
values can be selected as the 2.5th and 97.5th percentile.

with

AAA = (III −RRR)(III −RRR)T , (5.22)

BBB = (III −RRR)nnntttT +
(
(III −RRR)nnntttT

)T
, (5.23)

CCC = tttnnnT
(
tttnnnT

)T
. (5.24)

The details of this integration are available in Appendix D.
In conclusion, Eqs. (5.21) to (5.24) present the closed form solution of our pro-

posed Homography loss function.

5.3.3 Implementation

When examining Eq. (5.21), we can identify the specific parameters upon which
our loss function depends. RRR and ttt are directly computed from ground truth and
estimated poses. We set nnn = [0, 0,−1]T , so that all homographies are induced
by planes parallel to the ground truth sensor, as if they faced the camera. The
remaining two parameters, xmin and xmax, represent the minimum and maximum
distances of these planes to the ground truth sensor. In this work, we introduce
two distinct approaches for configuring these parameters, inspired by different
uses of the loss, and leading to different implementations.

Local Homography loss. The first approach best approximates the reprojection
error, but necessitates known 3D scene points. Given this information, the two
parameters can be computed for each frame individually. For every frame, we
compute a depth histogram of its 3D observations. We then set its xmin and xmax

parameters as a given percentile of the depth distribution. This is illustrated by
Figure 5.5. We refer to this approach as the Local Homography loss function.
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Global Homography loss. The other way of setting these parameters requires
less information about the 3D scene. For the Global Homography loss, we set
xmin and xmax parameters globally for all images. In this case, rotation and trans-
lation errors have the same weight for all the images in the training set. However,
in contrast with PoseNet and Homoscedastic losses, the parameters have an intu-
itive physical meaning. Note that if 3D data is available, it is possible to set global
xmin and xmax from a global depth distribution histogram.

5.3.4 Homography loss properties

An essential consideration when designing a loss function is to ensure that this
loss does not have undesired global minima. As such, this section aims to demon-
strate that the proposed loss function only reaches its minimum when poses are
superimposed, i.e.,RRR = III and ttt = 0003. It is important to note that our loss considers
planes parallel to the sensor’s image plane. Consequently, this proof only holds
for nnn = [0, 0,−1]T .

As described by Eq. (5.20), our loss function LH relies on the squared Frobe-
nius norm between a homography and the identity matrix. Given any matrix
MMM ∈ R3×3, its squared Frobenius norm is defined as the sum of the square of all
its elements:

∥MMM∥2F =
3∑

a=1

3∑
b=1

MMM2
ab. (5.25)

Considering this, it is evident that ∥III −HHH∥2F can only be positive. It is also clear
that its integral over a positive interval is necessarily positive. Consequently, we
can infer from Eq. (5.20) that LH ≥ 0. Moreover, we also know from Eq. (5.5) that
the homography between two superimposed views is the identity matrix, leading
our loss function to be equal to zero:

[RRR,ttt] = [III,0003] ⇒HHH = III ⇒ LH = 0. (5.26)

As we know that LH ≥ 0, Eq. (5.26) implies that the minimum value of our loss is
zero. Still from the definition of the Frobenius norm in Eq. (5.25), we can deduce
that our loss reaches its minimum only when the homography is the identity
matrix:

LH = 0 ⇔HHH = III. (5.27)

To complete our proof, we only need to show that a homography is equal to
the identity matrix only if poses are superimposed, i.e., we need to prove that:
HHH = III ⇒ [RRR,ttt] = [III,0003]. To achieve this, we will need to leverage the properties
of SO(3). Using the definition of the homography described in Eq. (5.5), we can
expressRRR whenHHH = III:

RRR = III +
tntntnT

x
. (5.28)
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BecauseRRR ∈ SO(3), it has the following property:

RRRRRRT = III. (5.29)

We can use this property to constrain ttt:(
III +

tntntnT

x

)(
III +

tntntnT

x

)T

= III ⇔ tntntnT + ntntntT +
tntntnTntntntT

x
= 0003×3 (5.30)

We fix nnn = [0, 0,−1]T and note ttt = [tx, ty, tz]
T . We can decompose Eq. (5.30):

tntntnT =

0 0 −tx
0 0 −ty
0 0 −tz

 (5.31)

ntntntT =

 0 0 0

0 0 0

−tx −ty −tz

 (5.32)

tntntnTntntntT =

 t2x txty txtz

tytx t2y tytz

tztx tzty t2z

 . (5.33)

From Eqs. (5.30) to (5.33) we can deduce that:

tx = 0, (5.34)

ty = 0. (5.35)

And tz has two possible values: {
tz = 0

tz = 2x
. (5.36)

We can further constrain ttt by using another property of SO(3), that is, det(RRR) = 1.
From Eq. (5.28), we can retrieve det(RRR) with tx = 0, ty = 0 and x ̸= 0:

det(RRR) = det


1 0 0

0 1 0

0 0 1− tz/x


 = 1− tz

x
. (5.37)

By enforcing the aforementioned SO(3) property, we can isolate a single solution
for tz:

det(RRR) = 1 ⇒ 1− tz
x

= 1 ⇒ tz = 0. (5.38)

With Eqs. (5.34), (5.35) and (5.38), we have shown that:

HHH = III ⇒ ttt = 0003. (5.39)
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Finally, we can once again use the definition of the homography along with
Eq. (5.39) to retrieveRRR whenHHH = III:

RRR = III +
0003nnn

T

x
= III. (5.40)

From Eqs. (5.39) and (5.40), we can express that a homography is equal to the
identity matrix only if poses are superimposed:

HHH = III ⇒ [RRR,ttt] = [III,0003]. (5.41)

By putting together Eqs. (5.26), (5.27) and (5.41), we can complete our proof:

LH = 0 ⇔HHH = III ⇔ [RRR,ttt] = [III,0003]. (5.42)

Our loss minimum is only reached when poses are superimposed.

5.3.5 Additional insights

In Section 5.3.2, we have approximated the reprojection error by replacing ob-
served 3D points by planes. Yet, instead of considering one plane for every 3D
point, our error integrates all planes between a minimum and a maximum dis-
tance of observation, reducing the observed scene to a slab, i.e., a region between
two parallel planes. In this integration, we implicitly consider that every plane
has the same weight in the final error, independently of its distance of observa-
tion. However, in practice, the depth of observed 3D points is not distributed in
a uniform manner. To take into account this non-uniform distribution, we can
add a function F (x) to the integral, that weights the importance of each plane
according to the depth distribution of the scene:

L′
H =

∫ xmax

xmin

F (x) ∥III −HHH∥2F dx. (5.43)

We can then choose a probability distribution to approximate the depth distri-
bution of the scene. For instance, we could approximate the scene’s depth using
a log-normal distribution. This log-normal’s parameters, µx and σx, may be fit-
ted on the observed scene’s depth distribution. Then, by injecting the log-normal
weighting into the integral, we obtain:

L′
H =

∫ +∞

0+
Lognormal(µx, σx)(x) ∥III −HHH∥2F dx (5.44)

= Tr

(
AAA +BBB exp

(
σ2
x

2
− µx

)
+CCC exp(2σ2

x − 2µx)

)
. (5.45)

In this scenario, we eliminate the need to normalize the final loss function, as the
integral of a probability distribution is equal to one.
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Cambridge Landmarks
King’s College scene

7-Scenes
Heads scene

Figure 5.6: Cambridge Landmarks and 7-Scenes datasets. Cambridge Land-
marks ground truth is obtained using SfM. 7-Scenes ground truth is obtained
using RGB-D SLAM.

5.4 Experiments

To evaluate the performance of the proposed Homography loss in comparison
to existing alternatives, we conduct a benchmarking study. We re-implement
PoseNet (Kendall et al., 2015), Homoscedastic (Kendall and Cipolla, 2017), Geo-
metric (Kendall and Cipolla, 2017) and MaxError (Brachmann et al., 2017; Brach-
mann and Rother, 2022) losses. Our experiments are conducted on the Cam-
bridge Landmarks (Kendall et al., 2015) and 7-Scenes datasets (Shotton et al.,
2013). Losses are evaluated using a pose regressor similar to PoseNet, i.e., with a
neural network directly inferring a 6DoF pose from an image.

5.4.1 Benchmark datasets

As discussed in Section 2.2.3, Brachmann et al. (2021) highlighted the importance
of considering the method employed to construct ground truth data when eval-
uating visual localization algorithms. Some approaches or loss functions may be
advantaged depending on the method employed to build the ground truth. For
instance, as the Geometric reprojection loss minimizes the same error as SfM, it
should benefit from SfM ground truths. To investigate this impact when com-
paring various loss functions, we conducted evaluations on two distinct datasets
illustrated in Figure 5.6, each characterized by ground truth poses determined
through different approaches. The Cambridge Landmarks dataset (Kendall et al.,
2015) was created using SfM and comprises six outdoor scenes within the city
of Cambridge. The 7-Scenes dataset (Shotton et al., 2013) was established using
depth-based SLAM and encompasses seven diverse indoor scenes. All scenes in
both datasets are visited several times, and train and test sequences consist of
different visits.
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5.4.2 Experimental setup

Pose regression model. Kendall et al. (2015) employed GoogLeNet (Szegedy
et al., 2015) as the backbone for their pose regression model. They made mod-
ifications by replacing the network’s classification head with two dense layers.
The first dense layer has a feature size of 2048, while the second dense layer has
a feature size of seven — three features for the translation component and four
features for representing the quaternion that denotes the rotation component.

In our research, we use a MobileNetV2 (Sandler et al., 2018) backbone pro-
vided by PyTorch and proceed to the same replacement. This backbone was se-
lected for its versatility. We load MobileNetV2 weights pretrained on ImageNet,
which are readily available from the PyTorch Hub, and follow PyTorch’s recom-
mendations for normalizing input images. However, we deviated from Kendall
et al. (2015) in one aspect. While in PoseNet the network is typically trained on
random crops of resized images, we found during our experiments that this data
augmentation technique had a detrimental effect on the results. We suggest that
applying a random crop to the image artificially shifts the optical center of the
camera, impairing the ability of the network to predict accurate pose estimates.
Consequently, we do not use data augmentation when training the model.

These experiments aim to evaluate the performance of aforementioned loss
functions using a straightforward end-to-end network, rather than on a more
complete pipeline like DSAC (Brachmann et al., 2017). Our goal is to provide
an alternative to existing pose regression loss functions, not to develop an en-
tire visual localization pipeline. Consequently, this study focuses on comparing
these loss functions using a single regression model to facilitate the comparison
and reproducibility of the results. The application of this loss within other visual
localization algorithms remains in the scope of future work.

Losses specifications. PoseNet: To compare our results with previous work, we
fix λ = 500 (Kendall and Cipolla, 2017). Homoscedastic: We initialize the param-
eters as suggested by Kendall and Cipolla (2017), that is, ŝt = 0.0 and ŝq = -3.0.
Geometric reprojection: As discussed in Section 5.2.2, we clip the reprojection dis-
tance at 100 to prevent the loss from diverging. MaxError: In the process of imple-
menting DSAC loss function, we faced an issue where the estimated quaternion
consistently converged towards the null vector. To adress this problem, we intro-
duce a regularization term within the loss function. This additional term enforces
the norm of the estimated quaternion to be equal to one: MSE (∥qqq∥, 1). Homogra-
phy: For both the Local and Global Homography losses, we select xmin and xmax

to be respectively the 2.5th and 97.5th percentiles of the observed points’ depth
distribution.
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Training procedure. All models are trained using an Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 10-4. The training process consists of 5,000
epochs with a batch size of 64. For each epoch, we drop the last batch if it is
smaller. In our experiments, we observed that using an epsilon value of 10-14 for
Adam, instead of the default 10-8 produces better results for Homography losses.
This adjustment proves beneficial because, towards the end of optimization, our
losses tend to converge to very low values ∼ 10-4. As for the Geometric repro-
jection loss, we first initialize the network by initially training it for 500 epochs
using the Homoscedastic loss, as suggested by Kendall and Cipolla (2017).

Scene
PoseNet Homoscedastic DSAC Reprojection

Global
Homography

Local
Homography

Mean reprojection distance in pixels ↓
Percentage of images localized within (2m, 2°) / (3m, 5°) ↑

Great
Court

118
13 / 36.4

148
7.6 / 26.6

624
0.4 / 2.8

183
1.1 / 8.4

235
0.7 / 6.2

261
0.4 / 1.1

King’s
College

33.9
64.4 / 92.7

24.7
60.1 / 92.1

204
6.1 / 26.8

16.2
71.7 / 94.2

23.2
61.2 / 92.7

23.1
61.5 / 91.8

Old
Hospital

97.5
23.6 / 56

80.6
18.7 / 56.6

177
9.3 / 34.6

63.8
28.6 / 71.4

100
15.9 / 51.6

92.8
23.1 / 61

Shop
Façade

135
15.5 / 68

125
14.6 / 49.5

219
3.9 / 31.1

117
18.4 / 56.3

149
11.7 / 47.6

131
12.6 / 58.3

St Mary’s
Church

162
13.4 / 50.8

125
16.8 / 56.6

260
2.6 / 20.6

105
13.6 / 52.6

115
17 / 56.2

108
18.1 / 57.5

Street
790

0.4 / 2.1
758

0.2 / 1.8
768

0.1 / 0.4
505

0 / 1.1
734

0.5 / 2.4
683

0.6 / 3.5

Table 5.1: Evaluation of pose regression loss functions on the Cambridge Land-
marks dataset.

5.4.3 Evaluation

Metrics. To compare the effectiveness of the presented loss functions, we em-
ploy two distinct sets of metrics. First, consistently with previous research (Sarlin
et al., 2021; Brachmann et al., 2021; Panek et al., 2022; Pietrantoni et al., 2023), we
report the percentage of images that have been localized within specified thresh-
olds, measured in meters and degrees. We use different threshold values for Cam-
bridge and 7-Scenes datasets because the ratio between average translation and
rotation errors is significantly different for outdoor and indoor scenes. Secondly,
we compute the mean reprojection distance in pixels. For a given image, and for a
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Scene
PoseNet Homoscedastic DSAC Reprojection

Global
Homography

Local
Homography

Mean reprojection distance in pixels ↓
Percentage of images localized within (0.25m, 10°) / (0.5m, 15°) ↑

Chess
40.5

78.4 / 91.5
30.7

80.4 / 94
34.8

80.8 / 96.4
26.5

80.9 / 95.1
30.3

82 / 96.5
28.9

82.3 / 96.2

Fire
80

34.8 / 61.3
88.3

32.5 / 66
86.9

35.4 / 68.8
89.2

30.5 / 65.1
83.9

32.3 / 66.3
79

31.8 / 64.3

Heads
96

32.1 / 57
90.1

30.8 / 53
71.8

31.6 / 62.4
75.1

31.7 / 55
76.2

33.3 / 59.2
69.8

33.9 / 58.3

Office
55

60 / 90.1
59.2

54.7 / 86.6
59.7

62.3 / 87.6
50.3

59.5 / 90.3
55.2

57.3 / 90.7
46

62.3 / 86.1

Pumpkin
121

59 / 74.4
80.3

51.7 / 73.2
89.6

51.9 / 77.2
87.5

50.9 / 71.9
97.3

50.1 / 71.5
69.1

53.5 / 73.9

Redkitchen
70.7

45.1 / 74.6
89.2

45.8 / 73.8
79.4

54.9 / 79.8
83.7

48.4 / 77
78.7

50.5 / 75.4
66.3

57.1 / 81.7

Stairs
123

12.7 / 36.6
127

13.5 / 58.6
133

22.2 / 59
154

4 / 28.1
145

18.4 / 57.9
121

17 / 55.8

Table 5.2: Evaluation of pose regression loss functions on the 7-Scenes dataset.

given observed 3D point, we compute the euclidean norm between the projection
of this point into the ground truth and the estimated camera views. This distance
is then clipped at 1,000 pixels for each point to reduce the impact of outliers on
the metric. We report the mean of all these distances.

Results. Tables 5.1 and 5.2 report the performance of the presented loss func-
tions on the aforementioned metrics for the Cambridge Landmarks and 7-Scenes
test sets. Overall, we observe that the Geometric reprojection loss performs better
on the Cambridge dataset, while our Homography loss yields the best results on
the 7-Scenes dataset. It is worth noting that on the 7-Scenes dataset, the Homogra-
phy loss achieves an overall lower reprojection error compared to the Geometric
reprojection loss, without requiring prior network initialization to prevent diver-
gence.

These findings align with the observation made by Brachmann et al. (2021),
claiming that different ground truth generation methods may favor different vi-
sual localization approaches. In the case of the Cambridge dataset, where ground
truth poses were estimated using SfM, the Geometric reprojection loss minimizes
the same quantity leveraging the same data that was used to estimate the ground
truth. Conversely, the 7-Scenes dataset relies on poses obtained through depth-
based SLAM. Although our loss does not minimize the exact same quantities as
RGB-D SLAM, it could benefit substantially from access to dense depth maps, as
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its parameters can be directly derived from them.
To complete the observations made by Brachmann et al. (2021), we also sug-

gest that different metrics may favor different loss functions. For example, met-
rics like the reprojection distance may favor the Geometric reprojection and Ho-
mography losses, while metrics measuring the percentage of images localized
within certain distance and orientation thresholds may be more favorable for
PoseNet, Homoscedastic, and DSAC loss functions, given that they optimize a
similar cost.

We provide videos1 illustrating camera pose regression for a given image in
diverse initial conditions using PoseNet, Geometric reprojection and Homogra-
phy loss functions. When dealing with an initial pose that is oriented in the oppo-
site direction of the scene, we observe that the proposed Homography loss suc-
cessfully converges toward the correct ground truth pose, whereas the Geometric
reprojection loss gets stuck in a local minimum.

5.5 Conclusion

In this chapter, we have introduced a novel loss function designed for camera
pose regression in the context of deep learning applications. To gain a compre-
hensive understanding of the intricacies in designing pose regression loss func-
tions, we conducted a survey of existing losses, revealing certain limitations for
their application within deep learning frameworks. Notably, we found that while
the Geometric reprojection loss has its advantages, especially when working with
SfM-based ground truth, it faces differentiability issues.

Leveraging our discoveries, we introduced the Homography loss, that ap-
proximates the traditional reprojection error by representing the observed scene
as planes. In comparison to other losses, our approach relies on two physically
interpretable parameters, which can either be manually adjusted or computed
from 3D data. Additionally, in contrast with the Geometric reprojection loss, it
requires no preliminary initialization to converge.

Through experiments conducted on two visual localization datasets, we have
shown that depending on the application, our loss offers a compelling alternative
to existing pose regression losses. Furthermore, our loss may serve as a viable al-
ternative to the Geometric reprojection loss when 3D data is inaccessible or when
the target application necessitates pose regression without relying on specific 3D
points.

As a perspective, this loss could potentially be integrated into more com-
plete visual localization pipelines that rely on end-to-end pose regression, such
as DSAC (Brachmann et al., 2017) or PixLoc (Sarlin et al., 2021). Also, recent

1youtube.com/playlist?list=PLe92vnufKoYIIHrW5I268RYdX6aV4gTa6

https://www.youtube.com/playlist?list=PLe92vnufKoYIIHrW5I268RYdX6aV4gTa6
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research has investigated deep regression in SO(3) using different rotation rep-
resentations (Brégier, 2021) and developing manifold-aware gradient for back-
propagation (Chen et al., 2022b). Similar studies could be conducted for SE(3),
benchmarking different representations and exponential map computation tech-
niques, including both closed form (Teed and Deng, 2021) and power series. This
exploration can be applied to diverse applications, encompassing various visual
localization methods and loss functions.

The work presented in this chapter led to a publication in IEEE Robotics and
Automation Letters (Boittiaux et al., 2022) and selected for oral presentation at
ICRA 2023.
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Chapter 6

Underwater visual localization
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6.1 Introduction

In Chapter 3, we constructed a dataset for long-term deep-sea visual localization,
covering the same area across four visits over a five-year period. Throughout
the dataset creation process, we encountered challenges due to the underwa-
ter domain shift, impacting various stages of the SfM process. In this chapter,
we leverage the knowledge acquired during the creation of this dataset, along
with insights from Chapter 5 regarding end-to-end pose regression, to conduct a
comprehensive benchmark of diverse visual localization algorithms on the Eiffel
Tower dataset.

To this extent, this chapter first introduces the different visual localization
methods that will undergo evaluation in this benchmark. We present the char-
acteristics of these algorithms, and detail their benefits in the context of reference
camera poses derived from SfM. Subsequently, we present the localization results
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achieved by these methods on the Eiffel Tower dataset. While these outcomes
align with our initial observations, they also reveal that even the best-performing
method still struggles with certain limitations.

In particular, our study highlights the challenges faced by the NetVLAD im-
age retrieval network in this environment. Consequently, we conduct a brief
study to assess the influence of image retrieval on the final localization outcomes.
Our findings reveal a significant gap between the results achieved with NetVLAD
trained on terrestrial images and an ideal image retrieval approach. Furthermore,
we demonstrate that fine-tuning NetVLAD using a dataset of a few thousand un-
derwater images substantially reduces this performance gap, leading to signifi-
cantly improved visual localization results.

To this extent, this chapter makes the following contributions:

• We conduct a benchmark of several visual localization algorithms on the
Eiffel Tower dataset. Through an analysis of the localization results, we
identify image retrieval as a localization step that is particularly affected by
the underwater environment.

• We analyze the limitations of the NetVLAD image retrieval network, and
illustrate that there is a large margin for improvement. We then demon-
strate that simply fine-tuning this network on underwater images results in
a substantial enhancement of visual localization performance.

This chapter is organized as follows. First Section 6.2 presents the visual lo-
calization benchmark. Then Section 6.3 investigates the impact of image retrieval
on visual localization.

6.2 Benchmarking visual localization algorithms

The Eiffel Tower dataset introduced in Chapter 3 establishes its ground truth
through the use of SfM. However, as outlined in Section 2.2.3, it is essential to
consider the algorithm used to build the ground truth when benchmarking vi-
sual localization algorithms (Brachmann et al., 2021). Indeed, some visual local-
ization methods might minimize the same metric as the one that was used to
build the ground truth, leading to a performance bias in favor of these methods.
Consequently, this section benchmarks several visual localization algorithms of
different nature. More specifically, we benchmark an absolute pose regressor like
PoseNet (Kendall et al., 2015) using two different loss functions, as well as hLoc
(Sarlin et al., 2019) and PixLoc (Sarlin et al., 2021) approaches. This section de-
tails the specificities of each method, presents the experimental setup, and then
discusses the visual localization performance achieved by each method.
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6.2.1 Evaluated methods

PoseNet. As described in Section 2.2.4 and Section 5.2.1, PoseNet (Kendall et al.,
2015) is an absolute pose regressor. More specifically, it is a CNN that predicts
a 6DoF pose from a single image. In this benchmark, we use the same back-
bone and experimental setup as described in Section 5.4.2. During the evaluation,
PoseNet method refers to training the absolute pose regressor using the PoseNet
loss function with the parameter λ = 500. It is important to note that this approach
does not minimize the same error as SfM.

Homography loss. Similarly to PoseNet, we train the same absolute pose re-
gressor using the Local Homography loss function presented in Chapter 5. We
configure the parameters of the loss function following the procedure outlined in
Section 5.4.2, which involves choosing xmin and xmax as the depth distribution’s
2.5th and 97.5th percentiles, respectively. Like PoseNet, this approach does not
minimize the same quantity as the SfM ground truth.

hLoc. hLoc is a hierarchical visual localization toolbox (Sarlin et al., 2019). It
operates similarly as the retrieval-based visual localization methods presented in
Section 2.2.4. More specifically, it performs the following steps. Given a query im-
age and a set of database images, it starts by retrieving images in the database that
are similar to the query image. This is achieved by leveraging global descriptors.
By default, hLoc relies on the NetVLAD global descriptor (Arandjelovic et al.,
2016). Then, it extracts and matches features between the query image and the
retrieved images. In hLoc, the default feature matching technique is to extract
SuperPoint features (DeTone et al., 2018) and then match these features using
the SuperGlue (Sarlin et al., 2020) matching network. Finally, the query image’s
6DoF pose is retrieved through a PnP/RANSAC scheme. It is important to note
that all these steps are very similar to those used to create the underwater dataset
in Chapter 3. Because of this, hLoc might be strongly advantaged compared to
other methods when evaluated on the Eiffel Tower dataset.

PixLoc. PixLoc is a photometric visual localization method (Sarlin et al., 2021).
It executes the following steps. Given a query image and a SfM database, it per-
forms the same initial step as hLoc, that is, it retrieves images in the database that
are similar to the query image. It subsequently extracts dense local features for
the query and the retrieved images using a CNN. Then, PixLoc aims at finding
the 6DoF pose that minimizes the difference in appearance between the query
image and each reference image. This difference in appearance is quantified di-
rectly inside the local feature space. Let us consider a 3D point XXXp observed in
the query image q and a reference database image r. The query image has an
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estimated pose [R̂̂R̂Rq, t̂̂t̂tq] and the reference image has a pose [RRRr, tttr]. Both the query
and the reference image have a dense local descriptors map FFF ∈ RW×H×D, where
D is the dimension of each descriptor. The local descriptor at a given pixel co-
ordinates can be obtained by FFF [·]. To estimate their pose directly from the local
features space, PixLoc define their residual as:

rrrp,q,r =
∥∥∥FFF q

[
π(R̂̂R̂Rq XXXp + t̂̂t̂tq)

]
−FFF r

[
π(RRRr XXXp + tttr)

]∥∥∥ . (6.1)

Consequently, the error that is minimized to estimate the query image’s 6DoF
pose is different from the one minimized by the SfM ground truth of the Eiffel
Tower dataset.

hLoc & PixLoc. hLoc and PixLoc can be used conjointly to refine localization
outcomes. In this scenario, PixLoc is initialized using the 6DoF pose estimated by
hLoc. The photometric optimization is then applied to the 3D points identified as
inliers by hLoc’s PnP/RANSAC step.

hLoc w/ SUCRe. To evaluate the visual localization performance degradation
caused by the underwater domain shift, we also run the hLoc pipeline using im-
ages enhanced with the SUCRe method described in Section 4.3.

6.2.2 Experimental setup

Dataset split. To evaluate the performance of visual localization algorithms, we
must split our dataset in two parts: a reference database set and a query set. The
performance of a given visual localization method will evaluate its capacity to
effectively localize query images with respect to database images. Consequently,
a good practice is to make sure that all query images share 3D observations with
at least one image in the database. In Section 3.5, Figure 3.12 illustrates that the
2015 dive on the Eiffel Tower vent covers the least amount of ground compared
to other expeditions. Moreover, all the explored area during the 2015 dive has
also been explored during other dives. To minimize the errors due to previously
non-visited areas, we choose the 2015 visit as the query set, and select the 2016,
2018 and 2020 dives as the database set.

Images undistortion. Both hLoc and PixLoc benefit from information about the
intrinsics of the query camera. However, absolute pose regressors do not include
this information in their regression pipeline. To alleviate this issue, we undis-
tort input images and center their principal point during the preprocessing step
of PoseNet and Homography loss. This preprocessing step is also common in
scene coordinate regressors (Brachmann et al., 2017; Brachmann and Rother, 2022;
Brachmann et al., 2023).
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Method Median errors ↓
Percentage of images localized within ↑

1cm, 1° 2cm, 2° 5cm, 5° 50cm, 5° 500cm, 10°

PoseNet 1.98m, 10.73° 0.00 0.00 0.02 3.58 45.75

Homography loss 1.23m, 8.30° 0.00 0.00 0.02 8.47 57.83

hLoc 0.09m, 1.14° 15.61 27.96 43.59 57.79 59.95

PixLoc 6.55m, 41.09° 0.37 1.61 6.51 15.10 18.36

hLoc & PixLoc 0.09m, 1.12° 13.68 27.72 43.96 57.79 59.95

hLoc w/ SUCRe 0.05m, 0.56° 14.35 30.10 51.30 73.42 75.89

Table 6.1: Performance of visual localization methods on the Eiffel Tower
dataset. We show best and second best performance on median errors and the
percentage of images localized within a given threshold.

6.2.3 Results and discussion

In Table 6.1, we report the performance achieved by aforementioned localization
methods on the query set of the Eiffel Tower dataset. The evaluation includes two
key metrics: the median translation and rotation localization errors in meters and
in degrees, as well as the percentage of images that were successfully localized
within specified translation and rotation thresholds in centimeters and in degrees.

Overall, the best performance is achieved by the hLoc pipeline. This is not
surprising since the method is very similar to the one that was used to create the
ground truth reference camera poses. With the exception of the image retrieval
step achieved using NetVLAD, hLoc follows the same pipeline as the one de-
scribed in Section 3.4. Since PixLoc optimization procedure is performed on the
set of retrieved images, the method heavily relies on the image retrieval step, and
achieves poor performance on all metrics. Moreover, refining poses estimated
with hLoc by using PixLoc photometric alignment does not appear to greatly im-
prove localization accuracy.

The criterion assessing the percentage of poses localized within 500 centime-
ters and ten degrees is more akin to evaluate image retrieval rather than precise
localization performance. Interestingly, despite their poor performance in accu-
rate pose regression, absolute pose regressors like PoseNet and Homography loss
show good performance for this coarse metric. This observation aligns with the
findings of Sattler et al. (2019) that absolute pose regressors are closer to image
retrieval methods than precise pose estimators. This might provide motivation
for employing absolute pose regressors to address the image retrieval step.

Finally, restoring the images’ colors using the SUCRe method shows to im-
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prove significantly localization results of the hLoc pipeline. We suggest that
this improvement can be attributed to the fact that the NetVLAD image retrieval
network, along with the SuperPoint and SuperGlue feature matching networks,
were originally trained exclusively on terrestrial images. Consequently, these net-
works may not adapt effectively to underwater conditions and generalize to un-
derwater phenomena, including scattering, absorption, and the high illumination
variability. However, it is essential to acknowledge that each SUCRe images was
restored using 3D information from its individual model, including images from
the 2015 test year, introducing a potential bias into the evaluation process.

Bringing together the insights gained during the dataset construction in Chap-
ter 3 and the visual localization outcomes presented here, it appears that the pri-
mary challenge in underwater visual localization is related to image retrieval.
This issue is highlighted in Table 6.1, where PixLoc performance underscores this
problem. Since PixLoc heavily depends on the image retrieval step, it struggles to
localize images when it is provided incorrectly retrieved candidates. In contrast,
when presented with a coherent set of 3D points, such as those provided by hLoc,
it maintains pose estimation accuracy. To comprehensively explore the influence
of image retrieval on visual localization results, the following section is devoted
to a thorough evaluation of this impact.

6.3 Image retrieval impact

To evaluate the impact of image retrieval on visual localization performance, we
conduct a short study on the hLoc pipeline. Our objective is to substitute the
image retrieval component of hLoc and observe the resulting changes in visual
localization outcomes. To this extent, this section explores the impact of fine-
tuning the NetVLAD image retrieval network on localization results. In addition,
we also report the localization performance obtained when replacing the image
retrieval step by a covisibility oracle, i.e., a method that has privileged informa-
tion about the ground truth and can serve as a top line reference of performance.
This section provides a comprehensive overview of these various approaches and
subsequently presents and discusses the localization results.

6.3.1 Image retrieval approaches

Before delving into the specificities of fine-tuning NetVLAD, let us provide a
concise overview of the NetVLAD architecture. As outlined in Section 2.2.4,
NetVLAD is designed to learn simultaneously both dense local features and the
assignment of these features to visual words. This learning process can be bro-
ken down into two primary components. First, feature learning is accomplished
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using a CNN backbone. Second, the assignment of visual words is performed
through what is called a VLAD layer. While the dense features are learned by op-
timizing the CNN weights, the VLAD layer specifically focuses on learning the
positions, or centers, of visual words within the feature space.

Fine-tuning NetVLAD centers. In this scenario, we only refine the positions, or
centers, of visual words for their application to underwater data. By doing this,
we do not alter the representation of dense local features, we simply backpropa-
gate the error on visual words to find better discriminative ones.

Fine-tuning NetVLAD network. In this case, we fine-tune the entire NetVLAD
network, which includes adjusting both the weights of the CNN and the positions
of visual words. By comparing this approach to only adjusting the visual words,
we gain valuable insights into the limitations of dense local features pretrained
in terrestrial environments when applied to deep-sea settings.

Covisibility oracle. To assess the efficiency of NetVLAD compared to optimal
image retrieval results, we also replace the image retrieval step with a covisibility
oracle: for each query image, we use the SfM ground truth to select the top ten
database images that share the most 3D point observations.

6.3.2 Experimental setup

Dataset split. For fine-tuning NetVLAD, we rely exclusively on the reference
database set, as the query set should only be used for the visual localization
benchmark. Consequently, we only train NetVLAD on the 2016, 2018 and 2020
dives. From these three visit years, we split the train and validation sets ran-
domly, keeping 90% of the images for training and 10% for validation.

Training. In the original paper (Arandjelovic et al., 2016), NetVLAD is trained
using a triplet loss. Each query descriptor dddq is associated with a set of potential
positive descriptors {dddpa} and a set of negative descriptors {dddnb }. Using the ground
truth poses, positive descriptors are extracted from images that are spatially close
to the query image, and negative descriptors are extracted from spatially far im-
ages. The network is then trained by minimizing the following loss function:

LNetVLAD =
∑
b

max
(
min
a

(
∥dddq − dddpa∥2

)
+m− ∥dddq − dddnb ∥2, 0

)
, (6.2)

where m is a margin parameter. The idea behind this loss can be expressed as
follows: the distance between the query descriptor and the closest positive de-
scriptor should be at a minimum distance ofm compared to negative descriptors.
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In other words, there is at least a real positive match in the positive set, and its
corresponding descriptor should be closer by a margin to the query descriptor
than the descriptors of negative matches.

Throughout the training process, we define positive images as the top fifteen
images positioned within a three-meter radius of the query image. We designate
the negative images as a sample of thirty images located more than ten meters
away from the query image. Differing from the original implementation, we in-
troduce an additional constraint to encourage the network to learn cross-year
discriminative features and visual words. Specifically, we ensure that each image
in the positive set is extracted from images captured during a different visit year
than the query image: year(dddq) ̸= year(dddpa). This measure prevents overly simple
matches between the positive set and the query image.

6.3.3 Results and discussion

Method Median errors ↓
Percentage of images localized within ↑

1cm, 1° 2cm, 2° 5cm, 5° 50cm, 5° 500cm, 10°

NetVLAD 0.089m, 1.144° 15.61 27.96 43.59 57.79 59.95

NetVLAD w/
fine-tuned centers

0.027m, 0.347° 21.82 40.80 61.82 75.78 77.19

NetVLAD w/ full
fine-tuned network

0.020m, 0.242° 29.98 50.63 74.30 86.14 87.42

Covisibility oracle 0.014m, 0.189° 36.63 64.33 87.77 96.83 97.50

Table 6.2: Performance of hLoc on the Eiffel Tower dataset using different image
retrieval approaches. We show how the image retrieval step of hLoc influences
localization results. We highlight best and second best performance.

In Table 6.2, we present the localization results achieved using different image
retrieval methods within the hLoc pipeline. The covisibility oracle offers insight
into what could be achieved with an optimal image retrieval method. Notably,
we observe that employing NetVLAD, originally trained on terrestrial images,
falls significantly short of optimal performance. In contrast, fine-tuning only the
visual words centers already yields a substantial enhancement in visual localiza-
tion performance, indicating a need to address domain-specific differences be-
tween terrestrial and underwater environments. Moreover, fine-tuning the entire
network results in a significant performance boost compared to fine-tuning only
the visual words. This implies that the dense local features extracted by the CNN
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from terrestrial images may lack the necessary discriminative power to accurately
represent the diverse environmental conditions encountered in the deep sea, such
as those discussed in Section 3.5.

It is worth mentioning that fine-tuning only the visual word centers theoret-
ically requires fewer data samples than fine-tuning the entire network. Visual
words essentially constitute a dictionary of distinctive terms for describing an
image, and fine-tuning these already substantially improves visual localization
results. This observation holds promise for refining networks initially trained on
terrestrial images, by using only a small sample of underwater data. This is par-
ticularly valuable considering the scarcity and expense associated with acquiring
deep-sea data.

6.4 Conclusion

In this chapter, we conducted an evaluation of various visual localization algo-
rithms of diverse nature using the Eiffel Tower dataset introduced in Chapter 3
to assess their adaptability to the underwater environment. While presenting
the benchmarked algorithms, we emphasized that certain methods might be in
advantage when applied to a SfM reference ground truth, similar to the one pro-
vided by the Eiffel Tower dataset. The experimental results seem to point in this
direction.

Among the evaluated algorithms, the hierarchical localization pipeline hLoc,
which shares many similarities with SfM, demonstrated superior performance
compared to other methods. As a side study, we also demonstrated that the un-
derwater color restoration method proposed in Section 4.3 significantly improves
visual localization results when used in conjunction with hLoc. However, this
hierarchical approach does have its limitations. We have identified that the pri-
mary challenge in hLoc lies within the image retrieval step. We have shown that
this step can be substantially improved through fine-tuning an image retrieval
network on a few thousands underwater images.

Looking ahead, the key challenge in the underwater environment remains the
scarcity of data. While future projects may seek to further explore the deep sea
and generate data suitable for training these algorithms, it is prudent to focus on
methods that demand only a limited dataset for fine-tuning existing algorithms,
such as the approach we explored by fine-tuning only NetVLAD visual words.
This successful approach was suggested by Torsten Sattler and Assia Benbihi.

Part of this work was published in the ORASIS 2023 national conference for
young researchers (Boittiaux et al., 2023a).
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This thesis has explored the subject of visual localization within the context
of long-term deep-sea monitoring. Existing acoustic positioning systems have
limitations regarding their ability to precisely estimate the pose of autonomous
underwater vehicles and the cost of their deployment in some scenarios. This
limits their capacity to carry out specific tasks that necessitate a high location
accuracy, such as mapping a precise area of a site of interest. In pursuit of a
more accurate means of estimating the position of underwater vehicles, this the-
sis has investigated the use of the vehicle’s visual observations, thus addressing
the challenge of visual localization. However, the majority of visual localization
research is primarily focused on terrestrial applications, such as self-driving cars
and augmented reality systems. Underwater imaging introduces new sources
of variability and scene complexity, setting it apart from the more conventional
realm of terrestrial imagery. In light of these challenges, this thesis has been ded-
icated to identifying the domain-specific sources of variability that affect under-
water images. Furthermore, it sought to elucidate the impact of these distinct
factors on visual localization algorithms initially designed for terrestrial scenar-
ios. In response, we have proposed solutions, drawing from both physics-based
models and deep learning methods, to adapt and optimize these algorithms to
deep-sea environments. In this conclusion, we first provide an overview of the
material covered throughout this thesis and outline our scientific contributions.
We subsequently propose several avenues for improvement and offer insights
into potential directions for future research.
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7.1 Summary and contributions

Problem presentation. Chapter 2 was dedicated to the presentation of the un-
derwater visual localization challenge. In this regard, we provided an exploration
of the unique aspects of underwater imaging and presented the visual localiza-
tion problem. In the underwater imaging domain, we delved into the specific
phenomena encountered in underwater environments, notably the refraction ef-
fects caused by the air-glass-water mediums, as well as the distinctive character-
istics of light propagation under water, which involve absorption and scattering
phenomena. We also offered an overview of established models employed to
model these phenomena and explored existing methods designed to restore un-
derwater images, mitigating the impact of water-induced light propagation ef-
fects. Shifting our focus to visual localization, we have started by defining the
problem. Given that it entails determining the viewpoint of images with respect
to a given reference frame, we described various approaches designed to estab-
lish the ground truth of such viewpoints, e.g., using depth-based SLAM or SfM.
As highlighted by recent research (Brachmann et al., 2021), we emphasized the
importance of considering the method used for generating this reference when
benchmarking visual localization methods. Finally, we provided an overview of
diverse visual localization techniques, each tailored to specific applications and
relying on different types of input data.

Deep-sea dataset for visual localization. In Chapter 3, we present a dataset
explicitly designed for the evaluation of long-term visual localization algorithms
within the deep-sea environment. This dataset comprises images acquired during
four visits to a hydrothermal vent, spanning over a five-year period. To establish
unified reference camera poses for all these visits, we used SfM. In the process
of constructing this unified SfM model, we investigated challenges encountered
along every step of the pipeline. We first ran into the problems associated with
image retrieval methods, particularly when pairing underwater images of dif-
ferent visits. To overcome this problem, we introduced a pipeline based on the
alignment of point clouds derived from individual SfM models. We then con-
ducted a comprehensive benchmark of feature matching algorithms on deep-sea
images from different visit years capturing identical scene elements. The goal
was to identify the most robust matching methods capable of effectively manag-
ing environmental variations. This formulation not only facilitates the retrieval of
the model scale and orientation but also effectively guides the optimization of the
registered viewpoints during the bundle adjustment process. All of these find-
ings allowed for the creation of a unified model that incorporates images from
all visits. Given this unified model, we then conducted a comprehensive survey
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of the changes in appearance that have occurred over the years to gain valuable
insights regarding the different sources of variability encountered in this environ-
ment.

Structure-based underwater color restoration. The contributions of Chapter 4
are twofold: firstly, we formulated and introduced two methods tailored to re-
store the colors of underwater images, and secondly, we have acquired insights
regarding underwater imaging phenomena capable of affecting visual localiza-
tion algorithms. The first underwater color restoration method relies on a sin-
gle assumption, which serves as a constraint for estimating the parameters of
an underwater image formation model. It only requires an underwater image
and its corresponding distance map. In contrast, the second method bypasses
this assumption by articulating the underwater image formation model within a
multi-view setting. With a collection of underwater images, coupled with their
associated camera poses, intrinsic parameters, and depth maps, this approach si-
multaneously estimates the image formation model parameters and the restored
image in a single optimization procedure. Additionally, we extended this under-
water image formation model to account for the vignetting effect typically gen-
erated by artificial lighting systems of deep-sea underwater vehicles. We demon-
strated that the multi-view approach effectively overcomes most of the difficul-
ties encountered in single-view underwater color restoration techniques. Finally,
we showed that restoring the colors of underwater images using this multi-view
method has the potential to enhance the performance of visual localization algo-
rithms in underwater environments.

Loss function for deep learning based camera pose regression. Chapter 5 was
dedicated to the exploration of loss functions tailored for camera pose regression
within deep learning applications. In this context, we conducted a comprehen-
sive survey of existing loss functions, highlighting their theoretical and practical
limitations. Building upon these insights, we introduced a novel loss function
designed to approximate the traditional reprojection error by representing the
observed scene as planes. This approach allows our loss function to overcome
the differentiability issues associated with the reprojection error. In comparison
with other losses, our method depends on two physically interpretable parame-
ters and does not necessitate any initialization for convergence. Depending on the
specific application, we demonstrated that the presented loss function is a com-
pelling alternative to existing pose regression losses. Furthermore, it can serve
as a suitable loss function for weighting rotation and translation errors when the
application necessitates pose regression without relying on specific 3D points.
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Benchmark of underwater visual localization. In Chapter 6, we evaluated vari-
ous visual localization algorithms on the Eiffel Tower dataset introduced in Chap-
ter 3. Our goal was to assess their adaptability to underwater environments.
When introducing the benchmarked algorithms, we pointed out their potential
advantages when working with a SfM reference ground truth, similar to the one
used in the Eiffel Tower dataset. Our evaluation of these algorithms revealed
that the hierarchical localization pipeline, which shares many similarities with the
SfM pipeline, achieved the best performance on the Eiffel Tower dataset. From
our analysis of the visual localization results, we gained two significant insights:
firstly, the application of the underwater color restoration method detailed in Sec-
tion 4.3 significantly improves localization outcomes, and secondly, the primary
bottleneck in the performance of compared methods lies in the image retrieval
step. Considering this limitation, we explored the impact of fine-tuning an im-
age retrieval network using a few thousand underwater images. By conducting
this fine-tuning on different parts of the network, we also showed that there is
hope for effective domain transfer between terrestrial and underwater images by
fine-tuning specific parts of the neural network using a limited amount of data.

7.2 Lessons learned

Camera poses are estimated in relation to an established reference frame, which
is itself determined using methods that introduce their own biases (Brachmann
et al., 2021). Additionally, metrics employed to assess localization performance
tend to favor particular ground truth generation techniques or visual localization
algorithms over others. This does not imply that evaluating visual localization
methods is useless — rather, it underscores that this evaluation should always
be conducted with consideration for the chosen ground truth generation method
and the specific metrics employed.

Absolute pose regressors such as PoseNet face limitations when it comes to ac-
curately estimating camera poses Sattler et al. (2019). Achieving high localization
accuracy results while representing the observed scene within a neural network’s
weights requires to explicitly incorporate geometric phenomena within the net-
work’s inference (Brachmann et al., 2017, 2023). Nevertheless, these straightfor-
ward absolute pose regressors offer a simplified pipeline for addressing broader
theoretical challenges associated with camera pose regression within the con-
text of deep learning frameworks, such as designing loss functions (Kendall and
Cipolla, 2017; Boittiaux et al., 2022), or studying different pose representations
(Brégier, 2021).
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7.3 Perspectives

Make better use of 3D information. While we mainly focused on the degrad-
ing effects of the physical phenomena that impact underwater images, it is worth
noting that these phenomena can also provide supplementary information about
the scene’s 3D structure, as they are closely related with the distance between
the observed scene and the camera. Consequently, neural networks designed for
depth estimation (Ranftl et al., 2022) could benefit from this implicit source of
information when estimating depth maps from underwater images. This could
serve as a practical means of obtaining real-time 3D scene information. Prior re-
search has already focused on estimating depth maps from a single image and
refining initial coarse pose estimates, which were obtained using image retrieval
(Piasco et al., 2019a). This refinement is achieved through point cloud alignment,
aligning the local point cloud obtained by unprojecting the estimated depth map
of the query image with the global point cloud of the scene. In our specific appli-
cation context, we could replace the image retrieval step of hierarchical localiza-
tion pipelines by robust point cloud alignment. This would involve aligning the
local point cloud derived from the query image estimated depth map with the
reference SfM point cloud.

Towards a practical application within a SLAM framework. In practice, Ifre-
mer’s underwater vehicles will soon be equipped with an underwater SLAM that
will operate in real time during dives (Ferrera, 2019). This means that during each
dive, the vehicle will build a local map of the specific area it is exploring. Con-
sequently, instead of attempting to estimate the pose of each acquired image in
relation to a given reference model, a pragmatic approach would involve deter-
mining only the Sim(3) or SE(3) transformation between this local map and the
reference model. This could be achieved, for instance, through a robust point
cloud alignment (Yang et al., 2021) between the SLAM point cloud and the ref-
erence SfM point cloud. This approach is similar to the one we employed in
Chapter 3 during the dataset creation to overcome the challenges encountered
with image retrieval. It is expected to offer significant practical benefits since it
utilizes a more comprehensive representation of the scene and should become
increasingly robust as more of the scene is mapped during the SLAM process,
thereby providing an increasing volume of 3D information. This additional data
helps in disambiguating and improving the estimation of point cloud alignment.

Stereo underwater color restoration. As discussed in Chapter 4, the task of un-
derwater image color restoration from a single image is underdetermined. At
least two views of the same scene are necessary to constrain the estimation of
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both the parameters of an underwater image formation model and the intensity
values of the restored images. In this context, using a calibrated stereo rig could
enable the use of disparity map estimation using neural networks (Tankovich
et al., 2021). This estimated disparity map would, in turn, allow to recover the
scene’s 3D structure alongside 2D-2D correspondences between the two images.
Consequently, it would enable the use of the multi-view method described in Sec-
tion 4.3 using only two images. This approach would run in real time and also
support the color restoration of dynamic scene elements, as both views would be
captured simultaneously.

End-to-end underwater color restoration. Using the SUCRe method developed
in Section 4.3, we can generate a database of underwater images along with their
restored counterparts. As the main limitations of SUCRe involve its computa-
tional time and its dependence on the 3D structure of the scene, an alternative
strategy could involve the training of a U-Net like neural network (Ronneberger
et al., 2015) to learn a mapping between underwater images and their restored
version. This approach would have the potential benefit of running in real time,
without the need for prior information about scene’s 3D structure.

Adapting to limited underwater data. In the near future, there might not be a
sufficient volume of underwater data to fully train neural networks in the same
manner as their terrestrial counterparts. To tackle this challenge, it becomes im-
perative to develop techniques that can make the most out of the limited under-
water data available for fine-tuning neural networks. A successful demonstration
of this approach can be found in Chapter 6, where it was effectively applied to the
NetVLAD image retrieval network. Extending this concept, identifying specific
segments of neural networks that can be fine-tuned with a limited underwater
dataset should be explored for other components of the visual localization pro-
cess, such as feature matching networks.
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Appendix A

Résumé étendu

Cette thèse aborde la problématique de la localisation de véhicules sous-marins
autonomes en exploitant leurs données visuelles. Plus précisément, nous nous
intéressons au problème de la localisation visuelle dans le cadre de revisites à
long terme des grands fonds océaniques. Ce domaine de recherche est partic-
ulièrement délicat en raison de la disponibilité limitée de données sous-marines.
La plupart des algorithmes existants sont conçus pour des applications terrestres
et ne se généralisent pas nécessairement bien aux environnements sous-marins,
compte tenu des changements spécifiques tels que la variation de turbidité entre
deux visites ou la sédimentation des structures observées. Ce manque de données
revêt une importance particulière dans un contexte où les approches de pointe
sont largement dominées par l’apprentissage profond, exigeant une grande quan-
tité de données d’entraînement pour généraliser à de nouveaux phénomènes. Les
contributions majeures de cette thèse comprennent :

• La création d’un nouveau jeu de données sous-marin pour évaluer les per-
formances des algorithmes de localisation visuelle à long terme dans les
grands fonds.

• Deux nouvelles méthodes de restauration des couleurs des images sous-
marines.

• La proposition d’une nouvelle fonction de coût pour la régression de la pose
dans un contexte d’application au deep learning.

• Une évaluation comparative des méthodes de localisation visuelle sur le
nouveau jeu de données, en utilisant les méthodes de restauration des cou-
leurs et la nouvelle fonction de coût.
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A.1 Jeu de données sous-marin pour la localisation
visuelle à long terme

En raison des variations à long terme des grands fonds marins, distinctes des
variations rencontrées dans les jeux de données terrestres, il est impératif de créer
un jeu de données spécifiquement dédié à la localisation visuelle dans ce con-
texte particulier. Ce jeu de données doit être constitué de visites récurrentes d’un
même site en grands fonds sur plusieurs années afin de documenter les change-
ments environnementaux à long terme. De plus, il doit être constitué en utilisant
divers systèmes d’acquisition tels que des caméras différentes, afin de prendre
en compte les changements d’équipement pouvant influencer les algorithmes de
localisation visuelle. L’Ifremer détient des données pertinentes, notamment des
observations de la cheminée hydrothermale appelée Tour Eiffel en 2015, 2016,
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Figure A.1: Chaîne opératoire de Structure-from-Motion. Initialement, des
modèles indépendants sont construits pour chaque année. Ces modèles sont en-
suite alignés dans un référentiel commun. Enfin, un modèle global englobant des
images de toutes les années est généré en utilisant une correspondance spatiale
basée sur les poses des caméras des modèles individuels.
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2018 et 2020, réalisées dans le cadre de missions dédiées à la reconstruction 3D.
Pour établir une vérité terrain de notre jeu de données, nous devons déterminer
avec précision les poses des caméras pour chaque image, et ce, dans un repère
commun aux quatre années d’observation. Pour cela nous avons utilisé une so-
lution de Structure-from-Motion. Cependant, en raison des différences visuelles
importantes entre les images des différentes années, nous avons dû revoir les
étapes d’appariement d’images, d’appariement de points 2D et de bundle adjust-
ment du Structure-from-Motion. En utilisant une approche combinant réseaux de
neurones et méthodes classiques, nous avons développé la chaîne opératoire il-
lustrée dans la Figure A.1, permettant d’obtenir les poses des caméras pour toutes
les années dans un repère partagé. Enfin, nous avons montré des changements
significatifs dans l’environnement et la structure de la scène au fil des années.

A.2 Restauration de couleurs d’images sous-marines

L’un des principaux facteurs influençant l’apparence des images sous-marines
réside dans la manière dont la lumière se propage dans l’eau, engendrant un
faible contraste et une déformation des couleurs. Ces altérations résultent princi-
palement de deux phénomènes majeurs : la conversion de la lumière en d’autres
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Figure A.2: Chaîne opératoire de SUCRe. Nous utilisons les poses de chaque
image, leur paramètres intrinsèques et leur cartes de profondeur résultant
d’un Structure-from-Motion pour appairer géométriquement les pixels entre
différentes vues. Nous projetons les pixels d’une à l’autre, nous permettant
d’appairer des points dans des zones de faible contraste. Enfin, nous estimons
simultanément les paramètres d’un modèle de formation d’image sous-marine
ainsi que l’image restaurée.
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formes d’énergie, telles que la chaleur, provoquant une absorption des couleurs,
et la réflexion de la lumière par des particules en suspension dans l’eau, entraî-
nant de la rétrodiffusion. Pour atténuer ces effets indésirables sur les images
sous-marines, de nombreuses méthodes ont cherché à modéliser et à inverser
ces phénomènes. En nous appuyant sur un modèle existant, nous avons pro-
posé deux approches distinctes pour inverser ce modèle et atténuer les effets
d’absorption et de rétrodiffusion dans les images sous-marines. L’une de ces
méthodes prend en compte une image sous-marine avec sa carte de profondeur
associée, en se fondant sur l’hypothèse simple selon laquelle l’intensité des pixels
est distribuée de manière gaussienne dans l’image restaurée. L’autre méthode,
nommée SUCRe et illustrée dans la Figure A.2, utilise plusieurs images d’une
même scène, suivant l’intensité des pixels à travers différentes prises de vue, afin
d’estimer simultanément les paramètres du modèle et l’intensité des pixels de
l’image restaurée.

A.3 Fonction de coût pour la régression de pose

Les méthodes état de l’art pour la localisation visuelle reposent principalement
sur des méthodes de d’apprentissage profond. Parmi celles-ci, de nombreux
réseaux de neurones apprennent la pose d’une image en se basant uniquement

Figure A.3: Illustration de la fonction de coût homographique. Nous rem-
plaçons les points 3D (noirs) observés par la pose réelle (bleue) par un ensemble
de plans virtuels parallèles (verts). La normale nnn des plans et l’axe optique de la
caméra de vérité terrain sont colinéaires. Pour un plan donné, nous exprimons
notre erreur directement dans l’homographie induite par ce plan entre la pose
réelle et la pose estimée (orange). Nous intégrons ensuite cette erreur entre les
distances xmin et xmax.



A.4. Evaluation de la localisation visuelle en milieu sous-marin 118

sur cette dernière. Ces réseaux sont entraînés en supervisant la pose estimée, et
en la comparant à la véritable pose de l’image. Pour propager l’erreur à travers
le réseau, une fonction de coût est utilisée pour quantifier l’écart entre la pose
estimée et la pose réelle. Pour pouvoir propager l’erreur au travers du réseau, ils
reposent donc sur une fonction de coût qui quantifie l’erreur entre la pose estimée
et la pose vérité terrain. Cependant, alors que l’erreur entre deux pose est en six
degrés de liberté, cette fonction de coût doit générer un scalaire, afin que l’erreur
puisse être propagée par dérivation chaînée à travers le réseau. Cette fonction de
coût doit résoudre le défi de l’équilibre entre les erreurs de rotation et de trans-
lation entre deux poses. Une approche qui traite implicitement ce problème est
l’erreur de reprojection, car elle exprime l’erreur directement dans le plan du cap-
teur plutôt que sur les poses. Cependant, l’application de cette fonction de coût
aux méthodes d’apprentissage profond présente des limites en termes de dériv-
abilité. Pour surmonter ces limitations, nous proposons une fonction de coût qui
approxime l’erreur de reprojection tout en évitant les problèmes de dérivabilité.
Notre fonction de coût, illustrée dans la Figure A.3, modélise la scène par des
plans plutôt que des points, exprimant ainsi l’erreur directement dans les homo-
graphies induites par ces plans entre la pose estimée et la pose réelle.

A.4 Evaluation de la localisation visuelle en milieu
sous-marin

Finalement, nous effectuons une analyse comparative de diverses méthodes de
localisation visuelle sur le jeu de données sous-marin établi précédemment. Les
résultats révèlent que la méthode de localisation hiérarchique obtient les meill-
eures performances. Cependant, malgré ses résultats prometteurs, elle ne parvient
pas à égaler les performances anticipées sur des jeux de données terrestres. Afin
d’améliorer ses performances, nous entreprenons le raffinement des réseaux de
neurones utilisés dans la méthode sur des données sous-marines, dans l’espoir
de constater une amélioration des résultats. En raison de la disponibilité limitée
de données, nous développons deux méthodes de raffinement distinctes, l’une
nécessitant théoriquement moins de données que l’autre. Les résultats indiquent
que la méthode demandant moins de données améliore déjà de manière signi-
ficative les performances de localisation visuelle. Les performances sont encore
nettement améliorées en utilisant la méthode de raffinement qui nécessite plus de
données. Par ailleurs, nous avons testé la méthode de localisation hiérarchique
sur des images dont les couleurs ont été restaurées grâce à la méthode multi-vues
développée précédemment, montrant que la restauration des couleurs contribue
à améliorer les performances de localisation visuelle.
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A.5 Conclusion

Cette thèse se concentre sur le défi de la localisation visuelle dans le contexte
d’explorations récurrentes en grands fonds marins. Nous avons introduit un
nouveau jeu de données permettant d’évaluer les méthodes de localisation vi-
suelle dans ce milieu particulier. À travers ce jeu de données, nous avons mis
en évidence diverses sources de variabilité qui émergent au fil des années et qui
ont le potentiel d’influencer les résultats des méthodes de localisation visuelle.
Afin d’atténuer la variabilité induite par la propagation de la lumière dans l’eau,
nous avons présenté deux nouvelles méthodes de correction des couleurs pour
les images sous-marines. Dans le contexte de la localisation visuelle, nous avons
proposé une nouvelle fonction de coût pour la régression de pose appliquée aux
méthodes d’apprentissage profond. Enfin, nous avons évalué plusieurs méth-
odes de localisation visuelle sur le jeu de données établi. Notre analyse a identifié
les étapes de la localisation visuelle les plus impactées par le milieu sous-marin
et a suggéré des améliorations avec une faible quantité de données. De plus,
nous avons montré que notre algorithme de correction des couleurs multi-vues
améliore significativement les résultats de localisation visuelle.
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Depth-based points alignment

(a) Point clouds displaced using a
Sim(3) transformation.

(b) Point clouds aligned in Sim(3) using
only vertical priors.

Figure B.1: Aligning two point clouds only based on vertical priors. The hor-
izontal shift and the yaw angle cannot be determined, yet point clouds are both
vertically aligned and oriented parallel to the ground.

In Section 3.4.1, the translation, orientation and scale of the model were re-
trieved using Umeyama’s algorithm (Umeyama, 1991) on the positions of the
cameras. This algorithm requires priors knowledge about the camera positions
in 3D space along all three axes, i.e., X, Y and Z axes. However, such information
may not always be available. In particular, in underwater applications, estimat-
ing the position of the vehicle in 3D space requires acoustic positioning systems
that can be expensive and hard to set up. Yet, measuring the depth of the acqui-
sition system is much more common and accessible as it requires only a pressure
sensor. As illustrated by Figure B.1, given a set of depth measurements, it is pos-
sible to retrieve the vertical alignment along the Z axis, the partial rotation for
the pitch and roll angles, as well as the scale of the model. Since we lack position
priors for the X and Y axes, we cannot retrieve the alignment along these axes,
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and neither can we retrieve the yaw orientation, hence loosing three degrees of
liberty. In this section, we detail an optimization procedure to retrieve the verti-
cal alignment, the pitch and roll angles, as well as the scale of a set of 3D points
solely based on depth measurements.

Let zi be the depth measurement of a camera with 3D position XXXi. We want to
estimate TTT ∈ Sim(3) the transformation that aligns these camera centers to their
measured depths. We first express zi, the vertical component of XXXi after it has
been transformed by TTT :

zi =
[
0 0 1

]
TTT ⊙XXXi. (B.1)

Our objective is to minimize the distance between the depth measurements zi
and the aligned camera vertical components zi. Hence, we define our residuals
as follows:

ri = zi − zi. (B.2)

We then estimate TTT in a least squares manner:

argmin
TTT

∑
i

r2i . (B.3)

We choose to estimate the transformation matrix TTT in a Gauss-Newton scheme.
To achieve this, we need to start from an initial transformation: we choose TTT = III,
where III is the identity matrix. The optimization procedure then updates iter-
atively the parameters of TTT . However, since TTT ∈ Sim(3), it is not possible to
perform the optimization directly on the values of the matrix, as some step of the
optimization might not land in the Sim(3) manifold. To cope with this problem,
we express our transformation as:

TTT = SSS ·∆S∆S∆S, (B.4)

with

SSS =

[
sRRR ttt

0001×3 1

]
, (B.5)

and

∆S∆S∆S =

[
eσ exp([ωωω]×) WWW (σ,ωωω)ρρρ

0001×3 1

]
. (B.6)

In this representation, SSS ∈ Sim(3) is the state of TTT at a given optimization step,
with s, RRR and ttt the respective scale, rotation and translation components of SSS.
And ∆S∆S∆S ∈ Sim(3) is the closed-form expression of any Sim(3) transformation,
with σ,ωωω and ρρρ the corresponding sim(3) respective scale, rotation and translation
elements of ∆S∆S∆S (Strasdat, 2012). The function WWW (σ,ωωω) influences the translation
component based on the scale and the rotation — its only important property for
the rest of this demonstration isWWW (0,0003) = III.
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At each optimization step t, we obtain the Jacobian matrix by computing the
partial derivative of ri with respect to σ, ωωω and ρρρ at the point ∆S∆S∆S = III, meaning
σ = 0, ωωω = 0003 and ρρρ = 0003, and proceed to the update SSSt+1 = SSSt · ∆S∆S∆S. The
optimization is stopped when the absolute value of the cost difference between
two successive optimization steps is lower than a given threshold, typically 10-12.
To compute the Jacobian matrix, we need to express ri in terms of σ, ωωω and ρρρ.
First, we compute the transformation of XXXi by TTT :

(SSS ·∆S∆S∆S)⊙XXXi = sRRR (eσ exp ([ωωω]×)XXXi +WWW (σ,ωωω)ρρρ) + ttt. (B.7)

And we decomposeRRR and ttt:

RRR =

r11 r12 r13

r21 r22 r33

r31 r32 r33

 and ttt =

txty
tz

 . (B.8)

From Eqs. (B.7) and (B.8), we can express ri in terms of σ, ωωω and ρρρ:

ri = s
[
r31 r32 r33

]
(eσ exp ([ωωω]×)XXXi +WWW (σ,ωωω)ρρρ) + tz (B.9)

Finally, we can compute the partial derivative of ri with respect to σ, ωωω and ρρρ:

∂ri
∂σ

∣∣∣∣
ωωω=0003, ρρρ=0003, σ=0

= −s
[
r31 r32 r33

]
·XXXi, (B.10)

∂ri
∂ωωω

∣∣∣∣
ωωω=0003, ρρρ=0003, σ=0

= s
[
r31 r32 r33

]
×XXXi, (B.11)

∂ri
∂ρρρ

∣∣∣∣
ωωω=0003, ρρρ=0003, σ=0

= −s
[
r31 r32 r33

]
. (B.12)

The Jacobian matrix can then be computed from these partial derivatives.
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Appendix C

Shifting a normal distribution

This appendix outlines the process of deriving the parameters of the normal dis-
tribution for variable IIIc,p from the parameters of the normal distribution for vari-
able JJJ c,p. In Section 4.2, we made the assumption:

JJJ c,p ∼ N (µc, σ
2
c ). (C.1)

Due to the property that the normal distribution family is preserved under linear
transformations, this implies that if a variable X follows a normal distribution
with a mean of µ and a variance of σ2, then a variable of the form aX + b, where
a and b are any real numbers, also follows a normal distribution. In this case, it
has a mean of aµ + b and a variance of a2σ2. Using this property and following
the underwater image formation model described by Eq. (4.1), we can deduce:

JJJ c,pe
−βczzzp +Bc(1− e−γczzzp) ∼ N

(
µce

−βczzzp +Bc(1− e−γczzzp),
(
e−βczzzpσc

)2)
. (C.2)

Then, by using the notations

mmmc,p = µce
−βczzzp +Bc(1− e−γczzzp) (C.3)

and
sssc,p = σce

−βczzzp , (C.4)

we retrieve the expression of Eq. (4.3):

IIIc,p = JJJ c,pe
−βczzzp +Bc(1− e−γczzzp) ∼ N (mmmc,p, sss

2
c,p). (C.5)
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Appendix D

Closed-form integral of the
Homography loss

This appendix provides a step-by-step explanation of the mathematical deriva-
tion for the integral form of the Homography loss described in Eq. (5.20). More
specifically we aim to solve the following integral:

LH =
1

xmax − xmin

∫ xmax

xmin

∥III −HHH∥2F dx. (D.1)

For the sake of clarity, we note:

MMM = III −HHH. (D.2)

We know that the squared Frobenius norm ofMMM ∈ R3×3 is equal to the trace of its
multiplication with its transpose:

∥MMM∥2F = Tr
(
MMMMMMT

)
. (D.3)

We first develop the integrated part to express it in terms of x:

MMMMMMT = III −
(
RRR− tttnnnT

x

)T

−
(
RRR− tttnnnT

x

)
+

(
RRR− tttnnnT

x

)(
RRR− tttnnnT

x

)T

(D.4)

= III −RRRT +
nnntttT

x
−RRR +

tttnnnT

x
+RRRRRRT −RRR

nnntttT

x
− tttnnnT

x
RRRT +

tttnnnTnnntttT

x2
(D.5)

= AAA +
1

x
BBB +

1

x2
CCC (D.6)

with

AAA = (III −RRR)(III −RRR)T , (D.7)

BBB = (III −RRR)nnntttT +
(
(III −RRR)nnntttT

)T
, (D.8)

CCC = tttnnnT
(
tttnnnT

)T
. (D.9)
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We then solve the integral using Eq. (D.6):∫ xmax

xmin

∥MMM∥2F dx =

∫ xmax

xmin

Tr

(
AAA +

1

x
BBB +

1

x2
CCC
)

(D.10)

= Tr

(
AAA(xmax − xmin) +BBB (log(xmax)− log(xmin)) +CCC

(
1

xmin

− 1

xmax

))
(D.11)

After the normalization on the integration range, we obtain the closed form solu-
tion of our loss:

LH =Tr

(
AAA+BBB

log (xmax/xmin)

xmax − xmin

+
CCC

xmin · xmax

)
. (D.12)
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Dañobeitia, J. J., Favali, P., Géli, L., Gillooly, M., Greinert, J., Hall, P. O., Hu-
ber, R., Karstensen, J., Lampitt, R. S., Larkin, K. E., Lykousis, V., Mienert, J.,
Miguel Miranda, J., Person, R., Priede, I. G., Puillat, I., Thomsen, L., and Wald-
mann, C. (2011). Societal need for improved understanding of climate change,
anthropogenic impacts, and geo-hazard warning drive development of ocean
observatories in European Seas. Progress in Oceanography, 91(1):1–33.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4510–
4520.

Sarlin, P.-E., Cadena, C., Siegwart, R., and Dymczyk, M. (2019). From Coarse
to Fine: Robust Hierarchical Localization at Large Scale. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12716–
12725.

Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich, A. (2020). SuperGlue:
Learning Feature Matching with Graph Neural Networks. In Proceedings of the



Bibliography 136

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4938–
4947.

Sarlin, P.-E., Dusmanu, M., Schönberger, J. L., Speciale, P., Gruber, L., Larsson, V.,
Miksik, O., and Pollefeys, M. (2022). LaMAR: Benchmarking Localization and
Mapping for Augmented Reality. In European Conference on Computer Vision,
pages 686–704.

Sarlin, P.-E., Unagar, A., Larsson, M., Germain, H., Toft, C., Larsson, V., Pollefeys,
M., Lepetit, V., Hammarstrand, L., Kahl, F., and Sattler, T. (2021). Back to the
Feature: Learning Robust Camera Localization From Pixels To Pose. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3247–3257.

Sattler, T. (2013). Efficient & Effective Image-Based Localization. PhD thesis, RWTH
Aachen University.

Sattler, T., Leibe, B., and Kobbelt, L. (2012a). Improving Image-Based Localization
by Active Correspondence Search. In European Conference on Computer Vision,
pages 752–765.

Sattler, T., Leibe, B., and Kobbelt, L. (2017). Efficient & Effective Prioritized
Matching for Large-Scale Image-Based Localization. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 39(9):1744–1756.

Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E., Sa-
fari, D., Okutomi, M., Pollefeys, M., Sivic, J., Kahl, F., and Pajdla, T. (2018).
Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 8601–8610.

Sattler, T., Weyand, T., Leibe, B., and Kobbelt, L. P. (2012b). Image Retrieval for
Image-Based Localization Revisited. In British Machine Vision Conference.

Sattler, T., Zhou, Q., Pollefeys, M., and Leal-Taixe, L. (2019). Understanding the
Limitations of CNN-Based Absolute Camera Pose Regression. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3302–3312.

Schechner, Y. and Karpel, N. (2005). Recovery of underwater visibility and struc-
ture by polarization analysis. IEEE Journal of Oceanic Engineering, 30(3):570–587.

Schönberger, J. L. and Frahm, J.-M. (2016). Structure-from-Motion Revisited. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 4104–4113.



137 Bibliography

Schonberger, J. L., Hardmeier, H., Sattler, T., and Pollefeys, M. (2017). Compar-
ative Evaluation of Hand-Crafted and Learned Local Features. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1482–1491.

Schönberger, J. L., Price, T., Sattler, T., Frahm, J.-M., and Pollefeys, M. (2017). A
Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval. In
Proceedings of the Asian Conference on Computer Vision, pages 321–337.

Sethuraman, A. V., Ramanagopal, M. S., and Skinner, K. A. (2022). WaterNeRF:
Neural Radiance Fields for Underwater Scenes. arXiv preprint.

Sharma, G., Wu, W., and Dalal, E. N. (2005). The CIEDE2000 color-difference
formula: Implementation notes, supplementary test data, and mathematical
observations. Color Research & Application, 30(1):21–30.

Shavit, Y., Ferens, R., and Keller, Y. (2021). Learning Multi-Scene Absolute Pose
Regression With Transformers. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2733–2742.

She, M., Nakath, D., Song, Y., and Köser, K. (2022). Refractive geometry for under-
water domes. ISPRS Journal of Photogrammetry and Remote Sensing, 183:525–540.

She, M., Song, Y., Mohrmann, J., and Köser, K. (2019). Adjustment and Calibration
of Dome Port Camera Systems for Underwater Vision. In Pattern Recognition,
pages 79–92.

Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., and Fitzgibbon, A. (2013).
Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Im-
ages. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2930–2937.

Sivic, J. and Zisserman, A. (2003). Video Google: a text retrieval approach to ob-
ject matching in videos. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, volume 2, pages 1470–1477.

Strasdat, H. (2012). Local accuracy and global consistency for efficient visual SLAM.
PhD thesis, Imperial College London.

Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X. (2021). LoFTR: Detector-Free
Local Feature Matching With Transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 8922–8931.

Sun, X., Xie, Y., Luo, P., and Wang, L. (2017). A Dataset for Benchmarking Image-
Based Localization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7436–7444.



Bibliography 138

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going Deeper With Convolutions. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 1–9.

Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T.,
and Torii, A. (2018). InLoc: Indoor Visual Localization With Dense Matching
and View Synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition.

Tankovich, V., Hane, C., Zhang, Y., Kowdle, A., Fanello, S., and Bouaziz, S. (2021).
HITNet: Hierarchical Iterative Tile Refinement Network for Real-time Stereo
Matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14362–14372.

Teed, Z. and Deng, J. (2021). Tangent Space Backpropagation for 3D Transforma-
tion Groups. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10338–10347.

Tola, E., Lepetit, V., and Fua, P. (2010). DAISY: An Efficient Dense Descriptor Ap-
plied to Wide-Baseline Stereo. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(5):815–830.

Tyszkiewicz, M., Fua, P., and Trulls, E. (2020). DISK: Learning local features with
policy gradient. In Advances in Neural Information Processing Systems, volume 33,
pages 14254–14265.

Umeyama, S. (1991). Least-squares estimation of transformation parameters be-
tween two point patterns. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(4):376–380.

Valentin, J., Dai, A., Niessner, M., Kohli, P., Torr, P., Izadi, S., and Keskin, C. (2016).
Learning to Navigate the Energy Landscape. In International Conference on 3D
Vision, pages 323–332.

Van Audenhaege, L., Sarrazin, J., Legendre, P., Perrois, G., Cannat, M., and Mata-
bos, M. (2023). Monitoring ecological dynamics on complex hydrothermal
structures: a novel photogrammetry approach reveals fine scales of faunal as-
semblage variability. Under review.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural
Information Processing Systems, volume 30.



139 Bibliography

Yang, H., Shi, J., and Carlone, L. (2021). TEASER: Fast and Certifiable Point Cloud
Registration. IEEE Transactions on Robotics, 37(2):314–333.

Yang, M. and Sowmya, A. (2015). An Underwater Color Image Quality Evalua-
tion Metric. IEEE Transactions on Image Processing, 24(12):6062–6071.

Zhou, Q.-Y., Park, J., and Koltun, V. (2018). Open3D: A Modern Library for 3D
Data Processing. arXiv preprint.

Zwilgmeyer, P. G. O., Yip, M., Teigen, A. L., Mester, R., and Stahl, A. (2021). The
VAROS Synthetic Underwater Data Set: Towards Realistic Multi-Sensor Un-
derwater Data With Ground Truth. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pages 3722–3730.


	Introduction
	Context
	Underwater navigation
	Sensors for underwater navigation
	Absolute positioning error
	Limitations for autonomous vehicles

	A practical use case scenario
	Challenges
	Deep-sea images and environment
	Data scarcity

	Contributions
	Outline

	An overview of the underwater visual localization problem
	Underwater images
	Optical model
	Light propagation under water
	Image formation model
	Underwater color restoration

	Visual localization
	Problem definition
	Reference camera poses
	Pseudo ground truth
	A review of visual localization methods

	Conclusion

	Building a deep-sea dataset
	Introduction
	Existing datasets
	Data collection
	Building a reference model
	Image retrieval
	Image matching
	Bundle adjustment with position priors
	Model statistics

	Characterizing changes across years
	Conclusion

	Underwater image color restoration
	Introduction
	Gaussian prior for underwater color restoration
	Motivation
	Method
	Implementation
	Limitations

	Leveraging scene structure
	Motivation
	Method
	A partial closed-form solution
	Modeling artificial lights
	Implementation
	Limitations

	Experiments
	Benchmark datasets
	Quantitative evaluation
	Qualitative evaluation

	Conclusion

	Pose regression for deep learning
	Introduction
	Existing functions for camera pose regression
	Loss functions
	Losses characteristics

	A homography-based loss function for camera pose regression
	Motivation
	Method
	Implementation
	Homography loss properties
	Additional insights

	Experiments
	Benchmark datasets
	Experimental setup
	Evaluation

	Conclusion

	Underwater visual localization
	Introduction
	Benchmarking visual localization algorithms
	Evaluated methods
	Experimental setup
	Results and discussion

	Image retrieval impact
	Image retrieval approaches
	Experimental setup
	Results and discussion

	Conclusion

	Conclusion
	Summary and contributions
	Lessons learned
	Perspectives

	Résumé étendu
	Jeu de données sous-marin pour la localisation visuelle à long terme
	Restauration de couleurs d'images sous-marines
	Fonction de coût pour la régression de pose
	Evaluation de la localisation visuelle en milieu sous-marin
	Conclusion

	Depth-based points alignment
	Shifting a normal distribution
	Closed-form integral of the Homography loss
	Bibliography

