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Resumé

L’objectif principal de cette thèse est de réaliser une étude complète de

modèles de polymères afin d’établir des résultats de référence qui puis-

sent améliorer l’analyse des données expérimentales sur la chromatine.

Cette recherche porte à la fois sur les aspects d’équilibre et de dy-

namique, abordant des questions fondamentales sur le comportement

des polymères dans les systèmes biologiques.

Dans la première partie de la thèse, l’accent est mis sur les pro-

priétés d’équilibre, fournissant un cadre théorique pour l’étude des

données FISH séquentielles. Ceci inclut l’introduction de concepts es-

sentiels de la physique des polymères à l’équilibre, tels que les châınes

gaussiennes. Il explore également le concept des modes de Rouse dans

une nouvelle perspective, en le reliant aux techniques d’analyse du sig-

nal. Des simulations numériques de polymères auto-interagissant sont

réalisées et analysées, ce qui conduit à la définition d’un paramètre

d’ordre basé sur les spectres qui caractérise les états de repliement des

polymères, jusqu’à l’établissement d’un diagramme de phase précis

pour la transition de phase coil-globule.

L’approche spectrale est finalement appliquée aux données FISH

séquentielles avec deux résultats distincts. Premièrement, elle per-

met de détecter une signature spectrale indiquant un comportement

critique des polymères, et validant ainsi l’utilité des modèles simples

de polymères dans l’analyse de la chromatine. Deuxièmement, grâce

à la mise en place d’un protocole d’analyse de données spécifique,

elle permet de reveler des boucles non identifiées auparavant dans les

mêmes données, offrant ainsi de nouvelles perspectives sur la étude de

l’organisation fine de la chromatine.

La deuxième partie de la thèse s’intéresse aux aspects dynamiques

de la transition de phase coil-globule. Cette partie commence par

introduire les concepts relatifs à la dynamique stochastique et à la dy-

namique des polymères, y compris l’équation de Langevin et le modèle

(dynamique) de Rouse. Des simulations extensives de dynamique de

Langevin de polymères auto-interagissants sont présentées, ainsi qu’un

modèle de Rouse interagissant qui tient compte de la transition de

phase coil-globule et des effets de volume exclu. L’introduction de con-

traintes topologiques dans les simulations met en évidence la robustesse

de la dynamique de Rouse, qui n’est altérée de manière significative

que dans les phases de globules denses.

Dans le dernier chapitre, les nouveaux acquis sont utilisés pour

expliquer des données apparemment paradoxales issues d’une étude

récente de la dynamique de la chromatine de Drosophile, et donnent

à nouveau des indications sur la pertinence d’un modèle de polymère

proche de la transition, cette fois-ci pour décrire la dynamique des

chromosomes.

Dans l’ensemble, cette thèse fournit une base précieuse pour com-

prendre le comportement des polymères dans les systèmes biologiques

et apporte des indications sur l’interprétation des données expérimenta-

les relatives à la chromatine.
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Abstract

The primary objective of this thesis is to conduct a comprehensive

examination of polymer models to establish reference results that en-

hance the analysis of experimental chromatin data. This research

delves into both equilibrium and dynamic aspects, addressing funda-

mental questions about polymer behavior in biological systems.

In the first part of the thesis, the focus is on equilibrium properties,

providing a theoretical framework for the study of sequential FISH

data. This includes introducing essential concepts of equilibrium poly-

mer physics, such as Gaussian chains. It also explores the concept

of Rouse modes in a new perspective, connecting it to signal analysis

techniques. Computer simulations of self-interacting polymers are per-

formed and analyzed, leading to the development of a spectral-based

order parameter that characterizes polymer folding states, up to the

establishment of a precise phase diagram for the coil-globule phase

transition.

The spectral approach is finally applied to sequential FISH data

with two distinct results. Firstly, it detects a spectral signature in-

dicating critical polymer behavior, thus validating the usefulness of

simple polymer models in chromatin analysis. Secondly, thanks to the

implementation of a specific data analysis pipeline, it reveals previ-

ously unidentified loops in the same data, offering new insights into

the study of the fine chromatin organization.

The second part of the thesis shifts attention to dynamical aspects

of the coil-globule phase transition. This part begins by introduc-

ing stochastic dynamics and polymer dynamics concepts, including

the Langevin equation and the (dynamical) Rouse model. Extensive

Langevin dynamics simulations of self-interacting polymers are pre-

sented, along with an interacting Rouse model that accounts for the

coil-globule phase transition and excluded volume effects. The intro-

duction of topological constraints in simulations highlights the robust-

ness of Rouse dynamics, which are only significantly altered in dense

globule phases.

In the final chapter, the acquired knowledge is applied to explain

seemingly paradoxical data from a recent study of Drosophila chro-

matin dynamics, where again we find indications toward the pertinence

of a polymer model at criticality, this time in describing chromosome

dynamics.

Overall, this thesis provides a valuable foundation for understanding

polymer behavior in biological systems and offers insights into inter-

preting experimental chromatin data.
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Je remercie également chaleureusement les membres examinateurs de

mon jury, Jean-Louis Barrat, Antoine Coulon, Marie Jardat et Judith
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et Nicolas. Une mention spéciale à Brieuc et Jeremie pour avoir re-
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Introduction

In this introductory chapter, I aim to present key concepts of the

field of chromatin organization, and layout the questions that will

be tackled in the thesis.

In section 0.1, I present a brief overview of cell biology, with

an emphasis on chromatin organization in the nucleus and its

implications for cellular functions.

In section 0.2, I’ll introduce the two main types of experi-

mental approaches used to investigate chromatin organization.

I will then discuss how the principles of polymer physics can be

used to model chromatin and interpret this data. We’ll see that

polymer physics performs unevenly, depending on the complex-

ity of the organism studied. Particular attention will be paid to

the importance of the coil-globule phase transition in modeling

chromatin structure and dynamics.

Finally, in section 0.3, I present the objectives and outline

of this thesis.

0.1 Chromatin

0.1.1 The cell and the genome

The elementary structural and functional unit of all living matter is

the cell, a small compartment, delimited by a lipidic membrane, con-

taining highly specialized molecules, whose properties were fine-tuned

through the process of evolution, enabling the cell to self-sustain and

replicate.

The instructions for the development, functioning, growth, and re-

production of the cell are encoded in a long linear macromolecule, or

polymer, called deoxyribonucleic acid (DNA). DNA is made of two

complementary strands, each of which is made of subunits, bound to-

gether by covalent bonds, called nucleotides. Each nucleotide can be

one of four elementary molecules: cytosine (C), guanine (G), adenine

(A), and thymine (T). Both strands are connected together by hy-

drogen bonds between facing nucleotides, forming the famous double

helix. Two facing nucleotides always obey the pairing rule, T binds
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Figure 1: A human cell nucleus

imaged by electron microscopy.

Taken from Hystology@Yale.

1 Diploid cells have two homologous

copies of each chromosome (i.e. car-
rying the same genes), one from the
mother and one from the father.

2 Each DNA base pair has a linear

length of 0.34 nanometers, resulting in
approximately, one meter per haploid

set.

with A and G binds with C. The pairing rule implies that the sequence

of one strand is completely determined by the other strand, resulting

in both strands holding the exact same information. A couple of facing

nucleotides are called a base pair (bp) and serve as the fundamental

units of DNA.

Each living organism possesses a specific sequence of base pairs

called its genome, stored in one or several DNA molecules called

chromosomes.

In a process called transcription, specific parts of the genome, the

genes, serve as templates to produce RNA strands, an almost identi-

cal molecule to DNA, where the thymine nucleotides are replaced with

uracils. This single-stranded RNA is then translated into a protein,

a linear macromolecule made of subunits called amino acids, that

perform essentially all functions in the cell. The translation process

involves the genetic code, a set of rules that specifies the correspon-

dence between the nucleotide sequence of DNA, or equivalently RNA,

and the amino acid sequence that constitutes proteins. Proteins differ

from one another in their sequence of amino acids, which results in dif-

ferent proteins folding into a specific 3D structure. The 3D structure

of a protein, in turn, determines its biological function.

There are two distinct cell types that differ by their internal struc-

tures: Prokaryotes, which are single-cell organisms, typically bac-

teria and archaea. They are characterized by the absence of internal

compartments in their cells, with their genetic material typically found

in an irregularly shaped region called the nucleoid.

The remaining living organisms, including mammals, insects, plants,

fungi, as well as unicellular organisms such as yeast, are referred to as

eukaryotes. Eukaryotes, are more complex, featuring a specialized

compartment housing DNA, called the nucleus.

The size of a genome differs dramatically among organisms. The

organism with the smallest known genome is Mycoplasma genitalium,

a bacteria, small in size (200-300 nm), responsible for a sexually trans-

missible disease. Its genome consists of approximately 580,070 base

pairs stored in one circular chromosome. It codes for 482 proteins,

making it the minimal known set of genes allowing for life to exist.

Conversely, the largest known genome belongs to the Polychaos du-

bium, a relatively large (0.5 to 1 mm) uni-cellular eukaryote, with a

genome of 670 billion bp.

The human genome stands in between at 3 billion base pairs, dis-

tributed among 23 pairs of diploid chromosomes1. The genetic mate-

rial is contained in a nucleus, which varies in size depending on the

cell type, ranging from 5 to 10 µm (Figure 1).

When the entire human genome is fully stretched and chromosomes

put head to toe, it spans approximately 2 meters in total2. Yet, a

copy of the entire genome is stored in the micrometric nucleus of every

single cell of the 37.2 trillion cells in the human body. This fact raises

two central questions in molecular biology:

• First, given the length of the genome, how does it manage to fold

into the small dimensions of the nucleus while retaining its biological
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3 While 2 meters sounds like a huge
amount of DNA, it is a slightly mis-

leading number. Indeed, DNA has a

very small cross-section (about 2 nm)
and is consequently 1) highly flexible

and 2) its total volume is relatively

small compared to the volume of the
nucleus, about 10% [3]. Hence, the

challenge isn’t so much to fit it into

the nucleus, but rather to fold it in
a fashion that retains biological pro-

cesses such as gene expression, DNA

replication, and repair.

Figure 2: schematic representa-

tion of an enhancer-promoter inter-

action

functions?3

• Second, considering every cell contains the same genetic informa-

tion, how can we account for the diverseness of the observed cell

types in a given organism?

Interestingly, the answers to these questions are linked, in that the

specific spatial configuration adopted by DNA, following its folding

inside the cell nucleus, is closely linked to the cell’s morphology and

biological function. This is due to the important role of DNA folding

in the cell’s gene regulation strategies.

To initiate transcription of a gene, several biological events must

take place, including bringing together a number of elements in the

vicinity of the gene start (in a region called promoter). These involve

regulator proteins, called transcription factors (TF) which freely dif-

fuse in the nucleus, a large protein complex called the mediator, and

a distant DNA segment, called a promoter. Once these molecules

have been brought together near the promoter, an RNA polymerase

synthesizes a strand of RNA from the gene’s sequence, which is then

translated into a protein. From this elementary mechanism, different

gene expression regulation strategies can be derived.

For example, the cell can deactivate a gene’s expression by locally

compacting DNA, making access to the genetic information impossi-

ble for TFs. Conversely, transcription can be stimulated by binding

the enhancer to the promoter through connector proteins (CTCF), or

by clustering several genes in physical proximity along with a high

concentration of transcription factor, creating so-called transcription

factories.

Compact regions of repressed chromatin, appearing as darker re-

gions in Figure 1, are called heterochromatin. In contrast, decon-

densed regions where chromatin is typically actively transcribed, visi-

ble as bright regions in Figure 1, are called euchromatin.

These gene expression regulation strategies are, in part, imple-

mented in the cell by tuning the physical distance between genomic

elements in the nucleus, i.e. modulating the folding patterns of DNA in

the nucleus. Hence, the specific spatial configuration of DNA, by reg-

ulating protein production levels, leads to different cell types emerging

from the same genetic material.

Although the spatial structure adopted by DNA, and its relation

to cellular functions, has been an active field of research for decades,

our understanding of nuclear organization remains incomplete, with

previous certainties frequently being challenged by advances in experi-

mental methods. In the following section, I provide a concise overview

of the current knowledge in this field.

0.1.2 Chromatin Organization

The folded DNA, associated with the structural proteins that orches-

trate its spatial organization in the nucleus, is called chromatin. Dur-

ing interphase, the longest phase of the cell cycle, during which genes
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4 More precisely, the interphase is

composed of three phases, during
which the cell grows (G1), replicates

its DNA (S) and prepares for mitosis

(G2).

5 F. Fatmaoui, P. Carrivain et al.

Cryo-electron tomography and deep

learning denoising reveal native chro-
matin landscapes of interphase nuclei.

bioRxiv, 2022

6 R. Cortini, M. Barbi et al. The

physics of epigenetics. Reviews of

Modern Physics, 88(2), Apr. 2016

Figure 3: Schematic representa-

tion of a nucleosome. Taken from

Wikimedia Commons. Courtesy to

user MethylC5.

are transcribed and DNA is replicated4, chromatin is in a decondensed

state and spreads out to fill the whole nucleus, allowing for translation

(ribosomes) and replication (DNA polymerase) proteins to access the

DNA.

→Nucleosome

Despite this homogeneous, space-filling appearance (see Figure 1), the

internal organization of chromatin is very complex and involves mul-

tiple scales of partitioning.

At the smallest scale, DNA is wrapped around a histone octamer,

a protein containing two copies each of 4 sub-proteins called H2A,

H2B, H3, and H4. The DNA makes nearly two full turns around this

octamer, wrapping about 147 base pairs. Histone H1 binds to the

DNA as it enters and exits the nucleosome, helping to stabilize the

structure. This structural unit is called the nucleosome. The length

of the DNA segment connecting two nucleosomes, termed linker DNA,

can range from 15 to 70 base pairs5.

Histones H2A, H2B, H4, and H3 have intrinsically disordered parts,

meaning parts that have no secondary structure, called histone tails.

Histone tails are rich in the amino acid lysine (K in Figure 3). Lysines

can be the target of biochemical modifications, called epigenetic

modifications, which influence the physical properties of chromatin

without altering the genetic code. Without going into the dauntingly

complex details of the physics of epigenetics6, we can say that modifi-

cation of histone tails can essentially lead to two types of local physical

alterations of chromatin properties:

(i) Change the charge of chromatin through the addition of an acetyl

group (Acetylation), or a phosphate group (Phosphorylation) to a

lysine of the histone tail. This can have the effect of either opening

(+ charge) or compacting (- charge) chromatin at the location of

the modification.

(ii) Recruit architectural proteins, such as proteins of the Polycomb

group or of the family of heterochromatin protein 1 (HP1), which

are known to compact chromatin locally.

These modifications of chromatin properties are one important path-

way to the spatial organization of chromatin, yet still very largely un-

explained in most organisms.

→Large Scale Organization

The small-scale nucleosome packing of DNA is highly universal, as it

is shared by all living organisms, and fairly well documented. On the

contrary, the higher orders of chromatin organization are species and

cell-type dependent, and the general principles dictating their prop-

erties are still poorly understood. These higher-order structures can

be defined as assemblages of nucleosomes that, on average, assume

preferential physical proximity. As we’ve seen, epigenetic modifica-

tions can partly explain structural modifications of chromatin, yet it
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is known that many other biological mechanisms are involved, notably

loop extrusion, which will be discussed later in this thesis.

Figure 4: Illustration of genome

architecture and the corresponding

Hi-C interaction maps. Taken from

[50].

The identification of higher order structures was made possible

by advances in genomic analysis techniques, notably Hi-C (high-

throughput chromosome conformation capture), which cap-

tures the physical pair-wise contact frequency between all pairs of seg-

ments along the chromatin fiber. The resulting data, called a contact

probability, or contact map, gives, for each pair of DNA sequences, an

estimate of the probability to be found in close proximity within the

cell.

With the advent of Hi-C, several structures have been confirmed or

discovered. Figure 4 depicts Hi-C contact maps at different resolutions,

illustrating the main known higher-order structures.

To start from the larger scale, in Figure 4-D a low-resolution con-

tact map of the whole genome is shown. Square blocks appear along

the main diagonal, indicating a higher probability of contact among

segments within the block. Each block corresponds to the genomic

coordinates of one chromosome. This pattern, called chromosome

territories, indicates that regions within the same chromosome are

more likely to interact with each other than with regions from different

chromosomes.

By considering now a single chromosome, in Figure 4-C, a higher res-

olution Hi-C map reveals intra-chromosome interactions. The striking

features at this scale are the off-diagonal blocks of enriched contacts,

creating a sort of checkerboard pattern. The physical interpretation

for the presence of these blocks is that chromosomes can be parti-

tioned into two spatial compartments, coined A and B compart-

ments, wherein greater interaction occurs within rather than between

them, as originally described by Lieberman-Aiden et al. in 20097.

Regions within the A compartment are associated with actively ex-

pressing genes, and are typically less compact, euchromatic regions,

while those in the B compartment typically contain expression-inactive

genes, hence generally belong to heterochromatin regions.
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By enhancing again the resolution (see Figure 4-B), contacts within

an A/B compartment can be distinguished. We notice that compart-

ments are further organized into topologically associating domains

or TADs8, appearing as darker squares along the diagonal, which con-

stitute isolated regions of chromatin that have augmented interactions

within and remain largely independent of other chromatin regions.

There is still debate on exactly what biological function these TADs

have and how they are formed. One possible role of this organization

is to make certain genes occupy separate regions in space, such that

their individual activities are non-interfering9.

Finally, the smallest known scale of chromosome organization in-

volves chromatin loops (see Figure 4-A). The formation of such loops

is generally attributed to the loop extrusion process10, where proteins,

condensins or cohesins, actively move along a DNA strand, grabbing

and extruding a loop of DNA as they progress. The extrusion pro-

cess stops when a protein, called CCCTC-binding protein (CTCF), is

encountered, anchoring the base of the loop and shaping the looping

structure. CTCF-mediated loops are thought to be a main player in

the stabilization of TADs.

0.2 Polymer Physics and Chromatin Mod-
eling

The statistical properties of polymer conformations -the three-dimensio-

nal spatial arrangement of its molecules - due to their highly fluctuating

nature, exhibit many universal characteristics. It is then reasonable

to expect that the spatial organization and dynamics of chromatin

should be greatly influenced by the polymeric nature of DNA. This

prospect has captivated polymer physicists, who have devoted sub-

stantial efforts to explain different aspects of chromatin organization

using staple concepts and models of polymer physics, the hope

being that evolution would leverage the universal nature of polymer

fluctuations to implement robust biomechanistic processes to organize

chromatin.

The ultimate goal in chromatin modeling is, as usual in physics,

to build a model, as simple as possible, that reproduces the avail-

able experimental data, and that allows for its interpretation, and the

formulation of predictions. Due to the complexity of such models, an-

alytical results are often out of reach, making computer simulations

the preferred approach.

Regarding available data, two main categories of experimental ap-

proaches exist, and are employed to test polymer models. These ap-

proaches result in either dynamic data or structural data, respec-

tively.

0.2.1 Dynamic Data

Using fluorescent probes that bind to specific chromatin loci, it is pos-

sible to track the position over time of, usually, one or two chromatin
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segments at once.

1. If a single segment is imaged, the diffusive properties of a single

monomer of the model can be tested against those of the chromatin

segment, generally by comparison of the mean square displace-

ments (MSD) and the two-time velocity correlation func-

tion.

2. If two segments are imaged, in addition to the previous, other more

informative observables can be computed, such as the decorrela-

tion time of the relative position of both segments, or the

MSD of one segment in the reference frame where the other segment

is kept as the origin.

3. In addition, very recently, the mechanical properties of chro-

matin were tested by micromanipulation of ferromagnetic fluores-

cent bead allowing to probe the stress response of in-vivo chro-

matin11.

Although some ongoing debate remains, notably regarding hetero-

geneities of the diffusion coefficient depending on the genomic location

of the marker, the overwhelming majority of the community seems, at

the moment, to agree that the simplest model for polymer dynamics,

the Rouse model, well accounts for all the experimental data, regard-

less of the complexity of the organism. This reference model, which

takes into account only the chain connectivity, will be extensively dis-

cussed in this thesis. The three canonical organisms in which Rouse

dynamics were found, by ascending order of complexity, are yeast12,

Drosophila13 and human14. The surprising fact that these three very

different organisms display very similar dynamical behavior seems to

point toward a universal polymer property playing an important role

in chromatin organization.

0.2.2 Population Averaged Structural data

On the other hand, a more global observation of the spatial configu-

ration of chromatin is possible, but at the price of averaging over a

population of cells.

1. The main player in this regard is the aforementioned Hi-C contact

map, which indirectly gauges the spatial conformation of the DNA

strand in-vivo, at the population level. The Hi-C contact maps

can directly be compared to contact frequency obtained from poly-

mer simulations. Also, from the contact frequency, the averaged

contact probability P (s) of two segments as a function of their

genomic distance s can be computed, both from experiments and

simulations.

2. In 2016, an experimental study from Boettiger et al., using super-

resolved microscopy images of Drosophila chromatin domains,

allowed for a precise assessment of the scaling of a domain’s phys-

ical 3D size with respect to its genomic length, that can also be

compared to theoretical and numerical results.
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3. Finally, very recently, the most direct and information-dense ob-

servation of chromatin conformations was achieved by sequential-

FISH. This method allows for the simultaneous localization of hun-

dreds of chromatin segments in thousands of fixed cells at once,

allowing, for the first time, a direct visualization of the 3D

path of chromatin in-vivo. From this data set, essentially all the

conformational information, up to the genomic resolution of the ex-

periment (ranging from 1 kb to 1 Mb), is available, allowing for

any ensemble averaged polymer physics observable to be computed,

calling for innovative methods to be invented.

Unlike dynamic data, concerning structural observables, the suc-

cess of simple polymer theory to account for experimental observations

greatly depends on the complexity of the probed organism.

→ Yeast

Yeast being a unicellular organism, the uselessness of cell differen-

tiation and hence of most gene regulation mechanisms, allows for a

parsimonious organization of its chromatin, exhibiting essentially no

higher-order structures. Consequently, several relatively simple ho-

mogeneous polymer simulations have been able to reproduce the

organization of interphase yeast nuclei, in addition to explaining the

main dynamical observables15.

→ Drosophila

In the well-studied case of the Drosophila, which presents an intermedi-

ate level of complexity, recent investigations tend to indicate that poly-

mer behavior is partially conserved, but with some significant changes

that complexify the picture. A block copolymer model16 and a string

and binders model, that both, in a very similar fashion, implement

specific attractive interactions based on the epigenomic se-

quence, were proposed. Fortunately, the epigenetics of Drosophila

are relatively simple, involving essentially 3 different epigenetic states

that influence significantly chromatin structure. These models suc-

cessfully reproduce higher-order chromatin, displaying the importance

of epigenetic-mediated interactions in the chromatin folding.

→ Human

In human chromatin, the influence of epigenetics on chromatin archi-

tecture is extremely complex, owing to an almost continuous spectrum

of existing epigenetic states. An initial attempt, employing a simple

homogeneous ”fractal globule” model, was presented in the seminal

Hi-C paper in 2009. This long-lived metastable state of homogeneous

polymers was introduced 20 years before on theoretical grounds17 for

explaining the kinetics of collapse of homopolymers. Its claim to fame

is to explain the scaling of the contact probability P (s) while simulta-

neously providing a mechanism for the existence of chromosome terri-

tories18. Nevertheless, the fractal globule model is contested, as it has
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been shown, through computer simulations, to be unstable19.

More elaborate models are now proposed, that allow for the repro-

duction of Hi-C maps but at the price of a huge amount of different

specific interactions, whose parameters are fitted, often using ma-

chine learning techniques, directly on the Hi-C maps they intend to

reproduce20,21.

The fact that both human and Drosophila exhibit complex higher-

order structures at the population level, while robustly exhibiting

Rouse dynamics, is indeed a puzzling observation and has been de-

scribed as a paradox by major actors in the community 22,23,24.

→ Chromatin Lies at the Coil-globule Phase Transition

A crucial insight, pertinent to the physical nature of chromatin, has

been drawn from these simulation studies. Indeed, the value of the

interaction parameters used to match the different structures of the

Hi-C maps, appears to place the polymer at, or very close, to the

coil-globule phase transition. The coil-globule phase transition

of a self-attractive polymer describes the sudden collapse, from an

extended conformation, called coil, to a compact conformation, called

globule, due to changes in environmental conditions, such as a change

in temperature or solvent quality.

This finding was confirmed by an in-depth analysis of Boettiger

et al.’s super-resolution microscopy data of Drosophila chromatin do-

mains. In this study, Lesage et al.25 developed a theoretical frame-

work allowing not only to fit the scaling of the average size of a domain,

which was the approach adopted in the theoretical analysis of the origi-

nal paper, but also to fit the distributions of domain sizes. This study

found, with a high degree of certainty, that Drosophila chromatin do-

mains, due to nucleosome-nucleosome interactions, indeed displayed

the statistical behavior of self-attractive polymers at the coil-globule

phase transition, confirming the hint initiated by the previous simula-

tion studies.

The authors also elaborated on the biological relevance of such a

property. By evolving into a critical state, chromatin can potentially

change its conformation, hence its genetic activity, at a lower energetic

cost, enhancing the system’s responsivity. With this discovery, an

intrinsic property of the polymer is found to be at the forefront of

chromatin organization26.

0.3 Objectives and Outline of the The-
sis

The thrust of this thesis is to further challenge the conjecture of the

critical polymer model of chromatin by testing it on the readily

available experimental data, namely sequential FISH and dynamical

loci tracking. Since comparing a model with experimental biological

data is never trivial, our general approach was to produce, as a basis,
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a detailed study of both the equilibrium and the dynamical prop-

erties of isolated finite size self-interacting polymers, tailored for the

analysis of both data types. This naturally divides the thesis into two

main parts.

→ First part

The first part concerns solely equilibrium properties, in view of

developing a theoretical framework to study the sequential FISH data.

In doing so, we have developed an entirely new theoretical framework,

based on spectral analysis, and especially adapted to these data sets.

• In the 1st chapter, I briefly introduce basic concepts of equilib-

rium polymer physics. The intent of this chapter is twofold:

(i) Introducing the well-known concept of ideal chain through the

examples of the freely jointed chain and Gaussian models,

while introducing typical equilibrium polymer physics observables.

(ii) In a second part, I propose a new way of solving the Gaussian

chain model, allowing for the introduction of a concept frequently

used in the context of polymer dynamics, but not in that of equi-

librium properties: the Rouse modes.

• In the 2nd chapter, I make an original link between the concept

of Rouse modes and well-known concepts of signal analysis. I show

that the Rouse modes are a Fourier-like decomposition of the poly-

mer chain considered as a stochastic signal, where the usual time

domain of Fourier analysis is replaced by the curvilinear coordinates

along the chain. Eventually, this allows for the interpretation of the

fluctuations of the Rouse modes as a power spectral density of

the polymer conformation.

• In the 3rd chapter, I produce an extensive analysis of computer

simulated self interacting polymers, using the power spectral den-

sity observable defined in chapter 2. I find that conformational

changes occurring during the coil-globule phase transition only con-

cern large-scale fluctuations, which the Rouse modes power spectral

density are great at isolating. This allows for the definition of a

spectral-based order parameter that characterizes unequivo-

cally the folding state of a polymer. Based on this order param-

eter, I produce a thorough thermodynamic analysis of the model.

• In the 4th chapter, I perform a spectral analysis of the sequen-

tial FISH data from Bintu et al., demonstrating that the data do

indeed display the spectral signature of a critical interacting poly-

mer. Finally, I close the chapter by extending the spectral approach

to a different application: detecting loops in sequential fish data,

and apply it to the same data. In this work, whose primary inves-

tigator is Michaël Liefsoens, a very talented intern student, we find

previously undiscovered loops in the data.
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→ Second part

The second part of the thesis is devoted to dynamical aspects of the

coil-globule phase transition. To our great surprise, the dynam-

ics of an isolated self-attracting polymer had never been investigated

before. The aim of this section was therefore to carry out a system-

atic simulation study to catalog the dynamic properties of polymers

at different values of the interaction parameter. With the aim of us-

ing dynamic data from one or two loci, we sought to find dynamic

markers that could indicate the folding state of the polymer chain

given the trajectory of only one or two monomers.

• In the 5th chapter, I introduce elementary concepts of stochastic

dynamics and polymer dynamics, namely the Langevin equation,

and the Rouse model. In this context, the main dynamical ob-

servables will also be introduced.

• In the 6th chapter, I present an extensive Langevin dynamics sim-

ulation study of self-interacting polymers. In an attempt to isolate

the different contributions to the dynamics, I introduce the inter-

acting Rouse model, a model that undergoes a coil-globule phase

transition, accounts for excluded volume, but neglects topological

constraints27, an important physical mechanism that strongly in-

fluences the dynamics in very dense polymeric systems. Through

the analysis of the Rouse modes of the chain, I show that Rouse

dynamics is conserved at all stages of the collapse for this model.

• In the 7th chapter, I introduce topological constraints in the

simulations. By comparison, I establish the physical conditions,

i.e. minimal chain length and interaction parameter, for topological

constraints to have a visible effect on the polymer dynamics. I

eventually show that Rouse dynamics are extremely robust, and

are only altered in the dense globule phase.

• Finally, in chapter 8, I will attempt to make use of the acquired

knowledge to explain some seemingly paradoxical data found

in a recent study of Drosophila chromatin dynamics28.



Part I : Spectral analysis of
polymer conformations

Introduction to the First Part

The first part of my thesis concerns the equilibrium properties of real

polymers. Monomers in a real polymer have finite volumes that can-

not overlap and, through their interactions with the solvent and them-

selves, exhibit effective monomer-monomer attractive interactions. As

this effective attraction increases, the polymer undergoes a phase tran-

sition, from a decondensed coil state to a dense globular state. The

state of the polymer is generally identified by the scaling of its gyration

radius with the number of monomer, meaning that one needs several

data sets, at different chain lengths, to deduce a polymer’s state.

The aim of this fist part of my work is to propose a phenomeno-

logical method, based on an original spectral analysis approach, to

determine, instead, the folding state of a polymer from a set of confor-

mations at a single polymer length. Within the new framework, I will

propose an extensive simulation study of the coil-globule phase tran-

sition, introducing new observables and leading to some interesting

results.

This spectral approach then allows me to develop a theoretical

framework for studying sequential FISH data: in the last chapter of

this first part, I will indeed be able to interpret the results of Bintu et

al. [9] in the framework of a critical interacting polymer model, then

to approach the question of loop detection from an original point of

view, by introducing a new data analysis tool that effectively identifies

loops in sequential FISH chromatin configurations datasets.



1

Equilibrium Polymer

Physics

1.1 Ideal Chains, Real Chains

When in thermal equilibrium with a heat bath, a polymer visits a set of

conformations determined by the interactions among all its constituent

atoms and the surrounding solvent. Each conformation can be fully

characterized by the position, velocity, and type of its atoms. The

physics of such polymers could be investigated by evaluating the sys-

tem’s energy and computing macroscopic quantities using Boltzmann

statistics. In practice, of course, keeping track of atomic details is

impossible and one must resort to the study of coarse-grained models.

The relevance of coarse-grained models is based on the univer-

sality property of highly fluctuating systems. This states that, in the

thermodynamic limit, the macroscopic properties of highly fluctuat-

ing systems do not depend on the microscopic details of the model.

Formally, constructing a coarse-grained polymer amounts to, starting

from the full description of a real polymer, regrouping microscopic

degrees of freedom and redefining interactions between the remaining

degrees of freedom in such a way that the statistics of the system re-

main unchanged. This procedure can be realized several times until the

resulting model is simple enough to be simulated numerically or even

solved analytically. Crucially, by coarse-graining two polymer models

that differ at the microscopic scale, we sometimes find that they share

the same large-scale behaviors. The set of all models sharing the same

large-scale characteristics is called class of universality.

The ”ideal chain” class groups together models that neglect all

interactions between monomers that are not adjacent along the chain,

thus isolating the most fundamental property of polymer molecules:

chain connectivity. These models, however, allow conformations in

which the polymer overlaps with itself, and are therefore sometimes

referred to as phantom polymers. As we will see in the following sec-

tion, in the absence of external forces, conformations of an ideal chain

polymer can be represented by the outcome of a simple random

walk. Consequently, the statistics of ideal chains is Gaussian at the

macroscopic scale, regardless of the microscopic details of the model.
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Figure 1.1: Schematic represen-

tation of a freely jointed chain.

However, two segments of a real polymer cannot physically overlap,

due to steric interactions between their monomers, called excluded vol-

ume in the context of polymer physics, and, consequently, generally

do not behave like ideal chains. In chapter 3, we will study such ”real

chains” models. Nonetheless, ideal chain models prove very useful

as they correctly describe polymers under conditions where excluded

volume interactions are effectively screened. This may happen in a

fluid, where a monomer interacts with both the solvent molecules and

other monomers. The relative strength of these interactions determines

whether monomers effectively attract or repel: in a ”good” solvent in

which the polymer is very soluble (or equivalently at high tempera-

ture), monomers repel, while in a ”bad” solvent in which the polymer

is insoluble (or at low temperature), they attract each other. However,

at an intermediate, critical temperature called the θ-temperature,

these effects compensate such that non-subsequent monomers effec-

tively don’t interact. In these conditions, polymers are predicted to

behave like ideal chains. Similarly, in polymer solutions, when the

polymer concentration exceeds a certain threshold, the excluded vol-

ume interaction is screened, and again the large-scale behavior of the

chains becomes ideal.

In this chapter, I illustrate these concepts by introducing, in sec-

tion 1.2, the Freely Jointed Chain model and in section 1.4

and section 1.3, the Gaussian chain model or bead-spring

model. I’ll define macroscopic observables typically used in poly-

mer physics and compute them for both models, showcasing the

simple scaling behavior of ideal chain models.

Subsequently, starting from subsection 1.4.2, I will present an

unorthodox approach to solving the bead spring model that will

lead me to introduce the Rouse modes, which will play a cen-

tral role in the entire thesis. Finally, in section 1.5, I’ll analyze

and discuss their mathematical definition, allowing for a physical

interpretation of each component as a specific geometrical feature

of the conformation.

1.2 Freely Jointed Chain

Different approaches exist to model the statistical behavior of poly-

mers. Discrete models represent conformations of complex linear macro-

molecules as a chain of N +1 3D vectors. Assemblies of several atoms

of the real polymer are represented by a vector R⃗n, n ∈ [0...N ], point-

ing to the center of mass of the group of atoms. I note r⃗n = R⃗n+1−R⃗n,
with n ∈ [0...N − 1], the bond (or link) vector joining monomer n and

n + 1 (see e.g. Figure 1.1). In principle, bonds can have different

lengths (we will have an example with the Gaussian chain) and rela-

tive orientations (these are for instance restricted in the Freely Rotating

Chain model).

Here, I will start by focusing on the simpler model, the Freely
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Jointed Chain. In the Freely Jointed Chain (FJC) model, bond

vectors have identical and fixed length ||r⃗n|| = l, and uncorrelated

orientation:

⟨r⃗n · r⃗m⟩ = l2δnm (1.1)

where δnm is the Kronecker delta. The sketch of Figure 1.1 refers to

this model.

It is very interesting to note here the analogy between the freely

jointed chain and the random walk, lying in their shared behavior

of exploring a series of successive steps randomly. In a freely jointed

chain, each segment or monomer is connected by flexible joints, allow-

ing the chain to assume various conformations. Similarly, in a random

walk, a particle takes random steps in different directions without any

preferred path. From this mapping between the two models, it follows

that all the well-known results for the random walk also apply to the

FJC. I will, however, re-derive a few of them in the following.

Models that feature exponential bond orientation correlation func-

tions are termed semi-flexible models. In contrast, those with delta-

correlated1 bonds are called fully flexible models. In this thesis will

exclusively investigate fully flexible models

In any case, all these models belong to the same universality class,

meaning that, with a little care in the choice of parameters, they all

give the same large-scale behavior. The choice of FJC is therefore a

reasonable one to start with.

1.2.1 Measuring Polymer Size

Because of the inherent flexibility of polymers, their typical conforma-

tion isn’t a straight line. Instead, thermal fluctuations cause the chain

to bend, resulting in the physical size of the polymer being generally

less than its contour length. Studying the relation between the contour

length (or number of monomers) and the physical size of a polymer

has been the main focus of polymer physicists for the past century.

Let’s introduce the typical quantities useful for this matter.

→The end-to-end distance

One possible way of measuring the size of a chain is its mean-square

end-to-end distance2. We therefore introduce the end-to-end vector

R⃗ (see again Figure 1.1)

R⃗ = R⃗N − R⃗0 =

N−1∑

n=0

r⃗n. (1.2)

We may immediately note that, by isotropy,

⟨R⃗⟩ = 0. (1.3)

The mean-square end-to-end distance ⟨R2⟩ is then defined as the

average of the squared amplitude of R⃗
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⟨R2⟩ = ⟨R⃗ · R⃗⟩ = ⟨
N−1∑

n=0

r⃗n ·
N−1∑

m=0

r⃗m⟩ (1.4)

=

N−1∑

i=0

⟨r⃗n2⟩+
∑

n ̸=m

⟨r⃗n · r⃗m⟩ (1.5)

In the case of the FJC, since ⟨r⃗n · r⃗m⟩ = l2δnm, the rightmost term is

zero and each element in the leftmost sum contributes l2, leading to

the following scaling for ⟨R2⟩

⟨R2⟩ = l2N (1.6)

We recognize here, as expected, the same results as for random walks:

in both cases, the root-mean-square displacement (RMSD) of

the system grows as the square root of the number of steps (ei-

ther time steps or links), leading to a diffusive-like behavior with time,

a characteristic commonly observed in systems undergoing Brownian

motion. As we will see, this size scaling, proportional to N , is typical

and defines the ideal chain universality class.

→End-to-end Vector Probability Distribution Function

As with random walks, more complete information on the distance be-

tween the last and first monomer can be obtained by calculating the

probability distribution of the end-to-end vector. This is completely

analogous to deriving, for the random walk, the probability distribu-

tion of moving a distance R⃗ after a number of steps N (the so-called

propagator). However, I quickly retrieve this result here for complete-

ness.

Let’s compute the probability distribution that a FJC has a given

end-to-end vector R⃗, noted P (R⃗). I start by writing R⃗ in terms of its

spatial components Rx, Ry, Rz:

R⃗ = Rxe⃗x +Ry e⃗y +Rz e⃗z =

N−1∑

i=0

xie⃗x +

N−1∑

i=0

yie⃗y +

N−1∑

i=0

zie⃗z (1.7)

where we have introduced xi, yi and zi the spatial components of r⃗i

and have used Equation (1.2) for each component of R⃗. To simplify

the computation, we can focus on one component, for instance, the x

component.

Due to the homogeneous and fully flexible properties of the FJC

model, the {r⃗i} are independent and identically distributed, implying

that Rx is the sum of N independent and identically distributed ran-

dom variables. In the large N limit, considering r⃗i has a finite mean

and variance, the central limit theorem applies to R⃗ meaning its

distribution converges to a Gaussian distribution, the parameters of

which are provided by (1.3) and (1.6):

⟨Rx⟩ = 0 (1.8)

⟨R2
x⟩ =

⟨R2⟩
3

=
Nl2

3
. (1.9)
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3 The mathematical definition of a
self-similar, or fractal phenomenon is

that it behaves (statistically) the same

when viewed at different scales on a di-
mension (space or time). This implies

self-similarity at all scales, which does

not, of course, apply strictly to any
physical system. In the case of FJC,

self-similarity must be indeed under-

stood as being limited, on the small
scale, by the length of the bonds, and,

on the large scale, by the overall size

of the polymer.

4 Given a power law function

f(x) = axα,

scaling the argument x by a constant
factor c only results in a proportional
scaling of the function itself

f(cx) = acαxα = cαf(x).

This finally gives for the x component of R⃗:

P (Rx) =

(
3

2πNb2

) 1
2

exp

(
− 3R2

x

2Nl2

)
. (1.10)

This immediately leads to

P (R⃗) = P (Rx)P (Ry)P (Rz) =

(
3

2πNl2

) 3
2

e−
3(R2

x+R2
y+R2

z)

2Nl2

and finally

P (R⃗) =

(
3

2πNl2

) 3
2

e−
3R2

2Nl2 : (1.11)

the full probability distribution for the end-to-end vector R⃗ is

given by a centered Gaussian with variance σ2 = Nl2/3, in perfect

analogy with the random walk model.

→The internal end-to-end distance function

Another observable that is typically studied in equilibrium polymer

physics is the internal end-to-end distance R2(s). This quantity

is defined as the average squared end-to-end distance of a subchain of

linear length s = |i− j|, i.e.

⟨R2(s)⟩ = ⟨(R⃗i − R⃗j)
2⟩ =

j−1∑

n=i

⟨r⃗ 2
n ⟩, (1.12)

and is therefore a function of s. The observable R2(s) gives a richer

information about the model than the end-to-end vector of the whole

chain. It provides information about the inner structure of the chain.

The conformations of a FJC, like the Brownian particle path, have

the property of being statistically self-similar, or fractal3. This

means that the statistics of any subchain are identical, up to a scalar

factor, to the statistics of the whole chain. Hence we can apply the

scaling (1.6) for ⟨R2⟩ to a subchain of length s yielding the following

functional form for R2(s)

⟨R2(s)⟩ = l2s . (1.13)

The power-law behavior of R(s) evidences the self-similarity of the

conformation: indeed, power laws are the only mathematical functions

to possess the scale invariance property. 4.

We may note that, in the case of FJC, due to its self-similarity, R(s)

contains in fact no more information than R. However, more generally,

R(s) may be an indispensable tool for studying models that are not

scale-invariant and bear an intrinsic length scale.

→The gyration Radius

A third quantity used to assess the physical size of the entire chain is

the mean-square radius of gyration of the chain. It is defined as

the spatial variance of the conformation

⟨R2
g⟩ =

1

N

N−1∑

n=0

〈(
R⃗n − R⃗cm

)2〉
(1.14)
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Rg

⃗R cm

Figure 1.2: Center of mass R⃗cm
and gyration radius Rg for a FJC

conformation
5 Note, indeed, its close relation to the

moment of inertia of the monomers en-
semble.

Where we have defined the center of mass of the polymer

R⃗cm =
1

N

N−1∑

n=0

R⃗n. (1.15)

From Equations (1.14) and (1.15), the following, alternative ex-

pression for the gyration radius, involving the internal mean square

distance function R(s), can be derived:

⟨R2
g⟩ =

1

2N2

N∑

i,j=1

R(j − i). (1.16)

From this expression, we see that ⟨R2
g⟩ is the integral of the internal

end-to-end distance function, and therefore gives a condensed, single-

digit measure of the spatial distribution of monomers5.From this equa-

tion, we can compute R2
g for the FJC using (1.13), as

⟨R2
g⟩ =

1

2N2

N∑

i=1

N∑

j=1

|i− j| (1.17)

=
1

2N2
2
N∑

i=1

i(N − i) (1.18)

=
N(N + 1)(N + 2)

6N2
∼ l2N

6
(1.19)

We find that ⟨R2
g⟩ and ⟨R2⟩ share the same∼ N scaling. This reflects of

course the fact that both quantities are a measure of the characteristic

size of the polymer.

1.3 From the Freely-Jointed Chain to

the Gaussian Model

The ultimate goal of this chapter, in addition to presenting ideal chains

and their properties, is to introduce the Rouse modes, which are de-

fined as the normal modes of a polymer model, the Rouse model. The

Rouse model, the simplest model for polymer dynamics, represents

the chain as a sequence of beads, subjected to Brownian dynamics and

connected by harmonic springs.

However, the Rouse model can also be introduced in the context

of equilibrium polymer physics independently of the chain dynamics,

and in this context, it is - surprisingly - generally called instead the

Gaussian chain model.

Interestingly, the Gaussian chain model can be derived from a FJC

in which large subsequent subchains are replaced by harmonic springs.

Moreover, as we will see, this derivation takes us from an entropy-

based model, with no energy difference between the conformations, to

a mechanical model, where we can define a Hamiltonian.

As I shall show, there is an alternative derivation of the Rouse

modes, fully independent of the dynamic aspects: the Rouse modes

can be introduced by diagonalizing the system’s Hamiltonian.

To begin with, I present the classical derivation of the Gaussian

model from the FJC.
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6 I use cursive letters here to designate

the FJC model, to distinguish it from
the Gaussian chain, which will then be

described again using the standard no-

tation.

1.3.1 The Spring-Like Behavior of the FJC

Polymeric materials, such as rubber, are known for their high elastic-

ity. This behavior is due to the polymer’s propensity to organize itself

into random coils. If stretched into a straighter conformation, thermal

fluctuations drive a polymer to return to its preferred coiled form, in-

ducing a restoring force. For this reason, a long enough FJC can be

seen as a harmonic spring, and both ends of the chain as interacting

through a harmonic potential. To show this formally, we need to com-

pute the free energy of the chain at fixed R⃗, which in turn depends on

the end-to-end vector probability distribution function.

→Free Energy and Harmonic Entropic Interaction Between Both Ends

of the FJC

From P (R⃗) we can calculate the free energy of the system. Since

there is no interaction between the monomers, the internal energy of

the model can be set to zero, and the only contribution to the free

energy is from the entropy of the system.

S = kB ln(P (R⃗)) = S0 −
3

2
kBT

R2

Nl2
. (1.20)

Where S0 = −3/2 ln( 3
2πNl2

) comes from the normalization constant of

P (R⃗). The free energy at constant R⃗ then reads

F (R⃗) = −TS = F0 − kBT ln(P (R⃗)) = F0 +
3

2
kBT

R2

Nl2
. (1.21)

Where F0 = TS0 is a constant with respect to R⃗.

We see that the free energy is minimum for a zero end-to-end vec-

tor, and increases quadratically as the magnitude of the end-to-end

vector grows in magnitude. A quadratic dependence of the interaction

energy between two particles is called a harmonic potential. This

means that, if we consider the system to be composed of only the two

ends, forgetting about all other monomers between them, it behaves

exactly like a harmonic spring. In other words, we can consider the free

energy of the FJC at constant R⃗ as an effective harmonic potential

between both ends of the chain

Ueff(R⃗N − R⃗0) = U0 +
3

2
kBT

R2

Nl2
= U0 +

k

2

R2

Nl2
(1.22)

with (entropic) spring constant

k =
3kBT

Nl2
(1.23)

Furthermore, due to the fractal nature of the FJC, the same reasoning

can be applied to any sufficiently long subchain of a FJC.

1.3.2 Coarse-graining the FJC Into the Gaussian Model

Now let’s use the expression for the Ueff to derive another ideal chain

model by coarse-graining the FJC.

Consider a FJC polymer of NFJC+1 ≫ 1 monomers with positions6
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R⃗0...R⃗NF
and bonding vectors r⃗1...⃗rNF

of length l.

The idea is to group the original degrees of freedom locally and

redefine interactions while conserving the statistics of the chain. We

start by grouping degrees of freedom. To do so, we divide the origi-

nal polymer into N subchains of m monomers such that m ≫ 1 and

NFJC = mN .

We note the N + 1 extremities of the subchains R⃗i = R⃗m×i and

the N bond vectors r⃗i = R⃗i− R⃗i−1 =
∑mi
k=m(i−1) r⃗Fk

. A conformation

of the new model is equivalently represented by the set of vectors

{R⃗0...R⃗N} or by the bonding vectors {r⃗0...r⃗N−1}.
Now, let’s define the nature of the new links between the new mo-

nomers. In the previous section, we have established that an entropic

harmonic potential, of constant k = 3kBT
Nl2

, acted between both ends

of a FJC polymer of size N ≫ 1. Applied to each polymer subchain,

this suggests a harmonic potential between subsequent monomers of

the coarse-grained model:

Ui,i+1 =
1

2

3kBT

ml2
(R⃗i+1 − R⃗i)

2 =
1

2
k(R⃗i+1 − R⃗i)

2 (1.24)

where we have defined k = 3kBT/ml2 as an effective elastic constant.

1.4 The Gaussian Chain and an Intro-

duction to the Rouse Modes

1.4.1 The Gaussian Chain

The resulting model is a chain of N +1 monomers interacting through

harmonic bonding potentials and is called the Gaussian model or

bead spring model: subchains are modeled as identical springs of

stiffness k, representing the entropic springs of the FJC. Modeling

an entropic elasticity as a mechanical elasticity allows us to define

a Hamiltonian for the model, which happens to be diagonalizable,

making the model solvable analytically.

The energy of a configuration {R⃗1...R⃗N}, i.e the Hamiltonian of the

model, is indeed:

H({R⃗0...R⃗N}) =
N−1∑

i=0

1

2
k(R⃗i+1 − R⃗i)

2. (1.25)

Since the Gaussian model was derived from coarse-graining a FJC,

we expect their size scaling to be identical. For good measure, let’s

compute ⟨R⃗2⟩. We remind its definition (1.5)

⟨R2⟩ =
N−1∑

i=0

⟨r⃗n2⟩+
∑

n ̸=m

⟨r⃗n · r⃗m⟩ (1.26)

Since no diagonal terms appear in H, the bond cross-correlation is zero

and the rightmost term
∑
n ̸=m⟨r⃗n · r⃗m⟩ vanishes.

To finish the calculation, we must compute the average bond size,

b2 = ⟨r⃗n2⟩. Interestingly, for a particular value of k, the average size
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7 A. Khokhlov. Statistical Physics

of Macromolecules. AIP series in
polymers and complex materials. AIP

Press, 1994
8 I. Teraoka. Polymer Solutions, An

Introduction To Physical Properties.

Wiley-Interscience, 2002
9 J. Van Der Maarel. Introduction To

Biopolymer Physics. World Scientific
Publishing Company, 2007

10 I use capital letters for square ma-

trices and bold capital letters for ar-

rays of 3D vectors, which are formally
N × 3 matrices

of the bond is completely determined by the thermal fluctuations of

the system. Indeed, the rest length of each harmonic bond is actually

0, but beads are kept apart on average at a distance b by the thermal

energy stored in each bond at equilibrium.

The exact value of b is fixed by the equipartition theorem, stat-

ing that each bond r⃗i = R⃗i+1 − R⃗i, given it appears squared in the

Hamiltonian (1.25), is distributed an equal amount of energy at equi-

librium, yielding:

⟨r⃗n2⟩ = b2 =
3kBT

k
. (1.27)

Eventually leading to the following scaling for the mean square end-

to-end distance

⟨R2⟩ = b2N (1.28)

Which coincides with the (1.6).

As for Rg and R(s), we also find the same formulas as for FJC, for

which I am not going to detail the calculation, since they follow the

same logic as for the FJC.

⟨R2
g⟩ ∼

b2N

6
(1.29)

⟨R2(s)⟩ ∼ b2s (1.30)

In any case, we retrieve the typical ∼ N scaling, confirming the uni-

versal behavior of ideal chains.

1.4.2 The Rouse Modes as Eigenmodes of the Gaussian

Chain Model

The theory I’ve presented so far is well established and can be found

in several textbooks, some of which I’ve used as inspiration7,8,9. Con-

versely, the derivation and interpretation of Rouse modes in the con-

text of the Gaussian model developed at the end of this chapter is, to

my knowledge, a original approach.

1.4.3 Matrix Representation Of The Gaussian Chain Hamil-

tonian And Associated Eigenvalue Problem

Due to the harmonic nature of the Gaussian chain bonds, its Hamil-

tonian is a quadratic form in the monomer positions, and can be ex-

pressed in matrix form as

H({R⃗0, . . . , R⃗N}) = k

2




R⃗0

...

R⃗N




T




1 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 1







R⃗0

...

R⃗N




(1.31)

=
k

2
RTAR
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Since the matrixA10 is both real and symmetric, it is diagonalizable.

Consequently, we can find N +1 eigenvalues {λp | p ∈ [0...N ]} and the

same amount of orthogonal eigenvectors φφφp such that the following

holds

Aφφφp = λpφφφp (1.32)

This amounts to find a diagonal matrix D, whose diagonal elements

are the eigenvalues, and a transfer matrix Φ, whose columns are the

eigenvectors

A = ΦTDΦ (1.33)

where

Φ =




− φφφT1 −
− φφφT2 −
...

...
...

− φφφTN −




and D =




λ0 0 . . . 0

0 λ1 . . . 0
...

...
. . .

...

0 0 . . . λN




(1.34)

Diagonalizing H amounts to operating a change of position variables

in phase space. This can be seen by substituting (1.33) into (1.31),

giving

H({R⃗0, . . . , R⃗N}) = k

2
RT (ΦTDΦ)R (1.35)

=
k

2
(ΦR)TD(ΦR) (1.36)

From this expression, a new set of variables X = (X⃗0 . . . X⃗N ) can

be defined as follows

X = ΦR (1.37)

and the Hamiltonian, in matrix notation, becomes

H({X⃗0, . . . , X⃗N}) = XTDX. (1.38)

By abandoning the matrix notation, the pth new variables X⃗p can

be expressed as the projection of the position vectors R⃗n onto the basis

vectors φφφp

X⃗p = φφφp ·R =

N∑

n=0

(φφφp)nR⃗n (1.39)

and the Hamiltonian as the sum of the squares of the transformed

variable, each multiplied by its corresponding eigenvalues

H({X⃗0, . . . , X⃗N}) =
N∑

p=0

k

2
λpX⃗

2
p . (1.40)

1.4.4 Eigenvectors And Eigenvalues Of The Gaussian Chain

Hamiltonian

In the following, we give the explicit formula for both the eigenvalues

and eigenvectors without going through the calculation.
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Figure 1.3: The eigenvalues λp of

the Hamiltonian (1.31), according

equation (1.46).

The eigenvectors {φφφp | p ∈ [0, N ]} are given by:

φφφp =




1
(N+1) cos(

pπ
N+1 (0 + 1/2))

1
(N+1) cos(

pπ
N+1 (1 + 1/2))
...

1
(N+1) cos(

pπ
N+1 (N + 1/2))




for 0 ≤ p ≤ N , (1.41)

And the elements of the N ×N transfer matrix Φ can be written,

for p > 0

Φnp =
1

(N + 1)
cos(

pπ

N + 1
(n+ 1/2)) (1.42)

These eigenvectors are, by construction, orthogonal but not normal-

ized since ∥φφφp∥ = 1
N+1 . This entails that the matrix Φ doesn’t satisfy

the usual orthogonality identity ΦTΦ = I, but instead satisfies :

ΦTΦ ≡ ∆ =




1
N+1 0 · · · 0

0 2
N+1

. . .
...

...
. . .

. . . 0

0 · · · 0 2
N+1




(1.43)

which is equivalent to :

Φ−1 = Λ−1ΦT (1.44)

And implies that the usual diagonal form of A, (1.33) in fact writes

A = ΦDΦ−1 = ∆−1ΦDΦT (1.45)

This choice of normalization will be justified later (section 1.5).

The corresponding eigenvalues are

λp = 4 sin2
(

pπ

2(N + 1)

)
. (1.46)

Their dependence on p is shown in Figure 1.3.

explicit Rouse modes expression

We can now write an explicit expression for the transformed vari-

ables using (1.39) and the formula for the eigenmodes

X⃗p =

N∑

n=0

(φφφp)nRn =
1

N + 1

N∑

n=0

R⃗n cos

(
pπ

N + 1
(n+ 1/2)

)

(1.47)

and from (1.44), we can retrieve the spatial coordinates from the

Rouse modes:

R⃗n = X⃗0 + 2

N∑

p=1

X⃗p cos

(
pπ

N + 1
(n+ 1

2 )

)
. (1.48)
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Figure 1.4: The first 4 basis func-

tions up(n).

Transformed Rouse Hamiltonian

Considering our normalization choice and noticing that λ0 = 0,

the Gaussian Hamiltonian can be written in its diagonal form:

H({X⃗0, . . . , X⃗N}) =
N∑

i=1

εp X⃗p
2

(1.49)

where we have defined

εp = k(N + 1) λp = k(N + 1) 4 sin2
(

pπ

2(N + 1)

)
(1.50)

1.5 The Rouse Modes

The new variables X⃗p are called the Rouse modes of the polymer.

They play a crucial role in the study of polymer dynamics, serving as

a mathematical tool to solve the dynamical version of the Gaussian

model, known as the Rouse model. Indeed, one can use the autocorre-

lation function of X⃗p to compute several dynamical observables, such

as the single monomer mean square displacement or the end-to-end

vector correlation function. In the second part of this thesis, I will

employ Rouse modes in their conventional use to analyze the dynam-

ics of real chains. However, in this chapter, I’ll propose an original

interpretation of their mean squared average amplitude, allowing for a

novel characterization of the equilibrium conformations of the Gaus-

sian model and most importantly, in chapter 3, of interacting polymers.

1.5.1 The Rouse Modes Describe Geometric Features of

the Chain

To further apprehend the information contained in the Rouse modes,

let’s analyze their mathematical definition. For a conformation (R⃗0, R⃗1

. . . R⃗N ), mode p writes:

X⃗p =

N∑

n=0

up(n)Rn =
1

N + 1

N∑

n=0

R⃗n cos

(
pπ

N + 1
(n+ 1/2)

)
(1.51)

where we have defined up(n) = cos
(

pπ
N+1 (n+ 1/2)

)

Let’s start with the zeroth Rouse mode, which, thanks to the nor-

malization choice, corresponds exactly to the center of mass of the

conformation

X⃗0 =
1

N + 1

N∑

n=0

xn = X. (1.52)

The remaining modes contain the information of spatial features of

the chain, on length scales decreasing as the mode number p, or, equiv-

alently, the frequency of up increases. To understand why, following
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⃗X 1 ⃗X 1

Figure 1.5: Illustrative examples

of the first mode vector, X⃗1.

⃗X 2
⃗X 2

Figure 1.6: Illustrative examples

of X⃗2, which is the sum of the two

green vectors.

Ref.11, let’s consider a modified version of up(n) that is +1 when it is

positive and -1 when the basis function is negative, i.e.

ũp(n) = sgn(up(n)) (1.53)

and the modified Rouse modes:

˜⃗
Xp =

1

N + 1

N∑

n=0

Rxn
ũp(n). (1.54)

which, even if the actual coefficients in X⃗p change smoothly, should

still behave roughly as mode p. Let’s write the expression of the first

modified mode:

˜⃗
X1 =

1

N

N
2∑

n=0

R⃗n − 1

N

N∑

n=N
2

R⃗n =
1

2
(Rcm, 1/2 −Rcm, 2/2) (1.55)

where, if we partition our polymer into p segments, Rcm, q/p is the

vector pointing to the center of mass (CM) of the qth segment. Thus
˜⃗
X1 is simply the vector extending from the center of mass of the first

half of the chain to the center of mass of the second half of the chain.

In fact, the smoothness of X⃗1 makes it closer to the end-to-end vec-

tor. Consequently, X⃗1 encapsulates the orientation of the chain,

which is a feature that involves the whole chain and we thus say that

it describes the polymer on the scale N , while any finer details are

completely overlooked.

Using the same reasoning for the second mode we find

˜⃗
X2 =

1

4


 4

N

N
4∑

n=0

R⃗n − 4

N

2N
4∑

n=N
4

R⃗n − 4

N

3N
4∑

n= 2N
4

R⃗n +
4

N

4N
4∑

n= 3N
4

R⃗n




=
1

4

(
(Rcm, 1/4 −Rcm, 2/4) + (Rcm, 4/4 −Rcm, 3/4)

)

Thus
˜⃗
X2 is the sum of the two vectors (green vectors in Figure 1.6),

one from the CM of the second to the CM second quarters and the

other from the CM of the third to the fourth.

From Figure 1.6, where two conformations with different values of

X⃗2 are displayed, it’s easy to see that the second Rouse mode gives an

idea of the overall curvature of the chain while remaining insensi-

tive to curvature on scales smaller than N/2. Thus X⃗2 isolates chain

features with spatial scale N/2.

Geometrical interpretation of the Rouse modes

Applying the same line of thought, we observe that higher-order

modes exhibit a similar pattern and reveal progressively finer de-

tails of the chain. The pth mode is the sum of p vectors, each

pointing from the center of mass of one subchain of size N/p to

the next. Hence the pth mode describes and isolates a geometric
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feature of the chain on a scale N/p.

1.5.2 Equipartition of Energy in the Rouse Modes

Given the expression for the total energy (1.49), we can interpret the

quantity

Ep = εpX⃗p
2

(1.56)

as the contribution of the pth mode to the total energy of a confor-

mation. Conversely, by inverting the equation, we see that by exciting

mode p with an energy E the squared amplitude of mode p will be:

X⃗p
2
=
E

εp
(1.57)

In essence, when two modes receive the same energy E, the resulting

amplitude observed for each mode will be different and is determined

by the coefficient ε−1
p . In other words, the coefficient εp gives the

energy required to modify the amplitude of mode p. Given the p-

dependence of εp (equation (1.50)), we see that exciting low p modes

requires less energy than exciting high p modes.

From equation (1.40), we notice that the quantity ϵpX
2
p enters

squared in the Gaussian Hamiltonian. By virtue of the equiparti-

tion theorem, the average mode amplitudes must satisfy

⟨X2
p⟩ =

3

2
kBT

1

εp
. (1.58)

Rouse modes equilibrium fluctuations

for the Gaussian model

Thanks to (1.50) we can express the average square amplitude or

equilibrium fluctuations of the Rouse modes as

⟨X2
p⟩ =

3

8

kBT

k(N + 1)

1

sin2
(

pπ
2(N+1)

) (1.59)

Note that, since ⟨X⃗p⟩ = 0, ⟨X2
p⟩ can be seen as the modes fluc-

tuations. Finally, we can expand the sinus to the first order in

p ≪ N and use the formula for the average inter-monomer dis-

tance b2 = 3kBT
k to get the scaling behavior for small enough

p:

⟨X2
p⟩ ≈

b2

2π2

N + 1

p2
∼ 1

p2
. (1.60)

As we will see, this p−2 scaling law will play a very important

role in the following, as a reference corresponding to the ideal

chain model.
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1.6 Conclusion / take-home messages

In this chapter, I introduced the FJC and showed that, on large scales

(and for low forces), to minimize entropy, the system behaves as a

harmonic spring. Using this fact and the coarse-graining procedure,

I derived from the FJC an even simpler model, the Gaussian chain,

which assumes harmonic springs as bonding potentials between mono-

mers. By calculating ⟨R2⟩ (or, equivalently, R2
g) I showed that both

models exhibit the same size scaling behavior

⟨R2⟩ ∼ N

which characterizes the ideal chain universality class.

I then introduced the normal modes of the Gaussian chain model,

the Rouse modes:

X⃗p =
1

N + 1

N∑

n=0

R⃗n cos

(
pπ

N + 1
(n+ 1/2)

)
.

I gave a physical interpretation of this mathematical expression, show-

ing that each mode X⃗p can be seen as a geometrical feature of the

chain, on a linear length N/p.

The study of the partition of the ideal polymer’s energy into dif-

ferent Rouse modes, reveals a power law decay of their equilibrium

fluctuations as a function of the mode’s number:

⟨X2
p⟩ ∼

N

p2
.

It turns out that this functional form is directly related to the chain

structure and can therefore provide a very useful tool for polymer con-

formation analysis. To make further progress, we need a theoretical

framework to make sense of the expression for fluctuations of the Rouse

modes (1.59). Conveniently, there exists a field dedicated to this sub-

ject: the theory of signal processing, which will be the focus of the

next section.





2

Rouse Modes

Fluctuations as a Power

Spectral Density

Previously, we’ve established that ideal polymers, by the fluctuating

nature of their conformations, can mathematically be described as the

outcome of a simple random walk. In fact, a more general statement

is true for any polymer model, namely that a polymer conformation

can be described as a sequence of ordered random variables, i.e. a

stochastic process. Furthermore, we’ve hinted towards the fact that a

spectral decomposition of the conformation, the Rouse modes, allowed

for an efficient description of the statistical properties of the polymer.

At the end of the previous section, we pointed out that, to better

exploit these results, we likely need a theoretical framework, and we

anticipated that it would be based on signal processing theory.

In section 2.1, I start by recalling a few basic concepts of prob-

ability theory and give, in an intuitive fashion, elements of the

mathematical theory of stochastic processes, a branch of prob-

ability theory.

In section 2.2, I recall the definition of the Fourier transform, in

its continuous and discrete forms, introduce the Power Spectral

Density, and discuss the effect of discretization of a signal on the

resulting Fourier spectrum. Next, in section 2.3, the useful notion

of fractional Brownian Motion, along with its spectral character-

ization, is introduced.

Once these well-known concepts introduced, it will be possible

to connect the Rouse modes to the notion of Fourier transform,

thanks to the introduction of a slightly different version of the

discrete Fourier transform, the Discrete Cosine Transform, or

DCT. In section 2.4, I will come to give an interpretation of the

Rouse modes as a cosine transform of the polymer conformation.

Finally, in section 2.5, building on all the concepts introduced so

far, I give an original interpretation of the squared Rouse modes

as a power spectrum of polymer equilibrium conformations.
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1 More precisely, the correlation be-

tween x and y is given by their
covariance normalized by the prod-
uct of their standard deviations:
Covxy/σxσy.

2.1 Stochastic Process Theory: Defi-
nitions

2.1.1 Random variables

Any measurement operated on a physical system is to some extent

random. In classical physics, this perceived randomness emerges from

the inevitable lack of perfect information about either the system at

study, the measuring apparatus, or both. The mathematical structure

that formalizes this stochasticity is called a random variable.

A random variable x is defined by the combination of two mathe-

matical objects. First, the set of all possible outcomes of x, commonly

noted Ω, and called the sample space of x.

Second, the probability to measure x in a specific interval of Ω which

is called the probability distribution function of x, noted P (x),

such that

Probability(x < x < x+ dx) = P (x)dx. (2.1)

To characterize x, we can compute a number of quantities related to

the shape of its probability distribution, called the moments of P (x).

The first moment is the expected value of x which is defined as the

sum of all possible values of x weighted by their respective probability,

µx = ⟨x⟩ =
∫

Ω

dxxP (x) . (2.2)

The expected value of x is related to the empirical average of

a collection of samples of x through the law of large numbers. Say

we draw N samples of x, x1, x2, · · · , xN , the empirical average of the

sample,

x =
x1 + x2 + · · ·+ xN

N
(2.3)

converges to ⟨x⟩ when the number of samples goes to infinity. In a

real experiment, ⟨x⟩ is impossible to compute with infinite precision,

we can only approach it by computing the empirical average x. In

statistics, x is called an estimator for ⟨x⟩.
The second order moment, or variance, is the expected value of

the centered random variable associated to x, x̃ = x− ⟨x⟩, squared:

⟨(x− ⟨x⟩)2⟩ =
∫

Ω

dx (x− ⟨x⟩)2 P (x) , (2.4)

and the pth order moments is defined as the expected value of the pth

power of the centered random variable x− ⟨x⟩.
As for the first one, the second order moment is related to a quantity

defined on a collection of N samples, the average of x̃2 or empirical

squared deviation from the mean

σ2
x = (x− x)2, (2.5)

with σx =
√
σ2
x the standard deviation of x.

Given two random variables x and y one can compute their covari-

ance or correlation1, which quantifies the dependence of one random
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2 This is also always the case for dig-

italized signals. In any case, com-

pletely equivalent results exist for con-
tinuous signals.

3 The marginal probability is the prob-
ability of a single event occurring, in-

dependent of other events.

variable with respect to the other:

Covxy = ⟨(x− ⟨x⟩)(y − ⟨y⟩)⟩ (2.6)

=

∫

Ωx

∫

Ωy

dxdy (x− ⟨x⟩)(y − ⟨y⟩)P (x, y), (2.7)

where P (x, y) is called the joint probability of x and y and is defined

as

Probability(x < x < x+dx and y < y < y+dy) = P (x, y)dxdy. (2.8)

From these elementary concepts, we can now move on to define stochas-

tic processes and investigate their properties.

2.1.2 Stochastic Processes

An ensemble of random variables uniquely indexed by a set of numbers

J , i.e. {xt | ∀t ∈ J} forms a function with random output and is called

a stochastic process or stochastic signal. The process is said to be

discrete if J is countable, and continuous if J is an interval of the real

line. A typical example is a time-dependent process, in which case t

represents time (and may be continuous or discrete, depending on the

measure and recording method). However, the monomer number in a

polymer chain can also play the role of the (discrete) variable t, that

may be noted n in that case. For the sake of simplicity2, let’s consider

a discrete, finite, and real-valued stochastic process of length T , with

J = {1, 2, . . . T} and

x = {x1, . . . xT }. (2.9)

The sample space of x is the union of the samples spaces of x1, . . . xT

Ω = Ω1 ∪ Ω2 · · · ∪ ΩT = RT . (2.10)

In this case, a sample of x can be seen as a T dimensional vector.

We can assign a probability distribution function to the whole pro-

cess, that is the joint probability

P (x) = P (x1, . . . xT ) dx1, . . . dxT . (2.11)

Then, focusing on a particular t, we can define the mean function of

xt as the expected value of the function x evaluated at time t

µx(t) = µxt = ⟨xt⟩ =
∫

Ω

dxP (x1 . . . xT ) =

∫

Ωt

dxt P (xt), (2.12)

where P (xt) =
∫
dx1dx2 . . . dxt−1dxt+1 . . . dxNP (x1, . . . xN ) is themar-

ginal probability3 of xt. The same can be done of course for the

next moments. Moreover, the generalization to a particular t in a

continuous process leads to analogous results for the corresponding

instantaneous x(t).

Hence, each variable xt (or x(t)) can be treated as a single stochas-

tic variable, its empirical average (or variance) on a collection of N

realizations of the processes treated as an estimator of µx(t) (or of the
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variance), and so on. Nevertheless, the value of xt is potentially de-

pendent on the other elements of the stochastic process x, i.e. on the

values of the process at other instants t′. To give a measure of this de-

pendence, we define the auto-correlation function as the expected

value of the product of the process evaluated at times t and t′

Cxx(t, t
′) = ⟨xt xt′⟩, or ⟨x(t) x(t′)⟩. (2.13)

Note that, by definition, Cxx(t, t) = σ2
x. For t ̸= t′, vanishing Cxx(t, t

′)

means that xt and xt′ are statistically independent.

Random processes can be classified based on many different crite-

ria. One of the important questions that we can ask about a random

process is whether its statistical properties are time-dependent. If a

stochastic process has its moment (as mean, variance, etc.) constant

in time (i.e. our t parameter) it is said to be a stationnary process.

Even more generally, a wide sens stationary process is a process whose

auto-correlation function is transitionally invariant and whose mean

function is constant, i.e.

µ(t) = µ, (2.14)

C(t, t′) = C(τ = t− t′) (2.15)

where τ indicates the delay at which the two values of the signal are

taken. The second moment is not necessarily constant but must be

finite for any t.

For such processes, therefore, a single variable auto-correlation func-

tion C(τ) allows us to study the extent of interdependencies along the

signal, such as hidden periodicities, persistence, and negative correla-

tions. However, another valuable perspective is offered by the power

spectral density, which provides equivalent insights to auto-correlation.

Let’s now delve into this aspect.

2.2 The Power Spectral Density of a
Stochastic Signal

2.2.1 Fourier Transform of Continuous and Infinite Stochas-

tic signals

→Integral Transforms

Any (integrable) realization x(t) of a continuous and infinite random

function can be seen as a vector on an infinite dimensional vector

space of functions. Here x(t) is called the real space representation

of the vector x and is the projection of the signal vector on the Dirac

distribution δ(t), so that

x(t) =

∫ +∞

−∞
x(t′)δ(t− t′)dt′ (2.16)

This representation corresponds to decomposing the signal in its ”single-

time” components.

However, x(t) can be expressed in another basis, where its properties

may be more conveniently or insightfully displayed, by applying an
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4 R. G. Lyons. Understanding Digital

Signal Processing. 2010

integral transformation to the vector. An integral transform T is

defined through its action on a function f :

f ′(u) = T [f(u)] =

∫ +∞

−∞
x(t)K(u, t)dt, (2.17)

where the two variable function K(u, t), the kernel, completely char-

acterizes the transform.

→The Fourier Transform

The most important integral transform is surely the Fourier transform

F, defined as the integral transform with kernel

K(f, t) = e−i2πft. (2.18)

The Fourier transform of a function x(t) then reads:

X(f) = F[x(t)] =

∫ +∞

−∞
x(t)e−i2πftdt . (2.19)

The new function X(f) is called the frequency or Fourier space

representation of the function. Analyzing the expression of X(f)

allows one to uncover the frequency components of any continuous

signal.

The discovery of the Fourier transform opened up new perspectives

in signal processing, engineering, and, of course, physics, where it was

first introduced. It can be contended that the Fourier transform stands

as the most widely utilized mathematical tool for examining physical

systems. A quote by Lord Kelvin (taken from 4) summarizes well this

statement:

Fourier’s theorem is not only one of the most beautiful results of mod-

ern analysis, but it may be said to furnish an indispensable instrument

in the treatment of nearly every recondite question in modern physics.

2.2.2 The Fourier Transform of Discrete and Finite Sig-

nals

The Fourier transform applies to continuous and infinite signals. How-

ever, real signals (and polymer models as well) are always finite and

discrete. For example, if we are measuring the position of a Brownian

particle, we will record its position at a finite pace and for a finite

time, eventually yielding a vector of positions (x0, . . . xT ).

This measurement process introduces two time limits: the total

duration T of the recording, and the sampling step ∆t, that generally

induce a loss of information. The total number of recordings in the

sample is fixed by these two limits, as

N =
∆t

T
. (2.20)

A discrete sampling of a continuous signal x(t) is therefore written as

x(t) −→ (x(0), x(∆t), . . . , x((N − 1)∆t)) . (2.21)
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Figure 2.1: Top panel : a func-

tion f(x) in real space and a dis-

cretization fi at rate ∆ Bottom

panel : In dashed lines are the

copies of the Fourier transform of

f(x), f̂(m). In full lines the DTFT

of fi which is equal to the pointwise

sum of all the copies. Taken from

[51].
5 Here is a brief justification of this re-
sult:

The relation (2.27) derives from

the fact that the Fourier trans-
form of a Dirac comb of period

T is still a Dirac comb, of period

1/T in the frequency space. Fur-
thermore, the Fourier transform

of the product of two functions
is given by the convolution of

the two Fourier transforms. The

convolution of the transform of
the continuous function and the

frequency comb therefore gives

the desired relationship.

In this case, to study the spectral properties of the signal, we need

to define a discrete equivalent of the Fourier transform, that applies

to finite and discrete functions. We will introduce it in a few steps,

and investigate the effects of time and frequency discretization on the

Fourier space representation of the signal.

→Discrete Transforms

In the discrete and finite case, instead of an integral transform, we

use the term discrete transform. Similarly to integral transforms,

discrete transforms are linear transformations that send a discrete

vector from its original space to another vector space. Again, discrete

transforms are completely determined by their kernel and their action

on a vector. Let x = (x0, . . . , xN ) be a N + 1 dimensional real vector

represented in its canonical basis, and K its kernel

Xp =

N∑

n=0

xnKn,p, (2.22)

The vectorX = (X0, . . . , XN ) is the transformed vector by the discrete

transform associated to the kernel K. In the discrete case the kernel

is an N ×N transfer matrix.

→The Discrete Time Fourier Transform

Before specifying the kernel for the discrete Fourier transform, it is

instructive to take the continuous Fourier Transform of the sampled

signal of equation 2.21. Formally, this is done by taking the Fourier

transform of the product of x(t) (continuous) and a Dirac comb:

XDTFT(f) = F[

N−1∑

n=0

x(t)δ(t− n∆t)] =

N−1∑

n=0

xke
−i2πfn∆t∆t . (2.23)

The resulting function is called the discrete time Fourier trans-

form (DTFT). I stress again that the DTFT is continuous in

Fourier space (while the signal is discrete in real space).

Let’s now investigate the frequency dependence of XDTFT(f). By

introducing the sampling frequency,

fe =
1

∆t
, (2.24)

XDTFT(f) becomes

XDTFT(f) =

N−1∑

n=0

xne
−i2π f

fe
nt. (2.25)

Due to the periodicity of the complex exponential kernel, we see that

XDTFT(f) is now a periodic function of f with period fe, i.e.

XDTFT(f +mfe) = XDTFT(f). (2.26)

Moreover, it can be shown5 that the DTFT can be expressed

as an infinite summation of copies of X(f), shifted by multiples

of fe:

XDTFT(f) =

+∞∑

n=−∞
X(f − nfe) . (2.27)
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Figure 2.2: The effect of alias-

ing from the real space point of

view: by taking a too low sampling

frequency, we cannot capture the

right frequency content of the un-

derlying function.

6 In other words, inverting the dis-

cretized transform does not allow us
to distinguish the initial, finite signal

from its periodized version. This is
related to the fact that the Fourier
transform of a periodic signal is always
discrete, as it is a Dirac comb, modu-

lated by the coefficients of the corre-
sponding Fourier series.

→The Shannon-Nyquist Theorem and The Aliasing Effect

An important consequence of equation (2.27) is that, to ensure that

repeated spectra don’t overlap, the largest frequency present in the

spectrum of x(t), fmax, must not be too large compared to fe. This

limit is precised by the Shannon-Nyquist theorem: fmax must be

at most half as a large as the sampling frequency fe, i.e.

fmax <
fe
2
. (2.28)

This condition is needed in order to prevent any information loss.

Indeed, if the Shannon-Nyquist condition is not satisfied, the high-

frequency parts of two copies of the spectrum will meet and be summed,

producing an over-representation of these frequencies. More precisely,

if a signal component at frequency f is sampled at a sampling fre-

quency fe < f , the corresponding contribution will reappear, in the

periodized spectrum, at the alias frequency f ′ = (fe− f). The contri-

butions of the two frequencies f and f ′ - symmetric with respect to fe

- are therefore indiscernible, this leading to a loss of information about

the signal.

To better understand why this happens in the real space representa-

tion, in Figure 2.2 I plot a pure sinusoidal signal of frequency f (dashed

lines) sampled at a frequency lower than f : the sampled signal (dots),

also perfectly matches a sinusoid of frequency f ′ = (fe − f) < f (full

line). This effect is called aliasing or spectral leakage. The corre-

sponding loss of information has, of course, a direct explication in real

space: simply, if the signal is sampled at a too low sampling frequency

fe = 1/∆t, variations on time-scales shorter than the sampling step

∆t are lost due to the sampling process, resulting in signal distortion.

→The Discrete Fourier Transform

As discussed, XDTFT(f) is the standard Fourier transform of the sam-

pled signal, i.e. a continuous function of f , which means it can’t be

obtained numerically because, as the signal itself, it would require in-

finite memory to store it. We therefore need to sample again, but this

time in the continuous Fourier space of the DTFT.

A natural choice for the sampling frequency step ∆f is

∆f =
1

(N − 1)∆t
=

1

T
. (2.29)

In this way, the N -sample in real space is transformed in a N -sample

in frequency space.

For the same reasons that sampling real space periodizes the Fourier

space, sampling Fourier space periodizes real space6. Consequently, if

we sample with a frequency ∆f , the copies in real space will be spaced

by 1/∆f . If ∆f = 1/T is chosen, then the spacing between copies in

real space is T , the total length of the signal. Hence, we are ensured

that copies will not overlap in real space, thus justifying the choice of

the frequency step.
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Such a sampling of the DFTF is called the Discrete Fourier

Transform (DFT) and reads, for a generic discrete signal x = (x0, x1,

. . . , xN−1),

XDFT
p =

N−1∑

n=0

xn e
−i 2πN np , (2.30)

where p = 0, . . . N − 1.

Another way of wording this is that the DFT is the discrete trans-

form defined through the DFT kernel,

Ωnp = e−i
2π
N np, (2.31)

or, equivalently, that the DFT can be written in matrix form as

(
XDFT

0 XDFT
1 · · · XDFT

N−1

)
= XDFT = Ωx. (2.32)

→ The Fast Fourier Transform

The computational complexity of the DFT is, a priori, O(N2), meaning

it requires a number of operations proportional to N2 to compute

(each of the N modes involves a sum of N elements). However, a

very efficient algorithm was discovered in 1965, by James Cooley and

John Tukey called the Fast Fourier Transform (FFT) that cuts

the complexity to N ln(N). The number of engineering situations that

require the computation of a DFT is so large that the FFT is often

described as one, if not the most important algorithm ever discovered.

2.2.3 Power Spectral Density

So far, we considered the transforms of signals which could very well be

single realizations of random processes, or fully deterministic signals.

If the signal is inherently random, such as in the case of noise - or for

polymer conformations - each realization of the signal will have a dif-

ferent Fourier transform. One is then more interested in the statistical

properties of the spectral content of a signal.

In many cases, deviations of the signal x(t) above or below 0 are

equally distributed. This property is called the isotropy of the real

space variable. In this case, the average of the signal is zero, implying

that ⟨Xp⟩ = 0. For this reason, the spectral content of the signal is

generally defined as the square amplitude, or variance, of the

Fourier space representation, otherwise called the Power Spectral

Density, that I will now introduce and that, most importantly, will

finally allow us to interpret our result on the equilibrium fluctuations

of the Rouse modes, equation (1.59).

→ Signal Energy

Generally speaking, the investigation of spectral properties in stochas-

tic processes has its roots in communication engineering. For this

reason, in the context of signal analysis, the word energy has a differ-

ent meaning than in physics. The energy Ex of a signal x is defined
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7 I assume here that the signal is con-

tinuous, but these results are also valid
in the discrete case.

as the integral over the whole signal of the squared magnitude of the

signal. For a realization x(t) of a continuous signal (on the left) - xn

in the discrete case (on the right) - of finite duration T (or N) we have

Ex =

∫ T

0

dt |x(t)|2 or Ex =

N−1∑

n=0

|xn|2, (2.33)

respectively. If we consider the energy of a centered signal averaged

over several realizations

⟨Ex⟩ =
∫ T

0

dt ⟨|x(t)|2⟩, (2.34)

we recognize the integral of the variance over the whole signal.

Note indeed that, most of the time, Ex won’t have the dimensions

of an energy. The term originates from the fact that most signals

in engineering are a measure of voltage in a circuit. The associated

(electrical) energy is

1

Z

∫ T

0

V 2(t)dt, (2.35)

where Z is the impedance of the circuit, that is therefore proportional,

but not identical, to Ex.

→ Spectral Energy

The previous definition of energy of course can be generalized to infinite-

length signals, provided that the integral

Ex =

∫ ∞

−∞
dt |x(t)|2 (2.36)

converges: Ex < ∞. Let’s place ourselves within this more general

framework for the moment. A signal x in real space (of any length),

and its continuous or discrete transform X, are two representations

of the same vector in different bases. Since the norm of a vector is

invariant under a change of basis, it follows that

||x||2 = ||X||2 (2.37)

which reads, for the continuous (on the left) and discrete (on the right)

case

∫ +∞

−∞
dt |x(t)|2 =

∫ +∞

−∞
|X(f)|2 df or

+∞∑

n=−∞
|xn|2 =

+∞∑

p=−∞
|Xp|2 .

(2.38)

This important relation is called the Parseval Theorem.

Of course, we recognize the energy of the signal in the left-hand

term of (2.38), giving alternative expressions for the signal energy:

Ex =

∫ +∞

−∞
|X(f)|2 df or Ex =

+∞∑

p=−∞
|Xp|2. (2.39)

The Parseval Theorem holds true for any integral or discrete trans-

form.
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8 Several estimators of the PSD exist
in signal processing. The method used
here is based on a very common ap-

proach, referred to as the method of
averaged periodogram. In the same

way, we can obtain an estimate of
the correlation function of a finite-
duration signal by averaging over sev-
eral realizations. This is called a cor-

relogram.

→ The Power Spectral Density

For a signal of infinite length7, the energy defined by equation (2.36)

may diverge.

In this case, it is commonly preferred to define an energy density,

by considering truncated portions of the signal, of duration T , then

dividing the corresponding energy Ex(T ) by the duration. This leads

to the definition of the power spectral density (PSD)

Sx(f) ∝ |X(f)|2 or Sx(p) ∝ |Xp|2 . (2.40)

The precise definition of the PSD for the case of continuous and

infinite-length signals is briefly recalled in the following box, but these

details are not relevant for the case of finite and discrete signals that

will be of interest in this thesis.

Formal definition of the power spectral density

For a continuous signal of infinite length, we can consider the truncated signal

xT (x) =

{
x(t) if 0 ≤ t ≤ T

0 otherwise,
(2.41)

and define its Fourier transform

y(f, T ) =

∫ ∞

−∞
xT (t)e

−i2πftdt =

∫ T

0
x(t)e−i2πftdt (2.42)

that always converges (provided x(t) is a continuous function).
We then define the power spectral density (PSD) of the stochastic process

x as:

Sx(f) = lim
T→+∞

1

2πT
|y(f, T )|2. (2.43)

Following the same reasoning as above, the PSD can be seen as the spectral
energy per unit time. Consequently, it describes how the power of the signal

or time series is distributed over frequency.

→PSD for a stochastic signal

In the case of random signals, their Fourier representations are also

random signals, and a single realization will generally produce a noisy

PSD. Indeed, a single realization over a finite time frame cannot pro-

vide a comprehensive spectrum profile, due to the lack of statistical

data. In this case, averaging over large numbers of realizations becomes

crucial to improve the statistics: The average over several realizations

partially ”compensates” for the finite duration of the recorded signal

and allows us to better approach the theoretical limit of the definition

of the PSD8.

This will be the procedure adopted in a large part of my

thesis: once several realizations of a same random process are

obtained, the PSD will be identified with its statistical estimator

S̄x(p) = ⟨|Xp|2⟩ . (2.44)

called the periodogram.
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9 The Wiener-Khinchin theorem

states indeed that, for a stationary
process, the Fourier transform of the

correlation function is equal to the
PSD:

Sx(f) = F[Cxx](f).

Nevertheless, Xp will not be a standard (discrete) Fourier transform

of the signal, as we will discover in section 2.4.

2.3 Fractional Brownian Motion and
Power Law PSDs

Brownian motion describes the random movement of particles sus-

pended in a fluid, resulting from the chaotic collisions between the

particles and the surrounding molecules of the fluid. The mathemati-

cal model describing this motion, which assumes independence among

particle movements, found applications well beyond the context of its

discovery, in finance, chemistry, biology, etc...

→ Random Walk and White (Gaussian) Noise

The motion of a Brownian particle can be modeled as a 1-dimensional

random walk. Such a process, that I will denote wn, is defined as

wN =

N∑

n=0

un (2.45)

where the random increments un are uncorrelated and Gaussian,

with mean µu = 0 and variance σ2
u = σ2, so that

Cuu = ⟨unum⟩ = σ2δmn. (2.46)

In other terms, the increments define a discrete white noise: By

definition, white noise is a centered, stationary stochastic process with

no memory. It is fully characterized by its mean and correlation func-

tion. Thanks to the Wiener–Khinchin theorem9, the power spectrum

of white noise is easily calculated from its correlation function:

Su(f) =
∣∣F[σ2

u δ(τ)]
∣∣2 = σ2

u (2.47)

The PSD of white noise is therefore constant. Hence, by analogy with

white light, its appellation.

Starting from the properties of the white noise, one can show that

the correlation function of the random walk wn is given by

Cww = ⟨wnwm⟩ = σ2 min(n,m). (2.48)

Continuous versions w(t) and u(t) can also be introduced. We will

find them as particular cases of the generalized signals introduced here-

after.

→Fractional Brownian Motion and Fractional Gaussian Noise

Despite its relevance in nature, many random phenomena cannot be

modeled by Brownian motion because they experience long range

correlations, meaning their future motion is affected by all their past

positions. This leads to the introduction of a generalized model.
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10 H. Qian. Fractional Brownian Mo-

tion and Fractional Gaussian Noise,
pages 22–33. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2003

The simplest model for a long-range correlated process is the frac-

tional Brownian motion (fBm) wH(t) which is defined as a con-

tinuous, one-parameter stochastic process with mean function

µH(t) = ⟨wH(t)⟩ = 0 (2.49)

and the following auto-correlation function:

CwHwH
= ⟨wH(t)wH(t′)⟩ = σ2

2

(
|t|2H + |t′|2H − |t′ − t|2H

)
. (2.50)

As for the (discrete) random walk, the fBm process can be obtained
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Figure 2.3: Three instances of

fbm with the corresponding fgn

and power spectra

as the integral of its increment process uH(t), also called fractional

Gaussian noise (fGn), and it is possible to show that the increment

auto-correlation function is10

CuHuH
= ⟨uH(t)uH(t′)⟩ = (2.51)

= 2H(2H − 1)σ2|t− t′|2H−2 + 2Hσ2|t− t′|2H−1δ(t− t′).

The parameter H is a number in ]0, 1[ called Hurst exponent. It

governs the correlations of the process increments. There are 3 possible

correlation regimes for the increments of the process, depending on the

value of H:

• H > 1/2 means the increments are positively correlated;

• H < 1/2 means the increments are anti-correlated;

• H = 1/2 the increments are uncorrelated.

By definition, in the specific case H = 1/2, the previous correla-

tion functions become

Cww = σ2min(t, t′) (2.52)
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11 P. Flandrin. On the spectrum of

fractional Brownian motions. IEEE

Transactions on Information Theory,
35(1):197–199, 1989

and

Cuu = σ2δ(t− t′) : (2.53)

the fBm w1/2(t) appears then as a continuous equivalent of the ran-

dom walk (called Wiener process), and its increment process u1/2(t)

defines a continuous Gaussian white noise with variance σ2.

The fBm can therefore be seen as a generalization of the Brownian

motion where some memory has been introduced through a choice of

positively or negatively correlated steps (i.e. an increased or decreased

probability that a step is in the same direction that the previous ones)

and resulting, consequently, in persistent or anti-persistent motion.

Figure 2.3 give some examples of fBm and of the corresponding fGn,

where the effect of positive or negative correlations can be observed.

→Power Spectral Density

It is possible to compute the scaling of its PSD from Equation 2.43.

This is done for arbitraryH in Ref.11, and leads to the following scaling

behavior:

SwH
(f) ∼ 1

f2H+1
∼ fα (2.54)

It is therefore possible to interpret the exponent α = 2H+1 in the

power law PSD of a given signal as an alternative signature for

the correlation strength of the underlying stochastic process:

• −2 < α < −3 means the increments are anti-correlated;

• −1 < α < −2 means the increments are positively correlated;

• α = −2 the increments are uncorrelated.

This is illustrated by the third row in Figure 2.3, where the spectra

corresponding to fBm of different H are shown. The slope of SwH
(f)

in the log-log plot corresponds to α.

Note that the power law behavior of the PSD is typically associated

with the self-similar or fractal nature of the process, as previously

discussed regarding R(s) in Equation 1.2.1. This behavior can be

quantified by the parameter H, or equivalently, α.”

This is a useful example of the complementarity between power

spectral density and correlation function in the characterization of a

stochastic process.

With these results in mind, let’s return to the interpretation of

Rouse mode amplitude fluctuations (1.59).
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2.4 Connecting the Rouse Modes to the
Discrete Cosine Transform

2.4.1 The Rouse Modes as a Discrete Transform of a

Polymer Conformation

We are finally in a position to establish the link between chapter 1 and

what we’ve covered so far in this chapter.

At the end of chapter 1, through the diagonalization of the Hamil-

tonian of the Gaussian model, we introduced a change of basis, de-

fined by the transfer matrix Φ, and operating on the conformation

of the polymer conformation R = (R⃗0, R⃗1, . . . R⃗N ). The elements of

the transformed conformation are the well-known Rouse modes of the

polymer, first presented in (1.47) and whose formula we remind below:

X⃗p =
1

N + 1

N∑

n=0

R⃗n cos

(
pπ

N + 1
(n+ 1

2 )

)
.

If we isolate a single component of X⃗p, say the x component, by pro-

jecting it on the basis vector e⃗x = (1, 0, 0), we get

Xpx = X⃗p · e⃗x =
1

N + 1

N∑

n=0

Rnx cos

(
pπ

N + 1
(n+ 1

2 )

)
(2.55)

Rouse modes as a DCT

We immediately recognize that the three components of the Rouse

modes are in fact a discrete transform of the corresponding spa-

tial components of the conformation, Rx. The kernel of the

corresponding discrete transform is the transfer matrix

Φnp =
1

(N + 1)
cos(

pπ

N + 1
(n+ 1/2)) (2.56)

such that the pth mode of the new transform for a signal xn

reads:

Xnew
p =

1

N + 1

N∑

n=0

xn cos
(

pπ
N+1

(
n+ 1

2

))
.

Now, a quite remarkable fact is that this discrete transfor-

mation is actually well known in the field of signal processing,

where it’s known as the type 2 Discrete Cosine Transform

(DCT-II), or DCT for short. The DCT is a Fourier-related

transform, in that it also projects a signal onto a set of sinu-

soidal functions, and each basis function corresponds to a single

frequency component:

XDCT
p =

1

N + 1

N∑

n=0

xn cos
(

pπ
N+1 (n+ 1

2 )
)
. (2.57)
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p=1 p=2

p=5 p=30

Figure 2.4: Reconstruction of a

stochastic signal (1D simple ran-

dom walk) of length N = 1000

using an increasing amount (p) of

DCT modes.

Figure 2.5: Periodization implied

by the DCT (top panel) and the

DFT (bottom panel) for the same

stochastic signal x(t) of length T =

100 (red).

Like the DFT, the DCT is an invertible transform and therefore

contains all the information about the original signal that can be re-

covered from the inverse DCT transform, sometimes referred to as the

iDCT. This has also already been presented in the case of Rouse modes

in equation (1.48), which we recall here, projected on the x axis:

R⃗n = X⃗0 + 2

N∑

p=1

X⃗px cos

(
pπ

N + 1
(n+ 1

2 )

)
.

It is both surprising and fortunate that the DCT should be the

transformation that diagonalizes the Rouse model Hamiltonian, as it

possesses specific properties that make it extremely useful in spectral

analysis. Notably, its ability to concentrate a maximum of sig-

nal variance in the smallest number of low-frequency modes,

while leaving the amplitudes of high-frequency modes close to 0. For

this reason, DCT is the most widely used transform for lossy signal

compression. Indeed, instead of transmitting the total N data points

of a signal, one can send only the significantly non-zero modes to the

receiver, which will contain an essentially unaltered version of the orig-

inal signal. For this reason, the DCT is the subject of thorough re-

search thus its properties are well known, and aggressively optimized

algorithms, based on the fast Fourier transform exist and permit its

efficient computation.

→Periodization induced by the DCT

The DCT, just like the DFT and any discrete Fourier-related trans-

form, induces a periodization of the signal due to the periodicity of

their kernel. As stated in the previous section, the DFT implies in-

deed a forward copy of the signal. Let x̂DFT(t) be the original signal

and x̂(t) the periodized signal, we have:

x̂DFT(t+mT ) = x(t) | t ∈ [0, T ] (2.58)

where m is an integer and T is the total duration of the signal. As

most random signals don’t start and end at the same point, the DFT

provokes a discontinuity in the periodized signal (see Figure 2.5,

bottom panel), which is known to reduce the rate of converges of the

transform, meaning it requires more sinusoids to represent the function

for a given accuracy.

However, DCT involves symmetrizing the signal before copying it.

We can construct a symmetrized signal y(t) from x(t) as follows

y(t) =




x(t) 0 < t < T

x(−t) −T < t < 0.
(2.59)

x̂DCT(t+mT ) = y(t) | t ∈ [−T, T ] (2.60)

Both x̂DFT and x̂DCT are depicted in Figure 2.5.

Hence, by construction, the periodization induced by the DCT com-

pletely avoids the discontinuity issue. This essential difference between

both transforms explains why the DCT is so popular for signal com-

pression.
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12 We may note that wn is not in-

variant to time translations, and the

Wiener-Khinchin theorem doesn’t ap-
ply here. Nevertheless, we are here in-

terested in the operational definition

of equation (2.43).

2.5 Interpreting the Squared Rouse Modes
as a PSD of the Polymer Conformation

We can now come back to our ultimate goal in this chapter, which is

the interpretation of the expression (1.59),

⟨X2
p⟩ =

3

8

kBT

k(N + 1)

1

sin2
(

pπ
2(N+1)

) ,

for the average amplitude of the Rouse modes ⟨X2
p⟩ of the Gaussian

chain.

2.5.1 Connecting Rouse modes, DCT spectrum and ran-

dom walk

Consider again a discrete 1-dimensional random walk

wN =

N∑

n=0

un

with Gaussian increments un as previously defined (equation (2.45)).

Let’s calculate the squared DCT of the signal wN , i.e. the DCT-

based spectrum of the discrete random walk12. Without any loss of

generality, we can set WDCT
0 = 0, which amounts to set the average of

the signal to 0. For p > 0, we have by definition

⟨WDCT
p

2⟩ =
〈(

1

(N + 1)

N∑

n=0

wn cos
(

pπ
N+1 (n+ 1

2 )
))2〉

(2.61)

=
1

(N + 1)2

N∑

n,m=0

⟨wn wm⟩ cos
(

pπ
N+1 (n+ 1

2 )
)
cos
(

pπ
N+1 (m+ 1

2 )
)
.

By using equation (2.48), we get then

⟨WDCT
p

2⟩ = σ2 1

N2

N∑

n,m=0

min(n,m) cos
(

pπ
N+1 (n+ 1

2 )
)
cos
(

pπ
N+1 (m+ 1

2 )
)

= σ2 1

(N + 1)2

N∑

m=0

[
m−1∑

n=0

n cos
(

pπ
N+1 (n+ 1

2 )
)
cos
(

pπ
N+1 (m+ 1

2 )
)

+

N∑

n=m

m cos
(

pπ
N+1 (n+ 1

2 )
)
cos
(

pπ
N+1 (m+ 1

2 )
)]

.

(2.62)

The last sum can be computed by converting to complex expo-

nentials and using geometric series summation formulas, or by using

Mathematica.
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Interpretation of (1.59)

Computing the sum yields:

⟨WDCT
p

2⟩ = σ2

8

1

(N + 1)

1

sin2
(

pπ
2(N+1)

) . (2.63)

The last expression allows us to finally connect the different

facets of our story: what we find here is that the DCT-based

PSD of a random walk (equation (2.63)) is equal to the am-

plitude fluctuations of the Rouse modes (equation (1.59)with

σ2 =
3kBT

k
= b2 (2.64)

where the last equality follows from equation (1.27) and shows that

the average step length of the random walk wn must indeed coincide

with the average value of the bonds of the Gaussian chain for the two

models to match.

In retrospect, this equality may seem almost self-evident, since the

conformations of the Gaussian model are random walks. However,

to my knowledge, this link has never been formally stated, let alone

studied. It’s striking how different the two paths to this result are.

We’ll see in later chapters that this analogy provides useful insights

when studying more complex polymer models. For now, let’s see what

else this analogy between spectral energy and Rouse modes can teach

us in the simpler context we’ve considered so far.

To begin with, we’re going to study the p≪ N limit of (2.63). But

before we’re in a position to tackle this question, we need to go off on a

little tangent by introducing a class of correlated stochastic processes,

the fractional Brownian motion, a generalization of Brownian motion,

and calculate their spectral properties. These results will be also useful

in the next chapters.

2.5.2 The p ≪ N limit and the power law prefactor

In subsection 1.5.2, assuming p ≪ N , we were able to expand

the sine in equation (1.59) to first order in p/N , giving us the

following approximation for the spectrum

⟨X2
p⟩ ≈

b2

2π2

N + 1

p2
∼ pα | α = −2 (2.65)

which, in light of the previous discussion, is easy to interpret.

Indeed, equation (2.65) shows that the Rouse model spec-

trum is proportional to the PSD for Brownian motion,

(see equation (2.54)).

Again, the identity b = σ has a direct interpretation ; moreover, we
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Figure 2.6: The low-p behaviors

of the spectra defined by equation

(2.65) for different values of N col-

lapse on the same p−2 power law

by taking ⟨X2
p⟩/(N + 1), according

to equation (2.65).
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can explain the factor N + 1, which comes from the fact that we’re

comparing an energy spectrum with a power spectrum.

Remembering that lower p modes are associated with large spatial

scales, the assumption p ≪ N can be interpreted as considering only

the large-scale features of the signal. This essentially means that,

looking at it from afar, the conformation of a discrete Gaussian chain

is identical to the trajectory of a Brownian particle - provided that

N is large enough. Again, this is not very surprising in hindsight,

but while the expanded expression (2.65) is present in virtually every

polymer physics book 13,14,15, this link is never discussed.

Figure 2.6 illustrates the power law behavior of (2.65) and its de-

pendence on N .

2.5.3 The aliasing interpretation of the large p limit

As p approaches N , the expansion of the sine function becomes in-

valid and the expression (2.63) for ⟨X2
p⟩ deviates from the power law

behavior. This deviation is clearly visible in Figure 2.6 for the largest

values of p, and can be understood thanks to the signal-conformation

analogy developed in this chapter. Indeed, aliasing offers an inter-

pretation for this discrepancy. We can think of the Gaussian model,

whose conformations are random walks, as a discrete sampling of con-

tinuous Brownian motion realizations. According to equation (2.54),

the Brownian motion spectrum is ∼ p−2, i.e. it has non-zero contri-

butions to all of its infinite amount of modes. It thus would need an

infinite sampling rate to be accurately sampled. Any sampling will

therefore induce aliasing : this explains the observed departure from

the 1/p2 behavior in the high-frequency modes.
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2.6 Conclusion / take-home messages

The main aim of this chapter was to introduce the novel concept

of polymer conformation power spectral density (PSD), defined from

the Rouse modes of a polymer, and to present some of its properties

through the instructive example of the Gaussian chain.

To this end, based on the analogy between polymer conformations

and stochastic processes, we established a previously unexplored link

between the Rouse modes of a chain and a discrete cosine transform

(DCT) of a signal.

By extending this, we were able to interpret the formula for the

mean square of the Rouse modes as a power spectral density, allowing

us to define the concept of a polymer’s spectral density as:

⟨X2
p⟩ =

〈[
1

N + 1

N∑

n=0

R⃗n cos

(
pπ

N + 1
(n+ 1

2 )

)]2〉
.

which represents the average frequency contributions to chain fluctu-

ations.

Digging deeper into this connection, we were able to interpret sev-

eral properties of this PSD:

• Firstly, its asymptotic power-law dependence can be interpreted as

a signature of the fractal nature of the chain. The exponent of

this power law provides information on the correlations between

the monomers.

• Equally important, we have seen that DCT, and therefore Rouse

modes, have the property of concentrating a maximum of polymer

information in a small number of low-frequency modes. This prop-

erty will prove crucial for the study of the coil-globule transition in

the next chapter, since, as we shall see, the collapse of the chain

implies a significant modification of its first modes.

• Finally, we were able to interpret the deviation of the spectrum from

this power law at high frequencies as a consequence of aliasing, hence

connecting it to the discreteness of the signal.

Now that the concept of PSD has been properly defined, we can

deploy it in the context of ”real polymer” models, where, as we shall

see, its relevance is even greater.
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3

Real Polymer Models and

the Coil-Globule

Transition

In the previous sections, ideal chain models were considered. Such

models neglect volume interactions – i.e. all interactions between seg-

ments that are far apart along the chain but potentially close in 3D

space – allowing their conformations to be mapped to the outcome of a

simple random walk. In contrast, real monomers in a fluid have finite

volumes that cannot overlap and, through their interactions with the

solvent and themselves, can effectively attract one another. As the

effective attraction increases, the polymer abruptly transitions from

a decondensed coil state to a dense globular state. As we’ve seen in

the case of ideal chains, the state of the polymer is generally identified

by the scaling of its gyration radius. This means that, given a set of

conformations at a fixed polymer length N , the information of its size

alone isn’t sufficient to characterize its state: one needs instead several

data sets, at different chain lengths, to capture its scaling and deduce

its state.

In this chapter, I propose a phenomenological method, based

on the spectral analysis previously developed, to determine, from

a set of conformations at a single polymer length, its folding state,

and use it to draw the phase diagram of the finite size coil-globule

phase transition. As we’ll see in the following chapter, the spectral

method developed here will be particularly well suited to analyze the

chromatin conformation data from Bintu et al.1.

In section 3.1, I start by recalling classical results concerning the

coil-globule phase transition, including the polymer size scal-

ing in each phase and an introduction to finite-size effects. Then,

in section 3.2, I present the interacting self-avoiding walk

(iSAW)model and a simulation scheme for generating iSAW con-

formations. In section 3.3 and section 3.4, I analyze the power

spectral density for the polymers in the coil and globule phase,

respectively.
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Figure 3.1: The Lennard-Jones

potential u(r) = 4ϵF ((σ/r)
12 −

(σ/r)6) is typically chosen to model

volume interaction potential. The

parameter ϵF controls the depth of

the potential well, while σ specifies

the distance at which the potential

is zero, often referred to as the ’size

of the particle’. The position of the

minimum is fixed by the value of σ:

r0 = σ

21/6

Starting from this characterization, I’ll define in section 3.5 a

spectral-based order parameter for the coil-globule phase tran-

sition, that enables me to draw the phase diagram of the transi-

tion.

Finally, in section 3.6, to prepare the data analysis to come in

the next chapter, I study the consequences of sub-sampling the

polymer on the power spectral density.

The main results presented in this chapter have been published

in the paper

Assessing the polymer coil-globule state from the very first

spectral modes.

by Timothy Földes, Antony Lesage and Maria Barbi

Physical Review Letters 127.27 (2021): 277801,

also available at https://hal.science/hal-03466632.

3.1 Overview of the Coil-Globule Phase
Transition

3.1.1 Volume Interactions

→ Excluded volume and self-avoiding walk

In specific conditions - typically for high temperature or high affinity

between monomers and solvent molecules - the only contribution to

monomer-monomer interaction is due to steric repulsion. Excluded

volume due to one monomer influences the position of all other mono-

mers, inducing long-range interactions along the chain and restricting

the accessible conformations to those where the chain doesn’t overlap

with itself. The resulting conformations are no longer simple ran-

dom walks but instead as self-avoiding walks (SAW), i.e. three-

dimensional walks that do not visit the same point more than once.

The polymer thus occupies more space resulting in swollen, elongated

conformations called coils.

→ Monomer attraction and effective potential

On the other hand, when strong effective attractive interactions occur

- either through van der Waals forces or a poor affinity with the sol-

vent molecules - monomers are forced together, spatially confining the

polymer and producing curled-up conformations called globules.

A single volume interaction potential u(r) can be chosen to model

both attractive and repulsive interactions between two non-bonded

monomers located at a distance r from each other. Thanks to uni-

versality, in the thermodynamic limit, its specific functional form does

not influence the scaling properties of the resulting models, provided

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.277801
https://hal.science/hal-03466632
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2 Normally noted ϵ. The subscript F
is here added to differentiate from the

adimensional energy parameter ϵ =

ϵF /kBT .

it has a form close to that schematically represented in Figure 3.1. At

short distances, it must be strongly positive - typically diverging as r

tends towards zero - so to account for excluded volume. It must then

become attractive at intermediate distances, where it must display a

potential well, and tend towards zero at long distances as the attrac-

tion vanishes. The distance at which u(r) = 0, noted σ, controls the

excluded volume or size of a monomer and the depth of the potential

well, while the amplitude parameter2 ϵF controls the intensity of at-

tractive interactions. In Figure 3.1, the most popular example of such

a potential, the Lennard-Jones (LJ) potential is shown.

The state of a solvated polymer depends only on the relative strength

of the inter-monomer forces and the thermal energy provided by the

fluid, accounted for by the energy parameter ϵ = ϵF /kBT , that I

will use all along this thesis.

3.1.2 Gyration radius scaling across the coil-globule phase

transition

The usual observable used to qualify the polymer’s state is its average

gyration radius, defined in chapter 2 as the root-mean-square dis-

tance of the monomers to the center of mass of the polymer, that gives

a measure of the polymer’s size (see equation (1.14)). Its scaling with

respect to the number of monomers N , for N ≫ 1, follows a power

law:

⟨R2
g(N)⟩ ∼ N2ψ (3.1)

where the value of the exponent ψ = 1/d, with d the fractal dimension

of the polymer, discriminates between different polymer states.

Figure 3.2: The gyration radius

is plotted in log-log scale versus the

degree of polymerization N for dif-

ferent values of ϵ. The figure is

taken from [47].

In the coil state, the swollen polymer’s gyration radius scales as Nν ,

where ν ≈ 0.588 is the Flory exponent; in the globular state, the

collapsed polymer acts like a space-filling curve and Rg ∼ N1/3. A

graphical representation of the scaling of the Rg function of N for

different values of ϵ is depicted in figure 3.2.
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In the scaling limit, N → ∞, the polymer undergoes a genuine phase

transition, called polymer collapse or coil-globule phase transition,

at a particular value of the energy parameter called the θ-energy and

noted ϵθ hereafter. For ϵ < ϵθ steric interactions prevail and swollen

conformations are favored, while for ϵ > ϵθ attractive interactions dom-

inate and globular states are observed. At ϵ = ϵθ, attractive and repul-

sive effects compensate, and the polymer behaves like an ideal chain,

mimicking the ideal random walk scaling Rg ∼ N1/2. Note that the

value of ϵθ isn’t universal as it depends on the choice of u(r) and the

bonding potential.

Size scaling across the coil-globule phase transition

Summary of conditions and scaling exponents expected for the

three typical polymer folding states.

Coil θ-conditions Globule

Condition: ϵ < ϵθ ϵθ ϵθ < ϵ

scaling exponent: 3/5 1/2 1/3

3.1.3 Finite size effects

In the case of finite-sized polymers 3, the sharp collapse at ϵθ is replaced

by a more complex, continuous transition of finite width ∆ϵ. At

finite polymer length, for ϵ slightly below the ϵ ∈ [ϵθ, ϵθ + ∆ϵ] the

attractive forces still aren’t enough to fully collapse the polymer into

a proper globule. Instead, the polymer enters the crossover regime

or transition phase in which its state is ill-defined, and still poorly

understood. When approaching ϵθ + ∆ϵ, the polymer goes from a

denser ideal chain at energies slightly under ϵθ to a state with a globular

core and decreasing density towards its edges4. Due to the cooperative

nature of the transition, the width of the transition ∆ϵ increases

as the number of monomers decreases, meaning it requires more

energy to fully collapse a smaller chain.

3.2 Monte Carlo Simulation of On-lattice
Collapsing Polymers

Apart from the thermodynamic scaling of polymer size, derived by

Flory and reported in Figure 3.1.2, theoretical results concerning the

coil-globule transition are notoriously difficult to obtain, requiring com-

plex field-theoretic tools and rather crude approximations5. Conse-

quently, major recent theoretical advances have been made possible

by the deployment of computer simulations, which have repeatedly

invalidated field-theoretic predictions6,7.

For this reason, to study the spectral behavior of collapsing chains,

we will not attempt to derive exact results, but instead use extensive in-

silico experiments, followed by a phase of extensive statistical analysis

of the results.



62 go to ToC

8 The specific choice of the lattice

again won’t change the scaling behav-

ior of the resulting models but only
the non-universal features, typically

the value of ϵθ.

9 M. C. Tesi, E. J. Janse van Rensburg
et al. Monte carlo study of the in-

teracting self-avoiding walk model in
three dimensions. Journal of Statisti-
cal Physics, 1996, [77].

In the following section, I begin by introducing and justifying the

use of lattice-based polymer models, and present a model relevant to

the study of chain collapse. I then briefly describe the program I used

for simulating this model.

3.2.1 On-lattice models and the Interacting Self Avoiding

Walk Model

Thanks to the universal nature of the coil-globule phase transition,

many of its properties can be studied using any type of bonding and

volume interaction potentials, provided that some essential properties

are ensured. In fact, we can even restrict the space in which the poly-

mer evolves to a discrete space, i.e. the position of each monomer

R⃗n, instead of tacking values in R3, can live on some discrete lattice

without altering universal features of the transition8.

Of course, the most common choice is the cubic lattice aZ3 where

a is the distance between two neighboring lattice sites, but other more

elaborate lattices can be chosen for algorithmic optimization.

Simply sampling N points in aZ3 will obviously not generate a

proper polymer conformation. The minimum requirement is to add

the chain connectivity. The simplest way is to fix the bond length to

the lattice spacing a simply meaning that two bonded monomers must

be placed on neighboring sites. If only this requirement is enforced,

configurations of this model will be simple random walks on the cubic

lattice and thus will belong to the ideal universality class along with

the FJC and the Gaussian Chain. To generate real polymers, we need

to add more restrictions to model volume interactions.

The excluded volume between beads is modeled by enforcing that

each lattice site be occupied by at most one monomer. Technically,

this can implemented by assigning infinite energy to any conforma-

tion containing overlapping monomers. Without any other restriction,

the resulting conformations are SAWs and model polymers

in the high-temperature phase, where attractive interactions are

completely neglected.

To model the monomer-monomer attraction, however, we can add

an energetic proclivity for 3D nearest neighbor (NN) contacts by

subtracting a fixed amount of energy ϵF for each NN contact. For a

self-avoiding conformation, the energy of a given conformation writes:

E = −ncϵF (3.2)

Where nc is the number of monomers that are one lattice edge apart

in the conformation. Of course, the parameter ϵF controls the intensity

of the attractive interaction, identically to its homonym defined earlier.

The resulting model is called the interacting Self Avoiding Walk

(iSAW)9.

All in all, in the canonical ensemble, the probability of a conforma-
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−ε

Head

Tail

tion R in the iSAW model is given by

P (R) =





1
Z e

ncϵF
kBT = 1

Z e
ncϵ if connectivity isn’t broken and beads

don’t overlap

0 otherwise

(3.3)

where Z is the canonical partition function of the model and we have

defined the energy parameter ϵ = ϵF /kBT . As we’ll see further on,

the iSAW model presents all the features of the coil-globule phase

transition and is extremely efficient to simulate.

3.2.2 Monte Carlo Simulations of the On-lattice Interact-

ing Self Avoiding Walk Model

For this part, I used a high-performance, optimized Monte Carlo sim-

ulation code written in Rust by Antony Lesage during his thesis. He

was kind enough to provide it to me and explain how it works and how

to run it.

To draw conformations from Equation 3.3, we employ the Monte

Carlo sampling method with the Metropolis-Hastings acceptance ratio

and reptation moves. The idea of this move is to delete the tail of the

polymer and add, in a randomly chosen direction, a new monomer at

the head of the polymer. The motion of such a polymer, in Monte

Carlo time, resembles that of a snake, thus the street name of this

algorithm: the slithering snake. The algorithm goes as follows

1. We start from an initial SAW configuration.

2. Compute the initial conformation’s energy Eold by counting NN

contact.

3. Pick randomly an orientation for the polymer (head or tail).

4. Delete the last tail monomer.

5. Pick randomly a position for the new head. Reject conformation if

self-avoidance isn’t respected.

6. Compute the new conformation’s energy Enew

7. Accept the new conformation with the Metropolis-Hastings accep-

tance ratio

∆ = max
(
1, e−(Enew−Eold)/kBT

)

It is, of course, highly inefficient to record the conformation every time

a move is accepted. It is preferable to record a set of conformations

that are completely decorrelated from one another, i.e. to wait for a

decorrelation time τ between two conformation captures. The decor-

relation time has been conjectured to be τ = 1/2N2 and does, indeed,

allow decorrelated conformations to be obtained over the ϵ range ex-

plored.

In the next section, I analyze, to the best of my knowledge for the

first time, the equilibrium amplitude of the Rouse modes of simulated
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Figure 3.3: A single conformation

of a coil
10 A. Khokhlov. Statistical Physics
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1994, [16].

13 Or Gaussian chain model.

polymers in a wide range of N and ϵ and give an interpretation of

the result using the analogy between the Rouse mode and the power

spectral density developed in chapter 2.

3.3 The power spectrum of a coil poly-
mer

In this section, I analyze the power spectrum of purely repulsive poly-

mers, the prototypical coil polymers, and show that it follows a char-

acteristic power-law dependence in p. By comparison with attractive

chains, this result will allow formal characterization of polymers in the

coil state.

3.3.1 Self Avoiding Walk Scaling

In the large N limit, when the attraction ϵF is much lower than kBT ,

the repulsive interaction between monomers dominates and the chain

behaves as if no attractive interaction was present. The fundamen-

tal difference between this chain and the Gaussian chain is that the

volume occupied by a monomer is not accessible to the rest of the

chain. Conformations of these polymers can be thought of as random

walks where steps are chosen to avoid earlier visited positions, a.k.a

self-avoiding walks (SAW). Owing to the universality of the macro fea-

tures of the coils10, one can study the simplest SAW, the cubic lattice

SAW, and expect its statistics to be identical to other coils.

Since each monomer has to avoid all other monomers, the position of

one part of the chain depends on the position of the rest of the chain (in

spatial dimension smaller11 than 4). Consequently, the self-avoidance

property induces positive long-range correlations between steps

that affect its large-scale statistics. The internal end-to-end vector

amplitude, for a large enough segment s, exhibits a power law behavior

R2(s) ∼ s2ν (3.4)

where ν = 0.588 > 0.5 in 3D12. Consequently, the effect of self-

avoidance is to swell the physical dimension of the coil with respect

to an ideal chain (see Figure 3.3).

Importantly, the power-law behavior of the internal end-to-end dis-

tance (3.4) indicates that, as for ideal polymers, the conformations

of the coil are statistical fractals. The different critical exponent

indicates their place within different universality classes.

3.3.2 Extending the Rouse modes analysis to a self-avoiding

polymer model

In principle, it is possible to build a model for a self-avoiding polymer

by adding volume exclusion to the bead-spring model13 through the

introduction of a purely repulsive potential force between all monomers

(the same of Figure 3.1, shifted by ϵF and truncated at the bottom of

its minimum, for example). However, doing so adds non-linear terms to
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note, furthermore, that for large p,

similarly to the PSD of the ideal poly-
mer, the power spectrum is found to

deviate from its power law behavior.

As discussed in subsection 2.5.3 this
discrepancy is due to the discrete na-

ture of the polymer model.

the Hamiltonian. The Rouse modes, in principle, no longer diagonalize

the Hamiltonian and, consequently, the equation

⟨X⃗p(0).X⃗q(t)⟩ ∼
N

p2
e
− t

τp δpq (3.5)

no longer holds and no analytical result for their equilibrium amplitude

is known.

However, D. Panja and G. Barkema, in the context of polymer dy-

namics, proposed an approximate formula 14 for the correlation func-

tion of the Rouse long-wavelength modes of the self-avoiding polymer.

For N ≫ 1, they make the ansatz that

⟨X⃗p(0).X⃗q(t)⟩ ≈ A1
N1+2ν

p1+2ν
e
−A2

N1+2ν

p1+2ν tδpq , (3.6)

where ν is the Flory exponent ν ≃ 0.588 and A1 and A2 are two con-

stants. This assumes that different modes are uncorrelated. Although

this isn’t exact, it holds up to a very good approximation and allows

the analytical computation of dynamical observables.

When evaluated in p = q and t = 0, Equation (3.6) gives an ap-

proximate formula for the PSD of the self-avoiding polymer:

⟨X⃗2
p⟩ ≈ A1

N2ν

p1+2ν
∝ 1

p1+2ν
=

1

pα
, (3.7)

with, therefore, exponent α = 1 + 2ν ≃ 2.176.

Figure 3.4: In orange the PSD,

⟨X2
p⟩, for simulated coil polymers

of different length N is depicted. In

light grey, the PSD of a Gaussian

chain polymer is shown for compar-

ison.

In Figure 3.4 I plot the PSD of self-avoiding on-lattice polymers

and find that it indeed obeys the power law predicted in 15 (Equation

(3.7)). The discrepancy in the exponent for small values of N , seems

to be primarily a finite size effect, since it disappears as N increases.
16
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PSD scaling for the coil polymer

We conclude that the characterizing feature of the PSD of

the coil state is a power law decay with exponent

⟨X2
p⟩ ∼ pα | α = 2ν + 1 ≈ −2.17 (3.8)

Thus, the coil state is easily identifiable from the PSD of a given

polymer: Given a set of equilibrium conformations, we can calcu-

late the PSD of the polymer and, if we find a power law decay,

the polymer is an ideal coil if α = 2, or an expanded coil if

α = 2ν + 1.

3.3.3 Interpretation of the coil PSD

The Equation (3.7) is given in Ref. 17 on a heuristic basis, without

specific rationale. In light of the spectral interpretation of the Rouse

modes, I propose an original interpretation of such a power law decay

in the ⟨X2
p⟩, as follows.

The fractal nature of the SAW means that its statistical properties

are scale invariant18,19,20. Hence, we expect a power law PSD, intu-

itively related to the presence of long-range correlations induced by

steric interaction. Moreover, the same power law decay was observed

in the PSD of fractional Brownian motion (fBm) introduced in

section 2.3. As we have seen, the Hurst exponent H quantifies the

correlations of the increments. The comparison with the size scaling

⟨R2⟩ ∼ N2ν would lead to the ansatz H = ν which appoints the PSD

found by (3.7).

To recapitulate, for ideal chains we found that the projection of the

conformations on a particular axis were simple random walks yielding

α = 2 as a power law exponent. In the case of coils, the excluded

volume of monomers induces long-range correlations along the polymer

and the projection of the conformation on an axis is now a random

walk with positively correlated steps of parameter H = ν, yielding

α = 1 + 2ν.

3.4 The power spectrum of globule poly-

mers

In the scaling limit N → ∞, at ϵ > ϵθ, the attractive interactions

among the monomers are strong enough to collapse the polymer into

a homogeneous, roughly spherical shape of densely packed mo-

nomers called the equilibrium globule. Due to its homogeneous

density, this globular state is commonly characterized by its size scal-

ing

⟨R2
g⟩ ∼ N2α ∼ N2/3 (3.9)

the exponent α = 1/3 being typical of the scaling of a space-filling,

3D solid object. However, the gyration radius clearly provides no
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Figure 3.5: In blue a globule con-

formation of length N = 12000

and a subchain of length g∗ =

120002/3 ≈ 624, in green. The

statistics of the subchain are ex-

pected to be Gaussian, according

to standard polymer theory.

information about the spatial configuration of the polymer. To remedy

this, we need to describe the trajectory of the chain inside the globule.

3.4.1 The Internal Globule Structure

The usual description of a collapsed polymer is that of a linear chain

compressed within a spherical volume of radius ∼ Rg. Over small

length scales, the polymer behaves like an ideal chain, until it reaches

the volume boundary, where it is reflected and starts an independent

random walk21. The globule can thus be thought of as a dense liquid

of independent ideal chains, otherwise called a polymer melt. The

ideal behavior of the chain on small length scales is a feature of polymer

melts22 which will be discussed in the next chapter when we turn to

the dynamic aspects of polymer physics. From this analogy, we can

deduce its internal end-to-end distance function

R2(s) ∼




s for s < s∗

R2
g for s > s∗,

(3.10)

with the same critical number s∗ related to the globule size. To

determine s∗ we can reason as follows. For sub-chains that fit into the

dimension of the globule, Rg, the scaling is that of an ideal chain, while

longer chains have their size limited by Rg. Hence, we can deduce that

R2(s∗) = s∗ = N2/3. (3.11)

It’s important to note that despite the power-law dependence of the

gyration radius, the globule is not a fractal object, since its scaling

behavior changes for longer distances along the chain. The size of the

compact ball formed by the stacking of all its monomers is, indeed, an

intrinsic length scale of the system.

3.4.2 PSD of globules

The PSD of an on-lattice polymer at N = 3000 and ϵ = 0.6 ≫ ϵθ,

which is a typical globular polymer, is plotted in log/log scale in Fig-

ure 3.6.

We observe that the PSD has the following structure:

• In the first few low frenquency modes, the PSD is almost constant,

αl ≈ 0;

• In the high frequency modes p > 30 the PSD is found to retrieve a

αh ≈ 2 power law decay, characteristic of the ideal state;

• A curved region links both regimes, around a critical mode number

p∗, that is close to p = 10 in the case of Figure 3.6.

• And again we observe aliasing at the highest frequencies in the

spectrum.

The PSD of the globule conformations is thus characterized by

a constant spectrum for small values of p and a power law
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Figure 3.6: Power spectrum of

an interacting polymer with inter-

action parameter ϵ = 0.5 and N =

3000. The dashed lines correspond

to p0 and p−2respectively. αl and

αs are the slopes in the log-log plot

between the modes 1-2 and 100-200

respectively

decay with α = 2 for large values of p. In the following paragraph,

I attempt to explain its shape by using the fruitful analogy between

polymer conformations and stochastic processes.

Given a discrete signal x = (x1...xN ) and its discrete cosine trans-

form X = (X1...XN ), truncating the DCT at Xn, 0 < n < N ,

is equivalent to re-sampling x at a sampling rate of ∆ = n/N or,

equivalently, keeping only every m sample in x such that N = nm. In

other words, the DCT of the re-sampled signal is equal to the trun-

cated DCT. We notice that the re-sampling procedure is analogous to

the coarse-graining procedure as explained in section 1.3, where, by

regrouping several monomers of the freely jointed chain, I derived a

statistically equivalent model, the bead spring model.

If we apply the coarse-graining procedure to the globule by truncating

at the p∗th mode, where the flat plateau in the spectrum starts, the

result is a coarse-grained polymer of n ”super-monomers” or blobs,

consisting each of m original monomers, such that N = mn.

Now, as we have seen, the power spectrum of such coarse-grained poly-

mer is approximately constant, i.e. equivalent to the PSD of white

noise, meaning that the positions of the blobs are uncorrelated.

Thus, at large scales, the polymer can be seen as several uncorrelated

blobs of m monomers.

Besides, the information about the small-scale structure of the glob-

ule is contained in the higher frequencies of the PSD where it retrieves

its α = 2 power law decay, meaning that inside the blobs, the polymer

essentially behaves like an ideal chain. All in all, as expected, the

globular state can indeed be seen as a ”liquid” of uncorrelated large

blobs composed of ideal polymers.
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Figure 3.7: Globule PSD for sev-

eral values of N function of p/p∗.

The curves are seen to collapse,

confirming the scaling for p∗.

3.4.3 Link between the critical mode p∗ and the corre-

sponding length size s∗, and conclusions

Of course, the smallest number of monomers m∗ in a blob such that

the blobs are decorrelated is exactly the number of monomers between

two reflections, i.e. s∗. Consequently, the value of p∗ at which the

plateau begins should be given by

N

p∗
∼ s∗ ∼ N2/3

p∗ ∼ N1/3 (3.12)

This scaling law is checked in Figure 3.7 by plotting the PSD for

different-sized globules function of p/p∗, which aligns the fracture

points of the curves.

PSD scaling for the globule polymer

We found that the PSD of globules is characterized by a seg-

mented shape:

1. in the low frequency modes, p < p∗, it assumes a constant

spectrum

⟨X2
p⟩ ∼ pα | α = 0 (3.13)

2. an a power law with exponent α = 2 in the high frequency

modes.

We related the PSD to the structure of the globule conforma-

tions: at small length scales, the globule behaves like a simple

random walk, while at large scales, monomers are completely

uncorrelated.

Given a set of conformations of an interacting polymer, since coils and

globules have identical spectrums at high frequencies, to characterize

its state, one can look at the low-frequency modes alone. If α ≈ 0 we

are in the globule state, if α ≈ 2ν+1 we are in the coil state. This is a

useful result since it allows to identify the state of a polymer of

given N and ϵ from a set of conformations, i.e. without having

access to the scaling of its gyration radius.

In the following section, I demonstrate the value of this result by

using it to draw a phase diagram of the finite-size coil-globule phase

transition.
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3.5 Phase diagram of the coil-globule
phase transition

A phase diagram (PD) is a graphical representation of the state of

a system. Each axis represents a physical parameter of the system,

and at each point of the graph is associated the state of the system

at those particular values of the physical parameters. The state of

the system is characterized by an order parameter. In the thermo-

dynamic limit, the PD is split in distinct phases where the system

is found in a specific state defined by the value of the order parame-

ter, separated by critical curves along which the system undergoes

a phase transition.

In the case of the coil-globule phase transition, in the thermody-

namic limit, the only physical parameter is the dimensionless energy

parameter ϵ = ϵF /kBT . Thus, the PD is one dimensional, split by

a critical point, the θ-point, that we note ϵθ. Determining the latter

fully establishes the PD. The order parameter of the system is gen-

erally chosen as Rg [47], or a function of it, and its scaling defines

the state of the polymer, as seen in table 3.1.2. An operational way

of defining ϵθ is as the temperature (or energy) at which the repul-

sive and attractive forces exactly compensate. At this point, since the

phase transition is of second order, the specific heat of the system

diverges[8, 10mm].

In the finite N case, two physical parameters determine the state of

the system, ϵ and N ; thus the PD is two-dimensional. At finite size,

the polymer goes from one state to the other smoothly, and both the

sharpness and the position of the transition depend on N . The system

only performs a true phase transition in the thermodynamic limit, in

finite-size systems, the very concept of a transition line is ill-defined.

Nevertheless, certain statistical observables show particular behavior

at specific points in the transition region, allowing for the definition

of several transition lines. Inspired by the system’s critical behavior

in the N → ∞ limit, we notice that, at fixed N , the specific heat

per monomer (the variance of the energy of a typical monomer) hits

a maximum in the transition region, whose coordinates (N, ϵ
cp
θ (N))

can be defined as a transition line. Similarly, the transition line can

be defined as the coordinates (N, ϵRWθ (N)) at which the polymer is in

the ideal, RW-like state. These transition lines are distinct, but all

converge in the thermodynamic limit to ϵθ.

In the following section, I propose an original way of determining

the PD of the coil-globule phase transition, based on the spectral char-

acterization of the coil and the globule state developed in the preceding

sections, which not only gives the critical curve, but also gives an idea

of how far the system is from the phase transition, thus an idea of the

transition width.
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3.5.1 The PSD Throughout the Collapse and the order

parameter α

→Evolution of the PSD throughout the collapse

In Figure 3.8, the PSD of a polymer of lengthN = 1137 and interaction

parameter ϵ ranging from 0 to 0.6 is shown. We recognize immediately

the characteristic power-law shape of the (orange) coil PSD, and the

(blue) segmented globule PSD. The black curves correspond to values

of ϵ for which the polymer is undergoing the coil-globule phase tran-

sition. A global inspection of these curves allows for a few remarks.
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2 p

a =  2.179
a =  2.193
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a =  0.077
a =  0.068
a =  0.065
a =  0.046

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Figure 3.8: Averaged PSD cal-

culated over an ensemble of 16384

on-lattice MC simulated configura-

tion and over the three spatial di-

rections. Standard deviations are

smaller than the symbol size. The

parameter ϵ varies from 0 to 0.6

(see color bar).

First, all the curves essentially merge in the high-frequency part of the

spectrum, p > 30, which means that the local structure of the chain

hardly changes at all during the transition. As mentioned above, on

closer inspection, the slope of the high-frequency modes is in reality

slightly lower in the globules, α = −2 versus −2.17 in the coil, while

the amplitude remains essentially the same.

However, the low-frequency modes change radically before and after

the transition: they are greatly suppressed in the globule phase.

Now let’s look closer at the behavior of the low-frequency modes

during the collapse. The collapse can be decomposed into 3 stages,

depicted in Figure 3.9:

• Let’s start from the low-interaction or high-temperature phase, 0 <

ϵ < 0.27 (left panel). At ϵ = 0, the PSD exhibits a perfect power

law with exponent α = −2.17 as expected. As epsilon increases,

the PSD retains its power-law form, but the value of α decreases

slightly until it reaches the value of -2 at ϵ = 0.27. This value of α is

indicative of ideal chain conformations: hence, at ϵ = ϵθ = 0.27,

the polymer is in the θ-conditions (as usually defined from the

conformation point of view).

• For 0.27 < ϵ < 0.40, the polymer enters the cross-over phase, dur-

ing which conformational changes take place, resulting in the PSD
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changing dramatically. From the ideal-state power law behavior, a

bend appears in the low-frequency modes whose curvature increases

with ϵ, until the plateau in the low-frequency modes appears and

the PSD settles in the segmented shape characteristic of the globule

phase.

• At ϵ > 0.40, the globule is formed and becomes increasingly compact

as ϵ increases, leaving the overall shape of the PSD unchanged, with

only the location of the plateau gradually decreasing.

Figure 3.9: The same PSD of Fig-

ure 3.8 where the different phases

of the transition are evidenced.→The Order Parameter α

Clearly, the conformational changes occurring during the phase tran-

sition are concentrated in the low-frequency modes. Inspired by this

fact, let’s define a statistical observable, based on the low-frequency

modes, that captures the change in spectral properties of the poly-

mer.

Definition of the order parameter alpha

Let’s consider the log-log slope in the first two modes

αN (ϵ) =
ln⟨X2

2 ⟩ − ln⟨X2
1 ⟩

ln 2− ln 1
=

1

ln 2
ln

⟨X2
2 ⟩

⟨X2
1 ⟩
. (3.14)

The value of αN (ϵ) for the spectrums of Figure 3.8 are plotted in

Figure 3.10. As the polymer collapses, αN (ϵ) continuously evolves

from −(2ν + 1) ≈ 2.176 to 0. Due to the universal nature of the

spatial fluctuation regimes in both the coil and the globule phase, α

possesses the property that it has a well-defined value in both phases,

making it a good choice for an order parameter for the transition.
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Figure 3.10: The slope αN (ϵ)

of the log-log representation of the

PSD, estimated from the first 2

modes, as a function of ϵ.The red

dots indicate the two critical points

as discussed in the text.

From the curve αN (ϵ), we can a priori define a critical point ϵθ(N)

which will constitute a point on the critical line of the transition. As

the spectral point of view has never been used before to study this

phase transition, we need to define the criterion for identifying the

critical point ourselves, which we’ll do in the next section.

3.5.2 Critical Points at fixed N

In this section, we use the spectral properties of the collapsing chain

to define three statistical quantities that will identify a critical point

along an iso-N line in the (N, ϵ) phase diagram. The first two can be

defined from the curve αN (ϵ) and the third will be defined from the

fluctuations of αN (ϵ).

→RW Critical Point

As mentioned earlier, we expect the polymer to exhibit ideal chain

behavior at the so-called Flory critical point. Thus we define a

critical point ϵRWθ (N) as the value of ϵ at which the order parameter

α is equal to −2, i.e.

αN (ϵRWθ (N)) = −2 (3.15)

In Figure 3.10, this corresponds to the intersection of the α curve with

the horizontal line y = −2.

→Sigmoid Inflection Point

When the temperature is lowered below ϵRWθ (N), the polymer enters

the cross-over phase. From this energy value, the rate of increase of

the order parameter, or susceptibility of the order parameter w.r.t

ϵ, defined as
∂αN
∂ϵ

(ϵ), (3.16)

rapidly increases until it hits a maximum at the mid-point of the curve,

and starts decreasing again, until it goes back to 0 in the globule phase.
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we can define a critical point as the value of ϵ at which the max in

susceptibility is reached, i.e:

ϵIθ(N) = argmax

(
∂αN
∂ϵ

(ϵ)

)
. (3.17)

To compute the value of ϵIθ(N) for a specific value of N we fit the

αN (ϵ) curve with the following generic 4-parameter sigmoid function:

S(x) = D +
A(x−B)√

1 + C(x−B)2
(3.18)

whose inflection point, given by the parameter B, offers a simple pro-

cedure to determine ϵIθ(N) from the order parameter curve at fixed N .

→Relative Fluctuations in the Modes and Associated Critical Point

The last transition line we define is related to the fluctuations of the

order parameter. Let’s start by defining the relative fluctuations

cv, otherwise called coefficient of variation of mode p defined as

CV [X2
p ] =

σX2
p

⟨X2
p⟩

(3.19)

where σX2
p
is the standard deviation of the random variable X2

p (see

the side figure for a reminder of statistical definitions). The curve for

CV [X2
p ](ϵ) for the first 9 modes is drawn in Figure 3.11.

We notice a peak in the first modes, that attenuates rapidly with

p. We define our third critical line as the ϵ value at which this peak

is reached. In practice, since the effect is strongest in the first mode,

we’ll use the relative fluctuations of X1. Thus, we define :

ϵFθ (N) = argmax
(
CV [X2

1 ](ϵ)
)
. (3.20)
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Figure 3.11: Cv curves for the

first 9 Rouse modes of a polymer

of size N = 3000. The color of

the dots is based on the order pa-

rameter α and indicates the fold-

ing state of the polymer, orange for

coils, blue for globules, and black

for transition
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In the following section, we compute all three critical lines by com-

puting the value of all three critical energies for different values of N

and plot the phase diagram of the finite-size coil-globule phase transi-

tion.

3.5.3 Critical lines

To compute the aforementioned critical lines, I have simulated 16000

conformations of polymers with sizes ranging from N = 101 to N =

3000 and interaction parameter ϵ from 0 to 1, then computed the value

of α and CV for each simulation.

The plots of αN (ϵ) are shown in Figure 3.12. For each polymer

length, by fitting the sigmoid (3.18) to αN (ϵ) we could extract the

critical curves ϵIθ(N) and ϵRWθ (N), shown in Figure 3.12, lower plots.

The fluctuations of αN (ϵ), as defined by CV in equation (3.19), are

shown in Figure 3.13. By computing the max of the CV curves we

extracted ϵRWθ (F ) (Figure 3.13, bottom).
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Figure 3.12: Top panel: Log-

log plot slope αN (ε) estimated on

the first 2 modes of Power Spectral

density (dots) for all polymers sizes

N from 101 to 3000 (right to left).

For each N , αN (ε) is fitted by a

sigmoid (3.18) (lines). Colored cir-

cles are inflection points, defining

εI(N).

Bottom left: the Random Walk

critical line ϵRW as a function of

N , fitted by (3.22) (dashed curve)

Bottom right: The sigmoid inflec-

tion point critical line as a func-

tion of N , fitted by (3.22) (dashed

curve).

On both bottom plots, the horizon-

tal dashed line corresponds to the

fitted asymptotic value ϵθ.

No theoretical prediction is available for the critical lines based on

spectral quantities, but it is reasonable to suppose that they follow a

similar scaling as their classically defined counterparts - the divergence

of the specific heat and the random walk scaling of the gyration radius

- which follow the same scaling. Different predictions are available

for this scaling: the standard mean-field prediction provided by Flory

theory is

ϵθ(N) =
a√
N

+ ϵθ (3.21)
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Figure 3.13: Top panel : Cv
curves of the first mode for poly-

mers of size N from 101 to 3000.

The color scheme matches that of

Figure 3.12.

Bottom Left: the colored points are

the value of maxcv as a function of

the polymer size N . The dashed

line is fit with the logarithmic func-

tion b log(Na).

Bottom right: Value of the fluc-

tuations maxima critical points ϵF
function of N fitted by (3.22).

23 T. Vogel, M. Bachmann et al. Freez-

ing and collapse of flexible polymers

on regular lattices in three dimen-
sions. Physical Review E, 76(6), Dec.

2007, [81].

24 T. Vogel, M. Bachmann et al. Freez-

ing and collapse of flexible polymers
on regular lattices in three dimen-

sions. Physical Review E, 76(6), Dec.

2007, [81].

where ϵθ is the N → ∞ transition point. Otherwise, 23 showed by

on-lattice simulations that the boundary between the two phases is

best fitted by a function of the form

ϵθ(N) =
a1√
N

+
a2
N

+ ϵθ. (3.22)

Both functions were excellent fits, but, as for 24, equation (3.22) fits our

data slightly better and was consequently employed for our analysis.

Critical Lines Fitting and Asymptotic Value

of the Critical Energy ϵθ

Fitting all three spectral-based curves previously obtained by

equation (3.22) provides the asymptotic values ϵθ and the pref-

actors a1 and a2 given in the following table

Data a1 a2 ϵθ

ϵI(N) 2.1± 0.04 3.3± 0.9 0.2694± 0.0005

ϵF (N) 2.5± 0.09 2.7± 1.8 0.270± 0.002

ϵRW (N) 0.0± 0.1 4.6± 1.8 0.269± 0.003

As expected, all three critical lines converge to the same asymp-

totic value. Moreover, its value

ϵθ ≈ 0.269 (3.23)

is in perfect agreement with previous numerical estimates
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25 T. Vogel, M. Bachmann et al. Freez-
ing and collapse of flexible polymers

on regular lattices in three dimen-

sions. Physical Review E, 76(6), Dec.
2007, [81].

Specific heat divergence contradicts mean-field prediction

As a final remark, to further reinforce the relevance of our anal-

ysis, we verify our results against the field-theoretic prediction

for the divergence of the specific heat cp, given in Ref. [20]:

cp ∼ ln(N)3/11. (3.24)

The specific heat is the variance of the energy, which is related

to the spatial fluctuations of the polymer conformations. Thus,

it is expected that the divergence in cp should follow the same

law as the mode relative fluctuations CV .

According to Ref.[30], a logarithmic divergence is indeed ob-

served but the exponent value is off the mark. We come to the

same conclusion and measure an exponent of a ≈ 0.56.

3.5.4 Phase Diagram

Collecting all the information gathered in the previous sections, in

Figure 3.14 we draw the phase diagram for the finite size coil-

globule phase transition. The color of the rectangle at position

(N, ϵ) represents the value of α for this pair of parameters. A diverging

color map ranging from orange for α = −2.17, to blue at α = 0, and

passing through white at the mid-value α = −1.1, was chosen. The

blue, green and black full lines represent ϵRW (N), ϵI(N) and ϵF (N)

respectively, and the red dashed line represents the transition line of

Vogel25, based on the divergence of cp.
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Figure 3.14: Phase Diagram for

the finite size coil-globule phase

transition.
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26 J. des Cloizeaux and G. Jannink.

Polymers in solution. Their modelling

and structure. Oxford university
press, New York, 1991, [18].

Figure 3.14 summarizes nicely the thermodynamic properties of the

transition partly exposed in the previous sections. Firstly, the two

phases and the transition zone are clearly visible. The collective nature

of the transition, namely that smaller chains require more energy to

collapse, is illustrated by the ”L” shape of the transition zone. The

width of the transition can also be easily gauged: we see that the white

zone broadens for small N and gets more narrow as N goes to infinity,

which is coherent with the 1/
√
N scaling predicted by mean field for

the transition width26.

We can also see that in finite-size, the Flory critical point ϵRWθ , at

which the chain adopts ideal conformations, converges much faster to

ϵθ than the other critical lines. Consequently, it is actually relatively

far from the collapse of the chain itself (inflection points) and from

the point where divergent fluctuations occur (maxima), both of which

are close together. The phase diagram suggests instead that the Flory

temperature is the boundary between the coil phase and the transition

phase. The existence of two distinct critical lines has already been

pointed out by des Cloizeaux [18].

Highly fluctuating critical conformations

Hereby confirm that the conformation of a finite-size polymer at

the coil-globule transition cannot be described as a pure

random walk, but rather to a complex, highly fluctuat-

ing state, as suggested by its PSD and the divergence of CV for

the low-frequency modes. To the best of my knowledge, the PSD

and mode fluctuations presented in the previous section are the

first descriptions of the structure of these critical conformations.

Furthermore, as we’ll see in section 4.2, where we will investigate

in more detail these conformations, their fluctuating nature will reveal

crucial in modeling human chromatin organization.

Assessing the folding state from the value of α

That such a precise representation of the phase diagram can be

drawn from the value of α indicates that the value of α is directly

related to the folding state of the polymer, independently of its

size or interaction parameter. In other words, α seems to be

a good indicator of the level of “globulness” of the polymer.

This feature allows us to unambiguously identify the folding

state of a polymer without having to reconstruct its scaling

law, as required by the usual definition of different phases.

In the next section, we’ll see how this property opens up experi-

mental perspectives for identifying the folding state of chromatin in

fluorescence microscopy experiments.
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27 The requirement for uniform spac-

ing in, in fact, not strictly necessary.
If the position of the chosen monomers

is known, one can use this information
when projecting on the modes, and get

an exact result. In the following, how-

ever, I’ll limit myself to this simplest
case.

28 H. Chen, M. Levo et al. Dynamic

interplay between enhancer–promoter
topology and gene activity. Na-

ture Genetics, 50(9):1296–1303, July

2018, [12].
29 H. Sato, S. Das et al. Imaging of

DNA and RNA in living eukaryotic
cells to reveal spatiotemporal dynam-

ics of gene expression. Annual Review
of Biochemistry, 89(1):159–187, June

2020, [66].
30 J. K. Eykelenboom and T. U.

Tanaka. Zooming in on chromosome

dynamics. Cell Cycle, 19(12):1422–
1432, May 2020, [23].

3.6 Assessing the Coil-Globule State
From a Decimated Polymer

In the previous sections, we’ve established that, thanks to the univer-

sal values of the order parameter α, it allows assessing the state of a

single polymer from a sampling of its conformations. Moreover, since

this order parameter can be calculated on the basis of the first Rouse

modes only, it opens important perspectives on the possibility of ex-

perimentally assessing the state of a polymer from a very reduced and

rather accessible information.

Indeed, in order to access to the first M modes, indeed, it is in

principle sufficient to record configurations of M distinguishable mo-

nomers, equally spaced27 along the polymer and covering the whole

chain, either by following their dynamics or by averaging over a collec-

tion of identical polymers to ensure enough statistics. This property

was already introduced in section 3.4, where we showed that a sub-

sampling of a globule conformation was, in a certain limit, equivalent

to a white noise signal.

In addition, the design of multicolor fluorescent imaging of DNA

sites with high spatial and temporal resolution now makes it possi-

ble to record the trajectories and relative positions of multiple loci

simultaneously 28,29,30. If the DCT-transform of a set of M -point

configurations contains the equivalent of the first modes for the whole

chain as we predict, this yields a new experimental approach for the

determination of the state of single polymers and biopolymers.

I tested this idea on decimated polymer chains, i.e. reduced

signals where the positions r⃗n of only M equally spaced mono-

mers are retained, which amounts to operate a decimation of order

m = N/M , i.e. keeping only every mth monomer in the chain. We

decimated down to M = 3, an extreme condition of particular inter-

est from the experimental point of view. Figure 3.15-a shows exam-

ples of PSD obtained for different choices of M . Extreme decimation

(M < 10) alters the slope in the first modes (although not drastically).

As a consequence, the asymptotic values of the sigmoid αN,M (ϵ) cor-

responding to ”pure” coil (αC) and globule (αG) states vary (while,

interestingly, the inflection point αI seems to stay roughly constant),

so that it is necessary to provide reference values for these limit slopes

as a function of M .

These values are given in Figure 3.15-b.Despite this effect, the asymp-

totic values for coils and globules remain well apart down to M = 3

(Figure 3.15-b), even for relatively low statistical sampling as shown by

the shaded areas, giving a measure of the expected confidence interval

on α for different sample sizes.

Once theseM -dependent limit values obtained, the order parameter

αN,M(ϵ) can be normalized as

α̃N (ϵ) =
2αN,M (ϵ)−

(
αG(M) + αC(M)

)
(
αG(M)− αC(M)

) (3.25)

so to span from -1 to 1. In this way, equivalent sigmoids α̃N (ϵ) are
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Figure 3.15: (a) Power Spec-

tral Densities obtained by succes-

sive decimation of a N = 431

chain for ε = 0.0 (orange, coils),

ε = 0.32 (black) and ε = 0.46

(blue, globules). Decimation goes

from M = N to M = 3 (longer

to shorter curves). (b) The

asymptotic and critical values of

αN,M obtained from the sigmoid

fit of the decimated spectra, as

a function of M (dots and lines):

αC(M) = αN,M (0) for coils, in or-

ange; αI(M) = αN,M (εI) for in-

flection points, in black; αG(M) =

αN,M (ε → ∞) for globules, in

blue. These values are averaged

over N . Shaded regions correspond

to 2σα confidence intervals for dif-

ferent sample sizes from 256 (larger

intervals) to 2048, calculated by

propagating the statistical variance

through Eq. (3.14).

independent of M . Thanks to this definition, we obtain a good repre-

sentation of the phase diagram:

Phase diagram from decimated conformations

For sufficiently large samples, even an extreme decimation with

only 3 equally spaced points allows a very accurate reconstruc-

tion of the (N, ϵ) phase diagram, as shown in Figure 3.16-b. The

critical line ϵI(N) matches that of the complete chain (white

line in Figure 3.16-b). Moreover, for M > 10, the effects of dec-

imation completely disappear, allowing for a virtually perfect

estimation of α.

Figure 3.16: (a) Renormalized

sigmoids α̃N,3(ε) (Equation 3.25)

for N from 101 to 3000 with a

maximal decimation level M =

3. (b) Phase portrait as recon-

structed from a M = 3 decimated

signal. Red dots are obtained from

inflection points as in Figure 3.14.

The white line is a fit yielding ϵθ =

0.268. In all graphs, we used a

dataset of 16384 configurations for

each (N, ε,M) condition.

3.7 Conclusion / Take-home messages

Let’s summarize the key results provided in this chapter. Here, I pro-

duced an extensive simulation study of the coil-globule phase tran-

sition, concentrating on a particular statistical observable that was

never explored in this context before, the equilibrium fluctuations of

the Rouse modes, ⟨X2
p⟩.

In light of the previous chapter, we described and explained the

scaling behavior of ⟨X2
p⟩ across the coil-globule phase transition:
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1. In the coil phase, ⟨X2
p⟩ was found to exhibit a decaying power law

scaling with exponent α ≈ −2.17, reminiscent of the fractal dimen-

sion of the (self-avoiding) coil polymer.

2. In the globule phase, ⟨X2
p⟩ has a segmented shape, reflecting its

scale-dependent internal structure. In the low-frequency modes,

p < p∗, it assumes a constant spectrum ⟨X2
p⟩ ∼ p0, while a power

law with exponent α = −2 is observed for the high-frequency modes.

3. Finally, in the transition phase, we observed ⟨X2
p⟩ to continuously

evolve from its coil to its globule form.

Crucially, our findings indicate that during the collapse, while the

high-frequency modes remain essentially constant, the low-frequency

modes undergo significant change, implying that the information about

the folding state of the polymer is concentrated in the low-frequency

modes.

From here, I introduced an order parameter for the phase transition,

named α and defined as the log-log slope in the first two modes of

⟨X2
p⟩. By simply plotting its value for a large set of (N, ϵ) conditions,

I could draw an accurate phase diagram of the finite size coil-globule

phase transition, attesting that α is indeed an excellent observable to

identify the folding state of a polymer.

Most importantly, unlike previously studied order parameters re-

lated to the size scaling of the polymer, α can be computed from

a single data set of equilibrium polymer conformations at a fixed31

length N .

Finally, given that α is computed from the first two modes, I showed

that it can be derived from a very limited amount of information.

Namely, using the decimation property of the Rouse modes, I showed

that the value of α for a specific polymer of length N , could be com-

puted from the spectrum of the reduced chain constituted of M < N

equally spaced points along the original chain. This, however, comes

at the cost of some distortion due to aliasing effects, which become

more pronounced as the number of points M decreases. Regardless,

we found that, even with the information of only 3 points, if aliasing

effects were taken into account, the same phase diagram could be re-

constructed, attesting to the efficacy of the order parameter even at

these extreme decimation conditions. For M = 10, I found that alias-

ing effects essentially disappeared and a perfect estimation of α could

be obtained.

In synthesis, by addressing the specific question of assessing the

folding state of an interacting polymer, I showcased in this chapter

the effectiveness of ⟨X2
p⟩ in synthesizing the useful information about

the polymer in a few low-frequency modes. However, it is important to

note that this represents just one example of how this spectral observ-

able can be used. While a homogeneous interacting polymer model

can effectively capture chromatin organization at the TAD (Topo-

logically Associating Domain) level, as demonstrated by Lesage and

colleagues32, it’s important to recognize that for a comprehensive un-
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derstanding of higher-order chromatin structures, more sophisticated

polymer models are essential. To fully exploit the potential of this

method in the study of chromatin organization, it is imperative to

characterize a broader range of polymer models relevant to chromatin

modeling (heteropolymer models, fractal globule, looped polymers,

etc...). For this reason, I believe the PSD should be considered as

an observable to be systematically investigated when analyzing

polymer models, similarly to other metrics such as contact probability

or radius of gyration.

In this spirit, in the next chapter, I’ll start by using the tools devel-

oped so far to study the folding state of chromatin in experimental

data. Also, I’ll apply the spectral method to the different task of de-

tecting if a polymer conformation presents one or several loops, and

again apply the method to real chromatin data.



Figure 4.1: Schematic represen-

tation of the nucleus during a clas-

sic FISH (top) and sequential FISH

(bottom) experiments
1 S. Wang, J.-H. Su et al. Spatial

organization of chromatin domains
and compartments in single chromo-

somes. Science, 353(6299):598–602,

2016, [82].

2 B. Bintu, L. J. Mateo et al.
Super-resolution chromatin tracing re-
veals domains and cooperative in-
teractions in single cells. Science,
362(6413):eaau1783, 2018, [9].

4

Spectral Analysis of

Chromatin Conformations

In the previous chapter, I introduced a statistical measure, the Power

Spectral Density of a polymer conformation. We applied this measure

in the context of analyzing computer-simulated interacting polymer

chains. Our analysis demonstrated its utility in identifying the folding

state of these chains, due to its effectiveness at isolating their large-

scale features, that are most influenced by conformational changes dur-

ing the transition.

In this chapter, we aim to make use of this observable on chro-

matin data. As established in the previous chapter, computing the

PSD of a chromatin domain requires the knowledge of a minimum of

3 equally spaced loci along the domain of interest. In fact, computing

⟨X2
p⟩ requires an ordered sequence of chromatin segment positions.

In other words, we need the position of the chromatin segments while

also knowing their genomic coordinates, i.e. their position along the

DNA chain.

While it is relatively easy, using fluorescent markers, to visualize

several chromatin locations simultaneously (Figure 4.1, top), keeping

track of the respective genomic location of each segment is extremely

challenging and was, until recently, only possible for a very few genomic

locations, using multiple label colors.

In 2016, Wang et al.1, developed the sequential FISH (seq-

FISH) method allowing the visualization of dozens of genomic lo-

cations, while keeping track of the identity of each segment, in thou-

sands of fixed cells at once (Figure 4.1, bottom). In this seminal work,

markers were placed every 1 Mbp, probing chromatin structure well

above the TAD level. Two years later, the method was refined by B.

Bintu et al.2, leading to a much greater genomic resolution, aiming for

an investigation of the internal structure of TADs.

The structure of this chapter will be as follows. In section 4.1, I’ll

describe this experimental seq-FISH method. In section 4.2

I’ll move on to compute and analyze the power spectral density

of a human chromatin seq-FISH dataset, using the concepts intro-
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Figure 4.2: human lymphocyte

nucleus stained with FISH probes

on chromosomes 13 (green) and 21

(red). From Wikimedia Commons,

courtesy of user Gregor1976.

duced in chapter 2 and chapter 3. As we will see, the computed

spectra will prove challenging to interpret from the simple homo-

geneous model proposed in chapter 3. In this respect, I propose a

few possible interpretations, and discuss their weaknesses and

strengths.

I’ll then change my perspective in section 4.3 to section 4.5,

where I’ll discuss the importance of detecting loops in chromatin

data, already mentioned in the introduction, and present an-

other spectral-based method for detecting loops in seq-

FISH data.

4.1 Sequential DNA Fluorescent in-situ
hybridization

4.1.1 DNA Fluorescent In-situ Hybridization

DNA fluorescence in-situ hybridization (FISH) is a molecular biology

technique used in microscopy experiments to visualize and locate spe-

cific DNA sequences within the nucleus. The general idea of this

method is to attach to the DNA segment of interest a fluorescent

molecule, called a fluorescent probe, that can easily be localized

by optical microscopy.

The fluorescent probe is a molecular complex made of two pieces:

a single-strand DNA segment, called the probe, and a fluorescent

molecule called the fluorophore. Both elements are attached by a

covalent bond, through a process called probe labeling. To have the

probe specifically attach to the target DNA segment, its sequence is

chosen as the complementary sequence to the segment of interest.

Of course, before any intervention, the target DNA strand is al-

ready bound to its natural complementary sequence. To introduce the

probe, the experimentalist breaks the hydrogen bonds between the

base pairs of the target sequence, allowing the probe to take the place

of the complementary sequence. This process is called denaturation

and is performed by subjecting the cell to high temperatures, which

has the effect of locally unwinding the double-stranded DNA, creating

”denaturation bubbles”, i.e. areas of partially separated DNA.

While the DNA is in the denatured state, in a process called hy-

bridization, fluorescent probes are introduced in the nucleus, with the

hope that one successfully hybridizes, i.e. pair up with the exposed

single strand of the target DNA. The denaturation process is then re-

versed, at least wherever no marked sequences occupy the place of the

other strand. In this step, the stability of the DNA double helix is

of tremendous importance, as it allows the DNA to recover to a nor-

mal form with the markers in place. For added efficiency, probes with

both complementary sequences are introduced, such that two probes

can attach, one to each strand of the sequence.

After hybridization, all non-hybridized probes are removed in a pro-

cess called washing during which the sample is rinsed under a solution
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Figure 4.3: Sketch of the sequen-

tial FISH hybridization approach.

Figure adapted from Ref. [9].

of, typically, ethanol. Note that, the longer the probe, the more prob-

able it is to hybridize and remain attached to the region of interest

during the washing process, allowing for a better detection rate.

After the washing process, the sample is ready for detection. The

fluorescent probe, which has specifically hybridized to the target DNA

sequence, will emit fluorescence when exposed to appropriate wave-

lengths of light, allowing one to visualize and locate the specific DNA

sequences of interest.

4.1.2 Sequential DNA FISH

In principle, by targeting different DNA regions, one can visualize

numerous genomic locations at once in each round of imaging. How-

ever, the challenge lies in distinguishing which illuminated spot cor-

responds to which genomic location. While employing multi-colored

fluorophores, allows for a few loci to be simultaneously imaged, to

trace the path of chromatin over large segments, many sequential FISH

imaging rounds must be performed in succession, in a process called

sequential FISH (seq-FISH).

In this method, in a first process called fixation, all elements of the

nucleus are glued together by creating covalent cross-links between

them. This process is done while the cell is still living, effectively

freezing into a life-like conformation.

Then, the region of interest is partitioned into N segments, of ge-

nomic length bkb, that determine the genomic resolution of the ex-

periment. The N segments are then hybridized all at once by segment-

specific primary probes. These probes remain attached to the tar-

geted region for the whole time of the experiment. The primary probes

aren’t labeled with fluorophores but are vessels to which another probe,

called a secondary probe or readout probe, which is fluorescent,

can specifically hybridize.

In this way, each primary probe can be ”turned on” individually by

introducing its corresponding readout probe. A visualization round is

performed to localize the position of the first segment. The secondary

probe is then washed out and the process is repeated for each primary

probe until the whole region of interest has been imaged. Finally, to

obtain the chromatin conformation, the positions of each individual

segment are overlaid. Using a microfluidic chamber to administer the

different chemicals, this process can be automated and performed on

thousands of cells at once.

The final result is a set of thousands of independent 3-dimen-

sional conformations of a chromatin region of length Nbkb. The

complete conformational information (up to the genomic resolution)

offered by seq-FISH makes it possible, for the first time, to compute

any ensemble averaged polymer physics observable.
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4.2 Assessing the Folding state of Hu-
man chromatin seq-FISH data

4.2.1 Bintu et al. Experimental Data Set

In this section, we investigate a dataset from the 2018 publication

by Bogdan Bintu and co-workers3. In this experimental paper, the

authors perform seq-FISH on chromosome 21 in different human cell

lines, during interphase.

Two batches of experiments were conducted, aiming for differ-

ent objectives. In the first, they image the same genomic region in

different cell lines, allowing for a comparison of structural properties.

In the second, in the same cell line and region, they compared a

wild-type variant with a RAD21-depleted variant. RAD21 is one of

the building blocks of cohesin, a structural protein complex involved

in loop-extrusion, which in turn is involved in TAD formation and

stabilization. Hence, depletion of RAD21 eventually leads to TADs

no longer being visible on the level of the whole population4. This is

illustrated in the median distance maps for both variants, depicted in

Figure 4.4. The cohesin-depleted variant shows none of the TAD and

sub-TAD structures visible in the untreated variant.

Figure 4.4: Population averaged

spatial-distance matrices for in the

HCT116 cell line without (left) or

with (right) auxin treatment to in-

duce cohesin degradation. Taken

from Bintu et al. [9].

In each experiment, the primary probes were 30kb long and

were placed contiguously along the region of interest, enabling the

investigation of sub-TAD architecture while ensuring a high detection

rate of around ninety percent5. The condition, regions, and cell lines

of the datasets are reported in the following table:

Exp. Nº cell line variant gen. coord. (Mb) Nº of cells Nº of segments

1 IMR90 WT 28-30 1277 63

2 K562 WT 28-30 13997 63

3 A549 WT 28-30 3941 63

4 HTC116 WT 28-30 1979 63

5 HCT116 WT 34.6-37.1 11631 85

6 HCT116 Auxin 34.6-37.1 9526 85

Table 4.1: List of all the experi-

ments of Ref. [9] with details, and

an identification number that will

be used in the following.



go to ToC spectral analysis of chromatin conformations 87

6 A. Lesage, V. Dahirel et al. Polymer
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Figure 4.5: DSP for all the

datasets of Ref. [9] listed in Ta-

ble 4.1.

4.2.2 Spectral Analysis of the Data

To compare the experimental data with the simulation results of chap-

ter 3, we need to fix a few physical scales. In chapter 3, I simulated

fully-flexible polymers, meaning we assumed the persistence length of

the polymer was equal to the bond size. For the data, the persistence

length is known to be of the order of 1 kb6. This means that one mo-

nomer in the simulation corresponds to ≈ 1 kb in the experiments.

Therefore, the genomic resolution of 30 kb means that the data is at a

higher level of decimation than the simulation. To obtain an equiva-

lent model from the simulation, a decimation of order 30 should

be performed, i.e. we should keep one every 30 points in the simu-

lation. The equivalent length of the simulated polymer is given by:

N = genomic length
persistence length – which is N = 2000 or N = 2500 depending on

the dataset.

Also, we should acknowledge that the data is inevitably noisy, due

to the various sources of imprecision of the measurement. This noise

can reasonably be considered as Gaussian white noise, meaning it is

expected to add a positive constant to the spectrum.

Let’s then start by calculating the PSD of the experimental

datasets listed in Table 4.1. The resulting spectra are all plotted in

Figure 4.5. The general trend for all experiments is a power law scaling

with exponents ranging from ≈ −1.7 and ≈ −1.4 (with one outlier at

−1.1). In the high-frequency modes, the spectrum deviates from the

power law behavior as expected due to aliasing effects.

The first observation we can make is that the spectra appear dif-

ferent from the coil-globule spectra studied in the previous chapter:

Indeed, in the previous chapter, the only power law spectra we ob-

served were for the coil phase, with exponent −2.17 or high-frequency

regime of the globule, with exponent −2 (ideal chain behavior). Devi-

ations from this behavior were expected due to decimation, but their

effect was not strong enough to justify the observed exponents: Here,

we observe a power low behavior with a rather lower exponent.

Due to the polymeric nature of chromatin, we indeed expect that at

some small enough length scale, the chain exhibits either a Gaussian

or self-avoiding behavior. Hence, our first observation is that this

behavior is not visible, implying that much of the fine structure of the

chromatin fiber is completely overlooked at this genomic scale.

This raises the question of how to interpret the obtained spectra.

I propose hereafter some possible explanations for the observed

exponents.

4.2.3 Crumpled Globule model

Another model, conceptually different from the coil-globule model,

is often proposed to describe chromatin architecture: the crumpled

globule - or fractal globule - model. This model (already men-

tioned in the introduction) proposes that chromatin organizes as an out

of equilibrium meta-stable state. In this state, the predicted confor-
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mation is similar to the equilibrium globule, in that it is a space-filling

curve in a roughly spherical volume, except that, unlike its equilib-

rium counterpart, it is completely free of knots. Its unusual topology

drastically changes its inner structure, making its conformations sta-

tistically fractal. The fractal exponent predicted for the fractal globule

is dF = 3, like for a solid 3D object, because of its space-filling char-

acter7.

Following the same reasoning as for the coil polymers (subsection 3.3.2),

we show that the fractal nature of its conformations implies the fol-

lowing scaling law for the PSD of the fractal globule,

⟨X2
p⟩ ∼ p−(1+2ν), (4.1)

where ν = 1/dF : Transposing the argument directly to the fractal

globule model provides a PSD power law exponent of−(1+ 2
3 ) ≈ −1.66.

This suggests that a crumpled globule organization for chromatin may

indeed offer a plausible explanation for the observed power-law in the

PSD.

Nevertheless, the very existence of the fractal globule has been ques-

tioned, due to its instability8, and especially at smaller length scales,

< 1Mb, where it is unequivocally expected to exhibit Gaussian behav-

ior9. In particular, Schram and co-workers show by convincing Monte

Carlo simulations of collapsing polymers that

the very property of being disentangled also brings about the imme-

diate destruction of the fractal state,

inducing a rapid equilibration toward a state that shares the main

scaling features of the equilibrium globule10.

Hence, while the fractal globule is indeed still a (highly debated)

contender to describe the higher order structure of chromatin > 1 Mb,

it is, in my opinion, unlikely that it is a pertinent model for describ-

ing the structure at the scale probed in this experiment, i.e.

sub-TAD to a few TADs, due to its high instability on small length

scales. Moreover, as we’ll see in the second part of this thesis, the

fractal globule model predicts the wrong dynamics for the motion of

chromatin11,12.

4.2.4 Decimated, critical polymer for TAD-depleted chro-

matin

If the fractal polymer model gives a possible interpretation for the

observed exponent, this exponent can also be explained in the context

of the interacting polymer model presented in the previous chapter.

Indeed, remember that, in the transition phase, the log-log slope in the

first modes lies between −2.17 and 0. Then, if only the first modes were

visible, essentially any intermediate slope would be observed. Hence,

the exponent of −1.7 can be explained with a transition polymer

model at a high level of decimation.

To check the pertinence of this effect, a polymer of length N = 2194

and ϵ = 0.3, i.e. at the transition (see Figure 3.14), decimated at
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order 30 is presented in Figure 4.6 (faded dashed blue line) along with

experiment 6.

Figure 4.6: PSD for a simulated

transition polymer of length N =

2552 and ϵ = 0.3 decimated to or-

der 30 (blue) versus the PSD ob-

tained from the RAD21 depleted

HCT116 cells in region 34.6Mb −
37.1Mb (brown).

The good agreement between the experimental curve and the re-

sults of our decimated, noisy transition polymer allows us to draw

some first conclusions: We see that the PSD of the simulated transi-

tion polymer indeed appears to exhibit the correct power law be-

havior in the large frequency modes. In the high-frequency modes,

the decimated simulation is seen to adopt a higher exponent, close to

−2, hence drops quicker than the experimental data. However, if we

add Gaussian white noise to the simulation (blue curve) the added

constant raises the high frequencies, matching nicely the behavior of

the auxin-treated (RAD21-depleted) experimental curve, i.e.

experiment 6.

Note that, to obtain Figure 4.6, the variance of the white noise was

adjusted ”by hand” to fit the high-frequency modes of the experimental

PSD. The value that fits best is essentially identical to the variance

of the bond length in the decimated simulation. Further study would

be interesting to verify the precise origin of this noise and how

it relates to the details of the experiment. In particular, we could

try to link the noise to the fact that in FISH the entire subchain

corresponding to 30 monomers is imaged.

4.2.5 Single cell TAD-like Structures After Cohesin De-

pletion

Since depleting RAD21 (equivalently cohesin) results in TADs disap-

pearing at the population level (see Figure 4.4), it can be expected
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Figure 4.7: Animation of a
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that TAD structures should be completely absent at the single cell

level as well. However, one of the major findings of Bintu et al. is

precisely that TAD-like structures remain visible in single cells

after cohesin depletion. To explain the disappearance of TADs at

the population level the authors specify that:

What was notably different in the absence of a functional cohesin

complex was that the positions of these domain boundaries became

largely uniformly distributed along the genomic coordinate and no

longer exhibited preferential positioning at CTCF and co-

hesin sites13 as observed in the presence of cohesin. These results

indicate that cohesin is not required for the maintenance of TAD-like

structures in single cells and that the role of cohesin in the formation

of ensemble TADs is to establish preferred genomic boundaries for the

single-cell domains.

To illustrate this, in Figure 4.8 a) and b), I reproduce the 4 first exper-

imental single-cell conformations, along with their respective distance

maps from the cohesin depleted. The presence of diagonal blocks in-

deed confirms that contiguous genomic segments display preferential

spatial proximity at the single-cell level.

Interestingly, these structures can again be explained by the crit-

ical nature of the chromatin fiber. Indeed, as mentioned in sec-

tion 3.5, in the critical phase self-attracting polymers display strong

conformational fluctuations, as indicated by the diverging relative

fluctuations in the first spectral modes (see figure Figure 3.13). These

fluctuations are due to the polymer not having quite enough attractive

energy to fully collapse, leaving it in a hybrid state in between the

coil and the globule states. At the single conformation level, this

shows as the polymer being partially collapsed, i.e. presenting both

collapsed globular and coil-like subchains. To give a more intuitive vi-

sualization of such conformations, an animation showing the dynamics

of a critical polymer is shown in Figure 4.7.

These claims are justified in Figure 4.8, where conformations from a

(simulated) critical polymer of length N = 2154 and ϵ = 0.3 are shown

(c), along with their order 30 decimation (d) and the corresponding

distance map (e). Clearly, the simulated single-cell contact maps

present similar features to the experimental ones, with the appear-

ing of transient TAD-like structures. The probability for each

genomic position to be a single-cell domain boundary is of course, for

the simulations, uniform, in agreement with Ref.14 for Auxin-treated

cells.

https://www.adobe.com/acrobat/pdf-reader.html
https://www.adobe.com/acrobat/pdf-reader.html
https://gifyu.com/image/S8iXw
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Experiment:

Simulation:

Figure 4.8:(a) 4 single-cell chromatin conformations with auxin treatment taken from

the experimental dataset. (b) the corresponding single-cell distance matri-

ces. (c) 4 conformations of a computer-simulated critical polymer of length

N = 2154 and ϵ = 0.3. (d) the corresponding order 30 decimation confor-

mations with the added noise. (e) the corresponding distance matrices.
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4.2.6 Criticality explains TAD stabilization

As briefly mentioned in the introduction, CTCF-mediated loops are

known to be responsible for stabilizing TADs. A potential explana-

tion for this can be put forward from the partially collapsed, critical

picture of chromatin. Indeed, being in a critical state, the slightest

perturbation may induce a local collapse of the chain into a globular

state. Consequently, if a loop is formed within the chromatin chain,

the subchain forming the loop would collapse, while the surrounding

chromatin would remain in the critical state. This would result in a

higher proximity among the elements enclosed within the loop than

outside the loop.

To test this idea, we studied the collapsing thermodynamics of sim-

ulated on-lattice interacting circular polymer. This work was done

Figure 4.9: Phase portrait of the

coil–globule transition for looped

polymers. The yellow line is the

critical curve for the circular con-

formation and the white line for the

linear conformations.

by Michaël Liefsons, during his master’s internship in our lab. This

work was a first step towards the work I will present in the next sec-

tion. I won’t present the whole analysis here, but simply the final

result. Using a similar spectral method, adapted to circular conforma-

tions, we could define an order parameter, similarly to the one defined

in chapter 3. From this order parameter, we could draw the phase

diagram of the coil-globule phase transition of a circular interacting

polymer, which is shown in figure Figure 4.9. The critical line for the

circular and linear polymer is drawn in white and yellow respectively.

Crucially, we notice that the looped critical curve is located at a

lower energy than the linear critical curve, meaning collapsing a

looped chain requires less energy than a linear chain. In fact, the

critical line for the linear chain is in the globule phase of the looped

phase diagram. This implies that a critical linear chain, when

looped, can transition to a collapsed state.

4.2.7 Heterogeneity induced by the presence of TADs

The other experimental curves are less smooth than the auxin-treated

experiment. Yet, tuning by hand the value of ϵ and the noise

allows for the general trend of all experimental curves to be more or



go to ToC spectral analysis of chromatin conformations 93

less well reproduced.

Nevertheless, we are aware that, in these experiments, due to the

presence of cohesin, TAD structures are stabilized and are present at

the population level (see the average distance map in Figure 4.4).

Consequently, we don’t expect a homogeneous self-attracting poly-

mer model to perfectly reproduce the chromatin structure in the non-

treated data sets. The effect of a heterogeneous folding of the

chain has not been explored in this thesis. However, it could indeed

be a valuable matter to address in future work, and might play

a crucial role in understanding the more complex spectra observed in

the WT variants.

Figure 4.10: PSD for a simu-

lated transition polymer of length

N = 2552 and ϵ = 0.3 decimated to

order 30 (blue) versus the PSD ob-

tained from the WT HCT116 cells

in region 34.6Mb − 37.1Mb (pur-

ple). The RAD21 depleted PSD

More generally, it’s clear that the precise interpretation of these

spectrums warrants further investigation. Alternate regions of differ-

ent degrees of compaction are probably one of the causes. However,

more sequence-specific effects are probably involved, in particular in re-

gions containing regulatory elements. Furthermore, and this will serve

as a transition to the next section, one very important aspect of chro-

matin organization has been completely overlooked in this discussion

and plays an important role in the observed WT spectra: chromatin’s

ability to form loops through loop extrusion, which is precisely what

auxin inhibits. Indeed, we can expect the average spectrum of looped

conformations to be greatly affected compared to their linear equiv-

alent, potentially explaining some of the roughness observed in WT

spectra. This idea is investigated in the following section.

For the moment, let me resume the main results of thissection 4.2:
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The critical nature of the polymer explains features present

in cohesin depleted data

The take-home message of this section is therefore that human

chromatin conformations of Ref. [9], on genomic scales ≈ 30 kb

to ≈ 2 Mb and when depleted of TAD structures, is well de-

scribed by a homogeneous critical interacting polymer, in

line with the finding of Lesage et al. [47].

Indeed,

• The PSD of the simulated transition polymer, decimated ac-

cording to the experiment resolution and with the addition of

white noise, appears to reproduce the behavior of the auxin-

treated (RAD21-depleted) experimental curve.

• Due to the large fluctuations characterizing the transition

polymer, the simulated single-cell contact maps present

similar features to the experimental ones, with the appearing

of transient TAD-like structures.

• Furthermore, a comparison of the behavior of circular and

linear polymers suggests that, if a loop is formed within the

chromatin chain, the subchain forming the loop would col-

lapse, hence stabilizing the corresponding TAD.

For thewild type, a decent fit to data is obtained as well from

the same model in similar conditions, but the curves present finer

details that aren’t accounted for by this homogeneous model,

letting one think that, with a critical interacting polymer model

as basis, one should add additional features to make it more

realistic. The key elements here would include

(i) incorporating specific interactions among monomers within

TADs,

(ii) accounting for variations in local compaction levels within the

chromatin structure,

(iii) studying the effect of loop formations on the spectral signa-

ture.
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4.3 Loops and loop extrusion

Remark: The work presented in the next sections of this chapter

was a collaborative effort with a very talented master’s student

called Michaël Liefsoens. Michael was recruited in Maria’s team

during my second year as a Ph.D. student to extend the spectral

method I developed to characterize different polymer topologies,

with a specific focus on looped polymers. In this research, my role

was more of a mentor than the primary investigator.

The following sections are adapted from the paper

Spectral-based detection of chromatin loops in multiplexed

super-resolution FISH data

by Michaël Liefsoens, Timothy Földes and Maria Barbi

submitted to Nature Methods and available in arXiv.

Loop formation is central to understanding chromatin architec-

ture and its functional role. During mitosis, chromatin adopts a com-

pact structure composed of loops, forming a rod-like configuration
15. SMC (structural maintenance of chromosome) proteins like con-

densins and cohesins play a pivotal role in organizing these loops
16. Recent research reveals that loop formation, mediated by proteins

such as CCCTC-binding factor (CTCF) and cohesin, is also critical in

interphase, for gene regulation by facilitating interactions between dis-

tant enhancers and promoters in mammals 17,18, Drosophila 19, and

yeast 20. Furthermore, cohesin-dependent loops are involved in the

segmentation of interphase chromosomes into TADs which are often

delimited by CTCF binding sites. Depletion of CTCF disrupts both

TAD loops and insulation of neighboring TADs 21. Consequently, the

identification of chromatin loops has become central to unraveling the

complexities of gene regulation and understanding the spatial organi-

zation of the genome. Key questions arise regarding loop formation

mechanisms, their prevalence, determinants of their position and sizes,

and biological functions.

The loop extrusion mechanism22, primarily involving SMC fam-

ily proteins like cohesin (in interphase) and condensin (in metaphase),

can explain loop formation. Cohesin and CTCF enable loop extru-

sion by binding to DNA, after which they act as motors, sliding in

opposite directions and enlarging the loops by pulling along the chro-

matin fibers23. Looping by SMC complexes is observed in various cell

types, including mammalian and bacterial cells24. As insulator pro-

teins, CTCF and cohesin regulate chromatin loop stability, probably

as a ’dynamic complex’ that frequently breaks and reforms throughout

the cell cycle25.

In high-throughput genomic techniques like Hi-C 26, stable loops

manifest as isolated, off-diagonal points in contact maps. Data

https://arxiv.org/abs/2310.15701
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29 This property is a general conse-

quence of the condition that the first
and last monomer coincide, and thus

applies to any looped conformation.

analysis tools detecting DNA loops in contact maps, based on contact

count enrichment or specific patterns, are available [53] [64] [65].

However, Hi-C methods lack the ability to reconstruct the poly-

mer’s spatial trajectory, only quantifying contact frequencies between

monomers. This limitation is overcome by the seq-fish data presented

in the subsection 4.1.2. However, the most frequent approaches to an-

alyze this new data are based on the reconstruction of distance maps,

then interpreted as contact maps 27. However, this approach restricts

the information to a level already obtainable with previous techniques

and, most importantly, doesn’t allow for the detection of loops.

However, this approach restricts the information to a level already

obtainable with previous techniques.

Innovative methods are clearly needed to fully exploit this new data.

With Michaël Liefsoens, we looked for the possibility of characteriz-

ing chromatin loops through a spectral representation of chain

configurations, thereby exploiting the whole information of chain 3D

spatial arrangement offered by seq-FISH methods.

4.4 The Λ-plot for loop detection

4.4.1 Comparing PSD for looped and non-looped fBm-

based conformations

As a first step, we wanted to extend the PSD analysis to circular poly-

mers, to examine the impact of looping on the spectrum. We employ a

minimal, yet instructive, model of polymer configurations represented

as 3D correlated random walks γn, using fractional Brownian motion

(fBm) of Hurst coefficient H, already introduced in section 2.3.

Following Ref. 28 and as detailed in the following box, we define a

looped fBm as

λn = γn − B(H)
n R⃗ : (4.2)

here, R⃗ = γN − γ1 represents the fBm end-to-end vector and

B(H)
n = N−2H Cγγ(n,N) (4.3)

is the appropriate bridge function needed to connect the two ends

of the fBm to construct an fBm loop.

For our simplified fBm model, the PSD of the looped chain can

be obtained analytically. Thanks to the linearity of the DCT, the

difference between looped and linear fBm is indeed simply the DCT of

the bridge function BH R⃗. The symmetry properties of this function

then ensure that

(i) the even modes for looped fBm remain asymptotically un-

changed compared to those of the corresponding non-looped;

and

(ii) the odd modes systematically decrease, with the extent of reduction

diminishing as the mode number p increases29.

These results are proven in the following box.
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Spectrum of a looped fBm:
We start from the definition of a looped random walk λ⃗, equation (4.2), and calculate the corresponding PSD, here noted〈
X2
p(λ⃗)

〉
. Analogously, we will denote the PSD of the unlooped γ⃗ by

〈
X2
p(γ⃗)

〉
. The linearity of the DCT gives that the

PSD of λ⃗ is given as 〈
X2
p(λ⃗)

〉
〈
X2
p(γ⃗)

〉 = 1−
1〈

X2
p(γ⃗)

〉 (DCT(Bh(n;0,N))n=1,...,N
(p)
)2

⟨R⃗2⟩ : (4.4)

it is therefore the DCT of the bridge function (Bh(n; 0, N))n=1,...,N that determines the difference in PSD between the

looped and non-looped fBm. By definition, we have for p > 0

DCT(Bh(n;0,N))n=1,...,N
(p) =

1

2N2H+1

N∑
n=1

(
n2H − (N − n)2H

)
cos
( pπ

2N
(2n− 1)

)

=
1

2

N∑
n=1

1

N

(( n

N

)2H
−
(
1−

n

N

)2H)
cos

(
pπ

(
n

N
−

1

2N

))

≈
1

2

∫ 1

0

(
x2H − (1− x)2H

)
cos (pπx) dx. (4.5)

where we have converted the summation into an integral, valid for N ≫ 1. Note that 1/N of the summation became the
volume element in this integral.

Denoting the integrand of equation (4.5) by the function gp(x) =
(
x2H − (1− x)2H

)
cos (pπx), we note its symmetry:

gp(1− x) = (−1)p+1gp(x). Consequently, the integral becomes∫ 1

0
gp(x) dx =

∫ 1

0
gp(1− y) dy = (−1)p+1

∫ 1

0
gp(y) dy,

after a change of variables y = 1− x. From this, we can deduce (1 + (−1)p)
∫ 1
0 gp(x) dx = 0, or∫ 1

0
gp(x) dx = 0 for p even :

hence, we can conclude that
〈
X2
p(λ⃗)

〉
=
〈
X2
p(γ⃗)

〉
for p even, i.e. the even modes of looped and non-looped (infinite

length) fBm are the same. This is a direct consequence of the symmetry of the bridge function.
Let us now consider a general ideal circular signal x⃗. Then, the first point x0 of the signal x⃗ is equal to the last point

xN−1. By the symmetry of the DCT operation, it follows that

N−1∑
p=1
p odd

Xp cos
( pπ

2N

)
= 0. (4.6)

This constraint states that the weighted sum of the odd modes should be zero, and is of topological nature. So, if the
first mode is large, the other odd modes have to compensate for this by being small. On average, this leads to the lowering

of all the odd modes. Since cos
( pπ
2N

)
is a decreasing function in p, the first mode has the most effect on satisfying this

constraint, and goes down the most, relatively speaking.

The behavior of the PSD for non-looped and looped fBm poly-

mer configurations, is visually depicted in Figure 4.11. Interestingly,

the difference between looped and non-looped configurations primar-

ily impacts the first modes, emphasizing the crucial role of large-scale

features in defining the polymer structure, as already discussed.

4.4.2 Log-spectral ratio Λ(x⃗)

These spectral features offer a method to distinguish between looped

and non-looped configurations. Consider indeed a statistical ensemble

of 3D signal realizations x⃗n. We introduce the log-spectral ratio Λ(x⃗n)

for x⃗n, defined as the logarithmic difference between the observed am-

plitude of the first mode and the amplitude and the amplitude pre-

dicted on the basis of a power-law extrapolation from the second and

fourth modes. Some manipulation (detailed in the next box) yields
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Figure 4.11: Theoretical PSD for

an H = 0.5 fBm γ⃗n (blue) and the

corresponding looped λ⃗n (orange).

Snapshots show one specific con-

formation before (upper) and after

(lower) looping. Λ(x⃗) is the dif-

ference between the observed first

mode for a looped conformations

and the expected first mode extrap-

olated from the second and fourth

modes (see black dotted line and

circles).

30 For finite chains, we compute the

absolute difference between the spec-

tra of looped and non-looped random
walks, and then normalizing it by the

same difference at infinity (= 1.66).

This results in a discriminability level
ranging between 0 and 1 that can be

calculated analytically and converges
extremely fast: having N > 6 is suffi-

cient to achieve a 90 percent discrim-

inability level; N > 20 guarantees a 99
percent discriminability level.

the following expression for the log-spectral ratio:

Λ(x⃗n) = log

( ⟨x⃗22⟩2
⟨x⃗21⟩⟨x⃗24⟩

)
. (4.7)

Figure 4.11 provides an illustration of this definition. Based on our

fBm model, we can demonstrate that the log-spectral ratio for a non-

looped random walk scales as N−2 for N → ∞. In contrast, for

a looped fBm, it converges to a finite limit of approximately 1.66,

which clearly distinguishes the two configurations30.

Definition of Λ(x⃗)
Since the even modes ⟨X2

2p⟩ are expected to be the same for a looped and a non-looped polymer, we access the expected

(linear) coil power law of the low modes by fitting the second and fourth mode. By extrapolating to p = 1, we then find

the expected outcome for a non-looped polymer, and compare it to the actually observed first mode. Calculating this
explicitly, we find[

log
(〈
X2

4

〉)
− log

(〈
X2

2

〉)
log(4)− log(2)

(log(1)− log(2)) + log
(〈
X2

2

〉)]
− log

(〈
X2

1

〉)
= − log

(〈
X2

4

〉)
+ 2 log

(〈
X2

2

〉)
− log

(〈
X2

1

〉)
= log

( 〈
X2

2

〉2〈
X2

1

〉 〈
X2

4

〉) ,

which is exactly how we defined the log-spectral ratio Λ(x) in equation (4.7).

For a random walk u⃗ of variance σ2 and length N , we can plug in the spectrum ⟨U2
p ⟩ = σ2

8
1

N sin2( pπ
2N )

into the

definition of Λ to find

Λ(u⃗) = log

 cos2
( π

N

)
cos2

( π

2N

)
 = −

3π2

4

1

N2
+O

(
1

N4

)
.

For a looped random walk l⃗, the spectrum〈
L2
p

〉〈
U2
p

〉 =

{
1 if p even

1− 2
(
N tan

( pπ
2N

))−2
if p odd

gives rise to the following log-spectral ratio:

Λ(ℓ⃗) = Λ(u⃗)− log

(〈
L2
1

〉〈
U2
1

〉) = log

(
π2

π2 − 8

)
+O

(
1

N2

)
≈ 1.66 +O

(
1

N2

)
.
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Figure 4.12: Estimated PSD for

looped and non-looped fBm sig-

nals with varying Hurst exponents

(H = 0.3, 0.35, . . . 0.75), each from

samples of 2000 signals of length

N = 512.

31 A. Lesage, V. Dahirel et al. Polymer

coil–globule phase transition is a uni-

versal folding principle of drosophila
epigenetic domains. Epigenetics &

Chromatin, 12(1), May 2019, [47].
32 A. N. Boettiger, B. Bintu et al.

Super-resolution imaging reveals
distinct chromatin folding for dif-

ferent epigenetic states. Nature,

529(7586):418–422, 01 2016, [10].
33 Q. Szabo, D. Jost et al. Tads are 3d

structural units of higher-order chro-
mosome organization in Drosophila.

Science Advances, 4(2):eaar8082,
2018, [74].
34 T. Vettorel, S. Y. Reigh et al.
Monte-carlo method for simulations

of ring polymers in the melt. Macro-
molecular Rapid Communications,
30(4-5):345–351, 2009, [80].
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〈Ê
p
〉

Figure 4.13: Estimated

PSD of self-interacting looped

and non-looped polymers for

ε = 0, 0.1, 0.2, 0.3, 0.4, 0.49 (from

samples of 20000 conformations

for a N = 512 polymer simulated

by th on-lattice Monte Carlo of

chapter 3.

To ensure the robustness and applicability of the Λ(x⃗n) definition

for signals with varying degrees of correlation, we calculate and display

in Figure 4.11 the PSD of fBm signals with different Hurst ex-

ponents H. Clearly, the behavior theoretically described above and

shown in Figure 4.12 is always observed, regardless of the value of H.

The log-spectral ratio Λ(x⃗n) proves therefore to be a robust observ-

able that allows us to determine whether a polymer is in a linear or

looped configuration. However, to investigate the presence of loops in

chromosomes implies two additional issues:

First, chromatin domains are expected to be near the coil-globule

transition31 and exhibit more or less collapsed, globule-like conforma-

tions, depending on epigenetics and transcription activity32,33. There-

fore, it is crucial to verify whether the log-spectral ratio remains re-

liable across the coil-globule transition. We then applied the

log-spectral ratio to the Monte Carlo simulations of a cubic lattice

self-avoiding walk introduced in chapter 3. Linear and circular poly-

mers were simulated separately, with reptation moves in the former

case and Crankshaft rotation, wedge flip, and kink-translocation tech-

niques 34 in the latter, which enhanced simulation efficiency. For the

circular polymer, the initial configuration was obtained by the growing

SAW’s algorithm outlined in the same Ref. [80]. Spectra were then es-

timated and compared for linear and looped polymers across a range of

ε values from 0 to 0.5. As shown in Figure 4.13, the difference between

the looped and non-looped configurations of the simulated polymers

reproduces the expected behavior.

Second, chromatin loops can vary in size and position along

the chromosome. Consequently, we need to adapt our approach to this

more general case.

4.4.3 The Λ-Plot

We can introduce an internal loop within a random walk by extend-

ing the procedure outlined in equation (4.2) to an inner segment. This

enables us to generate sets of fBm-based polymer configurations {x⃗n}
that incorporate one or more internal loops. These loops are defined

by their positions ι and lengths η, meaning that monomers ι−η/2 and

ι+ η/2 are brought together.

We used these synthetic configurations with internal loops to de-

velop and validate a novel loop-detection technique, known as the

Λ-Plot and based on the computation of the log-spectral ratio. For

each set of N -length signals {x⃗n}, we consider all the sub-signals of

length η, defined as {x⃗(ι,η)} = (xι−η/2 . . . xι+η/2−1). We calculate the

log-spectral ratio Λ(x⃗(ι,η)) for each of these sub-signals and represent

the results on a color-scale on the plane (ι, η). Figure 4.14 shows typi-

cal examples of the expected outcomes when identifying a single inner

loop, and compare these results with corresponding distance maps and

relevant spectra of sub-polymers.

As shown in Figure 4.14, Λ-plots show a distinct maximum indi-

cating the presence of a loop. A careful inspection reveals that the ι
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Figure 4.14: Λ-plot for an ensem-

ble of 2000 samples of a (random

walk) polymer with N = 300 mo-

nomers, all containing an internal

loop of size 100 in the middle (from

index 100 to 200). Different rows

focus on distinct sub-regions of the

same polymer: whole polymer; first

third; inner loop; first two thirds

(including the loop). The first col-

umn displays a mean polymer con-

figuration using a method similar

to ShRec3D [48]. Sub-regions are

colored accordingly. The second

column shows the distance map of

the polymer, where coloring focus

on the selected region. The third

column shows the Λ-plot for this

polymer ensemble, with colored tri-

angles highlighting regions corre-

sponding to the selected sub-chain.

The spectrum for the selected sub-

region is shown in column 4.

coordinate of these maxima precisely corresponds to the midpoint of

the loop, while the η coordinate is systematically slightly larger than

the actual loop size. Thanks to our straightforward loop modeling, we

can derive analytical results, as outlined in the following box.

Maxima coordinates in the Λ-plot

Here I explain how to determine the loop coordinates (ι, θ) from the maxima (ι, η) in the Λ-plot. The midpoint of the
loop coincides with the first maxima coordinate and can therefore be directly determined. To relate η at the maximum

of the Λ-plot with the actual loop size θ, we perform the following analysis.

We take a cross-section of the Λ-plot for the ι = ιmax of the maximum. Any given η < θ corresponds to selecting a
sub-walk that is contained inside the loop; for η > θ, we are selecting the entire loop and some of the adjacent ends. By

modeling this problem as a 3D random walk, we can explicitly calculate the DCT to find the spectrum of both a partial

loop (η < θ) and a loop with non-looped ends (η > θ). From these spectra, we can calculate the log-spectral ratio Λ. By
writing µ = η/θ, we can discriminate between the two cases with one parameter and we can go to the continuum limit
while keeping the ratio µ fixed. We find then

Λ0 = Λ
∣∣
ι=ιmax

(µ) =


− log

(
1−

8µ

π2

)
µ ≤ 1,

− log

(
1−

8µ

π2
sin2

(
π

2µ

))
µ > 1.

(4.8)

Note that this function is once differentiable and has a single maximum. In the figure hereafter, we plot equation (4.8).

The condition of zero derivative for the function in equation (4.8) yields π
µ
sin
(
π
µ

)
+cos

(
π
µ

)
−1 = 0, that is equivalent

to solve

2x = tanx where µ =
1

x

π

2
and x ∈

[π
4
,
π

2

]
.

This equation cannot be solved analytically, but a numerical solution gives µ0 = 1.34767, with corresponding value
Λ
∣∣
ι=ιmax

(µ0) = 2.55882. Hence, given the position of a maximum (ι, η), the size of the loop is estimated by θ = η/µ0.
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35 We have ι0 = ι and, from equation

(4.8), θ = η/µ0, where µ0 ≈ 1.34767

is a universal constant.
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For a given fBm signal containing an internal loop centered at ι0

with a size of θ, the Λ-plot restricted to the ι = ι0 line is indeed given

by equation (4.8). This allows a precise determination of the loop

position and size starting from the detected maxima (ι, η)35. With

these results, we can formulate a method for detecting loops in signals.

Given a set of signals {x⃗n} containing internal loops, follow these steps:

1. Calculate the estimated Λ-plot from the available samples;

2. Find the position (ι = ι0, η) of any maximum;

3. Divide η by µ0 ≈ 1.34767 to find the approximate size of the corre-

sponding loop;

4. The estimated loop falls then between monomers ι0 − η/(2µ0) and

ι0 + η/(2µ0).

Finally, note that, taken a point (η, ι) on the Λ-plot, the triangle of

which it is the vertex corresponds to the lambda plot of the region

[η−ι/2, η+ι/2], as shown by the multiple examples given in Figure 4.14.

4.4.4 Estimating the ratio of looped to non-looped confor-

mations

In a typical experimental dataset, only a portion of the configurations

will exhibit a specific loop, while the complementary fraction will lack

this feature. Consequently, we need to investigate how the log-spectral

ratio depends on the probability of occurrence of a given loop, and

whether it can provide any information about this probability. In the

box hereafter we derive an expression for the log-spectral ratio Λ (for

fixed ι = ι0) for mixed populations in terms of the probability P of

having a loop of size θ. From this expression, we learn that the position

of the maximum is independent of P, while its amplitude depends on

it. Since we have access to this maximal value of the log-spectral ratio

from the Λ-plot, we may use it to know the looping probability P.

Indeed, inverting this formula yields

p =
π2

8µ0

(
1− e−Λmax

)
csc2

(
π

2µ0

)
. (4.9)

Crucially, this connection between the fraction of looped conforma-

tions and the strength of the maxima provides a means to estimate

the fraction of looped conformations in the sample, offering valuable

insights for biological datasets.
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36 B. Bintu, L. J. Mateo et al.

Super-resolution chromatin tracing re-
veals domains and cooperative in-
teractions in single cells. Science,

362(6413):eaau1783, 2018, [9].

Log-spectral ratio in mixed populations
Suppose P gives the percentage of samples that have a loop in a dataset, and hence that 1 − P gives the percentage of

samples that do not have a loop. By linearity,

P
〈
L2
p

〉
+ (1−P)

〈
U2
p

〉
is the spectrum for this mixed population, where the

〈
L2
p

〉
denotes the spectrum for a uniform population of polymers with

the given loop and
〈
U2
p

〉
denotes the spectrum of a non-looped population. Using this expression within the definition of

the log-spectral ratio, we find after going to the continuum limit

Λmixed(µ) =


− log

(
1−

8

π2
Pµ

)
µ ≤ 1,

− log

(
1−

8

π2
Pµ sin2

(
π

2µ

))
µ > 1.

(4.10)

The theoretical midlines of Λ-plot for different values of P are shown in the graph. For P = 1, the plot of equation (4.8)

is recovered. For P = 0, the log spectral ratio vanishes. For other values of P, we plot equation (4.10). The maximum of

each function remains at µ = µ0, but the value of the maximum decreases as P decreases.
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This equation relies on the intensity of the Λ signal to the probability P. By taking the equation at the observed

maximum, Λmixed(µ0) = Λmax, and by inverting it, we can therefore recover an estimate of the proportion P of samples
with loops as

p =
π2

8µ0

(
1− e−Λmax

)
csc2

(
π

2µ0

)
. (4.11)

4.5 Λ-plot loop detection in multiplexed

FISH data

To evaluate the performance of the Λ-plot method on experimental

data, we turn again to the seq-FISH datasets by Bintu et al.36. We

consider experiments 5 and 6 defined in section 4.2 (see Table 4.1),

the HCT116 cell line, from 34.6 Mb to 37.1 Mb, with and without

RAD21 depletion.

In Figure 4.11, we first present the average distance maps we ob-

tained for the two datasets. In the wild-type data, two large TADs are

evident, along with numerous sub-TADs. However, identifying specific

loops is challenging. In the auxin-treated variant, the (sub-)TADs are

less pronounced, and a significant loss of structural detail is observed

at the ensemble average level. No distinct loop can be identified from

the distance map.

The log-spectral ratio successfully detects numerous loops in the

conformations, including 14 loops in the wild type (labeled 1 to 14)

and 7 loops in the auxin-treated variant (labeled A1 to A7). Max-

ima detection involves manual selection of regions where they might

be present, followed by standard numerical methods. The estimated

proportions of looped conformations for each loop, along with their

respective errors, are summarized in Figure 4.16 (red bars).

Examining the relative positions of loops is also interesting. Some
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Figure 4.15: The Λ-plots (a,b)

and distance maps (c,d) created

from the experimental data of Ref.

[9] for both the wild type variant

(left) and an Auxin-treated variant

(right). Each detected maximum is

given a loop id.

Figure 4.16: The estimated prob-

ability of each loop’s occurrence is

shown, obtained from the Λ-plot

(red bars) and the neural network

output (blue bars).

37 S. M. Espinola, M. Götz et al. Cis-
regulatory chromatin loops arise be-
fore tads and gene activation, and are
independent of cell fate during early

drosophila development. Nature Ge-
netics, 53(4):477–486, 2021, [21].

loops overlap or are included within larger loops, as can be under-

stood by visualizing the corresponding triangles in the Lambda dia-

grams. For example, loops 12 and 13 are inside loop 14, while loop 11

is relatively isolated from the others. In the auxin case, loops A3, A5,

A6, and A7 are within loop A4, and loop A1 partially overlaps with

loop A2.

Notably, some loops are closely adjacent to each other, such as

loops A3 and A7 or loops 12 and 14, forming what appears to be the

two ”petals” of a flower-like shape. It’s interesting to note that Ref. 37

suggests that flower-like looping is a fundamental mechanism in chro-

matin folding leading to hubs or clusters of interacting cis-regulatory

modules including enhancers and promoters. This suggests that our

algorithm is capable of detecting such structures. However, it’s impor-

tant to confirm that these loops are present simultaneously in unique
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loop id 1 2 3 4 5 6 7

ι0 6 12 17 20 29 36 34

η 8 12 34 22 58 14 26

Loop range 3-9 8-16 4-30 12-28 7-51 31-41 24-44

loop id 8 9 10 11 12 13 14

ι0 37 42 43 54 63 68 72

η 42 8 12 16 14 30 20

Loop range 21-53 39-45 39-47 48-60 58-68 57-79 65-79

loop id A1 A2 A3 A4 A5 A6 A7

ι0 32 13 51 59 55 65 67

η 48 18 34 48 20 18 32

Loop range 14-50 6-20 38-64 41-77 48-62 58-72 55-79

Table 4.2: The ι0 and η coor-

dinate of the maximum in the Λ-

plots for each loop identified in Fig-

ure 4.15. The inferred loop extrem-

ities ι0 ± η/(2µ0) are also listed.

38 Generating our own training data
is highly advantageous, as it avoids

using experimental data for network

training, effectively minimizing data
wastage.

configurations, rather than being a result of averaging across the en-

tire dataset. To address this question, we need to determine in which

specific samples a detected loop is present. This will be explored

in the next subsection.

4.5.1 Using neural networks to segregate looped and non-

looped configurations

To validate and complement our log-spectral method, Michaël devel-

oped a neural network (NN) approach to assess the presence of

specific loops in individual conformations. The neural network was

trained using artificially generated looped and non-looped random

walks, employing 20,000 training samples, 5,000 validation samples,

and 2,000 test samples in each category38. More details are provided

in the Appendix, see section 4.7.

To independently gauge the presence of loops, our NN is fed with

the spatial distances between pairs of points equidistant from the loop

midpoint ι along the chain. In looped configurations, these distances

should exhibit a minimum at approximately half the loop’s length,

while in non-looped ones, on average, they should show a linear in-

crease with distance (see Figure 4.23). Once a loop is identified, by

locating a maximum (ι, η) in the Λ-plot of FISH data, we use the

trained NN on each individual conformation to ascertain whether

it contains a loop at the specified position.

The neural network approach offers the added benefit of allowing

us to collect data at the single-cell level, enabling further analyses on

segregated datasets. We emphasize that the Λ-plot is pivotal for the

NN’s applicability, since the NN can only be applied to one location

at a time and is specifically trained for a single loop size.

As a first test, we compare the proportions of looped conformations

determined by the neural networks to those obtained from the Λ-plot

for each detected loop in the datasets. The results are presented in

Figure 4.16. Hypothesis testing reveals that we can reject the null

hypothesis of equal estimated proportions for all loops except for loops
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Figure 4.17: Typical example

of the output of neural network

segregation of looped and non-

looped populations, for loop A3.

The first column shows the dis-

tance map, Λ-plot, and mean con-

figuration (similar to the ShRec3D

algorithm [48]) for all measure-

ment data. The second and third

columns show the distance map, Λ-

plot, and mean configuration for

measurements that the NN recog-

nized as containing or lacking loop

A3, respectively.
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Figure 4.18: Histogram of the

probability of a single measure-

ment configuration being looped,

for loop region A1 and for the non-

looped region 0− 8× 30kb.

14 and A3 (or 5, 14, A3, and A4) with 99% (or 95%) confidence. This

strong agreement between the two methods underlines their reliability.

The NN approach enables precise discrimination at the individual

conformation level once a loop is detected in the population by

the lambda-plot method. This, in turn, enables the separation of two

distinct sub-populations: one with looped configurations and the other

with non-looped configurations. For illustration, in Figure 4.17, we

present a comparison of average distance maps for the whole Auxin-

treated dataset and those derived from its sub-populations - one with

loop A3 and the other without, as determined by our NN approach.

Strikingly, in the looped sub-population distance map, a local max-

imum, a typical indicator of loops in contact maps, appears at the

position of the predicted loop.

→ Neural network applied to non-looped regions

To check the occurrence of false positives in the NN loop detection,

we select a random region (from 0kb until 8× 30kb) which, according

to the Λ-plot, contains no loops. Note moreover that this is a small

region, which is generally more difficult for the neural network to work

with. Figure 4.18 shows the estimated loop-probability (output of

the NN) for the selected region and, for comparison, for the region of

loop A1. The two outputs are qualitatively different. The distribution

of the looped region is bimodal, indicating the presence of a looped

sub-population while that of the random region has a single mode.

Moreover, the random region displays a steep cut-off before reaching

a probability of one being looped.
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Figure 4.19: Pearson correlation

between loops in both wild type

(upper plot) and Auxin-treated

(lower plot) datasets.

→ Reconstructed average conformations

Additionally, we include the corresponding mean configurations, re-

constructed following the method outlined in the following box, which

provides additional confirmation of the NN’s effectiveness in distin-

guishing configurations containing a loop within the region pinpointed

by the Λ-plot approach.

Mean polymer configuration: ShRec3D-like approach

The ShRec3D algorithm [48] is aimed to reconstruct spatial distances and three-dimensional genome structures from
observed contacts between genomic loci. In the data from multiplexed super-resolution, the single configurations are

known. However, we follow a simplified approach in the spirit of the ShRec3D algorithm in order to have a representation

of the average features of an entire dataset. To this aim, we calculate individual distance maps for each configuration,
then average over all these maps. This average map will be invariant to translations and rotations of each individual

polymer. Moreover, the averaged map will still be a distance map (i.e. be symmetric and satisfy the triangle inequalities).

Hence, we can choose to put the first monomer in the origin, the second monomer on the positive x-axis, and the third
monomer on the z = 0-plane, and then the distance map completely determines the polymer configuration. This is then

the average configuration.

To further validate the method’s accuracy, we implemented the NN

procedure on regions identified by the Λ-plots as lacking loops. The re-

sults demonstrate the NN’s capability to correctly discern the absence

of a significant looped sub-population.

By separating the looped and non-looped conformations, we’ve been

able to investigate the relationships between loops, specifically the

joint probabilities of each loop pair. In Figure 4.19, we present the

Pearson correlations for the loops in the experimental data. All loops

in Auxin-treated, except loop A2, are positively correlated with each

other. However, loops A3, A4, and A7 seem to be correlated to each

other pairwise, consistent with the idea of A3 and A7 forming the two

petals of a flower-like shape, where the combination of A3 and A7 is

the loop A4. Similarly, on the wild-type variant, loop 13 is the combi-

nation of loops 12 and 14. Loops 12 and 13, as well as 13 and 14, are

positively correlated, while loops 12 and 14 are anti-correlated. This

suggests that the flower-like shape is less likely to occur than the two

individual loops separately. Instead, it seems the flower-like shape only

emerges from averaging over multiple cells.

In the wild type, it is also remarkable that loop 11 seems to be in-

dependent of the other loops. Furthermore, it’s interesting to observe

anti-correlations between neighboring loops, such as loops 1 and 2,

loops 6 and 10, and loops 12 and 14. This might suggest an underly-

ing biological mechanism that prevents adjacent loops from occurring

simultaneously.

4.5.2 End-to-end distance distributions differ for looped

and non-looped populations

The distributions of end-to-end distances - the distance between the

two extremities of the loop - are shown in Figure 4.20, and reveal vari-

ations between looped and non-looped populations in the FISH data

for both the wild type and Auxin-treated cases. These populations
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are considered separately for comparison. In the looped population, a

prominent peak at shorter distances is evident, whereas the non-looped

population exhibits a broader distribution centered on larger distances

and growing with the loop size, in agreement with what is expected

for linear polymers.
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Figure 4.20: Distributions of end-

to-end distances rij which measure

the separation between the two ex-

tremities i = ι0 − η/(2µ0) and

j = ι0 + η/(2µ0) for looped (or-

ange) and non-looped (blue) con-

figurations across all loops identi-

fied in the FISH data. Left: wild-

type; right: Auxin-treated.

It’s important to emphasize that there is a significant overlap in the

end-to-end distance distributions between these two populations. This

finding demonstrates the inadequacy of a simple analysis of inter-loci

distances for loop discrimination and points to the need for a more

comprehensive approach, as proposed in this study.

4.5.3 Further insights into chromatin architecture

We can use the analogy of fBm to gain further insights into chromatin

architecture features in TADs. Let’s consider the two large TADs in the

wild-type (from 0 to 50 ·30kb, region (1), and 50 ·30 kb until 83 ·30kb,
region (2)) and the entire region in the Auxin-treated dataset (Region

3) as a potential third TAD. If we treat these regions as non-looped,

we can fit the internal end-to-end distance R(s) with a power law

f(s) = A(s/30kb)H , for each of these regions. The fitted exponents H

are given in the first row of Table 4.3.

region (1) (2) (3)

all conformations 0.283± 0.014 0.314± 0.014 0.300± 0.003

low loop content 0.394± 0.015 0.418± 0.016 0.411± 0.005

Table 4.3: Values of the expo-

nent H obtained by fitting R(s) =

A(s/30kb)H for regions (1), (2) and

(3) (see main text) while consider-

ing all the conformations (upper

row) or only conformations with

two loops or less (for the wild

type) or without any loops (for

the Auxin-treated variant) (lower

row).

If, now, we only select the subpopulation containing two loops or

fewer, for the wild-type, and the subpopulation without any loops, for

the Auxin-treated variant, we find different H exponents, as shown in

the second row of Table 4.3. By excluding looped populations,

the fitted exponents change notably, going from 0.3 (looped) to

0.4 (non-lopped). Hence, our approach, by allowing us to segregate

looped and non-looped populations, enables a more accurate interpre-

tation of the chromatin structure.

Before passing to a general conclusion of the chapter and of the first

part of the thesis, here is a schematic resume of the main findings of

our loop detection approach.
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Spectral loop detection in FISH data

The specific expertise we acquired in the spectral point of view

on polymer conformations allows us to approach the question of

loop detection from an original point of view.

• The Λ-Plot relies on spectral features to distinguish looped

from non-looped chromatin configurations and effectively iden-

tifies loops in the ensemble of chromatin configurations.

• A neural network was used for validation and confirms the

accuracy and effectiveness of the Λ-Plot in detecting loops in

the dataset.

• Through the Λ-Plot and the NN, we characterize the detected

loops in terms of their size, position, and prevalence within

cell populations.

• Thanks to this new approach, we have identified 14 loops

in the MERFISH datasets by Bintu et al., acquired from

HCT116 cells of human chromosome 21, and 7 loops in the

Auxin-treated variant, whose role certainly will motivate fur-

ther investigations.

4.6 Conclusion/Take Home Message

In this chapter, which concludes the first part of this thesis, I presented

concrete applications of the PSD analysis of polymer conformations de-

fined in chapter 2. I started by analyzing the PSD of human chromatin

regions, comprising several TADs. In the variant where RAD21 is

depleted, inducing the vanishing of TAD structures, the behavior of

the PSD was compatible with an interacting, finite-sized polymer of

interaction parameter of ϵ = 0.3, placing it close to the coil-globule

phase transition. Hence, we can conclude, along with Lesage et al.,

that ”naked” chromatin in physiological conditions behaves as a crit-

ical self-attracting polymer. In single conformations, this critical

state of the polymer is characterized by a partially collapsed state, with

nucleation sites of collapsed subchains stochastically appearing

all across the chain. These structures offer an explanation for the TAD-

like patterns in the auxin treated single-cell chromatin conformations

observed by Bintu et al. Furthermore, as also pointed out by Lesage et

al., a critical state of chromatin is biologically advantageous, since it

makes large conformational changes, such as opening and closing chro-

matin domains, which require little energy to perform. Consequently,

small changes in physical conditions can produce large conformational

changes. In this regard, we showed that forming a loop in a criti-

cal chromatin segment was enough to collapse the chain within the

loop, thereby complementing and reinforcing the hypothesis of TADs

formation by stable loop CTCF mediated loops.
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Then, in the second part of the chapter, I presented the work done

in collaboration with Michaël Liefsoens, which also builds upon the

spectral method developed in chapter 2, but this time to detect loops

in polymer conformation. We found that, through a clever algebraic

expression involving the four first modes, we could devise a spectral

observable extremely effective at detecting loops at the population

level. Through this method, we could detect multiple loops in data

where the conventional methods of loop detection via distance maps

failed to notice their presence.

The presence of loops is confirmed via a neural network approach,

which further results in the opportunity to classify chromatin as

looped or non-looped in each cell. This classification is achieved by

assessing the presence of specific loops in each measurement. We have

demonstrated the feasibility, speed, and reliability of this process. A

significant portion of the success of this neural network approach is

attributed to the initial guidance provided by the Λ-plot and the ease

with which we can generate artificial training data based on an fBm

model.

From the segregated looped conformations, we discovered that the

scaling of R(s) changed notably between looped and non-looped con-

formations. The looped conformation presented a more compact con-

formation than the non-looped, characterized by a scaling exponent of

the 0.3 when looped versus 0.4 when open. This further corroborates

the picture of chromatin as a polymer at criticality. The associated

large fluctuations result in local compaction inhomogeneities that, in

turn, explain the more complex spectral behavior observed in the un-

treated variants.

So we conclude this section, and the first part of the thesis, with a

view of chromatin as a structure subject to constant conformational

fluctuations, as shown in the animation of Figure 4.7, which can be

locally stabilized into a globular form by loop formation, and particu-

larly by the loop extrusion mechanism.

The peculiar motion of the chain in the animation raises the com-

plementary question of the dynamics of such a chromatin

state. In view of this animation, it is tempting to assume that a

highly characteristic dynamic takes place in this critical state.

Hence, in the next chapters, we change perspective and investigate

the dynamics of polymers through the coil-globule phase transition.
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Figure 6.4 The neural network we build to separate looped and non-looped polymers. We
input the information of the polymer as sketched in Figure  6.5a , and the output
is a value between 0 and 1 representing the probability that the polymer that
was put in is a loop. The activation function of the hidden layer is the ReLu
function, and the sigmoid activation is used for the output layer.
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Figure 6.5 As input of the neural networks, we choose to use the spatial distances between
points that are an equal chain distance away from the loop midpoint ÿ, as is
sketched in (a). In (b) we show the expected output for looped (blue) and
non-looped (orange) random walks, obtained from averaging over 3000 random
walks and 3000 looped random walks.

Here, rm is the measured position of the mth marker on the chromatin. See Figure  6.5a 

for a sketch of the situation and Figure  6.5b for expected outputs of Âx for both looped and
non-looped random walks.

Since the signal Âx still has an inherent scale to it, we normalise it to obtain x as

xn = Âxn
max(Âx) .

Figure 4.21: The neural network

we build to separate looped and

non-looped polymers. We input

the information of the polymer as

sketched in (b top), and the out-

put is a value between 0 and 1 rep-

resenting the probability that the

polymer that was put in is a looped

one. The activation function of the

hidden layer is the ReLu function,

and the sigmoid activation is used

for the output layer.
39 C. C. Aggarwal. Neural Net-

works and Deep Learning: A Text-
book. Springer International Publish-

ing, Cham, 2018, [2].

ι

Figure 4.22: As the input of

the neural networks, we choose to

use the spatial distances between

points that are an equal chain dis-

tance away from the loop midpoint

ι.

4.7 Appendix: Neural network approach

4.7.1 Generalities

Neural networks form a class of universal function approximators,

meaning that by choosing the appropriate network and giving enough

training data, the neural network can in principle mimic any function.

In this work, we try to approximate the function that takes a polymer

and outputs a yes or no answer to the question ‘Does this polymer con-

tain a loop?’. In essence, this means we are applying the techniques

of logistic regression on higher dimensional input spaces.

To allow the neural network to mimic the above-specified function,

we need to supply it with sufficient training data. This is data where

the correct labels (yes or no) are known, so that the neural network

can essentially adapt its fitting parameters to better answer the yes or

no question. To avoid overfitting, validation data needs to be supplied

as well, and separate test data is required to test the accuracy of the

model. Since we will be training on (looped) random walks, we can

generate as many training; validation; and test samples as needed.

This is a crucial benefit of this approach.

The necessity of sufficient training data makes it impossible to start

from the measurements directly and just start looking for loops. In-

deed, many loops can occur together, or intertwined, and all of these

possible configurations need many samples to train on. This is why the

Λ-plots developed in this work are used to pinpoint possible locations

of loops in the sample which can then, loop by loop, be investigated

with a neural network trained to distinguish having one loop or no

loops at all.

4.7.2 NN approach for the determination of loops

The specific networks and inputs we consider, are as follows.

Each time the position of a maximum (ι, η) of the Λ-plot is found,

a neural network is trained to separate random walks of length η with

and without an internal loop. The loop sizes lie uniformly in the range

η

µ0
±max

(
0.1

η

µ0
, 1

)
,

where µ0 = 1.34767 as previously stated. This range is arbitrarily

chosen to give enough variability in the training data so that the neural

network can more easily generalize to unseen data. The network has

the ReLU-activation function on the hidden layer, and the sigmoid-

activation function on the output layer, see for example 39. We use

the binary cross-entropy as the loss function.

The polymer data is inputted as follows. Since the midpoint of

the loop is the most certain prediction of the Λ-plot, the distances

between the markers and this midpoint are studied. In formulae, we

want to represent the (looped) random walk {r⃗i} as the signal ⃗̃x given

by x̃n = r⃗ι−n − r⃗ι+n| for n = 0, . . . , η/2 − 1. See Figure 4.22 for a

sketch of the situation and Figure 4.23 for expected outputs of ⃗̃x for
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Figure 4.23: We show the ex-

pected input for looped (blue) and

non-looped (orange) random walks,

obtained from averaging over 3000

random walks and 3000 looped ran-

dom walks.

both looped and non-looped random walks. Since the signal ⃗̃x still has

an inherent scale to it, we normalize it to obtain x⃗ as

xn =
x̃n

max(⃗̃x)
.

This way, we try to lessen the effect of compact versus loose packing

of the chromatin, as well as that of small and large loops.

We train our neural network on artificially generated looped and

non-looped random walks—with balanced training data—with 20000

learning samples, 5000 validation samples, and 2000 test samples for

both the looped and non-looped random walks. The validation samples

are used to monitor and prevent overfitting, and the test samples give

an estimate of the accuracy of the neural network. It needs to be

remarked that it is an enormous benefit that we can artificially generate

training data, as we do not need to waste any experimental data on

training the networks.

4.7.3 Accuracy test

Additionally, we report the accuracy of each trained network in Ta-

ble 4.4. Note that this accuracy is obtained by studying independent

test data, which is (nevertheless) ideal random walk data, and should

hence be interpreted carefully. A conclusion we can make is that for

the ideal data, the accuracy is around 90 percent, and that the accu-

racy is lower for shorter loops. This indicates that the neural networks

have more trouble separating short random walks and short looped

random walks. This is expected as the thermal fluctuations of each

single monomer weigh more heavily on the total conformation, when

the total number of monomers is small.

loop id 1 2 3 4 5 6 7

accuracy [%] 81 90 95 95 94 92 92

loop id 8 9 10 11 12 13 14

accuracy [%] 93 83 88 92 92 94 94

loop id A1 A2 A3 A4 A5 A6 A7

accuracy [%] 95 94 95 95 94 93 94

Table 4.4: Accuracy of trained

neural networks for each loop.

4.7.4 Time complexity

Creating the Λ-plot requires studying all the sub-polymers at all possi-

ble positions, which can be quite time-consuming at first glance. Luck-

ily, due to the application of the Fast Fourier Transform to compute

the Discrete Cosine Transform, and by using the fast vectorizing abil-

ities of numerical software like NumPy, this is actually not a problem.

Without performing a detailed analysis – since the timing results were

satisfactory – we can report that the creation of the two experimen-

tal Λ-plots of Figure 4.15 only took about 30 seconds, which is for

around 20000 configurations of 83 3D-points each. This timing is for
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a MacBook Pro with an Apple M1 MAX chip and 32 GB RAM. The

training and application of each neural network to each separate loop

takes about 11 minutes in total (running in parallel with 10 cores).



40 Sometimes several, but rarely more

than 3 for technical reasons.

41 And, unfortunately, of many other

biological events that tend to make it

difficult to interpret the experimental
results.

42 V. I. P. Keizer, S. Grosse-Holz

et al. Live-cell micromanipulation
of a genomic locus reveals inter-

phase chromatin mechanics. Science,

377(6605):489–495, 2022
43 G. Shi, L. Liu et al. Interphase hu-
man chromosome exhibits out of equi-

librium glassy dynamics. Nature Com-

munications, 9(1):3161, 2018
44 M. Socol, R. Wang et al. Rouse
model with transient intramolecular

contacts on a timescale of seconds re-
capitulates folding and fluctuation of
yeast chromosomes. Nucleic Acids Re-
search, 47(12):6195–6207, May 2019

45 Note that ”dynamics of the coil-
globule transition” sometimes refers to

the study of the relaxation of a chain
whose solvent conditions have been

changed abruptly and is therefore out

of equilibrium. This question has been
extensively studied [32] and will not be

the subject of this study.

Part II : Dynamics

Introduction to the Second Part

As stated in the introduction, one of the most common methods for

probing the physical properties of chromatin is the tracking of a40 fluo-

rescent segment of DNA over time by optical microscopy. In the videos

collected using this method, the segment (a luminous dot) is seen wan-

dering erratically across a black background, with the rest of the DNA

chain completely invisible. The trajectory undertaken by the segment

is determined by a combination of factors, including its interactions

with the particles in the surrounding fluid, the nucleoplasm, as well

as its interactions with the rest of the polymer chain. The polymer

chain, in turn, is itself erratically evolving through its collisions with

the fluid, pushing and pulling the segment41. We can therefore reason-

ably expect that the physical properties of the chain may influence the

trajectory of the segment. Consequently, a statistical analysis of these

trajectories is frequently employed in the field to deduce certain chro-

matin properties as chain stiffness, topology, viscoelasticity42,43,44.

In addition, as shown in the previous part, the folding state of chro-

matin can be modeled by a self-attracting polymer model. This was

shown by studying the equilibrium properties of the chain, through

the analysis of the average spectral content of the chromatin conforma-

tions. The scaling in the equilibrium fluctuations of the low-frequency

modes of the chain allowed us to assess the compaction state of the

chain. In the same spirit, but in the context of dynamical data,

one can ask whether it is possible to infer the folding state of a chro-

matin domain from the trajectory of a single segment belonging to the

domain. Or, in the language of polymer physics, is it possible to

infer the position in the coil-globule phase diagram of a poly-

mer from the trajectory of a single monomer? To answer this

question, in this second part of the manuscript, I will attempt to char-

acterize the stochastic dynamics of a monomer within an equilibrium

chain in different states of folding45.
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While the work in this part hasn’t been published yet, we are

currently in the process of writing an article incorporating the

findings of chapters 6 and 7.

Also, I would like to mention a very recent article [1] by Amith

Z. Abdulla, Maxime M. C. Tortora, Cédric Vaillant and Daniel

Jost, in which the impact of topological constraints on the dynam-

ics of a self attracting polymer embedded in a non-interacting

polymer is investigated. My works and theirs, while certainly

overlapping in certain aspects, should be seen as complementary.

Indeed, our approach is more focused on the effect of the interact-

ing energy, while their study is primarily concerned with exploring

the impact of varying the length of the embedding polymer.



5

Ideal Chain Dynamics:

The Rouse model

Our aim here is to qualify the dynamics of a monomer belonging to

a self-attractive chain in different solvent conditions. At first sight,

this task seems extremely complex, if not completely intractable. In-

deed, due to the very strong correlations inherent to polymers as a

result of chain connectivity, the dynamics of a monomer depend on

the evolution of the entire chain.

In reality, it is, paradoxically, the chain connectivity itself that sim-

plifies the problem. Indeed, the long-range correlations conveyed by

the chain connectivity induce fluctuating collective movements of the

chain that effectively trump any effect due to the microscopic details

of the system. For this reason, the time evolution of polymer con-

formations is highly universal and can be understood from a few key

notions shared by many polymer systems.

Accordingly, the most important model in polymer dynamics is the

simplest one, the Rouse model, because it isolates the fundamental

property of polymers, namely chain connectivity. Consequently, many

more complicated models can be seen as extensions of the Rouse model

and share certain properties with it.

Nevertheless, one must be aware that the Rouse model is based on

several very rough approximations. Firstly, it’s an ideal chain model.

As we discussed in chapter 1, in many physical situations monomer

interactions are screened and the chain adopts an ideal behavior. We

have seen for example in chapter 3 that in globule configurations the

polymer subchains behave like ideal chains. For dynamics, we will see

that the question is a little trickier, since it won’t be possible to apply

Rouse dynamics directly to the sub-chains of a globule. Indeed, in this

case, neglecting the interaction with the other sub-chains is impossible

and gives the wrong scaling for the MSD. To describe this situation,

we need therefore to study the dynamics of interactions between sub-

chains. To this end, we will introduce the concept of reptation in

chapter 7.

Secondly, as we will see, the random force applied to one bead,

following the Langevin approach, is completely uncorrelated from the

force applied to another bead. This assumption implies that any po-
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tential correlations between beads mediated through the solvent are

neglected. Other models including the so-called hydrodynamic inter-

actions through random force correlations exist - notably the Zimm

model - but won’t be treated in this thesis.

In this chapter, in section 5.1, I introduce the Langevin equa-

tion, a stochastic differential equation that describes the motion

of particles subject to random forces. A particular emphasis will

be put on the fluctuation-dissipation theorem, which relates the

fluctuating force to an underlying dissipative process.

In section 5.2, we’ll apply the Langevin dynamics to a Gaus-

sian chain to derive the Rouse model. To solve the model, we’ll

again employ the Rouse modes, this time in a more classical fash-

ion. We’ll study the dynamical properties of the Rouse modes and

see that they describe the motion of the chain on different length

scales. Finally, in section 5.3, we’ll define the mean square dis-

placement and derive its scaling for a single monomer in a Rouse

chain

5.1 The Langevin Approach to Particle

Dynamics

Langevin dynamics, which has its origins in the modeling of Brownian

motion, is a mathematical formalism that models the trajectory of a

large particle exchanging kinetic energy with a heat bath, usually a

fluid, composed of smaller particles. The strategy of the Langevin for-

malism is to model all collisions with the fluid by a random stochastic

force acting on the particle, drastically reducing the number of degrees

of freedom. The result is an equation similar to Newton’s equation but

including a stochastic term representing collisions, called the Langevin

equation. The Langevin formalism has been generalized to the cases

where the ”particle” is not an actual particle per se, but rather a col-

lective feature of a macroscopic system. In the following, I recall the

main lines of the Langevin approach.

5.1.1 Underdamped Langevin dynamics and the Langevin

equation

→ Dissipative process

Consider a one-dimensional Brownian particle with radius r, mass m,

position x, and velocity v, immersed in a fluid with viscosity η. The

friction force felt by this bead is proportional to its velocity with pro-

portionality constant given by the Stokes law

ζ = 6πηr. (5.1)

First let’s imagine this is the only force acting on the bead, or rather

that it dominates the dynamics of the bead. Then Newton’s law for
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this bead gives the equation of motion for the bead:

m
dv

dt
= −ζv (5.2)

or, by introducing the friction constant γ = ζ/m,

dv

dt
= −γv. (5.3)

As a first-order linear differential equation, (5.3) can be solved exactly

given the initial velocity v0 of the bead:

v(t) = v0e
−γt. (5.4)

Due to the friction, the velocity of the bead decays exponentially and

goes to 0 at long times. This is a typical dissipative process. The

initial kinetic energy of the bead is transferred, as heat, to the fluid.

→ The (Underdamped) Langevin Equation for a Free Particle

This solution is not completely satisfactory because we know that the

velocity of the bead should remain non-zero at equilibrium due to

thermal fluctuations. In fact, the equipartition theorem gives us a

precise value for the equilibrium fluctuations of the velocity:

⟨v2⟩ = kBT

m
. (5.5)

Invalidating the assumption that the dissipative force fully dominates

the dynamics. The solution put forward by Langevin (in 1908) is to

add a random force Ξ(t) acting on the bead. The resulting equation

is the simplest possible form of the Langevin equation. It describes

the dynamics of a free Brownian particle as

dv

dt
= −γv(t) + ξ(t), (5.6)

where ξ(t) = Ξ(t)/m has the units of a force per unit mass, but is

often also referred to as the ”stochastic force”, albeit improperly.

Owing to the stochastic nature of the force ξ(t), to complete the

Langevin equation we must specify its statistics. Many choices are

possible allowing for the modelization of a multitude of random phe-

nomena. In its simplest form, which will concern us in this work, the

fluid can be considered isotropic, fixing

⟨ξ(t)⟩ = 0. (5.7)

Due to the chaotic nature of the fluid-colloid interaction, different col-

lisions are considered independent, i.e

⟨ξ(t)ξ(t′)⟩ = 2α δ(t− t′) , (5.8)

where ⟨ξ2(t)⟩ = 2α, the variance of the random force ξ(t), gives a

measure of its intensity.

As we learned in chapter 2, Equations (5.7) and (5.8) define, in

practice, a white noise. We may note, then, that in the case where
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γ = 0 the velocity v(t) is simply the primitive of the white noise, and

is therefore expected to behave like a Brownian motion, i.e. to have a

diverging variance ⟨v2(t)⟩. It is the presence of dissipation (modelled

by the term −γv(t)) that enables this variance to be locked at the

equilibrium value.

→ Statistics of Solutions to Langevin Equation and the Fluctuation

Dissipation Theorem

After appropriately defining the stochastic force, we can solve formally

equation (5.6) for the free particle by integrating both sides from 0 to

some arbitrary time t, yielding the general form of the solution,

v(t) = v0e
−γt +

∫ t

0

dt′ e−γ(t−t
′)ξ(t), (5.9)

where the initial value of the velocity, v0 = v(0), has been fixed. Due

to the presence of the right-hand term, each solution v(t) depends on

the specific realization of the stochastic force ξ, meaning that v(t) itself

is a stochastic function of time.

Furthermore, we can compute the second moment of the velocity,

still at fixed v0 and therefore denoted ⟨v2(t)⟩v0 , by computing the mean

square of (5.9). The two cross terms are first order in the random force

ξ and thus vanish. We are left with the two square terms, one of which

is a double integral, second order in ξ(t) which can easily be computed

by means of equation (5.8), the other is the square of the deterministic

exponential term. All in all, we find:

⟨v2(t)⟩v0 = v20e
−2γt +

α

γ
(1− e−2γt). (5.10)

As anticipated earlier, in the long time limit we expect ⟨v2(t)⟩v0 to

relax towards its equilibrium value ⟨v2(t)⟩ = kBT/m, enforced by the

equipartition theorem. Now the t≫ (2γ)−1 limit of equation (5.10) is

α/γ, hence we get

⟨v2⟩ = α

γ
=

⟨ξ2(t)⟩
2γ

(5.11)

⟨ξ2(t)⟩ = 2α =
2γkBT

m
. (5.12)

This relation fixes the value for the strength of the stochastic force,

which was left undetermined. This result is a manifestation of the

fluctuation-dissipation theorem. In essence, it establishes the rela-

tion between the random fluctuations of the force ξ(t), and the strength

of the damping term γ such that the process, in its equilibrium state

exhibits realistic fluctuations. In hindsight, since both the dissipative

and the noise terms result from the interaction of the Brownian parti-

cle with the fluid it is not so surprising to find that there is a relation

between them.

5.1.2 Correlation Function and Correlation Time

From (5.9) we can also compute the time correlation function of

the particle velocity. First, let’s compute the mean velocity at fixed
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1 Note that τ can only be defined when

correlations decay rapidly, such as in
the case of exponential decay. In the

case of a power-law behavior, the cor-

relation function is typically not inte-
grable over time, and this leads to the

correlation time diverging.

initial velocity:

⟨v(t)⟩v0 = v0 e
−γt (5.13)

Now we can make the auto-correlation function of the particle velocity

appear by multiplying both sides by v(0) = v0 and averaging over

initial velocities v0, yielding

Cvv(t) = ⟨v(t) v0⟩ = ⟨v20⟩ e−γt =
kBT

m
e−

t
τ (5.14)

where we have defined the correlation time1

τ =
1

γ
=
m

ζ
. (5.15)

The parameter τ is the characteristic time of decorrelation of the ve-

locity, i.e. the time needed for the particle to lose memory of its initial

velocity v0. Since τ is also the time taken by the system to fully relax,

through the dissipative mechanism, towards its equilibrium state, it is

also called the relaxation time of the process. If we imagine sampling

the signal v(t) with a time step ∆t≫ τ , then the correlation function

(5.14) essentially becomes (kBT/m) δ(τ): the sampled velocity is in

this regime a delta-correlated, centered stochastic process of variance

(kBT/m) and therefore, again, a white noise. This is of course possible

only because the correlation function Cvv decreases fast enough - more

precisely, it should be integrable.

We can also stress that, although the relation (5.12) is derived in the

long-time limit, the typical relaxation time τ = γ−1 is in turn linked

to fluctuations through the fluctuation-dissipation theorem. Thus, if

the solvent’s viscosity η is increased at a given temperature, then the

velocity relaxes faster (τ decreases), and the amplitude of fluctuations

of the random forces due to collisions is greater.

5.1.3 the Overdamped Langevin Equation

If we measure the particle’s position on long timescales, i.e t ≫ τ

we will always miss the inertial regime of the dynamics and measure

equilibrated velocities, characterized by dv
dt = 0. Therefore we can

write the so-called overdamped limit of the Langevin equation, by

neglecting the inertial term mdv
dt :

γ
dx

dt
= −dU(x(t))

dx
+ ξ(t). (5.16)

Note that we have also generalized the equation to the case where the

particle is subjected, in addition to interaction with the fluid, to a

force derived from a potential.

Of course, the solutions to the overdamped Langevin equation are

the long time limit of the solutions to the underdamped Langevin

equation.

5.1.4 The Particle Mean Square Displacement

To measure the spatial extent of a stochastic trajectory, the most com-

mon measure is themean square displacement (MSD), noted g(t),
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2 Note that we obtain a square-root

dependence on time of the average dis-

tance
√

⟨(x(t)− x(0))2⟩, coherently
with the behavior evoked in chapter 1

to discuss the internal end-to-end dis-
tance (1.13) as a function of the num-

ber of steps.

3 D is also the rate at which this diffu-

sion process occurs at the macroscopic

level, process described by the Fick’s
law.

and defined as the average squared distance covered by the particle in

a given time:

g(t) = ⟨(x(t)− x(0))
2⟩. (5.17)

By using the relation

x(t)− x(0) =

∫ t

0

dt′ v(t′), (5.18)

the MSD for the Brownian particle can be computed thanks to (5.9)

and (5.14). The result is given without going through the details of

the calculation:

g(t) = 2
kBT

mγ
(t− τ + τe−t/τ ). (5.19)

If we place ourselves at very short time compared to the velocity decor-

relation time, t≪ τ , when the particle’s inertia dominates its dynam-

ics, we can develop the exponential to second order. The zeroth and

first order in the expansion cancel out, leaving only the t2 term

g(t) ∼ t2 | t≪ τ. (5.20)

The t2 dependence is characteristic of ballistic motion, meaning the

particle moves essentially in a straight line in this limit.

In the opposite limit, t≫ τ , we know that v(t) is essentially delta-

correlated, as discussed. Consequently, we expect x(t)−x(0) to behave

like a Brownian process. Indeed, the exponential in (5.19) goes to 0

and the MSD becomes2

g(t) = 2
kBT

mγ
t = 2Dt, (5.21)

where we have defined the diffusion coefficient of the particle D

D =
kBT

mγ
=
kBT

ζ
. (5.22)

Equation (5.21) corresponds to a standard Brownian motion, where the

diffusion coefficient D characterizes the average quadratic step size3.

It is therefore not surprising that D is proportional to the variance of

the velocity, kBT/m, as stated by equation (5.22). More interesting,

(5.22), called the Stokes-Einstein relation, establish a link between

D and γ, which is another manifestation of the fluctuation-dissipation

theorem.

5.1.5 Normal, sub- and super-diffision

It is interesting to derive the position variance g(t) in a more general

way, where we only assume that the velocity process v(t) is centered

and stationary, of correlation function Cvv(t). By following the same

procedure as to get the second moment of the velocity (5.10) from the

forces, we have to compute the mean square of equation (5.18), which

yields

g(t) = 2

∫ t

0

dt′
∫ t′

0

dt′′ Cvv(t
′′). (5.23)



go to ToC ideal chain dynamics: the rouse model 121

4 Precisely, by using the relation

lim
a→0+

e−|x|/a

2a
= δ(x).

In the general framework of the under-damped Langevin equation,

Cvv(t) = ⟨v2⟩ exp (−γt). We retrieve the same result at large enough

time, since, for t≫ γ−1,

∫ t′

0

dt′′⟨v2⟩e(−γt′′) ≃
∫ ∞

0

dt′′ ⟨v2⟩e(−γt′′) = ⟨v2⟩
γ

and therefore

g(t) = 2
⟨v2⟩
γ

t = 2⟨v2⟩τ t

that coincides with equation (5.21). In the case where the overdamped

Langevin equation holds, that is, again, for t large enough, Cvv(t) can

be approximated as a delta-function4 and we recover the expected

behavior even more directly.

This linear dependence of the MSD on time observed for the long-

term dynamics of the Brownian particle is typical of so-called normal

diffusion. It is clear from the previous lines that the linear dependence

on time (5.21) emerges whenever the velocity correlation function is

integrable, provided that the dynamics is observed on a time-scale

much greater than
∫∞
0
Cvv(t)/⟨v2⟩dt.

If this integrability condition is lacking, diffusive processes exhibit

anomalous diffusion. Let’s consider in particular the case where

Cvv(t) has a power law behavior. Clearly, the previous derivation fails,

and the time-dependence of g(t) becomes non-linear. If the velocity

auto-correlation function asymptotically goes as

Cvv(t) ∼ t−β (5.24)

with β a given exponent in [0, 2], it is simple to show from equation

(5.23) that

g(t) ∼ t2H , (5.25)

where H = 1− 1
2β.

Two cases should then be distinguished:

1. sub-diffusion: if β ∈ [1, 2], the particle diffuses less rapidly than

in the Brownian case, characterized by 0 ≤ H ≤ 0.5;

2. super-diffusion: if β ∈ [0, 1], the particle diffuses faster than the

Brownian case, i.e. 0.5 ≤ H ≤ 1.

Here, we identify H as the Hurst exponent previously introduced. In-

deed, different mechanisms can explain the appearance of abnormal

diffusion of a stochastic process, most often when the process assumes

long-range correlations. A typical case of an anomalous diffusive pro-

cess is the fBm discussed in chapter 2.
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5.2 Rouse Dynamics

We can now move on to the study of polymer dynamics. As we shall

see, the dynamics of the monomer depend on the evolution of the whole

chain and can be understood thanks to a few key concepts relating to

the singular evolution of polymer conformations.

5.2.1 The Rouse Equations of Motion: Langevin Dynam-

ics Applied to the Gaussian Chain Model

The Rouse model describes the motion of a Gaussian polymer, as pre-

sented in chapter 1, each of whose monomers is driven by an over-

damped Langevin dynamics with uncorrelated white-noise-like forces.

Consider a Gaussian chain polymer of N + 1 monomers, whose po-

sitions are denoted by (R⃗0, . . . R⃗N ), immersed in a fluid of viscosity γ

at temperature T . As derived in section 1.4, subsequent monomers i

and i+ 1 are linked by a bonding potential:

Ui,i+1 = −1

2
k(R⃗i − R⃗i+1)

2 (5.26)

where k = 3kBT/b
2, the spring constant, fixes the mean bond length

to b according to (1.27). We can then straightforwardly apply the

overdamped Langevin equation Equation 5.16 to every bead yielding

the system of N +1 3-dimensional coupled Langevin equations for

the beads





dR⃗0

dt
=
k

γ
(R⃗1 − R⃗0) + ξ⃗0(t)

...

dR⃗i
dt

=
k

γ
(−R⃗i−1 + 2R⃗i − R⃗i+1) + ξ⃗i(t)

...

dR⃗N
dt

=
k

γ
(R⃗N−1 − R⃗N ) + ξ⃗N (t),

(5.27)

where we have introduced the random force ξi(t) on monomer i with,

as seen,

⟨ξ⃗i(t)⟩ = 0 (5.28)

⟨ξ⃗i(t′).ξ⃗j(t)⟩ = 6Dδijδ(t− t′). (5.29)

with D = kBT/γ the diffusion coefficient (or diffusivity) of a single

bead and where δij guarantees that the noise felt by one monomer is

not correlated to the noise felt by any other monomer, enforcing the

free-draining approximation.
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5.2.2 Uncoupling the Rouse Equations: The Langevin

Equation for the Rouse Modes

The first step in solving the Rouse model is to write the equations in

a matrix form,




dR⃗0

dt

...

dR⃗N

dt




=
k

γ




1 −1 0 · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 1







R⃗0

...

R⃗N




+




ξ⃗0(t)

...

ξ⃗N (t)




(5.30)

yielding the first-order differential matrix equation

dR

dt
=
k

γ
AR+ ξ. (5.31)

In equation (5.31), R = (R⃗0...R⃗N )T is the vector of position vectors,

ξ = (ξ⃗0, . . . ξ⃗N )T the vector of random forces and A is the N + 1

dimensional matrix appearing in (5.30).

→Equation decoupling

Once written in this form, we immediately recognize that A is the

matrix appearing in the Hamiltonian of the Gaussian model (1.31).

From there, the strategy is to diagonalize A. We’ve already done this

in chapter 1 to diagonalize the Hamiltonian; it’s interesting to find that

the same basis also allows us to decouple the Rouse dynamic

equations, thanks to the simple structure of the Langevin approach.

Let’s replace A by its diagonal form (1.45), A = ∆−1ΦDΦT , in

equation (5.31):
dR

dt
= −k

γ
∆−1ΦTDΦR+ ξ. (5.32)

To complete the diagonalization of the Rouse equation, remember that

ϕT is the transition matrix from the real space to the Rouse mode

space, in other words X = ΦTR. Hence, we can make the Rouse

modes appear by multiplying both sides by Φ, getting

dX

dt
=
k

γ
DX+Ξ (5.33)

where we have defined Ξ = Φξ.

Finally, by abandoning matrix writing, we can write the Langevin

equations for the Rouse modes, as




dX⃗0

dt
= Ξ⃗0(t)

...

dX⃗p

dt
= −k

γ
λpX⃗i + Ξ⃗p(t)

...

dX⃗N

dt
= −k

γ
λN X⃗N + Ξ⃗N (t).

(5.34)
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We remind again the formula for the Rouse modes (equation (1.47)),

X⃗p =
1

N + 1

N∑

n=0

R⃗n cos

(
pπ

N + 1
(n+ 1/2)

)
, (5.35)

and the eigenvalues (equation (1.46));

λp = 4 sin2
(

pπ

2(N + 1)

)
. (5.36)

→Statistics of the Random Force Acting on the Rouse Modes

To complete the Langevin equations of the Rouse modes, we need to

specify the statistics of the random forces Ξ⃗p. These forces can be

explicitly expressed as

Ξ⃗p =
1

N + 1

N∑

i=0

ξ⃗i cos

(
pπ

N + 1
(i+ 1/2)

)
. (5.37)

Since Ξ⃗p is a sum of Gaussian random variables, it is itself a Gaus-

sian random variable: Hence, it is sufficient to compute its first two

moments.

Clearly, its first moment vanishes:

⟨Ξ⃗p(t)⟩ = 0. (5.38)

For its second moment, the calculation involves a bit of linear algebra,

which is done in the box below, here we simply give the result:





⟨Ξ⃗0(t) · Ξ⃗0(t
′)⟩ =

6D

N + 1
δ(t− t′)

⟨Ξ⃗p(t) · Ξ⃗p(t′)⟩ =
3D

N + 1
δ(t− t′) for p > 0

⟨Ξ⃗p(t) · Ξ⃗q(t′)⟩ = 0 for p ̸= q

(5.39)

where D = kBT/γ is the single monomer diffusion coefficient.

The dyadic product of two vectors a and b of size N is an N×N matrix given
by the matrix product of a with the transpose of b such that its elements are

given by

(a× b)ij =
(
a bT

)
ij

= aibj .

Calculating the dyadic product of Ξ(t) with Ξ(t′) gives the correlation
function between any pair of random forces (Ξi,Ξj). We have

Ξ×Ξ = Ξ ΞT =
(
Φ−1ξ

) (
Φ−1ξ

)T
,

then, by using the fact that Φ−1 = ∆−1ΦT and the identity (AB)T = BTAT ,
we obtain

Ξ×Ξ = Φ−1ξ ξTΦ∆−1 ,

and taking the ensemble average

⟨Ξ(t)×Ξ(t′)⟩ = Φ−1⟨ξ(t) ξ(t′)T ⟩Φ∆−1 .

Since ξ(t) ξ(t′)T is the dyadic product of ξ(t) and ξ(t′), we can use the
correlation function for ξ and we get

⟨ξ(t) ξ(t′)T ⟩ = 6Dδ(t− t′)I ;

All in all
⟨Ξ(t)×Ξ(t′)⟩ = 2D∆−1δ(t− t′) ,



go to ToC ideal chain dynamics: the rouse model 125

which amounts to
⟨Ξ⃗0(t) · Ξ⃗0(t

′)⟩ =
6D

N + 1
δ(t− t′)

⟨Ξ⃗p(t) · Ξ⃗p(t′)⟩ =
3D

N + 1
δ(t− t′) for p > 0

⟨Ξ⃗p(t) · Ξ⃗q(t′)⟩ = 0 for p ̸= q.

In summary, by diagonalizing the Rouse equations we transformed

the N +1 coupled equations for the monomers of the chain into N +1

decoupled equations for the Rouse modes. We have thus moved from

a local description of the chain dynamics, i.e. one equation per

monomer, to a global description, where each equation describes

the evolution of a collective motion involving the whole conformation.

5.2.3 Fluctuation-Dissipation Relation between Rouse Mode

and Relaxation Time

We notice that the Langevin equation for each p > 0 Rouse mode,

which reads
dX⃗p

dt
= −γpX⃗i + Ξ⃗p(t), (5.40)

if we define γp =
k
γλp as the damping coefficient of mode p, retains the

same structure as equation (5.6) and thereby describes a relaxation

process with relaxation time constant

τp = γ−1
p =

γ

4k sin2
(

πp
2(N+1)

) ∼ γ

k

(
N + 1

πp

)2

, (5.41)

where the last equivalence is valid in the p≪ N limit.

Additionally, as seen in chapter 1, the Rouse modes also obey the

equipartion theorem. Hence we should be able to relate the fluctua-

tions of the random forces Ξ⃗p to the damping coefficient γp through the

condition of asymptotic equilibrium for the fluctuation of the Rouse

mode, identically as we did in the case of pure Brownian motion.

fluctuation-dissipation theorem for the Rouse modes

In that case, the condition was represented by equation (5.11),

which we can now directly adapt to the Rouse modes as follows:

⟨X2
p⟩ = τp

⟨Ξ2
p⟩
2

. (5.42)

Injecting the formulas for τp (5.41) and ⟨X2
p⟩ (1.58) above yields

an expression for the random noise,

⟨Ξ2
p⟩ = 2

3kBT

8k(N + 1) sin2
(

πp
2(N+1)

)
4k sin2

(
πp

2(N+1)

)

γ
=

3D

(N + 1)
,

(5.43)

which indeed coincides with the result of equation (5.39).

Equation (5.42) is another example of the fluctuation-dissipa-
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Figure 5.1: By following the

temporal evolution of a Rouse

chain, we can convince ourselves

that larger modes decorrelate over

longer times, as discussed in the

main text.
5 Using the notation adopted in the
previous chapter, the correlation of
the Rouse modes should be written

CXpXp (t). I will therefore use the
lighter notation Cpp, for the aim of

readability.

tion theorem. In this case, it relates ⟨X2
p⟩, which as we have seen

in chapter 3, is pertinent to the structure of the polymer which is

fluctuation based in the case of the Rouse model (and polymers

in general), to τp i.e the relaxation process of the chain or indeed

the dynamic evolution of the chain conformation.

5.2.4 Understanding the mode relaxation times τp

The relaxation times τp will play an important role in the determina-

tion of the system dynamics. In this respect, several remarks can be

made:

1. A typical way to give meaning to these time parameters is to explic-

itly compute the correlation function for the Rouse modes,

which in turn will allow us to derive exact formulas for the dynamics

of several observables of interest, notably the MSD of the single mo-

nomer. Fortunately, we have already solved this problem in the case

of the pure Brownian motion. Hence the correlation function5 of

mode p, Cpp(t) = ⟨Xp(t)Xp(0)⟩ follows the same exponential decay

as found in equation (5.14), with time relaxation constant τp:

Cpp(t) = ⟨X2
p⟩ e

− t
τp . (5.44)

2. The times τp also have a clear interpretation from the point of view

of the chain fluctuations. In the case of the Brownian particle, the

decorrelation time τ = 1/γ is the typical time for the particle to

have completely forgotten its initial velocity. Likewise, given an

initial conformation (X⃗0(0), X⃗1(0), . . . X⃗N (0)), τp is the time after

which the X⃗p(t) mode has completely decorrelated from its initial

value due to the random fluctuations induced by the heat bath.

Now, if we remember the geometrical interpretation of modes dis-

cussed in subsection 1.5.1, we can associate the different X⃗p

with different internal motions of the chain, and the τp with

the time needed to accomplish them. Thus, the decorrelation of

mode p = 1, which roughly describes the orientation of the chain,

essentially involves a rotation of the whole chain and is achieved

in a time τ1 ∼ N2. To decorrelate mode p = 2, the chain must

perform a bending movement around the middle of the chain, and

this takes a time τ2 ∼ (N/2)2. For the third mode, each half of the

chain must perform a bending movement and take an average time

of τ3 ∼ (N/3)2, and so on. Figure 5.1 may help in visualizing this

effect.

3. Importantly, these dynamical considerations also have consequences

on the motion of single monomers. After a time τp, we expect

a monomer to have visited a space, say g(τp), of the extent

of a subchain of size N/p. For a Rouse chain, more precisely:

g(τp) ∼ b2
N

p
. (5.45)
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4. In particular, τ1 is the time needed for a monomer to displace a

distance of the order of the entire chain’s extent, and the longest

relaxation time for the system. At the opposite limit, τN is the

system’s shortest decorrelation time, associated with monomer-scale

fluctuations. These two extreme correlation times play, as we will

see, important roles in the monomer’s dynamics, as we will see.

5.3 Single Monomer dynamics

5.3.1 Mean Square Displacement: Definitions and Rela-

tion to the Rouse Modes

We can now calculate the mean square displacement, or MSD, of an

average monomer. As we shall see, it can be instructive to compute

the MSD in different reference frames, namely the lab and center of

mass reference frame. Let’s start by defining these two observables.

→Single Monomer MSD in the Lab Reference Frame, g1(t)

We define g1(t), the MSD of a single monomer in a fixed reference

frame, averaged over all monomers:

g1(t) =
1

N + 1

N∑

n=0

〈
(R⃗n(t)− R⃗n(0))

2
〉

(5.46)

→Single Monomer MSD in the Center of Mass Reference Frame, g2(t)

It is also useful to consider the MSD in the center of mass (CM)

reference frame, g2(t), i.e the reference frame where the center of

mass of the polymer, Rcm, defined in (1.15), is fixed at the origin.

Let R⃗n,cm = R⃗n− R⃗cm, be the vector pointing to monomer n in the

center of mass reference frame. We define

g2(t) =
1

N + 1

N∑

n=0

〈
(R⃗n,cm(t)− R⃗n,cm(0))2

〉
. (5.47)

Note that, since X⃗0 = R⃗cm, in Rouse space, switching to the CM

reference frame amounts to setting X⃗0(t) = 0 for all t.

→MSD of the Center of Mass, g3(t)

Finally, we define the MSD of the center of mass itself (in the lab

reference frame, obviously), whose formula can be expressed in real

space or in Rouse space, as

g3(t) =
1

N + 1

N∑

n=0

〈
(R⃗cm(t)− R⃗cm(0))2

〉
(5.48)

or

g3(t) = ⟨(X⃗0(t)− X⃗0(0))
2⟩, (5.49)

by using again the fact that X⃗0 = R⃗cm.
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→Link Between g1, g2 and g3

It is possible to express g1 as a function of g2 and g3. Without any

loss of generality, we can fix R⃗(0) = 0, then write

g1(t) =
1

N+1

N∑

n=0

〈
R2
n(t)

〉
(5.50)

=
1

N+1

N∑

n=0

〈
(R⃗n,cm(t) + R⃗cm(t))2

〉
(5.51)

=
1

N+1

N∑

n=0

〈
R⃗2
n,cm(t)

〉
+

1

N+1

N∑

n=0

〈
R⃗2
cm(t)

〉
+

2

N+1

N∑

n=0

〈
R⃗n,cm · R⃗cm

〉

In the last expression, we recognized in the first and second terms,

respectively, g2 and g3. Furthermore, we have ⟨Rn,cm · R⃗cm
〉
= 0,

since moving the CM of the chain has no influence on the position of

a monomer in the CM reference frame. This sets the right term to 0,

yielding:

g1(t) = g2(t) + g3(t) (5.52)

which translates the fact that the motion of the monomer can always be

decomposed as its motion in the CM reference frame plus the motion

of the center of mass.

5.3.2 Writing g1(t) in Terms of the Mode Correlations

Cpp(t)

Fortunately, there exists a simple equation relating g1(t) to the corre-

lation function of the Rouse modes, Cpp(t). Indeed, by using equation

(1.48)

R⃗n = X⃗0 + 2

N∑

p=1

X⃗p cos

(
pπ

N + 1
(n+ 1

2 )

)

to write R⃗n in terms of the Rouse modes, and after some rather tedious

algebra, we can show the following, very useful formula:

g2(t) = 2R2
g − 4

N∑

p=1

Cpp(t), (5.53)

and therefore, equivalently,

g1(t) = 2R2
g − 4

N∑

p=1

Cpp(t)

︸ ︷︷ ︸
g2(t)

+g3(t). (5.54)

Note that this formula is completely general, as it only relies on

the Rouse decomposition of the position vector R⃗n and not on the

vanishing cross-correlation of the Rouse modes, as seen in some books.

The detailed derivation for (5.54) is given in the following box.
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Let’s start with the square displacement of monomer n,

g1,n(t) = ⟨
(
R⃗n(t)− R⃗n(0)

)2⟩. (5.55)

Now remember that we can always express the position of a monomer in the Rouse coordinates by using equation (1.48)

(see just above). We can then inject 1.48 into 5.55, getting

g1,n(t) =

〈(
X0(t) + 2

N∑
p=1

X⃗p(t) cos

[
pπ

N + 1
(n+

1

2
)

]
−X0(0) + 2

N∑
p=1

X⃗p(0) cos

[
pπ

N + 1
(n+

1

2
)

])2〉
. (5.56)

By switching to the CM reference frame by setting X⃗0(t) = 0, then factoring the cosines in the remaining terms, we get:

g2,n(t) =

〈(
2

N∑
p=1

(X⃗p(t)− X⃗p(0)) cos

[
pπ

N + 1
(n+

1

2
)

])2〉
. (5.57)

We can expand the square into diagonal and off-diagonal terms, yielding

g2,n(t) =

Sn
diag︷ ︸︸ ︷

4

〈 N∑
p=1

(X⃗p(t)− X⃗p(0))
2 cos2

[
pπ

N + 1
(n+

1

2
)

]〉

+ 2 · 4
〈 N∑
p=1

p−1∑
q=1

(X⃗p(t)− X⃗p(0)) · (X⃗q(t)− X⃗q(0)) cos

[
pπ

N + 1
(n+

1

2
)

]
cos

[
qπ

N + 1
(n+

1

2
)

]〉
︸ ︷︷ ︸

Sn
off

.

Let’s start by treating the diagonal term by expanding the square:

Sndiag =4
N∑
p=1

〈
X2
p(t)

〉
cos2

[
pπ

N + 1
(n+

1

2
)

]
+ 4

N∑
p=1

〈
X2
p(0)

〉
cos2

[
pπ

N + 1
(n+

1

2
)

]

+ 8

N∑
p=1

〈
X⃗p(0).X⃗p(t)

〉
cos2

[
pπ

N + 1
(n+

1

2
)

]
;

If we assume that X⃗p(t) is stationary, we have
〈
X2
p(t)

〉
=
〈
X2
p(0)

〉
∀t, meaning the first two terms in Sdiag are equal.

To make further progress we have to average over all monomers. By noticing that

1

N + 1

N∑
n=0

cos2
[

pπ

N + 1
(n+

1

2
)

]
=

1

2
,

we are left with

Sdiag(t) =
1

N

N∑
n=0

Sndiag = 4 ·
1

2
· 2 ·

N∑
p=1

〈
X2
p(0)

〉
+ 8 ·

1

2

N∑
p=1

〈
X⃗p(0).X⃗p(t)

〉
,

Sdiag(t) = 4
N∑
p=1

〈
X2
p

〉
+ 4

N∑
p=1

Cpp(t),

where
〈
X2
p

〉
is the average PSD and Cpp(t) is the auto-correlation function of mode p.

Now we turn our attention to the off-diagonal terms, again averaged over all the monomers:

Soff =
1

N + 1

N∑
n=0

Snoff = 8
N∑
p=1

p−1∑
q=1

〈
(X⃗p(t)− X⃗p(0)) · (X⃗q(t)− X⃗q(0))

〉 1

N + 1

N∑
n=0

cos

[
pπ

N + 1
(n+

1

2
)

]
cos

[
qπ

N + 1
(n+

1

2
)

]
.

Using the fact that

N∑
n=0

cos

[
pπ

N + 1
(n+

1

2
)

]
cos

[
qπ

N + 1
(n+

1

2
)

]
=

1

2

[
sin(p+ q)π

sin(
(p+q)π
2(N+1)

)
+

sin(p− q)π

sin(
(p−q)π
2(N+1)

)

]
= 0 for p ̸= q

we finally obtain Soff = 0. All in all, since
∑N
p=1

〈
X2
p

〉
= R2

g , we get the expected result of equation (5.54), under the

form:

g2(t) = g1(t)− g3(t) = 2R2
g − 4

N∑
p=1

Cpp(t).
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5.3.3 Monomer Dynamics in the Rouse Model

Given the previous, general formulas, we can now calculate g1(t), g2(t),

and g3(t) for the specific case of the Rouse chain.

→ The Motion of the Center of Mass: g3(t)

It is easy to derive g3(t) for the Rouse chain directly from the Langevin

equation for the 0th mode, X⃗0. The Langevin equation for X⃗0 is

indeed:
dX⃗0

dt
= Ξ⃗0(t) (5.58)

with

⟨Ξ⃗0(t) · Ξ⃗0(t
′)⟩ = 6D

N + 1
δ(t− t′). (5.59)

We recognize the overdamped Langevin equation for a 3D free Brow-

nian particle. The associated diffusion coefficient, denoted as Dcm, is

expressed as:

Dcm =
D

N + 1
=

kBT

m(N + 1)γ
∼ N−1, (5.60)

so that we can write

g3(t) = 6Dcmt | Dcm =
D

N + 1
. (5.61)

This result implies that the center of mass diffusion, which represents

the diffusion of the entire chain, behaves like a Brownian particle with

mass (N + 1)m, i.e. the total mass of the chain. Remarkably, this be-

havior is independent of the chain’s shape or folding state. This arises

from the free draining approximation (discussed in subsection 5.2.1),

which implies that the random net total force felt by the CM is equal

to the sum of all forces felt by the monomer.

5.3.4 Single Monomer Dynamics: g1(t) and g2(t)

Moving on to single monomer dynamics, let’s compute g2(t), from

which we can deduce g1(t) using equation (5.53).

By writing R2
g = 2

∑N
p=1⟨X2

p⟩ (from Parseval’s theorem), we can factor ⟨X2
p⟩, which yields

g2(t) = 4

N∑
p=1

⟨X2
p⟩
(
1− e

− t
τp

)
. (5.62)

To make the computation more readable, let’s write, by using equation (5.41) with N ≈ N + 1,

τp = τN

(
N

p

)2

,

and, by using again the fluctuation-dissipation relation,

⟨X2
p⟩ =

3D

2(N + 1)
τp =

3D

2(N + 1)
τN

(
N

p

)2

.

Equation (5.62) then becomes

g2(t) = 6DτN

 N∑
p=1

1

N

(
N

p

)2 (
1− e

− t
τN

( p
N )2

) . (5.63)
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6 The error function erf(x) is a sigmoid

special function defined as:

erf(x) =
2

√
π

∫ x

0
e−z

2
dz.

We may now note that, if we define a new variable q = p/N , then q partitions the real interval [0, 1] with step ∆q = 1
N
,

leading to

g2(t) = 6DτN

 1∑
q=1/N

∆q
1− e

−q2 t
τN

q2

 ; (5.64)

Inside the brackets, we recognize the Riemann sum for the following integral:

I(t) =

∫ 1

1/N
dq

1− e
−q2 t

τN

q2
. (5.65)

The integral of equation (5.65) converges and was computed with the

help of mathematica, leading to the following approximate expression

for g2(t):

g2(t) = 6DτN

([√
π
t

τN
erf

(√
t

τN

)
+ e

− t
τN − 1

]
+

+ N

[√
π
t

τ1

(
−erf

(√
t

τ1

))
+ 1− e−

t
τ1

])
(5.66)

where erf(x) is the error function6. Note that the only assumption

made is that N is sufficiently large for the sum to converge to the

integral, hence this expression describes the MSD in the CM reference

frame for all t.

Clearly, the two relevant time scales that appear in g2(t)

are τN ∼ γ/kπ2 and τ1 = (N + 1)2τN , the shorter and longer mode

relaxation times. Their presence leads to 3 distinct scaling regimes

for g1(t):

1. A short time regime, where t is much shorter than the shortest

relaxation time: t≪ τN ;

2. A a long time regime, where t in much greater than the longest

relaxation time of the polymer: t≫ τ1;

3. And an intermediate time scales τN ≫ t≫ τ1.

In the following, I’ll describe the behavior of g2(t) in each regime.

→Cross-over functions

For the discussion that follows, it’s useful to give names to the two

following limit functions of g2(t):

gt≪τ1
2 (t) = lim

t≪τ1
g2(t) = 6DτN

[√
πt

τN
erf

(√
t

τN

)
+ e

− t
τN − 1

]

and

gt≫τN
2 (t) = lim

t≫τN
g2(t) = 6DτNN

[√
πt

τ1

(
1− erf

(√
t

τ1

))
+ 1− e−

t
τ1

]
.

Hence, gt≪τ1
2 describes the cross-over between the short and inter-

mediate times scale while gt≫τN
2 between the intermediate and long

timescale.
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→Short time regime: t < τN

Let’s start by computing the time scaling law for g2(t) in the short

time regime from the cross-over function gt≪τ1
2 . If t is much shorter

than the shortest relaxation time of the polymer, i.e., when t < τN ,

we can expand both the exponential and the erf function to the first

order in t/τN , to get

g2(t) ≃ gt≪τ1
2 ≃ 6DτN

[√
π
t

τN

2√
π

√
t

τN
+ (1− t

τN
)− 1

]

or

g2(t) ≃ 6Dt for t < τN (5.67)

which is the diffusive behavior expected for a single unconstrained

diffusing monomer, outside of a chain. This outcome can be readily

understood: in the short time limit, the monomer doesn’t feel the

springs linking it to its neighbors, and therefore diffuses freely.

We can also retrieve g1(t) from equation (5.52), yielding

g1(t) = 6Dcmt+ 6Dt for t < τN (5.68)

where we used equation (5.61) to express g3(t) = 6Dcmt.

Finally, remembering that Dcm = D/(N +1), we can conclude that

for a long enough polymer 6Dcmt≪ 6Dt. Therefore, in the short time

limit, we find

g1(t) ∼ g2(t) ∼ 6Dt for t < τN . (5.69)

→The Intermediate or Rouse regime: τN ≪ t ≪ τ1

The interesting behavior happens at intermediate times in the so-called

Rouse regime where the internal dynamics of the chain, i.e. the

relaxation of the Rouse modes, dominate the dynamics of the mono-

mer. Lets compute its behavior by assuming first t ≪ τ1, meaning

g2(t) ≃ gt≪τ1
2 , and then t ≫ τN , which send the exponential to 0 and

the erf function to 1, yielding:

g2(t) = 6DτN

√
π
t

τN
− 1; (5.70)

since t≫ τN , then t/τN ≫ 1, leaving us with:

g2(t) ≃ 6D
√
πτN t1/2 for τN ≪ t≪ τ1 (5.71)

meaning that, in this intermediate regime, the monomer experiences

sub-diffusive anomalous dynamics as a consequence of its being

part of the chain.

→The long time regime: t≫ τ1

Unfortunately, our approximate formula (5.66)for g2(t) breaks down

at the cross-over between the intermediate and long time regime. In-

deed, if the limit t ≫ τ1 is taken in gt≫τN
2 (t), the function is found

to converge to the wrong constant (see Figure 5.2). Nevertheless, we

can easily compute the long-time dynamics of the monomer by taking
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7 This result is obviously expected,

since monomers can’t move any fur-
ther than the polymer itself.

t≫ τ1 in equation (5.62). All the exponentials go to zero in this case,

leaving us with

g2(t) = 2R2
g for t > τ1 : (5.72)

in the CM reference frame, the diffusion of a single monomer plateaus7

at 2R2
g.

g1,2,3

t

Figure 5.2: g1, g2 and g3 for a

Rouse polymer of length N = 800

across all three diffusion regimes.

The dashed blue are respectively

the short and long times approx-

imate cross-over functions gt≪τ1
2

and gt≪τN
2 . Note how gt≫τN

2

doesn’t converge to the correct

asymptotic value, 2Rg, represented

by the green horizontal line.

On the other hand,

g1(t) = g3(t) + g2(t) = 6Dcmt+ 2R2
g (5.73)

give

g1(t) ≈ g3(t) = 6Dcmt for t > τ1, (5.74)

meaning that at long times, the motion of an individual mono-

mer reflects the diffusive motion of the entire polymer chain.

Let’s summarize the three different regimes:

Different regimes in the Rouse dynamics:

1. A short time regime, where t is much shorter than the shortest

relaxation time: t ≪ τN . In this case the bead experiences

normal diffusion, as if it wasn’t connected to the chain:

g1(t) ∼ g2(t) = 6Dt.
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2. Most interestingly, at intermediate time scales τN ≪ t ≪ τ1,

the so called Rouse regime, where the monomer experiences

subdiffusion with exponent 1/2:

g1(t) ∼ g2(t) ≃ 6D
√
πτN t1/2;

As discussed, this is a direct effect of the harmonic connectivity

in the chain, that hinders the free diffusion of monomers.

3. Finally, a long time regime, where t is much greater than the

longest relaxation time of the polymer: t≫ τ1. In this regime

we have

g1(t) ∼ g3(t) = 6Dcmt :

the monomer diffuses coherently with the center of mass

of the chain.

We also have, in the same regime, that g2(t) = 2R2
g, meaning

that, in the CM reference frame, the MSD plateaus to 2R2
g.

5.4 Conclusion/Take Home messages

In this chapter, we began by introducing Langevin dynamics in prepa-

ration for the definition of the Rouse model (section 5.1).

Using the example of Brownian motion, we introduced the concepts

of correlation function, that is in this case a decreasing exponential

function of time, and correlation time of the particle’s velocity, cap-

turing the typical time scale that characterizes the particles dynamics.

We then presented the overdamped version of the Langevin equation

and carried on with the introduction of another dynamical observable,

the mean square displacement (MSD) g(t). In the case of Brownian

diffusion, we have shown that the dynamics are divided into a short-

time ballistic regime and a linear scaling regime, characteristic of the

long-time diffusion, g(t) = 6Dt. Importantly, we saw that the char-

acteristic time separating these two regimes is given by the particle

velocity correlation time.

Moreover, we established the expression of the diffusion coefficient,

D = kbT/mγ using the fluctuation-dissipation theorem, linking the

fluid viscosity to the random force fluctuations through the diffusion

coefficient via Einstein’s law.

To conclude the introductory part of the chapter, we introduced

stochastic processes whose increments display power law correlations,

inducing a non-linear MSD whit two possible cases: sub-diffusion, if

increments are anti-correlated, implying g(t) ∼ t2α, α < 0.5; and

super-diffusion: increments are positively correlated, implying g(t) ∼
t2α, α > 0.5.

Thanks to these theoretical tools, we were able to straightforwardly

tackle theRouse model dynamics (section 5.2), by applying Langevin

dynamics to each bead of a Gaussian polymer. The result is a system

of N + 1 coupled equations, one per bead, which can be diagonalized
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by introducing the same Rouse modes already defined in chapter 1.

This transforms the equations pertaining to the beads into an equiv-

alent set of equations concerning the Rouse modes. In the mode

representation, the equations are decoupled and easy to solve.

A crucial step in the solution is to calculate the mode correlation

functions (equation (5.44))

Cpp(t) = ⟨X2
p⟩ e

− t
τp .

Cpp(t) gives access to the dynamics of each mode, allowing us to ap-

prehend the complex dynamics of the entire chain. Each mode is as-

sociated with a characteristic decorrelation time (equation (5.41)):

τp = γ−1
p =

γ

4k sin2
(

πp
2(N+1)

) ∼
p≪N

γ

k

(N + 1)2

π2p2
.

It’s important to have a clear understanding of the role - in fact the

roles - of the characteristic times τp, as this will enable me to interpret

many simulation results correctly. I have proposed different physical

interpretations of this characteristic time: as the time required

to execute a collective movement of the chain involving N/p monomers

in unison; as the decorrelation time of a sub-chain of size N/p; as the

time needed for a monomer to visit a space whose typical size is the

spatial extent of a sub-chain of linear length N/p, i.e b
√
N/p.

Finally, I examined the MSD of one monomer in the chain in

section 5.3. I started by introducing g1(t) and g2(t) the MSDs of the

monomer in the lab and center of mass reference frames, and g3(t), the

MSD of the CM of the whole chain, where g1(t) = g2(t) + g3(t).

Thanks to the mode decomposition, I then calculated a general

formula for the MSD of an average monomer relying on the corre-

lation function of the Rouse modes (equation (5.54)):

g1(t) = g3(t) + 2R2
g − 4

N∑

p=1

Cpp(t).

With the help of the latter relation, we saw that, in the case of the

Rouse model, the dynamics is partitioned into three regimes,

split by τ1 and τN : A short time regime, where the bead experience

normal diffusion; The intermediate Rouse regime, where the mo-

nomer experiences subdiffusion with exponent 1/2; And a long time

regime where g1(t) ∼ g3(t) = 6Dcmt and g2(t) = 2R2
g.

With this foundation in (ideal) polymer dynamics, we can proceed

to analyze the dynamics of collapsing polymers in the subsequent chap-

ter, where we introduce a simplified model for interacting polymers.
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1 Note that, in this framework, in this

context, the excluded volume is nec-
essary to guarantee the existence of a

globule state of finite density.

2 P.-G. de Gennes. Scaling concepts
in polymer physics. Cornel University

Press, 11 1979

3 Actually, in 3D two gaps of size
√
2σ

may slide through each other

6

Dynamics in a Collapsing

Polymer Without

Topological Constraints

In the previous chapter, we studied the dynamics of the Rouse model,

an isolated chain whose monomers interact only through chain con-

nectivity. As an ideal chain model, the Rouse model neglects the two

main properties of real chains: the excluded volume taken up by

each monomer and the attraction between monomers. Adding solely

these properties to an ideal chain leads to models that undergo a coil-

globule phase transition1, as seen in chapter 3 where we studied the

thermodynamics of the transition. In this section however, we aim

to study the dynamics of these polymers.

In the study of real chain dynamics, another property, that does not

influence the equilibrium properties of the chain, must be enforced: the

chain should be topologically constrained. Essentially, what this

means is that the chain shouldn’t be able to cross itself. To understand

the appellation topologically constrained, imagine the two ends of the

chain to be glued together so that the chain forms a loop. If the chain

is not allowed to cross, then the topology of the knot formed by the

loop is invariant, i.e. constrained.

As we shall eventually see, in cases where collisions between mono-

mers are frequent, this constraint has a strong influence on the poly-

mer dynamics, complicating substantially the analysis compared to

the Rouse chain. This is particularly the case in the highly-studied

dense polymer melt. To address this issue, de Gennes has developed a

theoretical framework, based upon the idea of reptation, that correctly

describes the dynamics of these chains2.

Most of the time, the excluded volume interaction is used both to

model the finite volume of the beads and to ensure the topologically

constrained state of the chain, by enforcing that the maximum distance

between two adjacent beads is never greater than the size of a bead,

σ. Indeed, if a gap of size σ3 appears between two beads, another part

of the chain could pass through it, changing the topology of the chain

and nullifying the effects of topological constraints. Consequently, by

avoiding the creation of such a gap, we can ensure that the chain never
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crosses itself. Nevertheless, the typical Rouse harmonic potential gen-

erally induces large bond fluctuations, making it difficult to guarantee

the topological constraint. To avoid this, Kurt Kremer and Gary S.

Grest developed a model that replaces the soft harmonic bonds, which

in highly dense melts could allow for chain crossing, with very rigid

links, called finitely extensible nonlinear elastic (FENE) links,

which ensure the topological integrity of the polymer. Collapsing poly-

mers with topological constraints will be studied in chapter 7, by means

of the FENE potential.

In this chapter, however, in an attempt to isolate the different con-

tributions to the dynamics, we want to introduce the two components

necessary to make the polymer experience the coil-globule phase tran-

sition - excluded volume and attraction, while retaining the phan-

tom character of the chain. To this aim, we propose a dynamical

model that, as far as we know, has never been studied before, that

we coined the interacting Rouse model or iRouse model, which

adds a Lennard-Jones potential between each non-bonded monomer

of a Rouse polymer, while allowing bond size fluctuations to be large

enough to allow the chain to self-cross.

Our objective will then be to characterize the influence of the poly-

mer’s folding state on the iRouse polymer’s dynamics. At very short

times t≪ τN we expect to observe, exactly as for the Rouse polymer,

the diffusive regime of the single monomer, as there is always a short

instant during which the monomer does not yet feel the influence of

its neighbors. Similarly, at long times, diffusion of the whole poly-

mer will always dominate, taking precedence over internal dynamics.

Hence, we’ll mostly be interested in the intermediate regime that we

will name internal-dynamics regime of the polymer, i.e. the regime

in which the monomer’s dynamics are influenced by the complex corre-

lations induced by its presence within the chain. For the Rouse model,

as we have seen in the previous chapter, this regime is called the Rouse

regime, it is established between the relaxation times τN and τ1 and

it is characterized by anomalous diffusion of exponent 1/2.

In the following, our goal will be to study the influence of vol-

ume interactions and monomer-monomer attraction on

the characteristic times and on the temporal dependence of g1

and g2 in the intermediate, internal-dynamics regime for

the iRouse model.

In section 6.1, I define the iRouse model and in section 6.2, the

molecular dynamics (MD) simulation scheme used to simulate

the model. We then analyze the single monomer dynamics of the

simulated polymer in the different phases - coil in section 6.3 and

globule in section 6.4.

Finally, in section 6.5 we analyze the dynamics throughout the

phase transition.
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4 The Lennard-Jones potential has
been introduced in Figure 3.1.

6.1 The interacting Rouse - iRouse -
Model

6.1.1 iRouse Hamiltonian

The iRouse model is defined from the Rouse model by adding a Lennard-

Jones potential4 between each non-adjacent monomers in the chain.

Let’s consider an iRouse polymer of size N + 1. Its Hamiltonian is

defined as:

Hcoil = HRouse +

N∑

i=0

N∑

j=i

Upair
i,j (6.1)

where

HRouse =

N−1∑

i=0

−1

2
k(R⃗i+1 − R⃗i)

2

represents the harmonic bonding interaction that ensures chain con-

nectivity, already defined in chapter 5 for the Rouse model by equation

(5.26), and

Upair
i,j =




4 ϵF

((σ
r

)12
−
(σ
r

)6)
if |j − i| > 1

0 otherwise

(6.2)

is the Lennard-Jones pair potential that models both short-range re-

pulsion and mid-range attraction between non-adjacent monomers.

6.1.2 Langevin Equation for the chain

To stay as close as possible to the Rouse model, we describe the dy-

namics of each bead through an overdamped Langevin. The Langevin

equation for monomer n ̸= 0, N writes :

dR⃗n
dt

= −γ∇⃗n[H
coil] + ξ⃗i(t) (6.3)

where ∇n is the three-dimensional vector operator whose three com-

ponents are the corresponding partial derivative for monomer n,

∇⃗i =

(
∂

∂Rix
,

∂

∂Riy
,

∂

∂Riz

)
,

and the random forces are, as usual, delta-correlated Gaussian white

noise terms obeying the fluctuation-dissipation theorem:

⟨ξ(t)⟩ = 0 (6.4)

⟨ξ⃗j(t) · ξ⃗i(t′)⟩ = 6D δ(t− t′) δi,j , (6.5)

where D = kBT/γ.
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5 L. Verlet. Computer ”experiments”

on classical fluids. i. thermodynamical

properties of lennard-jones molecules.
Phys. Rev., 159:98–103, Jul 1967

6 J. A. Anderson, J. Glaser et al.
Hoomd-blue: A python package for

high-performance molecular dynamics

and hard particle monte carlo simula-
tions. Computational Materials Sci-

ence, 173:109363, 2020

6.2 Langevin Dynamics Simulation Scheme

The addition of the Lennard-Jones potential to the Rouse equation

makes them non-linear, rendering the decoupling method used to solve

the Rouse chain equations ineffective. There may exist approximation

methods that could give some results on the dynamics of this system,

but this is not the approach of this thesis. Here, as in chapter 3, I

will instead analyze the result of in silico experiments, that I describe

hereafter.

6.2.1 Simulation Integrator: Langevin vs Brownian Dy-

namics

To sample trajectories obeying the Langevin equations (6.3), we need

an integration method, i.e an algorithmic scheme that computes

the positions of all particles from one frame
(
R⃗0(t), R⃗1(t), . . . R⃗N (t)

)

to the next one
(
R⃗0(t+ dt), R⃗1(t+ dt), . . . R⃗N (t+ dt)

)
, where dt is

the integration time or time step.

To integrate equation (6.3) we essentially have the choice between

two integration methods. A straightforward approach, known asBrow-

nian dynamics, involves discretizing time in the over -damped Langevin

equations and using Newton’s method for integration: for a 1D over-

damped Langevin equation, this leads to calculate, at each time step,

x(t+ dt) = x(t) +
dU(x(t))

dx
+ ξ(t).

Otherwise, one can integrate the under -damped Langevin equation

(i.e. including the inertia term) using a second-order integration method,

usually the velocity-Verlet algorithm5, and then discard the unneeded

short-time inertial regime. This is generally referred to as the Langevin

dynamics.

It turns out that the Brownian dynamics are considerably less stable

than the Langevin approach. Consequently, for the same simulation

parameters, the Langevin integration method allows for a larger time

step dt, resulting in a longer total simulation time for the same amount

of computing time. For this reason, I chose Langevin dynamics as

a simulation approach, such that I will in practice be integrating the

following, underdamped, Langevin equations,

dR⃗n
dt

= V⃗n(t)

dV⃗n
dt

= −γV⃗n + ∇⃗n[H] + ξ⃗n(t), (6.6)

even if, afterwards, our focus will be on the overdamped regime.

The selection of the integration time was based on empirical test-

ing to determine the maximum value of dt that would maintain simu-

lation stability, ultimately resulting in a value of dt = 0.1.

Various software exist that implement Langevin dynamics integra-

tors. For this thesis I chose Hoomd-Blue6 a molecular dynam-
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7 L. Verlet. Computer ”experiments”
on classical fluids. i. thermodynamical

properties of lennard-jones molecules.

Phys. Rev., 159:98–103, Jul 1967

ics package optimized for GPU computations. Hoomd integrates the

Langevin equation by using the velocity-Verlet algorithm7, which I

won’t explain in detail here.

6.2.2 Simulation Physical Parameters

All in all, our simulation depends on the physical parameters listed

in the following table:

Parameter Symbol Values

The chain length N [200, 400, 800, 1600, 3000, 6000, 12000]

The Lennard-Jones dispersion energy ϵF [0, 0.1, 0.2, 0.25, 0.27, 0.3, 0.35, 0.4, 0.45, 0.5]

The Lennard-Jones size parameter σ 2−1/6

The spring stiffness k 3

The viscosity of the fluid γ 5

The fluid temperature parameter kBT 1

Table 6.1: List of the physical pa-

rameters used in MD simulations.These parameters can be divided into two groups: the control pa-

rameters k, σ, γ and kBT , which I’ll leave fixed in all simulations,

since their influence on the result is of no interest to us here, and

the input parameters N and ϵF , which we’ll vary to explore the

different folding regimes and size effects.

As for the specific choice of the control parameters, our goal is

to ensure that the iRouse chain remains topologically uncon-

strained, as explained in the introduction to this chapter. Conse-

quently, the choice of the control parameters must guarantee that the

bond length fluctuations are large enough to allow chain crossings. For

this purpose we chose to fix k = 3, kBT = 1, yielding b2 = 3kBT/k = 1

according to equation (1.27).

By choosing the Lennard-Jones size parameter σ = 2−1/6 ≈ 0.89,

this choice of parameters not only ensures a sufficient number of cross-

ings to nullify reptation effects, but also sets the average link size b2 as

equal to the position of the minimum of the Lennard-Jones potential,

given by r0 = 21/6σ, giving 1 with these choices (see Figure 3.1). In this

way, the model matches qualitatively the lattice-based simu-

lation presented in chapter 3, in which both the equilibrium distance

of the attractive interaction and the distance between two adjacent

monomers in the chain were fixed by the lattice spacing, to 1. Accord-

ingly, we expect the thermodynamic properties, and in particular the

transition energy ϵθ, to be close to their on-lattice values determined

in chapter 3.

The choice of the fluid viscosity γ is important for simulation opti-

mization reasons. On one hand, as seen in the chapter 5, all τp are pro-

portional to γ (see equation (5.41)), meaning that lowering γ acceler-

ates the decorrelation of polymer. On the other hand, the decorrelation

time of isolated monomers velocity is τ = γ−1 (equation (5.15)), i.e.

the characteristic duration of the inertial regime is inversely propor-

tional to γ, meaning lowering γ makes the inertial regime last longer.

Since in our case we’re not interested in the inertia regime, we want
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8 Assuming the added Lennard-Jones

pair interaction doesn’t influence the

value of the monomer relaxation time
τN , which as we will see is indeed the

case.

to make sure it doesn’t extend into the regime that characterizes the

internal polymer dynamics, which runs from t ≫ τN ∼ γ. The opti-

mal value I retained for the viscosity is γ = 5, leading to τ = 0.2

and τN = 0.5.8

Concerning the input parameters, to identify potential size effects

in the dynamics of the different folding states, I’ve chosen a wide range

of polymer lengths: N ∈ [200, 400, 800, 1600, 3000, 6000, 12000]. Then,

based upon the phase diagram of Figure 3.14, I chose the values of

ϵF = [0., 0.1, 0.2, 0.25, 0.27, 0.3, 0.35, 0.4, 0.45, 0.5] that nicely sample

all three phases for all values of N , as it can be deduced from the

phase portrait of Figure 3.14 thanks to the expected match with the

on-lattice MC simulations previously discussed.

Other parameters pertinent to the integration method can be chosen

for optimization. Since these parameters don’t, in principle, change the

physics of the resulting simulation, I won’t list them here.

6.2.3 Simulation Integration Time Step and Total Inte-

gration Time

In order for the simulation to cover the whole internal-dynamics regime,

two requirements must be met. Firstly, the total simulation time, de-

noted as T = Nstepsdt, should significantly exceed the longer char-

acteristic timescale τ1. Here, Nsteps represents the total number of

time steps. Conversely, to capture the onset of the internal-dynamics

regime, the temporal resolution ∆T should be of the order of the mo-

nomer relaxation time τN . The temporal resolution ∆T is fixed by

the acquisition period Nperiod, i.e. the number of time steps between

consecutive recorded frames, given by ∆T = Nperioddt.

To meet the first requirement, for each (N, ϵF ) I decided to run a

simulation for a total Nsteps = 2.5 109 time steps, which covered the

interesting regime for all polymer sizes. For the second requirement,

∆T ≈ τN , one may choose

∆T = Nperioddt = 20 · 0.1 = 2 ≈ 4 · τN

meaning we should record every Nperiod = 20 frames.

Nevertheless, if we naively simulate 2.5 109 frames and record every

20 frames for a N = 12000 polymer, the resulting files would be several

terabytes in size. To manage this issue, for each (N, ϵF ) simulation,

I ran three independent simulations, all with different total

duration and temporal resolutions, adapted to whether the focus

was on the short-, medium- or long-term temporal regime. The cor-

responding values of Nperiod and Nsteps are reported in the following

table:

Short time Mid time Long time

simulation simulation simulation

Nsteps 105 108 2.5 109

Nperiod 20 2 103 5 104

Table 6.2: Simulation acquisition

periods and number of timesteps

In this way, the size of the records is reduced by a factor ∼ 1000.
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9 D. Panja and G. T. Barkema. Rouse
modes of self-avoiding flexible poly-
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Physics, 131(15):154903, Oct. 2009

10 D. Panja and G. T. Barkema. Rouse

modes of self-avoiding flexible poly-
mers. The Journal of Chemical

Physics, 131(15):154903, Oct. 2009

11 As mentioned in chapter 3, self-

avoiding random walks are a good
model for polymers in the high tem-

perature phase.

→ Initial Particle Positions and Thermalization

In any MD simulation, it is required to provide initial positions for

each particle. Since we are interested in the equilibrium dynamics of

the chain, the goal in selecting the initial position of the particles is to

draw a conformation that is already as close as possible to equilibrium.

In this way, as few thermalization steps as possible are required to relax

the conformation and start data recording.

To achieve this, for every (N, ϵF ) MD simulation, we conducted an

on-lattice Monte Carlo simulation, as described in chapter 3, for 0.5N2

steps. This duration was empirically determined to be sufficient for

equilibrating the polymer chain, as detailed in chapter 3. As mentioned

above, the equilibrium state attained in the on-lattice model closely

resembles that of the iRouse model. Consequently, the results obtained

from the Monte Carlo simulation were employed as the initial

positions for the MD simulations.

To ensure complete relaxation of the chain, an extra MD 50 106

time steps were run to further equilibrate the chain.

In the following subsection, I present the simulation results and their

analysis. First, for the coil and globule phase, we’ll analyze the single

monomer MSD by identifying the time scaling law in the internal-

dynamics regime and the size scaling of the characteristic timescales.

Subsequently, we will shift our attention to the evolution of the time

dependence of the MSD as the system undergoes the phase transition.

Our objective here is to discern any potential critical behavior

in the MSD near the phase transition point.

6.3 Coil Phase Polymer Dynamics in the

iRouse Model

Let’s start by analyzing the dynamics in the high temperature, or

equivalently good quality solvent, phase where the polymer is expected

to adopt the decondensed coil conformations, whose equilibrium prop-

erties were exposed in chapter 3.

Due to the low density of polymers in the coil phase, the impact

of topological constraints on the dynamics of the chain should be neg-

ligible. For this reason, we can compare the dynamics of an iRouse

coil polymers with existing literature about topologically constrained

coil polymer dynamics. In particular the work, already mentioned in

chapter 3, by D. Panja and Barkema 9, which I recall briefly.

6.3.1 State of the art

As mentioned in chapter 3, the dynamics of polymers in the coil phase

were already investigated by D. Panja and Barkema10.

In their paper, they conduct a Rouse mode analysis of the relax-

ation of on-lattice self-avoiding random walks11. They propose an

approximate formula for the Rouse mode correlation function, based

on the correlation structure of the Rouse model, i.e. an exponential
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decorrelation for each Rouse mode

Cpq = ⟨X⃗p(0) · X⃗q(t)⟩ ≈ Cpp(0)e
− t

τp δpq , (6.7)

where they postulate the scaling for Cpp(0)

Cpp(0) = A1
N2ν

p2ν+1

and the relaxation times

τp = A2

(
N

p

)2ν+1

.

Here, ν = 0.588 is the Flory exponent, already introduced in chapter 3.

The constants A1 and A2 are introduced in their postulation without

being explicitly provided.

From the ansatz (6.7) for the mode correlation function, the authors

compute the monomer average MSD in the CM reference frame, g2(t),

in the internal-dynamics regime τN ≪ t ≪ τ1. From equation (5.54),

this yields:

g2(t) ∼ t
2ν

2ν+1 .

Additionally, they confirmed that the MSD of the center of mass, g3(t),

exhibited normal diffusion behavior,

g3(t) = 6Dcmt,

where Dcm = D/(N + 1), in agreement with equation (5.60).

Finally, they verified that the single monomer dynamics in the lab

reference frame was given by:

g1(t) = g3(t) + g2(t)

as already predicted by our equation (5.52).

The validity of these relations is checked by the authors through

extensive dynamic Monte Carlo simulations.

6.3.2 Consistency Check with the iRouse Coil Polymer

Let’s confront our results with the findings by Panja and Barkema, the

analysis of the Rouse mode correlation function.

→Scaling Properties of the Rouse Mode Correlation Function

Let’s start by examining in detail the ansatz (6.7) made by Panja and

Barkema, considering the insights provided in chapter 3 and chapter 5.

An alternative way to reach the ansatz put forward by Panja, which

is not discussed in their paper, is to propose that the Rouse modes,

despite the inclusion of excluded volume interactions, still diagonal-

ize the Hamiltonian Hcoil for the coil polymer, equation (6.1). If

this is true, the effect of the terms added by the volume interaction

would solely be to modify the scaling of the spectrum associated with

the diagonalization, ϵcoilp :

Hcoil =

N∑

p=0

(N + 1)ϵcoilp X2
p | ϵcoilp = A1

( p
N

)2ν+1

. (6.8)
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Figure 6.1: Top panel: the

correlation function of mode

p ∈ [1 . . . 20] function of time,

Cpp(t). The curves are arranged in

ascending order of p from right to

left. The black dashed curves are

exponential fits.

middle panel: ⟨X2
p⟩ and

3D/[(N + 1)τp] overlaid on the

same graph. According to equa-

tion (6.14), both curves should

collapse in the hypothesis that

the Rouse modes diagonalize the

Hamiltonian.

Bottom panel: the ratio
⟨X2

p⟩
τp(N + 1)

, that should equal

3D/2 = 3/10 given the same

hypothesis.

This formulation, as required by the equipartition theorem, leads to

the scaling of the equilibrium amplitude of the Rouse modes, which we

have already encountered and explained in detail in subsection 3.3.2:

it would then follow

⟨X2
p⟩ = A1kBT

N2ν

p2ν+1
. (6.9)

Furthermore, equation (6.8) implies that the Rouse modes should

obey a linear stochastic differential equation of the same type as the

Langevin equation (5.40), although with a different p-scaling for the

friction coefficients. We therefore expect to have

dX⃗p

dt
= −γpX⃗i + Ξ⃗p(t), (6.10)

where Ξ⃗p obeys the same correlation structure (equation (5.8)) as for

a Rouse polymer and the friction γp felt by each mode is now given

by:

γp =
ϵp
γ

=
A1

γ

( p
N

)2ν+1

. (6.11)

Consequently, the decorrelation times τp can be expressed as:

τp =
1

γp
=

γ

A1

(
N

p

)2ν+1

. (6.12)

From equation(6.10), the correlation function for Xp(t) can be com-

puted exactly as in subsection 5.2.4, yielding the exponential correla-

tion function postulated by Panja and Barkema, equation (6.7).

The advantage of this way of arriving at the ansatz is that it gives

a new prediction on the proportionality factors A1 and A2 introduced

by Panja.

Prediction for τp

Indeed, the fluctuation-dissipation theorem relative to the Rouse

modes, equation (5.42), yields the important relation, which is

overlooked in the original paper,

⟨X2
p⟩ =

3D

(N + 1)
τp, (6.13)

or, equivalently,

⟨X2
p⟩

τp(N + 1)
=

3D

2
=

3kBT

2γ(N + 1)
. (6.14)

In the following section, I will verify the scaling laws (6.12), for

τp, and equation (6.9), for ⟨X2
p⟩, and compare the prediction given by

equation (6.14) to the results obtained from my simulations.

→Numerical Results

Following equation (6.7), I fit a decaying exponential function to Cpp(t)

obtained from the simulations, which indeed fits well Cpp(t), as stated
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by the authors and as shown in the top panel in Figure 6.1, so to extract

the characteristic times τp. In the middle panel of the same figure, are

overlaid ⟨X2
p⟩ and 3D/[(N + 1)τp] for the initial 20 modes of coil poly-

mers and for three increasing chain lengths, namely N = 200, 400, 800,

presented in log-log scale. According to equation (6.14), both quan-

tities should collapse onto a single curve. However, by looking at the

resulting plots (middle panel), we can see that, if the curves seem to

match for p ≲ 5, they systematically diverge from each other at larger

p. Intriguingly, these discrepancies, which were mentioned in Panja et

al.[58] but without precise quantification, seem to diminish with in-

creasing polymer chain length. To quantify this behavior, I conducted

power-law fits to both curves for the different values of N , yielding the

following results:

N = 200 : ⟨X2
p⟩ ∼ p−2.235±0.007 τp ∼ p−2.04±0.07

N = 400 : ⟨X2
p⟩ ∼ p−2.22±0.01 τp ∼ p−2.00±0.04

N = 800 : ⟨X2
p⟩ ∼ p−2.20±0.01 τp ∼ p−2.08±0.08.

Interestingly, these results deviate from the expected exponent of−2.17

for both quantities. However, the exponents for ⟨X2
p⟩ and τp seem to

be converging towards their theoretical value as N increases. This

trend suggests that the observed discrepancy may, in fact, be

attributable to finite-size effects.

Given the large error bars on the fitted exponents, to provide further

support for this assertion, in the bottom panel of Figure 6.1, I plotted

the ratio ⟨X2
p⟩/[τp(N + 1)], which is expected to equal 3D/2 (black

horizontal line) according to equation (6.14), as a function of p. In the

bottom plot of Figure 6.1, the ratio is clearly seen to converge towards

the expected constant.

Coil Rouse modes correlation structure

matches findings by Panja et al.

All in all, our findings seem to corroborate the assumptions

made by Panja and Barkema. Our added contribution is

the reinterpretation of their ansatz based on the fact that the

Rouse modes are still, to a good approximation, normal modes

for the coil polymer. This important fact allows for a pre-

cise prediction of the ratio between mode amplitudes and the

corresponding characteristic time scales, expressed by equation

(6.14). Here we found this prediction to be correct in the large

N limit, as shown in Figure 6.1, even if we highlight the presence

of finite-size effects.

6.3.3 Single Monomer Dynamics in the iRouse Coil

Now, let’s shift our focus to the dynamics of a single monomer. We

first check the size (N) and time scaling behavior of the MSD found

by Panja and Barkema by analyzing g1 g2 and g3 for several values of

polymer size: N = 200, 400, 800, 1600.
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To make the visualization of our results easier to interpret, I plot

the following dimensionless quantities,

g̃1 =
g1
2R2

g

, g̃2 =
g2
2R2

g

and g̃3 =
g3
2R2

g

, (6.15)

as functions of the normalized time:

t̃ =
t

N2ν+1
∼ t

τ1
. (6.16)

The functions g̃1, g̃2 and g̃3 versus t̃ are plotted in figure Figure 6.2.

Figure 6.2: g1 (orange graded col-

ors) and g2 (red graded colors) nor-

malized by 2R2
g and plotted func-

tion of t̃ = t/N2ν+1, for N =

200, 400, 800, 1600. The results are

similar for larger values of N , not

shown here for the sake of clarity:

in fact, the fluctuations are larger,

as the statistics is not as good.

The observed perfect collapse of the different curves can be ex-

plained through the following key observations:

1. Since, according to equation (5.53), g2 should plateau at 2R2
g for

t ≫ τ1, then, in the long time regime, all the g̃2 curves must

converge towards 1:

lim
t≫τ1

g̃2(t) = 1.

2. Expressing g̃1 and g̃2 as functions of the normalized time variable t̃

results in the crossovers between both time regimes occur-

ring at t̃ = 1.

3. The diffusion of the CM, g3(t) for different values of N (hence the

long time behavior of g1(t)) perfectly collapses as well.
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To explain why, first remember that, due to the free draining ap-

proximation, g3(t) should behave the same as in the Rouse case of

equation (5.61), i.e. g3(t) =
6D
N t. Then, expressing g̃3 as a function

of the normalized time t̃, leads to the relation

g̃3(t̃) =
6D

N
t
N2ν+1

R2
g

= 6Dt̃, (6.17)

where the N dependence has disappeared due to the scaling of

R2
g in the coil phase, given by R2

g ∼ N2ν .

Taking into account the different scaling laws, Figure 6.2 finally

allows for a characterization of the internal dynamics of the coil poly-

mer:

Internal-dynamics regime of the coil iRouse polymer

For t≫ τN :

1. The monomer experiences a power law anomalous diffu-

sion, similarly to the Rouse polymer

g2(t) ∼ tψ (6.18)

but with dynamic exponent ψ =
2ν

2ν + 1
≈ 0.54, instead of

0.5;

2. The longest relaxation time of the system, τ1, scales as

τ1 ∼ Nϕ (6.19)

with exponent ϕ = 2ν + 1 ≈ 2.17, instead of 2;

3. As a consequence, the extent of the internal-dynamics

regime is increased compared to the Rouse modes, due to

the longer decorrelation time of the first mode.

4. After τ1, the MSD in the CM reference frame, i.e g2(t), plateaus

at 2R2
g.

These results align with and reinforce Panja and Barkema’s findings

regarding the single-monomer dynamics.
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Figure 6.3: A globule conforma-

tion of length N = 12000 (blue)

and a subchain of length g∗ =

120002/3 ≈ 624 (green). I claim

that the relaxation process of the

green subchain should obey Rouse

dynamics.

6.4 Globule Phase Polymer Dynamics
in the iRouse Model

Let’s now turn our attention to the low temperature, or equivalently

poor solvent phase, where the polymer is expected to adopt the curled

up globule state.

Let’s start by recalling the equilibrium structure of the globule, re-

ported in section 3.4. From its Rouse mode spectrum, we showed that

the equilibrium globule could be seen as a liquid of independent

ideal chains, formed by its own subchains. The linear length of sub-

chains that can be considered as independent, s∗ depends on the ratio

between the chain extent and the globule size, and scales as:

s∗ ∼ N2/3. (6.20)

Figure 6.3 illustrates this point.

What I will claim in the following is that the relaxation process of

the globule without topological constraints, due to the Gaussian na-

ture of the subchains, is completely equivalent to the relaxation

process of a Rouse chain of size s∗.

My approach will be similar to that employed in the previous sec-

tion. I will start with an analysis of the Rouse mode decorrelation

times fitted on my simulations. This will allow for a physical under-

standing of the conformational dynamics in the globule. In the second

part, in light of this analysis, we will investigate the single monomer

dynamics.

6.4.1 Scaling Properties of the Rouse Modes Correlation

Function

To study the scaling properties of the Rouse modes correlation func-

tion, let’s assume, for the moment, that globules verify a number of

properties previously observed for the coils. First, I’ll assume that

the Rouse modes diagonalize the Hamiltonian of the globule polymer

(implying that their cross-correlation is zero), leading, again, to an ex-

ponential decay for the Rouse mode auto-correlation function Cpp(t):

Cpp = ⟨X⃗p(0) · X⃗p(t)⟩ ≈ ⟨X2
p⟩e

− t
τp , (6.21)

where ⟨X2
p⟩ is the spectrum of the globule, studied in detail in sec-

tion 3.4, and τp is the relaxation time of mode p. Consequently, due

to the fluctuation-dissipation theorem, the following relation is true:

⟨X2
p⟩ =

3D

2(N + 1)
τp. (6.22)

These hypotheses obviously require posterior verification, as the inter-

actions are much greater in the globule, and we may expect to observe

stronger correlations among the modes.

In Figure 6.4, upper panel, I plot the correlation functions Cpp(t).

I extract values of τp from an exponential fit to Cpp(t) for globule

polymers for three increasing chain lengths N = 200, 400, 800.



150 go to ToC

Figure 6.4: Top panel: the

correlation function of mode

p ∈ [1 . . . 25] function of time,

Cpp(t) for a globule of length

N = 200.

middle panel: ⟨X2
p⟩ and

3D/[(N + 1)τp] overlaid on the

same graph for a globule of length

N = 800. τp for N = 200 and 400

are omitted for visual clarity.

Bottom panel: the ratio
⟨X2

p⟩
τp(N + 1)

, that should equal

3D/2 = 3/10 given our hypothesis,

for N = 200, N = 400, N = 800.

As for the coil, the ratio settles

to a constant function of p as N

increases.

Globule Rouse modes correlation structure

Interestingly, as in the case of the coil, the exponential ansatz

is found to fit well Cpp(t), in good agreement with our hy-

potheses. The resulting τp, along with ⟨X2
p⟩, is presented in the

middle panel of Figure 6.4 for the case N = 800: again, τp is

seen to display the same p dependence as ⟨X2
p⟩, which was

investigated subsection 3.4.2. Hence, we observe

⟨X2
p⟩ ∝ τp, (6.23)

and more specifically:

• In the high frequency modes p > p∗, τp exhibits a power law

decay with exponent −2, characteristic of the Rouse polymer

dynamics. Remembering that mode p represents the dynam-

ics of sub-chains of linear length N/p, this shape for τp in-

dicates that sub-chains containing s∗ = N/p∗ ∼ N2/3

obey Rouse like dynamics.

• In the first few low frequency modes p < p∗ ∼ N1/3,

τp is essentially constant, meaning τ1 ≈ τ2 · · · ≈ τp∗ . This

implies that the relaxation of the whole chain, represented by

τ1, happens at approximately the same time as the relaxation

of the Gaussian sub-chains at time τp∗ .

All in all, this structure τp is in concordance with our depiction

of the typical globule as a melt of independent Gaussian chains

of length s∗ ∼ N2/3. The relaxation process of the globule can,

therefore, be broken down into the relaxation of its individual

sub-chains which, independently from one another, relax through

Rouse-like dynamics.

→Proportionality Constant Discrepancy between τp and ⟨X2
p⟩

While both 3D
2(N+1)τp and ⟨X2

p⟩ are proportional, as discussed, they cer-

tainly aren’t overlapped, as they should be according to our hypothesis,

but only proportional, ⟨X2
p⟩ ∝ τp. However, our initial assumptions

do not accurately predict the proportionality constant. In fact, from

the bottom panel of Figure 6.4 we find τp to be 3 times as large as our

prediction, meaning that the decorrelation process of the polymer is

3 times slower than predicted by the fluctuation dissipation theorem.

Given that the proportionality constant is D/2N , where D = kBT/γ

is the single monomer diffusion coefficient, this is consistent with a

lower diffusion coefficient for the single monomer.

This can be understood if we imagine a single monomer as diffusing

in the globule, untethered to the chain. It is subject to two interactions,

the random forces of the heat bath and the Lennard-Jones interaction

with other monomers, meaning it’s effectively diffusing in a Lennard-

Jones fluid12. Hence, the lower diffusion coefficient can be seen as an
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12 R. Laghaei, A. Eskandari Nasrabad

et al. Excluded volume in the generic
van der waals equation of state and the

self-diffusion coefficient of the lennard-

jones fluid. The Journal of chemical
physics, 124:154502, 05 2006

13 Remember that, due to the free

draining approximation, the CM al-
ways diffuses as (6D/N) t, regardless

of the shape of the polymer.
14 Note that in Figure 6.2, the inertial

regime was omitted for visual clarity.

15 Remember our discussion about the

meaning of the mode relaxation times
τp in subsection 5.2.4.

effect of the crowding induced by the other monomers, modeled as a

dense Lennard-Jones fluid.

6.4.2 Single Monomer Dynamics in the iRouse Globule

In Figure 6.5, I plot g1(t) and g2(t) for an iRouse polymer of interaction

parameter ϵ = 0.5 and size N = 1600, placing it well within the

globule phase. For comparison, g1(t) and g2(t) for a coil polymer are

also depicted in the same figure (in red). The black dashed line has

equation (6D/N) t, which is the equation for the diffusion of the CM

of both coil and globule 13.

Starting from the left of the figure, we recognize a very short iner-

tial regime, during which the monomer doesn’t feel the effect of the

bonding potential and exhibits ballistic motion14.

Following this, the internal-dynamics regime starts. For the coil, a

neat power law is observed, with exponent ≈ 0.56, as stated in the

previous section. In parallel, the globule also enters the internal-

dynamics regime, also exhibiting a power law, yet with a slightly

lower dynamic exponent of 0.5 - the exponent expected for a

Rouse polymer. This is further specified by the log-log derivative of

both g1 curves, shown in Figure 6.6.

Notably, we also observe a vertical shift between both g2(t) curves

in the internal-dynamics regime. This implies that the diffusion coef-

ficient of the monomer in the globule is lowered, in accordance

with the global shift in Rouse modes decorrelation times seen in Fig-

ure 6.4.

At larger times, the two dashed horizontal lines, at which the two g2

functions plateaus, are at 2R2
g for the coil and the globule, respectively.

We immediately recognize that the plateau for the coil is much higher

for the globule, simply reflecting the fact that its extent exceeds that

of the globule.

Accordingly, the time at which the plateau is reached, i.e. the time

at which a single monomer has diffused a distance of the order of the

size of the polymer, which is none other than15 the whole chain decor-

relation time τ1, is much lower in the globule than in the coil.

We can estimate this time through a very simple scaling argument.

For the coil

g2(τ1) ∼ τ1
2ν

2ν+1 ∼ R2
g ∼ N2ν (6.24)

and therefore

τ1 ∼ N2ν+1 (coil), (6.25)

which only confirms equation (6.19).

Now the same calculation can be made for the globule:

g2(τ1) ∼ τ1
1/2 ∼ R2

g ∼ N2/3 (6.26)

leading, this time, to

τ1 ∼ N4/3 (globule). (6.27)

To further explore the transition from the internal-dynamics regime

to the long-time regime, let’s compare τ1 to the time required for the
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Figure 6.5: g1 (blue) and g2
(violet) for the globule state of a

N = 1600 long polymer at ϵ = 0.5.

For comparison, in orange and red,

the equivalent functions for the coil

state. Dashed horizontal lines: 2R2
g

for the coil (red) and the globule

(violet). Black dashed line: f(t) =

(6D/N)t.

Figure 6.6: log-log derivative of

g1(t) function of log t. Red curves

correspond to coil polymers (ϵ =

0), blue curves to globule poly-

mers (ϵ = 0.5) for sizes N =

800, 1600, 3000, 6000. The bright-

ness of the color indicates the size

of the polymer, dark blue and red

corresponding to N = 6000
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16 By recalling that the Rouse mode
decorrelation time τ1 is given by equa-

tion (5.41).

CM itself to diffuse over a distance of the order of the chain’s extent,

for both the coil and the globule, starting with the coil. I denote this

time by tcm. Remembering that the diffusion coefficient of the CM,

for both cases, scales as N−1, we can write:

g3(tcm) ∼ 1

N
tcm ∼ N2ν (6.28)

yielding16

tcm ∼ N2ν+1 ∼ τ1 (coil). (6.29)

Hence, for the coil - and, due to the genericity of ν in this calculation,

for any fractal polymer under the free draining approximation - the

time needed for a single monomer to diffuse the extent of the

whole chain is of the same order as the time needed for the

whole chain to diffuse the same distance.

For the globule, that has a different size scaling, we get instead

g3(tcm) ∼ 1

N
tcm ∼ N2/3, (6.30)

and thus

tcm ∼ N5/3 ≫ N4/3 ∼ τ1 (globule). (6.31)

In the case of the globule, the single monomer reaches the bor-

der of the globule before the CM diffused the same distance, i.e.

before the onset of the long-time whole polymer diffusion regime. For

this reason, in the lab reference frame, at t ∼ N4/3, when the monomer

reaches the border of the globule, and until t ∼ N5/3, the onset of the

whole polymer diffusion, the slope in g1 is seen to dip. While quite

challenging to discern in the MSD of Figure 6.5, this effect becomes

evident in Figure 6.6, where the log-log derivative of the globule is pre-

sented. A dip in the log-log derivative of g1 for the globule is clearly

seen. Its intensity amplifies with N , as the difference between tcm and

τ1 increases.

→Summary of the iRouse Globule Dynamics

To conclude this discussion, we can remark that the dynamics of a

globule without topological constraints can be accurately described as

a liquid of phantom Gaussian chains. The only effect of the interac-

tion between chains is as an effective lowering of the single monomer

diffusion coefficient.

From this fact I could deduce the scaling behavior of the single

monomer MSD:

Internal-dynamics regime of the globule polymer : for t≫ τN ,

1. The monomer experiences a power law anomalous diffu-

sion, identical to the Rouse polymer

g2(t) ∼ tψ (6.32)

with dynamic exponent ψ = 0.5;
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2. Due the high density in the globule, the effective viscosity

felt by a monomer is higher than the viscosity of the implicit

solvent γ, resulting in slower dynamics.

3. The longest relaxation time of the system, τ1, scales as

τ1 ∼ Nϕ (6.33)

with an exponent ϕ = 4
3 , contrasting with an exponent of 2

for the Rouse polymer and N2.17 for the coil polymer. This

results in the globule’s decorrelation occurring substantially

faster than that observed in both the coil and the Rouse

polymer. As a consequence, the extent of the internal-

dynamics regime is decreased, due to the shorter decor-

relation time of the first mode.

4. Contrary to the coil and the Rouse polymer, the onset of

the long-time collective diffusion regime happens at tcm ∼
N5/3 ≫ τ1. Consequently, the beginning of a plateau is

observed in g1, resulting in a dip in its log-log derivative.

6.5 Dynamics Throughout the Transi-
tion and Concluding Remarks about the

Spectral Modes Approach

In addition to characterizing the dynamics of the interacting polymers,

our aim was also to understand whether the dynamics through the dif-

ferent phases of the model give the possibility of discerning the folding

state of the polymer based on the behavior of an individual monomer.

Now that I have characterized the dynamics in both the coil and the

globule phase, I will therefore, in this section, investigate more explic-

itly how the observed dynamical features evolve across the coil-globule

phase transition.

→MSD Results

To get a more precise idea of the dynamics along the transition, I ran

simulations for iRouse polymers for N = 400 and ϵ = [0, 0.1, 0.2, 0.25,

0.27, 0.3, 0.35, 0.4, 0.45, 0.5]. The MSD in the center of mass refer-

ence frame, g2(t), for a polymer of fixed length at different interaction

energy parameters ϵ crossing the transition point are plotted in Fig-

ure 6.7. The color of each curve is based on the order parameter α

for the phase transition defined in chapter 3, so that α spans from

−2.2 for coils to 0 for globules. A few comments on this figure help to

summarize and clarify the previous results.
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Figure 6.7: MSD in the center of

mass reference frame, for polymers

of length N = 400 and varying ϵ.

Figure 6.8: The diffusion coeffi-

cient DR fitted on the correspond-

ing g2(t) of Figure 6.7 by mean of

a DRt
ψ power law.

Figure 6.9: The power law expo-

nent ψ fitted on the corresponding

g2(t) of Figure 6.7 by mean of a

DRt
ψ power law.

MSD scaling throughout the coil-globule phase transition

• First of all, the lowering of the long time asymptotic value

of g2(t) as ϵ increases is a testimony to the collapse of the

polymer (as it correspond to 2R2
g).

• Accordingly, the typical time τ1 needed for the single mo-

nomer to reach this limit, i.e. to visit the whole polymer, also

decreases, as shown by the shift of the curve’s shoulder toward

the left. This aspect will be explored hereafter.

• As the collapse occurs, the density in the polymer increases,

leading to the diffusion coefficient DR in the Rouse regime

to decrease as well. This phenomenon is depicted in Fig-

ure 6.8, showing the DR parameter fitted on the correspond-

ing g2(t) ∼ DRt
ψ. As discussed, this effect is equivalent to an

increase in the effective viscosity.

• Concurrently, the dynamic exponent ψ of the MSD in the

internal dynamics regime decreases continuously from its coil

value of ≈ 0.56 to its globule value of 0.5, as depicted in

Figure 6.9:

ψcoil = 0.56 | ψglobule = 0.5. (6.34)

Throughout the transition, ψ evolves continuously from one

value to the other.
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→Spectral Interpretation and Fluctuation Dissipation Theorem

To better interpret the shape of the MSDs, I turned again to the modes,

and more specifically to their decorrelation time.

As before, I fitted an exponential to the correlation functions Cpp(t)

to extract the decorrelation times τp. The results are shown on Fig-

ure 6.10, side-by-side with the spectra ⟨X2
p⟩ for the same simulations.

In the previous sections, we have established that, as a consequence

of the fluctuation dissipation theorem, τp and ⟨X2
p⟩ were pro-

portional. From Figure 6.10, we observe that this proportionality

remains throughout all stages of the coil-globule phase transi-

tion. Consequently, the same analysis detailing the evolution of ⟨X2
p⟩

in subsection 3.5.1 can be applied to describe the evolution of τp. In

particular, we notice in Figure 6.10 that the value of the longest re-

laxation time of the polymer, τ1, is seen to abruptly decrease as

the transition takes place, and the first few relaxation times converge

toward a same value.

Figure 6.10: Left panel: the evo-

lution of the decorrelation times τp
of polymers at fixed length N =

400 for epsilon values across the coil

globule phase transition.

Right panel: Rouse modes spectra

for the same polymers.

Also, as the polymer enters the globule phase, the curves for τp ex-

perience an upward shift, indicating an evolution of the proportionality

constant between both observable τp and ⟨X2
p⟩, mirroring the decrease

of DR previously observed. As stated in the analysis of the globule

dynamics, this shift is due to the increase in effective viscosity

felt by the monomers getting greater due to the increase in monomer

density.
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6.6 Conclusion/take-home message

In this chapter, I presented a simulation study of an original model, the

interacting Rouse model, that incorporates all equilibrium aspects

of the coil-globule phase transition. The particularity of this model

relies in the fact that it is allowed to self-cross, which influences its

dynamics. I characterized the dynamics of the model in all folding

states by performing an analysis of both the relaxation processes of

the chain and the single monomer dynamics. Let’s summarize our

findings.

Our key result in this chapter is that the proportionality relation

between the decorrelation time τp and its associated Rouse mode am-

plitude ⟨X2
p⟩, encountered in the case of the Rouse polymer, remains

true for polymers at any folding states, thereby establishing a direct

connection between the chain’s spatial structure and its decorrelation

process. This relation stems from the fact that, regardless of volume

interactions, the Rouse modes seem to diagonalize the equations of

motion of the system, exactly as they did in the case of the Rouse

model, allowing for the fluctuation-dissipation to be applied to each

mode, yielding the proportionality relation.

This relation helped us to elucidate the dynamics of a single mo-

nomer in all folding states - coil, globule, and transition - which we

found to mirror the structure observed in a Rouse polymer.

Specifically, we observe an internal dynamics regime where the mono-

mer undergoes subdiffusion because of the chain’s influence. This lasts

until a characteristic time, τ1, which is the polymer’s longest relaxation

time. After this time, the monomer displays regular diffusion, moving

coherently with the rest of the chain. Strikingly, therefore, the decorre-

lation times τp appear as the dynamic equivalent of the spectral modes,

as nicely illustrated by Figure 6.10, with lower modes representing an

excellent observable in assessing the polymer state.

The dynamic exponent ψ, characterizing the subdiffusion in the

Rouse regime, changes only slightly from one phase to the other, going

from its coil value of ≈ 0.56 to its globule value of 0.5, and hardly

departs from its Rouse value of 0.5. Between both phases, ψ evolves

continuously from one value to the other. This dynamic exponent can

be seen as a consequence of the scaling of the decorrelation spectrum

τp, as attested by the equation (5.54), linking the correlation function

to the MSD.

On the contrary, the extent of the Rouse regime, which is

controlled by τ1, changes dramatically as the polymer collapses. It

goes from a scaling of ≈ N2.17 in the coil phase to a scaling of ≈ N1.33

in the globule phase. This can be seen simply as a consequence of the

size of the polymer reducing during the collapse.

Finally, we found that, due to the high monomer density in the

globule phase, the effective viscosity felt by the monomer increases.

All in all, the crucial message to take home from this chapter is

that, despite the intensity of the volume interactions, if topological

constraints are neglected, the internal dynamics of the chain re-



158 go to ToC

main essentially Rouse-like , with only a slight change in the dy-

namical exponent. Notably, nothing extraordinary happens at

the phase transition. Indeed, one could have expected that the di-

vergence of the order parameter fluctuations described in chapter 3

and displayed in Figure 3.13 and the animation Figure 4.7, could po-

tentially translate into some salient feature appearing in the dynamics

of the chain, but this is not the case.

In the following chapter, we impose topological constraints on the

chain and analyze how this affects the chain dynamics.
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7

Dynamics of a collapsing

polymer with topological

constraints

7.1 Introduction

In the previous chapter, I introduced a polymer physics model de-

signed to study the dynamics of the coil-globule phase transition with-

out topological constraints, thereby essentially exhibiting the dynam-

ics observed in the Rouse model. This offered a streamlined perspec-

tive, allowing for a focused exploration of the dynamics inherent to

the phase transition without the additional complexity introduced by

polymer entanglement.

As we progress into this chapter, I expand the scope of investiga-

tion to reintegrate topological constraints into the model. Notably,

the incorporation of these constraints introduces the expectation of

observing reptation dynamics, a theory that postulates that a poly-

mer, when constrained by its entanglement with other polymer chains,

will navigate through a ’tube’ defined by the chain’s entanglements,

via a snake-like movement, thereby greatly slowing down its relaxation

dynamics.

The objective will be to examine the polymer dynamics across all

phases of the coil-globule transition in the presence of topological

constraints and to compare these findings with the dynamics of the

unconstrained model. We can reasonably expect that in the coil phase,

characterized by rare chain self-collisions, these constraints might not

play a substantial role. In contrast, within the dense globule phase,

the importance of such constraints is paramount, and has already been

observed1. Hence, I’ll aim in this chapter, by comparison to the un-

constrained case, to assess the physical parameters, i.e. the (N , ϵ)

region, where topological constraints do impact the dynamics.

Although a thorough theoretical and simulation exploration of the

dynamics in the globule phase, based on reptation theory, is a fasci-

nating subject in itself, to my surprise it has never been undertaken. I

won’t carry it out completely in this thesis, but I will begin to address

it, by limiting myself to the study of qualitative differences between the
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Figure 7.1: FENE and WCA po-

tentials. Adapted from Ref. [37].

topologically constrained and unconstrained cases. This will at least

enable me to assess when reptation is or is not present across the (N ,

ϵ) coil-globule phase diagram, which may, however, have interesting

consequences for the analysis of experimental data.

The outline of the chapter is as follows. In section 7.2, I begin by

briefly presenting my simulation scheme for simulating topo-

logically constrained polymers, based on the Kremer-Grest model

with added attractive interaction. Then, in section 7.3, I briefly

review the theory of dynamics in topologically constrained poly-

mer solutions.

Eventually, in section 7.4 and section 7.5, by comparing the

dynamics in the constrained and unconstrained case, I assess the

(N, ϵ) parameters required for topological constraints to

impact the dynamics.

7.2 Simulation of a Topologically Con-

strained Interacting Polymer: the Kremer-

Grest Model With Attractive Lennard-

Jones Interactions

7.2.1 The Kremer-Grest model

In the previous chapter, we employed a harmonic bonding potential

to simulate chain connectivity. This allowed for the chain to perform

self-crossings, prohibiting the onset of reptation dynamics. The reason

for this is that the harmonic potential is ”soft”, in the sense that it

allows for large size fluctuations. To avoid this, Kurt Kremer and Gary

S. Grest established a new model2 for the bonding interaction, named

finitely extensible nonlinear elastic (FENE) potential, that reads:

UFENE(r) = −1

2
kR2

0 ln

(
1−

(
r

R0

))
+WWCA. (7.1)

Here, k is the bond strength, and R0, the maximum extendable length

of the bond, is ensured by the exponential divergence of the

potential in r = R0. The additional UWCA term is the Weeks-

Chandler-Andersen (WCA) potential, a shifted and truncated form

of the Lennard-Jones (LJ) potential, retaining only its repulsive part.

It reads:

UWCA(r) =




ULJ(r)− ULJ(rc) if r < rc

0 otherwise
(7.2)

where the LJ potential is defined as usual, by

ULJ(r) = 4ϵWCA

[(σWCA

r

)12
−
(σWCA

r

)6]
.

Crucially, the non-crossing condition depends on the selection of the

potential parameters, which the Kremer-Grest model suggests choos-

ing as follows:
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R0 k ϵWCA

1.5 σWCA 30 1

Overall, the use of this bonding potential has consistently demon-

strated its efficacy in simulating polymers for which chain crossing

is prevented. To complete our model, we only need to incorporate

an attractive pair interaction between all non-bonded monomers.

7.2.2 The Interacting Kremer-Grest Model

My simulation scheme is then exactly the same as for the iRouse model

simulations of the preceding chapter, except that the harmonic bonds

are replaced by FENE bonds. The Hamiltonian of the system hence

reads:

Hcoil =

N−1∑

i=0

UFENE(ri,i+1) +

N∑

i=0

N∑

j=i

Upair
i,j (7.3)

where Upair
i,j is the Lennard-Jones pair potential of equation (6.2) that

again models short-range repulsion and mid-range attraction between

non-adjacent monomers.

As before, the system is in contact with a heat bath at tempera-

ture kBT = 1, modeled by a stochastic force following the Langevin

dynamics formalism. The equation of motion for each bead is

dR⃗n
dt

= V⃗n(t)

dV⃗n
dt

= −γV⃗n + ∇⃗n[H] + ξ⃗n(t),

exactly as for the iRouse model, see equation (6.6).

I integrated these equations using the Langevin integrator of Hoomd-

Blue. All relevant simulation parameters are listed in the following

table:

Parameter Symbol Values

The chain length N [200, 400, 800, 1600, 3000, 6000, 12000]

The Lennard-Jones dispersion energy ϵF [0, 0.1, 0.2, 0.25, 0.27, 0.3, 0.35, 0.4, 0.45, 0.5]

The Lennard-Jones size parameter σ 2−1/6

The WCA size parameter σWCA 2−1/6

The WCA dispersion energy ϵWCA 1

The FENE bond strength k 30

The FENE maximum length R0 1.5σWCA

The viscosity of the fluid γ 5

The fluid temperature parameter kBT 1

Table 7.1: List of the physical

parameters used in the interacting

Kremer-Grest model MD simula-

tions.
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7.3 Polymer Motion in an Entangled
Polymer Solution: Reptation Dynamics

Although the behavior of polymers in dilute solutions, where entan-

glements are absent, is well understood3, the complex dynamics intro-

duced by entanglement complexities remain a topic of ongoing debate

and exploration. As mentioned in the introduction, the aim of this

chapter isn’t to conduct a detailed characterization of the effect of en-

tanglement itself on the polymer dynamics. While such an endeavor

would undoubtedly be of great academic interest, our focus here is

more modest and is to specify the limiting conditions for the onset of

entanglement effects. In this spirit, I won’t explain in detail the com-

plicated physics underlying the subject, but rather give a qualitative

picture of the single monomer dynamics in the presence of entangle-

ment effect, and the conditions making them appear.

→The reptation tube

In brief, then, the idea behind the reptation motion lies in the definition

of an idealized constraining tube, enveloping each polymer chain in the

solution, that models the steric interaction with its surroundings. For

substantial movement to occur, the chain must navigate longitudinally

out of this tube.

Meanwhile, the configuration of the tube is susceptible to change

via two mechanisms. Initially, as the central chain moves, it abandons

sections of its initial tube while creating new segments. Concurrently,

the tube’s form can also fluctuate due to the movements of surrounding

chains that constitute the tube. A typical tube lifetime can there-

fore be defined, τtube. The key point is that, for sufficiently long

chains, in a certain time regime that we shall specify shortly, the tube

fluctuations are negligible, meaning the chain motion is dominated by

its longitudinal motion, coined reptation motion.

→Minimal Polymer Length for Entanglement

Determining the minimal polymer length at which entanglement effects

are important is a very complex and still debated question. Several

theoretical formulas have been proposed for different concentration

conditions 4,5. The most important point is that, quite intuitively,

the minimum length Ne is a decreasing function of monomer

density ρ = N/R3
g in the solvent. This function is as a power law, with

both the proportionality constant and the exponent being subjects of

ongoing debate.

The determination of Ne is a fascinating subject, but as we said

earlier, we aren’t going to dwell on it. For our discussion, we only

require an understanding of the qualitative relationship between Ne

and monomer density: as the solution becomes denser, shorter chains

are necessary for the entanglement effect to manifest.
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→Chain Dynamics in Entangled Solutions

In the case of solutions where the polymer chain length N is less than

the entanglement length Ne - meaning the dilute solution limit or,

equivalently, short chain limit - the lifetime τtube of the effective tube

is much shorter than the relaxation time of the chains, τ1. Conse-

quently, the dynamics of the chain are described by the dynamics of

the equivalent isolated chain, Rouse dynamics for short concentrated

polymer solutions, coil dynamics for dilute long chains.

Now let’s consider a solution with N > Ne. In this case, τtube ≫ τ1,

meaning that for times t ≪ τtube, the tube can be seen as a fixed

constraint for the polymer. This constraint introduces a new length-

scale, the tube diameter d, and a corresponding time-scale τe,

the time needed for a monomer to move a length d. The motion of

the chain, and thus of a single monomer, can then be decomposed into

five time regimes6:

1. For t≪ τN The monomer doesn’t feel the presence of the chain and

displays normal diffusion.

2. For t ≪ τe: The monomer feels the presence of the chain, but

doesn’t feel the presence of its surrounding and the chain experi-

ences Rouse dynamics within the tube diameter, appointing the

Rouse exponent for the single monomer MSD:

g1(t) ∼ t1/2. (7.4)

3. For τe ≪ t ≪ τ1: The monomer is constrained to move up and

down the tube through reptation motion. The dynamics of the

chain in this regime can be seen as a Rouse-like diffusion along

the path of the tube, since t ≪ τ1. As the tube is expected to

have Gaussian conformations s1/2, the single monomer scaling is

g1(t) ∼
(
t1/2

)1/2 ∼ t1/4 , (7.5)

predicting a slowing down of the dynamics due to the topological

constraints. This is the so-called reptation regime.

4. For τ1 ≪ t ≪ τtube: The bead still moves along the tube. Now,

however, t > τ1, which means the monomer moves coherently with

the whole chain which experiences normal diffusion along the

path of the tube, yielding

g1 ∼ t1/2. (7.6)

5. Finally, for t > τtube: the tube itself starts diffusing, along with the

polymer, meaning

g1(t) ∼ t. (7.7)

Importantly, for the reptation regime to be observed, very long simula-

tions of very long polymers in concentrated conditions (i.e. by simulat-

ing a large number of polymers in a given volume) must be performed.
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Figure 7.4: g1(t) for dense poly-

mer melt of chains of size N = 500

(green) and N = 2000 (red) fom

Ref. [36]

This has been realized in particular by Hsu and Kremer in Ref. 7.

The resulting plot of g1(t), for a solution of M = 1000 chains of length

N = 500 and 2000 is presented in Figure 7.4. While, in this figure,

all but the whole tube diffusion is visible, as the length of the poly-

mer decreases, so does the tube lifetime τtube, shortening the duration

of regimes 3 and eventually the reptation regime. This continues un-

til N < Ne at which point only the Rouse regime is left, and dilute

solution dynamics are retrieved.

→Reptation Dynamics in Topologically Constrained Polymer Across

the Coil-Globule Phase Transition

As mentioned in the previous subsection, the impacts of entanglements

and the consequent emergence of reptation dynamics are usually ex-

plored in the realm of polymer solutions, where the entanglements of

a chain are mostly due to the other chains of the solution. However, in

the case that interests us, of a single polymer, the entanglements will

be with other parts of the same chain. Hence, the chain length to be

compared with the entanglement length isn’t the length of the full

polymer N , but some length s∗ < N , such that subchains of length

s∗ can be considered as independent. As we learned from the spec-

trum of the globule conformations, this corresponds to the correlation

length of the chain. Consequently, the full polymer can be modeled as

a solution of M = N/s∗ independent subchains.

Note that we have a prediction for s∗ in the case of a perfect glob-

ule, for which the decorrelation length goes as s∗ ∼ N2/3, implying

M ∼ N1/3. Otherwise, especially in the transition and in the soft

globule phase, we expect s∗ to be a nontrivial function of both the full

polymer size N and the degree of compaction of the chain, controlled

by the attractive interaction parameter ϵ. Then, at fixed ϵ, the degree

of compaction itself is dependent on the size of the polymer, due to

the collective nature of the transition (see Figure 3.14). Finally, the

entanglement length Ne in turn depends on the compaction. All in all,

the intensity of the entanglement effect in the single polymer depends

on the complex interplay between chain length, chain compaction, and

chain correlation length. Consequently, it seems quite challenging to

produce a scaling theory for reptation dynamics in the single polymer.

Nevertheless, in the following section, I present the first steps to-

wards this objective, by identifying empirically in numerical simula-

tions, the threshold values of N and ϵ above which topological con-

straints can have an effect on the dynamics.
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7.4 Assessing the Impact of Topologi-
cal Constraints on Interacting Polymer
Dynamics

7.4.1 Equilibrium Properties: Phase Diagram and Size

Difference Between Both Models

Remember that equilibrium scaling properties shouldn’t be depen-

dent on whether the chain is topologically constrained or not. Never-

theless, the modification of the bonding potential does influence the

value of certain equilibrium features of the chain.

Notably, the equilibrium size of the chain for both models, charac-

terized by the gyration radius Rg, is plotted in Figure 7.5.

Figure 7.5: Left panel: The gyra-

tion radius, at fixed N = 200 and

different values of ϵ across the coil-

globule phase transition, for both

models. Diamonds and dots rep-

resent the iRouse and FENE poly-

mers, respectively. Again, the color

of the points is based on the or-

der parameter α, orange for the coil

phase, blue for the globule phase,

and black for the transition.

Right panel: The average bond

length for the same polymers.

→Size difference

The first observation that we can make is that, in the coil phase, the

FENE chain is larger than the harmonic chain. This is simply due to

the fact that, given the choice of parameters, the mean bond length

in the coil phase is longer for the harmonic polymer compared to the

FENE polymer. The opposite is true in the globule phase: both effects

are visible on the plot of the average bond length as a function of ϵ,

shown in the second panel of Figure 7.5. While the average FENE

bond length stays rigorously constant, in the case of the harmonic

bond length, it is seen to decrease as the polymer collapses. This

is due to the fact that no excluded volume interaction is introduced

between harmonically bonded monomers in the iRouse model, allowing

for neighboring monomers to slightly overlap due to the rising pressure

as the density increases in the globule phase.

→Phase diagrams

In Figure 7.6, I again make use of the order parameter α introduced

in chapter 3, to draw the phase diagram for both models. The color

of the dot at position (N, ϵ) represents the value of α for this pair
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of parameters, exactly as in Figure 7.6. Orange, Blue, and Black

respectively represent α = −2.2,−1.1, 0, i.e. the coil, globule, and

transition phase.

However, the resolution (N, ϵ) of these diagrams is significantly

lower than for the iSAW model Figure 3.14, due to the much higher

computational cost of Langevin simulations compared to the Monte

Carlo simulation performed for the on-lattice model in chapter 3, lim-

iting the number of simulated (N, ϵ) points. Also noteworthy, the

uncertainty on the value of α increases with N , and is worse in the

coil phase than in the globule phase. This is a consequence of the

polymer’s decorrelation time scaling as ≈ N2.17 in the coil phase and

≈ N4/3 in the globule phase, whereas the number of simulation steps

remains constant for each simulation.

Nevertheless, a qualitative picture of the phase diagram remains

discernible. For comparison, the inflection point critical line, defined

in (3.17), is drawn in the background and is seen to align with the

transition region for both models. Hence the key result is that all

three models share essentially the same phase diagram.

As we’ll see, these observations will prove useful to understand the

behavior of the single monomer dynamics in the next section.

Figure 7.6: Finite-size coil-

globule phase diagrams for the

Harmonic (left) and FENE (right)

drawn from a color plot of the or-

der parameter α. The green line

in the background represents the

inflection point (defined in subsec-

tion 3.5.2).
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8 Discrepancies at long times are due

to poor statistics.

7.4.2 Simulation Results for the Monomer MSD

We can now compare the single monomer dynamics in a polymer with

and without topological constraints. As a point of comparison, I choose

the observable g2, which isolates best the internal dynamics regime.

In Figure 7.7 (top two rows) is depicted for N = 3000 and varying

ϵ values across all stages of the collapse. The colored curves corre-

spond to the FENE bond simulations, while the thicker gray curves

correspond to the harmonic bond simulations.

In the coil phase, ϵ ≤ 0.3, the g2(t) curves are essentially identical

for both models, meaning topological constraints have no effects on the

dynamics of the coil polymer, as expected, due to the low density of

coil8.

Around ϵ = 0.35 the collapse occurs; hence, from ϵ ≥ 0.35, the

Rg difference between both models is substantial, as pointed out in

the previous section. Consequently, the time needed for the monomer

to reach the plateau at 2R2
g, i.e. the chain decorrelation time τ1, is

lower in the harmonic bond simulation. Nevertheless, the short-time

dynamics, which correspond to the Rouse regime, are seen to match

nicely, apart from a slightly higher decay of the diffusion coefficient in

globule without topological constraint (ϵ = 0.5).

To facilitate a visual comparison, I chose to normalize the g2(t)

curves in order to align the plateau values, by dividing g2(t) by the

fitted 2R2
g,

g̃2 =
g2
2R2

g

. (7.8)

This, of course, will misalign the Rouse dynamics regime, hence I also

rescale the time axis, in order to force the Rouse regimes to collapse

for both simulations:

t′ = t

(
DR

2R2
g

)1/Ψ

(7.9)

where DR and Ψ are the exponent and prefactor of g2 fitted in the

Rouse regime, respectively. The curves for g̃2(t
′), are represented in

Figure 7.7 (bottom two row).

Thanks to this precise realignment of the curves, in this figure a

lowering of the dynamic exponent for intermediate times is clearly

visible from ϵ = 0.35 and beyond, indicating the onset of reptation

dynamics as the density in the globule rises.
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Figure 7.7:Two top rows: g2(t) for N = 3000 and ϵ values all across the coil-globule

phase transition.

Two bottom rows: The rescaled MSD g̃2(t) for the same simulation, such

that the Rouse regimes collapse.
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7.4.3 Reptation Dynamics in the Globule Phase

Let’s therefore place our attention in the globule phase, where the

largest effects due to topological constraints are expected. In Fig-

ure 7.8, g̃2(t
′) is plotted for ϵ = 0.5 and N = 200, 400, 800, 3000, 6000

and 12000. For the smallest polymer lengths (N = 200, 400, 800),

only a negligible deviation from Rouse behavior is observed despite the

high density: the same Rouse-like dynamics, as in the harmonic

bond simulation, is observed.

Figure 7.8:Rescaled MSD g̃2(t) for ϵ = 0.5 and N = 200, 400, 800, 3000, 6000 and

12000.

From N = 3000 onward, as both g∗ and M increase, a distinct

regime of sub-Rousean diffusion is established, following the initial

Rouse regime, marking the onset of constrained dynamics in the glob-

ule. A robust power law scaling of g2 is observed with an exponent:

Ψconstr ≈ 0.3. (7.10)

This exponent, which is found consistently in simulations for ϵ ≥ 0.4

and N = 6000, 12000, contrasts with the 1/4 exponent pre-

dicted by tube theory for the reptation dynamics regime. This dis-

crepancy can certainly not be attributed to the equivalent subchain

size g∗ ≈ 500, which is well above Ne and is usually enough to ob-

serve proper reptation dynamics in melt simulations (the green curve
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in Figure 7.4). Most probably, the low number of equivalent subchains

M ≈ 60 produces a breakdown of tube theory, resulting in the ob-

served change in the exponent. In this case, the effect is only due to

a low polymer size and the correct exponent should eventually be ob-

served for longer chain sizes. This hypothesis is further confirmed by

the only other study conducted on globule dynamics9 in which proper

reptation dynamics are observed in globules of length N = 262144.

Following Ref. 10, an estimate of the entanglement length can be

extracted from the single monomer dynamics in the globule. Indeed,

the onset of reptation dynamics are marked by the entanglement time

τe, which can be approximated as the intersection between a linear fit

to the Rouse regime and a linear fit to the reptation regime. Moreover,

we can assume that τe is the relaxation time of a Rouse chain of Ne

monomers, yielding g2(τe) ∼ 2R2
g, and eventually

Ne =
3DR

τ
1/2
e b2

, (7.11)

where b is the average bond length and DR the diffusion coefficient

in the Rouse regime. The entanglement lengths, fitted on the longest

chain at N = 12000, are reported in Table 7.2.

ϵ 0.5 0.45 0.4

Ne 86 105 130
Table 7.2: Entanglement lengths

Ne fitted at different values of ϵ for

a chain of length N = 12000.
This value of the entanglement length is in accordance with values

found in the literature for dense melts of fully flexible linear chains11.

It also fits well with the smallest globule in which we observed a

(minute) slowing down of dynamics with respect to the harmonic sim-

ulation, N = 800. Indeed, the length of the equivalent independent

subchains making up the N = 800 globule is:

g∗ ∼ 8002/3 ≈ 86. (7.12)

Altogether, these findings provide insights on the effects of topolog-

ical constraints on the dynamics of self-interacting polymers. I will,

this time, directly draw my conclusions in the final section.
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7.5 Conclusion / Take-Home Messages:
the Dynamical Phase Diagram of the Fi-
nite Size Coil Globule Phase Transition

7.5.1 Topological phase diagram

By comparing the scaling in g2 during the constrained dynamics regime

in the FENE simulation to the corresponding scaling in the harmonic

potential simulations, a qualitative assessment of the onset and in-

tensity of topological constraints on the dynamics of self-interacting

polymers is depicted in Figure 7.9. The size of the red crosses is pro-

portional to the difference in dynamic scaling exponent observed in the

constrained and unconstrained case, in the reptation dynamics regime.

Figure 7.9: Dynamical phase dia-

gram for the finite-size coil globule

phase transition.

Impact and onset of topological constraints

• The first observation is that, as expected, topological con-

straints have absolutely no impact on dynamics in the

coil phase.

• Furthermore, we observe that below a critical length, ap-

proximately N = 800, one can consider, for all practical pur-

poses, that the the monomer exhibits Rouse dynamics,

regardless of the strength of the folding state of the chain.
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• Then, in the globule phase, and starting from N = 1600,

we indeed confirm the slowing down of dynamics due to the

effect of topological constraints, starting from the entangle-

ment time τe, that in turn depends on the interaction energy

ϵ. The effect aligns with predictions of tube theory, i.e. a de-

crease of the dynamical exponent. However, this effect

is very weak for globules with size N = 1600 and N = 3000

and only becomes substantial from N = 6000.

• For the largest globule, N = 12000 a power law scaling with

exponent Ψconstr = 0.3 is observed. The larger value of this

exponent compared to the 0.25 excepted from tube theory is

probably due to finite size effects, since [75] indeed found an

exponent of 0.25 in a larger globule.

• Moreover, looking at the dynamics close to the coil-globule

transition, substantial constrained dynamics only appear once

the polymer is sufficiently compacted, i.e when the polymer

is well into the globule phase, in accordance with tube theory,

which predicts that the entanglement lengthNe increases with

density.

• Finally, we note that, at the transition, the dynamics show

no peculiarity that could have potentially appeared as a con-

sequence of the interplay between topological constraints and

the critical fluctuations related to the transition.

All in all, we find that, in collapsing polymers, Rouse dy-

namics are robust to topological constraints for moderate-sized

polymers, N ≤ 800. Also, it is essentially imperceptible for

N = 1600 and N = 3000, even in the globule phase. Most im-

portantly, we find that constrained dynamics only appear

inside the globule phase, meaning Rouse dynamics also

survive in the transition phase.

7.5.2 Assessing the Coil-globule State from Dynamical

Data: Finding the good observable

Remember that our goal is to characterize the dynamics in the different

phases of the model, with the idea of potentially being able to tell the

folding state of a polymer from the dynamics of a single monomer.

Looking back at our results for the coil and the globule phase, there

are a few potential observables that could be used for such a task.

• The most robust quantity, as it is completely dimensionless, would

be ψ, the exponent of the MSD during the internal dynamics

regime.

If the polymer is large and dense enough for topological constraints

to be significant, then Ψ < 0.5 would be measured. Conversely, ψ

stays essentially constant from the coil to the transition phase (see

Figure 6.9), Ψ ≈ 0.56, which is very close to its Rouse value. Con-
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12 Normal diffusion isn’t even bound
to ever appear, since the entirety of

the chromosome is encircled by other
chromosomes, which are themselves
confined within the nucleus, thereby
substantially limiting the dynamics of

the whole polymer.

sequently, if the polymer is either in the coil or transition state,

the exponent Ψ would essentially assume its Rouse value. Hence,

in the context of a self-interacting polymer, the single monomer

MSD exponent Ψ can only distinguish a dense globule from a coil

or transition polymer. For the effect to be measurable, the polymer

should be sufficiently large, i.e. N ⪆ 800.

• Another option would involve leveraging the drop in diffusivity

resulting from the increase in effective viscosity due to the higher

packing fraction in the globule phase compared to the coil. In my

simulations, for a polymer of size N = 800, the diffusivity was

approximately divided by 2. However, the challenge here lies in

the necessity for a reference diffusivity from which to compare. By

determining whether we are diffusing at this rate or at a slower

pace, we could potentially distinguish between the coil and globule

states. Yet, establishing this reference would necessitate measuring

diffusivity in-vivo on chromatin with a known folding state, which

in itself is challenging. Moreover, a change in diffusivity could (and

does) arise from a multitude of biological factors. Consequently, the

most we could likely conclude is that the folding state plays a role

in contributing to this change in diffusivity.

• Finally, the most promising metric is the longest relaxation time

τ1, that dramatically decreases as the polymer collapses. Unfortu-

nately, its derivation from the dynamics of a single point is tricky

if not impossible in real data. Indeed, in the simulations, τ1 could

be determined either from the MSD, taken as the time needed for

the particle to diffuse the extent of the whole polymer (meaning

the MSD plateaus in the center of mass reference frame), or as the

crossover time between the Rouse regime and the long time whole

polymer diffusive regime. This however only applies to an isolated

chain. In a chromatin experiment, presuming the objective is to

ascertain the folding state of a segment inside a whole chromosome,

the ”whole polymer diffusion” in this case pertains to the diffusion

of the center of mass of the segment itself. Being part of a larger

polymer, namely the entire chromosome, the center of mass of the

segment may not exhibit normal diffusion, but rather Rouse-like dif-

fusion due to its inclusion within a polymer. The onset of genuine

whole chain diffusion would only arise at very long times when the

dynamics of the whole chromosome become dominant over internal

dynamics12.

However, the relaxation time τ1 can be determined in another way.

Indeed, a common approximation for the longest relaxation time of a

polymer is the decorrelation time of the end-to-end vector of

the chain, which makes sense given the geometrical interpretation of

X1. Hence, provided the trajectory of two monomers (or two marked

chromatin loci), it is possible to determine the relaxation time of the

segment between the two points. Still, without a reference, with a

single pair of points, it would be difficult to determine the folding

state of the segment.
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13 The order parameter α was defined

as the slope in the first two low fre-
quency modes in the log-log plot of

⟨X2
p⟩.

14 D. B. Brückner, H. Chen et al.

Stochastic motion and transcriptional
dynamics of pairs of distal DNA loci

on a compacted chromosome. Science,

380(6652):1357–1362, 2023

In contrast, by varying the genomic distance between the

two marked loci, one can measure the relaxation of different-sized

subchains, eventually reconstructing the relaxation spectrum τp for

the segment. Then, assuming topological constraints don’t affect the

dynamics, building upon the proportionality between τp and ⟨X2
p⟩ (see

Figure 6.4), a dynamical equivalent of the order parameter α defined

in chapter 313, the scaling of the long-distance relaxation times,

could as well indicate the folding state of the polymer. Then, the value

of this scaling would indicate the degree of folding of the chain, with

the extreme values of 0 indicating a pure globule and −2.2 a pure coil

globule.

In the next chapter, based on this observation and in conjunction

with the first part’s conclusions concerning the critical nature of chro-

matin, I will propose a solution to the apparent paradox raised in 14

concerning the structure and dynamics of Drosophila chromatin.
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8

Assessing the Coil-globule

State from Dynamical

Observables

8.1 Introduction

As mentioned in the introduction to the thesis, recent papers have

pointed towards an apparent paradox between two physical features of

chromatin.

On the one hand, its dynamic properties, independently of the

complexity of the organism, seem to display Rouse dynamics. In hu-

man cells, Keizer et al.1 showed that the stress response of chromatin

was compatible with a Rouse-like relaxation of the chain. Similarly,

Bruckner et al.2, observed Rouse-like dynamics in the pairwise motion

of two distant loci in Drosophila cells.

On the other hand, the structure of chromatin, in both organisms,

is known to be more compact than the ideal chain configuration

usually associated with Rouse dynamics. In humans, this was shown

through the scaling of the contact probability3 and the sequential FISH

imaging4 (studied in chapter 4). In Drosophila, Bruckner et al., while

measuring the dynamics, simultaneously measured the scaling of the

average 3D distance between loci as a function of their genomic dis-

tance along the chain s, i.e. the internal end-to-end vector size R(s),

defined in equation (1.13). This scaling is found to be R(s) ≈ s0.31,

which indeed deviates from the ideal chain scaling s0.5. In both hu-

man and Drosophila, the measurements seem, therefore, compatible

with the fractal globule model.

The paradox arises when considering the expected dynamics of a

fractal globule chain. It can be shown, through a simple scaling argu-

ment, that the relaxation dynamics in a scale-invariant polymer model,

such as the Rouse chain or fractal globule models, are completely de-

termined by the fractal dimension of the chain5. In the free draining

approximation, the MSD and Rouse modes relaxation times are ex-

pected to scale respectively as6:

g(t) ∼ t
2ν

2ν+1 = tΨ and τp ∼ p−(2ν+1) = pα. (8.1)
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7 S. Grosse-Holz, A. Coulon et al.

Scale-free models of chromosome
structure, dynamics, and mechanics.

bioRxiv, 2023, [33].

8 D. B. Brückner, H. Chen et al.

Stochastic motion and transcriptional

dynamics of pairs of distal DNA loci
on a compacted chromosome. Science,

380(6652):1357–1362, 2023, [11].

9 D. B. Brückner, H. Chen et al.
Stochastic motion and transcriptional

dynamics of pairs of distal DNA loci

on a compacted chromosome. Science,
380(6652):1357–1362, 2023, [11].

Figure 8.1: Typical view of

fly cells, displaying fluorescent en-

hancer (blue), promoter (green)

and transcript (red), from Ref.

[11].

where ν = 1
dF

. For a fractal globule, dF = 3, yielding:

g(t) ≈ t0.4, τp ≈ p−1.6. (8.2)

The expected MSD exponent for fractal globule is clearly not compat-

ible with the observed Rouse dynamics, g(t) ∼ t0.5.

The paradox is summarized by Grosse-Holtz et al.7 as follows:

Within the context of commonly used polymer models for chromatin,

we are thus left with two mutually contradictory observations: a frac-

tal globule would reproduce the compact structure but with slower

dynamics; the fast dynamics are consistent with the Rouse model, but

that assumes an unrealistically open, equilibrium conformation. Does

this point to some fundamental inconsistency in structural vs. dynam-

ical observations, or is it simply that both models are wrong? If so,

how can we reconcile all observations?

In this paper, the authors propose incorporating hydrodynamic in-

teractions between monomers. This addition is known to accelerate

the chain dynamics without changing the chain structure, offering a

potential resolution for the paradox.

Further complicating the picture, Bruckner et al.8, starting from

the two-locus dynamics, could measure the relaxation times τ(s) of a

chromatin sub-chain of size s, revealing the ”anomalous” scaling:

τ(s) ∼ s0.7±0.2, (8.3)

which isn’t compatible with either the Rouse scaling (s2), or fractal

globule scaling (s1.6). This scaling indicates a much faster relaxation

compared to both classical models.

In this chapter, utilizing elements from both parts, I’ll attempt to

show that, again, modeling chromatin as a critical polymer, lying at

the coil-globule phase transition, accounts for both the dynamical and

structural scaling, thus addressing the apparent paradox.

In section 8.2, I briefly present the experimental set-up employed

by Bruckner et al. In section 8.3, I detail the results found in

the original publication analysis, and there conclusions. Finally,

in section 8.4, I confront the experimental data with simulated

self-attracting polymers.

8.2 Experimental data

As mentioned in the introduction, for a gene to initiate transcription, a

genomic segment, the promoter, that is adjacent to the gene, must be

put into physical contact with another potentially distant genomic se-

quence, called the enhancer (see Figure 2). Consequently, the coupled

dynamics of enhancer-promoter pairs, play a crucial role in transcrip-

tion regulation and have thus been a hot topic of research in recent

years. In this context, Bruckner et al.9 investigated the effect of the
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10 In the context of this thesis, the
gene activity monitoring is irrelevant,

hence I won’t further elaborate on it.

s

⃗R j(t)
⃗R i(t)

i

j
⃗R ij

Figure 8.2: Schematic represen-

tation of the experimental set-up

Figure 8.3: Mean inter-locus dis-

tance, function of genomic separa-

tion s. Taken from [11].

genomic separation between the enhancer and promoter segments

on their relative dynamics and on the transcription activity.

To that end, they developed a live-imaging setup allowing to si-

multaneously record the trajectories of an enhancer-promoter pair

and monitoring the transcription activity of the corresponding gene10,

while systematically varying the genomic separation between the en-

hancer and promoter. To record the position of the enhancer (blue

spot in Figure 8.2) and promoter (green spots in Figure 8.2), they

placed fluorescent elements at both sites. Then the position of the

promoter, and thus of the corresponding fluorescent probe, was moved

along the chromatin chain. The different values of genomic separa-

tion s between both elements are :

s = 57, 81, 87, 148, 189, 595, 3327 kb. (8.4)

For each genomic position of the promoter, the trajectories of the en-

hancer and the promoter were recorded for ≈ 30 minutes, at a time

resolution of ∆t = 30s. These observations were performed on hun-

dreds of cells at once situated at the posterior end of a Drosophila fly

embryo (see Figure 8.1).

All in all, for each genomic separation s, the resulting data con-

sists of a collection of hundreds of pairs of trajectories, one for the

promoter, one for the enhancer (respectively Rj(t) and Ri(t) in Fig-

ure 8.2).

8.3 Data Analysis in the Original Ar-

ticle

From this data, the authors compute a number of structural and dy-

namical observables that are detailed in this section.

8.3.1 Average End-to-end Distance Function of Genomic

Separation

To determine the inter-locus distance scaling, the authors compute the

average distance between the two markers, ⟨Rij⟩, as a function of

their genomic distance s = |i− j|:

R(s) = ⟨Rij⟩ =
√

⟨(R⃗i − R⃗j)2⟩ (8.5)

where ⟨⟩ represents an average over all frames and all cells, for a

specific genomic seperation. The results are depicted in Figure 8.3.

The interesting data points are the blue ones (cyan and red corre-

spond to situations where a stable loop is formed between both seg-

ments, which we won’t comment on here). The dark blue dashed line

indicates a power law best fit to the data for the range of genomic

separations 58 to 190 kb, revealing the ”scaling”:

R(s) ∼ s0.31, (8.6)
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11 M. Gabriele, H. B. Brandão
et al. Dynamics of CTCF- and
cohesin-mediated chromatin looping
revealed by live-cell imaging. Science,
376(6592):496–501, 2022

i.e. the one predicted for the fractal globule model. I allow myself to

put ”scaling” in quotation marks, as it seems somewhat unrealistic to

talk about fractality for a power-law behavior over only half an order

of magnitude. For the two largest separations s = 595, 3327, the value

R(s) is lower than the s0.31 scaling.

8.3.2 Single Locus MSD

To quantify the dynamics of the chain, the authors start by computing

the single monomer MSD for all genomic locations, and for both the

enhancer and promoter loci. These MSDs (reported in Figure 8.4, top

row), are all well-fitted by a power law:

MSD(t) = Γ1 t
β . (8.7)

The fitted single monomer diffusion coefficients Γ1 and exponents

β are reported in the bottom row of Figure 8.4. With an average

measured exponent of β = 0.52, the single monomer MSD is indeed

consistent with a Rouse-like dynamics of the chain.

Figure 8.4: from Ref. [11]:

Top row: single locus MSD for

all genomic separations for both

the enhancer (blue) and promoter

(green) sites.

Bottom left: fitted diffusion coeffi-

cients from a log-log linear fit.

Bottom right: fitted MSD expo-

nents, from the same log-log linear

fit.

8.3.3 Two-locus MSD

Interestingly, to quantify the joint dynamics, the authors compute the

two-point MSD relative to both imaged segments, calledM2 in their

paper, defined as:

M2(t) =

〈(
R⃗ij(t0 + t)− R⃗ij(t0)

)2〉
(8.8)

where ⟨⟩ represents an average over time and cells. The two-locus MSD

can be seen as the MSD of one locus in the reference frame where the

other locus is fixed. The measured two-locus MSDs are plotted in

Figure 8.5.

A theoretical expression for this quantity is available11for two mo-
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Figure 8.5: two-locus MSD for all

genomic distances, from Ref. [11].

nomers, at distance s along the chain, in a Rouse polymer of size N ,

and in the limit s≪ N :

M2(t)[s] = 2Γ t1/2
(
1− e−

τ(s)
πt

)
+ 2⟨R2

ij⟩ erfc
[(

τ(s)

πt

)1/2
]
. (8.9)

Here, ⟨R2
ij⟩ is the average squared distance between both monomers,

Γ is the diffusion coefficient in the Rouse regime, defined in equation

(5.70). The characteristic time τ(s) separates the two limit regimes of

expression (8.9), that can be easily interpreted: At short time, t≪ τ ,

the two-locus diffusion is determined by the independent diffusion of

the two loci and is thus equivalent to the single locus MSD (modulo

a factor two); at long time, t ≫ τ , it converges to twice the average

squared inter-monomer distance, 2⟨R2
ij⟩. The crossover between the

two regimes therefore occurs at a characteristic time τ(s) given by

τ(s) =

(
⟨R2

ij⟩
Γ

)2

, (8.10)

that is when Γt1/2 equals ⟨R2
ij⟩. Note that, in principle, the diffusion

coefficient Γ is independent of s, as we can expect it to be identical to

the single monomer Rouse regime diffusion coefficient.

Bruckner and co-workers then proceed to a Bayesian fit of the data

using equation (8.9), and extract the parameters Γ, ⟨Rij⟩, from which

they compute the relaxation time τ(s) from equation (8.10). The in-

ferred Γ and τ are presented in Figure 8.6 as a function of s. They find

that the diffusion coefficient seems to increase as a power law with

the genomic separation between the two segments:

Γ ∼ s0.27±0.03. (8.11)

This result is, in fact, very surprising, given that the single locus dif-

fusion coefficient is independent of the genomic location.
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Figure 8.6: Left: single (blue)

and two-locus (black) diffusion co-

efficients as a function of genomic

separation.

Right: decorrelation times τs as

a function of genomic separation.

From Ref. [11] .

As for the segment decorrelation time τ(s), Bruckner et al. give the

following power law dependence on s:

τ(s) ∼ s0.7±0.2, (8.12)

The authors compare this scaling with the expected fractal globule and

Rouse scaling (equation (8.2)), respectively τ(s) ∼ s1.66 and τ(s) ∼ s2,

concluding that the dynamics are substantially faster than expected

for both classical models.

8.4 Simulation-based Analysis Suggests

Critical Chromatin Organization

In this section, I compare the spatial structure and dynamics of simu-

lated self-attracting polymers to this experimental data.

8.4.1 Inter-locus Distance R(s)

Let’s start by modeling the inter-locus distance measured in the ex-

periments. The correct polymer physics observable to compare with is

of course the internal end-to-end distance R(s) defined in (1.12).

In subsection 3.3.1 and subsection 3.4.1, we studied the scaling of

R(s) for both the coil and globule, which I remind here:

Coil : R(s) ∼ s0.6

Globule : R(s) ∼




s for s < N2/3

R2
g ∼ s0 for s > N2/3.

Hence, as ϵ increases and the polymer collapses, in the large s regime

R(s) goes from a power law scaling s0.6 (coil) to s0 (globule). Conse-

quently, in the critical regime, the large s scaling of R(s) will continu-

ously evolve between both extreme values, and assume all intermediate

values. This is depicted in Figure 8.7, where R(s) for different values

of N and ϵ, going through the phase transition, are depicted. Notice

that, as N increases, the susceptibility of the system increases, mak-

ing the range of ϵ values for which the polymer is critical progressively

smaller. For this reason, it becomes challenging to simulate polymers

exactly at the phase transition, for large N .
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Now, remember that, in chapter 4, we found that spectral scaling

properties were compatible with both the fractal globule and the crit-

ical polymer. Here, similarly, the observed scaling ⟨Rij⟩(s) ∼ s0.31,

which can be interpreted as a fractal globule-like arrangement, might

well be the characteristic large-scale organization of a critical polymer.

To back this claim, in Figure 8.7, I overlaid the experimental inter-

locus-distance with the R(s) for interacting polymers for N = 1600,

3000, 6000 at different stages of collapse.

To fit the experimental points, I scale, by hand, s and R(s) in my

simulations. This is equivalent to fixing two physical scales: Scaling s

fixes the persistence length, bkb, of the chain, i.e. the number of kilo

base-pairs represented by one monomer; Scaling R(s) fixes the physical

size of one monomer, b.

Figure 8.7: Experimental average

inter-locus distance (red dots) plot-

ted together with the internal end-

to-end distance for a set of different

conditions.

For all three simulated polymer lengths N , a good fit was found,

albeit for different values of the interaction parameter ϵ. The adjusted

values of b, bkb and ϵ are reported in Table 8.1. Interestingly, for

all three values of N , very reasonable adjustments of the experimen-

tal points can be obtained with identical physical scales, which

are, moreover, on par with values used in previous polymer simula-

tion studies of chromatin 12,13,14. Due to the collective nature of the

transition, for a fixed value of ϵ, the level of compaction for each N is

different, indicated, as usual, by the color of the curves (blue for glob-

ule, orange for coil, black for transition). Hence, for N = 3000 and

6000, the best fit is found for a low-density globule, while for N = 1600

the best fit corresponds to a polymer exactly at the transition. Note,

however, that it seems that also for N = 3000 and 6000, a critical poly-

mer would fit better the data. However, as mentioned above, for these

values of epsilon, the critical point is challenging to simulate. I’m in

the process of refining these fits, by performing additional simulations.

In any case, the 5 data points at the lowest genomic separation, that

exhibit the s0.31 scaling, are well reproduced by simulated polymers

close to the coil-globule transition. The conclusion we can draw is that

this R(s) ”scaling law”, attributed by Bruckner et al. to a fractal glob-

ule organization, can also be attributed to a cross-over between two

scaling regimes in a critical polymer / low-density globule.
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N 1600 3000 6000

ϵ 0.35 0.35 0.32

b (nm) 54 54 31

bkb (kb) 1 1 0.4

Table 8.1: Parameters used to

adjust simulation and experimental

R(s), see Figure 8.7.

15 I made the assumption of a perfect
power law Γtβ for the experimental

MSD, parametrized by the average ex-

ponent and diffusion coefficient pro-
vided by Bruckner et al, Ψ = 0.52 and

Γ = 5.2 nm2 t−Ψ.

8.4.2 Single Locus MSD

Now that we have identified candidate simulations that match the

structural aspects, let’s investigate if the dynamics of these simulations

are compatible with the experimental data.

In chapter 7, we’ve established that the dynamics of self-attracting

polymers remained Rouse-like in the coil and transition phases, while

reptation dynamics appeared in the globule phase, with its effect in-

creasing with polymer length.

In Figure 8.8, the MSD for the same (N, ϵ) simulations as in Fig-

ure 8.7 are displayed. To set the simulation time-scale to match

the experiments, I scaled time such that the experimental MSD15 (red

dash-dotted line) aligned with the simulation that fitted the best R(s).

Figure 8.8: Average experimental

single locus MSD inter-locus dis-

tance (red dots) plotted together

with the internal end-to-end dis-

tance for a set of different condi-

tions.

Fixing the time scale allows identifying, in the simulations, the ex-

perimental observation time, in between the time resolution t = 30

s and the total capture time t = 30 min. The experimental observation

time is marked as a non-shaded region in Figure 8.8. Consequently, by

extracting the MSD scaling in this time frame, a precise comparison of

the dynamics can be conducted. The resulting MSD scaling exponents

are reported in Table 8.2.

(N, ϵ) (1600, 0.35) (3000, 0.35) (6000, 0.32) Bruckner 2023

Ψ 0.49 0.45 0.48 0.52± 0.04
Table 8.2: Dynamical exponent

deduced by the comparison of sim-

ulation and experiments, see Fig-

ure 8.8.For all three sizes, a slightly sub-Rousean dynamics is observed

due to topological constraints, with the strongest effect appearing in

the denser polymer (N = 3000, ϵ = 0.35). Nevertheless, the effect is

minute for (N = 1600, ϵ = 0.35) and (N = 6000, ϵ = 0.32), resulting

in the measured exponents falling within the experimental error bars.

Conversely, for (N = 3000, ϵ = 0.35), the exponent falls out of the

experimental error bars.
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In summary, the single locus dynamics of this particular chromatin

segment appear to be consistent with a self-interacting critical

organization, while a globule-like organization seems to predict dy-

namics that are inconsistent with the observed behavior.

8.4.3 Relaxation Time Scaling

Let’s move on to the analysis of the two-point dynamics.

→ Scaling Analysis

First, it is important to note that the expected scaling for τ(s), given

the measured structure and dynamics, is neither τ ∼ s2 nor τ ∼ s1.66,

the fractal globule and Rouse model scalings, used for comparisons

in the original analysis. Indeed, the fractal globule shares the same

structure as measured in the experiments, but with slower relaxation

dynamics. Conversely, the Rouse model shares the same dynamics but

exhibits a more extended structure.

Now let’s compute the expected scaling for τ(s) given the mea-

sured structure and dynamics. We will consider two distinct cases:

1. Considering diffusion coefficient is independent of s.

2. Taking into account the anomalous scaling of the two-point diffusion

coefficient Γ(s) ∼ s0.27

case 1

Following the same scaling argument as in subsection 6.4.2, we can

easily compute the scaling of τ(s), given R(s) ≈ s0.3 and Rouse dy-

namics, MSD(t) ∼ t1/2, and without the anomalous scaling of

the two-point diffusion coefficient.

At the time τ(s) the single locus should have displaced the distance

R(s), yielding:

MSD(τ(s)) ∼ τ(s)1/2 ∼ s0.62 (8.13)

and finally:

≈ τ(s) ∼ s1.2. (8.14)

Hence a scaling analysis based on the observed R(s) and MSD, already

predicts a lower scaling exponent for τ(s) compared to the fractal

globule and Rouse models.

case 2

Now lets take into account the s dependent two locus diffusion

coefficient Γ(s) ∼ s0.27, as measured in [11]. In this case, the τ(s)

scaling becomes:

MSD(τ(s)) ∼ Γ(s)τ(s)1/2 ∼ s0.62 =⇒ τ(s) ∼
(
s0.62

s0.27

)2

, (8.15)

yielding

τ(s) ≈ s0.7 , (8.16)
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recovering the anomalous scaling behavior observed in the experi-

ments.

→ Simulation Results

Figure 8.9: Left: two-point

MSD for linear separations s =

58, 82, 88, 149, 190, 595 in a simu-

lated polymer of length N = 1600

and ϵ = 0.35. The non-shaded

regions correspond to experimen-

tal observation times. The vertical

dashed lines correspond to the fit-

ted τ(s), i.e. the intercept between

the asymptote y = 2R(s) and a

linear log-log fit in the short time

regime.

Right: τ(s) from Ref. [11] (red

dots) versus the fitted τ(s) (green

dots). The dashed lines correspond

to linear log-log fit.

Of course, in our simulations, we don’t expect the two-point diffu-

sivity to be any different from the single-monomer diffusivity, which is

kept constant in the simulations. Hence, the two-point diffusivity

isn’t expected to scale with the linear separation between beads.

To check the outcome for simulations, I’ve nonetheless computed

the two-point MSD and extracted the decorrelation times τ(s) for com-

parison to the experimental values. I computed τ(s) as the intercept

between the linear log-log fit to the Rouse regime and the asymptote

y = 2R(s) (see Figure 8.9).

The results are presented in Figure 8.9 (Right) along with the two-

locus MSDs (Left). I only present the analysis for (N = 1600, ϵ =

0.35), but the results are essentially identical for (N = 6000, ϵ = 0.32).

The relaxation times in the critical polymer are found to scale ap-

proximately as predicted by our scaling argument given in equation

(8.14) and gives indeed

τ(s) ∼ s1.13. (8.17)

Hence, the critical polymer reproduces the τ(s) scaling expected

from the experimentally measured R(s) and MSD, albeit without the

anomalous s dependence of the two-point diffusion coefficient (equa-

tion (8.14)). It consequently presents a much shallower scaling with

genomic separation than expected for both the fractal globule and

Rouse models. However, the anomalous two-point diffusion coefficient

scaling warrants further investigation. I will discuss possible interpre-

tations and simulation schemes to test them in the final conclusions

(chapter 9)
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16 D. B. Brückner, H. Chen et al.
Stochastic motion and transcriptional

dynamics of pairs of distal DNA loci
on a compacted chromosome. Science,

380(6652):1357–1362, 2023, [11].

17 D. Jost, P. Carrivain et al. Model-

ing epigenome folding: formation and
dynamics of topologically associated

chromatin domains. Nucleic Acids Re-

search, 42(15):9553–9561, 08 2014

8.5 Conclusions

In this chapter, I’ve compared the experimental data from Bruckner

et al.16 to simulated self-attracting polymers at different degrees of

compaction.

Based on the internal distance scaling R(s), I found that the popula-

tion-averaged structure of the studied chromatin segment was compat-

ible with either a low-density globule, or a critical polymer.

Moving on to dynamical observables, I’ve started by considering

the single monomer MSD. The analysis showed that the simulated

low-density globule exhibited substantially slower dynamics than the

Rousean dynamics observed in the experimental data, proving it inad-

equate for accurately modeling the chromatin segment under investi-

gation. Conversely, in the critical state, the polymer, while exhibiting

a dense structure, indeed displayed Rousean dynamics, as observed in

the experimental data.

Finally, we looked at the relaxation times τ(s) of subchains of in-

creasing length s. The relaxation scaling in our critical polymer model

is:

τ(s) ∼ s1.13 (8.18)

which aligns with our scaling argument, given the R(s) ∼ s0.3 and

MSD(t) ∼ t1/2. Hence the critical polymer exhibits a much faster

decorrelation process as the fractal globule, for which τ(s) ∼ s1.66 is

expected. However, we didn’t retrieve the anomalous scaling measured

in the experiments, which is due to the very peculiar fact that the two-

point diffusion scales with genomic distance, our model did exhibit the

τ(s). In the final conclusion, I will discuss possible explanations and

simple simulation schemes to test them.

As stated in the original paper, the combination of a compact struc-

ture and a 1/2 diffusion scaling exponent presents a biological advan-

tage, allowing the search process time for distant enhancer-promoter

segments to happen as fast as possible. Following this line of reason-

ing, it is likely that evolution has selected a critical organization of

chromatin, which, as we’ve shown in previous chapters, is the most

compact achievable form for a polymer that avoids slowing down of

dynamics due to topological constraints.

Of course, the model used in my simulations has some important

limitations. It’s worth noting, indeed, that we’ve considered a homo-

geneous attraction between beads in our model, and an isolated chain.

However, the chromatin region of interest likely contains several TADs

(the median length of a TAD being around 100kb), and is flanked by

the rest of the chromosome, which also involves inhomogeneities. The

TADs could potentially be organized in different collapsing states de-

pending on their epigenetic determinants and functional state17. It is

possible that certain sub-regions of the domain under study are more

compact and potentially in a more globular organization. In fact, if we

take a closer look at the β exponent values experimentally determined

from the single locus MSD (see Figure 8.4), for some specific cases, e.g.

for s=3130 and s=82, they are below 0.5, and compatible with a low-
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density globular organization. These effects may have an impact even

on the averaged level and merit of course further investigation; the

development of new analysis methods specifically dedicated to these

effects may be a necessary step.
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Final Conclusions

9.1 Summary and Take-home Messages

Experimental evidence suggests that chromatin has a highly complex

structure, capable of fine-tuning gene expression. While increasingly

sophisticated experimental methods enable us to explore its charac-

teristics, modeling its physical properties is necessary to interpret the

data correctly.

Chromatin conformation capture methods have confirmed that the

scaling of population averaged structural observables, contact prob-

ability, internal distance, and TAD gyration radius, consistently dis-

play power law behaviors at sub-chromosomal scales. The dominant

interpretation for these power laws and their exponents, perhaps due

to the inertia generated by its initial popularity, remains the organiza-

tion of chromatin into a crumpled globule. However, polymer models,

relying on radically different fundamental principles, were shown to

display similar behavior on the population-averaged level1. Among

these, it was proposed that chromatin, due to attractive interactions

mediated by inter-nucleosome interactions, lies at the coil-globule

phase transition.

In this thesis, I’ve developed innovative statistical methods to

test this hypothesis. In chapters one and two, I proposed an origi-

nal interpretation of the Rouse mode fluctuations as a power spectral

density of the polymer conformation. In chapter three, based on ex-

tensive simulations of self-attracting polymers, I put forward a simple

spectral criterion, based on the low-frequency Rouse modes, that al-

lowed for the assessment of a polymer’s folding state.

In chapter four, I proceeded to a spectral analysis of human chro-

matin tracing data by sequential-FISH imaging. When TAD struc-

tures are deleted by CTCF depletion, the average spectral content of

chromatin conformations is consistent with the hypothesis of a crit-

ical organization. Nonetheless, the same spectral features would be

observed in fractal globule organization, preventing a definitive con-

clusion at this stage. However, I showed that, at the single confor-

mation level, the critical polymer was in a partially collapsed state,

with nucleation sites of collapsed subchains stochastically appearing

all across the chain. This property, which is yet to be observed in the
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fractal globule, offers a physically grounded explanation for fluctuating

TAD-like structures appearing in single cells after cohesin depletion.

Finally, in collaboration with Michaël Liefsoens, we developed a

spectral-based loop detection method. Through this method, we could

detect multiple loops in data where the conventional methods of loop

detection via distance maps failed to detect their presence.

However, from the results of this part, it appears that proposing a

model to explain chromatin structure cannot be done by considering

only its population averaged properties, and that dynamic aspects

must be taken into account to move the discussion forward.

In the second part, in an attempt to characterize the dynamics

across the coil-globule phase transition, I carried out an extensive

simulation study of self-attracting polymers. After recalling el-

ements of polymer dynamics in chapter five, I analyzed in chapter

six the dynamics of self-attracting polymers without topological con-

straints. I showed that in this simplified case, the polymer exhibited

Rouse-like dynamics regardless of its folding state. In chapter seven,

I added topological constraints to the simulations. By comparison to

the unconstrained simulations, I could estimate the limiting conditions

in which constrained dynamics appear. The results showed that con-

strained dynamics appeared only in the globule phase, while in the coil

and transition phases, dynamics remained Rouse-like.

To conclude the thesis, in chapter eight, I analyzed dynamical data

of Drosophila chromatin. This data, again, displayed average internal

distance scaling compatible with both the fractal globule and critical

polymer organizations. However, a fractal globule organization pre-

dicts a slower decorelation dynamics than that observed in chromatin

experiments. As rightly stated by Bruckner et al, slower dynamics for

the chromatin fiber could potentially impede essential biological pro-

cesses, such as enhancer-promoter interactions, or homologous DNA

repair, that involve a search process between distant chromatin seg-

ments. Conversely, the critical model assumes the limit degree of com-

paction before the onset of constrained dynamics. It thus predicts a

chromatin fiber that is both compact and highly mobile, as it displays

the fast dynamics of an ideal chain.

9.2 Limitations and prospects

→ Anomalous Two-locus MSD Diffusion Coefficient

The anomalous two-locus mean square displacement (MSD) diffusion

coefficient measured by Bruckner et al. warrants further investigation.

Clearly, either the effect is an artifact of the fitting procedure, or it is

due to long range correlations between the two segments, that are

not mediated through the chain itself. The explanation put forward in

Ref.2 is that hydrodynamic interactions between monomers might be

responsible for these long-range correlations. Hence, it would be inter-

esting to simulate critical polymers using dissipative particle dynamics

to incorporate hydrodynamic correlations between beads to test this
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hypothesis.

From my experience in analyzing the dynamics of critical and col-

lapsed polymers, I can also suggest, as another possibility, a potential

stochastic rotation of the nucleus, which the experimenters can-

not correct for given the location of just two points. If the two points

measured are not at the same distance from the center of the nucleus,

this rotation could induce correlations in their joint dynamics. I’ve al-

ready looked at the rotational dynamics of polymers in the glass state;

it would therefore be interesting and readily achievable to simulate a

polymer with rotational noise to test this hypothesis.

→ Copolymers

• Clearly, higher-order chromatin structures cannot be fully modeled

by a homogeneous polymer. Hence, a crucial aspect that wasn’t

tackled in this thesis is the case of a heterogeneous polymer. It

would be very interesting to study the relaxation dynamics and

spectral properties of a copolymer, bearing segments of critical chro-

matin along with more compact portions, potentially representing

repressed TADs.

• Also, throughout the thesis, chromatin segments are modeled as

isolated chains, implicitly assuming that adjacent chromatin do-

mains don’t affect the physics of the simulated segment. However

in a recent paper[1], Abdulla and coworkers, simulated a confined

self-attracting polymer embedded inside a non interacting poly-

mer, at fixed density. They showed that varying the length of the

embedding polymer could drastically change the statics and dynam-

ics of the embedded polymer, especially in the coil and transition

phases. It suggests that the physical properties of chromatin seg-

ments might be heavily influenced by their surrounding genomic

landscape, more so than what the isolated chain model could pre-

dict. Future work should indeed consider this phenomenon.

→ Stress response of a critical polymer

In light of a recent experimental paper by Keizer et al3 that inves-

tigated the relaxation process of chromatin following a perturbation

from equilibrium, conducting simulations of a critical polymer sub-

jected to similar stress conditions and measuring its response would

provide a valuable means of further testing our hypothesis concerning

the critical model for chromatin
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