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Résumé

En théorie quantique des champs, la renormalisation est un ensemble de techniques utilisées pour
donner un sens à la limite du continu. Une difficulté célèbre à laquelle se heurte la théorie quantique des
champs est celle des divergences ultraviolettes. L’idée principale de la renormalisation est d’absorber
ces divergences en ajoutant un nombre fini de “contre-termes” au lagrangien de départ. Cette procédure
permet de donner un sens aux observables physiques qui ont des valeurs finies. La difficulté à établir
une telle procédure vient du problème des divergences enchevêtrées. Considérons l’exemple simple d’un
champ scalaire massif ϕ dans l’espace euclidien R4 avec l’auto-interaction quartique λ

4!ϕ
4. Parmi les

approches rigoureuses à ce problème on retrouve les équations de Polchinski, dites équations de flot.
Ces équations constituent un système dynamique dont les variables sont les fonctions de corrélation
L

Λ,Λ0

l,n à l boucles et n points externes. En imposant des conditions aux bords mixtes, c’est-à-dire aux
deux échelles Λ = 0 et Λ = Λ0, les équations de flot définissent de manière unique les fonctions de
corrélation. L’avantage de ces équations est le schéma inductif qu’elles procurent et qui permet de
borner inductivement les fonctions de corrélation uniformément par rapport à la coupure ultraviolette
Λ0. La borne obtenue implique la convergence des fonctions de corrélation quand Λ0 → ∞.

L’objectif de cette thèse est de comprendre comment la renormalisation est affectée par la brisure
de la symétrie de translation. Dans le contexte de cette thèse, nous nous intéressons principalement
aux deux exemples de la théorie scalaire dans R4 régularisée par un réseau et celui de la théorie scalaire
dans le demi-espace R+×R3 euclidien appelée modèle semi-infini. Ces deux projets sont indépendants
l’un de l’autre. Nous considérons en premier le modèle semi-infini en établissant une preuve rigoureuse
de la renormalisation de cette théorie en nous basant sur les équations de flot. D’un point de vue
théorie de champ, ce problème a été étudié pour la première fois en 1981 par Diehl et Dietrich [1]- [2]
et indépendamment par Symanzik [3] en inspectant les divergences des graphes de Feynman à une et
deux boucles. Le problème à un nombre arbitraire de boucles est resté longtemps ouvert. Dans cette
thèse, nous avons résolu le problème de renomalisation perturbative de cette théorie à tous les ordres
en perturbation. La difficulté de ce problème réside dans la brisure de l’invariance par translation
par la surface bord du demi-espace qui nécessite de procéder dans l’espace des positions. Cela a
pour conséquence que les fonctions de corrélation du système sont des distributions. Pour résoudre
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ce problème par les équations de flot, le point de départ est de définir rigoureusement la théorie
quantique de champ associée à ce modèle. Cela se base sur l’intégrale de chemins qui est définie à partir
de la mesure gaussienne associée au modèle considéré. Une mesure gaussienne de moyenne nulle est
déterminée de façon unique par son opérateur de covariance, dont le noyau est donné par le propagateur.
Le propagateur est défini mathématiquement comme étant le noyau de la résolvante du Laplacien.
L’existence de ce noyau est garantie par le calcul fonctionnel qui nécessite que l’opérateur considéré soit
autoadjoint. Dans le cas d’un demi-espace, il existe plusieurs extensions autoadjointes du Laplacien et
chacune définit une condition au bord physique ainsi qu’une théorie quantique de champ indépendante.
Ces conditions aux bords pour le modèle semi-infini sont du type Dirichlet, Neumann et Robin. Le
support des mesures gaussiennes associées aux différents propagateurs Dirichlet, Neumann et Robin est
singulier, dans le sens qu’il contient des distributions, pour lesquelles le produit au même point n’est
pas défini. Par conséquent, une régularisation par coupure ultraviolette est nécessaire. Celle-ci agit
sur le support des mesures gaussiennes en le réduisant à des fonctions indéfiniment dérivables. Ainsi,
il devient possible d’introduire l’auto-interaction ϕ4. La mesure gaussienne combinée à l’interaction
permet de définir l’action effective par l’intégrale de chemins. Les propriétés de dérivation de la
mesure gaussienne impliquent par la suite l’équation de flot. Une série formelle en nombre de boucles
permet de déduire l’équation de flot vérifiée par les “fonctions” de corrélation régularisées. Comme
l’invariance par translation est brisée par la surface, les “fonctions” de corrélation dans ce cas sont des
distributions. Nous introduisons une classe de fonctions tests sur lesquelles ces distributions agissent
et nous bornons uniformément ces distributions par rapport à la coupure ultraviolette, en fixant dans
un premier moment des conditions de renormalisation BPHZ. Cela a pour conséquence que les contre-
termes sont des fonctions qui dépendent de la position dans le demi-espace.

La deuxième partie de cette thèse est consacrée à une étude détaillée des contre-termes. Nous
établissons qu’il est possible de choisir ordre par ordre des conditions de renormalisation pour lesquelles
les contre-termes sont des constantes. En outre, ces contre-termes sont donnés par ceux de la théorie
invariante par translation et deux contre-termes surface proportionnels à

∫
S ϕ

2 et
∫
S ϕ∂nϕ dans le cas

de conditions aux bords du type Robin et Neumann. Pour Dirichlet, les contre-termes usuels de la
théorie invariante par translation sont suffisants pour rendre la théorie finie.

La dernière partie de cette thèse est dédiée à l’étude de la théorie scalaire massive ϕ4 régularisée
par réseau. Nous démontrons qu’elle est renormalisable, et que les symétries euclidiennes sont rétablies
dans la limite du continu.
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Introduction

Quantum field theory was originally developed as a theoretical framework that combines classical
field theory, special relativity, and quantum mechanics and has become the general theoretical frame-
work to study physical systems with an infinite (or large) number of degrees of freedom.

A rigorous mathematical analysis of quantum field theories is faced with the problem that path
integrals describing systems in field theory are generally not defined. There exists a complete the-
ory of Gaussian measures that apply to free theories. However, for the interacting case, a rigorous
mathematical description starts from regularized versions of the theory, where the number of degrees
of freedom in space and momentum has been (in some sense) made finite. This is a task common
to all regularizations, such as simple momentum cutoff, dimensional regularization and lattice cutoff.
An essential task of renormalization is to prove that the correlation functions have uniform limits in
the cutoffs. For these limits a sequence of axioms must be satisfied in order to construct Euclidean
quantum field theory. These are the Osterwalder-Schrader axioms [4, 5]. In general, convergence is
achieved by appropriately adjusting a finite number of bare parameters of the action and by a rescaling
of the fields.

The scalar field theory in R4 with a ϕ4 interaction is known to be renormalizable in the sense that
when the momentum cutoff is sent to infinity, the correlation functions stay finite. Several proofs
exist to prove the renormalizability of ϕ44 theory. Among them, the perturbative proof of renormaliza-
tion based on Wilson flow equations performed by Polchinski in the seminal paper [6] in 1984. The
flow equation allows to describe theories by an effective action LΛ,Λ0 , depending on a scale Λ with
0 ≤ Λ ≤ Λ0 < ∞ for Euclidean quantum field theories in the continuum with a momentum cutoff.
Here, Λ is a parameter that flows from 0 to Λ0 and Λ0 denotes the ultraviolet cutoff. LΛ,Λ0 should
satisfy the following conditions:

- At the ultraviolet cutoff Λ = Λ0, LΛ,Λ0 coincides with the bare interaction.

- For Λ < Λ0, LΛ,Λ0 is obtained upon integration of the field degrees of freedom which propagate
with momenta p roughly between Λ and Λ0.

The flow equation allows to give a rigorous proof of perturbative renormalizability of different quan-
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2 INTRODUCTION

tum field theories. The conventional proof of perturbative renormalizability is based on an approach
in terms of Feynman diagrams. In perturbation theory, the correlation functions are represented as a
sum of Feynman integrals. A central tool in this approach is the existence of a power-counting theo-
rem, which provides a criterion on the convergence of Feynman integrals by counting suitably defined
UV-divergence degrees [7]. The Feynman diagram associated to a Feynman integral, together with
all its subdiagrams, are required to have negative UV-divergence degrees to ensure the absolute con-
vergence of the Feynman integral. The second step in this approach consists in formulating a general
renormalization prescription [8] to subtract the UV-divergences, order by order in perturbation theory,
as for example the BPHZ-subtraction scheme (the Bogoliubov-Parasiuk-Hepp-Zimmermann finite part
prescription). It is the combinatorics of counting divergence degrees and of removing divergences which
makes the proof cumbersome. A further issue is to show that a theory with some symmetry properties
can be renormalized in such a way that the symmetry is preserved, which is highly nontrivial for the-
ories with gauge symmetries. This concerns in particular field theories like Yang-Mills theories [9, 10],
QCD and the electroweak standard model. The flow equation allows for a simple transparent rigorous
solution of the perturbative renormalization problem without introducing Feynman diagrams. It is
based on a tight inductive scheme wherefrom bounds on the regularized Schwinger functions implying
renormalizability can be deduced. Renormalizability of a quantum field theory implies that the unreg-
ularized (renormalized) correlation functions exist in the sense that they are both IR (in the limit of
very small momenta) and UV finite (in the limit of very large momenta). Finite limits are achieved by
imposing a finite set of renormalization conditions on a physical scale that is independent of the UV
cutoff Λ0. For simplicity, throughout this thesis we only consider the case in which the field is massive
to avoid any IR problems. Proving perturbative renormalizability then amounts to show the existence
of the large UV cutoff limit Λ0 → ∞.

The method of flow equations has been extensively used to prove perturbative renormalizability
in the context of various quantum field theories [11–13]. The aim of this PhD thesis is to investigate
the perturbative renormalizability of quantum (scalar) field theories that break translation invariance
basing our approach on the Polchinski flow equations. One may ask if the renormalizability of a given
field theory depends only on the interaction introduced and the dimension of space-time, or whether it
depends also on the geometrical and topological properties of the considered space-time. In Chapter
7, we analyze the ϕ4 theory in the Euclidean space R4 regularized by a lattice which is an example of a
regularization scheme that breaks translation invariance. We prove that the theory is renormalizable
and that the Euclidean symmetries are restored in the continuum limit. In Chapters 4-5, we analyse a
more explicit breaking of translation invariance by the presence of a boundary, by studying the massive
scalar field model on a half-space, as a prototype model to study the surface effects on renormaliza-
tion. The semi-infinite geometry denotes a d-dimensional half-space bounded in one direction by a
d− 1-dimensional plane of infinite extent, which is the surface S of the system. In the context of this
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thesis, the d-dimensional semi-infinite geometry is the space R+ × Rd−1.
The renormalization of the semi-infinite massive scalar field theory was firstly motivated by trying

to understand the surface effects on critical behaviour in condensed matter physics. At first sight,
it may seem that surface effects are not relevant in systems with short-range interactions. However,
experiments showed that local observables are sensitive to the presence of boundaries, in the sense that
their behaviour deep inside the bulk and on the surface is considerably different. In the spin polarized
low-energy electron diffraction experiment (SPLEED) the surface magnetization of the Heisenberg fer-
romagnet Ni close to the bulk transition temperature (Tc ≈ 630K) was measured by Celotta et al. [14]
at the Ni (100) surface and also by Alvaredo et al. [15] at the Ni (100) surface. The quantity observed
in this experiment is the scattering asymmetry between the scattering with the electron spin parallel
and antiparallel to the surface magnetization, which turns out to be proportional to local mean mag-
netization m1. In the SPLEED performed by Alvaredo et al. [15], they showed that m1 behaves as
m1 ∼ |T − T b

c |β1 with an exponent β1 ∼ 0.8, which is distinctly different from the bulk value β ∼ 0.33

implying that m1 vanishes faster than the bulk magnetization mb.
From a theoretical standpoint, the semi-infinite criticalities were first sparked by Fisher in 1971

and by Binder and Hohenberg [16] who later presented a Monte-Carlo study [17]. Meanwhile, the
semi-infinite mean-field theories were worked out by Lubensky and Rubin [18,19] who studied a model
of ferromagnetically coupled classical spins on a semi-infinite lattice and provided via a mean-field
approach a qualitatively correct understanding of the different phases undergone by the system which
are: the ordinary, extraordinary, surface and special transitions. Later, the phenomenological theory of
scaling [20, 21] was generalized to surfaces, and implied relations between bulk critical exponents and
the additional surface critical exponents, needed to describe the singular behaviour of surface related
properties. However, the mean field approach is known to yield incorrect results for bulk properties
near their critical temperature if the space dimension is below its upper critical value d = 4 and
such breakdown is expected to hold for local critical properties. Therefore, the renormalization of the
model is necessary if one wants to go beyond the mean-field approximation. The first study from a
field theoretical approach was performed by Diehl and Dietrich in [1, 2], in which they studied the
critical behavior of the semi-infinite system using renormalization group methods. They considered
the ordinary [22] and special transitions [2] which correspond respectively to the Dirichlet and Robin
boundary conditions and found that in addition to the usual two bulk counter-terms, an additional sur-
face counter-term is needed to make the two-point function finite in the case of the Dirichlet boundary
condition. For the Robin boundary condition, two surface counter-terms are needed. The calculations
were performed to two-loop order using dimensional regularization, and the surface counter-terms were
obtained by inserting the operators limz→0 ∂zϕ(z, x) where x ∈ R3 in the case of Dirichlet b.c., and
ϕ(0, x), ϕ2(0, x) in the case of the Robin b.c., where ϕ is the considered scalar field.

The semi-infinite model was also adressed by Symanzik in his study of the Schrödinger representa-
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tion for renormalizable quantum fields [3] in which he discusses the renormalization of surface operators
in a different context, but also finds that surface counter-terms are required to make the two-point
function finite. So far no rigorous proof of perturbative renormalizability of the semi-infinite model
was performed. Let us explain why a conventional proof of renormalization based on the analysis of
Feynman diagrams is complicated to achieve in the context of a boundary field theory: Apart from the
combinatorial aspect of this method as compared to the flow equations, there is an additional complex-
ity that stems from the breaking of translation invariance. For translationally invariant systems, one
has the advantage that in momentum space one has to deal only with functions analytic in the external
momenta. Given a Feynman diagram, it is made finite by subtracting the divergences of each subdi-
agram by applying a Taylor operator in the external momenta of the subdiagram. The renormalized
Feynman integral is defined in such a way that the ultraviolet (UV) divergence degrees of all subdi-
agrams are negative. The convergence of such integrals is ensured by a power counting theorem [7].
Unfortunately, these methods assume a rational structure of the Feynman integrands and hence do not
apply to diagrams corresponding to Feynman graphs in position space. The main difficulty encoun-
tered when one wants to generalize these methods to position space, is the distributional aspect of the
considered objects. It is tempting to work in momentum space as it is the case for the translationally
invariant theory, for which the momentum-space representation is characterized by computational sim-
plicity. However, in the case of a space with a surface, the momentum-space representation does not
simplify computations in perturbation theory. In this case, the correlators in momentum space have
a complicated distributional structure, different from its translationally invariant counter-part which
is simply given by a product of a function and a momenta conservation Dirac distribution. Besides
the technical difficulties, there are some fundamental problems that explain the complexity of working
in a full momentum space. Lubensky and Rubin [18, 19] performed a one-loop order renormalization
group analysis of the Dirichlet case in momentum space. However, their approach is complicated for
two reasons: First, the calculation scheme is not well-suited for higher-order computations and second
their approach is essentially restricted to the Dirichlet case and can not be generalized to Neumann
and Robin boundary conditions. The particularity of the Dirichlet case1 is that it corresponds to the
ordinary transition which is described by a fixed point, for which the value of c = +∞ is known to all
orders of pertubation theory and the eigenfunctions of the Dirichlet Hamiltonian do not change under
renormalization group transformation. However, the Neumann and Robin cases are characterized by
c < +∞ which is renormalized at each order, and this implies that the eigenfunctions corresponding
to the Neumann/Robin Hamiltonian verify at each order of perturbation theory a different Robin
boundary condition with a different renormalized Robin parameter. This generates a complicated non-
diagonal c-dependent quadratic term and even a more complicated c-dependent four point function. In

1c denotes the Robin parameter which in the case of Dirichlet boundary conditions is +∞.
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position-space or mixed pz-representation2, the renormalized Robin parameter can be simply obtained
from the effective action. In view of these reasons, we prefer to work in a pz-representation for a
perturbative analysis of the renormalizability of the semi-infinite model.

The goal of this thesis is to investigate the problem of perturbative renormalization of the semi-
infinite model. How does it differ technically from the translationally invariant case? What are the steps
needeed to prove perturbative renormalizability by the flow equations in a mixed position-momentum
space? What are the bounds that lead to perturbative renormalizability and more importantly how
are the translationally invariant model and the semi-infinite model related to each other?

Before tackling these questions, we give in chapter 1 an overview of the flow equations. In section
1.1.1 and 1.1.2, we start by introducing the basic ingredients to write rigorously the Euclidean (free)
quantum scalar field theory. In section 1.1.3, we write the flow equations and we explain how these
are used in establishing a rigorous proof of perturbative renormalizability for the basic example of
the massive scalar field theory with a ϕ4 interaction in R4. We conclude this chapter with a detailed
summary of the rest of the thesis. In chapter 2, we give a rigorous computation of the propagators
in R+ × Rd−1 together with the possible boundary conditions for the semi-infinite model. In chapter
4, we prove the renormalizability of the semi-infinite model using BPHZ renormalization conditions
in the mixed position-momentum space. As we will see, this choice of renormalization conditions im-
plies having position dependent counter-terms in the effective action. In chapter 5, we go one step
further in studying the renormalizability of the model, by investigating in more details the effect of
the presence of the surface on the counter-terms. The main goal of chapter 5 is to prove that for a
particular choice of renormalization conditions, the theory is renormalized by the bulk counter-terms
and by surface counter-terms proportional to

∫
S ϕ

2 and
∫
S ϕ∂nϕ with S denoting the surface of the

half-space. Through out this thesis, the bulk theory denote the scalar field model in R4 with a quartic
interaction supported on the half-space. We treat this theory in detail in chapter 6 and establish that
it is renormalized with the usual counter-terms of the translationally invariant theory, modulo the sur-
face counter-terms

∫
S ϕ

2 and
∫
S ϕ∂nϕ. Finally, in chapter 7, we give a rigorous proof of perturbative

renormalizability of the massive scalar field ϕ44 model regularized by a lattice. The novelty of this work
lies in giving a proof of the restoration of the Euclidean symmetries in the continuum limit. We end
the thesis by some concluding remarks and by presenting a few future perspectives.

2in which Fourier transforms are taken partially w.r.t. the parallel components x of the vector (x, z).
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Chapter 1

Background and motivations

1.1 Perturbative Renormalization by flow equations: A simple ex-
ample

In this section, we give an overview of rigorous renormalization theory based on the differential
flow equations of the Wilsonian renormalization group. We consider the massive Euclidean ϕ4 theory
in R4, to which we will refer also later as the translationally invariant model. The method of the proof
using the flow equations is based on the observation that the flow equations give access to a tight
inductive scheme. This allows to obtain bounds on the regularized correlation functions which imply
renormalizability. The correlation functions are regularized by a UV cutoff Λ0 and a flow parameter
Λ. The bounds on these correlation functions are uniform in the cutoff and finite for Λ → 0, which
basically solves the renormalization problem. The aim of this section is to introduce on one hand
the method of the proof of perturbative renormalizability with flow equations. On the other hand,
this section provides a background to compare to the case that breaks translation invariance of the
semi-infinite scalar field model which is the central object of the next chapters.

1.1.1 A rigorous definition of the free Euclidean scalar field theory

The starting point in defining a Euclidean quantum field theory is to write the corresponding
path integral, which can be defined through the theory of Gaussian measures. Denoting by S(R4) the
Schwartz space and by S′(R4) its dual space, we have the nested triple

S(R4) ⊂ L2(R4) ⊂ S′(R4).

In the sequel, the bracket ⟨·, ·⟩ denotes the usual scalar product in L2(R4). The aim of this section is
to explain the interplay of three notions which are central in writing rigorously a Euclidean quantum
field: the self-adjointness of the Hamiltonian, the propagator and the Gaussian measure. We will not

7
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expose the general theory of Gaussian measures which is extensively studied in [23]- [24], but we rather
restrict ourselves to the discussion of the example of the scalar field model in R4. Let us introduce first
the following definitions:

Definition 1. (Gaussian measure) A measure dµ defined on the nuclear space S′(R4) is said to be
Gaussian if for each finite dimensional subspace I⊂ S(R4), the restriction of dµ to I cylinder sets is
Gaussian.

Definition 2. (Covariance operator) The covariance operator C on the nuclear space S(R4) is defined
as the continuous bilinear form

C : S(R4)× S(R4) −→ R (1.1.1)

(f, g) 7−→ ⟨f, Cg⟩ , (1.1.2)

with the additional property of being non-degenerate (i.e. ⟨f, Cf⟩ = 0 ⇒ f = 0).

The definitions 1 and 2 can be generalized to any nuclear space. Theorem A.4.1. in [25] ensures
the existence of a unique Gaussian measure dµC on the space of tempered distributions S′(R4) having
C as its covariance operator. The free Hamiltonian is given by the operator

−∆+m2

with domain C∞
c

(
R4
)
. This operator is symmetric but is not self-adjoint. It is though essentially

self-adjoint and we denote the closure of the Laplacian by ∆ with domain D(∆) = H2(R4). Therefore,
using the functional calculus, the inverse of −∆+m2 exists and it is given by(

−∆+m2
)−1

:=

∫ ∞

0
dt et∆ e−tm2

. (1.1.3)

We recall the following result from [26], which proves that et∆ is an integral operator and gives explicitly
its kernel:

Theorem 1. Let f ∈ L∞(Rn). If either (i) f ∈ L2(Rn) or (ii)1 F−1(f) ∈ L1(Rn), then

(f(−i∇)ϕ) (x) =
1

(2π)
n
2

∫
Rn

F−1(f)(x− y)ϕ(y)dy, (1.1.6)

for all ϕ ∈ L2(Rn). The integral converges for all x in case (i) and for almost all x in case (ii).
1F−1(f) is the inverse Fourier transform of f with the following conventions for the Fourier and inverse Fourier

transforms
F(f)(ξ) :=

1

(2π)
n
2

∫
Rn

f(x)eix·ξ dx. (1.1.4)

F
−1(f)(x) :=

1

(2π)
n
2

∫
Rn

f(ξ)e−ix·ξ dξ. (1.1.5)

.
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Using Theorem 1 for f(x) = e−tx2 , we obtain(
et∆ϕ

)
(x) =

1

(2πt)2

∫
R4

e−
(x−y)2

2t ϕ(y)dy. (1.1.7)

Hence, we deduce that
(
−∆+m2

)−1 is an integral operator with a kernel given by

(
−∆+m2

)−1
(x, y) =

∫ ∞

0
dt e−tm2 1

(2πt)2
e−

(x−y)2

2t . (1.1.8)

This also implies that
(
−∆+m2

)−1 is a bounded bilinear form on S(R4)× S(R4) so Theorem A.4.1.
applies. Therefore, there exists a unique Gaussian measure associated to the operator

(
−∆+m2

)−1

on S′(R4).

1.1.2 The regularized flowing propagator

The starting point in writing a Euclidean massive scalar field theory is the Gaussian measure. It
is the support of this measure that defines the field. A Gaussian measure with mean zero is uniquely
defined by its covariance operator. As we already explained in section 1.1.1, the covariance operator
of this model is integral and the so-called propagator plays the role of its kernel. In Fourier space, the
propagator simply reads

C(p) =
1

p2 +m2
.

The Gaussian measure associated to this propagator has its support included in S
′ (

R4
)

(i.e. the space
of tempered distributions)2. The support of the Gaussian measure defines the space to which the field
belongs. However, powers of distributions, or more generally products of distributions depending on
the same variables are not well-defined [28]. This means that the bare interaction, which includes local
powers of the field and of its derivatives, cannot be given any mathematical meaning if the field is a
distribution. Therefore, the propagator is regularized to restrict the support of the associated Gaussian
measure to a subspace of C2

(
R4
)

(i.e. the space of functions with continuous zeroth, first and second
derivatives). We choose the following regularization

CΛ,Λ0(p) =
1

p2 +m2

(
RΛ0(p)−RΛ(p)

)
, (1.1.9)

where Λ0 is the UV-cutoff and Λ a flow parameter 0 ≤ Λ ≤ Λ0. For all 0 ≤ Λ ≤ Λ0, RΛ(p) is a smooth
regularizing function that satisfies the following constraints: It rapidly vanishes for p2 > 2Λ2, whereas
for p2 < Λ2

2 the function RΛ(p) approaches the identity sufficiently fast. Furthermore for Λ = Λ0, the

2For a more precise characterization of this support, we refer to [27].
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regularized propagator CΛ,Λ0 vanishes. These conditions may still be relaxed and, in any case, there
is a large amount of arbitrariness in the choice of RΛ. A convenient choice is

RΛ(p) = e−
p2+m2

Λ2 . (1.1.10)

It has non-compact support but is rapidly decaying for large momenta. In the sequel, we will use
the regularization (1.1.10). Note that for Λ → 0 and Λ0 → +∞, the full propagator of the theory
is recovered. The Gaussian measure with covariance (1.1.9) is supported with probability one on
C∞(R4) [24,29]. Let us give a simple argument which proves that the support of the Gaussian measure
associated to the regularized flowing propagator is included in C∞ (R4

)
. We define the continuous linear

mapping

Ψ : S′(R4) −→ S′(R4)

T 7−→ F−1(RΛ0) ∗ T,

where F−1(RΛ0) is the inverse Fourier transform of RΛ0 . We consider the following measure

µΛ0 = µ ◦Ψ−1, (1.1.11)

where µ denotes the Gaussian measure associated with the unregularized propagator C. It is easy to
see that (1.1.11) is again Gaussian with mean zero and its covariance is given by

CΛ0(p) =
e−

p2+m2

Λ2

p2 +m2
. (1.1.12)

The support of (1.1.11) then simply reads

{Ψ(T )|T ∈ supp µ} .

Since F−1(RΛ0) is in S(R4), we have for T ∈ S′(R4) that F−1(RΛ0) ⋆ T is in C∞(R4). This gives
directly that the support of (1.1.11) is in C∞(R4).

1.1.3 The flow equations

The theory we consider is the massive Euclidean ϕ4-theory on R4. This means that we start from
the bare interaction

LΛ0,Λ0(ϕ) =

∫
R4

d4x

(
λ

4!
ϕ4(x) + a(Λ0)ϕ

2(x)− b(Λ0)ϕ(x)∆ϕ(x) + c(Λ0)ϕ
4(x)

)
. (1.1.13)

The first term defines the self-interaction of the field with real coupling constant λ > 0 having mass
dimension equal to zero. The second part contains the related counterterms, determined according to
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a power counting rule: the canonical mass dimension of the field is one so the counterterms allowed in
the bare interaction are all local terms of mass dimension ≤ 4 that can be formed of the field and of its
derivatives respecting the Euclidean symmetries. From the bare interaction and the flowing propagator
(1.1.9), we may define Wilson’s flowing effective action LΛ,Λ0 by integrating out momenta in the region
Λ ≤ |p| ≤ Λ0:

e−
1
ℏL

Λ,Λ0 (ϕ) := N

∫
dµΛ,Λ0(Φ)e

− 1
ℏL

Λ0,Λ0 (Φ+ϕ). (1.1.14)

It can be recognized to be the generating functional of the connected amputated correlation functions
of the theory with propagator CΛ,Λ0 and bare action LΛ0,Λ0 [11]. For the normalization factor N to be
finite, the theory has to be restricted to finite volume. All subsequent formulae are also valid in the
thermodynamic limit since they do not involve the vacuum functional [11].
The fundamental tool for our study of the renormalization problem is the functional flow equation

∂Λ
(
LΛ,Λ0 + IΛ,Λ0

)
=

ℏ
2
⟨ δ
δϕ
, ĊΛ,Λ0

δ

δϕ
⟩LΛ,Λ0 − 1

2
⟨δL

Λ,Λ0

δϕ
, ĊΛ,Λ0

δLΛ,Λ0

δϕ
⟩, (1.1.15)

where ĊΛ,Λ0 := ∂ΛC
Λ,Λ0 . Let us explain briefly the steps leading to (1.1.15): we derive both sides of

(1.1.14) with respect to Λ and perform an integration by parts in the functional integral on the RHS
using the following property of a Gaussian measure µΛ with covariance CΛ [25]:

d

dΛ

∫
dµΛ(ϕ) A(ϕ) =

1

2

∫
dµΛ(ϕ)⟨

δ

δϕ
, ĊΛ δ

δϕ
⟩A(ϕ), (1.1.16)

where A(ϕ) denotes a polynomial formed of local powers of the field ϕn(x) and of its derivatives
(∂xϕ(x))

m with (n,m) ∈ N2. In the context of the proof of perturbative renormalization, the objects
of interest are the n-point connected amputated Schwinger functions. These are obtained by first
expanding LΛ,Λ0 in moments with respect to ϕ:

∀(pi)1≤i≤n ∈ R4, (2π)4(n−1)δϕ(p1) · · · δϕ(pn)L
Λ,Λ0 |ϕ=0 = δ4(p1 + · · ·+ pn) L

Λ,Λ0
n (p1, · · · , pn), (1.1.17)

then in a formal powers series with respect to ℏ to select the loop order l,

LΛ,Λ0
n (p1, · · · , pn) =

∞∑
l=0

ℏl LΛ,Λ0

l,n (p1, · · · , pn) .

Using the functional flow equation (1.1.15), we write the perturbative flow equations for the n-point
correlation functions by identifying coefficients

∂Λ∂
wL

Λ,Λ0

l,n (p1, · · · , pn) =
1

2

∫
R4

d4k

(2π)4
∂wLΛ,Λ0

l−1,n+2(k, p1, · · · , pn,−k) Ċ
Λ(k)

− 1

2

′∑
l1,l2

′∑
n1,n2

∑
wi

cw

[
∂w1L

Λ,Λ0

l1,n1+1(p1, · · · , pn1 , p)∂
w3ĊΛ(p)

×∂w2L
Λ,Λ0

l2,n2+1(−p, pn1+1, · · · , pn)
]
rsym

(1.1.18)
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p = −p1 − · · · − pn1 = pn1+1 + · · ·+ pn

where the prime on top of the summation imposes the restriction to n1+n2 = n and l1+ l2 = l and the
symbol "rsym" means summation over unordered partitions of length 2 of the set (p1, · · · , pn), which
produce mutually different pairs of (unordered) image subsets.
Here we wrote the equation directly in a form where a number |w| of momentum derivatives, char-
acterized by a multi index w, act on both sides. Momentum derivatives of the L

Λ,Λ0

l,n are needed to
obtain a closed inductive scheme. We set

∂w =
∂|w|

∂pw1
1,1∂p

w2
1,2...∂pn,4

w4,n
|w| = w1,1 + ...+ wn,4. (1.1.19)

Moreover, the combinatorial factor c{wi} = w!(w1!w2!w3!)
−1 comes from Leibniz’s rule. In the loop

order l = 0, the first term on the RHS is absent.

1.1.4 Boundary conditions

Before bounding the solutions of the system of flow equations, we first need to specify the boundary
conditions. Our choice of the bare interaction implies that at Λ = Λ0, we have for all n+ |w| ≥ 5,

∂wLΛ0,Λ0

l,n (p1, · · · , pn) = 0, ∀(pi)1≤i≤n ∈ R4n. (1.1.20)

For the relevant terms, which correspond to n+ |w| ≤ 4, they are fixed by renormalization conditions
imposed for the fully integrated theory at Λ = 0:

L
0,Λ0

4,l (0, · · · , 0) = λ, L
0,Λ0

2,l (0, 0) = 0, ∂p2L
0,Λ0

2,l (0, 0) = 0, ∀l ≥ 1. (1.1.21)

The renormalization point is chosen at zero momentum for simplicity (BPHZ renormalization condi-
tions).

1.1.5 Renormalizability

Perturbative renormalizability of the regularized field theory (1.1.14) amounts to the following: given
the coupling constant λ in the bare interaction LΛ0,Λ0 , the coefficients a(Λ0), b(Λ0) and c(Λ0) of the
counterterms can be adjusted within a loop expansion of the theory,

a(Λ0) =

∞∑
l=1

ℏlal(Λ0), · · · , c(Λ0) =

∞∑
l=1

ℏlcl(Λ0) ,

in such a way that the limits of the n−point correlation functions exist when Λ goes to 0 and Λ0 goes
to +∞ in every loop order l uniformly on compact momentum sets:

∀ (pi)1≤i≤n ∈ R4, n ∈ N, l ∈ N∗, L
0,∞
l,n (p1, · · · , pn) := lim

Λ→0,Λ0→+∞
L

Λ,Λ0

l,n (p1, · · · , pn). (1.1.22)
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A simple inductive proof of ϕ44 theory regularized by a UV-cutoff has been exposed several times in
the litterature [11, 12]. It is based on proving the following induction hypotheses:

A) Boundedness in the UV-cutoff3

∣∣∣∂wLΛ,Λ0

l,n (p1, · · · , pn)
∣∣∣ ≤ (Λ +m)4−n−|w|

P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
. (1.1.23)

B) Convergence in the UV-limit

∣∣∣∂Λ0∂
wL

Λ,Λ0

l,n (p1, · · · , pn)
∣∣∣ ≤ (Λ +m)5−n−|w|

(Λ0 +m)2
P3

(
log

Λ0 +m

m

)
P4

(
∥p⃗n∥
Λ +m

)
. (1.1.24)

The Pi, each time they appear denote possibly new, polynomials with nonnegative coefficients of
coefficients depending on l, n, |w| but not on {pi}, Λ, Λ0. For l = 0, all polynomials Pi reduce to
1. Integration of the bound (1.1.24) over the cutoff Λ0 immediately proves the convergence of all
L

Λ,Λ0

l,n (p1, · · · , pn) for fixed Λ to finite limits when Λ0 → ∞. In particular, one obtains for all Λ̃0 < Λ0,

∣∣∣L0,Λ0

l,n (p1, ..., pn)−L
0,Λ̃0

l,n (p1, ..., pn)
∣∣∣ < Λ−1

0 m5−n

(
log

Λ0 +m

m

)ν

P5

(
∥p⃗n∥
m

)
.

It is also possible to establish inductively that the connected amputated Schwinger (CAS) n-point
functions are C∞ w.r.t. momenta, Λ and Λ0. This stems mainly from the regularity properties of the
regularized flowing propagator. Thus, due to the Cauchy criterion in C∞(R+) (w.r.t. to Λ0) finite
limits exist to all loop orders l.

Method of the proof

Let us shortly describe the method of the proof of (1.1.23). For a detailed proof we refer to [11, 30].
The inductive scheme starts from (l, n) = (0, 4) for which the induction hypothesis (1.1.23) clearly
holds. Higher orders in loop are generated inductively by integrating successively the flow equations.
The order of the induction is as follows:

- Ascend in the loop order l,

- For fixed l ascend in n,

- For fixed l and n descend with w down to 0.
3We use the following notation ∥p⃗n∥ := sup1≤i≤n |pi|.
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Inserting the induction hypothesis on the right-hand side of the flow equations, the integrals are
bounded in an elementary way using∣∣∣∂wĊΛ(p)

∣∣∣ ≤ (Λ +m)−3−|w|
P

(
|p|

Λ +m

)
, (1.1.25)

and we obtain∣∣∣∂Λ∂wLΛ,Λ0

l,n (p1, · · · , pn)
∣∣∣ ≤ (Λ +m)3−n−|w|

P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
. (1.1.26)

The next step is to integrate (1.1.26). Because of the mixed boundary conditions of subsection 1.1.4,
the relevant and irrelevant are integrated differently:

- Irrelevant terms: In this case n+ |w| > 4, the flow equation is integrated from the initial point
Λ0 downwards to Λ with the initial condition (1.1.20).

- Relevant terms: These terms are characterized by n + |w| ≤ 4 and are integrated at the renor-
malization point from 0 to Λ as follows

∂wLΛ,Λ0

l,n (0, · · · , 0) = ∂wL0,Λ0

l,n (0, · · · , 0) +
∫ Λ

0
dλ ∂λ∂

wL
λ,Λ0

l,n (0, · · · , 0) . (1.1.27)

Using the renormalization conditions (1.1.21) together with (1.1.26), the bound is obtained at
the renormalization point and it is extended to general momenta using the Taylor formula

L
Λ,Λ0

l,2 (p,−p) = L
Λ,Λ0

l,2 (0, 0) +
∑
µ

pµ

∫ 1

0
dλ

(
∂

∂pµ
L

Λ,Λ0

l,2

)
(λp,−λp) , (1.1.28)

with similar formulas where L
Λ,Λ0

l,2 (p,−p) is replaced by ∂
∂pµ

L
Λ,Λ0

l,2 (p,−p) or ∂2

∂pµ∂pν
L

Λ,Λ0

l,2 (p,−p).
Applying three derivatives to the two-point function or one derivative to the four-point function
makes the contribution irrelevant, and then it is integrated downwards from Λ0. For the four-
point function only one step is required. Note that the Euclidean symmetries imply that no
renormalization conditions are needed for the terms which are not scalars w.r.t. this symmetry.

1.2 Summary of the thesis

In the last section, we saw that the Polchinski flow equations provide a strong tool to establish a
rigorous proof of perturbative renormalizability of the massive scalar field model with a ϕ4 interaction
on R4, with the advantage of circumventing the difficulties arising from the analysis of the combinatorics
of Feynman diagrams. In the method presented in section 1.1, translation invariance plays a major
role in the proof of renormalizabilty in the sense that the correlation functions4 are smooth w.r.t. to

4after splitting off a global momentum conserving δ-function.
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the external momenta in Fourier space, and that the propagator together with its regularized version
have a simple form. The first problem encountered when one wants to generalize this method of proof
to systems breaking translation invariance is the distributional nature of the correlation "functions" in
position space. The same problem was encountered in [13] in which the authors studied the massive
scalar field theory on a Riemannian manifold without a boundary. In this work, translation invariance is
broken by the metric of the considered space-time and therefore the full renormalization procedure was
carried out in position space. The perturbative renormalizability of the semi-infinite model treated in
this thesis is faced with two difficulties: the first one is technical in the sense that the renormalization
problem has to be considered (partially) in position space as was the case in [13], and the second
complication is due to the fact that the surface affects the power counting and the renormalizability
of the model.

1.2.1 Perturbative renormalization of the semi-infinite model

The propagators of the semi-infinite model

In the next chapter, we start by considering the operator

H = −∆+m2

on the Hilbert space L2
(
R+ × Rd−1

)
. Initially, we may define H on the domain5 C∞

c

(
R+ × Rd−1

)
.

Defined in this way, H will be symmetric but not self- adjoint. A first task is to extend the domain of the
definition of H to make it self-adjoint. Since H is unbounded, by the Hellinger-Toeplitz theorem [31]
no self-adjoint extension can act on all vectors in L2

(
R+ × Rd−1

)
. The choice of functions on which

H acts is intimately related to the choice of the boundary conditions on the Green function associated
with H. Once H is extended to a self-adjoint operator (and assuming that the extended operator is
positive), we may use the spectral theorem to define the "Green operator" H−1 as a densely defined
self-adjoint operator. We prove that if H⋆ is a self-adjoint extension of H then the Green operator
H−1

⋆ can be realized as a kernel C⋆ ((z, x), (z
′, x′)). Since the range of H−1

⋆ is precisely the domain of
H, the specification of what functions H acts on is equivalent to the specification of what functions
can result from action by the Green function H−1. In other words, the problem of defining a Feynman
propagator is equivalent to the problem of defining a self-adjoint extension of H. The positivity of
H on its initial domain C∞

c

(
R+ × Rd−1

)
implies the existence of self-adjoint extensions of H. If H

is essentially self-adjoint (i.e. the closure of H is self-adjoint), only a unique self-adjoint extension
exists and no boundary conditions are required. However, in the context of Euclidean space with a
boundary, H is not essentially self-adjoint, which implies that further boundary conditions must be
imposed to define a self-adjoint extension of H. One condition to impose on the self-adjoint extension

5 C∞
c

(
R+ × Rd−1

)
is the space of infinitely differentiable functions of compact support in R+ × Rd−1.
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is that it preserves the positivity of H, but this condition alone need not uniquely determine a self-
adjoint extension. In the next chapter, we present a quick review of the von Neumann theory of
deficiency indices which provides a strong mathematical tool to determine the self-adjoint extensions
of H. We start by determining the self-adjoint extensions of the Laplacian on the half-line and relate
them afterwards to the physical Dirichlet, Neumann and Robin boundary conditions. Then we extend
our findings to the study of the Laplacian on the half space R+ × Rd−1. The second part of the next
chapter is devoted to the computation of the propagators (i.e. Green functions) associated with the
self-adjoint extensions of the Laplacian by proceeding first on the half-line and then generalizing to
the half-space.

Renormalization of the semi-infinite model

The aim of chapter 4 is to give a rigorous proof of perturbative renormalizability of the semi-
infinite model based on the Polchinski flow equations. Since the translation invariance is broken in
one direction by the presence of the boundary, we then work in a mixed position-momentum space
(i.e. pz-representation) which consists of taking a partial Fourier transform w.r.t. the variable x ∈ R3.
In this chapter, we expose in detail the steps to carry out the renormalization procedure with the
flow equations in the pz-representation. Since the correlation "functions" are distributions in this
representation, we introduce a class of test functions. The trees and their weight factors, presented in
chapter 3, provide a key ingredient in obtaining inductive bounds on the correlation distributions that
imply renormalizability. In chapter 4, we proceed by imposing BPHZ renormalization conditions. As
a consequence of this choice, the effective action will have the most general form that accounts for the
loss of translation invariance. More precisely, the counter-terms are functions of the position on the
half-line and are not of the same form as the terms appearing in the original Hamiltonian of the system.
The central point to be retained from this chapter is that imposing constant renormalization conditions
yields position dependent counter-terms. The effect of the surface on the renormalizability of the theory
is concealed by the choice of BPHZ renormalization conditions, in the sense that its only manifestation
is the dependence of the counter-terms on the position in R+. However, this represents a common
feature of all theories that break the translation invariance, even those without a boundary [13].

Surface counter-terms and Bulk counter-terms

Methods based on the renormalization group [1, 2, 22] proved that for the semi-infinite model, the
behaviour on the surface differs considerably from the bulk, in the sense that the critical exponents of
this model can not be fully expressed in terms of the bulk critical exponents. For Robin and Neumann
boundary conditions, the critical exponents are given in terms of the bulk critical exponents and two
independent surface critical exponents. In the case of Dirichlet boundary conditions, there is only one
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additional surface critical exponent in addition to the usual bulk critical exponents. This implies that
a given bulk universality class splits into different surface universality classes which results in a rich
bulk-surface phase diagram. Each of the possible boundary conditions can be associated to a phase
of the semi-infinite Ising model. The theory of bulk critical phenomena suggests that the number of
independent critical exponents should follow directly from the number of independent renormalization
functions (i.e. Z functions). This correspondence between the critical exponents and counter-terms
suggests that some of the counterterms are the same as those which renormalize the translationally
invariant theory, while the remaining ones are new counter-terms which result from the presence of the
boundary and can be associated to the independent surface critical exponents. The aim of chapters
5 and 6 is to make this correspondence explicit by proving that there exists a particular choice of
renormalization conditions for which the counter-terms appearing in the bare interaction are position
independent. From a theoretical physics point of view, we aim to establish renormalizability in the
restrictive sense that all counter-terms are of the same form as the interactions included in the original
Hamiltonian. The strategy is based on the following ideas: all possible propagators in the mixed posi-
tion momentum space can be decomposed into a sum of two terms. The first term is the propagator
of the translationally invariant theory Cb and the second one is the part that breaks translation invari-
ance Cs. Inserting this decomposition in the Feynman graph expansion, we obtain graphs involving
exclusively Cb (i.e. bulk graphs), and others involving Cs or Cs and Cb (i.e. surface graphs). The
bulk graphs are given by Feynman integrals which are identical to those of the corresponding transla-
tionally invariant theory up to the restriction z ≥ 0 on z-integrations. This implies that these graphs
can be renormalized using the same counter-terms as for ϕ44 in R4 with an interaction supported on
the half-space which will be the object of study of chapter 6. The remaining surface graphs of our
semi-infinite model which do also involve Cs can be renormalized by adding position independent sur-
face counter-terms. This means that the semi-infinite correlation "functions" can be decomposed into
a bulk part, plus a remainder which we call the "surface part". One of the important results of this
chapter is that the surface part admits a power counting which is dimensionally better by one scaling
dimension as compared to the bulk counterpart. This modified scaling dimension appears in Theorem
9. In chapter 6, we prove that for a particular choice of renormalization conditions the ϕ44-theory in
R4 with an interaction supported on the half-space is renormalized by adding the usual counter-terms
of the translationally invariant theory together with two surface counter-terms proportional to

∫
S ϕ

2

and
∫
S ϕ∂nϕ.

1.2.2 Perturbative renormalization of the lattice regularized massive ϕ4
4 theory

In chapter 7, we investigate the renormalizability of the massive ϕ44-theory in R4 regularized by a
lattice cut-off, which is another manifestation of the breaking of the translation invariance. However,
in this case, the considered quantum field theory (Euclidean space, the propagator and the interaction)
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is translation invariant and the loss of translation inavariance is induced by the regularization scheme.
The proof of perturbative renormalizability of a lattice regularized field theory exists in the literature
but it is not direct from the usual power counting theorems. The well known power counting theorems
of Weinberg [32], and Hahn, Zimmermann [7] which state sufficient conditions for the convergence of
Feynman integrals do not apply in the presence of a lattice cutoff. Reisz [33] has given a generalization
of the power counting theorem for a wide class of lattice field theories where a new kind of an ultraviolet
divergence degree is used. The existence of a power counting theorem ensures that the combinatorics of
subtractions to renormalize a diagram is described by Zimmermann’s forest formula [8]. The situation
is different for a lattice field theory. Reisz [34] has proved that the counterterms instead of being
polynomials are periodic functions in the external momenta, which can be obtained with the help of
new operators he introduced, called subtraction operators. The renormalization of lattice regularized ϕ44
theory in Polchinski’s framework has been adressed in [35]. The paper presents interesting arguments,
but it does not aim at mathematical rigour and thus leaves certain mathematical questions unsolved,
in particular w.r.t. to O(4) and translation invariance of the continuum limit. Davoudi and Savage [36]
proposed a mechanism for the restoration of rotational symmetry in the continuum limit of lattice field
theories on hyper cubic lattices. The approach is based on constructing smeared lattice operators that
smoothly evolve into continuum operators with definite angular momentum as the lattice-spacing is
reduced. However, this method regards only finite lattices and the full recovery of rotational invariance
in the lattice theories requires the suppression of rotational symmetry breaking contributions to the
physical quantities not only as a result of short-distance discretization effects, but also as a result of
boundary effects of the finite cubic lattice. More precisely, the rotational invariant theory is achieved as
the lattice becomes infinitely large, corresponding to an infinitely large number of points in momentum
space. In this chapter, the main contribution of our work is to give a proof of Euclidean symmetry
restoration for ϕ44 lattice regularized field theory on an infinite lattice.



Chapter 2

The propagators of the massive scalar
field theory in R+ × Rd−1

2.1 The von Neumann theory of deficiency indices

In this section, we present a short review of von Neumann’s theory of deficiency indices, which
provides a solid mathematical background to study symmetric operators and their extensions.

In quantum mechanics and quantum field theory, the Hamiltonian of the system is usually described
by a "formal" partial differential operator on an appropriate L2 space. The domain of the Hamiltonian
is not specified, but it is easy to find a dense domain on which the Hamiltonian is a well-defined
symmetric operator H. As we explained in section 1.1, the operator H must be self-adjoint in order
to define its inverse H−1 through the functional calculus. If the closure H of H is self-adjoint, then
we can use H. However, if H is not self-adjoint, then a natural question to ask is: does H admits self-
adjoint extensions1? Another problem is encountered in the case in which H has several self-adjoint
extensions. One is faced with the problem of which self-adjoint extension must be chosen to generate
the dynamics. In the sequel, we will see that the problem of selecting the "right" self-adjoint extension
is not a "technical" mathematical problem, but is rather related to the physics of the system being
described.

Before stating the principal theorems of von Neumann’s theory, let us recall some basic definitions
from the spectral analysis of unbounded linear operators:

Definition 3. (A closed operator) Given a Hilbert space H, the graph of the linear transformation T
is the set of pairs

{⟨ϕ, Tϕ⟩ | ϕ ∈ D(T )} ,

1see definitions below.

19
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with D(T ) ⊂ H is the domain of the operator T . The graph of T , denoted by Γ(T ), is a subset of
H× H which is a Hilbert space with inner product

(⟨ϕ1, ψ1⟩, ⟨ϕ2, ψ2⟩) := (ϕ1, ϕ2) + (ψ1, ψ2) .

T is called a closed operator if Γ(T ) is a closed subset of H× H.

Definition 4. (Extension of an operator) Let T and T̃ be operators on H. If D(T ) ⊂ D(T̃ ) and
Tϕ = T̃ ϕ for all ϕ ∈ D(T ), then T̃ is said to be an extension of T . We write T ⊂ T̃ .

Definition 5. (A closable operator) An operator T is closable if it has a closed extension. Every
closable operator has a smallest closed extension, called its closure, which is denoted by T .

The notion of adjoint operator exists as well in the unbounded case.

Definition 6. (Adjoint) Let T be a densely defined linear operator on a Hilbert space H. Let D(T ∗)

be the set of ϕ ∈ H for which there exists an η ∈ H with

(Tψ, ϕ) = (ψ, η) for all ψ ∈ D(T ). (2.1.1)

For each ϕ ∈ D(T ∗), we define T ∗ϕ = η and T ⋆ is called the adjoint of T .

Note that the assumption on the density of the domain of T ensures that η is uniquely determined by
(2.1.1). In contrast to the situation for bounded operators, D(T ∗) is not necessarily dense.

Definition 7. (Symmetric) Let T be a densely defined operator on a Hilbert space. T is symmetric
if T ⋆ is an extension of T . Equivalently, T is symmetric if and only if

(Tϕ, ψ) = (ϕ, Tψ) , ∀ϕ, ψ ∈ D(T ).

Definition 8. T is called self-adjoint if T = T ∗, that is, if and only if T is symmetric and D(T ) =

D(T ⋆).

Note that if T is symmetric, then T ⋆ is a closed extension of T , since D(T ) ⊂ D(T ∗) is dense in H.
Furthermore, the smallest closed extension T ∗∗ of T must be contained in T ∗. Hence, for symmetric
operators we have

T ⊂ T ∗∗ ⊂ T ∗.

For closed symmetric operators,
T = T ∗∗ ⊂ T ∗

and for self-adjoint operators
T = T ∗∗ = T ∗.
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Definition 9. (Essentially self-adjoint) A symmetric operator T is essentially self-adjoint if its
closure T is self-adjoint.

Definition 10. (Deficiency sub-spaces/indices) Let T be a symmetric operator. We define

K+ := ker (T ∗ − i) , K− := ker (T ∗ + i) .

K+ and K− are called the deficiency sub-spaces of T . The pair of numbers

n+(T ) := dimK+, n−(T ) := dimK−,

are called the deficiency indices of T.

Definition 11. (Partial isometry) Given a Hilbert space H, a linear transformation U : H→ H is a
partial isometry if and only if the restriction of U to the set I(U) := (kerU)⊥ is an isometry.

The following theorem characterizes the closed symmetric extensions of a closed symmetric operator
T :

Theorem 2. Let T be a closed symmetric operator on a Hilbert space H. The closed symmetric
extensions of T are in one-to-one correspondence with the set of partial isometries of K+ into K−. If
U is such an isometry with I(U) ⊆ K+, then the corresponding closed symmetric extension TU has
domain

D(TU ) =
{
ϕ+ ϕ+ + Uϕ+|ϕ ∈ D(T ), ϕ+ ∈ I(U)

}
, (2.1.2)

and
TU
(
ϕ+ ϕ+ + Uϕ+

)
= Tϕ+ iϕ+ − Uϕ+. (2.1.3)

If the dimension of I(U) is finite, then the deficiency indices of TU are related to those of T as follows,

n±(TU ) = n±(T )− dim [I(U)] . (2.1.4)

The proof of this theorem can be found in [37]. As a corollary to theorem 2, we have:

Corollary 1. Let T be a closed symmetric operator with deficiency indices n+ and n−. Then,

i) T is self-adjoint if and only if n+ = n− = 0.

ii) T has self-adjoint extensions if and only if n+ = n−. There is a one-to-one correspondence
between self-adjoint extensions of T and unitary maps from K+ to K−.

iii) If either n+ = 0 ̸= n− or n− = 0 ̸= n+, then T has no nontrivial symmetric extensions. Such
operators are called maximal symmetric.
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There exists a simple and useful criterion for a symmetric operator to have self-adjoint extensions given
by von Neumann’s theorem. Let us first define the notion of conjugation:

Definition 12. (Conjugation) A conjugation C is an anti-linear map C : H → H 2 that is norm-
preserving and satisfies C2 = 1.

Now, we have all ingredients to state the von Neumann’s theorem:

Theorem 3. (von Neumann’s theorem) Let T be a symmetric operator and suppose that there exists
a conjugation C with C : D(T ) → D(T ) and CT = TC. Then T has equal deficiency indices and
therefore has self-adjoint extensions.

Proof. We have C2 = I and CD(T ) ⊆ D(T ), which imply that CD(T ) = D(T ). Let ϕ ∈ K+ and
ψ ∈ D(T ), we have

0 = (ϕ+, (T + i)ψ) = (Cϕ+, C(T + i)ψ)

= (Cϕ+, (T − i)Cψ) .

Since C takes D(T ) onto D(T ), we deduce that Cϕ+ ∈ K−, so C : K+ → K−. Similar steps lead to
C : K− → K+. Since C2 = 1, we obtain

dimK+ = dimK− .

2.2 The self-adjoint extensions of the Laplacian on the half-line

In the previous section, we introduced all the ingredients required to study the self-adjoint extensions
of the Laplacian on the positive half-line. Let T be the one-dimensional operator −d2/dx2 on L2(R+)

with domain C∞
c (R+). As we saw in the previous section, von Neumann’s theory of deficiency indices

applies to closed and symmetric operators. Therefore, the operator we consider is the closure T of T
with the following graph

Γ(T ) = Γ(T ) =
{
(f,∆f), f ∈ H2

0 (R
+)
}
,

where
H2

0 (R
+) =

{
f ∈ H2(R+), f(0) = f ′(0) = 0

}
,

and H2 is the W 2,2 Hilbert Sobolev space. In the sequel, we consider the operator T with domain
H2

0 (R
+). The complex conjugation commutes with T , which implies by Theorem 3 that the deficiency

2C (αϕ+ βψ) = αCϕ+ βCψ.
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indices of T are equal. The next step is to determine K+ and K−, which is achieved by finding the
solutions of

T
∗
ϕ = ±iϕ (2.2.1)

in L2(R+). Since L2(R+) ⊂ D′(R+), we deduce that (2.2.1) is solved by finding the weak solutions of
(2.2.1). Let us recall the local regularity theorem for Schrödinger’s equation:

Theorem 4. Let ϕ be a weak solution of

(−∆+ V )ϕ = Eϕ, (2.2.2)

where V is a measurable function and E is a complex number. If V is equal to a C∞ function on an
open region Ω, then ϕ is C∞ in that region too.

The proof can be found in Chapter IX in [37]. It follows from Theorem 4 that the solutions of (2.2.1)
are infinitely differentiable, and thus strong solutions. Using elementary ordinary differential equations
tools, we deduce the strong solutions of −ϕ′′(x) = +iϕ(x) given by

e
− x√

2 e
i x√

2 , e
x√
2 e

−i x√
2 .

Similarly, the strong solutions of −ϕ′′(x) = −iϕ(x) are

e
x√
2 e

i x√
2 , e

− x√
2 e

−i x√
2 .

Since only
e
− x√

2 e
i x√

2 , e
− x√

2 e
−i x√

2

are in L2(R+), we deduce that the deficiency indices are in this case n±(T ) = 1. Let

ϕ+(x) =
1

2
1
4

e
− x√

2 e
i x√

2 , ϕ−(x) =
1

2
1
4

e
− x√

2 e
−i x√

2

be normalized vectors from K±. Then the only partial isometries of K+ into K− are the maps ϕ+ 7→
γϕ− where |γ| = 1. By Theorem 2, the only closed symmetric extensions of T are the operators Tγ
with domain

D(Tγ) :=
{
ϕ+ βϕ+ + βγϕ− | ϕ ∈ H2

0 (R
+), β ∈ C

}
. (2.2.3)

By the last statement of Theorem 2, we have

n±(Tγ) = n±(T )− dim I(U) = 0.

Using i) from Corollary 1, each Tγ is self-adjoint. Now, let us show that the set of domains of the
self-adjoint extensions of T can be parametrized by R ∪ {∞} with

Iα :=
{
ϕ| ϕ ∈ H2(R+) , ϕ′(0) = α ϕ(0)

}
(2.2.4)
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for α in R and
I∞ :=

{
ϕ| ϕ ∈ H2(R+) , ϕ(0) = 0

}
(2.2.5)

for α = ∞. If ψ ∈ D(Tγ), then

ψ(0) = ϕ(0) +
β

2
1
4

(1 + γ) and ψ′(0) = ϕ′(0)− β

2
1
5

[(1− i) + γ(1 + i)] , (2.2.6)

so for γ = −1 we have ψ(0) = 0. Otherwise, we obtain

ψ′(0) = − 1√
2

[
1− 1− γ

1 + γ
i

]
ψ(0) = α ψ(0), with α = − 1√

2

[
1− 1− γ

1 + γ
i

]
. (2.2.7)

Note that ϕ(0) and ϕ′(0) vanish since ϕ ∈ H2
0 (R

+). Furthermore, the constant α in (2.2.7) is in R since
|γ| = 1. Hence, we obtain

D(Tγ) ⊆ Iα for γ ̸= −1 and D(T−1) = I∞. (2.2.8)

Conversely, if ψ′(0) = α ψ(0), then ψ can be written ψ = ϕ+ βϕ+ + βγϕ− for some β where

γ =
1 + i(

√
2α+ 1)

1− i(
√
2α+ 1)

.

2.3 The self-adjoint extensions of the Laplacian on the half-space R+×
Rd−1

In this section, we consider the Laplacian operator on the half-space R+ × Rd−1 given by

H = −1R+ ∆d−1 + T 1Rd−1 , D(H) := C∞
c

(
R+ × Rd−1

)
, (2.3.1)

where T is the one dimensional Laplacian on the half-line of domain D(T ) = C∞
c (R+) and ∆d−1

denotes the (d − 1)-Laplacian of domain C∞
c

(
Rd−1

)
. Given a set K, the operator 1K is the identity

given by

1Rd−1 : L2(K) −→ L2(K)

u 7−→ u.

The following proposition relates the self-adjoint extensions of H to those of T .

Proposition 1. Let Hλ be a self-adjoint extension of H. There exists a unique self-adjoint extension
Tλ of T such that

Hλ = −1R+ ∆d−1 + Tλ 1Rd−1 (2.3.2)

of domain

D(Hλ) =
{
u(z, x) ∈ L2

(
R+ × R3

)
| u(z, ·) ∈ H2(Rd−1), u(·, x) ∈ D(Tλ)

}
. (2.3.3)
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We recall the following theorems which will be needed in the proof of proposition 1:

Theorem 5. Let A and B be commuting self-adjoint operators. Then AB is self-adjoint on D(A) ∩
D(B).

The following theorem is a particular case of the Kato-Rellich theorem [37]:

Theorem 6. Suppose A is self-adjoint and B is a bounded self-adjoint operator. Then A + B is
self-adjoint on D(A).

The proofs of theorems 5 and 6 can be found in [38].

Proof. In the proof of proposition 1, we proceed in two steps by proving the following statements:

A) Given a self-adjoint extension Tλ of T , the operator −1R+∆d−1+Tλ1Rd−1 is a self-adjoint exten-
sion of H.

B) Given a self-adjoint extension Hλ of H, there exists a unique self-adjoint extension Tλ of T such
that:

Hλ = −1R+∆d−1 + Tλ1Rd−1 (2.3.4)

and
D(Hλ) =

{
u(z, x) ∈ L2

(
R+ × R3

)
| u(z, ·) ∈ H2(Rd−1), u(·, x) ∈ D(Tλ)

}
.

First, we prove A). Given a self-adjoint extension Tλ of T , we define the operator

Hλ := −1R+∆d−1 + Tλ1Rd−1 .

Hλ can be rewritten as (
−∆d−1

2
− i

)
Wλ

(
−∆d−1

2
+ i

)
(2.3.5)

with
Wλ := 1R+ R−1(∆d−1) + 1R+ R1(∆d−1) +R−1(∆d−1) Tλ R1(∆d−1) (2.3.6)

and for µ ∈ R

Rµ(∆d−1) :=

(
−∆d−1

2
+ iµ

)−1

. (2.3.7)

Note that Tλ and ∆d−1 commute 3, which implies the commutation of Tλ and Rµ

(
∆d−1

)
. Combining

this with Theorem 5 gives that
R−1(∆d−1) Tλ R1(∆d−1) (2.3.8)

3We slightly abuse notation, in the sense that the operators commuting are Tλ1Rd−1 and ∆d−11R+ .
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is self-adjoint on
{
u(z, x)| u(z, ·) ∈ L2(Rd−1), u(·, x) ∈ D(Tλ)

}
. Remembering thatRµ(∆d−1) is bounded,

we deduce using Theorem 6 that Wλ is self-adjoint on the domain

D(Wλ) =
{
u(z, x)| u(z, ·) ∈ L2(Rd−1), u(·, x) ∈ D(Tλ)

}
.

Again using Theorem 5 together with the commutation of Tλ and ∆d−1, we deduce that Hλ is self-
adjoint on

D(Wλ) ∩
{
u(z, x)| u(z, ·) ∈ H2(Rd−1)

}
. (2.3.9)

Now, we prove B): By definition, we have

H = −1R+ ∆d−1 + T 1Rd−1 on C∞
c

(
R+ × Rd−1

)
. (2.3.10)

H is closable and the domain of its closure is

D(H) =
{
u(z, x) ∈ L2

(
R+ × Rd−1

)
| u(z, ·) ∈ H2(Rd−1), u(·, x) ∈ H2

0 (R
+)
}
. (2.3.11)

Furthermore, we have
H = −∆d−1 1R+ + T 1Rd−1 on D(H). (2.3.12)

Given a self-adjoint extension Hλ of H, it commutes with 1R+∆d−1. Hence, following the same steps
as in the proof of A), we deduce that the operator 1R+∆d−1 + Hλ is self-adjoint of domain D(Hλ).
Hence, we deduce that 1R+∆d−1+Hλ is a self-adjoint extension of T d

:= T 1Rd−1 with domain D(H).
Proceeding as for the self-adjoint extensions of

(
T ,H2

0 (R
+)
)

in section 2.2, the self-adjoint extensions
of T d are the operators T d

λ of domain

D(T d
γ ) :=

{
ϕ(z, x) + β(x)ϕ+(z) + β(x)γϕ−(z)| ϕ(·, x) ∈ H2

0 (R
+); ϕ(z, ·), β ∈ H2(Rd−1)

}
. (2.3.13)

Then the domain (2.3.13) can be parametrized by R ∪ {∞} with

D(T d
γ ) =

{
ψ(z, x)| ψ(·, x) ∈ H2(R+) , ψ(z, ·) ∈ H2(Rd−1), ψ′(0, x) = α ψ(0, x)

}
(2.3.14)

for γ ̸= −1 and

D(T d
−1) =

{
ψ(z, x)| ψ(·, x) ∈ H2(R+) , ψ(z, ·) ∈ H2(Rd−1), ψ(0, x) = 0

}
. (2.3.15)

This proves that for any self-adjoint extension Hλ of H, there exists a self-adjoint extension T d
λ such

that
Hλ = −1R+∆d−1 + T d

λ .

This ends the proof of proposition 1.
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2.4 The heat kernels and the propagators

2.4.1 The propagators in R+

In section 2.3, we characterized the self-adjoint extensions {Tc}c∈R of (∆, C∞
c (R+)) of domain

D(Tc) =
{
ϕ ∈ H2

(
R+
)
, ϕ′(0) = c ϕ(0)

}
. (2.4.1)

In the sequel, we use ∆D, ∆N and ∆R to denote respectively the Dirichlet, Neumann and Robin
Laplacians. Each of these boundary conditions corresponds to a self-adjoint extension with respectively
c = +∞, c = 0 and c > 0. We define

H⋆ := −∆⋆ +m2 , ⋆ ∈ {D,N,R} . (2.4.2)

The inverse of H⋆ exists and is defined by functional calculus as follows(
−∆⋆ +m2

)−1
:=

∫
R+

dλ e−λm2
eλ∆⋆ . (2.4.3)

In this section, we prove that the operator (2.4.3) for the different boundary conditions is integral and
we present a rigorous computation of the kernels, which allows to define the propagators associated to
the Dirichlet, Neumann and Robin boundary conditions. Let us first define the following maps which
will be useful in stating the main proposition of this section:

io : L
2
o (R) −→ L2

(
R+
)

ϕ(z) 7−→
√
2 χ+(z)ϕ(z) ,

where L2
o(R) is the restriction of L2(R) to odd functions and χ+ is the characteristic function of the

positive line. The map io defines an isometry with the following inverse

i−1
o : L2

(
R+
)
−→ L2

o (R)

ϕ(z) 7−→ 1√
2

(
χ+(z)ϕ(z)− χ−(z)ϕ(−z)

)
.

Similarly, we define

ie : L
2
e (R) −→ L2

(
R+
)

ϕ(z) 7−→
√
2 χ+(z)ϕ(z),

together with its inverse

i−1
e : L2

(
R+
)
−→ L2

e (R)

ϕ(z) 7−→ 1√
2

(
χ+(z)ϕ(z) + χ−(z)ϕ(−z)

)
,

with L2
e(R) denoting the space L2(R) restricted to even functions. We have
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Proposition 2. Let ∆ be the closure of the Laplacian on R. The Dirichlet and Neumann Laplacians
are related to ∆ as follows

io∆i
−1
o = ∆D , ie∆i

−1
e = ∆N . (2.4.4)

Proof. Given ϕ ∈ C∞
c (R+), we have

io∆i
−1
o ϕ(x) = ϕ′′(x) , (2.4.5)

which implies that io∆i−1
o is a closed symmetric extension of (∆, C∞

c (R+)). Furthermore, we have

D(io∆i
−1
o ) = io

(
H2(R) ∩ L2

o(R)
)
= H1

0 (R
+) ∩H2(R+) .

This gives directly (2.4.4) for the Dirichlet case. The Neumann case is treated similarly.

The operators HD, HN and −∆+m2 are invertible and together with (2.4.4) we deduce

H−1
D = io

(
−∆+m2

)−1
i−1
o , H−1

N = ie
(
−∆+m2

)−1
i−1
e . (2.4.6)

The operator
(
−∆+m2

)−1 is integral on L2(R), and its kernel is given by (1.1.14)

(
−∆+m2

)−1
(z, z′) =

1

2m
e−m|z−z′| .

Using (2.4.6), we obtain that H−1
D is also integral on L2(R+) with the following kernel

(
−∆D +m2

)−1
(z, z′) =

1

2m

{
e−m|z−z′| − e−m|z+z′|

}
. (2.4.7)

We proceed similarly with the Neumann boundary conditions to deduce thatH−1
N is integral on L2(R+),

and its kernel is given by(
−∆N +m2

)−1
(z, z′) =

1

2m

{
e−m|z−z′| + e−m|z+z′|

}
. (2.4.8)

Now, we treat the Robin boundary condition. The key idea is to relate the Robin laplacian ∆R to ∆D.
Let ic be the bijective map given by

ic : H
1
0 (R

+) ∩H2(R+) −→ D(∆R)

ϕ(z) 7−→ ic(ϕ)(z) = −
∫

R+

dw e−cwg(w + z) (2.4.9)

and its inverse i−1
c

i−1
c : D(∆R) −→ H1

0 (R
+) ∩H2(R+)

ϕ(z) 7−→ i−1
c (ϕ)(z) = ϕ′(z)− c ϕ(z) . (2.4.10)
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Then ic can be continuously extended to L2(R+), and we denote its extension by ĩc. The Robin
Laplacian is related to the Dirichlet Laplacian through

∆R = ĩc∆Di
−1
c . (2.4.11)

This comes from the fact that ∆R and ĩc∆Di
−1
c are closed symmetric extensions of (∆, C∞

c (R+))

together with
D
(̃
ic∆Di

−1
c

)
= D(∆R).

The operators HD and HR are invertible and the existence of their inverse is ensured by (2.4.3). For
f ∈ C∞

c (R+), we have
HRf = ĩcHDi

−1
c f = icHDi

−1
c f .

Hence, we obtain
H−1

R f = icH
−1
D i−1

c f. (2.4.12)

Using (2.4.7) together with (2.4.9) and (2.4.10), we deduce

icH
−1
D i−1

c f(z) =

∫
R+

dz′
1

2m

(
e−m|z−z′| − c−m

c+m
e−m|z+z′|

)
f(z′) . (2.4.13)

By density of C∞
c (R+) in L2(R+), we deduce that for all g in L2(R+)

(
−∆R +m2

)−1
g(z) =

∫
R+

dz′
1

2m

(
e−m|z−z′| − c−m

c+m
e−m|z+z′|

)
g(z′) . (2.4.14)

2.4.2 The propagators in R+ × Rd−1

In section 2.3, we characterized the self-adjoint extensions of the Laplacian
(
∆, C∞

c (R+ × Rd−1)
)

for d ≥ 1, which are the operators {∆c}c∈R of domains

D(∆⋆) =
{
ϕ(z, x) | ϕ(z, ·) ∈ H2(Rd−1), ϕ(·, x) ∈ D(T⋆)

}
. (2.4.15)

Using functional calculus, the operators
{
−∆⋆ +m2

}
⋆∈{D,N,R} are invertible, and their inverses are

given by (
−∆⋆ +m2

)−1
=

∫ +∞

0
dt e−tm2

et∆⋆ . (2.4.16)

Using proposition 1, we have
−∆⋆ = −1R+∆d−1 + T⋆ 1Rd−1 . (2.4.17)

The operators 1R+∆d−1 and T⋆ 1Rd−1 commute which implies by the Kato-Trotter formula that

et∆⋆ = et∆d−11R+ · e−tT⋆1Rd−1 . (2.4.18)
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Lemma 1. The heat kernel operator et∆c verifies

et∆c = et∆d−1 · e−tTc (2.4.19)

Proof. We shall prove first that for f ∈ C∞
c (R), we have

f
(
∆d−11R+

)
= f

(
∆d−1

)
1R+ and f (T⋆1Rd−1) = f (T⋆)1Rd−1 . (2.4.20)

For f ∈ C∞
c (R) there exists f̃ ∈ C∞

c (C) with the properties∣∣∂f(z)∣∣ ≤ CN |Im z|N , ∀N ≥ 0, f̃ |R = f.

Here ∂ = ∂
∂z = 1

2

(
∂
∂x + ∂

∂y

)
. f̃ is called an almost analytic extension of f . The operator 1R+∆d−1 is

self-adjoint on the Hilbert space L2
(
R+ × R3

)
, which implies by the analytic functional calculus [39]

f
(
1R+∆d−1

)
= − 1

π

∫
C
∂f̃(z)

(
z − 1R+∆d−1

)−1
µ(dz), (2.4.21)

where µ(dz) = dxdy is the Lebesgue measure on C. (2.4.20) is directly deduced from (2.4.21).
Let fn be a sequence of uniformly bounded functions in C∞

c (R) simply converging to e−|x|. Using
functional calculus and remembering that −∆d−1 is a positive operator, the operators fn(1R+∆d−1)

and fn(∆d−1) strongly converge respectively to et1R+∆d−1 and et∆d−1 . Combining this with (2.4.20)
gives

et1R+∆d−1 = 1R+et∆d−1 . (2.4.22)

Proceeding similarly with T⋆ we deduce that

e−tT⋆1Rd−1 = e−tT⋆1Rd−1 . (2.4.23)

Combining (2.4.18), (2.4.22) and (2.4.23) we deduce (2.4.19).

The propagators associated to Dirichlet, Neumann and Robin boundary conditions are then given by(
−∆⋆ +m2

)−1 (
(x, z), (x′, z′)

)
=

∫ ∞

0
dt e−tm2

e−tT⋆(z, z′) et∆d−1(x, x′). (2.4.24)

From chapter 1, we have

et∆d−1(x, x′) =
1

(2πt)
d−1
2

e−
(x−x′)2

2t . (2.4.25)

In the pz-representation, which corresponds to taking the partial Fourier transformation with respect
to the variable x ∈ R3, (2.4.26) simply reads

(
−∆⋆ +m2

)−1 (
p; z, z′)

)
=

∫ ∞

0
dt e−t(p2+m2) e−tT⋆(z, z′). (2.4.26)
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This formula is similar to (2.4.3) in R+ where the mass m is now replaced by
√
p2 +m2. Therefore,

using (2.4.7)-(2.4.14) we deduce that the Dirichlet, Neumann and Robin propagators are given by

CD(p; z, z
′) =

1

2
√
p2 +m2

[
e−

√
p2+m2|z−z′| − e−

√
p2+m2|z+z′|

]
, (2.4.27)

CN (p; z, z′) =
1

2
√
p2 +m2

[
e−

√
p2+m2|z−z′| + e−

√
p2+m2|z+z′|

]
, (2.4.28)

CR(p; z, z
′) =

1

2
√
p2 +m2

[
e−

√
p2+m2|z−z′| +

√
p2 +m2 − c√
p2 +m2 + c

e−
√

p2+m2|z+z′|

]
. (2.4.29)

In terms of the heat kernels, (2.4.27)-(2.4.29) can be rewritten as

CD

(
(z, x); (z′, x′)

)
=

∫ ∞

0
dλ e−λm2

pB
(
λ;x, x′

) 1√
2πλ

(
e−

(z−z′)2
2λ − e−

(z+z′)2
2λ

)
,

CN

(
(z, x); (z′, x′)

)
=

∫ ∞

0
dλ e−λm2

pB
(
λ;x, x′

) 1√
2πλ

(
e−

(z−z′)2
2λ + e−

(z+z′)2
2λ

)
,

CR

(
(z, x); (z′, x′)

)
=

∫ ∞

0
dλ e−λm2

pB
(
λ;x, x′

)
pR
(
λ; z, z′

)
,

where
pB(λ;x, x

′) :=
1

(2πλ)
3
2

e−
(x−x′)2

2λ , (2.4.30)

pR(λ; z, z
′) := pN (λ; z, z′)− 2

∫ ∞

0

dw√
2πλ

e−w e−
(z+z′+w

c )
2

2λ (2.4.31)

and
pN (λ; z, z′) :=

1√
2πλ

(
e−

(z−z′)2
2λ + e−

(z+z′)2
2λ

)
. (2.4.32)

One can easily verify that we have

CD(p; 0, z
′) = CD(p; z, 0) = 0 , lim

z→0
∂zCN (p; z, z′) = lim

z′→0
∂z′CN (p; z, z′) = 0 ,

lim
z→0

∂zCR(p; z, z
′) = c CR(p; 0, z

′) , lim
z′→0

∂z′CR(p; z, z
′) = c CR(p; z, 0), (2.4.33)

where we used that the associated heat kernels verify respectively the Dirichlet, Neumann and Robin
boundary conditions.
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Chapter 3

Trees, forests and weight factors

In this chapter, we present the trees and forests formalism together with their weight factors. We
also give some basic properties of these weight factors which will be important later in establishing the
proofs of the main results of chapters 4-6. The tree and forest formalism emerges naturally from the
structure of the flow equation when considered in position space, in which the correlation "functions"
are distributions. Hence, in the next chapters we will introduce a class of test functions to be smeared
with the correlation distributions. Since the proof of renormalizability in the flow equation framework is
inductive, the class of test functions is restricted to products of heat kernels of the same type that enters
in the definition of the propagator. The right hand side of the flow equations for scalar field theories
(independently of the considered space-time) consists of two contributions: a part which is linear in the
correlation "functions" and a second part which is quadratic. From a Feynman diagrammatic point of
view, the linear term is the part in which a new loop is created by the induction, while the quadratic
part has more the role of attaching two diagrams without creating an additional loop. Now, the idea
behind these trees is to bound a given correlation function with an arbitrary number of loops, by a
tree contribution where the loops are contracted in vertices of incidence number 2. One should keep in
mind that these loops are not in one-to-one correspondence with the vertices of incidence number 2 of
the trees, but the number of loops controls through a bound the number of these vertices. The forest
formalism is a novelty which appears when we study the effect of the surface on the renormalizability.
In chapter 5, we study the surface correlation distributions which are the part that encapsulate all
the UV divergences created by the "surface part" of the semi-infinite model propagators. The flow
equation (5.5.80) associated to these objects has a quadratic part, which is factorizable in the sense
that it can be bounded by a product of weight factors of trees with an external point on the surface,
to which we refer as a surface tree. This collection of surface trees creates a forest.

Before presenting these concepts, let us introduce first the heat kernels that we use throughout
this thesis together with their properties. In particular, the bulk heat kernel is needed in the sequel to

33
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define the weight factors of the trees and forests.

3.1 The heat kernels and some basic properties

In this section, we define the bulk heat kernel together with the half-line heat kernels. We collect some
basic properties of these kernels which we will need in the proof of the main results of chapters 4, 5
and 6. The bulk heat kernel is defined as follows

pB
(
τ ; z, z′

)
=

1√
2πτ

e−
(z−z′)2

2τ , τ > 0 . (3.1.1)

In terms of pB, the Dirichlet, Neumann and Robin heat kernels read for z, z′ ≥ 0

pD

(
1

Λ2
; z, z′

)
= pB

(
1

Λ2
; z, z′

)
− pB

(
1

Λ2
; z,−z′

)
, (3.1.2)

pN

(
1

Λ2
; z, z′

)
= pB

(
1

Λ2
; z, z′

)
+ pB

(
1

Λ2
; z,−z′

)
, (3.1.3)

pR

(
1

Λ2
; z, z′

)
= pB

(
1

Λ2
; z, z′

)
+ pB

(
1

Λ2
; z,−z′

)
− 2

∫ ∞

0
dw e−wpB

(
1

Λ2
; z,−w

c
− z′

)
, (3.1.4)

pB verifies the following basic properties:

- (The bulk semi-group property) For z1 and z2 in R∫
R
du pB(τ1; z1, u) pB(τ2;u, z2) = pB(τ1 + τ2; z1, z2) . (3.1.5)

- (The ⋆ semi-group property) For z1 and z2 in R+ and ⋆ ∈ {D,N,R}, we have∫
R+

du p⋆(τ1; z1, u) p⋆(τ2;u, z2) = p⋆(τ1 + τ2; z1, z2) . (3.1.6)

- (Completeness) For z1 in R, we have∫
R
du pB(τ1; z1, u) = 1 . (3.1.7)

- For z1 and z2 in R+, we have∫
R
du pB(τ1; z1, u) pB(τ2;u, z2) ≤ 2

∫
R+

du pB(τ1; z1, u) pB(τ2;u, z2) . (3.1.8)

- For δ ≥ 0, τδ = (1 + δ)τ and z1, z2 ∈ R+, we have

pB (τ ; z1, z2) ≤
√
1 + δ pB (τδ; z1, z2) (3.1.9)
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and for δ′ > δ

|z1 − z2|r pB (τδ; z1, z2) ≤ Cδ,δ′ τ
r
2 pB (τδ′ ; z1, z2) , (3.1.10)

where

Cδ,δ′ =

√
1 + δ′

1 + δ
∥xre−

x2

2
δ′−δ

(1+δ)(1+δ′) ∥∞ ≤ O(1) |δ − δ′|−
r
2 . (3.1.11)

- For z, z′ ∈ R+, τ > 0 and c ≥ 0, we have

pB
(
τ ; z,−z′

)
≤ pB

(
τ ; z, z′

)
,

∫
R+

dw e−wpB

(
τ ; z,−z′ − w

c

)
≤ pB

(
τ ; z, z′

)
. (3.1.12)

3.2 Trees, Forests and Weight factors

As we mentioned in chapter 1 in section 1.1, the proof of perturbative renormalization with flow
equations is based on obtaining inductive bounds uniform in the UV cutoff for the connected amputated
Schwinger "functions" of the considered theory. For the semi-infinite model, the bounds on the surface
and bulk correlation distributions are specified in terms of weighted trees and forests, which we define
in the following, and for which we also derive some properties that will be important later. Our trees
basically represent tree level Feynman graphs. However, we stress that this analogy must not be taken
literally, the trees and the incidence number of vertices are independent of the detailed form of the
n-point interactions in the theory, the loop order controls the number of vertices of incidence number 2
of the trees and forests via a bound, but there is no one-to-one correspondence between the loop order
and the number of these vertices. First, we start with some notations that we will use in the sequel:

• For s ≥ 1, we denote by σs the set {1, · · · , s} and for i ≤ j we denote by σi:j the set {i, · · · , j}.

• Let Ps be the set of all the partitions of σs. For a partition Π ∈ Ps, we write Π = (πi)1≤i≤lΠ

with πi denoting an element of the partition Π and lΠ the cardinality of Π.

• For Π ∈ Ps such that r ∈ πi, we define

πri := πi \ {r} , Πr :=
(
∪r
j=1, i̸=jπj

)
∪ πri . (3.2.1)

• Given Π ∈ Ps+2 such that {s+ 1, s+ 2} ∈ πi, we define the reduced sub-partition

πs+1,s+2
i := πi \ {s+ 1, s+ 2} . (3.2.2)

• We denote by P1
s the set of partitions which contain at least one sub-partition of length 1 (i.e.

∃πi ⊂ Π, |πi| = 1) and P
1;c
s its complementary set.

• We denote by P̃2;s the set of partitions of length 2 of the set σs. Note that P̃2;s is a subset of
Ps.
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3.2.1 Bulk trees, surface trees and forests

• A tree is an undirected graph in which any two vertices are connected by exactly one path. We
define the incidence number of a vertex z of the tree by the number of lines of the tree that have
z as an edge and we denote it by c(z). Given a tree T , we denote by V(T ) the set of vertices of
the tree. The set of external vertices Ve(T ) of the tree T is defined as follows

Ve(T ) := {z ∈ V(T )| c(z) = 1} . (3.2.3)

The set of internal vertices Vi(T ) is then defined as V(T ) \ Ve(T ).

• For s ≥ 2, we denote by Ts the set of all trees that have a root vertex and s−1 external vertices.
For a tree T s ∈ Ts we will call z1 ∈ R+ its root vertex. Denoting by V(T ) the set of vertices of
T s, the set of external vertices of the tree T s is defined as

Ve(T
s) := {z ∈ V(T s) \ {z1}| c(z) = 1} . (3.2.4)

The set of internal vertices is the relative complement of Ve(T
s) in V(T s) \ {z1}. Note that the

root vertex z1 is a vertex which is neither internal nor external. For simplicity, we use in the
sequel the set of points Y = {y2, · · · , ys} in Rs−1 to be identified with the external vertices of
T s. Likewise we call Z = {z2, · · · , zr+1} the set of internal vertices of T s where zi ∈ R+ and r is
the cardinality of Vi(T

s).

• We denote by c1 = c(z1) the incidence number of the root vertex. We call a line p an external
line of the tree if one of its edges is in Y . The set of external lines is denoted J. The remaining
lines are called internal lines of the tree and are denoted by I.

• By T s
l we denote a tree T s ∈ Ts satisfying v2+δc1,1 ≤ 3l−2+s/2 for l ≥ 1 and satisfying v2 = 0

for l = 0, where vn is the number of vertices having incidence number n. Then Ts
l denotes the

set of all trees T s
l . We indicate the external vertices and internal vertices of the tree by writing

T s
l (z1, y2,s, z⃗) with y2,s = (y2, · · · , ys) and z⃗ = (z2, · · · , zr+1).

• We also define the set of twice rooted trees denoted as T
s,(12)
l . The trees T s,(12)

l ∈ T
s,(12)
l are

defined such that they have two root vertices z1 and z2 and s− 2 external vertices. Furthermore,
the number of vertices of incidence number 2 of a tree T s,(12)

l satisfies

v2 + δc1,1 + δc2,1 ≤ 3l − 2 +
s− 1

2
, ∀l ≥ 2

and v2 ≤ 1 for l ≤ 1. In particular, the set T
1,(12)
l is given by all trees with two root vertices, no

external vertices and all its internal vertices are of incidence number 2 with a total number that
verifies v2 ≤ 1 for l ≤ 1 and

v2 ≤ 3l − 4, ∀l ≥ 2.
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• Given π a subset of σ2:s, we define

Yπ (z⃗) := {z ∈ z⃗ | ∃yi ∈ Yπ, (z, yi) ∈ J} . (3.2.5)

For a partition Π = (π1, π2) of the set σ2,s, we define

Ts
l;π1,π2

:=
{
T s
l;π1,π2

(z1, y2,s, z⃗) ∈ Ts
l | Yπ1 (z⃗) ∩ Yπ2 (z⃗) = ∅

}
. (3.2.6)

Note that the tree T s
l (z1, y2,s) with no internal vertices belongs to Ts

l;π1,π2
for any partition

(π1, π2) of σ2:s.

• For s ≥ 1, we define the set of bulk trees T̂s
l as the set of all trees with s external vertices, no

root vertex 1 and which satisfy v2 ≤ 3l − 2 + s
2 for all l ≥ 1, or v2 = 0 for l = 0.

• For a tree T s+2
l−1 (z1, y2,s+2, z⃗) we define the reduced tree Ryi,yjT

s+2
l−1 to be the unique tree obtained

from T s+2
l−1 (z1, y2,s+2, z⃗) through the following procedure:

– By taking off the two external vertices yi, yj with the external lines attached to them.

– By taking off the internal vertices -if any- which have acquired incidence number c = 1

through the previous process, and by also taking off the lines attached to them.

– If a new vertex of incidence number 1 is created, the second step of the process is repeated.

Note that these steps produce a tree in Ts
l for s ≥ 1. For s = 0, it is clear that the reduced

tree is empty. Let us explain briefly why the obtained tree belongs to Ts
l for s ≥ 1: the number

of external vertices goes from s + 1 to s − 1, which clearly implies that Ryi,yjT
s+2
l−1 ∈ Ts. Now,

let us see how the number of vertices of incidence number 2 is affected by the reduction. Each
amputation reduces the incidence number of the internal vertex of the amputated leg by one.
Hence, the number of vertices of incidence number 2 is at most increased by two at the end of
the reduction process. Denoting by v′2 the number of incidence number 2 of the internal vertices
of the reduced tree, we have

v′2 + δc1,1 ≤ v2 + 2 + δc1,1 ≤ 3(l − 1)− 2 +
s+ 2

2
+ 2 = 3l − 2 +

s

2
.

This implies that the reduced tree Ryi,yjT
s+2
l−1 is indeed in Ts

l and we write

Ryi,yjT
s+2
l−1 ⊂ Ts

l . (3.2.7)

Note that the reduction steps described above do not affect the set Y
σi,j
s+2

(z⃗), in the sense that2

they are not removed by the process. However, the incidence number of these vertices can possibly
1All the vertices of incidence number one are external.
2we used the notation (3.2.2).
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z1

z2

z3

y1 y2

z4

y3
z5

y4

Figure 3.1

be decreased at most by 2. We note that if T s+2
l−1 ∈ Ts+2

l−1;π1,π2
with (π1, π2) a partition of σs+2

such that {i, j} ∈ π2, then Ryi,yjT
s+2
l−1 belongs to Ts

l;π1,π
i,j
2

. We write

Ryi,yjT
s+2
l−1;π1,π2

⊂ Ts
l;π1,π

i,j
2

. (3.2.8)

• Given a tree T s ∈ Ts and two vertices u and v of the tree, we denote by [u, v] the set of internal
vertices of which consists the path joining u and v including u and v. To exclude u or v, the
associated square bracket is opened. We define the distance d(u, v) as the cardinality of the
set ]u, v[. In the sequel, we write ]u, v[ = {u0, · · · , uq} and we stress the importance of the
order on which the internal vertices (ui)0≤i≤q appear in ]u, v[, in the sense that going from u

to v in the tree T s, one has to cross first the vertex u0, then u1 etc. Let us illustrate these
notions with the example of the tree depicted in Figure 3.1. Clearly, we have ]z1, z2[= ∅ and
]z5, y2[= {z4, z1, z2, z3} which implies that d(z1, z2) = 0 and d(z5, y2) = 4.

• Let s ≥ 1. For Yσs := (y1, · · · , ys) ∈ Rs, we define the set of surface trees Ts,0 to be the set
consisting of all trees of s + 1 external vertices {y1, · · · , ys, 0}. In the sequel, we refer to the
external vertex 0 as the surface external vertex to distinguish it from the other external vertices.

• By T s,0
l we denote a surface tree T s,0 ∈ Ts,0 satisfying v2 ≤ 3l− 2 + s+1

2 for l ≥ 1 and satisfying
v2 = 0 for l = 0. Then T

s,0
l denotes the set of all surface trees T s,0

l . For a tree T s,0
l ∈ T

s,0
l ,

the set {y1, · · · , ys, 0} of points in R is identified with its external vertices, and z⃗ = (z1, · · · , zr)
such that r ≥ 1 with the set of its internal vertices. We indicate the external vertices and the
internal vertices of the tree by writing T s,0

l (Yσs , 0, z⃗). Note that this definition implies for all
l′ ≤ l, Ts,0

l′ ⊂ T
s,0
l .

• For s = 1, the set of surface trees T
1,0
l consists of the surface tree T 1,0

l (y1, 0) with no internal
vertices and one surface external vertex attached to the external vertex y1.
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• Given a partition Π ∈ Ps and trees T sπi ,0

l (Yπi , 0, z⃗πi) ∈ T
sπi ,0

l , we define the forest W s
l (Π) as

follows,

W s
l (Π) = ∪lπ

i=1

{
T
sπi ,0

l (Yπi , 0, z⃗πi)
}

where sπi := |πi|,
lΠ∑
i=1

sπi = s and Yπj = ∪i∈πj {yi} .

Here |πi| is the cardinality of the set πi. We write shortly T sπi ,0

l ≡ T
sπi ,0

l (Yπi , 0, z⃗πi). Then the
set of all forests W s

l (Π) denoted by Ws
l (Π), is defined as:

Ws
l (Π) := ∪lΠ

i=1T
sπi ,0

l . (3.2.9)

Note that for the trivial partition Π0 = σs, the length of the partition is equal to one. Therefore,
the set W s

l (σs) reduces to surface trees T
s,0
l . We write

Ws
l (σs) = T

s,0
l . (3.2.10)

This implies that each tree T sπi ,0

l (Yπi , 0, z⃗πi) can be identified with a forest in W
sπi
l (σsπi ), where

σsπi := ∪k∈πi
{k}.

• We define the global set of forests Ws
l by

Ws
l := ∪Π∈Ps W

s
l (Π).

To illustrate these concepts, we give some examples of trees and forests for s = 3 and l = 2. The
set of partitions is in this case

P3 =
{
∪3
i=1 {i} , {1} ∪ {2, 3} , {2} ∪ {1, 3} , {3} ∪ {1, 2} , σ3

}
. (3.2.11)

– For the trivial partition Π0 = σ3, the partition length lΠ is equal to one and therefore the
elements of the set W3

2 (Π0) are the trees T 3,0
2 ∈ T3,0 such that v2 ≤ 5. For v2 = 3, Figure

1 is an example of a surface tree in W3
2 (Π0).

– For the partition Π1 = ∪3
i=1 {i}, an element of W3

2 (Π1) (i.e. the set of forests of the partition
Π1) is given by the forest in Figure 2.
This forest is composed of three trees. Each tree has two external vertices. The external
vertex yi has an index which belongs to the sub-partition {i}. Note that the total number
of vertices of incidence number 2 does not exceed 5 (in this case it is equal to 5). Note also
that all the internal vertices of a surface tree with only two external vertices are of incidence
number 2.

– For the partition Π2 = {1, 2} ∪ {3}, Figure 3 is an example of a forest in W3
2 (Π2) with a

total number of vertices of incidence number 2 equal to 4.
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z1

z2

z3

y1 y2

z4

y3
z5

0

Figure 3.2: Example of a forest W 3
2 (Π0) with v2 = 3 and z⃗ = (z1, · · · , z5). The red color is used for

the internal vertices of incidence number 2.

z3z1 z5

z2
0 y2

y1

z4

0

y3 0

Figure 3.3: Example of a forest W 3
2 (Π1) with v2 = 5 and z⃗ = (z1, · · · , z5) .

z4z1

z6
z2

0

y2

y1
z5

0y3

Figure 3.4: Example of a forest W 3
2 (Π2) ∈ W3

2 (Π2) with v2 = 4 .

Similar examples for the forest W 3
2 (Π3) (respectively W 3

2 (Π4)) for Π3 = {1, 3} ∪ {2} (resp.
Π4 = {2, 3} ∪ {1}) can be constructed by replacing in Figure 2 the vertices {y1, y2} by {y1, y3}
and the vertex y3 by y2 (resp. {y1, y2} by {y2, y3} and y3 by y1).
An example of a forest in the global set of forests W3

2 is ∪4
i=0W

3
2 (Πi).

• Given Π = ∪lΠ
i=1π̃i in Ps, (π1, π2) in P̃2;s and a forest W s

l (Π) ∈ Ws
l (Π), we define

Yπk
(W s

l (Π)) =
{
T
sπ̃j ,0

l ∈W s
l (Π) : ∃i ∈ πk, yi ∈ Yπ̃j

}
, k ∈ {1, 2} . (3.2.12)

We also define

Ws
l;π1,π2

(Π) := {W s
l (Π) ∈ Ws

l (Π) : Yπ1 (W
s
l (Π)) ∩ Yπ2 (W

s
l (Π)) = ∅} . (3.2.13)
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A forest in Ws
l;π1,π2

(Π) is characterized by the fact that each of its surface trees have their external
vertices either in Yπ1 or in Yπ2 .

3.2.2 Some operations on Forests and Trees

Reduction

Let W s+2
l−1 (Π) be a forest in Ws+2

l−1 (Π). In this part, we define and explain the process of reducing
the forest W s+2

l−1 (Π) to a forest in Ws
l .

Definition 13. (Reduced partition) Let s ≥ 1 and Π be in Ps+2. We denote by πi and πj the sub-
partitions of Π such that s+ 1 ∈ πi and s+ 2 ∈ πj. The reduced partition Πs+1,s+2 is defined as
follows,

Πs+1,s+2 =


{⋃lΠ

k=1,k /∈{i,j} πk

}
∪ πs+1

i ∪ πs+2
j if i ̸= j{⋃

k=1,k ̸=i πk

}
∪ πs+1,s+2

i otherwise ,

where we used the notations (3.2.1)-(3.2.2). For (π1, π2) in P̃2;s, we write

(π1, π2)
s+1,s+2 =


πs+1
1 , πs+2

2 if s+ i ∈ πi

πs+1,s+2
1 , π2 if {s+ 1, s+ 2} ∈ π1

π1, π
s+1,s+2
2 if {s+ 1, s+ 2} ∈ π2.

Proposition 3. (Reduction process) Let s ≥ 1. For Π ∈ Ps+2, we define Cys+1,ys+2 to be the operator
which acts on a forest W s+2

l−1 (Π) ∈ Ws+2
l−1 (Π) by removing the two external legs attached to ys+1 and

ys+2. If this operation produces an internal vertex of incidence number one, it is removed until an
internal vertex of incidence number c(z) ≥ 2 is reached. We have

Cys+1,ys+2W
s+2
l−1 (Π) ∈ Ws

l (Π
s+1,s+2) . (3.2.14)

For (π1, π2) ∈ P̃2;s+2 and W s+2
l−1 (Π) in Ws+2

l−1;π1,π2
(Π), we also have

Cys+1,ys+2W
s+2
l−1 (Π) ∈ Ws

l;(π1,π2)s+1,s+2

(
Πs+1,s+2

)
. (3.2.15)

Proof. Let us first prove (3.2.14). The set Ps+2 can be separated into two subsets P̃s+2 and P̃c
s+2

defined as follows:

• P̃s+2 is defined as a subset of Ps+2 which contains all the partitions Π for which there exists
πi ∈ Π such that {s+ 1, s+ 2} ∈ πi.

• P̃c
s+2 is the complementary set of P̃s+2 .



42 CHAPTER 3. TREES, FORESTS AND WEIGHT FACTORS

z2z1

0y1y2 ys+1 0ys+2

· · ·

Figure 3.5: Example of a forest W s+2
l−1 (Π) where Π ∈ P̃s+2 and lΠ = 2.

z2z1 z3

0 y1ys+1 0 0 ysys+2

· · ·

Figure 3.6: Example of a forest W s+2
l−1 (Π

c) where Πc ∈ P̃c
s+2 and lΠ = 3.

Diagrammatically, the global set of forests Ws+2
l−1 is partitioned into two subsets: the subset of forests

for which ys+1 and ys+2 both belong to the same surface tree and the subset of forests in which ys+1

and ys+2 belong to different surface trees.

The proof of the statement (3.2.14) follows directly from establishing that

∀Π ∈ P̃s+2 : Cys+1,ys+2W
s+2
l−1 (Π) ∈ Ws

l (Π
s+1,s+2) (3.2.16)

and
∀Π ∈ P̃c

s+2 : Cys+1,ys+2W
s+2
l−1 (Π) ∈ Ws

l (Π
s+1,s+2) . (3.2.17)

• First, we prove (3.2.16). Given a partition Π in P̃s+2, there exists a sub-partition πi ∈ Π such
that {s+ 1, s+ 2} ∈ πi. Therefore, we can write in slightly abusive notation

Cys+1,ys+2W
s+2
l−1 (Π) =

lπ⋃
k=1,k ̸=i

{
T sk,0
l−1 (Yπk

, 0, z⃗πk
)
}⋃{

Cys+1,ys+2T
sπi ,0

l−1 (Yπi , 0, z⃗πi)
}
, (3.2.18)

where the tree T sπi ,0

l−1 (Yπi , 0, z⃗πi) can be identified with a forest in W
sπi
l−1

(
σsπi

)
. Deducing (3.2.16)

amounts to prove for sπi > 2

Cys+1,ys+2T
sπi ,0

l−1 (Yπi , 0, z⃗πi) ∈ T
sπi−2,0

l . (3.2.19)

If sπi = 2

Cys+1,ys+2T
2,0
l−1 (ys+1, ys+2, 0, z⃗πi) = ∅ (3.2.20)

and we have

Cys+1,ys+2W
s+2
l−1 (Π) =

lπ⋃
k=1,k ̸=i

{
T sk,0
l−1 (Yπk

, 0, z⃗πk
)
}
, (3.2.21)
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which is clearly in W s
l (Π

s). To treat the case sπi > 2, the discussion is simplified by considering
the case of the trivial partition Π = σs+2 s.t. s ≥ 1. In this case, the set of forests Ws+2

l−1 (σs+2)

is given by all the surface trees T s+2,0
l−1 (see (3.2.10)). Let Ji (resp. Jj) be the external line

which attaches the internal vertex zi (resp. zj) to the external vertex ys+1 (resp. ys+2). The
operator Cys+1,ys+2 removes the external legs Ji and Jj from the forest W s+2

l−1 (σs+2), and if one
of the internal vertices zi and zj becomes of incidence number one, it is removed and the process
continues until an internal vertex z of incidence number c(z) ≥ 2 is reached. This implies that
v′2 (i.e. the number of vertices of incidence number 2 of the new forest Cys+1,ys+2W

s+2
l−1 (σs+2)) is

at most v2 + 2, with v2 the number of vertices of incidence number 2 of W s+2
l−1 (σs+2). Therefore,

v′2 ≤ v2 + 2 ≤ 3(l − 1)− 2 +
s+ 3

2
+ 2 ≤ 3l − 2 +

s+ 1

2
.

The last point to verify is that the reduction process converges for s ≥ 1 in the sense that we
have

Cys+1,ys+2W
s+2
l−1 (σs+2) ̸= ∅ . (3.2.22)

In order to obtain (3.2.22), we need to prove that there exists at least one internal vertex z̃ such
that c(z̃) ≥ 2. If W s+2

l−1 (σs+2) has at least one internal vertex such that c(z) ≥ 4, then eventually
(3.2.22) holds. If all the internal vertices are of incidence number less than or equal to 3, then
since s ≥ 1, the tree W s+2

l−1 (σs+2) has a number of external vertices greater than or equal to 4

(taking into account the surface external vertex 0 as well). This implies that it has at least two
internal vertices z and z′ such that c(z) = c(z′) = 3 which leads directly to (3.2.22). This proves
(3.2.16).

• Now, we prove (3.2.17). Take Π ∈ P̃c
s+2, there exist πi, πj ∈ Π such that i ̸= j, {s+ 1} ∈ πi and

{s+ 2} ∈ πj . Therefore, we can write

Cys+1,ys+2W
s+2
l−1 (Π) =

lΠ⋃
k=1,k ̸=i,k ̸=j

{
T
sπk ,0

l−1 (Yπk
, 0, z⃗πk

)
}
∪
{
Cys+1T

sπi ,0

l−1 (Yπi , 0, z⃗πi)
}

∪
{
Cys+2T

sπj ,0

l−1

(
Yπj , 0, z⃗πj

)}
, (3.2.23)

where the operator Cys+1 acts on the tree T sπi ,0

l−1 by removing the external leg to which ys+1 is
attached and by removing all the internal vertices which through this process become of incidence
number one. Following the same steps of the discussion above, we deduce that v′2,i the number

of vertices of incidence number 2 of the tree Cys+1T
sπi ,0

l is at most 3 v2,i + 1 and it obeys

v′2,i ≤ v2,i + 1 ≤ 3(l − 1)− 2 +
sπi + 1

2
≤ 3l − 2 +

sπi

2
,

3v2,i is the number of vertices of incidence number 2 of T
sπi

+1,0

l .
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which implies that Cys+1T
sπi ,0

l ∈ T
sπi−1,0

l .
Here again, we need to verify that the reduction process of the forest W s+2

l−1 converges in the
sense of (3.2.22). If |πi| = |πj | = 1, then we have

Cys+1,ys+2W
s+2
l−1 (Π) =

lπ⋃
k=1,k ̸=i,k ̸=j

{
T
sπk ,0

l−1 (Yπk
, 0, z⃗πk

)
}
. (3.2.24)

If |πi| ≥ 2, we have

Cys+1T
sπi ,0

l−1 (Yπi , 0, z⃗πi) ̸= ∅ .

This holds since the tree T sπi ,0

l−1 (Yπi , 0, z⃗πi) has at least three external vertices which implies that
there exists at least one internal vertex such that c(z) ≥ 3, and removing at most one external
leg at each step of the reduction process implies that the incidence number of z is strictly greater
than 1 at the end of the process.
Using (3.2.16) and (3.2.17), we deduce for W s+2

l−1 (Π) in Ws+2
l−1;π1,π2

(Π)

Cys+1,ys+2W
s+2
l−1 (Π) ∈ Ws

l

(
Πs+1,s+2

)
. (3.2.25)

Note that the reduction steps imply

Yπ1

(
W s+2

l−1 (Π)
)
= Ŷ

πs+1,s+2
1

(
Cys+1,ys+2W

s+2
l−1 (Π)

)
(3.2.26)

and

Yπ2

(
W s+2

l−1 (Π)
)
= Ŷ

πs+1,s+2
2

(
Cys+1,ys+2W

s+2
l−1 (Π)

)
, (3.2.27)

where

π̂s+1,s+2
i =


πs+1
i if s+ 1 ∈ πi, s+ 2 /∈ πi

πs+2
i if s+ 1 /∈ πi, s+ 2 ∈ πi

πs+1,s+2
i if {s+ 1, s+ 2} ∈ πi.

(3.2.28)

Since

Yπ1

(
W s+2

l−1 (Π)
)
∩ Yπ2

(
W s+2

l−1 (Π)
)
= ∅ ,

we deduce that

Ŷ
πs+1,s+2
1

(
Cys+1,ys+2W

s+2
l−1 (Π)

)
∩ Ŷ

πs+1,s+2
2

(
Cys+1,ys+2W

s+2
l−1 (Π)

)
= ∅,

which together with (3.2.25) implies (3.2.15).
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Fusion

In this part, we define and explain the merging process of a bulk tree with a forest.

Proposition 4. For s ≥ 2 and l ≥ 0, we consider the partition (π̃1, π̃2) in P̃2;s such that |π̃i| = si and
s1 + s2 = s. Given a partition Π of the set π̃2 ∪ {s+ 2}, we define the a-merging operator Ma

ys+1,ys+2

acting on the forest W s2+1
l2

(Π) and the bulk tree T̂ s1+1
l1

(Yπ̃1 , ys+1; z⃗) at the external vertices ys+1 and
ys+2 following the steps below:

i) Let Js+1 = (z, ys+1) and Js+2 = (z′, ys+2) be the external legs which attach respectively ys+1 to
the internal vertex z ∈ T̂ s1+1

l1
and ys+2 to the internal vertex z′ ∈ W s2+1

l2
(Π). In the first step of

the merging process Js+1 and Js+2 are removed.

ii) A new internal line (z, z′) is added.

Similarly, we define the b-merging operator M b
ys+1,ys+2

acting on W s2+1
l2

(Π) and T̂ s1+1
l1

(Yπ̃1 , ys+1, z⃗)

following the same steps above except for adding an internal vertex of incidence number 2, which
replaces the internal line (z, z′) in step ii) by the two internal lines (z, u) and (u, z′). Then we claim

M j
ys+1,ys+2

(
T̂ s1+1
l1

(Yπ̃1 , ys+1; z⃗) ,W
s2+1
l2

(Π)
)
∈ Ws

l (Π
′) , j ∈ {a, b} (3.2.29)

where4 Π′ := π̃1
⋃
Πs+2 and l := l1 + l2.

Proof. Let πi be the sub-partition of Π such that s + 2 ∈ πi. The merging operators (a) and (b)
act only on the tree T sπi ,0

l2
since all trees corresponding to the remaining sub-partitions do not have

external vertices on which the merging operators act. Therefore, without loss of generality, we simplify
the discussion by considering the case of a partition Π of length one.
The first and second step of the two merging processes create a tree with s+ 1 external vertices given
by the set

{Yπ̃1} ∪ {Yπ̃2 , 0} .

The only difference between the two cases is related to the set of internal vertices, which in case of
(a) is given by the union of the internal vertices of the bulk tree T̂ s1+1

l1
(Yπ̃1 , ys+1, z⃗) and the forest

W s2+1
l2

(Π). For (b), a new vertex of incidence number 2 is added, which implies

v2,a = v2,1 + v2,2, v2,b = v2,1 + v2,2 + 1, (3.2.30)

where v2,i denotes the number of vertices of incidence number 2 of the surface tree obtained through
the merging process j ∈ {a, b}. Therefore, we obtain

v2,j ≤ 3(l1 + l2)− 4 +
s1 + s2 + 3

2
+ 1 = 3l − 2 +

s+ 1

2
, j ∈ {a, b} . (3.2.31)

4we used the notation (3.2.1).
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This concludes that the surface trees obtained through the merging processes (a) and (b) are indeed
in Ws

l (σs).

3.2.3 Weight factors

The bulk weight factors

Let 0 < δ < 1. Given a set τ2,s := {τ2, · · · , τs} with τ := inf2≤i≤s τi, a set of external vertices
y2,s = {y2, · · · , ys} ∈ Rs−1 and a set of internal vertices z⃗ = (z2, · · · , zr+1) ∈ Rr, and attributing
positive parameters ΛI = {ΛI |I ∈ I} to the internal lines, the weight factor Fδ (ΛI, τ2,s;T

s
l (z1, y2,s, z⃗))

of a tree T s
l (z1, y2,s, z⃗) at scales ΛI is defined as a product of heat kernels associated with the internal

and external lines of the tree. We set

Fδ (ΛI, τ2,s;T
s
l (z1, y2,s, z⃗)) :=

∏
I∈I

pB

(
1 + δ

Λ2
I

; I

)∏
J∈J

pB(τJ,δ; J) , (3.2.32)

where τJ,δ denotes the entry τi,δ in τ carrying the index of the external coordinate yi in which the
external line J ends, and τi,δ := (1+δ)τi. For I = {a, b} the notation pB(1+δ

Λ2
I
; I) stands for pB(1+δ

Λ2
I
; a, b).

We also define the integrated weight factors

Fδ (Λ, τ2,s;T
s
l ; z1, y2,s) := sup

Λ≤ΛI≤Λ0

∫
(R+)r

dz⃗ Fδ (ΛI, τ2,s;T
s
l (z1, y2,s, z⃗)) , (3.2.33)

F−
δ (Λ, τ2,s;T

s
l ; z1, y2,s) := sup

Λ≤ΛI≤Λ0

∫
(R−)r

dz⃗ Fδ (ΛI, τ2,s;T
s
l (z1, y2,s, z⃗)) (3.2.34)

and
F∞
δ (Λ, τ2,s;T

s
l ; z1, y2,s) := sup

Λ≤ΛI≤Λ0

∫
Rr

dz⃗ Fδ (ΛI, τ2,s;T
s
l (z1, y2,s, z⃗)) . (3.2.35)

We denote by Ie(πi) the set of the indices of the internal vertices of the tree T s
l which are attached to

the external vertices {yj}j∈πi
and let qi be its cardinality. We write shortly z⃗Ie(πi) := (zj)j∈Ie(πi) and

z⃗ c
i := (zj)j∈Ic

e (πi) with Ic
e (πi) denoting the complementary set of Ie(πi). We define the integrated

weight factor of a tree T s
l ∈ Ts

l;π1,π2
as follows

F∞
δ

(
Λ, τ+π1

, τπ2 ;T
s
l ; z1, y2,s

)
:= sup

Λ≤ΛI≤Λ0

∫
(R+)q1

dz⃗Ie(π1)

∫
Rr−q1

dz⃗ c
1 Fδ (ΛI, τ2,s;T

s
l (z1, y2,s, z⃗)) . (3.2.36)

For the trivial partition π1 = σ2,s, we denote by Ie the set of the indices of the internal vertices
attached to the external vertices y2,s and by q its cardinality. We write shortly z⃗Ie := (zi)i∈Ie and
z⃗ c := (zi)i∈Ic

e
and define the integrated weight factors

F∞
δ;+ (Λ, τ2,s;T

s
l ; z1, y2,s) := sup

Λ≤ΛI≤Λ0

∫
(R+)q

dz⃗Ie

∫
Rr−q

dz⃗ c Fδ (ΛI, τ2,s;T
s
l (z1, y2,s, z⃗)) (3.2.37)
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and

F∞
δ;− (Λ, τ2,s;T

s
l ; z1, y2,s) := sup

Λ≤ΛI≤Λ0

∫
(R−)q

dz⃗Ie

∫
Rr−q

dz⃗ c Fδ (ΛI, τ2,s;T
s
l (z1, y2,s, z⃗)) . (3.2.38)

(3.2.33)-(3.2.38) depend on Λ0, but note that their limits for Λ0 → ∞ exist, and that typically the sup

is expected to be taken for the minimal values of Λ admitted. Therefore we suppress the dependence
on Λ0 in the notation. The definitions (3.2.32)-(3.2.34) can be generalized to a bulk tree T̂ s

l . Finally
we introduce the global weight factors which are defined through

Fs,l;δ (Λ, τ2,s, z1, y2,s) :=
∑

T s
l ∈Ts

l

Fδ (Λ, τ2,s;T
s
l ; z1, y2,s) , (3.2.39)

F−
s,l;δ (Λ, τ2,s, z1, y2,s) :=

∑
T s
l ∈Ts

l

F−
δ (Λ, τ2,s;T

s
l ; z1, y2,s) (3.2.40)

and
F∞
s,l;δ (Λ, τ2,s, z1, y2,s) :=

∑
T s
l ∈Ts

l

F∞
δ (Λ, τ2,s;T

s
l ; z1, y2,s) . (3.2.41)

Similarly, we define the global bulk weight factor

F̂s,l;δ (Λ, τ2,s, y2,s) :=
∑

T̂ s
l ∈T̂s

l

Fδ

(
Λ, τ2,s; T̂

s
l ; y2,s

)
. (3.2.42)

For z1 ∈ R+, we define the global weight factors associated to (3.2.36) and (3.2.37)

F∞
s,l;δ

(
Λ, τ+π1

, τπ2 , z1, y2,s
)
:=

∑
T s
l ∈Ts

l;π1,π2

F∞
δ

(
Λ, τ+π1

, τπ2 ;T
s
l ; z1, y2,s

)
, (3.2.43)

F∞
s,l;+;δ (Λ, τ2,s, z1, y2,s) :=

∑
T s
l ∈Ts

l

F∞
δ;+ (Λ, τ2,s;T

s
l ; z1, y2,s) (3.2.44)

and for z1 ∈ R− we define

F∞
s,l;−;δ (Λ, τ2,s, z1, y2,s) :=

∑
T s
l ∈Ts

l

F∞
δ;− (Λ, τ2,s;T

s
l ; z1, y2,s) . (3.2.45)

If this does not lead to ambiguity we write shortly

FΛ
s,l;δ (τ2,s) ≡ Fs,l;δ (Λ, τ2,s, z1, y2,s) , F

Λ;∞
s,l;δ (τ2,s) ≡ F∞

s,l;δ (Λ, τ2,s, z1, y2,s) , (3.2.46)

F
Λ;∞
s,l;±;δ (τ2,s) ≡ F∞

s,l;±;δ (Λ, τ2,s, z1, y2,s) , F
Λ;∞
s,l;δ

(
τ+π1

, τπ2

)
≡ F∞

s,l;δ

(
Λ, τ+π1

, τπ2 ; z1, y2,s
)
. (3.2.47)

In complete analogy we define the weight factors and global weight factors for twice rooted trees which
we denote as F

(
Λ, τ3,s;T

s,(12)
l ; z1, z2, y3,s

)
resp. F

(12)
s,l (Λ, τ3,s, z1, z2, y3,s) or F12

s,l (Λ, τ3,s) .

For s = 1 we set FΛ
1,l;δ ≡ 1.
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The surface weight factors

• In the sequel, we will use the following notations:

τπi := {τk| k ∈ πi} , Yπi := (yk)k∈πi
, τπi,δ := {(1 + δ)τk| k ∈ πi} , τ := inf

1≤i≤s
τi. (3.2.48)

• Let 0 < δ < 1 and τ1,s := {τ1, · · · , τs} such that τ > 0 and let Yσs ∈ Rs be the set of the external
vertices. Given a partition Π ∈ Ps, let z⃗Π =

(
z⃗π1 , · · · , z⃗πlΠ

)
∈ (R+)p, where each vector z⃗πi

consists of the internal vertices of the tree T sπi ,0

l in the forest W s
l (Π). We denote by I= ∪lΠ

i=1Ik

the set of the internal lines of the trees of W s
l (Π) and by J = ∪lΠ

k=1Jk the set of the external
lines which link an internal vertex to an external vertex belonging to the set Yσs . Each set Ik

(resp. Jk) denotes the internal lines (resp. the external lines) of the tree T sπk ,0

l . We also use the
notation J0

k =
{
J0
k |1 ≤ k ≤ lΠ

}
to denote the set of surface external lines which link an internal

vertex to 0.

• Attributing positive parameters ΛI = {ΛI |I ∈ I} to the internal lines and Λ̃ =
{
Λ̃k|k ∈ J0

k

}
to

the surface external lines, the weight factor F0
δ

(
ΛI, Λ̃; τ1,s;W

s
l (Π); z⃗Π;Yσs

)
of the forest W s

l (Π)

at scales ΛI and Λ̃k is defined as the product of heat kernels associated to the internal and
external lines of each tree of the forest. For a sub-partition πk ∈ Π, we define the weight factor
of the tree T sπk ,0

l as follows:

F0
δ

(
ΛIk

, Λ̃k; τπk
;T

sπk ,0

l ; z⃗πk
;Yπk

)
:=

∏
I∈Ik

pB

(
1 + δ

Λ2
I

; I

) ∏
J∈Jk

pB((1 + δ)τJ ; J) pB

(
1 + δ

Λ̃2
k

; Jk
0

)
, (3.2.49)

where we used the same notations as in (3.2.32) and Jk
0 denotes the line which links an internal

vertex to the external vertex 0 with an attributed positive parameter Λ̃k. For a surface tree T 1,0
l

with no internal vertices, the surface weight factor reads

F0
δ

(
τπk

;T 1,0
l ; yπk

)
:= pB ((1 + δ)τπk

; yπk
, 0) . (3.2.50)

The weight factor of the forest W s
l (Π) is defined for Π ∈ P

1,c
s as follows:

F0
δ

(
ΛI, Λ̃; τ1,s;W

s
l (Π); z⃗Π;Yσs

)
:=

∏
πk∈Π

F0
δ

(
ΛIk

, Λ̃k; τπk
;T

sπk ,0

l ; z⃗πk
;Yπk

)
. (3.2.51)

For Π ∈ P1
s , it is given by

F0
δ

(
ΛI, Λ̃; τ1,s;W

s
l (Π); z⃗Π;Yσs

)
:=
∏
πk

F0
δ

(
ΛIk

, Λ̃k; τπk
;T

sπk ,0

l ; z⃗πk
;Yπk

)
×
∏
π̃k

F0
δ

(
ΛIk

, Λ̃k; 2τπ̃k
;T

sπ̃k ,0

l ; z⃗π̃k
; yπ̃k

)
, (3.2.52)
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where the product
∏

π̃k
runs over all sub-partitions in Π of length equal to 1.

• We also define the integrated surface weight factor

F0
δ (Λ, τ1,s;W

s
l (Π);Yσs) := sup

Λ≤ΛI ,Λ̃k≤Λ0

∫
z⃗Π

F0
δ

(
ΛI, Λ̃; τ1,s;W

s
l (Π); z⃗Π;Yσs

)
, (3.2.53)

where
∫
z⃗Π

:=
∏p

i=1

∫∞
0 dzi.

• Given a forest W s
l (Π) in Ws

l;π1,π2
(Π), we define the corresponding integrated surface weight factor

as follows

F0
δ

(
Λ, τ+π1

, τ−π2
;W s

l (Π);Yσs

)
:= sup

Λ≤ΛI ,Λ̃≤Λ0

∫
(R+)p1

dz⃗π1

∫
(R−)p2

dz⃗π2 F0
δ

(
ΛI, Λ̃; τ1,s;W

s
l (Π); z⃗Π;Yσs

)
, (3.2.54)

where
∫
z⃗πi

denotes the integration over the internal vertices of all surface trees in Yπi (W
s
l (Π)).

• The weight factor associated to a global forest W s
l is defined as

F0
δ (Λ, τ1,s;W

s
l ;Yσs) :=

∑
Π∈Ps

F0
δ (Λ, τ1,s;W

s
l (Π);Yσs) . (3.2.55)

Similarly, the weight factor of a global forest W s
l ∈ Ws

l;π1,π2
is given by

F0
δ

(
Λ, τ+π1

, τ−π2
;W s

l ;Yσs

)
:=

∑
Π∈Ps

F0
δ

(
Λ, τ+π1

, τ−π2
;W s

l (Π);Yσs

)
. (3.2.56)

• We define the global surface weight factors

F0
s,l;δ (Λ, τ1,s;Yσs) :=

∑
W s

l ∈Ws
l

F0
δ (Λ, τ1,s;W

s
l ;Yσs) (3.2.57)

and
F0
s,l;δ

(
Λ, τ+π1

, τ−π2
;Yσs

)
:=

∑
W s

l ∈Ws
l;π1,π2

F0
δ

(
Λ, τ+π1

, τ−π2
;W s

l ;Yσs

)
. (3.2.58)

If it does not lead to ambiguity we write shortly

F
Λ,0
s,l;δ (τ1,s) ≡ F0

s,l;δ (Λ, τ1,s;Yσs) . (3.2.59)

and
F

Λ,0
s,l;δ

(
τ+π1

, τ−π2

)
≡ F0

s,l;δ

(
Λ, τ+π1

, τ−π2
;Yσs

)
. (3.2.60)

For s = 0 we set F
Λ,0
0,l;δ ≡ 1.
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Remark 1. • The definitions (3.2.33) and (3.2.53) imply for 0 ≤ Λ′ ≤ Λ

F
Λ,0
s,l;δ (τ1,s) ≤ F

Λ′,0
s,l;δ (τ1,s) , F

Λ,0
s,l;δ

(
τ+π1

, τ−π2

)
≤ F

Λ′,0
s,l;δ

(
τ+π1

, τ−π2

)
. (3.2.61)

The same bounds hold for (3.2.46)-(3.2.47).

• Combining the bound (3.1.10) together with the definitions (3.2.32) and (3.2.49), the following
bounds hold for all 0 < δ < δ′ and 0 ≤ Λ ≤ Λ0

F
Λ,0
s,l;δ (τ1,s) ≤ C ′

s,l F
Λ,0
s,l;δ′ (τ1,s) , FΛ

s,l;δ (τ1,s) ≤ Cs,l F
Λ
s,l;δ′ (τ1,s) . (3.2.62)

The constants C0
s,l and Cs,l are explicitly given by

C ′
s,l := sup

(I,J)∈W s
l , W s

l ∈Ws
l

C
|I|+|J|
δ,δ′ , Cs,l := sup

(I,J)∈T s
l , T s

l ∈Ts
l

C
|I|+|J|
δ,δ′ ,

where I and J are respectively the set of internal and external lines of the tree/forest and | · |
denotes their cardinality. The constant Cδ,δ′ is given by (3.1.11) for r = 0.

3.2.4 Useful bounds

For the proof of Theorem 9 in chapter 5 and Proposition 9 and Theorem 12 in chapter 6, we need
to bound the tree/forest weight factors for reduced forests and for merged trees and forests.

Lemma 2. (Reduction) Let τ, δ > 0 , 0 ≤ Λ ≤ Λ0, l ≥ 1 and Yσs ∈ Rs, we have∫
R
du F0

s+2,l−1;δ

(
Λ; τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u, u

)
≤ O(1) Λ F0

s,l;δ (Λ; τ1,s;Yσs) . (3.2.63)

Given a partition (π1, π2) of σs+2, we have∫
R
du F0

s+2,l−1;δ

(
Λ; τ+π1

, τ−π2
;Yσs , u, u

)
≤ O(1) Λ F0

s,l;δ

(
Λ; τ+π̃1

, τ−π̃2
;Yσs

)
, (3.2.64)

where τs+1 = τs+2 =
1

2Λ2 and5 π̃i := π̂s+1,s+2
i . The constants O(1) depend only on s and l.

Proof. First, we prove (3.2.63). Let us recall the definition of the surface weight factor

F0
s+2,l−1;δ

(
Λ; τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs+2

)
=

∑
W s+2

l−1 ∈Ws+2
l−1

∑
Π∈Ps+2

F0
δ

(
Λ; τ1,s,

1

2Λ2
,

1

2Λ2
;W s+2

l−1 (Π);Yσs+2

)
, (3.2.65)

5we used the notation (3.2.28).
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where ys+1 := u and ys+2 = u. The weight factor

F0
δ

(
Λ; τ1,s,

1

2Λ2
,

1

2Λ2
;W s+2

l−1 (Π);Yσs+2

)
is given by (3.2.49)-(3.2.52). Let (zi, u) and (zj , u) be the external lines attaching respectively the
internal vertices zi and zj to the external vertices ys+1 and ys+2. Using (3.1.5), we obtain∫

R
du pB

(
α1(1 + δ)

2Λ2
; zi, u

)
pB

(
α2(1 + δ)

2Λ2
; zj , u

)
= pB

(
(α1 + α2)(1 + δ)

2Λ2
; zi, zj

)
≤ Λ . (3.2.66)

We recall that a tree of two external vertices (including the surface external vertex 0) corresponds to a
sub-partition of length 1 and the surface weight factor associated to these trees differs from a surface
tree of three or more external vertices by a factor 2 multiplying the parameter τi of the corresponding
external vertex, as it appears in (3.2.52). Therefore, the constants α1 and α2 take either the value 2

or 1 depending on whether the two external vertices at u belong to a surface tree of only two external
vertices or more. Diagrammatically, the effect of the bound (3.2.66) on the forest W s+2

l−1 (Π) is the
removal of the external legs (zi, u) and (zj , u) by bounding their contribution in the surface weight
factor by Λ. Furthermore, the property∫ ∞

0
dz pB

(
1 + δ

Λ2
i

; z, z′
)

≤ 1 (3.2.67)

implies that all internal vertices which after removing (zi, u) and (zj , u), become of incidence number
one are removed. These two steps correspond to reducing the forest W s+2

l−1 (Π) at the external vertices
(u, u). Therefore, we have∫

R
du F0

δ

(
Λ; τ1,s,

1

2Λ2
,

1

2Λ2
;W s+2

l−1 (Π);Yσs , u, u

)
≤ Λ F0

δ

(
Λ; τ1,s;Cu,uW

s+2
l−1 (Π);Yσs

)
. (3.2.68)

Proposition 1 gives that Cu,uW
s+2
l−1 (Π) ∈ Ws

l

(
Πs+1,s+2

)
, where Πs+1,s+2 ∈ Ps is the reduced partition

obtained from Π. Hence, we obtain∑
W s+2

l−1 ∈Ws+2
l−1

∑
Π∈Ps+2

F0
δ

(
Λ, τ1,s;Cu,uW

s+2
l−1 (Π);Yσs

)
≤ O(1)

∑
W s

l ∈Ws
l

∑
Π∈Ps

F0
δ (Λ, τ1,s;W

s
l (Π);Yσs) . (3.2.69)

The constant O(1) takes into account that the reduction operator is not a one-to-one map, in the sense
that the same forest can be obtained by reducing different forests, which implies that some weight
factors F0

δ (Λ, τ1,s;W
s
l (Π);Yσs) are possibly summed more than once in (3.2.68). Combining (3.2.68)

and (3.2.69) gives the final bound (3.2.63).
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If the external vertex ys+1 belongs to the sub-surface tree T 1,0
l (ys+1, 0) with no internal vertex, (3.2.66)

reads in this case∫
R
du pB

(
1 + δ

2Λ2
; 0, u

)
pB

(
1 + δ

2Λ2
; zj , u

)
= pB

(
1 + δ

Λ2
; 0, zj

)
≤ Λ . (3.2.70)

If ys+2 is an external vertex of T 1,0
l (ys+2, 0), then zj is replaced by 0 in (3.2.70). This corresponds to

removing the corresponding sub-surface trees from the forest W s+2
l−1 (Π). The bound (3.2.69) is obtained

in these two cases following the same line of reasoning as before.
The proof of (3.2.64) is obtained by following the same steps of the proof of (3.2.63) and using
(3.2.15).

Lemma 3. (Forest-Forest Fusion) Let δ, δ′ > 0 and 1 ≤ l1, l2 ≤ l − 1 such that l1 + l2 = l. Given
(π̃1, π̃2) ∈ P̃2;s, we have∫

R
du F0

s1+1,l1;δ

(
Λ; τπ̃1 ,

1

2Λ2
;Yπ̃1 , u

)
F0
s2+1,l2;δ′

(
Λ; τπ̃2 ,

1

2Λ2
;Yπ̃2 , u

)
≤ O(1) Λ F0

s,l;δ′′ (Λ; τ1,s;Yσs) , (3.2.71)

where si := |πi| and δ′′ = max (δ, δ′).
Given (π1, π2) in P̃2;s, we define πij = πi ∩ π̃j. For

(π′11, π
′
21) ∈ {(π11 ∪ {s+ 1} , π21) , (π11, π21 ∪ {s+ 1})} (3.2.72)

and
(π′12, π

′
22) ∈ {(π12, π22 ∪ {s+ 2}) , (π12 ∪ {s+ 2} , π22)} , (3.2.73)

we have∫
R
du F0

s1+1,l1;δ

(
Λ; τ+π′

11
, τ−π′

21
;Yπ̃1 , u

)
F0
s2+1,l2;δ′

(
Λ; τ+π′

12
, τ−π′

22
;Yπ̃2 , u

)
≤ O(1) Λ F0

s,l;δ′′
(
Λ; τ+π1

, τ−π2
;Yσs

)
, (3.2.74)

where τs+1 = τs+2 =
1

2Λ2 . Again the constants O(1) depend only on s and l.

Proof. First, we prove (3.2.71). Without loss of generality, we consider the ordered sub-partitions
π̃1 := σs1 and π̃2 := σs1+1,s. To establish (3.2.71), it is sufficient to bound∫

R
du F0

s1+1,l1;δ

(
Λ; τ1,s1 ,

1

2Λ2
;W s1+1

l1
(Π1);Yσs1

, u

)
× F0

s2+1,l2;δ′

(
Λ; τs1+1,s,

1

2Λ2
;W s2+1

l2
(Π2);Yσs1+1:s , u

)
(3.2.75)
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where Π1 ∈ P̃s1+1 and Π2 ∈ P̃s2+1. The sets P̃s1+1 and P̃s2+1 denote respectively the set of partitions
of σs1 ∪ {s+ 1} and σs1+1:s ∪ {s+ 2}. Using (3.2.62), we bound (3.2.75) by∫

R
du F0

s1+1,l1;δ′′

(
Λ; τ1,s1 ,

1

2Λ2
;W s1+1

l1
(Π1);Yσs1

, u

)
× F0

s2+1,l2;δ′′

(
Λ; τs1+1,s,

1

2Λ2
;W s2+1

l2
(Π2);Yσs1+1:s , u

)
, (3.2.76)

where δ′′ = max (δ, δ′).
Let πi,1 and πj,2 be respectively the sub-partitions in Π1 and Π2 such that {s+ 1} ∈ πi,1 and
{s+ 2} ∈ πj,2. We denote by zi and zj the internal vertices in the sub-surface trees T

sπi,1 ,0

l1

(
Yπi,1 , u, 0

)
and T

sπj,2 ,0

l2

(
Yπj,2 , u, 0

)
in the forests W s1+1

l1
(Π1) and W s2+1

l2
(Π2), which are attached to u. As we

mentioned previously, the bound (3.2.66) amputates the external legs (zi, u) and (zj , u) and bounds
their contribution in (3.2.76) by Λ. Furthermore, (3.2.67) implies that all internal vertices of incidence
number 1 are removed. The amputation can possibly create in each tree at most one internal vertex
of incidence number 2. Denoting by T

sπi,1−1,0

l1

(
Yπi,1 , 0

)
the surface tree obtained by amputating the

external leg (z, u) from T
sπi,1 ,0

l1

(
Yπi,1 , u, 0

)
, we deduce

ṽs12,i ≤ vs12,i + 1 ≤ 3l1 − 1 +
sπi,1

2
+

1

2
,

where ṽs12,i and vs12,i denote respectively the number of vertices of incidence number 2 of the surface trees

T
sπi,1−1,0

l1

(
Yπi,1 , 0

)
and T

sπi,1 ,0

l1

(
Yπi,1 , u, 0

)
. Since 1 ≤ l1 ≤ l − 1, we obtain

ṽs12,i ≤ 3l − 3− 1 +
sπi,1

2
+

1

2
≤ 3l − 2 +

sπi,1

2
. (3.2.77)

Proceeding similarly with T
sπj,2 ,0

l2

(
Yπj,2 , u, 0

)
, we deduce that the number of vertices of the amputated

tree obeys
ṽs22,j ≤ 3l − 2 +

sπj,2

2
. (3.2.78)

From (3.2.95) and (3.2.78), we deduce that T
sπi,1−1,0

li

(
Yπi,1 , 0

)
∈ T

sπi,1−1,0

l . Therefore, we obtain that

∫
R
du F0

s1+1,l1;δ′′

(
Λ; τπ1 ,

1

2Λ2
;W s1+1

l1
(Π1);Yπ1 , u

)
× F0

s2+1,l2;δ′′

(
Λ; τπ2 ,

1

2Λ2
;W s2+1

l2
(Π2);Yπ2 , u

)
(3.2.79)

is bounded by

Λ F0
δ′′

(
Λ; τ1,s1 ;W

s1
l1
(Πs1+1

1 );Yσs1

)
F0
δ′′

(
Λ; τs1+1,s;W

s2
l2
(Πs2+1

2 );Yσs1+1:s

)
, (3.2.80)
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where we used the notation (3.2.1). Note that Πs+1
1 ∪ Πs+2

2 ∈ Ps, which together with (3.2.80) gives
the integrated surface weight factor of the forest W s1

l1
(Πs1+1

1 )∪W s2
l2
(Πs+1

2 ). Hence (3.2.80) is bounded
by

O(1) Λ F0
δ′′ (Λ; τ1,s;W

s
l (Π);Yσs) ,

where Π = Πs+1
1 ∪Πs+2

2 belongs to Ps and we deduce∫
R
du F

Λ;0
s1+1,l1;δ

(
τ1,s1 ,

1

2Λ2
;Yσs1

, u

)
F

Λ;0
s2+1,l2;δ′

(
τs1+1,s,

1

2Λ2
;Yσs1+1,s , u

)
≤ O(1) Λ F

Λ,0
s,l;δ′′ (τ1,s) . (3.2.81)

Note that the central point in the proof of (3.2.71) is the fact that the amputations of the external
legs (z, u) and (z′, u) from the forests W s1+1

l1
(Π1) and W s2+1

l2
(Π2) produce respectively the forests

W s1
l1

(
Πs+1

1

)
and W s2

l2

(
Πs+2

2

)
such that

W s1
l1

(
Πs+1

1

)
∪W s2

l2

(
Πs+2

1

)
∈ Ws

l (Π).

The proof of (3.2.74) can be performed following the same steps of the proof of (3.2.71), but still
we need to check that for given forests W s1+1

l1
(Π1) and W s2+1

l2
(Π2) respectively in Ws1+1

l1;π′
11,π

′
21

and

Ws2+1
l2;π′

12,π
′
22

we have

W s1
l1

(
Πs+1

1

)
∪W s2

l2

(
Πs+2

2

)
∈ Ws

l;π1,π2
(Π). (3.2.82)

Clearly
W s

l (Π) :=W s1
l1

(
Πs+1

1

)
∪W s2

l2

(
Πs+2

2

)
∈ Ws

l (Π).

Since the amputations do not affect the location of the external vertices yi ∈ Yσs , in the sense that
their positions in the surface trees of the two forests remain unchanged. This means that there is no
surface tree in W s

l (Π) such that it has at least two external vertices in Yπ1 and Yπ2 . This implies
directly (3.2.82).

Lemma 4. (Bulk tree-Forest Fusion) Let δ, δ′ > 0 and l1, l2 ≥ 1 such that l1 + l2 = l. Given
(π̃1, π̃2) ∈ P̃2;s, we have∫

R
du F0

s1+1,l1;δ

(
Λ; τπ̃1 ,

1

2Λ2
;Yπ̃1 , u

)
F̂s2+1,l2;δ′

(
Λ; τπ̃2 ,

1

2Λ2
;Yπ̃2 , u

)
≤ O(1) F0

s,l;δ′′ (Λ; τ1,s;Yσs) . (3.2.83)

Given another partition (π1, π2) ∈ P̃2;s and defining πij := πi ∩ π̃j, we have∫
R
du F0

δ

(
Λ; τ+

π′
11
, τ−

π′
2
;Yπ11 , Yπ2 , u

)
F̂δ′

(
Λ; τπ12 ,

1

2Λ2
;Yπ12 , u

)
≤ O(1) F0

s,l;δ′′
(
Λ; τ+π1

, τ−π2
;Yσs

)
, (3.2.84)
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where
(π′11, π

′
2) ∈ {(π11 ∪ {s+ 1} , π2) , (π11, π2 ∪ {s+ 1})} . (3.2.85)

Similarly, we have∫
R
du F0

δ

(
Λ; τ+

π′
1
, τ−

π′
21
;Yπ1 , Yπ21 , u

)
F̂−
δ′

(
Λ; τπ22 ,

1

2Λ2
;Yπ22 , u

)
≤ O(1) F0

s,l;δ′′
(
Λ; τ+π1

, τ−π2
;Yσs

)
(3.2.86)

and
(π′1, π

′
21) ∈ {(π1 ∪ {s+ 1} , π21) , (π1, π21 ∪ {s+ 1})} . (3.2.87)

In (3.2.83)-(3.2.86), δ′′ := max (δ, δ′).

Proof. Without loss of generality, we again consider the ordered sub-partitions σs1 and σs1+1:s. In
order to obtain the bound (3.2.83), it is sufficient to bound for a given Π1 ∈ P̃s1+1∫

R
du F0

δ

(
Λ; τ1,s1 ,

1

2Λ2
;W s1+1

l1
(Π1);Yσs1

, u

)
Fδ′

(
Λ; τs1+1,s,

1

2Λ2
; T̂ s2+1

l2
;Yσs1+1:s , u

)
. (3.2.88)

Using the bound (3.2.62), we bound (3.2.88) by∫
R
du F0

δ′′

(
Λ; τ1,s1 ,

1

2Λ2
;W s1+1

l1
(Π1);Yσs1

, u

)
Fδ′′

(
Λ; τs1+1,s,

1

2Λ2
; T̂ s2+1

l2
;Yσs1+1:s , u

)
, (3.2.89)

where δ′′ := max (δ, δ′). Let zi and zj be respectively the internal vertices attached to u in W s1+1
l1

(Π1)

and to u in T̂ s2+1
l2

. Interchanging the integral over u with the integral over the internal vertices of
the forest W s1+1

l1
(Π1) and the bulk tree T̂ s2+1

l2
in their respective weight factors and using (3.1.5) we

deduce ∫
R
du pB

(
α(1 + δ)

2Λ2
; zi, u

)
pB

(
1 + δ

2Λ2
; zj , u

)
= pB

(
(α+ 1)(1 + δ)

2Λ2
; zi, zj

)
(3.2.90)

with α ∈ {1, 2}. Here, we proceed similarly to (3.2.66) to differentiate the surface trees with two
external vertices from other surface trees with more than two external vertices. For α = 2, we keep
the integration over u and write∫

R
du pB

(
1 + δ

Λ2
; zi, u

)
pB

(
1 + δ

2Λ2
; zj , u

)
≤ 2

∫ ∞

0
du pB

(
1 + δ

Λ2
; zi, u

)
pB

(
1 + δ

2Λ2
; zj , u

)
. (3.2.91)

Therefore, (3.2.90) and (3.2.91) correspond to the fact that the two external legs attached to (zi, u)

and (zj , u) are removed. If α = 1, the external lines are replaced by the internal line (zi, zj) and for
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α = 2 the vertex u becomes internal with incidence number 2. The first case corresponds to the steps
of merging the forest W s1+1

l1
(Π1) and the bulk tree T̂ s2+1

l2
at the external vertices (u, u) through the

process a). In the second case, the forest and the tree are merged following the merging process b).
From Proposition 4 we have

M i
u,u

(
W s1+1

l1
(Π1), T̂

s2+1
l2

)
∈ Ws

l (Π
′) , i ∈ {a, b}

where Π′ = Πs+1
1 ∪ σs1+1:s. This implies that (3.2.89) is bounded by

2 F0
δ′′
(
Λ; τ1,s;W

s
l (Π

′);Yσs

)
.

Therefore we deduce∫
R
du F0

s1+1,l1;δ

(
Λ; τπ1 ,

1

2Λ2
;Yπ1 , u

)
F̂s2+1,l2;δ′

(
Λ; τπ2 ,

1

2Λ2
;Yπ2 , u

)
≤ O(1) F0

s,l;δ′′ (Λ; τ1,s;Yσs) ,

where O(1) is a constant which depends on s and l.
Now, we establish (3.2.84). Given W s1+1

l1
(Π1) in Ws1+1

l1;π′
11,π

′
2

and T̂ s2+1
l2

∈ T̂s2+1
l2

, let us bound∫
R
du F0

δ

(
Λ; τ+

π′
11
, τ−

π′
2
;W s1+1

l1
(Π1);Yπ11 , Yπ2 , u

)
Fδ′

(
Λ; τπ12 ,

1

2Λ2
; T̂ s2+1

l2
;Yπ12 , u

)
. (3.2.92)

If s+ 1 ∈ π′11, then (3.2.92) is bounded by

2 F0
δ′′
(
Λ; τ+π11∪π̃1

, τ−π̃2
;W s

l (Π
′);Yσs

)
following the same steps as before to establish (3.2.83).
The case which needs a careful treatment is s+ 1 ∈ π′2. Using the same notations as before, the
contributions of the external legs (zi, u) and (zj , u) in the weight factors of W s1+1

l1
(Π1) and T̂ s2+1

l2
read∫

R
du pB

(
α(1 + δ)

2Λ2
; zi, u

)
pB

(
1 + δ

2Λ2
; zj , u

)
= pB

(
(α+ 1)(1 + δ)

2Λ2
; zi, zj

)
(3.2.93)

with α ∈ {1, 2}. By definition of the weight factors of the forest W s1+1
l1

(Π1) and the tree T̂ s2+1
l2

, the
internal vertex zi is integrated over R− and zj is integrated over R+. Hence, for α = 1 we bound
(3.2.93) as follows

pB

(
1 + δ

Λ2
; zi, zj

)
≤ pB

(
1 + δ

Λ2
; zj , 0

)
. (3.2.94)

From a diagrammatic point of view, the bound (3.2.94) implies that the leg (zi, u) is amputated from
the forest W s1+1

l1
(Π1) and (zj , u) is replaced by (zj , 0) in the bulk tree T̂ s2+1

l2
, which produces the

surface tree T s2,0
l2

. As we explained in the proof of Lemma 3, the amputation of one external leg
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in the forest changes the number of vertices of incidence number 2 of the corresponding surface tree
T
sπ̃i−1,0

l1
(Yπ̃i , 0, z⃗π̃i) as follows for 1 ≤ l1 ≤ l − 1

ṽs12,i ≤ 3l − 3− 1 +
sπ̃i

2
+

1

2
≤ 3l − 2 +

sπ̃i

2
. (3.2.95)

For α = 2, we keep the integration over u and we write

pB

(
3(1 + δ)

2Λ2
; zi, zj

)
≤ pB

(
3(1 + δ)

2Λ2
; zj , 0

)
=

∫
R
du pB

(
1 + δ

Λ2
; 0, u

)
pB

(
1 + δ

2Λ2
;u, zj

)
≤ 2

∫ ∞

0
du pB

(
1 + δ

Λ2
; 0, u

)
pB

(
1 + δ

2Λ2
;u, zj

)
. (3.2.96)

From a diagrammatic point of view, the bound (3.2.96) implies that the leg (zi, u) is amputated from
the forest W s1+1

l1
(Π1) and (zj , u) is attached to (u, 0) in the bulk tree T̂ s2+1

l2
. Since α = 2, we deduce

that the surface tree in W s1+1
l1

(Π1) which contains the external vertex u, belongs to T
2,0
l1

. It contains
only the external vertex u and the surface external vertex 0. The amputation of (zi, u) lowers the
incidence number of zi by one and the process of amputation continues until the surface tree T 2,0

l1

becomes empty. Concerning the new tree obtained from T̂ s2+1
l2

, it has s2 external vertices and one
surface external vertex. Furthermore, the number of vertices of incidence number 2 of this tree is
v2 + 1, where v2 is the number of vertices of incidence number 2 of T̂ s2+1

l2
. Therefore, we have

v2 + 1 ≤ 3l2 − 1 +
s2 + 1

2
,

Remembering that l2 ≤ l − 1, we deduce that

v2 + 1 ≤ 3l − 2 +
s2 + 1

2
.

This proves that the new tree, which we denote by T s2,0
l2

is a surface tree and we deduce that
W s1

l1

(
Πs+1

1

)
∪ T s2,0

l2
belongs to Ws

l;π1,π2
(Π′′) with Π′′ = Πs+1

1 ∪ π12. Combining these arguments with
the bounds (3.2.94) and (3.2.96), we deduce that (3.2.92) is bounded by

O(1) F0
δ′′
(
Λ; τ+π1

, τ−π2
;W s

l

(
Π′′) ;Yσs

)
.

This gives (3.2.84). The same method of the proof gives also the bound (3.2.86).

Lemma 5. Let δ > 0, l ≥ 0 and s ≥ 2, we have

F∞
s,l;+;δ (Λ, z1, τ2,s, y2,s) ≤ Cs,l Fs,l;δ (Λ, z1, τ2,s, y2,s) , ∀ z1 ∈ R+ (3.2.97)

and
F∞
s,l;−;δ (Λ, z1, τ2,s, y2,s) ≤ Cs,l F

−
s,l;δ (Λ, z1, τ2,s, y2,s) , ∀ z1 ∈ R−. (3.2.98)

Cs,l is a positive constant that depends on s and l.
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Proof. Take s ≥ 2 and a tree T s
l (z1, y2,s, z⃗) ∈ Ts

l with z⃗ = (z2, · · · , zr+1) the set of its internal vertices.
We recall the definition (3.2.37):

F∞
δ;+ (Λ, τ2,s;T

s
l ; z1, y2,s) := sup

Λ≤ΛI≤Λ0

∫
R+q

dz⃗Ie

∫
Rr−q

dz⃗ c
1 Fδ (ΛI, τ2,s;T

s
l (z1, y2,s, z⃗)) , (3.2.99)

where
Fδ (ΛI, τ2,s;T

s
l (z1, y2,s, z⃗)) :=

∏
I∈I

pB

(
1 + δ

Λ2
I

; I

)∏
J∈J

pB(τJ,δ; J) . (3.2.100)

We write∫
R+q

dz⃗Ie

∫
Rr−q

dz⃗ c
∏
I∈I

pB

(
1 + δ

Λ2
I

; I

)∏
J∈J

pB(τJ,δ; J)

=

∫
R+q

dz⃗Ie

∏
J∈J

pB(τJ,δ; J)
∑

(π1,π2)

∫
(R+)r1

dz⃗ c
π1

∫
(R−)r2

dz⃗ c
π2

∏
I∈I

pB

(
1 + δ

Λ2
I

; I

)
, (3.2.101)

where the sum runs over all the partitions of length 2 of Ic
e and ri := |πi|. We perform the change of

variable z → −z for the variables integrated over R− and we use the bound

pB
(
τ ; z,−z′

)
≤ pB

(
τ ; z, z′

)
, ∀z, z′ ≥ 0 (3.2.102)

to deduce that
F∞
δ;+ (Λ, τ2,s;T

s
l ; z1, y2,s) ≤ 2r−q Fδ (Λ, τ2,s;T

s
l ; z1, y2,s) . (3.2.103)

Denoting by |Vi(T s
l )| the cardinality of the set of the internal vertices of the tree T s

l and remembering
(3.2.39), we deduce

F∞
s,l;+;δ (Λ, z1, τ2,s, y2,s) ≤ Cs,l Fs,l;δ (Λ, z1, τ2,s, y2,s) , (3.2.104)

where Cs,l := maxT s
l ∈Ts

l
2|Vi(T

s
l )|. Performing a change of variable z → −z for the internal vertices z⃗Ie

and summing over the trees T s
l , we have

F∞
s,l;−;δ (Λ, z1, τ2,s, y2,s) = F∞

s,l;+;δ (Λ,−z1, τ2,s,−y2,s) . (3.2.105)

Using the bound (3.2.104) together with (3.2.105), we deduce

F∞
s,l;−;δ (Λ, z1, τ2,s, y2,s) ≤ Cs,l Fs,l;δ (Λ,−z1, τ2,s,−y2,s) . (3.2.106)

which after a change of variable z → −z for the internal vertices z⃗ of the trees T s
l is bounded by

Cs,l F
−
s,l;δ (Λ, z1, τ2,s, y2,s) . (3.2.107)

This ends the proof of lemma 5.



Chapter 4

Renormalization of the semi-infinite
massive ϕ4 model: General counter-terms

4.1 Introduction

In the present chapter, we establish a rigorous proof of the perturbative renormalizability of
the semi-infinite model based on the Polchinski flow equation. This model appeared in 1971 [40] as
a simple model that allows to study surface effects alone disentangled from the finite size effects. It
is defined starting from the massive ϕ44 model in infinite space, with the difference that it is defined
on a half space bounded by a plane. We consider this model with three types of boundary conditions
which are Dirichlet, Neumann and Robin boundary conditions (b.c.). From a mathematical point of
view, each of these b.c. corresponds to a self-adjoint extension of the Laplacian in R+ × R3. As we
explained in chapter 1, the self-adjointness of the Laplacian is a key property to define the propagator
of a quantum field theory. Each boundary condition defines a particular propagator and thus a different
theory. This chapter is organized as follows: In section 4.2 we define the regularized flowing propagator
and present the considered action together with the system of perturbative flow equations satisfied by
the connected amputated Schwinger distributions (CAS). Section 4.3 will be devoted to prove some
regularity properties of the support of the Gaussian measure associated to the regularized propagator.
To establish bounds on the CAS, which are distributions, they have to be folded first with test functions.
In section 4.4.1 a suitable class of test functions is introduced that will be used in the bounds on
the CAS to be derived. In section 4.4.2 we state the boundary and the renormalization conditions
used to integrate the flow equations of the irrelevant and relevant terms respectively. Section 4.5 is
the central one of this chapter. We state and prove inductive bounds on the amputated Schwinger
distributions folded with the introduced test functions which, being uniform in the cutoff, directly lead
to renormalizability.

59
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4.2 The Action and the flow equations

We will analyze the perturbative renormalizability of the semi-infinite ϕ44 theory with Robin bound-
ary conditions. It will be proved by analyzing the generating functional LΛ,Λ0 of connected amputated
Schwinger distributions (CAS). The upper indices Λ0 and Λ enter through the regularized propagator.
We choose the following regularization

CΛ,Λ0

R (p; z, z′) =

∫ 1
Λ2

1

Λ2
0

dλ e−λ(p2+m2)pR(λ; z, z
′) . (4.2.1)

Clearly, CΛ,Λ0

R verifies the b.c. (2.4.33). For Λ → 0 and Λ0 → ∞ we recover the unregularized
propagator (2.4.29). We denote

ĊΛ
R(p; z, z

′) =
∂

∂Λ
CΛ,Λ0

R (p; z, z′) = ĊΛ(p) pR

(
1

Λ2
; z, z′

)
, (4.2.2)

where ĊΛ(p) = − 2
Λ3 e

− p2+m2

Λ2 . In the sequel, we use the following estimate for the 3-dimensional
propagator. Given w ∈ N3 and a polynomial P, we have∣∣∣∂wĊΛ(p)P

( p
Λ

)∣∣∣ ≤ (Λ +m)−3−|w|
P̃

(
|p|

Λ +m

)
, (4.2.3)

with P̃ a new polynomial with positive coefficients that depend only on the coefficients of P and w.
We assume 0 ≤ Λ ≤ Λ0 <∞ so that the flow parameter Λ takes the role of an infrared cutoff, whereas
Λ0 is a UV cutoff. The full propagator is recovered for Λ = 0 and Λ0 → ∞. For finite Λ0 and in finite
volume the positivity and the regularity properties of CΛ,Λ0

R permit to define the theory rigorously
from the functional integral

e−
1
ℏ(L

Λ,Λ0 (ϕ)+IΛ,Λ0) : =

∫
dµΛ,Λ0,R(Φ) e

− 1
ℏL

Λ0,Λ0 (Φ+ϕ) , (4.2.4)

LΛ,Λ0(0) = 0 ,

where the factors of ℏ have been introduced to allow for a consistent loop expansion in the sequel.
Here, dµΛ,Λ0,R denotes the Gaussian measure with covariance ℏ CΛ,Λ0

R . The test functions ϕ and Φ

belong to the support of the Gaussian measure dµΛ,Λ0,R, which in particular implies that they are in
C∞ (R+ × R3

)
as we will prove in section 4.5. The normalization factor e−

1
ℏ I

Λ,Λ0 is due to vacuum
contributions.

The functional LΛ0,Λ0(ϕ) is the bare interaction of a renormalizable theory including counter-terms,
viewed as a formal power series in ℏ. Since translation invariance is broken in the z-direction (the semi-
line), all counter-terms may be z-dependent. In general, the constraints on the bare action result from
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the symmetry properties of the theory which are imposed, on its field content and on the form of the
propagator. It is therefore natural to consider the general bare interaction

LΛ0,Λ0(ϕ) =
λ

4!

∫
V
ϕ4(z, x) +

1

2

∫
V

(
aΛ0(z)ϕ2(z, x)− bΛ0(z)ϕ(z, x)∆xϕ(z, x)

− dΛ0(z)ϕ(z, x)∂2zϕ(z, x) + sΛ0(z)ϕ(z, x)(∂zϕ)(z, x) +
2

4!
cΛ0(z)ϕ4(z, x)

)
.

Here we supposed the theory to be symmetric under ϕ→ −ϕ , and we included only relevant terms with
respect to (4.2.4) in the sense of the renormalization group. The functions aΛ0(z), bΛ0(z), cΛ0(z), dΛ0(z)

and sΛ0(z) are supposed to be smooth. As we will explain later, it is a consequence of smooth imposed
renomalization conditions together with the regularity of the regularized flowing propagator.
The flow equation (FE) is obtained from (4.2.4) on differentiating w.r.t. Λ. It is obtained following the
same steps that led to the flow equation (1.1.15). It is a differential equation for the functional LΛ,Λ0 :

∂Λ(L
Λ,Λ0 + IΛ,Λ0) =

ℏ
2
⟨ δ
δϕ
, ĊΛ

R

δ

δϕ
⟩LΛ,Λ0 − 1

2
⟨ δ
δϕ
LΛ,Λ0 , ĊΛ

R

δ

δϕ
LΛ,Λ0⟩ . (4.2.5)

By ⟨, ⟩ we refer to the standard inner product in L2(R+ × R3).
We may expand the functional LΛ,Λ0(ϕ) in a formal power series w.r.t. ℏ,

LΛ,Λ0(ϕ) =
∞∑
l=0

ℏlLΛ,Λ0

l (ϕ) .

Corresponding expansions for aΛ0(z), bΛ0(z)..., are aΛ0(z) =
∑∞

l=0 ℏla
Λ0
l (z), etc. From LΛ,Λ0

l (ϕ) we
obtain the CAS distributions of loop order l as

L
Λ,Λ0

l,n ((z1, x1), · · · , (zn, xn)) := δϕ(z1,x1) · · · δϕ(zn,xn)L
Λ,Λ0

l |ϕ=0 ,

where we used the notation δϕ(z,x) = δ/δϕ(z, x) .
Since translation invariance in the x-directions is preserved, we will use in all what follows a mixed
representation, where the Fourier transform to p-space is performed only with respect to x ∈ R3. In
this representation, we set

L
Λ,Λ0

l,n (z1; p⃗n; Φn) =

∫ ∞

0
dz2 · · · dzn L

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))ϕ2(z2) · · ·ϕn(zn) . (4.2.6)

Here we denote

Φn(z2, · · · , zn) :=
n∏

i=2

ϕi(zi)

and

δ(3)(p1 + · · ·+ pn)L
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn)) = (2π)3(n−1) δn

δϕ(z1, p1) · · · δϕ(zn, pn)
LΛ,Λ0

l (ϕ)|ϕ≡0 .
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The δ(3)(p1 + · · · + pn) appears because of the translation invariance in the x directions. The FE for
the CAS distributions derived from (4.2.5) are [13]

∂Λ∂
wL

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))

=
1

2

∫
z

∫
z′

∫
k
∂wLΛ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
ĊΛ
R(k; z, z

′)

− 1

2

∫
z

∫
z′

′∑
l1,l2

′∑
n1,n2

∑
wi

cw

[
∂w1L

Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1pn1), (z, p))∂
w3ĊΛ

R(p; z, z
′)

× ∂w2L
Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

]
rsym

,

p = −p1 − · · · − pn1 = pn1+1 + · · ·+ pn . (4.2.7)

Note that we wrote (4.2.7) directly in a form where a number |w| of momentum derivatives, charac-
terized by a multi-index, act on both sides and we used the shorthand notation (1.1.19). The symbol
"rsym" means summation over those permutations of the position-momenta (z1, p1), · · · ,(zn, pn), which
do not leave invariant the (unordered) subsets ((z1, p1), · · · , (zn1 , pn1)) and ((zn1+1, pn1+1) , · · · , (zn, pn)),
and therefore, produce mutually different pairs of (unordered) image subsets, and the primes restrict
the summations to n1 + n2 = n, l1 + l2 = l, w1 + w2 + w3 = w, respectively.

4.3 Regularity of the support of the regularized gaussian measure

The bare interaction LΛ0,Λ0 consists of powers of the field ϕ and of its derivatives. It can not be
given any mathematical meaning if the field ϕ is not sufficiently regular, e.g. at least in C2

(
R+ × R3

)
.

In this section, we prove that the field ϕ belongs to C∞(R+ ×R3) . This result is due to the regularity
properties of the support of the regularized Gaussian measure.
For this we will consider the UV-regularized propagator without infrared cut-off

CΛ0
R (p;x, y) =

∫ ∞

1

Λ2
0

dλ e−λ(p2+m2)pR(λ;x, y),

assuming that Λ0 ≥ 1, p ∈ R3 and x, y ∈ R+. The same arguments work for the Gaussian measure
associated to the propagator CΛ,Λ0

R (p;x, y). The main result of this section is the following proposition:

Proposition 5. Let µΛ0,R be the gaussian measure associated to the propagator CΛ0
R . The support of

µΛ0,R satisfies
suppµΛ0,R ⊂

⋂
n≥1

{(
−∆R +m2

)−n
f | f ∈ L2

(
R+ × R3

)}
.

The proof of Proposition 5 is based on the following corollary of the Minlos theorem [23] and [41]:
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Corollary 2. Given a nuclear space E, µ a measure on E′, and C its characteristic function, we
introduce a continuous inner product (·, ·)0 on E and let H0 be the completion of E with respect to
(·, ·)0. Suppose that C is continuous on H0. Let T be a Hilbert-Schmidt operator on H0 satisfying:

(a) T is one to one (injective map).

(b) E ⊂ ImT and T−1(E) is dense in H0 .

(c) The map T−1 : E → H0 is continuous.

Then the support of µ is on (T−1)∗H ′
0 ⊂ E′. The notations (T−1)∗ and H ′

0 are used for the "adjoint"
and the "dual space" in the pairing between E and E′.

For a proof of this corollary see [23]- [41].

Proof. We apply Corollary 2 to E = S(R+ × R3) ∼= S(R+) ⊗ S(R3) . This is a nuclear space which
is a tensor product of two nuclear spaces. See [42] for the proof that S(R+) is a nuclear space. The
theorem A.4.1 in [25] implies the existence of the Gaussian measure µΛ0,R with covariance CΛ0

R with
support included in S′(R+ × R3). We apply the corollary of Minlos’s theorem to the scalar product
⟨f, g⟩n := ⟨f, P−2ng⟩ where ⟨ , ⟩ is the usual scalar product in L2

(
R+ × R3

)
, and P = −∆R +m2. Pn

is a unitary map from L2(R+ × R3) into H−n, the completion of S(R+ × R3) with respect to ⟨ , ⟩n .
First, we shall verify that the regularized covariance is continuous on H−n for any n ∈ N, that is

∃C > 0 such that ∀f, g ∈ H−n :
∣∣∣⟨f, CΛ0

R g⟩
∣∣∣ ≤ C∥f∥H−n∥g∥H−n .

One can verify that the operators CΛ0
R and

(
−∆R +m2

)−n commute. Since
(
−∆R +m2

)−n is self-
adjoint, we obtain

⟨f, CΛ0
R g⟩ =

〈(
−∆R +m2

)−n
f,
(
−∆R +m2

)2n
CΛ0
R

(
−∆R +m2

)−n
g
〉
. (4.3.1)

By the Cauchy-Schwarz inequality we obtain

∣∣∣⟨f, CΛ0
R g⟩

∣∣∣ ≤ ∫ d3p

(2π)3

∥∥∥(−∆R +m2
)−n

f
∥∥∥
2

×
∥∥∥(−∆R +m2

)2n
CΛ0
R

(
−∆R +m2

)−n
g
∥∥∥
2
, (4.3.2)

where for u ∈ L2(R+ × R3) we write

∥u∥2 :=
(∫

R+

dz |u(z, p)|2
) 1

2



64 GENERAL COUNTER-TERMS

and∥∥∥(−∆R +m2
)2n

CΛ0
R

(
−∆R +m2

)−n
g
∥∥∥2
2

:=

∫ ∞

0
dx

∣∣∣∣∫ ∞

0
dy
(
−∆R +m2

)2n
x
CΛ0
R (p;x, y)

∫ ∞

0
dz
(
−∆R +m2

)−n
(p; y, z)g(z, p)

∣∣∣∣2 . (4.3.3)

Again by the Cauchy-Schwarz inequality, we obtain∣∣∣∣∫ ∞

0
dy
(
−∆R +m2

)2n
x
CΛ0
R (p;x, y)

∫ ∞

0
dz
(
−∆R +m2

)−n
(p; y, z)g(z, p)

∣∣∣∣2
≤
∫ ∞

0
dy
∣∣∣(−∆R +m2

)2n
x
CΛ0
R (p;x, y)

∣∣∣2 ∥∥∥(−∆R +m2
)−n

g
∥∥∥2
L2(R+)

. (4.3.4)

Therefore (4.3.2) is bounded by(∫ ∞

0
dx

∫ ∞

0
dy
∣∣∣(−∆R +m2

)2n
x
CΛ0
R (p;x, y)

∣∣∣2)∥∥∥(−∆R +m2
)−n

g
∥∥∥2
L2(R+)

. (4.3.5)

We have(
−∆R +m2

)2n
x
CΛ0
R (p;x, y) =

∫ ∞

1

Λ2
0

dλ e−λ(p2+m2)
(
−∂2x + p2 +m2

)2n
pR(λ;x, y). (4.3.6)

Using the Leibniz formula we get

(
−∂2x + p2 +m2

)2n
pR(λ;x, y) =

2n∑
k=0

(
2n

k

)
(−1)k(p2 +m2)2n−k∂2kx pR(λ;x, y) . (4.3.7)

One can prove by induction

∂2kx

(
1√
2πλ

e−
(x−y)2

2λ

)
= λ−k

k∑
i=0

ci(k)

(
x− y√
λ

)i( 1√
2πλ

e−
(x−y)2

2λ

)
, (4.3.8)

where ci(k) ∈ R, which implies that∣∣∣∂2kx pB(λ;x, y)
∣∣∣ ≤ ck λ

−kpB(2λ;x, y) .

Here ck is a positive constant. Therefore we find using (2.4.31) and (2.4.32) that∣∣∣∂2kx pR(λ;x, y)
∣∣∣ ≤ ck λ

−k

(
pB(2λ;x, y) + pB(2λ;x,−y) + 2

∫ ∞

0
dw e−wpB

(
2λ;x,−w

c
− y
))

.

Using that

2

∫ ∞

0

dw√
2πλ

e−we−
(x+y+w

c )
2

2λ = pN (λ;x, y)− pR(λ;x, y) ,
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we obtain∣∣∣∂2kx pR(λ;x, y)
∣∣∣ ≤ ck λ

−k (pB(2λ;x, y) + pB(2λ;x,−y) + pN (2λ;x, y)− pR(2λ;x, y))

≤ 2ck λ
−kpN (2λ;x, y),

and this implies that∣∣∣(−∂2x + p2 +m2
)2n

pR(λ;x, y)
∣∣∣ ≤ 2Cn

2n∑
k=0

λ−k(p2 +m2)2n−kpN (2λ;x, y).

where Cn := sup1≤k≤n ck.
Therefore we obtain∣∣∣(−∆R +m2

)2n
CΛ0
R (p;x, y)

∣∣∣ ≤ C̃n Λ4n
0

2n∑
k=0

(
p2 +m2

Λ2
0

)2n−k ∫ ∞

1

Λ2
0

dλ e−λ(p2+m2)pN (2λ;x, y) ,

where we used that
pR(τ ;x, y) ≤ pN (τ ;x, y) ∀τ > 0, ∀(x, y) ∈ (R+)2 .

Cn and C̃n are suitable positive constants that depend on n .
We have by Cauchy-Schwarz∣∣∣∣∣∣

∫ ∞

1

Λ2
0

dλ e−λ(p2+m2)pN (2λ;x, y)

∣∣∣∣∣∣
2

≤ e
− p2+m2

Λ2
0

∫ ∞

1

Λ2
0

dλe−λ(p2+m2)|pN (2λ;x, y)|2

≤ 4Λ0√
2π
e
− p2+m2

Λ2
0

∫ ∞

0
dλ e−λ(p2+m2) 1√

2πλ
e−

(x−y)2

2λ

≤ 4Λ0√
2π
e
− p2+m2

Λ2
0

e−
√

p2+m2|x−y|√
p2 +m2

,

where we used
e−

(x+y)2

2λ ≤ e−
(x−y)2

2λ , ∀(x, y) ∈ (R+)2.

Therefore we obtaine the following bound for the first factor from (4.3.5)

(∫ ∞

0
dx

∫ ∞

0
dy
∣∣∣(−∆R +m2

)2n
CΛ0
R (p;x, y)

∣∣∣2) ≤ Λ8n+1
0 P

(
p2 +m2

Λ2
0

)
e
− p2+m2

Λ2
0

(p2 +m2)
3
2

, (4.3.9)

where P is a suitable polynomial with positive coefficients. All constants were absorbed in the poly-
nomial P, and we obtain the final bound for (4.3.1) using again the Cauchy-Schwarz inequality w.r.t.
the momenta p ,∣∣∣⟨f, CΛ0

R g⟩
∣∣∣ ≤ CΛ0

∥∥∥(−∆R +m2
)−n

f
∥∥∥
L2(R+·R3)

∥∥∥(−∆R +m2
)−n

g
∥∥∥
L2(R+×R3)

= CΛ0∥f∥H−n · ∥g∥H−n , (4.3.10)
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The constant CΛ0 depends on Λ0. To obtain (4.3.10), we have performed the p-integral in (4.3.2) using
the bound (4.3.9).

We apply Corollary 2 with T = P−2 : H−n → H−n. The operator P−2 is integral with a kernel given
by

k (p;x, y) :=

∫
R+

du

4(p2 +m2)

(
e−

√
p2+m2|x−u| +

√
p2 +m2 − c√
p2 +m2 + c

e−
√

p2+m2|x+u|

)

×

(
e−

√
p2+m2|y−u| +

√
p2 +m2 − c√
p2 +m2 + c

e−
√

p2+m2|y+u|

)
. (4.3.11)

Note that (4.3.11) is bounded as follows

k (p;x, y) ≤
∫ ∞

0
du e−

√
p2+m2|x−u| e−

√
p2+m2|y−u|(√

p2 +m2 + c
)2 .

Remembering that P−n is bounded on L2
(
R+ × R3

)
, we obtain

∥k∥2H−n
=

∫
R3

d3p

(2π)3

∫
R+

∫
R+

dx dy
∣∣∣(−∂2x + p2 +m2

)−n
k(p;x, y)

∣∣∣2 ≤ C ∥k∥2L2(R+×R3) . (4.3.12)

Using

∥k∥2L2(R+×R3) ≤
∫

R3

d3p

(2π)3
1(√

p2 +m2 + c
)4 (∫ ∞

0
dx du e−2

√
p2+m2|x−u|

)2

≤ C

∫
R3

d3p

(2π)3
1

(p2 +m2)4
<∞ for suitable C > 0 ,

we deduce that T is Hilbert-Schmidt on H−n. Clearly, T is injective and T−1
(
S
(
R+ × R3

))
⊂

S
(
R+ × R3

)
, which is by definition dense in H−n. The other assumptions of corollary 2 can be verified

easily. Since the dual of H−n is the space Hn of functions whose image under Pn is in L2, we obtain
the the Gaussian measure µΛ0,R is supported on the set

{
P 2−nf, f ∈ L2(R+ × R3)

}
. This holds for

any n ∈ N∗ which implies that µΛ0,R has its support within the set

⋂
n≥1

{(
−∆R +m2

)−n
L2
(
R+ × R3

)}
.
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4.4 Boundary and renormalization conditions

4.4.1 Test functions

Standard proofs of perturbative renormalizability by flow equations use inductive bounds on
the n-point correlation functions. These objects are no more functions if considered in the mixed
position-momentum space, but rather tempered distributions. We introduce tempered distributions in
S′ ((R+)n) w.r.t. the semi-norms

n∏
i=1

N2 (ϕi) ,

where N2(ϕ) := sup0≤α,β≤2

∥∥(1 + zβ)∂αz ϕ(z)
∥∥
∞ and ∂zϕ|z=0 = limz→0+ ∂zϕ . The space S′((R+)n) can

be regarded as the topological dual of the space

S((R+)n) :=
{
χ+(z)ϕ(z) | ϕ ∈ S(Rn)

}
, (4.4.1)

with χ+ denoting the characteristic function of the space R+. For an extensive topological study of
the space S(R+) and its dual space S′(R+), we refer the reader to [42].

We now introduce test functions against which L
Λ,Λ0

l,n will be integrated. In the sequel we will bound
the CAS folded with test functions of the following form:
Let 1 ≤ s ≤ n, we define

τ := inf τ2,s where τ2,s = (τ2, · · · , τs) with τi > 0,

and similarly z2,s = (z2, · · · , zs). Given y2, · · · , ys ∈ R+, we define

ϕRτ2,s,y2,s(z2,s) :=
s∏

i=2

pR(τi; zi, yi)
n∏

i=s+1

χ+(zi) , (4.4.2)

where χ+(zi) is the characteristic function of the semi-line R+. This definition can be generalized by
choosing any other subset of s coordinates among z2, · · · , zn . We also define for 2 ≤ j ≤ s

ϕR,(j)
τ2,s,y2,s(z2,n) := p

(1)
R (τj ; zj , z1; yj)

s∏
i=2,i ̸=j

pR(τi; zi, yi)

n∏
i=s+1

χ+(zi) (4.4.3)

with
p
(1)
R (τj ; zj , z1; yj) = pR(τj ; zj , yj)− pR(τj ; z1, yj) . (4.4.4)

Our choice of the test functions is not optimal, in the sense that the proof of renormalizability given
in section 4.5 holds also for larger classes of test functions indexed by a strictly positive parameter τ
such that

|∂αz ϕτ (z)| ≤ τ−
α
2 |ϕτ (z)| ∀z ∈ R+ , ∀α ≥ 0 .
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We choose a simple example of these functions, which are the Robin heat kernels. To go further one
could either prove (in a more functional analysis type of approach) that our test functions are dense in
the set of smooth rapidly decaying functions on R+ w.r.t. a suitable norm and that L

Λ,Λ0

l,n (z1; p⃗n; Φn)

are continuous w.r.t. this semi-norm.

4.4.2 Relevant terms and renormalization conditions

First, let us introduce some notations that we will be using through out the rest of this chapter:

∫
z
:=

∫
R+

dz,

∫
z2,n

:=

∫
(R+)n−1

dz2 · · · dzn,
∫
p
:=

∫
R3

d3p

(2π)3
, (4.4.5)

(z⃗n, p⃗n) = (z1, p1), · · · , (zn, pn), (z⃗i,j , p⃗i,j) = (zi, pi), · · · , (zj , pj), for i < j . (4.4.6)

Given test functions ϕi ∈ S(R+), we define

Φ4 (z2, z3, z4) :=

4∏
i=1

ϕi(zi).

The relevant terms in the bare interaction are fixed by renormalization conditions at the value Λ = 0

of the flow parameter, all other boundary terms are fixed at Λ = Λ0. To extract the relevant terms
contained in

L
Λ,Λ0

l,2

(
z1; 0⃗;ϕ2

)
:=

∫
z2

L
Λ,Λ0

l,2 ((z1, 0), (z2, 0))ϕ2(z2) (4.4.7)

and

L
Λ,Λ0

l,4

(
z1; 0⃗; Φ4

)
:=

∫
z2,4

L
Λ,Λ0

l,4 ((z1, 0), · · · , (z4, 0))
4∏

i=2

ϕi(zi) , (4.4.8)

we use a Taylor expansion of the test functions ϕ2 and Φ4, which gives

L
Λ,Λ0

l,2

(
z1; 0⃗;ϕ2

)
= aΛ,Λ0

l (z1)ϕ2(z1)− sΛ,Λ0

l (z1)(∂z1ϕ2)(z1) + dΛ,Λ0

l (z1)(∂
2
z1ϕ2)(z1)

+ lΛ,Λ0

l,2 (z1;ϕ2) , (4.4.9)(
∂p2L

Λ,Λ0

l,2

)(
z1; 0⃗;ϕ2

)
= bΛ,Λ0

l (z1)ϕ2(z1) +
(
∂p2 l

Λ,Λ0

l,2

)
(z1;ϕ2) , (4.4.10)

L
Λ,Λ0

l,4

(
z1; 0⃗; Φ4

)
= cΛ,Λ0

l (z1)ϕ2(z1)ϕ3(z1)ϕ4(z1) + lΛ,Λ0

l,4 (z1; Φ4) . (4.4.11)



4.4. BOUNDARY AND RENORMALIZATION CONDITIONS 69

Then the relevant terms appear as

aΛ,Λ0

l (z1) =

∫
z2

L
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (4.4.12)

sΛ,Λ0

l (z1) =

∫
z2

(z1 − z2)L
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (4.4.13)

dΛ,Λ0

l (z1) =
1

2

∫
z2

(z1 − z2)
2L

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (4.4.14)

bΛ,Λ0

l (z1) =

∫
z2

∂p2
(
L

Λ,Λ0

l,2 ((z1, p), (z2,−p))
)
|p=0

, (4.4.15)

cΛ,Λ0

l (z1) =

∫
z2,4

L
Λ,Λ0

l,4 ((z1, 0), · · · , (z4, 0)) , (4.4.16)

and the remainders lΛ,Λ0

l,2 (z1;ϕ2),
(
∂p2 l

Λ,Λ0

l,2

)
(z1;ϕ2) and lΛ,Λ0

l,4 (z1; Φ4) are given by

lΛ,Λ0

l,2 (z1;ϕ2) =

∫
z2

∫ 1

0
dt
(1− t)2

2!
∂3t ϕ2 (tz2 + (1− t)z1)L

Λ,Λ0

l,2 ((z1; 0), (z2; 0)) , (4.4.17)

(
∂p2 l

Λ,Λ0

l,2

)
(z1;ϕ2) =

∫
z2

∫ 1

0
dt ∂tϕ2 (tz2 + (1− t)z1) ∂p2

(
L

Λ,Λ0

l,2 ((z1, p), (z2,−p))
)
|p=0

,

and

lΛ,Λ0

l,4 (z1; Φ4) =

∫
z2,4

L
Λ,Λ0

l,4 ((z1, 0), · · · , (z4, 0))
[∫ 1

0
dt ∂tϕ2 (tz2 + (1− t)z1)ϕ3(z3)ϕ4(z4)

+ϕ2(z1)

∫ 1

0
dt ∂tϕ3 (tz3 + (1− t)z1)ϕ4(z4) + ϕ2(z1)ϕ3(z1)

∫ 1

0
dt ∂tϕ4 (tz4 + (1− t)z1)

]
. (4.4.18)

Boundary conditions at Λ = Λ0:
At Λ = Λ0, we include the counter-terms that are required to make L

Λ,Λ0

l,n finite as the cutoffs are
removed (i.e. Λ0 → +∞, Λ → 0). The form of these counter-terms is not known, but in any case
they must be local functionals not exceeding a certain dimension. Hence, this aspect of the boundary
conditions can be imposed at Λ = Λ0:

L
Λ0,Λ0

l,n ((z1, p1), · · · , (zn, pn)) = 0, ∀n ≥ 5, L
Λ0,Λ0
0,2 ((z1, p), (z2,−p)) = 0 ,

L
Λ0,Λ0

l,4 ((z1, p1), · · · , (z4, p4)) =
(
cΛ0
l (z1)(1− δl,0) + λδl,0

) 4∏
i=2

δ(z1 − zi) , (4.4.19)

L
Λ0,Λ0

l,2 ((z1, p), (z2,−p)) =
(
aΛ0
l (z1) + bΛ0

l (z1)p
2 + sΛ0

l (z1)∂z1 − dΛ0
l (z1)∂

2
z1

)
δ(z1 − z2), ∀l ≥ 1.

Renormalization conditions at Λ = 0

The renormalization conditions are fixed at Λ = 0 by imposing

a0,Λ0

l (z1), s0,Λ0

l (z1), d0,Λ0

l (z1), b0,Λ0

l (z1), c0,Λ0

l (z1)
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to be smooth functions in C∞(R+), uniformly bounded w.r.t. Λ0.
Typically all the renormalization conditions are assumed to be cutoff-independent. The simplest renor-
malization conditions are BPHZ-renormalization conditions, where we set for all z1 ≥ 0

a0,Λ0

l (z1) ≡ 0, s0,Λ0

l (z1) ≡ 0, d0,Λ0

l (z1) ≡ 0, b0,Λ0

l (z1) ≡ 0, c0,Λ0

l (z1) ≡ 0 . (4.4.20)

These will be adopted in the following.

4.5 Proof of renormalizability

4.5.1 Notations

For n ≥ 2 and 0 ≤ r ≤ 3, we define

L
Λ,Λ0

l,n;r (z1; p⃗n;ϕ
R
τ2,s,y2,s) :=

∫
z2,n

(z1 − zi)
r L

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))
s∏

i=2

pR (τi; zi, yi) , (4.5.1)

and for n ≥ 3

F12L
Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ3,s,y3,s) := (z1 − z2)

3

∫
z3,n

L
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))
s∏

i=3

pR (τi; zi, yi) . (4.5.2)

For n = 2 we write

F12L
Λ,Λ0

l,2 (z1, z2; p) := (z1 − z2)
3 L

Λ,Λ0

l,2 ((z1, p), (z2,−p)) . (4.5.3)

4.5.2 Results

In this subsection, we gathered the main results of this chapter. The following theorem establishes the
uniform boundedness w.r.t. the UV-cutoff Λ0 of the Robin correlation distributions:

Theorem 7. (Boundedness) We consider 0 ≤ Λ ≤ Λ0 < ∞, 1 ≤ s ≤ n, 2 ≤ j ≤ s and 0 ≤ r ≤ 3.
We consider test functions either of the form (4.4.2)-(4.4.3), which are also denoted in shorthand as
ϕRτ2,s,y2,s resp. ϕR,(j)

τ2,s,y2,s . Adopting (4.4.20) we claim

(A)
∣∣∣∂wLΛ,Λ0

l,n;r (z1; p⃗n;ϕ
R
τ2,s,y2,s)

∣∣∣
≤ (Λ +m)4−n−|w|−r

P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
Q1

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) . (4.5.4)

(B)
∣∣∣F12L

Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ3,s,y3,s)

∣∣∣
≤ (Λ +m)1−n

P3

(
log

Λ +m

m

)
P4

(
∥p⃗n∥
Λ +m

)
F12
s,l;δ (Λ, τ3,s) . (4.5.5)
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(C)
∣∣∣∂wLΛ,Λ0

l,n (z1; p⃗n;ϕ
R,(j)
τ2,s,y2,s)

∣∣∣
≤ (Λ +m)3−n−|w| τ

− 1
2

j P5

(
log

Λ +m

m

)
P6

(
∥p⃗n∥
Λ +m

)
Q2

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) . (4.5.6)

(D) The functions defined in (4.5.1), (4.5.2) and (4.5.3) together with their momentum derivatives are
in C∞ (R+) w.r.t. z1 .
Here and in the following the Pi and Qi denote (each time they appear possibly new) polynomials with
nonnegative coefficients. The polynomials Qi are reduced to a constant if s = 1. The coefficients depend
on l, n, |w|, δ but not on {pi}, Λ, Λ0 and z1. For l = 0, all polynomials Pi reduce to constants. In the
definition of (3.2.32), δ > 0 may be chosen arbitrarily small.

Theorem 8. (Convergence) Let 0 ≤ Λ ≤ Λ0 < ∞. Using the same notations, conventions and
adopting the same renormalization conditions (4.4.20) as in Theorem 7, we have the following bounds

∣∣∣∂Λ0∂
wL

Λ,Λ0

l,n;r (z1; p⃗n;ϕ
R
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)5−n−|w|−r

(Λ0 +m)2
P̃1

(
log

Λ0 +m

m

)
× P̃2

(
∥p⃗n∥
Λ +m

)
Q̃1

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ(τ2,s) ∀n+ |w|+ r ≥ 4, (4.5.7)

∣∣∣∂Λ0∂
wL

Λ,Λ0

l,2 (z1; p,−p;ϕRτ2,y2)
∣∣∣

≤ (Λ +m)3−|w|

(Λ0 +m)2
P̃3

(
log

Λ0 +m

m

)
P̃4

(
∥p⃗n∥
Λ +m

)
Q̃2

 τ
− 1

2
2

Λ +m

FΛ
2,l;δ(τ2) , (4.5.8)

∣∣∣∂Λ0F12L
Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ3,s,y3,s)

∣∣∣
≤ (Λ +m)2−n

(Λ0 +m)2
P̃5

(
log

Λ0 +m

m

)
P̃6

(
∥p⃗n∥
Λ +m

)
F12
s,l;δ(Λ, τ3,s) ∀n ≥ 2 , (4.5.9)

∣∣∣∂Λ0L
Λ,Λ0

l,n (z1; p⃗n;ϕ
R,(j)
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)4−n

(Λ0 +m)2
τ
− 1

2
j P̃7

(
log

Λ0 +m

m

)
× P̃8

(
∥p⃗n∥
Λ +m

)
Q̃3

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) ∀n ≥ 4 . (4.5.10)

Note that the integration of the bounds (4.5.7) and (4.5.8) over Λ0 immediately proves the convergence
of all LΛ,Λ0

l,n (z1, p⃗n;ϕ
R
τ2,s,y2,s) for fixed Λ to finite limits when Λ0 → ∞. In particular, one obtains for
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all Λ′
0 > Λ0 and p⃗n ∈ R3n

∣∣∣L0,Λ0

l,n (z1; p⃗n;ϕ
R
τ2,s,y2,s)−L

0,Λ′
0

l,n (z1; p⃗n;ϕ
R
τ2,s,y2,s)

∣∣∣
<
m5−n

Λ0

(
log

Λ0 +m

m

)ν

P̃2

(
∥p⃗n∥
m

)
Q̃1

(
τ−

1
2

m

)
Fs,l (0, τ2,s, z1, y2,s) .

Then the Cauchy criterion in C∞(R+) w.r.t. to Λ0 implies the existence of finite limits to all loop
orders.

Remarks 1.

- The bounds (4.5.5) and (4.5.6) are required to close the inductive argument in the subsequent
proof. The bound (4.5.4) is the central result of the boundedness Theorem 7 needed later in
Thereom 8 to prove the convergence of LΛ,Λ0

l,n (z1; p⃗n;ϕ
R
τ2,s,y2,s) in the limits Λ → 0 and Λ0 → ∞.

- The role of the parameter τ as it appears in the proof, is to absorb negative powers of the flow
parameter Λ by producing powers of τ

Λ+m that contribute to the polynomial Q at each step of the
induction. This preserves the global power counting in terms of Λ +m.

- The parameter δ depends on the loop order l and it verifies 0 < δl < δl+1 <
1
2 . For simplicity,

we omit the index l.

- The value of the integral ∫ ∞

0
dw δw (4.5.11)

admits two possible choices, which are 1 and 1
2 . These two choices are called respectively, the

weak and strong definitions of the Dirac distribution [43].
The subsequent proof uses the strong definition of the Dirac distribution. For the weak definition,
all the points of Theorem 7 hold except for (D). In the weak convention, the functions defined in
(4.5.1), (4.5.2) and (4.5.3) are in C∞ (R+∗) w.r.t. z1 and are not continuous at 0. One can
verify that the proof of renormalizability is independent of the chosen convention. This comes
from the fact that for a continuous function f , in both conventions, we have that∫ ∞

0
dz

(∫ ∞

0
dz′ δ(z − z′)

)
f(z) =

∫ ∞

0
dz f(z).

4.5.3 Useful lemmas

Before getting the proof of the theorems 7 and 8, we collect and prove some useful lemmas which are
used repeatedly in the inductive proof of the bounds (4.5.4)-(4.5.6):
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Lemma 6. For all t, u , v and y in R+, τ > 0 and some constant Ck,δ > 0, we have∣∣∣∂kt pB (τ ; tu+ (1− t)v, y)
∣∣∣ ≤ Ck,δ

|u− v|k

τ
k
2

pB (τδ; tu+ (1− t)v, y) .

Proof. One can prove by induction that

∂kt pB (τ ; tu+ (1− t)v, y) =
(u− v)k

τ
k
2

Pk

(
tu+ (1− t)v − y√

τ

)
pB(τ ; tu+ (1− t)v, y) ,

where Pk is a polynomial of degree k with at least one root for odd k. Therefore,

∣∣∣∂kt pB (τ ; tu+ (1− t)v, y)
∣∣∣ ≤ ∣∣∣∣Pk

(
tu+ (1− t)v − y√

τ

)∣∣∣∣ e− (tu+(1−t)v−y)2

2(1+δ)τ
· δ
1+2δ

× |u− v|k

τ
k
2

pB(τδ; tu+ (1− t)v, y) .

The lemma follows directly with Ck,δ := supx∈R

∣∣∣∣Pk(x)e
− x2

1+δ
· δ
1+2δ

∣∣∣∣ .

Corollary 3. For all t, u , v and y in R+, τ > 0∣∣∣∂kt pR (τ ; tu+ (1− t)v, y)
∣∣∣ ≤ 4 Ck,δ

|u− v|k

τ
k
2

pB (τδ; tu+ (1− t)v, y) .

Proof. We recall that

pR(τ ; z, z
′) = pB(τ ; z, z

′) + pB(τ ; z,−z′)− 2

∫ ∞

0
dw e−wpB

(
τ ; z,−w

c
− z′

)
.

Using Lemma 6 we obtain

∣∣∣∂kt pR (τ ; tu+ (1− t)v, y)
∣∣∣ ≤ Ck,δ

|u− v|k

τ
k
2

{pB (τδ; tu+ (1− t)v, y)

+ pB (τδ; tu+ (1− t)v,−y) + 2

∫ ∞

0
dw e−w pB

(
τδ; tu+ (1− t)v,−y − w

c

)}
.

For z, z′, w ∈ R+, we have

e−
(z+z′+w/c)2

2τ ≤ e−
(z+z′)2

2τ ≤ e−
(z−z′)2

2τ ,

which implies

∂kt pR (τ ; tu+ (1− t)v, y) ≤ 4 Ck,δ
|u− v|k

τ
k
2

pB (τδ; tu+ (1− t)v, y) .
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Lemma 7. For 0 < δ < 1, we define b = 2 1+2δ
1−2δ and let 0 < δ′ < 1 and ΛI ≥ Λ such that δ′Λ2 ≥ bτ−1.

For z1, z2 and y2 in R+ and τ > 0 we have

|z1 − z2| pB
(
1 + δ

Λ2
I

; z1, z2

)∫ 1

0
dt pB (τδ′ ; tz2 + (1− t)z1, y2)

≤ Cδ Λ−1pB

(
2

Λ2
I

; z1, z2

)
pB
(
(1 + δ′)3τ ; z1, y2

)
. (4.5.12)

Proof. We have

pB

(
1 + δ

Λ2
I

; z1, z2

)
=

√
1 + 2δ

1 + δ
pB

(
1 + 2δ

Λ2
I

; z1, z2

)
e
−Λ2

I (z1−z2)
2

2(1+δ)
· δ
1+2δ .

Since ΛI ≥ Λ, we deduce

|z1 − z2| pB
(
1 + δ

Λ2
I

; z1, z2

)
≤ Cδ Λ−1 pB

(
1 + 2δ

Λ2
I

; z1, z2

)
, (4.5.13)

with Cδ :=
√

1+2δ
1+δ

∥∥∥∥x e− x2

2(1+δ)
· δ
1+2δ

∥∥∥∥
∞

.

Now, we bound

pB

(
1 + 2δ

Λ2
I

; z1, z2

)∫ 1

0
dt pB (τδ′ ; tz2 + (1− t)z1, y2) . (4.5.14)

For 0 < δ′ < 1 and δ′Λ2
I ≥ bτ−1, we write

Λ2
I

1 + 2δ
(z1 − z2)

2 +
1

τ(1 + δ′)
(tz2 + (1− t)z1 − y2)

2 (4.5.15)

=
Λ2
I |z1 − z2|2

b
+

Λ2
I |z1 − z2|2

2
+

1

τ(1 + δ′)
(tz2 + (1− t)z1 − y2)

2

≥ |z1 − z2|2

τδ′
+

Λ2
I |z1 − z2|2

2
+

1

τ(1 + δ′)2
(tz2 + (1− t)z1 − y2)

2 .

For 0 ≤ t ≤ 1, we have

|z1 − z2| = |z1 − tz2 − (1− t)z1|+ |tz2 + (1− t)z1 − z2| .

Therefore, we write

1

δ′
|z1 − z2|2 + |tz2 + (1− t)z1 − y2|2

≥ 1

δ′
|z1 − tz2 − (1− t)z1|2 + |tz2 + (1− t)z1 − y2|2

≥ 1

1 + δ′
(|z1 − tz2 − (1− t)z1|+ |tz2 + (1− t)z1 − y2|)2

≥ |z1 − y2|2

1 + δ′
.
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Combining this with (4.5.15) and

|z1 − z2|2

δ′
+

|tz2 + (1− t)z1 − y2|2

(1 + δ′)2
≥ 1

(1 + δ′)2

[
1

δ′
|z1 − z2|2 + |tz2 + (1− t)z1 − y2|2

]
,

we deduce that

Λ2
I

1 + 2δ
(z1 − z2)

2 +
1

τ(1 + δ′)
(tz2 + (1− t)z1 − y2)

2 ≥ |z1 − y2|2

τ(1 + δ′)3
+

Λ2
I |z1 − z2|2

2
.

Hence, (4.5.14) is bounded by

Cδ pB

(
2

Λ2
I

; z1, z2

)
pB
(
(1 + δ′)3τ ; z1, y2

)
,

which together with (4.5.13), gives the final bound (4.5.12).

4.5.4 Proof of Theorems 7 and 8

Proof of Theorem 7

Proof. The bounds are proved inductively using the standard inductive scheme which proceeds upwards
in l, for given l upwards in n, and for given (n, l) downwards in |w| starting from some arbitrary
|wmax| ≥ 3. The induction works because the terms on the r.h.s. of the FE are always prior to the
one of the l.h.s. in the inductive order. So the bounds (4.5.4)-(4.5.6) may be used as an induction
hypothesis on the r.h.s. Once verified in the first induction step, we integrate the FE, where the terms
with n + |w| + r ≥ 5 are integrated down from Λ0 to Λ because of the boundary conditions (4.4.19),
and the terms with n + |w| + r ≤ 4 at the renormalization point are integrated upwards from 0 to Λ

using (4.4.20). We can write remembering (4.2.6)

∂wLΛ,Λ0

l,n

(
z1; 0⃗;ϕ

R
τ2,s,y2,s

)
= ∂wL0,Λ0

l,n

(
z1; 0⃗;ϕ

R
τ2,s,y2,s

)
+

∫ Λ

0
dλ ∂λ ∂wLλ,Λ0

l,n

(
z1; 0⃗;ϕ

R
τ2,s,y2,s

)
.

(4.5.16)

Once a bound has been obtained at the renormalization point, it is possible to move away from the
renormalization point using the integrated Taylor formula

∂wLΛ,Λ0

l,n

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)
= ∂wLΛ,Λ0

l,n

(
z1; 0⃗;ϕ

R
τ2,s,y2,s

)
+

n∑
i=1

4∑
µ=1

pi,µ

∫ 1

0
dt
(
∂pi,µ∂

wL
Λ,Λ0

l,n

)(
z1; tp⃗n;ϕ

R
τ2,s,y2,s

)
. (4.5.17)

The induction starts with the pair (0, 4) for which the r.h.s. of the FE vanishes so that

L
Λ,Λ0
0,4 ((z1, p1), · · · , (z4, p4)) = λ

4∏
i=2

χ+(zi) δ(z1 − zi)
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which implies for the test function ϕRτ2,s,y2,s defined in (4.4.2) that

L
Λ,Λ0
0,4

(
z1; p⃗4;ϕ

R
τ2,s,y2,s

)
= λ

s∏
i=2

pR(τi; z1, yi) . (4.5.18)

Using the bounds (3.1.12) and (3.1.9), we deduce that

s∏
i=2

pR(τi; z1, yi) ≤ 2s
s∏

i=2

pB (τi; z1, yi) ≤ 2s(1 + δ)
s
2

s∏
i=2

pB (τi,δ; z1, yi) ,

which implies that (4.5.18) can be bounded by a tree with no internal vertices and with a root vertex
z1 linked to the external vertices y2,s , which is in agreement with the bound (4.5.4). The constants
are absorbed in the polynomial P1, which is of degree 0 at the tree order.
(I) Bounds on the r.h.s. of the FE:
We want to establish the bounds∣∣∣∂Λ∂wLΛ,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)∣∣∣ ≤ (Λ +m)3−n−|w|−r
P1

(
log

Λ +m

m

)
×P2

(
∥p⃗n∥
Λ +m

)
Q1

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) , (4.5.19)

∣∣∣∂ΛF12L
Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ3,s,y3,s)

∣∣∣ ≤ (Λ +m)−n
P3

(
log

Λ +m

m

)
×P4

(
∥p⃗n∥
Λ +m

)
F12
s,l;δ (Λ, τ3,s) (4.5.20)

and∣∣∣∂Λ∂wLΛ,Λ0

l,n (z1; p⃗n;ϕ
R,(j)
τ2,s,y2,s)

∣∣∣
≤ (Λ +m)2−n−|w| τ

− 1
2

j P5

(
log

Λ +m

m

)
P6

(
∥p⃗n∥
Λ +m

)
Q2

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) . (4.5.21)

(A) In this part we consider the case r = 0.
(A1) Let R1 be the first term on the r.h.s. of the FE

R1 :=

∫
p

∫
z2,n,z,z′

∂wLΛ,Λ0

n+2,l−1

(
(z⃗n, p⃗n), (z, p), (z

′,−p)
)
ĊΛ
R

(
p; z, z′

) s∏
i=2

pR(τi; zi, yi)

which can be written as∫
p
ĊΛ(p)

∫
R+

du ∂wLΛ,Λ0

n+2,l−1

(
z1; p,−p, p⃗n;ϕRτ2,s,y2,s × pR

(
1

2Λ2
;u, ·

)
pR

(
1

2Λ2
; ·, u

))
. (4.5.22)
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In (4.5.22), we used (4.2.2) and the semi-group property (3.1.6) for pR. Applying the induction
hypothesis together with

Λ−3

∫
p
e−

p2+m2

Λ2 P

(
|p|

Λ +m

)
≤ O(1), (4.5.23)

we deduce that R1 is bounded by

(Λ +m)2−n−|w|
P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
Q1

(
τ−

1
2

Λ +m

)

×
∫

R+

du

∫
z⃗

∑
T s+2
l−1 (z1,y2,s,u,u,z⃗)

Fδ

(
Λ,

{
τ2,s,

1

2Λ2
,

1

2Λ2

}
;T s+2

l−1 (z1, y2,s, u, u, z⃗)

)
. (4.5.24)

In the sequel, the polynomials are mentioned without their lower indices. One should keep in mind
that these polynomials may have, each time they appear, different positive coefficients which depend
on l, n, |w|, δ only and not on p⃗n, Λ, Λ0, z1, m and c.
For any contribution to (4.5.24) we denote by z′, z′′ the vertices in the tree T s+2

l−1 (z1, y2,s, u, u, z⃗) to
which the test functions pB

(
1+δ
2Λ2 ;u, ·

)
and pB

(
1+δ
2Λ2 ; ·, u

)
are attached. Interchanging

∫
z⃗ and

∫
u and

performing the integral over u using (3.1.5), we obtain∫
R+

du pB

(
1 + δ

2Λ2
; z′, u

)
pB

(
1 + δ

2Λ2
;u, z′′

)
≤ pB

(
1 + δ

Λ2
; z′, z′′

)
≤ Λ.

The vertices which become of incidence number 1 together with their adjacent line are eliminated and
this is justified by ∫

z′
pB

(
1 + δ

Λ2
I

; z′, z′′
)

≤ 1 . (4.5.25)

Hence, we obtain∫
R+

du Fδ

(
Λ,

{
τ2,s,

1

2Λ2
,

1

2Λ2

}
;T s+2

l−1 ; z1, y2,s, u, u

)
≤ O(1) Λ Fδ

(
Λ, τ2,s;Ru,uT

s+2
l−1 ; z1, y2,s

)
,

where Ru,uT
s+2
l−1 is defined in section 3.2. The constant O(1) accounts for the fact that the reduction

map Ru,u is not injective1. Remembering (3.2.7), we deduce

|R1| ≤ (Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
×
∑
T s
l

Fδ (Λ, τ2,s;T
s
l ; z1, y2,s) . (4.5.26)

1The reduction of two different trees in Ts+2
l−1 can possibly yield the same reduced tree T s

l .
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(A2) Let us now consider the second term on the r.h.s. of the FE (4.2.7). Without loss of generality,
we restrict our analysis to the following term from the symmetrized sum

R2 :=

∫
z2,n

∫
z,z′

∂w1L
Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1 , pn1), (z, p))∂
w3ĊΛ

R(p; z, z
′)

× ∂w2L
Λ,Λ0

l2,n2+1((zn1+1, pn1+1), · · · , (zn, pn), (z′,−p))ϕRτ2,s,y2,s(z2,n) ,

in which the arguments (zi, pi) appear ordered in L
Λ,Λ0

l1,n1+1 and L
Λ,Λ0

l2,n2+1. Proceeding as in (A1), we
rewrite R2 using (3.1.5) and the notations (4.4.6) as follows

R2 :=

∫
R+

du

∫
z2,n

∫
z,z′

∂w1L
Λ,Λ0

l1,n1+1((z⃗n1 , p⃗n1), (z, p)) pR

(
1

2Λ2
; z, u

)
∂w3ĊΛ(p)

× ∂w2L
Λ,Λ0

l2,n2+1((z⃗n1+1,n, p⃗n1+1,n), (z
′,−p)) ϕRτ2,s,y2,s(z2,n) pR

(
1

2Λ2
;u, z′

)
.

We define

ϕ′s1(n)(z2,n1) =

{ ∏n1
r=2 pR(τr; zr, yr), s1(n) = n1 − 1 if s ≥ n1∏s
r=2 pR(τr; zr, yr), s1(n) = s− 1 otherwise

and

ϕ′′s2(n)(zn1+1,n−1) =


∏s

r=n1+1 pR(τr; zr, yr), s2(n) = s− n1 if n1 < s < n∏n−1
r=n1+1 pR(τr; zr, yr), s2(n) = n− n1 − 1 if s = n∏n
r=n1+1 χ

+(zr), s2(n) = 0 if s ≤ n1.

Then R2 can be rewritten as

∫
zn

∫
u
∂w1L

Λ,Λ0

l1,n1+1

(
z1; p⃗1,n1 , p;ϕ

′
s1(n)

× pR

(
1

2Λ2
; ., u

))
∂w3ĊΛ(p)

× ∂w2L
Λ,Λ0

l2,n2+1

(
zn;−p, p⃗n1+1,n;ϕ

′′
s2(n)

× pR

(
1

2Λ2
;u, z′

))
ϕn(zn). (4.5.27)

Applying the induction hypothesis to both terms in (4.5.27) and using (4.2.3) we obtain

|R2| ≤ (Λ +m)8−n−|w|−2−3
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫
z′

∫
u

∑
T

s1(n)+1
l1

, T
s2(n)+2
l2

Fδ1

(
Λ,

{
τ2,s1(n)+1,

1

2Λ2

}
;T

s1(n)+1
l1

; z1, y2,s1(n)+1, u

)

× Fδ2

(
Λ,

{
τn1+1,s(n),

1

2Λ2

}
;T

s2(n)+2
l2

; zn, yn1+1,s(n), u

)
ϕn(zn) , (4.5.28)
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with s(n) = s if s < n, otherwise s(n) = n− 1.
Interchanging the integral over u with the sum over trees we obtain

|R2| ≤ (Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
×

∑
T s
l

(
T

s1(n)+1
l1

, T̂
s2(n)+δs,n+1

l2

)Fδ3 (Λ, τ2,s;T
s
l ; z1, y2,s) ,

with the following explanations:

• The integration over the root vertex zn converts zn into an internal vertex. If s = n, then
zn is also attached to the external vertex yn and the total number of external vertices is then
s2(n) + δs,n +1. We denote the obtained tree by T̂ s2(n)+δs,n+1

l2
. Therefore, using (3.1.9) we write∫

zn

Fδ2

(
Λ, τn1+1,s(n);T

s2(n)
l2

; z,yn1+1,s(n), u
)
ϕn(zn)

≤ max (1, C0,δ) Fδ2

(
Λ,

{
τn1+1,s(n),

1

2Λ2

}
; T̂

s2(n)+δs,n+1
l2

; zn, yn1+1,s(n), u

)
. (4.5.29)

The number of vertices of incidence number 2 of T̂ s2+δs,n+1
l2

is increased at most by 1 by the
integration over zn2. Hence, we have

v̂2,2 ≤ v2,2 + δc(zn),1 ≤ 3l2 − 2 +
s2(n) + 2 + δs,n

2
.

• Any contribution in the sum over trees T s
l

(
T
s1(n)+1
l1

, T̂
s2(n)+δs,n+1
l2

)
is obtained from T

s1(n)+1
l1

and T̂ s2(n)+δs,n+1
l2

by joining these two trees via the lines going from the vertices z′ and z′′ to u,
where z′ and z′′ are the vertices attached to u in the two trees. Using (3.1.5), we obtain∫

u
pB

(
1 + δ1
2Λ2

; z′, u

)
pB

(
1 + δ2
2Λ2

;u, z′′
)

≤ O(1) pB

(
1 + δ3
Λ2

; z′, z′′
)

so that the new internal line has a parameter in the interval [Λ,Λ0] over which the sup is taken
in the definition of F and δ3 := max (δ1, δ2).

• The total number of vertices v2 with incidence number 2 in the new tree obtained after integrating
out u is equal to v2,1 + v̂2,2 so that

v2 + δc1,1 ≤ 3l − 4 +
s1 + s2(n) + 2 + δs,n

2
≤ 3l − 3 +

s

2
,

2if and only if initially zn is a root vertex of incidence number one.
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which proves that T s
l

(
T
s1(n)+1
l1

, T̂
s2(n)+δs,n+1
l2

)
belongs to Ts

l . Using the bound (3.1.9), we there-
fore conclude that

|R2| ≤ (Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
×
∑

T s
l ∈Ts

l

Fδ3(Λ, τ2,s;T
s
l ; z1, y2,s) .

(B) We consider now the case r ̸= 0:
For the first term on the r.h.s. of the flow equation (4.2.7) the bounds are established exactly as in
(A1). For the second term we proceed similarly as in (A2). We pick a term on the r.h.s.,∫

u

∫
z2,n

∫
z,z′

∂w1L
Λ,Λ0

l1,n1+1 ((z⃗n1 , p⃗n1), (z, p))ϕ
R
τ2,s,y2,s(z2,n)∂

w3 ĊΛ(p) pR

(
1

2Λ2
; z, u

)
× (z1 − zi)

r ∂w2L
Λ,Λ0

l2,n2+1

(
(zn1+1, pn1+1), · · · , (zn, pn), (z′,−p)

)
pR

(
1

2Λ2
;u, z′

)
.

In the case where i ≤ n1 the proof is the same as for r = 0, up to inserting the modified induction
hypothesis for

∂w1L
Λ,Λ0

l1,n1+1;r

(
z1; p⃗n;ϕ

′
s1 × pR

(
1

2Λ2
; ·, u

))
=

∫
z2,n1

∫
z
(z1 − zi)

r∂w1L
Λ,Λ0

l1,n1+1((z⃗n1 , p⃗n1), (z, p))ϕ
′
s1(z2,n1) pR

(
1

2Λ2
; z, u

)
.

If i > n1 we assume without restriction i = n and proceed again as in (A2) to obtain the bound

(Λ +m)3−n−|w|P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫
zn

∫
u
|zn − z1|r

∑
T

s1(n)+1
l1

, T
s2(n)+2
l2

Fδ1

(
Λ,

{
τ2,s1(n),

1

2Λ2

}
;T

s1(n)+1
l1

; z1, y2,s1(n), u

)

× Fδ2

(
Λ,

{
τs1(n)+1,s(n),

1

2Λ2

}
;T

s2(n)+2
l2

; zn, u, yn1+1, · · · , ys(n)
)
ϕn(zn) .

We bound

|zn − z1| ≤
q∑

a=1

|va − va−1| , (4.5.30)

where {va} are the positions of the internal vertices in the tree T s
l (T

s1(n)+1
l1

, T̂
s2(n)+δs,n+1
l2

) defined as
in (A2), on the path joining z1 = v0 and zn = vq . Using the inequality (3.1.10) for τ = 1

Λ2
a
, we obtain



4.5. PROOF OF RENORMALIZABILITY 81

for δ′ such that δ2 < δ′ < 1
2

|va − va−1|r pB
(
1 + δ2
Λ2
I

; va, va−1

)
≤ O(1) Λ−rpB

(
1 + δ′

Λ2
I

; va, va−1

)
, (4.5.31)

and this implies (4.5.19) with a new parameter δ′ < 1
2 . Note that the cases s = n and s < n are treated

as in (A2).
The previous reasoning holds as well for ∂ΛF12L

Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ3,s,y3,s), where z2 takes the role of zn.

After absorbing all constants in P, we obtain

∣∣∣∂Λ∂wLΛ,Λ0

l,n;r (z1; p⃗n;ϕ
R
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)3−n−|w|−r
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ′(τ2,s) , (4.5.32)

∣∣∣∂ΛF12L
Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ3,s,y3,s)

∣∣∣ ≤ (Λ +m)−n
P

(
∥p⃗n∥
Λ +m

)
P

(
log

Λ +m

m

)
F12
s,l;δ′(Λ, τ3,s) (4.5.33)

and δ′ := max (δ1, δ2, δ3, δ). The bounds for (4.4.12)-(4.4.16)

|∂ΛcΛ,Λ0

l (z1)| ≤ (Λ +m)−1
P

(
log

Λ +m

m

)
, (4.5.34)

|∂ΛaΛ,Λ0

l (z1)| ≤ (Λ +m)P

(
log

Λ +m

m

)
, (4.5.35)

|∂ΛbΛ,Λ0

l (z1)| ≤ (Λ +m)−1
P

(
log

Λ +m

m

)
, (4.5.36)

|∂ΛdΛ,Λ0

l (z1)| ≤ (Λ +m)−1
P

(
log

Λ +m

m

)
, (4.5.37)

|∂ΛsΛ,Λ0

l (z1)| ≤ P

(
log

Λ +m

m

)
(4.5.38)

are obtained on restricting the previous considerations to the case s = 1, in which all the coordinates
z2,n are integrated over with n = 2 or n = 4 and the momenta p⃗n set to 0⃗.
(C) In this part, we bound ∂Λ∂

wL
Λ,Λ0

l,n (z1; p⃗n;ϕ
R,(j)
τ2,s,y2,s). As compared to (A), the only case which

requires new analysis is the bound on the second term from the r.h.s. of the FE (5.4.1) in the case
j > s1. Then we assume without restriction, similarly as in (A), that j = s. The term to be bounded
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corresponding to (4.5.28) is then for s ≥ n1

(Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫
u

∑
T

n1+1
l1

,T
s2+1
l2

Fδ

(
Λ,

{
τ2,n1 ,

1

2Λ2

}
;Tn1+1

l1
; z1, y2,n1 , u

)

× e−
m2

2Λ2

∫
zs

Fδ

(
Λ,

{
τs1+1,s−1,

1

2Λ2

}
;T s2+1

l2
; zs, ys1+1,s−1, u

)
|p(1)R (τs; zs, z1; ys)| , (4.5.39)

where s2 := s− n1 − 1. We factorize e−
m2

2Λ2 from the derivative of the flowing propagator ĊΛ(p) to be
able to use the following bound in the sequel

(Λ +m) e−
m2

2Λ2 ≤ C Λ , C := ∥(1 + x)e−
x2

2 ∥∞ . (4.5.40)

To bound (4.5.39) we telescope the difference p
(1)
R (τs; zs, z1; ys) along the tree3 T s

l (T
n1+1
l1

, T s2+1
l2

) sim-
ilarly as in (4.5.30). We then have to bound expressions of the type

pB

(
1 + δ

Λ2
I

; va−1, va

)
| pR(τs; va, ys)− pR(τs; va−1, ys)| , (4.5.41)

where va−1 and va are adjacent internal vertices in T s
l (T

n1+1
l1

, T s2+1
l2

) on the unique path from z1 to
ys. Taylor expansion of pR(τs; va, ys) gives

pR(τs; va, ys) = pR(τs; va−1, ys) +

∫ 1

0
dt (∂tpR)(τs; tva−1 + (1− t)va, ys) .

Lemma 6 implies that for all 0 < δ′ < 1, we have

|p(1)R (τs; va, va−1, ys)| ≤ C1,δ
|va − va−1|√

τs

∫ 1

0
dt pB(τs,δ′ ; tva−1 + (1− t)va, ys) .

Therefore (4.5.41) is bounded by

C1,δ τ
− 1

2
s |va − va−1| pB

(
1 + δ

Λ2
I

; va−1, va

)∫ 1

0
dt pB

(
τs,δ′ ; tva−1 + (1− t)va, ys

)
. (4.5.42)

Introducing for 2δ < 1,

b = 2
1 + 2δ

1− 2δ
,

we distinguish between the two cases:
3The tree T s

l (T
n1+1
l1

, T s2+1
l2

) is obtained by joining Tn1+1
l1

and T s2+1
l2

, by suppressing their respective external lines
(z′, u) and (z′′, u) and replace them with the internal line (z′, z′′).
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• Case (1): δ′Λ2 ≤ bτ−1
s

Using (4.5.40), we obtain

(Λ +m)3−n−|w|e−
m2

2Λ2 ≤ C

(
b

δ′

) 1
2

(Λ +m)2−n−|w|τ
− 1

2
s .

The tree T s
l (T

s1+1
l1

, T s2+1
l2

) is obtained from the two initial trees by joining them via u and we
bound

|p(1)R (τs; zs, z1; ys)| ≤ |pR(τs; zs, ys)|+ |pR(τs; z1, ys)| . (4.5.43)

Here pR(τs; z1, ys) is associated to ϕs(zs) ≡ 1, and the integration over zs in T s
l (T

n1+1
l1

, T s2+1
l2

)

is performed similarly as the integration over zn in (A2). This implies that for δ′Λ2 ≤ bτ−1
s ,

(4.5.39) is bounded by(
b

δ′

) 1
2

(Λ +m)2−n−|w|τ
− 1

2
s P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ′(τ2,s) . (4.5.44)

• Case (2): δ′Λ2 ≥ bτ−1
s

Using Lemma 7 we obtain the following bound

|va − va−1| pB
(
1 + δ

Λ2
I

; va−1, va

) ∫ 1

0
dt pB

(
τs,δ′ ; tva−1 + (1− t)va, ys

)
≤ Cδ Λ−1 pB

(
2

Λ2
I

; va−1, va

)
pB((1 + δ′)3τs; va−1, ys) ,

which implies that (4.5.42) can be bounded using (3.1.5) by

CδC1,δ Λ−1τ
− 1

2
s

∫
v
pB

(
1

Λ2
I

; va, v

)
pB

(
1

Λ2
I

; v, va−1

)
pB((1 + δ′)3τs; va−1, ys) .

Choosing δ′ such that (1 + δ′)3 = 1+ δ, that is δ′ = δ
3 +O(δ2) and using (3.1.9), the final bound

obtained for (4.5.41) reads

O(1) τ
− 1

2
s Λ−1

∫
v
pB

(
1 + δ

Λ2
I

; va, v

)
pB

(
1 + δ

Λ2
I

; v, va−1

)
pB(τs,δ; va−1, ys) . (4.5.45)

In the second case, the bound (4.5.45) implies that the incidence number of the internal vertex va−1

has increased by one unit in the tree T s
l

(
Tn1+1
l1

, T s2+1
l2

)
by attaching va−1 to the external vertex ys.

Furthermore, we integrate over zs in (4.5.39). If in the new tree:
a) zs has c(zs) > 1, then zs takes the role of an internal vertex of the new tree.
b) zs has c(zs) = 1 we integrate over zs using (4.5.25) so that the vertex zs disappears.
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Note that the case a) implies that v2, the number of vertices of incidence number 2 of the new tree is
at most increased by one. Namely, v2 verifies the following bound

v2 + δc1,1 ≤ v2,1 + v2,2 + 1 + δc(zs),1 + δc1,1 ≤ 3l − 4 +
s1 + s2 + 2

2
+ 1 = 3l − 2 +

s

2
. (4.5.46)

Hence, the new tree belongs to Ts
l . As a consequence of the bounds (4.5.44) and (4.5.45), on replacing

again s→ j we thus obtain for n ≥ 2

∣∣∣∂Λ∂wLΛ,Λ0

l,n (z1; p⃗n;ϕ
R,(j)
τ2,s,y2,s)

∣∣∣ ≤ (( b
δ

) 1
2

+ C ′
δ

)
(Λ +m)2−n−|w| τ

− 1
2

j

×P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) .

All the constants are again absorbed in the polynomial Q .
(D) To prove (D) we use (4.5.22) and (4.5.27) to show inductively that

∂Λ∂
wL

Λ,Λ0

l,n;r (z1; p⃗n;ϕ
R
τ2,s,y2,s) (4.5.47)

and
∂ΛF12L

Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ3,s,y3,s) (4.5.48)

are C∞ (R+) w.r.t. z1. For (4.5.48), we will integrate from Λ to Λ0 and for (4.5.47) we integrate from
0 to Λ for n+ |w|+ r ≤ 4, and from Λ to Λ0 for n+ |w|+ r ≥ 5. The details of these integrations can
be deduced from (II,a) and (II,b).
(II) Integration of the FE:
From the bounds on the derivatives ∂Λ∂wL

Λ,Λ0

n,l;r (z1; p⃗n;ϕ
R
τ2,s,y2,s) we verify the induction hypothesis by

integrating over Λ. In all cases, we need the bound (3.2.61) which we recall

FΛ2
s,l;δ(τ2,s) ≤ FΛ1

s,l;δ(τ2,s) for Λ1 ≤ Λ2.

a) Irrelevant terms:
Using the boundary conditions (4.4.19), the integration from Λ to Λ0 for n+ |w|+ r ≥ 5 gives∣∣∣∂wLΛ,Λ0

l,n;r (z1; p⃗n;ϕ
R
τ2,s,y2,s)

∣∣∣
≤ (Λ +m)4−n−|w|−r

P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) ,

∣∣∣∂wLΛ,Λ0

l,n (z1; p⃗n;ϕ
R,(j)
τ2,s,y2,s)

∣∣∣
≤ (Λ +m)3−n−|w| τ

− 1
2

j P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ(τ2,s) ,
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and ∣∣∣F12L
Λ,Λ0

l,n (z1, z2; p⃗n;ϕ
R
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)1−n
P3

(
log

Λ +m

m

)
P4

(
∥p⃗n∥
Λ +m

)
F12
s,l;δ(Λ, τ3,s) .

(b) Relevant terms:
(b1) n = 4, w = 0, r = 0: We start from the decomposition (4.4.11)

L
Λ,Λ0

l,4 (z1; 0⃗; Φ4,s) = cΛ,Λ0

l (z1)Φ4,s(z1, z1, z1) + lΛ,Λ0

l,4 (z1,Φ4,s) , s ≤ 4 , (4.5.49)

where

cΛ,Λ0

l (z1) :=

∫
(R+)3

dz2,4 L
Λ,Λ0

l,4 ((z1, 0), · · · , (z4, 0))

and

Φ4,s(z2, z3, z4) =
4∏

i=2

ϕi(zi), ϕi(zi) = pR (τi; zi, yi) if i ≤ s, otherwise ϕi ≡ 1 .

From the renormalization conditions (4.4.20), we have for all l ≥ 1 and z1 ≥ 0

c0,Λ0

l (z1) ≡ 0 .

Integrating (4.5.34) from 0 to Λ at zero momenta then gives

|cΛ,Λ0

l (z1)| ≤ P

(
log

Λ +m

m

)
.

We decompose the test function

Φ4,s(z2, z3, z4) =

s∏
i=2

pR(τi; zi, yi) = Φ4,s(z1, z1, z1) + ψ(z2, z3, z4) , (4.5.50)

where for s = 4

ψ(z2, z3, z4) :=

4∑
j=2

j−1∏
f=2

pR(τf ; z1, yf )p
(1)
R (τj ; zj , z1; yj)

4∏
i=j+1

pR(τi; zi, yi) =

4∑
j=2

ϕR,(j)
τ2,s,y2,s(z2,4) (4.5.51)

where we used the notation (4.4.3). Note that if ϕi ≡ 1 for some i which corresponds to s < 4, then
the corresponding contribution to the sum vanishes.
Using (4.5.50) and the linearity of LΛ,Λ0

l,n w.r.t. to the test functions, we deduce that

L
Λ,Λ0

l,4 (z1; 0⃗; Φ4,s) = cΛ,Λ0

l (z1)Φ4,s(z1, z1, z1) +L
Λ,Λ0

l,4 (z1; 0⃗;ψ) .
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Therefore we have lΛ,Λ0

l,4 (z1; Φ4,s) = L
Λ,Λ0

l,4 (z1; 0⃗;ψ) , and hence the FE (4.2.7) provides

∂Λl
Λ,Λ0

l,4 (z1; Φ4,s) =
1

2

∫
z2,4,z,z′

ψ(z2, z3, z4)[∫
k
L

Λ,Λ0

l−1,6

(
(z, k), (z1, 0), · · · , (z4, 0), (z′,−k)

)
ĊΛ
R(k; z, z

′)

− 1

2

∑
l1+l2=l

∑
n1+n2=4

[
L

Λ,Λ0

l1,n1+1((z1, 0), · · · , (zn1 , 0), (z, 0))Ċ
Λ
R(0; z, z

′)

L
Λ,Λ0

l2,n2+1((z
′, 0), · · · , (z4, 0))

]
rsym

]
. (4.5.52)

The r.h.s. is a sum over expressions similar to ∂ΛL
Λ,Λ0

l,4 (z1, ϕ
R,(j)
τ2,s,y2,s) analysed in part (C). We obtain

in the same way as there the bound∣∣∣∂ΛlΛ,Λ0

l,4 (z1; Φ4,s)
∣∣∣ ≤ (Λ +m)−2 τ−

1
2P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ(τ2,s) .

Integrating from Λ to Λ0 and majorizing (λ+m)−1 by (Λ +m)−1, we obtain

∣∣∣lΛ,Λ0

l,4 (z1; Φ4,s)
∣∣∣ ≤ ( τ−

1
2

Λ +m

)
P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ(τ2,s),

which gives the bound for lΛ,Λ0

l,4 (z1,Φ4,s) . The bound is extended to general momenta using the Taylor
formula (4.5.17).
(b2) n = 2, r = 0, w = 0: We start from the decomposition (4.4.9)

L
Λ,Λ0

l,2

(
z1; 0⃗;ϕ2

)
= aΛ,Λ0

l (z1)ϕ2(z1)− sΛ,Λ0

l (z1)ϕ
′
2(z1) + dΛ,Λ0

l (z1)ϕ
′′
2(z1) + lΛ,Λ0

l,2 (z1;ϕ2) , (4.5.53)

where ϕ2(z2) := pR(τ2; z2, y2) . Using the renormalization conditions (4.4.20) and integrating (4.5.35)-
(4.5.38) from 0 to Λ, we obtain∣∣∣aΛ,Λ0

l (z1)
∣∣∣ ≤ (Λ +m)2 P

(
log

Λ +m

m

)
,
∣∣∣sΛ,Λ0

l (z1)
∣∣∣ ≤ (Λ +m) P

(
log

Λ +m

m

)
(4.5.54)

and ∣∣∣dΛ,Λ0

l (z1)
∣∣∣ ≤ P

(
log

Λ +m

m

)
. (4.5.55)

Since |ϕ′2(z1)| ≤ τ
− 1

2
2 ϕ2(z1) and |ϕ′′2(z1)| ≤ τ−1

2 ϕ2(z1), we obtain

∣∣∣sΛ,Λ0

l (z1)ϕ
′
2(z1)

∣∣∣ ≤ (Λ +m)2

 τ
− 1

2
2

Λ +m

P

(
log

Λ +m

m

)
ϕ2(z1)
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and ∣∣∣dΛ,Λ0

l (z1)ϕ
′′
2(z1)

∣∣∣ ≤ (Λ +m)2

 τ
− 1

2
2

Λ +m

2

P

(
log

Λ +m

m

)
ϕ2(z1) .

For the irrelevant part of the two-point function we have

∂Λl
Λ,Λ0

2,l (z1;ϕ2) =

∫ ∞

0
dz2

∫ 1

0
dt

(1− t)2

2!
∂3t ϕ2 (tz2 + (1− t)z1) ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) (4.5.56)

=

∫ ∞

0
dz2

∫ 1

0
dt

(1− t)2

2!

∂3t ϕ2 (tz2 + (1− t)z1)

(z2 − z1)3
∂ΛF12L

Λ,Λ0

l,2 (z1, z2; 0) . (4.5.57)

The bound (4.5.33) for n = 2, r = 0 yields

∣∣∣∂ΛlΛ,Λ0

l,2 (z1;ϕ2)
∣∣∣ ≤ (Λ +m)−2

P

(
log

Λ +m

m

)
×
∫
z2

F
(12)
1,l (Λ; z1, z2)

∣∣∣∣∫ 1

0
dt

(1− t)2

2!

∂3t pR (τ2; tz2 + (1− t)z1, y2)

(z2 − z1)3

∣∣∣∣ .
Using Lemma 6 we obtain

∣∣∣∂ΛlΛ,Λ0

2,l (z1, ϕ2)
∣∣∣ ≤ (Λ +m)−2 τ

− 3
2

2 P

(
log

Λ +m

m

)
×
∫
z2

F
(12)
1,l (Λ; z1, z2)

∫ 1

0
dt pR (τ2,δ; tz2 + (1− t)z1, y2) .

Remembering (3.2.39) and (3.2.46) we have

F
(12)
1,l (Λ; z1, z2) =

∑
T

1,(12)
l

F1,l(Λ;T
1,(12)
l ; z1, z2)

=
3l−4∑
n=1

sup
{ΛIν |Λ≤ΛIν≤Λ0}

[ ∏
1≤ν≤n

∫
z̃ν

]
pB

(
1 + δ

Λ2
I1

; z1, z̃1

)
· · · pB

(
1 + δ

Λ2
In

; z̃n, z2

)

≤
3l−4∑
n=1

sup
{ΛIν |Λ≤ΛIν≤Λ0}

pB

(
1 + δ

Λ2
n

; z1, z2

)
, (4.5.58)

where Λn :=
(∑n

ν=1 Λ
−2
Iν

)− 1
2 . The sum (4.5.58) stems from the fact that the double rooted trees have

all their internal vertices with incidence number 2. Their number v2 is constrained by the relation
v2 ≤ 3l − 4.
Using Lemma 7 together with

pR(τ2,δ′ ; tz2 + (1− t)z1, y2) ≤ 2 pB(τ2,δ′ ; tz2 + (1− t)z1, y2) ,
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we obtain for δ′Λ2 ≥ bτ−1
2∣∣∣∂ΛlΛ,Λ0

2,l (z1;ϕ2)
∣∣∣ ≤ τ

− 3
2

2 (Λ +m)−2
P

(
log

Λ +m

m

)
pB
(
(1 + δ′)3τ2; z1, y2

)
. (4.5.59)

As before, we choose δ′ = δ
3 +O(δ2) such that (1 + δ′)3 = 1 + δ, which implies that∣∣∣∂ΛlΛ,Λ0

2,l (z1;ϕ2)
∣∣∣ ≤ τ

− 3
2

2 (Λ +m)−2
P

(
log

Λ +m

m

)
pB(τ2,δ; z1, y2) . (4.5.60)

For δ′Λ2 ≤ bτ−1 we use

∂Λl
Λ,Λ0

l,2 (z1;ϕ2) = ∂ΛL
Λ,Λ0

l,2 (z1; 0, 0;ϕ2)− ∂Λa
Λ,Λ0

l (z1)ϕ2(z1)

+ ∂Λs
Λ,Λ0

l (z1)ϕ
′
2(z1)− ∂Λd

Λ,Λ0

l (z1)ϕ
′′
2(z1)

and the bounds (4.5.32) and (4.5.35) to (4.5.38) to obtain∣∣∣∂ΛlΛ,Λ0

2,l (z1;ϕ2)
∣∣∣ ≤ (Λ +m)P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ (τ2) . (4.5.61)

Since δ′Λ2 ≤ bτ−1 we have

∣∣∣∂ΛlΛ,Λ0

l,2 (z1;ϕ2)
∣∣∣ ≤ max

(
m3, τ−

3
2

(
b

δ′

) 3
2)

(Λ +m)−2

×P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ (τ2) . (4.5.62)

Combining (4.5.60) and (4.5.62) and using the bounds (3.1.9), we obtain for all Λ ≥ 0,

∣∣∣∂ΛlΛ,Λ0

l,2 (z1;ϕ2)
∣∣∣ ≤ max

(
m3, τ−

3
2

(
b

δ′

) 3
2)

(Λ +m)−2

×P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ (τ2) . (4.5.63)

Integrating from Λ to Λ0 using (3.2.61) gives∣∣∣lΛ,Λ0

2,l (z1, ϕ2)
∣∣∣ ≤ max

(
m3, τ−

3
2

(
b

δ′

) 3
2

)
(Λ +m)−1P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ (τ2)

≤
max

(
m3, τ−

3
2

(
b
δ′

) 3
2

)
(Λ +m)3

(Λ +m)2P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ (τ2)

≤ (Λ +m)2P

(
log

Λ +m

m

)
Q̃

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ (τ2) ,
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where Q̃(x) = (1 + x3)Q(x). Again, all the constants were absorbed in the coefficients of P. This
concludes the proof for n = 2, r = 0 and w = 0.
To establish the bounds on ∂wLΛ,Λ0

l,2;r (z1; p⃗n;ϕ2) for r ∈ {1, 2} , w = 0 and r = 0, w = 2, we expand
the respective test functions as follows,

L
Λ,Λ0

l,2;1 (z1; 0, 0;ϕ2) = −sΛ,Λ0

l (z1)ϕ2(z1) + dΛ,Λ0

l (z1)(∂z1ϕ2)(z1)

+

∫ ∞

0
dz2

∫ 1

0
dt(1− t)∂2t ϕ2 (tz2 + (1− t)z1) (z1 − z2)L

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) ,

L
Λ,Λ0

l,2;2 (z1; 0, 0;ϕ2) = dΛ,Λ0

l (z1)ϕ2(z1)

+

∫ ∞

0
dz2

∫ 1

0
dt ∂tϕ2 (tz2 + (1− t)z1) (z1 − z2)

2L
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) ,

(
∂p2L

Λ,Λ0

l,2

)
(z1; 0, 0;ϕ2) = bΛ,Λ0

l (z1)ϕ2(z1)

+

∫ ∞

0
dz2

∫ 1

0
dt
(1− t)2

2!
∂3t ϕ2 (tz2 + (1− t)z1) ∂p2

(
L

Λ,Λ0

l,2 ((z1, p), (z2,−p))
)
|p=0

.

The bounds on the relevant terms are given in (4.5.54)-(4.5.55), and the integration of the remainders
is performed in a similar way to the integration of ∂Λl

Λ,Λ0

2,l (z1;ϕ2) . We obtain∣∣∣LΛ,Λ0

l,2 (z1; 0⃗; (z1 − z2)ϕ2)
∣∣∣ ≤ (Λ +m)P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ(τ2) ,

∣∣∣LΛ,Λ0

l,2 (z1; 0⃗; (z1 − z2)
2ϕ2)

∣∣∣ ≤ P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ(τ2) ,

∣∣∣∂2pLΛ,Λ0

l,2 (z1; 0⃗;ϕ2)
∣∣∣ ≤ P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ(τ2) .

The extension to general momenta is performed using the Taylor expansion of L
Λ,Λ0

l,2 (z1; 0, 0; (z1 −
z2)

rϕ2) for r = 0, 1, 2 w.r.t. the variable p ∈ R3.
Finally, note that for

ϕ
(2)
2 (z2) = pR(τ ; z2, y2)− pR(τ ; z1, y2) = ϕ2(z2)− ϕ2(z1) ,

we have

L
Λ,Λ0

l,2

(
z1; 0, 0;ϕ

(2)
2

)
= sΛ,Λ0

l (z1)(∂z1ϕ2)(z1) + dΛ,Λ0

l (z1)(∂
2
z1ϕ2)(z1) + lΛ,Λ0

l,2 (z1; 0, 0;ϕ2) . (4.5.64)

Proceeding again similarly as before - see (4.5.57), (4.5.60) and (4.5.61) - provides∣∣∣LΛ,Λ0

l,2 (z1; 0, 0;ϕ
(2)
2 )
∣∣∣ ≤ (Λ +m) τ

− 1
2

2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
2,l;δ(τ2) .

The extension to general momenta is done by Taylor expansion. This ends the proof of Theorem 7.
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Proof of Theorem 8

Proof. The proof of Theorem 8 follows the same steps of the previous proof. The case (n, l) = (4, 0)

evidently satisfies the claim (4.5.7). We integrate the system of flow equations (4.2.7) and derive
the individual n-point folded distributions (4.5.1) w.r.t. Λ0. We denote the r.h.s. of (4.2.7) by
∂wRΛ,Λ0

l,n (z⃗n, p⃗n). The relevant and irrelevant terms are bounded separately:

I) Irrelevant terms: n+ r + |w| > 4: For these terms, we use the boundary conditions (4.4.19) which
imply

− ∂wLΛ,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)
=

∫ Λ0

Λ
dλ ∂wRλ,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)
. (4.5.65)

Hence, differentiating (4.5.65) w.r.t. Λ0 gives

− ∂Λ0∂
wL

Λ,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)
= ∂wRΛ0,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)
+

∫ Λ0

Λ
dλ ∂Λ0∂

wR
λ,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)
. (4.5.66)

For the first term on the r.h.s. of (4.5.66), the only contributing term is the non-linear part on
the r.h.s. of (4.2.7) because of the boundary condition (4.4.19). Using Theorem 7, we obtain as
before the bound

∣∣∣∂wRΛ0,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)∣∣∣
≤ (Λ0 +m)3−n−|w|−r

P

(
log

Λ0 +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) .

Remembering that n+ |w|+ r > 4, we deduce that for all 0 ≤ Λ ≤ Λ0 we have

∣∣∣∂wRΛ0,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)∣∣∣
≤ (Λ +m)5−n−|w|−r

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) .
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Now, let us treat the second term on the r.h.s. of (4.5.66). We have

∂Λ0∂
wR

Λ,Λ0

l,n ((z⃗n, p⃗n)) =
1

2

∫
z,z′

∫
k
∂Λ0∂

wL
Λ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)
ĊΛ
R

(
p; z, z′

)
− 1

2

∫
z,z′

′∑
l1,l2

′∑
n1,n2

∑
wi

cwi

[
∂Λ0∂

w1L
Λ,Λ0

l1,n1+1((z⃗n1 , p⃗n1), (z, p)) ∂
w3ĊΛ

R(p; z, z
′)

× ∂w2L
Λ,Λ0

l2,n2+1((z
′,−p), (z⃗n1+1,n, p⃗n1+1,n))

]
rsym

− 1

2

∫
z,z′

′∑
l1,l2

′∑
n1,n2

∑
wi

cwi

[
∂w1L

Λ,Λ0

l1,n1+1((z⃗n1 , p⃗n1), (z, p))∂
w3ĊΛ

R

(
p; z, z′

)
× ∂Λ0∂

w2L
Λ,Λ0

l2,n2+1((z
′,−p), (z⃗n1+1,n, p⃗n1+1,n))

]
rsym

,

p = −p1 − · · · − pn1 = pn1+1 + · · ·+ pn,

where we used that ∂Λ0Ċ
Λ
R (k; z, z′) = 0 and the notations of (4.2.7). Using Theorem 7 and the

induction hypothesis (4.5.7), and following the same steps of the proof of Theorem 7 we get∣∣∣∂Λ0∂
wR

Λ,Λ0

l,n;r

(
z1; p⃗n;ϕ

R
τ2,s,y2,s

)∣∣∣
≤ (Λ +m)4−n−|w|−r

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ (τ2,s) .

Integrating from Λ to Λ0 and using (3.2.61) together with

(λ+m)−1 ≤ (Λ +m)−1 , ∀Λ ≤ λ, (4.5.67)

we obtain a bound on the second term on the r.h.s. of (4.5.66), which is of the type (4.5.7).
(4.5.9) and (4.5.10) are proved following the same steps.

II) Relevant terms: (n, r, |w|) = (4, 0, 0), (n, r, |w|) = (2, 0, 0) and (n, r, |w|) = (2, 0, 2):
The FE equation (4.2.7) differentiated w.r.t. Λ0 provides inductive bounds on the relevant parts
in these cases. As before, we integrate from 0 to Λ the following bound

|∂λ∂Λ0c
λ,Λ0

l (z1)| ≤ (Λ0 +m)−2
P

(
log

Λ0 +m

m

)
. (4.5.68)

Remembering that the renormalization conditions (4.4.20) are independent from the UV cutoff
Λ0, we obtain

|∂Λ0c
Λ,Λ0

l (z1)| ≤
(Λ +m)

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
. (4.5.69)
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Proceeding similarly, we deduce the bounds for the remaining relevant terms

|∂Λ0a
Λ,Λ0

l (z1)| ≤
(Λ +m)3

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
, (4.5.70)

|∂Λ0b
Λ,Λ0

l (z1)| ≤
(Λ +m)

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
, (4.5.71)

|∂Λ0d
Λ,Λ0

l (z1)| ≤
(Λ +m)

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
, (4.5.72)

|∂Λ0s
Λ,Λ0

l (z1)| ≤
(Λ +m)2

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
. (4.5.73)

In the case n = 4, we use the decomposition (4.5.49) together with (4.4.3), (4.5.10) and (4.5.69)
to deduce the bound∣∣∣∂Λ0∂

wL
Λ,Λ0

l,4 (z1; 0⃗;ϕ
R
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)

(Λ0 +m)2
P̃1

(
log

Λ0 +m

m

)
× P̃2

(
∥p⃗n∥
Λ +m

)
Q̃1

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ(τ2,s) . (4.5.74)

For n = 2, we use the decomposition (4.5.53) and follow the same steps as in part b2) of the
proof of Theorem 7. Using (4.5.56) and the bound (4.5.9), we obtain for all 0 < δ′ < 1,

∂Λ0 l
Λ,Λ0

2,l (z1;ϕ2) =

∫
z2

∫ 1

0
dt
(1− t)2

2!

∂3t ϕ2 (tz2 + (1− t)z1)

(z2 − z1)3
∂Λ0F12L

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

≤ (Λ0 +m)−2
P

(
log

Λ0 +m

m

)∫
z2

F12
1,l;δ (Λ; z1, z2)

∫ 1

0
dt pR

(
τ2,δ′ ; tz2 + (1− t)z1, y2

)
.

Following the same steps as those used before, we obtain∣∣∣∂Λ0 l
Λ,Λ0

2,l (z1;ϕ)
∣∣∣ ≤ τ

− 3
2

2 (Λ0 +m)−2P

(
log

Λ0 +m

m

)
pB(τ2,δ; z1, y2) ∀δ′Λ2 ≥ bτ−1

2 , (4.5.75)

where we choose as before δ′ = δ/3 +O(δ2).
For the case δ′Λ2 ≤ bτ−1

2 , the bound is obtained as in the proof of Theorem 7 by using the
decomposition (4.5.53) which yields

∂Λ∂Λ0 l
Λ,Λ0

l,2 (z1;ϕ2) = ∂Λ∂Λ0L
Λ,Λ0

l,2

(
z1; 0⃗;ϕ2

)
− ∂Λ∂Λ0a

Λ,Λ0

l (z1)ϕ2(z1)

+ ∂Λ∂Λ0s
Λ,Λ0

l (z1)(∂z1ϕ2)(z1)− ∂Λ∂Λ0d
Λ,Λ0

l (z1)(∂
2
z1ϕ2)(z1) .

Using the induction hypothesis (4.5.7), we obtain as in (4.5.61)

∣∣∣∂Λ∂Λ0 l
Λ,Λ0

l,2 (z1;ϕ2)
∣∣∣ ≤ (Λ +m)2

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
Q

 τ
− 1

2
2

Λ +m

FΛ
2,l;δ (τ2) .
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Since δ′Λ2 ≤ bτ−1
2 we find∣∣∣∂Λ∂Λ0 l

Λ,Λ0

2,l (z1, ϕ2)
∣∣∣

≤ max
(
m4, τ−2

2

(
b

δ′

)2)(Λ +m)−2

(Λ0 +m)2
P
(
log

Λ0 +m

m

)
Q
( τ

− 1
2

2

Λ +m

)
FΛ
2,l;δ (τ2) . (4.5.76)

Integrating from Λ to Λ0 (with Λ0 large enough), we obtain

∂Λ0 l
Λ,Λ0

2,l (z1, ϕ2) =

∫ b
δ′
√
τ2

Λ
dλ ∂λ∂Λ0 l

Λ,Λ0

2,l (z1, ϕ2) +

∫ Λ0

b
δ′
√
τ2

dλ ∂λ∂Λ0 l
Λ,Λ0

2,l (z1, ϕ2) .

Using (4.5.76) we obtain∣∣∣∣∣
∫ b

√
τ2

δ′

Λ
dλ∂λ∂Λ0 l

Λ,Λ0

2,l (z1, ϕ2)

∣∣∣∣∣
≤ max

(
m4, τ−2

2

(
b

δ′

)2
)

(Λ +m)−1

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
Q
( τ

− 1
2

2

Λ +m

)
FΛ
2,l;δ (τ2) ,

which can be bounded by

(Λ +m)3

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
Q

 τ
− 1

2
2

Λ +m

FΛ
2,l;δ (τ2) . (4.5.77)

We have ∫ Λ0

b
δ′ τ2

− 1
2

dλ ∂λ∂Λ0 l
Λ,Λ0

2,l (z1, ϕ2) = ∂Λ0 l
b
δ′ τ

− 1
2

2 ,Λ0

2,l (z1, ϕ2) . (4.5.78)

Using (4.5.75) for δ′Λ2 ≥ bτ−1
2 , we deduce that

∣∣∣∣∣
∫ Λ0

b
δ′ τ2

− 1
2

dλ ∂λ∂Λ0 l
Λ,Λ0

2,l (z1, ϕ2)

∣∣∣∣∣ ≤ (Λ +m)3

(Λ0 +m)2
P

(
log

Λ0 +m
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) τ
− 1

2
2

Λ +m

3

FΛ
2,l;δ (τ2) , (4.5.79)

(4.5.77) together with (4.5.79) imply that for all 0 ≤ Λ ≤ Λ0, we have

∣∣∣∂Λ0 l
Λ,Λ0

2,l (z1, ϕ2)
∣∣∣ ≤ (Λ +m)3

(Λ0 +m)2
P

(
log

Λ0 +m

m

)
Q

 τ
− 1

2
2

Λ +m

 FΛ
2,l;δ (τ2) .

This concludes the proof for n = 2, r = 0 and w = 0. The case n = 2, r = 0 and w = 2 is treated
similarly. Extension to general momenta is again achieved via the Taylor formula (4.5.17). Note that
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compared to the proof of Theorem 7, we don’t need extra bounds for the cases n = 2, r = 2 and
n = 2, r = 1 since they are not required to close the inductive scheme. The bounds (4.5.70)-(4.5.73)
leading to convergence are obtained using only the FE together with the inductive hypotheses (4.5.7)
and (4.5.8) in addition to the bound (4.5.4).
Thus, the proof of Theorem 8 is complete.



Chapter 5

Multiplicative renormalization of the
semi-infinite model: Surface
counter-terms

5.1 Introduction

In chapter 4, we proved the renormalizability of the semi-infinite model. We considered BPHZ
renormalization conditions and found that the semi-infinite model is renormalized by adding five po-
sition dependent counter-terms to the bare interaction given by

LΛ0,Λ0(ϕ) =
λ

4!

∫
R+

dz

∫
R3

d3x ϕ4(z, x)

+
1

2

∫
R+

dz

∫
R3

d3x

(
aΛ0(z)ϕ2(z, x)− bΛ0(z)ϕ(z, x)∆xϕ(z, x)

− dΛ0(z)ϕ(z, x)∂2zϕ(z, x)− sΛ0(z)ϕ(z, x)(∂zϕ)(z, x) +
2

4!
cΛ0(z)ϕ4(z, x)

)
. (5.1.1)

In the present chapter, we prove that there exists a particular choice of renormalization conditions for
which the counter-terms appearing in the effective action are separated into bulk and surface counter-
terms, in the sense that the effective action can be written as the sum of counter-terms which are
independent of the considered boundary conditions and others denoted by "surface" counter-terms
which absorb the divergences that result from the presence of the surface. More precisely, as it appears
in (2.4.27)-(2.4.29) the different propagators of the semi-infinite model can be decomposed into a
bulk part CB which is similar to the translationally invariant ϕ44 theory propagator and a surface
part CS,⋆ which accounts for the presence of the surface and depends on the considered boundary
condition. The central idea of this chapter is to decompose the correlation distributions into two
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parts: a part which is associated to Feynman graphs with CB propagators, which we call the "bulk"
correlation distributions, and a second part that corresponds to Feynman graphs with at least a surface
propagator CS,⋆. These will be denoted by the "surface" correlation distributions and are the object
of study of this chapter. The aim of this approach is to be able at the end to prove that the counter-
terms are position independent, and furthermore relate them to those of the translationally invariant
theory. A motivation to our approach is related to the critical behaviour of the semi-infinite scalar field
model which was studied extensively in [1,2,22]. The theory of bulk critical phenomena suggests that
the number of independent critical exponents should follow directly from the number of independent
renormalization functions (i.e. Z functions). This correspondence between the critical exponents and
counter-terms suggests that some of the counter-terms are the same as those which renormalize the
translationally invariant theory, while the remaining ones are new counter-terms which result from the
presence of the boundary and can be associated to the independent surface critical exponents.

In this chapter, this correspondence is made explicit but only partially and this for the following
two reasons: the first reason concerns the surface critical exponent of the ordinary transition (i.e.
Dirichlet b.c.). For Robin and Neumann boundary conditions, we establish that two surface counter-
terms are needed to make the semi-infinite model finite which correspond to the two surface critical
exponents. For Dirichlet boundary conditions, the theory of critical phenomena implies that a single
surface exponent which follows from the anomalous dimension of the derivative ∂nϕ(x, 0), characterizes
the ordinary transition. Following [22] the counter-term corresponding to the Dirichlet surface critical
exponent can be retrieved by renormalizing the theory with the insertion of the operator ∂nϕ(x, 0).
In this work, we do not consider this insertion and we focus our study on the renormalization of
the (non-inserted) connected amputated Schwinger (CAS) distributions of the semi-infinite model.
We find that no surface counter-term is needed to renormalize the semi-infinite model with Dirichlet
boundary conditions. This follows from the fact that the renormalized non-amputated connected
Schwinger Dirichlet n-point functions with a point on the surface vanish. The second point which
is missing regarding the correspondence mentioned above, concerns the bulk critical exponents. The
latter are associated to the counter-terms which renormalize the translationally invariant scalar field
theory. However, in the context of this work, the bulk counter-terms are defined as those needed to
renormalize the ϕ44 theory in R4 with an interaction restricted to the half-space. In chapter 6, we
show that this theory is renormalized by adding the translationally invariant ϕ44 theory counter-terms
and two surface counter-terms which are independent of the half-space boundary conditions. This will
complete the proof of the independence of the counter-terms from the position in the space.

The technique of our proof is based on constructing a solution to the flow equation of the semi-
infinite model derived in chapter 4 such that the bare interaction has the following form (in the case
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of Robin boundary conditions)

LΛ0,Λ0

R (ϕ) =

∫
R+

dz

∫
R3

d3x

(
λ

4!
ϕ4(z, x) +

1

2
aΛ0
B (z)ϕ2(z, x)− 1

2
sΛ0
B (z)ϕ(z, x)∂zϕ(z, x)

−1

2
bΛ0
B (z)ϕ(z, x)∆xϕ(z, x)−

1

2
dΛ0
B (z)ϕ(z, x)∂2zϕ(z, x) +

1

4!
cΛ0
B (z)ϕ4(z, x)

)
+

∫
R3

d3x

(
1

2
sΛ0
R + c eΛ0

R

)
ϕ2(0, x), (5.1.2)

where c denotes the Robin parameter associated to Robin boundary conditions.
The chapter is organized as follows. In section 5.2, we review the basic setting by recalling some

basic properties of the regularized Robin, Neumann and Dirichlet propagators. Section 5.3 is devoted
to define the scalar field theory in R4 with a quartic self-interaction restricted to the half-space R+×R3.
The CAS of this theory obey the standard flow equations of the ϕ44-theory in R4, with the exception
that the z , z′ integrations appearing on the RHS of the flow equations are restricted to R+ instead of
the full space R. The bare interaction corresponding to this theory reads

LΛ0,Λ0

B (ϕ) =

∫
R+

dz

∫
R3

d3x

(
λ

4!
ϕ4(z, x) +

1

2
aΛ0
B (z)ϕ2(z, x)− 1

2
sΛ0
B (z)ϕ(z, x)∂zϕ(z, x)

−1

2
bΛ0
B (z)ϕ(z, x)∆xϕ(z, x)−

1

2
dΛ0
B (z)ϕ(z, x)∂2zϕ(z, x) +

1

4!
cΛ0
B (z)ϕ4(z, x)

)
,

where aΛ0
B (z), sΛ0

B (z), bΛ0
B (z), dΛ0

B (z) and cΛ0
B (z) are the bulk counter-terms which can depend (smoothly)

on z since the interaction breaks translation invariance. In section 5.4, we construct the surface cor-
relation distributions S

Λ,Λ0

l,n;⋆ associated to the boundary condition ⋆. Section 5.5 is the central part of
this chapter. We present Theorem 9 which contains the power counting for the connected amputated
Schwinger distributions (CAS) S

Λ,Λ0

l,n;⋆ as well as their boundedness w.r.t. to Λ0. Then, Proposition 7
proves that the Dirichlet surface correlation distributions can be viewed as the limit of Robin surface
correlation distributions when the Robin parameter c is taken to infinity. Theorem 9 together with
Proposition 6 imply Corollary 4 which states that the Dirichlet surface correlation distributions when
folded with Dirichlet heat kernels are irrelevant. In section 5.6, we explain how the minimal form
(5.1.2) of the bare interaction is deduced from Theorem 9. First order calculations in perturbation
theory [44,45] suggest that the amputated theory is renormalized differently w.r.t. the non-amputated
one in the sense that the tadpole needs more counter-terms depending on whether one of its external
points is on the surface or not. We explain this in more detail to all orders of perturbation theory in
section 5.7. In section 5.8, we collected technical lemmas which we use in the proof of Theorem 9.
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5.2 The regularized propagators

We denote by ⋆ the type of boundary conditions considered. For 0 ≤ Λ ≤ Λ0, we recall the
regularized flowing propagator associated to the boundary condition ⋆ ∈ {D,N,R} given by:

CΛ,Λ0
⋆ (p; z, z′) :=

∫ 1
Λ2

1

Λ2
0

dλ p⋆
(
λ; z, z′

)
e−λ(p2+m2). (5.2.1)

(5.2.1) can be rewritten as

CΛ,Λ0
⋆

(
p; z, z′

)
= CΛ,Λ0

B

(
p; z, z′

)
+ CΛ,Λ0

S,⋆

(
p; z, z′

)
, (5.2.2)

where

CΛ,Λ0

B (p; z, z′) :=

∫ 1
Λ2

1

Λ2
0

dλ pB
(
λ; z, z′

)
e−λ(p2+m2) (5.2.3)

and

CΛ,Λ0

S,⋆ (p; z, z′) :=

∫ 1
Λ2

1

Λ2
0

dλ pS,⋆
(
λ; z, z′

)
e−λ(p2+m2), (5.2.4)

with the surface heat kernel pS,⋆ defined as p⋆ − pB and pB defined by (3.1.1). In the case of Robin
boundary conditions, the surface Robin heat kernel is given by

pS,R

(
1

Λ2
; z, z′

)
:= pB

(
1

Λ2
; z,−z′

)
− 2

∫ ∞

0
dw e−wpB

(
1

Λ2
; z,−w

c
− z′

)
. (5.2.5)

Note that the Robin heat kernel and pS,R are uniformly bounded w.r.t. the Robin parameter c. Namely,
we have using (3.1.12)

pR
(
τ ; z, z′

)
≤ 4 pB

(
τ ; z, z′

)
, pS,R

(
τ ; z, z′

)
≤ 3 pB

(
τ ; z,−z′

)
, (5.2.6)

for all z, z′ ≥ 0, τ > 0 and c ≥ 0. Similarly, we also have

pD
(
τ ; z, z′

)
≤ pN

(
τ ; z, z′

)
≤ 2 pB

(
τ ; z, z′

)
. (5.2.7)

In the sequel, we denote the derivative of the flowing propagators w.r.t. Λ by

ĊΛ
• (p; z, z

′) =
∂

∂Λ
CΛ,Λ0
• (p; z, z′) = ĊΛ(p) p•

(
1

Λ2
; z, z′

)
, (5.2.8)

where ĊΛ(p) = − 2
Λ3 e

− p2+m2

Λ2 and • ∈ {⋆, {S, ⋆} , B} with ⋆ ∈ {D,N,R}.



5.3. THE BULK THEORY ON THE HALF-SPACE R+ × R3 99

5.3 The bulk theory on the half-space R+ × R3

5.3.1 The Action and the Flow Equations

We consider the theory of a real scalar field ϕ with mass m on the four dimensional Euclidean space-
time R4. The regularized flowing propagator is given by (5.2.3). Note that for Λ → 0 and Λ0 → ∞
we recover the unregularized propagator. As in section 1.1.3 we define the theory rigorously from the
functional integral

e
− 1

ℏ

(
L
Λ,Λ0
B (ϕ)+IΛ,Λ0

)
: =

∫
dµΛ,Λ0

B (Φ) e−
1
ℏL

Λ0,Λ0
B (Φ+ϕ) , (5.3.1)

LΛ,Λ0

B (0) = 0 .

Here, the Gaussian measure dµΛ,Λ0

B is of mean zero and covariance ℏCΛ,Λ0

B . The test function ϕ is in
the support of dµΛ,Λ0

B which in particular implies that it is in C∞ (R4
)
. This regularity stems from the

UV-regularization determined by the cutoff Λ0.
The functional LΛ0,Λ0

B (ϕ) is the bare interaction of a renormalizable theory including counter-terms,
viewed as a formal power series in ℏ. It contains the tree order interaction and the related counter-
terms. The interaction is supported only on the half-space R+ × R3 which implies that translation
invariance is broken in the z-direction (the semi-line). This implies that the counter-terms may be
z-dependent. In general, the constraints on the bare action result from the symmetry properties of
the theory which are imposed, on its field content and on the form of the propagator. It is therefore
natural to consider the general bare interaction

LΛ0,Λ0

B (ϕ) =
λ

4!

∫
z

∫
R3

d3xϕ4(z, x) +
1

2

∫
z

∫
R3

d3x

(
aΛ0
B (z)ϕ2(z, x)− bΛ0

B (z)ϕ(z, x)∆xϕ(z, x)

− dΛ0
B (z)ϕ(z, x)∂2zϕ(z, x)− sΛ0

B (z)ϕ(z, x)(∂zϕ)(z, x) +
2

4!
cΛ0
B (z)ϕ4(z, x)

)
.

Here we supposed the theory to be symmetric under ϕ → −ϕ , and we included only relevant terms
in the sense of the renormalization group. The functions aΛ0

B (z), bΛ0
B (z), cΛ0

B (z), dΛ0
B (z) and sΛ0

B (z) are
supposed to be smooth.
The flow equation (FE) is obtained from (5.3.1) on differentiating w.r.t. Λ, see section 1.1.3 and
[11,30,46]. It is a differential equation for the functional LΛ,Λ0

B :

∂Λ(L
Λ,Λ0

B + IΛ,Λ0) =
ℏ
2
⟨ δ
δϕ
, ĊΛ

B

δ

δϕ
⟩LΛ,Λ0

B − 1

2
⟨ δ
δϕ
LΛ,Λ0

B , ĊΛ
B

δ

δϕ
LΛ,Λ0

B ⟩ . (5.3.2)

We expand the functional LΛ,Λ0

B (ϕ) in a formal power series w.r.t. ℏ,

LΛ,Λ0

B (ϕ) =

∞∑
l=0

ℏlLΛ,Λ0

l,B (ϕ) .
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Corresponding expansions for aΛ0
B (z), bΛ0

B (z)..., are aΛ0
B (z) =

∑∞
l=1 ℏla

Λ0
l,B(z), etc. From LΛ,Λ0

l,B (ϕ) we
obtain the CAS distributions of loop order l as

D
Λ,Λ0

l,n ((z1, x1), · · · , (zn, xn)) := δϕ(z1,x1) · · · δϕ(zn,xn)L
Λ,Λ0

l,B |ϕ=0 ,

where we used the notation δϕ(z,x) = δ/δϕ(z, x) .
In the pz-representation, we set for r, r1 and r2 ∈ N∗

D
Λ,Λ0;(i)
l,n;r (z1; p⃗n; Φn) :=

∫
(R+)n−1

dz2,n (z1 − zi)
rD

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))ϕ2(z2) · · ·ϕn(zn),

(5.3.3)

D
Λ,Λ0;(i,j)
l,n;r1,r2

(z1; p⃗n; Φn) :=

∫
(R+)n−1

dz2,n (z1 − zi)
r1(z1 − zj)

r2D
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))

× ϕ2(z2) · · ·ϕn(zn), r1 + r2 = r, (5.3.4)

and for r = 0

D
Λ,Λ0

l,n (z1; p⃗n; Φn) :=

∫
(R+)n−1

dz2,n D
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))ϕ2(z2) · · ·ϕn(zn) . (5.3.5)

Here we denote

Φn(z2, · · · , zn) :=
n∏

i=2

ϕi(zi)

and

δ(3)(p1 + · · ·+ pn)D
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn)) = (2π)3(n−1) δn

δϕ(z1, p1) · · · δϕ(zn, pn)
LΛ,Λ0

l,B (ϕ)|ϕ≡0 .

The distribution δ(3)(p1 + · · ·+ pn) appears because of translation invariance in the x directions. The
FE for the CAS distributions derived from (5.3.2) are

∂Λ∂
wD

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))

=
1

2

∫
R+

dz

∫
R+

dz′
∫
k
∂wD

Λ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
ĊΛ
B(k; z, z

′)

− 1

2

∫
R+

dz

∫
R+

dz′
′∑

l1,l2

′∑
n1,n2

∑
wi

cw

[
∂w1D

Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1pn1), (z, p))∂
w3ĊΛ

B(p; z, z
′)

× ∂w2D
Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

]
rsym

,

p = −p1 − · · · − pn1 = pn1+1 + · · ·+ pn . (5.3.6)

For the notations, see after (1.1.18).
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5.3.2 Test functions and boundary conditions

The n-point correlation "functions" D
Λ,Λ0

l,n when considered in the pz-representation are tempered
distributions which belong for fixed p⃗n to the space S′ (R+n) w.r.t. the semi-norms

n∏
i=1

N2 (ϕi) ,

where N2(ϕ) := sup0≤α,β≤2

∥∥(1 + zβ)∂αz ϕ(z)
∥∥
∞ and ∂zϕ|z=0 = limz→0+ ∂zϕ . Our method of proof

relies on inductive bounds deduced from the flow equations (5.3.6). The induction restricts our choice
of the test functions. To proceed inductively we cannot admit any arbitrary test function in S(R+n).
Let us give the set of test functions we will be using in the sequel: For 2 ≤ s ≤ n, we define

τ := inf τ2,s, where τ2,s = (τ2, · · · , τs) with τi > 0 ,

and similarly z2,s = (z2, · · · , zs). Given (y2, · · · , ys) ∈ Rs−1, we define

ϕτ2,s,y2,s(z2,s) :=
s∏

i=2

pB(τi; zi, yi)
n∏

i=s+1

χ+(zi) , (5.3.7)

where χ+ is the characteristic function of the semi-line R+. This definition can be generalized by
choosing any other subset of s− 1 coordinates among z2, · · · , zn . The characteristic functions χ+ are
introduced in order to be able to extract the relevant terms in the sense of the renormalization group
from the full n-point distributions and to get inductive control of the local counter terms. Following
section 4.4.2, the relevant terms contained in

D
Λ,Λ0

l,2

(
z1; 0⃗;ϕ2

)
:=

∫
z2

D
Λ,Λ0

l,2 ((z1, 0), (z2, 0))ϕ2(z2) (5.3.8)

and

D
Λ,Λ0

l,4

(
z1; 0⃗; Φ4

)
:=

∫
z2,4

D
Λ,Λ0

l,4 ((z1, 0), · · · , (z4, 0))
4∏

i=2

ϕi(zi) , (5.3.9)

are extracted by using a Taylor expansion of the test functions ϕ2 and Φ4, which gives

D
Λ,Λ0

l,2 (z1; 0, 0;ϕ2) = aΛ,Λ0

l,B (z1)ϕ2(z1)− sΛ,Λ0

l,B (z1)(∂z1ϕ2)(z1)

− dΛ,Λ0

l,B (z1)(∂
2
z1ϕ2)(z1) + lΛ,Λ0

l,2;B(z1;ϕ2) , (5.3.10)(
∂p2D

Λ,Λ0

l,2

)
(z1; 0, 0;ϕ2) = bΛ,Λ0

l,B (z1)ϕ2(z1) +
(
∂p2 l

Λ,Λ0

l,2

)
(z1;ϕ2) , (5.3.11)

D
Λ,Λ0

l,4 (z1; 0, · · · , 0; Φ4) = cΛ,Λ0

l,B (z1)ϕ2(z1)ϕ3(z1)ϕ4(z1) + lΛ,Λ0

l,4,B (z1; Φ4) . (5.3.12)
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Then the relevant terms appear as

aΛ,Λ0

l,B (z1) =

∫ ∞

0
dz2 D

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (5.3.13)

sΛ,Λ0

l,B (z1) =

∫ ∞

0
dz2 (z1 − z2)D

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (5.3.14)

dΛ,Λ0

l,B (z1) = −1

2

∫ ∞

0
dz2 (z1 − z2)

2D
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (5.3.15)

bΛ,Λ0

l,B (z1) =

∫ ∞

0
dz2 ∂p2

(
D

Λ,Λ0

l,2 ((z1, p), (z2,−p))
)
|p=0

, (5.3.16)

cΛ,Λ0

l,B (z1) =

∫ ∞

0
dz2dz3dz4 D

Λ,Λ0

l,4 ((z1, 0), · · · , (z4, 0)) , (5.3.17)

and the remainders lΛ,Λ0

l,2,B (z1;ϕ2),
(
∂p2 l

Λ,Λ0

l,2,B

)
(z1;ϕ2) and lΛ,Λ0

l,4,B (z1; Φ4) can be written as

lΛ,Λ0

l,2,B(z1;ϕ2) =

∫ ∞

0
dz2

∫ 1

0
dt

(1− t)2

2!
∂3t ϕ2 (tz2 + (1− t)z1) D

Λ,Λ0

l,2 ((z1; 0), (z2; 0)) , (5.3.18)

(
∂p2 l

Λ,Λ0

l,2,B

)
(z1;ϕ2) =

∫ ∞

0
dz2

∫ 1

0
dt ∂tϕ2 (tz2 + (1− t)z1) ∂p2

(
D

Λ,Λ0

l,2 ((z1, p), (z2,−p))
)
|p=0

and

lΛ,Λ0

l,4,B(z1; Φ4)

=

∫
(R+)3

dz2,4 D
Λ,Λ0

l,4 ((z1, 0), · · · , (z4, 0))
[∫ 1

0
dt ∂tϕ2 (tz2 + (1− t)z1)ϕ3(z3)ϕ4(z4)

+ϕ2(z1)

∫ 1

0
dt ∂tϕ3 (tz3 + (1− t)z1)ϕ4(z4) + ϕ2(z1)ϕ3(z1)

∫ 1

0
dt ∂tϕ4 (tz4 + (1− t)z1)

]
. (5.3.19)

Boundary conditions at Λ = Λ0:
The bare interaction implies that at Λ = Λ0

D
Λ0,Λ0

l,2 ((z1, p), (z2,−p)) =
(
aΛ0
l;B(z1) + bΛ0

l;B(z1)p
2 − sΛ0

l;B(z1)∂z1 − dΛ0
l;B(z1)∂

2
z1

)
δ(z1 − z2) ,

D
Λ0,Λ0

l,4 ((z1, p1), · · · , (z4, p4)) =
(
λδl,0 + cΛ0

l;B(z1)(1− δl,0)
) 4∏

i=2

δ(z1 − zi) .

D
Λ0,Λ0

l,n ((z1, p1), · · · , (zn, pn)) = 0 , ∀n ≥ 5. (5.3.20)

Renormalization conditions at Λ = 0 (BPHZ renormalization conditions):
The renormalization conditions are fixed at Λ = 0 by imposing for all z1 ≥ 0

a0,Λ0

l,B (z1) ≡ 0, s0,Λ0

l,B (z1) ≡ 0, d0,Λ0

l,B (z1) ≡ 0, b0,Λ0

l,B (z1) ≡ 0, c0,Λ0

l,B (z1) ≡ 0 . (5.3.21)
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These will be adopted in the following. Note that the boundary conditions are invariant under the
three-dimensional Euclidean group.
We will need the following result, which we do not prove. The proof can be performed following the
same steps as in the proof of Theorem 7 in chapter 4:

Proposition 6. For 0 ≤ Λ ≤ Λ0 <∞, 1 ≤ s ≤ n, 2 ≤ i ≤ n and 0 ≤ r ≤ 3, we consider test functions
of the form ϕτ2,s,y2,s(z2,s), which are also denoted in shorthand as ϕτ2,s,y2,s .
Adopting (5.3.20)-(5.3.21) we claim∣∣∣∂wD

Λ,Λ0;(i)
l,n;r (z1; p⃗n;ϕτ2,s,y2,s)

∣∣∣
≤ (Λ +m)4−n−|w|−r

P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
Q1

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ(τ2,s) , (5.3.22)

∣∣∣∂wD
Λ,Λ0;(i,j)
l,n;r1,r2

(z1; p⃗n;ϕτ2,s,y2,s)
∣∣∣

≤ (Λ +m)4−n−|w|−r1−r2 P′
1

(
log

Λ +m

m

)
P′

2

(
∥p⃗n∥
Λ +m

)
Q′
1

(
τ−

1
2

Λ +m

)
FΛ
s,l;δ(τ2,s) , (5.3.23)

and ∂wD
Λ,Λ0;(i)
l,n;r (z1; p⃗n;ϕτ2,s,y2,s) is continuous w.r.t. z1 . Here, Pi and Qi denote polynomials with

non-negative coefficients which depend on l, n, |w|, r, but not on {pi}, Λ, Λ0 and z1. The polynomials
Qi are reduced to a constant if s = 1, and for l = 0 all polynomials Pi and Qi reduce to constants.

The weight factors FΛ
s,l;δ (τ2,s) are defined in Section 3.2.

5.4 The Surface correlation distributions

5.4.1 The semi-infinite theory

In this subsection, we recall the flow equation of the semi-infinite massive scalar field model pre-
sented in chapter 4:

∂Λ∂
wL

Λ,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn))

=
1

2

∫
z

∫
z′

∫
k
∂wLΛ,Λ0

l−1,n+2;⋆

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
ĊΛ
⋆ (k; z, z

′)

− 1

2

∫
z

∫
z′

′∑
l1,l2

′∑
n1,n2

∑
wi

cwi

[
∂w1L

Λ,Λ0

l1,n1+1;⋆((z1, p1), · · · , (zn1pn1), (z, p))∂
w3ĊΛ

⋆ (p; z, z
′)

× ∂w2L
Λ,Λ0

l2,n2+1;⋆((z
′,−p), · · · , (zn, pn))

]
rsym

,

p = −p1 − · · · − pn1 = pn1+1 + · · ·+ pn . (5.4.1)
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where CΛ,Λ0
⋆ (p; z, z′) is defined in (5.2.2) and L

Λ,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn)) denote the semi-infinite
correlation distributions at loop order l and with n external points. The ⋆ index refers to the type of
considered boundary conditions, namely Dirichlet, Neumann and Robin. In chapter 4, we imposed the
following mixed boundary conditions:

• At Λ = Λ0:

L
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p)) =
(
aΛ0
l;⋆ (z1) + bΛ0

l;⋆ (z1)p
2 − sΛ0

l;⋆ (z1)∂z1 − dΛ0
l;⋆ (z1)∂

2
z1

)
δ(z1 − z2) ,

L
Λ0,Λ0

l,4;⋆ ((z1, p1), · · · , (z4, p4)) = λδl,0 + cΛ0
l;⋆ (z1)(1− δl,0)

4∏
i=2

δ(z1 − zi) .

L
Λ0,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn)) = 0 , ∀n ≥ 5. (5.4.2)

• At Λ = 0: We impose BPHZ type renormalization conditions. Namely, for all z1 ≥ 0 we set

a0,Λ0

l;⋆ (z1) ≡ 0, s0,Λ0

l;⋆ (z1) ≡ 0, d0,Λ0

l;⋆ (z1) ≡ 0, b0,Λ0

l;⋆ (z1) ≡ 0, c0,Λ0

l;⋆ (z1) ≡ 0 , (5.4.3)

where

aΛ,Λ0

l;⋆ (z1) =

∫ ∞

0
dz2 L

Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0)) , (5.4.4)

sΛ,Λ0

l;⋆ (z1) =

∫ ∞

0
dz2 (z1 − z2)L

Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0)) , (5.4.5)

dΛ,Λ0

l;⋆ (z1) = −1

2

∫ ∞

0
dz2 (z1 − z2)

2L
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0)) , (5.4.6)

bΛ,Λ0

l;⋆ (z1) =

∫ ∞

0
dz2 ∂p2

(
L

Λ,Λ0

l,2;⋆ ((z1, p), (z2,−p))
)
|p=0

, (5.4.7)

cΛ,Λ0

l;⋆ (z1) =

∫ ∞

0
dz2dz3dz4 L

Λ,Λ0

l,4;⋆ ((z1, 0), · · · , (z4, 0)) . (5.4.8)

This yielded five position dependent counter-terms which appear in the bare interaction of our semi-
infinite model

LΛ0,Λ0
⋆ (ϕ) =

λ

4!

∫
R+

dz

∫
R3

d3x ϕ4(z, x) +
1

2

∫
R+

dz

∫
R3

d3x

(
aΛ0
⋆ (z)ϕ2(z, x)

− bΛ0
⋆ (z)ϕ(z, x)∆xϕ(z, x)− dΛ0

⋆ (z)ϕ(z, x)∂2zϕ(z, x)− sΛ0
⋆ (z)ϕ(z, x)(∂zϕ)(z, x) +

2

4!
cΛ0
⋆ (z)ϕ4(z, x)

)
.

(5.4.9)

In chapter 4, we saw that imposing constant renormalization conditions w.r.t. the position z at the
scale Λ = 0 is at the expense of obtaining position dependent counter-terms. In this chapter, we would
like to reverse the process in the sense that we aim to obtain position independent counter-terms by



5.4. THE SURFACE CORRELATION DISTRIBUTIONS 105

transferring the position dependent part to the renormalization conditions. Our strategy is based on
extracting the surface counter-terms from the semi-infinite counter-terms by separating the bulk and
the surface effects. Concretely, we proceed by subtracting the bulk correlation distributions defined in
Section 5.3 from the semi-infinite correlation distributions and study the behaviour of the difference
to which we refer as the surface correlation distributions. Namely, we write

S
Λ,Λ0

l,n;⋆ ((z⃗n, p⃗n)) := L
Λ,Λ0

l,n;⋆ ((z⃗n, p⃗n))− D
Λ,Λ0

l,n ((z⃗n, p⃗n)) . (5.4.10)

The definition (5.4.10) allows to write the FE verified by S
Λ,Λ0

l,n;⋆ , which we give explicitly in the next
subsection.

5.4.2 The surface correlation distributions

Before getting to the mathematical definition of the surface correlation distributions, let us give a
brief motivation of our approach based on a diagrammatic approach to the renormalization problem
of the semi-infinite scalar field model. The propagator associated to the b.c. ⋆ can be decomposed
into a sum of the two contributions given in (5.2.2), where CΛ,Λ0

B is the regularized bulk propagator
which is responsible for the singularities arising from coalescing of points and CΛ,Λ0

S,⋆ is the part which
is responsible of singularities arising when a point approaches the surface. Therefore, an arbitrary
Feynman diagram of the semi-infinite model can be written as the sum of a diagram which contains
only bulk internal lines consisting of propagators CΛ,Λ0

B only, and other diagrams which contain at
least one surface internal line given by the propagator CΛ,Λ0

S,⋆ . Renormalizing the massive semi-infinite
model then amounts to renormalizing the diagrams with only bulk internal lines and those with at
least a surface internal line. This approach has the advantage to disentangle the surface divergences
from the bulk divergences. From the renormalization group point of view, we proceed similarly by
writing (5.4.10) with D

Λ,Λ0

l,n (resp. S
Λ,Λ0

l,n;⋆ ) consisting of all connected amputated diagrams with n

external legs and l loops involving exclusively CΛ,Λ0

B (resp. CΛ,Λ0

B and at least one CΛ,Λ0

S,⋆ ). Using
the flow equations (5.3.6) and (5.4.1), we obtain the flow equation verified by the surface correlation
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distributions S
Λ,Λ0

l,n;⋆ ((z⃗n, p⃗n)) :

∂Λ∂
wS

Λ,Λ0

l,n;⋆ ((z⃗n, p⃗n))

=
1

2

∫
z,z′

∫
k
∂wSΛ,Λ0

l−1,n+2;⋆

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)
ĊΛ
⋆ (k; z, z

′)

+
1

2

∫
z,z′

∫
k
∂wD

Λ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)
ĊΛ
S,⋆(k; z, z

′)

− 1

2

∫
z,z′

′∑
l1,l2

′′∑
(π1,π2)

∑
wi

cw[
∂w1S

Λ,Λ0

l1,n1+1;⋆((z⃗π1 , p⃗π1), (z, p))∂
w3ĊΛ

⋆ (p; z, z
′) ∂w2S

Λ,Λ0

l2,n2+1;⋆((z
′,−p), (z⃗π2 , p⃗π2))

+ ∂w1D
Λ,Λ0

l1,n1+1((z⃗π1 , p⃗π1), (z, p))∂
w3ĊΛ

⋆ (p; z, z
′) ∂w2S

Λ,Λ0

l2,n2+1;⋆

(
(z′,−p), (z⃗π2 , p⃗π2)

)
+ ∂w1S

Λ,Λ0

l1,n1+1;⋆((z⃗π1 , p⃗π1), (z, p)∂
w3ĊΛ

⋆ (p; z, z
′)∂w2D

Λ,Λ0

l2,n2+1((z
′,−p), (z⃗π2 , p⃗π2))

+∂w1D
Λ,Λ0

l1,n1+1((z⃗π1 , p⃗π1), (z, p))∂
w3ĊΛ

S,⋆(p; z, z
′)∂w2D

Λ,Λ0

l2,n2+1((z
′,−p), (z⃗π2 , p⃗π2))

]
,

p = −p1 − · · · − pn1 = pn1+1 + · · ·+ pn , (5.4.11)

where we used the shorthand notation (z⃗πi , p⃗πi) = ((zj , pj))j∈πi
. The prime restricts the summations

to l1 + l2 = l and the double prime to the partitions (π1, π2) ∈ P̃2;n. For the tree order l = 0 we have

S
Λ,Λ0
0,4;⋆ ((z1, p1), · · · , (z4, p4)) = 0 . (5.4.12)

The existence of S
Λ,Λ0

l,n ((z⃗n, p⃗n)) is ensured by (5.4.12) and by the flow equation (5.4.11) through
induction in n+ 2l and in l for fixed n+ 2l.

5.4.3 Boundary and renormalization conditions

For ϕ1 and ϕ2 in S(R+), the relevant terms are contained in

S
Λ,Λ0

l,2;⋆ (0, 0) :=

∫
z1,z2

S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0))ϕ1(z1)ϕ2(z2). (5.4.13)

They are extracted from (5.4.13) by performing a Taylor expansion of the test functions ϕ1 and ϕ2

around 0 which gives 1

S
Λ,Λ0

l,2;⋆ (0, 0) = sΛ,Λ0

l;⋆ ϕ1(0)ϕ2(0) + eΛ,Λ0

l;;⋆ ϕ1(0)(∂nϕ2)(0) + hΛ0
l;⋆ϕ2(0)(∂nϕ1)(0)

+ lΛ,Λ0

l,2;⋆ (ϕ1, ϕ2) . (5.4.14)

1(∂nϕ)(0) = limz→0(∂zϕ)(z)
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Then the relevant terms sΛ,Λ0

l;⋆ , eΛ,Λ0

l;⋆ and hΛ,Λ0

l;⋆ are obtained as

sΛ,Λ0

l;⋆ :=

∫
z1,z2

S
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , eΛ,Λ0

l;⋆ :=

∫
z1,z2

z2 S
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) ,

hΛ,Λ0

l;⋆ :=

∫
z1,z2

z1 S
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) . (5.4.15)

Bose symmetry implies that∫
z1,z2

z2 S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0)) =

∫
z1,z2

z1 S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0)) , (5.4.16)

so that the counter-terms eΛ,Λ0

l;⋆ and hΛ,Λ0

l;⋆ are equal to all orders of perturbation theory. The remainder
lΛ,Λ0

l,2;⋆ (ϕ1, ϕ2) has the form

lΛ,Λ0

l,2;⋆ (ϕ1, ϕ2) =

(∫
z1,z2

z1z2 S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0))

)
(∂nϕ1) (0) (∂nϕ2) (0)

+ ϕ1(0)

∫
z1,z2

S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ2

)
(tz2)

+ ϕ2(0)

∫
z1,z2

S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

+ (∂nϕ1)(0)

∫
z1,z2

z1 S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ2

)
(tz2)

+ (∂nϕ2)(0)

∫
z1,z2

z2 S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

+

∫
z1,z2

S
Λ,Λ0

l,2;⋆ ((z1, 0), (z2, 0))

(∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

)
×
(∫ 1

0
dt′ (1− t′)

(
∂2t′ϕ2

)
(t′z2)

)
.

(5.4.17)

In the sequel, we use the following notations. For ⋆ ∈ {R,N,D}, we write

∂wSΛ0,Λ0

l,n;⋆;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)
:=

∫
z1,··· ,zn

zr11 z
r2
2 ∂

wS
Λ,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn))
s∏

i=1

pB (τi; zi, yi) ,

∂wSΛ0,Λ0

l,n;⋆;r1,r2

(
p⃗n;ϕ

⋆
τ1,s,y1,s

)
:=

∫
z1,··· ,zn

zr11 z
r2
2 ∂

wS
Λ,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn))
s∏

i=1

p⋆ (τi; zi, yi) .

The boundary conditions imposed on S
Λ,Λ0

l,n;⋆ are the following:



108 THE SURFACE COUNTER-TERMS

• At Λ = Λ0, we impose for ⋆ ∈ {R,N}

S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p)) = sΛ0,Λ0

l;⋆ δz1δz2 + eΛ0,Λ0

l;⋆

(
δz1δ

′
z2 + δ′z1δz2

)
, ∀l ≥ 1 , (5.4.18)

S
Λ0,Λ0
0,2;⋆ ((z1, p), (z2,−p)) = 0 ,

S
Λ0,Λ0

l,n;⋆ ((z⃗n, p⃗n)) = 0 , ∀n ≥ 4, ∀l ≥ 0 . (5.4.19)

• At Λ = 0, we fix the renormalization conditions for ⋆ ∈ {R,N} as

s0,Λ0

l;⋆ = 0, e0,Λ0

l;⋆ = 0 . (5.4.20)

• For Dirichlet boundary conditions we impose

S
Λ0,Λ0

l,n;D ((z⃗n, p⃗n)) = 0, ∀n ≥ 2, ∀l ≥ 0 . (5.4.21)

Remark 2. - The boundary conditions (5.4.18)-(5.4.21) together with the flow equation (5.4.11)
and the tree order (5.4.12) define uniquely the surface correlation distributions

S
Λ,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn)) , ⋆ ∈ {D,R,N} .

This can be verified inductively by taking the difference of two solutions of the flow equation which
obey the same boundary conditions (5.4.18)-(5.4.21) and by proving to all orders of perturbation
theory that this difference vanishes.

- We would like to emphasize w.r.t. (5.4.10) that we do not require any a priori knowledge on
the semi-infinite correlation distributions L

Λ,Λ0

l,n;⋆ to give a meaning to S
Λ,Λ0

l,n;⋆ . The flow equation
(5.4.11) together with the bulk correlation distributions defined in Section 5.3, the tree order
(5.4.12) and the boundary conditions (5.4.18)-(5.4.21) are sufficient to define uniquely the surface
correlation distributions. The relation (5.4.10) implies the flow equation to be verified by S

Λ,Λ0

l,n;⋆

such that the sum

D
Λ,Λ0

l,n + S
Λ,Λ0

l,n;⋆

is a solution to the FE (5.4.1).

5.5 Results and Proofs

Our main result is summarized in the following theorem:
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Theorem 9. (Boundedness) Let 0 ≤ Λ ≤ Λ0 <∞ and (ri, s) ∈ N2 such that 0 ≤ ri ≤ 4 and 0 ≤ s ≤ n.
For Yσs ∈ Rs, ⋆ ∈ {R,N} and adopting (5.4.18)-(5.4.20) we claim

∣∣∣∂wSΛ,Λ0

l,n;⋆;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣ ≤ (Λ +m)3−n−r1−r2−|w|
P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
× Q1

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ (τ1,s) , ∀n ≥ 2 . (5.5.1)

Here and subsequently Pi and Qi denote polynomials with non-negative coefficients which depend on
l, n, |w|, δ, r1, r2, but not on {pi}, Λ, Λ0, m and c. The polynomial Qi is reduced to a constant for s = 1,
and for l = 0 all polynomials Pi reduce to constants. The parameter δ depends on the loop order l and
verifies 0 < δl ≤ δl+1 < 1.

As a consequence of Theorem 9, we have:

Proposition 7. For fixed 0 ≤ Λ ≤ Λ0 <∞, τ > 0 and (y1, · · · , yn) ∈ (R+)n, we have:

S
Λ,Λ0

l,n;D

(
p⃗n;

n∏
i=1

pD (τi; ·, yi)

)
= lim

c→+∞
S
Λ,Λ0

l,n;R

(
p⃗n;

n∏
i=1

pR (τi; ·, yi)

)
, (5.5.2)

where the parameter c denotes the Robin parameter.

Corollary 4. For Dirichlet boundary conditions, adopting (5.4.21) and the assumptions of Proposition
7 we have∣∣∣∣∣SΛ,Λ0

l,n;D

(
p⃗n;

n∏
i=1

pD (τi; ·, yi)

)∣∣∣∣∣
≤ (Λ +m)3−n

P3

(
log

Λ +m

m

)
P4

(
∥p⃗n∥
Λ +m

)
Q2

(
τ−

1
2

Λ +m

)
F

Λ,0
n,l;δ(τ1,n), ∀n ≥ 4 , (5.5.3)

and for n = 2 we have∣∣∣∣∣SΛ,Λ0

l,2;D

(
p,−p;

2∏
i=1

pD (τi; ·, yi)

)∣∣∣∣∣
≤ (Λ +m)−1 τ

− 1
2

1 τ
− 1

2
2 P5

(
log

Λ +m

m

)
P6

(
|p|

Λ +m

)
Q3

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ(τ1,2) . (5.5.4)

Theorem 10. (Convergence) Let 0 ≤ Λ ≤ Λ0 < ∞. Using the same notations, conventions and
adopting the same renormalization conditions (5.4.18)-(5.4.21) as in Theorem 9 and Proposition 7, we
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have the following bounds

(A)
∣∣∣∂Λ0∂

wS
Λ,Λ0

l,n;⋆;r1,r2
(p⃗n;ϕτ1,s,y1,s)

∣∣∣ ≤ (Λ +m)4−n−|w|−r1−r2

(Λ0 +m)2
P̃1

(
log

Λ0 +m

m

)
P̃2

(
∥p⃗n∥
Λ +m

)
× Q̃1

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ(τ1,s), ∀n+ |w|+ r1 + r2 ≥ 2, ⋆ ∈ {N,R} . (5.5.5)

(B)
∣∣∣∂Λ0S

Λ,Λ0

l,n;D(p⃗n;ϕ
D
τ1,n,y1,n)

∣∣∣
≤ (Λ +m)4−n

(Λ0 +m)2
P̃1

(
log

Λ0 +m

m

)
P̃2

(
∥p⃗n∥
Λ +m

)
Q̃1

(
τ−

1
2

Λ +m

)
F

Λ;0
n,l;δ(τ1,n), ∀n ≥ 4. (5.5.6)

(C)
∣∣∣∂Λ0S

Λ,Λ0

l,2;D(p⃗n;ϕ
D
τ1,n,y1,n)

∣∣∣
≤ τ−1 (Λ0 +m)−2

P̃1

(
log

Λ0 +m

m

)
P̃2

(
∥p⃗n∥
Λ +m

)
Q̃1

(
τ−

1
2

Λ +m

)
F

Λ;0
2,l;δ(τ1,2). (5.5.7)

Remarks 2. • There are two differences between the Robin/Neumann case (5.5.1) and the Dirich-
let case (5.5.3)-(5.5.4): The boundary conditions (5.4.21) for S

Λ,Λ0

l,n;D are imposed at scale Λ = Λ0

only, whereas for S
Λ,Λ0

l,n;⋆;r1,r2
we impose mixed boundary conditions (5.4.18)-(5.4.20). The second

difference concerns the type of test functions considered, which in the case of Dirichlet are product
of Dirichlet heat kernels (i.e.

∏n
i=1 pD (τi; zi, yi)), whereas in the case of Robin and Neumann b.c.

the test functions are product of bulk heat kernels and characteristic functions of the semi-lines
(i.e.

∏s
i=1 pB (τi; zi, yi)

∏n
i=s+1 χ

+(zi)).

• The bounds (5.5.1) and (5.5.3)-(5.5.4) can be established by induction separately using the as-
sociated flow equation. For the Dirichlet boundary conditions, the associated flow equation are
integrated from Λ to Λ0. For the Robin/Neumann cases, the flow equation is integrated from
0 to Λ for the relevant terms using the boundary condition (5.4.20) and from Λ to Λ0 for the
irrelevant terms using the boundary condition (5.4.18).

• Adopting the boundary conditions (5.3.20)-(5.3.21) together with (5.4.18)-(5.4.20), the distri-
butions D

Λ,Λ0

l,n and S
Λ,Λ0

l,n;⋆ are uniquely defined as the solutions of the flow equation (5.3.6) and
(5.4.11). Furthermore, their sum

L
Λ,Λ0

l,n;⋆ = D
Λ,Λ0

l,n + S
Λ,Λ0

l,n;⋆ , (5.5.8)
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is the unique solution of the flow equation (5.4.1) such that D
Λ,Λ0

l,n and S
Λ,Λ0

l,n;⋆ obey respectively
(5.3.20)-(5.3.21) and (5.4.18)-(5.4.20). Theorem 1 together with Proposition 6 gives for s ≥ 1

∣∣∣∣∣∂wLΛ,Λ0

l,n;r,⋆

(
p⃗n;

s∏
i=1

pB (τi; ·, yi)

)∣∣∣∣∣
≤
{
(Λ +m)4−n−|w|−r

F̂Λ
s,l;δ (τ1,s) + (Λ +m)3−n−|w|−r

F
Λ,0
s,l;δ (τ1,s)

}
×P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
, (5.5.9)

where

∂wLΛ,Λ0

l,n;r,⋆

(
p⃗n;

s∏
i=1

pB (τi; ·, yi)

)

:=

∫
z1,··· ,zn

(z1 − z2)
r∂wLΛ,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn))
s∏

i=1

pB (τi; zi, yi)

and F̂Λ
s,l;δ (τ1,s) :=

∫
z1

pB (τ1; z1, y1)F
Λ
s,l;δ(τ2,s).

The bound (5.5.9) implies that ∂wLΛ,Λ0

l,n;r⋆ (p⃗n;
∏s

i=1 pB (τi; ·, yi)) are bounded uniformly w.r.t. Λ0.
It is also possible to deduce a convergence Theorem which implies the existence of the limit Λ → 0

and Λ0 → ∞ for ∂wLΛ,Λ0

l,n;r⋆ which we do not explicit here.

• We do not prove Theorem 10 since there is no novelty in the proof, which is mainly based on
combining arguments from the proof of Theorem 9 with the steps of the proof of the convergence
Theorem 8 in chapter 4.

• The difference between D
Λ,Λ0

l,n + S
Λ,Λ0

l,n;⋆ , and L
Λ,Λ0

l,n;⋆ studied in chapter 4, is their distributional
structure, in the sense that one can prove inductively using the FE (5.4.11) and the boundary
conditions (5.4.18)-(5.4.19) that

D
Λ,Λ0

l,n

(
z1; 0⃗;ϕτ2,s,y2,s

)
+ S

Λ,Λ0

l,n;⋆

(
z1; 0⃗;ϕτ2,s,y2,s

)
= aΛ,Λ0

l,n;⋆ (z1, y2,s, τ2,s) + bΛ,Λ0

l,n;⋆ (y2,s, τ2,s)δz1

+ cΛ,Λ0

l,n;⋆ (y2,s, τ2,s)δ
′
z1 , (5.5.10)

where aΛ,Λ0

l,n;⋆ is smooth w.r.t. z1 and aΛ,Λ0

l,n;⋆ , bΛ,Λ0

l,n;⋆ and cΛ,Λ0

l,n;⋆ are smooth w.r.t. y2,s and τ2,s.
However, the semi-infinite correlation distributions L

Λ,Λ0

l,n;⋆ considered in chapter 4 are smooth
w.r.t. z1 which is a consequence of the type of mixed b.c.s imposed on the semi-infinite correlation
distributions.
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• Note that if the bulk correlation distributions obey the bound

∣∣∣∂wD
Λ,Λ0

l,n;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣
≤
{
(Λ +m)3−n−r1−r2−|w|

F
Λ,0
s,l;δ (τ1,s) + (Λ +m)4−n−r1−r2−|w|

F̂Λ
s,l;δ (τ1,s)

}
×P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
, ∀n ≥ 2 , ∀s ≥ 1 (5.5.11)

instead of (5.3.22)-(5.3.23), the bound (5.5.1) still holds.

• The bound (5.5.1) holds also for the surface correlation distributions folded with ⋆ heat kernels
(i.e. ⋆ ∈ {N,R}), that is

∣∣∣∂wSΛ,Λ0

l,n;⋆;r1,r2

(
p⃗n;ϕ

⋆
τ1,s,y1,s

)∣∣∣ ≤ (Λ +m)3−n−r1−r2−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ (τ1,s) , ∀n ≥ 2 , (5.5.12)

where the external points y1,s belong to (R+)s. This is a direct consequence of (3.1.3)-(3.1.4) to-
gether with the bounds (3.1.12). In particular, the bound (5.5.12) implies that SΛ,Λ0

l,n;R;r1,r2

(
p⃗n;ϕ

R
τ,y1,s

)
is uniformly bounded w.r.t. the Robin parameter c, with the same assumptions on the polynomials
as in (5.5.1).

5.5.1 Proof of Theorem 9

The bound (5.5.1) and (5.5.3)-(5.5.4) are established inductively using the standard inductive
scheme described in the proof of Theorem 7. We proceed in a similar way by bounding first the
RHS of the flow equation 5.4.11 and then integrating the irrelevant terms from Λ to Λ0 using the
boundary conditions (5.4.18)-(5.4.19) and from 0 to Λ using (5.4.20).

Proof. We establish the proof in the case of the Robin boundary conditions. For the Neumann boundary
conditions, we proceed similarly. In the sequel, we omit the subscript R from S

Λ,Λ0

l,n;R.
The induction starts at the tree order for which we have

S
Λ,Λ0
0,4 ((z1, p1), · · · , (z4, p4)) = 0 ,

and the bound (5.5.1) obviously holds.
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The right-hand side of the FE

The bounds that we want to obtain for the RHS of the flow equation (5.4.11) are of the form

∣∣∣∂Λ∂wSΛ,Λ0

l,n;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣
≤ (Λ +m)2−n−|w|−r1−r2 P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
Q1

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ (τ1,s) , (5.5.13)

for all n ≥ 2, 0 ≤ s ≤ n and 0 ≤ r1, r2 ≤ 4. In the sequel, we drop the lower indices from the
polynomials P1, P2 and Q1. But one should keep in mind that these polynomials, whenever they
appear, may have different positive coefficients which depend on l, n, |w|, δl only and not on {pi}, Λ,
Λ0, τ1,s and the Robin parameter c.
The bound (5.5.13) is established by bounding each of the terms on the RHS of the FE (5.4.11). We
consider first the case r1 = r2 = 0.

• We start by treating the linear terms RD
1 and RS

1 given by

RS
1 :=

∫
z,z′

∫
z1,n

∫
k
∂wSΛ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k)pR

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) (5.5.14)

and

RD
1 :=

∫
z,z′

∫
z1,n

∫
k
∂wD

Λ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k)pS,R

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) , (5.5.15)

where pR and pS,R are given by (3.1.4) and (5.2.5). First, we bound RS
1 . Using the decompo-

sition of the Robin heat kernel (3.1.4), we obtain that RS
1 can be written as the sum of three

contributions such that for each contribution the Robin heat kernel pR in RS
1 is replaced by a

term from the decomposition (3.1.4). We analyze first the term

R̃S
1 :=

∫
z,z′

∫
z1,n

∫
k
∂wSΛ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k)pB

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) .
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Using the semi-group property for the bulk heat kernel (3.1.5), R̃S
1 can be rewritten as∫

R
du

∫
z,z′

∫
z1,n

∫
k
∂wSΛ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k)pB

(
1

2Λ2
; z, u

)
pB

(
1

2Λ2
; z′, u

) s∏
i=1

pB (τi; zi, yi) .

We now insert the induction hypothesis to obtain that R̃S
1 is bounded by

(Λ +m)1−n−|w|
P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)∫
k

∣∣∣ĊΛ(k)
∣∣∣P( |k|

Λ +m
,
∥p⃗n∥
Λ +m

)
∫

R
du F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u, u

)
. (5.5.16)

Using∫
k

∣∣∣ĊΛ(k)
∣∣∣ ( |k|

Λ +m

)α

=

∫
R3

d3k

(2π)3
2

Λ3
e−

k2+m2

Λ2

(
|k|

Λ +m

)α

≤ O(1), ∀α ∈ N, (5.5.17)

we have

|R̃S
1 | ≤ (Λ +m)1−n−|w|

P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
P

(
∥p⃗n∥
Λ +m

)
∫

R
du F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u, u

)
. (5.5.18)

Applying Lemma 2, we obtain the bound

|R̃S
1 | ≤ (Λ +m)2−n−|w|

P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ1

(τ1,s) . (5.5.19)

The other contributions to RS
1 are∫

z,z′

∫
z1,n

∫
k
∂wSΛ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k)pB

(
1

Λ2
; z,−z′

) s∏
i=1

pB (τi; zi, yi) (5.5.20)

and

− 2

∫
z,z′

∫
z1,n

∫
k
∂wSΛ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k)

∫
v
e−vpB

(
1

Λ2
; z,−z′ − v

c

) s∏
i=1

pB (τi; zi, yi) . (5.5.21)
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These terms can be rewritten using (3.1.5) as∫
k

∫
R
du ∂wSΛ,Λ0

l−1,n+2

(
p⃗n, k,−k;ϕτ1,s,y1,s × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·,−u

))
ĊΛ(k) (5.5.22)

and

− 2

∫
k

∫
R
du

∫
v
∂wSΛ,Λ0

l−1,n+2

(
p⃗n, k,−k;ϕτ1,s,y1,s × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·,−v

c
− u

))
× e−v ĊΛ(k). (5.5.23)

Applying the induction hypothesis together with (5.5.17), we obtain that (5.5.22) is bounded by

(Λ +m)1−n−|w|
P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
P

(
∥p⃗n∥
Λ +m

)
×
∫

R
du F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u,−u

)
. (5.5.24)

Similarly, we have the following bound for (5.5.23)

(Λ +m)1−n−|w|
P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)∫
k
Ċ(k) P

(
|k|

Λ +m
,
∥p⃗n∥
Λ +m

)
×
∫

R
du

∫
v
e−v F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u,−u− v

c

)
. (5.5.25)

Using the bounds (3.1.12) and remembering the definition (3.2.49) of the surface weight factor,
we deduce that ∫

R
du

∫
v
e−v F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u,−u− v

c

)
and ∫

R
du F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u,−u

)
are bounded by ∫

R
du F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u, u

)
.

The rest of the proof follows the steps used to obtain the final bound for R̃S
1 , which gives

|RS
1 | ≤ (Λ +m)2−n−|w|

P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ1

(τ1,s) . (5.5.26)
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Now we analyse RD
1 . This term is independent of the induction hypothesis and will be bounded

using only the bound (5.3.22) for D
Λ,Λ0

l,n . Using (3.1.5), RD
1 can be rewritten as∫

R
du

∫
z,z′

∫
z1,n

∫
k
∂wD

Λ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k)pB

(
1

2Λ2
; z, u

)
pB

(
1

2Λ2
; z′,−u

) s∏
i=1

pB (τi; zi, yi) .

The bound (5.3.22) implies that RD
1 is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)∫
R
du

∫
z1

pB (τ1; z1, y1)

×
∑

T s+2
l−1 (z1,y2,s,u,−u,z⃗)

∫
z⃗
Fδ2

(
Λ;

{
τ2,s,

1

2Λ2
,

1

2Λ2

}
;T s+2

l−1 (z1, y2,s, u,−u, z⃗)
)
. (5.5.27)

For any contribution to (5.5.27) we denote by z′, z′′ the vertices in the treeT s+2
l−1 to which the

test functions pB
(
1+δ2
2Λ2 ;u, ·

)
and pB

(
1+δ2
2Λ2 ; ·,−u

)
are attached. Performing the integral over u

we obtain using (3.1.5)∫
R
du pB

(
1 + δ2
2Λ2

; z′, u

)
pB

(
1 + δ2
2Λ2

;−u, z′′
)

= pB

(
1 + δ2
Λ2

; z′,−z′′
)

≤ pB

(
1 + δ2
Λ2

; z′, 0

)
. (5.5.28)

The bound (5.5.28) implies that the legs (z, u) and (z′, u) are amputated from the tree T s+2
l−1 and

(z′, u) is replaced by the surface external leg (z′, 0) with the parameter Λ. If z′′ is of incidence one,
it is removed using

∫
z′′ pB

(
(1 + δ2)/Λ

2
I ; z, z

′′) ≤ 1, and this operation is iterated until a vertex
z̃ such that c(z̃) ≥ 2 is reached. This iteration process converges to a non-empty tree since for
s ≥ 1, there exists at least one internal vertex of incidence number greater or equal to 3 in the
tree T s+2

l−1 . The integration over z1 in (5.5.27) implies that z1 becomes an internal vertex attached
to y1. Therefore, the reduction process produces a tree which belongs to Ts,0. Furthermore, v′2
which denotes the number of vertices of incidence number 2 of the new tree, is increased at
most by 2. This stems from the reduction process which can produce one additional internal
vertex such that c(z) = 2 when the vertex z′′ is removed, but also from the vertex z1 which was
initially a root vertex. If z1 has an incidence number equal to one then after introducing the test
function pB(τ1; z1, y1), it becomes internal of incidence number 2. If v2 is the number of vertices
of incidence number 2 of T s+2

l−1 , then v′2 ≤ v2 + δc1,1 + 1 which implies

v′2 ≤ v2 + δc1,1 + 1 ≤ 3(l − 1)− 2 +
s+ 2

2
+ 1 ≤ 3l − 2 +

s+ 1

2
.
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This also means that the obtained tree is a surface tree in T
s,0
l ≡ Ws

l (σs), which can also be
seen as the set of forests corresponding to the trivial partition. Therefore, RD

1 is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F0
δ2 (Λ; τ1,s;W

s
l (σs);Yσs) (5.5.29)

which implies (see (3.2.55))

∣∣RD
1

∣∣ ≤ (Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ;0
s,l;δ2

(τ1,s) . (5.5.30)

• In this part, we treat the quadratic terms on the RHS of the flow equations. To simplify the
discussion, we analyse the terms from the symmetrized sum in which the arguments (zi, pi)

appear ordered in (SΛ,Λ0

l1,n1+1,S
Λ,Λ0

l2,n2+1), (D
Λ,Λ0

l1,n1+1,S
Λ,Λ0

l2,n2+1) and (DΛ,Λ0

l1,n1+1, D
Λ,Λ0

l2,n2+1). These terms
are given by

RSS
2 :=

∫
z1,n

∫
z,z′

zr11 zr22 ∂w1S
Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1 , pn1), (z, p))∂
w3ĊΛ(p)pR

(
1

Λ2
; z, z′

)
× ∂w2S

Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

s∏
i=1

pB(τi; zi, yi) ,

RDS
2 :=

∫
z1,n

∫
z,z′

zr11 zr22 ∂w1S
Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1 , pn1), (z, p))∂
w3ĊΛ(p)pR

(
1

Λ2
; z, z′

)
× ∂w2D

Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

s∏
i=1

pB(τi; zi, yi) ,

and

RDD
2 :=

∫
z1,n

∫
z,z′

zr11 zr22 ∂w1D
Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1 , pn1), (z, p))∂
w3ĊΛ(p)pS,R

(
1

Λ2
; z, z′

)
× ∂w2D

Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

s∏
i=1

pB(τi; zi, yi) .

First, we treat the case (r1, r2) = (0, 0).

– We start with the term RDS
2 . The property (3.1.6) implies that RDS

2 can be rewritten as∫
R+

du

∫
z1,n

∫
z,z′

∂w1S
Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1 , pn1), (z, p))∂
w3ĊΛ(p)

× ∂w2D
Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

s∏
i=1

pB(τi; zi, yi)pR

(
1

2Λ2
; z, u

)
pR

(
1

2Λ2
; z′, u

)
.
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Using the decomposition of the Robin heat kernel (3.1.4), we restrict our analysis to the
following term only

R̃DS
2 :=

∫
R+

du

∫
z1,n

∫
z,z′

∂w1S
Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1 , pn1), (z, p))∂
w3ĊΛ(p)

× ∂w2D
Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

s∏
i=1

pB(τi; zi, yi)pB

(
1

2Λ2
; z, u

)
pB

(
1

2Λ2
; z′, u

)
.

The line of reasoning in treating the remaining contributions in RDS
2 is similar to the one

used in bounding RS
1 . We define

ϕ′s1(z1,n1) =

n1∏
r=1

ϕi(zi), ϕ′′s2(zn1+1,n−1) =

n∏
r=n1+1

ϕi(zi) , (5.5.31)

where

ϕi(zi) =

{
pB(τi; zi, yi) if i ≤ s

χ+(zi) otherwise .
(5.5.32)

Note that s1 = n1 if n1 ≤ s and s2 = s − n1. Otherwise, we have s1 = s and s2 = 0.
Therefore, R̃DS

2 can be rewritten as

R̃DS
2 =

∫
R+

du

∫
z′
∂w1S

Λ,Λ0

l1,n1+1

(
p⃗n1 , p;ϕ

′
s1 × pB

(
1

2Λ2
; ., u

))
∂w3ĊΛ(p)

× ∂w2D
Λ,Λ0

l2,n2+1

(
z′;−p, p⃗n1+1,n;ϕ

′′
s2

)
× pB

(
1

2Λ2
;u, z′

)
. (5.5.33)

Applying the induction hypothesis to S
Λ,Λ0

l1,n1+1 and using the bound (5.3.22) for D
Λ,Λ0

l2,n2+1, we
obtain that R̃DS

2 is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R+

du F0
s1+1,l1;δ3

(
Λ; τ1,s1 ,

1

2Λ2
;Yσs1

, u

)
×
∫
z′
Fs2,l2;δ′3

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
pB

(
1

2Λ2
; z′, u

)
.

Since the global weight factor Fs2,l2;δ′3

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
is a sum of the weight factors

of all trees T s2+1
l2

(z′; τs1+1,s;Yσs1+1:s) in Ts2+1
l2

, we deduce that integrating over z′ gives the
global weight factor of the bulk trees T̂s2+1

l2
, and therefore we can write

F̂s2+1,l2;δ′3

(
Λ; τs1+1,s,

1

2Λ2
;Yσs1+1:s , u

)
=

∑
T̂

s2+1
l2

∈T̂
s2+1
l2

Fδ′3

(
Λ; τs1+1,s,

1

2Λ2
; T̂ s2+1

l2
;Yσs1+1:s , u

)
, (5.5.34)
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where

Fδ′3

(
Λ; τs1+1,s,

1

2Λ2
; T̂ s2+1

l2
;Yσs1+1:s , u

)
:=

∫
z′

Fδ′3

(
Λ; τs1+1,s;T

s2+1
l2

; z′;Yσs1+1:s

)
pB

(
1

2Λ2
; z′, u

)
. (5.5.35)

Applying Lemma 4, we deduce that R̃DS
2 is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ′′3

(τ1,s) ,

where δ′′3 := max (δ3, δ
′
3).

– In this part we bound the term RSS
2 . As for RDS

2 , we only treat the term

R̃SS
2 :=

∫
R+

du

∫
z1,n

∫
z,z′

∂w1S
Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1 , pn1), (z, p))∂
w3ĊΛ(p)

× ∂w2S
Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

s∏
i=1

pB(τi; zi, yi)pB

(
1

2Λ2
; z, u

)
pB

(
1

2Λ2
; z′, u

)
.

Using the notations (5.5.31)-(5.5.32), we rewrite R̃SS
2 as follows,

R̃SS
2 =

∫
R+

du ∂w1S
Λ,Λ0

l1,n1+1

(
p1, · · · , pn1 , p;ϕ

′
s1 × pB

(
1

2Λ2
; ., u

))
∂w3ĊΛ(p)

× ∂w2S
Λ,Λ0

l2,n2+1

(
−p, pn1+1, · · · , pn;ϕ′′s2 × pB

(
1

2Λ2
; ., u

))
. (5.5.36)

Note that R̃2,SS = 0 for li ∈ {0, l}. Using the induction hypothesis, we obtain

∣∣∣R̃SS
2

∣∣∣ ≤ (Λ +m)1−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du F0

s1+1,l1;δ3

(
Λ; τ1,s1 ,

1

2Λ2
;Yσs1

, u

)
F0
s2+1,l2;δ4

(
Λ; τs1+1,s,

1

2Λ2
;Yσs1+1:s , u

)
.

Applying Lemma 3, we deduce that R̃SS
2 is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ5

(τ1,s) ,

where δ5 := max (δ3, δ4).
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– In this part, we bound the term RDD
2 , which we rewrite using (5.5.31)-(5.5.32) as follows,

∫
z,z′

∂w1D
Λ,Λ0

l1,n1+1

(
z; p⃗1,n1 , p;ϕ

′
s1

)
∂w3ĊΛ(p)pS,R

(
1

Λ2
; z,−z′

)
× ∂w2D

Λ,Λ0

l2,n2+1

(
z′; p⃗n1+1,n,−p;ϕ′′s2

)
.

Using the bounds (5.2.6) and (5.3.22), we obtain that RDD
2 is bounded by

(Λ +m)3−n−|w| e−
m2

2Λ2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫
z,z′

Fs1,l1;δ′4

(
Λ; τ1,s1 ; z;Yσs1

)
Fs2,l2;δ′3

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
pB

(
1

Λ2
; z′,−z

)
. (5.5.37)

The bound

pB

(
1

Λ2
; z′,−z

)
≤

√
2π Λ−1 pB

(
1

Λ2
; z′, 0

)
pB

(
1

Λ2
; z, 0

)
(5.5.38)

together with

Λ−αe−
m2

2Λ2 ≤ O(1) (Λ +m)−α for α ∈ N , (5.5.39)

gives

e−
m2

2Λ2

∫
z,z′

Fs1,l1;δ′4

(
Λ; τ1,s1 ; z;Yσs1

)
Fs2,l2;δ′3

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
pB

(
1

Λ2
; z′,−z

)
≤ O(1) (Λ +m)−1

∫
z
Fs1,l1;δ′4

(
Λ; τ1,s1 ; z;Yσs1

)
pB

(
1

Λ2
; z, 0

)
×
∫
z′
Fs2,l2;δ′3

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
pB

(
1

Λ2
; z′, 0

)
.

The definition of the global surface weight factor (3.2.32)-(3.2.57) implies

∫
z
Fs1,l1;δ′4

(
Λ; τ1,s1 ; z;Yσs1

)
pB

(
1

Λ2
; z, 0

)
×
∫
z′
Fs2,l2;δ′3

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
pB

(
1

Λ2
; z′, 0

)

≤ O(1)

 ∑
W s

l ∈Ws
l

∑
{Π∈Ps, lΠ=2}

F0
δ6 (Λ; τ1,s;W

s
l (Π);Yσs)

 , (5.5.40)

where Π := Π1 ∪Π2, Π1 := {1, · · · , s1} and Π2 := {s1 + 1, · · · , s}. In (5.5.40), we also used
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the bound (3.2.62) and δ6 := max (δ′3, δ
′
4). Therefore, we find that RDD

2 is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×

 ∑
W s

l ∈Ws
l

∑
{Π∈Ps, lΠ=2}

F0
δ6 (Λ; τ1,s;W

s
l (Π);Yσs)

 . (5.5.41)

This shows that RDD
2 is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ6

(τ1,s) .

• Case (r1, r2) ̸= (0, 0): The linear terms RS
1 and RD

1 together with the non-linear term RSS
2 are

treated following the same steps as before. The only terms that require a careful analysis are
RDS

2 and RDD
2 . To shorten the discussion, we analyze the term RDD

2 only, RDS
2 may be treated

using similar arguments. We write

zr11 =
∑

α1+β1=r1

(
r1
α1

)
(z1 − z)α1 zβ1 , zr22 =

∑
α2+β2=r2

(
r2
α2

)(
z2 − z′

)α2 z′
β2 .

This allows to rewrite RDD
2 for all n1 ≥ 2 as follows

∑
α1+β1=r1,α2+β2=r2

(
r1
α1

) (
r2
α2

)
zβ1+β2 ∂w1D

Λ,Λ0;(1,2)
l1,n1+1;α1,α2

(
z; p⃗1,n1 , p;ϕ

′
s1

)
∂w3ĊΛ(p)

× ∂w2D
Λ,Λ0

l2,n2+1

(
z′; p⃗n1+1,n,−p · · · , pn;ϕ′′s2

)
pS,R

(
1

Λ2
; z, z′

)
, (5.5.42)

and for n1 = 1 we have

∑
α1+β1=r1,α2+β2=r2

(
r1
α1

) (
r2
α2

)
zβ1 z′

β2∂w1D
Λ,Λ0;(1)
l1,2;α1

(
z; p1, p;ϕ

′
s1

)
∂w3ĊΛ(p)

× ∂w2D
Λ,Λ0;(2)
l2,n;α2

(
z′; p⃗2,n,−p;ϕ′′s2

)
pS,R

(
1

Λ2
; z, z′

)
. (5.5.43)

Using the bounds (5.3.22)-(5.3.23), we deduce that the summands in (5.5.42)-(5.5.43) are bounded
by

(Λ +m)3−n−|w|−α1−α2 e−
m2

2Λ2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫
z,z′

Fs1,l1;δ′′1

(
Λ; τ1,s1 ; z;Yσs1

)
Fs2,l2;δ′′2

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
χΛ
n1

(
z, z′

)
, (5.5.44)
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where

χΛ
n1

(
z, z′

)
=

{
zβ1 z′β2pB

(
1
Λ2 ; z

′,−z
)

if n1 = 1,

zβ1+β2 pB
(

1
Λ2 ; z

′,−z
)

otherwise .

Using the bound (5.5.38) together with (3.1.10), we deduce for all δ, δ̃ > 0

χΛ
n1

(
z, z′

)
≤ O(1) Λ−1−β1−β2 pB

(
1 + δ

Λ2
; z, 0

)
pB

(
1 + δ̃

Λ2
; z′, 0

)
, (5.5.45)

which implies together with (5.5.39) that (5.5.44) is bounded by

(Λ +m)2−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫
z
Fs1,l1;δ′′1

(
Λ; τ1,s1 ; z;Yσs1

)
pB

(
1 + δ′′1
Λ2

; z, 0

)
×
∫
z′
Fs2,l2;δ′′2

(
Λ; τs1+1,s; z

′;Yσs1+1:s

)
pB

(
1 + δ′′2
Λ2

; z′, 0

)
. (5.5.46)

This together with the bounds (5.5.40) and (5.5.41) imply the final bound for RDD
2 given by

(Λ +m)2−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ7

(τ1,s) , (5.5.47)

where δ7 := max (δ′′1 , δ
′′
2).

Using the bound (3.2.62), we deduce (5.5.13) where δ := max {δi, δ′i, δ′′i , 1 ≤ i ≤ 7}.

Integration of the FEs

• We start by integrating the irrelevant terms for which n+ |w|+ r1+ r2 ≥ 4. In this case, (5.5.13)
is integrated from Λ to Λ0 using the boundary condition (5.4.18)-(5.4.19) together with (3.2.61)
and we obtain∣∣∣∂wSΛ,Λ0

l,n;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣
≤ (Λ +m)3−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ(τ1,s) . (5.5.48)

• The relevant terms for which n+ |w|+ r1 + r2 ≤ 3 are written∫ ∞

0
dz1

∫ ∞

0
dz2 z

r1
1 z

r2
2 ∂ΛS

Λ,Λ0

l,2 ((z1, p), (z2,−p))
s∏

i=1

pB(τi; zi, yi) , (5.5.49)
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where r1, r2 are integers such that r1 + r2 ≤ 1, and 0 ≤ s ≤ 2. We restrict our analysis to the
case s = 2, the case s = 1 can be treated similarly and the case s = 0 will be integrated in the
sequel. For s = 2, the relevant part is extracted from∫

z1,z2

∂ΛS
Λ,Λ0

l,2 ((z1, p), (z2,−p))ϕ1(z1)ϕ2(z2) (5.5.50)

by performing a Taylor expansion of ϕ1 and ϕ2 around zi = 0 at p = 0, where ϕi(zi) :=

pB(τi; zi, yi), using (5.4.14) and (5.4.17). The bound (5.5.13) for s = 0 and r1 + r2 ≤ 1 gives∣∣∣∂ΛsΛ,Λ0

l

∣∣∣ ≤ P

(
log

Λ +m

m

)
,

∣∣∣∂ΛeΛ,Λ0

l

∣∣∣ ≤ (Λ +m)−1
P

(
log

Λ +m

m

)
. (5.5.51)

Integrating (5.5.51) from 0 to Λ and using the renormalization conditions (5.4.20), we have∣∣∣sΛ,Λ0

l

∣∣∣ ≤ (Λ +m)P

(
log

Λ +m

m

)
,
∣∣∣eΛ,Λ0

l

∣∣∣ ≤ P

(
log

Λ +m

m

)
. (5.5.52)

Applying Lemma 10 from the Appendix, we have∣∣∣sΛ,Λ0

l ϕ1(0)ϕ2(0) + eΛ,Λ0

l {ϕ1(0)(∂nϕ2)(0) + ϕ2(0)(∂nϕ1)(0)}
∣∣∣

≤ (Λ +m)P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ (τ1,2) . (5.5.53)

Now, we bound and integrate the remainder ∂Λl
Λ,Λ0

l,2 (ϕ1, ϕ2), which is irrelevant as we will see in
the sequel, from Λ to Λ0. We distinguish between the two cases:

– Λ ≤ 3
√
lτ−

1
2 : Using (5.5.13) and (5.5.53), we deduce that ∂Λl

Λ,Λ0

l,2 (ϕ1, ϕ2) is bounded by

O(1) max
(
m2, τ−1

)
(Λ +m)−2

P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ (τ1,2) . (5.5.54)

– Λ ≥ 3
√
lτ−

1
2 : In the sequel, we restrict our analysis to the integration of the following terms,

for which we need to proceed differently.

Ḣ1 :=

(∫
z1,z2

z1z2∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

)
(∂nϕ1) (0) (∂nϕ2) (0) , (5.5.55)

Ḣ2 := (∂nϕ2)(0)

∫
z1,z2

z2 ∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ1(tz1)

)
, (5.5.56)

and

Ḣ3 :=

∫
z1,z2

∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

(∫ 1

0
dt (1− t)∂2t ϕ1(tz1)

)
×
(∫ 1

0
dt′ (1− t′)∂2t′ϕ2(t

′z2)

)
. (5.5.57)

The other terms which also contribute to ∂Λl
Λ,Λ0

l,2 (ϕ1, ϕ2) can be treated similarly.
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- We start first with Ḣ1 for which the bound (5.5.13) implies that∣∣∣∣(∫
z1,z2

z1z2∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

)∣∣∣∣ ≤ (Λ +m)−2
P

(
log

Λ +m

m

)
. (5.5.58)

Using Lemma 10, we obtain∣∣∣∣(∫
z1,z2

z1 z2∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

)
(∂nϕ1) (0) (∂nϕ2) (0)

∣∣∣∣
≤ (Λ +m)−2 τ

− 1
2

1 τ
− 1

2
2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ (τ1,2) . (5.5.59)

- The term Ḣ2: we have for 0 ≤ t ≤ 1

ϕi(tzi) =
1√
2πτi

e
− (tzi−yi)

2

2τi . (5.5.60)

Differentiating (6.4.1) twice w.r.t. t, we obtain

∂2t (ϕi(tzi)) =
1

t

[
−z

2
i

τi
+
z2i (tzi − yi)

2

τ2i

]
pB

( τi
t2
; zi,

yi
t

)
, (5.5.61)

which implies that the term∫
z1,z2

z2 ∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)∂2t ϕ1(tz1) (5.5.62)

can be rewritten as

∑
(α,β)∈I2

cαβ
yβ1

τ
1+β+α

2
1

∫ 1

0
dt tα−1(1− t)

∫
z1,z2

z2 z
2+α
1 ∂ΛS

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) pB

(τ1
t2
; z1,

y1
t

)
, (5.5.63)

where I2 :=
{
(0, 0), (α, β) | α+ β = 2, (α, β) ∈ N2

}
, and the coefficients cαβ ∈ R de-

pend only on the exponents α and β. The bound (5.5.13) implies that the term∫
z1,z2

z2 z
2+α
1 ∂ΛS

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) pB

(τ1
t2
; z1,

y1
t

)
(5.5.64)

is bounded by

(Λ +m)−3−α e−
m2

2Λ2 Q

 tτ
− 1

2
1

Λ +m

F0
1,l;δ

(
Λ;
τ1
t2
;
y1
t

)
. (5.5.65)
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From Lemma 11, we obtain(
y1√
τ1

)β

F0
1,l;δ

(
Λ;
τ1
t2
;
y1
t

)
≤ O(1) t

(
1 +

√
τ1
Λ

)β

F
Λ,0
1,l;δ′ (τ1) , (5.5.66)

where 0 < δ < δ′. Using (5.5.39) together with (5.5.64) and (5.5.65), we deduce that
(5.5.63) is bounded by

(Λ +m)−3 τ−1
1 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
1,l;δ′ (τ1) . (5.5.67)

Lemma 10 together with (5.8.3) imply that Ḣ2 is bounded by

(Λ +m)−3 τ−1
1 τ

− 1
2

2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ′ (τ1,2) . (5.5.68)

Following similar steps, we obtain∣∣∣∣(∂nϕ1)(0)∫
z1,z2

z2 ∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ2(tz1)

)∣∣∣∣
≤ (Λ +m)−3 τ

− 1
2

1 τ−1
2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ′ (τ1,2) (5.5.69)

and∣∣∣∣ϕi(0) ∫
z1,z2

∂ΛS
Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕj(tz1)

)∣∣∣∣
≤ (Λ +m)−2 τ−1

j P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ′ (τ1,2) . (5.5.70)

- The term Ḣ3: We start from (5.5.57) and (5.5.61) and write the term Ḣ3 as follows

∑
(α,β)∈I2

∑
(α′,β′)∈I2

cαβ cα′β′
yβ1

τ
1+β+α

2
1

yβ
′

2

τ
1+β′+α′

2
2

∫ 1

0
dt dt′ tα−1(1− t) t′

α′−1
(1− t′)

∫
z1,z2

z2+α′

2 z2+α
1 ∂ΛS

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) pB

(τ1
t2
; z1,

y1
t

)
pB

( τ2
t′2

; z2,
y2
t′

)
. (5.5.71)

The bound (5.5.13) implies that the term∫
z1,z2

z2+α′

2 z2+α
1 ∂ΛS

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) pB

(τ1
t2
; z1,

y1
t

)
pB

( τ2
t′2

; z2,
y2
t′

)
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is bounded by

(Λ +m)−4−α−α′
e−

m2

2Λ2 Q

(
tτ−

1
2

Λ +m

)
F0
2,l;δ

(
Λ;
τ1
t2
,
τ2
t′2

;
y1
t
,
y2
t′

)
.

From Lemma 12 and (5.5.39), we deduce that (5.5.71) is bounded by

τ
− 1

2
1 τ

− 1
2

2 (Λ +m)−2
P

(
log

Λ +m

m

)
Q̃

(
τ−

1
2

Λ +m

)
F

Λ;0
2,l;δ′ (τ1,2) , (5.5.72)

where 0 < δ < δ′ < 1.

The boundary conditions (5.4.18) together with (5.4.17), (5.5.63) and (5.5.71) imply that

lΛ0,Λ0

l,2;R (ϕ1, ϕ2) = 0.

Integrating from Λ to Λ0, we obtain for Λ0 ≥ 3
√
lτ−

1
2

lΛ,Λ0

l,2 (ϕ1, ϕ2) =

∫ 3
√
lτ−

1
2

Λ
dλ ∂λl

λ,Λ0

l,2 (ϕ1, ϕ2) +

∫ Λ0

3
√
lτ−

1
2

dλ ∂λl
λ,Λ0

l,2 (ϕ1, ϕ2) . (5.5.73)

Using the bounds (5.5.54), (5.5.59), (5.5.68) and (5.5.72) together with (5.5.69) and (5.5.70),
we obtain that the remainder lΛ,Λ0

l,2 is bounded by

(Λ +m)max

{
τ−1

(Λ +m)2
,

m2

(Λ +m)2

}
P

(
log

Λ +m

m

)
Q̃

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ′ (τ1,2) . (5.5.74)

For Λ0 ≤ 3
√
lτ−

1
2 , we conclude by integrating (5.5.54) from Λ to Λ0 and we deduce∣∣∣∂wSΛ,Λ0

l,2;r1,r2

(
0;ϕτ1,s,y1,s

)∣∣∣
≤ (Λ +m)1−|w|−r1−r2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ′(τ1,s) , (5.5.75)

where we used (3.2.62).

• Extension to general momenta: We now extend the bound (5.5.75) to general momenta using
the Taylor formula with integral remainder, which reads

∂wSΛ,Λ0

l,2;r1,r2

(
p;ϕτ1,s,y1,s

)
= ∂wSΛ,Λ0

l,2;r1,r2

(
0;ϕτ1,s,y1,s

)
+

∫ 1

0
dt ∂t∂

wS
Λ,Λ0

l,2;r1,r2

(
tp;ϕτ1,s,y1,s

)
. (5.5.76)

Applying this formula, the bound of the integrand ( due to the derivative ) yields an additional
factor (Λ + m)−1 which combines with the momentum produced by the t-derivative to give a
bound as in (5.5.1).

This ends the proof of Theorem 9.
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5.5.2 Proof of Proposition 7

Proof. The proof follows the same inductive scheme used in the proof of Theorem 9. For the tree order,
we have

S
Λ,Λ0
0,n;⋆ ((z1, p1), · · · , (zn, pn)) = 0, ∀n ≥ 2, ⋆ ∈ {D,R,N} .

Clearly, the statement (7.3.8) holds.

A1) We start by verifying inductively the following statement

∂ΛS
Λ,Λ0

l,n;D

(
p⃗n;ϕ

D
τ1,n,y1,n

)
= lim

c→+∞
∂ΛS

Λ,Λ0

l,n;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)
. (5.5.77)

In the sequel, we use the symbol ⋆ to denote either Dirichlet or Robin boundary conditions. Given
Π = (π1, π2) ∈ Pn such that |πi| = ni and n1 + n2 = n, we introduce the following notations:

S
Λ,Λ0

li,ni+1;⋆

(
p⃗πi , (−1)ip; ΦΛ;⋆

πi
;Yπi , u

)
:=

∫
z⃗πi ,z

S
Λ,Λ0

li,ni+1;⋆ ((z⃗πi , p⃗πi), (z, p))
∏
i∈πi

p⋆ (τi; zi, yi) p⋆

(
1

2Λ2
; z, u

)
, i ∈ {1, 2} (5.5.78)

and

S
Λ,Λ0

l−1,n+2;⋆

(
p⃗n, k,−k; ΦΛ;⋆

n+2;Yσn , u, u
)
:=

∫
z⃗n,z,z′

S
Λ,Λ0

l−1,n+2;⋆

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)

× ϕ⋆τ1,n,y1,n (z1,n) p⋆

(
1

2Λ2
; z, u

)
p⋆

(
1

2Λ2
; z′, u

)
, (5.5.79)

where

ΦΛ;⋆
πi

(z⃗πi , z) = ϕ⋆πi
(z⃗πi) p⋆

(
1

2Λ2
; z, u

)
with ϕ⋆πi

(z⃗πi) :=
∏
i∈πi

p⋆ (τi; zi, yi) ,

and

ΦΛ;⋆
n+2

(
z1,n, z, z

′) = ϕ⋆τ1,n,y1,n (z1,n) p⋆

(
1

2Λ2
; z, u

)
p⋆

(
1

2Λ2
; z′, u

)
.
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We consider the flows equation (5.4.11) folded with the test functions ϕ⋆τ1,n,y1,n given by

∂ΛS
Λ,Λ0

l,n;⋆

(
p⃗n;ϕ

⋆
τ1,n,y1,n

)
=

1

2

∫
u

∫
k
S
Λ,Λ0

l−1,n+2;⋆

(
p⃗n, k,−k; ΦΛ;⋆

n+2;Yσn , u, u
)
ĊΛ(k)

+
1

2

∫
z,z′

∫
k
D

Λ,Λ0

l−1,n+2

(
(z⃗n.p⃗n), (z, k), (z

′,−k)
)
ĊΛ
S,⋆(k; z, z

′)ϕ⋆τ1,n,y1,n (z1,n)

− 1

2

′∑
l1,l2

′′∑
π1,π2

[∫
u

{
S
Λ,Λ0

l1,n1+1;⋆

(
p⃗π1 ,−p; ΦΛ;⋆

π1
;Yπ1 , u

)
ĊΛ(p)

× S
Λ,Λ0

l2,n2+1;⋆

(
p⃗π2 , p; Φ

Λ;⋆
π2

;Yπ2 , u
)

+ D
Λ,Λ0

l1,n1+1

(
p⃗π1 ,−p; ΦΛ;⋆

π1
;Yπ1 , u

)
ĊΛ(p) SΛ,Λ0

l2,n2+1;⋆

(
p⃗π2 , p; Φ

Λ;⋆
π2

;Yπ2 , u
)

+S
Λ,Λ0

l1,n1+1;⋆

(
p⃗π1 ,−p; ΦΛ;⋆

π1
;Yπ1 , u

)
ĊΛ(p) D

Λ,Λ0

l2,n2+1

(
p⃗π2 , p; Φ

Λ;⋆
π2

;Yπ2 , u
)}

+

∫
z,z′

D
Λ,Λ0

l1,n1+1

(
z;−p, p⃗1,n1 ;ϕ

⋆
π1

)
ĊΛ
S,⋆(p; z, z

′)DΛ,Λ0

l2,n2+1

(
z′; p, p⃗n1+1,n;ϕ

⋆
π2

)]
rsym

,

p = −
∑
i∈π1

pi =
∑
i∈π2

pi , (5.5.80)

where we used (3.2.66) and the notations (5.5.78)-(5.5.79). Here, the prime denotes all pairs
(l1, l2) such that l1 + l2 = l, and the double prime refers to a summation over (π1, π2) ∈ P̃2;n

with ni := |πi|.
Using the induction hypothesis, we obtain

S
Λ,Λ0

l−1,n+2;D

(
p⃗n, k,−k; ΦΛ;D

n+2;Yσn , u, u
)
= lim

c→+∞
S
Λ,Λ0

l−1,n+2;R

(
p⃗n, k,−k; ΦΛ;R

n+2;Yσn , u, u
)
, (5.5.81)

S
Λ,Λ0

li,ni+1;D

(
p⃗πi , (−1)ip; ΦΛ;D

πi
;Yπi , u

)
= lim

c→+∞
S
Λ,Λ0

li,ni+1;R

(
p⃗πi , (−1)ip; ΦΛ;R

πi
;Yπi , u

)
, i ∈ {1, 2} . (5.5.82)

For τi > 0 and yi ∈ R+, we have

lim
c→+∞

Np (pD(τi; ·, yi)− pR(τi; ·, yi)) = 0 , (5.5.83)

where for ϕ in S(R+) the semi-norm Np is given by

Np(ϕ) =
∑

α, β≤p

sup
x∈R+

|xα∂βϕ(x)| .

Remembering that D
Λ,Λ0

l,n ∈ S′ (R+n) and using (5.5.83), we deduce

D
Λ,Λ0

li,ni+1

(
p⃗πi , (−1)ip; ΦΛ;D

πi
;Yπi , u

)
= lim

c→+∞
D

Λ,Λ0

li,ni+1

(
p⃗πi , (−1)ip; ΦΛ;R

πi
;Yπi , u

)
. (5.5.84)
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We rewrite the term∫
k

∫
z,z′

D
Λ,Λ0

l−1,n+2

(
(z⃗n.p⃗n), (z, k), (z

′,−k)
)
ĊΛ
S,R(k; z, z

′)ϕRτ1,n,y1,n (z1,n) (5.5.85)

as follows∫
k

∫
u
D

Λ,Λ0

l−1,n+2

(
p⃗n, k,−k; ΦΛ;R

n+2;Yσn , u, u
)
ĊΛ(k)

−
∫
k

∫
R
du D

Λ,Λ0

l−1,n+2

(
p⃗n, k,−k;ϕτ1,n,y1,n;R × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·, u

))
ĊΛ(k) . (5.5.86)

Following the same steps that led to (5.5.84), we obtain

D
Λ,Λ0

l−1,n+2

(
p⃗n, k,−k; ΦΛ;D

n+2;Yσn , u, u
)
= lim

c→+∞
D

Λ,Λ0

l−1,n+2

(
p⃗n, k,−k; ΦΛ;R

n+2;Yσn , u, u
)

(5.5.87)

and

D
Λ,Λ0

l−1,n+2

(
p⃗n, k,−k;ϕτ1,n,y1,n;D × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·, u

))
= lim

c→+∞
D

Λ,Λ0

l−1,n+2

(
p⃗n, k,−k;ϕτ1,n,y1,n;R × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·, u

))
. (5.5.88)

Part A1) in the proof of Theorem 9 implies that the integrands of each term on the RHS of the
FEs (5.5.80), in the case of Robin boundary conditions are bounded independently of the Robin
parameter c, and the Lemmas 2-4 show that these bounds are integrable w.r.t. u. We refer the
reader to the proof of Theorem 9 for more details.

A2) Integration: Lebesgue’s dominated convergence theorem together with (5.5.81)-(5.5.88) and the
FES (5.5.80) gives

∂ΛS
Λ,Λ0

l,n;D

(
p⃗n;ϕ

D
τ1,n,y1,n

)
= lim

c→+∞
∂ΛS

Λ,Λ0

l,n;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)
. (5.5.89)

This implies (again by the Lebesgue’s dominated convergence theorem and the integrability of
the bound (5.5.13) in the proof of Theorem 9)∫ Λ0

Λ
dλ ∂λS

λ,Λ0

l,n;D

(
p⃗n;ϕ

D
τ1,n,y1,n

)
= lim

c→+∞

∫ Λ0

Λ
dλ ∂λS

λ,Λ0

l,n;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)
. (5.5.90)

– Irrelevant terms: These terms are characterized by n ≥ 4. Using the boundary condition

SΛ0Λ0
l,n;⋆

(
p⃗n;ϕ

⋆
τ1,n,y1,n

)
= 0, ⋆ ∈ {D,R} (5.5.91)

together with (5.5.90), we deduce

S
Λ,Λ0

l,n;D

(
p⃗n;ϕ

D
τ1,n,y1,n

)
= lim

c→+∞
S
Λ,Λ0

l,n;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)
. (5.5.92)
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– Relevant terms (n = 2): We have∫ Λ0

Λ
dλ ∂λS

λ,Λ0

l,2;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)
= S

Λ0,Λ0

l,2;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)
− S

Λ,Λ0

l,2;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)
(5.5.93)

and ∫ Λ0

Λ
dλ ∂λS

λ,Λ0

l,2;D

(
p⃗n;ϕ

R
τ1,n,y1,n

)
= −S

Λ,Λ0

l,2;D

(
p⃗n;ϕ

D
τ1,n,y1,n

)
. (5.5.94)

In (5.5.94), we used the boundary condition (5.4.21) for the Dirichlet case. The boundary
condition (5.4.18) implies

S
Λ0,Λ0

l,2;R

(
p⃗n;ϕ

R
τ1,2,y1,2

)
= sΛ0,Λ0

l;R

2∏
i=1

pR (τi; yi, 0)

+ eΛ0,Λ0

l;R {pR (τ1; y1, 0) ∂npR (τ2; y2, 0) + pR (τ2; y2, 0) ∂npR (τ1; y1, 0)} . (5.5.95)

Using
|∂npR (τ1; y1, 0)| ≤ O(1) τ

− 1
2

i pB (τi,δ; yi, 0) ,

and the fact that sΛ0,Λ0

l;R and eΛ0,Λ0

l;R are uniformly bounded w.r.t. the Robin parameter c,
which is implied by the bound given in Theorem 9 for s = 1, r1 ∈ {0, 1} and r2 = 0, we
obtain from pR →c→+∞ pD

lim
c→+∞

S
Λ0,Λ0

l,2;R

(
p⃗n;ϕ

R
τ1,2,y1,2

)
= 0. (5.5.96)

Therefore, we deduce

S
Λ,Λ0

l,2;D

(
p⃗n;ϕ

D
τ1,2,y1,2

)
= lim

c→+∞
S
Λ,Λ0

l,2;R

(
p⃗n;ϕ

R
τ1,2,y1,2

)
. (5.5.97)

This ends the proof of (7.3.8).

5.5.3 Proof of Corollary 4

Proof. In this part, we prove the bounds (5.5.3) and (5.5.4). As a consequence of Theorem 9, we have
for Robin boundary conditions∣∣∣SΛ,Λ0

l,n;R

(
p⃗n;ϕ

R
τ1,n,y1,n

)∣∣∣
≤ (Λ +m)3−n

P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
Q1

(
τ−

1
2

Λ +m

)
F

Λ,0
n,l;δ(τ1,n), ∀n ≥ 2 . (5.5.98)
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Using Theorem 9 and taking the limit c→ +∞, we deduce∣∣∣SΛ,Λ0

l,n;D

(
p⃗n;ϕ

D
τ,y1,s

)∣∣∣
≤ (Λ +m)3−n

P1

(
log

Λ +m

m

)
P2

(
∥p⃗n∥
Λ +m

)
Q1

(
τ−

1
2

Λ +m

)
F

Λ,0
n,l;δ(τ1,n), ∀n ≥ 2 . (5.5.99)

For n = 2, it is possible to obtain a sharper bound by performing a Taylor expansion around 0 of the
test functions pR (τi; ·, yi) as follows

S
Λ,Λ0

l,2;R

(
p⃗n;ϕ

R
τ1,2,y1,2

)
= sΛ,Λ0

l;R pR (τ1; y1, 0) pR (τ2; y2, 0) + eΛ,Λ0

l;R {pR (τ1; y1, 0) (∂npR) (τ2; y2, 0)

+pR (τ2; y2, 0) (∂npR) (τ1; y1, 0)}+ lΛ,Λ0

l,2;R (pR (τ1; ·, y1) , pR (τ2; ·, y2)) . (5.5.100)

Taking the limit c→ ∞, we deduce

S
Λ,Λ0

l,2;D

(
p⃗n;ϕ

D
τ1,2,y1,2

)
= lim

c→+∞
l̃Λ,Λ0

l,2;R (pR (τ1; ·, y1) , pR (τ2; ·, y2)) , (5.5.101)

where the remainder l̃Λ,Λ0

l,2;R is given by(∫
z1,z2

z1z2 S
Λ,Λ0

l,2;R ((z1, p), (z2,−p))
)
(∂nϕ1) (0) (∂nϕ2) (0)

+

∫
z1,z2

S
Λ,Λ0

l,2;R ((z1, p), (z2,−p))
(∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

)
×
(∫ 1

0
dt′ (1− t′)

(
∂2t′ϕ2

)
(t′z2)

)
+ (∂nϕ2)(0)

∫
z1,z2

z2 S
Λ,Λ0

l,2;R ((z1, p), (z2,−p))
∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

+ (∂nϕ1)(0)

∫
z1,z2

z1 S
Λ,Λ0

l,2;R ((z1, p), (z2,−p))
∫ 1

0
dt (1− t)

(
∂2t ϕ2

)
(tz2) (5.5.102)

and ϕi(zi) := pR (τi; zi, yi). These terms can be bounded in a similar way as Ḣ1, Ḣ2 and Ḣ3 in the
proof of Theorem 9. One should keep in mind that the test functions considered whithin the proof
of Theorem 9 were products of bulk heat kernels. However, the same bounds (5.5.55), (5.5.68) and
(5.5.57) which are uniform in c, hold for Robin type test functions using the bounds (3.1.12). Therefore,
we deduce∣∣∣l̃Λ,Λ0

l,2;R (ϕ1, ϕ2)
∣∣∣ ≤ (Λ +m)−2 τ

− 1
2

1 τ
− 1

2
2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ (τ1,2) , (5.5.103)

which gives∣∣∣SΛ,Λ0

l,2;D

(
p⃗n;ϕ

R
τ1,2,y1,2

)∣∣∣ ≤ (Λ +m)−2 τ
− 1

2
1 τ

− 1
2

2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ (τ1,2) , (5.5.104)

and this ends the proof of Corollary 4.
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5.6 The minimal form of the bare interaction

In this section, we show that the bare interaction (5.1.2) corresponds to the boundary conditions
imposed in Theorem 9 for LΛ,Λ0

⋆ . Given ϕ ∈ supp µΛ,Λ0
⋆ , we expand LΛ0,Λ0

⋆ (ϕ) in powers of the field ϕ:

LΛ0,Λ0
⋆ (ϕ) =

+∞∑
n=1

1

n!

∫
z⃗n

∫
R3n

n∏
i=1

d3pi
(2π)3

L
Λ0,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn))

× δ(3) (p1 + · · ·+ pn)ϕ(z1, p1) · · ·ϕ(zn, pn). (5.6.1)

Using (5.5.8), we can write

LΛ0,Λ0
⋆ (ϕ) = DΛ0,Λ0(ϕ) + SΛ0,Λ0

⋆ (ϕ),

where

DΛ0,Λ0(ϕ) :=
+∞∑
n=1

1

n!

∫
z⃗n

∫
R3n

n∏
i=1

d3pi
(2π)3

D
Λ0,Λ0

l,n ((z1, p1), · · · , (zn, pn)) δ(3) (p1 + · · ·+ pn)

× ϕ(z1, p1) · · ·ϕ(zn, pn) (5.6.2)

and

SΛ0,Λ0
⋆ (ϕ) =

+∞∑
n=1

1

n!

∫
z⃗n

∫
R3n

n∏
i=1

d3pi
(2π)3

S
Λ0,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn)) δ(3) (p1 + · · ·+ pn)

× ϕ(z1, p1) · · ·ϕ(zn, pn) . (5.6.3)

Proposition 5 in chapter 4 implies that there exists f in L2(R+) such that

ϕ(z, p) =

∫ ∞

0
dz′ CΛ,Λ0

⋆ (p; z, z′)f(p, z′) ,

which can be rewritten as

ϕ(p, z) =

∫ ∞

0
dz′
∫ 1

Λ2
0

1
Λ2

dλ e−λ(p2+m2)p⋆
(
λ; z, z′

)
f(p, z′) .

Therefore, we can write∫
z1,··· ,zn

S
Λ0,Λ0

l,n;⋆ ((z1, p1), · · · , (zn, pn))ϕ(z1, p1) · · ·ϕ(zn, pn)

=

∫
z⃗′n

n∏
i=1

∫ 1

Λ2
0

1
Λ2

dλi e
−λi(p

2
i+m2)f(pi, z

′
i)S

Λ0,Λ0

l,n;⋆

(
p⃗n;ϕ

⋆
λ1,n,z′1,n

)
. (5.6.4)
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The boundary conditions (5.4.19) and (5.4.21) imply that

SΛ0,Λ0
⋆ (ϕ) =

1

2

∫
R3

d3p

(2π)3

∫
z1,z2

S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p))ϕ(z1, p)ϕ(z2,−p) , (5.6.5)

where S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p)) is given by (5.4.18) for Robin/Neumann boundary conditions and by
(5.4.21) for Dirichlet boundary conditions:

• Robin/Neumann boundary conditions (c ≥ 0): In this case, we obtain

SΛ0,Λ0
⋆ (ϕ) =

∫
R3

d3p

(2π)3

(
1

2
sΛ0
⋆ + ceΛ0

⋆

)
ϕ(0, p)ϕ(0,−p) , (5.6.6)

where

sΛ0
⋆ =

∫
z1,z2

S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p)) , eΛ0
⋆ =

∫
z1,z2

z1S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p)) (5.6.7)

and ⋆ ∈ {R,N}.

• Dirichlet boundary conditions: For Dirichlet boundary conditions, we obtain

SΛ0,Λ0

D (ϕ) = 0 .

5.7 The Amputated vs the Non-Amputated theory

For quantum field theories on spaces without boundary, the renormalization problem of the amputated
and the non-amputated theory is equivalent in the sense that the required counter-terms render finite
the amputated and unamputated amplitudes, independently of the location of the external points of
the unamputated diagrams [11,13]. However, first order calculations [45] give clear evidence that this
is not the case when one considers the renormalization of the semi-infinite model. The tadpole diverges
w.r.t. the UV cutoff, and its renormalization depends on the location of the external points (i.e. if they
are on the surface or not). If the two external points are not on the surface, then in addition to the
usual mass counter-term only one additional surface counter-term, which diverges linearly in the UV
cutoff, is needed. This is not the case when one considers the tadpole with at least one external point
on the surface. The latter needs one additional surface counter-term which diverges logarithmically
w.r.t. the UV cutoff. This suggests that the amputated and non-amputated diagrams are renormalized
differently for the semi-infinite model. In this section, we prove the following proposition which sheds
some light on this finding:
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Proposition 8. Let ⋆ ∈ {R,N}. We denote by C⋆ the unregularized propagator associated to the
boundary condition ⋆. For nonvanishing sΛ0

l;⋆ and eΛ0
l;⋆ , we have for y2 > 0

lim
y1→0+

∫
z1,z2

S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p))CR (p; z1, y1)CR (p; z2, y2)

̸=
∫
z1,z2

S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p))CR (p; z1, 0)CR (p; z2, y2) (5.7.1)

and

lim
y1→0+

lim
y2→0+

∫
z1,z2

S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p))CR (p; z1, y1)CR (p; z2, y2)

̸=
∫
z1,z2

S
Λ0,Λ0

l,2;⋆ ((z1, p), (z2,−p))CR (p; z1, 0)CR (p; z2, 0) . (5.7.2)

Proof. We give the proof of Proposition 8 in the case of Robin boundary conditions. Neumann b.c.
can be treated analogously.
The particular choice of the boundary conditions (5.4.18)-(5.4.20) implies

S
Λ0,Λ0

l,2;R ((z1, p), (z2,−p)) =
(
sΛ0
R + eΛ0

R (∂z1 + ∂z2)
)
δz1δz2 . (5.7.3)

Hence, we obtain for y1, y2 > 0∫
z1,z2

S
Λ0,Λ0

l,2;R ((z1, p), (z2,−p))CR (p; z1, y1)CR (p; z2, y2) = sΛ0
R CR (p; 0, y1)CR (p; 0, y2)

+ eΛ0
R {CR (p; 0, y1) ∂nCR (p; 0, y2) + CR (p; 0, y2) ∂nCR (p; 0, y1)} . (5.7.4)

Using

lim
z→0

lim
y→0

∂zCR (p; z, y) = −κpCR (p; 0, 0) , lim
y→0

lim
z→0

∂zCR (p; z, y) = c CR (p; 0, 0) (5.7.5)

with κp :=
√
p2 +m2, we deduce∫

z1,z2

S
Λ0,Λ0

l,2;R ((z1, p), (z2,−p))CR (p; z1, y1)CR (p; z2, y2)

=
(
sΛ0
R + 2c eΛ0

R

)
CR (p; 0, y1)CR (p; 0, y2) , ∀y1, y2 > 0, (5.7.6)

∫
z1,z2

S
Λ0,Λ0

l,2;R ((z1, p), (z2,−p))CR (p; z1, y1)CR (p; z2, 0)

=
(
sΛ0
R + 2c eΛ0

R

)
CR (p; 0, y1)CR (p; 0, 0)− eΛ0

R CR (p; 0, y1) (κp + c)CR (p; 0, 0) , (5.7.7)
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z1,z2

S
Λ0,Λ0

l,2 ((z1, p), (z2,−p))CR (p; z1, 0)CR (p; z2, 0)

=
(
sΛ0
R + 2c eΛ0

R

)
CR (p; 0, 0)CR (p; 0, 0)− 2 eΛ0

R CR (p; 0, 0) (κp + c)CR (p; 0, 0) , (5.7.8)

from which (5.7.1) and (5.7.2) follow directly.

Remark 3. Denoting σΛ0
R = sΛ0

R +2ceΛ0
R , we deduce that (5.7.6) implies that the unamputated two-point

function of the semi-infinite model which has two external points in the interior of the bulk, requires
only the surface counter-term σΛ0

R to be renormalized. This is not the case when at least one of the
external points is on the surface. From (5.7.7) and (5.7.8), we deduce that σΛ0

R is not sufficient and the
additional surface counter-term eΛ0

R is required to make the two-point function finite. This generalizes
the remarks given in [2,47] and [45] concerning the tadpole to all loop orders.

5.8 Some properties of the surface weight factor for s = 2 and l ≥ 1

In this section, we prove several lemmas that we use in the proof of Theorem 9. These lemmas
concern the case s = 2 for which the set of partitions P2 simply reads

P2 := {Π0,Π1} ,

where Π0 := σ2, Π1 = π1 ∪ π2 and πi = {i}.
From the definition (3.2.9), we have

W2
l (σ2) =

{
T 2,0
l (Yσ2 , 0; z⃗)| T 2,0

l ∈ T2,0, v2 ≤ 3l − 1
}

and

W2
l (Π1) =

{
T 1,0
l;1 (y1, 0; z⃗) ∪ T 1,0

l;2 (y2, 0; z⃗′)| T 1,0
l;1 , T

1,0
l;2 ∈ T

1,0
l

}
= W1

l (π1) ∪ W1
l (π2),

which implies that the global surface weight factor F
Λ,0
2,l;δ(τ1,2) simply reads

F
Λ,0
2,l;δ (τ1,2) =

∑
T 2,0
l ∈W2

l (σ2)

F0
δ

(
Λ, τ1, τ2;T

2,0
l ;Yσ2

)
+ F

Λ,0
1,l;δ (τ1)F

Λ,0
1,l;δ (τ2) , (5.8.1)

where
F

Λ,0
1,l;δ (τi) :=

∑
T 1,0
l ∈W1

l (πi)

F0
δ

(
Λ, 2τi;T

1,0
l ; yi

)
. (5.8.2)

Note that (5.8.1) implies
F

Λ,0
1,l;δ (τ1)F

Λ,0
1,l;δ (τ2) ≤ F

Λ,0
2,l;δ (τ1,2) . (5.8.3)
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Lemma 8. Let v be the total number of vertices of incidence number 2 of the tree T 2,0
l . For p ≥ 1,

we denote by z⃗ = (z1, · · · , zp) the set of the internal vertices of T 2,0
l and (y1, y2) ∈ (R+)2 its external

vertices. For ΛI := {Λi |1 ≤ i ≤ v − 1}, Λ̃ ∈ [Λ,Λ0] and τ1, τ2 > 0, we have∫
z⃗
F0
δ

(
ΛI, Λ̃; τ1, τ2;T

2,0
l ; z⃗;Yσ2

)
≤
∫ ∞

0
dz pB (c1,δ; z, y1) pB (c2,δ; z, y2) pB

(
1 + δ

Λ̃2
1

; z, 0

)
(5.8.4)

and∫ ∞

0
dz pB (c1,δ; z, y1) pB (c2,δ; z, y2) pB

(
1 + δ

Λ̃2
1

; z, 0

)

≤ 2v
∫
z⃗
F0
δ

(
ΛI, Λ̃; τ1, τ2;T

2,0
l ; z⃗;Yσ2

)
, (5.8.5)

where 0 ≤ v1, v2, v0 ≤ v such that v1 + v2 + v0 = v, c1,δ := (1 + δ)c1 and c2,δ := (1 + δ)c2. The
parameters c1, c2 and Λ̃1 are given by

c1 = τ1 +

(
v1∑
i=1

1

Λ2
i

)
(1− δv1,0) , (5.8.6)

c2 = τ2 +

(
v1+v2−1∑
i=v1+1

1

Λ2
i

)
(1− δv2,0) , (5.8.7)

1

Λ̃2
1

=

(
v−1∑

i=v1+v2

1

Λ2
i

)
(1− δv,0) +

1

Λ̃2
. (5.8.8)

Proof. • First, we prove the bound (5.8.4). A tree T 2,0
l in W2

l (σ2) has the following structure

y1

z1

y2

τ2

v2

0

1

Λ̃2

v0

v1

τ1
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It contains one internal vertex of incidence number 3 and all the other internal vertices are of
incidence number 2. We assume that each dashed line contains a number vi ≥ 1 of internal
vertices of incidence number 2. The case vi = 0 can be treated similarly. Remember that
v0 + v1 + v2 = v. Let {z2, · · · , zv1+1}, {zv1+2, · · · , zv1+v2} and {zv1+v2+1, · · · , zv} be respectively
the internal vertices on the paths from z1 to y1, z1 to y2 and z1 to 0. From (3.2.49), the integral
surface weight factor of T 2,0

l is then given by

∫
z⃗
F0
δ

(
ΛI, Λ̃; τ1, τ2;T

2,0
l ; z⃗;Yσ2

)
=

∫
z1,··· ,zv

v1+1∏
j=2

pB

(
1 + δ

Λ2
j−1

; zj−1, zj

)
pB (τ1,δ; zv1+1, y1)

× pB

(
1 + δ

Λ2
v1+1

; z1, zv1+2

)
v1+v2∏
j=v1+3

pB

(
1 + δ

Λ2
j−1

; zj−1, zj

)
pB (τ2,δ; zv1+v2 , y2)

× pB

(
1 + δ

Λ2
v1+v2

; z1, zv1+v2+1

) v∏
j=v1+v2+2

pB

(
1 + δ

Λ2
j−1

; zj−1, zj

)
pB

(
1 + δ

Λ̃2
; zv, 0

)
. (5.8.9)

Bounding the integral over R+ by the integral over R and using (3.1.5), we obtain

∫
z2···zv1+1

v1+1∏
j=2

pB

(
1 + δ

Λ2
j−1

; zj−1, zj

)
pB(τ1,δ; zv1+1, y1) ≤ pB(c1,δ; z1, y1) , (5.8.10)

where c1,δ = (1 + δ)
(
τ1 +

∑v1
i=1

1
Λ2
i

)
. Proceeding similarly on the paths from z1 to y2 and from

z1 to 0, we obtain that the weight factor of a tree in W2
l (σ2) is bounded by the weight factor of

the tree

y1

z1

y2

c2

0

1

Λ̃2
1

c1

where c1, c2 and 1
Λ̃2
1

are the new parameters associated respectively to the edges (z1, y1), (z1, y2)

and (z1, 0). The relations between these new parameters and those of the tree T 2,0
l are given by

c2 = τ2 +

(
v2∑
i=1

1

Λ2
i+v1

)
and

1

Λ̃2
1

=

(
v−1∑

i=v1+v2

1

Λ2
i

)
+

1

Λ̃2
.

This proves the statement (5.8.4).
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• To prove (5.8.5), we assume without loss of generality that v1 ≥ 1. Using (3.1.8), we find

pB(c1,δ; z1, y1) =

∫
Rv1

dz2 · · · dzv1+1

v1+1∏
j=2

pB

(
1 + δ

Λ2
j−2

; zj , zj−1

)
pB(τ1,δ; zv1+1, y1)

≤ 2v1
∫
(R+)v1

dz2 · · · dzv1+1

v1+1∏
j=2

pB

(
1 + δ

Λ2
j−2

; zj , zj−1

)
pB(τ1,δ; zv1+1, y1) . (5.8.11)

Proceeding similarly for pB(c2,δ; z1, y2) and pB
(
1+δ
Λ̃2
1

; z, 0
)
, we deduce

∫ ∞

0
dz pB (c1,δ; z, y1) pB (c2,δ; z, y2) pB

(
1 + δ

Λ̃2
1

; z, 0

)

≤ 2v
∫
z⃗
F0
δ

(
ΛI, Λ̃; τ1, τ2;T

2,0
l ; z⃗;Yσ2

)
. (5.8.12)

Lemma 9. Let W 2
l (Π1) := T 1,0

l;1 (y1, 0; z⃗) ∪ T 1,0
l;2 (y2, 0; z⃗′) be a forest in W2

l (Π1) with (y1, y2) ∈ (R+)2

and v2,1 (resp. v2,2) the total number of vertices of incidence number 2 of the tree T 1,0
l;1 (resp. T 1,0

l;2 ).
For p, q ≥ 1, we denote by z⃗ = (z1, · · · , zp) (resp. z⃗′ =

(
z′1, · · · , z′q

)
) the set of the internal vertices

of T 1,0
l;1 (resp. T 1,0

l;2 ). For ΛI :=
{
Λi, Λ′

j |1 ≤ i ≤ v2,1 − 1, 1 ≤ j ≤ v2,2 − 1
}
, Λ̃1, Λ̃2 ∈ [Λ,Λ0] and

τ1, τ2 > 0, we have∫
z⃗
F0
δ

(
ΛI, Λ̃1, Λ̃2; τ1, τ2;W

2
l (Π1); z⃗;Yσ2

)
≤ pB (c̃1,δ; y1, 0) pB (c̃2,δ; y2, 0) (5.8.13)

and

pB (c̃1,δ; y1, 0) pB (c̃2,δ; y2, 0) ≤ 2v2,1+v2,2

∫
z⃗
F0
δ

(
ΛI, Λ̃1, Λ̃2; τ1, τ2;W

2
l (Π1); z⃗;Yσ2

)
, (5.8.14)

where c̃1 and c̃2 are given by

c̃1 = 2τ1 +

v2,1−1∑
i=1

1

Λ2
i,1

+
1

Λ̃2
1

,

c̃2 = 2τ2 +

v2,2−1∑
i=1

1

Λ′2
i,2

+
1

Λ̃2
2

.

Proof. The forest W 2
l (Π1) is of the following form
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y1

z1

zv2,1

0

1

Λ̃2
1

v2,1

2τ1

y2

z′1

z′v2,2

0

1

Λ̃2
2

v2,2

2τ2

The integrated weight factor of this forest reads∫
z⃗
F0
δ

(
ΛI, Λ̃1, Λ̃2; τ1,2;W

2
l (Π1); z⃗; y1, y2

)
=

∫ ∞

0
dz1 · · · dzv2,1

v2,1∏
j=2

pB

(
1 + δ

Λ2
j−1

; zj , zj−1

)
pB(2τ1,δ; z1, y1)pB

(
1 + δ

Λ̃2
1

; zv2,1 , 0

)

×
∫ ∞

0
dz′1 · · · dz′v2,2

v2,2∏
j=2

pB

(
1 + δ

Λ′2
j−1

; z′j , z
′
j−1

)
pB(2τ2,δ; z

′
1, y2)pB

(
1 + δ

Λ̃2
2

; zv2,2 , 0

)
.

Bounding the integral over R+ by the integral over R and using (3.1.5), we obtain∫
z⃗
F0
(
ΛI, Λ̃1, Λ̃2; τ1,2;W

2
l (Π1); z⃗; y1, y2

)
≤ pB (c̃1,δ; y1, 0) pB (c̃2,δ; y2, 0) ,

where for v2,i > 1

c̃1 = 2τ1 +

v2,1−1∑
i=1

1

Λ2
i,1

+
1

Λ̃2
1

, (5.8.15)

c̃2 = 2τ2 +

v2,2−1∑
i=1

1

Λ2
i,2

+
1

Λ̃2
2

. (5.8.16)

If v2,i = 1, then c̃i = 2τi +
1
Λ̃2
i

.
Using again (3.1.8) and proceeding as in (5.8.11), we deduce

pB (c̃1,δ; y1, 0) pB (c̃2,δ; y2, 0) ≤ 2v2,1+v2,2

∫
z⃗
F0
(
ΛI, Λ̃1, Λ̃2; τ1,2;W

2
l (Π1); z⃗; y1, y2

)
. (5.8.17)

Lemma 10. For 0 ≤ α ≤ 1 and y1, y2 ∈ R, we have

|∂αnϕi(0)| ≤ C0,δ τ
−α

2
i F

Λ,0
1,l;δ (τi) , ∀ 0 < δ < 1, (5.8.18)

where ∂αnϕi(0) = limzi→0+ ∂
α
ziϕi(zi) with ϕi(zi) := pB (τi; zi, yi) and C0,δ is defined in (3.1.10).



140 THE SURFACE COUNTER-TERMS

Proof. For α = 0, we have

ϕi(0) =
1√
2πτi

e
− y2i

2τi ≤
√
2 pB (2τi; yi, 0) . (5.8.19)

For α = 1, we have |∂nϕi(0)| = yi
τi
ϕi(0). Using the bound (3.1.10) for r = 1, we obtain

|∂nϕi(0)| ≤
√
2 C0,δ τ

− 1
2

i pB (2τi,δ; yi, 0) . (5.8.20)

We consider the surface tree T 1,0
l;i which consists of the external vertex yi and the surface external

vertex 0. We associate to the external line (0, yi) the parameter 2τi. The integrated surface weight
factor of the tree T 1,0

l;i then reads

F0
1,l;δ

(
2τi;T

1,0
l;i ; yi

)
= pB (2τi,δ; yi, 0) . (5.8.21)

Since T 1,0
l;i ∈ W1

l (π1), we obtain using (5.8.2)

F0
1,l;δ

(
2τi;T

1,0
l;i ; yi

)
≤ F0

1,l;δ (τi) . (5.8.22)

Combining the bounds (7.3.11), (5.8.20) and (5.8.22), we deduce

|∂αnϕi(0)| ≤
√
2 C0,δ τ

−α
2

i F
Λ,0
1,l;δ (τi) , α ∈ {0, 1} . (5.8.23)

Furthermore, we also obtain∣∣∣∂αnϕ1(0)∂βnϕ2(0)∣∣∣ ≤ 2 C2
0,δ τ

−α
2

1 τ
−β

2
2

2∏
i=1

F
Λ,0
1,l;δ (τi) , α, β ∈ {0, 1} . (5.8.24)

Recalling (5.8.3), we deduce∣∣∣∂αnϕ1(0)∂βnϕ2(0)∣∣∣ ≤ 2C2
0,δ τ

−α
2

1 τ
−β

2
2 F

Λ,0
2,l;δ (τ1,2) . (5.8.25)

Lemma 11. For 0 < t ≤ 1, γ ∈ N, y1 ∈ R and 0 < δ < δ′ < 1, we have(
y1√
τ1

)γ

F
Λ,0
1,l;δ (t, τ1) ≤ O(1) t

1 +
τ
− 1

2
1

Λ

γ

F
Λ,0
1,l;δ′(τ1) , (5.8.26)

where

F
Λ,0
1,l;δ (t, τ1) :=

∑
W 1

l ∈W1
l (π1)

F0
δ

(
Λ,

2τ1
t2

;W 1
l ;
y1
t

)
=

3l−1∑
v=0

F0
δ

(
Λ,

2τ1
t2

;T 1,0
l ;

y1
t

)
, (5.8.27)

and O(1) is a constant which depends on δ, δ′, v, γ and the loop order l. We also have(
y1√
τ1

)γ

F
Λ,0
1,l;δ

(
t, τ−1

)
≤ O(1) t

1 +
τ
− 1

2
1

Λ

γ

F
Λ,0
1,l;δ′(τ

−
1 ) . (5.8.28)
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Proof. For s = 1 the global set of forests W1
l (π1) consists of all surface trees with two external vertices

(including the surface external vertex) which have a number of vertices of incidence number 2 less
or equal to 3l − 2. We consider the surface tree T 1,0

l ∈ W1
l (π1) with the external vertex y1

t and the
internal vertices z⃗v = (z1, · · · , zv). Let v be the number of its vertices of incidence number 2 and
ΛI = (Λi)1≤i≤v−1, Λv and τ1/t

2 be respectively the parameters associated to the internal lines, the
surface external line and the external line of T 1,0

l . Then the integrated surface weight factor of T 1,0
l

reads

F0
δ

(
ΛI;

2τ1
t2

;T 1,0
l ;

y1
t

)
=

∫
z⃗v

pB

(
2τ1,δ
t2

;
y1
t
, z1

) v−1∏
i=1

pB

(
1 + δ

Λ2
i

; zi, zi+1

)
pB

(
1 + δ

Λ2
v

; zv, 0

)
. (5.8.29)

If y1 ∈ R−, (5.8.29) is bounded by

pB

(
2τ1,δ
t2

;
y1
t
, 0

) ∫
z⃗v

v−1∏
i=1

pB

(
1 + δ

Λ2
i

; zi, zi+1

)
pB

(
1 + δ

Λ2
v

; zv, 0

)
. (5.8.30)

Therefore, we obtain

F0
δ

(
ΛI;

2τ1
t2

;T 1,0
l ;

y1
t

)
≤ O(1) t pB (2τ1,δ; y1, 0) ≤ O(1) t FΛ,0

1,l;δ(τ1), ∀T 1,0
l ∈ W1

l (π1). (5.8.31)

Using (3.1.10), we deduce (
y1√
τ1

)γ

F0
1,l;δ (t, τ1) ≤ O(1) t FΛ,0

1,l;δ′(τ1) , (5.8.32)

where 0 < δ < δ′ < 1.
Now, we treat the case in which y1 ∈ R+. Bounding the integral over (R+)v by the integral over Rv in
(5.8.29) and using (3.1.5), we obtain

F0
δ

(
ΛI;

2τ1
t2

;T 1,0
l ;

y1
t

)
≤ t pB

(
2τ1,δ +

v∑
i=1

t2(1 + δ)

Λ2
i

; y1, 0

)
≤ t pB

(
2τ1,δ +

v∑
i=1

(1 + δ)

Λ2
i

; y1, 0

)
. (5.8.33)

Furthermore, using (3.1.10) we obtain for all 0 ≤ δ < δ′ < 1(
y1√
τ1

)γ

pB

(
2τ1,δ +

v∑
i=1

1 + δ

Λ2
i

; y1, 0

)

≤ Cδ,δ′

1 +
v∑

i=1

τ
− 1

2
1√
2Λi

γ

pB

(
2τ1,δ′ +

v∑
i=1

1 + δ′

Λ2
i

; y1, 0

)
. (5.8.34)
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Since Λi, Λv ≥ Λ for all i ∈ I, we deduce that (5.8.34) is bounded by

Cδ,δ′ max

((
v√
2

)γ

, 1

)1 +
τ
− 1

2
1

Λ

γ

pB

(
2τ1,δ′ +

v∑
i=1

1 + δ′

Λ2
i

; y1, 0

)
(5.8.35)

Proceeding similarly to (5.8.11), we deduce

pB

(
2τ1,δ′ +

v∑
i=1

1 + δ′

Λ2
i

; y1, 0

)
≤ 2v F0

δ′

(
ΛI,Λv; 2τ1;T

1,0
l ; y1

)
, (5.8.36)

which together with (5.8.33) and (5.8.34) imply

(
y1√
τ1

)γ

F0
δ

(
ΛI;

2τ1
t2

;T 1,0
l ;

y1
t

)
≤ C t

1 +
τ
− 1

2
1

Λ

γ

F0
δ′

(
ΛI; 2τ1;T

1,0
l ; y1

)
, (5.8.37)

where C := 2v Cδ,δ′ max
((

v√
2

)γ
, 1
)
. Using

F
Λ,0
1,l;δ (τ1) :=

3l−1∑
v=0

F0
δ

(
Λ, 2τ1;T

1,0
l ; y1

)
, (5.8.38)

we deduce (
y1√
τ1

)γ

F0
1,l;δ (t, τ1) ≤ O(1) t

1 +
τ
− 1

2
1

Λ

γ

F
Λ,0
1,l;δ′(τ1) . (5.8.39)

To deduce (5.8.28), note that performing a change of variable we have for all y1 ∈ R

F0
δ

(
ΛI;

2τ1
t2

;T 1,0
l ;

y1
t

)
= F0

δ

(
ΛI;

2τ−1
t2

;T 1,0
l ;

−y1
t

)
, (5.8.40)

which together with the bound (5.8.26) gives directly (5.8.28).

Lemma 12. Let Λ ≥ 3
√
lτ−

1
2 , 0 < δ < δ′ ≤ 1 and (y1, y2) ∈ R2. For 0 < t, t′ ≤ 1, l ≥ 1 and

γ1, γ2 ∈ N, we have(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

F0
2,l;δ

(
Λ;
τ1
t2
,
τ2
t′2

;
y1
t
,
y2
t′

)
≤ tt′Q

(
τ−

1
2

Λ

)
F0
2,l;δ′ (Λ; τ1,2; y1,2) . (5.8.41)

The polynomial Q has nonnegative coefficients which are independent of τ1, τ2 and Λ but depend on l,
δ, δ′, γ1 and γ2.
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Proof. Using (5.8.1), FΛ,0
2,l;δ

(
τ1
t2
, τ2
t′2 ;

y1
t ,

y2
t′

)
can be written as follows

∑
T 2,0
l ∈W2

l (σ2)

F0
δ

(
Λ;
τ1
t2
,
τ2

t′2
;T 2,0

l ;
y1
t
,
y2
t′

)

+

 ∑
T 1,0
l ∈W1

l (π1)

F0
δ

(
Λ,

2τ1
t2

;T 1,0
l ;

y1
t

) ·

 ∑
T 1,0
l ∈W1

l (π2)

F0
δ

(
Λ,

2τ2

t′2
;T 1,0

l ;
y2
t′

) . (5.8.42)

• First, we prove(
y1√
τ1

)γ1 ( y2√
τ2

)γ2 ∑
T 2,0
l ∈W2

l (σ2)

F0

(
Λ,
τ1
t2
,
τ2

t′2
;T 2,0

l ;
y1
t
,
y2
t′

)

≤ tt′Q

(
τ−

1
2

Λ

)
F0
2,l;δ′ (Λ; τ1,2, y1,2) , (5.8.43)

where 0 < δ < δ′ < 1. Let us start first with the case y1, y2 ≥ 0. Given a surface tree T 2,0
l in

W2
l (σ2), we have by Lemma 8

F0
δ

(
ΛI, Λ̃;

τ1
t2
,
τ2

t′2
;T 2,0

l ;
y1
t
,
y2
t′

)
≤
∫ ∞

0
dz pB

(
c1,δ(t); z,

y1
t

)
pB

(
c2,δ(t

′); z,
y2
t′

)
pB

(
1 + δ

Λ̃2
1

; z, 0

)
, (5.8.44)

where c1,δ(t) = c1(t)(1 + δ)and c2,δ(t
′) = c2(t

′)(1 + δ). The parameters c1(t), c2(t′) and Λ̃1 are
given by (5.8.6) with τ1 → τ1/t

2 and τ2 → τ2/t
′2. For y1 ≤ y2, we write

∫ ∞

0
dz pB

(
c1,δ(t); z,

y1
t

)
pB

(
c2,δ(t

′); z,
y2
t′

)
pB

(
1 + δ

Λ̃2
1

; z, 0

)
= I(0, y1) + I(y1, y2) + I(y2,+∞) , (5.8.45)

where

I(a, b) :=

∫ b

a
dz pB

(
c1,δ(t); z,

y1
t

)
pB

(
c2,δ(t

′); z,
y2
t′

)
pB

(
1 + δ

Λ̃2
1

; z, 0

)
.

– First, we bound I(0, y1). For 0 ≤ t, t′ ≤ 1, we have

pB

(
c1,δ(t); z,

y1
t

)
≤ t pB (c1,δ; tz, y1) , (5.8.46)

pB

(
c2,δ(t

′); z,
y2
t′

)
≤ t′ pB

(
c2,δ; t

′z, y2
)
, (5.8.47)
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with ci := ci(1). For 0 ≤ z ≤ y1 ≤ y2, we also have

pB (c1,δ; tz, y1) ≤ t pB (c1,δ; z, y1) , (5.8.48)

pB
(
c2,δ; t

′z, y2
)
≤ t′ pB (c2,δ; z, y2) . (5.8.49)

This implies

I(0, y1) ≤ t t′
∫ ∞

0
dz pB (c1,δ; z, y1) pB (c2,δ; z, y2) pB

(
1 + δ

Λ̃2
1

; z, 0

)
, (5.8.50)

which again by Lemma 8 is bounded by

O(1)

∫
z⃗
F0
δ

(
ΛI, Λ̃; τσ2 ;T

2,0
l ; z⃗;Yσ2

)
≤ O(1)FΛ,0

2,l;δ (τ1,2) .

For (γ1, γ2) ̸= (0, 0), we need to bound also the following term(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

I(0, y1) . (5.8.51)

Using (5.8.50), (5.8.51) is bounded by

t t′ τ−γ1−γ2

γ1∑
k=0

γ2∑
k′=0

(
γ1
k

) (
γ2
k′

) ∫ ∞

0
dz |y1 − z|k|y2 − z|k′ zγ1+γ2−k−k′

× pB (c1,δ; z, y1) pB (c2,δ; z, y2) pB

(
1 + δ

Λ̃2
1

; z, 0

)
. (5.8.52)

Using (3.1.10), we obtain

zγ1+γ2−k−k′pB

(
1 + δ

Λ̃2
1

; z, 0

)
≤ Cδ,δ′ Λ̃

−γ1−γ2+k′+k
1 pB

(
1 + δ′

Λ̃2
1

; z, 0

)
. (5.8.53)

Since Λi, Λ̃ ≥ Λ for all i ∈ I, we deduce that

1

Λ̃2
1

=

(
v∑

i=v1+v2+1

1

Λ2
i

)
(1− δv,0) +

1

Λ̃2
≤ v0 + 1

Λ2
and ci ≤ τi +

vi
Λ2

. (5.8.54)

This gives

zγ1+γ2−k−k′pB

(
1 + δ

Λ̃2
1

; z, 0

)
≤ O(1) Λ−γ1−γ2+k′+kpB

(
1 + δ′

Λ̃2
1

; z, 0

)
. (5.8.55)
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Similarly, we have

|yi − z|γi−kpB (ci,δ; yi, z) ≤ C ′
δ,δ′ c

k
2
i pB

(
ci,δ′ ; yi, z

)
, (5.8.56)

≤ O(1) τ
k
2
i

1 +
τ
− 1

2
i

Λ

k

pB
(
ci,δ′ ; yi, z

)
, (5.8.57)

where we used (5.8.54). Whenever it appears, O(1) denotes a constant which depends on δ,
δ′, l and v. Combining (5.8.52), (5.8.55) and (5.8.57), we deduce that (5.8.51) is bounded
by

t t′ Q

(
τ−

1
2

Λ

)∫ ∞

0
dz pB

(
c1,δ′ ; z, y1

)
pB
(
c2,δ′ ; z, y2

)
pB

(
1 + δ′

Λ̃2
1

; z, 0

)
. (5.8.58)

By Lemma 8, we deduce that (5.8.51) is bounded by

t t′ Q

(
τ−

1
2

Λ

)∫
z⃗
F0
δ

(
ΛI, Λ̃; τσ2 ;T

2,0
l ; z⃗;Yσ2

)
. (5.8.59)

– Using the bounds (5.8.46), (5.8.47) and (5.8.49), the term I(y1, y2) is bounded by

t t′
∫ y2

y1

dz pB (c1,δ; tz, y1) pB (c2,δ; z, y2) pB

(
1 + δ

Λ̃2
1

; z, 0

)
. (5.8.60)

For z ≥ y1, we have

pB

(
1 + δ

Λ̃2
1

; z, 0

)
≤ pB

(
2(1 + δ)

Λ̃2
1

; z, 0

)
exp

(
− y21Λ̃

2
1

4(1 + δ)

)
. (5.8.61)

Knowing that v0 ≤ 3l − 1 together with

∀Λi ∈ ΛI , Λi ≥ Λ , Λ̃ ≥ Λ , (5.8.62)

and recalling (5.8.54), we obtain

Λ̃1 ≥
Λ√
3l

≥
√
3τ−

1
2 . (5.8.63)

where we also used Λ ≥ 3
√
lτ−

1
2 . This implies

exp

(
− y21Λ̃

2
1

4(1 + δ)

)
≤ exp

(
− y21Λ

2

12(1 + δ)l

)
≤ exp

(
− y21
2(1 + δ)τ1

)
. (5.8.64)

Furthermore, we have

pB (c1,δ; tz, y1) ≤
1√

2πc1,δ
. (5.8.65)
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Combining (5.8.65) with the fact that c1 ≥ τ1, we deduce

I(y1, y2) ≤
∫

R
dz pB (c2,δ; z, y2) pB

(
2(1 + δ)

Λ̃2
1

; z, 0

)
pB (c1,δ; y1, 0) ,

and by (3.1.5) we deduce that I(y1, y2) is bounded by

pB

(
c2,δ +

2(1 + δ)

Λ̃2
1

; y2, 0

)
pB (c1,δ; y1, 0) .

Using the property (3.1.10) of the bulk heat kernel together with (5.8.62), we obtain

(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

pB

(
c2,δ +

2(1 + δ)

Λ̃2
1

; y2, 0

)
pB (c1,δ; y1, 0)

≤ Q

τ− 1
2

i

Λ

 pB

(
c2,δ′ +

2(1 + δ′)

Λ̃2
1

; y2, 0

)
pB
(
c1,δ′ ; y1, 0

)
, (5.8.66)

where 0 < δ < δ′ < 1. For Λ ≥ 3
√
lτ−

1
2 and l ≥ 1, we have

∀Λi ∈ ΛI, Λi ≥ Λ ≥
√
3lτ

− 1
2

2 , (5.8.67)

and this implies

1

Λ2
v1+v2

≤ τ2
3
,

1

Λ2
v1+v2−1

≤ τ2
3
,

1

Λ̃2
1

=

(
v∑

i=v1+v2+1

1

Λ2
i

)
(1− δv,0) +

1

Λ̃2
≤ v0 + 1

Λ2
≤ τ2

3
, (5.8.68)

where again we used that v0 ≤ 3l − 1. Hence, we have

c2,δ′ +
2(1 + δ′)

Λ̃2
1

= τ2,δ′ +

v2∑
i=1

1 + δ′

Λ2
i+v1

+
2(1 + δ′)

Λ̃2
1

≤ 2τ2,δ′ +

v2−2∑
i=1

1 + δ′

Λ2
i+v1

+
1 + δ′

Λ̃2
1

, (5.8.69)

which gives

pB

(
c2,δ′ +

2(1 + δ′)

Λ̃2
1

; y2, 0

)
≤

√
2 pB

(
2τ2,δ′ +

v2−2∑
i=1

1 + δ′

Λ2
i+v1

+
1 + δ′

Λ̃2
1

; y2, 0

)
. (5.8.70)
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(3.1.8) together with Lemma 8 gives

pB

(
2τ2,δ′ +

v2−2∑
i=1

1 + δ′

Λ2
i+v1

+
1 + δ′

Λ̃2
1

; y2, 0

)

≤ O(1)

∫
z1

· · ·
∫
zv2+v0−1

pB
(
2τ2,δ′ ; z1, y2

) v2−1∏
i=2

pB

(
1 + δ′

Λ2
v1+i−1

; zi, zi−1

)

×
v0−1∏
i=0

pB

(
1 + δ′

Λ̃2
v1+v2+i

; zv2+i, zv2+i−1

)
pB

(
1 + δ′

Λ̃2
; zv2+v0−1, 0

)
. (5.8.71)

The RHS of (5.8.71) corresponds to the integrated surface weight factor of a surface tree T 1,0
l

which has an external vertex y2 and v2 + v0 − 1 internal vertices which all are of incidence
number 2. This tree belongs to the set of forests W1

l (π2) if and only if

v0 + v2 − 1 ≤ 3l − 1 . (5.8.72)

Since the tree T 2,0
l

(
τ1
t2
, τ2
t′2

; y1t ,
y2
t′

)
is in the forest W2

l (σ2), v0, v1 and v2 necessarily verify

v0 + v2 − 1 ≤ 3l − 2− v1 +
1

2
,

which implies (5.8.72). Hence, T 1,0
l belongs to the set W1

l (π2). From (5.8.70) and (5.8.71),
we deduce

pB

(
c2,δ′ +

1 + δ′

Λ̃2
; y2, 0

)
≤ O(1) F

Λ,0
1,l;δ′ (τ2) . (5.8.73)

Using (5.8.11), we obtain

pB
(
c1,δ′ ; y1, 0

)
≤ O(1) F

Λ,0
1,l;δ′ (τ1) . (5.8.74)

(5.8.60) and (5.8.66) together with (5.8.73) and (5.8.77) give(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

I(y1, y2) ≤ t t′Q

(
τ−

1
2

Λ

)
F

Λ,0
1,l;δ′ (τ1)F

Λ,0
1,l;δ′ (τ2) , (5.8.75)

where all the constants were absorbed in the coefficients of the polynomial Q.

– The last term to bound is

I(y2,+∞) :=

∫ ∞

y2

dz pB

(
c1,δ(t); z,

y1
t

)
pB

(
c2,δ(t

′); z,
y2
t′

)
pB

(
1 + δ

Λ̃2
1

; z, 0

)
.

For z ≥ y2 ≥ y1 we have

pB

(
1 + δ

Λ̃2
1

; z, 0

)
≤ Λ̃1√

2π
exp

(
− z2Λ̃2

1

6(1 + δ)

)
exp

(
− y21
2c1,δ

)
exp

(
− y22
2c2,δ

)
,
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where we used (5.8.63) and ci ≥ τi.
Bounding respectively pB

(
c1,δ(t); z,

y1
t

)
and pB

(
c2,δ(t

′); z, y2t′
)

by t√
2πc1,δ

and t′√
2πc2,δ

we

deduce that I(y2,+∞) is bounded by

O(1) t t′ pB (c1,δ; y1, 0) pB (c2,δ; y2, 0) .

Using the bound (3.1.10), we find(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

pB (c2,δ; y2, 0) pB (c1,δ; y1, 0)

≤ Q

τ− 1
2

i

Λ

 pB
(
c2,δ′ ; y2, 0

)
pB
(
c1,δ′ ; y1, 0

)
, (5.8.76)

where 0 < δ < δ′ < 1. Using (5.8.11), we deduce

pB
(
ci,δ′ ; yi, 0

)
≤ O(1) F

Λ,0
1,l;δ′ (τi) , (5.8.77)

which implies(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

I(y2,+∞) ≤ t t′Q

(
τ−

1
2

Λ

)
F

Λ,0
1,l;δ′ (τ1)F

Λ,0
1,l;δ′ (τ2) . (5.8.78)

Combining (5.8.59), (5.8.75) and (7.2.12) together with (5.8.3) and (5.8.44), we obtain (5.8.43).
Now, we treat the case in which the external vertices are negative: Given a surface tree T 2,0

l in
W2,l(σ2), we recall∫

z⃗
F0
δ

(
ΛI, Λ̃;

τ1
t2
,
τ2
t′2

;T 2,0
l ; z⃗;

y1
t
,
y2
t′

)
=

∫
z1,··· ,zv

v1+1∏
j=2

pB

(
1 + δ

Λ2
j−1

; zj−1, zj

)
pB

(τ1,δ
t

; zv1+1,
y1
t

)

× pB

(
1 + δ

Λ2
v1+1

; z1, zv1+2

)
v1+v2∏
j=v1+3

pB

(
1 + δ

Λ2
j−1

; zj−1, zj

)
pB

(τ2,δ
t′2

; zv1+v2 ,
y2
t′

)

× pB

(
1 + δ

Λ2
v1+v2

; z1, zv1+v2+1

) v∏
j=v1+v2+2

pB

(
1 + δ

Λ2
j−1

; zj−1, zj

)
pB

(
1 + δ

Λ̃2
; zv, 0

)
. (5.8.79)

For y1 ≤ 0 and zv1+1 ∈ R+, we have

pB

(τ1,δ
t2

; z,
y1
t

)
≤ t pB (τ1,δ; y1, 0) .

Hence, we obtain for y1, y2 ≤ 0 using (3.1.10)(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

F0
δ

(
ΛI, Λ̃;

τ1
t2
,
τ2

t′2
;T 2,0

l ;
y1
t
,
y2
t′

)
≤ O(1) t t′ pB

(
τ1,δ′ ; y1, 0

)
pB
(
τ2,δ′ ; y2, 0

)
, (5.8.80)
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which is bounded by
O(1) t t′ FΛ,0

1,l;δ′ (τ1)F
Λ,0
1,l;δ′ (τ2) . (5.8.81)

If y1 ≤ 0 and y2 ≥ 0, we have

F0
δ

(
ΛI, Λ̃;

τ1
t2
,
τ2

t′2
;T 2,0

l ;
y1
t
,
y2
t′

)
≤ O(1) t pB (τ1,δ; y1, 0)

∫ ∞

0
dz pB

(
c2,δ(t

′); z,
y2
t′

)
pB

(
1 + δ

Λ̃2
1

; z, 0

)
. (5.8.82)

Using (3.1.5) together with (5.8.11) and (5.8.2), we have∫ ∞

0
dz pB

(
c2,δ(t

′); z,
y2
t′

)
pB

(
1 + δ

Λ̃2
1

; z, 0

)
≤ F

Λ,0
1,l;δ(t

′, τ2). (5.8.83)

Combining Lemma 11 with (5.8.82) and (5.8.83) gives(
y1√
τ1

)γ1 ( y2√
τ2

)γ2

F0
δ

(
ΛI, Λ̃;

τ1
t2
,
τ2

t′2
;T 2,0

l ,
y1
t
,
y2
t′

)
≤ O(1) t t′ Q

(
τ−

1
2

Λ

)
F

Λ,0
1,l;δ′ (τ1)F

Λ,0
1,l;δ′ (τ2) . (5.8.84)

Using (5.8.3), we obtain the bound (5.8.43).

• By definition, we have

F
Λ,0
1,l;δ(t, τ1) =

∑
T 1,0
l ∈W1

l (π1)

F0
δ

(
Λ,
τ1
t2
;T 1,0

l ;
y1
t

)
. (5.8.85)

Applying Lemma 11 to the global surface weight factors F
Λ,0
1,l;δ(t, τ1) and F

Λ,0
1,l;δ(t

′, τ2) we obtain(
y1√
τ1

)γ1 ∑
T 1,0
l ∈W1

l (π1)

F0
δ

(
Λ,
τ1
t2
;T 1,0

l ;
y1
t

)

×
(
y2√
τ2

)γ2 ∑
T 1,0
l ∈W1

l (π2)

F0
δ

(
Λ,

τ2

t′2
;T 1,0

l ;
y2
t′

)

≤ O(1) t t′

1 +
τ
− 1

2
1

Λ

γ11 +
τ
− 1

2
2

Λ

γ2

F
Λ,0
1,l;δ′ (τ1)F

Λ,0
1,l;δ′ (τ2) , (5.8.86)

and this together with (5.8.3), (5.8.42) and (5.8.43) conclude the proof of Lemma 12.
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Chapter 6

Renormalization of the bulk theory and
the position independence of the
counter-terms

6.1 Introduction

In this chapter, we study in more detail the renormalizability of the "bulk theory" that we
presented very briefly in section 5.3 of chapter 5. This theory describes the massive scalar field in R4

with a quartic self-interaction supported on the half-space R+ ×R3. The translation invariance in this
case is broken by the interaction. In section 5.3, we imposed constant renormalization conditions and
as a consequence of the simplicity of this choice, the counter-terms required to render the theory finite
can depend on the position in space. However, we aim to prove that the semi-infinite model can be
renormalized by position independent counter-terms of the same structure of the terms included in the
original Hamiltonian and this was partially established in chapter 5 by studying the surface correlation
distributions S

Λ,Λ
l,n;⋆. In order to complete our proof, we need to study the remaining part of the semi-

infinite correlation distributions, which is described by the bulk correlation distributions D
Λ,Λ0

l,n . In
this chapter, we establish that there exists a particular choice of the renormalization conditions such
that the counter-terms appearing in the bulk effective action are position independent. Furthermore,
we relate these counter-terms to the counter-terms of the translationally invariant ϕ44 theory.
The method of the proof in this chapter is similar to the method used in chapter 5, in the sense that
we construct a unique solution of the bulk flow equations of the following form

n∏
i=1

χ+(zi) L
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn)) + D̂
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn)) , (6.1.1)
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where1 L
Λ,Λ0

l,n denote the correlation distributions of the translationally invariant model and D̂
Λ,Λ0

l,n are
distributions in S′((R+)n) such that (6.1.1) is a solution of the bulk flow equation (5.3.6). The main
advantage of this method is to use the a priori knowledge of the renormalizability of the translationally
invariant theory to prove the renormalization of the bulk theory. As a consequence of this approach,
the bare interaction has the following form

λ

4!

∫
R3

d3x

∫
R+

dz ϕ4(z, x) +
1

2

∫
R3

d3x

∫
R+

dz

(
aΛ0
∞ ϕ2(z, x)− bΛ0

∞ ϕ(z, x)∆ϕ(z, x)

+
2

4!
cΛ0
∞ ϕ4(z, x)

)
+

1

2
sΛ0
+

∫
R3

d3x ϕ2(0, x) + eΛ0
+

∫
R3

d3x ϕ(0, x)∂nϕ(0, x) , (6.1.2)

where aΛ0
∞ , bΛ0

∞ and cΛ0
∞ are the counter-terms of the translationally invariant model. The counter-

terms sΛ0
+ and eΛ0

+ are surface counter-terms that result from the breaking of the translation invariance
by the support of the interaction. This chapter is organized as follows: we recall briefly in section
6.2 the free massive scalar field theory in R4 in the mixed position-momentum space and introduce
the ϕ44 interactions respectively on the full space R4 and restricted to the half-space R+ × R3. Then,
we write for each of these two theories the corresponding flow equations. In section 6.3, we present
the technique of the proof which is based on constructing the solution of the bulk flow equation
using our knowledge of the translationally invariant correlation distributions. In this section, we
define the boundary correlation distributions D̂

Λ,Λ0

l,n through their flow equation and the boundary
conditions. Section 6.4 gathers the central results of this chapter. In proposition 9, we present a
uniform boundedness result w.r.t. the UV cutoff Λ0 of the correlation distributions LΛ,Λ0

l,n smeared with
a product of test functions that are supported partially on R+ and partially on R−. This proposition
is a key result to establish Theorem 12, which proves that D̂

Λ,Λ0

l,n smeared with a suitable class of
test functions obey bounds sharper by one power of Λ than L

Λ,Λ0

l,n . In proposition 10, we bound the
correlation distributions LΛ,Λ0

l,n smeared with a suitable set of test functions that are supported on R+.
In section 6.5, we give the proof of the propositions 9 and 10 together with Theorem 12.

6.2 The ϕ4
4 theory in R4

6.2.1 The action and the regularized propagator

In this section, we consider the massive ϕ44-theory in R4 in the pz-representation. The point of
departure is to write the associated regularized path integral uniquely defined by the corresponding
Gaussian measure. In the mixed position-momentum space, the regularized flowing propagator is given

1Here, we slightly abuse of notation since we used L
Λ,Λ0
l,n in chapter 4 to denote the semi-infinite correlation distri-

butions. In the sequel, the semi-infinite correlation distributions corresponding to ⋆ boundary condition are denoted by
L

Λ,Λ0
l,n;⋆ .
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by2

CΛ,Λ0

B

(
p; z, z′

)
=

∫ 1

Λ2
0

1
Λ2

dλ e−λ(p2+m2) pB
(
λ; z, z′

)
. (6.2.1)

The derivative w.r.t. Λ of CΛ
B is given by

ĊΛ
B(p; z, z

′) = ĊΛ(p) pB

(
1

Λ2
; z, z′

)
with ĊΛ(p) := − 2

Λ3
e−

p2+m2

Λ2 . (6.2.2)

For finite Λ0 and in finite volume the effective action is rigorously defined from the functional integral

e
− 1

ℏ

(
L
Λ,Λ0
a (ϕ)+IΛ,Λ0

)
:=

∫
dµΛ,Λ0,B(Φ) e

− 1
ℏL

Λ0,Λ0
a (Φ+ϕ) , LΛ,Λ0

a (0) = 0 . (6.2.3)

Here, the Gaussian measure dµΛ,Λ0,B is of mean zero and covariance ℏCΛ,Λ0

B . The functional LΛ0,Λ0
a (ϕ)

is the bare interaction of a renormalizable theory including counter-terms, viewed as a formal power
series in ℏ. The counter-terms functionals must be local and not exceed a certain dimension. The
subscript a ∈ {∞,+} is used to distinguish between the translationally invariant ϕ44 model and the ϕ44
model with an interaction supported on the half space R+ × R3. For the translationally invariant ϕ44
theory, the bare interaction reads

LΛ0,Λ0
∞ (ϕ) =

λ

4!

∫
R3

d3x

∫
R
dz ϕ4(z, x)

+
1

2

∫
R3

d3x

∫
R
dz

(
aΛ0
∞ ϕ2(z, x)− bΛ0

∞ ϕ(z, x)∆ϕ(z, x) +
2

4!
cΛ0
∞ ϕ4(z, x)

)
. (6.2.4)

For the ϕ44 model in R4 with the interaction restricted to the half-space, translation invariance is
broken in the z-direction (i.e. the semi-line). Therefore, the counter-terms can possibly depend on z.
Therefore, it is natural to consider the general bare interaction

LΛ0,Λ0
+ (ϕ) =

λ

4!

∫
R3

d3x

∫
R+

dz ϕ4(z, x) +
1

2

∫
R3

d3x

∫
R+

dz

(
aΛ0
+ (z)ϕ2(z, x)− bΛ0

+ (z)ϕ(z, x)∆xϕ(z, x)

− dΛ0
+ (z)ϕ(z, x)∂2zϕ(z, x) + sΛ0

+ (z)ϕ(z, x)(∂zϕ)(z, x) +
2

4!
cΛ0
+ (z)ϕ4(z, x)

)
. (6.2.5)

Here we supposed that both theories are symmetric under ϕ→ −ϕ , and we included in (6.2.4)-(6.2.5)
only relevant terms in the sense of the renormalization group. The functions aΛ0

+ (z), bΛ0
+ (z), cΛ0

+ (z),
dΛ0
+ (z) and sΛ0

+ (z) are supposed to be smooth.
The goal of this chapter is to establish that for a suitable choice of renormalization conditions, the

2We recall the bulk heat kernel pB (λ; z, z′) := 1√
2πλ

e−
(z−z′)2

2λ .
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bare interaction LΛ0,Λ0
+ has the following form

LΛ0,Λ0
+ (ϕ) =

λ

4!

∫
R3

d3x

∫
R+

dz ϕ4(z, x) +
1

2

∫
R3

d3x

∫
R+

dz

(
aΛ0
∞ ϕ2(z, x)− bΛ0

∞ ϕ(z, x)∆ϕ(z, x)

+
2

4!
cΛ0
∞ ϕ4(z, x)

)
+

1

2
sΛ0
+

∫
R3

d3x ϕ2(0, x) + eΛ0
+

∫
R3

d3x ϕ(0, x)∂nϕ(0, x) . (6.2.6)

Following the steps of chapters 1 and 4, we expand the functional LΛ,Λ0
a (ϕ) in a formal power series

w.r.t. ℏ,

LΛ,Λ0
a (ϕ) =

∞∑
l=0

ℏlLΛ,Λ0

l,a (ϕ) .

From LΛ,Λ0
∞ , we obtain the connected amputated Schwinger distributions of loop order l defined as

follows

L
Λ,Λ0

l,n ((z1, x1), · · · , (zn, xn)) := δϕ(z1,x1) · · · δϕ(zn,xn)L
Λ,Λ0

l,∞ |ϕ=0 , (6.2.7)

where we used the notation δϕ(z,x) = δ/δϕ(z, x) . Similarly, we obtain the bulk correlation distributions
of loop order l from LΛ,Λ0

+

D
Λ,Λ0

l,n ((z1, x1), · · · , (zn, xn)) := δϕ(z1,x1) · · · δϕ(zn,xn)L
Λ,Λ0

l,+ |ϕ=0 . (6.2.8)

In the pz-representation, (6.2.7) and (6.2.8) read

δ(3)(p1 + · · ·+ pn)L
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))

:= (2π)3(n−1) δn

δϕ(z1, p1) · · · δϕ(zn, pn)
LΛ,Λ0

l,∞ (ϕ)|ϕ≡0 (6.2.9)

and

δ(3)(p1 + · · ·+ pn)D
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))

= (2π)3(n−1) δn

δϕ(z1, p1) · · · δϕ(zn, pn)
LΛ,Λ0

l,+ (ϕ)|ϕ≡0 . (6.2.10)

The Dirac distribution δ(3)(p1+ · · ·+ pn) appears because of translation invariance in the x-directions.

6.2.2 The flow equations

The flow equation (FE) is obtained from (6.2.3) on differentiating w.r.t. Λ as in chapter 1:

∂Λ(L
Λ,Λ0
a + IΛ,Λ0) =

ℏ
2
⟨ δ
δϕ
, ĊΛ

B

δ

δϕ
⟩a LΛ,Λ0

a − 1

2
⟨ δ
δϕ
LΛ,Λ0
a , ĊΛ

B

δ

δϕ
LΛ,Λ0
a ⟩a . (6.2.11)
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By ⟨, ⟩∞ (resp. ⟨, ⟩B) we denote the standard inner product in L2(R4) (resp. L2(R+ × R3)).
The FE for the CAS distributions derived from (6.2.11) are

∂Λ∂
wL

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))

=
1

2

∫
R
dz

∫
R
dz′

∫
k
∂wLΛ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
ĊΛ
B(k; z, z

′)

− 1

2

∫
R
dz

∫
R
dz′

′∑
l1,l2

′∑
n1,n2

∑
wi

cw

[
∂w1L

Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1pn1), (z, p))∂
w3ĊΛ

B(p; z, z
′)

× ∂w2L
Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

]
rsym

,

(6.2.12)

and

∂Λ∂
wD

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))

=
1

2

∫
R+

dz

∫
R+

dz′
∫
k
∂wD

Λ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
ĊΛ
B(k; z, z

′)

− 1

2

∫
R+

dz

∫
R+

dz′
′∑

l1,l2

′∑
n1,n2

∑
wi

cw

[
∂w1D

Λ,Λ0

l1,n1+1((z1, p1), · · · , (zn1pn1), (z, p))∂
w3ĊΛ

B(p; z, z
′)

× ∂w2D
Λ,Λ0

l2,n2+1((z
′,−p), · · · , (zn, pn))

]
rsym

,

(6.2.13)

where we used the same notations of chapters 1 and 4. The tree orders L
Λ,Λ0
0,4 and D

Λ,Λ0
0,4 are given by

L
Λ,Λ0
0,4 ((z1, p1), · · · , (z4, p4)) = λ δ(z1 − z2)δ(z1 − z3)δ(z1 − z4) (6.2.14)

and

D
Λ,Λ0
0,4 ((z1, p1), · · · , (z4, p4)) = λ

4∏
i=1

χ+(zi) δ(z1 − z2)δ(z1 − z3)δ(z1 − z4) . (6.2.15)

Note that at the tree order, it is clear that L
Λ,Λ0
0,4 ∈ S′(R4) and D

Λ,Λ0
0,4 ∈ S′ ((R+)4

)
.

6.3 The technique of the proof

As previously mentioned, the purpose of this chapter is to prove that for a suitable choice of the
renormalization conditions, the counter-terms appearing in the effective action (6.2.5) are independent
of the position in space and can be related to the counter-terms of the translationally invariant ϕ44-
theory through (6.2.6). Our technique is to start from the a priori knowledge of the translationally
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invariant ϕ44 model to build a specific solution to the flow equation (6.2.13) that produces the required
properties of the bulk counter-terms. More precisely, we study (6.1.1). Before getting to the central
results of this chapter that lead to an effective action of the form (6.2.6), we need to impose first the
boundary conditions for L

Λ,Λ0

l,n , and then define the correlation distributions D̂
Λ,Λ0

l,n .

6.3.1 Boundary conditions for L
Λ,Λ0

l,n

In chapter 1, we presented briefly the proof of renormalization of the massive ϕ44 in R4 in
momentum space. In order to be consistent with the treatment of the semi-infinite model, we need
to consider this theory in the mixed position-momentum space. As we discussed before, one of the
main consequences of working in the mixed pz-space is that the correlation "functions" of the consid-
ered theory are distributions. For the translationally invariant model, the corresponding correlation
distributions belong to S′(R4n). Following section 1.1.4, we impose mixed boundary conditions:

• At Λ = Λ0, the irrelevant part of the theory is required to be equal to 0. This translates into an
effective action of the form (6.2.4) from which we can deduce the following boundary conditions:

L
Λ0,Λ0

l,2 ((z1, p), (z2,−p)) =
(
aΛ0
l,∞ + bΛ0

l,∞
(
p2 − ∂2z1

))
δ(z1 − z2) , ∀l ≥ 1, (6.3.1)

L
Λ0,Λ0
0,2 ((z1, p), (z2,−p)) = 0 , (6.3.2)

L
Λ0,Λ0

l,4 ((z1, p1), · · · , (z4, p4)) =
(
λδl,0 + cΛ0

l,∞(1− δl,0)
) 4∏

i=2

δ(z1 − zi) , ∀l ≥ 0. (6.3.3)

• Let us introduce the following notations that we use in the sequel: Given a partition (π1, π2) of
σ2:4, we define ∫

z⃗+π1

:=

|π1|∏
j=1

∫
R+

dzj ,

∫
z⃗−π2

:=

|π2|∏
j=1

∫
R−
dzj . (6.3.4)

Our candidate of the right3 "bulk" correlation distributions (6.1.1) contains the following part

n∏
i=1

χ+(zi) L
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn)) , (6.3.5)

which belongs to S′ ((R+)4n
)
. In order to obtain a global bound on the bulk correlation dis-

tributions, we need to bound (6.3.5). Hence, the renormalization conditions that we impose
must be consistent with the integration of the derivative w.r.t. Λ of (6.3.5) smeared with ap-
propriate test functions. Another constraint on the renormalization conditions is that they must
imply (1.1.20)-(1.1.21) to ensure that the counter-terms appearing in (6.3.1)-(6.3.3) are equal to

3The one that leads to the bare interaction (6.2.6).
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the counter-terms presented in chapter 1. Therefore, we consider the following renormalization
conditions: At Λ = 0, we impose for all z1 ∈ R and l ≥ 1∫

R+

dz2 (z1 − z2)
r L

0,Λ0

l,2 ((z1, 0), (z2, 0)) = 0 , ∀0 ≤ r ≤ 2 , (6.3.6)∫
R−
dz2 (z1 − z2)

r L
0,Λ0

l,2 ((z1, 0), (z2, 0)) = 0 , ∀0 ≤ r ≤ 2 (6.3.7)

and ∫
(R−)3

dz2,4 L
0,Λ0

l,4 ((z1, 0), · · · , (z4, 0)) = 0 , (6.3.8)∫
(R+)3

dz2,4 L
0,Λ0

l,4 ((z1, 0), · · · , (z4, 0)) = 0 , (6.3.9)∫
z⃗+π1

∫
z⃗−π2

L
0,Λ0

l,4 ((z1, 0), · · · , (z4, 0)) = 0 , ∀(π1, π2) ∈ P̃2;4. (6.3.10)

Note that (6.3.6)-(6.3.10) written in momentum space imply the usual BPHZ renormalization condi-
tions for the translationally invariant ϕ44-theory given in (1.1.20)-(1.1.21).

6.3.2 The correlation distributions D̂
Λ,Λ0

l,n

For (n, l) = (4, 0), we define

D̂
Λ,Λ0
0,4 ((z1, p1), · · · , (z4, p4)) := 0 . (6.3.11)

For (n, 0) such that n ≥ 6 and (n, l) such that n ≥ 2 and l ≥ 1, the correlation distributions are
generated inductively by the following flow equation

∂Λ D̂
Λ,Λ0

l,n ((z⃗n, p⃗n)) =
1

2

∫
k

∫
R+

dz

∫
R+

dz′ D̂Λ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)
ĊΛ
B(k; z, z

′)

− 1

2

∫
k

∫
R+

dz

∫
R−
dz′ LΛ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)
ĊΛ
B(k; z, z

′)

− 1

2

∫
k

∫
R−
dz

∫
R
dz′ LΛ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)
ĊΛ
B(k; z, z

′)

− 1

2

′∑
l1,l2

′′∑
π1,π2

{∫
R+

dz

∫
R+

dz′
[
D̂

Λ,Λ0

l1,n1+1 ((z⃗π1 , p⃗π1), (z, p)) D̂
Λ,Λ0

l2,n2+1

(
(z′,−p), (z⃗π2 , p⃗π2)

)
+L

Λ,Λ0

l1,n1+1 ((z⃗π1 , p⃗π1), (z, p)) D̂
Λ,Λ0

l2,n2+1

(
(z′,−p), (z⃗π2 , p⃗π2)

)
+D̂

Λ,Λ0

l1,n1+1 ((z⃗π1 , p⃗π1), (z, p))L
Λ,Λ0

l2,n2+1

(
(z′,−p), (z⃗π2 , p⃗π2)

)]
ĊΛ
B

(
p; z, z′

)
−
∫
(R2)−

dz dz′ LΛ,Λ0

l1,n1+1 ((z⃗π1 , p⃗π1), (z, p))L
Λ,Λ0

l2,n2+1

(
(z′,−p), (z⃗π2 , p⃗π2)

)
ĊΛ
B

(
p; z, z′

)}
, (6.3.12)
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where we used the same notations as in (5.4.11). The structure of the flow equation (6.3.12) is motivated
by the fact that (6.1.1) is required to verify the flow equation (6.2.13) and the tree order (6.2.15). In
order to define uniquely D̂

Λ,Λ0

l,n , we need to impose boundary conditions.

Boundary conditions for D̂
Λ,Λ0

l,n

At Λ = Λ0, we include the counter-terms that make D̂
Λ,Λ0

l,n finite as the cutoffs are removed. As
we already mentioned before, the form of these counter-terms is not known, but they must be local
functionals which do exceed a certain dimension. We write:

D̂
Λ0,Λ0

l,2 ((z1, p), (z2,−p)) = sΛ0
l δz1δz2 + eΛ0

l δz1δ
′
z2 + hΛ0

l δ′z1δz2 , (6.3.13)

D̂
Λ0,Λ0
0,2 ((z1, p), (z2,−p)) = 0 , (6.3.14)

D̂
Λ0,Λ0

l,n ((z1, p1), · · · , (zn, pn)) = 0 , ∀n ≥ 4 . (6.3.15)

The remaining information concerns only a finite number of relevant terms, for which it is much more
convenient to encode it in a boundary condition at Λ = 0. To extract these relevant terms, we perform
a Taylor expansion of the test functions ϕ1 and ϕ2 in ∈ S(R+) around the origin in∫

R+

dz1

∫
R+

dz2 D̂
Λ,Λ0

l,2 ((z1, 0), (z2, 0))ϕ1(z1)ϕ2(z2). (6.3.16)

Namely, we rewrite (6.3.16) as follows

sΛ,Λ0

l,+ ϕ1(0)ϕ2(0) + eΛ,Λ0

l,+ ϕ1(0)∂nϕ2(0) + hΛ,Λ0

l,+ ϕ2(0)∂nϕ1(0) + l̂Λ,Λ0

l,2 (ϕ1, ϕ2) . (6.3.17)

Then the relevant terms appear as

sΛ,Λ0

l,+ :=

∫
R+

dz1

∫
R+

dz2 D̂
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (6.3.18)

eΛ,Λ0

l,+ :=

∫
R+

dz1

∫
R+

dz2 z1 D̂
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) , (6.3.19)

hΛ,Λ0

l,+ :=

∫
R+

dz1

∫
R+

dz2 z2 D̂
Λ,Λ0

l,2 ((z1, 0), (z2, 0)) (6.3.20)

and the remainder l̂Λ,Λ0

l,2 (ϕ1, ϕ2) has the form (5.4.17) with S
Λ,Λ0

l,n;⋆ replaced by D̂
Λ,Λ0

l,n . At Λ = 0, we
impose BPHZ renormalization conditions given by

s0,Λ0

l,+ = e0,Λ0

l,+ = h0,Λ0

l,+ = 0 . (6.3.21)

Note that the Bose symmetry for L
Λ,Λ0

l,n together with the boundary conditions (6.3.13)-(6.3.15) and
(6.3.21) and the flow equation (6.3.12) imply inductively that D̂

Λ,Λ0

l,n is symmetric w.r.t. its arguments.
In particular, this implies eΛ,Λ0

l,+ = hΛ,Λ0

l,+ .
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6.4 Results

Before stating the main results of this chapter, let us introduce first the test functions against which
D̂

Λ,Λ0

l,n and L
Λ,Λ0

l,n will be integrated. The family of the test functions we will be considering are of the
following form for 1 ≤ s ≤ n:

ϕτi,s,yi,s(zi,n) :=
s∏

j=i

pB (τi; zi, yi) , i ∈ {1, 2} , (6.4.1)

with τi > 0, zi,n = (zi, · · · , zn) and y1,s set of points in R. We also use the test functions

ϕ(j)τ2,s,y2,s(z2,n) := p
(1)
B (τj ; zj , z1; yj)

s∏
i=2,i ̸=j

pB(τi; zi, yi) , (6.4.2)

where
p
(1)
B (τj ; zj , z1; yj) = pB(τj ; zj , yj)− pB(τj ; z1, yj) . (6.4.3)

These definitions can be generalized by choosing any other subset of s coordinates among {z1, · · · , zn}.
Given a test function Ψs in {ϕτ2,s,y2,s , ϕ

(j)
τ2,s,y2,s}, we define

L
Λ,Λ0

l,n;r (z1; p⃗n; Ψs) :=

∫
Rn−1

dz2,n (z1 − z2)
r
L

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))Ψs(z2,n) . (6.4.4)

For n ≥ 3 and 0 ≤ r ≤ 3, we define

F12L
Λ,Λ0

l,n (z1, z2; p⃗n;ϕτ3,s,y3,s)

:= (z1 − z2)
3

∫
Rn−2

dz3,n L
Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))
s∏

i=3

pB (τi; zi, yi) . (6.4.5)

For n = 2 we define

F12L
Λ,Λ0

l,2 (z1, z2; p) := (z1 − z2)
3L

Λ,Λ0

l,2 ((z1, p), (z2,−p)) . (6.4.6)

The uniform boundedness of LΛ,Λ0

l,n w.r.t. the UV cutoff Λ0 in the pz-representation can be summarized
in the following theorem:

Theorem 11. For 0 ≤ Λ ≤ Λ0 < ∞, 0 ≤ s ≤ n, 0 ≤ r1, r2 ≤ 3, z1 ∈ R and y2,s ∈ Rs−1, we consider
test functions of the form ϕτ2,s,y2,s(z2,s). Adopting (6.3.1)-(6.3.10), we have

∣∣∣∂wLΛ,Λ0

l,n;r (z1; p⃗n;ϕτ2,s,y2,s)
∣∣∣ ≤ (Λ +m)4−n−|w|−r

P′
1

(
log

Λ +m

m

)
P′

2

(
∥p⃗n∥
Λ +m

)
× Q′

1

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;δ (τ2,s) , (6.4.7)
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∣∣∣∂wLΛ,Λ0

l,n;r (z1; p⃗n;ϕ
(j)
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)3−n−|w|−r τ
− 1

2
j P′

3

(
log

Λ +m

m

)
P′

4

(
∥p⃗n∥
Λ +m

)
× Q′

2

(
τ−

1
2

Λ +m

)
F

Λ,∞
s,l;δ (τ2,s) , (6.4.8)

∣∣∣∂wF12L
Λ,Λ0

l,n;r (z1, z2; p⃗n;ϕτ3,s,y3,s)
∣∣∣ ≤ (Λ +m)1−n−|w|−r

P′
5

(
log

Λ +m

m

)
P′

6

(
∥p⃗n∥
Λ +m

)
× Q′

3

(
τ−

1
2

Λ +m

)
F

Λ,∞;(12)
s,l;δ (τ3,s) . (6.4.9)

Here and subsequently, the polynomials P′
i and Q′

i verify the same conditions mentioned in Theorem 1
and the parameter δ depends on the loop order l and verifies 0 < δl ≤ δl+1 <

1
2 .

The proof of this theorem follows the same steps of the proof of Theorem 1 in chapter 4. Hence,
we do not explicit the steps of the proof in this chapter. Let us define

D̂
Λ,Λ0

l,n;r1,r2
(p⃗n;ϕτ1,s,y1,s) :=

∫
(R+)n

dz1,n z
r1
1 zr22 D̂

Λ,Λ0

l,n ((z1, p1), · · · , (zn, pn))
s∏

i=1

pB(τi; zi, yi) . (6.4.10)

The central result of this chapter is summarized in the following Theorem:

Theorem 12. For 0 ≤ Λ ≤ Λ0, τ > 0, s ≥ 0 and adopting (6.3.13)-(6.3.15) and (6.3.21) we claim∣∣∣∂w D̂
Λ,Λ0

l,n;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣
≤ (Λ +m)3−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ(τ1,s), (6.4.11)

using the same notations of Theorem 9.

The proof of Theorem 12 is inductive. However, there are some terms in the the flow equation
(6.3.12) for which the induction hypothesis cannot be used. These terms involve the translationally
invariant correlation distributions L

Λ,Λ0

l,n integrated over functions supported partially on R+ and par-
tially on R−. Upper bounds on them are summarized in proposition 9. Let us first introduce the
following notation: For (π1, π2) in P̃2;n, we define

∂wLΛ,Λ0

l,n;r1,r2;π
+
1 ,π−

2

(p⃗n;ϕτ1,s,y1,s)

:=

∫
(R+)q1

dz⃗π1

∫
(R−)q2

dz⃗π2 z
r1
1 zr22 ∂wLΛ,Λ0

l,n ((z1, p1), · · · , (zn, pn))
s∏

i=1

pB(τi; zi, yi) , (6.4.12)

where qi := |πi|.
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Proposition 9. For 0 ≤ Λ ≤ Λ0 < ∞, 0 ≤ s ≤ n, 0 ≤ r1, r2 ≤ 3, z1 ∈ R and Yσs ∈ Rs, we consider
test functions of the form ϕτ1,s,y1,s(z1,s). Adopting (6.3.1)-(6.3.10) and using the notation (6.4.12), we
claim for a given partition (π1, π2) ∈ P̃2;n∣∣∣ ∂wLΛ,Λ0

l,n;r1,r2;π
+
1 ,π−

2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣ ≤ (Λ +m)3−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ

(
τ+π1,s

, τ−π2,s

)
, ∀n ≥ 2 , (6.4.13)

where the polynomials P, Q and δ obey the same conditions mentioned in Theorem 7.

Remark 4. Note that the power counting on the RHS of (6.4.13) is improved and this mainly comes
from the following bound on the bulk heat kernel for z ∈ R+ and z′ ∈ R−

pB

(
1

Λ2
; z, z′

)
≤

√
2π Λ−1 pB

(
1

Λ2
; z, 0

)
pB

(
1

Λ2
; z′, 0

)
. (6.4.14)

In the proof of proposition 9, we need additional bounds that we gather in proposition 10. Before
stating the proposition, we need to define for a partition (π1, π2) of the set σ2:n

∂wLΛ,Λ0

l,n;r;π+
1 ,π2

(z1; p⃗n;ϕτ2,s,y2,s)

:=

∫
(R+)q1

dz⃗π1

∫
Rq2

dz⃗π2 (z1 − z2)
r ∂wLΛ,Λ0

l,n ((z1, p1), · · · , (zn, pn))
s∏

i=2

pB(τi; zi, yi) (6.4.15)

and

∂wLΛ,Λ0

l,n;r;+(z1; p⃗n;ϕτ2,s,y2,s)

:=

∫
(R+)n−1

dz⃗2,n (z1 − z2)
r ∂wLΛ,Λ0

l,n ((z1, p1), · · · , (zn, pn))
s∏

i=2

pB(τi; zi, yi) . (6.4.16)

Proposition 10. For 0 ≤ Λ ≤ Λ0 < ∞, 1 ≤ s ≤ n, 0 ≤ r ≤ 3 and Yσ2:s ∈ Rs−1, we consider test
functions of the form ϕτ2,s,y2,s(z2,s) and a partition (π1, π2) of σ2:n such that πi,s := πi∩σ2:s. Adopting
(6.3.1)-(6.3.10), we claim for z1 ≥ 0∣∣∣∂wLΛ,Λ0

l,n;r;π+
1 ,π2

(z1; p⃗n;ϕτ2,s,y2,s)
∣∣∣ ≤ (Λ +m)4−n−|w|−r

P̃1

(
log

Λ +m

m

)
P̃2

(
∥p⃗n∥
Λ +m

)
× Q̃1

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;δ

(
τπ+

1,s
, τπ2,s

)
, (6.4.17)

∣∣∣∂wLΛ,Λ0

l,n;r;+(z1; p⃗n;ϕτ2,s,y2,s)
∣∣∣ ≤ (Λ +m)4−n−|w|−r

P̃3

(
log

Λ +m

m

)
P̃4

(
∥p⃗n∥
Λ +m

)
× Q̃2

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;+;δ (τ2,s) , (6.4.18)
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∣∣∣∂wLΛ,Λ0

l,n;π+
1 ,π2

(z1; p⃗n;ϕ
(j)
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)3−n−|w| τ
− 1

2
j P̃7

(
log

Λ +m

m

)
P̃8

(
∥p⃗n∥
Λ +m

)
× Q̃4

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;δ

(
τπ+

1,s
, τπ2,s

)
, (6.4.19)

∣∣∣∂wLΛ,Λ0

l,n;+(z1; p⃗n;ϕ
(j)
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)3−n−|w| τ
− 1

2
j P̃9

(
log

Λ +m

m

)
P̃10

(
∥p⃗n∥
Λ +m

)
× Q̃5

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;+;δ(τ2,s) . (6.4.20)

Remarks 3. • Note that the boundary conditions (6.3.13)-(6.3.15) and (6.3.21) together with the
flow equation (6.3.12) and the tree order (6.3.11) allow to define uniquely D̂

Λ,Λ0

l,n .

• We define

D
Λ,Λ0

l,n ((z⃗n, p⃗n)) = D̂
Λ,Λ0

l,n ((z⃗n, p⃗n)) +
n∏

i=1

χ+(zi) L
Λ,Λ0

l,n ((z⃗n, p⃗n)) . (6.4.21)

Combining the bounds (6.4.11) and (6.4.18) we obtain∣∣∣∂wD
Λ,Λ0

l,n;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣
≤
{
(Λ +m)3−n−|w|−r1−r2 F

Λ,0
s,l;δ(τ1,s) + (Λ +m)4−n−|w|−r1−r2 FΛ

s,l;δ(τ1,s)
}

×P

(
log

Λ +m

m

)
P−

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
, ∀s ≥ 1, (6.4.22)

which is compatible with the proof of Theorem 9 in chapter 5 as we already mentioned in remark
2 at the end of section 5.4.3.

6.5 Proofs

All the bounds of Theorem 12 and Propositions 9 and 10 are proved using the same inductive
scheme as in the proof of Theorem 1. They all can be established in the same way: first we bound
the right-hand side of the corresponding flow equation using the induction hypothesis, and then we
integrate over λ using the appropriate boundary conditions.

6.5.1 Proof of Proposition 10

Proof. The bounds (6.4.17)-(6.4.20) obviously hold in the starting case n = 4, l = 0.
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The right-hand side

Let z1 ≥ 0. The bounds that we want to obtain for the right-hand side of the flow equation are∣∣∣∂Λ∂wLΛ,Λ0

l,n;r;π+
1 ,π2

(z1; p⃗n;ϕτ2,s,y2,s)
∣∣∣ ≤ (Λ +m)3−n−|w|−r

P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;δ

(
τπ+

1,s
, τπ2,s

)
. (6.5.1)

Similarly, we want to prove∣∣∣∂Λ∂wLΛ,Λ0

l,n;r;+(z1; p⃗n;ϕτ2,s,y2,s)
∣∣∣ ≤ (Λ +m)3−n−|w|−r

P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;+;δ (τ2,s) . (6.5.2)

We give the details of the proof of (6.5.1). The bound (6.5.2) is then established similarly.

A) First, we analyze the case r = 0:

- The linear term: This term is given by∫
k

∫
(R+)q1

dz⃗π1

∫
R
dz

∫
R
dz′

∫
Rq2

dz⃗π2 L
Λ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)

× ĊΛ(k) pB

(
1

Λ2
; z, z′

) s∏
i=2

pB (τi; zi, yi) . (6.5.3)

Using (3.1.5) and the notation (6.4.15), we rewrite (6.5.3) as follows∫
R
du

∫
k
L

Λ,Λ0

l−1,n+2;π+
1 ,π′

2

(
z1; p⃗n, k,−k;ϕτ2,s,y2,s × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·, u

))
ĊΛ(k),

(6.5.4)
where π′2 = π2 ∪ {s+ 1, s+ 2}. Using the induction hypothesis (6.4.18), (6.5.3) is bounded
by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)∫
k
ĊΛ(k) P

(
|k|

Λ +m
,
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du F∞

s+2,l−1;π1,π′
2;δ

(
Λ; τ+π1,s

, τπ2,s ,
1

2Λ2
,

1

2Λ2
; z1, y2,s, u, u

)
. (6.5.5)

We have

F∞
s+2,l−1;δ

(
Λ, τ+π1,s

, τπ′
2,s
,

1

2Λ2
,

1

2Λ2
, z1, y2,s

)
=

∑
T s+2
l−1 ∈Ts+2

l−1;π1,π
′
2

F∞
δ

(
τ+π1,s

, τπ′
2,s
,

1

2Λ2
,

1

2Λ2
;T s+2

l−1 ; z1, y2,s, u, u

)
. (6.5.6)
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For a tree T s+2
l−1 in Ts+2

l−1;π1,π′
2
, we denote by z and z′ the internal vertices attached to the

external vertices {u, u}. The contribution of the external lines (z, u) and (z′, u) in the
summand in (6.5.6) is∫

R
du pB

(
1 + δ

2Λ2
; z, u

)
pB

(
1 + δ

2Λ2
; z′, u

)
= pB

(
1 + δ

Λ2
; z, z′

)
≤ Λ√

2π
. (6.5.7)

Hence, we deduce that the contribution of the heat kernels corresponding to the external
legs (z, u) and (z′, u) in the weight factor is bounded by Λ. From a diagrammatic point of
view, this means that the legs (z, u) and (z′, u) are amputated from the tree T s+2

l−1 . If an
internal vertex becomes of incidence number one after the amputation, it is removed using∫

R
dz pB

(
1 + δ

Λ2
i

; z, z̃

)
= 1.

These steps correspond to the reduction of the tree T s+2
l−1 at the external vertices {u, u}.

Using (3.2.8), we deduce that the reduced tree is in Ts
l;π1,π2

and we obtain∫
R
du F∞

s+2,l−1;δ

(
Λ; τ+π1,s

, τπ2,s ,
1

2Λ2
,

1

2Λ2
;T s+2

l−1 (z1; z⃗; y2,s, u, u)

)
≤ Λ√

2π
F∞
s,l;δ

(
Λ; τ+π1,s

, τπ2,s ;T
s
l

(
z1; z⃗

′; y2,s
))
. (6.5.8)

Combining (6.5.5), (6.5.8) and the bound (4.5.23), we deduce that (6.5.3) is bounded by

(Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;δ

(
τπ+

1,s
, τπ2,s

)
. (6.5.9)

- The quadratic term: This term denotes the second term on the right-hand of the flow
equation (6.2.12). Given a partition (π′1, π

′
2) of σ2:n, we analyze the corresponding term in

the symmetrized sum given by∫
(R+)q1

dz⃗π1

∫
Rq2

dz⃗π2

∫
R
dz

∫
R
dz′ ∂w1L

Λ,Λ0

l1,n1+1

(
(z⃗π′

1
, p⃗π′

1
), (z, p)

)
∂w3ĊΛ(p)

× ∂w2L
Λ,Λ0

l2,n2+1

(
(z⃗π′

2
, p⃗π′

2
), (z′,−p)

)
pB

(
1

Λ2
; z, z′

) s∏
i=2

pB (τi; zi, yi) . (6.5.10)

We define

ϕ′s1(z⃗π′
1
) :=

∏
r∈π′

1,s

pB(τr; zr, yr), ϕ′′s2(z⃗π′
2
) :=

∏
r∈π′

2,s

pB(τr; zr, yr), (6.5.11)

where π′i,s := π′i ∩σ2:s and si := |π′i,s|. Introducing the shorthand notation πij = πi ∩π′j , we
distinguish in the sequel between the following cases:
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- πij ̸= ∅ for all i, j ∈ {1, 2}: Using (3.1.5), we rewrite (6.5.10) as follows

∫
R
du

∫
R+

dzq ∂
w1L

Λ,Λ0

l1,n1+1;π+
11,π21∪{s+1}

(
z1; p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
× ∂w2L

Λ,Λ0

l2,n2+1;πq+
12 ,π22∪{s+2}

(
zq; p⃗π′

2
,−p;ϕ′′s2,q × pB

(
1

2Λ2
; ·, u

))
× ∂w3ĊΛ(p)ϕq(zq), (6.5.12)

with πq12 = π12 \ {q} and

ϕ′′s2,q(z⃗π′
2
) :=

∏
r∈π′

2,s, r ̸=q

pB(τr; zr, yr) . (6.5.13)

ϕq(zq) = pB (τq; zq, yq) if q ≤ s, otherwise ϕq ≡ 1. Using the induction hypothesis
(6.4.18) and the bound (4.2.3), we deduce that (6.5.12) is bounded by

(Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du F∞

s1+1,l1;δ1

(
Λ; z1; τ

+
π11,s

, τπ21,s ,
1

2Λ2
;Yπ′

1,s
, u

)
×
∫

R+

dzq F∞
s2+1,l2;δ2

(
Λ; zq; τ

+
πq
12,s
, τπ22,s ,

1

2Λ2
;Y

π
′q
2,s

, u

)
ϕq(zq) (6.5.14)

Given a pair of trees

(T s1+1
l1

, T s2+1
l2

) ∈ Ts1+1
l1;π11,π21∪{s+1} × Ts2+1

l2;π
q
12,π22∪{s+2} , (6.5.15)

let us bound the following term∫
R
du F∞

s1+1,l1;δ1

(
Λ; z1; τ

+
π11,s

, τπ21,s ,
1

2Λ2
;T s1+1

l1
;Yπ′

1,s
, u

)
×
∫

R+

dzq F∞
s2+1,l2;δ2

(
Λ; zq; τ

+
πq
12,s
, τπ22,s ,

1

2Λ2
;T s2+1

l2
;Y

π
′q
2,s

, u

)
ϕq(zq). (6.5.16)

Denoting by z and z′ respectively the internal vertices in T s1+1
l1

and T s2+1
l2

attached to
u, we use (3.1.5) together with the bound (3.1.9) to obtain∫

R
du pB

(
1 + δ1
2Λ2

; z, u

)
pB

(
1 + δ2
2Λ2

; z′, u

)
≤ O(1) pB

(
1 + δ′1
Λ2

; z′, z

)
, (6.5.17)

where δ′1 := max (δ1, δ2). Diagrammatically, the contribution pB
(
1+δ1
Λ2 ; z′, z

)
in (6.5.16)

means that the external legs (z, u) and (z′, u) are replaced by the internal line (z, z′).
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The integration over zq implies that zq is converted into an internal vertex, and if
q ≤ s then it is attached to the external vertex yq. These steps correspond to the
fusion of the trees T s1+1

l1
and T s2+1

l2
at the vertex u. We denote the resulting tree by

T s
l

(
T s1+1
l1

, T s2+1
l2

)
. The number of its internal vertices4 is v2,1 + v2,2 + δc(zq),1 and we

have
v2,1 + v2,2 + δc(zq),1 + δc1,1 ≤ 3l − 4 +

s+ 2

2
≤ 3l − 2 +

s

2
.

Hence the tree T s
l

(
T s1+1
l1

, T s2+1
l2

)
belongs to Ts

l . Let z⃗π′
1,s

, z⃗π′q
2,s

and z⃗ be respectively

the set of the internal vertices of the trees T s1+1
l1

, T s2+1
l2

and T s
l

(
T s1+1
l1

, T s2+1
l2

)
. If

q ≤ s, we have5

Yπ1,s (z⃗) = Yπ11,s

(
z⃗π′

1,s

)
∪ Yπ12,s

(
z⃗π′q

2,s

)
∪ {zq} . (6.5.18)

Otherwise,
Yπ1,s (z⃗) = Yπ11,s

(
z⃗π′

1,s

)
∪ Yπ12,s

(
z⃗π′q

2,s

)
. (6.5.19)

We also have
Yπ2,s (z⃗) = Yπ21,s

(
z⃗π′

1,s

)
∪ Yπ22,s

(
z⃗π′q

2,s

)
. (6.5.20)

Remembering that T s1+1
l1

∈ Ts1+1
l1;π11,s,π21,s∪{s+1} and T s2+1

l2
∈ Ts2+1

l2;π
q
12,π22∪{s+2} and using

(6.5.18)-(6.5.19), we deduce that

Yπ1,s (z⃗) ∩ Yπ2,s (z⃗) = ∅, (6.5.21)

which proves that T s
l

(
T s1+1
l1

, T s2+1
l2

)
is indeed in Ts

l;π1,s,π2,s
. Combining all these argu-

ments together, we deduce that (6.5.16) is bounded by

F
Λ;∞
s,l;δ

(
Λ; z1; τπ+

1,s
, τπ2,s ;T

s
l

(
T s1+1
l1

, T s2+1
l2

)
; y2,s

)
. (6.5.22)

Using (3.2.62) and (6.5.22), we obtain that (6.5.14) is bounded by

(Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;δ′1

(
τπ+

1,s
, τπ2,s

)
.

(6.5.23)

- Now, let us treat the case πij = ∅ for some i, j ∈ {1, 2}. In order to simplify the dis-
cussion, we consider the case π12 = ∅ and rewrite (6.5.10) as follows∫

R
du

∫
R+

dzq ∂
w1L

Λ,Λ0

l1,n1+1;π+
1 ,π21

(
z1; p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
∂w3ĊΛ(p)

× ∂w2L
Λ,Λ0

l2,n2+1

(
zq; p⃗π′

2
,−p;ϕ′′s2,q × pB

(
1

2Λ2
; ·, u

))
ϕq(zq). (6.5.24)

4v2,1 and v2,2 denote respectively the number of vertices of incidence number 2 of the trees T s1+1
l1

and T s2+1
l2

.
5we used the notation (3.2.5)
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Inserting the induction hypothesis (6.4.18) and using the bound (6.4.7) we deduce that
(6.5.24) is bounded by

(Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du F∞

s1+1,l1;δ1

(
Λ; z1; τ

+
π1,s

, τπ21,s ,
1

2Λ2
;Yπ1,s , Yπ21,s , u

)
×
∫

R+

dzq F∞
s2+1,l2;δ2

(
Λ; zq; τπ22,s ,

1

2Λ2
;Yπ22,s , u

)
ϕq(zq). (6.5.25)

Following the same steps as before, we find∫
R
du F∞

s1+1,l1;δ1

(
Λ; z1; τ

+
π1,s

, τπ21,s ,
1

2Λ2
;Yπ1,s , Yπ21,s , u

)
×
∫

R+

dzq F∞
s2+1,l2;δ2

(
Λ; zq; τπ22,s ,

1

2Λ2
;Yπ22,s , u

)
ϕq(zq)

≤ F
Λ;∞
s,l;δ′1

(
Λ; z1; τπ+

1,s
, τπ2,s ;T

s
l

(
T s1+1
l1

, T s2+1
l2

)
; y2,s

)
, (6.5.26)

where the tree T s
l

(
T s1+1
l1

, T s2+1
l2

)
belongs to Ts

l . The only point that we need to verify

carefully is that the fusion of T s1+1
l1

and T s2+1
l2

indeed produces a tree in Ts
l;π1,s,π2,s

. We
have

Yπ1,s (z⃗) = Yπ1,s

(
z⃗π′

1,s

)
(6.5.27)

and
Yπ2,s (z⃗) = Yπ21,s

(
z⃗π′

1,s

)
∪ Yπ′

22,s

(
z⃗π′

2,s

)
. (6.5.28)

For T s1+1
l1

∈ Ts1+1
l1;π1,s,π21,s

and T s2+1
l2

∈ Ts2+1
l2

, we clearly have

Yπ1,s (z⃗) ∩ Yπ2,s (z⃗) = ∅, (6.5.29)

which implies that T s
l

(
T s1+1
l1

, T s2
l2

)
belongs to Ts

l;π1,s,π2,s
. (6.5.25) together with (6.5.26)

give that (6.5.24) is bounded by (6.5.23).

B) Case r ̸= 0: The linear term in this case can be treated similarly to the case r = 0. The only part
that must be treated carefully is the quadratic term. Without loss of generality, we consider a
term from the symmetrized sum that corresponds to a partition (π′1, π

′
2) of σ2:n such that 2 ∈ π′2

which is given by∫
z⃗+π1

∫
z⃗π2

∫
R
dz (z1 − z2)

r

∫
R
dz′ ∂w1L

Λ,Λ0

l1,n1+1

(
(z⃗π′

1
, p⃗π′

1
), (z, p)

)
∂w3ĊΛ(p)

× ∂w2L
Λ,Λ0

l2,n2+1

(
(z⃗π′

2
, p⃗π′

2
), (z′,−p)

) s∏
i=2

pB (τi; zi, yi) pB

(
1

Λ2
; z, z′

)
. (6.5.30)
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We write
(z1 − z2)

r =
∑

r1+r2+r3=r

(
r

r1, r2, r3

)
(z1 − u)r1(u− zq)

r2(zq − z2)
r3 (6.5.31)

where the multinomial coefficient is given by(
r

r1, r2, r3

)
=

r!

r1! r2! r3!
.

For πij ̸= ∅, we rewrite (6.5.30) using the notation (6.5.11) together with (3.1.5) as follows∫
R
du

∫
R+

dzq (z1 − u)r1∂w1L
Λ,Λ0

l1,n1+1;π+
11,π21∪{s+1}

(
z1; p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
× (u− zq)

r2∂w2L
Λ,Λ0

l2,n2+1;r3;π
q+
12 ,π22∪{s+2}

(
zq; p⃗π′

2
,−p;ϕ′′s2,q × pB

(
1

2Λ2
; ·, u

))
× ∂w3ĊΛ(p)ϕq(zq), (6.5.32)

where ϕq is defined as in part A). Using the induction hypothesis (6.5.1) for r = 0 and r ̸= 0, we
deduce that (6.5.30) is bounded by

(Λ +m)3−n−|w|−r3 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
e−

m2

Λ2

×
∫

R
du |z1 − u|r1 F∞

s1+1,l1;δ1

(
Λ; z1; τ

+
π11,s

, τπ21,s ,
1

2Λ2
;Yπ′

1,s
, u

)
×
∫

R+

dzq |zq − u|r2 F∞
s2+1,l2;δ2

(
Λ; zq; τ

+
π12,s

, τπ22,s ,
1

2Λ2
;Yπ′

2,s
, u

)
ϕq(zq). (6.5.33)

Now, let us analyze the term∫
R
du |z1 − u|r1 F∞

s1+1,l1;δ1

(
Λ; z1; τ

+
π11,s

, τπ21,s ,
1

2Λ2
;Yπ11,s , Yπ21,s , u

)
. (6.5.34)

Given a tree T s1+1
l1

in Ts1+1
l1

, we denote by (v1, · · · , vq) the set of internal vertices on the path
joining the root vertex z1 to the external vertex u. We have

|z1 − u| ≤ |z1 − v1|+
q−1∑
a=1

|va − va+1|+ |vq − u|. (6.5.35)

Using (3.1.10) and the fact that Λi ≥ Λ for all 1 ≤ i ≤ q, we deduce the bound

|z1 − u|r1 F∞
s1+1,l1;δ1

(
Λ; τ+π11

, τπ21 ,
1

2Λ2
;T s1+1

l1

(
z1; z⃗;Yπ′

1,s
, u
))

≤ O(1) Λ−r1 F∞
s1+1,l1;δ′1

(
Λ; τ+π11

, τπ21 ,
1

2Λ2
;T s1+1

l1

(
z1; z⃗;Yπ′

2,s
, u
))

, (6.5.36)
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where δ1 < δ′1 <
1
2 . Proceeding similarly, we deduce that

|zq − u|rq F∞
s2+1,l2;δ2

(
Λ; τ+π12,s

, τπ22,s ,
1

2Λ2
;T s2+1

l2

(
zq; z⃗

′;Yπ′
1,s
, u
))

≤ O(1) Λ−r2 F∞
s2+1,l2;δ′2

(
Λ; τ+π12,s

, τπ22,s ,
1

2Λ2
;T s2+1

l2

(
zq; z⃗

′;Yπ′
2,s
, u
))

, (6.5.37)

where 0 < δ2 < δ′2 <
1
2 . Using (5.5.39) together with (6.5.36) and (6.5.37) we deduce that R̃2 is

bounded by

(Λ +m)3−n−|w|−r
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du F∞

s1+1,l1;δ′1

(
Λ; z1; τ

+
π11
, τπ21 ,

1

2Λ2
;Yπ′

1,s
, u

)
×
∫

R+

dzq F∞
s2+1,l2;δ′2

(
Λ; z′; τ+π12

, τπ22 ;Yπ′
2,s
, u
)
ϕq(zq). (6.5.38)

The rest of the proof which leads to the final bound for (6.5.30) is similar to the case r = 0. The
same method holds for πij = ∅ for some i, j ∈ {1, 2}.

C) The bounds for ∂Λ∂wL
Λ,Λ0

l,n;π+
1 ,π2

(z1; p⃗n;ϕ
(j)
τ2,s,y2,s) and ∂Λ∂wL

Λ,Λ0

l,n;+(z1; p⃗n;ϕ
(j)
τ2,s,y2,s) are deduced fol-

lowing the same steps of part C) in the proof of Theorem 7 in chapter 4. Then, we obtain∣∣∣∂Λ∂wLΛ,Λ0

l,n;π+
1 ,π2

(z1; p⃗n;ϕ
(j)
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)2−n−|w| τ
− 1

2
j P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;δ

(
τπ+

1,s
, τπ2,s

)
(6.5.39)

and∣∣∣∂Λ∂wLΛ,Λ0

l,n;+(z1; p⃗n;ϕ
(j)
τ2,s,y2,s)

∣∣∣ ≤ (Λ +m)2−n−|w| τ
− 1

2
j P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ,∞
s,l;+;δ (τ2,s) . (6.5.40)

Integration

The integration of the bounds is performed similarly to the integration part in Theorem 7. We
refer the reader to the proof of Theorem 7 in chapter 4 for further details.

Remark 5. Using the reflection symmetry of the translationally invariant theory that is

L
Λ,Λ0

l,n ((−z1, p1), (−z2, p2) · · · , (−zn, pn)) = L
Λ,Λ0

l,n ((z1, p1), (z2, p2) · · · , (zn, pn)) ,
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we obtain∫
(R+)n−1

dz⃗2,n (z1 − z2)
r L

Λ,Λ0

l,n ((z1, p1), (z2, p2) · · · , (zn, pn))
s∏

i=2

pB (τi; zi, yi)

=

∫
(R−)n−1

dz⃗2,n (z1 + z2)
r L

Λ,Λ0

l,n ((−z1, p1), (−z2, p2) · · · , (−zn, pn))
s∏

i=2

pB (τi; zi,−yi) . (6.5.41)

Denoting by L
Λ,Λ0

l,n;−
(
−z1; p⃗n;ϕτ2,s,−y2,s

)
the right hand side of (6.5.41) and using the bound (6.4.18),

we deduce for z1 ∈ R−

∣∣∣∂wLΛ,Λ0

l,n;−;r(z1; p⃗n;ϕτ2,s,y2,s)
∣∣∣ ≤ (Λ +m)4−n−|w|−r

P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ;∞
s,l;−;δ (τ2,s) . (6.5.42)

6.5.2 Proof of Proposition 9

Proof. Starting from the tree order

L
Λ,Λ0
0,4 ((z1, p1), · · · , (z4, p4)) = λ

4∏
i=2

δ(z1 − zi), (6.5.43)

we have for a given partition (π1, π2) in P̃2;4

L
Λ,Λ0

0,4;π+
1 ,π−

2

(
p⃗4;ϕτ1,s,y1,s

)
= 0, ∀2 ≤ s ≤ 4.

This implies using the flow equation (5.4.1) for all (π1, π2) in P̃2;n that we have

L
Λ,Λ0

0,n;π+
1 ,π−

2

(
p⃗n;ϕτ1,s,y1,s

)
= 0, ∀2 ≤ s ≤ n.

The bound (6.4.17) obviously holds for the tree order.

The right-hand side

The bound that we want to obtain for the right-hand side of the flow equation is

∣∣∣ ∂Λ∂wLΛ,Λ0

l,n;r1,r2;π
+
1 ,π−

2

(
p⃗n;ϕτ1,s,y1,s

) ∣∣∣ ≤ (Λ +m)2−n−|w|−r
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
× Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ

(
τ+π1,s

, τ−π2,s

)
. (6.5.44)
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Case r1 = r2 = 0: first, we treat the linear term∫
k

∫
(R+)p1

dz⃗π1

∫
(R−)p2

dz⃗π2

∫
R
dz

∫
R
dz′ LΛ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)

× ĊΛ(k) pB

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) . (6.5.45)

Using (3.1.5) and the notation (6.4.12), we rewrite R1 as follows∫
R
du

∫
k

′∑
(π̃1,π̃2)

L
Λ,Λ0

l−1,n+2;π̃+
1 ,π̃−

2

(
p⃗n, k,−k;ϕτ1,s,y1,s × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·, u

))
ĊΛ(k). (6.5.46)

The prime on the sum refers to a summation over partitions in the set

{(π1 ∪ E, π2 ∪ Ec) | E∈ P({s+ 1, s+ 2})} ,

where P({s+ 1, s+ 2}) := {{s+ 1} , {s+ 2} , {s+ 1, s+ 2}}.
Using the induction hypothesis, (6.5.46) is bounded by

(Λ +m)1−n−|w|
P1

(
log

Λ +m

m

)∫
k
ĊΛ(k) P

(
|k|

Λ +m
,
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
′∑

(π̃1,π̃2)

∫
R
du F0

s+2,l−1;δ

(
Λ; τ+π̃1

, τ−π̃2
;Yσs , u, u

)
, (6.5.47)

where τs+1 = τs+2 = 1
2Λ2 . Using the bound (3.2.64) from lemma 2, we deduce the final bound on

(6.5.46)

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ

(
τ+π1,s

, τ−π2,s

)
. (6.5.48)

In this part, we bound the quadratic term by analyzing a given term from the symmetrized sum. Given
a partition (π′1, π

′
2) of σn, we bound the following term∫

(R+)p1
dz⃗π1

∫
(R−)p2

dz⃗π2

∫
R
dz

∫
R
dz′ ∂w1L

Λ,Λ0

l1,n1+1

(
(z⃗π′

1
, p⃗π′

1
), (z, p)

)
∂w3ĊΛ(p)

× ∂w2L
Λ,Λ0

l2,n2+1

(
(z⃗π′

2
, p⃗π′

2
), (z′,−p)

)
pB

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) . (6.5.49)

We define πij := πi ∩ π′j and rewrite (6.5.49) using the notation (6.5.11) as follows

′∑
(π̃11,π̃21)

′′∑
(π̃12,π̃22)

∫
R
du ∂w1L

Λ,Λ0

l1,n1+1;π̃+
11,π̃

−
21

(
p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))

× ∂w2L
Λ,Λ0

l2,n2+1;π̃+
12,π̃

−
22

(
p⃗π′

2
,−p;ϕ′′s2 × pB

(
1

2Λ2
; ·, u

))
∂w3ĊΛ(p) . (6.5.50)
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The prime on the first sum refers to a summation over partitions in

{(π11 ∪ {s+ 1} , π21) , (π11, π21 ∪ {s+ 1})} ,

and the double prime on the second sum refers to a summation over

{(π12, π22 ∪ {s+ 2}) , (π12 ∪ {s+ 2} , π22)} .

• In order to bound (6.5.50), let us first consider the case πij ̸= ∅ for all i, j ∈ {1, 2}. Using the
induction hypothesis we deduce that (6.5.50) is bounded by

(Λ +m)1−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
′∑

(π̃11,π̃21)

′′∑
(π̃12,π̃22)

∫
R
du F0

s1+1,l1;δ1

(
Λ; τ+π̃11,s

, τ−π̃12,s
;Yπ′

1,s
, u
)

× F0
s2+1,l2;δ2

(
Λ; τ+π̃12,s

, τ−π̃22,s
;Yπ′

2,s
, u
)
. (6.5.51)

Using the bound (3.2.74) from lemma 3, we deduce that (6.5.51) is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F0
s,l;δ′1

(
Λ; τ+π1,s

, τ−π2,s
;Yσs

)
, (6.5.52)

where δ′1 := max (δ1, δ2).

• To treat the opposite cases, we restrict our analysis to the summand in (6.5.50)∫
R
du ∂w1L

Λ,Λ0

l1,n1+1;π̃+
11,π̃

−
21

(
p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
× ∂w2L

Λ,Λ0

l2,n2+1;π̃+
12,π̃

−
22

(
p⃗π′

2
,−p;ϕ′′s2 × pB

(
1

2Λ2
; ·, u

))
∂w3ĊΛ(p) (6.5.53)

and distinguish between different cases. We separate between these cases since in order to bound
each one of them, a different induction hypothesis or bound is required:

i) Let us start with the case π̃21 = π̃12 = ∅, which implies that π̃ii = πi = π′i. In this case,
(6.5.53) reads∫

R
du ∂w1L

Λ,Λ0

l1,n1+1;+

(
p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
× ∂w2L

Λ,Λ0

l2,n2+1;−

(
p⃗π′

2
,−p;ϕ′′s2 × pB

(
1

2Λ2
; ·, u

))
∂w3ĊΛ(p), (6.5.54)
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where

∂w1L
Λ,Λ0

l1,n1+1;+

(
p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
=

∫
R+

dz ∂w1L
Λ,Λ0

l1,n1+1;+

(
z; p⃗π′

1
, p;ϕ′s1

)
pB

(
1

2Λ2
; z, u

)
(6.5.55)

and

∂w2L
Λ,Λ0

l2,n2+1;−

(
p⃗π′

2
, p;ϕ′′s2 × pB

(
1

2Λ2
; ·, u

))
=

∫
R−
dz′ ∂w2L

Λ,Λ0

l2,n2+1;−
(
z′; p⃗π2 ,−p;ϕ′′s2

)
pB

(
1

2Λ2
; z′, u

)
. (6.5.56)

Using the bounds (6.4.18) and (6.5.42) together with (3.1.5), we deduce that (6.5.54) is
bounded by

(Λ +m)3−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
e−

m2

Λ2

×
∫

R+

dz

∫
R−
dz′ F∞

s1+1,l1;+;δ1

(
Λ; z; τπ1,s ;Yπ1,s

)
× F∞

s2+1,l2;−;δ2

(
Λ; z′; τπ2,s ;Yπ2,s

)
pB

(
1

Λ2
; z, z′

)
. (6.5.57)

Lemma 5 gives

F∞
s1+1,l1;+;δ1

(
Λ; z; τπ1,s ;Yπ1,s

)
≤ O(1) Fs1+1,l1;δ1

(
Λ; z; τπ1,s ;Yπ1,s

)
(6.5.58)

and
F∞
s2+1,l2;−;δ2

(
Λ; z; τπ2,s ;Yπ2,s

)
≤ O(1) F−

s2+1,l2;δ2

(
Λ; z′; τπ2,s ;Yπ2,s

)
. (6.5.59)

Since z ∈ R+ and z′ ∈ R−, we have

pB

(
1

Λ2
; z, z′

)
≤

√
2π Λ−1 pB

(
1

Λ2
; z, 0

)
pB

(
1

Λ2
; z′, 0

)
. (6.5.60)

Furthermore, for a given tree T s1+1
l1

∈ Ts1+1
l1

we have for z ∈ R+

pB

(
1

Λ2
; z, 0

)
Fδ1

(
ΛI1 ; τπ1,s ;T

s1+1
l1

(
z; z⃗π1 ;Yπ1,s

))
= Fδ1

(
ΛI1 ,Λ; τπ1,s ;T

s1,0
l1

(
z⃗π1 , z;Yπ1,s , 0

))
, (6.5.61)

with the following explanations: the surface tree T s1,0
l1

is obtained from T s1+1
l1

by attaching
the root vertex z to the surface external vertex 0 with a parameter Λ and converting z to
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an internal vertex. Hence, the number of vertices of incidence number 2 of the new tree is
equal to v2 + δc(z),1, with v2 denoting the number of vertices of incidence number 2 of the
tree T s1

l1
. Hence, we have

v2,1 + δc(z′),1 ≤ 3l1 − 2 +
s1 + 1

2
≤ 3l − 2 +

s1 + 1

2
, (6.5.62)

which implies that T s1,0
l1

is in T
s1,0
l . Proceeding similarly, we deduce for z′ ∈ R−

pB

(
1

Λ2
; z′, 0

)
F−
δ2

(
ΛI2 ; τπ2,s ;T

s2+1
l2

(
z′; z⃗π2 ;Yπ2,s

))
= F−

δ2

(
ΛI2 ,Λ; τπ2,s ;T

s2,0
l2

(
z⃗π2 , z

′;Yπ2,s , 0
))
, (6.5.63)

where T s2,0
l2

∈ T
s2,0
l . Therefore, combining (6.5.57)-(6.5.61) and (6.5.63) we deduce for l ≥ 1

∫
R+

dz

∫
R−
dz′ F∞

s1+1,l1;+;δ1

(
Λ; τπ1,s ;T

s1
l1

(
z; z⃗π1 ;Yπ1,s

))
× F∞

s2+1,l2;−;δ2

(
Λ; τπ2,s ;T

s2
l2

(
z′; z⃗π2 ;Yπ2,s

))
pB

(
1

Λ2
; z, z′

)
≤ O(1) Λ−1 F0

s,l;δ

(
Λ; τ+π1,s

, τ−π2,s
;W s

l (Π);Yσs

)
, (6.5.64)

where Π = π1,s ∪ π2,s and W s
l (Π)) = T s1,0

l1
∪ T s2,0

l2
. Hence, using (5.5.39) we obtain that

(6.5.57) is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
×

∑
W s

l (Π)∈W s
l;π1,s,π2,s

(Π)

F0
s,l;δ

(
Λ; τ+π1,s

, τ−π2,s
;W s

l (Π);Yσs

)
. (6.5.65)

ii) In this part, we analyze the case π̃22 = ∅ and π̃ij ̸= ∅ for (i, j) ̸= (2, 2). In this case, we
have π2 ⊂ π′1 and (6.5.53) has the following form

∫
R
du ∂w1L

Λ,Λ0

l1,n1+1;π̃+
11,π

−
2

(
p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
∂w3ĊΛ(p)

×
∫

R+

dz ∂w2L
Λ,Λ0

l2,n2+1;+

(
z; p⃗π′

2
,−p;ϕ′′s2

)
pB

(
1

2Λ2
; z, u

)
. (6.5.66)

Using the induction hypothesis and the bound (6.4.18), we deduce that (6.5.66) is bounded
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by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du F0

s1+1,l1;δ1

(
Λ; τ+π̃11,s

, τ−π̃2,s
;Yπ′

1,s
, u
)

×
∫

R+

dz′ F∞
s2+1,l2;+;δ2

(
Λ; τπ′

2,s
; z′, Yπ′

2,s

)
pB

(
1

Λ2
; z′, u

)
. (6.5.67)

Using lemma 5, we have

F∞
s2+1,l2;+;δ2

(
Λ; τπ′

2,s ; z
′, Yπ′

2,s

)
≤ O(1) Fs2+1,l2;δ2

(
Λ; τπ′

2,s ; z
′, Yπ′

2,s

)
. (6.5.68)

Hence, we obtain

∫
R+

dz′ F∞
s2+1,l2;+;δ2

(
Λ; τπ′

2,s ; z
′, Yπ′

2,s

)
pB

(
1

Λ2
; z′, u

)
≤ O(1) F̂s2,l2;δ2

(
Λ; τπ′

2,s ; z
′, Yπ′

2,s
, u
)
, (6.5.69)

which together with (6.5.67) and (3.2.84) imply that (6.5.66) is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ;0
s,l;δ′2

(
τ+π1,s

, τ−π2,s

)
, (6.5.70)

where δ′2 := max (δ1, δ2).

iii) The last case to treat is π̃12 = ∅ and π̃ij ̸= ∅ for (i, j) ̸= (2, 2). In this case, (6.5.53) has
the following form

∫
R
du ∂w1L

Λ,Λ0

l1,n1+1;π̃+
11,π̃

−
2

(
p⃗π′

1
, p;ϕ′s1 × pB

(
1

2Λ2
; ·, u

))
∂w3ĊΛ(p)

×
∫

R−
dz ∂w2L

Λ,Λ0

l2,n2+1;−

(
z; p⃗π′

2
,−p;ϕ′′s2

)
pB

(
1

2Λ2
; z, u

)
. (6.5.71)

Using the induction hypothesis, the bound (6.5.42) together with the bound (3.2.86) from
lemma 5 and following the same steps as in (ii), we deduce that (6.5.71) is also bounded by
(6.5.70).

The case (r1, r2) ̸= (0, 0) can be treated following the same steps used in the proof of Theorem
9.
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Integration

- Irrelevant terms: We integrate (6.5.44) from Λ to Λ0 downwards with vanishing boundary
conditions at Λ = Λ0. Using (3.2.61), we obtain for n ≥ 4∣∣∣ ∂wLΛ,Λ0

l,n;r;π+
1 ,π−

2

(
p⃗n;ϕτ1,s,y1,s

) ∣∣∣
≤ (Λ +m)3−n−|w|−r

P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ;0
s,l;δ

(
τ+π1,s

, τ−π2,s

)
. (6.5.72)

- Relevant term: In this part, we integrate the cases that correspond to n + |w| + r1 + r2 ≤ 3

which are given by∫
R+

dzπ1

∫
R−
dzπ2 z

r1
1 z

r2
2 ∂ΛL

Λ,Λ0

l,2 ((z1, p), (z2,−p))
s∏

i=1

pB(τi; zi, yi) , (π1, π2) ∈ P̃2;2, (6.5.73)

where r1, r2 are integers such that r1 + r2 ≤ 1, and 0 ≤ s ≤ 2 and . We restrict our analysis to
the case s = 2, the case s = 1 can be treated similarly and the case s = 0 will be integrated in
the sequel. For s = 2, the relevant part is extracted from∫

R+

dzπ1

∫
R−
dzπ2 ∂ΛL

Λ,Λ0

l,2 ((z1, p), (z2,−p))ϕ1(z1)ϕ2(z2) (6.5.74)

by performing a Taylor expansion of ϕ1 and ϕ2 around zi = 0 at p = 0 with ϕi(zi) := pB(τi; zi, yi).
This part of the proof is similar to the integration of the relevant terms in the proof of Theorem
9. However some simplifications occur and we explicit the steps where the treatment is different.
We have

L
Λ,Λ0

l,2;π+
1 ,π−

2

(0, 0) = sΛ,Λ0

l;± ϕ1(0)ϕ2(0) + eΛ,Λ0

l;± ϕ1(0)(∂nϕ2)(0) + hΛ0
l;± ϕ2(0)(∂nϕ1)(0)

+ lΛ,Λ0

l,2;±(ϕ1, ϕ2) , (6.5.75)

where the relevant terms sΛ,Λ0

l;± , eΛ,Λ0

l;± and hΛ,Λ0

l;± are given by

sΛ,Λ0

l;± :=

∫
R+

dzπ1

∫
R−
dzπ2 L

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) ,

eΛ,Λ0

l;± :=

∫
R+

dzπ1

∫
R−
dzπ2 z2 L

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) ,

hΛ,Λ0

l;± :=

∫
R+

dzπ1

∫
R−
dzπ2 z1 L

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) . (6.5.76)

Bose symmetry implies that∫
R+

dzπ1

∫
R−
dzπ2 (z1 − z2) L

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) = 0 , (6.5.77)
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so that the counter-terms eΛ,Λ0

l;± and hΛ,Λ0

l;± are equal to all orders of perturbation theory. The
bound (6.5.44) for s = 0 and r1 + r2 ≤ 1 gives∣∣∣∂ΛsΛ,Λ0

l;±

∣∣∣ ≤ P

(
log

Λ +m

m

)
,

∣∣∣∂ΛeΛ,Λ0

l;±

∣∣∣ ≤ (Λ +m)−1
P

(
log

Λ +m

m

)
. (6.5.78)

Integrating (6.5.78) from 0 to Λ and using the renormalization conditions (6.3.6)-(6.3.7), we have∣∣∣sΛ,Λ0

l;±

∣∣∣ ≤ (Λ +m)P

(
log

Λ +m

m

)
,
∣∣∣eΛ,Λ0

l;±

∣∣∣ ≤ P

(
log

Λ +m

m

)
. (6.5.79)

Applying lemma 10, we obtain∣∣∣sΛ,Λ0

l ϕ1(0)ϕ2(0) + eΛ,Λ0

l {ϕ1(0)(∂nϕ2)(0) + ϕ2(0)(∂nϕ1)(0)}
∣∣∣

≤ (Λ +m)P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ

(
τ+π1

, τ−π2

)
. (6.5.80)

Now, we bound and integrate the remainder ∂Λl
Λ,Λ0

l,2;±(ϕ1, ϕ2) from Λ to Λ0 which reads

∂Λl
Λ,Λ0

l,2;±(ϕ1, ϕ2) =

(∫
R+

dzπ1

∫
R−
dzπ2 z1z2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

)
(∂nϕ1) (0) (∂nϕ2) (0)

+ ϕ1(0)

∫
R+

dzπ1

∫
R−
dzπ2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ2

)
(tz2)

+ ϕ2(0)

∫
R+

dzπ1

∫
R−
dzπ2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

+ (∂nϕ1)(0)

∫
R+

dzπ1

∫
R−
dzπ2 z1 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ2

)
(tz2)

+ (∂nϕ2)(0)

∫
R+

dzπ1

∫
R−
dzπ2 z2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

+

∫
R+

dzπ1

∫
R−
dzπ2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

(∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

)
×
(∫ 1

0
dt′ (1− t′)

(
∂2t′ϕ2

)
(t′z2)

)
. (6.5.81)

Following the same steps of the integration of the remainder ∂Λl
Λ,Λ0

l,2;±(ϕ1, ϕ2) in the proof of
Theorem 9 in chapter 5, we obtain∣∣∣∣(∫

R+

dzπ1

∫
R−
dzπ2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

)
(∂nϕ1) (0) (∂nϕ2) (0)

∣∣∣∣
≤ (Λ +m)−2 τ

− 1
2

1 τ
− 1

2
2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ

(
τ+π1

, τ−π2

)
, (6.5.82)
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∣∣∣∣(∫
R+

dzπ1

∫
R−
dzπ2 z2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

)∫ 1

0
dt (1− t)∂2t ϕ1(tz1)

∣∣∣∣
≤ (Λ +m)−3 τ−1

1 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ

(
τ+π1

, τ−π2

)
, (6.5.83)

∣∣∣∣(∂nϕ1)(0)∫
R+

dzπ1

∫
R−
dzπ2 z2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕ2(tz1)

)∣∣∣∣
≤ (Λ +m)−3 τ

− 1
2

1 τ−1
2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ

(
τ+π1

, τ−π2

)
(6.5.84)

and∣∣∣∣ϕi(0) ∫
R+

dzπ1

∫
R−
dzπ2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

∫ 1

0
dt (1− t)

(
∂2t ϕj(tz1)

)∣∣∣∣
≤ (Λ +m)−2 τ−1

j P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ

(
τ+π1

, τ−π2

)
. (6.5.85)

The only term which needs to be treated differently is∫
R+

dzπ1

∫
R−
dzπ2 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0))

(∫ 1

0
dt (1− t)

(
∂2t ϕ1

)
(tz1)

)
×
(∫ 1

0
dt′ (1− t′)

(
∂2t′ϕ2

)
(t′z2)

)
. (6.5.86)

Proceeding as in the proof of Theorem 9, we rewrite (6.5.86) as follows

∑
(α,β)∈I2

∑
(α′,β′)∈I2

cαβ cα′β′
yβ1

τ
1+β+α

2
1

yβ
′

2

τ
1+β′+α′

2
2

∫ 1

0
dt dt′ tα−1(1− t) t′

α′−1
(1− t′)

∫
R+

dzπ1

∫
R−
dzπ2 z

2+α′

2 z2+α
1 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) pB

(τ1
t2
; z1,

y1
t

)
pB

( τ2
t′2

; z2,
y2
t′

)
. (6.5.87)

The bound (6.5.44) implies that the term∫
R+

dzπ1

∫
R−
dzπ2 z

2+α′

2 z2+α
1 ∂ΛL

Λ,Λ0

l,2 ((z1, 0), (z2, 0)) pB

(τ1
t2
; z1,

y1
t

)
pB

( τ2
t′2

; z2,
y2
t′

)
is bounded by

(Λ +m)−4−α−α′
e−

m2

2Λ2 Q

(
tτ−

1
2

Λ +m

)
F0
2,l;δ

(
Λ;
τ+π1

t2
,
τ−π2

t′2
;
y1
t
,
y2
t′

)
. (6.5.88)

Using (3.2.54), we have

F0
2,l;δ

(
Λ;
τ+π1

t2
,
τ−π2

t′2
;
y1
t
,
y2
t′

)
= F0

1,l;δ

(
Λ;
τπ1

t2
;
yπ1

t

)
F0
1,l;−;δ

(
Λ;
τπ2

t′2
;
yπ2

t′

)
. (6.5.89)
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The bound (5.8.28) from lemma 11 together with (6.5.88) gives that (6.5.87) is bounded by

τ
− 1

2
1 τ

− 1
2

2 (Λ +m)−2
P

(
log

Λ +m

m

)
Q̃

(
τ−

1
2

Λ +m

)
F

Λ;0
2,l;δ′

(
τ+π1

, τ−π2

)
, (6.5.90)

where 0 < δ < δ′ < 1. Using the bounds (6.5.82)-(6.5.85) and (6.5.90) together with (6.5.81), we
obtain that the remainder lΛ,Λ0

l,2;± is bounded by

(Λ +m)max

{
τ−1

(Λ +m)2
,

m2

(Λ +m)2

}
P

(
log

Λ +m

m

)
Q̃

(
τ−

1
2

Λ +m

)
F

Λ,0
2,l;δ′

(
τ+π1

, τ−π2

)
. (6.5.91)

The bound is extended to general momenta using the Taylor formula with integral remainder as
in (5.5.76).

Remark 6. The simplification that occurs in the integration part of the proof of proposition 9 compared
to the proof of Theorem 9 is the distinction between the cases Λ ≥ O(1)τ−

1
2 and Λ ≤ O(1)τ−

1
2 , which

is not necessary here, since we have

F
Λ,0
2,l;δ′

(
τ+π1

, τ−π2

)
= F

Λ,0
1,l;δ′ (τπ1)F

Λ,0
1,l;−;δ′ (τπ2) . (6.5.92)

6.5.3 Proof of Theorem 12

The method of the proof of this Theorem is similar to the proof of Theorem 9 in chapter 5, since the
right-hand side of the bounds (5.5.1) and (6.4.11) on S

Λ,Λ
l,n;⋆ and D̂

Λ,Λ0

l,n are similar and the right-hand
side of the flow equations (5.4.11) and (6.3.12) have a similar structure. The induction starts at the
tree order for which we have

D̂
Λ,Λ0
0,4 ((z1, p1), · · · , (z4, p4)) = 0

and the bound (6.4.11) obviously holds.

The right-hand side of the FE

The bound that we want to obtain for the RHS of the flow equation (6.3.12) is∣∣∣∂Λ∂w D̂
Λ,Λ0

l,n;r1,r2

(
p⃗n;ϕτ1,s,y1,s

)∣∣∣
≤ (Λ +m)2−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ (τ1,s) , (6.5.93)

for all n ≥ 2, 0 ≤ s ≤ n and 0 ≤ r1, r2 ≤ 4.
We proceed as before and bound each term on the RHS of the FE (6.3.12).



180 THE ϕ44 THEORY WITH AN INTERACTION SUPPORTED ON R+ × R3

• Let us start first with the linear terms given by

R̂1 :=

∫
k

∫
z,z′

∫
z1,n

zr11 zr22 ∂w D̂
Λ,Λ0

l−1,n+2

(
(z1, p1), · · · , (zn, pn), (z, k), (z′,−k)

)
× ĊΛ(k) pB

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) , (6.5.94)

R1,± :=

∫
k

∫
R−
dz

∫
R+

dz′
∫
z1,n

zr11 zr22 ∂wLΛ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)

× ĊΛ(k) pB

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) , (6.5.95)

and

R1,− :=

∫
k

∫
R−
dz

∫
R
dz′

∫
z1,n

zr11 zr22 ∂wLΛ,Λ0

l−1,n+2

(
(z⃗n, p⃗n), (z, k), (z

′,−k)
)

× ĊΛ(k) pB

(
1

Λ2
; z, z′

) s∏
i=1

pB (τi; zi, yi) . (6.5.96)

Using (3.1.5), we rewrite R̂1 as follows∫
R
du

∫
k
∂w D̂

Λ,Λ0

l−1,n+2;r1,r2

(
p⃗n, k,−k;ϕτ1,s,y1,s × pB

(
1

2Λ2
; ·, u

)
pB

(
1

2Λ2
; ·, u

))
ĊΛ(k).

Inserting the induction hypothesis, we obtain that R̂1 is bounded by

(Λ +m)1−n−|w|−r1−r2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)∫
k

∣∣∣ĊΛ(k)
∣∣∣P( |k|

Λ +m
,
∥p⃗n∥
Λ +m

)
×
∫

R
du F

Λ,0
s+2,l−1;δ1

(
τ1,s,

1

2Λ2
,

1

2Λ2
;Yσs , u, u

)
. (6.5.97)

Using (4.5.23) and lemma 2, we obtain the bound

|R̂1| ≤ (Λ +m)2−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ1

(τ1,s) . (6.5.98)

Using (3.1.5) and the notation (6.4.12), we rewrite R1,± as follows∫
k

∫
R
du ∂wLΛ,Λ0

l−1,n+2;r1,r2;π
+
1 ,π−

2

(
p⃗n, k,−k;ϕτ1,s,y1,s × pB

(
1

2Λ2
, ·, u

)
pB

(
1

2Λ2
; z, u

))
× ĊΛ(k), (6.5.99)



6.5. PROOFS 181

where π1 = σs+1 and π2 = {s+ 2}. Proposition 9 gives that R1,± is bounded by

(Λ +m)1−n−|w|−r1−r2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

) ∫
k

∣∣∣ĊΛ(k)
∣∣∣P( |k|

Λ +m
,
∥p⃗n∥
Λ +m

)
×
∫

R
du F0

s+2,l−1;δ2

(
Λ; τ+π1

, τ−π2
;Yσs , u

)
, (6.5.100)

where τs+1 = τs+2 =
1

2Λ2 . Using the bound (3.2.64) from lemma 2, we deduce∫
R
du F0

s+2,l−1;δ2

(
Λ; τ+π1

, τ−π2
;Yσs , u

)
≤ O(1) F0

s,l;δ2

(
Λ; τ+

πs+1
1

;Yσs

)
. (6.5.101)

Since π1 = σs+1, we have

F0
s,l;δ2

(
Λ; τ+

πs+1
1

;Yσs

)
= F0

s,l;δ2 (Λ; τ1,s;Yσs) . (6.5.102)

Combining (4.5.23), (6.5.100) and (6.5.102), we deduce that R1,± is bounded by

(Λ +m)2−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ2

(τ1,s) . (6.5.103)

Proceeding similarly, we rewrite R1,− as follows∫
k

∫
R

∑
(π̃1,π̃2)

∂wLΛ,Λ0

l−1,n+2;r1,r2;π̃
+
1 ,π̃−

2

(
p⃗n, k,−k;ϕτ1,s,y1,s × pB

(
1

2Λ2
, ·, u

)
pB

(
1

2Λ2
; z, u

))
× ĊΛ(k) , (6.5.104)

where the sum runs over partitions (π̃1, π̃2) in the set

{(σs+1, {s+ 2}) , (σs, {s+ 1, s+ 2})} .

Using again proposition 9, we obtain that R1,− is bounded by

(Λ +m)1−n−|w|−r1−r2 P

(
log

Λ +m

m

)
Q

(
τ−

1
2

Λ +m

)∫
k

∣∣∣ĊΛ(k)
∣∣∣P( |k|

Λ +m
,
∥p⃗n∥
Λ +m

)
×
∑

(π̃1,π̃2)

∫
R
du F

Λ,0
s+2,l−1;δ2

(
Λ; τ+π̃1

, τ−π̃2
;Yσs , u

)
. (6.5.105)

where τs+1 = τs+2 =
1

2Λ2 . The bound (3.2.64) from lemma 2 gives∫
R
du F0

s+2,l−1;δ2

(
Λ; τ+π̃1

, τ−π̃2
;Yσs , u

)
≤ O(1) F0

s,l;δ2 (Λ; τ1,s;Yσs) . (6.5.106)

This together with (4.5.23) and (6.5.105) gives that R1,− is bounded by (6.5.103).
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• In this part, we analyze the quadratic part of the flow equation (6.3.12). Given a partition
(π1, π2) in P̃2;n, we bound the following terms

R̂2,DD :=

∫
z,z′

∫
z1,n

zr11 zr22 D̂
Λ,Λ0

l1,n1+1 ((z⃗π1 , p⃗π1), (z, p))

× D̂
Λ,Λ0

l2,n2+1

(
(z′,−p), (z⃗π2 , p⃗π2)

)
ĊΛ
B

(
p; z, z′

) s∏
i=1

pB (τi; zi, yi) , (6.5.107)

R̂2,DL :=

∫
z,z′

∫
z1,n

zr11 zr22 D̂
Λ,Λ0

l1,n1+1 ((z⃗π1 , p⃗π1), (z, p))

×L
Λ,Λ0

l2,n2+1

(
(z′,−p), (z⃗π2 , p⃗π2)

)
ĊΛ
B

(
p; z, z′

) s∏
i=1

pB (τi; zi, yi) (6.5.108)

and

R̂2,LL :=

∫
R−
dz

∫
R−
dz′
∫
z1,n

zr11 zr22 L
Λ,Λ0

l1,n1+1 ((z⃗π1 , p⃗π1), (z, p))

×L
Λ,Λ0

l2,n2+1

(
(z′,−p), (z⃗π2 , p⃗π2)

)
ĊΛ
B

(
p; z, z′

) s∏
i=1

pB (τi; zi, yi) . (6.5.109)

Let us define

ϕ′s1(z⃗π1) =
∏

r∈π1,s

pB(τr; zr, yr), ϕ′′s2(z⃗π2) =
∏

r∈π2,s

pB(τr; zr, yr) (6.5.110)

with πi,s = πi ∩ σs and si := |πi,s|. Using (3.1.5), we rewrite R̂2,DD as follows

R̂2,DD :=

∫
R
du D̂

Λ,Λ0

l1,n1+1;r1(1),r1(2)

(
p⃗π1 , p;ϕ

′
s1 × pB

(
1

2Λ2
, ·, u

))
× D̂

Λ,Λ0

l2,n2+1;r2(1),r2(2)

(
p⃗π2 ,−p;ϕ′′s2 × pB

(
1

2Λ2
; ·, u

))
ĊΛ (p) , (6.5.111)

where

ri(j) :=

{
ri if j ∈ πi

0 otherwise.
(6.5.112)

Using the induction hypothesis, (6.5.111) is bounded by

(Λ +m)1−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du F0

s1+1,l1;δ3

(
Λ; τπ1,s ,

1

2Λ2
;Yπ1,s , u

)
F0
s2+1,l2;δ4

(
Λ; τπ2,s ,

1

2Λ2
;Yπ2,s , u

)
,
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which is bounded using Lemma 3 by

(Λ +m)2−n−|w|−r1−r2 P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ5

(τ1,s)

and δ5 := max (δ3, δ4). Now, we bound R̂2,DL:

– First, we treat the case r1 = r2 = 0: Proceeding as we did for R̂2,DD, we rewrite R̂2,DL

using (3.1.5) and the notation (6.5.110) as follows

R̂2,DL :=

∫
R
du

∫
R+

dz′ D̂Λ,Λ0

l1,n1+1

(
p⃗π1 , p;ϕ

′
s1 × pB

(
1

2Λ2
, ·, u

))
×L

Λ,Λ0

l2,n2+1;+

(
z′; p⃗π2 ,−p;ϕ′′s2

)
pB

(
1

2Λ2
; z′, u

)
ĊΛ (p) . (6.5.113)

Using the induction hypothesis together with the bound (6.4.18), we deduce that R̂2,DL is
bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R+

du F0
s1+1,l1;δ5

(
Λ; τπ1,s ,

1

2Λ2
;Yπ1,s , u

)
×
∫
z′
F∞
s2+1,l2;+;δ6

(
Λ; τπ2,s ; z

′;Yπ2,s

)
pB

(
1

2Λ2
; z′, u

)
.

Lemma 5 gives for z′ ∈ R+

F∞
s2+1,l2;+;δ′3

(
Λ; τπ2,s ; z

′;Yπ2,s

)
≤ O(1) Fs2+1,l2;δ′3

(
Λ; τπ2,s ; z

′;Yπ2,s

)
. (6.5.114)

Hence, we deduce that R̂2,DL is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R+

du F0
s1+1,l1;δ5

(
Λ; τπ1,s ,

1

2Λ2
;Yπ1,s , u

)
×
∫
z′
Fs2+1,l2;+;δ6

(
Λ; τπ2,s ; z

′;Yπ2,s

)
pB

(
1

2Λ2
; z′, u

)
. (6.5.115)

In the proof of Theorem 9 in chapter 5, we treated the term R̃DS
2 which ended up bounded

by (6.5.115), for which we had already established that it is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ′4

(τ1,s) , (6.5.116)
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where δ′4 := max (δ5, δ6).
The last term we need to consider is R̂2,LL. Using (3.1.5), we rewrite R̂2,LL as follows

′∑
{E1,E2}

∫
R
du L

Λ,Λ0

l1,n1+1;(π1∪E1)
+,Ec−

1

(
p⃗π1 , p;ϕ

′
s1 × pB

(
1

2Λ2
; z, u

))

×L
Λ,Λ0

l2,n2+1;(π2∪E2)
+,Ec−

2

(
p⃗π2 ,−p;ϕ′′s2 × pB

(
1

2Λ2
; z′, u

))
ĊΛ (p) , (6.5.117)

where the sum runs over pairs {E1, E2} such that Ei ∈ {{s+ i},∅}. The prime on the
sum means that the pair {{s+ 1}, {s+ 2}} is not included in the sum. In order to treat
(6.5.117), we must distinguish between two cases:

- First, we analyze the case E1 = E2 = ∅ and (6.5.117) reads in this case∫
R
du L

Λ,Λ0

l1,n1+1;π+
1 ,{s+1}−

(
p⃗π1 , p;ϕ

′
s1 × pB

(
1

2Λ2
; ·, u

))
×L

Λ,Λ0

l2,n2+1;π+
2 ,{s+2}−

(
p⃗π2 ,−p;ϕ′′s2 × pB

(
1

2Λ2
; ·, u

))
ĊΛ (p) . (6.5.118)

Using proposition 9, we deduce that (6.5.118) is bounded by

(Λ +m)1−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
∫

R
du F0

s1+1,l1;δ1

(
Λ; τ+π1

, τ−s+1;Yπ1,s , u
)
F0
s2+1,l2;δ2

(
Λ; τ+π2

, τ−s+2;Yπ2,s , u
)
, (6.5.119)

where τs+1 = τs+2 =
1

2Λ2 . Using lemma 2, we have∫
R
du F0

s1+1,l1;δ1

(
Λ; τ+π1

, τ−s+1;Yπ1,s , u
)
F0
s2+1,l2;δ2

(
Λ; τ+π2

, τ−s+2;Yπ2,s , u
)

≤ O(1) Λ F0
s,l;δ′1

(Λ; τ1,s;Yσs) , (6.5.120)

where δ′1 := max (δ1, δ2). This together with (6.5.119) gives that (6.5.118) is bounded
by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ′1

(τ1,s) . (6.5.121)

- The second case to be treated is Ei ̸= ∅. Without loss of generality, we assume that
E1 ̸= ∅ and write∫

R
du

∫
R+

dz L
Λ,Λ0

l1,n1+1;+

(
z; p⃗π1 , p;ϕ

′
s1

)
pB

(
1

2Λ2
; z, u

)
×L

Λ,Λ0

l2,n2+1;π+
2 ,{s+2}−

(
p⃗π2 ,−p;ϕ′′s2 × pB

(
1

2Λ2
; ·, u

))
ĊΛ (p) . (6.5.122)
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Using the bound (6.4.18) and proposition 9, we deduce that (6.5.122) is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)

×
∫

R
du

∫
R+

dz F∞
s1+1,l1;+;δ1

(
Λ, τπ1,s , z, Yπ1,s

)
pB

(
1

2Λ2
; z, u

)
× F

Λ,0
s2+1,l2;δ2

(
Λ, τ+π2,s

, τ−s+2, Yπ2,s , u
)

(6.5.123)

Using lemma 5, we deduce

F∞
s1+1,l1;+;δ1

(
Λ, τπ1,s , z, Yπ1,s

)
≤ O(1) Fs1+1,l1;δ1

(
Λ, τπ1,s , z, Yπ1,s

)
. (6.5.124)

Hence, we obtain∫
R
du

∫
R+

dz F∞
s1+1,l1;+;δ1

(
Λ, τπ1,s , z, Yπ1,s

)
pB

(
1

2Λ2
; z, u

)
× F0

s2+1,l2;δ2

(
Λ, τ+π2,s

, τ−s+2, Yπ2,s , u
)

≤ O(1)

∫
R
du F̂s1+1,l1;δ1

(
Λ, τπ1,s , Yπ1,s , u

)
F

Λ,0
s2+1,l2;δ2

(
Λ, τ+π2,s

, τ−s+2, Yπ2,s , u
)
.

(6.5.125)

Using lemma 4 and (6.5.125), we deduce that (6.5.123) is bounded by

(Λ +m)2−n−|w|
P

(
log

Λ +m

m

)
P

(
∥p⃗n∥
Λ +m

)
Q

(
τ−

1
2

Λ +m

)
F

Λ,0
s,l;δ(τ1,s). (6.5.126)

– The method used to integrate the bound (6.5.93) is similar to the integration of the bound
(5.5.1) in Theorem 9, since both bounds have the same right-hand side. The only difference
are the boundary conditions used in the integration of the irrelevant/relevant parts of D̂Λ,Λ0

l,n .
These are given in (6.3.13)-(6.3.15) and (6.3.13). For more details, we refer the reader to
the proof of Theorem 9.
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Chapter 7

Renormalization of the lattice regularized
ϕ44 model

In this chapter, we analyse the Euclidean four-dimensional massive ϕ4 theory using lattice regular-
ization. We present a rigorous proof that this quantum field theory is renormalizable, to all orders of
the loop expansion based on the flow equations. The lattice regularization is known to break Euclidean
symmetry. A key novelty of this work compared to the existing proofs in the litterature [33, 34] is a
proof to all orders in perturbation theory of the restoration of the Euclidean symmetries. This chapter
is organized as follows: In section 7.1, we introduce the lattice regularized correlations functions and
their respective flow equations. In section 7.2 we give the steps of proving renormalizability of four-
dimensional ϕ4 theory on the lattice by means of the flow equations, following [11]. Renormalizability
is stated in terms of uniform bounds on the (coefficient functions of the) solution La0,a(ϕ) of the flow
equation and its derivative with respect to the lattice cutoff a−1, with boundary conditions imposed
at a = ∞ for the relevant couplings and at a = a0 for the irrelevant interactions. Sections 7.3 and
7.4 are the central part of this chapter. In section 7.3 we introduce the rotated lattice and we show
that the difference D

a0,a,O
l,n (p1, · · · , pn) of the correlation function of arguments defined on the rotated

lattice and on the original lattice:

D
a0,a,O
l,n (p1, · · · , pn) := L

a0,a,O
l,n (Op1, · · · , Opn)−L

a0,a
l,n (p1, · · · , pn)

converges to zero when a0 → 0 and a → ∞. In section 7.4 we give a proof of the existence of the
continuum limit in position space in the sense of tempered distributions. We find that the obtained
limit is invariant under translations which concludes the restoration of the Euclidean symmetries in
the continuum limit.

187
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7.1 The flow equations

We consider ϕ4 scalar field theory on the Euclidean space R4. We will formulate our theory with a
lattice cutoff in the standard path integral formalism, where the lattice refers to the discretization of
space-time. In the following, we introduce general notions of a space-time lattice and the ϕ4 model on
the lattice, but only to the extent that is relevant to this paper.

7.1.1 Lattice field theory

The four-dimensional hypercubic lattice is a set of sites denoted by

Λa0 = a0Z
4,

where a0 denotes the lattice spacing in Euclidean time and spatial directions. One of the first questions
in lattice field theory is how to put a model on the lattice once it is defined on the space-time continuum.
The question refers both to the framework of classical field theory, i.e. at the level of the classical action,
and to quantum field theory. Naturally discretization of space and time implies that differentiation
with respect to space and time is to be replaced by a corresponding difference operation.

7.1.2 ϕ4 scalar field theory on the lattice

Perturbative renormalizability of euclidean ϕ44 theory will be established by analysing the generating
functional La0,a of connected (free propagator) amputated Schwinger functions (CAS). The upper
indices a0 and a enter through the regularized propagator

Ca0,a(p) =
1

p̂2 +m2

(
e−a20(p̂

2+m2) − e−a2(p̂2+m2)
)
, (7.1.1)

where the map p̂ := (p̂(pµ))1≤µ≤4 is defined as follows

p̂ :
]
− π

a0
, π
a0

[
→

]
− 2

a0
, 2
a0

[
pµ 7→ 2

a0
sin(

a0pµ
2 ).

(7.1.2)

In the sequel we shall write with slight abuse of notation

Ca0,a(p̂) := Ca0,a(p), p̂(pµ) := p̂µ.

Upon removal of the cutoffs, i.e. in the limit a0 → 0, a → ∞, we indeed recover the free propagator
1

p2+m2 . For the Fourier transform we use the convention

f̂(x) =

∫
p,Ba0

f(p)eip·x :=

∫
]
− π

a0
, π
a0

[4 d4p

(2π)4
f(p)eip·x. (7.1.3)
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In the sequel, we use the shorthand notation∫
p,Ba0

:=

∫
]
− π

a0
, π
a0

[4 d4p

(2π)4
,

with Ba0 =
]
− π

a0
, π
a0

[4
denoting the first Brillouin zone. For the inverse Fourier transform we write

f(p) = a40
∑

x∈Λa0

f̂(x)e−ip·x, (7.1.4)

so that in position space

Ĉa0,a(x, y) =

∫
p,Ba0

Ca0,a(p̂)eip·(x−y).

We assume
0 ≤ a0 ≤ a ≤ ∞

so that the Wilson flow parameter 1/a takes the role of an IR cutoff, whereas 1/a0 is the UV cutoff.
We introduce the convention

ϕ̂a0(x) =

∫
p,Ba0

ϕa0(p)e
ip·x,

δ

δϕ̂a0(x)
=

∫
p,Ba0

δ

δϕa0(p)
e−ip·x.

For our purposes the field ϕ̂a0(x) is assumed to belong to the Hilbert space l2 (Λa0) endowed with the
inner scalar product

⟨f, g⟩l2(Λa0)
= a40

∑
x∈Λa0

f(x)g(x).

Our starting point is the bare action of symmetric ϕ44 theory

La0,a0(ϕ̂a0) = a40
∑

x∈Λa0

{
λ

4!
ϕ̂4a0 + d(a0)ϕ̂

2
a0 + b(a0)(∂̂µ,a0 ϕ̂a0)

2 + c(a0)ϕ̂
4
a0

}
, (7.1.5)

d(a0), c(a0) = O(ℏ) , b(a0) = O(ℏ2).

The differentiation in (7.1.5) is defined by the difference operator(
∂̂µϕ̂a0

)
(x) =

ϕ̂a0(x+ a0eµ)− ϕ̂a0(x)

a0
,

with x ∈ Λa0 and eµ the unit vector in the µth coordinate direction. The first term is formed of
the field’s self-interaction with real positive coupling constant λ having mass dimension equal to zero.
The second part contains the related counter terms, determined according to the following rule. The
canonical mass dimension of the field is one, the counter-terms allowed in the bare interaction are all
local terms of mass dimension ≤ 4 formed out of the field and its derivatives respecting cubic lattice
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symmetry. The O(4) and translation symmetries are violated by the lattice regularization. From the
bare action and the flowing propagator, we may define Wilson’s flowing effective action La0,a through

e−
1
ℏ(L

a0 ,a(ϕ̂a0
)+Ia0 ,a) :=

∫
dµa0 ,a(Φ)e

− 1
ℏL

a0 ,a0 (Φ+ϕ̂a0
) , La0,a(0) = 0. (7.1.6)

It can be recognized to be the generating functional of the CAS of the theory with propagator Ĉa0,a

and bare action La0,a0 . In (7.1.6), dµa0,a(Φ) denotes the Gaussian measure with covariance ℏĈa0,a.
It is proved in [25] that such a measure exists as a lattice approximation of the continuum Gaussian
measure. Ia0,a denotes the field independent so called vacuum contributions. It is finite only in the
finite volume approximation. The infinite volume limit is taken only when it has been eliminated [11].
Again, we do not make the finite volume explicit here since it plays no role in our analysis.
The fundamental tool for the study of the renormalization problem is the functional flow equation

∂1/aL
a0,a =

ℏ
2
⟨ δ

δϕ̂a0
,
(
∂1/aĈ

a0,a
)
∗ δ

δϕ̂a0
⟩La0,a − 1

2
⟨δL

a0,a

δϕ̂a0
,
(
∂1/aĈ

a0,a
)
∗ δL

a0,a

δϕ̂a0
⟩ (7.1.7)

By ⟨·, ·⟩ we denote the scalar product in l2 (Λa0). (7.1.7) is obtained by deriving both sides of the
equation (7.1.6) with respect to 1/a and performing an integration by parts in the functional integral
on the RHS using the property (1.1.16) of the lattice Gaussian measure [25], and finally rearranging
the powers of ℏ stemming from La0,a/ℏ and from ℏ∂1/aĈa0,a. To derive the flow equations verified
by the n-point correlation functions, we first expand La0,a in moments for all (pi)1≤i≤n ∈ Ba0 with
respect to ϕa0 ,

(2π)4(n−1)δϕa0 (p1)
· · · δϕa0 (pn)

La0,a|ϕa0=0 = δ4[
2π
a0

](p1 + · · ·+ pn) L
a0,a
n (p1, · · · , pn),

where we have written δϕa0 (p)
= δ/δϕa0(p) and δ4[

2π
a0

] :=
∑

k∈Z4 δ
(4)
2kπ
a0

. We also expand in a formal

powers series with respect to ℏ to select the loop order l,

La0,a
n =

∞∑
l=0

ℏlLa0,a
l,n .

From the functional flow equation (7.1.7), we then obtain the perturbative flow equations for the
(connected free propagator amputated) n-point functions by identifying coefficients

∂1/a∂
wL

a0,a
l,n (p1, · · · , pn) =

1

2

∫
k,Ba0

∂wLa0,a
l−1,n+2(k, p1, · · · , pn,−k)∂1/aC

a0,a(k̂) (7.1.8)

−1

2

′∑
l1,l2

′∑
n1,n2

′∑
wi

cw

[
∂w1L

a0,a
l1,n1+1(p1, · · · , pn1 , p)∂

w3∂1/aC
a0,a(p̂)∂w2L

a0,a
l2,n2+1(−p, pn1+1, · · · , pn)

]
rsym

p ≡ −p1 − · · · − pn1 ≡ pn1+1 + · · ·+ pn

[
2π

a0

]
.

For the notations, see after (1.1.18) and (1.1.19).
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7.2 Renormalization of lattice ϕ4
4 theory

Perturbative renormalizability of the regularized field theory (7.1.6) amounts to the following: Given
a coupling constant λ in the bare interaction (7.1.5), the coefficients d(a0), b(a0) and c(a0) of the
counter-terms can be adjusted within a loop expansion of the theory,

d(a0) =
∞∑
l=1

ℏldl(a0), b(a0) =
∞∑
l=2

ℏlbl(a0), c(a0) =
∞∑
l=1

ℏlcl(a0)

in such a way that the limits of the lattice n−point CAS functions exist when a0 goes to 0 and a goes
to ∞ in every loop order l.

∀ (pi)1≤i≤n ∈ R4, ∃ã0 > 0 such that uniformly in Bã0 :

L
0,∞
l,n (p1, · · · , pn) := lim

a0→0,a0≤ã0
lim
a→∞

L
a0,a
l,n (p1, · · · , pn), n ∈ N, l ∈ N∗. (7.2.1)

The parameter ã0 guarantees that (pi)1≤i≤n ∈ Bã0 ⊂ Ba0 for all a0 ≤ ã0 so that they are well defined
as arguments of the regularized n-point functions L

a0,a
l,n . The lattice breaks Euclidean symmetry and

an essential point to the renormalizability of the theory is to prove the restoration of this symmetry.
We will analyse the limits L

0,∞
l,n (p1, · · · , pn) and prove in particular their invariance under rotations

and translations in sections 7.3 and 7.4.

7.2.1 Propagator bounds

The subsequent bounds on the CAS functions will depend essentially on the propagator of the theory
we consider. The bare propagator is, apart from the renormalization conditions, the main ingredient
which decides what kind of bounds can be achieved. In this subsection we collect the bounds on the
propagator and its derivatives that we will need subsequently. From the definition (7.1.1) we directly
obtain

∂1/aC
a0,a(p̂) = (−2a3)e−a2(p̂2+m2). (7.2.2)

One can then prove by induction that

∂we−a2p̂2 =
4∏

µ=1

( wµ∑
k=1

a
wµ−k
0 ak Pk,µ

(
cos

a0pµ
2

, sin
a0pµ
2

)
P̃k,µ (ap̂µ)

)
e−a2p̂2 . (7.2.3)

Here P, P̃ are real polynomials which we do not specify. Using (7.2.3) together with a0 ≤ a, we obtain
the following bound on the propagator and its derivatives∣∣∂w∂1/aCa0,a(p̂)

∣∣ ≤ a|w|+3P1(a|p̂|)e−a2(p̂2+m2) . (7.2.4)
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Using (7.2.3) and (7.2.14) below one can also show that

∣∣∂w∂1/aCa0,a(p̂)
∣∣ ≤ (1

a
+m

)−|w|−3

P2

(
a|p|

1 + am

)
. (7.2.5)

Both bounds are expressed in terms of suitable polynomials P1, P2 with nonnegative coefficients.
The following lemma shows how to bound integrals of powers of momenta multiplied by the exponential
appearing in the regularized propagator

Lemma 13. ∀α ∈ N , ∃Cα > 0 independent of a and a0 such that:

a4
∫
Ba0

e−a2k̂2 (a|k|)α dk ≤ Cα. (7.2.6)

Proof. It is sufficient to bound

a

∫ π
a0

0
e−a2k̂2 (ak)α dk (7.2.7)

uniformly with respect to a and a0. Using that ∀x ∈
[
0, π2

]
we have sinx ≥ 2

πx , one obtains

a

∫ π
a0

0
e−a2k̂2 (ak)α dk ≤ a

∫ π
a0

0
e−

a2k2

π2 (ak)α dk ≤
∫ ∞

0
e−

u2

π2 uαdu ≤ Cα. (7.2.8)

When studying the restoration of rotational symmetry we will also have to bound differences of derived
propagators, where one of them has undergone an arbitrary rotation O ∈ O(4). The following lemma
permits to bound these differences:

Lemma 14. For all w ∈ N4, for all p ∈ Bαa0 for some α > 0 holds

∣∣∂w∂1/aCa0,a(p̂)− ∂w∂1/aC
a0,a(p̂O)

∣∣ ≤ a0

(
1

a
+m

)−2−|w|
P

(
a|p|

1 + am

)
, (7.2.9)

with p̂O := p̂(Op).

Proof. If |p̂O| ≥ |p̂| we write

∂w
(
e−a2(p̂2+m2) − e−a2((p̂O)2+m2)

)
= ∂w

{
e−a2(p̂2+m2)

(
1− e−a2((p̂O)2−p̂2)

)}
. (7.2.10)

In case |p̂O| ≤ |p̂|, we factorize instead e−a2((p̂O)2+m2) and follow again the subsequent reasoning. By
the Leibniz formula, we obtain

∂w
{
e−a2(p̂2+m2)

(
1− e−a2((p̂O)2−p̂2)

)}
=

∑
w1+w2=w

cwi∂
w1e−a2(p̂2+m2)∂w2

(
1− e−a2((p̂O)2−p̂2)

)
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The first factor in each entry in the sum can be bounded as in (7.2.5). As regards the second factor
we first consider the exponential without derivatives

1− e−a2[(p̂O)2−p̂2]

We can rewrite the exponent as

a2 [(p̂O)2 − p̂2] =
2a2

a20

4∑
µ=1

[cos(a0(Op)µ)− cos(a0pµ)] , (7.2.11)

= 2
a0
a

4∑
µ=1

∫ 1

0
dt
(1− t)2

2!

[
[a(Op)µ]

3 cos(3)[t a0 (Op)µ] − [apµ]
3 cos(3)[t a0 pµ]

]
.

(7.2.12)

We used a Taylor formula with integrated remainder around 0 for both cosine functions and the
fact that the constant and quadratic terms in the difference of the two cosine functions cancel. The
statement of the lemma is then a consequence of the following facts:
a) ∣∣ ∂wa2 [(p̂O)2 − p̂2]

∣∣ ≤ a0
a
a−|w| P(a|p|). (7.2.13)

This follows directly from (7.2.11), (7.2.12). The degree of the polynomial P can be chosen to be less
or equal than 3.
b) ∣∣∣ e−f(x) − 1

∣∣∣ ≤ f(x) for f(x) ≥ 0.

c)

∂we−a2[(p̂O)2−p̂2]

=
a20
a2

a|w| P

({
a pµ,

∫ 1

0
dt(1− t)2 cos(3)(t a0pµ),

∫ 1

0
dt(1− t)2 cos(3)(t a0(Op)µ),

a0
a

})
.

This statement follows by induction on |w| from (7.2.11), (7.2.12). The polynomial P (whose coefficients
are real but may have either sign) is at most of degree 3|w|. The coefficients do not depend on a0, a, p.
d) The inequality

e−a2m2 ≤ C(n)

(1 + am)n
, (7.2.14)

which holds for any n ∈ N and suitable positive C(n) can be used to turn powers of a or of a|p| into
powers of a/(1 + am) or a|p|/(1 + am) .
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7.2.2 Renormalizability

A simple inductive proof of the renormalizability of ϕ44 theory, regularized by a UV-cutoff has been
exposed several times in the literature [11, 30]. Our proof follows the same line of reasoning. New
difficulties arise due to the particular form of the lattice propagator (7.1.1) that breaks Euclidean
symmetry. The boundary conditions following from (7.1.5) are

∂wLa0,a0
l,n (p1, · · · , pn) = 0, n+ |w| > 4 such that n ̸= 2 , (7.2.15)

∂wLa0,a0
l,2 (p,−p) = bl(a0)∂

wp̂2, ∀|w| ≥ 3 . (7.2.16)

As compared to continuum theory [11], note that the boundary conditions (7.2.16) are not equal to
zero. For terms with n + |w| ≤ 4, the boundary conditions are explicitly fixed by (a0-independent)
renormalization conditions imposed for the fully integrated theory at a = ∞ :

L
a0,∞
4,l (0, · · · , 0) = λ, L

a0,∞
2,l (0, 0) = 0, ∂p2L

a0,∞
2,l (0, 0) = 0, ∀ l ≥ 1. (7.2.17)

The renormalization point is chosen at zero momentum for simplicity (BPHZ renormalization condi-
tions). The induction hypotheses to be proven are

Theorem 13. For all l ∈ N∗, n ∈ N, w and for 0 ≤ a0 ≤ a, a0 < 1
m holds

A) Boundedness in the UV-cutoff∣∣∣∂wLa0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ (1

a
+m

)4−n−|w|
P1

(
log

1 + am

am

)
P2

({
a|pi|

1 + am

})
. (7.2.18)

B) Convergence in the UV-limit

∣∣∣∂1/a0∂wLa0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ (
1
a +m

)5−n−|w|(
1
a0

+m
)2 P3

(
log

1 + a0m

a0m

)
P4

({
a|pi|

1 + am

})
, (7.2.19)

where (pi)1≤i≤n ∈ Ba0 and p1 + · · ·+ pn ≡ 0
[
2π
a0

]
. Here and in the following the P, Pi denote (each

time they appear possibly new) polynomials with nonnegative coefficients. The coefficients depend on
l, n, |w|, but not on m, {pi}, a, a0. For l = 0, all polynomials P1, P3 reduce to 1.

Remarks:

- Theorem 13 is established for pi ∈ Ba0 but it is possible to extend it to (pi)1≤i≤n ∈ R4. Since
L

a0,a
l,n is 2π

a0
-periodic, L

a0,a
l,n (p1, · · · , pn) such that pi ∈ Bkia0 :=

]
− (2ki+1)π

a0
, (2ki+1)π

a0

[
, ki ∈ Z4

and
∑n

i=1 pi ≡ 0
[
2π
a0

]
, also verifies the flow equations (7.1.8) with the same boundary conditions,

as we will see later, and therefore it verifies Theorem 1. The extension to the boundaries of the
extended Brillouin zones Bki,a0 is performed using the continuity of La0,a

l,n w.r.t. pi and taking
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the limits pi → kiπ
a0

in (7.2.18). The fact that L
a0,a
l,n is C∞ w.r.t. pi and that it is 2π/a0-periodic

can be proved inductively using the flow equations and that the propagator and the boundary
conditions are 2π/a0-periodic and C∞. We will not prove it here.

- It is also possible to prove a stronger version of Theorem 13, replacing P
({

a|pi|
1+am

})
by P

({
a|p̂i|
1+am

})
.

- The statement (7.2.19) implies that for sufficiently small a0 and suitable ν > 0∣∣∣∂1/a0∂wLa0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ a20

(
1

a
+m

)5−n−|w|(
log

1 + a0m

a0m

)ν

P4

({
a|pi|

1 + am

})
. (7.2.20)

Integration of the bound (7.2.20) over the lattice cutoff 1/a0 immediately proves the convergence
of all La0,a

l,n (p1, · · · , pn) for fixed a to finite limits when a0 → 0. In particular, one obtains for all
â0 < a0 and (pi)1≤i≤n ∈ Ba0 ,∣∣∣La0,∞

l,n (p1, ..., pn)−L
â0,∞
l,n (p1, ..., pn)

∣∣∣ < a0m
5−n

(
log

1

a0m

)ν

P5

({
|pi|
m

})
. (7.2.21)

Thus, due to the Cauchy criterion in C∞(R+) (w.r.t. to a0) finite limits exist to all loop orders
l.

Proof. We use the standard inductive scheme, see section 1.1.5. The irrelevant terms are integrated
from 1/a0 to 1/a and the relevant terms from 0 to 1/a using the integrated Taylor formula to pass
from the renormalization point to arbitrary momenta.

(A) Boundedness: To start the induction, we prove the bound (7.2.18) at the tree level. The classical
interaction contains no terms linear or quadratic in the fields. Hence, we have

L
a0,a
0,2 (p,−p) = 0, L

a0,a
0,4 (p1, · · · , p4) = λ .

Since the Z2-symmetry ϕ→ −ϕ, is not broken by the renormalization procedure, we have

L
a0,a
l,n (p1, · · · , pn) = 0, ∀n odd , ∀l ≥ 0.

Thus, the bound evidently holds for n+ |w| ≤ 2 at the tree order. For n+ |w| > 4 (the irrelevant
cases) we proceed inductively ascending in n. For given n the various w dealt with in arbitrary
order, by integrating the respective flow equation (7.1.8) from the initial point 1/a0.
Using the induction hypothesis for L

a0,a
0,n1+1 and L

a0,a
0,n2+1, and (7.2.2), (7.2.5) we obtain a bound

for the quadratic part of the r.h.s. of (7.1.8)∣∣∣∂w1L
a0,a
0,n1+1(p1, · · · , pn1 , p)∂

w3∂1/aC
a0,a(p̂)∂w2L

a0,a
0,n2+1(−p, pn1+1, · · · , pn)

∣∣∣
≤
(
1

a
+m

)4−n−|w|−1

P

(
a ∥p⃗n∥
1 + am

)
. (7.2.22)
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Therefore ∣∣∣∣∂λ∂wLa0,
1
λ

0,n (p1, · · · , pn)
∣∣∣∣ ≤ (λ+m)4−n−|w|−1

P

(
∥p⃗n∥
λ+m

)
. (7.2.23)

This proves (7.2.18) at the tree order.
To generate inductively the bounds (7.2.18) for higher loop orders, we use them in bounding
the r.h.s of the FE (7.1.8), together with the bound (7.2.4) in the linear and in the quadratic
term respectively. For the linear term of the r.h.s. of FE, we use the induction hypothesis for
∂wLa0,a

l−1,n+2, and we obtain the upper bound∫
k,Ba0

(2a3)e−a2(k̂2+m2)P

(
a|k|

1 + am
,
a∥p⃗n∥
1 + am

)
.

Using lemma 13 this can be turned into the bound∫
k,Ba0

(2a3)e−a2(k̂2+m2)P

(
a|k|

1 + am
,
a∥p⃗n∥
1 + am

)
≤ 1

a
P̃

(
a∥p⃗n∥
1 + am

)
.

Hence, we obtain∫
k,Ba0

∂1/aC
a0,a(k̂)

∣∣∣∂wLa0,a
l−1,n+2(−k, · · · , k)

∣∣∣
≤
(
1

a
+m

)4−n−|w|−1

P1

(
log

am+ 1

am

)
P2

(
a∥p⃗n∥
1 + am

)
.

For the quadratic part of the flow equations (7.1.8), we use the induction hypothesis for ∂w1L
a0,a
l1,n1+1

and ∂w2L
a0,a
l2,n2+1 together with the bound (7.2.3) and we obtain∣∣∣∂w1L

a0,a
l1,n1+1(p1, · · · , pn1 , p)∂

w3∂1/aC
a0,a(p̂)∂w2L

a0,a
l2,n2+1(−p, pn1+1, · · · , pn)

∣∣∣
≤
(
1

a
+m

)4−n−|w|−1

P1

(
log

1 + am

am

)
P2

(
a∥p⃗n∥
1 + am

)
.

Therefore, we deduce

∣∣∣∂1/a∂wLa0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ (1

a
+m

)4−n−|w|−1

P1

(
log

am+ 1

am

)
P2

({
a|pi|

1 + am

})
. (7.2.24)

Following the order of the induction stated before, for the irrelevant cases n+ |w| ≥ 5 the bound
(7.2.24) is integrated downwards from 1/a to 1/a0. For n+ |w| ≥ 5 such that n ̸= 2, integrating
from 1/a to 1/a0 yields∣∣∣∂wLa0,a

l,n (p1, · · · , pn)
∣∣∣ ≤ ∫ 1/a0

1/a
dλ (λ+m)4−n−|w|−1

P1

(
log

λ+m

m

)
P2

({
|pi|

λ+m

})
.
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We now have, see [30]∫ 1/a0

1/a
dλ (λ+m)4−n−|w|−1

P

(
log

λ+m

m

)
<

(
1

a
+m

)4−n−|w|
P̃

(
log

1 + am

am

)
.

For the particular case (n, |w|) = (2, 2), (7.2.24) is integrated from 0 to 1/a0 at zero momenta,

∣∣∣∂p2La0,a0
l,2 (0, 0)− ∂p2L

a0,∞
l,2 (0, 0)

∣∣∣ ≤ ∫ 1
a0

0
dλ (λ+m)−1

P

(
log

λ+m

m

)
≤ P

(
log

1 + a0m

a0m

)
.

This gives

|bl(a0)| ≤ P

(
log

1 + a0m

a0m

)
. (7.2.25)

It then follows from (7.2.16) that the 2-point function and its derivatives at a = a0 can be
bounded ∣∣∣∂wLa0,a0

l,2 (p,−p)
∣∣∣ ≤ 2|bl(a0)|a

|w|−2
0 C,

for some positive constant C depending on |w|, which implies for all |w| ≥ 3

∣∣∣∂wLa0,a0
l,2 (p,−p)

∣∣∣ ≤ ( 1

a0
+m

)2−|w|
P

(
log

1 + a0m

a0m

)
≤
(
1

a
+m

)2−|w|
P

(
log

1 + am

am

)
.

Integrating the inductive bound from 1/a to 1/a0 for n = 2, |w| ≥ 3 then gives

∣∣∣∂wLa0,a
l,2 (p,−p)

∣∣∣ ≤ ∫ 1/a0

1/a
dλ

∣∣∣∣∂λ∂wLa0,
1
λ

l,2 (p,−p)
∣∣∣∣+ ∣∣∣∂wLa0,a0

l,2 (p,−p)
∣∣∣

≤
(
1

a
+m

)2−|w|
P1

(
log

1 + am

am

)
P2

({
|pi|

λ+m

})
.

For the relevant terms (n + |w| ≤ 4), we start with the case (n = 2, |w| = 2) and continue to
(n = 2, |w| = 1) and (n = 2, w = 0). Bounding equation (4.5.16) in absolute value, we obtain
using the bound (7.2.24) at vanishing momenta:∣∣∣∣∣

∫ 1/a

0
dλ∂ 1

λ
∂wL

a0,
1
λ

l,n (0, · · · , 0)

∣∣∣∣∣ ≤
∫ 1/a

0
dλ (λ+m)4−n−|w|−1

P

(
log

1 + am

am

)
≤ (λ+m)4−n−|w|

P

(
log

1 + am

am

)
. (7.2.26)

Hence, the assertion (7.2.18) is established at the renormalization point. In each case extension
to general momenta is guaranteed by the bounds established before. This concludes the proof of
(7.2.18).
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(B) Convergence: The bound (7.2.20) follows on applying the same inductive scheme to bound the
solutions of the FE, integrated over 1/a and then derived w.r.t. 1/a0. The proof is analogous
to [11, 30], apart from the changes induced by the lattice momenta p̂ which were dealt with in
the proof of (7.2.18).

7.3 Restoration of O(4) symmetry

7.3.1 The flow equations

The lattice breaks the rotation and translation symmetries. In order to define the rotated scalar
field on the lattice, we consider the rotated lattice

ΛO
a0 := OΛa0 , O ∈ O(4).

The rotated scalar field ϕ̂Oa0 is defined by

ϕ̂Oa0 := ϕ̂|ΛO
a0
,

where ϕ̂ is the continuum scalar field. For our purposes, ϕ̂Oa0 is considered to live in l2(Λ
O
a0) and the

Brillouin zone associated to the rotated lattice ΛO
a0 is

BO
a0 := O

(]
− π

a0
,
π

a0

[4)

The Fourier transform of ϕ̂Oa0 is defined by

ϕOa0(p) := a40
∑

x∈ΛO
a0

e−ip·xϕ̂Oa0(x).

The inverse Fourier transform is defined by

ϕ̂Oa0(x) :=

∫
BO

a0

d4p

(2π)4
ϕ̂Oa0(p)e

ip·x,

such that the Plancherel identity is preserved.
The bare action associated to the rotated field is defined by

La0,a0
O (ϕ̂Oa0) := a40

∑
x∈ΛO

a0

{
f

4!

(
ϕ̂Oa0

)4
+ dO(a0)

(
ϕ̂Oa0

)2
+ bO(a0)

(
∂̂Oµ,a0 ϕ̂

O
a0

)2
+ cO(a0)

(
ϕ̂Oa0

)4}
.
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The counter terms dO(a0), bO(a0) and cO(a0) depend on the rotation matrix O. The lattice derivative
on the rotated lattice is defined as follows for ϕ̂Oa0 ∈ l2

(
ΛO
a0

)
(
∂̂Oµ,a0 ϕ̂

O
a0

)
(x) :=

ϕ̂Oa0(x+ a0e
O
µ )− ϕ̂Oa0(x)

a0
, x ∈ ΛO

a0 ,

where eOµ := Oeµ is the rotated unit vector in the µth direction.
The flowing propagator is defined by

ĈO,a0,a(x, y) :=

∫
BO

a0

d4p

(2π)4
eip·(x−y)Ca0,a(p),

where Ca0,a is defined as before

Ca0,a(p) :=
1

p̂2 +m2

(
e−a20(p̂

2+m2) − e−a2(p̂2+m2)
)
.

The lattice momentum p̂ was defined in (7.1.2). The derivation of the FE corresponding to the rotated
field follows the same steps as before, starting from the functional integral

e−
1
ℏ(L

a0,a
O (ϕ̂O

a0
)+Ia0,a) :=

∫
dµOa0,a (Φ) e

− 1
ℏL

a0,a0
O (ϕ̂O

a0
+Φ) (7.3.1)

where dµOa0,a is uniquely defined by its covariance operator ĈO,a0,a through∫
dµOa0,a(Φ)e

⟨Φ,J⟩
l2(ΛO

a0) := e
1
2
⟨J,ĈO,a0,aJ⟩

l2(ΛO
a0) , J ∈ l2

(
ΛO
a0

)
.

In terms of momenta in Ba0 , the propagator Ca0,a has the following form

Ca0,a(Op) =
1

(p̂O)2 +m2

(
e−a20((p̂

O)2+m2) − e−a2((p̂O)2+m2)
)
.

The FE are obtained by differentiating (7.3.1) w.r.t. 1/a,

∂1/aL
a0,a
O =

ℏ
2
⟨ δ

δϕ̂Oa0
, Ċa0,a ∗ δ

δϕ̂Oa0
⟩l2(ΛO

a0
)L

a0,a
O − 1

2
⟨
δLa0,a

O

δϕ̂Oa0
, Ċa0,a ∗

δLa0,a
O

δϕ̂Oa0
⟩l2(ΛO

a0
). (7.3.2)

We expand in a formal power series w.r.t. ℏ to select the loop order

La0,a
O (ϕ̂Oa0) =

+∞∑
l=0

ℏlLa0,a
O,l (ϕ̂

O
a0).

From La0,a
O,l we obtain the CAS of loop order l in momentum space Ba0 as

δ4[
2π
a0

](Op1 + · · ·+Opn)L
a0,a,O
l,n (Op1, · · · , Opn) := (2π)4(n−1)δϕO

a0
(Op1) · · · δϕO

a0
(Opn)L

a0,a
O,l |ϕO

a0
≡0 .
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From the functional flow equations (7.1.8), we obtain the perturbative flow equations for the CAS
n-point functions

∂1/a∂
wL

a0,a,O
l,n (Op1, · · · , Opn)

=
1

2

∫
k,Ba0

∂wLa0,a,O
l−1,n+2(Ok,Op1, · · · , Opn,−Ok)∂1/aC

a0,a,O(k̂O)

− 1

2

′∑
l1,l2

′∑
n1,n2

′∑
w1,w2,w3

cwi

[
∂w1L

a0,a,O
l1,n1+1(Op1, · · · , Opn1 , Op)∂

w3∂1/aC
a0,a,O(p̂O)

∂w2L
a0,a,O
l2,n2+1(−Op, · · · , Opn)

]
rsym

, (7.3.3)

Op ≡ −Op1 − · · · −Opn1 ≡ Opn1+1 + · · ·+Opn

[
2π

a0

]
, (pi)1≤i≤n ∈ Ba0 ,

where we used the same conventions as in (7.1.8). The uniqueness of La0,a,O
l,n is ensured by imposing

the following boundary conditions following from (7.3.1) given by

∂wLa0,a0,O
l,n (Op1, · · · , Opn) = 0 , n+ |w| > 4 such that n ̸= 2 , (7.3.4)

∂wLa0,a0,O
l,2 (p,−p) = bOl (a0)∂

w(p̂O)2, ∀|w| ≥ 3 . (7.3.5)

For terms with n + |w| ≤ 4, the boundary conditions are explicitly fixed by (a0-independent) BPHZ
renormalization conditions imposed for the fully integrated theory at a = ∞ :

L
a0,∞,O
4,l (0, · · · , 0) = λ , L

a0,∞,O
2,l (0, 0) = 0 , ∂p2L

a0,∞,O
2,l (0, 0) = 0 , ∀ l ≥ 1. (7.3.6)

Following Theorem 13 and assuming (7.3.4)-(7.3.6), the following bound holds for l ∈ N∗, n ∈ N, w
and for 0 ≤ a0 ≤ a, a0 < 1

m∣∣∣∂wLa0,a,O
l,n (Op1, · · · , Opn)

∣∣∣ ≤ (1

a
+m

)4−n−|w|
P1

(
log

1 + am

am

)
P2

({
a|pi|

1 + am

})
. (7.3.7)

7.3.2 Proof of rotation symmetry restoration

The O(4)-symmetry is restored for a0 → 0 if and only if ∀(pi)1≤i≤n ∈ R4 , ∀O ∈ O(4) ∃ã0 ≥ 0,

lim
a0→0,0≤a0≤ã0

lim
a→∞

(
L

a0,a
l,n (p1, ..., pn)−L

a0,a,O
l,n (Op1, ..., Opn)

)
= 0 (7.3.8)

Here we introduced the parameter ã0 as in (7.2.1). For (pi)1≤i≤n ∈ Ba0 we thus define

∂wD
a0,a
l,n (p1, ..., pn) := ∂wLa0,a

l,n (p1, · · · , pn)− ∂wLa0,a,O
l,n (Op1, · · · , Opn).
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From the flow equations (7.1.8) and (7.3.3), we can derive a FE for ∂wD
a0,a
l,n (p1, · · · , pn) :

∂1/a∂
wD

a0,a
l,n (p1, ..., pn) =

1

2

∫
k,Ba0

∂1/aC
a0,a(k̂)∂wD

a0,a
l−1,n+2(k, p1, ..., pn,−k)

+
1

2

∫
k,Ba0

∂wLa0,a
l−1,n+2(Ok,Op1, · · · , Opn,−Ok)

[
∂1/aC

a0,a(k̂)− ∂1/aC
a0,a(k̂O)

]
− 1

2

′∑
l1,l2
n1,n2

′∑
w1,w2,w3

cwi

[
∂w1L

a0,a
l1,n1+1(p1, · · · , pn1)∂

w3∂1/aC
a0,a(p̂)∂w2D

a0,a
l2,n2+1(−p, · · · , pn)

+ ∂w1D
a0,a
l1,n1+1(p1, · · · , pn1)∂

w3∂1/aC
a0,a(p̂O)∂w2L

a0,a,O
l2,n2+1(−Op, · · · , Opn)

+ ∂w1L
a0,a
l1,n1+1(p1, · · · , pn1)∂

w3(∂1/aC
a0,a(p̂)− ∂1/aC

a0,a(p̂O))∂w2L
a0,a,O
l2,n2+1(−Op, · · · , Opn)

]
rsym

p1 + · · ·+ pn ≡ 0

[
2π

a0

]
Op1 + · · ·+Opn ≡ 0

[
2π

a0

]
, (pi)1≤i≤n ∈ Ba0 . (7.3.9)

Restoration of O(4)-symmetry, i.e.

lim
a0→0,a→∞

D
a0,a
l,n (p1, ..., pn) = 0

follows from the following Theorem:

Theorem 14. ∀n, ∀w, ∀(pi)1≤i≤n ∈ Ba0 such that
∑n

i=1 pi,
∑n

i=1Opi ≡ 0
[
2π
a0

]
,

∣∣∣∂wD
a0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ a0

(
1

a
+m

)5−n−|w|
P1

(
log

1 + a0m

a0m

)
P2

({
a|pi|

1 + am

})
, (7.3.10)

where Pi denote polynomials with nonnegative coefficients, that depend, as well as the degree of the
polynomials on l, n, w but not on m, {pi}, a, a0.

7.3.3 Proof of Theorem 14

Proof. We prove (7.3.10) using the inductive scheme indicated previously. The only terms in which
(7.3.10) cannot be used as an induction hypothesis are∫

k,Ba0

∂wLa0,a,O
l−1,n+1(Ok,Op1, · · · , pn,−Ok)

[
∂1/aC

a0,a(k̂)− ∂1/aC
a0,a(k̂O)

]
(7.3.11)

and

∂w1L
a0,a
l1,n1+1(p1, · · · , pn1)

(
∂w3∂1/aC

a0,a(p̂)− ∂w3∂1/aC
a0,a(p̂O)

)
∂w2L

a0,a,O
l1,n1+1(−Op, · · · , Opn). (7.3.12)

Our bound on D
a0,a
l,n will be verified by proving it for these difference terms.
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• We first bound (7.3.11). Using the bound (7.3.7), we obtain∣∣∣∣∣
∫
k,Ba0

∂wLa0,a,O
l−1,n+1(Ok,Op1, · · · , Opn,−Ok)

[
∂1/aC

a0,a(k̂)− ∂1/aC
a0,a(k̂O)

]∣∣∣∣∣
≤
∫
k,Ba0

2a3
(
1

a
+m

)3−n−|w| ∣∣∣e−a2(k̂2+m2) − e−a2((k̂O)2+m2)
∣∣∣

×P1

(
log

1 + am

am

)
P2

(
a|k|

1 + am
,

{
a|pi|

1 + am

})
.

We define

IO
a0 :=

k ∈ Ba0 :

4∑
µ=1

sin2
a0kµ
2

≤
4∑

µ=1

sin2
a0(Ok)µ

2

 .

We decompose the integral over the Brillouin zone Ba0 into integrals over IO
a0 and IO

a0

c,∫
k,Ba0

2a3
∣∣∣e−a2(k̂2+m2) − e−a2(k̂O)2+m2)

∣∣∣P( a|k|
1 + am

,

{
a|pi|

1 + am

})
=

∫
k,IO

a0

2a3e−a2(k̂2+m2)
∣∣∣e−a2((k̂O)2−k̂2) − 1

∣∣∣P( a|k|
1 + am

,

{
a|pi|

1 + am

})
+

∫
(k,IO

a0
)c
2a3e−a2((k̂O)2+m2)

∣∣∣e−a2(k̂2−(k̂O)2) − 1
∣∣∣P( a|k|

1 + am
,

{
a|pi|

1 + am

})
.

From the definition of IO
a0 , we have

∀k ∈ IO
a0 , |k̂| ≤ |k̂O| ∀k ∈ IO

a0

c
, |k̂| > |k̂O|

which implies that ∣∣∣e−a2((k̂O)2−k̂2) − 1
∣∣∣ ≤ a2

∣∣∣(k̂O)2 − k̂2
∣∣∣ , ∀k ∈ IO

a0∣∣∣e−a2(k̂2−(k̂O)2) − 1
∣∣∣ ≤ a2

∣∣∣(k̂O)2 − k̂2
∣∣∣ , ∀k ∈ IO

a0

c

Using the bound (7.2.13), we obtain

a2
∣∣∣(k̂O)2 − k̂2

∣∣∣ ≤ a0
a
P(a|k|) . (7.3.13)

This gives the following bound∫
k,IO

a0

a3e−a2(k̂2+m2)
∣∣∣e−a2((k̂O)2−k̂2) − 1

∣∣∣ P

(
a|k|

1 + am
,

{
a|pi|

1 + am

})
≤ a0

a

∫
k,Ba0

a3e−a2(k̂2+m2) P

(
a|k|,

{
a|pi|

1 + am

})
≤ a0

a
P̃

({
a|pi|

1 + am

})
, (7.3.14)
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where the last inequality follows from lemma 13. Similarly, we obtain for the second integral
supported on IO

a0

c

∫
k,IO

a0

c
a3e−a2((k̂O)2+m2)

∣∣∣e−a2(k̂2−(k̂O)2) − 1
∣∣∣P( a|k|

1 + am
,

{
a|pi|

1 + am

})
≤ a0

a

∫
k,IO

a0

c
a3e−a2((k̂O)2+m2) P

(
a|k|,

{
a|pi|

1 + am

})
.

Performing the change of variables k → Ok yields∫
k,IO

a0

c
a3e−a2((k̂O)2+m2) P

(
a|k|,

{
a|pi|

1 + am

})
(7.3.15)

=

∫
k,O(IO

a0
)c
a3e−a2(k̂2+m2) P

(
a|O−1k|,

{
a|pi|

1 + am

})
≤
∫
k,Bαa0

a3e−a2(k̂2+m2) P

(
a|k|,

{
a|pi|

1 + am

})
≤ P̃

({
a|pi|

1 + am

})
,

where α is a parameter strictly less than 1 such that OBa0 ⊂ Bαa0 , and the last inequality follows
again from lemma 13. Combining (7.3.14) and (7.3.15) the first difference term is bounded as
follows∣∣∣∣∣
∫
k,Ba0

∂wLa0,a,O
l−1,n+1(Ok,Op1, · · · , Opn,−Ok)

[
∂1/aC

a0,a(k̂)− ∂1/aC
a0,a(k̂O)

]∣∣∣∣∣
≤ a0

(
1

a
+m

)4−n−|w|
P1

(
log

1 + a0m

a0m

)
P2

({
a|pi|

1 + am

})
. (7.3.16)

• The second step is to bound (7.3.12). For this step we use lemma 14. Using (7.2.18) for
∂w1L

a0,a
l1,n1+1 and ∂w2L

a0,a,O
l2,n2+1 we obtain

∣∣∣∂w1L
a0,a
l1,n1+1

(
∂w3∂1/aC

a0,a(p̂)− ∂w3∂1/aC
a0,a(p̂O)

)
∂w2L

a0,a,O
l2,n2+1

∣∣∣
≤ a0

(
1

a
+m

)4−n−|w|
P1

(
log

1 + a0m

a0m

)
P2

({
a|pi|

1 + am

})
.

Using the induction bound on ∂wiD
a0,a
li,ni+1 and the bound (7.2.5), we deduce that

∣∣∣∂wjL
a0,a
lj ,nj+1∂

w3∂1/aC
a0,a(p̂)∂wiD

a0,a
li,ni+1

∣∣∣
≤ a0

(
1

a
+m

)4−n−|w|
P1

(
log

1 + a0m

a0m

)
P2

({
a|pi|

1 + am

})
.
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Combining all the previous estimates of each term of the r.h.s. of the FE (7.3.9), we obtain∣∣∣∂1/a∂wD
a0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ a0

(
1

a
+m

)4−n−|w|
P1

(
log

1 + a0m

a0m

)
P2

({
a|pi|

1 + am

})
.

(7.3.17)
In particular, we have∣∣∣∂1/a∂wD

a0,a
l,2 (0, 0)

∣∣∣ ≤ a0

(
1

a
+m

)2−|w|
e−

a2m2

2 P1

(
log

1 + a0m

a0m

)
. (7.3.18)

• After these preparation steps, we integrate the flow equations (7.3.9):

C1) For the irrelevant terms, because of the boundary conditions

∂wD
a0,a0
l,n (p1, · · · , pn) = 0, ∀n+ |w| ≥ 5 (n ̸= 2)

∂wD
a0,a0
l,2 (p,−p) = bOl (a0)∂

w(p̂O)2 − bl(a0)∂
wp̂2, ∀|w| ≥ 3,

we integrate from 1/a0 to 1/a. We exclude for the moment (n, |w|) ∈ {( 4, 1); (2, 3)} which
have to be treated as relevant in this case.
∀n+ |w| > 5, such that n ̸= 2 we have∣∣∣∂wD

a0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ ∫ 1/a0

1/a
dλ

∣∣∣∣∂λ∂wD
a0,

1
λ

l,n (p1, · · · , pn)
∣∣∣∣

≤ a0 P1

(
log

1 + a0m

a0m

)
P2

({
a|pi|

1 + am

})∫ 1/a0

1/a
dλ (λ+m)5−n−|w|−1

≤ a0

(
1

a
+m

)5−n−|w|
P1

(
log

1 + a0m

a0m

)
P2

({
a|pi|

1 + am

})
.

(7.3.19)

For n = 2 and |w| ≥ 4, the boundary conditions are not equal to zero. Therefore,∣∣∣∂wD
a0,a
l,2 (p,−p)

∣∣∣ ≤ ∫ 1/a0

1/a
dλ

∣∣∣∣∂λ∂wD
a0,

1
λ

l,2 (p,−p)
∣∣∣∣+ ∣∣∣∂wD

a0,a0
l,2 (p,−p)

∣∣∣ .
We recall that

∂wD
a0,a0
l,2 (p,−p) = bOl (a0)∂

w
(
(p̂O)2 − p̂2

)
− ∂p2D

a0,a0
l,2 (0, 0)∂w(p̂)2

with
∂p2D

a0,a0
l,2 (0, 0) := bl(a0)− bOl (a0).

Integrating (7.3.18) from +∞ to 1/a and using the boundary conditions (7.2.17)-(7.3.6), we
deduce that∣∣∣∂wD

a0,a
l,2 (0, 0)

∣∣∣ ≤ a0

(
1

a
+m

)3−|w|
e−

a2m2

2 P1

(
log

1 + a0m

a0m

)
. (7.3.20)
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Remembering that a0 ≤ a we have∣∣∣∂p2Da0,a0
l,2 (0, 0)

∣∣∣ ≤ (1 + am) e−
a2m2

2 P1

(
log

1 + a0m

a0m

)
. (7.3.21)

Using (7.1.2), we deduce ∣∣∂w(p̂2)∣∣ ≤ O(1) a
|w|−2
0 , (7.3.22)

with O(1) a positive constant independent of p and a0. Hence, combining (7.3.21) with
(7.3.22) and using the bound (7.2.14) together with a0 ≤ a, we deduce for |w| ≥ 3∣∣∣∂p2Da0,a0

l,2 (0, 0)∂w(p̂2)
∣∣∣ ≤ a0

(
1

a
+m

)3−|w|
P

(
log

1 + a0m

a0m

)
. (7.3.23)

From the bound (7.3.7), we obtain

∂p2L
a0,a0,O
l,2 (0, 0) = 2bOl (a0) ≤ P

(
log

1 + a0m

a0m

)
. (7.3.24)

Using (7.2.11) and (7.2.12) together with (7.3.19), (7.3.23) and (7.3.24) we obtain∣∣∣∂wD
a0,a
l,2 (p,−p)

∣∣∣ ≤ a0

(
1

a
+m

)3−|w|
P1

(
log

1 + a0m

a0m

)
P2

(
a|p|

1 + am

)
. (7.3.25)

C2) For the cases n + |w| ≤ 5, the claim (7.3.10) has to be deduced from the respective inte-
grated flow equation (7.3.9) at the renormalization point followed by an extension to general
momenta using the Taylor Formula (??) for D

a0,a
l,2 . We proceed in the order of the induction

starting with the cases (n = 2, |w| = 3), (n = 2, |w| = 2) and going down in |w|. The
integral in

∂wD
a0,a
l,n (0, · · · , 0) = ∂wD

a0,∞
l,n (0, · · · , 0) +

∫ 1/a

0
dλ ∂wD

a0,1/λ
l,n (0, · · · , 0) (7.3.26)

is bounded using (7.3.17) at vanishing momenta:∣∣∣∣∣
∫ 1/a

0
dλ ∂wD

a0,1/λ
l,n (0, · · · , 0)

∣∣∣∣∣ ≤ a0

∫ 1/a

0
dλ (λ+m)5−n−|w|−1

P

(
log

1 + a0m

a0m

)

≤ a0

(
1

a
+m

)5−n−|w|
P

(
log

1 + a0m

a0m

)
.

Hence, the assertion is established at the renormalization point. In each case extension to
general momenta is guaranteed by bounds established before. This concludes the proof of
Theorem 14.
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7.4 Translation invariance

7.4.1 Some properties of the Schwartz space

We recall the definition of the Schwartz space

S
(
R4n
)
:=

{
f ∈ C∞ (R4n

)
| ∀ (α, β) ∈ N4n × N4n, sup

x∈R4n

∣∣∣xαDβf(x)
∣∣∣ < +∞

}
The Schwartz space is a Fréchet space endowed with a topology induced by the filtrant family of
semi-norms

Np (·) =
∑

|α|,|β|≤p

∥·∥α,β , p ∈ N

where
∥f∥α,β := sup

x∈R4n

∣∣∣xαDβf(x)
∣∣∣

Lemma 15. Let f ∈ S
(
R4n
)

and Pr a polynomial of degree r, we have the following bound

|Pr (x1, · · · , xn) f(x1, · · · , xn)| ≤

(
n∏

i=1

1

(1 + |xi|)s

)
Ns+r (f) , ∀s ∈ N

The proof of Lemma 15 which we do not reproduce here uses the definition of Schwartz functions and
will be useful in the sequel. For more details about the properties of Schwartz space and tempered
distributions, we refer the reader to [48].

7.4.2 Translation invariance

The lattice breaks Euclidean translation invariance. In this section, we prove that the continuum limit
restores translation invariance.
The regularized (CAS) n-point functions in position space are tempered distributions that we define
through their Fourier transform, that is for f ∈ S(R4n)

⟨La0,a
l,n,Λa0

, f⟩S′ ,S :=

∫
Bn

a0

d4p1 · · · d4pn
(2π)4n

L
a0,a
l,n (p1, · · · , pn) δ(4)[

2π
a0

](p1 + · · ·+ pn)F
−1(f) (p1, · · · , pn) ,

where
δ
(4)[
2π
a0

](p1 + · · ·+ pn) :=
∑
k∈Z4

δ(4)
(
p1 + · · ·+ pn − 2kπ

a0

)
accounts for the invariance of La0,a

l,n under lattice translations and F−1(f) is the inverse Fourier trans-
form of f . L

a0,a
l,n,Λa0

is well defined as a tempered distribution since

L
a0,a
l,n (p1, · · · , pn) δ(4)[

2π
a0

](p1 + · · ·+ pn)
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is a 2π
a0

-periodic distribution [48].
Similarly, we define the renormalized (CAS) n-point functions in position space

⟨L0,∞
l,n,x, f⟩S′ ,S :=

∫
R4n

d4p1 · · · d4pn
(2π)4n

L
0,∞
l,n (p1, · · · , pn) δ(4)(p1 + · · ·+ pn)F

−1(f) (p1, · · · , pn)

L
0,∞
l,n,x denotes the continuum limit position space (CAS) n-point function. It is a tempered distribution

for which the translation by a vector c ∈ R4 is defined as

⟨τcL0,∞
l,n,x, f⟩S′ ,S := ⟨L0,∞

l,n,x, τ−cf⟩S′ ,S , ∀f ∈ S
(
R4n
)

and
(τ−cf) (p1, · · · , pn) := f (p1 + c, · · · , pn + c)

Therefore,

⟨τcL0,∞
l,n,x, f⟩S′ ,S

=

∫
R4n

n∏
i=1

d4pi
(2π)4n

L
0,∞
l,n (p1, · · · , pn) δ(4)(p1 + · · ·+ pn) e

−i(p1+···+pn)·c F−1(f) (p1, · · · , pn)

which implies
⟨τcL0,∞

l,n,x, f⟩S′ ,S = ⟨L0,∞
l,n,x, f⟩S′ ,S , ∀f ∈ S

(
R4n
)
.

The continuum limit of the UV cutoff regularized theory is clearly invariant under translations. Thus,
proving the translation invariance of the continuum limit of the lattice regularized theory amounts to
establishing the following convergence result

Theorem 15. Let f ∈ S
(
R4n
)
,

⟨La0,a
l,n,Λa0

, f⟩S′ ,S −→ ⟨L0,∞
l,n,x, f⟩S′ ,S for a0 → 0, a→ ∞ (7.4.1)

The proof of Theorem 15 relies on the following lemma

Lemma 16. Let f ∈ S
(
R4n
)
,

⟨δ(4)[
2π
a0

](p1 + · · ·+ pn), f⟩S′ ,S −→ ⟨δ(4)(p1 + · · ·+ pn), f⟩S′ ,S when a0 → 0 (7.4.2)

7.4.3 Proof of lemma 16

Proof. Let f ∈ R4n, using lemma 15, one can verifies that∣∣∣⟨δ4 (p1 + · · ·+ pn) , f⟩S′ ,S

∣∣∣ ≤ CN5(n−1)(f)
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which proves that δ4 (p1 + · · ·+ pn) is indeed a tempered distribution. We have that

⟨δ(4)[
2π
a0

], f⟩S′ ,S =

∫
R4n

d4p1 · · · d4pn δ(4)[
2π
a0

](p1 + · · ·+ pn)f(p1 + · · ·+ pn)

=

∫
R4(n−1)

d4p2 · · · d4pn
∑
k∈Z4

f

(
2kπ

a0
−

n∑
i=2

pi + · · ·+ pn

)
.

We write∑
k∈Z4

f

(
2kπ

a0
−

n∑
i=2

pi, · · · , pn

)
= f

(
−

n∑
i=2

pi, · · · , pn

)
+
∑

k∈Z4,∗

f

(
2kπ

a0
−

n∑
i=2

pi, · · · , pn

)
.

Since f ∈ S(R4n), we have the following bound for any k ∈ Z4,∗,∣∣∣∣∣f
(
2kπ

a0
−

n∑
i=2

pi, p2, · · · , pn

)∣∣∣∣∣ ≤ 1(
|
∑n

i=2 pi|
2 +

∣∣∣2kπa0
−
∑n

i=2 pi

∣∣∣2)4

n∏
i=2

1

(1 + |pi|)5
Ns(f),

with s = 5(n− 1) + 8 and

Ns(f) = sup
pi∈R4

sup
|α|≤13n

|p1|α1 · · · |pn|αn |f(p1 + · · ·+ pn)| .

Using
1

|a|2 + |b|2
≤ 2

|a+ b|2
, ∀a, b ∈ Rp,∗,

we obtain ∣∣∣∣∣f
(
2kπ

a0
−

n∑
i=2

pi, p2, · · · , pn

)∣∣∣∣∣ ≤ C

(
a0
|k|

)8 n∏
i=2

1

(1 + |pi|)5
Ns(f).

Since ∑
k∈Z4,∗

1

|k|8
≤
∑
ki∈Z∗

4∏
i=1

1

|ki|2
=

(
π2

3

)4

< +∞,

we deduce

⟨δ(4)[
2π
a0

], f⟩S′ ,S =

∫
R4(n−1)

d4p1 · · · d4pnf

(
−

n∑
i=2

pi + · · ·+ pn

)
+ C a80 Ns(f)

= ⟨δ(4)(p1 + · · ·+ pn), f⟩S′ ,S+ C a80 Ns(f)

together with the useful bound ∣∣∣∣∣⟨δ(4)[
2π
a0

], f⟩S′ ,S

∣∣∣∣∣ ≤ C(1 + a80)Ns(f) . (7.4.3)

This establishes that for a0 → 0 we have

⟨δ(4)[
2π
a0

](p1 + · · ·+ pn), f⟩S′ ,S →a0→0 ⟨δ(4)(p1 + · · ·+ pn), f⟩S′ ,S .
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7.4.4 Proof of Theorem 15

Proof. We recall the boundedness inequality (7.2.18) for the (CAS) n-point functions. For all (pi)1≤i≤n ∈
Ba0 such that

∑n
i=1 pi ≡ 0

[
2π
a0

]
, we have

∣∣∣∂wLa0,a
l,n (p1, · · · , pn)

∣∣∣ ≤ (1

a
+m

)4−n−|w|
P1

(
log

1 + am

am

)
P2

({
a|pi|

1 + am

})
This proves that La0,a

l,n are C∞ w.r.t. to the momenta and are at most of polynomial growth. Therefore,

∀f ∈ S
(
R4n
)
, L

a0,a
l,n (p1, · · · , pn)f ∈ S

(
R4n
)

Taking the limit in the boundedness inequality (7.2.18), the same reasoning applies to L
0,∞
l,n (p1, · · · , pn)

to prove that
∀f ∈ S

(
R4n
)
, L

0,∞
l,n (p1, · · · , pn)f ∈ S

(
R4n
)
.

We write

ga0,a(p1, · · · , pn) := L
a0,a
l,n (p1, · · · , pn)f(p1, · · · , pn),

g(p1, · · · , pn) := L
0,∞
l,n (p1, · · · , pn)f(p1, · · · , pn).

Using (7.4.3), we obtain ∣∣∣∣∣⟨δ(4)[
2π
a0

], ga0,a − g⟩

∣∣∣∣∣ ≤ C(1 + a80) Ns(ga0,a − g) .

Taking the limit â0 → 0 in (7.2.21) we find∣∣∣La0,∞
l,n (p1, · · · , pn)−L

0,∞
l,n (p1, · · · , pn)

∣∣∣ ≤ a0m
5−n

(
log

1

a0m

)ν

P

({
|pi|
m

})
,

where ν is the same constant as in (7.2.21). Therefore, for any polynomial Q with nonnegative
coefficients we obtain∣∣∣Q ({|pi|})

(
L

a0,∞
l,n (p1, · · · , pn)−L

0,∞
l,n (p1, · · · , pn)

)
f
∣∣∣

≤ a0m
5−n

(
log

1

a0m

)ν

P̃

({
|pi|
m

})
|f(p1, · · · , pn)|.

Thus,

Ns(ga0,a − g) ≤ a0m
5−n

(
log

1

a0m

)ν

Nr(f)

which implies
⟨δ(4)[

2π
a0

], ga0,a − g⟩ →a0→0,a→∞ 0



210 CHAPTER 7. RENORMALIZATION OF THE LATTICE REGULARIZED ϕ44 MODEL

Lemma 16 gives that
⟨δ(4)[

2π
a0

] − δ(4), g⟩ →a0→0,a→∞ 0,

so that
⟨δ(4)[

2π
a0

], ga0,a⟩ →a0→0,a→∞ ⟨δ(4), g⟩.

Hence, for all f ∈ S(R4n) we have

⟨La0,a
l,n,Λa0

, f⟩S′ ,S −→ ⟨L0,∞
l,n,x, f⟩S′ ,S for a0 → 0, a→ ∞.

Concluding remarks

We have presented an alternative proof of the perturbative renormalizability of massive lattice
regularized ϕ44-theory. The starting point were the bounds (7.2.18)-(7.2.20) which prove the existence
of the continuum limit. In the flow equation formalism, they serve at the same time as induction
hypotheses for the inductive proof. Bounds of this sort have been established rigorously for all theories
of physical interest, including gauge theories [9]. In this context it is also interesting to study the
difference

L
a0,a
l,n,Λ0

−L
a0,a
l,n,a0

where L
a0,a
l,n,Λ0

denotes the momentum space regularized correlation functions and L
a0,a
l,n,a0

denotes the
lattice regularized correlation functions. The UV-cutoff can be related to the lattice parameter by
Λ0 = 1/a0, similarly for the corresponding flowing parameters Λ = 1/a. The study of this difference
by flow equations should allow to prove that in the limit a0 → 0 and a → ∞, the difference vanishes,
implying consistency, that is the two regularization schemes converge to the same limit. This would be
an alternative way to prove that the continuum limit of the lattice regularization is given by the O(4)-
symmetric correlation functions. The approach presented in this chapter could also be generalized to
massless lattice regularized theories [49]. In this case the appearing infrared singularities have to be
controlled in a similar way as it has been done for theories with momentum cutoff regularization [9].
A particularly interesting subject is the extension to gauge theories since the lattice regularization
respects a priori gauge invariance. It seems however that analyzing the flow equations still requires a
gauge fixing procedure. In any case the important issue is to prove that the continuum limit respects
the continuum Ward identities for suitable renormalization conditions.



Conclusion and future perspectives

In this thesis, we studied the renormalization problem of theories with no translation invariance in
the context of three models: the semi-infinite model, the ϕ44 theory with an interaction supported on the
half-space and the lattice regularized ϕ44 theory. First, we considered the renormalization problem of
the semi-infinite (massive) scalar field model as well as the properties of the counter-terms that appear
in the effective action associated to this theory. We started with a general approach to this problem
by imposing constant renormalization conditions (more precisely BPHZ renormalization conditions)
which implies that the theory is renormalizable by adding five position dependent counter-terms to the
effective action given by

LΛ0,Λ0(ϕ) =
λ

4!

∫
V
ϕ4(z, x) +

1

2

∫
V

(
aΛ0(z)ϕ2(z, x)− bΛ0(z)ϕ(z, x)∆xϕ(z, x)

− dΛ0(z)ϕ(z, x)∂2zϕ(z, x) + sΛ0(z)ϕ(z, x)(∂zϕ)(z, x) +
2

4!
cΛ0(z)ϕ4(z, x)

)
.

Then, we established that there exists a particular choice of the renormalization conditions for
which the counter-terms are independent of the position in space and moreover are proportional to
terms, which have the same structure as those appearing in the original Hamiltonian. We proceeded
by constructing a solution of the flow equation of the semi-infinite model in two steps:

• The propagator of the semi-infinite model is a sum of two contributions: the usual translationally
invariant ϕ44 model propagator and a "surface" part which is singular only if at least one of the
arguments of the propagator approaches the surface. The key idea of the method presented
in this thesis is to analyze the correlation distributions generated by each of these two parts.
We considered the "surface" correlation distributions and established that these are bounded
uniformly with respect to the UV cutoff. For a suitable choice of renormalization conditions,
these correlation distributions are renormalized by adding the following two surface counter-
terms

sΛ0
⋆

∫
R3

d3x ϕ2(0, x) + 2eΛ0
⋆

∫
R3

d3x ϕ(0, x)(∂nϕ)(0, x) , ⋆ ∈ {R,N}.

For the Dirichlet case, no surface counter-term is needed. The proof of this statement is based
on the a priori knowledge of bounds on the bulk correlation distributions smeared with an ap-
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propriate set of test functions. The bounds that were used initially are obtained by considering
BPHZ renormalization conditions, which again implies position dependent counter-terms.

• The second step consisted in exploring in more detail the structure of the counter-terms that
renormalize the bulk correlation distributions. One would expect from a naive approach to this
problem that these correlation distributions are renormalized by the usual counter-terms of the
translationally invariant ϕ44 theory as they share the same free theory. The only difference stems
from the fact that the bulk correlation distributions correspond to a scalar field theory in R4 with
an interaction supported on the half-space R+×R3, which is another manifestation of the breaking
of translation invariance. For this model, we proceeded in chapter 6 by using our knowldege on
the renormalizability of the translationally invariant ϕ44 theory. The key idea is to construct a
solution to the bulk flow equation of the following form

D
Λ,Λ0

l,n ((z⃗n, p⃗n)) :=
n∏

i=1

χ+(zi) L
Λ,Λ0

l,n ((z⃗n, p⃗n)) + D̂
Λ,Λ0

l,n ((z⃗n, p⃗n)) , (.0.4)

where L
Λ,Λ0

l,n are the translationally invariant ϕ44 theory correlation distributions and D̂
Λ,Λ0

l,n is a
difference term that it is renormalized by

sΛ0

∫
R3

d3x ϕ2(0, x) + 2eΛ0

∫
R3

d3x ϕ(0, x)(∂nϕ)(0, x) .

The bound on D
Λ,Λ0

l,n is compatible with the inductive bound on S
Λ,Λ0

l,n;⋆ .

As a conclusion to all the steps summarized above, the n-point correlation distributions

n∏
i=1

χ+(zi) L
Λ,Λ0

l,n ((z⃗n, p⃗n)) + D̂
Λ,Λ0

l,n ((z⃗n, p⃗n)) + S
Λ,Λ0

l,n;⋆ ((z⃗n, p⃗n))

is the solution of the semi-infinite flow equation that imply the following bare interaction

LΛ0,Λ0
⋆ (ϕ) =

λ

4!

∫
V
ϕ4(z, x) +

1

2

∫
V

(
aΛ0
∞ ϕ2(z, x)− bΛ0

∞ ϕ(z, x)∆ϕ(z, x) +
2

4!
cΛ0
∞ ϕ4(z, x)

)
+

1

2

(
sΛ0 + sΛ0

⋆

) ∫
R3

d3x ϕ2(0, x) +
(
eΛ0 + eΛ0

⋆

) ∫
R3

d3x ϕ∂nϕ, ⋆ ∈ {R,N}.

Now, let us discuss to which extent the method developed here can be used in the case of other
boundary field theories. The tools we presented here can be adapted to prove the renormalizability of
scalar field theories in more general geometries. Let us mention few examples:

• A film geometry in which the volume V of the system is bounded by two d − 1 dimensional
parallel plates of infinite extent which are separated by a distance L. The surface consists of two



CONCLUSION AND FUTURE PERSPECTIVES 213

disconnected pieces: the planes S0 =
{
(x, z) ∈ Rd| z = 0

}
and SL =

{
(x, z) ∈ Rd| z = 0

}
. The

volume is V := VL =
{
(x, z) ∈ Rd|0 ≤ z ≤ L

}
. For d = 4 and for Robin, Neumann and Dirichlet

boundary conditions imposed on the plates S0 and SL, the theory is expected to be renormalized
by the usual bulk counter-terms, whereas the surface singularities can be absorbed by the counter-
terms of the semi-infinite theory for each plate. For periodic boundary conditions, the volume
VL has the topology of S1 × R3, where S1 denotes the unit circle. The UV singularities of this
theory can be renormalized by adding the translationally invariant ϕ44 theory counter-terms only.

• A defect plane for which the volume is the entire space Rd. The translational invariance is in
this case broken by a defect plane, DP, of infinite extent in d − 1 dimensions, rather than by a
surface.

• Edges and curvature effects: The real systems are bounded by surfaces which are not necessarily
planar. Furthermore, even if all surfaces are planar, the system will have edges and corners.
The problem of the renormalization of such systems was approached for the first time by Cardy
in 1983 [50]. To investigate the critical behaviour, Cardy considered a wedge-shaped geometry
bounded by two semi-infinite plates meeting at an angle θ. An edge contribution must be added to
the Hamiltonian. In addition to the bulk and surface singularities, there exist some singularities
which are localized at the edge. An interesting problem would be to study the renormalizability
of such model to all orders of perturbation theory and for more general boundary conditions.

• Another problem concerns a rigorous study of the renormalization of the scalar field theories in
curved spacetimes in the presence of boundaries. Symanzik [3] explored a simple version of this
problem in 1981 by considering systems bounded by smooth d−1-dimensional surfaces which are
of the form zS(xS) = 0. He showed that besides the bulk and surface counter-terms necessary for
absorbing the UV singularities in the case of a flat surface, additional curvature-dependent ones
are required. Their form follows from a power-counting argument. In the case of the Dirichlet
boundary condition, these curvature-dependent counter-terms do not contribute.

The common complexity between the problems mentioned above is the exact knowledge of the prop-
agator. We believe that our method holds for establishing renormalizability in the previous cases as
long as we know at least sharp bounds on the propagator(s).

Let us conclude with a broader issue, which concerns the use of the flow equations in exploring
rigorously the critical behaviour of systems and establishing rigorous results with respect to their phase
diagrams. A first step then would be the study of the Callan-Symanzik equation in the context of the
Polchinski flow equation.
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Titre : Renormalisation perturbative des théories de champ brisant l’invariance par translation

Mots clés : équations de flot, espace semi-infini, réseau, renormalisation, propagateurs, contre-termes

Résumé : L’objectif de cette thèse est de comprendre
comment la renormalisation est affectée par la bri-
sure de la symétrie de translation à travers les deux
exemples de la théorie scalaire dans R4 régularisée
par un réseau et celui de la théorie scalaire dans
le demi-espace R+ × R3 euclidien appelée modèle
semi-infini. Nous considérons en premier le modèle
semi-infini en établissant une preuve rigoureuse de
la renormalisation de cette théorie en nous basant
sur les équations de flot. Dans un premier temps,
nous établissons la renormalisation perturbative de
cette théorie en fixant des conditions de renormalisa-
tion BPHZ. Cela a pour conséquence que les contre-
termes sont des fonctions qui dépendent de la po-
sition dans le demi-espace. La deuxième partie de
cette thèse est consacrée à une étude détaillée des

contre-termes. Nous établissons qu’il est possible de
choisir ordre par ordre des conditions de renorma-
lisation pour lesquelles les contre-termes sont des
constantes. En outre, ces contre-termes sont donnés
par ceux de la théorie invariante par translation et
deux contre-termes surface proportionnels à

∫
S
ϕ2

et
∫
S
ϕ∂nϕ dans le cas de conditions aux bords du

type Robin et Neumann. Pour Dirichlet, les contre-
termes usuels de la théorie invariante par transla-
tion sont suffisants pour rendre la théorie finie. La
dernière partie de cette thèse est dédiée à l’étude de
la théorie scalaire massive ϕ4 régularisée par réseau.
Nous démontrons qu’elle est renormalisable, et que
les symétries euclidiennes sont retablies dans la li-
mite du continu.

Title : Perturbative renormalization of QFTs which are not translation invariant

Keywords : Flow equations, renormalization, semi-infinite model, lattice, counter-terms, propagators

Abstract : This thesis focuses on the study of the
perturbative renormalization of theories that break
translation invariance using the Polchinski flow equa-
tions. We study in particular the scalar field theory
in R4 regularized by a lattice and the scalar field
theory in the semi-infinite geometry R+×R3. First, we
prove the renormalizability of the semi-infinite model
using BPHZ renormalization conditions in the mixed
position-momentum space. However, this choice of
renormalization conditions implies having position de-
pendent counter-terms in the effective action. We go
one step further in studying the renormalizability of
the model, by investigating in more details the effect
of the presence of the surface on the counter-terms

and we prove that for a particular choice of renor-
malization conditions, the theory is renormalized by
the usual counter-terms of the translationally invariant
theory and by surface counter-terms proportional to∫
S
ϕ2 and

∫
S
ϕ∂nϕ with S denoting the surface of the

half-space in the case of Neumann and Robin boun-
dary conditions. For the Dirichlet case, we establish
that the theory is renormalized using only the bulk
counter-terms. We end the thesis by giving a rigorous
proof of renormalizability of the massive scalar field
ϕ4
4 model regularized by a lattice. The novelty of this

work lies in giving a proof of the restoration of the Eu-
clidean symmetries in the continuum limit.
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