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Résumé

En théorie quantique des champs, la renormalisation est un ensemble de techniques utilisées pour
donner un sens a la limite du continu. Une difficulté célébre & laquelle se heurte la théorie quantique des
champs est celle des divergences ultraviolettes. L’idée principale de la renormalisation est d’absorber
ces divergences en ajoutant un nombre fini de “contre-termes” au lagrangien de départ. Cette procédure
permet de donner un sens aux observables physiques qui ont des valeurs finies. La difficulté a établir
une telle procédure vient du probléme des divergences enchevétrées. Considérons I’exemple simple d'un
champ scalaire massif ¢ dans I'espace euclidien R* avec I’auto-interaction quartique %d)‘l. Parmi les
approches rigoureuses & ce probléme on retrouve les équations de Polchinski, dites équations de flot.
Ces équations constituent un systéme dynamique dont les variables sont les fonctions de corrélation
Sﬁf} AAO a [ boucles et n points externes. En imposant des conditions aux bords mixtes, c’est-a-dire aux
deux échelles A = 0 et A = Ay, les équations de flot définissent de maniére unique les fonctions de
corrélation. L’avantage de ces équations est le schéma inductif qu’elles procurent et qui permet de
borner inductivement les fonctions de corrélation uniformément par rapport & la coupure ultraviolette
Ag. La borne obtenue implique la convergence des fonctions de corrélation quand Ay — oo.

L’objectif de cette thése est de comprendre comment la renormalisation est affectée par la brisure
de la symétrie de translation. Dans le contexte de cette thése, nous nous intéressons principalement
aux deux exemples de la théorie scalaire dans R* régularisée par un réseau et celui de la théorie scalaire
dans le demi-espace RT x R3 euclidien appelée modéle semi-infini. Ces deux projets sont indépendants
I'un de 'autre. Nous considérons en premier le modéle semi-infini en établissant une preuve rigoureuse
de la renormalisation de cette théorie en nous basant sur les équations de flot. D’un point de vue
théorie de champ, ce probléme a été étudié pour la premiére fois en 1981 par Diehl et Dietrich [1]- |2]
et indépendamment par Symanzik |3| en inspectant les divergences des graphes de Feynman a une et
deux boucles. Le probléme & un nombre arbitraire de boucles est resté longtemps ouvert. Dans cette
thése, nous avons résolu le probléme de renomalisation perturbative de cette théorie a tous les ordres
en perturbation. La difficulté de ce probléme réside dans la brisure de 'invariance par translation
par la surface bord du demi-espace qui nécessite de procéder dans ’espace des positions. Cela a

pour conséquence que les fonctions de corrélation du systéme sont des distributions. Pour résoudre
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ce probléme par les équations de flot, le point de départ est de définir rigoureusement la théorie
quantique de champ associée a ce modeéle. Cela se base sur I'intégrale de chemins qui est définie & partir
de la mesure gaussienne associée au modéle considéré. Une mesure gaussienne de moyenne nulle est
déterminée de fagon unique par son opérateur de covariance, dont le noyau est donné par le propagateur.
Le propagateur est défini mathématiquement comme étant le noyau de la résolvante du Laplacien.
L’existence de ce noyau est garantie par le calcul fonctionnel qui nécessite que 'opérateur considéré soit
autoadjoint. Dans le cas d’un demi-espace, il existe plusieurs extensions autoadjointes du Laplacien et
chacune définit une condition au bord physique ainsi qu'une théorie quantique de champ indépendante.
Ces conditions aux bords pour le modéle semi-infini sont du type Dirichlet, Neumann et Robin. Le
support des mesures gaussiennes associées aux différents propagateurs Dirichlet, Neumann et Robin est
singulier, dans le sens qu’il contient des distributions, pour lesquelles le produit au méme point n’est
pas défini. Par conséquent, une régularisation par coupure ultraviolette est nécessaire. Celle-ci agit
sur le support des mesures gaussiennes en le réduisant & des fonctions indéfiniment dérivables. Ainsi,
il devient possible d’introduire I’auto-interaction ¢*. La mesure gaussienne combinée a I'interaction
permet de définir D'action effective par l'intégrale de chemins. Les propriétés de dérivation de la
mesure gaussienne impliquent par la suite I’équation de flot. Une série formelle en nombre de boucles
permet de déduire I’équation de flot vérifiée par les “fonctions” de corrélation régularisées. Comme
I'invariance par translation est brisée par la surface, les “fonctions” de corrélation dans ce cas sont des
distributions. Nous introduisons une classe de fonctions tests sur lesquelles ces distributions agissent
et nous bornons uniformément ces distributions par rapport a la coupure ultraviolette, en fixant dans
un premier moment des conditions de renormalisation BPHZ. Cela a pour conséquence que les contre-
termes sont des fonctions qui dépendent de la position dans le demi-espace.

La deuxiéme partie de cette thése est consacrée a une étude détaillée des contre-termes. Nous
établissons qu’il est possible de choisir ordre par ordre des conditions de renormalisation pour lesquelles
les contre-termes sont des constantes. En outre, ces contre-termes sont donnés par ceux de la théorie
invariante par translation et deux contre-termes surface proportionnels a |, g ¢? et /. g ®On¢ dans le cas
de conditions aux bords du type Robin et Neumann. Pour Dirichlet, les contre-termes usuels de la
théorie invariante par translation sont suffisants pour rendre la théorie finie.

La derniére partie de cette thése est dédiée a I’étude de la théorie scalaire massive ¢* régularisée
par réseau. Nous démontrons qu’elle est renormalisable, et que les symétries euclidiennes sont rétablies

dans la limite du continu.
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Introduction

Quantum field theory was originally developed as a theoretical framework that combines classical
field theory, special relativity, and quantum mechanics and has become the general theoretical frame-
work to study physical systems with an infinite (or large) number of degrees of freedom.

A rigorous mathematical analysis of quantum field theories is faced with the problem that path
integrals describing systems in field theory are generally not defined. There exists a complete the-
ory of Gaussian measures that apply to free theories. However, for the interacting case, a rigorous
mathematical description starts from regularized versions of the theory, where the number of degrees
of freedom in space and momentum has been (in some sense) made finite. This is a task common
to all regularizations, such as simple momentum cutoff, dimensional regularization and lattice cutoff.
An essential task of renormalization is to prove that the correlation functions have uniform limits in
the cutoffs. For these limits a sequence of axioms must be satisfied in order to construct Euclidean
quantum field theory. These are the Osterwalder-Schrader axioms [4,/5]. In general, convergence is
achieved by appropriately adjusting a finite number of bare parameters of the action and by a rescaling
of the fields.

The scalar field theory in R* with a ¢* interaction is known to be renormalizable in the sense that
when the momentum cutoff is sent to infinity, the correlation functions stay finite. Several proofs
exist to prove the renormalizability of <Z>i theory. Among them, the perturbative proof of renormaliza-
tion based on Wilson flow equations performed by Polchinski in the seminal paper [6] in 1984. The
flow equation allows to describe theories by an effective action LA, depending on a scale A with
0 < A < Ayp <  for Euclidean quantum field theories in the continuum with a momentum cutoff.
Here, A is a parameter that flows from 0 to Ag and Ag denotes the ultraviolet cutoff. LA should

satisfy the following conditions:
- At the ultraviolet cutoff A = Ay, LA coincides with the bare interaction.

- For A < Ay, LM is obtained upon integration of the field degrees of freedom which propagate
with momenta p roughly between A and Ay.

The flow equation allows to give a rigorous proof of perturbative renormalizability of different quan-
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tum field theories. The conventional proof of perturbative renormalizability is based on an approach
in terms of Feynman diagrams. In perturbation theory, the correlation functions are represented as a
sum of Feynman integrals. A central tool in this approach is the existence of a power-counting theo-
rem, which provides a criterion on the convergence of Feynman integrals by counting suitably defined
UV-divergence degrees |7|. The Feynman diagram associated to a Feynman integral, together with
all its subdiagrams, are required to have negative UV-divergence degrees to ensure the absolute con-
vergence of the Feynman integral. The second step in this approach consists in formulating a general
renormalization prescription [§] to subtract the UV-divergences, order by order in perturbation theory,
as for example the BPHZ-subtraction scheme (the Bogoliubov-Parasiuk-Hepp-Zimmermann finite part
prescription). It is the combinatorics of counting divergence degrees and of removing divergences which
makes the proof cumbersome. A further issue is to show that a theory with some symmetry properties
can be renormalized in such a way that the symmetry is preserved, which is highly nontrivial for the-
ories with gauge symmetries. This concerns in particular field theories like Yang-Mills theories |9}10],
QCD and the electroweak standard model. The flow equation allows for a simple transparent rigorous
solution of the perturbative renormalization problem without introducing Feynman diagrams. It is
based on a tight inductive scheme wherefrom bounds on the regularized Schwinger functions implying
renormalizability can be deduced. Renormalizability of a quantum field theory implies that the unreg-
ularized (renormalized) correlation functions exist in the sense that they are both IR (in the limit of
very small momenta) and UV finite (in the limit of very large momenta). Finite limits are achieved by
imposing a finite set of renormalization conditions on a physical scale that is independent of the UV
cutoff Ag. For simplicity, throughout this thesis we only consider the case in which the field is massive
to avoid any IR problems. Proving perturbative renormalizability then amounts to show the existence
of the large UV cutoff limit Ay — oo.

The method of flow equations has been extensively used to prove perturbative renormalizability
in the context of various quantum field theories |[11-13]. The aim of this PhD thesis is to investigate
the perturbative renormalizability of quantum (scalar) field theories that break translation invariance
basing our approach on the Polchinski flow equations. One may ask if the renormalizability of a given
field theory depends only on the interaction introduced and the dimension of space-time, or whether it
depends also on the geometrical and topological properties of the considered space-time. In Chapter
Iﬂ we analyze the ¢* theory in the Euclidean space R* regularized by a lattice which is an example of a
regularization scheme that breaks translation invariance. We prove that the theory is renormalizable
and that the Euclidean symmetries are restored in the continuum limit. In Chapters we analyse a
more explicit breaking of translation invariance by the presence of a boundary, by studying the massive
scalar field model on a half-space, as a prototype model to study the surface effects on renormaliza-
tion. The semi-infinite geometry denotes a d-dimensional half-space bounded in one direction by a

d — 1-dimensional plane of infinite extent, which is the surface S of the system. In the context of this
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thesis, the d-dimensional semi-infinite geometry is the space RT x R4~

The renormalization of the semi-infinite massive scalar field theory was firstly motivated by trying
to understand the surface effects on critical behaviour in condensed matter physics. At first sight,
it may seem that surface effects are not relevant in systems with short-range interactions. However,
experiments showed that local observables are sensitive to the presence of boundaries, in the sense that
their behaviour deep inside the bulk and on the surface is considerably different. In the spin polarized
low-energy electron diffraction experiment (SPLEED) the surface magnetization of the Heisenberg fer-
romagnet Ni close to the bulk transition temperature (T, ~ 630K) was measured by Celotta et al. |14]
at the Ni (100) surface and also by Alvaredo et al. |[15] at the Ni (100) surface. The quantity observed
in this experiment is the scattering asymmetry between the scattering with the electron spin parallel
and antiparallel to the surface magnetization, which turns out to be proportional to local mean mag-
netization my. In the SPLEED performed by Alvaredo et al. [15], they showed that m; behaves as
my ~ |T — T?|P" with an exponent £ ~ 0.8, which is distinctly different from the bulk value 3 ~ 0.33
implying that m; vanishes faster than the bulk magnetization m,.

From a theoretical standpoint, the semi-infinite criticalities were first sparked by Fisher in 1971
and by Binder and Hohenberg [16] who later presented a Monte-Carlo study |17]. Meanwhile, the
semi-infinite mean-field theories were worked out by Lubensky and Rubin |18}[19] who studied a model
of ferromagnetically coupled classical spins on a semi-infinite lattice and provided via a mean-field
approach a qualitatively correct understanding of the different phases undergone by the system which
are: the ordinary, extraordinary, surface and special transitions. Later, the phenomenological theory of
scaling [20,21] was generalized to surfaces, and implied relations between bulk critical exponents and
the additional surface critical exponents, needed to describe the singular behaviour of surface related
properties. However, the mean field approach is known to yield incorrect results for bulk properties
near their critical temperature if the space dimension is below its upper critical value d = 4 and
such breakdown is expected to hold for local critical properties. Therefore, the renormalization of the
model is necessary if one wants to go beyond the mean-field approximation. The first study from a
field theoretical approach was performed by Diehl and Dietrich in [1,2], in which they studied the
critical behavior of the semi-infinite system using renormalization group methods. They considered
the ordinary [22] and special transitions |2] which correspond respectively to the Dirichlet and Robin
boundary conditions and found that in addition to the usual two bulk counter-terms, an additional sur-
face counter-term is needed to make the two-point function finite in the case of the Dirichlet boundary
condition. For the Robin boundary condition, two surface counter-terms are needed. The calculations
were performed to two-loop order using dimensional regularization, and the surface counter-terms were
obtained by inserting the operators lim,_,o 0.¢(z,x) where 2 € R? in the case of Dirichlet b.c., and
#(0, ), $2(0, ) in the case of the Robin b.c., where ¢ is the considered scalar field.

The semi-infinite model was also adressed by Symanzik in his study of the Schrédinger representa-
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tion for renormalizable quantum fields |3] in which he discusses the renormalization of surface operators
in a different context, but also finds that surface counter-terms are required to make the two-point
function finite. So far no rigorous proof of perturbative renormalizability of the semi-infinite model
was performed. Let us explain why a conventional proof of renormalization based on the analysis of
Feynman diagrams is complicated to achieve in the context of a boundary field theory: Apart from the
combinatorial aspect of this method as compared to the flow equations, there is an additional complex-
ity that stems from the breaking of translation invariance. For translationally invariant systems, one
has the advantage that in momentum space one has to deal only with functions analytic in the external
momenta. Given a Feynman diagram, it is made finite by subtracting the divergences of each subdi-
agram by applying a Taylor operator in the external momenta of the subdiagram. The renormalized
Feynman integral is defined in such a way that the ultraviolet (UV) divergence degrees of all subdi-
agrams are negative. The convergence of such integrals is ensured by a power counting theorem |7].
Unfortunately, these methods assume a rational structure of the Feynman integrands and hence do not
apply to diagrams corresponding to Feynman graphs in position space. The main difficulty encoun-
tered when one wants to generalize these methods to position space, is the distributional aspect of the
considered objects. It is tempting to work in momentum space as it is the case for the translationally
invariant theory, for which the momentum-space representation is characterized by computational sim-
plicity. However, in the case of a space with a surface, the momentum-space representation does not
simplify computations in perturbation theory. In this case, the correlators in momentum space have
a complicated distributional structure, different from its translationally invariant counter-part which
is simply given by a product of a function and a momenta conservation Dirac distribution. Besides
the technical difficulties, there are some fundamental problems that explain the complexity of working
in a full momentum space. Lubensky and Rubin [18,19] performed a one-loop order renormalization
group analysis of the Dirichlet case in momentum space. However, their approach is complicated for
two reasons: First, the calculation scheme is not well-suited for higher-order computations and second
their approach is essentially restricted to the Dirichlet case and can not be generalized to Neumann
and Robin boundary conditions. The particularity of the Dirichlet caseEl is that it corresponds to the
ordinary transition which is described by a fixed point, for which the value of ¢ = +o0 is known to all
orders of pertubation theory and the eigenfunctions of the Dirichlet Hamiltonian do not change under
renormalization group transformation. However, the Neumann and Robin cases are characterized by
¢ < +o0o which is renormalized at each order, and this implies that the eigenfunctions corresponding
to the Neumann/Robin Hamiltonian verify at each order of perturbation theory a different Robin
boundary condition with a different renormalized Robin parameter. This generates a complicated non-

diagonal c-dependent quadratic term and even a more complicated c-dependent four point function. In

!¢ denotes the Robin parameter which in the case of Dirichlet boundary conditions is +oc.
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position-space or mixed pz—representatiorﬂ, the renormalized Robin parameter can be simply obtained
from the effective action. In view of these reasons, we prefer to work in a pz-representation for a
perturbative analysis of the renormalizability of the semi-infinite model.

The goal of this thesis is to investigate the problem of perturbative renormalization of the semi-
infinite model. How does it differ technically from the translationally invariant case? What are the steps
needeed to prove perturbative renormalizability by the flow equations in a mixed position-momentum
space? What are the bounds that lead to perturbative renormalizability and more importantly how

are the translationally invariant model and the semi-infinite model related to each other?

Before tackling these questions, we give in chapter [I] an overview of the flow equations. In section
and we start by introducing the basic ingredients to write rigorously the Euclidean (free)
quantum scalar field theory. In section [1.1.3] we write the flow equations and we explain how these
are used in establishing a rigorous proof of perturbative renormalizability for the basic example of
the massive scalar field theory with a ¢* interaction in R%. We conclude this chapter with a detailed
summary of the rest of the thesis. In chapter [2| we give a rigorous computation of the propagators
in Rt x R~ together with the possible boundary conditions for the semi-infinite model. In chapter
Al we prove the renormalizability of the semi-infinite model using BPHZ renormalization conditions
in the mixed position-momentum space. As we will see, this choice of renormalization conditions im-
plies having position dependent counter-terms in the effective action. In chapter [5] we go one step
further in studying the renormalizability of the model, by investigating in more details the effect of
the presence of the surface on the counter-terms. The main goal of chapter [f] is to prove that for a
particular choice of renormalization conditions, the theory is renormalized by the bulk counter-terms
and by surface counter-terms proportional to |, S ¢? and J g ®On¢ with S denoting the surface of the
half-space. Through out this thesis, the bulk theory denote the scalar field model in R* with a quartic
interaction supported on the half-space. We treat this theory in detail in chapter [6] and establish that
it is renormalized with the usual counter-terms of the translationally invariant theory, modulo the sur-
face counter-terms | S #? and f g PO . Finally, in chapter |7} we give a rigorous proof of perturbative
renormalizability of the massive scalar field ¢} model regularized by a lattice. The novelty of this work
lies in giving a proof of the restoration of the Euclidean symmetries in the continuum limit. We end

the thesis by some concluding remarks and by presenting a few future perspectives.

%in which Fourier transforms are taken partially w.r.t. the parallel components 2 of the vector (z, z).
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Chapter 1

Background and motivations

1.1  Perturbative Renormalization by flow equations: A simple ex-

ample

In this section, we give an overview of rigorous renormalization theory based on the differential
flow equations of the Wilsonian renormalization group. We consider the massive Euclidean ¢* theory
in R4, to which we will refer also later as the translationally invariant model. The method of the proof
using the flow equations is based on the observation that the flow equations give access to a tight
inductive scheme. This allows to obtain bounds on the regularized correlation functions which imply
renormalizability. The correlation functions are regularized by a UV cutoff Ay and a flow parameter
A. The bounds on these correlation functions are uniform in the cutoff and finite for A — 0, which
basically solves the renormalization problem. The aim of this section is to introduce on one hand
the method of the proof of perturbative renormalizability with flow equations. On the other hand,
this section provides a background to compare to the case that breaks translation invariance of the

semi-infinite scalar field model which is the central object of the next chapters.

1.1.1 A rigorous definition of the free Euclidean scalar field theory

The starting point in defining a Euclidean quantum field theory is to write the corresponding
path integral, which can be defined through the theory of Gaussian measures. Denoting by S(R?*) the
Schwartz space and by &’ (R4) its dual space, we have the nested triple

S(RY c L*(RY) c §'(RY).

In the sequel, the bracket (-,-) denotes the usual scalar product in L?(R*). The aim of this section is
to explain the interplay of three notions which are central in writing rigorously a Euclidean quantum

field: the self-adjointness of the Hamiltonian, the propagator and the Gaussian measure. We will not

7
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expose the general theory of Gaussian measures which is extensively studied in |23]- [24], but we rather
restrict ourselves to the discussion of the example of the scalar field model in R*. Let us introduce first

the following definitions:

Definition 1. (Gaussian measure) A measure dp defined on the nuclear space S'(R*) is said to be
Gaussian if for each finite dimensional subspace J C S(R*), the restriction of du to F cylinder sets is

Gaussian.

Definition 2. (Covariance operator) The covariance operator C' on the nuclear space S(R*) is defined

as the continuous bilinear form
C:S(RYH) x SR —R (1.1.1)
(f,9) — (f.Cq) , (1.1.2)
with the additional property of being non-degenerate (i.e. (f,Cf)=0= f=0).

The definitions || and [2| can be generalized to any nuclear space. Theorem A.4.1. in |25] ensures
the existence of a unique Gaussian measure djuc on the space of tempered distributions 8’(R*) having

C as its covariance operator. The free Hamiltonian is given by the operator
—A +m?

with domain 62° (R4). This operator is symmetric but is not self-adjoint. It is though essentially
self-adjoint and we denote the closure of the Laplacian by A with domain D(A) = H?(R*). Therefore,

using the functional calculus, the inverse of —A 4+ m? exists and it is given by
N 2\ 1 * tA —tm?
(—=A+m?) ::/ dt e~ e "™, (1.1.3)
0

We recall the following result from [26], which proves that et is an integral operator and gives explicitly
its kernel:
Theorem 1. Let f € L>®(R"). If either (i) f € L*(R") or (iiﬂ FL(f) € LY(R™), then
1
(27‘(‘) % R

(f(=iV)¢) (x) = F )z~ y)oy)dy, (1.1.6)

for all $ € L*(R™). The integral converges for all x in case (i) and for almost all x in case (ii).

'F71(f) is the inverse Fourier transform of f with the following conventions for the Fourier and inverse Fourier
transforms

F(f)(€) == F(2)e™ ¢ da. (1.1.4)

F(f)(x) = - [ (e de. (1.1.5)



1.1. RENORMALIZATION BY FLOW EQUATIONS 9

Using Theorem [If for f(z) = e7%*, we obtain

(et%) (z) = (27T1t)2 /R4 =T o) dy. (1.1.7)

Hence, we deduce that (fZ + m2)71 is an integral operator with a kernel given by

2 1 _(=—y)?
@t " (1.1.8)

(A

+ mg)_1 (z,y) = / dt 7t
0

This also implies that (—A + m2)71 is a bounded bilinear form on S(R*) x S(R*) so Theorem A.4.1.
applies. Therefore, there exists a unique Gaussian measure associated to the operator (—Z + m2)_1
on §'(R%).

1.1.2 The regularized flowing propagator

The starting point in writing a Euclidean massive scalar field theory is the Gaussian measure. It
is the support of this measure that defines the field. A Gaussian measure with mean zero is uniquely
defined by its covariance operator. As we already explained in section the covariance operator
of this model is integral and the so-called propagator plays the role of its kernel. In Fourier space, the

propagator simply reads
1
Clp)=——7.
(P) = 2z
The Gaussian measure associated to this propagator has its support included in S (R4) (i.e. the space
of tempered distributions)El The support of the Gaussian measure defines the space to which the field
belongs. However, powers of distributions, or more generally products of distributions depending on
the same variables are not well-defined [28]. This means that the bare interaction, which includes local
powers of the field and of its derivatives, cannot be given any mathematical meaning if the field is a
distribution. Therefore, the propagator is regularized to restrict the support of the associated Gaussian
measure to a subspace of 62 (R4) (i.e. the space of functions with continuous zeroth, first and second

derivatives). We choose the following regularization

1
cMho(p) =

= (R*(p) — R™(p)) (1.1.9)

where Ag is the UV-cutoff and A a flow parameter 0 < A < Ag. For all 0 < A < Ag, R} (p) is a smooth
regularizing function that satisfies the following constraints: It rapidly vanishes for p? > 2A2, whereas

for p? < A; the function R*(p) approaches the identity sufficiently fast. Furthermore for A = Ag, the

2For a more precise characterization of this support, we refer to [27].
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regularized propagator C*0 vanishes. These conditions may still be relaxed and, in any case, there

is a large amount of arbitrariness in the choice of R*. A convenient choice is

B p2+m2

RMp)y=e 22| (1.1.10)

It has non-compact support but is rapidly decaying for large momenta. In the sequel, we will use
the regularization . Note that for A — 0 and Ag — +o0, the full propagator of the theory
is recovered. The Gaussian measure with covariance is supported with probability one on
B> (R*) [24,29]. Let us give a simple argument which proves that the support of the Gaussian measure

associated to the regularized flowing propagator is included in 6*° (R4) . We define the continuous linear

mapping
T S'(RY) — S'(RY
T— FHRM) « T,
where F~1(RA0) is the inverse Fourier transform of R, We consider the following measure
firg = po UL (1.1.11)

where p denotes the Gaussian measure associated with the unregularized propagator C'. It is easy to
see that (1.1.11)) is again Gaussian with mean zero and its covariance is given by

p2fm2
e A?

cho(p)= — . 1.1.12

(p) 1 m? ( )

The support of (1.1.11)) then simply reads
{U(T)|T € supp p} .
Since F~H(RA) is in S(R*), we have for T € §&'(R?) that F~1(R) « T is in €>°(R*). This gives

directly that the support of (1.1.11]) is in €< (R%).

1.1.3 The flow equations

The theory we consider is the massive Euclidean ¢*-theory on R*. This means that we start from

the bare interaction

pno) = [t 6%) +alMe)o@) - HANOIAGD) + cAa)o'(a) ) . (1113

The first term defines the self-interaction of the field with real coupling constant A > 0 having mass

dimension equal to zero. The second part contains the related counterterms, determined according to
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a power counting rule: the canonical mass dimension of the field is one so the counterterms allowed in
the bare interaction are all local terms of mass dimension < 4 that can be formed of the field and of its
derivatives respecting the Euclidean symmetries. From the bare interaction and the flowing propagator
, we may define Wilson’s flowing effective action L0 by integrating out momenta in the region
A <p| < Ao

o~ LA (g J\f/dMAAO @)e w1 0"0(P+) (1.1.14)

It can be recognized to be the generating functional of the connected amputated correlation functions
of the theory with propagator C**0 and bare action LA0*0 [11]. For the normalization factor & to be
finite, the theory has to be restricted to finite volume. All subsequent formulae are also valid in the
thermodynamic limit since they do not involve the vacuum functional |11].

The fundamental tool for our study of the renormalization problem is the functional flow equation
M0 e 9y e _ L OLM an 0L0R
2'5¢’ 0 2 do 0
where CMAo .= §,CAMo. Let us explain briefly the steps leading to : we derive both sides of
(1.1.14) with respect to A and perform an integration by parts in the functional integral on the RHS

8/\ (LA,AO _|_ IA7AO) o

(1.1.15)

using the following property of a Gaussian measure s with covariance C* [25):

i [ @) A0 = 5 [aus@)(. ¢ 5Hae), (1.1.16)

where A(¢) denotes a polynomial formed of local powers of the field ¢"(x) and of its derivatives
(0z¢(x))™ with (n,m) € N2. In the context of the proof of perturbative renormalization, the objects
of interest are the n-point connected amputated Schwinger functions. These are obtained by first

expanding LA in moments with respect to ¢:
V(pi)1<i<n € RY, (27r)4("71)5¢(p1) O LN gm0 = 8 (p1 + -+ pn) LA (pr, - pa), (1.1.17)

then in a formal powers series with respect to i to select the loop order [,

AA
g’éLAO (pla"' 7pn Zhl 0 plv 7pn) .

Using the functional flow equation (1.1.15)), we write the perturbative flow equations for the n-point

correlation functions by identifying coefficients

y 1A%, .
8A8 gl/}r’LAO(plf" 7pn) = 2/R4 (271')4 0 S/PlAllx?~0+2(kaplv"' 7pnv_k;) CA(k)

B S [ e N

l1,la m1,m2 w;

AA
X0 Ly, 1 (=P Py, ,pn)] (1.1.18)

rsym
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p:_pl_"'_pn1:pn1+1+"'+pn

where the prime on top of the summation imposes the restriction to n; +n9 = n and l1 +12 = [ and the
symbol "rsym" means summation over unordered partitions of length 2 of the set (p1,--- ,pn), which
produce mutually different pairs of (unordered) image subsets.
Here we wrote the equation directly in a form where a number |w| of momentum derivatives, char-
acterized by a multi index w, act on both sides. Momentum derivatives of the SBII} T’LAO are needed to
obtain a closed inductive scheme. We set

Hlwl

v =
Opy10py5-..Opn,a"4n

lw| = w11+ ... +wpa. (1.1.19)

Moreover, the combinatorial factor cg,,) = w!(wqwe!ws!) ™! comes from Leibniz’s rule. In the loop
order [ = 0, the first term on the RHS is absent.

1.1.4 Boundary conditions

Before bounding the solutions of the system of flow equations, we first need to specify the boundary

conditions. Our choice of the bare interaction implies that at A = Ay, we have for all n + |w| > 5,
Aog,A
9L (p1, - o) =0, V(pi)i<i<n € R*™. (1.1.20)

For the relevant terms, which correspond to n + |w| < 4, they are fixed by renormalization conditions

imposed for the fully integrated theory at A = 0:

2Xho0,--,00=x,  LIM0,00=0, 923 (0,0)=0, WI>1. (1.1.21)
The renormalization point is chosen at zero momentum for simplicity (BPHZ renormalization condi-
tions).
1.1.5 Renormalizability

Perturbative renormalizability of the regularized field theory (1.1.14)) amounts to the following: given
the coupling constant \ in the bare interaction L2040 the coefficients a(Ag), b(Ag) and ¢(Ag) of the

counterterms can be adjusted within a loop expansion of the theory,
o0 oo
a(Ag) = Ha(Ag), -+, c(Ao) = hle(Ag)
=1 =1

in such a way that the limits of the n—point correlation functions exist when A goes to 0 and Ag goes

to +o00 in every loop order ! uniformly on compact momentum sets:

4 * 0, L . AN
v(pl)lgzgn E R 5 n G N,l G N 9 ghnoo(pl, A ’pn) . Aﬁol/lxron_)_i_oogl?n O(p17 e 7pn)- (1-1.22)
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A simple inductive proof of ¢} theory regularized by a UV-cutoff has been exposed several times in

the litterature [11L{12]. It is based on proving the following induction hypotheses:

A) Boundedness in the UV—cutoﬂEl

w —n—|w A+m Dn
)8 L1, pa)| < (A+m)t M gy <logm) %(A”iﬂn) . (1.1.23)
B) Convergence in the UV-limit
A+ m)> Ao +m 170
O OV LN (o ! Py (log =2 ) nl ). 1.1.24
‘AO b (P Pa)| < hot+m)?  \%® " m \A+m ( )

The P;, each time they appear denote possibly new, polynomials with nonnegative coefficients of
coefficients depending on [, n, |w| but not on {p;}, A, Ag. For I = 0, all polynomials %; reduce to
1. Integration of the bound over the cutoff Ag immediately proves the convergence of all
SBZI’X ﬁAO (p1,--- ,pn) for fixed A to finite limits when Ag — co. In particular, one obtains for all Ag < Ag,

A v D,
< A0—1m57n (10g O:rl_m> 955 <|’17)71||> )

It is also possible to establish inductively that the connected amputated Schwinger (CAS) n-point

0,A 0,A
gl,;z *(p1s ey Pn) — 317;1 ®(p1, s Pn)

functions are € w.r.t. momenta, A and Ay. This stems mainly from the regularity properties of the
regularized flowing propagator. Thus, due to the Cauchy criterion in €>°(R") (w.r.t. to Ag) finite

limits exist to all loop orders I.

Method of the proof

Let us shortly describe the method of the proof of (|1.1.23]). For a detailed proof we refer to |11,[30].
The inductive scheme starts from (I,n) = (0,4) for which the induction hypothesis ([1.1.23) clearly
holds. Higher orders in loop are generated inductively by integrating successively the flow equations.

The order of the induction is as follows:
- Ascend in the loop order [,
- For fixed [ ascend in n,

- For fixed [ and n descend with w down to 0.

3We use the following notation ||, := SUP) <<y, |Pil-
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Inserting the induction hypothesis on the right-hand side of the flow equations, the integrals are

bounded in an elementary way using

wOAMp)| < (A —3=lul L 1.1.2
9" CMp)| < (At m) e (P (1.1.25)
and we obtain
w —n—|w A+m _’n
oAD" LN (pr,- pa)| < (A+m)P Mgy <10gm> Py (A‘“iﬂn) . (1.1.26)

The next step is to integrate (1.1.26)). Because of the mixed boundary conditions of subsection m,

the relevant and irrelevant are integrated differently:

- Irrelevant terms: In this case n + |w| > 4, the flow equation is integrated from the initial point
Ao downwards to A with the initial condition (|1.1.20]).

- Relevant terms: These terms are characterized by n + |w| < 4 and are integrated at the renor-

malization point from 0 to A as follows
A
GUENN (0, ,0) = 9L (0, ,0) +/ AN DOVENN (0, ,0) (1.1.27)
0

Using the renormalization conditions (1.1.21]) together with (|1.1.26]), the bound is obtained at

the renormalization point and it is extended to general momenta using the Taylor formula

gl/,\z’AO(pv p) = gA Ao (0,0) "‘Zpu/ <aig/\ AO> (Ap, —Ap) , (1.1.28)

A A
’(p, —p).

Applying three derivatives to the two-point function or one derlvatlve to the four-point function

with similar formulas where SL’{}Q’AO (p, —p) is replaced by o &PA Ao (p, —p) or 8};37(2%”2

makes the contribution irrelevant, and then it is integrated downwards from Ag. For the four-
point function only one step is required. Note that the Euclidean symmetries imply that no

renormalization conditions are needed for the terms which are not scalars w.r.t. this symmetry.

1.2 Summary of the thesis

In the last section, we saw that the Polchinski flow equations provide a strong tool to establish a
rigorous proof of perturbative renormalizability of the massive scalar field model with a ¢* interaction
on R*, with the advantage of circumventing the difficulties arising from the analysis of the combinatorics
of Feynman diagrams. In the method presented in section [I.1] translation invariance plays a major

role in the proof of renormalizabilty in the sense that the correlation functionfl are smooth w.r.t. to

4after splitting off a global momentum conserving é-function.
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the external momenta in Fourier space, and that the propagator together with its regularized version
have a simple form. The first problem encountered when one wants to generalize this method of proof
to systems breaking translation invariance is the distributional nature of the correlation "functions" in
position space. The same problem was encountered in [13| in which the authors studied the massive
scalar field theory on a Riemannian manifold without a boundary. In this work, translation invariance is
broken by the metric of the considered space-time and therefore the full renormalization procedure was
carried out in position space. The perturbative renormalizability of the semi-infinite model treated in
this thesis is faced with two difficulties: the first one is technical in the sense that the renormalization
problem has to be considered (partially) in position space as was the case in [13], and the second
complication is due to the fact that the surface affects the power counting and the renormalizability
of the model.

1.2.1 Perturbative renormalization of the semi-infinite model
The propagators of the semi-infinite model

In the next chapter, we start by considering the operator
H=—A+m?

on the Hilbert space L2 (R+ X Rd_l). Initially, we may define H on the domairﬂ 6 (R+ X Rd_l).
Defined in this way, H will be symmetric but not self- adjoint. A first task is to extend the domain of the
definition of H to make it self-adjoint. Since H is unbounded, by the Hellinger-Toeplitz theorem [31]
no self-adjoint extension can act on all vectors in L? (RJr X Rd_l). The choice of functions on which
H acts is intimately related to the choice of the boundary conditions on the Green function associated
with H. Once H is extended to a self-adjoint operator (and assuming that the extended operator is
positive), we may use the spectral theorem to define the "Green operator" H~! as a densely defined
self-adjoint operator. We prove that if H, is a self-adjoint extension of H then the Green operator
H_ ! can be realized as a kernel C, ((z,z), (2/,2')). Since the range of H_ ! is precisely the domain of
H, the specification of what functions H acts on is equivalent to the specification of what functions
can result from action by the Green function H'. In other words, the problem of defining a Feynman
propagator is equivalent to the problem of defining a self-adjoint extension of H. The positivity of
H on its initial domain €2° (RJr X Rd_l) implies the existence of self-adjoint extensions of H. If H
is essentially self-adjoint (i.e. the closure of H is self-adjoint), only a unique self-adjoint extension
exists and no boundary conditions are required. However, in the context of Euclidean space with a
boundary, H is not essentially self-adjoint, which implies that further boundary conditions must be

imposed to define a self-adjoint extension of H. One condition to impose on the self-adjoint extension

Sg (R+ X Rdﬁl) is the space of infinitely differentiable functions of compact support in R* x R?~1,
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is that it preserves the positivity of H, but this condition alone need not uniquely determine a self-
adjoint extension. In the next chapter, we present a quick review of the von Neumann theory of
deficiency indices which provides a strong mathematical tool to determine the self-adjoint extensions
of H. We start by determining the self-adjoint extensions of the Laplacian on the half-line and relate
them afterwards to the physical Dirichlet, Neumann and Robin boundary conditions. Then we extend
our findings to the study of the Laplacian on the half space RT x R¥~!. The second part of the next
chapter is devoted to the computation of the propagators (i.e. Green functions) associated with the
self-adjoint extensions of the Laplacian by proceeding first on the half-line and then generalizing to

the half-space.

Renormalization of the semi-infinite model

The aim of chapter [ is to give a rigorous proof of perturbative renormalizability of the semi-
infinite model based on the Polchinski flow equations. Since the translation invariance is broken in
one direction by the presence of the boundary, we then work in a mixed position-momentum space
(i.e. pz-representation) which consists of taking a partial Fourier transform w.r.t. the variable x € R3.
In this chapter, we expose in detail the steps to carry out the renormalization procedure with the
flow equations in the pz-representation. Since the correlation "functions" are distributions in this
representation, we introduce a class of test functions. The trees and their weight factors, presented in
chapter [3| provide a key ingredient in obtaining inductive bounds on the correlation distributions that
imply renormalizability. In chapter |4} we proceed by imposing BPHZ renormalization conditions. As
a consequence of this choice, the effective action will have the most general form that accounts for the
loss of translation invariance. More precisely, the counter-terms are functions of the position on the
half-line and are not of the same form as the terms appearing in the original Hamiltonian of the system.
The central point to be retained from this chapter is that imposing constant renormalization conditions
yields position dependent counter-terms. The effect of the surface on the renormalizability of the theory
is concealed by the choice of BPHZ renormalization conditions, in the sense that its only manifestation
is the dependence of the counter-terms on the position in R*. However, this represents a common

feature of all theories that break the translation invariance, even those without a boundary [13].

Surface counter-terms and Bulk counter-terms

Methods based on the renormalization group |1,12L22] proved that for the semi-infinite model, the
behaviour on the surface differs considerably from the bulk, in the sense that the critical exponents of
this model can not be fully expressed in terms of the bulk critical exponents. For Robin and Neumann
boundary conditions, the critical exponents are given in terms of the bulk critical exponents and two

independent surface critical exponents. In the case of Dirichlet boundary conditions, there is only one
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additional surface critical exponent in addition to the usual bulk critical exponents. This implies that
a given bulk universality class splits into different surface universality classes which results in a rich
bulk-surface phase diagram. Each of the possible boundary conditions can be associated to a phase
of the semi-infinite Ising model. The theory of bulk critical phenomena suggests that the number of
independent critical exponents should follow directly from the number of independent renormalization
functions (i.e. Z functions). This correspondence between the critical exponents and counter-terms
suggests that some of the counterterms are the same as those which renormalize the translationally
invariant theory, while the remaining ones are new counter-terms which result from the presence of the
boundary and can be associated to the independent surface critical exponents. The aim of chapters
and [0] is to make this correspondence explicit by proving that there exists a particular choice of
renormalization conditions for which the counter-terms appearing in the bare interaction are position
independent. From a theoretical physics point of view, we aim to establish renormalizability in the
restrictive sense that all counter-terms are of the same form as the interactions included in the original
Hamiltonian. The strategy is based on the following ideas: all possible propagators in the mixed posi-
tion momentum space can be decomposed into a sum of two terms. The first term is the propagator
of the translationally invariant theory Cjy and the second one is the part that breaks translation invari-
ance Cs. Inserting this decomposition in the Feynman graph expansion, we obtain graphs involving
exclusively Cy (i.e. bulk graphs), and others involving Cs or Cy and Cj, (i.e. surface graphs). The
bulk graphs are given by Feynman integrals which are identical to those of the corresponding transla-
tionally invariant theory up to the restriction z > 0 on z-integrations. This implies that these graphs
can be renormalized using the same counter-terms as for ¢} in R* with an interaction supported on
the half-space which will be the object of study of chapter [f] The remaining surface graphs of our
semi-infinite model which do also involve Cy can be renormalized by adding position independent sur-
face counter-terms. This means that the semi-infinite correlation "functions" can be decomposed into
a bulk part, plus a remainder which we call the "surface part". One of the important results of this
chapter is that the surface part admits a power counting which is dimensionally better by one scaling
dimension as compared to the bulk counterpart. This modified scaling dimension appears in Theorem
El In chapter @ we prove that for a particular choice of renormalization conditions the ¢j-theory in
R* with an interaction supported on the half-space is renormalized by adding the usual counter-terms

of the translationally invariant theory together with two surface counter-terms proportional to [ g @?

and fS PO .

1.2.2 Perturbative renormalization of the lattice regularized massive ¢} theory

In chapter |7} we investigate the renormalizability of the massive ¢j-theory in R* regularized by a
lattice cut-off, which is another manifestation of the breaking of the translation invariance. However,

in this case, the considered quantum field theory (Euclidean space, the propagator and the interaction)
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is translation invariant and the loss of translation inavariance is induced by the regularization scheme.
The proof of perturbative renormalizability of a lattice regularized field theory exists in the literature
but it is not direct from the usual power counting theorems. The well known power counting theorems
of Weinberg [32|, and Hahn, Zimmermann |7| which state sufficient conditions for the convergence of
Feynman integrals do not apply in the presence of a lattice cutoff. Reisz |33| has given a generalization
of the power counting theorem for a wide class of lattice field theories where a new kind of an ultraviolet
divergence degree is used. The existence of a power counting theorem ensures that the combinatorics of
subtractions to renormalize a diagram is described by Zimmermann’s forest formula [8]. The situation
is different for a lattice field theory. Reisz |34] has proved that the counterterms instead of being
polynomials are periodic functions in the external momenta, which can be obtained with the help of
new operators he introduced, called subtraction operators. The renormalization of lattice regularized ¢4
theory in Polchinski’s framework has been adressed in |35]. The paper presents interesting arguments,
but it does not aim at mathematical rigour and thus leaves certain mathematical questions unsolved,
in particular w.r.t. to O(4) and translation invariance of the continuum limit. Davoudi and Savage 36|
proposed a mechanism for the restoration of rotational symmetry in the continuum limit of lattice field
theories on hyper cubic lattices. The approach is based on constructing smeared lattice operators that
smoothly evolve into continuum operators with definite angular momentum as the lattice-spacing is
reduced. However, this method regards only finite lattices and the full recovery of rotational invariance
in the lattice theories requires the suppression of rotational symmetry breaking contributions to the
physical quantities not only as a result of short-distance discretization effects, but also as a result of
boundary effects of the finite cubic lattice. More precisely, the rotational invariant theory is achieved as
the lattice becomes infinitely large, corresponding to an infinitely large number of points in momentum
space. In this chapter, the main contribution of our work is to give a proof of Euclidean symmetry

restoration for ¢ lattice regularized field theory on an infinite lattice.



Chapter 2

The propagators of the massive scalar
field theory in RT x R¢—1

2.1 The von Neumann theory of deficiency indices

In this section, we present a short review of von Neumann’s theory of deficiency indices, which
provides a solid mathematical background to study symmetric operators and their extensions.

In quantum mechanics and quantum field theory, the Hamiltonian of the system is usually described
by a "formal" partial differential operator on an appropriate L? space. The domain of the Hamiltonian
is not specified, but it is easy to find a dense domain on which the Hamiltonian is a well-defined
symmetric operator H. As we explained in section [I.I] the operator H must be self-adjoint in order
to define its inverse H~! through the functional calculus. If the closure H of H is self-adjoint, then
we can use H. However, if H is not self-adjoint, then a natural question to ask is: does H admits self-
adjoint extension Another problem is encountered in the case in which H has several self-adjoint
extensions. One is faced with the problem of which self-adjoint extension must be chosen to generate
the dynamics. In the sequel, we will see that the problem of selecting the "right" self-adjoint extension
is not a "technical" mathematical problem, but is rather related to the physics of the system being
described.

Before stating the principal theorems of von Neumann’s theory, let us recall some basic definitions

from the spectral analysis of unbounded linear operators:

Definition 3. (A closed operator) Given a Hilbert space ¥, the graph of the linear transformation T

1s the set of pairs

{6, Td)| o € D(T)},

'see definitions below.

19
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with D(T') C # is the domain of the operator T. The graph of T, denoted by I'(T), is a subset of
H x F which is a Hilbert space with inner product

(@1, 91), (B2, 92)) = (b1, d2) + (¥1,¢2) -
T is called a closed operator if T'(T) is a closed subset of # x # .

Definition 4. (Estension of an operator) Let T and T be operators on %. If D(T) C D(T) and
T¢=T¢ for all ¢ € D(T), then T is said to be an extension of T. We write T C T.

Definition 5. (A closable operator) An operator T is closable if it has a closed extension. Every

closable operator has a smallest closed extension, called its closure, which is denoted by T.
The notion of adjoint operator exists as well in the unbounded case.

Definition 6. (Adjoint) Let T be a densely defined linear operator on a Hilbert space ¥ . Let D(T*)
be the set of ¢ € # for which there exists an n € # with

(T, ¢) = (¢,n)  for all ¢ € D(T). (2.1.1)
For each ¢ € D(T*), we define T*¢ =n and T* is called the adjoint of T'.

Note that the assumption on the density of the domain of T" ensures that 7 is uniquely determined by
(2.1.1). In contrast to the situation for bounded operators, D(T™) is not necessarily dense.

Definition 7. (Symmetric) Let T be a densely defined operator on a Hilbert space. T is symmetric

if T is an extension of T. Equivalently, T is symmetric if and only if

(T, v) = (6, T¢), Vo, ¢ € D(T).

Definition 8. T is called self-adjoint if T = T™, that is, if and only if T is symmetric and D(T') =
D(T™).

Note that if T' is symmetric, then T* is a closed extension of T', since D(T) C D(T*) is dense in #.
Furthermore, the smallest closed extension T** of T must be contained in 7. Hence, for symmetric

operators we have
TCT™CT.

For closed symmetric operators,
T=T"CcT"

and for self-adjoint operators
T=T"=T"
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Definition 9. (Essentially self-adjoint) A symmetric operator T is essentially self-adjoint if its

closure T is self-adjoint.

Definition 10. (Deficiency sub-spaces/indices) Let T be a symmetric operator. We define
Ky =ker (T*—1), F_:=ker(T"+1).

Ky and K_ are called the deficiency sub-spaces of T'. The pair of numbers
ny(T) := dim H, n_(T):=dimX_,

are called the deficiency indices of T.

Definition 11. (Partial isometry) Given a Hilbert space ¥, a linear transformation U : # — ¥ is a
partial isometry if and only if the restriction of U to the set I(U) := (ker U)* is an isometry.

The following theorem characterizes the closed symmetric extensions of a closed symmetric operator
T:

Theorem 2. Let T be a closed symmetric operator on a Hilbert space #. The closed symmetric
extensions of T are in one-to-one correspondence with the set of partial isometries of Ky into K_. If
U is such an isometry with I(U) C K4, then the corresponding closed symmetric extension Ty has

domain

D(Ty) = {9+ ¢* +Us*|¢ € D(T), ¢* € I(U)}, (2.1.2)

and
Ty (p+¢" +U¢T) =To+ipy —Udy. (2.1.3)

If the dimension of I1(U) is finite, then the deficiency indices of Ty are related to those of T as follows,
ni(Ty) = ne(T) — dim [I(U)] . (2.1.4)
The proof of this theorem can be found in [37]. As a corollary to theorem [2| we have:
Corollary 1. Let T be a closed symmetric operator with deficiency indices ny. and n—. Then,
i) T is self-adjoint if and only if ny =n_ = 0.

it) T has self-adjoint extensions if and only if ny = n_. There is a one-to-one correspondence

between self-adjoint extensions of T and unitary maps from K4 to K_.

ii1) If either ng = 0 # n_ or n_ = 0 # ny, then T has no nontrivial symmetric extensions. Such

operators are called mazximal symmetric.
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There exists a simple and useful criterion for a symmetric operator to have self-adjoint extensions given

by von Neumann’s theorem. Let us first define the notion of conjugation:

Definition 12. (Conjugation) A conjugation C is an anti-linear map C : # — % El that is norm-

preserving and satisfies C? = 1.
Now, we have all ingredients to state the von Neumann’s theorem:

Theorem 3. (von Neumann’s theorem) Let T' be a symmetric operator and suppose that there exists
a congugation C with C : D(T) — D(T') and CT = TC. Then T has equal deficiency indices and

therefore has self-adjoint extensions.

Proof. We have C? = I and CD(T) C D(T), which imply that CD(T) = D(T). Let ¢ € ¥, and
Y € D(T), we have

0= (¢4, (T +i)¢) = (Coy, C(T +i)y)
= (Coy, (T =1)C).

Since C takes D(T') onto D(T'), we deduce that Cop € _, so C : Xy — K_. Similar steps lead to
C:H_ — K. Since C? = 1, we obtain

dimF; =dimF_ .

2.2 The self-adjoint extensions of the Laplacian on the half-line

In the previous section, we introduced all the ingredients required to study the self-adjoint extensions
of the Laplacian on the positive half-line. Let T be the one-dimensional operator —d?/dz? on L?(R™)
with domain B2° (R"). As we saw in the previous section, von Neumann’s theory of deficiency indices
applies to closed and symmetric operators. Therefore, the operator we consider is the closure T of T

with the following graph
[(T)=T(T) = {(f,Af), f € HIR")},
where

HF(RY) = { f e H*R"), f(0) = f'(0) =0},

and H? is the W22 Hilbert Sobolev space. In the sequel, we consider the operator T" with domain

Hg(R+). The complex conjugation commutes with 7', which implies by Theorem [3|that the deficiency

2C (a¢ + ) = aC¢ + BC.
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indices of T' are equal. The next step is to determine ¥, and ¥_, which is achieved by finding the
solutions of
T ¢ = +ig (2.2.1)

in L?(RT). Since L2(R*) Cc @'(R*), we deduce that ([2.2.1)) is solved by finding the weak solutions of
(2.2.1). Let us recall the local regularity theorem for Schrodinger’s equation:

Theorem 4. Let ¢ be a weak solution of
(A +V)p=FEg, (2.2.2)

where V' is a measurable function and E is a complex number. If V is equal to a 8> function on an

open region ), then ¢ is B in that region too.

The proof can be found in Chapter IX in [37]. It follows from Theorem |4 that the solutions of (2.2.1))
are infinitely differentiable, and thus strong solutions. Using elementary ordinary differential equations

tools, we deduce the strong solutions of —¢”(x) = +i¢(z) given by

eTVIEVE,  evie V3
Similarly, the strong solutions of —¢”(z) = —i¢(x) are

e%ei%, e Vie VA,
Since only

are in L2(R™"), we deduce that the deficiency indices are in this case n4(T) = 1. Let
1 _z ;= 1 _ = ;=
¢i(x) = e Vze V2, ¢_(z)= e V2e V2
21 21

be normalized vectors from K. Then the only partial isometries of . into K_ are the maps ¢4 —
~v¢— where |y| = 1. By Theorem , the only closed symmetric extensions of T' are the operators T

with domain
D(T,) = {¢ + B+ + By | ¢ € HF(RT), BeC}. (2.2.3)

By the last statement of Theorem [2] we have

nt(Ty) =ny(T) —dim I(U) = 0.

Using i) from Corollary |1} each T is self-adjoint. Now, let us show that the set of domains of the

self-adjoint extensions of T' can be parametrized by RU {oco} with

Ju:= {8l 6 € HXRY) . ¢/(0) = 6(0)} (2.2.4)
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for o in R and

o= {6] 6 € AR, $(0) =0} (22.5)
for a = oco. If ¢ € D(T), then
VO =00) + 1 (140) and O =dO - (-0l (@20
so for v = —1 we have ¥ (0) = 0. Otherwise, we obtain
| 1—7 . B ) 1 1—7 .
P'(0) = 7 [1 11, z} ¥(0) = a¥(0), with o= 7% [1 1, z} . (2.2.7)

Note that ¢(0) and ¢'(0) vanish since ¢ € HZ(R"). Furthermore, the constant « in (2.2.7)) is in R since

|7] = 1. Hence, we obtain
D(T)) C Iy fory# -1 and D(T_1)= Fu. (2.2.8)
Conversely, if 1'(0) = a 1(0), then 9 can be written 1 = ¢ + B¢+ + Sy~ for some  where
1+i(V2a+ 1)
Tl iVt 1)

2.3 The self-adjoint extensions of the Laplacian on the half-space R x
Rd—l

In this section, we consider the Laplacian operator on the half-space RT x R?~! given by
H=—1gs Mgy +T 1gar, D(H):=€ (R+ X Rd—l) , (2.3.1)

where T' is the one dimensional Laplacian on the half-line of domain D(T) = 62° (RT) and Ag4_y
denotes the (d — 1)-Laplacian of domain 62° (Rd_l). Given a set K, the operator 1 is the identity
given by
Tga-1 : L*(K) — L*(K)
U — u.

The following proposition relates the self-adjoint extensions of H to those of T.

Proposition 1. Let Hy be a self-adjoint extension of H. There exists a unique self-adjoint extension
Ty of T such that
Hy, =—1g+ Zd,1 + Ty Tga-1 (2.3.2)

of domain

D(H,) = {u(z,x) € L* (RT xR | u(z,-) € H*R¥™), u(-,2) € D(TA)}. (2.3.3)
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We recall the following theorems which will be needed in the proof of proposition

Theorem 5. Let A and B be commuting self-adjoint operators. Then AB is self-adjoint on D(A) N
D(B).

The following theorem is a particular case of the Kato-Rellich theorem [37]:

Theorem 6. Suppose A is self-adjoint and B is a bounded self-adjoint operator. Then A+ B is
self-adjoint on D(A).

The proofs of theorems [5] and [6] can be found in [38].
Proof. In the proof of proposition [T} we proceed in two steps by proving the following statements:

A) Given a self-adjoint extension Ty of T, the operator —1g+Ag_1 + Th1ga—1 is a self-adjoint exten-

sion of H.

B) Given a self-adjoint extension Hy of H, there exists a unique self-adjoint extension T of T such
that:
Hy = —1g+Ag_1 + Tolga- (2.3.4)

and
D(Hy) = {u(z,2) € L2 (R x R) | u(z,-) € HAR'™), u(-,z) € D(T})}.

First, we prove A). Given a self-adjoint extension T\ of T, we define the operator

Hy = —1g+Ag_1 + Ty1ga-1.

<_A;1 - z> W) <—A31 +z’> (2.3.5)

W)\ = ]1R+ R_l(zd,l) =+ ]lRJF R1 (del) =+ R_l(zd,l) T,\ R1 (del) (236)

H) can be rewritten as

with

and for p € R

- -1
R,(Ag 1) = <—Ad1 +m) . (2.3.7)

Note that Ty and A4_; commute , which implies the commutation of T and R, (Zd,l). Combining
this with Theorem [5] gives that
R_1(Ag-1) Tx Ri(Ag-1) (2.3.8)

3We slightly abuse notation, in the sense that the operators commuting are Thlga-1 and Ag_11g+.
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is self-adjoint on {u(z, )| u(z,-) € L*(R¥1), u(-,z) € D(T))}. Remembering that R,,(A4_1) is bounded,

we deduce using Theorem [6] that W), is self-adjoint on the domain
D(Wy) = {u(z, )| u(z,) € LRI, ul,x) € D(TY) |-

Again using Theorem |5| together with the commutation of Ty and A4_1, we deduce that H) is self-
adjoint on

D(Wy) N {u(z,x)| u(z,) € H2(Rd_1)} . (2.3.9)
Now, we prove B): By definition, we have
H=-1gt Ay 1+ T lgas  on G (R+ X RCH) . (2.3.10)

H is closable and the domain of its closure is

D(H) = {u(z,x) e 12 (R+ X Rd—l) | u(z, ) € HARTY), u(-z) e H&(Rﬂ}. (2.3.11)

Furthermore, we have
H=-Ag 1 1gt +T 1ga-1  on D(H). (2.3.12)

Given a self-adjoint extension Hy of H, it commutes with 1g+A4_;. Hence, following the same steps
as in the proof of A), we deduce that the operator 1g+Ay_1 + H) is self-adjoint of domain D(H)).
Hence, we deduce that 1g+ Ay_1 + H) is a self-adjoint extension of T =T 1ga—1 with domain D(H).
Proceeding as for the self-adjoint extensions of (T, H? (R*)) in Section the self-adjoint extensions
of T* are the operators Tf\l of domain

D(TY) = {8(z,2) + B()61 () + B@)r6-(2)] O, 2) € HERY); 6(=-), B AR}, (2313)
Then the domain can be parametrized by R U {co} with
D(TY) = {¢(z,x)| b(-,x) € HARY) ,4(z,-) € HAR¥Y), ¢/(0,2) = a ¢(0,x)} (2.3.14)
for 7 # —1 and
D) = {6(z2)| 0 2) € HARY) ,p(z,) € HARTY), 9(0,2) =0} (2.3.15)

This proves that for any self-adjoint extension H) of H, there exists a self-adjoint extension T)‘\i such
that
H) = —]lR+Zd_1 + TAd.

This ends the proof of proposition [I] O
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2.4 The heat kernels and the propagators

2.4.1 The propagators in R™
In section we characterized the self-adjoint extensions {T¢}, .z of (A, B°(RT)) of domain
D(T.)={¢ € H*(RT), ¢'(0)=c¢(0)}. (2.4.1)

In the sequel, we use Ap, Ay and Apr to denote respectively the Dirichlet, Neumann and Robin
Laplacians. Each of these boundary conditions corresponds to a self-adjoint extension with respectively
c= 400, c=0 and ¢ > 0. We define

H,:=-A.+m?, x€{D /N R}. (2.4.2)
The inverse of H, exists and is defined by functional calculus as follows

(A, +m?) ™ ;:/ A\ e A B (2.4.3)
R+

In this section, we prove that the operator (2.4.3)) for the different boundary conditions is integral and
we present a rigorous computation of the kernels, which allows to define the propagators associated to
the Dirichlet, Neumann and Robin boundary conditions. Let us first define the following maps which

will be useful in stating the main proposition of this section:
io : L2(R) — L* (RY)
$(2) — V2 xT(2)(2)

where L2(R) is the restriction of L?(R) to odd functions and x* is the characteristic function of the

positive line. The map i, defines an isometry with the following inverse

igt: L? (RY) — LZ(R)

Similarly, we define

together with its inverse

with L2(R) denoting the space L?(R) restricted to even functions. We have
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Proposition 2. Let A be the closure of the Laplacian on R. The Dirichlet and Neumann Laplacians
are related to A as follows
iAigt = Ap,  iAigt = Ay . (2.4.4)

Proof. Given ¢ € €° (R1), we have
ioBiz 6(2) = ¢'(2) (2.45)
which implies that i,Ais ! is a closed symmetric extension of (A, 8°(RT)). Furthermore, we have
D(ioAig') =i, (H*(R)N L2(R)) = Hj(RT) N H*(RT) .
This gives directly for the Dirichlet case. The Neumann case is treated similarly. O

The operators Hp, Hy and —A 4 m? are invertible and together with (2.4.4)) we deduce

=iy (A +m?) i, Hy =i (<A +m?) it (2.4.6)

e

The operator (—A + mg)f1 is integral on L?(R), and its kernel is given by (1.1.14))

Aamd) ey =
(-A+m?) (z,z)—Qme

—ml|z—2'|

Using (2.4.6), we obtain that H,' is also integral on L?(RT) with the following kernel

(-Ap + m2)_1 (2,2') = % {e_m‘z_z/‘ — e_m|z+z,|} . (2.4.7)

We proceed similarly with the Neumann boundary conditions to deduce that H&l is integral on L2(R™),

and its kernel is given by

(—An + m2)_1 (2,2) = L

- {e—m‘z‘z" + e—mlm"} . (2.4.8)
m

Now, we treat the Robin boundary condition. The key idea is to relate the Robin laplacian Ar to Ap.
Let i, be the bijective map given by

i : HY(RT) N H*(RT) — D(AR)
d(2) —ic(9)(z) = — /R+ dw e”g(w + z) (2.4.9)

and its inverse i, !

iz': D(AR) — H}(RT) N H?*(RT)
¢(2) — i ()(2) = ¢ (2) —c ¢(2) . (2.4.10)
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Then i, can be continuously extended to L?(R*), and we denote its extension by i.. The Robin

Laplacian is related to the Dirichlet Laplacian through
Ag =i.Api;t. (2.4.11)

This comes from the fact that Ar and i.Api ! are closed symmetric extensions of (A, ®€%°(RT))
together with
D (i.Api,') = D(AR).

The operators Hp and Hp are invertible and the existence of their inverse is ensured by . For
f € 6°(R"), we have
Hpf = i.Hpi ' f =i.Hpi 'f .
Hence, we obtain
Hp'f =i Hpbistf. (2.4.12)

Using (2.4.7)) together with (2.4.9) and (2.4.10), we deduce

cC—m

1 ! ’
. —1.-1 — ! —m|z—2'| _ —m|z+2'| !
icHpy i, f(2) /R+ dz 5 (e Tt > f(=). (2.4.13)

By density of €3°(R*) in L?(R*), we deduce that for all g in L?(R*)

3 1 Nooc—m /
B o\ —1 _ ds —mlz—2| _ & " —mz+2| A 2.4.14
(A +m?) " g(2) . 25 le Tt g(2") ( )

2.4.2 The propagators in Rt x R?!

In section , we characterized the self-adjoint extensions of the Laplacian (A, B (RT x Rdil))
for d > 1, which are the operators {A.} g of domains

D(A) = {6(z,2) |6z ) € HARTY), (2) € D(T,)}. (2.4.15)
Using functional calculus, the operators {—A* + mQ}* e{D.N,R} A€ invertible, and their inverses are
given by
2\ 1 e tm? tA
(—A,+m?) :/ dt e e (2.4.16)
0

Using proposition [T}, we have

— Ay = —1g+Ay 1 + Ty Tgas. (2.4.17)

The operators g+ Ag_1 and T}, Tge—1 commute which implies by the Kato-Trotter formula that

el = glBd-ilpt . o~ Tilga-1 (2.4.18)
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Ac yerifies

Lemma 1. The heat kernel operator e'
etBe — otBa-1 , o—tTe (2.4.19)

Proof. We shall prove first that for f € €2°(R), we have
f(Bgoilgs) = f(Ago1) Ige  and  f (Tilga-—1) = f (T%) Lga-1. (2.4.20)

For f € €2°(R) there exists f € €2°(C) with the properties

0f(2)] < Cy[Im 2|V, YN >0, flg= /.

2
self-adjoint on the Hilbert space L? (RJr X R3), which implies by the analytic functional calculus |39|

Here 0 = % —1 (% + 8%)' f is called an almost analytic extension of f. The operator 1g+Ag_q is

f(Ig+Agq) = —% /Caf(z) (z— 1R+Zd_1)_1 u(dz), (2.4.21)

where u(dz) = dxdy is the Lebesgue measure on C. ([2.4.20)) is directly deduced from (2.4.21)).
Let f, be a sequence of uniformly bounded functions in 6€2°(R) simply converging to e~ l#l. Using

functional calculus and remembering that —Ay_1 is a positive operator, the operators f,(1g+Aq_1)
and f,(Aq_1) strongly converge respectively to ef'r+%d-1 and e*®4-1, Combining this with (2.4.20)
gives

et1R+Zd_1 — ]1R+etzd—l . (2422)

Proceeding similarly with 7, we deduce that

e_tT*Ilefl — e_tT*]].Rdfl . (2423)

Combining (2.4.18)), (2.4.22)) and (2.4.23) we deduce ([2.4.19)). O

The propagators associated to Dirichlet, Neumann and Robin boundary conditions are then given by

o —
(—A + m2)_1 ((z,2),(2",2)) = / dt e~tm’ e T (2,2) eBa1(x, 2). (2.4.24)
0
From chapter [T}, we have
x 1 (@—a')?
Bt (44! — . t)ﬂefT , (2.4.25)
Tt) 2

In the pz-representation, which corresponds to taking the partial Fourier transformation with respect

to the variable z € R?, ([2.4.26)) simply reads

(—A+ m2)_1 (p;2,2")) = /0 dt et Hm?) e (2, 2"). (2.4.26)
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This formula is similar to (2.4.3) in RT™ where the mass m is now replaced by +/p? + m?2. Therefore,
using ([2.4.7)-(2.4.14) we deduce that the Dirichlet, Neumann and Robin propagators are given by

Colpiz,2) = ——t

1
Cn(piz,2') =

1
Cr(p;2,2') =

-67\/W|z7z/|
2v/p2 +m?2 L
2y/p?+m? L

VPRl
2v/p? +m? |

- e*\/p2+m2|z+z'|}
Y

e~ VpPrm2l—| | e—\/p2+m2|z+z'|}
)

N

p2+m?+c

e_vp2+m2Z+Z’] .

In terms of the heat kernels, (2.4.27))-(2.4.29) can be rewritten as

Cp ((z,2); (,2") = /Ooo A\ e—m
Cn ((2,2); (+,2)) = /Ooo d\ e pp (A;z,2)

Cr (2, 2); (#,2")) = /0 dr e (N, ') pr

( (z z )2 (z+z/)2)
22

)

( = z>2 <z+z’)2)

22 22 R

7 7 )

B ()\;m,x

where
, 1 _(@=a/)?
pe(\;z,2’) = e 2x
(2m)2
> dw (z+2/+2)?
pr(X; 2z, 2") i=pn (N2, 2) — 2/ e Ve T =2
( ) ( ) 0 V21
and . ) ,
(z—2") (z+2")
Nz, 7)) = <e_ 2> +e 2 >
pr ( ) 5

One can easily verify that we have

Cp(p;0,2") = Cp(p;2,0) =0,

lim 0.Cr(p; 2, Z') =c Cr(p;0,2") ,
Z—>

. . / _ . , . !/ —
ll_I)r(l) 8zCN(p,Z,Z) _lelglo az CN(p,Z,Z) 0 ’

lim 9..Cgr(p;z,2) =c Cgr(p;z,0),
z/—0

(2.4.27)

(2.4.28)

(2.4.29)

(2.4.30)

(2.4.31)

(2.4.32)

(2.4.33)

where we used that the associated heat kernels verify respectively the Dirichlet, Neumann and Robin

boundary conditions.
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Chapter 3
Trees, forests and weight factors

In this chapter, we present the trees and forests formalism together with their weight factors. We
also give some basic properties of these weight factors which will be important later in establishing the
proofs of the main results of chapters 45} The tree and forest formalism emerges naturally from the
structure of the flow equation when considered in position space, in which the correlation "functions"
are distributions. Hence, in the next chapters we will introduce a class of test functions to be smeared
with the correlation distributions. Since the proof of renormalizability in the flow equation framework is
inductive, the class of test functions is restricted to products of heat kernels of the same type that enters
in the definition of the propagator. The right hand side of the flow equations for scalar field theories
(independently of the considered space-time) consists of two contributions: a part which is linear in the
correlation "functions" and a second part which is quadratic. From a Feynman diagrammatic point of
view, the linear term is the part in which a new loop is created by the induction, while the quadratic
part has more the role of attaching two diagrams without creating an additional loop. Now, the idea
behind these trees is to bound a given correlation function with an arbitrary number of loops, by a
tree contribution where the loops are contracted in vertices of incidence number 2. One should keep in
mind that these loops are not in one-to-one correspondence with the vertices of incidence number 2 of
the trees, but the number of loops controls through a bound the number of these vertices. The forest
formalism is a novelty which appears when we study the effect of the surface on the renormalizability.
In chapter [5] we study the surface correlation distributions which are the part that encapsulate all
the UV divergences created by the "surface part" of the semi-infinite model propagators. The flow
equation associated to these objects has a quadratic part, which is factorizable in the sense
that it can be bounded by a product of weight factors of trees with an external point on the surface,
to which we refer as a surface tree. This collection of surface trees creates a forest.

Before presenting these concepts, let us introduce first the heat kernels that we use throughout

this thesis together with their properties. In particular, the bulk heat kernel is needed in the sequel to
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define the weight factors of the trees and forests.

3.1 The heat kernels and some basic properties

In this section, we define the bulk heat kernel together with the half-line heat kernels. We collect some

basic properties of these kernels which we will need in the proof of the main results of chapters [4]

and [6l The bulk heat kernel is defined as follows

1 =22
e 2 7>0.

bB (T;Z,Z’) = \/ﬁ s

In terms of pg, the Dirichlet, Neumann and Robin heat kernels read for z, 2’ >0

1 , 1 , 1 /
PD p;zaz =PB p;zaz —PB p;za -z |,

1 / 1 / ]- /
PN P;Zuz = DB ﬁ;zuz +PB FQ%—Z )

1 1 1 ° _ 1
PR <A2;z,z’) =pB (AQ;Z’Z/> +DPB (AQ;Z, —z') —2/0 dw e “pp (AQ;?«%

pp verifies the following basic properties:

- (The bulk semi-group property) For z; and z2 in R

/du pB(T1; 21, 1) pB(T2; U, 22) = PR(T1 + T2; 21, 22) -
R

w /
C

- (The * semi-group property) For z; and 29 in Rt and x € {D, N, R}, we have

/+ du pi(T1; 21, w) Pe(T2; U, 22) = Pu(T1 + T3 21, 22) -
R

(Completeness) For z; in R, we have

/du pp(Ti;21,u) = 1.
R

For z; and 29 in RT, we have

/du pB(T1; 21,u) pB(T2;U, 22) < 2/ du pp(11;21,0) pB(T25U, 22) .
R

R+

- For § >0, 75 = (1 4+ 0)7 and 21,22 € RT, we have

B (7521, 22) < V140 pp (75 21, 22)

(3.1.1)

(3.1.2)
(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)
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and for &' > §

’21 — zg‘r B (7’5; 21, 2’2) < 0575/ T%pB (7’5/; 21, 22) , (3.1.10)
where
14+ I . S P
50 =\ g 177e P T e <OQ) |6 5172 (3.1.11)

- For z, 22 € R, 7> 0 and ¢ > 0, we have

w

PB (T; Z, —z') < pB (T; Z, z') , / dw e “pp (T; 2, —2 — Z) <pB (T; z, z’) . (3.1.12)
R+

3.2 Trees, Forests and Weight factors

As we mentioned in chapter [I] in section the proof of perturbative renormalization with flow
equations is based on obtaining inductive bounds uniform in the UV cutoff for the connected amputated
Schwinger "functions" of the considered theory. For the semi-infinite model, the bounds on the surface
and bulk correlation distributions are specified in terms of weighted trees and forests, which we define
in the following, and for which we also derive some properties that will be important later. Our trees
basically represent tree level Feynman graphs. However, we stress that this analogy must not be taken
literally, the trees and the incidence number of vertices are independent of the detailed form of the
n-point interactions in the theory, the loop order controls the number of vertices of incidence number 2
of the trees and forests via a bound, but there is no one-to-one correspondence between the loop order

and the number of these vertices. First, we start with some notations that we will use in the sequel:
e For s > 1, we denote by o5 the set {1,---,s} and for ¢ < j we denote by o;.; the set {i,---,j}.

o Let P, be the set of all the partitions of os. For a partition II € P,, we write II = (Wi)lgigln
with m; denoting an element of the partition II and [y the cardinality of II.

e For II € %, such that r € 7;, we define
mo=m\{r} , "= (U m) Unj. (3.2.1)
e Given IT € Py such that {s+ 1,s+ 2} € m;, we define the reduced sub-partition
7Ti8+1’s+2 =m\{s+1,s+2}. (3.2.2)
e We denote by P! the set of partitions which contain at least one sub-partition of length 1 (i.e.
Im; C I, |m| = 1) and P its complementary set.

e We denote by 932;5 the set of partitions of length 2 of the set o5. Note that @52;3 is a subset of
Ps.
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3.2.1 Bulk trees, surface trees and forests

e A tree is an undirected graph in which any two vertices are connected by exactly one path. We
define the incidence number of a vertex z of the tree by the number of lines of the tree that have
z as an edge and we denote it by ¢(z). Given a tree T', we denote by ¥ (T') the set of vertices of
the tree. The set of external vertices TV (T') of the tree T is defined as follows

Ve(T) :={2 € V(T)| c(2) = 1}. (3.2.3)
The set of internal vertices ¥;(7T') is then defined as ¥V (T) \ Ve(T).

e For s > 2, we denote by J° the set of all trees that have a root vertex and s — 1 external vertices.
For a tree T° € I° we will call z; € RT its root vertex. Denoting by ¥ (T') the set of vertices of

T%, the set of external vertices of the tree T is defined as
Ve (T%) :={2z € V(T°)\ {z1}] c(2) = 1}. (3.2.4)

The set of internal vertices is the relative complement of 7 (T%) in ¥ (T*) \ {z1}. Note that the
root vertex z; is a vertex which is neither internal nor external. For simplicity, we use in the
sequel the set of points Y = {y2,--- ,ys} in R*~! to be identified with the external vertices of
T%. Likewise we call Z = {22, , 2,41} the set of internal vertices of T where z; € RT and r is
the cardinality of %;(T%).

e We denote by ¢; = ¢(z1) the incidence number of the root vertex. We call a line p an external
line of the tree if one of its edges is in Y . The set of external lines is denoted ¥ . The remaining

lines are called internal lines of the tree and are denoted by ¥ .

e By 77 we denote a tree T° € T satisfying va + 6,1 < 3l —245/2 for | > 1 and satisfying vo = 0
for [ = 0, where v, is the number of vertices having incidence number n. Then J,* denotes the
set of all trees 7}°. We indicate the external vertices and internal vertices of the tree by writing
TP (21,925, Z) With yo s = (y2,- -+ ,ys) and 2= (22, , 2r41)-

5,(12) 12) (12)

. The trees TZS’( are

defined such that they have two root vertices z; and z9 and s — 2 external vertices. Furthermore,
(12)

e We also define the set of twice rooted trees denoted as J, € 97[3’

the number of vertices of incidence number 2 of a tree Tls’ satisfies

—1
U2+50171+56271§3l—2+82 R Vi > 2

and vo < 1 for [ < 1. In particular, the set 9711’(12) is given by all trees with two root vertices, no
external vertices and all its internal vertices are of incidence number 2 with a total number that
verifies v9 < 1 for [ <1 and

vo <3l —4, VI>2.
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e Given 7 a subset of 09.5, we define
Cyﬂ' (Z) = {Z € Z‘ Elyi €Y, (Z,yi) € j} (3'2'5)

For a partition II = (71, m2) of the set o3 5, we define

Tirsims = {Timrims (21,9200 €T | Yy ()N Y, () = 2} (3.2.6)
Note that the tree T} (z1,y25) With no internal vertices belongs to ;5 for any partition

(m1,m2) of oo.s.

e For s > 1, we define the set of bulk trees 91:[5 as the set of all trees with s external vertices, no
root vertexEIand which satisfy ve <31 —2+ § for alll > 1, or vo = 0 for [ = 0.

e For a tree Tlsff(zl, Y2,5+2, Z) we define the reduced tree R, . Tfff to be the unique tree obtained

from Tlsjf(zl, Y2,s+2, Z) through the following procedure:

— By taking off the two external vertices y;, y; with the external lines attached to them.

— By taking off the internal vertices -if any- which have acquired incidence number ¢ = 1

through the previous process, and by also taking off the lines attached to them.

— If a new vertex of incidence number 1 is created, the second step of the process is repeated.

Note that these steps produce a tree in J,° for s > 1. For s = 0, it is clear that the reduced
tree is empty. Let us explain briefly why the obtained tree belongs to J,° for s > 1: the number
of external vertices goes from s + 1 to s — 1, which clearly implies that Ry, Tf_ﬁ2 € J%. Now,
let us see how the number of vertices of incidence number 2 is affected by the reduction. Each
amputation reduces the incidence number of the internal vertex of the amputated leg by one.
Hence, the number of vertices of incidence number 2 is at most increased by two at the end of
the reduction process. Denoting by v}, the number of incidence number 2 of the internal vertices

of the reduced tree, we have

2
Wyt ey S vp £ 24 G <3(1—1)—24 2T +2=3-2+2
This implies that the reduced tree Ry, ;. Tlsjf is indeed in J;* and we write
Ry, T C T (3.2.7)

Note that the reduction steps described above do not affect the set % :; (2), in the sense tha
s+2

they are not removed by the process. However, the incidence number of these vertices can possibly

LAll the vertices of incidence number one are external.

2we used the notation (3.2.2)).
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7
z2 Z4
z3 zZ5
Y3
i Y2 Ya
Figure 3.1
be decreased at most by 2. We note that if TlS_Jrl2 c 9'15_'5;2#17”2 with (71, 7m2) a partition of ogyo
such that {7, j} € ma, then Qiyi,yjﬂsff belongs to STIiTI pii We write
ors+2 ors
glyi’yj Jl—1§7|'177r2 C Jl;ﬂ'l,ﬂ';’j. (328)

Given a tree T® € % and two vertices u and v of the tree, we denote by [u,v] the set of internal
vertices of which consists the path joining v and v including v and v. To exclude u or v, the
associated square bracket is opened. We define the distance d(u,v) as the cardinality of the
set Ju,v[. In the sequel, we write Ju,v[ = {ug,---,uq} and we stress the importance of the
order on which the internal vertices (u;)o<i<q appear in Ju,v], in the sense that going from u
to v in the tree T, one has to cross first the vertex wug, then uy etc. Let us illustrate these
notions with the example of the tree depicted in Figure Clearly, we have |z1, 2zo[= @ and
|25, y2|= {24, 21, 22, 23} which implies that d(z1,22) = 0 and d(zs5,y2) = 4.

Let s > 1. For Y,, = (y1,---,ys) € R, we define the set of surface trees T to be the set
consisting of all trees of s + 1 external vertices {y1,---,¥s,0}. In the sequel, we refer to the

external vertex 0 as the surface external vertex to distinguish it from the other external vertices.

By Tl‘g’O we denote a surface tree 750 € T90 satisfying vy < 31 — 2+ % for [ > 1 and satisfying
vg = 0 for I = 0. Then 9‘15’0 denotes the set of all surface trees Tls’o. For a tree Tf’0 € CJIS’O,
the set {y1, - ,¥ys,0} of points in R is identified with its external vertices, and 2’ = (z1,--- , 2;)
such that r > 1 with the set of its internal vertices. We indicate the external vertices and the
internal vertices of the tree by writing Tl‘g’O(Y(,S7 0,Z). Note that this definition implies for all
<1, 970 gl

For s = 1, the set of surface trees GJll’O consists of the surface tree Tll’0 (y1,0) with no internal

vertices and one surface external vertex attached to the external vertex y;.
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e Given a partition IT € P, and trees Tls"“0 (Yr,,0,27,) € 9718”“0, we define the forest W/ (II) as
follows,
0 n
Wi(I) = Uﬁ”zl {Tlsﬂ“ (Ym,O,Z}ri)} where s, 1= |, Zsm =s and Yr, = Uier,; {¥i}-

=1

Here |m;| is the cardinality of the set m;. We write shortly Tlsﬁi’0 = Tls"i’0 (Yr,,0,2z,). Then the
set of all forests W}*(II) denoted by W*(I), is defined as:

Wi (1) = Ui, g,° (3.2.9)

Note that for the trivial partition Iy = o, the length of the partition is equal to one. Therefore,

the set W (0,) reduces to surface trees 9718’0. We write
W (o5) = T,°° . (3.2.10)

This implies that each tree TZST”’0 (Y7, 0, Zr,) can be identified with a forest in °Wls7” (0s,, ), where
Osr, = Ukenm, {k}.

e We define the global set of forests W;* by
Wy = Unieg, ;7 (I0).

To illustrate these concepts, we give some examples of trees and forests for s = 3 and [ = 2. The

set of partitions is in this case

Py ={Ul, {i}, {1} U {2,3}, {2} Uu{1,3}, {3} U {1,2},03}. (3.2.11)

— For the trivial partition Ily = o3, the partition length I11 is equal to one and therefore the
elements of the set °M/23(H0) are the trees TQ?”0 € 739 such that vy < 5. For vy = 3, Figure

1 is an example of a surface tree in W (Ilp).

— For the partition Iy = U3_; {i}, an element of W3} (II;) (i.e. the set of forests of the partition
I1;) is given by the forest in Figure 2.
This forest is composed of three trees. Each tree has two external vertices. The external
vertex y; has an index which belongs to the sub-partition {i}. Note that the total number
of vertices of incidence number 2 does not exceed 5 (in this case it is equal to 5). Note also
that all the internal vertices of a surface tree with only two external vertices are of incidence

number 2.

— For the partition Iy = {1,2} U {3}, Figure 3 is an example of a forest in W (Ilz) with a

total number of vertices of incidence number 2 equal to 4.
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21

2 24
23 s
Y3
Y1 Y2 0
Figure 3.2: Example of a forest W3(Ily) with vo = 3 and Z = (21,--- , z5). The red color is used for

the internal vertices of incidence number 2.

21 z3 z5
2 24 /\
0 Y2 Y3 0
un 0

Figure 3.3: Example of a forest W3 (II;) with vo =5 and z'= (21, , 25) .
z1 Z4

) 25
1 0

Y2 Y3 0

Figure 3.4: Example of a forest W3 (Il) € W3 (Ilp) with vy = 4 .

Similar examples for the forest W3(Il3) (respectively W3(Ily)) for I3 = {1,3} U {2} (resp.
Iy = {2,3} U{1}) can be constructed by replacing in Figure 2 the vertices {y1,y2} by {vy1,ys}

and the vertex ys by ya (vesp. {y1, 42} by {y2,y3} and ys by y1).
An example of a forest in the global set of forests WS} is UfZOVV;’(Hi).

o Given II = UEH (T in Py, (m1,m2) in Pos and a forest W(IT) € W3 (IT), we define

sx.,0 .
Y, (Wi(I)) = {Tl e WD : Ziem, yie Yﬁj}, ke {1,2) . (3.2.12)

We also define

Wiy o (1) := AW (ID) € WG (T0) = Yoy (WP (ID)) O Y, (WP (ID)) = 5} (3.2.13)
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A forest in W5 (II) is characterized by the fact that each of its surface trees have their external

vertices either in Y, or in Y ,.

3.2.2 Some operations on Forests and Trees
Reduction

Let VVlS_'FIQ(H) be a forest in °M/ZS_JE2 (IT). In this part, we define and explain the process of reducing

the forest W T2(TI) to a forest in U;°.

Definition 13. (Reduced partition) Let s > 1 and II be in Poyo. We denote by m; and 7 the sub-
partitions of 11 such that s+ 1 € m and s+ 2 € m;. The reduced partition II5t55+2 s defined as

follows,

i s+1 s+2 po. .
[stlst2 _ k=1,k¢{i,j} ”k} Um U™ ifi#
Uk=1,82i Wk} U TFfH’sH otherwise ,

where we used the notations -. For (m1,m3) in Po.s, we write

ot o mst? ifstiem

(7_(_1’7_‘_2)3-&-1,3—&-2 _ 7_‘_L19+1,s+2’ T if {S + 175 + 2} em
m, T i {s 41,542} € m.

Proposition 3. (Reduction process) Let s > 1. For Il € Py o, we define Cy, .., to be the operator
which acts on a forest Wls_ﬁQ(H) € ‘WZS_JEQ(H) by removing the two external legs attached to ysy1 and
Yst2- If this operation produces an internal vertex of incidence number one, it is removed until an

internal vertex of incidence number c¢(z) > 2 is reached. We have

Cys+17ys+2VVlS——i_12(H) 6 (WZS(HS+1’S+2) . (3214)
For (m1,m2) € Pa.s1a and I/Vlsjf(ﬂ) in °ﬂ/ls_'§;2m’7r2 (IT), we also have
Cys+1vys+2 Wls——i_lz(H) S Cﬂflf(wl,nQ)s+1,s+2 (HS+1’8+2) . (3.2.15)

Proof. Let us first prove (3.2.14)). The set Ps12 can be separated into two subsets 9735+2 and 9~5§+2

defined as follows:

° 9755+2 is defined as a subset of Psyo which contains all the partitions Il for which there exists
m; € Il such that {s+ 1, s+ 2} € m;.

o P¢ o is the complementary set of Poro .
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ﬂk /\

Ys+1 Ys+20

Figure 3.5: Example of a forest VVlS_'FIQ(H) where IT € P, 5 and Iy = 2.

A AN

Ys+1 Ys4-2

Figure 3.6: Example of a forest W ?(I1¢) where TI¢ € $¢ 1o and Iy = 3.

Diagrammatically, the global set of forests °Wl5_'§2 is partitioned into two subsets: the subset of forests
for which ys4+1 and ys42 both belong to the same surface tree and the subset of forests in which ys4;

and ysyo belong to different surface trees.

The proof of the statement (3.2.14)) follows directly from establishing that
VILE Purn: Cppyya W) € W (IH42) (3.2.16)

and
VILE Gyt Cypp e WD) € P (IH154) (3.2.17)

e First, we prove (3.2.16). Given a partition II in 9~35+2, there exists a sub-partition m; € II such
that {s + 1,s+ 2} € m;. Therefore, we can write in slightly abusive notation

I
Crarnansa W20 = U {14 0500, 20) U { Crornnne T (000,200} (3:218)

k=1,ki

where the tree Tls_ﬂi’o (Yr,,0, Zr,) can be identified with a forest in °M/ls_”f (JSM_). Deducing ([3.2.16

amounts to prove for s, > 2

Courramsa T3 (Y, 0,2:) € 970 (3.2.19)
If s, =2
Coarrwnss TP Wt Ys 12,0, 2r,) = @ (3.2.20)
and we have l
Cuayr e, W) = O {TS’“ (Yr,., 0, zm)} (3.2.21)

k=1,k#i
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which is clearly in W}° (II%). To treat the case s;, > 2, the discussion is simplified by considering
the case of the trivial partition II = 0449 s.t. § > 1. In this case, the set of forests °M/ls_'§2(as+2)
is given by all the surface trees 7}“:20 (see ) Let J; (resp. Jj) be the external line
which attaches the internal vertex z; (resp. z;) to the external vertex ysi1 (resp. yst2). The
operator Cy_,, 4 ., removes the external legs J; and J; from the forest I/Vlsff (0s+2), and if one
of the internal vertices z; and z; becomes of incidence number one, it is removed and the process
continues until an internal vertex z of incidence number ¢(z) > 2 is reached. This implies that
v} (i.e. the number of vertices of incidence number 2 of the new forest Cy,,, y. ., W2 (0512)) is

at most vy + 2, with vo the number of vertices of incidence number 2 of VVSJF2 (0s4+2). Therefore,

3 1
v2<v2+2<3(l—1)—2+%+2<3l—2+S—g

The last point to verify is that the reduction process converges for s > 1 in the sense that we

have
Cys+17ys+2VVlS—+12 (US+2) 7é g . (3222)

In order to obtain , we need to prove that there exists at least one internal vertex Z such
that ¢(2) > 2. If I/Vf‘"f (05+2) has at least one internal vertex such that ¢(z) > 4, then eventually
m ) holds. If all the internal vertices are of incidence number less than or equal to 3, then
since s > 1, the tree W'f’jlz(aﬁg) has a number of external vertices greater than or equal to 4
(taking into account the surface external vertex 0 as well). This implies that it has at least two
internal vertices z and 2’ such that ¢(z) = ¢(z/) = 3 which leads directly to (3.2.22). This proves
(B-2.16).

o Now, we prove 1) Take II € 955+2, there exist m;, m; € Il such that i # j, {s + 1} € m; and

{s + 2} € m;. Therefore, we can write

I

Cys+1,ys+2ws+2( )= U { SWk’ (Ya,, 0, zﬂk)} {CysHTSﬁz’ (YWNO?Z_;W)}
k=1, k21, k]

Sr.,0 .
U {Cys+27}—i (Yﬂ'jvovzﬂj)} 5 (3223)

7r17

where the operator C, ,, acts on the tree T, | by removing the external leg to which y,1 is

s+1
attached and by removing all the internal vertlces which through this process become of incidence

number one. Following the same steps of the discussion above, we deduce that v/ ; the number

of vertices of incidence number 2 of the tree Cy_,, T, s 0 is at most [|va; + 1 and it obeys
Sr. 1 S
Ué,igv2,i+1§3(l—1)—2+%§3l_2+?1’

. . . . Sq.+1,0
3224 is the number of vertices of incidence number 2 of T, ™ .
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. . . S50 sx;—1,0
which implies that Cy_, T, €Y .

Here again, we need to verify that the reduction process of the forest Wl‘gjl? converges in the

sense of (3.2.22)). If |m;| = |m;| = 1, then we have

lr

S 70 —
Cys+1,ys+2m/lsjr12(n) - U {TlfllC (Yﬂkvovzﬂ'k)} ' (3.2.24)
k=1 ko ot
If |m;| > 2, we have
3,0 >
Cys+11}ii (Yr;,0,2r,) # 2 .

. . ;50 o . . . .
This holds since the tree ﬂii (Y7, 0, Zz,) has at least three external vertices which implies that
there exists at least one internal vertex such that ¢(z) > 3, and removing at most one external
leg at each step of the reduction process implies that the incidence number of z is strictly greater

than 1 at the end of the process.

Using (3-2.16) and (3.2.17), we deduce for W;*?(II) in °ﬂ/lsfl;2m77r2(l_[)

Cyyr sra VVIS:?(H) € Wy (HS+17S+2) . (3.2.25)
Note that the reduction steps imply
Y, (‘/Vls_—?(ﬂ)) = Dyfri"ﬂ’s‘*'Q (Oys+17ys+2msj12(ﬂ)) (3.2.26)
and
Y, (WSH2(ID)) = Ysrrata (Cyorr e WD) (3.2.27)
where
mitl ifs+lem, s+2¢m
~s5+1,54+2 s+2 .
T =4q 7 ifs+1¢m, s+2em (3.2.28)
7rf+1’8+2 if {s+1,s+2}em.
Since

Yo (WD) N Yy (WMD) = 2,

we deduce that
2 2
(yﬁvaS*Q (Cys+17ys+2 VVls_—’—l (H)) N (yﬁ§+l,s+2 (Cys+1,ys+2I/VlSj1 (H)) = J,

which together with (3.2.25)) implies ([3.2.15]).
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Fusion
In this part, we define and explain the merging process of a bulk tree with a forest.

Proposition 4. For s > 2 and [l > 0, we consider the partition (71, 72) in @52;5 such that |7;| = s; and
s1+ so2 = s. Given a partition I1 of the set o U {s + 2}, we define the a-merging operator My . yers
acting on the forest I/Vf;H(H) and the bulk tree Tl‘jlﬂ (Yz,,ys+1;2) at the external vertices ys41 and

Ys+2 following the steps below:

i) Let Js41 = (2,ys+1) and Jsio = (2/,ys+2) be the external legs which attach respectively ysy1 to
the internal verter z € Tfll“ and ysio to the internal verter 2’ € W/IZ2+1(H). In the first step of

the merging process Jsy1 and Jsyo are removed.

ii) A new internal line (z,2") is added.

Similarly, we define the b-merging operator M53+17ys+2 acting on VV[ZQH(H) and le1+1 (Yz,, Ys+1,2)
following the same steps above except for adding an internal vertex of incidence number 2, which

replaces the internal line (z,2") in step ii) by the two internal lines (z,u) and (u,z"). Then we claim

M} (T3 Varsyorns 2, W (D)) € WE(IT) - j € {a,b) (3.2.29)

Ys+1,Ys+2

whereEl =7 Y2 and | == 1 + Is.

Proof. Let m; be the sub-partition of II such that s + 2 € m;. The merging operators (a) and (b)

swi,O

act only on the tree T,

external vertices on which the merging operators act. Therefore, without loss of generality, we simplify

since all trees corresponding to the remaining sub-partitions do not have

the discussion by considering the case of a partition II of length one.
The first and second step of the two merging processes create a tree with s + 1 external vertices given
by the set

{Ya } U {Y,,0}.
The only difference between the two cases is related to the set of internal vertices, which in case of
(a) is given by the union of the internal vertices of the bulk tree Tlslﬁl (Yz,,ys+1,2) and the forest

I/Vl‘;zH(H). For (b), a new vertex of incidence number 2 is added, which implies
Vo =21+ V22, U2p=v21+v22+1, (3.2.30)

where v ; denotes the number of vertices of incidence number 2 of the surface tree obtained through

the merging process j € {a,b}. Therefore, we obtain

3 1
vny <3+ ly) 4+ TR2EI g g 5T

2
4we used the notation 1)

, J€{a,b}. (3.2.31)
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This concludes that the surface trees obtained through the merging processes (a) and (b) are indeed
in W7 (o). O

3.2.3 Weight factors
The bulk weight factors

Let 0 < 6 < 1. Given a set 7o := {7, -, 75} with 7 := info<;<s7;, a set of external vertices
Yos = {y2,-- ,ys} € R°7! and a set of internal vertices 7 = (29, ,241) € R", and attributing
positive parameters Ay = {A7|] € F} to the internal lines, the weight factor Fs (A, 70,6 T} (21, Y2,s, Z))
of a tree T)°(21,y2,s, Z) at scales Ay is defined as a product of heat kernels associated with the internal

and external lines of the tree. We set
o s ., 1+6
Fs (Mg, 725 T (21, 92,5, 2)) == | | 5 2 [ rs(rss:) . (3.2.32)
Iey I Jeg
where 775 denotes the entry 7; 5 in 7 carrying the index of the external coordinate y; in which the

external line J ends, and 7; 5 := (1+8)7;. For I = {a, b} the notation p(1; I) stands for pp(1; a, b).

AT AT
We also define the integrated weight factors
Fs (N, 72517521, Y2,5) '=  sup / dZ Fs (As, 12,517 (21, y2.5, 7)) (3.2.33)
A<SAr<Ao J(RT)"
Fs (A, 12517 21,Y2,5) == sup / dZ Fs (Ng, 12,61} (21, y2,5, Z)) (3.2.34)
A<SAr<Ao J(R™)"
and
9;((;0 (Aa 72,53 trlsa 21, y2,s) = sup / az S;(S (Aja T2,s5 j_‘ls(zla Y2.s, Z)) . (3235)
A<A;<Ap JRT

We denote by F.(m;) the set of the indices of the internal vertices of the tree 7T}° which are attached to

the external vertices {y;} and let g; be its cardinality. We write shortly Zg,(r,) = (2)jeg.(r,) and

JE™;
Z;¢ 1= (25) jege(m) With FS(m;) denoting the complementary set of J.(m;). We define the integrated

7

weight factor of a tree T} € Ty iy 38 follows

[e'e) + . TS,
g(s (A7T7r177—ﬂ'27]—‘l 7217y2,s)

= sup / dgje(m) / dglc ng (AJ,TQ,S;Z}S<21,y27S,Z)) . (3.2.36)
A<AT<Ag J(RT)TL Rr—41

For the trivial partition m; = o095, we denote by .J. the set of the indices of the internal vertices

attached to the external vertices y s and by ¢ its cardinality. We write shortly Zy, := (2;)icy, and

5 C

7 ¢:= (2i)icge and define the integrated weight factors

For (N, 12,5175 21,y2,5) = sup / dZg, / dZ © Fs (Ng, 12,51 (21, 92,5, 7)) (3.2.37)
A<A;<Ag (Rt)a R™—q
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and

%go_ (A, 7'275;Tls; Zl,y275) = sup / dgje / d?c %5 (Aj, 7’275;’1}8(21, y275, Z)) . (3.2.38)
A<A;<Ag ( )‘1 R"—4

— depend on Ay, but note that their limits for Ag — oo exist, and that typically the sup
is expected to be taken for the minimal values of A admitted. Therefore we suppress the dependence
on Ag in the notation. The definitions — can be generalized to a bulk tree Tls. Finally
we introduce the global weight factors which are defined through

gs,l;é (A,7'275,Zl,y275) = Z GJ;(; (A,Tgﬁ;Tls;Zl,yg,s) y (3.2.39)
e
GJ;I;& (AaT2,s,21,y2,s) = Z GJ:(;_ (A,TQ,S;ﬂS;Zl,yQ’S) (3240)
TP €9y
and
OJ;,?;& (A;7—273,21,y2,s) = Z 9;((5)0 (AvTQ,s;ﬂS;Zlva,s) . (3241)
G=n

Similarly, we define the global bulk weight factor

slé(A 2,50 Y2,5) : Z Fs <A 7’2577},3/23) . (3.2.42)

-
Tpeg?

For z; € R™, we define the global weight factors associated to and ( m

sl5 (AvTﬂlvazazlayQ,s) = Z 9;600 (AvalaTﬂg;z—‘ls;zlva,s) ) (3243)
TP €Tny imo

J'ler(g(A 7257217y2s : Z J"5+ A TQ,s;T‘ls;Zlny,s) (3244)
T eg?

and for z; € R~ we define
F5 s (M Tos 21,20) = > F (A7 175 21, 42,6) - (3.2.45)
TpeT?

If this does not lead to ambiguity we write shortly

A:oo
9;;}575 (7_275) = E‘;:s,l;d (A, 72,55 %1, y2,s) ’ 9:5 i %) (7—2 S) = 9:;?;5 (Aa 72,59 215 Y2, 8) ) (3246)

A A
gs,l:)i %) ( ) = 9:5?;:‘:;5 (Aa T2,s5 %1, yZ,S) ) 9’37[%0 (7—7;’_1 ) Tﬂ'z) = ;?;5 (A7 T7r1 y Tmos 21, y2,s) . (3247)

In complete analogy we define the weight factors and global weight factors for twice rooted trees which

(12) (

we denote as F <A TgS,T s(12). 21,22,y375> resp. st,l A, 736,21, 22,Y3,5) OF %;7%(A,Tg,s).

For s = 1 we set ‘/’171;5 =1.
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The surface weight factors

e In the sequel, we will use the following notations:

oo = A{ml k€m}t, Yr = Wklien,» Tmo={A+0)m|lkem}, 7:= 1i<121£s 7. (3.2.48)

e Let 0<d < 1landmg:= {7, - ,7s} such that 7 > 0 and let Y, € R® be the set of the external

vertices. Given a partition IT € P, let 21 = (Z}rl, e ’Z_;Tln> € (R*)P, where each vector Z,
consists of the internal vertices of the tree Tls"“0 in the forest W;(II). We denote by .F = U?lljk
the set of the internal lines of the trees of W/(II) and by § = Uf,le i the set of the external
lines which link an internal vertex to an external vertex belonging to the set Y, . Each set
(resp. Ji) denotes the internal lines (resp. the external lines) of the tree Tlsw’C . We also use the
notation j,? = {J,g|1 <k< ln} to denote the set of surface external lines which link an internal

vertex to 0.

Attributing positive parameters Ay = {A7|I € F} to the internal lines and A = {Ak]k € ],?} to
the surface external lines, the weight factor &y <A5, A; 75 WP (ID); Zi; YUS) of the forest W;(II)

at scales Ay and /~\k is defined as the product of heat kernels associated to the internal and
external lines of each tree of the forest. For a sub-partition 7 € II, we define the weight factor

us 70
of the tree Tls k" as follows:

Sm.,0 o

0 AL . . .
95 (AjkaAk>7_7rkaT‘[ k azﬂ'kvyﬂ'k>

= 1] »s <1A+25;I) I pe((1+0)757) po <1+5-J5> . (3.2.49)

—
I JEF Ak
where we used the same notations as in (3.2.32]) and Jé“ denotes the line which links an internal

vertex to the external vertex 0 with an attributed positive parameter Aj. For a surface tree Tll’0

with no internal vertices, the surface weight factor reads
Gjéo (deTll’O? yﬂk) = pB (L +0)Tr; Ym,, 0). (3:2.50)
The weight factor of the forest W(II) is defined for II € P4 as follows:
GJ(? (AJ,A;TLS;W/ZS(H);ZH;YUS) = H ?g (Ajk,]\k;mk;Tlsﬁ’“’o;Zm;Ym> . (3.2.51)
€Il
For I € %}, it is given by
Fy (Aj,f\; 71,5;V%5(H);ZH;Y05) =17 (Ayk,f\k;Tﬂk;i}s”k’o;fwk;ka)

Tk

3 7.0 o
< [# (AjkaAk;27—7"rk;TlS g ;Zﬁ—k;yﬁ—k), (3.2.52)

Tk
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where the product Hﬁ'k runs over all sub-partitions in II of length equal to 1.

We also define the integrated surface weight factor

(A T1,6; WP (IT); Yy,) i= sup / 9~'§) (AJ,A; 7175;W/l5(H);z_'H;YUS> , (3.2.53)
A<Ar,AR<Ao Y Zn

where ffn = [T, Jy° dai

Given a forest W (II) in W3 (II), we define the corresponding integrated surface weight factor

as follows

%5 (A 7r1> TI'Q’VVZ( ) s)

= sup / dZm/ dZn, FY (Ag,A;Tl,S;W/f(H);ZH;YUS) , (3.2.54)
A<AL A<M/ (RT)PL (R™)r2

where [ denotes the integration over the internal vertices of all surface trees in Yy, (W7 (II)).

The weight factor associated to a global forest W/ is defined as

F§ (A, 116, WS Y,,) = Z F (A, 11, WD) Yy,) (3.2.55)
IIePs
Similarly, the weight factor of a global forest W € W;? “rim, 1S given by
? (A7 Ty 71'27VVZ7 Us) = Z G‘}c? (A7T7r17 7r27VVl( ); Y 5) : (3.2.56)
IIePs
We define the global surface weight factors
Fls (M Yo) = Y F (A WY, (3.2.57)
Wy e
and
0]21;5 (A,T;,Z,T;Q;Yas) = Z Fy (A, T s Ty Wi Js). (3.2.58)
If it does not lead to ambiguity we write shortly
Fo (116) = Fis (A 716 Y5 (3.2.59)
and
A _
C}s,’;% (7—;—177—@) = O‘;B,l;ts (A’Tm’ Wz’Y ) : (3'2'60)

OqO
Il
—_

For s = 0 we set J'oz
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Remark 1. o The definitions (3.2.35) and (3.2.53) imply for 0 < A" < A

A0 A0 A0 _ A0 -
G“;s,l;é (T1,5) < gs,l;é (T15) ?}sla( T ) < g;s,l,é ( Tr+1’7_7r2)‘ (3.2.61)

Trl’ ™
The same bounds hold for ([3.2.46[)-(3.2.47)).

o Combining the bound together with the definitions and , the following
bounds hold for all 0 < § < ¢ and 0 < A < Ay

A0
st’l’;é (T173) < C 3 l (5’ (Tl,s) ? GJS/}l,(S (T175) S Csyl gs/,\l,é’ (7—175) ° (3262)
The constants C’gl and Cy are explicitly given by

L= sup C’Clsjal,ﬂj‘, Csy:= sup C’%!Hﬂ,

s,l R » ,
(F.5)EWF, Wret; (5.9)ET}, Ty €Ty

where J and § are respectively the set of internal and external lines of the tree/forest and | - |
denotes their cardinality. The constant Cs s is given by (3.1.11) for r = 0.

3.2.4 Useful bounds

For the proof of Theorem [9] in chapter [5] and Proposition [9] and Theorem [I2] in chapter [6] we need

to bound the tree/forest weight factors for reduced forests and for merged trees and forests.

Lemma 2. (Reduction) Let 7, § >0 ,0<A<Ap,1>1 and Y,, € R®, we have

1 1
/du %.34»27[71;5 <A, 157 A2, A2,Ya—s,u u) S O( ) A g lé(A 7—1 87YUS) . (3263)
R

Given a partition (w1, m2) of 0512, we have
/Rdu FOo 11 (N 7 Yo uu) < O(1) A T (A7 723 Vi) (3.2.64)

where Tg41 = Tsya = ﬁ an T = 7?8+1 ST2 The constants O(1) depend only on s and I.

Proof. First, we prove (|3.2.63)). Let us recall the definition of the surface weight factor

1 1
0 . .
Fhnsons (N gy gy Vo )

Ws+2€°]/lfs+2 Heg&SJrQ

Swe used the notation (3.2.28).
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where ys41 := v and ys+2 = u. The weight factor
Fs | A; L L weany,
5 77'1,57W7w7 1_1( ); Ost2

is given by (3.2.49)-(3.2.52). Let (2;,u) and (z;,u) be the external lines attaching respectively the
internal vertices z; and z; to the external vertices ys41 and ysyo2. Using (3.1.5)), we obtain

/Rdu pB <al(1+5)'zi,u) P <0‘2(1+5);zj,u> — g <(0‘1 +as)(1+ 5);21-,23-) <A. (3.2.66)

202 2A2 2A2

We recall that a tree of two external vertices (including the surface external vertex 0) corresponds to a
sub-partition of length 1 and the surface weight factor associated to these trees differs from a surface
tree of three or more external vertices by a factor 2 multiplying the parameter 7; of the corresponding
external vertex, as it appears in (3.2.52). Therefore, the constants a and g take either the value 2
or 1 depending on whether the two external vertices at u belong to a surface tree of only two external
vertices or more. Diagrammatically, the effect of the bound on the forest Vfof(H) is the
removal of the external legs (z;,u) and (zj,u) by bounding their contribution in the surface weight

factor by A. Furthermore, the property

o0 1446
/0 dz pB (A?;z,z’> <1 (3.2.67)

implies that all internal vertices which after removing (z;,u) and (z;,u), become of incidence number
one are removed. These two steps correspond to reducing the forest I/fof (IT) at the external vertices
(u,u). Therefore, we have
1 1
/Rdu F <A;ﬁ,s, TAT W;M/ﬁl?(n);ygs,u, u> <A F (A5 Cu WD) Y,,) . (3.2.68)
Proposition 1 gives that Cu,qu_ﬁQ(H) € W (II5T15+2) | where II5T15%2 € @, is the reduced partition

obtained from II. Hence, we obtain

Z Z QJ(? (A) T1,s3 Cu,uVVls:rf (1_[)7 Ygs)

W T

<o) Y Y FAnGWII)Y,,). (3.2.69)
Wi TIePs

The constant O(1) takes into account that the reduction operator is not a one-to-one map, in the sense

that the same forest can be obtained by reducing different forests, which implies that some weight

factors Fy (A, 71,6; W7 (I1); Yy, ) are possibly summed more than once in (3.2.68). Combining (3.2.68)
and (3.2.69) gives the final bound (3.2.63)).
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If the external vertex ys11 belongs to the sub-surface tree T (y5+1, 0) with no internal vertex, (3.2.66)

149 1406 1496
/Rdu PB <2A2;0,u> ( oAz U > = pgB (AZ;O’Zj> <A. (3.2.70)

If ys12 is an external vertex of Tll’o (Ys+2,0), then z; is replaced by 0 in . This corresponds to
removing the corresponding sub-surface trees from the forest W'lsjf (I1). The bound is obtained
in these two cases following the same line of reasoning as before.

The proof of is obtained by following the same steps of the proof of and using
(13.2.15)). O

reads in this case

Lemma 3. (Forest-Forest Fusion) Let §, ' > 0 and 1 <1y, lo <1 —1 such that l; + 1y = 1. Given
(7?1,77’2) S 932;5; we have

1 0 1
/ du F, s1+1,01;0 (A;Tﬁ'l? 2A2’ 7r17u> C}serl,lg;é’ <A§ T2y 52 2A2’ 7r27u>

< O() A Fsn (Ms1,6Ys,), (3.2.71)

where s; := |m;| and §" = max (4, ’).

Given (1, m2) in @32;5, we define mj; = m; N 7. For
(mh1,m91) € {(mn U {s + 1} ,m21), (11, 721 U {5 +1})} (3.2.72)

and
(12, m9) € {(m12, 22 U{s +2}), (m2U {s+2},m22)}, (3.2.73)

we have

0 o0
/R du F2 105 (A, T QI,Yﬁl,u) FO (A, T 22,Yﬁ2,u)
0 —
< O() AF o (N7 Tryi Yoo ) 5 (3.2.74)

where Tg11 = Tspa = . Again the constants O(1) depend only on s and I.

Proof. First, we prove (3.2.71). Without loss of generality, we consider the ordered sub-partitions
7 := 05, and 7 := 04,41, To establish (3.2.71)), it is sufficient to bound

0 : 1
/Rdu Ojsl-s-l,ll;a (1&,7’17517 A2 ; W51 ( ) YO'517'LL>

X Gj‘gg-s—l,lz;é’ <A; Ts141,8) 2A2’W82+1( 2);Y051+1:S,u> (3.2.75)
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where II; € 9381+1 and I, € Q’SQH. The sets 9381+1 and 9352+1 denote respectively the set of partitions

of o5, U{s+ 1} and o4, 11.s U {s+ 2}. Using (3.2.62)), we bound (3.2.75) by

1
/Rdu F0 1410138 (A;lesl, AQ’M/lSl1+ (I11); Yasl,u)
X %224_1,@;5// (A, Ts1+1,8y 579 2A2 ) W52+1<H2); Y051+1:37 u) ’ (3276)

where §” = max (4, d’).

Let m 1 and 7j2 be respectively the sub-partitions in II; and Ils such that {s+1} € m and
s 70

{s +2} € m;j2. We denote by z; and z; the internal vertices in the sub-surface trees TZS1 ol (mel , U, O)

75950 . .

and TZZ 727 (Y, 4,u,0) in the forests W'ff“(l‘[ﬁ and W1822+1(H2), which are attached to u. As we
mentioned previously, the bound (3.2.66) amputates the external legs (z;,u) and (z;,u) and bounds
their contribution in (3.2.76|) by A. Furthermore, (3.2.67)) implies that all internal vertices of incidence

number 1 are removed. The amputation can possibly create in each tree at most one internal vertex

™ 7170 . .
of incidence number 2. Denoting by TZ o (mel,O) the surface tree obtained by amputating the

w10
external leg (z,u) from Tls1 " (Y1, 1, 0), we deduce

7711

IS +1<3l1—1+

1
2 )
where 17511 and vglz denote respectively the number of vertices of incidence number 2 of the surface trees

T 7170 ™ 7 . .
TZ ot (Yr,,,0) and TS " (Y1 w,0). Since 1 <1y <1 — 1, we obtain

5 < 31— 2 2 < ”21 (3.2.77)
75950 .
Proceeding similarly with le 72 (Yﬂjg,u, 0), we deduce that the number of vertices of the amputated
tree obeys
Sy
555 <3l-2+ % (3.2.78)

. Therefore, we obtain that

From (3.2.95) and (3.2.78), we deduce that T, '~ (Yr,,,0) € 9,

/Rdu GJ£1+1,Z1;5” (A; T A27I/VZT+I(H1) Y7r17u>
X Frgy 1 157 <A;7—7r27 2A2,W”“( 2); Ym,u> (3.2.79)
is bounded by

A 9—5,/ (A I 81>Wl811 (Hs1+1) YJSI) 9;5// (A To141,85 VVlSQ (Hsz-i-l) YO'91+1 g) , (3.2.80)
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where we used the notation (3.2.1). Note that II;™ UTIS™ € P, which together with [3.2.80)) gives
the integrated surface weight factor of the forest W' It u I/I/ISQZ(H§+1). Hence (3.2.80)) is bounded
by

O(1) A 9*'(8, (A WP Y, ),

where IT = II5™! U TI5™ belongs to %, and we deduce

o A0 1 . g A0 1 .
/R du J'81+1,l1;6 T1,s15 2A2’ YUsl ) U J82+1,l2;6’ Ts141,89 IA2’ Y051+1,sau

< O0(1) AFL5 (re) . (3.2.81)

Note that the central point in the proof of (3.2.71) is the fact that the amputations of the external
legs (z,u) and (z/,u) from the forests I/Vf’;l+1 (I1;) and I/VIS;Jr1 (T13) produce respectively the forests
Wi (Hi“) and W, (H§+2) such that

W (1) U (1) < ),
The proof of (3.2.74)) can be performed following the same steps of the proof of (3.2.71]), but still
we need to check that for given forests I/Vlslﬁ'l (I1;) and VVZQH (ITy) respectively in "% , and

Ly myy
5241 have
lo;m o,y we
Wlsll (HT+1) U VVZZ2 (H§+2) € Wifﬂ‘l,ﬂg (H) (3282)
Clearly

Wi (I = Wi (1) W (T1572) € 77 (1)

Since the amputations do not affect the location of the external vertices y; € Y., in the sense that
their positions in the surface trees of the two forests remain unchanged. This means that there is no

surface tree in W/ (II) such that it has at least two external vertices in Yz, and Y,. This implies

directly ([3.2.82)). O

Lemma 4. (Bulk tree-Forest Fusion) Let 6, & > 0 and ly, lo > 1 such that Iy + 1o = 1. Given

(71, 72) € @52;5, we have

1 - 1
/Rdu 0521_5_1,11;5 (A;Tfrp Wy Y7~r17u> <':’7524-1,[2;5’ <Aa To, W? Yﬁ27u>
< O(1) Fon (Ni7163Y5,) . (3.2.83)

S

Given another partition (71, 7) € 932;3 and defining 7;; := m; N7, we have

_ A 1
/Rdu S"'g) (A; Tél,Tﬂé;le,Ym,u> Fs: (A;Tﬂ-u, 2A2;Y7T12,u)

< O(1) Fron (N7 7 Yo,), (3.2.84)

Ty T



3.2. TREES, FORESTS AND WEIGHT FACTORS 95

where
(m11, ) € {(m1 U{s + 1} ,m2), (w11, m2U{s+1})}. (3.2.85)

Stmilarly, we have

. 1
/Rdu GJ(? (A T ,,T , 71/7T1,}/'7r21, > Fs (A§7'7r2272A2§Y7r22au>

and
(], mh) € {(m U{s+1},m01), (m1,m1 U{s+1})}. (3.2.87)

In (3.2.83)-(3.2.86)), 8" := max (4,9).

Proof. Without loss of generality, we again consider the ordered sub-partitions o, and os,41.5. In
order to obtain the bound ([3.2.83]), it is sufficient to bound for a given II; € 9~351+1

/Rdu g((s) <A; S A2 : VVZSI1+1(H1) YUS ,’LL> Fyr <A Ts1+1,s) A2’T82+1’ YgélJrl é,u) . (3.2.88)
Using the bound (3.2.62f), we bound ([3.2.88)) by
/I;du GJ(?” <A§ T1,s1> QAQvWSH_l( 1) YUsp“) For <A§ Ts1+1,s> 2A2’T82+1 Y081+1 S’u> ’ (3.2.89)

where 0" := max (9, 4’). Let z; and z; be respectively the internal vertices attached to u in WZ‘TH(Hl)
and to u in TZ‘ZQH. Interchanging the integral over u with the integral over the internal vertices of
the forest VVZ‘?H(Hl) and the bulk tree TZS;H in their respective weight factors and using 1’ we

deduce
a(l+9) 149 (a+1)(149)
/du pB < oAZ Zi,U) PB (W;zj,u> =PB <2/\2;Zi,Zj (3.2.90)

with o € {1,2}. Here, we proceed similarly to (3.2.66|) to differentiate the surface trees with two
external vertices from other surface trees with more than two external vertices. For a = 2, we keep

the integration over u and write

/dup <1 5zu> <1+52 )
R B A2 ) 19y 2A27 7
o 146 1+0
§2/0 dupB( i ,zl,u> <2A2,zj,u>. (3.2.91)

Therefore, (3.2.90) and (3.2.91)) correspond to the fact that the two external legs attached to (z;,u)

and (z;,u) are removed. If & = 1, the external lines are replaced by the internal line (z;, z;) and for
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a = 2 the vertex u becomes internal with incidence number 2. The first case corresponds to the steps
of merging the forest T/VlilH(Hl) and the bulk tree Tl522+1 at the external vertices (u,u) through the
process a). In the second case, the forest and the tree are merged following the merging process b).

From Proposition [4] we have
M. (LVf}*l([[) 1ﬁ2+1) e W), ic{a,b)
where IT' = H‘i“ U os,+1:s- This implies that (3.2.89) is bounded by
2 Fgr (A WD) Y,

Therefore we deduce

1 1
0 . . . .
/Rdu O‘}sﬁ-l,ll;& <A’TTF17 2A2’Y7T17 > F so+1,l2;0" <A’ Tras 2A2’Y7T27u)

S O(].) go,l;é// (A, Tl,s; YO'S) )

s

where O(1) is a constant which depends on s and [.
Now, we establish ([3.2.84)). Given Wl‘TH(Hl) in °M/lf17:ﬁ - and Tf;“ € Ojl;QH, let us bound

/du 9;(9 (A;T:;II,T%;Wl‘jIJ'_l(Hl) Y7T11’Yﬂ'27u> 9:5’ (A;Tﬂ'u’ 2A2’T82+1 Yﬂm?u) . (3292)
R

If s+ 1 € 7y, then ([3.2.92) is bounded by

2 Fy (A5 7, WP (IT); Y,

» T Umy? 7T2’

following the same steps as before to establish (3.2.83)).
The case which needs a careful treatment is s+ 1 € 75. Using the same notations as before, the
contributions of the external legs (z;,u) and (z;,u) in the weight factors of W/[?H(Hl) and TZ‘ZQH read

a(l+ 6) 1+6 (a+1)(1+9)
/Rdu PB <2AA2’Z’“U> PB < 2A2 ,Z],'LL> = DPB <2[\2,Z“Z] (3293)

with o € {1,2}. By definition of the weight factors of the forest I/Vlsllﬂ(Hl) and the tree TlS;Jrl, the

internal vertex z; is integrated over R™ and z; is integrated over RT. Hence, for & = 1 we bound

(13.2.93)) as follows

1+9 1+0
pB( A2 azlaz]) S pB< A2 72]7()) . (3294)

From a diagrammatic point of view, the bound (3.2.94)) implies that the leg (z;,u) is amputated from
the forest I/Vl‘ilﬂ(ﬂl) and (zj,u) is replaced by (z;,0) in the bulk tree Tf;“, which produces the

surface tree Tl‘zz’o. As we explained in the proof of Lemma |3 the amputation of one external leg
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in the forest changes the number of vertices of incidence number 2 of the corresponding surface tree
7 —1,0 .
Tls1 © 7 (Y5,,0, 25,) as follows for 1 <13 <[ —1

5%,

Uy <3l-3 -1+

1 S,
- <3l-2 - 2.
+5<3l-2+ (3.2.95)

For o = 2, we keep the integration over v and we write

3(1 4 6) 3(1 +6) 146 146
PB <2A2§2i72j> <pB <2A2;Zj’0 :/RdUpB ?307U PB W;%Zj

oo 1446 1446

From a diagrammatic point of view, the bound implies that the leg (z;,u) is amputated from
the forest Wl‘j1+1(1'[1) and (zj,u) is attached to (u,0) in the bulk tree Tf;“. Since a = 2, we deduce
that the surface tree in V[/Z‘?H(Hl) which contains the external vertex u, belongs to 975’0. It contains
only the external vertex u and the surface external vertex 0. The amputation of (z;,u) lowers the
incidence number of z; by one and the process of amputation continues until the surface tree Tl21’0
becomes empty. Concerning the new tree obtained from Tf;“, it has sy external vertices and one
surface external vertex. Furthermore, the number of vertices of incidence number 2 of this tree is

v9 + 1, where vg is the number of vertices of incidence number 2 of Tl‘?H. Therefore, we have

1
’U2+1§3l2—1+82; )
Remembering that ls <1 — 1, we deduce that
1
02+1§3l—2+82; .

This proves that the new tree, which we denote by leg,o is a surface tree and we deduce that
W (I u Tf;’o belongs to W;5 . (II") with 11" = I3+ Uy, Combining these arguments with

the bounds (3.2.94)) and ([3.2.96f), we deduce that (3.2.92) is bounded by
o) Fyr (Nt s WP ()Y,

Y SRR DY

This gives ([3.2.84)). The same method of the proof gives also the bound (3.2.86)).

O
Lemma 5. Let § > 0,1 >0 and s > 2, we have
Forrs (N 21, T25,92.5) < Ot Fsps (A, 21, T25,925), V21 € RT (3.2.97)
and
?Fffl’;_;(; (A, 21,726, Y2,5) < Csg GJS_,I;d (A, 21, 725,Y25), V21 €RT. (3.2.98)

Cs, s a positive constant that depends on s and .
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Proof. Take s > 2 and a tree T)°(21, Y25, 2) € J,° with Z= (22,--- , z,41) the set of its internal vertices.

We recall the definition (3.2.37)):

Foop (N, 125;T7521,92,5) '=  sup /+ dZg, / dzy® Fs (Mg, 12,517 (21, 2,5, 2)) 5 (3.2.99)
R+4a Rr—4q

A<A1<Ao
where
1 + (5
Fs (Mg, 72,5 T (21, 42,5, 7)) = [ [ v 1) I po(rss:J) - (3.2.100)
Ieg A7 Jeg
We write
> 144
/ dzyg, / HPB( ) HPB (783 J
Rta " Iey Jey
. e 1+ 6
= dzje H pB(TJ,(S; ']) Z d’zﬂ‘l H PB A2 i1, (32101)
R+4a Jeg (r1,72) (RH)m1 (R7)" ey
where the sum runs over all the partitions of length 2 of ¥¢ and r; := |m;|. We perform the change of

variable z — —z for the variables integrated over R~ and we use the bound
po (riz—2) <ps (riz). Ve 230 (32102

to deduce that
Gf(go;o+ (A, 7—2’5; Tls; 21, y275) S 27“—q GJ(; (A, 7_2,3; Tls; 21, yg,s) . (32103)

Denoting by |7;(7})| the cardinality of the set of the internal vertices of the tree 7}’ and remembering

(13.2.39), we deduce

O‘;;),?;Jr;é (Aa 215 72,85 y2,8) < Cs,l %s,l;é (A7 21, 72,55 y2,s) s (32104)
where C; := maxpsegs 2l%(T7)l - Performing a change of variable z — —z for the internal vertices Z g

and summing over the trees 7°, we have
Fotis (N 21, T2, y25) = Fgs (A, =21, s, —y2) - (3.2.105)
Using the bound together with , we deduce
Fofims (N 21, o5, y2,6) < Cot Fos (N, =21, 7,5, —42,5) (3.2.106)
which after a change of variable z — —z for the internal vertices Z' of the trees T}’ is bounded by
Cst Fops (N 21,725, Y2,5) - (3.2.107)

This ends the proof of lemma O



Chapter 4

Renormalization of the semi-infinite

massive ¢* model: General counter-terms

4.1 Introduction

In the present chapter, we establish a rigorous proof of the perturbative renormalizability of
the semi-infinite model based on the Polchinski flow equation. This model appeared in 1971 [40] as
a simple model that allows to study surface effects alone disentangled from the finite size effects. It
is defined starting from the massive ¢] model in infinite space, with the difference that it is defined
on a half space bounded by a plane. We consider this model with three types of boundary conditions
which are Dirichlet, Neumann and Robin boundary conditions (b.c.). From a mathematical point of
view, each of these b.c. corresponds to a self-adjoint extension of the Laplacian in R™ x R%. As we
explained in chapter [} the self-adjointness of the Laplacian is a key property to define the propagator
of a quantum field theory. Each boundary condition defines a particular propagator and thus a different
theory. This chapter is organized as follows: In section [.2] we define the regularized flowing propagator
and present the considered action together with the system of perturbative flow equations satisfied by
the connected amputated Schwinger distributions (CAS). Section will be devoted to prove some
regularity properties of the support of the Gaussian measure associated to the regularized propagator.
To establish bounds on the CAS, which are distributions, they have to be folded first with test functions.
In section [£4.7] a suitable class of test functions is introduced that will be used in the bounds on
the CAS to be derived. In section [£.4.2] we state the boundary and the renormalization conditions
used to integrate the flow equations of the irrelevant and relevant terms respectively. Section [4.5] is
the central one of this chapter. We state and prove inductive bounds on the amputated Schwinger
distributions folded with the introduced test functions which, being uniform in the cutoff, directly lead

to renormalizability.

99
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4.2 The Action and the flow equations

We will analyze the perturbative renormalizability of the semi-infinite ¢} theory with Robin bound-
ary conditions. It will be proved by analyzing the generating functional L0 of connected amputated
Schwinger distributions (CAS). The upper indices Ag and A enter through the regularized propagator.

We choose the following regularization

1
CR™(pi2, ) = / T n eI (5, ) (4.2.1)
A2

Clearly, Cﬁ’AO verifies the b.c. (2.4.33). For A — 0 and Ay — oo we recover the unregularized
propagator ([2.4.29)). We denote

. 0 . 1
A, . _ Aoy, _ AA .
CR(pa Z,Z/) - 87ACR O(pa Z,Z/) =C (p) PR (M,Z,Z,> ) (422)
“A 2 _p2+m2 . . . .
where C%(p) = —53e A7 . In the sequel, we use the following estimate for the 3-dimensional

propagator. Given w € N? and a polynomial P, we have

: p 3wl g (1Pl
8 CA ()P (f)( < (A g (P 42.3
‘ Q AL~ (A+m) A+m ( )
with & a new polynomial with positive coefficients that depend only on the coefficients of P and w.
We assume 0 < A < Ay < 0o so that the flow parameter A takes the role of an infrared cutoff, whereas
Ag is a UV cutoff. The full propagator is recovered for A = 0 and Ag — oco. For finite Ag and in finite
volume the positivity and the regularity properties of CI/%’AO permit to define the theory rigorously

from the functional integral

e i (LMo @)+INM0) L /dMA,Ao,R(‘I’) e~ nEN0R0(@+9) (4.2.4)
LY (0) =0,

where the factors of i have been introduced to allow for a consistent loop expansion in the sequel.
Here, djip py,r denotes the Gaussian measure with covariance h C]/;’AO. The test functions ¢ and ®
belong to the support of the Gaussian measure dua a, g, which in particular implies that they are in
| (RJr X R3) as we will prove in section . The normalization factor e~/ is due to vacuum
contributions.

The functional L2020 (¢) is the bare interaction of a renormalizable theory including counter-terms,
viewed as a formal power series in /. Since translation invariance is broken in the z-direction (the semi-

line), all counter-terms may be z-dependent. In general, the constraints on the bare action result from
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the symmetry properties of the theory which are imposed, on its field content and on the form of the

propagator. It is therefore natural to consider the general bare interaction
Ag,A A 4 1 A 2 A
Aodo(g) = = [ 6z a)+ 5 [ (a6 (5 0) — B0 ()60, 0) A0b (2, )
JV \%4

— dM()0(5, 2)020(z, ) + 505, 2)(0:0) (2,0) + 7 ()6 w)) :

Here we supposed the theory to be symmetric under ¢ — —¢, and we included only relevant terms with
respect to in the sense of the renormalization group. The functions a0 (z), b0 (z), c20(2), d*(z)
and sAO(z) are supposed to be smooth. As we will explain later, it is a consequence of smooth imposed
renomalization conditions together with the regularity of the regularized flowing propagator.
The flow equation (FE) is obtained from on differentiating w.r.t. A. It is obtained following the
same steps that led to the flow equation . It is a differential equation for the functional LAAo:
(LMo | Aoy — 721<6(;’ %(;;)LA’AO B ;<55¢LA,A07C%65¢
By (,) we refer to the standard inner product in L?(RT x R?).

We may expand the functional LA"0(¢) in a formal power series w.r.t. &,

Aoy (4.2.5)

LANo(¢) = 3 TR LM (9)
=0

Corresponding expansions for a0(z), b40(2)..., are a®o(2) = S°7°, hlaf\o(z), etc. From L{\’AO(@ we
obtain the CAS distributions of loop order [ as

AA AA
glm 0 ((2’1, 561)7 Tty (Zna xn)) = 5¢(z1,x1) T 5¢(zn,mn)Ll 0‘(15:0 >

where we used the notation d4(, ,y = 6/0é(z, 7).
Since translation invariance in the x-directions is preserved, we will use in all what follows a mixed
representation, where the Fourier transform to p-space is performed only with respect to z € R3. In

this representation, we set

gl{\ﬁAO (21; Dn; Pn) = /0 dzy -~ dzy g;}ﬁAo ((z1,21), -+ 5 (20, pn)) P2(22) -+ - Pn(2n) - (4.2.6)

Here we denote
O (22, 2m) = [ [ di=)

and
577/

A Ao
560 1) 00 pa) L (o=

31+ -+ pa) 2 ((21,91), (2, pn)) = (2m)P 7Y
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The 6 (p1 + -+ - + pn) appears because of the translation invariance in the z directions. The FE for
the CAS distributions derived from (4.2.5)) are [13|

5Aaw§£l, ®((z1,p1)s 5 (2n,Pn))

// /awiﬁAf%H (21,p1), 7+ (2, pn), (2, k), (2, =) C(k; 2,2)
a // Z Z ZCU} [awlgljlxvjl\f+1((zlypl)a T 7(Z7L1pn1)? (zvp))awzicﬁ(p;z’ Z,)

l1,lo n1,n2 w;
AN
X aw2gl2,n§+1((2/7 _p)a T (vapn)):| rsym ’
p:_pl_...—pnl:pn1+1—|—'--+pn. (427)

Note that we wrote directly in a form where a number |w| of momentum derivatives, charac-
terized by a multi-index, act on both sides and we used the shorthand notation . The symbol
"rsym" means summation over those permutations of the position-momenta (z1,p1), - -+ ,(2n, Pn), which
do not leave invariant the (unordered) subsets ((z1,p1), - , (2ny, Pny)) a0d ((Zny 41, Pry+1) s+ 5 (20, Pn))s
and therefore, produce mutually different pairs of (unordered) image subsets, and the primes restrict

the summations to ny +no =n, l1 + lo = [, w1 + we + w3 = w, respectively.

4.3 Regularity of the support of the regularized gaussian measure

The bare interaction L2020 consists of powers of the field ¢ and of its derivatives. It can not be
given any mathematical meaning if the field ¢ is not sufficiently regular, e.g. at least in €2 (R+ X R3).
In this section, we prove that the field ¢ belongs to €>°(R* x R3). This result is due to the regularity
properties of the support of the regularized Gaussian measure.

For this we will consider the UV-regularized propagator without infrared cut-off

C2 (p; x,y) 2/1 A\ e pp (N 2, y),
Az

assuming that Ag > 1, p € R® and z, y € Rt. The same arguments work for the Gaussian measure

associated to the propagator C’I/%’AO (p; z,y). The main result of this section is the following proposition:

Proposition 5. Let pipn, r be the gaussian measure associated to the propagator Cl,/%". The support of
Ko, R Satisfies
SUppiag,r C ﬂ {(—AR +m2)7nf| felL? (R x R?’)}.

n>1

The proof of Proposition [f] is based on the following corollary of the Minlos theorem [23] and [41]:



4.3. REGULARITY OF THE SUPPORT OF THE REGULARIZED GAUSSIAN MEASURE 63

Corollary 2. Given a nuclear space E, i a measure on E’, and C its characteristic function, we
introduce a continuous inner product (-,-), on E and let Hy be the completion of E with respect to

(+,-)o- Suppose that C is continuous on Hy. Let T' be a Hilbert-Schmidt operator on Hy satisfying:
(a) T is one to one (injective map).
(b) E CImT and T~(E) is dense in Hy .
(c) The map T~': E — Hy is continuous.

Then the support of u is on (T~Y)*H} C E'. The notations (T~1)* and H} are used for the "adjoint"

and the "dual space" in the pairing between E and E’.

For a proof of this corollary see [23]- |41].

Proof. We apply Corollary 2] to E = S(R* x R3) & §(R") ® §(R3). This is a nuclear space which
is a tensor product of two nuclear spaces. See [42] for the proof that S(R™) is a nuclear space. The
theorem A.4.1 in [25] implies the existence of the Gaussian measure pp, g with covariance Cﬁo with
support included in 8’(RT x R3). We apply the corollary of Minlos’s theorem to the scalar product
(f,9)n = (f, P™*"g) where (,) is the usual scalar product in L? (RT x R%), and P = —Ap + m?. P"
is a unitary map from L?(R* x R3) into H_,, the completion of S(RT x R?) with respect to (,), .

First, we shall verify that the regularized covariance is continuous on H_,, for any n € N, that is

3C > 0 such that ¥, g € Hon i [(f,CR0)| < Cll Sl gl -

One can verify that the operators C’go and (—AR + m2)_n commute. Since (—AR + m2)_n is self-

adjoint, we obtain
(f,Chog) = <(—AR +m?) " (A +m?) PO (—Ag +m?) " g> . (4.3.1)

By the Cauchy-Schwarz inequality we obtain

3

(r.civa)| < [ (%3 |antm?)™ 1],

< |(car+m) el (—ar+mt) | L (432)

where for u € L2(RT x R3) we write

= ([ = e



64 GENERAL COUNTER-TERMS

and

—n 112
|(ar+m®)™ cp (~an+m?) |

::/ dzx
0

Again by the Cauchy-Schwarz inequality, we obtain

2
2

/ dy (~Ag +m?) 2" OB (p; ,y) / dz (~Ar+m?) " (p;y,2)g(z,p)
0 0

2

& 2n e —-n
/0 dy (—Ar +m?) C?f(p;x,y)/o dz (—Ar+m®) " (p;y,2)9(2,p)

o0 2 a2
S/O dy‘(—AR+m2)inC$°(p;x,y)) H(—AR+m2) 9’

L2(R+)
Therefore (4.3.2)) is bounded by
e T | Y
</0 m/o v|(=8rtml), O eiwn)] ) [(ZAR+m) ]| ey

We have

(~An+m?))" R (pie,y) = /1 dx e A (202 4 p? 4+ m?) " pr(Xi,y).

P)
Ag

Using the Leibniz formula we get

One can prove by induction

%k < = e_(w2§l)2> = A_kic'(k‘) <x — y>i < = e_(w2f)2>
* 2T A i VA 2T ’

where ¢;(k) € R, which implies that

(ﬁkpB(A;x,y)‘ < N Fpp(2);3,y)

Here ¢, is a positive constant. Therefore we find using (2.4.31)) and (2.4.32)) that

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

_ o —w w
agkpR(/\;x,y)‘ <cp A7 <pB(2)\;ac,y) +pp(2X\;z, —y) + 2/ dw e “pp (2/\;37, - y)) )
0

Using that

© dw _, _(sty+%2)?
2/ e Ve 2A =pn(Nz,y) —pr(A2,Y)
0 2T A
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we obtain

2 pr(X; @, y)’ <o AP (pB(2X2,y) + pB(2XN; 2, —y) + PN (2X; 2, 9) — PR(2A;2,))
< 2¢;, A Fpn(2X; 1, y),
and this implies that

2n
2n _ —
‘(*&3 +p* +m?) pR(A;w,y)‘ <20, Y AP +m?)* Fpy (22, y).
k=0

where C), := supj<j<,, Ck-

Therefore we obtain

S _ A 2n p2 + m2 2n—k  ,o0 (o2 )
‘(_AR +m?) CR‘J(p;x,y)‘ <Cn A" Y < © > /1 d\ e P Ipy (22X 2,y)
k=0 0 Az
where we used that

pr(T:2,y) < pN(Tia,y) V1 >0, Y(z,y) € (RT)?.
C,, and C,, are suitable positive constants that depend on n.
We have by Cauchy-Schwarz

2
o0 _p2+m2 ]
/ d\ e—)\(p2+m2)pN(2A;$’y) <e Ag /1 d)\e_)‘(p2+m2)|p]v(2)\;x,y)|2

1

A% A3
2+m2
S 4A0 e*p Ag /oo d)\ ei/\(pZerZ) 1 ei (z;)?{)z
V2T 0 V2T
UNg —Eipt PRIy
< —e¢ o —
T V2m \/p? + m?2
where we used ) )
BT <R V(a,y) € (RY)
Therefore we obtaine the following bound for the first factor from (4.3.5)
P2+m2
0o 0o 2 2 2 Y
</ dl‘/ dy‘(—AR +m2)2n Cﬁo(p;x,y)) ) < AgnJrl@ (p +2m > ¢ ° =, (4.3.9)
0 0 A )

where &P is a suitable polynomial with positive coefficients. All constants were absorbed in the poly-
nomial P, and we obtain the final bound for (4.3.1)) using again the Cauchy-Schwarz inequality w.r.t.

the momenta p,
Ao
‘<f’ Cr g>’ < On L2(R+R?)

=COnollflle_ - Nglla_, (4.3.10)

(—AR + m2)_n f’

[

L2(R+ xR3)
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The constant Cp, depends on Ag. To obtain (4.3.10)), we have performed the p-integral in (4.3.2)) using

the bound (4.3.9).

We apply Corollary [2| with 7= P~2: H_,, — H_,. The operator P~2 is integral with a kernel given
by

k(pia,y) = / v el | VPR C e
r+ 4(p? +m?) p?+m?2+c

2
y (e—\/p2+m2|y—u|+\/me—\/my+U> . (4.3.11)

p2+m?+c

Note that (4.3.11]) is bounded as follows

= VP rme )
k(p;z,y) < / du e~ VP +m?lz—u| € 5.
0 ( /p2 +m2 +C>

Remembering that P~ is bounded on L? (RJr X R3), we obtain

d*p n 2
Ikl = [ [ [ dodn |85 emd) " k)| < C gy (4312)

Using
3 1 oo 2
s < [ s . ( [ 6—2¢p2+m2w—u|>
R3 (27T) ( pQ + m2 + C> 0
d3 1
<C P < 00 for suitable C' > 0 ,

rs (2m)% (p? +m?)*

we deduce that T is Hilbert-Schmidt on H_,. Clearly, T is injective and 7! (8 (RJr X R3)) C
N (R+ X R3), which is by definition dense in H_,,. The other assumptions of corollary can be verified
easily. Since the dual of H_,, is the space H,, of functions whose image under P" is in L?, we obtain
the the Gaussian measure jp, g is supported on the set {Pz_"f, feL?RT x Rg)}. This holds for
any n € N* which implies that pa, r has its support within the set

N{(-ar+m) " 12 (R xRY)} .

n>1



4.4. BOUNDARY AND RENORMALIZATION CONDITIONS 67

4.4 Boundary and renormalization conditions

4.4.1 Test functions

Standard proofs of perturbative renormalizability by flow equations use inductive bounds on
the n-point correlation functions. These objects are no more functions if considered in the mixed
position-momentum space, but rather tempered distributions. We introduce tempered distributions in

S8’ ((RT)™) w.r.t. the semi-norms
n

1% @) |

i=1
where Mo (¢) = supg<, g<2 ||(1 + 27)026(2 H and 9,¢|,—0 = lim,_,o+ 9.¢ . The space §'((RT)") can
be regarded as the topological dual of the space

") = {x"(2)e(z) | ¢ € S(RM)}, (4.4.1)

with ¥ denoting the characteristic function of the space RT. For an extensive topological study of

the space $(RT) and its dual space §'(R™), we refer the reader to [42].

A AO will be integrated. In the sequel we will bound

We now introduce test functions against which S£
the CAS folded with test functions of the following form:

Let 1 < s < n, we define

7 :=inf 15 s where 193 = (72, ,75) with 7; > 0,
and similarly zo s = (22, -+, z5). Given ya, - ,ys € RT, we define
n
O as(22.5) : HpR i) ] xt(z) (4.4.2)
i=s5+1

where xt(z;) is the characteristic function of the semi-line R*. This definition can be generalized by

choosing any other subset of s coordinates among zs,- -+, z,. We also define for 2 < j <s
n
1
¢g(f, 25(’22 n) = pgz)(Tj;Zjazl;y] pR Tzazuyz X+(Z'i) (4.4.3)
Y
1=2,i#] i=s+1
with
1
P%)(Tj; zj, 21;Y5) = Pr(753 25, Y5) — PR(Tj5 21, Y5) - (4.4.4)

Our choice of the test functions is not optimal, in the sense that the proof of renormalizability given
in section holds also for larger classes of test functions indexed by a strictly positive parameter 7
such that

0%, (2)| <773 |¢r(2)] VzeRY, VYa>0.
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We choose a simple example of these functions, which are the Robin heat kernels. To go further one
could either prove (in a more functional analysis type of approach) that our test functions are dense in
the set of smooth rapidly decaying functions on R™ w.r.t. a suitable norm and that ?le ﬁAO (215 Pn; Pn)

are continuous w.r.t. this semi-norm.

4.4.2 Relevant terms and renormalization conditions

First, let us introduce some notations that we will be using through out the rest of this chapter:

/'—/ dz / '—/ dzg---dz /—/ v (4.4.5)
. : Rt ; - : (R+)n1 2 ny , . RS (27‘(’)37 4.

(Z‘wﬁn) == (Zlvpl)') e 7(Zn,pn)7 (Z,jvﬁb,j) - (ziapi)u e 7(Zj7pj)7 fOI' t <] . (446)

Given test functions ¢; € S(RT), we define

4
Dy (22, 23, 24) = H(bl(zz)
=1

The relevant terms in the bare interaction are fixed by renormalization conditions at the value A =0
of the flow parameter, all other boundary terms are fixed at A = Ag. To extract the relevant terms

contained in

gféAo z1,0¢2 : /ffAAO 21,0), (22,0)) d2(22) (4.4.7)
and
4
gl/,\éiAO 2170 (D4 = / QAAO 2170)7"' 7(2470))H¢i(2i)7 (448)
i=2

we use a Taylor expansion of the test functions ¢9 and ®4, which gives

L5 (2150:62) = ™ (21)da(21) — (1) (02 02) (21) + 40 (1) (02, 62) (21)
+l£éAO(Z1;<Z52) ) (4.4.9)
<6p25£ll7\2’A0> (Zl; 6; ¢2) = blA’AO (2’1)(252(21) + (ap2ll/}éA0) (Zl; (252) R (4.4.10)

£ (21,0 ‘1’4) = " (21)a(21)d3(21)$a(21) + 15 (21 Da) (4.4.11)
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Then the relevant terms appear as

af\AO (1) / &PAAO ((21,0), (22,0)), (4.4.12)
() = [ (1= B (1,00, (22,0)), (1.4.13)
z2
1
a0 (=) = 5 / (21 = 2L 5™ (21,0, (22,0)), (44.14)
2
) = [ o (5" (o) o) (1.415)
e
C?’AO Zl / gA AO Zl, )7 o 7(2470))7 (4416)
and the remainders ll 2 (215 02), ( O) z1; ¢2) and llAleO (z1; ®4) are given by
152 (215 2) = / / dt( a3¢2 (tza + (1= 1)z1) 215" ((2150), (22;0)) | (4.4.17)

<8p2l;}é/&o) (215 02) = /Z /0 dt Oyo (tza + (1 —t)z1) apz (591/7\271\0 ((z1,p), (22, —p))) ,

lp=0

and

1
lf}aAO (21;P4) = / gA 8((21,0), -, (21,0)) [/o dt Opda (tz2 + (1 —t)21) P3(23)Pa(24)

1
+¢2(21) /0 dt 03 (tzz + (1 —t)z1) Pa(za) + ¢2(21)P3(21) /0 dt Oppy (tzg + (1 — t)zl)} . (4.4.18)

Boundary conditions at A = Ag:

At A = Ay, we include the counter-terms that are required to make SB;} T;AO finite as the cutoffs are
removed (i.e. Ag — 400, A — 0). The form of these counter-terms is not known, but in any case
they must be local functionals not exceeding a certain dimension. Hence, this aspect of the boundary

conditions can be imposed at A = Ag:

LN (z1,pr) o (enpa) =0, V25 Za™ (21.0). (22, -p)) = 0,
4
glj}f’Ao ((Zlapl)v T (Z4ap4)) = (C;\O (Zl)(l - 6170) + )\5170) H(S(Zl N zl) ’ (4419)
=2

B0 (21, 9), (22, ) = (4 (20) + B ()R + 87 (21)0s, — A ()02, ) (e — 22), VI 1.

Renormalization conditions at A =0

The renormalization conditions are fixed at A = 0 by imposing

Q0A 0,A 0,A 0,A 0,A
a; 0 (21), 870 (21), A0 (21), b70(21), 0 (21)
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to be smooth functions in €°>°(R™), uniformly bounded w.r.t. Ag.
Typically all the renormalization conditions are assumed to be cutoff-independent. The simplest renor-

malization conditions are BPHZ-renormalization conditions, where we set for all z1 > 0
a?7A° (z1) =0, s?’AO (21) =0, d?’AO (z1) =0, b?’AO (z1) =0, clO’AO(zl) =0. (4.4.20)

These will be adopted in the following.

4.5 Proof of renormalizability

4.5.1 Notations

For n > 2 and 0 < r < 3, we define

s

AA | AA
Lpa (21550 O ) 12/ (21— 2)" L5 ((z1,p1), -+ (znopn)) [ [ R (Tis 2ivws) . (45.1)

Z2,n i=2

and for n > 3

s

FlQQlA/}?;AO(ZleQ;ﬁn;¢7I—%3’5,y375) = (21— 22)3/ gz/}ﬁAO ((z1,01), -+ (zaopn)) [ [ R (i 200 w) -+ (4.5.2)

Z3,n =3

For n = 2 we write

Fio# 5™ (21, 223p) = (21 — 22)* £5™ ((21,), (22, —p)). (4.5.3)

4.5.2 Results

In this subsection, we gathered the main results of this chapter. The following theorem establishes the

uniform boundedness w.r.t. the UV-cutoff Ay of the Robin correlation distributions:

Theorem 7. (Boundedness) We consider 0 < A < Ag < 00, 1 <s<n,2<j<sand0<r <3.
We consider test functions either of the form ([4.4.2)-([4.4.3), which are also denoted in shorthand as
O o, TESD. Brsn. - Adopting (4.4.20)) we claim

AA o
(4) [0 0 (i 0, )

e lwl—r A+m P T
< (A+m) T g <10g - >952< |12 )@1 <A+m> Fls (1) - (4.5.4)

D=

A+m

AA .
(B) ‘FHSBM ©(21, 225 P P8 )

—n A+m _‘n o
S (A + m)l 93 <10g m) @4 (m) J’sl’%;(; (A,T3’s) . (455)
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(€) [0V LA (21; s 91Y),) )

T72,5,Y2,s

1
|| —% A+m 7 T2
S (A + m)3 | |Tj 2955 <10g m> 956 <m> @2 (A—H’n) 9;£l;5 (7_2’5) . (456)

(D) The functions defined in , and together with their momentum derivatives are
in 8 (RT) w.rt z.

Here and in the following the P; and Q; denote (each time they appear possibly new) polynomials with
nonnegative coefficients. The polynomials Q; are reduced to a constant if s = 1. The coefficients depend
on lyn,|w|,d but not on {p;}, A, Ao and z1. Forl =0, all polynomials P; reduce to constants. In the
definition of , 0 > 0 may be chosen arbitrarily small.

Theorem 8. (Convergence) Let 0 < A < Ay < oo. Using the same notations, conventions and
adopting the same renormalization conditions (4.4.20) as in Theorem@ we have the following bounds

5—n—|w|—r
wepAAo .~ . R (A +m) ~ Ao+ m
8A08 gl»nﬁ'o (Z17pn7 ¢7—2,S7y2,8) < (AO + m)2 9)1 log m
1
= (Pl Nz [ T2
X Py <A gl T e F5(r2s)  Vn+|wl+r >4, (45.7)
8/\08’”3{\ 5 (205, —p; oF )
1
(A+m)> No+m\ = (lonll Nz [ ™7 A
<— Py (log——— | &P Fo. 4.5.8
- (A0+m)2 3 {108 m 4 A+m @)’2 A+m 2,l,5(7_2) ) ( )

A Ao .= R
BAOFIQQLWI (Zh 225 Pn; ¢73’S7y3,s)

A+m)P " - Ag+m\ = Dry
S M 935 <10g Om > 936 <1XH1—:_ l,n> %513;5(/&,7'373) Vn 2 2 y (459)
0

OnZi ™ (215 Py 95U )

T72,5,Y2,s

A 4—n 1 A
c@BEm 7 oodg <10g o+m>
(A0+m) J m

1
= (Bnll N g [ T2
T <A+m Gl Arm Fls(T2s)  Wn>4. (4.5.10)

Note that the integration of the bounds (4.5.7)) and (4.5.8]) over Ag immediately proves the convergence
of all 24 (2, fy; o

T2,svy2,s>

for fixed A to finite limits when Ag — oo. In particular, one obtains for
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all Aj > Ao and p,, € R?"

0,A .- . R .= . R
gl,n O(Zl,pn, ¢7’2,57?/2,3) - gl,n (zl7pn’ ¢7_2,Say2,s)

0,A},

0

mo" Ag+m\" = Pl = (T2
< A <log 0) P <Hp|]> Q| — | F1 (0,725, 21, Y2,5) -
m m m

Then the Cauchy criterion in €*°(R") w.r.t. to Ay implies the existence of finite limits to all loop

orders.

Remarks 1.

The bounds and are required to close the inductive argument in the subsequent
proof. The bound is the central result of the boundedness Theorem Ij needed later in
Thereom@ to prove the convergence of E&AO (215 D qﬁg’sm’s) i the limits A — 0 and Ag — oc.

The role of the parameter T as it appears in the proof, is to absorb negative powers of the flow

-
A+m

induction. This preserves the global power counting in terms of A + m.

parameter A by producing powers of that contribute to the polynomial Q at each step of the

The parameter § depends on the loop order I and it verifies 0 < §; < 41 < % For simplicity,

we omit the index [.

The value of the integral
/ dw 6, (4.5.11)
0

admits two possible choices, which are 1 and % These two choices are called respectively, the
weak and strong definitions of the Dirac distribution [43].

The subsequent proof uses the strong definition of the Dirac distribution. For the weak definition,
all the points of Theoremm hold except for (D). In the weak convention, the functions defined in
(4.5.1), (4.5.2) and (4.5.5) are in 6> (R™™) w.r.t. z1 and are not continuous at 0. One can

verify that the proof of renormalizability is independent of the chosen convention. This comes

from the fact that for a continuous function f, in both conventions, we have that

/Ooodz (/Ooodz/ 5(z—z’)> f(z) =/Ooodz f(2).

4.5.3 Useful lemmas

Before getting the proof of the theorems [7] and [§] we collect and prove some useful lemmas which are
used repeatedly in the inductive proof of the bounds (4.5.4)-(4.5.6)):
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Lemma 6. For allt, u, v andy in RY, 7 > 0 and some constant Cj 5 > 0, we have

u—of*

Ofpp (Tstu+ (1 — t)v,y)‘ < Chys
-

Proof. One can prove by induction that

(u —v)* tu+ (1 —thv—y
o (7

OFpp (Titu+ (1 — t)v,y) =

T

& PB (Té;tu + (1 - t)'U,y) .
2

> pa(Titu+ (1 —t)v,y) ,

where P, is a polynomial of degree k with at least one root for odd k. Therefore,

e 2(1+0)7

1 — )y —
T [ O

\/;_

u—of*

T

2

x )
The lemma follows directly with Cj, 5 := sup,cg |Pr(x)e” 143 425

Corollary 3. For allt, u, v andy in RT, 7 >0

Ju—ol*

Ofpr (Titu+ (1 — t)v,y)‘ <4 Chs
.

Proof. We recall that

NI

_ (tut(1—t)v—y)? 3

1+26

& PB (7_57tu+(1_t)v>y) .
2

o w
pr(752,2') = pB(732,2") + pB(T; 2, —2') — 2/ dw e "“pp (T; 5= Z’) -
0

Using Lemma [6] we obtain

k
u—v
o (st (1= 1), y)
2

‘@kpR (T5tu+ (1 — t)U,y)‘ < Cis
-

pa(7s;tu+ (1 —t)v,y) -

73

> w
+ pp (15;tu+ (1 — t)v, —y) + 2/ dw e™" pp (Tg;tu +(1—t)w,—y— )} .
0

For z, 2/, w € RT, we have

(242" +w/c)? (z+2")? (z—2")?
e_ 27 < 6_ 27 S 6_ 27 s

which implies

k
u —_—
Fpr (73 tu+ (1 — o, y) < 4 Cps "=

k
T2

c

pB (Ts;tu+ (1 —t)v,y).
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Lemma 7. For 0 < <1, we defineb =2 2 and let 0 < &' < 1 and A > A such that §'A2 > br—1.

1-26
For z1, zo and yo in RT and 7 > 0 we have

1+0

1
|21 — 22| pB <A2 ;21322>/ dt pp (Ts/5tz2 + (1 —t)21,y2)
I 0

2
<5 A1 =
>~ 05 PB (A%

146 /1426 1426 _AfG1-=)? s
DB (1\%321,22> = 116 pB( A?, ;21,22> e 2040 142

Since A; > A, we deduce

1446 _ 1426
|21 — 22| pB (/\2521722) <Cs A ! PB (A2§2’1a2’2> )
1 1

Proof. We have

__a? 5
xr e 200+8) 1425

with Cy == /122

Now, we bound

o0

1426 !
PB <A25 21,z2> / dt pp (155 tz2 + (1 —t)z1,52) -
1 0

For 0 < &' < 1 and &A% > br~L, we write

A% 2 1 2
— —(t 1—t)z —
Tro ) gyt - 0a )
A%‘Z1—22‘2 A%’Zl —2’2’2 1 2
= t 1—1t)z —
b + ) +T(1+5’)(22+( )Zl yg)
|21 — 22’2 A%|Zl — 22|2 1 2
> t 1—1t)z1 — .
S STE IR

For 0 <t <1, we have
|21 — 22| = |21 —tza — (L —t)z1| + |tza + (1 — t)21 — 22| .
Therefore, we write
%|Z1 — zo|? + [tza + (1 — )21 — 12

1

ﬁ‘zl —tzg—(1— t)21|2 +ltzo+ (1 —t)z — y2]2
1

> -

14+
’2?1 —Z/2|2

- 1+

(|21 —tzo — (1= t)z1| + [tza + (1 = t)21 — ga)?

; 21, Zz) p (L4615 21,10) .

(4.5.12)

(4.5.13)

(4.5.14)

(4.5.15)
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Combining this with (4.5.15]) and
1=z et A=tz —wpl* 1

1
g|21 — 2z + tza + (1 — )z — yo

o’ (1462 (14 8)2
we deduce that
A 2 1 21— wa* | A3|z1 — 2o
— —(t 1— — >
1+25(21 22) +7’(1+(5)(22+( t)z1 92) _T(1+5,)3+ 5

Hence, (4.5.14)) is bounded by
Cs pB <A2721722> pe (L + 8375 21,90)

which together with (4.5.13)), gives the final bound (4.5.12)). O

4.5.4 Proof of Theorems [7] and
Proof of Theorem [Tl

Proof. The bounds are proved inductively using the standard inductive scheme which proceeds upwards
in [, for given [ upwards in n, and for given (n,l) downwards in |w| starting from some arbitrary
|wmax| > 3. The induction works because the terms on the r.h.s. of the FE are always prior to the
one of the Lh.s. in the inductive order. So the bounds — may be used as an induction
hypothesis on the r.h.s. Once verified in the first induction step, we integrate the FE, where the terms
with n + |w| + 7 > 5 are integrated down from Ay to A because of the boundary conditions (4.4.19),

and the terms with n + |w| + r < 4 at the renormalization point are integrated upwards from 0 to A

using (4.4.20). We can write remembering (4.2.6))

A
awgl/}'f,ll\o (Zl’ 0 ¢7'2 s,Y2, a) = 81”32;1/\0 (Zl; 6’ ('b'g,s:yz.s) + /0 d)\ a 8w8/\ fo (Zl’ 0 (z)TQ s:Y2, s)
(4.5.16)

Once a bound has been obtained at the renormalization point, it is possible to move away from the

renormalization point using the integrated Taylor formula

w A,A() .= . R _ aqw A,Ao
a gl,’fl <Z17pn’ ¢72,s:y2,s) - 8 g (Zl’ O ¢7'2 5792, s)

+22pw/ E (0, 0725 (215 ts 08, ) - (45.07)

i=1 p=1
The induction starts with the pair (0,4) for which the r.h.s. of the FE vanishes so that

4

géﬁl\o ((z1,p1)s 7+ 5 (24,p4)) = )‘HX+(Zi) 321 — 2i)
1=2
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which implies for the test function qﬁf; oy, defined in l) that

S
A A —
Lo’ <21;p4;¢gs,y2,5) =M [ a2, ) - (4.5.18)
=2

Using the bounds (3.1.12) and (3.1.9)), we deduce that

s

s s
HPR(Ti§Zlayi) < 2SI_IPB (13321, 95) < 2°(1 +6)2 HPB (73,65 21, Yi) 5
i=2 i=2 i=2
which implies that can be bounded by a tree with no internal vertices and with a root vertex
z1 linked to the external vertices yo s, which is in agreement with the bound . The constants
are absorbed in the polynomial %, which is of degree 0 at the tree order.
(I) Bounds on the r.h.s. of the FE:
We want to establish the bounds

‘8A8wiPA’A° (Z1;ﬁn;¢§275,y2’5>‘ < (A+ m)37”7|w|7’" P (log

A+m
ln;r
1
HﬁnH T2 A
—_ — | F. s) , (4.5.1
X952<A+m @i 10 (T2,8) 5 (4.5.19)

. _ A+m
3AF12311}7;A0(21,22;P7L; OF )| S (A+m) TPy <log )

x 9)4 (A +m J‘&l;& (A7 7—3,5) (4520)

and

N0 L[" (213 s O, )

T2,5,Y2,s

1
| —% A+m 7 T2
< (A + m)2 | IT] 29"5 <10g m ) @6 <AA”Z_)’_ 7|/|n> @2 <A T m) GJ;}Z;(; (7'275) . (4521)

(A) In this part we consider the case r = 0.
(A1) Let Ry be the first term on the r.h.s. of the FE

S

Ry = // awgﬁ_;_/;?l_l ((Zn’ﬁn)v (va), (Z,a 7p)) C]/% (pa Zy Z/) HPR(7'2'§ Zis yz)
p J 22 n,2,2"

=2

which can be written as

. . 1 1
/CA(p) /R+ du awgs_i_AQ(:l_l (Zl;p7 —D; Pn; ¢g’s,y2’s X PR <2[\2a u, > PR (W’ y U)) . (4522)
p
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In (4.5.22)), we used (4.2.2) and the semi-group property (3.1.6) for pr. Applying the induction

hypothesis together with
g [ el |
A /e g <o), (4.5.23)
p

A+m

we deduce that R; is bounded by

o A+m 5]l 2
gy (g 2 ) gy (1L g (T2

1 1 s+2 e
X /R+ du/ Z Fs <A, {7'2,5, A% ZAQ} s T (21, 92,8, ws U, z)> . (4.5.24)

Z s+2
Tl_1 (21 3Y2,s 7“1“72‘)

In the sequel, the polynomials are mentioned without their lower indices. One should keep in mind
that these polynomials may have, each time they appear, different positive coefficients which depend
on l,n,|wl|,d only and not on py,, A, Ag, z1, m and c.

For any contribution to (4.5.24)) we denote by 2/, z” the vertices in the tree Tfff (21,Y2,5, U, u, Z) toO

which the test functions pp (%Ag;u, ) and pp (;—Xg; ',u) are attached. Interchanging fg and fu and

performing the integral over u using ([3.1.5)), we obtain

1+0 1+96 1+0
/+ du pp (XQ;Z/?U> bB (;/;2§U72”> <PB <;—2;Z’721/> <A
R

The vertices which become of incidence number 1 together with their adjacent line are eliminated and

this is justified by
146
/leB <A%;z',z”> <1. (4.5.25)

Hence, we obtain

1 1
/+ du Fg <A, {7’275, W’ 2[\2} ;ﬂs_ﬁ2§ 21, Y2,s, U, U) < 0(1) A Fs (A772,3391u,u7}i—i12§ Z17y2,5) s
R

where QiuuTlelQ is defined in section The constant O(1) accounts for the fact that the reduction
map Ry, is not injectiveﬂ Remembering (3.2.7)), we deduce

—n— A+m |77 7 :
< 3—n—|w|
|R1| < (A+m) P <10g E— > P < - 0]

X Y Fs (M 726 T3 21, 4,5) - (4.5.26)
Tl5

The reduction of two different trees in 9'15_*12 can possibly yield the same reduced tree T7’.
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(A2) Let us now consider the second term on the r.h.s. of the FE (4.2.7)). Without loss of generality,

we restrict our analysis to the following term from the symmetrized sum

AN :
Hz:= / / awlglhnf—‘rl((zl’pl)v"' v(Zn17pn1)a(Z7p))8w3cll%(p;zaz/)
2o J 2,2
AA
X 8w2gl2,n§+l((zn1+17pn1+1)7 ) (Znapn)7 (2,7 _p))(b‘g,s:yzs (227") ’

. . . A,Ao A, Ao . .
in which the arguments (z;,p;) appear ordered in gll,mﬂ and Elgmﬂ. Proceeding as in (A1), we

rewrite Rg using (3.1.5) and the notations (4.4.6) as follows

— — 1 wa
Ry e / du / / awlszﬁ’ﬁfm(zm,pm),<z,p>>pR(Q;z,u)ascﬂp)
R+ zom J 2,2 ’ 2A

AA - . 1
X aw2352:n§+1((zn1+1,n7pn1+1,n)> (Z/, _p)) @@,S,yls (22,71) PR <2A2, u, Z/> .

We define
5o oy = { 17 pr(mizroty). si(n) =m —1 if s > m
[ _5pr(7r; 20, yr), s1(n) =s—1  otherwise
and
Hi:nlﬂ pr(Tr; 2r, Yr), S2(n) = s —mny ifni<s<n
Sy (Zrir1n-1) = 8 [1Zn, 1 PR(Ts 20 0), s2(n) =n—my —1 if s=n

H:}:nl—l-l X+(ZT‘)7 32(”) =0 if s <nj.

Then Ry can be rewritten as
o 1 .
/ /Gwlfﬁl‘ﬁfﬂ <21§p1,n17p3 By (n) X DR <2A2; U>) 9" CA (p)
Zn Ju
wa cp N, Ao — " 1 /
x 0 glg,n2+1 Zn; =Py Pni+1n5 ¢52(n) X PR W; u, z ¢n(zn) (4527)

Applying the induction hypothesis to both terms in (4.5.27) and using (4.2.3)) we obtain

- _1

A+m A+m

1 1
X / , / > Fs, (Aa {Tz,slmmaw} Tt %21792,51(n>+1’u>
2 u so(n)+2

/Ivlsl (n)+1’ T‘l
1 2

o 1 s2(n)+2
T, (Ao g3z T ) ) (1529
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with s(n) = s if s < n, otherwise s(n) =n — 1.

Interchanging the integral over v with the sum over trees we obtain

o A+m 1l 3
< (A4+m)> g (1og =——
2| < (A+m) 95<0g m >Q&<A+m @ A+m

X Z G‘}lss (A, 72,53 Tls; 21, y2,s) )

s1(n)+1 ps2(n)+ds,n+1
Ty (1 T )

with the following explanations:

e The integration over the root vertex z, converts z, into an internal vertex. If s = n, then
zpn is also attached to the external vertex g, and the total number of external vertices is then

s2(n) 4+ ds.n + 1. We denote the obtained tree by AR Therefore, using (3.1.9)) we write

l2
/ G‘}ég <A7 Tni+1,s(n)s Tl?(n)v 2, Yn141,5(n)> u) ®n (Zn)
Zn

1 = Ssnt1
< max(l,ngg) Fs, <Av {Tn1+17s(n)v 2A2} ;TlS;(n)Jr " ;Z”’ynl+175(”)’u> : (4'5'29)

The number of vertices of incidence number 2 of 727" ™! is increased at most by 1 by the

la
integration over zﬁEl Hence, we have

Z(n) + 2+ 5s,n
5 .

" S
V22 S w22+ 0c(z,)1 < 3la — 2+

e Any contribution in the sum over trees 7T} (Tl‘j1 (n)Jrl,TlZ?(nH&s’"H) is obtained from Tlsl1(n)+1

and lez(n)ws‘"ﬂ by joining these two trees via the lines going from the vertices 2’ and 2” to u,
where 2z’ and z” are the vertices attached to w in the two trees. Using (3.1.5)), we obtain

1+ 047 1+ 99 14 03
/upB <2A2$Z/,U> bB <2A2§U7 Z”) <O0(1) pB < A2 2, 2"

so that the new internal line has a parameter in the interval [A, Ag] over which the sup is taken
in the definition of F and d3 := max (d1, d2).

e The total number of vertices vo with incidence number 2 in the new tree obtained after integrating

out u is equal to vo 1 + D22 so that

2+6
s1+s2(n)+2+ s,n§3l_3+§

U2+501,1§3l_4+ 9 27

%if and only if initially z, is a root vertex of incidence number one.
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which proves that T’ (Tsl(n)H, TsQ(n)+65’"+l> belongs to J,°. Using the bound (3.1.9)), we there-

l2
fore conclude that

e A+m Al
< (A 3—n—|w| 1
[l < (A +m) 975<0g m >95<A+m @ A+m

X Z C}(sg(AvTQ,S;I}S;Zl?yQ,s) .

(B) We consider now the case r # 0:
For the first term on the r.h.s. of the flow equation (4.2.7)) the bounds are established exactly as in

(A1). For the second term we proceed similarly as in (A2). We pick a term on the r.h.s.,

wi cpN,A = _ wa S 1
Lo (Gt G 68, (2000 G0 <2A2 “)
udzop, Jz,z
wo A, Ao / 1 ,
x (Zl o Zl) d gb no+1 ((Zn1+1’p"1+1)’ T ?(Zn’pn)v (Z 7_p)) PR W;U,Z )

In the case where ¢ < ny the proof is the same as for » = 0, up to inserting the modified induction

hypothesis for
guigpiiho Y 1 .
l1,n1+1;r Zlvpn7¢31 X PR wv'vu
- (21— 26 O LI (Zars By (202) 8 (22m0) P (5153 200
) . 1 li,ni+1 n1yPny s1\#2,n1) PR N2’ .
311

If i > n; we assume without restriction ¢ = n and proceed again as in (Az) to obtain the bound

A+m Han 3
3—n—|w|
(A+m) P (log m ) 95 m Q m

r s1(n)+1
X/ /|Zn_Z1’ Z <Aa{7—2 s1(n)s 2/\2} T 1 ;zlay2751(n)7u>
Zn JU l.52(n)+2
2

s1(n)+1
Tl R

1 sa(n)+2
X 9:52 <A, {Tsl(n)+1’s(n), 2[\2} ;7}22( )+ y Ry Uy Ynq+1, 0 7ys(n)> QSTL(ZTL) .
We bound .
zn — 21| < Z |va — Va—1] , (4.5.30)

where {v,} are the positions of the internal vertices in the tree 77 (T} (m)+1 TZZQ (n)+55’”+1) defined as

in (Ag), on the path joining z; = v and 2, = v, . Using the inequality (3.1.10|) for 7 = A—lz, we obtain
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for ¢’ such that 9 < &' < %

1+0

1446
r 2 —r
— P < - .
_ 5 1] < _
|vg — vg—1] pB< A i Vay Vg 1> O(1) A p3< A2 $ Vay Va 1), (4.5.31)
T T

and this implies (4.5.19) with a new parameter ¢’ < % Note that the cases s = n and s < n are treated
as in (Ag).

The previous reasoning holds as well for aAFlgiPlA 7;/\0(21’ 22} Dn; gbf; s S), where z5 takes the role of z,.

After absorbing all constants in %, we obtain

w — n—|w|—r A+m n
Ny (213 P 07,y )| < (A )T 9( )9 /\Hil'n)

2
x @ <A+m> Fl5(2) . (4.5.32)

<(A+m) "o (”’"”) P <log A;m) F13 (A, s)  (45.33)

AAo .7 HR
8AF12gl7n (Zla 225 Pn; ¢7'3’S,y373) A+m

and ¢’ := max (01, d2, d3,9). The bounds for (4.4.12)-(4.4.16))

a0 (1) < (A +m) ' P <log A+m>, (4.5.34)
1020 (21)] < (A + m) P <log A ;m> , (4.5.35)
060 (21)] < (A +m) L (log A+m), (4.5.36)
OAdM M (21)] < (A +m) ' P <log A+m>, (4.5.37)
1045200 (1) < P <log At m) (4.5.38)

are obtained on restricting the previous considerations to the case s = 1, in which all the coordinates
z9.n are integrated over with n =2 or n = 4 and the momenta p,, set to 0.

(C) In this part, we bound aAawgglﬁ;AO(zl;ﬁn; gbg’(ﬁ;%) As compared to (A), the only case which
requires new analysis is the bound on the second term from the r.h.s. of the FE (5.4.1)) in the case

j > s1. Then we assume without restriction, similarly as in (A), that j = s. The term to be bounded
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corresponding to (4.5.28)) is then for s > ny

—n—|uw| g A+m p |70l 7_%
3—n—|w|
(A +m) (log m ) <A +m @ A+m

/ Z Fs <A7 {7-2,"17 2/\2} TnhL 1215 yQ,nl?“)

n1+1 52+1

_m? 1 1
X e 242 / Fs <A, {T31+1,31, 2/\2} ;TZZZJA; Zsaylerl,sbu) |p§2)(7_s; Zs, 213 Ys)| »  (4.5.39)
Zs

m2 .
where s := s —n; — 1. We factorize e 247 from the derivative of the flowing propagator C* (p) to be

able to use the following bound in the sequel

m2 22
(Ad+m)e 222 < CA, C:=|(l+2x)e 2o - (4.5.40)

To bound (4.5.39)) we telescope the difference pg)(Ts; zs, 21;Ys) along the tre TlS(Tl’l“H, TI‘ZQH) sim-
ilarly as in (4.5.30). We then have to bound expressions of the type

1+9
p3< AZ $ Va— 1,va> | PR(Ts3 Va, Ys) — PR(Ts3 Va—1,Ys)] (4.5.41)

where v,_1 and v, are adjacent internal vertices in I}S(T}Tlﬂ,ﬂfﬂ) on the unique path from z; to

ys. Taylor expansion of pr(7s; Ve, ys) gives

1
PR(Tsi Vas Ys) = PR(Ts; Va—1,Ys) +/ dt (Oepr)(Tsitvg—1 + (1 — t)va, ys) -
0

Lemma [6] implies that for all 0 < §' < 1, we have

|Ua - 'Ua—1|

Vs

1
1
!p%)(fs;va,vafl,ys)l < Cis / dt pp(Tss;tva—1 + (1 —t)va,ys) -
0

Therefore (4.5.41)) is bounded by

-1 146 !
Cl,6 Ts ° ’Ua - Ua—l‘ PB <A2a Ua—lﬂ’a) / dt pp (Ts,é’; tvg—1 + (1 - t)vaa ys) . (4'5'42)
1 0
Introducing for 26 < 1,
142
h=2 L{
1—26

we distinguish between the two cases:

3The tree T} (TZTH, Tf:“) is obtained by joining TITH and Tf;“, by suppressing their respective external lines

(2',u) and (2”,u) and replace them with the internal line (z’, z"").
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e Case (1): 0'A%2 < br; !
Using (4.5.40)), we obtain
1
b\ 2 1

m?2 _1
(A +myP—r—lule 5 < ¢ <5> (A4 my2nlul 3

The tree T} (Tlsllﬂ,Tl“;QH) is obtained from the two initial trees by joining them via v and we
bound
1
PR (20 213 00)| < PR (Ts; 26, 6)| + [PR(Ts: 21, 1)] (4.5.43)
Here pr(7s; 21,ys) is associated to ¢s(zs) = 1, and the integration over z, in ]}S(j}?1+17ﬂzg+1)

is performed similarly as the integration over z, in (Az). This implies that for &A% < br; !,
(4.5.39)) is bounded by

L 1
b\ 2 el —% A+m D, T2

e Case (2): 0'A%2 > br?

Using Lemma [7] we obtain the following bound

1+9 !
Ve — Va—1| PB T? Va—1,Va dt pp (75,5’3 tva—1 + (1 —t)vg, ys)
I 0

_ 2
<C; A" pp (AQ;Ua—lava> pB((1+ 076 va1,9s)
1
which implies that (4.5.42)) can be bounded using (3.1.5) by
~1_—3 1 1 "3
CsCrs A7y P | 325V ¥ | PB | 323 ¥ a1 ) PB((L+0)77si Va1,4s) -
v I 1

Choosing ¢’ such that (14 6')3 = 1+ 6, that is §' = % + O(6?%) and using (3.1.9)), the final bound
obtained for (4.5.41)) reads

_1
O(1) 75 A1 /pB

v

(i?;%w) PB <1;—;;U7Ual> PB(Ts.5;Va—1,Ys) - (4.5.45)
In the second case, the bound implies that the incidence number of the internal vertex v,_1
has increased by one unit in the tree T : Tl’flﬂ, Tf;“) by attaching v,—1 to the external vertex ys.
Furthermore, we integrate over zs in (4.5.39). If in the new tree:

a) zs has ¢(zs) > 1, then z, takes the role of an internal vertex of the new tree.

b) zs has ¢(zs) = 1 we integrate over zs using (4.5.25) so that the vertex zs disappears.



84 GENERAL COUNTER-TERMS

Note that the case a) implies that ve, the number of vertices of incidence number 2 of the new tree is

at most increased by one. Namely, vy verifies the following bound

s1+s2+2
2

Hence, the new tree belongs to 9;°. As a consequence of the bounds (4.5.44)) and (4.5.45)), on replacing

again s — j we thus obtain for n > 2

1
2 _1
<((5) rer) i emrrie

1
A+m ﬁn T 2 o
x 9]5<logm> 9><AH+ l|n> ©<A n m) Folo (22) -

All the constants are again absorbed in the polynomial @ .

(D) To prove (D) we use (4.5.22) and (4.5.27) to show inductively that

Vs + Bey1 < Va1 + 29+ 1+ Goay1 + 001 <3l — 4+ +1=31-2+ ; (4.5.46)

ONO L] (23 B 9520, )

$:Y2,s

AA .
aAawgl,?”L;T’o (Zl’pn7 ¢7P2757y2,s) (4547)

and
3AF125511},;A0 (21, 22; Pn; ¢gys,y3’s) (4.5.48)

are 8> (RT) w.r.t. 21. For , we will integrate from A to Ag and for we integrate from
0 to A for n+ |w|+r <4, and from A to Ag for n+ |w|+r > 5. The details of these integrations can
be deduced from (II,a) and (IL,b).

(IT) Integration of the FE:

From the bounds on the derivatives 8/\8“’&’7/1\’ ’lgo(zl; Dn; (b'g,s:yls) we verify the induction hypothesis by
integrating over A. In all cases, we need the bound which we recall

F25(1as) < Frls(ras)  for Ay < Ay

s

a) Irrelevant terms:
Using the boundary conditions (4.4.19), the integration from A to Ag for n + |w| + 7 > 5 gives

AA .= . R
’8“)3 O(Zl,pnaﬁbrz,s,yzs)

Ln;r
A+ A i
< (A 4—n—|w|—r 1 m Pn T S’}"A. s
< (A+m) P | log - P Atm Q Arm 10 (T25)

AA .= ARG
‘@wgﬁl,n (213 P ¢T2,(s],342,s)

<A+m)P g <log - )97» (/\”iﬂn> Q <A+m> For(T2)

ol
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and

. _ A+m ,
P oo i o8 )| < ) (1o 22 Y o (LB 522 0

(b) Relevant terms:
(b1) n =4,w =0,r = 0: We start from the decomposition (4.4.11))

gl{\iAo (21; 6; @475) = ClA’AO (Zl)q)47s(21, 21, Zl) + ll/}iAO (21, ‘1)4,3) , §< 4 , (4.5.49)
where
() = / dzsg L5 ((21,0),+ (24, 0))
(R+)3 ’
and
4
Dy (22,23, 24) = Hqﬁi(zi), ®i(zi) = pr (135 2i,yi) if 1 <s, otherwise ¢;=1.
i=2

From the renormalization conditions (4.4.20)), we have for all l > 1 and z; > 0
?AO (21) =0.

Integrating (4.5.34)) from 0 to A at zero momenta then gives

A
)l <9 1og 22
m

We decompose the test function

Dy 5(22, 23, 24) HPR Tis 20y Yi) = Pas(21, 21, 21) + (22, 23, 24) (4.5.50)
where for s = 4
4 j—1 4 '
(22, 23, 24) : Z HPR Tf,z1,yf)p§%)(7j,zj,zl ;) H pr(Ti; 2i, i) Z(]ﬁf;’fjg)ﬂ,s(zgz;) (4.5.51)
j=2 f=2 i=j+1 j=2

where we used the notation (4.4.3). Note that if ¢; = 1 for some ¢ which corresponds to s < 4, then
the corresponding contribution to the sum vanishes.

Using (4.5.50) and the linearity of glAﬁAO w.r.t. to the test functions, we deduce that

SglA4 (21503 Bu ) = 0 (21) B (21, 21, 21) —1—311,\4/\0(21;6;1/1) .
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Therefore we have llA;LAO(zl; Qy,) = i/’lAiAo (z1; 0; ¥), and hence the FE (4.2.7) provides

1

AA
Ol ;0 (215 Pays) = 2/ V(22, 23, 24)
z2 472,2

I:/EZA?% (2170)7"' ,(Z4,0),(Z/,—]{?)) C(}%(k;zaz,)
) Z Z [ 111\7[2;)+1 21?0)7'"7(2”1’0)7(270))6%(0;%2/)

l1+l2 I n1+no=4

AA
$l2:n§+1((z',0),'.. ,(2470))Lsym} . (4.5.52)

The r.h.s. is a sum over expressions similar to 8AE£ZA 4’A° (21, qﬁg(f éz,s) analysed in part (C). We obtain

in the same way as there the bound

1

_ 1 A+m T2
< (A 27739 (1 FA (25 -
<@ +m) o (gt )@(Mm) Bis(m20)

)aAlf}thO (21: Pys)

Integrating from A to Ag and majorizing (A +m) " by (A +m) ™", we obtain

1 1
T2 A+m T2
= <A+m> 7 (log m ) “ <A+m> Foo(72)

which gives the bound for llA;lAO (21, ®4,s) . The bound is extended to general momenta using the Taylor

formula (4.5.17)).
(b2) n=2,r = 0,w = 0: We start from the decomposition 1’

)llA,;LAO (21; Pus)

25 (2130:02) = a0 (20)da(21) — 5170 (2)0h(21) + AN (1) (1) + 15 (21:62) L (45.53)

where ¢2(22) := pr(72; 22,y2) . Using the renormalization conditions (4.4.20)) and integrating (4.5.35))-
(4.5.38) from 0 to A, we obtain

A+m

’alA’AO(zl)‘ <(A+m)? o <log (4.5.54)

) ’ ‘SfvaO(m)’ <(A+m)P <10gA+m>

and

’df\’Ao(zl)( <P <logA+m> :

(4.5.55)
1
Since |¢h(21)| < 7y 2d2(21) and |¢h(21)| < 75 *h2(21), we obtain
1

2

o] < rm? | ) 9 (log S

A+m

i > $2(21)
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and

1
2

‘d?’Ao(zl) /2/(21)‘ < (A+ m)2 ATi- — p <log

For the irrelevant part of the two-point function we have

'S 1 1—¢ 2
N (215 62) = / dz / a ¢ - V086 (120 + (1 — £)22) LS ((21,0), (22,0))  (4.5.50)
0 0 .

o0 Vo1 =1)233¢s (b + (1 — )z
_/ dzg/ dt ( 21 ) ¢ ((22_2(:1)3 ) ) 8AF125211}2’A0 (21,22;0). (4.5.57)

The bound (4.5.33]) for n =2, r = 0 yields

‘8All/}éA0 (213 ¢2)‘ <(A+m) P <log

x/ 9’1(;2) (A; 21, 29)
22

A—I—m)

/1 gt (1= )2 03pR (ro3tz2 + (1 — t)z1,2)
0 2' (2’2 — 21)3

Using Lemma [6] we obtain

Ly -3 A+
a0 < (4 m) 2, E o (1og )

1
< [ P i) [ dtpa(rmsitaa+ (1 Do)
zZ2 0

Remembering (3.2.39) and (3.2.46|) we have

(A; 21, 29) Z Fr(N T 1.(12). $ 21, 22)

71.(12)
H / » 1+5Z 5 » 1+(52 ;
B\ 95 1”1,21 ) "PB| w5 ”?n,*2
z Af A7

l
3l—4 [
1<I/<n n

n—1{A1, |A<AIV <Ao}

314

146

< Z sup bB ( —1_2 aZhZQ) (4558)
= (A1, [A<AL, <Ao} A7

1

where A, := (3)_, AI_VQ) 2. The sum (4.5.58|) stems from the fact that the double rooted trees have
all their internal vertices with incidence number 2. Their number vy is constrained by the relation
() § 3l —

Using Lemma [7] together with

pr(Tos;tza + (1 —t)21,42) < 2 pp(ras;tea + (1 —t)z1,92) ,
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we obtain for A2 > bry 1

_3 A
oatt i o] <7 F (A )20 (1o 2

) pe ((L+0)72;21,92) - (4.5.59)

As before, we choose ¢’ = g + O(62) such that (1+ )3 = 1 + &, which implies that
A+m

_3
)OAZQ’IAO(zl;qbg)‘ <7y (A+m) 2P <log )pB(TQ,g; 21,Y2) - (4.5.60)
For 6’A2 < br—! we use

OALS™ (213 62) = ONZ5™ (21:0,0; d2) — Ona ™ (21)da(21)
+0rs) M (21) B (21) — O™ (21) 5 (1)

and the bounds (4.5.32)) and (4.5.35)) to (4.5.38)) to obtain

AA A+m Tﬁé oA
‘aAzM O(zl;cbg)’S(A—i—m)g”(Iog —a | g | s () (4.5.61)
Since §A2 < b1 we have
b\ 2

3 _

’3Alz[}éAo(21;¢2)‘ < max(msﬁﬁ <5,> )(A—i—m) ?
« 9 (1og 2™ ) @ r FL () . (4.5.62)

& m At m ) S22 o

Combining (4.5.60) and (4.5.62) and using the bounds (3.1.9)), we obtain for all A > 0,

3
b\ 2
laAlﬁéAo(Zl;%)’ < maX<m3,T_% <> ) (A+m)~?

5/
Ad+m 7'7% A
x P | log Q Fy1.5 (T2) . (4.5.63)
m AR

Integrating from A to Ag using (3.2.61)) gives
3 1
b\ ?2 _ A+m T2

3 3
max <m377'2 (%) 2> _1
A+m T 2
AT m)p (A + m)2975 <10g - > Q ( ) OJQAJ.(; (12)

A i _1
< (A+m)*P <log ;m> Q (AT+2m> OJQAJ;(S (12)

nlw

‘l;\,}AO (Zlv ¢2)‘ S max <m37 T

IN
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where Q(z) = (1 4+ 2%)Q(z). Again, all the constants were absorbed in the coefficients of 9. This
concludes the proof for n = 2,7 =0 and w = 0.

To establish the bounds on 8“’&/’”’7,0(,21;]5’”; ¢2) for r € {1,2}, w=0and r =0, w = 2, we expand

the respective test functions as follows,
L5500 (2130,0:02) = =5 (21)62(21) + 4 (1) (05, 62) (1)

+/ dZQ/ dt(1 — )07 da (tzo + (1 — )21) (21 — 22) 25" ((21,0), (22,0)) ,
0 0

5911}2’;[;0 (21:0,0; ¢2) = diA’AO (21)P2(21)

o] 1
+/ d@/ dt s (t2n + (1 — )21) (21 — )P L™ ((1,0), (25,0))
0 0

(5™ ) (21:0,0:60) = bA’A0<z1>¢2<zl>

Y R A T I T C e (BRON E)))
p=0
The bounds on the relevant terms are given in (4.5.54)-(4.5.55)), and the integration of the remainders

is performed in a similar way to the integration of BAZQ ,le (215 ¢2) . We obtain

D=

AA - A+m T or
5% e (1 - )] < 4+ m) (1o Y (T ) ).

1
A+m T 2 o
<% <log - > Q <A+m> J£1;5(72) )
. A+m T
‘02 AAO(Z1;0;¢2) < 9 <log m > @ (A—i—m) 9?2%5(7'2) ‘

The extension to general momenta is performed using the Taylor expansion of Fle Z’Ao(zl;(),(); (1 —
29) ) for r = 0,1,2 w.r.t. the variable p € R3.
Finally, note that for

‘gA AO

~—

21; 6; (Zl - 22)2¢2

D=

657 (20) = pr(T; 22, 42) — PR(T; 21, 42) = P2(22) — Pa(21)

we have
25 (2130,00087) = 59 (21)(0:102)(21) + 4 (1) (02, 62) (1) + 15 (2150,0:0) . (4.5.64)
Proceeding again similarly as before - see ([4.5.57), (4.5.60) and (4.5.61]) - provides

1
AA 2 A+m T2\
‘Sﬁ (2150, 05 6 ))‘ (A+m)m, 2o ( - >® <A+m> Foss(T2) -

The extension to general momenta is done by Taylor expansion. This ends the proof of Theorem[7] [
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Proof of Theorem

Proof. The proof of Theorem |8 follows the same steps of the previous proof. The case (n,l) = (4,0)
evidently satisfies the claim (4.5.7). We integrate the system of flow equations (4.2.7) and derive
the individual n-point folded distributions (4.5.1) w.r.t. Ag. We denote the r.h.s. of (4.2.7) by

8"““9{;\1’1% (Zn, Pn). The relevant and irrelevant terms are bounded separately:

I) Irrelevant terms: n + r 4 |w| > 4: For these terms, we use the boundary conditions (|4.4.19)) which
imply

Ao

AN = AA -
- awglﬂ"t;’r‘o <Zl7pn’ ¢7I'—z2,s:y2,s> = A d)\ 8w9{l,771;7(‘) (Zl;pn; ¢‘§2,S7y2,s> : (4565)

Hence, differentiating (4.5.65) w.r.t. Ay gives

wcp Ao .7 4R _ awgpNo,No .7 IR
_aAOa Sfl,n;r (zl’pn7¢72,57y2,s) =0 9il,n;r (Zl’pn’quQ,s,yQ,s)

Ao
—l—/ dA 8/\0(91“9%[)‘;,\7? <21§ﬁn3¢§23,y23) . (4.5.66)
A m; 5992,

For the first term on the r.h.s. of (4.5.66|), the only contributing term is the non-linear part on
the r.h.s. of (4.2.7)) because of the boundary condition (4.4.19)). Using Theorem E we obtain as
before the bound

wgp ANosAo .= R
‘8 gil,n;r (lepnv¢‘rg7s,y2’s>

1
—n—|w|—r Ao +m Dn T?
< (ot (1o 2 ) o (D ) (A+m> Tt (T2

Remembering that n + |w| 4+ r > 4, we deduce that for all 0 < A < Ag we have

wap ANo,Ao .~ . 4R
‘6 gil,n;r (Zl’pnv¢72,s,y2,s>

(AP Aot o (I Y g () g
< - o '
< (Ao + m)g P | log — 9P At m Q A Fs (12.5)
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Now, let us treat the second term on the r.h.s. of (4.5.66)). We have
w 7 = 1 w 7 = :
o0 R () =5 [ [ 080 () 220, (2 =B) C (2. 2)

1 / / B - ]
B 2/ DD oo NN (G ), (2,2)) 9 Co (s 2, 2)

z l1,la n1,n2 w;

AA - -
X 8w2$lz,’n§+1<(z/7 _p)7 (Zn1+17n7pn1+17n)):|
rsym

1 ! / B B )
-3 / DD e [0 N (B ), (2, 2)) D C (12, )

l1,lag n1,n2 w;

AA - _
X 8A08W25812:n§+1((2/a -p), (zn1+1,nvpn1+1,n))} )
rsym

pP=—-DP1—" " —DPm :pn1+1+'”+pn7

where we used that d,C% (k; z,2') = 0 and the notations of ([#.2.7). Using Theorem EI and the
induction hypothesis (4.5.7)), and following the same steps of the proof of Theorem El we get

wep Ny Ao .7 . AR
aAoa Qil,n;’l” (Zlﬂpn’¢7—2,57y275)‘

(A + )b lwl=r Ao +m IS 3 N
< 20T oF '
< (Ao + m)g P | log - 9P At m Q A Fs (12.5)

Integrating from A to Ag and using (3.2.61)) together with

A+m) P<(A+m)7h, VA<, (4.5.67)

we obtain a bound on the second term on the r.h.s. of (4.5.66f), which is of the type (4.5.7)).
(4.5.9) and (4.5.10) are proved following the same steps.

ITI) Relevant terms: (n,r, |w|) = (4,0,0), (n,r,|w|) = (2,0,0) and (n,r, |jw|) = (2,0, 2):
The FE equation (4.2.7) differentiated w.r.t. Ag provides inductive bounds on the relevant parts

in these cases. As before, we integrate from 0 to A the following bound

Ao+m
- .

107ne ;"0 (21)] < (Ao + m) 2P (log (4.5.68)

Remembering that the renormalization conditions (4.4.20]) are independent from the UV cutoff

Ag, we obtain

A+m) Ao +m
oy Moy < BEM) g (1 ) 4.5.69
et (e < (e (g 20 (4569
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Proceeding similarly, we deduce the bounds for the remaining relevant terms

0,00 (2)] < mg& <log AO;”) , (4.5.70)
104,20 (21)] < MQ <log AO; m) , (4.5.71)
100, d0 (21)] < sz (log AO; m) , (4.5.72)
|Opg 5™ (21)] < mgé <log W) : (4.5.73)

In the case n = 4, we use the decomposition (4.5.49) together with (4.4.3), (4.5.10) and (4.5.69)

to deduce the bound

2

= _1
><97°2< )l >él< rC )GJSAJ;(;(TQ,S). (4.5.74)

A+m A+m

wcep\,A A,
Ong 0L (215008 ) )| < o)

Atm) o <log Ao +m)
m

For n = 2, we use the decomposition (4.5.53)) and follow the same steps as in part b2) of the
proof of Theorem [7] Using (4.5.56)) and the bound (4.5.9), we obtain for all 0 < §’ < 1,

Lol —10)203¢ (tzg + (1 —t
oL i) = [ - t@(f?_( 021 g P (21,0, (25,0))
2 Jo ! z9 — 21)

Ag+m

1
< (Ag+m)*P <log ) / Fils (A2, 22)/ dt pr (To55t22 + (1 — t)21,92) -
29 0

Following the same steps as those used before, we obtain

-3 _ Ao +m _
‘GAOZQ’IAO(zl;qS)‘ <7y 2 (Mg +m) 2P <log Om )pB(Tgﬁ;zl,yg) VO'A% > bryt (4.5.75)

where we choose as before &' = §/3 + O(52).
For the case §'A? < bty 1 the bound is obtained as in the proof of Theorem EI by using the

decomposition (4.5.53|) which yields
8A8A0ll/,\éA0(zl§ p2) = 3A8A0311}2’A0 (21; 0; ¢2> — OnOro a0 (21)pa(21)
+ 0605, 0 (21) (2, 62) (21) — OnOrgd; 0 (21)(02, 62) (21) -
Using the induction hypothesis (4.5.7]), we obtain as in (4.5.61))

1

A+ m)? Ao+m T, 2
8AaAol[/7\éAO (ZI;QZ)Z)‘ < M@ (log Om ) Q Aj_im

A
Fos (T2)
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Since 'A% < b7'2_1 we find
OrON T (21, 60)|

1
o (bD\A (A +m)? Ao +m T, 2
4 2 2 A
Smax(m \ Ty (5') )( ) 9“(10g = )@(A m)?‘u;& (1) . (4.5.76)

Integrating from A to Ay (with Ay large enough), we obtain

EVeD Ao
3Aolg,’zA0(Z1, ¢2) = / dX Oxnoly 1 (21, 62) +/ dX OxOnoly1 ™ (21, 62) -
A v
Using (4.5.76]) we obtain
byTa

7

X1y (21, 62)

1
o [(b\?) (A +m)! Ao +m Ty 2
S max <m4,7'2 2 <6I> ) W@s <10g Om ) @(A i m>oj2/§l75 (TQ) )

which can be bounded by

A

1

((/\er))?@ <1°g m ) @ Aj—im Fons (1) - (4.5.77)
0
We have
o AA 7y 2 Ao
/b 1 d)\ 8)\8]\0[2”[ 0(217¢2) = 8A0l267l 2 (217(252) ) (4578)
ZTo 2

5/

Using (4.5.75) for 6'A? > b7y !, we deduce that

<

1
(A +m)? o <log A0+m> Ty 2

Ao
/ d\ 8)\81\0[977/\0 (Z17 d)Q) (A + m)2 A +m
0

1
b -~
AE

Fous (12) . (4.5.79)

(14.5.77) together with (4.5.79) imply that for all 0 < A < Ag, we have

A+m)3 Ao+m T.
‘8Aolé\,}AO(Zla¢2)‘ < ((Ao—l-m))2@ <10g Om >® Aim

1
2

A
Fops (12) -

This concludes the proof for n = 2,7 = 0 and w = 0. The case n = 2, r = 0 and w = 2 is treated
similarly. Extension to general momenta is again achieved via the Taylor formula (4.5.17). Note that
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compared to the proof of Theorem [7] we don’t need extra bounds for the cases n = 2, r = 2 and
n = 2, r = 1 since they are not required to close the inductive scheme. The bounds (4.5.70))-(4.5.73))
leading to convergence are obtained using only the FE together with the inductive hypotheses (4.5.7))

and (4.5.8) in addition to the bound (4.5.4)).

Thus, the proof of Theorem [8|is complete. O



Chapter 5

Multiplicative renormalization of the
semi-infinite model: Surface

counter-terms

5.1 Introduction

In chapter [, we proved the renormalizability of the semi-infinite model. We considered BPHZ
renormalization conditions and found that the semi-infinite model is renormalized by adding five po-

sition dependent counter-terms to the bare interaction given by

Lo () = i!/m dz g Bz ¢ (2, x)

+% /R dz /R 3 &Pz (aAO(z)gsz(z,x)—bAO(z)Gb(Z’x)Axéb(zax)

— @M (2)9(2, )2 (z, 2) — 8™(2)(2, 2)(9:6) (2, ) + ch%zw(w)) . (5.11)

In the present chapter, we prove that there exists a particular choice of renormalization conditions for
which the counter-terms appearing in the effective action are separated into bulk and surface counter-
terms, in the sense that the effective action can be written as the sum of counter-terms which are
independent of the considered boundary conditions and others denoted by "surface" counter-terms
which absorb the divergences that result from the presence of the surface. More precisely, as it appears
in — the different propagators of the semi-infinite model can be decomposed into a
bulk part Cp which is similar to the translationally invariant ¢} theory propagator and a surface
part Cs, which accounts for the presence of the surface and depends on the considered boundary

condition. The central idea of this chapter is to decompose the correlation distributions into two

95
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parts: a part which is associated to Feynman graphs with Cp propagators, which we call the "bulk"
correlation distributions, and a second part that corresponds to Feynman graphs with at least a surface
propagator Cs,. These will be denoted by the "surface" correlation distributions and are the object
of study of this chapter. The aim of this approach is to be able at the end to prove that the counter-
terms are position independent, and furthermore relate them to those of the translationally invariant
theory. A motivation to our approach is related to the critical behaviour of the semi-infinite scalar field
model which was studied extensively in [1,/2,)22]. The theory of bulk critical phenomena suggests that
the number of independent critical exponents should follow directly from the number of independent
renormalization functions (i.e. Z functions). This correspondence between the critical exponents and
counter-terms suggests that some of the counter-terms are the same as those which renormalize the
translationally invariant theory, while the remaining ones are new counter-terms which result from the
presence of the boundary and can be associated to the independent surface critical exponents.

In this chapter, this correspondence is made explicit but only partially and this for the following
two reasons: the first reason concerns the surface critical exponent of the ordinary transition (i.e.
Dirichlet b.c.). For Robin and Neumann boundary conditions, we establish that two surface counter-
terms are needed to make the semi-infinite model finite which correspond to the two surface critical
exponents. For Dirichlet boundary conditions, the theory of critical phenomena implies that a single
surface exponent which follows from the anomalous dimension of the derivative d,,¢(x,0), characterizes
the ordinary transition. Following |22] the counter-term corresponding to the Dirichlet surface critical
exponent can be retrieved by renormalizing the theory with the insertion of the operator 9,¢(z,0).
In this work, we do not consider this insertion and we focus our study on the renormalization of
the (non-inserted) connected amputated Schwinger (CAS) distributions of the semi-infinite model.
We find that no surface counter-term is needed to renormalize the semi-infinite model with Dirichlet
boundary conditions. This follows from the fact that the renormalized non-amputated connected
Schwinger Dirichlet n-point functions with a point on the surface vanish. The second point which
is missing regarding the correspondence mentioned above, concerns the bulk critical exponents. The
latter are associated to the counter-terms which renormalize the translationally invariant scalar field
theory. However, in the context of this work, the bulk counter-terms are defined as those needed to
renormalize the ¢} theory in R with an interaction restricted to the half-space. In chapter EI, we
show that this theory is renormalized by adding the translationally invariant ¢ theory counter-terms
and two surface counter-terms which are independent of the half-space boundary conditions. This will
complete the proof of the independence of the counter-terms from the position in the space.

The technique of our proof is based on constructing a solution to the flow equation of the semi-

infinite model derived in chapter {4] such that the bare interaction has the following form (in the case
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of Robin boundary conditions)

AOvAO 3 4 2 —lsAoz 2, 2,
)= [ s [ (5 00+ pal (6 in) - 5o (ol a)0.0(5.0)

—§bg°(z)¢(z,;p) 2P(z,2) — *dAO( )p(z,2)02¢(2, x) + il i (2)9" (2, :v)>
1 4, O
" /R3 & (25% +cep ) $*(0,2), (5.1.2)

where ¢ denotes the Robin parameter associated to Robin boundary conditions.

The chapter is organized as follows. In section we review the basic setting by recalling some

basic properties of the regularized Robin, Neumann and Dirichlet propagators. Section [5.3]is devoted
to define the scalar field theory in R* with a quartic self-interaction restricted to the half-space Rt x R3.
The CAS of this theory obey the standard flow equations of the ¢j-theory in R*, with the exception
that the z , 2/ integrations appearing on the RHS of the flow equations are restricted to RT instead of

the full space R. The bare interaction corresponding to this theory reads

Ao,Ao 3 4 2 _ESAO . .
= [ e [ (5 6+ g (60 - 3o (I 000e.2)

S B DIA( ) — S (ol 2)020(e0) + e ()0 0)).

where a%(’ (2), s%‘)( ), bg‘) (2), dg‘) (z) and cg‘) (z) are the bulk counter-terms which can depend (smoothly)
on z since the interaction breaks translation invariance. In section [5.4] we construct the surface cor-
AA n: . associated to the boundary condition x. Section is the central part of
this chapter. We present Theorem 0] which contains the power counting for the connected amputated
Schwinger distributions (CAS) § st /_\*0 as well as their boundedness w.r.t. to Ag. Then, Proposition

proves that the Dirichlet surface correlation distributions can be viewed as the limit of Robin surface

relation distributions S

correlation distributions when the Robin parameter ¢ is taken to infinity. Theorem [J] together with
Proposition [6] imply Corollary [ which states that the Dirichlet surface correlation distributions when
folded with Dirichlet heat kernels are irrelevant. In section [5.6] we explain how the minimal form
of the bare interaction is deduced from Theorem El First order calculations in perturbation
theory [44,45] suggest that the amputated theory is renormalized differently w.r.t. the non-amputated
one in the sense that the tadpole needs more counter-terms depending on whether one of its external
points is on the surface or not. We explain this in more detail to all orders of perturbation theory in

section 5.7} In section 5.8 we collected technical lemmas which we use in the proof of Theorem [9}
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5.2 The regularized propagators

We denote by x the type of boundary conditions considered. For 0 < A < Ay, we recall the
regularized flowing propagator associated to the boundary condition x € {D, N, R} given by:

1
A2
CAM(py2,2") = /1A dA pe (N2, 2) e AW+, (5.2.1)
A3
(5.2.1) can be rewritten as
(5.2.2)

O (2, ) = O™ (ps2,2) + CEM (932, 2).

where
1
v
O™ (p;2,2) = /A X pg (N 2, 2) e A FPH?) (5.2.3)
A712
0
and
Az 2,2
CQ;AO (p; Z, ZI) = /A dA Psx ()‘7 = Z/) e—)\(p m )7 (524)
) 1

Az
AO

with the surface heat kernel pg, defined as p, — pp and pp defined by (3.1.1). In the case of Robin

boundary conditions, the surface Robin heat kernel is given by
1
- z’) : (5.2.5)

1 . Iy . 1 . / > —w .
DPS,R ﬁw&z ‘= DB pa'zv—z —2 0 dw e bB pwza_*

Note that the Robin heat kernel and pg r are uniformly bounded w.r.t. the Robin parameter c. Namely,

we have using
PR (T; z, z') <4 pg (T; z, z') . DSR (T; z, z’) <3 pg (T; z, —z’) , (5.2.6)
for all z,2’ > 0, 7 > 0 and ¢ > 0. Similarly, we also have
(5.2.7)

pp (152,2) <pn (1:2,2') <2pp (7:2,7).

In the sequel, we denote the derivative of the flowing propagators w.r.t. A by
CMps 2, 2') = O (2, ) = CA(p) pu (g2, (5.2.8)
[ » <y 8A [ [l ° A27 ) 9 e

2,2
"X and e € {x,{S, %}, B} with x € {D, N, R}.

2 T3
- A
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5.3 The bulk theory on the half-space R* x R3

5.3.1 The Action and the Flow Equations

We consider the theory of a real scalar field ¢ with mass m on the four dimensional Euclidean space-
time R*. The regularized flowing propagator is given by (5.2.3). Note that for A — 0 and Ag — oo
we recover the unregularized propagator. As in section we define the theory rigorously from the

functional integral

A B (3.1)

Ly 0)=0.

) Ao

. A A . ..
Here, the Gaussian measure du 5 0 is of mean zero and covariance hC'z"°. The test function ¢ is in

880 which in particular implies that it is in ‘€*° (R4). This regularity stems from the

the support of dyuy
UV-regularization determined by the cutoff Ag.

The functional LAO’AO (¢) is the bare interaction of a renormalizable theory including counter-terms,
viewed as a formal power series in h. It contains the tree order interaction and the related counter-
terms. The interaction is supported only on the half-space Rt x R3 which implies that translation
invariance is broken in the z-direction (the semi-line). This implies that the counter-terms may be
z-dependent. In general, the constraints on the bare action result from the symmetry properties of
the theory which are imposed, on its field content and on the form of the propagator. It is therefore

natural to consider the general bare interaction

e =g [ [ oty [ do(ah @ - i (0ol 8.00.0)
— dy’ (2)(z,2)029(2, ) — 53 (= >¢<z,x><az¢><z,x>+f,c3< )6 (2, a:)).

Here we supposed the theory to be symmetric under ¢ — —¢, and we included only relevant terms
in the sense of the renormalization group. The functions a%o(z), bg}’( ), c%o( ), d%o(z) and s%‘) (z) are
supposed to be smooth.

The flow equation (FE) is obtained from (5.3.1)) on differentiating w.r.t. A, see section and
[11,130,{46]. It is a differential equation for the functional Lg’AO

) 'Aé)LA’AO 1,6

)
v AANo AA
2(5¢ CB5¢ — Ly C

A Ao ANAoy _ - _

Lty . (5.3.2)

We expand the functional LA Ao (¢) in a formal power series w.r.t. A,

AA() Zhl AAO
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Corresponding expansions for ago (2), bgo(z)..., are a%o( )= > hlal 2(2), etc. From L;}g}o (¢) we
obtain the CAS distributions of loop order [ as

AN o AA
%lﬂl 0 ((217 5131), M) (men)) = 5¢(z1,m1) T 5¢(zn,:fcn O|¢ 0>

where we used the notation dy, ;) = d/0¢(z, z) .

In the pz-representation, we set for r, r1 and ro € N*

D (2135 @) 1= /M s (1= 2 BN (e p), - G pa) G2(22) - b))

(5.3.3)

%lj};l/;\rolg,(ri;j) (2151771; (bn) = /( - dZQ’n (21 — Z,L-)"'l (Zl — zj)rzg,bll,\é/&o ((21,;01), .. ,(Znapn))
R n
X ¢o(22)  dn(zn), r1+re=r, (53.4)

and forr =0

D0 (215 P @) 1= /( iyt 12 D ((21.01), 3 (200n)) d2(22) -+ Gn(20) - (5.3.5)
Here we denote N
q)n(z27 ) Zn) = H d)i(zz)
=2

and

o" A Ao
56(z1,p1) - - - 66(2n, ) L5 (0)lg=o0 -

The distribution §(3) (p1 + - - + pn) appears because of translation invariance in the x directions. The
FE for the CAS distributions derived from ({5.3.2)) are

5(3) (p1 S p”)%l]}:\o ((lep1)7 oo (Zmpn)) — (27r)3(n71)

050 D ((21.p1), (205 Pn))

/RJr dz /R+ dz' /aw%l[le\(;1+2 Zlapl)"" 7(Zn7pn)7(zak)7(zl7_k)) C’g(k;zaz/)

st [ 5 Y S [T, (o) G (2O 2.

l1 lon1,n2 w;

X 8w2g££§+1((2/ —p),- - a(Zmpn))}

’
rsym

P= Pl Puy = Prust + P (5.3.6)

For the notations, see after (|1.1.18)).
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5.3.2 Test functions and boundary conditions

The n-point correlation "functions" EJZ{\T’LAO when considered in the pz-representation are tempered

distributions which belong for fixed 7, to the space 8’ (R™) w.r.t. the semi-norms

1% @) |
=1

where MNa(¢) := supg<, g<o (1 (1+ 2)02p(2 H and 0,¢|,—0 = limzﬁm 0,¢ . Our method of proof
relies on inductive bounds deduced from the flow equations (|5 . The induction restricts our choice
of the test functions. To proceed inductively we cannot admit any arbitrary test function in § (R*™).

Let us give the set of test functions we will be using in the sequel: For 2 < s < n, we define
T:=infm,, where 7o 5= (12,---,7s) with 7, >0,

and similarly 2o ¢ = (22, -+, 2). Given (y2, - ,ys) € R5~1 we define

n
¢7—2sy25 225 . HpB Tiﬂz’bayl H X+<zz) 9 (537)

i=s+1

where yT is the characteristic function of the semi-line R™. This definition can be generalized by
choosing any other subset of s — 1 coordinates among 2, - - , 2z, . The characteristic functions x™ are
introduced in order to be able to extract the relevant terms in the sense of the renormalization group
from the full n-point distributions and to get inductive control of the local counter terms. Following

section the relevant terms contained in

D50 (1:0:02) = [ D (21,0, (22,0)) () (5.338)
22
and
4
I (21:0: ) = / DI (21,00, -+, (20, 0)) [ 66(20) (5.3.9)
2 =2

are extracted by using a Taylor expansion of the test functions ¢o and ®4, which gives

D50 (2150, 05 62) = a5 (21)2(21) — 515 (21) (D=, 62) (1)
— A0 (21)(92,0)(21) + 5o (215 62) (5.3.10)
(angzlféAo> (2150,05 ) = b5 (21)a(21) + (apzzl,é ) (z1:02) | (5.3.11)
D0 (2130, ,0: @) = " (21)a(21)d3(21)du(21) + [ (213 Pa) - (5.3.12)
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Then the relevant terms appear as

apy° (1) = /OOO dzs D5 ((21,0), (22,0)), (5.3.13)
s?é\o(zl) = /Ooo dza (21 — ZQ)QD;}Z’AO ((21,0), (22,0)), (5.3.14)
di’(z1) = —% /OOO dzy (21 — 22)° D5 ((21,0), (22, 0)) , (5.3.15)
b (1) = /OOO dzs 0, (5™ (21,0), (22, _p)))|p=o’ (5.3.16)
Cf\BAO(Zl) = /0"0 dzodz3dzy %117\41\0 ((21,0),- -+ ,(24,0)), (5.3.17)

and the remainders llAéAg (215 ¢2), <8pzllA§A§> (215 ¢2) and llA;lAg (z1; ®4) can be written as

lAQABg) Zlad)Q / dz 2/ dt

(0,158 (21:62) = /0 dzs /0 ldt Ou (122 + (1= £)21) By (D15 ((21,), (22, -9)) )

a3¢2 (t22 + (1 = £)20) D5 ((2150), (223 0)) | (5.3.18)

|p:0

and
AA
11’4’39 (21; (1)4)

1
= [ D0 a0 | [ 2 2+ (1= )20 s

1 1
—|—¢2(zl)/0 dt at¢3 (tZg + (1 — t)zl) ¢4(Z4) + (bz(zl)(by)(zl)/o dt 8t¢4 (tZ4 + (1 — t)Zl):| . (5.3.19)

Boundary conditions at A = Ag:
The bare interaction implies that at A = Ag

D (21,0), (22, ) = (@ (21) + B (002 = sl (2002, — dip (20002 ) 6(z1 = 2) |

1
923{}2’/\0 ((z1,p1), -, (24,p4)) = <)\51,0 + e (z)(1 - 51,0)) [T6¢1 = =) .
i=2

gpho-ho ((z1,p1)s + , (Znypn)) =0, ¥n>5. (5.3.20)

I,n

Renormalization conditions at A =0 (BPHZ renormalization conditions):

The renormalization conditions are fixed at A = 0 by imposing for all z; > 0

a?go( 1) =0, s?’go(zl) =0, d?”g“(zl) =0, b?ﬁo(zl) =0, cg’go(zl) =0. (5.3.21)
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These will be adopted in the following. Note that the boundary conditions are invariant under the
three-dimensional Euclidean group.
We will need the following result, which we do not prove. The proof can be performed following the

same steps as in the proof of Theorem [7]in chapter [

Proposition 6. For0 < A< Ap<o00,1<s<n,2<i<nand0 <r <3, we consider test functions
of the form ¢r, 4, (22.s), which are also denoted in shorthand as ¢r, , 4, -
Adopting (5.3.20)-(5.3.21]) we claim

A Ao; (i L.
‘a’”%mf ( )(ZlapTH ¢7'2,s,y2,s)

A 7 -
< (A +m)tlvlrg (log ;m> Py (AHZ L) Q (AT+ -

=

) Fhs(ras) s (5.3.22)

Lnsr,ro (7«'13 Dn; ¢’T’2,51y2,5)

1
—n—|w|—ri—r A+ in 2
< (A4 mytn-tul-ri—ra gy <1Og mm> P (/\Hiﬂ;) Q! (AT+m) F5(rs) » (5.3.23)

‘aw A Ao; (i)

and 8”@;&#\7«0;@‘)(21;5}1;ngz,s,yZS) is continuous w.r.t. zy. Here, P; and Q; denote polynomials with

non-negative coefficients which depend on I, n, |w|,r, but not on {p;}, A, Ao and z1. The polynomials

Q; are reduced to a constant if s =1, and for l = 0 all polynomials P; and Q; reduce to constants.

The weight factors F2, 5 (795) are defined in Section

5.4 The Surface correlation distributions

5.4.1 The semi-infinite theory

In this subsection, we recall the flow equation of the semi-infinite massive scalar field model pre-

sented in chapter [}

8,\31”31{&7;/;\*0 ((z1,p1),-- -, (Zmpn))

1 .
= 2//;/}6810%;\_7{\’%—"_2;* ((prl)v U a(vapn)a (Z,k'), (Zlv *k)) Ci\(k;zvz/)

1 / / y o
- 2//;2 Z chi {8 lg£:£f+1;*((zl7p1)v"’ 7(Zn1pn1)7(z7p))a 3C£(p;z,zl)

ZJz l1,lg n1,n2 w;

AA
X 6w2gl2’n§ﬂ;*((zl’ —p), - ,(Zn,pn))]

;
rsym
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where CMA0 (p;2,2') is defined in (5.2.2) and S£ZA7’L{X*° ((21,p1),- -+ , (2n,Pn)) denote the semi-infinite

correlation distributions at loop order I and with n external points. The x index refers to the type of

considered boundary conditions, namely Dirichlet, Neumann and Robin. In chapter 4, we imposed the

following mixed boundary conditions:

o At A =Ap:
LA (21,0), (22, =) = (0 (20) + B0 (20)p? = 10 (210, — A0 (21)0, ) (21 — 22)
4
Lo ((21,01), 5 (24,90)) = Ay + 2 (21) (1 = b10) [ [ 621 — 21) -
=2

SEA()’AO ((Z17p1)7 o )(vapn)) =0 ’ vn > 5. (542)

In;x

e At A = 0: We impose BPHZ type renormalization conditions. Namely, for all z; > 0 we set

a0 (1) =0, s0(n) =0, d(z1) =0, b30(21) =0, (1) =0, (5.4.3)
where
oo = | " B (21,00, (22,0)), (5.4.4)
s (1) = /0 ) dzy (21 — 22)2)5° ((21,0), (22,0)) , (5.4.5)
dp 0 (z1) = —% /OOO dzy (21 — 22)* %50 ((21,0), (22,0)) (5.4.6)
b (21) = /0 Tz 0,2 (szlgfj ((21,p), (22, —p)))lpzo : (5.4.7)
CQLAO(Zl) = /000 dzadz3dzy iﬁﬁi;ﬁo ((21,0), -+, (24,0)). (5.4.8)

This yielded five position dependent counter-terms which appear in the bare interaction of our semi-

infinite model

Li\o,/\o(qb) — i\'/R+ dz /R3 B ¢4(z,:p) + ;/R+ dz /R3 d*x (a£0(2)¢2(2,3§)

= 520(2)8(z, 2) Ard(z, ) — A0 (2)$(2,2)02H(2,7) — 520(2)d(2, ) (0:0) (2, ) + %CQO(ZW(Z’ w))-
(5.4.9)

In chapter [4] we saw that imposing constant renormalization conditions w.r.t. the position z at the
scale A = 0 is at the expense of obtaining position dependent counter-terms. In this chapter, we would

like to reverse the process in the sense that we aim to obtain position independent counter-terms by
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transferring the position dependent part to the renormalization conditions. Our strategy is based on
extracting the surface counter-terms from the semi-infinite counter-terms by separating the bulk and
the surface effects. Concretely, we proceed by subtracting the bulk correlation distributions defined in
Section from the semi-infinite correlation distributions and study the behaviour of the difference

to which we refer as the surface correlation distributions. Namely, we write

SEA (20, 7)) == L0 (Zns D)) — D150 (2 ) - (5.4.10)

Lny* KR In

The definition ([5.4.10f) allows to write the FE verified by SlA Ao which we give explicitly in the next

nykx ?

subsection.

5.4.2 The surface correlation distributions

Before getting to the mathematical definition of the surface correlation distributions, let us give a
brief motivation of our approach based on a diagrammatic approach to the renormalization problem
of the semi-infinite scalar field model. The propagator associated to the b.c. x can be decomposed

into a sum of the two contributions given in 1} where C’g’AO is the regularized bulk propagator
which is responsible for the singularities arising from coalescing of points and C’g’*AO is the part which

is responsible of singularities arising when a point approaches the surface. Therefore, an arbitrary

Feynman diagram of the semi-infinite model can be written as the sum of a diagram which contains

Ao only, and other diagrams which contain at

least one surface internal line given by the propagator C’é\’:\o. Renormalizing the massive semi-infinite

only bulk internal lines consisting of propagators Cg

model then amounts to renormalizing the diagrams with only bulk internal lines and those with at
least a surface internal line. This approach has the advantage to disentangle the surface divergences
from the bulk divergences. From the renormalization group point of view, we proceed similarly by
writing with (:Z;};LAO (resp. Sl/,\ ;L/,\f) consisting of all connected amputated diagrams with n
external legs and [ loops involving exclusively C’g’AO (resp. Cg’AO and at least one C’g*‘/\o) Using

the flow equations ([5.3.6) and ([5.4.1)), we obtain the flow equation verified by the surface correlation
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distributions SlA 7’1/,\*0 ((Zny D)) :
) awsfn 0 ((Zp, Pn))

/ /8wSlA f?z+2* ((ZnsPn), (2, k), (2, k) CMk; 2, 2')

/ /8w%lA11X(3z+2 ((Zay D), (2, K), (2, —k)) C§ . (k3 2, 2')

-3/ zzz%

2,7 l112 7r17T2 wg

AA - o . AA
[awlsh,nf+1;*((zm Br)s (2,0)0" CR (i 2, 2) 028,00 1 (2 =), (Zry Bina))

+ DN (Zry By ), (2,0)0 O3 2, 2') 02820 (2, D), (Zrys Ba)
+ O SE0(Gry Bry)s (2,0)0" CR(pi 2,200 D0 (2, —p>, <z7r2,ﬁm>>
O DY (G ) (2,0))0™ O, (532,200 B0 (2 =), G )
P=-—P1— " —Pn, =Pnit1 7+ +Pn, (5.4.11)

where we used the shorthand notation (Zr,,pr;) = ((2j,p;)) j,,- The prime restricts the summations

to Iy + lo = I and the double prime to the partitions (my,m2) € %m. For the tree order [ = 0 we have
A Ao .
80,4;* ((217]71), ) (347]74)) =0. (5412)

The existence of SlA;lAO ((Zn,Pn)) is ensured by (5.4.12) and by the flow equation (5.4.11)) through

induction in n + 21 and in [ for fixed n + 21.

5.4.3 Boundary and renormalization conditions

For ¢1 and ¢, in §(R™T), the relevant terms are contained in
AN A A
S5 (0,0) = / SN (21,00, (2,0)) 61(21)a(22). (5.4.13)
21,22

They are extracted from (5.4.13]) by performing a Taylor expansion of the test functions ¢; and ¢o
around 0 which gives [T]

S5 (0,0) = 5101 (0)62(0) + €1 (0) (D) (0) + K2 62(0) (D61 (0)
150 (f1, ) . (5.A.14)

1(8n¢)(0) =lim.0(0:9)(2)
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AAo  AAg

Then the relevant terms s, e, and h?;AO are obtained as

Ao AA Ao AA
Spx 0= / SZ,Q %((21,0), (22,0)), €l 0= / 29 81,2 °((z1,0), (22,0)),
21,22 21,22

BN = / 21 5N ((21,0), (22,0)) . (54.15)
21,72
Bose symmetry implies that

/ 2 slféﬁ()((zl,()),(@,o»:/ 21 S5 ((21,0), (22,0)) (5.4.16)
21,22

21,22

so that the counter-terms e;};AO

llAéj-x*O (¢1, P2) has the form

and hf,\jKAO are equal to all orders of perturbation theory. The remainder

lﬁw@@g:(/ am&ﬁ%@ﬂ»wnﬁﬁmmﬂm@mn@
A,Ao ! _ 2
wm/smwmwm%wuw@wm>
1,22 .
mm/s%wmwm%ﬁaw@wm>

AN !
= 0u00©) [ 21850 (1.0 (2.0) [ a (10 020) (120

21,22

1
+00)0) [ 2 85 (1.0 (2.0) [ at (10 @0n) (20)

21,22

+ /Zl’z2 Sl/,\éﬁo ((21,0), (22,0)) (/01 dt (1 —1t) (8752%) (tzl)) X (/01 dt’ (1—1t) (at%@) (t’z2)) '
(5.4.17)

In the sequel, we use the following notations. For x € {R, N, D}, we write

S
Aog,A - AA
8w§l’,r?;*;$l7r2 (pnv ¢T17S,y1,s) = / 27{125281“%77;;*0 ((Zlupl)) Ty (Zn,pn)) HPB (TM Ziy yZ) )
21, 20

i=1

s
Ao, A — AA
awsl,qg;v*;(r)l,rg <pn; ¢:1,syy1,s> = / zil 252811)81,71;*0 ((z17p1>7 ) (Znapn)) Hp* (Ti; Zi, yi) .
21,7 20 i=1

The boundary conditions imposed on SlA Ao are the following;:

nik
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e At A = Ay, we impose for x € {R, N}

S ((21,0), (22, —p)) = 5p0 002, 8y + €10 (82,0, + 0L, 02,) , WIZ 1, (5.4.18)
Ag,A
SO,%;*O ((Zl,p)v (227 _p)) =0,
SN (70, 70) =0, Vn >4, VI>0. (5.4.19)

e At A =0, we fix the renormalization conditions for x € {R, N} as
sy =0, e =0. (5.4.20)

lyx

e For Dirichlet boundary conditions we impose

S (s P)) =0, Yn>2,¥1>0. (5.4.21)
Remark 2. - The boundary conditions (5.4.18)-(5.4.21) together with the flow equation (5.4.11

and the tree order define uniquely the surface correlation distributions
A Ao
Sl,n;* ((zl’pl)v"' 7(Zn7pn))7 * € {DvRvN}

This can be verified inductively by taking the difference of two solutions of the flow equation which

obey the same boundary conditions (5.4.18)-(5.4.21) and by proving to all orders of perturbation

theory that this difference vanishes.

- We would like to emphasize w.r.t. (5.4.10) that we do not require any a priori knowledge on

the semi-infinite correlation distributions iPlAT;{iO to give a meaning to §ho

Lk - The flow equation
5.4.11) together with the bulk correlation distributions defined in Section the tree order
and the boundary conditions (5.4.18)-(5.4.21) are sufficient to define uniquely the surface

correlation distributions. The relation 5.4.1{1) implies the flow equation to be verified by ghdo

Ln;*

such that the sum

A A A A
%l’éo_‘_g 3430

l,n;x

1s a solution to the FE .

5.5 Results and Proofs

Our main result is summarized in the following theorem:
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Theorem 9. (Boundedness) Let 0 < A < Ay < oo and (r;, s) € N? such that 0 <r; <4 and0 < s <n.
ForY,, € R®, x € {R,N} and adopting (5.4.18)-(9.4.20) we claim

A D,
S (A + m)S—’ﬂ—T‘1—T‘2—|’lU| 951 <log :;Z’rn> 932 <||p||>
_1
2

A7A0 =
awsl,n;*;ﬁ,rz (pn7 (b'rl,sayl,s)

A+m

T A0
x Q <A+m> Fois (T1s), Vn>2. (55.1)

Here and subsequently P; and Q; denote polynomials with non-negative coefficients which depend on
l,n,|w|,d,r1,re, but not on {p;}, A, Ao, m and c. The polynomial Q; is reduced to a constant for s =1,
and for 1 = 0 all polynomials P; reduce to constants. The parameter § depends on the loop order | and
verifies 0 < §; < 911 < 1.

As a consequence of Theorem [9 we have:

Proposition 7. For fizted 0 < A < Ag < oo, 7> 0 and (y1,- -+ ,yn) € (RT)", we have:
n n
AvA = . . J— 1 A»A = . .
SIJL;B (pn? 1—[1 PD (Ti? E yl)) - CE?OO Sl,n;]% (pTH 1_[1 Pr (Ti7 ) yz)) ’ (552)
1= 1=

where the parameter ¢ denotes the Robin parameter.

Corollary 4. For Dirichlet boundary conditions, adopting (5.4.21) and the assumptions of Proposition

[@ we have

n
Ao [ =
SimD (pn; [1»o (-, yz-)) ‘

i=1

N

n A+ 7 -
< (A+m)P "oy <1og mm) P, (A”i ﬂn) @, <A7+ m) FA0 (i), Vn=4, (55.3)

and for n = 2 we have

2
AN
$13.0 <p, —p; [[ o (735, m)) ‘

i=1

1
o, -1 1 A+m Ip| T2 A0
<(A bty 2o (] P Fy . (554
<@rm b b (et o (Ve () e 65

Theorem 10. (Convergence) Let 0 < A < Ag < oo. Using the same notations, conventions and

adopting the same renormalization conditions (5.4.18)-(5.4.21]) as in Theorem@ and Proposz'tionm we
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have the following bounds

A+ 4—n—|w|—r1—r2 B Ay + R —»n
B N (W CEUA P
(ho+m) m Atm

1
x T 2 )\ _AD
xQ (A + m) J{s,l;(s(Tle)’ Vn + ’w| +ri+re>2, %€ {N, R} . (555)

AA =
(A) {08008,y g (P Brr )

AAo (= . D
(B) aAOSl,n;l%(pn’d)Tl,myl,n)

Ad+m d=n Ag +m)\ = 5, ~ - ‘
= ((A+7)n)2 . <1°g Om> 72 (M) @ <A+m> FA(Tn), >4 (5.5.6)
0

N

AANo/— .
(C) 6Aosl,2;lg(pn7¢2,n7y1,n)

1
. - Ao+m\ ~ [l \ = [ 72 .
N (e P >@< v )9:5}1’?5(7172). (557

Ad+m A+m

Remarks 2. e There are two differences between the Robin/Neumann case and the Dirich-

let case —(|5, 5.4): The boundary conditions (5.4.21)) for SlAéAB are imposed at scale A = Ag

only, whereas for §, 7’;,&*0,71 -, We tmpose mized boundary conditions (5.4.18)-(5.4.2()). The second

difference concerns the type of test functions considered, which in the case of Dirichlet are product

of Dirichlet heat kernels (i.e. [1i'_, pp (7i; zi,yi) ), whereas in the case of Robin and Neumann b.c.

the test functions are product of bulk heat kernels and characteristic functions of the semi-lines
(i.e. Hf:1 pB (Ti5 2i, Yi) H?:s+1 X+(Zz‘))'

e The bounds and (5.5.5)- can be established by induction separately using the as-

sociated flow equation. For the Dirichlet boundary conditions, the associated flow equation are
integrated from A to Ag. For the Robin/Neumann cases, the flow equation is integrated from
0 to A for the relevant terms using the boundary condition and from A to Ag for the
wrrelevant terms using the boundary condition .

e Adopting the boundary conditions (5.3.200)-(5.3.21)) together with (5.4.18)-(5.4.20), the distri-
butions E’Z)ZA;LAO and SZAT’AO are uniquely defined as the solutions of the flow equation and

5.4.11]). Furthermore, their sum

pMdo _ gAro | g (5.5.8)

[RRS Ln Ingx 2
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s the unique solution of the flow equation (5.4.1) such that QZ)ZX;LAO and 8;\7;110 obey respectively
(5-5:20)-(5.3.21) and (5.4.18)-(5.4.20). Theorem 1 together with Proposition[q gives for s > 1

s
Ao [ =
81”3[,71;7"?* (pn§ HpB (Ti; ) yz)> ‘

=1
<@+ m) TG () + ()P N ()

A+m 170
log ——— 5.
x@(og - )93<A+m Q A ) (5.5.9)

where

s
AA -
awgl,ﬁ;r?* (pn; HpB (Ti; % yz))

=1

s
AN
= / (Zl - ZZ)TawglJ;;*O ((Zlapl), Tty (Zn7pn)) HpB (T’L'; Ziy yl)
21, 2n

P
and g’;}l;(; (’7—1,5) = 2 PB (7—17217y1)9;51;\l5(7—2 S)'
The bound (5.5.9) implies that aw§£lA,; o (O3 1121 pB (135 -, i) are bounded uniformly w.r.t. Ag.

It is also possible to deduce a convergence Theorem which implies the existence of the limit A — 0

and Ao — oo for 0V, nATi which we do not explicit here.

e We do not prove Theorem [I( since there is no novelty in the proof, which is mainly based on
combining arguments from the proof of Theorem[q with the steps of the proof of the convergence
Theorem [8 in chapter [

e The difference between E)DA Bo y ghho - ong M studied in chapter is their distributional

Inyx 7’ I,n;*

structure, in the sense that one can prove inductively using the FE (5.4.11) and the boundary
conditions (5.4.18)-(15.4.19) that

A Ao e AAo .- _ Ao
%l,n ('Zl’ 07 ¢T2,s»y2,s) + Sl,n;* (Z17 07 ¢T2,37y2,s) a’l % (Zl) y2 5,72 s) + bl R (3/2 5y T2 s)5z1

+ cl Mk (yQ 55 T2 8)6;17 (5.5.10)

A,AO 7A0

AA AA
where an R0 o

is smooth w.r.t. z1 and Qs s O and ey GTE smooth w.r.t. yas and To.
Howewver, the semi-infinite correlation distributions &£, 7;.*0 conszdered m chapter are smooth
w.T.t. z1 which is a consequence of the type of mized b.c.s imposed on the semi-infinite correlation

distributions.
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e Note that if the bulk correlation distributions obey the bound

A, Ao >,
‘8w@l,n;rlm2 (pm ¢Tl,s’y1,5)

< {(A n m)3fn77“171“2*|’w| g;sf}i% (7_1,5) +(A+ m)4fnfr1fr2*\w\ Gj;;?l;d (7-178)}

A+m 170
log —— >2 >1 (5.5.11
x@(og - )93<A+m Q A ) Vn>2, ¥s>1 (5.5.11)

instead of (5.3.22)-(5.5.25), the bound still holds.

e The bound holds also for the surface correlation distributions folded with x heat kernels
(i.e. x € {N,R}), that is

AA L 3—n—ri—ra— A+m |77
‘awsh'n;*o;?"lﬂ'? (pn, :'1,572,!1,5)‘ S (A + m) rne |U)| g) <10g m > 95 (A + m

1
x @ (AT+2m> %SAI% (T15), Yn>2, (55.12)

where the external points yy s belong to (RT)*. This is a direct consequence of — to-
gether with the bounds (3.1.14). In particular, the bound (5.5.12) implies that ghAo D d)f”:yl S>

L Ry ,mo

s uniformly bounded w.r.t. the Robin parameter c, with the same assumptions on the polynomials

as in (5.5.1)).

5.5.1 Proof of Theorem

The bound (5.5.1) and (5.5.3)-(5.5.4) are established inductively using the standard inductive
scheme described in the proof of Theorem [f] We proceed in a similar way by bounding first the

RHS of the flow equation [5.4.11] and then integrating the irrelevant terms from A to Ao using the

boundary conditions (5.4.18])-([5.4.19)) and from 0 to A using ([5.4.20)).

Proof. We establish the proof in the case of the Robin boundary conditions. For the Neumann boundary

conditions, we proceed similarly. In the sequel, we omit the subscript R from SIA 7’1{&1%'

The induction starts at the tree order for which we have

SéleAO ((217])1), Tt 7(347]74)) =0 )

and the bound (5.5.1)) obviously holds.
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The right-hand side of the FE

The bounds that we want to obtain for the RHS of the flow equation (5.4.11)) are of the form

AA =
0p0"S;) o r01 ro (pn; ¢7—1,suy1,5)

1
—n—|w|—ri—r A+m i, T2

forallm > 2,0 < s <nand 0 < ry, ro < 4. In the sequel, we drop the lower indices from the
polynomials %1, P and Q. But one should keep in mind that these polynomials, whenever they
appear, may have different positive coefficients which depend on [, n, |w|,d; only and not on {p;}, A,
Ao, 71,5 and the Robin parameter c.

The bound is established by bounding each of the terms on the RHS of the FE . We

consider first the case r1 = ro = 0.

e We start by treating the linear terms R and Rls given by

m / [ (Grp) ), (), (2 )
. 1 id
X C’A(k‘)pR <A2;z,z’> H pB (1525, yi)  (5.5.14)

i=1

and

/ / /a'u}g%l/\/l\%—i_2 Zl’pl)"” ,(Zn,pn),(z,k:),(z’,—k:))
. 1 i

x CM(k)ps,r (AQ;z,z’) 1 ps (7isziow) . (5.5.15)
=1

where pr and pg g are given by and . First, we bound Rf . Using the decompo-
sition of the Robin heat kernel (3.1.4), we obtain that R can be written as the sum of three
contributions such that for each contribution the Robin heat kernel pr in Rf is replaced by a
term from the decomposition . We analyze first the term

RS / / /awSlA/l\(;H_Q Zlvpl)a"' 7(Zn7pn)7(z7k)7(2/7 _k))

. 1 -
x CME)pp (AQ;z,z’> H pB (Ti; 2i, Yi)
i=1
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Using the semi-group property for the bulk heat kernel 1 , Rf can be rewritten as

/ du / / / OUSM  ((21, 1), (), (2K, (2 — )

. 1
A . | |
x C (k)pB <2A2azvu> (2/\2’ ; > bB Tl?zlayl .

We now insert the induction hypothesis to obtain that Rf is bounded by

e A+m T3 : k| [|Pn]l
1—-n—|w| A
(A +m) @<10g m >©<A+m>/,€’c (k)‘9<A+m’A+m

A0 1 1
/du Foii-1.4, <T1’3’2A2’ AQ,Yas,u uwl. (5.5.16)

Using

A k| \® / k2 2 R\
e = — e 1 N 5.5.17
/k\c <k>\<A+m> ¢ \Fem) SOW VaeN,  (5517)
we have

5 o A+m 773 |19 |
S| < 1—-n—|w| n
|IRY| < (A+m) 9’<log - >®(A+m>9<A+m

1 1
A0
/Rdu Foioi-1:6, (7'1,37 A2’ 2A2,Ygs,u u> (5.5.18)

Applying Lemma [2| we obtain the bound

1
55 —n—|w A+m Pn T2 oA,
RS < (A+m)2 " vl g (log m) o <AH+ L) a (A . m) FN (). (55.19)

The other contributions to R are

/ / /awSlA{L\?ﬂ—Z Zl’pl)"" ,(zn,pn%(z,k),(zl,*k))

. 1
x CMk)pp <A2; z, —z’) H pB (Ti; ziyyi)  (5.5.20)

i=1

an

-2 / / /8w8;\11x21+2 2’17171)7"' ,(Zn,pn),<2,k),<2/,—k))
Z1,n

. 1 v
A —v . e s .
x C (k)/ve pB (AQ’Z’_Z/ — c) | | pB (Ti; 2zi,yi) . (5.5.21)
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These terms can be rewritten using (3.1.5)) as

1 1 :
du M0 L (B by 6, eI gazinu) | Ok (5.5.22
/k/R wavsitto L, <p, sk Oy s X DB <2A2,,U)p3 <2A2” u))C (k) (5.5.22)
d

AA ~ 1 1 v
_2 w »430 n L - 7;,’ 7;.’_7_
/k/RdU /U 0 Slfl’nJrQ <p vk, —k; ¢ 1,5:91,s < PB <2A2 u) PB <2A2 c u))

x e ¥ CME). (5.5.23)

al

Applying the induction hypothesis together with ([5.5.17]), we obtain that (5.5.22)) is bounded by

1
o A+m T2 |19l
1-n—|w|
(A+m) 9’<log - >®<A+m>@<A+m

A0 1 1
X /Rdu OJ;S+2’Z?1;51 <7—1,s, W, W7 Ygs,u, —’LL) . (5524)

Similarly, we have the following bound for (|5.5.23)

. A+m T3 : KL 1Pl
1—-n—|w| n
(& +m) 9<10g m >®<A+m>/kc(k)g°<A+m’A+m
_ A0 1 1 . v
X Adu /v e v 9;S+2,l—1;(51 <Tl7s, W’ W,Yas,u, —u — c> . (5525)

Using the bounds ([3.1.12)) and remembering the definition ([3.2.49)) of the surface weight factor,

we deduce that

v A0 1 v
/Rdu /v € Ferai-1 (TI’S’ 202’ W’Ygs’u’ T

and

A0 1
/Rdu G‘;s—l-Q,l—l;él (7_1,57 A2’ 9A2’ Yo, u, —U)

are bounded by

A0 1 1
/Rdu st+2,l—1;51 <T1357 W’ W; YUS’ u, u) :

The rest of the proof follows the steps used to obtain the final bound for ]:Zf , which gives

n—lw A+m D, 7'7% o
IRY| < (A+m)? " Ivlgp <10g m) P (AH-i—‘Jn) Q <A+m> Fos (rs) . (5.5.26)
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Now we analyse RlD . This term is independent of the induction hypothesis and will be bounded
using only the bound ([5.3.22)) for leA,’lAO. Using l) R{) can be rewritten as

/du/ / /6w92§l1x?%+2 <217p1)’.” ,(Zn,pn),(z,k),(z”_k))
“A 1
x O (k)pp | gpzi% ) PB A27 , H v (73 2, vi)

The bound (5.3.22) implies that RY is bounded by

A —n— At+m 17| T3
2—n—|w| s
(A+m) P <log > P < - /du / pB (71521, Y1)

1 1 -
X Z / 9752 ( {7—2,87 Wa W} ;j—‘ls_+12(zla Y2,s, Uy, —U, Z)> . (5527)

2
Tlsj (Zl,yz 55Uy —1,Z)

For any contribution to 1) we denote by 2/, 2" the vertices in the treeTl‘(”fl2 to which the

test functions pp 1;?\522 U, ) and pp (12*/'\522 P —u) are attached. Performing the integral over u
we obtain using ((3.1.5)

/du 1‘|‘52.2/u 1‘1’52‘_” Z// _ 1‘|'52_Z/ _Z//
R pB 2A2 b bl pB 2A2 9 I _pB A2 ) I

<ps <1+52 2 0) (5.5.28)

A2

The bound implies that the legs (z,u) and (2, u) are amputated from the tree TIS_JFI2 and
(2, u) is replaced by the surface external leg (2, 0) with the parameter A. If 2” is of incidence one,
it is removed using [, pB (( + 82) /A% 2, 2 ) < 1, and this operation is iterated until a vertex
Z such that ¢(Z) > 2 is reached. This iteration process converges to a non-empty tree since for
s > 1, there exists at least one internal vertex of incidence number greater or equal to 3 in the
tree Tlsff. The integration over z; in 1) implies that z; becomes an internal vertex attached
to y1. Therefore, the reduction process produces a tree which belongs to 7*°. Furthermore, v}
which denotes the number of vertices of incidence number 2 of the new tree, is increased at
most by 2. This stems from the reduction process which can produce one additional internal
vertex such that ¢(z) = 2 when the vertex z” is removed, but also from the vertex z; which was
initially a root vertex. If z; has an incidence number equal to one then after introducing the test

function pp(11; 21, y1), it becomes internal of incidence number 2. If vg is the number of vertices

of incidence number 2 of Tls+12, then v, < vy + 0¢y,1 + 1 which implies
2 1
W <ot b +1<3(1-1) -2+ 2 1<y ala

2
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This also means that the obtained tree is a surface tree in ?Ils’o = W (0s), which can also be

seen as the set of forests corresponding to the trivial partition. Therefore, R:][) is bounded by

1
e lw A D, 2
(A +m)2 " g <log ;m> P ( A”i ﬂn) Q ( < +m) F, (A1, Wi (04); Vo) (5.5.29)

which implies (see (3.2.55))

e A+m 177 | T2 :
D 2—n—|w| o \;0
|R”| < (A+m) P <log ) Pp (A+ Q e Folg, (T1s) - (5:5.30)

e In this part, we treat the quadratic terms on the RHS of the flow equations. To simplify the
discussion, we analyse the terms from the symmetrized sum in which the arguments (z;,p;)

. AAo AAo AAo AAo A Ao AAo
appear ordered in (87" 1,870 1), (D701 11 Sipngr1) a0d (D707 11, Dy, s 1) These terms

are given by

AA : 1
RS [ ] 0G0 Mo (55,7
1,n )

s
AN
X 8W28l27n§+1((z/7 _p)7 Ty (Znapn)) HpB(Ti; Ziy yl) )
=1

AA : 1
R2DS = / / Z;I 252 8w18l1,n?+1((zlypl)a T (an’pn1)7 (ij))awgcA(p)pR <A27 2 Z/>
21, Y 2,2

S
A\
X aw2%l2,n2+l((zl7 _p)) RS (Zmpn)) HPB(TH i, yl) )
i=1

and

AA : 1
R2DD = / / Zil Z;2 aw1%l1,nf+1((21apl)7 ) (Zn17pn1)7 (Z7p))8w30A(p)pS:R <A27 2y Z/>
z1,n J 2,2

s
AA
X 8w2%127n2+1((2/7 _p)’ ) (Znapn)) HpB(Ti; Ziy yl) .
i=1

First, we treat the case (r1,r2) = (0,0).

— We start with the term RY®. The property (3.1.6) implies that RPS can be rewritten as

/R+ du / / S (1m0, (B Py )s (2,0))0"0 A ()
21,n v 2,2

AN 1 1
X 8w2%l2’n2+1((z,7 _p)7 R (znvpn» ZE[lpB(T’Lv Zis yz)PR (Wa Z, ’U,) PR (W7 zla u) .
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Using the decomposition of the Robin heat kernel (3.1.4]), we restrict our analysis to the

following term only

Ry = /Rd“/ / S ((21p1), o (), (29))0M0 O ()

wa o A A 2 ) I 1
8 29bl2 n2+1((2/ _p)J T (Znapn)) HpB(T’i7 Zi7yi)pB <2/\27 Z,U) PB <2M7 Zlau) .

i=1
The line of reasoning in treating the remaining contributions in R S is similar to the one
used in bounding RS . We define

31 Zl n1 H¢z Zz 52 znﬁ—ln 1 H (lsz Zz 5 (5531)
r=ni1+1
where
) if i <
$iz) = pﬁ(”’z“yl) nr=e (5.5.32)
X (2:) otherwise .

Note that s1 = ny if ny < s and s = s — ny. Otherwise, we have s = s and s = 0.

Therefore, RPS can be rewritten as
> Ao (= 1 :
R%)S - / du / awlgllznf+1 (pnup; ¢{91 X PB <2A2; ) u)) awBCA(p)
R+ z!
. 1
X 8w2g3£ QSH( ’, —p,pn1+1,n§¢g2) X PR <2A2;u, z’> . (5.5.33)

Applying the induction hypothesis to Sl "y +1 and using the bound 1) for Qﬁl no +1’ we
obtain that RP® is bounded by

1
A+m 17 T2
A 2—n— |w|95 lo ap n
(A+m) g — A+m @ A+m
1
X /R+ du 0]301-1-1,11;63 <A; 1,815 2A2;Y0317U>
1

L
X /, 9;82712,5 (A Tor41,83 2 ; Ygsﬁls) PB <2A2,z ,u) .
z

Since the global weight factor Fg, 5, 5 (A Ty 41,65 2 Yo, ) is a sum of the weight factors

of all trees T‘ZQ—" (25 75141, Yo 110) 1D 91752“ we deduce that integrating over 2’ gives the

global weight factor of the bulk trees ‘37[292“, and therefore we can write

s 1
J'32+1 12;04 A; y Ts1+1,s) 2A27 Ulerl 5o U

1
- ¥ <A Pt g T ygsﬁb,u> . (5.5.34)

~nso+1l _&sg+l
7727 eg,
1) € lo
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where
Ny T ! TS2 L Y
s1+1,s» ~27 Os1+1: S,U

1
::/ Ey«”(;/s (A;Tsl+1,8;11l522+1;Z/;Y0'51+1:s)pB <2A2;z’,u> - (5.5.35)
Z,

Applying Lemma we deduce that RQD 9 is bounded by

- A+m A T2\ o
(A +m) "90% m/)@<A+m | A ) Tty (1) -

where 04 := max (d3, 0%).

— In this part we bound the term R5S. As for RYS, we only treat the term
AA :
RSS /R+ du / / awlsh nf—‘rl (217p1)7"' 7(2n1apn1)7(zﬂp))awSCA(p)

S
1 1
X 8w28£ 7/:2+1((Z, _p)7 T (Znapn)) HpB(T’Lv Zi73/z‘)PB (W7 Z7u> PB (2/\27 Zla“’) .

i=1

Using the notations -, we rewrite R255 as follows,
3% = /R+ du 0" S0y (ph Dy D3 By X DB (21/\2 U>> 9"3C™(p)
X 5“’252 ,AL;)H( PyPrit1s i Pay X DB (;AQ u)) . (5.5.36)
Note that ]:22,55 =0 for I; € {0,1}. Using the induction hypothesis, we obtain
‘Rfs‘ < (A+ m)l_n_‘w‘ P <log A—i—m) P ( 175 > Q (T_l>
m A+m A4+m

1 1
0 . . 0 . .
X /Rdu GJ;S1+1,11;53 <A7 7-17517 2A27Y0'317u> g:82—%-1,12;54 <A7T31+1757 2A27Y051+1:s7u .

Nl

Applying Lemma |3] we deduce that Rgs is bounded by

—n—|w A+m ﬁ” T_%
(A +m)* 9@% WL)@<X+L>@<A+m>%%AmJa

where 05 := max (03, d4).
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— In this part, we bound the term RgD, which we rewrite using (5.5.31))-(5.5.32)) as follows,
1
/ aw@bﬁ ﬁerl (Z pl n1s P ¢ ) aw3c/\( )pS,R (AZ’ 2 _Z,>
X 02BN (s Py 1 — 15 B, -

Using the bounds (5.2.6) and (5.3.22)), we obtain that R?? is bounded by

| —m A+m 17l 73
A+m)>wlemonz g (log =—— ) o [ 122
(& +m) ° 2A@<Og m > <A+m @ A+m

1
X/ G]sl,lh (A Tl,s15 %3 Yo'sl) 52,1250 (A Ts1+1, 572 Y0'51+ls) PB (M;2/7 —Z) . (5537)
z,2!

)

The bound

1 1 1
PB <A2 ) <21 A pp <A2z 0> <A2;z,0> (5.5.38)

2

A% 222 <O(1)(A+m)™ foraeN, (5.5.39)

together with

_m> 1
€ 2AZ/ J‘sl,h HA (A Tl,s15 %3 Yaél) s2,l2;0% (A Ts1+1, 572 YUsl+1 s) PB (/\2;2/7 _Z>
2,2
1
O( A+m 81711 5’ A 3 T1,815 %5 YUSI)PB szz 0

1 /
// 0]82’l2’6 (A Ts1+1, S’Z Y0'51+18) pB (1\2,2,0 '
z

The definition of the global surface weight factor (3.2.32))-(3.2.57) implies

1
/E’;sl,ll A (A T1,s15 %5 Ygsl) <A2;Z’O>
z

1
/ 827125 A Ts1+1, S,Z Yo'g1+1 g) PB </\2;Z/,0>
<o | Y. Y Fema WL Y,,) |, (5.5.40)

WP €W {I1ePs, In=2)

where IT ;=TI Uy, Iy :={1,--- ;s1} and Iy := {s; + 1,--- , s}. In (5.5.40)), we also used
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the bound (3.2.62) and & := max (8%, d}). Therefore, we find that RPP is bounded by

e A+m Al T2
2—n—|w|
(A+m) 95<logm >9<A+m Q Arm

x| > > R N W)Y, | (5.5.41)

W €W {TI€Ps, ln=2}

This shows that RP? is bounded by

—n—|w A+m ﬁ” T_%
(A +m)? 95<log — )9&<A|+l’n>@<A+m>?ﬁgfﬁ;ﬁ(n,s)~

e Case (r1,72) # (0,0): The linear terms Ry and RP together with the non-linear term R5“ are

treated following the same steps as before. The only terms that require a careful analysis are

RPS and RPP. To shorten the discussion, we analyze the term RYP only, RPS may be treated

using similar arguments. We write

P o

&5} (%)
a1+B1="r1 ag+B2=r2

This allows to rewrite Rg) D for all n; > 2 as follows

r1 T2 AAo;(1,2 . .
> < ) < ) Aot gl (555030l ) 92 CM p)

a1 +pB1=r1,a2+B2=r2 ™ a2
wa G Ay Ao /= 1 1 /
X a 92)[27n2+1 (Z ;pn1+1,na _p T 7p7lﬂ QSSQ)pS,R A2 7 Za z 9 (5542)

and for nq; = 1 we have

r r ~ :
Z < 1) < 2) 2 z’&awl@bﬁﬁgil) (Z;plap; ¢lsl) 8“3 C*(p)

a1+p1=r1,00+B2="2 ™ 2
A Ao;(2 - 1
X 8w2@12,n;0a(2 )(2/;P2,n, —p; ¢;’2)pS7R (1\2; z, z/> . (5.5.43)

Using the bounds (5.3.22))-(5.3.23)), we deduce that the summands in ((5.5.42))-(5.5.43)) are bounded
by

oy — M2 A+m 5l T3
3—n—|w|—a1—a2 5
(A+m) e 2a 975<10g >@<A+ Q Aim

X / gﬁ,h;zﬁ’{ (A;TLSI;Z;YO-SI) 0}'82752;55/ (A; 751_5_175;2/;}{781“:5) Xﬁl (z,z’) , (5.5.44)
z,2!
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where
YA (Z Z/) _ 2P ZIBQPB (ﬁ, 2, —Z) if ng =1,
" ZP1HP2 pp (352, —2) otherwise .

Using the bound ([5.5.38|) together with (3.1.10)), we deduce for all 6, 6>0

1490 146
Xh, (2,2)) <O1) AP0 gy ( 12 ;z,o) PB (;;/,0) , (5.5.45)

which implies together with (5.5.39) that ([5.5.44)) is bounded by

] A+m 5l T3
A 2—n—|w|—r1—r2 1
(& +m) gb<0g m >9§<A+m @ A+m

1 +6//
X /Ojsl,ll;éf (A;Tl,81;Z;Y0'31) pB ([\21’2:,0
z

o / 1+55 /
X Fg iy (M Ts14163 23 Yo, 1) DB 1z :2,0). (5.5.46)
Z/

This together with the bounds (5.5.40) and (5.5.41)) imply the final bound for RPP given by

—n—|w|—ri—r A 2 3
(A +m)>lvl=r=ra g (log ;m) P <AHi ﬂn> Q (AT+in> FN (1), (5.5.47)

where 7 := max (47, 05).

Using the bound (3.2.62), we deduce (5.5.13) where § := max {J;, d, ¢, 1 <i < T}

Integration of the FEs

e We start by integrating the irrelevant terms for which n+ |w| 471 4+ r2 > 4. In this case, (5.5.13)

is integrated from A to Ag using the boundary condition (|5.4.18))-(|5.4.19|) together with (3.2.61])

and we obtain
w A,AO = .
‘8 8[,71;7’1,7’2 (pn7 ¢7'1,87Z/1,S)

1
A D, T2
< (A—l— m)B—n—\w\—m—m P <10g ;m> p < Hp H > o} (7-2) %sj}i%(Tl»s) . (5.5.48)

A+m A+m

e The relevant terms for which n + |w| + 1 + 72 < 3 are written

/ dzl/ dzo 2?2528/\8;}2’/\0((Zl,p),(ZQ,-]?))HPB(TZ';Zi,yZ'), (5.5.49)
0 0

i=1
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where r1, r9 are integers such that vy +ro < 1, and 0 < s < 2. We restrict our analysis to the
case s = 2, the case s = 1 can be treated similarly and the case s = 0 will be integrated in the

sequel. For s = 2, the relevant part is extracted from
/ NS5 ((21,), (22, —p)) 61(21) 2 (22) (5.5.50)
21,22

by performing a Taylor expansion of ¢; and ¢9 around z; = 0 at p = 0, where ¢;(z) =
pB(Ti; 2, yi), using (5.4.14)) and (5.4.17). The bound ([5.5.13) for s =0 and 1 + r2 < 1 gives

A A
‘aAsf\’AO < @ (log +m) , ‘BAef\’AO < (A+m)to <log +m> . (5.5.51)
m
Integrating ([5.5.51)) from 0 to A and using the renormalization conditions (5.4.20)), we have
A A
‘S;\’AO <(A+m)P <10g —|—m> , ‘ef\’AO <P (log —i—m) . (5.5.52)
m

Applying Lemma [I0] from the Appendix, we have

[51%001(0)82(0) + € {91(0)(9n2) (0) + 62(0) (9u) (0)}]
<(A+m)P <10g A -ﬂ:m) aQ ( T2 ) Fyis (11.2) . (5.5.53)

A+m

Now, we bound and integrate the remainder 8AllA§A° (41, ¢2), which is irrelevant as we will see in

the sequel, from A to Ag. We distinguish between the two cases:

- AL 3%7_%: Using (5.5.13)) and (5.5.53|), we deduce that 6All[}éA0 (¢1, P2) is bounded by

A _1
O(l) max (m277——1) (A + m)_2 9 <log :;Lm) Q (AT+2WL> %QAJ’% (7‘1’2) . (5554)

- A> 3ﬂ7'_%: In the sequel, we restrict our analysis to the integration of the following terms,

for which we need to proceed differently.

7 = < / 2122008]5™ ((21,0), (22, 0))) (On¢1) (0) (9ng2) (0) (5.5.55)
322 .
Py = (an¢2)(0)/ 2 OrS)5™ ((zl,O),(ZQ,O))/ dt (1 —1t) (21 (tz1)) ,  (5.5.56)
21,22 0
and
1
%3 = 3A8;}2’AO ((2’1,0), (ZQ,O)) </0 dt (1 - t)at%bl(tzl))

« (/Oldt’ (1 —t’)azqu(t'zQ)). (5.5.57)

The other terms which also contribute to 8AllAéA°(¢1, ¢2) can be treated similarly.
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- We start first with %; for which the bound (5.5.13)) implies that

(5.5.58)

‘(/ 2120483 ((21,0), <zz,o>>>' <(A+m) 2o (log “m) .

Using Lemma [I0 we obtain

(o sa0nsy™ (2100 (2.0) ) @010 0) 010 0)

1
9 —1 1 A+m T 2 A0
< (A —I—m) T 27'2 20p <10g m ) Q (A—i—m) J'Q,l;é (7‘1,2) . (5559)

- The term 762: we have for 0 <¢ <1

1 _Czw)?
¢i(tzi) = Nort i (5.5.60)
Differentiating twice w.r.t. ¢, we obtain
0 (6i(t=)) = 1 [—Z: + W} po (332, (5.5.61)
which implies that the term
1
/Z = OrS;5" ((21,0), (22,0)) /0 dt (1 —t)82¢1(t21) (5.5.62)

can be rewritten as

?/13 ' 1
o
> CaﬁHa;a/O di 7 (1 =)

(a,8)€F2 m

-
/ 29 z%“‘&ASZI}éA“ ((21,0),(22,0)) pp (t—;, 21, %) , (5.5.63)
21,22

where fo := {(0,0), (,B)|a+ =2, (a,) € N2}, and the coefficients c,3 € R de-
pend only on the exponents a and 5. The bound ([5.5.13]) implies that the term

.

/ 2 22008 5™ ((21,0), (22,0)) i (t%;a, %) (5.5.64)

21,22
is bounded by

_1
m? tr, 2 T
—3—a -1 1.1
(Atm) e e | |, (A;ﬁ;?) . (5.5.65)



5.5. RESULTS AND PROOFS 125

From Lemma [T} we obtain

B B
1\ o T Y1 VT A0
<ﬁ1> Fig (Mg 2) <o) ¢ <1+A ) FA% (1), (5.5.66)
where 0 < § < ¢'. Using (5.5.39) together with (5.5.64]) and (5.5.65)), we deduce that
(5.5.63) is bounded by
-3 1 A +m 7__% o A\0
(A + m) ’7'1 95 lOg m @. m ‘*1,1;6’ (7‘1) . (5567)

Lemma together with 1} imply that %, is bounded by

1
_1 A 2
(A+m) 3l 29 (10g ;m> @ ( T2 ) gﬁi?(s, (11,2) - (5.5.68)

A4+m

Following similar steps, we obtain

1
@000) [ 2 085" (1,00, (2,00 [t (1 0) @)
21,22 0
-3 —% -1 A+m 7'_% A0
<(A+m)°m ?1y, P | log - Q Atm Fy s (T12)  (5.5.69)
and

1
60 [ 085 (1.0). (2.0) [t (1= (af¢j<tz1>>\

1
9 _ A+m T 2
< (A + m) 2 Tj 19’ (10g m > Q (A—|—’)’n) GJQA’I’?(S/ (7'1’2) . (5570)

- The term %3: We start from ((5.5.57) and (5.5.61)) and write the term %3 as follows

DY w v "t ar =) TN =)
Cap Co/p’ 14 Bxa 1+[3/+a/ 0
(BT (o B)ET: noton
/ AA 1 n 72 Y2
/ 2 008,570 ((21,0), (22,0)) (72;21, 7) PB (tTQQ 22, 7) - (5:5.71)
21,22

The bound (5.5.13|) implies that the term

/ AA T1 Y1 Y2
/ Zate Z%—maASl,é ((21,0), (22,0)) pB (*' 21, *) PB (t72§2'27 ?>
21,22
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is bounded by

1
;o _m? tr™2 T T
—4—a—oa 9;0 LT T2 Y1 Y2
(A+m) e 2A2®<A m) 2,5;6 (A7 127420 ¢ t/>.

From Lemma and ([5.5.39)), we deduce that ([5.5.71)) is bounded by

1
1 A . ~3 :
m 27 2 (A+m) 2P <log ;m) Q < U ) 97£i?5/ (11.2), (5.5.72)

A+m

where 0 < § < &' < 1.
The boundary conditions ([5.4.18)) together with (5.4.17)), (5.5.63) and (5.5.71)) imply that

LR (61, 62) = 0.

Integrating from A to Ay, we obtain for Ag > 3\@7’7%

B o) = [ DR e+ [ o ene).  (65573)

A 3VIr~ 2

Using the bounds (5.5.54)), (5.5.59)), (5.5.68)) and (5.5.72)) together with (5.5.69) and (5.5.70)),

we obtain that the remainder llAéAO is bounded by

1 m? A+m)\ ~ 7'7%

1
3Vir~z2 Ao

For Ay < 3\/37'7%, we conclude by integrating (5.5.54)) from A to Ag and we deduce
A .
‘8w81,2;r(i,r2 (0’ ¢T1,s,y1,s)

1
A 1
< (A4 m)ielrior g <10g ;m> aQ < T2 ) F%(rs) , (5.5.75)

A4+m
where we used (3.2.62]).

e Extension to general momenta: We now extend the bound (5.5.75) to general momenta using
the Taylor formula with integral remainder, which reads

1
AA . _ quwohA . AA .
0S5, 1y (D3 Orians) = 0815, 10 (050 o) + /0 dt 80", 5,0 ., (tp; bry i) - (5.5.76)

Applying this formula, the bound of the integrand ( due to the derivative ) yields an additional

factor (A +m)~! which combines with the momentum produced by the t-derivative to give a

bound as in (5.5.1)).

This ends the proof of Theorem [9} O
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5.5.2 Proof of Proposition [7]

Proof. The proof follows the same inductive scheme used in the proof of Theorem[9] For the tree order,

we have

S(j)\ng ((Zlap1)7' o 7(Zn7pn)) = 07 Vn > 27 * € {DvRvN}

Clearly, the statement ([7.3.8]) holds.
A1) We start by verifying inductively the following statement

(9A8;7\7’L/;\£) (pn,gbnmyln) = hm OASA Ao (pn7¢r1n,y1n> . (5.5.77)

In the sequel, we use the symbol x to denote either Dirichlet or Robin boundary conditions. Given

IT = (71, m2) € Py, such that |7;| = n; and ny + ne = n, we introduce the following notations:

AN ; .
Slz,nﬁkl % (p7r7.7 (_1)Zpﬂ @7/'};*) Y7r7;7 u)

1 .
::ﬁ Slf?ﬁil#((zm,pm) (z,p) Hp* (Ti5 2i, Yi) Px ( vk >, ie{1,2} (5.5.78)
Zr; 02

1ET;

and

AA AA .
Sl;l,?l+2;* ( P, k k q)n+2; an,u, ’LL) = [‘ ’ Sl—l,(’;l-‘r?;* ((Z’flapn)7 (27 k)? (2/7 _k))
1 1
X d)Tl nyYl,n (Zl n) < A27 Z, >p* <2A2;2’/,U> s (5.5.79)

where

.o o 1 .
AT et I LI ACA L | EXLENTE

1ET;

and

Ax 1 1
q)n+2 (Zl ns % z) = ¢:—1,n7y1,n (21 ") <2A2’ s )p* <2A2§Z/,U> .
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We consider the flows equation (5.4.11)) folded with the test functions (b:l,n;yl,n given by
AN\ —
NSy <pn§ o7, ot n)
// lAllxon—i-2* pmk? _k;(py/:_;:g;yan,u, U> CA<k)

/ / D2 (Gad). (2 8), (2, =R) Ok 2. 2)0%, 0 (1)

_72 Z [/{ lj}iﬁerl*(p’rl’ @W1*7YW1’U) CA( )

ly,lp 1,72

A, Ao
X 812 na+1;x <p7r27p7 ®7r2 ) Yﬂ'Q’ U)

+ %A Ao (ﬁﬂ'la (1)71’1’ ) Y7r1 s U) CA (p) SA Ao (p7-|-2,p, (I) i*

l1,n1+1 la,no+1;% 2 )

AA A AA -
FSAAO L (Brys 03 @A Yoy 1) CR(p) DA (3 OO ,Ym,u)}

3 Yoo, u)

AN = YA ) 7 .
/ EE§l1 n?Jrl » —Ps Plings qs:rl) CS,*(p; 24 )9)[2 n§+1 ( ,,p,pn1+1,n, ¢;2):| )

rsym

pP==>_pi=> pi (5.5.80)

1ETY 1ET2

where we used (3.2.66) and the notations (5.5.78)-(5.5.79). Here, the prime denotes all pairs
(l1,12) such that l; + lo = [, and the double prime refers to a summation over (7, m) € 9752;71
with n; 1= |m.

Using the induction hypothesis, we obtain

AA . A;D A . AR
Sz_l,%+2;D< ok, — (I)n+2,YUn,u,u) = dim S0 <pn,k: oMy, u) , (5.5.81)

A A i .
Sll,nlo—l-l :D (pﬂ-z’ <_1)Zp7 (:DQ;D7 Yﬂ'ia U)

:CETOOSIM’W‘LFIR(ﬁm,(—l)"p;@ﬁlfR;Ym,u), ic{1,2}. (5.5.82)

For 7; > 0 and y; € R™, we have

im W, (pp(7is- ¥i) — pr(73;,9i)) =0, (5.5.83)

c——+00

where for ¢ in §(R™) the semi-norm W, is given by

No(9)= > sup [z ()| .

A
a, B<p TER

Remembering that QDIAT’LAO € &' (R™) and using ((5.5.83)), we deduce

AA — 3 . . — ' .
Dryptir (B (C1)'Pi @50 Yo ) = dim D (B, (<19 @3 Vo). (5.5.84)
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We rewrite the term
A A - = ~
/k / D e ((Zn-Bn), (2, k), (2, —k)) Cfg\’R(k:; z, Z/)(bf;,n,ym (z1,n) (5.5.85)

as follows
[ CN R S AT

B Moo (= . 1 1 YA
/k:/Rdu 95l71,77,+2 <pn7k:’ k’¢71,n7’y1,n§R X PB <2A27 7“) PB <2A27 ,U>) C (k:) . (5586)

Following the same steps that led to (5.5.84)), we obtain

o (pn,k, —k;@n;z;yan,u,u) = lim oM, (pn,k, —k;@n;rz;Y(,n,u,u) (5.5.87)

and

AN . 1 1
gbl—l,?erQ (pn’k»k§¢71,my1,n;D X PB (ZAQ; 3“) PB <2A2; 7U>>

. . 1 1
= lim %ZA_JIXE—L_FQ <pn7 k7 _k7 ¢‘r17n,y17n;R X PB <2M, ) U> PB <2[X2, ty U)) . (5588)

c—+00

Part A1) in the proof of Theorem |§| implies that the integrands of each term on the RHS of the
FEs (5.5.80), in the case of Robin boundary conditions are bounded independently of the Robin
parameter ¢, and the Lemmas 2] show that these bounds are integrable w.r.t. u. We refer the

reader to the proof of Theorem [J] for more details.

A2) Integration: Lebesgue’s dominated convergence theorem together with ([5.5.81))-(5.5.88) and the
FES (5.5.80)) gives

Ao (= . AAo [
065 (pn%ﬂfl,n,yl,n) = lim OS5 (pn;cbﬁ,n,yl,n) : (5.5.89)

c——+00

This implies (again by the Lebesgue’s dominated convergence theorem and the integrability of

the bound (5.5.13)) in the proof of Theorem@

Ao Ao > D _ . Ao N Ao > R
A NS, (i 0 )= dim [ A oS (B ). (5.5.90)

T1,n,Y1,n T1,n,Y1,n
A c—+00 Ja ’

— Irrelevant terms: These terms are characterized by n > 4. Using the boundary condition

S0 (i %, g, ) =0, %€ {D, R} (5.5.91)
together with (5.5.90f), we deduce
Ao (. T Ao (= .
Sl’n;B <pn’ d)"l?l’n’yl’n) o CEI—Eloo Slﬂu]% (pn7 qbﬁl,n:!ﬂ,n) : (5592)
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— Relevant terms (n = 2): We have

Ao AA R
/ dA OAS,’Q;}% (ﬁm d)’rl,n»yl,n)
A

A 7A = . R A7A =, R
= Sl,20;RO <p”’ ¢7—1,n7y1,n) - 81,2;}% (pn? ¢’T1,nyyl,n) (5'5'93)
and

Ao
A A o~ AN -
//; dA 8)‘8l,é;5 (pn7 ¢ﬁ,nyyl,n> = _SZ,Q;DO (pn7 ¢7pl,n:y1,n) : (5594)

In (5.5.94)), we used the boundary condition ({5.4.21)) for the Dirichlet case. The boundary
condition (|5.4.18)) implies

2
Ao, Ao (> . 4R _ Ao,Ag .
8l72;R (p”’¢T1,27y1,2) = SLR H pr (7i; i, 0)
=1

+ e %™ {pr (11:91,0) Onpr (7232,0) + P (72;92,0) Fnpr (T1391,0)} . (5.5.95)
Using )
0npr (11591,0)| < O1) 7; 2 pB (Tis5;4i,0),

Ao,Ao

and the fact that Sk and el/?;’%’AO

are uniformly bounded w.r.t. the Robin parameter c,
which is implied by the bound given in Theorem [J| for s = 1, 71 € {0,1} and ry = 0, we

obtain from pr —¢— 400 PD

. Ag,A -~ R .
im_ s (pmqﬁnww) —0. (5.5.96)
Therefore, we deduce
AA ~ D T AA ~ R
St (i 0810, ) = lim S5 (Fuief ) - (5.5.97)

This ends the proof of ([7.3.8]).

5.5.3 Proof of Corollary

Proof. In this part, we prove the bounds ([5.5.3) and (5.5.4). As a consequence of Theorem [9] we have

for Robin boundary conditions
AAo (> . R
‘SZ,H;R (pTH ¢Tl,n7y1,n) ‘

A 7 -
< (Atm "o, (10g ;m> P, <A\|i7ﬂn> o (A:Lm) FA0 (1), Yn>2. (5.5.98)

=
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Using Theorem 0] and taking the limit ¢ — +oo, we deduce

AAo (> . 4D
‘Sl,n;D (p”’ ¢T,yl,8>

A 5, ~3
< (Atm <1og ;m> P, (A\\il{) o (AT+2771> FA0 (i), Yn=2. (5.5.99)

For n = 2, it is possible to obtain a sharper bound by performing a Taylor expansion around 0 of the

test functions pg (74; -, yi) as follows

AN — A
SR (pn; qbf;,%yl,z) = sl;}gAOpR (71391, 0) PR (725 Y2, 0) + 62}?0 {PR (71;91,0) (Onpr) (T2;y2,0)
+pr (72192, 0) (Onpr) (71551, 0)} + [5e (PR (713 +,31) R (725, 92)) - (5.5.100)
Taking the limit ¢ — oo, we deduce
A\ . I 1 AL\ . .

St (i 08,00 ) = lim 50 (b (725, 91) P (723, 2) (5.5.101)
where the remainder lNIA;_X}% is given by
([ otz 5% (o) o2 ) 0160) (0)0162) )

21,22
1 1
+/ SP5e ((21,p). (22, —p)) (/0 dt (1—1) (8761) (t21)> x (/0 dt' (1 —1') (9% ¢2) (t'zz))
21,22

AA !
+(3n¢2)(0)/ 22 855 ((21720),(227—1?))/0 dt (1—1) (97 ¢1) (tz1)

21,22

1
2 SR (10, Gop) [ (1) (0800) (1) (5.5102)

)

T (0261)(0) /

21,22

and ¢;(z;) := pr (7i; zi,yi). These terms can be bounded in a similar way as %), H> and s in the
proof of Theorem [9] One should keep in mind that the test functions considered whithin the proof
of Theorem [J] were products of bulk heat kernels. However, the same bounds (5.5.55), (5.5.68) and
(5.5.57) which are uniform in ¢, hold for Robin type test functions using the bounds (3.1.12)). Therefore,

we deduce

1
~ e 1 1 A+m T2
(zﬁé{‘}g (¢1,¢2)‘ <(A+m)2r it <log e ) Q <A+m> Fok (112), (5.5.103)

which gives

AANo (> . R o —% -1 A+m T
‘SZQ;B (pn7¢7'1727y172>‘ S (A+m) T 2T2 20p (10g m 0] A+m

D=

> Gj’zjfi?a (r12),  (5.5.104)

and this ends the proof of Corollary [] O
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5.6 The minimal form of the bare interaction

In this section, we show that the bare interaction corresponds to the boundary conditions
imposed in Theorem EI for LA Given ¢ € supp ,u* , we expand Lo %(¢) in powers of the field ¢:

+o0
d’p;
Ao,A pho,A
LAoAo( an/ /RSHH i “?*o ((z1,p1), -, (20, Pn))

Using (5.5.8]), we can write
Lndn(g) = Dhoo(g) + oo(g),

where

p,
Dhodo g Zn, L/ H PEDAN (21, 1), (zn o)) 0O (o1 -+ p)
X ¢(217P1) e ¢(Zn7pn) (562)

and

d3p;
Si\on Zn'/ /R3 H p3 lAnoi\O (zl’p1)7"' ,<2n,pn))5(3) (p1+"'+pn)
X ¢(z1,p1) - P20, pn) - (5.6.3)

Proposition [5|in chapter [4] implies that there exists f in L?(R*) such that

b(z,p) = / a2 CMN (e, ) f(p, ) |

0

which can be rewritten as
e Ai2 2 2
Z) - / dZ/ /1 > dA 67)‘(17 m )p* ()‘;sz/) f(pv Z/) .
0 Az
Therefore, we can write
SAO,AO
[ s (G a9, p1) - 6 p)
21 Zn

[/ H/ ax e MO o s (Fsgy L ). (5.64)

Zn j=1
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The boundary conditions ([5.4.19) and (5.4.21)) imply that
AO Ao 1 d3p AU AO
S* ’ (¢) =3 T9.\3 Sl 2~7* ((zlap)v (Z27 _p)) ¢(Z17p)¢(227 _p) ) (565)
2 R3 (277) 21,20

where SZA 20;;5\0 ((21,p), (22, —p)) is given by (|5.4.18) for Robin/Neumann boundary conditions and by
(5.4.21)) for Dirichlet boundary conditions:

e Robin/Neumann boundary conditions (¢ > 0): In this case, we obtain

dp /1
Ao, A _ A A
sp(s) = [ A (ado el 00910001 (5:6.6)
where
Si\o = / 8117\207;{\0 ((21717)7 (252, _p)) ) ej}o = / 218117\20;’,:\0 ((zlap)7 (22a _p)) (567)
21,22 21,22
and x € {R,N}.

e Dirichlet boundary conditions: For Dirichlet boundary conditions, we obtain

Sp M (9) = 0.

5.7 The Amputated vs the Non-Amputated theory

For quantum field theories on spaces without boundary, the renormalization problem of the amputated
and the non-amputated theory is equivalent in the sense that the required counter-terms render finite
the amputated and unamputated amplitudes, independently of the location of the external points of
the unamputated diagrams [111|{13]. However, first order calculations [45] give clear evidence that this
is not the case when one considers the renormalization of the semi-infinite model. The tadpole diverges
w.r.t. the UV cutoff, and its renormalization depends on the location of the external points (i.e. if they
are on the surface or not). If the two external points are not on the surface, then in addition to the
usual mass counter-term only one additional surface counter-term, which diverges linearly in the UV
cutoff, is needed. This is not the case when one considers the tadpole with at least one external point
on the surface. The latter needs one additional surface counter-term which diverges logarithmically
w.r.t. the UV cutoff. This suggests that the amputated and non-amputated diagrams are renormalized
differently for the semi-infinite model. In this section, we prove the following proposition which sheds

some light on this finding:
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Proposition 8. Let x € {R,N}. We denote by C, the unreqularized propagator associated to the

- c g Ao Ao
boundary condition *. For nonvanishing S)x and €., We have for yo > 0

S/\o,l\o

lim 1,2:% ((21,p), (22, —p)) Cr (p; 21, y1) Cr (p; 22, Y2)

Y1=20% Sz 20

# [ 8 ((21,p), (22, —p)) Cr (p; 21,0) Cr (p; 22,52)  (5.7.1)

21,22
and
lim  lim SP980 ((21,p), (22, =) Cr (5 21, 31) Cr (D5 22, y2)
Y10t yo—0t S, o, 7
£ [ 8 ((21.), (22, -p)) Cr (91 21,0) Cr (9 22,0) . (5.7.2)
21,22

Proof. We give the proof of Proposition [§] in the case of Robin boundary conditions. Neumann b.c.

can be treated analogously.
The particular choice of the boundary conditions (5.4.18))-(5.4.20f) implies

SPEA ((21,0), (22, ) = (59 + e} (02, +02,)) 62,0, (5.7.3)
Hence, we obtain for 1, yo >0
/ 85}20’7]/{\0 ((Zlvp)a (ZQ, _p)) CR (p7 21, yl) CR (p7 22, y?) - SR CR (p7 O yl) CR (p7 0 yQ)
21,72
+6R {Cr (p;0,y1) OnCr (p; 0,y2) + Cr (p; 0,92) 0nCr (p;0,y1)}. (5.7.4)
Using

hm lim 0,Cg (p; z,y) = —kpCr (p;0,0),  lim hm 0,Cr (p; z,y) = ¢ Cgr (p; 0,0) (5.7.5)

2—0y—0 y—02—0

with k, 1= /p? + m?, we deduce

/ 85}20,7]/%\0 ((Zlvp)7 (2’27 _p)) CR (p7 21, yl) CR (p7 22, 92)
21,22

= ( 0+ 2c ep )CR (p;0,91) Cr (p;0,92), Vy1,92 >0, (5.7.6)

/ 8/5m’ (21,0), (22, —p)) Cr (93 21,31) Cr (p; 22,0)
21,22

= (s + 20 €}") Cr (1:0,1) Cr (p30,0) = e} Cre (b3 0,91) (15p + €) C (9:0,0) . (5.7.7)
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/ Sf}go’AO ((21,), (22, —p)) Cr (p; 21,0) CR (p; 22,0)
21,22
( 0 +9¢ ) Cr (9:0,0) C (;0,0) — 2 €XCg (p;0,0) (5 + ¢) Cr (p;0,0),  (5.7.8)

from which (5.7.1)) and (5.7.2)) follow directly. O

Remark 3. Denoting aﬁo = 3%04-206%0, we deduce that implies that the unamputated two-point
function of the semi-infinite model which has two external points in the interior of the bulk, requires
only the surface counter-term U%O to be renormalized. This is not the case when at least one of the
external points is on the surface. From and , we deduce that 020 s not sufficient and the
additional surface counter-term e%o is required to make the two-point function finite. This generalizes

the remarks given in [Z,|47] and [45] concerning the tadpole to all loop orders.

5.8 Some properties of the surface weight factor for s=2 and [ > 1

In this section, we prove several lemmas that we use in the proof of Theorem [0} These lemmas

concern the case s = 2 for which the set of partitions %Py simply reads
952 = {Ho,Hl},

where Il := 09, II} = m Ume and m; = {Z}

From the definition ([3.2.9), we have
W (2) = { TP (Yo, 0:2)] 170 € T, vy <311}
and

W) = { T, 0:2) UL (92, 0] T, 15 € 9,

= W' (m1) UM (2),

which implies that the global surface weight factor % 2.0 5(7'1 9) simply reads

J‘ 2.1 % (7'1,2> = Z (A T1,72; T Yag) G"lAl% (7‘1) Gfﬁl’% (7’2) 5 (581)
le’OECWZQ(O'g)
where
97‘1/\5% (1i) = Z Fs (A, 275 T yz) : (5.8.2)
T ew} ()
Note that ((5.8.1)) implies

A0 A0 ,0
G‘7‘1,1;5 (1) GJ‘],z;a (m2) < 9;2, ¥ (71,2) . (5.8.3)
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Lemma 8. Let v be the total number of vertices of incidence number 2 of the tree le’o. Forp>1,
we denote by Z = (21, -+, 2p) the set of the internal vertices of Tl2’0 and (y1,y2) € (RT)? its external
vertices. For Ag :={A; |1 <i<wv—1}, = [A, Ao] and 11,72 > 0, we have

0 A 270. >
/;G‘}JS (AjaA;TlaTQ;ﬂ 727Y0'2>
z

144

?, Z,O) (584)
1

[ee]
S/ dz p(c1,5;2,91) PB (C2,5 2, Y2) PB (
0

and

o 146
dz pp (c1632,y1) PB (2,61 2,Y2) PB 2 #0
0 1

<2 /49‘}9 (AJ,A;717T2;7}2’0;3;Y02>7 (5.8.5)
z

where 0 < v,v2,v9 < v such that vi +va + vy = v, ¢15 = (1 +0)c1 and ca5 = (1 + 0)ca. The

parameters c1, co and Ay are given by

c1 =171+ (Zl A12> (1 — 51)170) , (586)

i=1 "t
v1tva—1 1
Co = T2 + ( Z /X2> (1 — 60270) y (587)
i=v1+1 ?
1 Gt | 1
i ( > A2> (1—6up) + iR (5.8.8)
i=vitve *

Proof. e First, we prove the bound 1} A tree Tf’o in °Mfl2(02) has the following structure

T1
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It contains one internal vertex of incidence number 3 and all the other internal vertices are of
incidence number 2. We assume that each dashed line contains a number v; > 1 of internal
vertices of incidence number 2. The case v; = 0 can be treated similarly. Remember that
vo+v +ve =v. Let {22, , zpy41}, {Zvi42: s 2oy 40o b a0d {2y, 40941, , 20} be respectively
the internal vertices on the paths from z; to y1, 21 to y2 and 21 to 0. From , the integral
surface weight factor of Tl2’0 is then given by

0 A 2,0, 5. _
/G‘}% (Aij;TbTQ;j_‘l 7Z7Y02> /
zZ 21,20

146 Vit 1+
X pB <A2§Zl72v1+2> H PB | A3 3%-1,% | PB (7263 201402, Y2)
—1

fas 144
H bB A2 y2j—1,%5 | PB (71,5;2v1+1,y1)
j=2 Jj—1

vi+l j=v1+3
1+0 u 1+6 146
X pB <A2;2’1,Z@1+02+1> H pPB (AQ;ZJ'_LZJ') PB <~2;Zv,0> . (5.8.9)
v1+v2 j=v1+va+2 J-1 A

Bounding the integral over R™ by the integral over R and using ([3.1.5)), we obtain

w146
/ 11 »s A2 414 | Pe(TLs Zen 1) < pelensi 2 u) (5.8.10)
227 Zup+l =9 j—1

where ¢1 5 = (14 0) (7'1 + >0 ﬁ) Proceeding similarly on the paths from z; to yo and from
z1 to 0, we obtain that the weight factor of a tree in W;%(02) is bounded by the weight factor of
the tree

Y1

1
Z1

C2

=1
o™

Y2 0

where c1, ¢o and /%% are the new parameters associated respectively to the edges (z1,v1), (21, ¥2)

and (z1,0). The relations between these new parameters and those of the tree le’o are given by

v 1 Gt | 1
co =Ty + ZAT and I Z 2 +ﬁ'
1 7

i=1 "t i=v1+v2

This proves the statement (5.8.4)).
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e To prove , we assume without loss of generality that v; > 1. Using (3 , we find
a4
pe(c1si21,91) = dzy--dze 1 | ] p5 A2 4 i1 | PB(TLS 2o, 1)
Rv1 . i—92
Jj=2 J

art o (140
< 2% /<R+> dey-dzos1 [] pe (M;Zjazj'—l) PB(TL8 20 41541) - (5.8.11)
vl . ) —2
J=2 J

Proceeding similarly for pp(ca s;21,%2) and pp (1:25, z O) we deduce

o0 1+6
/ dz pB (c1,652, Y1) PB (€2,65 2, Y2) DB (~'270>
0
< 2”/;;3 (AJ,]\; s T 2, Y(,Q). (5.8.12)
2
0

Lemma 9. Let W2(ILy) := T (yl,O Z)u le (y2,0;2") be a forest in W2(TLy) with (y1,y2) € (RT)?2
and va (resp. va2) the total number of vertices of incidence number 2 of the tree Tl}io (resp. Tl%éo)
For p, q¢ > 1, we denote by Z = (z1,--+ ,2p) (resp. Z = (zi, e ,Z;)) the set of the internal vertices
of Tiio (resp. Tl}éo) For Ay = {Ai, A 1<i<wvy1—1, 1<j<wgo— 1}, A1, Ay € [A, Ag] and

71,79 > 0, we have
/ﬁ?’g (AJ,]\l,]\z;ﬁ,ﬁ;WGQ(Hl);Z; Yaz) < pB (€1,6;41,0) B (C2,852,0) (5.8.13)
V4
and

(}(9 (AJ,]\l,[\Q;Tl,TQ;I/Vl2(H1);2;Yg2> 5 (5814)

z

pB (€1,5:91,0) pB (€2,5;92,0) < QU2,14v2,2 /

where ¢1 and ¢z are given by

e
¢1 =21 + Z A2 A2 ;
v 20—1

‘ 1 1
Co =210 + Z 5 + = .

Proof. The forest W2(Il;) is of the following form
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28

27’1

Z1

|~

A

= 1|

1
1
1
1
1
!
Fuz1 I Zug.o
0

The integrated weight factor of this forest reads

[99 (AJ,ALA%71,2§I/Vl2(H1)§Z§yl7?/2)
z
00 v2,1
146 1+90
:/ dzy-dzu,, [[p8| 5% 21 | PB(2T185 21, 91)PB | —25 2021, 0
0 j=2 Aj Ay

o wa (i 145
></ dz'y---dz,, HPB 525,71 | pB(2T255 21, 92) P8 —5 ey 0]
0 ' j=2 Ajfl A2

Bounding the integral over R* by the integral over R and using (3.1.5)), we obtain

/ﬁ'o (AJ,A17A2§7'1,23W/12(H1)§5§ yl,y2> < pB (¢1,6;91,0) pB (2,55 Y2, 0)
2

where for vo; > 1

v2,1—1

- 1 1
¢ =21+ Z TQI + 2 (5.8.15)
=1 ?, 1
vg.2—1
\ 1 1
(5.8.16)

Co = 279 + — 4+ = .
; A%, A3

If vo; =1, then ¢; =27 + %

Using again (3.1.8) and procieeding as in (5.8.11)), we deduce

P (¢1,5,91,0) pB (C2,63 Y2, 0) < 2U217022 /;;0 (Ay,fh,]\2;71,2;W12(H1)§5; yl>y2) . (5.8.17)
z

Lemma 10. For 0 < a <1 and y1, y2 € R, we have

1096:(0)] < Cos 77 2 Figs(m) . VO<d<1, (5.8.18)

where Oy ¢;(0) = lim,,_,o+ 0% ¢i(2i) with ¢;i(2;) := pp (7i; 2i,yi) and Cys is defined in )
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Proof. For a = 0, we have

2

1
$i(0) = N > < V2 pp (275;4:,0) .
1

(5.8.19)
For v = 1, we have |0,¢;(0)| = % ¢;(0). Using the bound (3.1.10) for r = 1, we obtain
_1
|0n0i(0)] < V2 Cos 7; 2 pB(27i6; i, 0). (5.8.20)
We consider the surface tree Tﬁzfo i i

which consists of the external vertex g; and the surface external
vertex 0. We associate to the external line (0,y;) the parameter 27;

. The integrated surface weight
factor of the tree Tﬁzfo then reads

F1s <2Ti;i'f,70;yi) =pB (27i6;9i,0) - (5.8.21)
Since Tﬁzfo € °M/ll(771), we obtain using 1}

Fris (2ri;iflf;°;yi) < Fiys (7i) - (5.8.22)
Combining the bounds (7.3.11)), (5.8.20) and (5.8.22)), we deduce

026:(0)] < V2 Cos 1 2 F5 (),

Furthermore, we also obtain

ae{0,1}.

(5.8.23)
8%1(0)85@(0)( <2C3s T R H%M m), o Be{0,1}. (5.8.24)
=1
Recalling (b , we deduce
_a _B
0561 (0)0062(0)| < 2C35 i Py * Fyyly (). (5.8.25)
O
Lemma 11. For0<t<1,veN,y1 ER and 0 < 6 < < 1, we have
v T2 K
T
(j%) Fris (1) <O ¢ [ 14 v Fi o (1) (5.8.26)
where
A 27 Y1 = 27 Y1
A0 ._ 0 1. _ 0 1,0,
Fiis (b)) = Y. F (A, Wi ) =3 7 (A LY > (5.8.27)
Witemwt(ny) v=0

and O(1) is a constant which depends on 6, &', v, v and the loop order 1. We also have

1N
Y1 79/&0 <0 1 T 2 A0 898
W 1,16 (t,m) (1)t T Lo (T1) - (5.8.28)
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Proof. For s = 1 the global set of forests W}! (1) consists of all surface trees with two external vertices
(including the surface external vertex) which have a number of vertices of incidence number 2 less
or equal to 3l — 2. We consider the surface tree T € °ﬂ/l (m1) with the external vertex %t and the
internal vertices 2, = (21, -+ ,%y). Let v be the number of its vertices of incidence number 2 and
Ay = (Ai)lgz’gv—lv A, and 71/t? be respectively the parameters associated to the internal lines, the

surface external line and the external line of Tll’o. Then the integrated surface weight factor of Tll’0

reads
271 10, Y1
Fo (A T
6( F5 t27 n

v—1
2715 1446 1446
:[ pB< t; ’ytl’ 1) HpB <A2§Zi7zi+1> p3< A2 ,zv,0> . (5.8.29)
v i=1 i
If 41 € R™, (5.8.29) is bounded by
v—1

2715 yl 1496 1+0

PB ( 2 ) ) /Z; I:IPB (Mazzazz—l-l A2 1 20,0 ] . (5830)

)

Therefore, we obtain

2T
0 L 4T1 41,0 Y1
9;5 (AJ’tQ’J"l 7t>

<O() tpp (2m5:91,0) < O(1) t F\5(m), VI € W (m). (5.8.31)
Using (3.1.10]), we deduce

v
(5%) FO 15 (t,71) < O(1) t F%(m) (5.8.32)

where 0 < § < ¢ < 1.
Now, we treat the case in which y; € RT. Bounding the integral over (RT)? by the integral over RY in

(5.8.29) and using (3.1.5)), we obtain

2T
0 1 1 O Y1
GJ(S (Ajv t2 ) 1} n )

t2(1+6 (1446
<th (2715+Z (A2 )ay170> <th <2T15+Z )ay170> . (5833)

Furthermore, using (3.1.10) we obtain for all 0 < § < ¢’ < 1

Y1 1+9
<ﬁ> PB (2715+Z 2 Y1, )
T ‘144
< Css 1+Z 1 | ps (27’1,5/—1—ZA2;7;1,0>. (5.8.34)

=1 v
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Since A;, A, > A for all i € F, we deduce that (5.8.34) is bounded by

1

.,
v 2 1 6/
Cyp max ((\%) ,1> 1+ TlT PB (271 o+ Z + - 0> (5.8.35)

=1

Proceeding similarly to (5.8.11f), we deduce
PB (271 5+ Z 7y1, ) < 2" Fy (AJ,Av; 271;7}1’0391) ; (5.8.36)

which together with (5.8.33)) and (5.8.34]) imply

(NI

7 2
(j%) 75 (Ay; g;Tfo, 311> <ct|1+0-] % (AJ;2n;Tf’°;y1) , (5.8.37)
where C' := 2V Cj s max <(\ﬁ)7 , 1). Using
31-1
Fo(m) =Y FL (A, 2m; T
1,1;6 1) T Fs y 4T1;5 ayl (5838)
v=0
we deduce
¥
¥ 2
(5%) Fps (t,m) <O() ¢ 1+ 1T Fi i (1) - (5.8.39)

To deduce (5.8.28)), note that performing a change of variable we have for all y; € R

2T 2T —

0 VAL 10 Y1) g0 VAT 10, YL

OJ(S (AJ, t2 ,1} 3 t> — %(5 (AJ, t2 ,7} ) t ) 3 (5840)
which together with the bound ([5.8.26f) gives directly (5.8.28)). O

Lemma 12. Let A > 3\/]7'*%, 0<6<d <1and (yi,2) €ER% For0 < t,t' <1,1>1 and
v1,7v2 € N, we have

" Y2 _1
Y1 Y2 1 T2 Y1 Y2
<ﬁ> (ﬁ) %20’[?5 (A 2 t’) < tfa ( A > 9215' (As712;91,2) - (5.8.41)

The polynomial @ has nonnegative coefficients which are independent of 71, 7o and A but depend on I,

5,8, v and vs.
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Proof. Using (/5.8.1)), OJQAZ’,O(S (%, T3 4L 22) can be written as follows

0 T1 T2 42,0 Y1 Y2
Z 9:6 <A’tz7t/2’j—‘l atvtl)
TZZ,OEQM/lQ(O_Q)

~+

21 10 Y1 2719 1,0 Y2
X %J(A’tz?Tl 2 X w(ATmnhE) | Gsay

Tll’oecml (7"'1)
e First, we prove

Y1 Y2
Y1 Y2 Z 0 T T2 2,0 Y1 Y2
e Y 9 A’iﬂi;T ’ ;777
(\/Tl> <\/7'2> ( 1272770 0 t’)

7}2’06%2 (0_2)

/ T_% a0
<ttQ A J'2,l;§’ (A; 71,2, y1,2) s (5.8.43)

where 0 < 6§ < &' < 1. Let us start first with the case y;, y2 > 0. Given a surface tree Tf’o in
W (02), we have by Lemma

0 T T2 20 Y1 Y2
95 <A57A71527t/2a1—1l atvt/)

o 146
< / dz pp (cl,a(t);z, &> PB <62,5(t’); z, y7/2> PB (f;, z,0> , (5.8.44)
0 t t A?

where ¢ 5(t) = c1(t)(1 + 8)and co5(t)) = ca(t')(1 + §). The parameters c¢;(t), c2(t) and Ay are
given by (5.8.6) with 71 — 71 /t? and 7 — 72/t"2. For y; < 32, we write

- L N Y2 146
/0 4z ps <cl’5(t)’z’ t )pB (02’5(”’2’ t')pB ( A ’270>
=(0,51) + I (y1,y2) + F(y2, +00) , (5.8.45)

where

b
1446
F(a,b) = / dz pB (cl,(g(t);z, %) PB (czg(t’);z, %) PB (~'z,0> )

— First, we bound ¥(0,y1). For 0 < ¢, <1, we have

pB <61,a(t);z, %) <tpp(cstz,y) , (5.8.46)
po (cas )iz 52) <t pi (e25it'z 1) (5.8.47)
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with ¢; 1= ¢;(1). For 0 < z < y; < ya, we also have
(5.8.48)

pB (c15:tz,y1) <t pp(cis;z,y1) ,
pB (c20t'2,y2) <t pp (casi 2 ua) - (5.8.49)

This implies
1490
ro. o) , (5.8.50)

oo
JOy) <t t / dz pp (c1,6:2,y1) 5 (2,62, Y2) P <A2
0 1

which again by Lemma [§]is bounded by
0(1) /f%) (Ay, A; Togs T1270§ Z; Yaz) < O(l)ojé}i;g (7'172)
z

For (y1,72) # (0,0), we need to bound also the following term

() () oo

VAEVARRNYLP]

Using (5.8.50)), (5.8.51)) is bounded by

Y12 fo%) , ,
t § : E : (’21) (7;) / dz |y —z|k|y2 —z|k Sty2—k—k
0
1+94
i ;z,O). (5.8.52)

k=0 k’=0
X PB (01,5;»2,2/1)173 (02,5;2,y2)p3 <[\2
1

(5.8.51)

Using (3.1.10)), we obtain
1+9 o / 1+4¢
j_ 72,0) < 05’5/ Al n—r2+k +kpB < 1—{2 72,0) . (5853)
1

y1+y2—k—k
Z bB
2
Al

Since A;, A > A for all i € .7, we deduce that

1 k 1
:< Z A2>(1—5v,0)+/~\2§ A2

= :
A1 i=vi+va+1 ?

i (5.8.54)

This gives

/
1+9 ;z,O) . (5.8.55)

L 5;z,o> < O(1) ARty ( e
1

Y1+v2—k—k
2
Al
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Similarly, we have

E
lyi — 2" Fpp (ci 5591, 2) < Cs 5 c2pB (i vis 2) (5.8.56)
1 k
k 7'.75
<o) 1+ ZT PB (cijy;yi, z) , (5.8.57)

where we used ([5.8.54). Whenever it appears, O(1) denotes a constant which depends on 4,
¢’, 1 and v. Combining (5.8.52)), (5.8.55) and (5.8.57)), we deduce that ([5.8.51) is bounded
by

1
T2 o0 140
tt'aQ (A ) / dz pp (c1o032,91) B (251 2,42) PB (JX? ;270> : (5.8.58)
0 1

By Lemma we deduce that (5.8.51)) is bounded by

1

tt @ (TA2> [%g (AJ,A;T@;T&O;;; Y@) . (5.8.59)
z

— Using the bounds (5.8.46), (5.8.47) and (5.8.49)), the term F(y1,y2) is bounded by

, (v 146
tt dz pp (c16:t2,91) pB (2,85 2, Y2) PB VR 0]. (5.8.60)
Y1 1

For z > y1, we have

1446 2(1+6) Y2 A2
~7' < ~7' - . . .

Knowing that vy < 31 — 1 together with

VA;eAy, A >A, A>A, (5.8.62)

and recalling ([5.8.54]), we obtain

NI

Ay > > V3173, (5.8.63)

3>

where we also used A > 3\57'7%. This implies

272 242 )
vl yrA 5
- < - )< oY) N
eXp( 4(1+5)> _exp< 12(1+5)z> —eXp( 2<1+5)ﬁ) (5.8.64)

Furthermore, we have

1

pB(c15t2,91) < —F——= .
V/2mers

(5.8.65)
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Combining (5.8.65|) with the fact that ¢; > 7, we deduce

2(1+0)
A%

I (y1,92) S/dz PB (€2,5:2,Y2) PB ( ; ,0> pB(c1,5:91,0) ,
R

and by (3.1.5) we deduce that ¥ (y1,y2) is bounded by

2(1+46
pB (Cz,é + (j\z);yz,0> pB (c1,5:91,0) .
1

Using the property (3.1.10)) of the bulk heat kernel together with ([5.8.62)), we obtain

Y1 Y2
Y1 Y2 2(1+9)
=) (= Cos+ Sy, 0 c15;91,0
(ﬁ) <\/E> PB ( 2.6 e Y2 pB (c1,5591,0)

1

T. 2 201+ ¢

<Q ZA B <02,5f + (112);112,0) pB (c1,6591,0) , (5.8.66)
1

where 0 < § < ¢’ < 1. For A > S\ﬁT*% and [ > 1, we have

_1
VA€ Ay, A;>A>V3BIr, 2, (5.8.67)
and this implies
21 < 7'27 i 1 < 2’
Av1+v2 3 Avﬁ-vg—l 3

1 ° 1 1 w+l ™
A (i:v;frl Af) ( o A2~ A2 T3 ( )

where again we used that vg < 3] — 1. Hence, we have

1+4") 1+ 21+6’
02,5/+ ( = To5 Z )

A2 = z+v1 A%
vo—2
1+48 146
<yt o T (58.69)
i=1 z+v1 Al

which gives

21+ 6 ”221+5’ 1+
s <02,51+(~2);y2, >< V2 pp (2725/+Z iy, 0. (5.8.70)

2
Al i=1 7,+v1 Al
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(3.1.8) together with Lemma [§f gives

v —2
1+¢6 1446
PB 27—25/+ Z A + — 2 73/2,0
1+v1 A

vo—1
1 144"
/ / B (27255 21, 92 H pB $Ziy Zie1
Zvg+vg—1 U1+7f 1

vo—1 , ,
1446 1496
X H pB ( Zv2+i7 Z’Ug+i1> pB <~a Z’L}2+”U()717 0> . (5871)

2 2
Av1 +v2+i A

The RHS of (5.8.71]) corresponds to the integrated surface weight factor of a surface tree Tll’0
which has an external vertex ys and vo + vy — 1 internal vertices which all are of incidence

number 2. This tree belongs to the set of forests ;! (m3) if and only if
vot+uva—1<31—1 . (5.8.72)

. 2 .. . .
Since the tree T 0 (Z—%, t%; u, ‘%) is in the forest °Wl2(02), vg, v1 and ve necessarily verify

1
vo+uve—1<3l—-2—-v+ -,

2
which implies ([5.8.72)). Hence, Tll’0 belongs to the set °Wll(7rg). From (]5.8.70') and (]5.8.71'),
we deduce Ly
_|_
DB (CQ’(;/ + T; Y2, 0> <O0(1) 971/\71’2;, (12) . (5.8.73)

Using ([5.8.11]), we obtain
p5 (cLe551,0) < O(1) Fi (1) (5.8.74)

(5.8.60) and (5.8.66)) together with ([5.8.73)) and (5.8.77) give

ONOREEE

where all the constants were absorbed in the coefficients of the polynomial Q.

1
2

) GJIAZ% (1) GJIAZ% (12) (5.8.75)

— The last term to bound is
e 1+6
F (2, +00) ::/ dz pp <cl,5(t);z, %) PB <62,5(t’); 2, &) PB <~' z,0> -
Y2

For z > y9 > y1 we have
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where we used ([5.8.63|) and ¢; > 7;.

Bounding respectively pg (c1,5(t); 2, %
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)t ) and pp (025(t>7 20
deduce that .F(y2, +00) is bounded by

Y2 t t’
,) by Jorers and Jares we

O(1) t t' pp (c1,6:91,0) pB (c2,5592,0)
Using the bound ({3.1.10f), we find

U1 ! Y2 72
(71) <¢2> pB (c2,5:42,0) pB (c1,5591,0)
_1
T. 2
< .
<Q n

pB (c2,5592,0) pB (cre;v1,0), (5.8.76)
where 0 < § < ¢’ < 1. Using ([5.8.11)), we deduce

AO

115/( ) )

pB (cio;yi,0) < O(1)
which implies
7 Y2 _1
Y1 Y2 T 2 A0 A0
(ﬁ) (ﬁ) (b, +o0) <t £ ( A > Frie (1) F e (12)

(5.8.78)
Combining (5.8.59)), (5.8.75) and (7.2.12) together with and we obtain ((5.8.43)

(5.8.77)

FEH
Now, we treat the case in which the external vertices are negative: Given a surface tree T,
Wa,(02), we recall

v1+1
TLT2 20 5 YL y2 1+0 1,5 Y1
/f](? (AjaA t2,t/2’T‘l ; 77 / H pB( y%2j—1,%5 | PB (T;Zvl—‘rh?)
z Zu
1+0 s 72,6 Y2
X PB <A2 21,2v1+2> H PB Zj—lazj pB<
v+l j=vi+3
146
X PB

t/2 5 vy +va) ?
v
1406
A2 521, Zv1+v2+1> H PB
v1+v2 ;

Jj=v1+va+2
For y; <0 and 2,11 € RT, we have

1446
[\?l’z‘jl’zj> pB( ]\2 ;ZU70> . (5879)
T, Y
pa (

t2 7Ry n > < th (7'1672/170)
Hence, we obtain for y;, y2 < 0 using (3.1.10)
7 72 ~
5 () o
V1 VT2

.20, yr Y2
7t27t,7271} 7t t/>

<0() tt pp(m,5:91,0) pB (T26592,0), (5.8.80)
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which is bounded by
O) t ' F% (1) Fy gy (72) - (5.8.81)

If y1 <0 and y2 > 0, we have

0 T T2 20 Y1 Y2
g& <A57A7t27t/2a1—} atvtl)

e 1+6
<0O(1) t pg (11,5:91,0) / dz pp (cg,a(t’);z, @> DB (f\Q ;z,()) . (5.8.82)
0 1

Using (3.1.5)) together with (5.8.11)) and (5.8.2), we have

o 1+0
/ a2 pp (e2,5(); %, 22 ) pi (P;zﬁ) < FM(W ). (5.8.83)
0

t/

Combining Lemma [11] with (5.8.82) and ([5.8.83)) gives

7 72
Y1 Y2 o0 L T2 20 Y1 Y2
L 2 ) F( Ay, A; TR0 2L 2
( /7.1> ( /*7_2> [ ( S E) t27t/2’ JA) t ’ t/>
T

2
<ottt @ <A> Fiioy (1) Friy (r2) . (5.8.84)

1

Using (5.8.3]), we obtain the bound ([5.8.43)).

e By definition, we have

A Y1
Fostr) = > F(A T 2). (5.8.85)
T ew! ()

Applying Lemma to the global surface weight factors 4'1 b 5(t 71) and J«l b é(t T2) we obtain
7
Y1 ( AT L. 10, yl)
(ﬁ ) 2 R

T ew;! (1)
2
Y2 0 T2 1,0 Y2
“\ 7= Fs (A 5T
(sz) : 2 o ' ( v t’)
ga! 1\ 72

2
<o) tt [1+2 14 2

A A

A0 A0
gl,l;é/ (1) 9:1,1;5/ (12), (5.8.86)

and this together with (5.8.3)), (5.8.42)) and (5.8.43)) conclude the proof of Lemma [12}



150 THE SURFACE COUNTER-TERMS



Chapter 6

Renormalization of the bulk theory and
the position independence of the

counter-terms

6.1 Introduction

In this chapter, we study in more detail the renormalizability of the "bulk theory" that we
presented very briefly in section of chapter 5| This theory describes the massive scalar field in R*
with a quartic self-interaction supported on the half-space Rt x R3. The translation invariance in this
case is broken by the interaction. In section [5.3] we imposed constant renormalization conditions and
as a consequence of the simplicity of this choice, the counter-terms required to render the theory finite
can depend on the position in space. However, we aim to prove that the semi-infinite model can be
renormalized by position independent counter-terms of the same structure of the terms included in the
original Hamiltonian and this was partially established in chapter 5] by studying the surface correlation
distributions SlAnA* In order to complete our proof, we need to study the remaining part of the semi-
infinite correlation distributions, which is described by the bulk correlation distributions %1/7\7,1/\0. In
this chapter, we establish that there exists a particular choice of the renormalization conditions such
that the counter-terms appearing in the bulk effective action are position independent. Furthermore,
we relate these counter-terms to the counter-terms of the translationally invariant ¢4 theory.

The method of the proof in this chapter is similar to the method used in chapter [5] in the sense that

we construct a unique solution of the bulk flow equations of the following form

n

Tt o) 2% (,pa)s - o pn)) + D05 ((21,1), -+ (20, 2n)) (6.1.1)
=1

151
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Wher ii’l/;’tAO denote the correlation distributions of the translationally invariant model and Q){};IAO are
distributions in 8’((R*)") such that is a solution of the bulk flow equation (5.3.6)). The main
advantage of this method is to use the a priori knowledge of the renormalizability of the translationally
invariant theory to prove the renormalization of the bulk theory. As a consequence of this approach,

the bare interaction has the following form

% ” B /R+ dz ¢*(z,2) + % /R3 dx /R+ dz <a£§¢2(z,x) —b20p(z, 2)Ad(z, x)

+ icﬁéj&(z,x)) +% sho /Rs Pz $*(0,z) + €}o /Rs Bx $(0,2)0,6(0,2) , (6.1.2)
where a0, b20 and cA0 are the counter-terms of the translationally invariant model. The counter-
terms sﬁo and eﬁo are surface counter-terms that result from the breaking of the translation invariance
by the support of the interaction. This chapter is organized as follows: we recall briefly in section
the free massive scalar field theory in R* in the mixed position-momentum space and introduce
the ¢} interactions respectively on the full space R* and restricted to the half-space Rt x R3. Then,
we write for each of these two theories the corresponding flow equations. In section [6.3] we present
the technique of the proof which is based on constructing the solution of the bulk flow equation
using our knowledge of the translationally invariant correlation distributions. In this section, we
define the boundary correlation distributions EGZSZ};LAO through their flow equation and the boundary
conditions. Section [6.4] gathers the central results of this chapter. In proposition [J we present a
uniform boundedness result w.r.t. the UV cutoff Ag of the correlation distributions Sfl/} ﬁAO smeared with
a product of test functions that are supported partially on R* and partially on R™. This proposition
is a key result to establish Theorem which proves that E?ZSZ%AO smeared with a suitable class of
test functions obey bounds sharper by one power of A than Sﬁll} AAO. In proposition , we bound the
correlation distributions 3{} T;AO smeared with a suitable set of test functions that are supported on R™.
In section [6.5] we give the proof of the propositions [J] and [I0] together with Theorem

6.2 The ¢} theory in R?

6.2.1 The action and the regularized propagator

In this section, we consider the massive ¢}-theory in R* in the pz-representation. The point of
departure is to write the associated regularized path integral uniquely defined by the corresponding

Gaussian measure. In the mixed position-momentum space, the regularized flowing propagator is given

A, Ao

'Here, we slightly abuse of notation since we used z

in chapter 4| to denote the semi-infinite correlation distri-

butions. In the sequel, the semi-infinite correlation distributions corresponding to x boundary condition are denoted by
Ao

Linyx *
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by

1
Cg’AO (p;z,z/) _ /Ag A\ e~ Ap*+m?) DB ()\; 272’) ) (6.2.1)

The derivative w.r.t. A of C’g is given by

. . 1 . _
Cp;z,2) = Cp) pr <A2;z,z’> with  CA(p) = ——5e” A2 . (6.2.2)

For finite Ay and in finite volume the effective action is rigorously defined from the functional integral

1

AN , R
e H(E @) / djinng,p(®) e #Ea" (@50 - pAdo) — g (6.2.3)

Here, the Gaussian measure dyp a,,p is of mean zero and covariance th’AO. The functional LZ\O’AO (p)
is the bare interaction of a renormalizable theory including counter-terms, viewed as a formal power
series in h. The counter-terms functionals must be local and not exceed a certain dimension. The
subscript a € {oo, +} is used to distinguish between the translationally invariant ¢} model and the ¢}
model with an interaction supported on the half space RT x R3. For the translationally invariant ¢}

theory, the bare interaction reads

A
oo = 5 [ de [ d e
]. 3 AO 2 . AO 3 AO 4
+ 2/de a:/Rdz <aoo¢ (z,2) — b20p(2,2)Ag (2, x) + 4!Coo¢ (z,q;)> . (6.2.4)

For the ¢} model in R* with the interaction restricted to the half-space, translation invariance is
broken in the z-direction (i.e. the semi-line). Therefore, the counter-terms can possibly depend on z.

Therefore, it is natural to consider the general bare interaction

Ao,Ao _ A 32 2 Mz, x 1 3 2 [ a®(2)0%(z, ) — b2 (2)d(2, = 2, T
) = 5 [ @ [ as sty [ [ i (@660 - 1060 8,0000)
- ()0, 2)020(2.0) + 0 (2002, 2)(0:0)(2,0) + HeP (e ) - (625)

Here we supposed that both theories are symmetric under ¢ — —¢, and we included in (6.2.4)-(6.2.5))
only relevant terms in the sense of the renormalization group. The functions aﬁo (2), bﬁo(z), cﬁo (2),
dﬁo (z) and sﬁo(z) are supposed to be smooth.

The goal of this chapter is to establish that for a suitable choice of renormalization conditions, the

_ (ziz/)z

*We recall the bulk heat kernel pp (X; 2, 2') := ;ﬂ)\e 2
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AU7

bare interaction L~ 20 has the following form

QO’AO / 3z / dz ¢*(z,z) 1/ d?’x/ dz (aé\§¢2(z,x) — b20p(z, 2)Ad(z, x)
4' R3 R+ 2 R3 R+

1
+5 e x)) + 5 54" /R @z ?(0,2) + €} /R &z 6(0.2)0,6(0,7) . (6.2.6)

Following the steps of chapters |1] and , we expand the functional Lo (¢) in a formal power series
w.r.t. A,

LM (g) Z B A Ao

From L&;A“, we obtain the connected amputated Schwinger distributions of loop order [ defined as

follows
AN AA
S““Pl,ﬁ 0 ((zl,xl),--- ,(Zn,xn)) = (5‘15(21@1) "'5¢(2’n,rn 0|¢ 0 (627)

where we used the notation d¢(; .) = §/d¢(2, ) . Similarly, we obtain the bulk correlation distributions

of loop order [ from LA Ao

AA
g)blj}éAO ((2’1, .1'1), M) (Zm mn)) = 5¢(z1,x1) T 5¢>(zn,azn 0|¢> 0 - (6'2'8)

In the pz-representation, (6.2.7) and (6.2.8)) read

5(3)(p1 + - +pn)g[[}7;/\0 ((zlapl)a Ty (Znapn))
— (271_)3(7171) o"

Ao g
5¢(21,P1)-~5¢(2n,pn)L (P)lp=0 (6.2.9)

and

031+ 4+ p) BN ((21,01),++  (20yPn))

5n
= @m) Y b @le=o - (6:2.10)

The Dirac distribution §(3) (p1+ -+ pn) appears because of translation invariance in the a-directions.

6.2.2 The flow equations

The flow equation (FE) is obtained from ([6.2.3)) on differentiating w.r.t. A as in chapter

On(E + TM0) = (2 O 2y I — (L

— LMoy 2.11
2 (5¢7 B5¢ a 2 > (6 )
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By (,)o0 (resp. (,)p) we denote the standard inner product in L?(R*) (resp. L?(RT x R3)).
The FE for the CAS distributions derived from ((6.2.11]) are

8 8ng 0 ((Zlapl : Znapn

/dz /dz /awsglAfgLH (z1,p1)," - ,(zn,pn),(z,k),(z’,—k)) C‘g(kz;z,z’)

1 w A A w3
_Q/dz /dz Z Z ch [8 lgll anrl((Zl’pl)a"' >(Zn1pn1)7(zap))a 30%(]9;,2,2,)

l1,l2 n1,n2 w;

w A A
x 0 zglg n;)—i—l((zl _p)v”' 7(Zn7pn))} y

rSYym

(6.2.12)

and

AA
N0 D ((21,01), 7+ (2nsPn))

/R+ dz /R+ dz' /awglf‘ﬁm (z1,01), "+ (2n, Pn), (2,K), (2, —k)) Ch(k; 2, 7))

B /R a2 /R @Y Y 07N (1,p1), -+ i), (2, 0)0" (3 2, )

l1,lo n1,n2 w;

X 8“’293222“((/ —p),- - ,(Zn,pn))}

)
rsym

(6.2.13)

where we used the same notations of chapters 1| and . The tree orders 36\7 ;lAO and 9236\7 ’4A° are given by

i/’é\,lf\o ((z1,p1), -+, (24,p4)) = X 8(21 — 22)0(21 — 23)0(21 — 24) (6.2.14)

and .
Do ((z1,01), 5 (2a,00)) = A [ xF(21) 0(21 = 22)8(21 — 23)8(21 — 24) - (6.2.15)

i=1

Note that at the tree order, it is clear that §£A Mo ¢ 8/(R%) and E%A Mg g (RT)4).

6.3 The technique of the proof

As previously mentioned, the purpose of this chapter is to prove that for a suitable choice of the
renormalization conditions, the counter-terms appearing in the effective action (6.2.5)) are independent
of the position in space and can be related to the counter-terms of the translationally invariant ¢4-

theory through (6.2.6). Our technique is to start from the a priori knowledge of the translationally
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invariant gzﬁji model to build a specific solution to the flow equation (6.2.13]) that produces the required
properties of the bulk counter-terms. More precisely, we study (6.1.1). Before getting to the central
results of this chapter that lead to an effective action of the form (6.2.6)), we need to impose first the

boundary conditions for SZA;LAO, and then define the correlation distributions E:blA;lAO.

A7AO
l,n

6.3.1 Boundary conditions for &

In chapter [l we presented briefly the proof of renormalization of the massive ¢} in R* in
momentum space. In order to be consistent with the treatment of the semi-infinite model, we need
to consider this theory in the mixed position-momentum space. As we discussed before, one of the
main consequences of working in the mixed pz-space is that the correlation "functions" of the consid-
ered theory are distributions. For the translationally invariant model, the corresponding correlation
distributions belong to 8’(R*"). Following section we impose mixed boundary conditions:

e At A = Ay, the irrelevant part of the theory is required to be equal to 0. This translates into an
effective action of the form (6.2.4]) from which we can deduce the following boundary conditions:

3’1/,\20’1\0 ((21,p), (22, —p)) = (aﬁgo + b0, (0 - 3;)) 6(z1 —29), VI>1, (6.3.1)
Loy™ ((21,p), (22, —p)) =0, (6.3.2)
4
szl}f’AO ((21,p1), 5 (24,p4)) = ()\51,0 + Cf}go(l - 51,0)) [[o(z1 —2), wixo. (6.3.3)
i—2

e Let us introduce the following notations that we use in the sequel: Given a partition (7, m2) of

09.4, we define
|71 2]

/z;l ::E/m i /* ::E/- Y (6.34)

Our candidate of the rightEl "bulk" correlation distributions ([6.1.1]) contains the following part

n

AA
H X+(Zi) gl,ﬁ 0 ((2’1,}01), ) (Zn,pn)) ’ (6'3'5)
i=1
which belongs to 8§’ ((R+)4”). In order to obtain a global bound on the bulk correlation dis-
tributions, we need to bound (6.3.5). Hence, the renormalization conditions that we impose
must be consistent with the integration of the derivative w.r.t. A of (6.3.5) smeared with ap-

propriate test functions. Another constraint on the renormalization conditions is that they must
imply (1.1.20)-(1.1.21)) to ensure that the counter-terms appearing in (6.3.1))-(6.3.3) are equal to

3The one that leads to the bare interaction (6.2.6).
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the counter-terms presented in chapter [I Therefore, we consider the following renormalization

conditions: At A = 0, we impose for all z1 € Rand [ > 1

/R+ dzy (21— 22)" L3 ((21,0), (22,0) =0, Y0<r<2, (6.3.6)
/_ Ay (21— 22)" LGN (21,00, (22,0) =0, YO <r <2 (6.3.7)
and
/(R)S dzpa 201 ((21,0),+ , (24,0)) =0, (6.3.8)
/ deoa LU ((1,0), -+, (24,0)) = 0, (6.3.9)
/ LN ((21,0), -+, (20,0)) =0, ¥(m1,m2) € P (6.3.10)

2

Note that (6.3.6])-(6.3.10) written in momentum space imply the usual BPHZ renormalization condi-
tions for the translationally invariant ¢}-theory given in (1.1.20)-(T.1.21).

6.3.2 The correlation distributions CjblA T’LAO
For (n,l) = (4,0), we define
ébA,A() L
o ((z1,p1),+, (24,p4)) =0 . (6.3.11)

For (n,0) such that n > 6 and (n,l) such that n > 2 and [ > 1, the correlation distributions are

generated inductively by the following flow equation

8A9A2)z/,\ﬁ Zna n = //R+ dZ/R+ dz le 1n+2 ((gngﬁn),(Z,k'),(Z/,—k‘)) C’g(k,z,z')
_//R+ dZ/ dZ glAi\?’Hﬁ (( )’(Zak)a(zlv_k)) Cg(k;z,z’)
_//— dz/dz LN 1o (B ), (2,0), (2, k) CB(k; 2,2')

GyAA . ~ AA .
N Z Z {/+ dZ /R+ dz ll n?Jrl ((Zﬂ'17p7l'1)7 (Z7p)> 92)[27n2+1 ((Z/, _p)a (Z7r27p7r2))

11,12 1,72

AA > W - S
+ gll,nf-y-l ((Zﬂ'lvp7r1)a (Zap)) %127713-1-1 ((2,7 _p)’ (Z7T2apﬂ'2))
A Ao

D U > ~ A7A bvg g YA .
+‘C’%l1,n1+1 ((Zﬂ'lvpﬂ1)a (Zap)) 812771,54-1 ((Z,’ _p)’ (Z7T2apﬂ'2))] CB (pa 2y Z/)

- /(R2)_ dZ dZ glllx 7j’b\f+1 ((571'17ﬁﬂ1) ( )) 3112\ 713204-1 ((Z/ _p)) (Z_;Tzap;m)) Cg (p; Z?'Z/)} ) (6312)
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where we used the same notations as in (5.4.11)). The structure of the flow equation ({6.3.12)) is motivated

by the fact that (6.1.1]) is required to verify the flow equation (6.2.13]) and the tree order (6.2.15)). In
order to define uniquely EA’Z)ZAT’LAO, we need to impose boundary conditions.

Boundary conditions for 92>A Ao

At A = Ay, we include the counter-terms that make QAZ)ZAT’LAO finite as the cutoffs are removed. As
we already mentioned before, the form of these counter-terms is not known, but they must be local

functionals which do exceed a certain dimension. We write:

D9 ((21,p), (22, =) = 57902, 0z, + €002, 8, + b0, 5., | (6.3.13)
D05 ((21,p), (22, —p)) =0, (6.3.14)
DR ((z1,p1)++  (Znapn)) =0, Yn >4 (6.3.15)

The remaining information concerns only a finite number of relevant terms, for which it is much more
convenient to encode it in a boundary condition at A = 0. To extract these relevant terms, we perform

a Taylor expansion of the test functions ¢; and ¢o in € S§(R") around the origin in

/ iz / A2y D5 (21,0, (22, 0)) 61 (1) (22). (6.3.16)
R+ R+
Namely, we rewrite (6.3.16]) as follows
s11061(0)62(0) + €2 h1 (0)0nd2(0) + By 0 93(0) b1 (0) + 115" (61, h2) - (6.3.17)
Then the relevant terms appear as
s = / dz / dzy B)5™ ((21,0), (22,0)), (6.3.18)
R+ R+
Mo / iz / dzs 2 DY (21,00, (2,0)) (6.3.19)
R+ R+
o / dz / dzy 2 D)3 ((21,0), (22,0)) (6.3.20)
R+ R+

and the remainder lAf\éAO (¢1, ¢2) has the form (5.4.17) with SZAT’LA*O replaced by @;\;LAO. At A =0, we
impose BPHZ renormalization conditions given by

S?j_\o _ e?i\o _ h?’i\o —0. (6.3.21)

Note that the Bose symmetry for SDPZAT’LAO together with the boundary conditions ((6.3.13))-(6.3.15) and

(6.3.21)) and the flow equation (6.3.12]) imply inductively that EJABZA?;AO is symmetric w.r.t. its arguments.

In particular, this implies ef\ﬁo = hA Ao,
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6.4 Results

Before stating the main results of this chapter, let us introduce first the test functions against which
E,A’ZSZ\;LAO and glA ﬁAO will be integrated. The family of the test functions we will be considering are of the

following form for 1 < s < n:

S
Griis (Zin) = | [ P8 (73 2iymi) , i€ {1,2}, (6.4.1)
j=i
with 7 > 0, z;, = (23, -+ , 2n) and y1 ¢ set of points in R. We also use the test functions
S
j 1
09 o (oan) =0 (15525 2597) [[ pe(rsszi0w) (6.4.2)
i=2,i#]
where
1
P8 (733 25, 2155) = P (733 23, 95) — PB (73 21,5) - (6.4.3)
These definitions can be generalized by choosing any other subset of s coordinates among {z1,- - , 2, }.

Given a test function Wy in {¢r, _ s ., Qﬁ%?s,yu}, we define

L (213 i ) = /R g (5= 22)” L () () W) - (6.4.4)

Forn > 3 and 0 < r < 3, we define
AvA ey .
F12$l7n O(Zh 225 Pn; ¢T375,y3,3)

= (21 — 22)° / dzsn L5 ((z1p1) o (e pn)) [ [ 5 (i 20) - (6.45)
" i=3

For n = 2 we define
F12§£l1}2’A°(2’1, zo;p) = (21 — 2'2)355117\2’1&0 ((21,p), (22, —p)) - (6.4.6)

The uniform boundedness of &PZA T’LAO w.r.t. the UV cutoff Ay in the pz-representation can be summarized

in the following theorem:

Theorem 11. For 0 < A <Ay <o00,0<s<n, 0<r;, r9<3,21 €Randys, € R5~1 we consider

test functions of the form ¢, 4, (22.5). Adopting -(6.3.1(}), we have

w = —n—|w|—r A+m 2
0 gl/}r;/;\ro(zﬁpm Prooos)| < (A + m)4 vl P <10g m> P, </\Hp—i—l‘n)

1
T 2 o \;00
X @i (A—l—m) 'J(s,l;é (7'273) , (647)
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, -1 A Dn
8w8AAO(Zl;ﬁn; (4) )| < (A+m)3fn*|w|*r7_j 29} <10g _T;m)gs ( |19l )

l ;T T2,5,Y2,s +

_1
x©§< ’ >°‘S",‘j§ Ts) ) (6.4.8)

w —n—|w|—r A+m Dn
8 FlZQan (ZlaZQapn7¢73 s,Y3, s) S (A+m)1 ! 935{) (log m >g)é <A||iﬂn>

1

2 A,00;
x Qg <A Tm ) Fols 12 (135) . (6.4.9)

Here and subsequently, the polynomials P, and Q| verify the same conditions mentioned in Theorem

and the parameter § depends on the loop order l and verifies 0 < §; < 0141 < %

The proof of this theorem follows the same steps of the proof of Theorem [I] in chapter @] Hence,
we do not explicit the steps of the proof in this chapter. Let us define

9DlAnATOl,Tz(pT“ ¢Tl,s,y1,s) = /(R+) dz RO Z 2 Q)A ’ ((217p1)7 ) (Zn,pn)) HpB(Ti; Ziy yz) . (6410)
=1

The central result of this chapter is summarized in the following Theorem:

Theorem 12. For 0 < A < Ay, 7 >0, s > 0 and adopting -(6.3.15)) and (6.3.21) we claim

A A —
‘aw%l n; Tol [ (pn’ ¢7—1,s:y1,5)

A 7 -
< (At my-r-tul-n-r gy <10g ;m> P (A”i L) @ (M) FA0(r1s), (6.4.11)

using the same notations of Theorem [9}

NI

The proof of Theorem [I2] is inductive. However, there are some terms in the the flow equation
for which the induction hypothesis cannot be used. These terms involve the translationally
invariant correlation distributions &Pl/} T’lAO integrated over functions supported partially on R™ and par-
tially on R™. Upper bounds on them are summarized in proposition @ Let us first introduce the
following notation: For (7, ms) in 9~°gm, we define

gugpho

In;ry r2,7r1 STy

= [ [ 0 () o) [ pa(ris) L (64012)
(RT) (R™)92 i=1

(pnv ¢T1 ,$)Y1, 9)

where ¢; = |m;].
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Proposition 9. For 0 < A< Ay <00,0<s5<n,0<r;, r2<3, 21 €R and Y,, € R®, we consider

test functions of the form ¢r, 4, ,(21,5). Adopting -16.3.10) and using the notation (6.4.12)), we

claim for a given partition (71, m2) € Poyp

A 2
< (A4 m)P el g <log ;m) o (le!)

gveto
A+m

+ (ﬁm ¢T1,57y1,5)

l,TL;T‘l sT257 77727

_1
xQ (Aljn) Foies (Til,s,n;,s) . Yn>2, (6.4.13)

where the polynomials P, @ and § obey the same conditions mentioned in Theorem [

Remark 4. Note that the power counting on the RHS of (6.4.13) is improved and this mainly comes
from the following bound on the bulk heat kernel for = € Rt and 2/ € R~

1 _ 1 1
PB <A2;Z,Z/> <V2m Al pp <A2;Z,O> PB <A2;2/,0> . (6.4.14)
In the proof of proposition [0, we need additional bounds that we gather in proposition [I0}] Before
stating the proposition, we need to define for a partition (71, m2) of the set ooy,

A A -
3“’3 0 + Z(Zlapn,¢72,37y2,s)

Insrym™,m
s

= / dzﬂl / dzﬁz (Zl - ZQ)T 811)%[/\7;/\0 ((Z17p1)7 T (Znapn)) HPB(Ti§ Ziy yz) (6415)
(RT)n Ra2 ’ o

and

AN L=
aw‘ggl,n;rg—k(zl’pm ¢7—2,S7y2,s)
s

- AN
= /( s dZan (21— 22)" 0YL070 ((21,01), a(vapn))HpB(TiQZiayi) . (6.4.16)
R i=2
Proposition 10. For 0 < A <Ay <o00,1<s<n, 0<r<3andY,,, € RS™1, we consider test
functions of the form ¢, , y, (22,s) and a partition (w1, 72) of 02.n such that m; s == m; N o2.s. Adopting

-16.5.10), we claim for z; >0

- A - 5,
< (A4 m)telr gy <log ;m> G, <HP!>

A\ L
‘8“’3 0 + ) (zlapna ¢T2,s:y2,s) A +m

Lnsrym™,m

w = —n—|w|-7r g A+m) ~ _;n
O LN (13 i )| < (D) <log N )@4 ( A” L)
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weptA 5 ) 3—n—lw| _~3 & A4+m\ s [ |5all
o gl,n;;},wz(zl’pn’¢Tj2,57y2,5) < (Aer) T; > Py <10g m Pg Atm

1
- 73 A
x Q4 (A + m) C‘;s,l;%o (7_7]";:577—71'2’5) s (6419)

l,n;+ T2,5,Y2,s

. —3g A 7 ’
3”3A’A0(Z1;ﬁn§¢(]) ) < (A+ m)3_”_|w| 7; 29pg <log :lm> P < (28]
1
~ T 2\ Ao
x G (A—f—’rn> Js,l;-&-;zS(Tst) - (64.20)

Remarks 3. e Note that the boundary conditions -(16.3.15) and (6.5.21) together with the
flow equation and the tree order (6.3.11) allow to define uniquely @;\;LAO.

o We define

n

%l/,\;zAO ((Zn,Pn)) = gjbl[}ﬁAO ((Zn,Pn)) + HX+(Zi) gl[}ﬁAO ((Zn,Pn)) - (6.4.21)
i=1

Combining the bounds (6.4.11) and (6.4.18) we obtain

w A,AO —
‘a %lzn"lly'r? (pn7 ¢lesay1,5)

< {A+m)P T gl ) + (AT g ) )

A+m A T8
log —— | @_ [ 2 — >1, (6.4.22
><9°<0g m >g§ (A—i—m Q A+m]’ Vs > 1, (6 )

which is compatible with the proof of Theorem[9 in chapter[] as we already mentioned in remark

[3 at the end of section[5-7.3

6.5 Proofs

All the bounds of Theorem [I2] and Propositions [J] and [I0] are proved using the same inductive
scheme as in the proof of Theorem [I] They all can be established in the same way: first we bound
the right-hand side of the corresponding flow equation using the induction hypothesis, and then we

integrate over A using the appropriate boundary conditions.

6.5.1 Proof of Proposition

Proof. The bounds ((6.4.17))-(6.4.20) obviously hold in the starting case n =4, [ = 0.
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The right-hand side

Let z; > 0. The bounds that we want to obtain for the right-hand side of the flow equation are

- —n—|w|—"r A + _’n
a0 LN (213 s b )| S (A +m) "sw@g mm>9(”p”)

Lnrsm] o A+m

1
T 2 .
x Q <A + m) Gjﬁl’? <T7r1+7877—7r2,5> . (651)

Similarly, we want to prove

oo (52)2 (1)

1
"3\ o
xQ (A + m) J‘s,l,Jr ) (7—2 s) . (652)

We give the details of the proof of (6.5.1). The bound (6.5.2)) is then established similarly.

BAawgl s +(21§ﬁn§ Q[’Tz,s,yz,s)

A) First, we analyze the case r = 0:

- The linear term: This term is given by
bvd / bod A,AO - = /
// dZTI'l /dz/ dz / dzwz 31717714»2 ((vapn)v (ka)v (z s _k))
kJ(R+)n R R Ra2
X CA(k) <A2a 2% ) HPB Tzvz’uyz . (653)
Using (3.1.5) and the notation (6.4.15)), we rewrite (6.5.3)) as follows

AA - . 1 L “A
Awé%LLMMX@“”*“%MMXW(mw”ﬁ@Qm~@>C“%

(6.5.4)
where 75, = ma U {s + 1, s + 2}. Using the induction hypothesis (6.4.18]), (6.5.3)) is bounded
by

- Atm) [, LA T
A4m)> g (1 / CMk) P - —
(A +m) oo ) ] C WP A m) A em
1 1
/Rd“ gs+21 1y, w6 <A§ T;,Svﬂrz,sv A2 W;Zl,yz,g,u,u) . (6.5.5)
We have

1 1
o 00 +
‘fs+2,l—1;5 (A7 Tm’Sﬂ Twéysv A2 9A2’ 21,Y2;s

1 1
= Z °J§°<7}is,7‘ﬂ2$ JA2 JAT T2 21, y2.6, s u) (6.5.6)

Ts+2€(js+2
-1y, wé
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For a tree Tlstl2 in GJIS_me > we denote by z and 2" the internal vertices attached to the
) 1t

external vertices {u,u}. The contribution of the external lines (z,u) and (2’,u) in the

summand in (6.5.6) is

1406 1406 149 A
du 32, U 2 u | = 2,7 ) < ——. 6.5.7
Jotwrs (oo (i) = (S350 ) < 3 099

Hence, we deduce that the contribution of the heat kernels corresponding to the external
legs (z,u) and (2/,u) in the weight factor is bounded by A. From a diagrammatic point of
view, this means that the legs (z,u) and (2/,u) are amputated from the tree 772, If an

internal vertex becomes of incidence number one after the amputation, it is removed using

146
/RdzpB (A?;z,z> =1.

These steps correspond to the reduction of the tree 7}5:32 at the external vertices {u,u}.

Using (3.2.8), we deduce that the reduced tree is in F;% _ and we obtain

1 1
+2 . 3
/Rdu C‘zsoillfl;& <A7 Tr1,s0 Tm2,s0 A2’ 2A2 ) Ts (215 2 Y2,s, U, U))
< E 16 <A,Tmb Trg.os 1) (21, S Yo 8)) (6.5.8)

Combining (6.5.5)), (6.5.8) and the bound (4.5.23)), we deduce that (6.5.3)) is bounded by

I A+m 15, T\ v
(A + m)3 | | 95 <10g m) 93 <A T m @ A Tm J‘S,i;(s <T7T;r,s77-ﬂ—2’s> . (659)

The quadratic term: This term denotes the second term on the right-hand of the flow

equation (6.2.12)). Given a partition (7}, 75) of oa.,, we analyze the corresponding term in

the symmetrized sum given by

/ dZm/ dZWQ/dZ /dz 31013?204_1 (( Do ),(Z,p)) awsC'rA(p)
R*)4 R22 1,11

x 8w2$l[2\:7/1\§+1 ((Z;Fé?ﬁﬂé)? (Z/’ _p)) (AQ’ Zy % > HPB (7i52i,9i) - (6.5.10)

We define
¢;1(Z/1 = H pB(TT§Zr7yr)> ¢/5/2(gé = H pB(T'r;Zrayr)a (6-5-11)
rem TEM)
where 7} _ := 7, Noa:s and s; := |7, |. Introducing the shorthand notation m;; = m; N 773«, we

distinguish in the sequel between the following cases:
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- mj # @ for all 4, j € {1,2}: Using (3.1.5]), we rewrite (6.5.10) as follows

w1 cp iAo LB, e 1._
/Rdu /R+ 4z g gl17n1-|—1;7rfr1,7r21U{5+1} <Zl’p7r1’p’ ¢Sl *PB <2A2’ ’u>>

AA . 1
x QWL Zq; Sigi U
lo,no+ 1wl moaU{s+2} ¢ P> =P 32 a < PB A2

x 0V CMN(p)gy(z,), (6.5.12)

with 7f, = m2 \ {¢} and

/Slz,q(zn;) = H pB(TT;Zr’yr) . (6513)

’I”Eﬂ'é,s, r#q

0q(2q) = pB (T4 29, Yq) if g < s, otherwise ¢, = 1. Using the induction hypothesis

(6.4.18) and the bound (4.2.3)), we deduce that (6.5.12) is bounded by

—n— m ||pn|| %
3—n—|w| A 7
(A+m) P <10g — ) P < - Q -

1
+
/du 1+1 11301 <A 215 Tryy 0 T S’2A2’Y7"1 ’u>

1
X /R+ dzq s2+1 l2;62 <Aa Zq; 7—;1127577—#22,57 W; Y”;?s’ u) QSQ(ZQ) (6'5'14)

Given a pair of trees

s1+1 nso+1 G~S1+1 crs2+1
(irll ’7}2 ) cJ li;mi1,m21U{s+1} X Jlg 7r12,7T22U{S+2} ’ (6515)

let us bound the following term

1
o 00 . R s1+1,
/Rdu F ot 1100 (A, 215 Trp Trat,en —2A2,T le , U

1,
X R+ d’zq sz+1 l2;02 (A; 2qs 7—:!11 2s T7r22 s 2A2’T82+ Y 'q ) ¢q(ZQ)' (6'5'16)

Denoting by z and 2’ respectively the internal vertices in Tlerl and Tf;“ attached to

u, wWe use ) together with the bound ) to obtain

1+ 61 1402 , 1+6)
du p (;27U>p (;Z,u> <O0(1)p < 12,2, 6.5.17
/R B\ 2A2 B\ 2A2 (D ps {3z ( )

where ¢} := max (01, d2). Diagrammatically, the contribution pp (1X§1 4 z) in (6.5.16))

means that the external legs (z,u) and (z/,u) are replaced by the internal line (z,2’).
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The integration over z; implies that z; is converted into an internal vertex, and if
q < s then it is attached to the external vertex y,. These steps correspond to the

s1+1
T

fusion of the trees and Tl‘?ﬂ at the vertex u. We denote the resulting tree by

Ty (zﬂli1+1’1ﬂlzz+1), The number of its internal vertice.ﬂ is vo1 + w22 + 50(3(1),1 and we

have
s+ 2

S
V21 + V22 + 5C(zq)71 + 50171 <3l—4+ <3l-2+ 5 .

Hence the tree T}’ (T[?J“l, 1}322+1> belongs to J;°. Let 2 , Zva and 2 be respectively
the set of the internal vertices of the trees Tfi”’l, Z}S;H and T} (TZ‘TH,Z}?H). If
q < s, we haveﬂ

Ve () = Yrur (g ) UWria (Fog, ) U {20} - (6.5.18)
Otherwise,
Yrro (3) = Yrrr (Fop) U Wria (Fog. ) - (6.5.19)
We also have
Yrae (2) = Yrars (Fop) U s (5og) - (6.5.20)
Remembering that Tl‘?ﬂ € Ojlf;lrﬁ,s,mmu{sﬂ} and Tf;“ € S’le?%;mzu{sw} and using

(16.5.18)-(6.5.19)), we deduce that
cym,s (Z) N Cyﬂ'Q,s (Z) =4, (6.5.21)

which proves that T} (TZSII‘H’ TIZQ-H is indeed in F;7 . Combining all these argu-
ments together, we deduce that (6.5.16)) is bounded by

g‘ﬁi%o (A; 215 Tﬂ.i'rs 5 7—71'2,3 ; 7—}8 <7"1811+1’ 7—2822+l) ; 92,3) . (6522)
Using (3.2.62)) and (6.5.22)), we obtain that (6.5.14]) is bounded by
N _1
3—n—|w| A+m Han T 2 o \jo0 ( >
(A+m) P <log — > P (A o Q A Foioy \ Ty Tz ) -

(6.5.23)

Now, let us treat the case m;; = @ for some 4, j € {1,2}. In order to simplify the dis-

cussion, we consider the case w12 = @ and rewrite (6.5.10]) as follows

AA . 1 .
/Rdu /R+ dzq 8wlgllznf+1§7ﬂ‘—m21 <Z1;pﬂi,p; ¢/81 *pp <2A27 ,U>> awSCA(p)

A - 1
X 0L, <Zq;pﬂg, —p; ds, 4 X PB (W; u)) dq(zg). (6.5.24)

41)271 and vz 2 denote respectively the number of vertices of incidence number 2 of the trees Tlsll"rl and TZS;‘H.

we used the notation (3.2.5)
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Inserting the induction hypothesis (6.4.18]) and using the bound (6.4.7]) we deduce that
(16.5.24])) is bounded by

o A+m 2] 3
3—n—|w|
(A+m) P <log o > P < - Q -

1
G, 00 . R .
X /Rdu Fs1 41,010 <A’ 215 Ty o0 Tman,s 2A2’Y7f1,s’Y7f21,svu

1
X - dzq F 51116, <A§ 2 Tmaz,s0 G Y7T22,s7u> ¢q(zq). (6.5.25)

Following the same steps as before, we find
du F* A 2 + LY Y.
R U T +1,11:6, 3 215 Tm,sa Tra1,ss A2 s TT2Ls0 u

1
X /R+ dzg g$+1,l2;52 <A§ 2qs Trag s W; Yﬂ22,s’u> Pq(2q)
< g;A;OO (A, 21 Twi'rs, 7_71_2’8;1“28 (z‘llsl1+17 z‘vl-922+1) ;yQ,S) , (6526)

8,036

where the tree T’ (Tflﬂ, T152+1> belongs to J,°. The only point that we need to verify
1 2

carefully is that the fusion of Tllerl and Tls2Jr1 indeed produces a tree in J;’ . We

1 2 37,5572,
have

Yris () = Yo, (Z?’l,s) (6.5.27)
and

Yoo (3) = Yrars (Fnp) UWrpy (51.) - (6.5.28)

For Tl‘?ﬂ € lef;l;;,ls,ﬂzl,s and Tf;“ € STl‘;QH, we clearly have

Gyﬂ'l,s (g) N Cyﬂ'Q,s (2) = @, (6529)

which implies that T} <1}j1+17 Tls;) belongs to Gjl?m,sm,s‘ (16.5.25)) together with ((6.5.26))
give that (6.5.24)) is bounded by ((6.5.23)).

B) Case r # 0: The linear term in this case can be treated similarly to the case r = 0. The only part
that must be treated carefully is the quadratic term. Without loss of generality, we consider a
term from the symmetrized sum that corresponds to a partition (7, 75) of 02, such that 2 € 7

which is given by

r w A,A — — W3
L [ i [aromain, (G ) 07 Eh )
Zny J Zry

S

o o 1
X 8w28112\:£§+1 ((zwé7p7ré)7 (Z/, _p)) HpB (Ti; Ziy Z/z)PB <M7 2, Z/) . (6530)
=2
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We write

(1-2) = Y ( " )(z1 — )" (1 — 2g)" (2 — 20)" (6.5.31)

r1,T2,T
ritratrg=r N 0213

where the multinomial coefficient is given by

< r ) r!
r1,7T9,73 r1! ro! rg!

For m;; # @, we rewrite (6.5.30]) using the notation (6.5.11)) together with (3.1.5]) as follows

_ r1 qwi cpN,Ao - e 1 ..
/Rdu /R“' dzq (21 =)0 ‘Egll,erl;ﬂ'frpﬂle{SJrl} (Zl,pﬁi’p’ ¢Sl " PB <2A2’ ’u)>
_ T2 QW2 AAO iess ;) —m " 71 ..
x (u—2 ) d 8l2,n2+1 srasmly maaU{s+2} <Zq’p7"2’ p; ¢52,q X PB <2A2’ ’u>>

x U CMN(p)gy(z,), (6.5.32)

where ¢, is defined as in part A). Using the induction hypothesis (6.5.1]) for r = 0 and r # 0, we
deduce that (6.5.30) is bounded by

1
] A+m 17| T2 -
A 3—n—|w| 3 ap (] ap n Q
(A+m) 8 m A+m Atm)€
1
X /Rdu |Zl _u|7"1 g§f+17l1;51 (A;Zl;T;Frll,s’TWQLS’ 2A2;Y7r/1,s’u>

1
X /R+ dzq |2q — u|™ Fooi1 1.5, (A;Zq;T;;ZS,TﬂQQYS, 2A2;Yﬂé’s,u> bq(zq). (6.5.33)

he

Now, let us analyze the term

1
o PV .
/Rdu |21 —ul™ Fh1 0,6 (A, 25T Tron e 2A2,le’s,Yﬂ21’s,u> . (6.5.34)

TS1+1 ars1+1
l1

Given a tree in 7', we denote by (vi,--+ ,vq) the set of internal vertices on the path

joining the root vertex z; to the external vertex u. We have
q—1

|21 —u| < |z1 — 1] + Z Vg — Vag1| + |vg — ul. (6.5.35)
a=1

Using (3.1.10) and the fact that A; > A for all 1 < i < ¢, we deduce the bound

s1+1 .
|21 — ul™ For 10161 (A,Tml,ﬂm, 2A27T (zl,z,Yﬂiys,u>>

B 1 )
<O(1) A7 g (A T g T (zl;z;Yﬂé’s,u>>, (6.5.36)

81+1,l1;§i ) Ty
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where §; < §] < % Proceeding similarly, we deduce that

1
Tq GEoo .t . s2+1 L.
|zg — ul Fooyt 1162 (AJWIZS,TMQ’S, 2/\27Tl2 (zq, 7 ’Yﬂi,s’ u)

- 1 -
S O(]‘) A " SOQO—&-]_,lQ;(Sé (A;T;l'i_lz’s?TTFQZ,s? W’Z}ZQJ’_:L (Zq;z /;Yﬂ-é,s’u>> ’ (6537)

where 0 < 09 < 04 < % Using (5.5.39)) together with (6.5.36) and (6.5.37) we deduce that Ry is
bounded by

o A+m [ 3
A 3—n—|uw| rap (1 9 - I
(A+m) g — A+m @ A+m
o0 1
X /Rdu GJSl+1,l1;5§ (A;znﬁ{ll,ﬁrgp 2A2;Y”378’u>

< /R oy TSy (N 57 T Yoy o) 0l)e (6539

The rest of the proof which leads to the final bound for (6.5.30)) is similar to the case r = 0. The
same method holds for m;; = & for some 7, j € {1,2}.

C) The bounds for 0", (213 B ¢9 1o.) and 00V LA (215 ), 4, L) are deduced fol-

m T L,n;+

lowing the same steps of part C) in the proof of Theorem El in chapter 4l Then, we obtain

wcepN,A - j —n—|w -3 A+m HﬁTLH
Or0 gl,n;v?f’,m(zl;p";¢‘(F]2?s,y2,s) < (A+m)2 | ‘Tj ‘P <log m >95 <A+m

1
—1 .
x @ (AT+ m) 9:s/,\l,,C:SO (Tﬂfsa 7-71'2’3) (6.5.39)

and

0. j —n—|w -3 A + _’n
OND" i3 0 (213 P 02, )| < (A )P Wl 72 <1Ogmm> 7 (M)

1
T 2
x @ (A + m> st/}i:(-),é (7_2,5) . (6540)

Integration

The integration of the bounds is performed similarly to the integration part in Theorem []] We
refer the reader to the proof of Theorem [7]in chapter [ for further details. O

Remark 5. Using the reflection symmetry of the translationally invariant theory that is

L (=21,p1), (=22,02) -+ 5 (=20, 00)) = L5 ((21,01), (22,92) -+, (200 Pn) 5
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we obtain

Aﬁ dZa (21— 2) L5 (), (22002) (oo pn)) [ ] 0 (7520, w0)
" =2

= /(R) d72n (21 + 22)" 551?7;/\0 ((=21,1), (=22,p2) -+, (=20, 00)) [ | PB (7552, —wi) . (6.5.41)
" =2

Denoting by glAr’LA_O (—Zl;ﬁn;QSrg,s,—yg,s) the right hand side of (6.5.41) and using the bound (6.4.18)),
we deduce for z1 € R™

A’A .
8wgl,n;—o;r (Zlvpna ngQ’S,ygys)

<A+m)trirg (log A;m> P 251 >

6.5.2 Proof of Proposition [9]

Proof. Starting from the tree order

4

Lo ((z1,p1),+, (24,04)) = N[ [ 6(21 — 20), (6.5.43)
=2

we have for a given partition (71, m2) in Pa.g

gAJ\O (1747 ¢T1,5,y175) = 07 V2 <s< 4.

0,4;7rfL,7r;
This implies using the flow equation (5.4.1)) for all (71, m2) in Po,, that we have

AN N
E4 0+ (pn; ¢7’175,y1,s) =0, V2<s<n.

0,n5m ",y

The bound (6.4.17]) obviously holds for the tree order.

The right-hand side

The bound that we want to obtain for the right-hand side of the flow equation is

A _'n
I (s Dr1 ) ( < (A+m)> vl g <log ;m> g (Hp | )

l,’ﬂ;’f'l,’l"g;ﬂ'r,ﬂ'; A +m

1
T 2 A0 7
% @ (A + m) J’{Sﬂl;d <T7jl,s77—ﬂ'275) . (6544)
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Case 1 = ro = 0: first, we treat the linear term

/k/w)pl Az, / dz,, /dz /dz LM o ((Bna ), (2, K), (2, —F))

. 1 i
x CMk) pp <A2;272/> [1p5 (miizi0) . (6.5.45)
i=1
Using (3.1.5) and the notation (6.4.12)), we rewrite R; as follows

AA 1 ‘ 1 ' A
/du/ ps £ 121+27r1, 7 <Pn,k —k; @ry oy1s X DB <2A2,-,u> DB <2A2,',u)>c (k). (6.5.46)

sTT2

The prime on the sum refers to a summation over partitions in the set
{(mUE,mUE)| €cP({s+1,s+2})},

where P ({s+1,s +2}) :={{s+ 1}, {s +2},{s+1,s +2}}.
Using the induction hypothesis, (6.5.46) is bounded by

—n— A+m . k| 17| T2
1-n \w\gb A Pp
(A m) ! <log m )/kc (k) <A+m’ AN+m @ AN+m

X Z /du9¥+2l s (N 77 725 Yo, uu) . (6.5.47)

(7r177r2)
where 7541 = Topo = ﬁ Using the bound (3.2.64)) from lemma [2, we deduce the final bound on
(16.5.46|)
o _1
(A4 my> g (10g 2™ g (Pl Y g (772 ) gno ( - ) (6.5.48)
m A+m A—|—m 8,00 7r15’ T2,s

In this part, we bound the quadratic term by analyzing a given term from the symmetrized sum. Given

a partition (7}, 7%) of o, we bound the following term

dz, dze, | dz [ d2' 0" M (2., 5.), (z,p)) 9¥3CA
/(R+)m ) 1/(R_)P2 : 2/R : /R : fyma+l <(Z S p)) ()
8w23,’l/2\£§+1 ((5 s Dot ) (z ! —p)) PB <A2’ >Hp3 (735 2i,9i) - (6.5.49)

We define 7;; := m; N 7} and rewrite (6.5.49) using the notation (6.5.11)) as follows
S Y [awomgt &, % p (g
Lni+1: 7"1177"21 pwlapv s1 PB 2A27 ’

R
(711,721) (7F12,722)

x gUagpio ( ~pi ol % pp (21 u>) UICA(p) . (65.50)

la,no+1; 71'12 oo
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The prime on the first sum refers to a summation over partitions in
{(rnU{s+1},m21), (m1,m21U{s+1})},

and the double prime on the second sum refers to a summation over
{(m12,m2 U{s+2}), (ma2U{s+2},m02)}.

e In order to bound ([6.5.50), let us first consider the case m;; # @ for all 4,5 € {1,2}. Using the
induction hypothesis we deduce that (|6.5.50)) is bounded by

o A+m 15l 3
1—-n—|w|
(A+m) 975<10gm >9(A+m Q Atm

Z Z /du FV 141,01:01 (A,T7r11 ,7'7r12 ,YF1 u)

(11,m21) (F12,722)

% T 1y (M7, o Yoy ) - (6550)

) 12,57 (T22,87 T T g0

Using the bound ([3.2.74]) from lemma we deduce that (6.5.51)) is bounded by

—n—lw A+m D T2 _
(A+m)2 ‘ ‘93 <10g m) 95 </X”i7|/’n> @ <A+m> 8,[,(5’ (A, 7771377—71'25 YO'S> y (6552)

where ] := max (41, 62).

e To treat the opposite cases, we restrict our analysis to the summand in (6.5.50))

w1 AA() — Y ]‘ ..
/Rdua gl RS P e (pﬂi’p’(bsl X PB <2A2’ ’u>>

1 .
x et <ﬁwg,—p; % X DB <2A2; U>) 0“sC*p)  (6.5.53)

lo2,no+1;7 5,759

and distinguish between different cases. We separate between these cases since in order to bound

each one of them, a different induction hypothesis or bound is required:

i) Let us start with the case 791 = 712 = @, which implies that 7;; = m; = 7. In this case,

(16.5.53)) reads

AA - Y 1 .
/Rdu 8w1$l1 nf+1 (pw’17p7¢81 XpB <2M77u>>

B} 1 o
X ULy (pwz —p; &5, X DB <2A2; u)) 8UsCA(p), (6.5.54)
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where
guicpAo e L
l1,ni+1;+ pﬂ'll’p7 ¢Sl X PB A2’ y U
AA Y L
— /l;-'— dZ 8W1gl17nf+1;+ <Z7p7r’17p7 ¢31> PB <21\27 Z?U) (6555)
and
811)23/\,/\0 oy el 1 .
la,no+1;— pwéaP? ¢82 X PB 27'7“’
’ 2A
AN o, 1
— / dz 8w2312:n20+1;7 (Z’;pm’ —p; ¢;’2)p3 <2A2;Z/’u> . (6.5.56)

Using the bounds (6.4.18)) and (6.5.42) together with (3.1.5)), we deduce that (6.5.54) is
bounded by

L Atm Al T2\ w2

A Son=lwlgp (10g =" ) op = ?

(A +m) 0g — - Arm) %\ A )
8 /R+ dz / dz' gslo+1,l1;+;51 (A; Z;Tﬂlys;yﬂlvs)

1
X GJSOQO—FI,ZQ;—;(;Q (A; Z/;Tm,s;Ym,s)pB <A2;z,z’> . (6.5.57)

Lemma [5] gives

%;10+1,l1§+;51 (Aa 23Ty, Ym,s) < 0(1) SJ;Sri-l,ll;(sl (A; 25Ty ss Y“I,S) (6'5'58)
and

OJSO20+1,I2;—;52 (Aa Z; TTrz,s; Y7r2,s) < 0(1) GJS_2+1,Z2;52 (A’ ZI; T7r2,s; Y7r2,5) . (6559)

Since z € R™ and 2/ € R™, we have
L., <V2r A1 L0 L0 6.5.60)
pB Pazvz = ™ pB paza pB Faz7 . ( «J.
Furthermore, for a given tree TI‘?H € %flﬂ we have for z € RT
1 I s1+1 >
e | 32:%0) Fs (Ajl;fm,s;Tll (Z;Zm;Ym,s))
— Fs, (Ajl,A; Torgi T (Zm,z;Ym,s,O)), (6.5.61)

with the following explanations: the surface tree Tlsll’0 is obtained from Tfl1+1 by attaching

the root vertex z to the surface external vertex 0 with a parameter A and converting z to
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an internal vertex. Hence, the number of vertices of incidence number 2 of the new tree is
equal to vz + d(z),1, With vo denoting the number of vertices of incidence number 2 of the
tree 7'. Hence, we have

1 1
By VR 51; : (6.5.62)

21 + Sey1 < 3L — 2+

which implies that Tlsll’ is in GJlsl’ Proceeding similarly, we deduce for z/ € R~

1 5
<A2 ) 2 0) <A52a Tra,ss TS2+1 (Z,; 2o Y7T2,s))

—F; (A&,,A; Trps; To20 (zm,z’;ym,o)) . (6.5.63)

where 11[22,0 € 87152’0. Therefore, combining ([6.5.57)-(6.5.61]) and (6.5.63) we deduce for [ > 1

! g0 . .S [~
/R+ a2 / A2’ Fo 11 bt (A’ Trusi T, (z,zm,Ym,s))

1
af, 00 . . S2 /.o . . /
X ‘J‘52+1,lz;—;(52 <A7 7-772,5 ) T’lQ (Z ’ zﬂ'27 Y7T2,s)) PB <A2 %4

<O0(1) A7 "”5015<A o Wf(l‘[);Yas), (6.5.64)

) 77137 7r2 )

where IT = 71 s U ma s and W (II)) = Tlsll’o U TZS;’O. Hence, using ((5.5.39) we obtain that
(16.5.57)) is bounded by

2—n—|w|

x 3 Fors (M7 T s W) Vs, ) (6:5.65)

W2 (I eW; (11)

l?ﬂl,svﬂ'Z,s

NI

In this part, we analyze the case T = @ and 7;; # @ for (i,7) # (2,2). In this case, we
have o C 7} and (6.5.53)) has the following form

AA Y L “A
/d awlgll,nf—kl - <p7ri,p, ¢, X PB <2A2 i u)) 93 C*(p)
X dz oo (z'ﬁ —p; )pB 12, U (6.5.66)
R+ la,na+1;+ Py ’ 2A2’ : "

Using the induction hypothesis and the bound (|6.4.18]), we deduce that (6.5.66) is bounded
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by

—n- A+ m Al
A 2—n |'UJ| 1 n
(A+m) 975<0g - >9<A+m Q Am

0 - - .
x \/Rdu Lj"sl‘i’lyll;él ([X7 7—7?11,3’ Tﬁ2,87 Yﬂ-/l,s’ u)

1
X /R+ d2" Fo 1 146 (A;Tﬂé,s;z’,Yﬁé’JpB <A2;z’,u> . (6.5.67)

Using lemma [ we have

/ ’
C";1802O—i-1,l2;+;62 (A; Trlg,sr Z 7Y7r§ ) <0(1) Fsa1,02:62 <A;T7r’2,s;z 7Y7T§YS> . (6-5'68)

S

Hence, we obtain

1
! g o0 . .S .S/
/R+ 4 ForrLbrition (A’ Tﬂ’zvs’zayw;,)pf* (AZ’““)

A~

< 0(1) Fupt, (A;Tﬂ,m;zf,yﬁé u) . (6.5.69)

which together with (6.5.67) and (3.2.84]) imply that (6.5.66) is bounded by

A 7 3 .
(A +m)2—n—|w| P <10g—in;m> P ( 23 > Q < T 2 ) Ojﬁl’gé (7’;7.9,7'7?2’8) ,  (6.5.70)

A+m A+m

where 0 := max (01, d2).

iii) The last case to treat is 712 = @ and 7;; # @ for (4,j) # (2,2). In this case, (6.5.53)) has

the following form

AA . 1 :
/Rdu 8WIgl1:nf+1;ﬁ_ﬁ’ﬁ_; (pﬁﬂapa (b./sl X pB (Wv ,U)) 811)30/\(]9)

AA .2 . 1 .
X R dz aw2glg,n§+l;— (Z7p7ré7 —p; ¢{9’2) PB (2/\2’ Zs ’LL> : (6571)
Using the induction hypothesis, the bound (6.5.42)) together with the bound ([3.2.86| from
lemma and following the same steps as in (ii), we deduce that (6.5.71)) is also bounded by
(16.5.70).

The case (ri,72) # (0,0) can be treated following the same steps used in the proof of Theorem

[k
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Integration

- Irrelevant terms: We integrate (6.5.44) from A to Ag downwards with vanishing boundary
conditions at A = Ag. Using (3.2.61)), we obtain for n > 4

wcepN,A -
a gl,n;r(:ﬂ;r,ﬂ-; (pn7 ¢Tl,say1,s) ‘
A+ 1A -}
= el ST Pn T ;0 < t o ) . (6.5,
< (A+m) P (log — )2 (3 S ) O\ T | T (T T (6.5.72)

- Relevant term: In this part, we integrate the cases that correspond to n + |w| + r1 +ry < 3

which are given by

S
/+ dzm, / dzmy 21" 2y 31\3[1}2’/\0 ((21,19)7(22,—10))HPB(Tz';Zzyyz') , (m1,m2) € Pa, (6.5.73)
R - i=1

where 71, ro are integers such that r; + 7, <1, and 0 < s < 2 and . We restrict our analysis to

the case s = 2, the case s = 1 can be treated similarly and the case s = 0 will be integrated in

the sequel. For s = 2, the relevant part is extracted from

oo [ e v (1), o)) a (1)) (6:5.74)

by performing a Taylor expansion of ¢; and ¢9 around z; = 0 at p = 0 with ¢;(z;) := pp(7i; i, Ys)-
This part of the proof is similar to the integration of the relevant terms in the proof of Theorem
[0 However some simplifications occur and we explicit the steps where the treatment is different.
We have

Lo e (0,0) = s12061(0)82(0) + € 61(0)(962)(0) + hip 62(0)(Onhr) (0)
15 (61, ¢2) . (6.5.75)
where the relevant terms sf}fo, eﬁfo and hﬁfo are given by
S = /R | dem / e, 5 ((21,0), (22,0)),
e;};_LAO = /R+ dzn, /_ dzr, 2o SB;}Q’AO ((21,0), (22,0)),
B = /R e, /R ey 2 Y (21,0), (22.0)) (6.5.76)
Bose symmetry implies that

[ o [ o o= 22) 5 (20,0, (200) =0, (6.5.77)
R R~
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0 0

so that the counter-terms e;\f and hfiA are equal to all orders of perturbation theory. The
bound ([6.5.44]) for s =0 and r; + 19 < 1 gives

A A
‘0/\5/\ Ml < @ (log —|—m) , ‘8/\6?1\0 < (A4m) o <log —|—m> . (6.5.78)
m )
Integrating (6.5.78)) from 0 to A and using the renormalization conditions (6.3.6])-(6.3.7]), we have
A A
‘sffo (A+m)P (log ;m) , ‘ Mol < gp ( ;m> . (6.5.79)

Applying lemma [I0] we obtain
501(0)69(0) + € {81(0) (962)(0) + 62(0) (D61 (0)}

A _1
< (A+m)P (log ;m) a (AT—i—zir)l) Fo s (rh.m) - (6.5.80)

Now, we bound and integrate the remainder aAllAQAiO(qSl, ¢2) from A to Ag which reads

5200 = ([ don [ diny 5122 0™ ((1.0),:2,0)) (0u60) (0)(0,60) O
1
£ 00) [ e [ 025 (1,00 (2.0) [t (1-0) (0F) (120
1
+q52(0)/+ dzm/ dzr, aAglng ((Zl,o),(zQ,O))/ dt (1—1) (07¢1) (tz1)
R " 0 )
(8n<]51)(0)/ dzm/ dzp, 21 8Aif’l,2’ O((Zl,O),(zQ,O))/O dt (1—1) (83(;52) (tz2)
1
(On2)(0 / dzm/ dzp, 22 8/\&/’ ((21, 0), (zQ,O))/O dt (1—1) (afqbl) (tz1)
/R oy [ e, 005 ((21.0) (200 /0 it (1 1) @F0r) (120
X </O dt' (1 —t) (07 ¢2) (t’z2)>. (6.5.81)

Following the same steps of the integration of the remainder 8/\152{20((;51,(;52) in the proof of
Theorem [9] in chapter [f] we obtain

([t [ o 0425 (2,00, (2:0))) (0160) () 0u0) 0)
A+m>

1

11
<(A+m) %7 27, 2P <log

[©)
VY
-
\]
+1
=
~_—
J\’Sl
5
—~
5‘1
2!\] |
V)
SN—
=
ot
[02¢]
)
S~—



178 THE ¢} THEORY WITH AN INTERACTION SUPPORTED ON R* x R?

‘(/Jr dzr, / dzry 22 3A5£z/,\27A0 ((21,0), (22,0 >/ dt (1 —t)071(tz)
R R-

A _1
<(A+m) e (log ;m)@< T )9};105 (rt. 7)., (65.83)

A+m

1
@000) [ dony [ dony 22 0025 (2,00, (20) [t (1= 1) @Bontean)|

1
-3 -1 -1 A+m 7__5 (rA’O _
<A+m)7r % P | log — Q A | Foio (t4,7) (6.5.84)
and

1
00 [ e [ demy 0 ((21,0). (2.0) [t (1) (0?@-(7521))\

1

_ A+m T2
2 _—1 oz A,0 _
<SA+m) TP <log - >@ <A+m> Fois (TaysTry) - (6.5.85)

The only term which needs to be treated differently is

/m dzr, / Az, ALY ((21,0), (22,0)) (/Oldt (1-1) (826,) (tzl)>
X </01 dt' (1—1t') (07¢2) (t’zQ)>. (6.5.86)

Proceeding as in the proof of Theorem EI, we rewrite (6.5.86]) as follows

yﬁ yﬁ’ 1 . o1
Y capcap +1ﬁﬂ +§+a, / dt dt’ Y1 —t) T =)
(a,8)€F2 (&, B")EF2 T 2 T 2 0
A T T
/+ dZ7T1 / dzﬂ_2 2+a %+a8A$l72’AO ((zl, O), (22,0))])3 (t; A y%) PB (t;’ 29, 32,2) . (6.5.87)
R

The bound (6.5.44)) implies that the term
T T
/+ del / dzﬂ'z 2+Ol 2+048 gZAQAO ((2170)7(2270))]73 (71.217£) pPB (t%;z%%>
R
is bounded by
4 ro_m? tr2 0 T Tm Y112
Ao —mE
(A + m) e 2A2 @ m GJQ’Z;(; <A, 721, 722, 7, t/> . (6588)

Using (]3.2.54)), we have

TH Tml YL Y2 Try . Y Try Y
F s (A; o t,) = (A T B 0 (M T ). (6.5.89)
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The bound ([5.8.28)) from lemma together with (6.5.88)) gives that (6.5.87)) is bounded by

1
-1 -4 - A+m) - T2 A _
7 27y 2 (A+m) P <10g - ) Q (A—i—m) GJ*Q’Z’%, (T 7)) > (6.5.90)

where 0 < § < ¢’ < 1. Using the bounds (6.5.82))-(6.5.85)) and (6.5.90)) together with (6.5.81)), we
obtain that the remainder ll/?é/;\io is bounded by

1 m? Adtm\ = [ 72 A0
A+m max{ , }95(10 )@ Foos (th, ). (6.5.91
( ) (A+m)2 (A+m)2 g m A+m 2,1;6 ( 1 2) ( )
The bound is extended to general momenta using the Taylor formula with integral remainder as

in (5.5.76).

O

Remark 6. The simplification that occurs in the integration part of the proof of proposition[9 compared
to the proof of Theorem@ is the distinction between the cases A > 0(1)7'7% and A < 0(1)77%, which

18 not necessary here, since we have

A0 - A0 A0
Foiy (T4 7)) = Fis () Frge s (Tmy) - (6.5.92)

6.5.3 Proof of Theorem [12

The method of the proof of this Theorem is similar to the proof of Theorem [9]in chapter 5] since the
right-hand side of the bounds (5.5.1)) and (6.4.11}) on SlA 7;/\* and E:blAT’LAO are similar and the right-hand

side of the flow equations ([5.4.11) and (6.3.12) have a similar structure. The induction starts at the

tree order for which we have

@Sé\,llAO ((Zlvpl)a ) (Z4ap4)) =0

and the bound ([6.4.11)) obviously holds.

The right-hand side of the FE

The bound that we want to obtain for the RHS of the flow equation (6.3.12)) is

8/\611}@3/\’1\0 (ﬁm ¢T1,s,y1,s)

lnsry,ra

1
A 5y ~3
< (A 4 m)2nlol-nr g <10g ;m)Q( 12| >@ <“> Fo% (r1.s) . (6.5.93)

Ad+m A4+m

foralln>2,0<s<mnand 0<ry, ro <4
We proceed as before and bound each term on the RHS of the FE ([6.3.12)).
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e Let us start first with the linear terms given by

Rl = /k;/ / 7«'1 222 awgblA /1\?1+2 ((217p1)7 R (Zmpn)a (Za k)a (Z,a _k))
z,2' Jz1n

x CME) p (AQ, 2,2 >H B (Ti;2i,vi),  (6.5.94)

7 /k/_ dz /RJr dz' /Zm 2" 2y’ 8w§£lA1(;L+2 ((Z0:Pn), (2,k), (', —K))
x CMk) pp (AlQ;Z’ZI> ﬁ pB (Ti; zi,vi) , (6.5.95)
i=1
and
= [ [ / SR I (CRANCONERSD)
x CMk) p (AQ, )H pB (135 2i,yi) - (6.5.96)

Using 1 , we rewrite Ry as follows

w B 1 1 .
/du /a B 2 <pn,k, k5 by s X DB <2A2; u> vB <2A2; u>> CA (k).

Inserting the induction hypothesis, we obtain that Ry is bounded by

A A+m : k] [l
A 1—-n—|w|—ri—ro / A n
(A +m) gb<10g m ) <A+m> ’C A+m’A+m

A0 1 1
X /Rdu 9;5+2l 161 (7'173,2[\2,2]\2,1/0-5,'&, U> . (6597)

Using ([£.5.23) and lemma 2] we obtain the bound

1
. A D, T2
1] < (A + m)2nlwl-m—r2 gp <10g ;m) % < 23 >@ (”) Fo, (T1s) . (6.5.98)

A+m A+m

Using ([3.1.5) and the notation (6.4.12)), we rewrite Ry 1 as follows

wcp N, Ao 1 1 .
/k/dua 2z T — <pn,k: —F; Gr1cyr X PB <2A2,~,u>pB <2A2,Z,u)>

x CM(k), (6.5.99)
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where m; = 0441 and w3 = {s + 2}. Proposition |§| gives that Ry 4+ is bounded by

(Al gy (og At Y o (77 e LI A
8 m A+m Ad+m' A+m

x/du Foroi 16, (N7 Ty Yo, u) . (6.5.100)
R

where 7541 = Ts4+2 = 573. Using the bound ( m ) from lemma we deduce
/Rdu FOro1 15, (M7, s Yo ) < O(1) 2y, (A;TE+1;YUS>. (6.5.101)

Since w1 = 0441, we have

S

FoLs, (A T s+uY ) = F1sy (N 7163 Y5,) (6.5.102)

Combining (4.5.23), (6.5.100) and (6.5.102)), we deduce that R; + is bounded by

1
A 5 ~3
(A4 m)2 " lwlri=r2 go (10g ;m) Q)< |12 | >@< T2 >9;Al%2 (r1.s).  (6.5.103)

A+m A+m
Proceeding similarly, we rewrite Ry _ as follows

1 1
wp A Ao R .
// Z "% I=1,n+25r1,ro57) 7y <pn’k —Fk; ¢7'1 sw1,s X PB <2A2’ 7U) pB <2A2,z,u)>

(71,72)

x CME), (6.5.104)

where the sum runs over partitions (71, 72) in the set

{(0s11,{s+2}), (0s,{s+1,s+2})}.

Using again proposition |§|7 we obtain that Ry _ is bounded by

1
]y — A4+m 2 k| |7l
1—-n—|w|—ri—r2 ’ A
(A+m) 95(log - ) <A+m>/ CA( <A+m’A+m
x> /du F o 1s, (N7 7 Yo, u) . (6.5.105)
(71,7%2)
where 7541 = Tgq12 = . The bound m from lemmalglves
/du9'+2l Loy (N7 72 Yo u) < O(1) Fps, (M 7163 Yo, ) - (6.5.106)

This together with (4.5.23)) and (6.5.105)) gives that R; _ is bounded by (6.5.103).
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e In this part, we analyze the quadratic part of the flow equation (6.3.12). Given a partition

(71, m2) in @52;“, we bound the following terms

s A A A - -
RQ,DD = / // 21101 Z£2 %ll,n?Jrl ((Zw17p7r1)7 (Zap)>
2,2 Jz1p

s
= ALA > o -
X %12:n2+1 ((Zla _p); (Z7r27p7r2)) Cg (p7 2, Z/) HPB (Tza Zis yz) ’ (65107)
i=1

A 2 AN - —
Ry pr ::/ / P %h:nfﬂ ((Zrys Pmy), (2,0))
2,2 Jz1n

)

x Lpn0 (2, =p)s (oo Br)) O (032, 2) [ [ 8 (731 20,3)  (6.5.108)
=1

and
> / ) A, Ao N -
RQ,LL ::/ dz/ dZ/ 21 %9 gh,nﬁ—l (<Z7r17PTr1)7<z7p))
- - Z1,n

s
A > - -
X 812:7/};4.1 ((zla _p)a (271'27p7r2)) Cg (p; 2, Zl) HPB (Ti§ 2y yz) : (65109)
i=1

Let us define

¢;1(Z7r1>: H pB(Tr;Zr)yr)7 ;/2(271.2): H pB(Tr;Zwyr) (65110)

TEM], s ren2 s

with m; s = m; N os and s; := |m; |. Using (3.1.5), we rewrite RQ’DD as follows

5 ~ AA I 1
Rapp = /Rd“ 92)l1,7l?+1;7‘1(1),7‘1(2) (pm,n b5, X PB <2A2’ 7“))
~ A L . L “A
X 923l2m§-i—1;r2(1)77“2(2) <p7727 —b; qb;/2 X PB (21\2’ ’u)> ¢ (p), (6.5.111)

where

. T; lfj € m;
T; = 6.5.112
i) { 0 otherwise. ( )

Using the induction hypothesis, (6.5.111]) is bounded by

] =1 A+m 1l T2
A 1-n—|w|—r1—r2 1
(& +m) @(og m )9)<A+m @ A+m

1 1
0 . . 0 . .
X / du J’sl+1,l1;53 <A7 Tr1,s9 2A2’ Ym,sv U J‘52+1,lg;64 Aa Tra,s9 2A2’ Y7r2,5 YU
R
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which is bounded using Lemma [3] by

1
—n—|w|—ri—r A+m ﬁn T2
(A + m)2 i & (log m ) » <AH+ ’I’|7”L> @ (A + m) g;ﬁi,%s) (Tl’s)

and J5 := max (d3,94). Now, we bound R2,DL1

— First, we treat the case r; = ro = 0: Proceeding as we did for Ry pp, we rewrite Ry py,

using (3.1.5)) and the notation (6.5.110) as follows
AA _, 1
R2 DL ‘= / du /R+ dZ gbll nf+1 (pﬂ'up; (z);l X PB (2/\27’u>>
. 1 :
X g;; 7[220+1 e ( ,;pﬂ'za —b; ¢ )pB <2A27 zla u) CA (p) : (65113)

Using the induction hypothesis together with the bound ((6.4.18)), we deduce that Rl DL 18
bounded by

e A+m Al T2
2—n—|w|
(A+m) 95<logm >95<A+m Q Arm

o0 .
X /R+ du Fo1 41,0565 <A7 Tr1,s9 A27 Yr, 57u>
Y,

/ 9Sg-i-l Jo254+;06 (A Tro s7Z/ ™2 s)pB < A2, ) > .

Lemma [ gives for 2/ € R*
Fort1lasi6), (A; Ty 325V, ) SO(1) F s04+1,12:, P (N Ty 125 Y ) - (6.5.114)

Hence, we deduce that ]%27 pr is bounded by

1
- A+mY o ([l

A 2—n—|w| 1 n

(& +m) P\ log m # A+m @ A+m

X R+ u‘fsl+1,ll;65 ?7—7T1,572A27 7r1,s7u
1
X / 9’52+17l2§+§66 (A;TWQ,S;Z/; Y7T2,s) <2A2’Z u) . (65115)
z/

In the proof of Theorem |§| in chapter [5, we treated the term RQD 9 which ended up bounded
by (6.5.115)), for which we had already established that it is bounded by

A 7, 3
(A 4 m)2="Twl go (10g ;m) 9< 175l )@ <”> F0 (rs) . (6.5.116)

A+m
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where ¢y := max (05, d¢).
The last term we need to consider is Rg rr- Using (3.1.5), we rewrite Rl LI as follows

A, Ao - Y 1 .
/Rdu Ebph,711-5-1§(7T1U%1)+f<‘557 <p7r1’p’ O X PB (2/\2 5 u))

AAo . 1 “A

where the sum runs over pairs {é1,%2} such that €; € {{s+i},@}. The prime on the

!/

{%1,%2}

sum means that the pair {{s+ 1},{s+ 2}} is not included in the sum. In order to treat
(16.5.117)), we must distinguish between two cases:

- First, we analyze the case €1 = €, = & and (6.5.117)) reads in this case

A,Ao = A L- .
/Rdu gll,n1+1;ﬂf7{5+1}7 <p7T17p’ d)sl X pB (2A2’ ;U))

AAo . o 1 A
XL ey <p7r2, —p; ¢ X pp <2A2 u>> M (p). (6.5.118)

Using proposition El, we deduce that (6.5.118)) is bounded by

A+m A
A 1—-n— |w| 1
(& +m) 95( @ >9&<A+m @ A+m

0 0
/Rdu CJS1-1-1,11;51 (A’Tm’ s+17Y7T1,s’u) 0]824-1,12;52 (A’Tﬂ'Q’ 5+2’Y7T2,s’u)7 (6.5.119)

where 75411 = Tg12 = 573. Using lemma ' we have

/Rdu GJ£1+1,ZI§61 (A,Tﬂ,l, S+17 YT"l,s?u) GJ‘SQ+1’12;52 (A77—71-27 3+27 YT('Q,S) U)
< O( ) A l(sl (A 1 S7Y0'3) B (6.5.120)

where 87 := max (01, d2). This together with (6.5.119) gives that (6.5.118]) is bounded
by

1
—n—|w A+ 2 2
(A 4 )2t g (log m”") P (AHi L) @ (AT:m) Fhiy (). (6.5.121)

- The second case to be treated is €; # &. Without loss of generality, we assume that
61 # @ and write

A, Ao S5 e 1
/Rdu /R+ dz %70 1y (2 Pm P 65,) PB (21\272’“>

AN - o 1 . YA
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Using the bound (6.4.18)) and proposition @ we deduce that (6.5.122]) is bounded by

e Ad+m 17l 2
2—n—|w| Pp Pp
(A+m) <Iog m ) <A +m @ A+m

1
- /Rdu /R+ Az F1 1460 (A’T”LS’ Z’Ym’s)pB (2/\2; Z’u>

A0 -
XA (A,T;;’S, T A u) (6.5.123)
Using lemma 5] we deduce
Folit sy (M Try 2, Yoy ) S O) Fopgrgyisy (A Tryys 2 Yoy L) - (6.5.124)

Hence, we obtain

1
/Rdu /R+ dz Fo1 0,05, (NTry 02, Ye ) PB (2A2;z,U>

a0 + -
X ‘f82+1,l2;52 (A’Tﬂ’z,s’ Ts+27Y7T2,s’u>

i A0 + _
< O(l) /R du G‘}81+1Ju51 (A7 7—7T1,s’Y7T1,s7 u) O‘};sg—&-l,lz;&g <A’ Tra,s0 Ts425 Y@,s’ u) :

(6.5.125)

Using lemma and (6.5.125)), we deduce that (6.5.123)) is bounded by

1
—n—|w A+ Hn 2
(A 4+ m)2" Tl go <]og mm) P (M) Q (M) F%(r.).  (6.5.126)

— The method used to integrate the bound (6.5.93) is similar to the integration of the bound
(5.5.1) in Theorem 9] since both bounds have the same right-hand side. The only difference
are the boundary conditions used in the integration of the irrelevant /relevant parts of éblA;lAO.

These are given in (6.3.13))-(6.3.15) and (6.3.13]). For more details, we refer the reader to
the proof of Theorem [9
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Chapter 7

Renormalization of the lattice regularized
qbﬁ model

In this chapter, we analyse the Euclidean four-dimensional massive ¢* theory using lattice regular-
ization. We present a rigorous proof that this quantum field theory is renormalizable, to all orders of
the loop expansion based on the flow equations. The lattice regularization is known to break Euclidean
symmetry. A key novelty of this work compared to the existing proofs in the litterature [33,34] is a
proof to all orders in perturbation theory of the restoration of the Euclidean symmetries. This chapter
is organized as follows: In section [7.I} we introduce the lattice regularized correlations functions and
their respective flow equations. In section we give the steps of proving renormalizability of four-
dimensional ¢* theory on the lattice by means of the flow equations, following [11]. Renormalizability
is stated in terms of uniform bounds on the (coefficient functions of the) solution L%-*(¢) of the flow
equation and its derivative with respect to the lattice cutoff ¢!, with boundary conditions imposed
at a = oo for the relevant couplings and at a = ag for the irrelevant interactions. Sections [7.3] and
[74] are the central part of this chapter. In section we introduce the rotated lattice and we show
that the difference QBZ%’“’O (p1,- - ,pn) of the correlation function of arguments defined on the rotated

lattice and on the original lattice:

0,0 ,0 :
Dy (1 s pn) =T (Opa, - Opg) — 70 (P15 )

converges to zero when ag — 0 and a — oo. In section we give a proof of the existence of the
continuum limit in position space in the sense of tempered distributions. We find that the obtained
limit is invariant under translations which concludes the restoration of the Euclidean symmetries in

the continuum limit.

187
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7.1 The flow equations

We consider ¢* scalar field theory on the Euclidean space R*. We will formulate our theory with a
lattice cutoff in the standard path integral formalism, where the lattice refers to the discretization of
space-time. In the following, we introduce general notions of a space-time lattice and the ¢* model on

the lattice, but only to the extent that is relevant to this paper.

7.1.1 Lattice field theory

The four-dimensional hypercubic lattice is a set of sites denoted by
Aao = CLOZ4,

where ag denotes the lattice spacing in Fuclidean time and spatial directions. One of the first questions
in lattice field theory is how to put a model on the lattice once it is defined on the space-time continuum.
The question refers both to the framework of classical field theory, i.e. at the level of the classical action,
and to quantum field theory. Naturally discretization of space and time implies that differentiation

with respect to space and time is to be replaced by a corresponding difference operation.

7.1.2 ¢* scalar field theory on the lattice

Perturbative renormalizability of euclidean ¢ theory will be established by analysing the generating
functional L% of connected (free propagator) amputated Schwinger functions (CAS). The upper
indices ag and a enter through the regularized propagator
]. 2(n82 2 2(n2 2
: — = (emap@*+m®) _ j—a?(p*+m?)
c*%p) = - (e Golprrm e @\ ) ) (7.1.1)
where the map p := (p(pu)),< <4 i defined as follows
AL 2 2
N B 2|
(7.1.2)
Dy — = sin(—*

In the sequel we shall write with slight abuse of notation

CoUp) == C%p),  P(pu) = Do

Upon removal of the cutoffs, i.e. in the limit a9 — 0, a — 0o, we indeed recover the free propagator

m. For the Fourier transform we use the convention

A ) 4 )
o) = [ S0 | e (7.03)

] ag’ag



7.1. THE FLOW EQUATIONS 189

In the sequel, we use the shorthand notation

R T~

ag’ag

4
with %B,, = ] a5 a5 [ denoting the first Brillouin zone. For the inverse Fourier transform we write
fp) =ag D fl)e ™™, (7.1.4)
acEAaO

so that in position space

~

Cao,a(x’y) _ / Cao,a(ﬁ)eipv(x—y)‘
P, Bay

We assume
0<ay<a<x

so that the Wilson flow parameter 1/a takes the role of an IR cutoff, whereas 1/ag is the UV cutoff.

We introduce the convention

) . 5 g /
_ ipz _ 7 i
(bao (x) /p,%ao ¢a0 (p)e ’ &an (fL‘) /pv%ao 5¢a0 (p) ’

For our purposes the field d;ao (x) is assumed to belong to the Hilbert space la (Ag,) endowed with the

inner scalar product

{291 (00y) =ay Y f(x)g(x).

IEA&O
Our starting point is the bare action of symmetric ¢} theory

LU () = ag Y {;\!Qgﬁo +d(a0) 0z, + b(a0) (Dpae Pas)® + C(QO)%O} ) (7.1.5)

CEEAaO
d(ao), c(ag) = O(h) , b(ag) = O(K?).
The differentiation in ([7.1.5)) is defined by the difference operator

<3u€5ao) (x) = Do (1 + aoey) — Pay (2) 7

ao

with € Ag4, and e, the unit vector in the u'" coordinate direction. The first term is formed of
the field’s self-interaction with real positive coupling constant A having mass dimension equal to zero.
The second part contains the related counter terms, determined according to the following rule. The
canonical mass dimension of the field is one, the counter-terms allowed in the bare interaction are all

local terms of mass dimension < 4 formed out of the field and its derivatives respecting cubic lattice
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symmetry. The O(4) and translation symmetries are violated by the lattice regularization. From the

bare action and the flowing propagator, we may define Wilson’s flowing effective action L*-® through
6—%(Lao,a(¢a0)+lao,u) — /duaoya((p)e_%[,ao,ao (P+da,) 7 Lao,a(o) = 0. (716)

It can be recognized to be the generating functional of the CAS of the theory with propagator Caoa
and bare action L. In , dftay,qa(P) denotes the Gaussian measure with covariance hCa0a,
It is proved in |25] that such a measure exists as a lattice approximation of the continuum Gaussian
measure. 190% denotes the field independent so called vacuum contributions. It is finite only in the
finite volume approximation. The infinite volume limit is taken only when it has been eliminated [11].
Again, we do not make the finite volume explicit here since it plays no role in our analysis.

The fundamental tool for the study of the renormalization problem is the functional flow equation

N 1 Lao,a “ Lao,a
Dujalio = H(2 (0ya00 )« yrooe - (O (i, 0me) 5 2 g
2" 560 50 2 60 50

By (-,-) we denote the scalar product in la (Ag,). is obtained by deriving both sides of the
equation with respect to 1/a and performing an integration by parts in the functional integral
on the RHS using the property of the lattice Gaussian measure |25|, and finally rearranging
the powers of A stemming from L%->*/h and from hd, /aéao’a. To derive the flow equations verified
by the n-point correlation functions, we first expand L*® in moments for all (p;)i<i<n € %Bq, With

respect to ¢q,

(277)4(71_1)5(17110(171) e 5¢a0(Pn)La07a’¢a0:0 = 5?2771—] (Pl -+ pn) 33070‘(1)17 e apn)v

a0
where we have written d4, () = 0/, (p) and 5ty 1 = D ez 5%. We also expand in a formal
2n s

aQ
powers series with respect to i to select the loop order [,
o
a lcpao,a
ot = " hlge,
1=0

From the functional flow equation (7.1.7)), we then obtain the perturbative flow equations for the

(connected free propagator amputated) n-point functions by identifying coefficients

ap,a 1 wcpao,a ao,a (.
al/aawgl,g, (pl? e 7pn) = 5 /k% 9 glfo,l,nJrQ(k’lapla ©tt 5 P, _k)al/ac o (k) (718)
HBag

1 ’ ’ ’ )
—52 ZZCw{awlgﬁ?;i_&_l(pl, e ,pm7p)8w3al/acao’a(P)anin(j;Z_,_l(—p7pn1+1a e 7pn>

rsym
l1,lan1,n2 w;

27
P=E-—P1L— = DPn =Pm41 T+ DPn |—|-
ag
For the notations, see after (1.1.18) and (|1.1.19)).
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7.2 Renormalization of lattice ¢] theory

Perturbative renormalizability of the regularized field theory (7.1.6) amounts to the following: Given
a coupling constant A\ in the bare interaction (7.1.5)), the coefficients d(ap), b(ap) and c(ap) of the

counter-terms can be adjusted within a loop expansion of the theory,
d(ag) =Y Hldi(a), blao) =Y H'bi(an), clag) =Y Haiao)
=1 1=2 =1

in such a way that the limits of the lattice n—point CAS functions exist when ag goes to 0 and a goes

to oo in every loop order I.
Y (pi)1<ijcp, € R*,Fdg > 0 such that uniformly in Bz, :

L)X (pr e ape) = lim lim L0%py,-+,pn), n €N, LENT (7.2.1)

ap—0,a0<ag a—00

The parameter ag guarantees that (p;);<;,, € Ba, C Ba, for all ag < ag so that they are well defined
as arguments of the regularized n—point_ﬁ;nctions Sﬁfz’a. The lattice breaks Euclidean symmetry and
an essential point to the renormalizability of the theory is to prove the restoration of this symmetry.
We will analyse the limits &Pl(? ;LOO (p1,- -+ ,pn) and prove in particular their invariance under rotations
and translations in sections [7.3] and [7.4

7.2.1 Propagator bounds

The subsequent bounds on the CAS functions will depend essentially on the propagator of the theory
we consider. The bare propagator is, apart from the renormalization conditions, the main ingredient
which decides what kind of bounds can be achieved. In this subsection we collect the bounds on the
propagator and its derivatives that we will need subsequently. From the definition we directly
obtain

By /,C90(p) = (—2a%)e~ o P +m?), (7.2.2)

One can then prove by induction that

4 wy,
Ve P = H (; agj“_kak Py, (cos aozpu,sin a02p#> Py, (aﬁ@) e P (7.2.3)
Here P, P are real polynomials which we do not specify. Using 1' together with ag < a, we obtain

the following bound on the propagator and its derivatives

1070) ,,C% ()] < a3y (alp|)e o @*+m) (7.24)
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Using ([7.2.3)) and (7.2.14) below one can also show that

X 1 —|w|-3 a
‘awal/acao,a(p)‘ < <a + m) 9Py <1 _'_‘ij> . (7.2.5)

Both bounds are expressed in terms of suitable polynomials %, %P, with nonnegative coefficients.
The following lemma shows how to bound integrals of powers of momenta multiplied by the exponential

appearing in the regularized propagator

Lemma 13. Va € N, 3C, > 0 independent of a and ag such that:

at / e *F* (a]k|)* dk < C,. (7.2.6)
ag

Proof. 1t is sufficient to bound

™

a/ao ek (ak)” dk (7.2.7)
0

uniformly with respect to a and ag. Using that Vz € [0, %] we have sinz > %x, one obtains

al 7, al a2 N 0 u2
a/ O et (ak)*dk < a | e = (ak)® dk S/ e Zudu < C,. (7.2.8)
0 0 0

O

When studying the restoration of rotational symmetry we will also have to bound differences of derived
propagators, where one of them has undergone an arbitrary rotation O € O(4). The following lemma

permits to bound these differences:

Lemma 14. For all w € N*, for all p € Bag, for some a > 0 holds

1 727|w| CL‘ |
w a0,a ( w ag,a (20 p
\8 D1/aC % (P) — 001 1, O (P )‘Sao (a+m) 93(1+am), (7.2.9)

with p° = p(Op).
Proof. Tf |p©| > |p| we write
o (e—a2<ﬁ2+m2> _ 6—a2<<ﬁ0>2+m2>> v {e—a2<p2+m2) (1 _ e—a?((ﬁOP—ﬁ?))} . (7.2.10)

In case |p°] < |p|, we factorize instead e~ ((9)°+m*) and follow again the subsequent reasoning. By

the Leibniz formula, we obtain

v {efaQ(ﬁermz) <1 _ efaQ((ﬁO)Q*ﬁQ))} — Z cwiawlefaQ(ﬁQerz)awz (1 . efa2((ﬁ0)2,ﬁ2)>

w1 t+wer=w
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The first factor in each entry in the sum can be bounded as in (7.2.5). As regards the second factor
we first consider the exponential without derivatives

1 — o—a?l6°)—5?)

We can rewrite the exponent as

4

a? [(p9)? — p?) = 2—2 Z cos(ao(Op)u) — cos(aopy)) (7.2.11)
0 ,u,:1
2
%5 [ w00 (O eos g O] ol cos o]
,u,*l

(7.2.12)

We used a Taylor formula with integrated remainder around 0 for both cosine functions and the
fact that the constant and quadratic terms in the difference of the two cosine functions cancel. The
statement of the lemma is then a consequence of the following facts:
a)
|97 [(57)2 = p*) | < =% o™ P (alp]), (7.2.13)
a

This follows directly from (7.2.11f), (7.2.12)). The degree of the polynomial % can be chosen to be less
or equal than 3.
b)

T 1| < (@) for f(2) =0

c)

5w e—a2((6°)*—5?)

2 1 1
= a—g alvl op <{ap#,/ dt(1 — )% cos® (¢ aop#),/ dt(1 — )2 cos® (tag(Op) ), a0 }) .
a 0 0 a
This statement follows by induction on |w| from ([7.2.11)), (7.2.12)). The polynomial P (whose coefficients
are real but may have either sign) is at most of degree 3|w|. The coefficients do not depend on ag, a, p.
d) The inequality

—a?m? C(n)

= m, (7.2.14)

which holds for any n € N and suitable positive C'(n) can be used to turn powers of a or of alp| into

powers of a/(1 4+ am) or alp|/(1 + am). O
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7.2.2 Renormalizability

A simple inductive proof of the renormalizability of ¢ theory, regularized by a UV-cutoff has been
exposed several times in the literature |11,30]. Our proof follows the same line of reasoning. New
difficulties arise due to the particular form of the lattice propagator that breaks Euclidean
symmetry. The boundary conditions following from are

0VLY ™ (py,-++ ,pn) =0,  n+|w| >4 suchthat n#2, (7.2.15)
0“3 (p,—p) = bi(a0)0"p*,  Vw| >3 (7.2.16)

As compared to continuum theory |11, note that the boundary conditions (7.2.16|) are not equal to
zero. For terms with n + |w| < 4, the boundary conditions are explicitly fixed by (ap-independent)

renormalization conditions imposed for the fully integrated theory at a = co:
§£Z,‘l)’o°(0, e, 0) = A, §£gfl”o°(0, 0) =0, 8p25£33’°°(0, 0) =0, vVi>1. (7.2.17)

The renormalization point is chosen at zero momentum for simplicity (BPHZ renormalization condi-

tions). The induction hypotheses to be proven are

Theorem 13. For alll € N*, n € N, w and for 0 < ag < a, ag < % holds
A) Boundedness in the UV-cutoff

1 4—n—|w| 1 ;
< ( + m> P (log s am) P ({GM}) . (7.2.18)
a am 1+ am

B) Convergence in the UV-limit

0 (1, )

‘al/aoawg;ga(ph e 7pn)

1 5—n—|w|
14 1 ;
B (PLES) PR G RTI\ Rrae
agm

— 2
(L +m) L+am
ao

where (pi)i<i<n € Bqy and p1 + -+ +pp =0 [i—g] Here and in the following the P, P; denote (each
time they appear possibly new) polynomials with nonnegative coefficients. The coefficients depend on

l,n, |wl|, but not on m,{p;}, a, ag. Forl =0, all polynomials P1, P reduce to 1.
Remarks:

- Theorem is established for p; € %B,, but it is possible to extend it to (p;)i<i<n € R%. Since

ap,a ;. 27 (2ki+1)7  (2k;+1)7 ) 4
Sfl,n 18 G~ ap ao , ki eZ

periodic, Z"(p1,- -+ ,pn) such that p; € Bp,q, = }—

and Y p; =0 [i—ﬂ , also verifies the flow equations (|7.1.8]) with the same boundary conditions,

as we will see later, and therefore it verifies Theorem 1. The extension to the boundaries of the

extended Brillouin zones %y, 4, is performed using the continuity of &' w.r.t. p; and taking
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the limits p; — %r in ((7.2.18). The fact that gﬁ;’l’a is 6°° w.r.t. p; and that it is 27 /ag-periodic
can be proved inductively using the flow equations and that the propagator and the boundary

conditions are 27 /ag-periodic and €>°. We will not prove it here.

- It is also possible to prove a stronger version of Theorem |13} replacing P ({ lﬂz Z'TL }) by P <{ fﬁl{’; ;‘n }) .

- The statement ([7.2.19) implies that for sufficiently small a¢ and suitable v > 0

1 b-n—lul 1+ aom” alp;|
<aZ(= log—— | P — . (7.2.20
_a0<a+m) (og apm > 4<{l—|—am}) ( )

Integration of the bound ([7.2.20)) over the lattice cutoff 1/a¢ immediately proves the convergence

of all £"2“(p1,- -+ ,pn) for fixed a to finite limits when ag — 0. In particular, one obtains for all

< agm®™" (log aolm>y Ps ({'f;’}) : (7.2.21)

Thus, due to the Cauchy criterion in 8> (R™) (w.r.t. to ag) finite limits exist to all loop orders
l.

81/a08wgﬁg’a(p17 o ;pn)

ao < ap and (p;)i1<i<n € Bags

Ly (P1y e Pn) = LI (D155 Pn)

Proof. We use the standard inductive scheme, see section [[.I.5] The irrelevant terms are integrated
from 1/ap to 1/a and the relevant terms from 0 to 1/a using the integrated Taylor formula to pass

from the renormalization point to arbitrary momenta.

(A) Boundedness: To start the induction, we prove the bound ((7.2.18)) at the tree level. The classical

interaction contains no terms linear or quadratic in the fields. Hence, we have
g&%ﬂ(p7 7p) = 07 g(()17(4J17a(p17 T ap4) =A.

Since the Zy-symmetry ¢ — —¢, is not broken by the renormalization procedure, we have
gﬁgja(pla”' 7pn):0, vn Odd, \V/ZZO

Thus, the bound evidently holds for n+ |w| < 2 at the tree order. For n+ |w| > 4 (the irrelevant
cases) we proceed inductively ascending in n. For given n the various w dealt with in arbitrary
order, by integrating the respective flow equation ([7.1.8]) from the initial point 1/ay.

Using the induction hypothesis for ?jgﬁl’f 41 and ?j& o 1, and (7.2.2), (7.2.5) we obtain a bound
for the quadratic part of the r.h.s. of (|7.1.8))

O Ly (D1, 3Py 2)D301 1 CON (PO LG (<D Pry 1, 5 Pi)

1 A= a1l
< < —i—m) P <> . (7.2.22)
a 1+ am
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Therefore )

NILy0 > (pr.- -y pa)| < A+ m)T I g <m> . (7.2.23)

This proves (7.2.18)) at the tree order.
To generate inductively the bounds ([7.2.18]) for higher loop orders, we use them in bounding

the r.h.s of the FE (7.1.8]), together with the bound ([7.2.4) in the linear and in the quadratic
term respectively. For the linear term of the r.h.s. of FE, we use the induction hypothesis for

v and we obtain the upper bound

1—1,n+2°
/ (2a3)ea2(l€2+m2)gs( alk| ’ allpn >
o Bag l1+am 14+am

Using lemma [13] this can be turned into the bound

/ (2a3)6—a2(l;2+m2)95< alk| : allpn|| > < 19} < allpn|| )
k. Bag 1+am 1+am a 1+am

Hence, we obtain

/ O juC0 (1)
kBag

UL (. ,k)‘

I—1,n+2
1 4—n—|w|—-1 1 _
< < N m) P, <10g am+> P, (allpll> ,
a am 1+ am

For the quadratic part of the flow equations 1} , we use the induction hypothesis for 9“1 %£,"**

li,n1+1
and 920" | together with the bound (7.2.3) and we obtain

8w13ﬁ?;:11+1(p17 e 7Pn1ap)3w361/a0a0’a(ﬁ)awzgg%i_,_l(—pa Pni+1, 7pn)

1 4—n—|w|-1 1 5,
< < + m) P <log —|—am> P (aHpH> )
a am 1+am
1 4—n—|w|—-1 1 s
< < +m> P <log am + >9>2 ({ alpi| }) (7.2.24)
a am 14+ am

Following the order of the induction stated before, for the irrelevant cases n+ |w| > 5 the bound
(7.2.24)) is integrated downwards from 1/a to 1/ag. For n+ |w| > 5 such that n # 2, integrating
from 1/a to 1/ag yields

ao,a 1/ao —n—|w|— A+m i
‘awggl,gy (p1,- - ,pn)‘ S/ dA (A + m)t et gy <10gm> P, ({ |pil })

l/a )\+m

Therefore, we deduce

lal/aawgﬁga(pla o 7pn)
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We now have, see [30|

1/ag 1 4—n—|w| ~ 1
/ d\ (A + 771)47”7'7“”'71 9 <10g Atm ;m) < (a + m> op (log + am) .
1

/a am

For the particular case (n, |w|) = (2,2), (7.2.24) is integrated from 0 to 1/ap at zero momenta,

1

0 1
‘8p2$ﬁg’a0(070) - angﬁgﬂo((),())‘ S / 0 d)\ ()\—{—m)ilg:‘ <10g )\‘:nnfl/> S 93 (]ng> '

0 anpm
This gives

1+ agm
by(ag)| < P <log °> .

aopm

(7.2.25)

It then follows from (|7.2.16|) that the 2-point function and its derivatives at a = ag can be
bounded

057 (p, —p)| < 2ltn(ao)laf’ .

for some positive constant C' depending on |w|, which implies for all |w| > 3

‘awg,ag,ao(p, —p)’ < ( -l—m) P (log +“0m> < ( +m> F <log + am> |
’ ao agm a am

Integrating the inductive bound from 1/a to 1/ag for n =2, |w| > 3 then gives

1/ao
0L (. -p)| < /1 N

1 2= vl 1 ;
(o) o) (385
a am A+m

For the relevant terms (n + |w| < 4), we start with the case (n = 2, |w| = 2) and continue to
(n=2,lw| =1) and (n = 2,w = 0). Bounding equation (4.5.16] in absolute value, we obtain
using the bound (|7.2.24]) at vanishing momenta:

a 7l wep Ao ,d
n0"%L, 5 (p, —p)‘ + ’(‘9 £5" (p, —p)’

1/a a0 L 1/a 1
/ dADL OV (0, -+ ,0) g/ dA (A +m)t et g <1og +“m>
0 A ’ 0 am
1
<A +m)t g (log +sz) (7.2.26)
a

Hence, the assertion ([7.2.18]) is established at the renormalization point. In each case extension
to general momenta is guaranteed by the bounds established before. This concludes the proof of
(7.2.18]).
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(B) Convergence: The bound (|7.2.20)) follows on applying the same inductive scheme to bound the
solutions of the FE, integrated over 1/a and then derived w.r.t. 1/ag. The proof is analogous

to [11,130], apart from the changes induced by the lattice momenta p which were dealt with in

the proof of (|7.2.18]).

7.3 Restoration of O(4) symmetry

7.3.1 The flow equations

The lattice breaks the rotation and translation symmetries. In order to define the rotated scalar

field on the lattice, we consider the rotated lattice
AQ == 0Ny, O€O04).
The rotated scalar field gz%aoo is defined by
S = Flag

where ¢ is the continuum scalar field. For our purposes, qgc?o is considered to live in lg(AaOO) and the

Brillouin zone associated to the rotated lattice Ago is

4
™

The Fourier transform of g%aoo is defined by

(D) =g Y e GG (x).

xeAgo
The inverse Fourier transform is defined by
. d'p - .
O o) .
0= [ G wer
%QO

such that the Plancherel identity is preserved.
The bare action associated to the rotated field is defined by

L8(@0) = ab S {z{' (99) "+ %) (32)” +6%(a0) (82,,0) "+ ©(ao) ((’B‘%>4}'

TEAG)
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The counter terms d°(ag), b°(ag) and ¢ (ag) depend on the rotation matrix O. The lattice derivative
on the rotated lattice is defined as follows for ¢2a00 €l (Aaoo)

., xzeAl?

ap?

( gb)()' ¢9 (z + age?) — ¢, (x)

ao

where eu = Oe,, is the rotated unit vector in the u* b direction.

The flowing propagator is defined by
A d4p )
(0-a0,0 — ip-(z—y) (ya0,a
(z,y) /%9 )¢ (p),
where (%% is defined as before

C(p) = o ij (e—aé(ﬁ2+m2> - e—GQ(ﬁ“mz)) :

The lattice momentum p was defined in ([7.1.2)). The derivation of the FE corresponding to the rotated

field follows the same steps as before, starting from the functional integral
e 7 (LG (@G H"0) /duaow(@)e—%L‘éO’““(<5%+¢> (7.3.1)
where duaooﬂ is uniquely defined by its covariance operator C'9%0:¢ through

), 3(J,C000 ),
/duao a 2(A5) = ¢ (A“OO) J el (Aaoo).
In terms of momenta in %,,,, the propagator C*°-* has the following form

1 —as((p m —a“((p m
a0 (Op) = m(e B((00)2+m?) _ —a?((50)*+ 2)),

The FE are obtained by differentiating (7.3.1]) w.r.t. 1/a,

h, 6o 0 1,608 . SLIY
a07 _ ag,a ap,a _ — O ap,a [0)
al/a 2 <5$a00 , * 7(5@%(100 >l2(AaOO) ) 2< 5&(100 ,C * 5&(100 >l2(Aa0)' (732)

We expand in a formal power series w.r.t. A to select the loop order

a07 Zhl ao,

From L))" we obtain the CAS of loop order [ in momentum space B, as

ap,a,0 n— ap,a
5Tzw](0p1 + oo Op) L (Op1, -+, Opn) := (2m)* V640 (0py) -+~ 840 (0 LOT 69 =0 -

ag
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From the functional flow equations (7.1.8), we obtain the perturbative flow equations for the CAS
n-point functions
O
0170 L[5 (Opu, -+, Opy)

1 .
-2 /k 00,0k O+ O ~OK)By O (0)
sRag

XY e [0 O, Opiy, 0)050, 1, 0O 0)

l1,l2 1,2 w1, w2,w3

8w2gl‘;%az’_?1(—0p, . ,Opn)} rsym” (7.3.3)
2m
Op = _Opl T Opnl = Opn1+1 toeet Opn |:a0:| ) (pi)lﬁiﬁn S 93&0 )

where we used the same conventions as in 1) The uniqueness of Sla fb’a’o is ensured by imposing

the following boundary conditions following from ([7.3.1)) given by

3w$ﬁz’a0’o (Op1,---,0pn) =0, n+ |w| >4 such that n # 2, (7.3.4)
9°%79" (p, —p) = b (a0)0" (5°)%,  V]w| >3 . (7.3.5)

For terms with n + |w| < 4, the boundary conditions are explicitly fixed by (agp-independent) BPHZ

renormalization conditions imposed for the fully integrated theory at a = co:
2900, ,0) =X,  L8™90,00=0,  925°90,00=0, Vi>1. (7.3.6)

Following Theorem 13| and assuming ([7.3.4))-([7.3.6]), the following bound holds for I € N*, n € N, w

andforOSaoga,ao<%
1 4-n—ful 14 am a|pil
a am 14+ am

7.3.2 Proof of rotation symmetry restoration

aw$1?27a70(0p17 Ty OpTL)

The O(4)-symmetry is restored for ag — 0 if and only if V(p;)1<i<n € R*, YO € O(4) Jag > 0,
. . ap,a _ ¢pao,a,0 _
a0—>0,1(1)1§na0§?z0 allglo (gljn (pb )pn) gl,n (Oph ceey Opn)) 0 (738)

Here we introduced the parameter ag as in (7.2.1)). For (p;)1<i<n € By, we thus define

o
0 DO (p1, ooy pa) = DL (1, pa) — DVLIO(Opy, -+, Opn).



7.3. RESTORATION OF O(4) SYMMETRY 201

From the flow equations (7.1.8) and (7.3.3), we can derive a FE for VDO (p1, -+, pn)

1

- / 8l/acao,a(l%)awngffn+2(k,pl, vevy Dy —]{3)
kB

01/a0" Dy 3" (p1spn) = 3

ln

1 wcpao,a et o
T 5 A% 9 gl—ol,n—i-Q(()ka Oph to 7Opn7 _Ok) 81/a0 0, (]g) _ al/ac 0, (kO):|
9 ao

1 < A
- 5 Z Z Cw; [81”131?%114_1(]71, o 7pn1)8wsal/acao’a(p)8w292)?20,;%+1(_pa U ’pn)

l1,la w1,w2,w3

ny,n9
+ 8w1@ﬁ(),;fl+1 (pb A 7pm)awgal/acao,a(ﬁO)anQZ%‘Zfl(_Op7 ... 7Opn)
+ awlgli?;lal+1(pl’ T 7pn1)8w3 (81/a0a07a(ﬁ) - 81/a0a07a(ﬁo))awzggﬁ);«g’gl(_Opa to 7Opn)]

rsym

27
Op1+--+O0p, =0 [ao] , (Pi)i<izn € Bay- (7.3.9)

Restoration of O(4)-symmetry, i.e.

lim Qﬁf%’a(pl, vesPn) =0

ap—0,a—00 ’

follows from the following Theorem:

Theorem 14. Vn, Yw, Y(pi)i<i<n € Ba, such that > ;| pi, Y i1 Op; =0 [2—”},

ao

1 5—n—lwl 1+ agm alpil
<ap|=+m P [ log ———— | P9 , (7.3.10)
a agm 14+ am

where P; denote polynomials with nonnegative coefficients, that depend, as well as the degree of the

awgbl(f;);a(plv o 7pn)

polynomials on I, n, w but not on m, {p;}, a, ayp.

7.3.3 Proof of Theorem [14]
Proof. We prove ([7.3.10)) using the inductive scheme indicated previously. The only terms in which
(7.3.10)) cannot be used as an induction hypothesis are

/ 9L (Ok,Opy, -+ ,pn, —Ok) [al 120 (k) — 01 /,C™*(k©) (7.3.11)
ke, Bay,

and
aw1gl‘i%“l+1(pl’ e vpnl) (8w381/a00’0’a(}3) _ awgal/acao,a(ﬁO)) aw2§£l€i%al’fl(_op, ce ’Opn)‘ (7.3.12)

Our bound on @;">* will be verified by proving it for these difference terms.
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e We first bound ([7.3.11)). Using the bound (7.3.7)), we obtain

/ 9% (Ok,Opy,--- ,Opy, —OFk) [al 1aCO0 (k) — 0y /acama(kO)} |
k,Bag

1 3—n—|w| . )
< / 20 < + m) et _ oG
kBag a
1 k .
x P1 | log ram Py alk| ’ alpil '
am l1+am’ |1+am
4

4
o ' . 9 Goky . 9 ao(Ok)y
Fp = k€ By : Elsm ?g Elsm —5
p= p=

We define

We decompose the integral over the Brillouin zone 9, into integrals over jaoo and .J9¢

ap ?
/ 24> ‘e_GQ(’;2+m2) _ oK) +m?) | g alk| alpil
k,Ba, 1+am’ | 1+am
= / 2a367a2(i€2+m2) e*CLQ((EO)Q*kz) _ 1‘ p alk| alpi|
kT8 I14+am’ |1+am
+/ 2a3€—a2((1;o)2+m2) ’€_a2(,;2_(,;o)2) B 1’95 a\k\ a|pi’ '
(k.5Q)e 1+am’ | 1+am

From the definition of Jg, we have

Ve 50, [kl < |k°|  Vke IO, |k| > |k°

ap ?

which implies that

‘6_"“2((];0)2_];2) — 1‘ < a? )(IACO)Q — k? , Vke Ja(g
‘e—(f(fcz—(ico)Q) _ 1’ < a2 ’(,%0)2 —i2|, vkeso
Using the bound , we obtain
a2 ‘(1%0)2 - 1%2‘ < %9& (alk]). (7.3.13)

This gives the following bound

/ B2 (k2 rm?) e—a2((1;0)2—1;2)_1’ o k] alpi|
k9, 1+am’ | 1+am

O JkBay 14+ am a 1+am
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where the last inequality follows from lemma [I3] Similarly, we obtain for the second integral

supported on jaooc

/ B (RO)24m?) | —a(k2—(RO)2) _ 1’ o (9Kl alpi|
kIO° 14+am’ |1+ am

< ao a3€—a2((fco)2+m2) P <a|k|,{ a|pi’ }> )

a Jrg9¢ 1+ am

Performing the change of variables k — Ok yields

/ ade (R +m?) g <a|k‘, {a\pz\}> (7.3.15)
k.7]aOOC 1 —+ am
— / a367a2(]%2+m2) ap (alolk‘ { a’|pl| })
k7o(jaoo)c 1+ am

S/ a3€—a2(f62+m2) 9°<CL|]<:|,{ alpil }) < Pp <{ alpi })7
ke Bevag 1+am 1+am

where o is a parameter strictly less than 1 such that O%,, C Baq,, and the last inequality follows

again from lemma Combining (|7.3.14]) and (|7.3.15) the first difference term is bounded as

follows

/ O L\ (O, Op, -+, Opn, —OR) [011a € (k) = 014" (k)] |
k,Ba,

1 4-n—ful 1+ apm alp;|
<ap|—+m Py [ log——— | P . (7316)
a agm 1+ am

e The second step is to bound (7.3.12). For this step we use lemma . Using (|7.2.18]) for

w1 Cp @0,a wo ap,a,0 :
0 &Plhnﬁ_l and 0 §£l27n2+1 we obtain

l1,n1+1 lo,no+1

1 4—n—|w| 1 ;
< ag <+m> P, <logwom> P, ({QIM})
a agm 1+am

Using the induction bound on (9“’1'9571_ 07’5_ 41 and the bound (7.2.5), we deduce that

‘811;13(10,(1 (8w381/acao’a(ﬁ) o 8w361/a0“0’a(ﬁ0)) awzgao,a,O ‘

lin;+1

1 4—n—|w| 1 :
a agm 1+am
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Combining all the previous estimates of each term of the r.h.s. of the FE (7.3.9), we obtain

1 4=n—u| 1+ agm alp;
<ofgem) o (e o ({0
(7.3.

‘Ol/aaw%m’a(pl, e apn)

17)

In particular, we have

WGy @0 50 1 2wl _a?m? 14+ agm
‘01/aa P79 (0,0)‘ <aop(=+m e 5 Py (log 0™ (7.3.18)
’ a aom

e After these preparation steps, we integrate the flow equations (|7.3.9):
C1) For the irrelevant terms, because of the boundary conditions

0D (p1, -+ s pp) =0, Vn +|w| > 5 (n # 2)
0" DS™ (p, —p) = b (a0)0" (5°)% — by(a0)"p*,  V|w| > 3,

we integrate from 1/agp to 1/a. We exclude for the moment (n, |w|) € {(4,1);(2,3)} which
have to be treated as relevant in this case.
Vn + |w| > 5, such that n # 2 we have

1/ao
< / d\
1/a
1+ agm alpi| 1/a0 5—n—ful-1
<ag P <logaom> 9Py <{1+am}> /1/ d\N(A+m)

1 5—n—|w| 1 ;
a apm 14+ am

1
aw%z%ﬂ (p17 U apn) a)\aw%Z?I’A (pl; o 7pn)

(7.3.19)
For n = 2 and |w| > 4, the boundary conditions are not equal to zero. Therefore,
l/ao ao 1
0a3” -p)| < [ 7 ix|0n0" a3 )| + [0rais 0.
k) 1/a k) )

We recall that
0°2y5" (p, —p) = b (a0)0” ((°)* — ) — 0,225 (0,0)9" (p)°
with
8p2923;fg’a° (0,0) := by(ag) — b¥ (ao).
Integrating ((7.3.18) from 400 to 1/a and using the boundary conditions ([7.2.17)-(7.3.6]), we

deduce that

1 el o 1
‘awgbl“g’a(o, 0)‘ < ag < + m> e T oy (log +a°m> . (7.3.20)
’ a apm
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¢2)

Remembering that ag < a we have

(7.3.21)

a2m2 1
]angzsfgm(o,())) < (1+am)e -9 <log Wn) .

apgm

Using ([7.1.2)), we deduce
0 ()] <0(1) a5, (7.3.22)

with O(1) a positive constant independent of p and ag. Hence, combining (7.3.21) with
(7.3.22)) and using the bound ([7.2.14)) together with ag < a, we deduce for |w| > 3

1 3=wl 1+ apm
Q090 (2 ‘< - P (1og — 2™ ) 7.3.23
029157 0.00°)| <0 (S 4m) o (1og ") (7.3.23)
From the bound ([7.3.7)), we obtain
ag,aq,0 0] 1 + apm
angl 27 ’ (0, 0) = 2bl ((IO) < 9p log W . (7324)
' 0

Using ([7.2.11)) and ([7.2.12)) together with ([7.3.19)), (7.3.23) and (|7.3.24)) we obtain

811)%0,0,11 1 37|w| 1 —|— aom a|p‘
o (0, —p)| S a0 | ~+m Py (log ——— | P, : (7.3.25)

om 1+am

For the cases n + |w| < 5, the claim has to be deduced from the respective inte-
grated flow equation ([7.3.9)) at the renormalization point followed by an extension to general
momenta using the Taylor Formula (??7) for E%Zg’a. We proceed in the order of the induction
starting with the cases (n = 2, |w| = 3), (n = 2, |w| = 2) and going down in |w|. The

integral in
1/a 1
v (0,---,0) = 0vD,; > (0, ,0) +/ dA 8”%?2’ / (0,---,0) (7.3.26)
b b 0 b

is bounded using (7.3.17)) at vanishing momenta:

1/a
/ dx 8™ (0, ,0)
0 I

1/a
< ao/ A\ (A +m)> el g (log Ha@m)
0

apm

1 5—n—|w] 1
< ag <+m> 95<log+aom).
a agm

Hence, the assertion is established at the renormalization point. In each case extension to

general momenta is guaranteed by bounds established before. This concludes the proof of

Theorem [I41
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7.4 Translation invariance

7.4.1 Some properties of the Schwartz space

We recall the definition of the Schwartz space

S (R*™) := {f € 6> (R™) | ¥ (a, B) € N*™ x N*"| sup

TER4N

an'Bf(x)‘ < —l—oo}

The Schwartz space is a Fréchet space endowed with a topology induced by the filtrant family of
semi-norms
%= 3 IHlag pEN
o], B1<p

where

1l = sup [22D%f ()|

zeR4n
Lemma 15. Let f € 8 (R4n) and P, a polynomial of degree r, we have the following bound

n

[Py (21, yxn) far,- - xn)| < (H(l—F1|JJDS> Neir (f), VseN
i=1 '

The proof of Lemma [I5] which we do not reproduce here uses the definition of Schwartz functions and
will be useful in the sequel. For more details about the properties of Schwartz space and tempered

distributions, we refer the reader to [48].

7.4.2 Translation invariance

The lattice breaks Fuclidean translation invariance. In this section, we prove that the continuum limit
restores translation invariance.

The regularized (CAS) n-point functions in position space are tempered distributions that we define
through their Fourier transform, that is for f € S(R%")

ag,a d4p "'d4pn a _
(g D' s =/ EacrTant SIS ,pn>6<[4>]<p1+ ) FUL) (1 )
a ag

where o
4 T
6( ) (pl + -+ pn . Z 5 p1+- Pn I
%] a0
@0 kez4
accounts for the invariance of £;">"* under lattice translations and FL(f) is the inverse Fourier trans-

form of f. &' TOL,C/L\“O is well defined as a tempered distribution since

551?2’“ (pl, - ,pn) (5([2] (pl 4 .. +pn)

a0



7.4. TRANSLATION INVARIANCE 207

is a 2Z-periodic distribution [48].

Similarly, we define the renormalized (CAS) n-point functions in position space

550 ,00 o d4p1 s 'd4pn 5L,o,oo 5(4) -1
i s 3= [ = gy L @1 o) 80+ p) ) (1)

if’lo ;;X; denotes the continuum limit position space (CAS) n-point function. It is a tempered distribution

for which the translation by a vector ¢ € R? is defined as

<TC lnx7f> < lono?p77——cf>§’7s7 Vf €S (R4n)

and
(T—cf) (P, pn) == f(p1+ ¢ pn+0)

Therefore,
0,00
< gl ,n,x’ f>8/,S

n d4 . —i . —
/R4 H I)) lon (p1,--- apn)5(4)(p1+"‘+pn)e (prt-tpn)e g l(f) (p1,-++ s pn)
" 1

which implies
0, 07
(reLpme Pt g = (Lpmas N g VFES(R™).

The continuum limit of the UV cutoff regularized theory is clearly invariant under translations. Thus,
proving the translation invariance of the continuum limit of the lattice regularized theory amounts to

establishing the following convergence result

Theorem 15. Let f €S (R4"),

<S£la27(/lxa07f>8’,s — (£ fg g for ag—0,a — o0 (7.4.1)

In,x’
The proof of Theorem [15| relies on the following lemma

Lemma 16. Let f € S (R*"),

W~

(4)

<5[QJ] (p1 + +pn)7 f>s’,5 — <5(4)(p1 + - +pn)> f>g’,s when ag — 0 (7-4'2)
ag

7.4.3 Proof of lemma [16

Proof. Let f € R, using lemma one can verifies that

(6% (o1 4+ pa) Ny | < Cony ()
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which proves that §% (p; + - -+ + p,,) is indeed a tempered distribution. We have that

0 1 Ny s= [ dpredipy 600 (pr+ -+ pa) fpr+ -+ )
2] ’ Rin 2]

2%kT o
=/R4( _1)d4p2---d4pn2f<Zpi+-~-+pn>-

kez4 a0 =2
We write
Z F <2k7r Zp“ B ,pn> =f<—zpi7"'v >+ Z f <2k7r Zp“ cp n)
kez? =2 kez4*

Since f € S(R*"), we have the following bound for any k € Z**,

‘ <2kﬂ— szap27' y P >

with s =5(n — 1) + 8 and

n

1 1
2>4 ,:1_12 (1+ |pa))”

2k7r _ Z?:Q D;

(I=ani?

Ny(f) = sup sup |[p1|*™ - |pn|™ [f(p1 + -+ pu)l.
pi€R? |a|<13n

Using
1 2
< ) v 7b Rp7*’
PEENVEREVERNTERE
we obtain .
2km - ag - 1
Dis P2, ,D §C<> D E—— N(f)
‘ < Z ' ) k| ,H<1+rm> )
Since
w2\ 1
S s STl (5) <o
kez4* k,€Z* i=1
we deduce

<6([i)7r]’f>§’7§ = /R4<n1> d4p1 . “d4pnf (_Zpi 4+ +Pn> 1+ C ag N,(f)
=2

ag
= <5(4)(p1 + e +pn)>f>s’,$ +C ag Ns(f)

together with the useful bound

C(1+ a)N,(f) . (7.4.3)

SRS

This establishes that for ag — 0 we have

<5([4) ]<p1 +- —|—pn)7f>§’,8 —ap—0 ((5(4)(])1 T +p")’f>§/a5 ’
ag
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7.4.4 Proof of Theorem [15]

Proof. We recall the boundedness inequality ([7.2.18) for the (CAS) n-point functions. For all (p;)1<i<n €
B, such that Y 1 p; =0 [%}, we have

1 4—n—|w| 1 ;
<(zem) o (o) o ({1 )
a am 1+ am

This proves that Sfla 2’“ are 8% w.r.t. to the momenta and are at most of polynomial growth. Therefore,

0L (p1,- -+, Pn)

vf €S (R4n) ) gﬁg’a(Pb e 7p’n)f €S (R4n)

Taking the limit in the boundedness inequality 1} the same reasoning applies to S£ (p1,-++ ,Pn)
to prove that
VEESR™),  EhT (- pa)f €S (RM).

We write

gao,a(plv"' apn) = glama(pla'” 7pn)f(pla 7pn)7
0,
g(pla"' apn) . glnoo(pla"' apn)f(pla ,pn)

Using (|7.4.3]), we obtain

<O+ ag) NS(an,a -9).

ot () o (21

where v is the same constant as in ([7.2.21)). Therefore, for any polynomial Q@ with nonnegative

coefficients we obtain

<5([i)ﬁ] yJap,a — g)

a0

Taking the limit ag — 0 in (|7.2.21) we find

0,00
‘gdm p17"' 7p7’b) _gln (p17"' 7pn)

@ ({IpilD) (9 s o) = 01 pa)) £

< agm®” <log%1m>yg~5 ({ ’Z‘}) |f(p1,-- s pn)l-

1 14
NS(gao,a - g) < aom (log aom) Nr(f)

Thus,

which implies

<5([?ﬁ]agao,a - g> —ap—0,a—00 0
ag
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Lemma [I6] gives that

<5([t),,] - 5(4)7g> —ap—0,a—00 07

ag
so that

<5([42),r]agao,a> —2ap—0,a—00 <5(4)

ag

'9)-
Hence, for all f € S(R™) we have

b 07
(Sﬁﬁfj\ao,f}s/ﬁ — <gl,no,2:’f>8,,5' for ag — 0,a — oo.

Concluding remarks

We have presented an alternative proof of the perturbative renormalizability of massive lattice
regularized ¢}-theory. The starting point were the bounds — which prove the existence
of the continuum limit. In the flow equation formalism, they serve at the same time as induction
hypotheses for the inductive proof. Bounds of this sort have been established rigorously for all theories
of physical interest, including gauge theories |9]. In this context it is also interesting to study the
difference

ZLinito ~ Linag

ap,a

where £, 7 - denotes the momentum space regularized correlation functions and £,"*¢

Lnao denotes the

lattice regularized correlation functions. The UV-cutoff can be related to the lattice parameter by
Ao = 1/ag, similarly for the corresponding flowing parameters A = 1/a. The study of this difference
by flow equations should allow to prove that in the limit ag — 0 and a — oo, the difference vanishes,
implying consistency, that is the two regularization schemes converge to the same limit. This would be
an alternative way to prove that the continuum limit of the lattice regularization is given by the O(4)-
symmetric correlation functions. The approach presented in this chapter could also be generalized to
massless lattice regularized theories [49]. In this case the appearing infrared singularities have to be
controlled in a similar way as it has been done for theories with momentum cutoff regularization [9).
A particularly interesting subject is the extension to gauge theories since the lattice regularization
respects a priori gauge invariance. It seems however that analyzing the flow equations still requires a
gauge fixing procedure. In any case the important issue is to prove that the continuum limit respects

the continuum Ward identities for suitable renormalization conditions.



Conclusion and future perspectives

In this thesis, we studied the renormalization problem of theories with no translation invariance in
the context of three models: the semi-infinite model, the gbﬁ theory with an interaction supported on the
half-space and the lattice regularized ¢} theory. First, we considered the renormalization problem of
the semi-infinite (massive) scalar field model as well as the properties of the counter-terms that appear
in the effective action associated to this theory. We started with a general approach to this problem
by imposing constant renormalization conditions (more precisely BPHZ renormalization conditions)
which implies that the theory is renormalizable by adding five position dependent counter-terms to the

effective action given by
A 1
poe) = 3 [ o)+ 5 [ ()60 - 100 0)A00z.0)

— ()6 (z, 2)020(2,2) + 5% (2)0(2,2)(8:6) (2 2) + =™ ()94 2, w>) .

4]

Then, we established that there exists a particular choice of the renormalization conditions for
which the counter-terms are independent of the position in space and moreover are proportional to
terms, which have the same structure as those appearing in the original Hamiltonian. We proceeded

by constructing a solution of the flow equation of the semi-infinite model in two steps:

e The propagator of the semi-infinite model is a sum of two contributions: the usual translationally
invariant ¢} model propagator and a "surface" part which is singular only if at least one of the
arguments of the propagator approaches the surface. The key idea of the method presented
in this thesis is to analyze the correlation distributions generated by each of these two parts.
We considered the "surface" correlation distributions and established that these are bounded
uniformly with respect to the UV cutoff. For a suitable choice of renormalization conditions,
these correlation distributions are renormalized by adding the following two surface counter-

terms
o / Bx ¢?(0, ) + 2e0 / 3z ¢(0,2)(0,¢)(0,2) , *€{R,N}.
R3 R3

For the Dirichlet case, no surface counter-term is needed. The proof of this statement is based

on the a priori knowledge of bounds on the bulk correlation distributions smeared with an ap-

211
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propriate set of test functions. The bounds that were used initially are obtained by considering

BPHZ renormalization conditions, which again implies position dependent counter-terms.

The second step consisted in exploring in more detail the structure of the counter-terms that
renormalize the bulk correlation distributions. One would expect from a naive approach to this
problem that these correlation distributions are renormalized by the usual counter-terms of the
translationally invariant ¢} theory as they share the same free theory. The only difference stems
from the fact that the bulk correlation distributions correspond to a scalar field theory in R* with
an interaction supported on the half-space Rt xR3, which is another manifestation of the breaking
of translation invariance. For this model, we proceeded in chapter [f] by using our knowldege on
the renormalizability of the translationally invariant ¢j11 theory. The key idea is to construct a

solution to the bulk flow equation of the following form

n

AAo (> = A AN
D, * ((Zn; Pn)) == HX+(Zi) E7 * ((Zn, Pn)) + % * ((Zn, n)) (.0.4)
i=1
where 3 Ao are the translationally invariant q§4 theory correlation distributions and QZBA A0 s a

dlﬁerence term that it is renormalized by

SAO /R3 d3x (,252(0,5[3) +2€Ao /R3 d333 ¢(0,x)(8n¢)(0,:1;) .

A Ao
Inx *

The bound on E)ZBlA 7’1A0 is compatible with the inductive bound on §

As a conclusion to all the steps summarized above, the n-point correlation distributions

n

TTx" o) 250 ((Fo ) + D150 (B Bo)) + S15 (B )
=1

is the solution of the semi-infinite flow equation that imply the following bare interaction

A
p(6) = 5 [ e+ [ (2062(e.0) — 0260 0)80(5.0) + o a10))

#3604 [ B P00+ (el [ ong we (RN
R3 R3

Now, let us discuss to which extent the method developed here can be used in the case of other

boundary field theories. The tools we presented here can be adapted to prove the renormalizability of

scalar field theories in more general geometries. Let us mention few examples:

e A film geometry in which the volume V of the system is bounded by two d — 1 dimensional

parallel plates of infinite extent which are separated by a distance L. The surface consists of two
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disconnected pieces: the planes Sy = {(z,2) € RY z =0} and S;, = {(2,2) € RY 2 =0}. The
volume is V := Vp, = {(z,z) € R0 < z < L}. For d = 4 and for Robin, Neumann and Dirichlet
boundary conditions imposed on the plates Sy and Sy, the theory is expected to be renormalized
by the usual bulk counter-terms, whereas the surface singularities can be absorbed by the counter-
terms of the semi-infinite theory for each plate. For periodic boundary conditions, the volume
V7, has the topology of S; x R3, where S; denotes the unit circle. The UV singularities of this

theory can be renormalized by adding the translationally invariant ¢ theory counter-terms only.

e A defect plane for which the volume is the entire space R%. The translational invariance is in
this case broken by a defect plane, DP, of infinite extent in d — 1 dimensions, rather than by a

surface.

e Edges and curvature effects: The real systems are bounded by surfaces which are not necessarily
planar. Furthermore, even if all surfaces are planar, the system will have edges and corners.
The problem of the renormalization of such systems was approached for the first time by Cardy
in 1983 [50]. To investigate the critical behaviour, Cardy considered a wedge-shaped geometry
bounded by two semi-infinite plates meeting at an angle . An edge contribution must be added to
the Hamiltonian. In addition to the bulk and surface singularities, there exist some singularities
which are localized at the edge. An interesting problem would be to study the renormalizability

of such model to all orders of perturbation theory and for more general boundary conditions.

e Another problem concerns a rigorous study of the renormalization of the scalar field theories in
curved spacetimes in the presence of boundaries. Symanzik |3] explored a simple version of this
problem in 1981 by considering systems bounded by smooth d — 1-dimensional surfaces which are
of the form zg(xg) = 0. He showed that besides the bulk and surface counter-terms necessary for
absorbing the UV singularities in the case of a flat surface, additional curvature-dependent ones
are required. Their form follows from a power-counting argument. In the case of the Dirichlet

boundary condition, these curvature-dependent counter-terms do not contribute.

The common complexity between the problems mentioned above is the exact knowledge of the prop-
agator. We believe that our method holds for establishing renormalizability in the previous cases as
long as we know at least sharp bounds on the propagator(s).

Let us conclude with a broader issue, which concerns the use of the flow equations in exploring
rigorously the critical behaviour of systems and establishing rigorous results with respect to their phase
diagrams. A first step then would be the study of the Callan-Symanzik equation in the context of the

Polchinski flow equation.
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Résumeé : Lobjectif de cette thése est de comprendre
comment la renormalisation est affectée par la bri-
sure de la symétrie de translation a travers les deux
exemples de la théorie scalaire dans R* régularisée
par un réseau et celui de la théorie scalaire dans
le demi-espace Rt x R? euclidien appelée modéle
semi-infini. Nous considérons en premier le modéle
semi-infini en établissant une preuve rigoureuse de
la renormalisation de cette théorie en nous basant
sur les équations de flot. Dans un premier temps,
nous établissons la renormalisation perturbative de
cette théorie en fixant des conditions de renormalisa-
tion BPHZ. Cela a pour conséquence que les contre-
termes sont des fonctions qui dépendent de la po-
sition dans le demi-espace. La deuxieme partie de
cette thése est consacrée a une étude détaillée des

Titre : Renormalisation perturbative des théories de champ brisant I'invariance par translation

Mots clés : équations de flot, espace semi-infini, réseau, renormalisation, propagateurs, contre-termes

contre-termes. Nous établissons qu'il est possible de
choisir ordre par ordre des conditions de renorma-
lisation pour lesquelles les contre-termes sont des
constantes. En outre, ces contre-termes sont donnés
par ceux de la théorie invariante par translation et
deux contre-termes surface proportionnels a [ ¢?
et fs ¢0,¢ dans le cas de conditions aux bords du
type Robin et Neumann. Pour Dirichlet, les contre-
termes usuels de la théorie invariante par transla-
tion sont suffisants pour rendre la théorie finie. La
derniére partie de cette these est dédiée a I'étude de
la théorie scalaire massive ¢* régularisée par réseau.
Nous démontrons qu’elle est renormalisable, et que
les symétries euclidiennes sont retablies dans la li-
mite du continu.

Abstract : This thesis focuses on the study of the
perturbative renormalization of theories that break
translation invariance using the Polchinski flow equa-
tions. We study in particular the scalar field theory
in R* regularized by a lattice and the scalar field
theory in the semi-infinite geometry R+ x R3. First, we
prove the renormalizability of the semi-infinite model
using BPHZ renormalization conditions in the mixed
position-momentum space. However, this choice of
renormalization conditions implies having position de-
pendent counter-terms in the effective action. We go
one step further in studying the renormalizability of
the model, by investigating in more details the effect
of the presence of the surface on the counter-terms

Title : Perturbative renormalization of QFTs which are not translation invariant

Keywords : Flow equations, renormalization, semi-infinite model, lattice, counter-terms, propagators

and we prove that for a particular choice of renor-
malization conditions, the theory is renormalized by
the usual counter-terms of the translationally invariant
theory and by surface counter-terms proportional to
Js¢* and [ $9,¢ with S denoting the surface of the
half-space in the case of Neumann and Robin boun-
dary conditions. For the Dirichlet case, we establish
that the theory is renormalized using only the bulk
counter-terms. We end the thesis by giving a rigorous
proof of renormalizability of the massive scalar field
¢3 model regularized by a lattice. The novelty of this
work lies in giving a proof of the restoration of the Eu-
clidean symmetries in the continuum limit.
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91120 Palaiseau, France
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