
HAL Id: tel-04482954
https://theses.hal.science/tel-04482954

Submitted on 28 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Versatile machine learning for neurodevelopmental
imaging

Seongbin Lim

To cite this version:
Seongbin Lim. Versatile machine learning for neurodevelopmental imaging. Artificial Intelligence
[cs.AI]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IPPAX006�. �tel-04482954�

https://theses.hal.science/tel-04482954
https://hal.archives-ouvertes.fr

626

N
N

T
:

20
23

IP
P

A
X

00
6

Versatile machine learning for
neurodevelopmental imaging

Thèse de doctorat de l’Institut polytechnique de Paris
préparée à École polytechnique

École doctorale n∘626 : École doctorale
de l’Institut polytechnique de Paris (EDIPP)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 13 octobre 2023, par

Seongbin LIM

Composition du Jury :

Elsa ANGELINI Présidente du jury

Professeure associée, Telecom Paris

Palaiseau

Thomas WALTER Rapporteur

Professeur, Mines Paris

Paris

David ROUSSEAU Rapporteur

Professeur, Université d’Angers

Angers

Thierry PÉCOT Examinateur

Ingénieur de recherche, Université de Rennes 1

Rennes

Emmanuel BEAUREPAIRE Co-directeur de thèse

Directeur de recherche, École Polytechnique

Palaiseau

Anatole CHESSEL Co-directeur de thèse

Professeur assistant, École Polytechnique

Palaiseau

Contents

Preface 1

Acknowledgement 3

Résumé de la thèse en français 5

Abbreviations and Symbols 7

1 Introduction 9
1 Microscopy and Bioimage Data . 11

1.1 Neurodevelopmental Imaging Techniques 11
1.2 Bioimage Informatics and Computer Vision 17
1.3 Deep Learning Approaches for Bioimages 20
1.4 Limitations and Challenges of Current Solutions 29

2 General Trends of Computer Vision Solutions 34
2.1 Supervised Learning Dominates . 34
2.2 Unsupervised Learning is Pursued 35
2.3 Self-supervised Learning Arrives . 37
2.4 Self-supervised Learning in Computer vision 38

3 Self-supervised Learning in This Thesis . 43
3.1 Generative Model . 43
3.2 Representation Learning . 47

4 Objectives of The Thesis . 53

2 Supervised learning and Versatility 57
1 How powerful and versatile SOTA supervised models? 58

1.1 Existing solutions . 59
1.2 Why they failed and What to do next 60
1.3 Supervised learning in practice . 60

2 Bioimageloader: facilitate machine learning for bioimages 64
2.1 Why bioimageloader? . 65
2.2 Overview . 65
2.3 Technical details . 71

3 Versatile supervised learning . 75
3.1 Clustering . 75
3.2 Versatile supervised instance segmentation models 80

4 Conclusions . 87
5 Discussions and Perspectives . 87

Contents

3 NU-Net: Self-supervised versatile CNN filter 89
1 Introduction . 90

1.1 Background . 90
1.2 Related works . 92

2 Methods . 94
2.1 Perceptual loss . 94
2.2 Morphological loss . 95
2.3 Data . 96
2.4 Training . 98
2.5 Early NU-Nets . 100

3 Results . 103
3.1 Perceiving styles . 103
3.2 Loss curves . 104
3.3 Contrast enhancement . 104
3.4 Controlling filtering magnitude . 106
3.5 Side effect: Long objects . 107
3.6 Application: Napari plugin . 108
3.7 Artifacts and Limitations . 110
3.8 More figures . 111

4 Discussions and Perspectives . 113
5 Conclusions . 118

4 Applications 119
1 Segmenting fibroblasts on human skins . 119
2 Workflow integration . 123

2.1 Napari plugin: Proofreading ChroMS Brainbow 123
2.2 Napari plugin: BigAnnotator . 125

3 Segmentation in ChroMS’s pipeline . 128

5 Conclusions 131
1 General conclusions and Perspectives . 131
2 Wider Perspectives . 133

About me 139

A Short Introduction to Machine Learning 141
1 Machine learning with Examples . 141

1.1 Population: Regression . 142
1.2 Checkers: Memorization vs. Learning 143
1.3 Chatbot: Natural language processing and Self-supervised learning 144
1.4 Handwritten digits: Computer vision and Convolutional layer . . . 146

2 Generative model . 151
2.1 Probability Density Distribution . 151
2.2 Generation Process . 152
2.3 Distance between Distributions . 152

3 Artificial neural network . 153
3.1 AI or AGI? Call it simply Deep learning 153
3.2 Perceptron . 154
3.3 Optimization and Training . 156

iv

Contents

4 Deep learning in Computer vision . 165
4.1 Deep neural network and Deep learning 165
4.2 Deep convolutional neural networks 166

B List of Datasets 173

C Metric 177

D [Publication] NU-Net 181

E [Publication] bioimageloader 193

v

Preface

I targeted my readers to be not only computer scientists but also scientists in other
domains as well as whomever simply want to know about the topic. I made this decision
mainly for two reasons. (i) Deep learning, which is the main interest of this thesis, is
fairly new and moving so fast. What used to be the state of the arts when I started my
PhD are hardly competitive to the current ones, and new papers have been pouring out
every moment. I thought that it was imperative to review how deep learning have evolved
to talk about it. (ii) I have mostly worked with non-computer scientists and found that
my colleagues had hard time understanding my words during my PhD thesis. After all, I
worked as a computer scientist in the advanced microscopy team of Laboratoire d’Optique
et Biosciences (LOB; laboratory for optics and biosciences), where my colleagues were
microscopists, microscope engineers, physicists, biologists, chemical biologists, and those
who were not necessarily familiar with computer science nor computer engineering. I
realized that this decision should also benefit friends of mine who kindly showed their
interest in my work, and my family who are mostly not scientists. Consequently, I spent
a fair amount of time in the appendix to give background knowledge of machine learning
as well as deep learning and to walk you through with examples, which some of you
might think too basic. Additionally, I sometimes used the first-person narrative when I
expressed my own opinions, in discussion with my supervisors, which is not typical in
scientific writing but makes texts more approachable to wider audiences. For those who
have prior knowledge about the topic, I hope that this appendix would be a refresh and
tell you my perspective for the topic, so that you can better understand in a plain language
where my ideas come from and thus my work. I tried my best to clarify definitions of each
terminology I used, to put as many figures and graphics as possible, to explain equations
with concrete examples, and to use plain and simple languages. You will also find many
footnotes to add more explanation or simply to give interesting facts. I must say that
I enjoyed the process. Yet, despite all my efforts, you may find this book still boring
and too long, because, after all, it is a PhD thesis, a three-year-long scientific diary (and
sorry, it is not a science fiction). Last but not least, as a disclaimer, this book lies in
the domain of computer science and machine learning engineering. Thus, it covers mainly
machine learning and computational infrastructure of microscopes for neurodevelopmental
imaging, but not much of neurodevelopmental imaging techniques in details.

Contents

Chapter overview
This thesis has 5 chapters. They are organized as followed:

Chapter 1 is an introduction. It covers computer vision and machine learning, and
reviews current states in general. Then, self-supervised learning follows as an emerging
trend as well as the main topic of the manuscript. Lastly, going more specific, I state
challenges that bioimages have been facing in computer vision with machine learning
technology and set problems.

Chapter 2 is about seeking versatility in machine learning using supervised learning
in the context of bioimages, in particular for segmenting instances of cells and nuclei. I
introduce bioimageloader, a programming library, to address many practical issues that
bioimages have been facing and to facilitate machine learning researches.

Chapter 3 is the main focus of this thesis, where I explored self-supervised learning
for more versatility. The chapter is dedicated to a novel self-supervised learning method
and the resulted model, called NU-Net which is a versatile filter for cells or nuclei. I will
describe its ideas, and show trials and failures, successes, and its potentials.

Chapter 4 covers other projects that I was involved in. They were helping analysis of
assessing skin damage to UV light with image segmentation, developing a tool to make
it easy to proofread automatic segmentation of brain cells, and creating an interface to
facilitate and accelerate segmentation annotation.

Chapter 5 summarizes and concludes my works. Additionally, it opens discussion for
potentials of modern machine learning technologies and their concerns.

Reach out to me As a reader of my thesis, you are always welcome to reach out to me.
I really appreciate that you picked it up. If you have any questions, just want to have a
chat, or say a word, please write me an email or drop me a message through social media.
I also have a homepage where I occasionally make updates.

• Email: sungbin246@gmail.com

• GitHub: https://github.com/sbinnee

• LinkedIn: https://www.linkedin.com/in/seongbin-lim-696666159

• Twitter: @TheSbinnee

• Homepage: https://sbinnee.github.io/

2

mailto:sungbin246@gmail.com
https://github.com/sbinnee
https://www.linkedin.com/in/seongbin-lim-696666159
https://twitter.com/TheSbinnee
https://sbinnee.github.io/

Acknowledgement

I thank my two supervisors, Emmanuel Beaurepaire and Anatole Chessel. Emmanuel
gave me wider views outside computer science while I talked a lot about computers with
Anatole. I especially thank Anatole not only because he helped me a lot to progress
my projects but also because he was patient, listened to me and respected my opinions.
I thank Lien Ung and Chiara Stringari for their collaboration that resulted in my first
publication during my thesis. I thank Hugo Blanc for giving access to the ChroMS data,
and Josephine Morizet for the THG data. I thank collaborators Jean Livet and Gabriel
Kaddour in Institut de la Vision and Ignacio Arganda-Carreras for working together on
the ChroMS project.
I supervised three interns from Master’s programs with Anatole and thank each of them.
Slimane Baamara worked on a plugin software bigannotator to improve an annotation
pipeline. Xingjian Zhang contributed to bioimageloader by implementing new collec-
tions and improving documentation. Tanguy Rolland helped me to develop a plugin of
NU-Net for Napari viewer and also contributed to analyzing collections of bioimageloader.
I cannot thank enough my colleagues who welcomed me and spent time together in and
out of the laboratory. I specially thank my lunch gang: Anastasia, Júlia, Sophie, Maëlle,
and Robin. Food has become such an important part of my life ever since I became vegan,
and they were with me for every lunch. It was my favorite moment of the day. Particu-
larly, Ana, Júlia, and Sophie literally fed me during my writing period of this very thesis
when I had no time to cook. I appreciate all the helps so much that kept me alive and
helped me go through hard time. For that matter, I also thank Chiara for introducing
me a bowl of awesome Italian soup.
I spent so much time with Ana. I enjoyed time with her a lot, drinking teas, sharing
series, introducing new recipes and ingredients, and hanging out in Paris. Also, it was my
pleasure to get to know sweet and amazing Ada the dog. I thank the hiking gang: Arthur,
Maëlle, and Clément. I will not forget our experience in Normandie. Arthur made me a
lot of good memories: invited me to Bretagne, played board games a lot together, and
invited me many times to his place for barbecues. I wish I had more time with Clément
both for working and having fun. With Karsten and Arthur, I talked about and played
guitars.
I thank both my Korean and Slovak family for supporting my study abroad. More than
anyone, I thank Janka, my madam baby, my ex-girlfriend and now my partner and wife.
Without her support, I may not have had decided to come to France and could not have
had this amazing experience. I truly appreciate her devotion that let me start this journey
in the first place. Even though we were in distance for the most period of my PhD, I
relied on her every time I had hard time.

Résumé de la thèse en français

Le présent travail de thèse s’intéresse au développement et l’application de modèles poly-
valents d’apprentissage automatique pour l’imagerie neurodéveloppementale.

Dans l’introduction sont exposé les types de données abordés, à savoir les bioimages,
caractérisées par leur grande taille et leur résolution allant jusqu’aux noyaux cellulaires
et présenté les techniques de microscopie permettant d’acquérir de telles données. La
bioinformatique des bioimages et la vision par ordinateur dans ce contexte sont ensuite
abordées, soulignant les tâches telles que le stockage, le transfert, la visualisation et la
préparation des données et la segmentation d’image, une tâche cruciale de vision par or-
dinateur qui est au cœur de cette thèse.

Sont discuté ensuite les avantages des approches d’apprentissage profond pour l’analyse
des bioimages. Leur généralisabilité sans précédent dans les tâches de vision par ordinateur
ont conduit à la création de nombreux modèles et ensembles de données pour segmenter,
restaurer ou débruiter les bioimages, soulignant également l’importance des outils logi-
ciels pour distribuer ces modèles. Les limitations actuelles des solutions d’apprentissage
profond pour les bioimages sont ensuite discutées, principalement liées à l’apprentissage
supervisé nécessitant des ensembles de données annoté entièrement manuellement. Cela a
motivé l’exploration, dans la lignée d’une tendances générales actuel en vision par ordina-
teur, d’un passage de l’apprentissage supervisé à d’autres schémas tels que l’apprentissage
non- ou auto- supervisé.

L’apprentissage auto-supervisé est d’abord apparu dans le domaine du traitement du lan-
gage naturel. Malgré les défis d’application directe de l’auto-attention (self attention)
aux données image, d’autres méthodes basées sur des idées similaires ont été dévelop-
pées, telles que l’apprentissage par contraste (contrastive learning) et la perte InfoNCE.
Les concepts fondamentaux de l’apprentissage auto-supervisé, tels que la modélisation
générative et l’apprentissage de représentation, ont été identifiés comme essentiels pour
développer un nouveau cadre adapté aux bioimages. L’accent a été mis sur les pro-
grès dans l’apprentissage auto-supervisé en vision par ordinateur, malgré les défis liés à
l’application de l’auto-attention aux données d’image.
Dans ce contecte, cette thèse a pour objectif de trouver un modèle d’analyse d’image
polyvalent pouvant fonctionner pour une variété de bioimages grâce à l’apprentissage
auto-supervisé. En particulier, le manque de jeux de données à grande échelle pour
l’apprentissage automatique reste un défi récurrent, et sera un des fils conducteur du
reste du manuscrit.

Les contributions comprennent la création d’un méta-ensemble de données en combi-
nant des ensembles de données existants, le développement de la bibliothèque Python

Contents

bioimageloader pour faciliter sa gestion, l’évaluation de l’apprentissage supervisé pour
l’analyse des bioimages, l’introduction d’un nouveau modèle et d’une perte auto-supervisée
innovants ainsi que l’application de ces idée a deux problème en pratique.

Dans le chapitre 2, nous mettont en évidence les limites des modèles pré-entraînés en ap-
prentissage supervisé sur des données locales et soulignent la nécessité d’un ensemble de
données générique et vaste. Une approche supervisée a été tentée, montrant des amélio-
rations significatives, mais soulignant également la nécessité d’une diversité accrue dans
l’ensemble de données.

Le chapitre 3 se concentre sur l’apprentissage auto-supervisé, décrivant la création d’un
modèle, NU-Net, basé sur une perte morphologique novatrice. NU-Net s’est révélé être
un filtre polyvalent pour les objets en forme de blob, avec un potentiel de généralisation
à d’autres morphologies. L’accent a été mis sur la création d’un ensemble de données
générique et diversifié.

Dans le chapitre 4, des applications pratiques de l’apprentissage automatique ont été
abordées, démontrant l’efficacité de l’apprentissage supervisé dans la segmentation des
fibroblastes. Deux projets spécifiques, FILM et BigAnnotator, ont été présentés, mon-
trant les opportunités et les défis de l’application de l’apprentissage automatique dans des
contextes biologiques spécifiques.

En conclusion générale, la thèse souligne l’importance cruciale des ensembles de don-
nées dans l’apprentissage automatique, en particulier dans le domaine des bioimages.
L’approche supervisée a montré des résultats prometteurs, mais les limites inhérentes ont
conduit à une exploration de l’apprentissage auto-supervisé. Les résultats obtenus et les
modèles développés ouvrent la voie à des applications futures de l’apprentissage automa-
tique dans le domaine de l’imagerie neurodéveloppementale. La thèse offre également des
perspectives sur les défis persistants tels que la normalisation des formats d’annotation
et l’expansion des ensembles de données existants. Enfin, elle souligne l’importance de
l’accessibilité et de l’utilité des outils logiciels dans le domaine.

6

Abbreviations and Symbols

Abbreviations

Abbrv.
CNN Convolutional Neural Network
ConvNet Convolutional Neural Network (deterred in this thesis)
GAN Generative Adversarial Network
AE Autoencoder
VAE Variational Autoencoder
NLP Natural Language Processing
FOSS Free and open-source software
FAIR Findability, Accessibility, Interoperability, Reusability
CPU Central Processing Unit
GPU Graphical Processing Unit
TPU Tensor Processing Unit
API Application Programming Interface
GUI Graphical User Interface
OOP Object-Oriented Programming
SNR Signal-to-Noise Ratio
ChroMS Chromatic Multiphoton Serial microscopy
EM Electron Microscopy
DoG Difference of Gaussians
LUT Logarithmic Lookup Table
UINT Unsigned Integer
INT Signed Integer
IoU Intersection over Union
CR Contrast Ratio

Contents

Symbols
From time to time, I am going to give a minimal explanation of a certain concept with
mathematical symbols. This table will be your guide for them. Styling and font weight,
all means something different. Sometimes, I used a vector and a matrix interchangeably
because a matrix can be thought as a set of vectors.

Symbol Meaning Example Read
R Real number 42 ∈ R 42 is a real number
𝒟 Dimension
𝑥⃗ Vector
x Vector
X Matrix
𝑍 Vector space
∈ in x ∈ R𝒟 x is a real vector in dimension 𝒟

z ∈ 𝑍 z is a vector in a vector space 𝑍
ℒ Loss function ℒ(𝑥, 𝑦) ℒ is a loss function of 𝑥 and 𝑦

8

Chapter 1

Introduction

Question “Do you think there will ever be a machine that will think like
human beings and be more intelligent than human beings?”

R. Feynman “They will think like human beings? I would say no. . . . There
is no question that the later machines are not going to think like
people think.”

- Q&A excerpt from a recording of a lecture
by Richard Feynman in 1985

Contents
1 Microscopy and Bioimage Data 11

1.1 Neurodevelopmental Imaging Techniques 11
1.2 Bioimage Informatics and Computer Vision 17
1.3 Deep Learning Approaches for Bioimages 20
1.4 Limitations and Challenges of Current Solutions 29

2 General Trends of Computer Vision Solutions 34
2.1 Supervised Learning Dominates 34
2.2 Unsupervised Learning is Pursued 35
2.3 Self-supervised Learning Arrives 37
2.4 Self-supervised Learning in Computer vision 38

3 Self-supervised Learning in This Thesis 43
3.1 Generative Model . 43
3.2 Representation Learning . 47

4 Objectives of The Thesis . 53

Chapter 1. Introduction

200 µm

XY

40 µm

200 µm

Figure 1.1: A whole mouse brain image with Brainbow[1] staining technique, acquired by
ChroMS[2] (Chromatic multiphoton serial microscopy) at LOB (Laboratoire d’Optique et Bio-
sciences). ChroMS is an advanced microscopy platform developed at LOB, which combines
color multiphoton excitation, automated tissue slicing, and piece-wise acquisition. The resulting
image patches go through sequences of digital processing, and are finally registered and fused.
Image was provided by H. Blanc.

In the past two decades, we have witnessed an explosion of data production both in size
and rate of acquisition. Data science has become in need across every corner of society to
simply deal with the enormity of it, and data-driven approaches became a major tool to
understand data and to mine patterns that we had not been able to interpret with simple
logical explanation. In the front line machine learning, a data-driven method to model
data and its underlying distribution, become the defacto toolbox of choice to adress those
problems.

Our data of interest are biological images, one example of which is shown in the above
figure 1.1, more specifically those of cellular or nuclear scale, i.e. around 𝜇m resolution,
which I will call simply bioimage. Automating the processing and analysis of bioimages is

10

1. Microscopy and Bioimage Data

essentially a task for computer vision. But bioimages have a number of unique challenges
that we cannot find in typical types of image data, so-called natural images. Consequently,
computer vision for the bioimage need to adapt developments from other vision problems.
Especially, we lack versatile or generic computer vision methods for bioimages, which is
critical in practical applications to solve actual biological questions. This is the general
question that this manuscript will cover.

Throughout the introduction, firstly, I will briefly present how bioimages are acquired
by microscopes and what characteristics bioimages have with respect to data science and
machine learning. You will see that there have been a lot of progress made for bioimages,
benefiting from unprecedented success in computer vision in general for the last decade
or so. However, due to their inherited characteristics, computer vision for bioimages has
been showing unique difficulties. Secondly, we will see current trends of general computer
vision and how those can inspire ways to drive capabilities of computer vision for bioim-
ages. Lastly, I will state objectives and outline contributions of the thesis in order.

1 Microscopy and Bioimage Data
Biology is inherently spatio-temporal and advances of microscopy are crucial to observe
biological samples at the cellular and nuclear scale. Images of biological samples acquired
by microscopes are called bioimages, which can be extended to include larger family of
samples, such as histopathological or medical images. Microscopy technology for bioim-
ages has been moving forward to capture larger field of view in the shortest possible
interval for longer span of experiments. It allows us to explore new regimes of life science,
like the developmental process which aims to reveal the specifics of how complex tissues
like neuronal systems are formed and developed over time [3]. As the neurodevelopmental
imaging, that captures snapshots for the process, considers field of views as large as an
entire organ or a whole atlas of an organism as well as long time intervals, the amount of
acquired data for individual experiment is greatly increasing.

Furthermore, bioimages themselves are unique on their own and have distinct character-
istics that typical image data does not share. In the perspective of machine learning,
it signifies that bioimages should be handled differently than natural images, and that
computer vision solutions should keep these characteristics in mind. Computer vision
for bioimages cannot directly benefit from the advances of computer vision in general
that have been happening since about a decade or so in an unprecedented speed without
understanding its unique challenges. Thus we will start by presenting the tool used to
acquire bioimages, that is microscopy.

1.1 Neurodevelopmental Imaging Techniques
Beyond just hardware, a modern microscope is a set of technologies involving software as
well. Specifically, a modern microscope is a system that combines different technologies,
namely optical components including laser, lens, image sensor, and even the computer
technology. Nowadays, a microscope is likely to come with a powerful workstation not
only to store images but also to process and visualize them with dedicated software. To
fully understand the specificities of biological images, we need to go beyond the image

11

Chapter 1. Introduction

sensor (or photodetector) and the software (computer) when a microscope converts analog
signals into digital ones; we will see a few major microscopy techniques and what unique
looks and intrinsic properties they give to bioimages.

One limitation of standard (or “wide-field”) fluorescence microscopes is that they do not
provide 3D resolution. For example, in a wide-field microscope, the intensity recorded
from a thin horizontal fluorescent plane does not depend on the position of the plane
along the Z-axis (or depth-axis). Therefore, the plane cannot be localized in the Z di-
rection. In addition, the image of a thick 3D object will be the superposition of a sharp
image from the plane in focus and blurred images from the other planes. In other words,
a wide-field microscope does not provide optical sectioning. To address this issue andoptical

sectioning obtain real 3D images of thick samples, several microscopy techniques have been devel-
oped over the past decades. I will briefly review three well-established strategies, plus
the fluorescence microscopy in the beginning: (i) confocal microscopy, (ii) multiphoton
microscopy, and (iii) light sheet microscopy. Finally, I will briefly outline ChroMS, a
large-volume multiphoton imaging technique developed at LOB.

Fluorescence microscopy Typical resolution1 of microscopy images is sub-micron (𝜇m =
10−6 m) to see individual cells, nuclei, and other subcellular structures. The amount of
light coming back to the image sensor is tiny, and the light also goes through attenuation
processes such as scattering and absorption. In short, it is pitch black inside a tissue, and
we could frequently observe Poisson noise2 due to scarcity of the detected light. The most
common contrast modality to highlight objects of interest is fluorescence.

Fluorescence is a phenomenon by which some molecules emit light back after absorb-
ing light at a different wavelength. Light is a packet of electromagnetic waves and carrieselectro-

magnetic
wave

energy. Energy of a photon, unit of light, is determined by its frequency, as shown below.

photon
𝐸 stands for energy, ℎ is the Planck constant, 𝜈 is a frequency, 𝑐 is the speed of light in
vacuum, and λ is a wavelength.

𝐸 = ℎ𝜈

𝐸 = ℎ
𝑐

λ

(1.1)

Every material has energy states corresponding to different electron configurations asenergy
state well as crystal structures (see figure 1.2). Fluorescent materials happen to have selec-

tive energy gaps (or band gaps) that correspond to an absorption and an emission of a
certain amount of energy. Once a material absorbs light and emits light back, we call it
fluorescence3. Since the absorption gap is predefined by a molecular structure, we do notfluorescence

1 Concept of resolution in microscopy is sightly different from a display device. It is the smallest size
that a microscope can resolve and related to the numerical aperture (NA).

2 It is also called shot noise. Poisson distribution describes discrete probability. For example, you
have a coin and flip it 10 times. Ideally, you would get 5 faces and 5 tails. But that is not always the
case. This time, let’s say you flip it 3 times, you would not get 1.5 faces and 1.5 tails. And it is more
likely to get extreme results like 0 faces or 3 faces. Same thing happens to photons. With abundance
of photons, you observe averaged and continuous light. In microscopy environment, you are much more
vulnerable to Poisson noise.

12

1. Microscopy and Bioimage Data

A
b
so

rp
ti

o
n

E
m

is
si

o
n

Heat

Fluorescence
visible light

Tw
o
-p

h
o
to

n
Figure 1.2: Jablonski diagram. Fluorescence can occur when an electron gets excited and goes
through a transition back to a stable state (𝑆0). A material has predefined energy states that
allow electrons to stay on. In general, most electrons stay below a stable energy state 𝑆0. When
they gain energy larger than a certain threshold (𝑆1 − 𝑆0), they jump to excited states. In the
end, all drops back to a stable state losing energy. Some of them can contribute to fluorescence
of a wavelength λ and the rest result in heat. Multiphoton absorption can occur once multiple
photons interact within the same molecule and transfer energy. The diagram depicts two-photon
absorption where each photon has energy of ℎ𝜈/2. One electron gets excited beyond the gap
and emits nearly half the wavelength λ. Read more in multiphoton microscopy section on page
4.

need to use a light source that has a broad spectrum of light. Fluorescence microscopy
usually uses a laser to illuminate a certain wavelength of light to induce fluorescence.
Researchers use fluorophores, or fluorescent materials, to stain biological objects of in- fluorophore
terest. These materials usually meet at least three requirements: (i) They need to emit
visible light. (ii) They need to have high quantum yield, which refers to a conversion
rate of fluorescence. (iii) They easily attach to certain objects. The advent of the GFP
(green fluorescent protein) in the 90s (Nobel prize in 2008) was intrumental in the rise of
fluorecence microscopy. They are a group of proteins that absorb blue or near ultraviolet
light and express green light. Certain GFPs bind well to cell membranes, and thus are
used to mark cell membranes. Hoechst and DAPI are known to stain DNA and emit blue
light. There are many other fluorophores and using them in one sample allows to observe
different objects by controlling the wavelength of the excitation laser. When images with
multiple fluorescent tags are resolved to data, they form multichannel images thanks to multichannel

imagetheir selective responses4.

3 Pretty much all materials that have low conductivity absorb electromagnetic waves (a.k.a. light)
and radiates waves back with lower energy, in general. Metals usually form continuous bands of energy
states and electrons can freely jump over these states with tiny amount of energy. As soon as light hits a
metal, free electrons are excited and gather at the surface to greet it, reflecting light and heating up the
material.

4 Note that the natural color of fluorescence does not match the final look of bioimages once resolved
to a digital format. The color is rather a response to a certain wavelength of the laser and plays a role as
a marker. Imagine a sample with five different markers. You cannot easily translate them to the common
RGB image format that has three channels. Even if it has only three markers. I am going to address this
issue again soon.

13

Chapter 1. Introduction

Figure 1.3: Diagram depicting principle of confocal microscopy. Source: Zeiss webpage

Confocal microscopy Confocal microscopy is a point-scanning imaging method. At
any time, an illumination laser is focused to a micrometer-size (diffraction-limited) spot
within the sample, and the fluorescence originating from this focal point is isolated from
the fluorescence coming from other planes using a small aperture (the confocal pinhole)
placed in front of the detector. The illumination spot is then scanned in 2D or 3D to
produce a 2D optical section or a 3D image. Although confocal microscopy is widelyoptical

section used to study transparent objects such as fluorescently labeled cells, it has three main
limitations. (i) Confocal microscopy does not perform well deep inside scattering media
such as live biological tissues. The reason is that scattering and aberrations progressively
reduce the true signal and increase the out-of-focus background as the excitation beam
is focused deeper in scattering samples, thereby degrading the optical sectioning ability.
(ii) Confocal microscopy requires to illuminate the entire object in 3D to obtain a 2D
section. Therefore, it can induce significant photo-perturbation during long-term imaging
of live samples. (iii) Being a point-scanning technique, it is inherently slow due to the
time required to record enough fluorescence on each pixel. These disadvantages can be
partly addressed using multiphoton or light sheet microscopy.

Multiphoton microscopy Multiphoton microscopy is a mean to achieve deeper imaging
and potentially less phototoxicity than confocal microscopy [4]. Multiphoton microscopyphototoxicity
uses a multiphoton process as its contrast mechanism. Multiphoton excitation is a phe-
nomenon where 𝑛 (generally 2 or 3) lower-energy photons of energy 𝐸 = ℎ𝜈/𝑛 interact
with a single fluorophore to promote it to an excited state with energy ℎ𝜈 by combining
their energies. One characteristic of multiphoton excitation in a microscope is that it
occurs efficiently only near the microscope focus where the intensity is highest, due to the
nonlinearity of the signal generation mechanism. Scanning the focal point in 2D or 3D
across the sample results in an optically sectioned image.

In practice, multiphoton microscopy is implemented using pulsed infrared excitation light,
with a laser source delivering typically 100 fs (femtosecond; 10−15) pulses at a rate of 80

14

https://www.zeiss.com/

1. Microscopy and Bioimage Data

MHz, in the wavelength range of 800-1200 nm. Using pulsed excitation is a means to en-
hance the probability of multiphoton effects without increasing the average laser power.
Multiphoton microscopy performs much better than confocal microscopy deep inside scat-
tering samples, because (i) the excitation remains confined to micron-scale volume due
to the nonlinearity of the signal generation, and therefore the signal-to-background ratio
is preserved even in the presence of scattering; (ii) the infrared excitation light used for
multiphoton excitation experiences less scattering than the visible excitation light used in
confocal microscopes. In addition, only the plane of interest is being illuminated through
a multiphoton process, thereby limiting the phototoxicity in the case of long-term imag-
ing. To give a practical example, two-photon microscopy enables to image mouse brain
cortical tissue in vivo at depths of half a millimeter with subcellular resolution during
hour-long experiments. However, like confocal microscopy, multiphoton microscopy it is
a point-scanning and therefore rather a slow imaging technique.

Light sheet microscopy Confocal microscopy probes a point at a time and, by nature,
has a slow acquisition rate. One way to address this issue is to parallelize the imaging
process. Light sheet microscopy is a parallelized technique where an entire plane in the
sample is illuminated from one side, and an entire image is recorded on a camera in a direc-
tion orthogonal to the illumination direction [5]. This orthogonal illumination/detection
geometry provides much faster imaging rates by recording multiple pixels simultaneously.
In turn, faster imaging rate enables to develop new applications: the speed gain can be
used either to image larger volumes within the same acquisition time, or to perform fast
acquisition of time-series data. An additional advantage of light sheet microscopy over
confocal imaging is that only the imaging plane is being illuminated, resulting in much
less phototoxicity, and in turn being more compatible with live imaging of cells or small
embryos.

One limitation of light sheet microscopy, however, is that it works well only with trans-
parent samples because it suffers from light scattering and the like. This is why it is often
combined with optical clearing methods that make a specimen transparent. An inter-
esting perspective is the ongoing development of multiphoton light sheet microscopy[4],
which provides an interesting combination of fast and deep imaging.

ChroMS ChroMS[2] stands for Chromatic Multiphoton Serial microscopy. It is a tech-
nique for large-scale high-resolution imaging of color-labeled ex vivo tissues recently devel-
oped and operated at LOB [2]. ChroMS combines colors by two-photon excitation using
a wavelength mixing technique with automated serial slicing/recording of 3D blocks of a
tissue. It provides a unique combination of high-resolution multicolor imaging of large vol-
umes of uncleared tissues, and has been successfully combined with the Brainbow method
[1], which is a multicolor transgenic fluorescence labeling approach developed by our col-
laborators at Institut de la vision (J. Livet’s lab). ChroMS datasets contain 109 − 1011

color voxels, and naturally became a main target of my thesis. See sample images in
figure 1.1.

15

Chapter 1. Introduction

Figure 1.4: Concept diagram of OpenSPIM light sheet microscopy[6]. OpenSPIM stands
for Open Access platform for applying and enhancing Selective Plane Illumination Microscopy
(SPIM). Note that there are many other configurations of light sheet microscopy. Source:
https://openspim.org/. For those who are not familiar with all the optical components like
me when I started my PhD, I will briefly explain each. The objective is the main lens to collect
light and to send it to an image sensor. Agarose is a transparent gel to hold sample fixed.
Mounting is an essential skill to use microscopy and an agarose can help a lot. Chamber is
water filled because the objective is designed to be used immersed in water. Refractive index
matching is the essential step to see things with microscopes. So you would like to have the
same media between the objective and the sample or at least one that has a similar refractive
index. Gold is known stable and does not interact with other substances. Light induces heat
eventually and one session of light sheet microscopy can last over a week or more. Peltier cooler
uses electrons to carry heat away and is something you can find in a water purifier or a wine
refrigerator. Why beads in the agarose? Sample holder can rotate the sample during acquisition
with the objective fixed. Later you would like to register these fragmented images (or multiview
images) back to a complete volume. Beads can help registration algorithms to find overlapping
area easily.

Figure 1.5: Whole zebrafish image acquired by OpenSPIM[6] light sheet microscopy. Source:
https://openspim.org/

16

https://openspim.org/
https://openspim.org/

1. Microscopy and Bioimage Data

1.2 Bioimage Informatics and Computer Vision

Preprocessing

Stitching

Unmixing/Color stretching

(𝑅𝑟𝑎𝑤

𝐺𝑟𝑎𝑤
𝐵𝑟𝑎𝑤

)=(1 𝑎𝐺𝑅 𝑎𝐵𝑅

𝑎𝑅𝐺 1 𝑎𝐵𝐺
𝑎𝑅𝐵 𝑎𝐺𝐵 1)(𝑅𝑐𝑜𝑟𝑟

𝐺𝑐𝑜𝑟𝑟
𝐵𝑐𝑜𝑟𝑟

)
Raw Unmixed

Extract
Feature

Laser power
variation

Tile
positions

Raw
tiles

Sorted
tiles

Illumination
profile

Depth attenuation
profile

Processed
tiles

Sort &
Power

variation
correction

Illumination
profile

calculation

Apply
correction

BigStitcher
Hörl, Nat Methods, 2019

Pairwise link
correlation

Optimize
globally

Fuse into one
volume

HDF5/N5
archiveProcessed

tiles

Convert into
multiresolutio

n format

Refine
(Interest point

based alignement)

Data
handling

Acquisition
computer

4 To NVME local
storage

Server

Image processing
computer

250 Go RAM
4 To NVME local storage

Fiber
connection

Fiber
connection

Fiber connection

Processing time is ≈50% of acquisition time

Custom code

Figure 1.6: Data pipeline of ChroMS. It consists of three parts: preprocessing, stitching,
and data handling. As a confocal microscopy, ChroMS point-scans samples and the acquired
images are tiles and needs to be stitched. BigStitcher[7] is a free and open source software for
registration. Preprocessing and stitching occur in a powerful workstation since they require big
system memory and high computing power. Lastly, the final bioimages are stored in a storage
server. For a whole mouse brain sample, an average acquisition time is around 24 hours and the
whole data pipeline for it takes around 12 hours. Diagram was provided by H. Blanc.

Bioimages, acquired by microscopes introduced in the last section, aim to capture a rather
large field of view in great detail. They are meant for researches that need to observe in-
teractions between many cells to the smallest, a whole organ, connections between organs,
or even a whole organism to the largest. The size of such bioimage data is considerable,
and its growing size poses questions from how to store to how to analyze such large data
given limited computing resources. In addition, bioimage data possesses unique challenges
distinct from other types of image data. To address these questions and challenges, infor-
matics naturally got involved in the bioimage analysis pipeline. Consequently, bioimage
informatics, a branch of bioinformatics, has evolved rapidly to address aforementioned
issues [8].

Bioimage informatics concerns every step when data is computationally processed. It
starts from how to store and visualize image data, which is not trivial from the beginning.
For instance, the diagrams in figure 1.6 demonstrate how ChroMS microscope[2] handles
its image data. In an advanced microscopy such as ChroMS, image processing is a part of
the system. There are many steps for different purposes, and they form a pipeline. One
of the most important image processing steps in advanced microscopy is the registration.
Image registration is a processing step to bring all the fragments of acquired images from
scanning and to reconstruct a whole view. It is performed spatially. This is a long pipeline
that would take about half a day to process about 500GB of image data that would result
in 250GB at the end. Its main goal is to gather many tiles of point acquisition and to
stitch them back to one complete volume, from which the experiment started. You may
notice that it involves several image processing techniques including feature extraction

17

Chapter 1. Introduction

and color correction. It also regards ways to store and access data through a storage
server since the data is too large to be duplicated on client computers every time they
demand access to it. This example merely outlines the beginning or a preparation step
towards analysis.

After data is ready to be consumed, the actual image analysis awaits biological discovery.
However, as for quantitative image analysis, which has become a major way to conduct
image analysis [3, 9], there is just one remaining step to it, that is image segmentation.
Image segmentation refers to a task to localize regions of interest given an image by draw-
ing boundaries or painting area (consult figure A.2 for more comprehensive definition).
These segmentation annotations can be used to deduce response of experimental treat-
ment through its observed intensity [10], to track movement or development [11], or to
follow axons that connect neurons [12, 13].

There long-existed ways to automate image segmentation tasks. Background removal is
a popular practice that can achieve similar results to those of segmentation or could be
used as a preprocessing step in a longer pipeline. For instances, difference of Gaussians
or Laplacian of Gaussian are such solutions whose assumption is based on morphological
characteristics of the objects of interest and that use a linear filter with a predefined kernel
function to leverage them. Following that, for an example, the Otsu’s threshold method is
used to determine a value to binarize distribution based on histogram analysis. To iden-
tify instances and generate a segmentation mask, Watershed algorithm that starts from a
position and progressively “sheds water” until it reaches the boundary. This approach to
construct a pipeline of linear steps has been a common way to solve segmentation tasks in
bioimage analysis tools [14, 15, 16]. However, such pipelines has heterogeneous complexity
between steps, which makes them highly reliant on strict conditions of inputs and hard
to tune parameters of each step. At bottom, they lack of versatility. Classical techniques
as used in bioimage informatics are reviewed in [17, 9, 8]. They involve a great variety of
techniques and algorithms, from partial differential equations to markov random feilds or
mathematical morphology. We will not cover them here and focus on machine learning
techniques.

Because of rather limited usages and inconsistent accuracy of such pipelines, scientists
tended to rely on their own eyes and use their own hands to perform a segmentation task,
which may take from a few hours to several days but will guarantee much higher quality
in contrast to automation. It is much so especially when it comes to bioimages where
contrast is low and objects of interest are more subtle to recognize even to human eyes.

As the amount of bioimage data grows immensely and the demands of it grow more pre-
cise, however, it became no longer feasible nor realistic to perform the segmentation task
by hands or even manually tune classical algorithms. There was a breakthrough around
2012 in computer vision that made a huge impact on how to make computer to see bet-
ter and perform better on most vision tasks such as a segmentation than ever before
[18]. This new type of computer vision mechanism was based on three main technologies:
machine learning, deep neural networks, and advance in computational processing units
such as CPU (central processing unit) and GPU (graphical processing unit). Using ma-
chine learning in particular with deep neural networks turned out to be much effective
to computer vision tasks in general. For instance, deep learning could replace a complex

18

1. Microscopy and Bioimage Data

pipelines of linear steps and still provide more accurate and general solutions.

Deep learning, or machine learning combined with neural networks, provides powerful
solutions for many computer vision tasks not just constrained to bioimages, yet it is not
a definite one for them either. It is relatively a young technology that needs more time to
explore and has potential to advance further. Also, there are limitations and challenges
to address, two of which are versatility and generalizability. These two ideas are the main
topics of this thesis and constitute its overall theme.

Note that I covered machine learning and neural networks not in the main text but in
appendices to provide lengthy contexts and summary, given that there have been so much
progress made in a short period of time. I compiled a brief introduction to machine
learning and recent advancement of neural networks. If you are not familiar with these
concepts or would like to remind yourself of their development, I recommend you, before
going forward, to start from appendix A to 4 where I put together a small introduction
to those methods.

19

Chapter 1. Introduction

1.3 Deep Learning Approaches for Bioimages

2019-01 2019-07 2020-01 2020-07 2021-01 2021-07 2022-01 2022-07

0.5

0.6

0.7

0.8

0.9

1.0

Ja
c
c
a
rd

 I
n

d
e
x

Dataset
DIC-C2DH-HeLa

Fluo-C2DL-MSC

Fluo-C3DH-H157

Fluo-C3DL-MDA231

Fluo-N2DH-GOWT1

Fluo-N2DL-HeLa

Fluo-N3DH-CE

Fluo-N3DH-CHO

Fluo-N3DL-DRO

PhC-C2DH-U373

PhC-C2DL-PSC

Fluo-N2DH-SIM+

Fluo-N3DH-SIM+

Fluo-C3DH-A549

Fluo-N3DL-TRIC

Fluo-C3DH-A549-SIM

BF-C2DL-HSC

BF-C2DL-MuSC

Fluo-N3DL-TRIF

Fluo-C2DL-Huh7

Figure 1.7: Evolution of the top performance of segmentation models for Cell tracking
challenge[19]. They used Jaccard similarity index for the metric (find appendix C for its defini-
tion). So far as time of writing, Cell tracking challenge hosts 20 datasets, and the number keeps
growing. Note that the challenge was initiated in 2017, but the record goes back only to 2019.

Many deep learning solutions have been proposed to solve computer vision tasks for
bioimages. I structured an overview in four subjects: (i) segmentation algorithms and
models, (ii) algorithms and models for other computer vision tasks, (iii) datasets, and
finally (iv) software tools. Segmentation is probably the task that has the greatest impact
since the rise of deep learning, since as mentioned, segmentation is an essential step to
quantitative analysis. There are other computer vision tasks in which deep learning
proved effective for bioimages, like image restoration and denoising. All those advances
are dependant on datasets, the foundation of machine learning. Lastly, software tools
play an important role in bioimage analysis because they provide interactivity and high
level abstractions that could alleviate logistical complexity and challenges deep learning
comes with, and are thus of key importance in practice.

Segmentation Identifying objects of interest is the beginning of every analysis and fur-
ther enables quantitative analysis. Though there is endless diversity in biological morphol-quantitative

analysis ogy, I will focus on segmentation of blob-shaped objects that usually correspond to nuclei
and cells. Elongated objects, like axons, turned out to be much harder to segment for the
moment because it inevitably concerns 3D volume, for which segmentation algorithms are
not mature enough due to limitation of resolution and of computing resources5. There
are two major segmentation tasks that we concern: semantic segmentation and instance
segmentation (see figure A.2 for their difference). I am going to review a few represen-
tative deep convolutional neural networks (CNNs). While this is a non-exhausted list of

5 Deep learning requires quite a lot of computing resources even for 2D images. For instance, current
state-of-the-art generative models often need roughly more than 8GBs of GPU memory for images as
large as 512×512. Commercial GPUs for normal consumer do not have enough capacity, in general. 3D
volume grows in cubic order, and deep learning still struggles to accommodate large volumes.

20

1. Microscopy and Bioimage Data

models in a very fast moving field, they are the most prominent ones and exemplify the
state of the field.

U-Net[20] was a key foundational work which was introduced as an entry of cell seg-
mentation challenge at ISBI (IEEE International Symposium on Biomedical Imaging) in
2015. At that time, not many researchers and practitioners were exposed to deep learning
in biomedical imaging community. U-Net outperformed all the other entries, trained only
with 35 images. The key insight of U-Net is the encoding-decoding architecture with
skipped connections that enable both the learning of low dimensional features and the
use of those features in a multiscale fashion. Trained with densely annotated data, it es-
sentially performs pixel classification. Its main limitations, addressed in part in following
works[21, 22], are the lack of explicit geometrical constrains to account for the fact that
objects in bioimages tend to be simpler and more stereotyped that in natural images, and
its inability to deal with touching objects without further refinement or post-processing.

U-Net is important for a few reasons apart from its outstanding performance. (i) It moti-
vated machine learning researches, especially deep CNNs (convolutional neural networks),
in biomedical imaging community. Figure 1.7 shows evolution of cell segmentation sec-
tion of Cell tracking challenge[19]. Researchers suggested many variants based on U-Net.
Some addressed limitation of U-Net and attempted to improve them [23, 21, 24], others
extended the original 2D model to 3D models [25, 26, 27]. Also, it contributes to de-
velopment of instance segmentation deep CNNs too. StarDist[28, 22] and Cellpose[29]
are the most frequently used deep CNNs for the instance segmentation task, which I
will cover shortly in more depth. (ii) It got adopted in many existing software tools,
for example, in Fiji (ImageJ)[30, 14] and Cellprofiler[31]. Implementation in tools was
important because U-Net was one of the first deep learning models that users actually
found useful. (iii) It inspired other architectures even outside biomedical imaging. FPN
(feature pyramid network)[32] was one of them and addressed the scale variance issue
in object detection CNNs. Furthermore, U-Net recently became more used thanks to
diffusion models[33, 34, 35, 36], the current state-of-the-art image-generative model.

StarDist[22] is an instance segmentation deep CNN, specifically designed for star-
convex polygons. It uses U-Net as a base model and assumes that objects of interest have
star-convex polygon shapes. They devised, what they called, star-convex polygon distance.
In a nutshell, StarDist picks up all possible candidates that has star-convex polygon shapes
and uses non-maximum suppression (NMS) to filter out proposals with low probability. It
was tailored for blob-shaped biological objects like nuclei and effectively altered a semantic
segmentation model (U-Net) to an instance segmentation model (StarDist). The group
soon extended their model to 3D volume[28] and ported their models to free and open
source image viewers, namely Fiji[14] and Napari[37]. To this date, StarDist is one of the
most accessible and practical deep CNN models for instance segmentation in bioimages.

Cellpose[29] is another popular instance segmentation deep CNN and shares a common
interest with StarDist, which is to use shape priors to segment instances. It also used
U-Net as a base CNN and simulated diffusion from centers of each cell. Compared to
StarDist where it parameterized radial directions to deduce polygons, Cellpose’s diffusion
simulation was not parameterized and thus more flexible and adaptable to shapes beyond
so-called star-convex polygons. Cellpose assumed two channel images and differentiate

21

Chapter 1. Introduction

object predpolygon predinput

manual annotation

simulated diffusion

spatial gradients flow representation

example cells

flow legend

(a)

(b)

Figure 1.8: (a) StarDist predicts polygon shapes using parameterized radial distance (𝑟𝑘
𝑖,𝑗 ;

distance of pixel (𝑖, 𝑗) to the boundary on 𝑘-th ray) and object probabilities for each pixel
(𝑑(𝑖, 𝑗)). (b) Cellpose simulates “poses” of cells by using diffusion concept and making horizontal
and vertical flows. It predicts two flows as well as object probabilities. Source: (a) annotation
modified from StarDist[22], (b) Cellpose[29]

nuclei and cells, which can be easily confused by algorithms. In addition, Cellpose at-
tempted to become a generalized model for segmenting blob-shaped objects by including
images even outside biology, e.g. those of fruits, rocks, etc. Like StarDist, Cellpose team
concerned about accessibility and usability, and released an application with graphical
user interface (GUI). They ported Cellpose to Napari image viewer[37] as well. The team
has kept improving their models and applications since the publication. Recently, they
introduced Omnipose[38] which aimed to segment more skewed objects, and Cellpose v2.0
which shipped more features. Though it is not directly available in Fiji[14], a go-to im-
age viewer in the community, TrackMate[15, 39], a cell tracking plugin in Fiji, started
supporting Cellpose for advanced users.

NucleAIzer[40] is a little special in this category because it chose an object-detection-
based instance segmentation CNN, namely Mask R-CNN[41], as a base, instead of a
semantic segmentation CNN like U-Net. Mask R-CNN was already proven performant
and a good choice for objects that fit into bounding boxes, thus used in other bioimage
targets too[42, 43]. The NucleAIzer team also aimed to make a generalized model but
for nuclear segmentation. Their approach was to simulate synthetic images. Although,
simulating a training dataset was not particularly a new idea [44, 45, 46], they used a
generative deep CNN to do so. What they used was pix2pix[47], which is a style transfer
application using a GAN[48]. First, they gathered diverse nuclear bioimages and clustered
them into a limited set of “styles”. Then, they simulated images for all clusters by applying
each style using pix2pix. The group made their model available through Cellprofiler[31].

Mesmer is yet another instance segmentation model introduced with TissueNet[43]
and the latest one of its kind. Since they had a large scale data available, much more

22

1. Microscopy and Bioimage Data

than previous models, they wanted more capacity in terms of architecture and went for
ResNet[49] as a backbone. Instead of relying on shape priors, Mesmer predicts borders
along with an inner distance map and chose to use Watershed algorithm to mark in-
stances. Additionally, they employed FPN[32] to take into account various scales.

The authors reported that Mesmer outperformed existing segmentation models such as
said pre-trained StarDist, Cellpose, etc. Furthermore, they compared performance of their
model to that of humans and showed that they were comparable. Given that a major
issue in previous models was a limiting scale of dataset, it might have been apparent
that they managed better performance. However, what they did and the most important
contribution to the research was the TissueNet dataset. They raised the issue of small
scale of dataset when it comes to researching computer vision using machine learning
and actually provided a large dataset as a solution. As a matter of fact, the change
of architecture barely contributed to its gain. It turned out that StarDist and Cellpose
resulted in matching performance to Mesmer when they were trained with TissueNet from
scratch.

Image restoration and Denoising Apart from segmentation, image restoration and de-
noising are fundamental image processing that can be understood as inverse problems,
reverting the image acquisition process to remove the noise and resolution loss it intro-
duced. Thus they attempt to cope with innate limitations of microscopy, particularly low
contast and noise. See figure 1.9.

C
T

C
-M

S
C

C
T

C
-N

2D
H

Input NOISE2NOISE

(a) (b)

Figure 1.9: Effectiveness of image restoration and denoising techniques using deep learning.
Images sourced from (a) CARE[50] and (b) Noise2Void[51]

As for image restoration, CARE[50] (content-aware image restoration) network is
by far the most favored model to enhance low-SNR (signal-to-noise ratio) images. You
would need a pair of low-SNR and high-SNR images of the same field of view, which can
be acquired in a few ways, e.g. alternating illumination power or scanning fast and slow.
The idea is to benefit from low power illumination or fast scanning to avoid various issues
from photo damages, once you have a CARE model.

Denoising is an endless battle in microscopy. Classical denoising algorithms that do
not rely on machine learning focused on structured noise and try to track down the source

23

Chapter 1. Introduction

of noise and remove it [52, 53]. These methods may frequently end up with artifacts when
the source of noise is unclear. Machine learning, in particular deep learning methods,
apparently excelled in denoising applications because they can deduce noise sources from
data. Noise2Noise[54] supposed that noise is independent of content of images and tried to
learn it by pairs of noisy images. They artificially applied Gaussian, Poisson, and Bernoulli
noises on the same image to generate noisy pairs. Its limitations were that (i) it needs
pairs of noisy images, (ii) limited distributions in terms of variety of noise, (iii) noise can
be dependent to contents like PSF in microscopy. Soon after, Noise2Void[51] came out,
specifically aiming to remove noise in biomedical images. Their novel blind-spot network
takes into account neighboring pixels to predict a center pixel and allowed learning noise
from a single image, not from a pair. They pointed out Noise2Void takes in relatively small
amount of information due to small receptive field, compared to other models including
Noise2Noise, and thus has a theoretically upper bound. But the result turned out more
than good enough. More importantly, Noise2Void was easy to use because users do not
have to engineer training process, e.g. how to prepare noisy pairs as in Noise2Noise.

Dataset Deep learning, which is under the umbrella of machine learning, is essentially
a data-driven method. This is particularly true since all the methods presented so far use
supervised learning, a machine training scheme where the model is explicitly shown the
desired result, and thus need annotated data. Therefore, data is the alpha and the omega
that affects every aspect of deep learning from the beginning to the end. A dataset, a
set of data curated for certain tasks, could be thought as the ‘unit’ that data for machine
learning comes as, that is actually used in machine learning.

Cro
wd

Exp
er

t
0

2k

4k

TissueNet
annotation time

H
o

u
rs

Annotation throughput

(a)

Crowdsourced
correction

Expert
correction

Model
annotation

Add to
training

data

Retrain
and updatePreliminary

model

Expert
annotation

Model
training

Fully
automated
final model

Phase 1 Phase 2 Phase 3 (b)

Figure 1.10: (a) The way TissueNet[43], currently the largest bioimage dataset, was curated.
They used a human-in-the-loop approach and managed to build a large dataset with 1.3 million
whole-cell annotations and 1.2 million nuclear annotations. (b) They also estimated price of
constructing such large dataset based on the time spent. They supposed $6 per hour for crowd-
sourced annotators, $30 per hour for highly trained annotators, and $150 per hour for expert
pathologists. According to their prediction, TissueNet would cost $25,000, which is not cheap
by no means but far less expensive than a classical approach where only the experts annotate
the whole data from scratch.

First, there are a number of generic repositories and collections of datasets that could
be used for machine learning approaches. The Broad Bioimage Benchmark Collection
(BBBC)[55] by Broad institute hosts more than 50 individual datasets for various biomed-
ical computer vision tasks. They categorize them into three main applications: identifi-

24

1. Microscopy and Bioimage Data

cation and segmentation, phenotype classification, and image-based profiling. Cell Image
Library (CIL)[56] was created in 2010 and treats images in whichever platforms and for-
mats as long as they concern cellular images. But CIL is not necessarily designed to
provide datasets curated for machine learning and rather accepts all sorts of cellular im-
ages. IEEE ISBI (International Symposium on Biomedical Imaging) has held various
biomedical computer vision challenges annually since 2012. As name suggests, there have
been challenges not only for bioimages but for medical images. Cell tracking challenges[19]
was first introduced in ISBI2012 and has since become the most notable datasets for cell
tracking vision tasks. The number of supported datasets has been growing since its in-
troduction, and it has 20 datasets as of Oct 2022. Image Data Resource (IDR)[57] by
OMERO (Open microscopy environment) team hosts massive amount of bioimages. As of
IDR at the time of writing (version 0.11.1, released on 2022-10-31), it contains 335 TB of
multidimensional images consisting of 13M multidimensional images or 109M individual
2D planes. IDR contains over 1M different experiments. But, just like CIL, IDR does not
necessarily aim to host curated datasets for machine learning purposes.

Speaking of challenges or competitions, there was Data science bowl cell segmentation
challenge[58] in 2018 (DSB2018) on a web platform Kaggle6, sponsored by Booz Allen
Hamilton. DSB2018 was a particularly important bioimage dataset for a number of rea-
sons. First, DSB2018 was well curated. It managed to gather wide range of cellular
images across platforms and samples. It was designed for instance segmentation labels,
meaning every cell, no matter how many, was all annotated individually in all images.
The evaluation metric was solid and fair. Second, the timing was just right. Instance
segmentation was a hot topic beyond object detection task7 with advent of state-of-the-
art deep learning models between 2014 and 2018, namely R-CNN family[59, 60, 61] and
Mask R-CNN[41], that demonstrated incredible potential (I believe that the arrival of
state-of-the-art object detection and instance segmentation deep learning models heated
up self-driving car industries, and it definitely had a nudge on Elon Musk and Tesla8).
At the moment, bioimaging community was adopting advanced machine learning and
deep learning techniques and DSB2018 became an invaluable resource. Third, the com-
petition platform attracted people from many other domains. Especially, contributions
from computer scientists and data scientists in other domains introduced baseline of this

6 Kaggle is a web platform that hosts machine learning competitions. Money is certainly a great
motivator. For example, Data science bowl 2018 had $100,000 award in total and attracted 3,634 teams
around the world. Kaggle started as a startup in 2010 and had a great success among data scientists. It
was finally acquired by Google in 2017. Kaggle is a great platform not only to share knowledge through
competitions but also to learn machine learning skills. Contributors often voluntarily provide baseline
codes for each competition and many are willing to share their accomplishment (it usually happens when
they fall behind the leaderboard to ask for ideas and help).

7 Object detection task is to find positions of objects given an image using bounding boxes. See figure
A.2.

8 It is a bit tangential, but I would like to introduce Andrej Karpathy. Arguably, Tesla is a leading
company in the self-driving car technology for the moment. Andrej Karpathy became the director of
artificial intelligence in Tesla around 2017. He contributed a lot to both natural language processing and
computer vision in general, when deep learning was still young. He is also a founding member of OpenAI,
which is a startup currently crushing Google, Meta, and many other tech giants in machine learning
domain. The course CS231n that he designed and instructed with his advisor Fei-Fei Li (leading scientist
behind ImageNet) in Stanford University, his Alma Mater, was one of the earliest deep learning courses
in university across the globe. It was legendary and still is one of the most notable courses regarding
computer vision. He left Tesla on July 2022. I am looking forward to his next move.

25

Chapter 1. Introduction

Cells
per platform

Cells
per tissue

CODEX

CyC
IF

Vec
tra

M
IB

I-T
OF

M
xI

F
IM

C
0

50k

100k

150k

200k

250k

300k

350k

50k

100k

150k

200k

250k

300k

350k

0

All previous
TissueNet

Published
segmentations

(b) (c) (d)

A
n

n
o

ta
ti

o
n

s

A
n

n
o

ta
ti

o
n

s

Nucl
ea

r

W
hole

 C
el

l
0

400k

800k

1.2M

A
n

n
o

ta
ti

o
n

s

Pan
cr

ea
s

Tonsi
l

Bre
as

t

Lung

Colo
n

Eso
ph.

Lym
ph

Ski
n

Sple
en

H3 Vimentin CD14 CD56HLAG

1

2

1

2

CD3(a)

Figure 1.11: (a) Example images of TissueNet[43] and two predictions of Mesmer, an instance
segmentation model introduced together with TissueNet. All scalebars indicate 50𝜇𝑚. (b)
Statistics of TissueNet dataset. TissueNet has greater number of annotations even compared to
summation of all public nuclear annotated datasets as well as to that of whole-cellular annotated
datasets. In addition, it is inclusive, covering diverse platforms and samples. Note that they
only considered those with instance segmentation annotations when comparing numbers in (b).

new technology called deep learning and accelerated its adaptation and development in
bioimaging community.

Finally, TissueNet[43] is the latest manifestation of building a large scale bioimage
dataset. It was clearly named after ImageNet[62] that sped up the general development
of machine learning and deep learning in computer vision. TissueNet covers diverse plat-
forms and samples, and provides nuclear and whole-cell labels, suitable for instance seg-
mentation computer vision task. What’s more important is the scale. They incorporated
a human-in-the-loop approach (see figure 1.10) to reduce the cost of expensive annotationhuman-in-

the-loop process in bioimages and achieved unprecedented numbers of annotations: 1.2 million cells
and 1.3 whole cells (see figure 1.11). Furthermore, they attempt to standardize formats
of annotations, at least for the two-channel nuclear instance segmentation, by developing
DeepCell Label which is an application for labeling.

There are other bioimage datasets, most of which targeted narrow conditions and spe-
cific tasks. For example, EVICAN [63] and LiveCell[64] are a little special because they
specifically treated simple label-free cellular images, like bright field and phase-contrast
imaging. While their images are not as clear as fluorescence microscopy, these microscopes
are not invasive to specimens and thus important in pharmaceutical research. Histological
images, such as H&E-stained images, are unique and have native RGB channels because
they usually use simple light sources, not lasers [21, 65, 66, 67]. DIADEM challenge[68]
targets tracing long neurons such as dendrites and axons.

Software tools Bioimage informatics sits in between image data and results and is
an increasingly indispensable part of biological studies, developed and used by a wide
variety of people with diverse skills and background. This means that the practical
implementation of the algorithms, impacting the way they are developed, shared and
used, is of key importance. In current software development environment, open-source
software gained significant momentum. Open-source software opens its source codes toopen-source

software public and allows contributions from individual developers. The arrival of web platforms,
such as GitHub and GitLab, to host codes and provide communication channels to users
and contributors further accelerated open-source software development. For the moment,
there are two cohorts in bioinformatics in terms of the choice of programming languages:
Java and Python. While Python is a popular programming language of choice these days,

26

1. Microscopy and Bioimage Data

Figure 1.12: 11 most popular programming, scripting, and markup languages: Stack Over-
flow’s 2022 survey. It was conducted on May 2022 by over 70,000 developers. Python is prac-
tically the most popular programming language except those for web development (partially
true, because Python is also a popular choice for backend web development). JavaScript and
TypeScript are the languages for web technologies. HTML/CSS are markup languages for
web pages. SQL is only for database. Java is used everywhere, but mostly for desktop appli-
cations and mobile android applications. Source: 2022 Developer Survey by Stack Overflow
(https://survey.stackoverflow.co/2022/)

as revealed in figure 1.12, Java is still used widely and a programming language of ImageJ, ImageJ
which has been the go-to image software tool in the community for over a decade.

Bioinformatics community was aware of issues commercial software might bring about in
the long run. They already sorted out a way to free and open-source software (FOSS) long FOSS
time ago, and a group of people developed ImageJ[14]. Since then, ImageJ has become
an essential tool to the community. What is less known is that it went through some
big changes towards open-source development environment. ImageJ2[30] is a rewrite
of the previous version, focusing on extensibility for its plugin system. Plugin system plugin

systemallows individual developers to deploy their algorithms with minimal efforts into a familiar
environment to users. In parallel, ImgLib2[69] was released as a generic library for image
processing to replace, now deprecated, ImgLib1. ImageJ2 team tightly integrated the
library in their software to help developers. Fiji[14] (recursive acronym; “Fiji is just an
ImageJ”) is a battery included ImageJ, meaning it packages libraries, scripting languages,
and plugins that have become useful and essential over the years in ImageJ. One plugin
worth mentioning is Bio-Formats[70] by OME (Open microscopy environment) team.
Bio-Formats reads many biomedical image formats and parses their metadata properly.
It sounds simple, but it handles 162 different image formats as of v6.10.1 in 2022. With
that number, it already is an essential tool for users. Another one is CLIJ[71] that brings
interactive image processing interfaces in ImageJ and accelerates certain operations by
utilizing OpenCL9 and GPU.

9 OpenCL provides universal application programming interfaces (API) across diverse hardware. It is
known for its optimized performance.

27

https://survey.stackoverflow.co/2022/

Chapter 1. Introduction

Speaking of OME (Open microscopy environment) team, they offer other FOSS tools
as well as Bio-Formats. OMERO (OME Remote Objects)[72] is a software to manage
and share data using server/client architecture. Server/client architecture is a centralized
scheme where a server broadcasts data to clients on demand. OME-TIFF and OME-
XML[73] are a pair. TIFF format is a universal image format but lacks structures and
consensus, because it existed long time and there have been too many variants. OME team
created OME-TIFF to define a new TIFF format for biomedical images compatible with
Bio-Formats. OME-XML attempts to standardize metadata formats. OME-NGFF[74]
is the latest movement that OME team is leading. It was launched to meet the need of
ever-growing large scale biomedical images and cloud storage services.

Python environment in bioinformatics expanded rapidly in a short period time. Its
growth is strongly related to the fact that Python is the current language of choice for
machine learning and data science in general. It is relatively easy to learn and start writing
useful software compared to other languages, e.g. Java or C++. Despite its short history
in bioinformatics, there are a number of tools already frequently used and cited in real
research. For examples, ilastik[75] provides machine learning algorithms in interactive
manner with a graphical user interface (GUI). Its approach is easy and effective using
random forest algorithm, and adapted to LABKIT[76] in Fiji. Cellprofiler[31] is a full
suite for single-cell analysis. It contains a lot of functions for quantitative analysis and
supports interfaces for machine learning and deep learning as well.

Napari[37] is a multidimensional image viewer written in Python. It is one of the fastest
growing FOSS tools in the community. Napari aims high extensibility by supporting
native integration of well established Python libraries as well as plugin system. It exposes
extensible APIs (application programming interfaces) that make developers love Napari.
It also utilizes IPython[77] (interactive Python), which enables interactive coding and
gives users more freedom. When it comes to deploying machine learning models, Napari
comes the first. You can already find many plugins on Napari-hub, e.g. StarDist[22,
28], Cellpose[29], ilastik[75], napari-accelerated-pixel-and-object-classification (APOC),
AnnotatorJ[78], and many others.

BioImage Model ZOO[79] is a website to host and share pre-trained deep learning
models for bioimages. It is a community-driven hub built on top of FOSS and FAIR
(findability, accessibility, interoperability, and reusability) principles. Developers share
their deep learning models via a specification, which is called RDF (resource description
file). It describes technical details about the models and can be parsed by a Python library
called bioimageio.core. It partners with various tools and entities, such as ImJoy[80],
ZeroCostDL4Mic[81], DeepImageJ[82], Fiji[14], and ilastik[75], so that users can easily
access and use deep learning models.

28

https://www.napari-hub.org/
https://github.com/haesleinhuepf/napari-accelerated-pixel-and-object-classification

1. Microscopy and Bioimage Data

1.4 Limitations and Challenges of Current Solutions
Deep learning demonstrated great successes in general computer vision tasks (c.f. ap-
pendix 4), as well as in computer vision tasks for bioimages. However, while many gen-
eral vision tasks can be described as “solved”, the solutions for bioimages demonstrated
in the last section still show limitations and face challenges. In particular, they have been
struggling in terms of scaling, generalizability, and transferability, i.e. of how versatile
they are. While we will see in 2 some quantitative evaluation of that, this section will
more broadly present the specificities of biological images with respect to natural images
and the problems they pose.

Supervised learning is limiting All the notable segmentation models introduced in the
last section, U-Net[20], StarDist[22], Cellpose[29], NucleAIzer[40], and Mesmer[43], are
not as versatile as users might wish. The authors of these works, aware of the limitations
of their models, propose retraining or fine-tuning them. The fundamental reason is that
they are all based on supervised learning scheme and trained with limited source of data.
Supervised learning is a learning scheme that requires a full supervision to train a model.
It essentially means that the dataset should have annotations, segmentation labels in this
case, for every input during training. While supervised learning could result in high gen-
eral computer vision ability [18, 49], it comes down to the dataset whether the resulting
model can be said versatile in respect of more diverse tasks. Aforementioned models
were all trained with relatively small sources of data, as small as from a few hundreds
[22, 29, 78] to a few thousands [43], which is comparably smaller than 1.3 million images
of ImageNet-1K10.

The most notable deep learning image restoration method, CARE[50], also relies on su-
pervised learning. Consequently, its ability is bound to a fully-curated dataset provided
during training too. Originally, this dataset is supposed to be curated with a set of ex-
periments conditioned in specific settings. Denoising solutions based on deep learning
actually overcame limitations of supervised learning and evolved using self-supervised
learning scheme [51, 83]. Their transition was natural considering that their assumption
was that the noise present in a dataset, whose data likely required from either the same
or similar conditions of experiments, should be consistent at least within the dataset. In
other words, these denoising solutions are not versatile right off the shelf but can become
an effective on datasets that has rather consistent and well-behaving distribution of noise.

But overall supervised learning itself is not what limits the ability for deep learning mod-
els to be generic. Capability of deep neural networks is unknown for the moment and
is still growing [84]. It is rather the lack of a dataset large enough to be called general
one. For a simple explanation, VGG[85], a pillar of vision foundation models trained on
ImageNet[62], was already able to classify and get general characteristics of 1,000 sepa-
rate classes in 2015. For its general vision ability, VGG has been used numerous times to
extract vision features and used for applications[86, 87, 88, 89, 90]. It shows how much
capable an almost decade-old CNN architecture is, once fed with enough data.

10 ImageNet-1K is a subset of ImageNet database that is used to train so-called foundation models for
computer vision, which are considered as general computer vision solutions. Read more about the impact
of ImageNet-1K and foundation models trained with it in appendix 4.

29

Chapter 1. Introduction

Bioimage datasets curated for machine learning are rare Datasets are essentially
what make supervised machine learning models. The minimum requirement to make a
versatile machine learning model is to have large and general enough dataset to begin
with. Therefore, the biggest challenge of making a versatile bioimage model is the lack of
large, well curated, and thus representative bioimage dataset. But the size is just one of
several factors. In fact, there are large datasets released even before machine learning or
deep learning became a major mean to solve computer vision tasks. But the issue is that
they are not ready to be consumed for machine learning algorithms, at least under super-
vised learning setting. Currently, all the big biomedical nuclear or cellular image datasets
are all just raw images without or few annotations (BBBC021[55], Cell Image Library[56],
and Image Data Resource[57]). Most of useful datasets for segmentation task, meaning
having annotations, were curated and released relatively recently. They are too small
to cover diverse conditions of image sources [22, 29, 78, 43] and are far from becoming
representative datasets. Though the lack of diversity within a dataset is an emerging issue
that might cause biases in general machine learning, the situation in bioimage datasets is
exacerbated. There are many reasons why large curated datasets have not appeared yet,
but they mostly stem from the nature of bioimages themselves.

Biomedical computer vision is unique and diverse Computer vision has been evolved
to catch up human vision, and current deep learning models have been showing unprece-
dented success, for instance, recognizing faces, classifying pomeranians and corgis, etc.
While researchers are excited about a generalized computer vision and some call it a
foundation model[91], transferring models across domains is not easy. In other words,foundation

model a “generic” vision model, such as VGG16[85] trained on ImageNet[62], simply does not
work well or at all on computer vision problems for bioimages, which I will call them
biomedical computer vision to differentiate from the “normal computer vision”.biomedical

computer
vision Biomedical computer vision has different dimensions, and they are dynamic. When it

comes to typical computer vision, images have three dimensions: two spatial dimensions
and one for colors, i.e. photos. Videos have become a typical vision format and have four
dimensions: two spatial dimensions, one for colors, and the other for temporal dimension.
These two are the most common “normal computer vision” formats. However, bioimages
often have three to five dimensions, and on top of that, have varying channels. Figure
1.13 demonstrates a few examples and the diversity of bioimages. The simplest is a three-
dimensional bioimage that has height (Y) and width (X) dimensions and a color channel
(C). Four-dimensional bioimages could either have another spatial dimension (Z), depth,
or time dimension (T), frame. Lastly, five-dimensional ones have all of them (TCZYX).

The number of channels (‘color’) of bioimages is experiment dependent. This fact is re-
lated to the principle of fluorescence microscopy and its illumination light source. If you
have two fluorophores that get excited from different wavelengths in your experiment,
you can essentially have two channel images in the end. It is worth noting that the color
response of fluorophores in fluorescence microscopy does not exactly correspond to RGB
response of human eyes and should not be treated so. Each channel should be rather
treated as independent markers. The cases you get bioimages with RGB channel are ei-

30

1. Microscopy and Bioimage Data

40 µm 500um grid

(a) (b) (c) (d) (e)

Figure 1.13: Diversity of biomedical image contrasts. (a) Single channel cellular image from
[92]. (b) Two channel image with nuclear and whole-cell markers from TissueNet[43]. (c) H&E-
stained pathology tissue image from [93]. (d) Mouse brain image by ChroMS[2] with Brainbow
technique[1]. (e) 3D view of a part of a mouse brain with GFP, acquired and processed by 3i
light sheet microscopy from EMBO light sheet microscopy course in 2022.

ther when you cannot separate each channel or when your light source has a full spectrum
of light, such as in bright-field microscopy

Lastly, visual features are specific and diverse. The study of shapes and structures of bi-
ological objects is a branch of biology called morphology. Morphology takes into account morphology
appearance of biological objects, which comprises size, color, pattern, and external struc-
ture as well as internal structure. Morphological features are more subtle in biomedical
computer vision than normal computer vision and especially so when noise is involved.

All these challenges not only construct special looks of bioimages, but also affect the
way to do data science with them. Unfortunately, the discrepancy between the biomedical data science
computer vision and the normal computer vision is one of the main reasons why great
successes in computer vision over recent years cannot be directly transferred over to
biomedical computer vision tasks. Data science with bioimages has its own issues that I
am going to cover in the next section and also throughout the thesis.

Curating a bioimage dataset is expensive Upon all the limitations of current machine
learning algorithms and all the difficulties of handling bioimages, it is clear that the first
answer towards versatile machine learning models should be the dataset. A well-curated
large-scale dataset is a starting point for general and versatile models. There is good news
and bad news, concerning curating a bioimage dataset. Good news is that the biology
produces large datasets, suitable for data-driven approaches. Though it takes a lot of
time, efforts, money and expertise to produce bioimages, scientists managed to collect a
lot of them and are producing even more persistently. Light sheet microscopy, one of the
fastest microscopy, can easily generate several TBs (terabytes; 1012 bytes) of data within
a day. Bad news is that machine learning is not only about having big data but a quality
data. Putting together or curating a dataset is the actual beginning of machine learning
and an underrated job.

Unfortunately, it is much harder to curate a bioimage dataset than normal computer
vision datasets for a number of reasons. (i) It requires specialty and expertise. Rec-
ognizing daily objects like cars and trucks is something most people can do it without
much effort. Identifying biological objects is not. It relies on their morphology, surround-
ing objects, experimental context, etc. (ii) It lacks platforms and tools. Many datasets
were curated by a single group or a few groups in the past. It was easy to organize it

31

Chapter 1. Introduction

that way in terms of logistics. As the size of data grows, however, crowdsourcing has
become a norm. Crowdsourcing is an approach to outsource individual workers or vol-crowdsourcing
unteers through internet. Platforms such as Amazon Mechanical Turk and Crowdsource
by Google are representative. These platforms also provide tailored web applications to
facilitate curation and to collect it in homogeneous formats. When it comes to bioimages,
crowdsourcing is hard to justify. First, it is not reliable to outsource a crowd who does
not have much knowledge about the subject. Second, the community is lacking unified
tools let alone people to develop them. (iii) Image formats and metadata formats are
not standardized, yet. It takes time to make consensus over formats, and bioimages were
one of those data that were always closed behind the laboratory. It led numerous number
of formats and consequently caused, what I would call, file format juggling, which meansfile format

juggling that you keep converting a file from a format to another to get the job done. I am going
to review the format issue again in chapter 2. (iv) It is actually expensive. A group of
scientists who created TissueNet[43], presently the largest bioimage dataset, estimated
that it would have cost $25,000.

In summary, curating a large scale dataset is underrated and is especially a predominant
issue in bioimages. It is inevitable that machine learning suffers and shows slow progress
for biomedical computer vision. I am going to cover data issue more in depth in a separate
context in the next chapter.

Accessibility and usability matter Suppose that an amazing algorithm has been devel-
oped. How can it be made useful in real biology research? In the past, you had no choice
but to publish your work on a scientific journal and wait for other scientists to read it.
But reading a paper is not the same thing as making and using a program. Thanks to the
advance of web technology, it became easy to upload an archive file as a supplementary
material, containing code files written in programming languages. Though it can helpprogramming

language accessibility, it has little to do with usability. Machine learning models are predominantly
developed and deployed in Python programming language, which makes barrier to users,
especially to those in biology, to use these models. It is the user interface that can boost
usability. In particular, developers may consider distribute or deploy their algorithms
or models as an application with graphical user interfaces (GUIs). But making a user
interface is demanding and not trivial, and it is an extra work for developers. In the
end, many useful algorithms become difficult to access and are left unused. Figure 1.14
describes reciprocal relation of developer’s effort and user’s effort.

Where to deploy is also an important decision to take as a developer. In bioinformatics,
tools are extremely fragmented because sometimes commercial microscopes come with
their own software suits. Not only that, their software development kits (SDK) are often
not available to individual developers. The same problem recurs in commercial software.
Developing a full standalone application is possible but practically ineffective and has
low visibility in the presence of so many tools around. Fortunately, free and open-source
software (FOSS) movement has been growing fast in recent years as well as supporting
individual developers with plugin system. We will shortly see these options.

Overall, we saw that acquired biological images can be very diverse, acquired using many
protocols, methods and biological models to try and answer a great diversity of biological
question. While machine learning is a natural candidate to perform automated quantifi-

32

1. Microscopy and Bioimage Data

@haesleinhuepf
@PoLDresden

"To use our algorithm,
you need to learn

 Python first"

D
e
v
e
lo

p
e
r'

s
e
ff

o
rt

User's effort

The sweet spot:
Sharing effort can lead
to minimal total effort

Make a user interface
that's self-explaining
and easily accessible

Figure 1.14: Deploying apps or scripts? Scripts are easy to wirte and light to distribute, but
not necessarily easy to use. Applications provide user interfaces for easy usage. But making
them is a full-time work. A proper documentation and a simple command line interface, for
example, can reduce user’s effort by great amount. Source: A presentation slide from EMBO
light sheet microscopy course in 2022 by R. Haase

cation, current state-of-the-art methods suffers from many limitations preventing them
from being as versatile and general as we would wish. We will see in the next section
what methods are proposed in state-of-the-art machine learning to go beyond supervised
learning and expensive processes of curating large datasets.

33

Chapter 1. Introduction

2 General Trends of Computer Vision Solutions

Deep learning certainly made big progresses in data science and data mining. But it
seemed that deep neural networks can generalize things quite well in computer vision
and natural language processing tasks, in particular. The question have always been,
however, how far we can push deep learning. Once researchers reached deep enough
layers in neural networks, they realized that the answer was not about the size of neural
networks anymore. The key was more fundamental, that was how to train them.
The way researchers conducted machine learning was mainly supervised learning, and
it worked very well, until they stared facing issues. The response was self-supervised
learning to make a generalized model, or a “foundation” model[91], and to apply transferself-

supervised
learning

learning or domain adaptation techniques afterwards to transform the base model into

transfer
learning
domain
adaptation

practical onces. The argument between supervised learning and self-supervised learning
is a question of memorization and generalization.

2.1 Supervised Learning Dominates
Supervised learning has been the way to get the best machines. With a decent amount
of data, machines seemed to figure out common traits of given data and learn general rules.
The figure 1.15 has straight lines, each of which represents a general rule, that can clas-
sify two classes11. This notion of finding general rules or patterns is called generalization.generalization
Generalization is what we hope for machines to learn and not only to memorize. It turned
out that supervised learning could generalize quite well, especially once combined with
deep neural networks or deep learning method, as we saw in the previous section as well
as in appendix 4. However, as the size of data gets larger, more diverse, and more com-
plicated, it started showing drawbacks and its innate limitations.

One immediate problem is that you cannot supervise everything. Teachers want some
degree of autonomy from their students. You really learn something once you do your
homework on your own. Supervising everything could also bear a risk of overfitting, means
that the student memorizes problems and solutions altogether. Problems you face in the
wild is not as clean as those from classrooms. You would encounter many small bumps
that your teachers have never mentioned.

Another problem is the bias. By construction, a dataset tends to have a purpose or a
goal, and it is especially so for supervised learning. As a designer or a curator of a dataset,
you would make some decisions subconsciously. They accumulate and form biases. For
instance, a gender bias is already a known issue in many datasets[94].

An individual owns limited amount of knowledge. And there is always gray area. Some
people might not be familiar with breeds of dogs. But there is a dataset to classify 120
different breeds[95] of the dog, and there are supervised models using this data, which
can classify dog breeds far better than these people. To them, they are simply dogs, and
that is not a wrong answer. But it could be in supervised learning. In other words, there
is no uncertainty in supervised learning. You do not have options for “I do not know” or

11 This type of task to classify data is called classification, and it is another pillar that constitutes
machine learning together with regression.

34

2. General Trends of Computer Vision Solutions

“I am not sure”12.

Figure 1.15: Linearly separable two-class data. The general rule that machines learned would
be that any points on the left side of the lines belong to orange and x group and those on
the right side belong to blue and o group. This image actually represents a supported vector
machine (SVM) from the source[98]. Green lines are actually hyperplanes constructed on the
supported vector space. SVM used to sit on the alter of machine learning before deep learning
gained a momentum.

2.2 Unsupervised Learning is Pursued
Building a chatbot has always been one of the biggest problem in computer technology
(read more details in appendix 1.3.). There are rules, but there are just too many and
all kinds of exceptions are accepted. Basically, we cannot consider all the possible cases,
not to mention to memorize them all with brute-force approach. We want models to have
autonomy, less bias, and embrace gray area. It means that supervised learning would not
be an optimal choice, and it was NLP (natural language processing) community where
self-supervised learning started thriving around 2017. Self-supervised learning is a type
of unsupervised learning, which means it does not require a dataset paired with curated unsupervised

learninganswers. To narrow down the definition of self-supervision, at least in this thesis, I am
going to present other types of learning because these terminologies are relatively new,
sometimes overlapping with others, and still going through changes13: weak supervision,
semi-supervision, and also clustering. For an easy understanding of their relationship, see
figure 1.16.

Clustering is what has been representing unsupervised learning and used to be used
almost as a synonym for unsupervised learning, because most algorithms that were not
supervised were to solve clustering problems in the past. As an example, there is KMeans
clustering algorithm that assumes 𝐾 number of clusters and assigns memberships to each
data point by calculating distance among their attributes or features. features

12 There is a technique called label smoothing[96], which became popular in many models. Instead
of giving a definite answer, label smoothing makes it less confident. It may help generalization but
inevitably makes models less confident. It was reported that label smoothing could bring negative impact
on knowledge distillation[97], in which a teacher network distills knowledge to a student network.

13 The boundaries of these definitions are very thin, therefore they could be defined differently in other
literatures.

35

Chapter 1. Introduction

unsupervised learningsupervised learning

weakly supervised
learning

semi-supervised
learning

self-supervised
learning

clustering

Figure 1.16: Non-exhausted types of learning and their relationship. Unsupervised learning
refers to what is not supervised learning. Self-supervised learning is emphasized in blue because
it is the main interest. Dotted lines mean loose relationships.

Figure 1.17: Scales of self-attention language models (a.k.a. Transformer). Models before
Transformer are not even comparable in terms of the number of parameters to those after
transformer, but the number kept soaring. Around BERT, the size of models started increas-
ing exponentially, and models after GPT-3 have literally out-of-chart sizes. The graph covers
language models from July 2018 to July 2020. The graph was sourced from [99], published
sometime in 2021 before Facebook changed their name to Meta in October 2021. Meta joined
the game later and released their large language model, named OPT[100], which also has 175B
parameters to its largest, same as GPT-3.

Semi-supervision is simply a mixture of supervision and unsupervision. Usual cases
are to train your model in supervised way with available answers or labels then to train
further in unsupervised way because no label is available. The opposite, that is to train in
unsupervised way first then to do supervision, is also possible, and it has become popular
recently and is not referred as semi-supervised learning anymore. People rather call it

36

2. General Trends of Computer Vision Solutions

transfer learning that transfers learned knowledge to solve bigger or other problems. transfer
learning

Weak supervision is a type of supervised learning where you do not provide full
labels. For examples, you could label a dog as an animal or non-human, or label 3 people
out of 10 people. It has loose connection to semi-supervision, especially for the latter
case. In addition, it is usually employed as an initial or an intermediate step to fully
supervised learning. It is easy to imagine that machines from this approach would end
up suboptimal, but it generalizes better than fully supervised learning and has its place.

Self-supervised learning, last but not least, explores data without labels, and finds
(or predicts) relationship within. Clustering can be considered as a self-supervision de-
pending on how you look at it. However, while clustering has its goal at finding clusters
and distances of data points to them, self-supervised learning aims to find solely relation-
ships or similarities of data points and do no further.

2.3 Self-supervised Learning Arrives
Y. LeCun’s cake Y. LeCun is a renowned computer scientist who received Turing Award
together with J. Bengio and G. Hinton for their contribution to deep learning in 2018,
which is considered as “Nobel Prize of Computing”. He expressed the importance of self-
supervised learning at the NIPS conference (The Conference and Workshop on Neural
Information Processing Systems) in 2016. He made an analogy between self-supervised
learning and a cake. His cake is in figure 1.18. It roughly summarized three learning
methods by the amount of information models get during training: reinforcement learn-
ing, supervised learning, and self-supervised learning. He made a point that supervised
learning is like licking only the icing of the cake, which is important but represents only
the surface of a cake. Compared to supervised learning, self-supervised learning provides
far more information during training and is the actual cake we would like to conquer.

Figure 1.18: LeCun’s cake. This is a slide from IEEE International Solid-State Circuits
Conference in 2019, but it is identical to the one from his talk in NIPS2016 (Video link: [101]).

37

Chapter 1. Introduction

I believe that the term “self-supervised learning” must have existed for long time, how-
ever, it was not until one important paper in 2017 that everyone started differentiating
it from other learning methods and mentioning it. That paper by Google introduced
what’s called self-attention module specifically in deep learning and its resulted model,self-

attention named Transformer[102]. And you could see the power of self-supervised learning and
Transformer Transformers in my conversation with GPT-3[84] in the appendix at this section (NLP

example at introduction [?]). Researchers, from then on, developed large language models
(LLMs) based on Transformer, such as BERT[103] by Google, GPT family[104, 84]
by OpenAI, and OPT[100] by Meta (previously Facebook), thanks to its amazing gener-
alizability followed by its massive scalability. Speaking of scale, GPT-3 model has 175
billion parameters for its architecture, used around 300 billion tokens (token is a unit
almost equivalent to word), and it would have taken a several hundred years14 to train.
Figure 1.17 shows how the scale of the language model has evolved.

Dictionary look-up is the core idea of self-attention[102]. Its concept can be easily
found in database software. To navigate data and retrieve certain information, you would
provide a query that matches a key. With the key, you can access to its value, the actualquery, key,

value information. When it is applied to representation learning, dictionary look-up looks like
dictionary
look-up

in figure 1.19. First, it encodes query (Q), key (K), and value (V) representations. Then
it calculates similarity (A) of a given query with all the keys. The final attention (M) is

attention determined by the value associated to the query and the similarity.

Layer p

Q
K
V

M

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

NobelA

@strubell

Figure 1.19: Self-attention module[102]. Layer 𝑝 refers to any hidden layers in a neural
network. Dictionary look-up is a key idea of self-attention. It generates three embeddings: query
(Q), key (K), and value (V). The attention (M) represents relationship and importance among
tokens. Read dictionary look-up section in the main text for more explanation. Diagram by
E. Strubell.

2.4 Self-supervised Learning in Computer vision
Self-supervised learning quickly became dominant in NLP for years now, but its main
mechanism, known as self-attention, was not directly adapted right away to computer

14 Obviously, it did not take hundreds of years. OpenAI parallelized computing across processing units,
mostly graphical processing units (GPUs), on a cloud service. The amount of required computation to
train GPT-3 was 3.14× 1023 FLOPS (floating point operations per second; a common performance unit
for GPUs) and the GPU product they chose was Nvidia V100, which has 14 TFLOPS (tera-FLOPS;
1012). With simple arithmetic, a single V100 GPU gives around 711 years. It means that in order to
train a GPT-3 within a month, you need about 8532 GPUs. Some estimated that the cost must have
been several millions of dollar (do not quote me on that). Note that this calculation is all theoretical.

38

2. General Trends of Computer Vision Solutions

Input context Human artist

Context Encoder
(L2 loss)

Context Encoder
(L2+ Adversarial loss)

(a) (b) (c)

Figure 1.20: Evolution of inpainting vision task. (a, b) Before contrasive learning v.s. (c) After
contrasive learning. They all predict occluded area. The most notable difference is quality. Note
that (c) actually has two stages: first to reconstruct a segmentation mask and finally to generate
an image on top of it. Source: (a) [106], (b) [107], (c) [108]

vision due to intrinsic difference in data types15. But rather, it was its idea that was first
applied to so-called contrasive learning. For that, we will have a look at the inpainting contrasive

learningapplication to see how self-supervision was manifested in computer vision. Inpainting
inpaintingvision task16 is also called image completion, and its goal is to fill blanks or occluded

parts in an image. See figure 1.20.

Inpainting before contrasive learning Early forms of unsupervised learning in computer
vision were closer to autoencoder. Context Encoder[106] ((a) in figure 1.20) was an
unsupervised CNN for the inpainting application that looked like a variant of autoencoder.
During training, it took patches out of complete images and was provided pairs of an
image with a blank and its missing patch as a target. In essence, Context Encoder
reads images around the blank and learns how to fill it. It worked in some cases, but the
results, in general, looked awkward and not plausible enough because it had a lot of visual
artifacts. To mitigate these artifacts, a group integrated a state-of-the-art generative
model, namely GAN (generative adversarial network). Their model[107] ((b) in figure
1.20) consisted of three networks: one generator, and two discriminators, each of which
takes care of a local context and a global context. GAN and the separation of context
encoders improved the quality by a large margin, but it was still a type of autoencoder
at its core.

Autoencoder can be considered as a self-supervised learning without a doubt, but
there is little room of uncertainty. The target is too specific and there exists only one
answer for each corruption during training, at least, for two inpainting applications above.
In terms of the amount of information during training, this approach was still licking the
icing.

15 Direct translation of self-attention from NLP to computer vision is ViT (Vision Transformer)[105].
16 There is outpainting application too. Currently, outpainting refers to two applications: one for

completing an image from a rudimentary sketch, the other for expanding the context, or surrounding, of
a given image.

39

Chapter 1. Introduction

Contrasive learning Contemporary state-of-the-art self-supervised vision models are
mostly based on contrasive learning. Its goal is to learn generalized visual features, not
necessarily for a particular vision task, e.g. inpainting. Once you achieve that, utilizing it
to multiple vision tasks should be easier through techniques such as transfer learning and
domain adaptation. It is built upon three key ideas: representation learning, InfoNCE,
and dictionary look-up. Though contrasive learning is not the same as self-attention[102],
it shares a lot of similarity. In particular, it is apparent that InfoNCE and dictionary
look-up idea are inspired by self-attention.

Figure 1.21: InfoNCE employs representation learning. This particular diagram demonstrates
SimCLR[109] that adapted InfoNCE and used data augmentation to have 2𝑁 samples from a
batch (size 𝑁) for a single forward pass. For each data point, the loss considers one positive case
(attract) and 2(𝑁−1) negative cases (repel). Batch size (𝑁) is not limited, but it usually ranges
from hundreds to thousands. Notice that SimCLR does not use dictionary look-up approach.
Source: SimCLR[109] and its blog post

InfoNCE[110] is a loss that gave rise to contrasive learning. The group brought in
representation learning and negative sampling together. They called high-level latent
representations (features from deep layers; see figure A.18) slow features that contain a
global structure of data thus less sensitive to local noise variations. Even though the
slow features could provide richer signals during training and help generalization, the key
contribution of InfoNCE is the negative sampling. They sampled 𝑁 data points whichnegative

sampling comprise one “positive” sample and 𝑁 −1 “negative” samples. In comparison to previous
approaches, negative samples allow roughly ×𝑁 signals to the training process. This
approach is similar to self-attention in the sense that it compares multiple embeddings17

and exploits their similarities like mutual information in InfoNCE. Figure 1.21 shows how
SimCLR[109] (for simple contrasive learning) works. InfoNCE was already referred as
contrasive learning, but in practice it also considers dictionary look-up.

17 In language models, a latent variable or a hidden representation is often called embedding, not as a
map in computer vision.

40

https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html

2. General Trends of Computer Vision Solutions

encoder
momentum

encoder

q

contrastive loss

similarity

queue

k0 k1 k2 ...

xquery xkey0 xkey1 xkey2 ... 256 512 1024 4096 16384 65536

K (log-scale)

50

52

54

56

58

60

a
cc

u
ra

cy
 (

%
)

50.0

52.0

54.1

56.5

57.8 58.0

54.7

56.4

57.5

59.0

60.4 60.6

54.9

56.3

57.3

end-to-end
memory bank
MoCo

(b)(a)

Figure 1.22: Momentum contrast (MoCo)[111] is the current state-of-the-art contrasive learn-
ing framework in computer vision. (a) It successfully incorporated dictionary look-up idea from
self-attention[102] on top of InfoNCE loss[110] using so-called dynamic dictionary and queues.
(b) The accuracy of ImageNet classification task. Consequently, it could achieve unprecedented
performance beyond the numbers of samples (𝐾) that had not been possible in a single forward
pass. End-to-end approach refers to classical contrasive learning (InfoNCE) where 𝐾 equals to
the mini-batch size. Memory bank used a static dictionary and no momentum.

In the end, it was MoCo[111] (momentum contrast) that finally applied dictionary
look-up idea to InfoNCE and became a current state-of-the-art contrasive learning frame-
work in computer vision. Its biggest contribution is the dynamic dictionary, which is an
adaptation of self-attention. When it comes to self-supervised learning, the scale is more
important than to supervised learning. Compared to languages, it was hard to construct
a large batch of images due to memory constraints. The dynamic dictionary essentially
decouples the dictionary size from the mini-batch size, which in turn makes the dictionary
look-up approach more affordable in computer vision. A static dictionary pre-computes
keys, which means that it will not be trained. Momentum encoder slowly adjusts the
dictionary so that it can be trained as well. See figure 1.22.

Transfer learning and Domain adaptation Self-supervision frameworks such as Trans-
former [102] and contrasive learning[110, 111, 109] are not actually directly used in real
tasks. Even though Transformer is known as a zero-shot learner, which means that it zero-shot
does not need to be fine-tuned, it usually goes through additional shots of learning (a.k.a.
a few-shot learning). Their primary goal is to build a foundation[91] that holds general a few-shot

foundation
model

rules of a certain type of data, such as the language or the vision, so that people can
easily branch it to more sophisticated tasks. Foundation models have huge advantages: it
is generalized, versatile, relatively unbiased, significantly reduces research cost18, and ac-
tually more performant. It is usual that they are served as a pretext task and go through pretext task
a fine-tuning process for a downstream task. Fine-tuning refers to a process of taking an fine-tuning

downstream
task

already trained model and training it further. Transfer learning and domain adaptation
are two representative techniques frequently used in production.

Transfer learning transfers knowledge from a task, with which a model was trained, transfer
learningto other tasks. In practice, in deep neural networks, the process is following. First, you

would grab one or more large scale dataset(s) and train a model no matter the task. Once
the model was trained, we could assume that it could recognize the similar type of data

18 Training a large scale model may cost millions of dollars.

41

Chapter 1. Introduction

1 5
1

0
2

5

1
0

0

40

60

80

A
cc

u
ra

cy
 [

%
]

ILSVRC-2012

fu
ll

fu
ll

fu
ll

BiT-L (Ours) Generalist SOTA Baseline (ILSVRC-2012)

1 5
1

0
2

5

1
0

0

85

90

95

CIFAR-10

fu
ll

fu
ll

fu
ll 1 5

1
0

2
5

1
0

0

40

60

80

CIFAR-100

fu
ll

fu
ll

fu
ll 1 5

1
0

2
5

80

90

Pets

fu
ll

fu
ll

fu
ll 1 5

1
0

60

80

100
Flowers

fu
ll

fu
ll

fu
ll

Figure 1.23: Effectiveness of transfer learning. BiT[112] refers to transferred models. The
group trained BiT with JFT dataset[113] which contains 300M images and tested an image clas-
sification task with 5 different datasets by transfer learning. The x-axis indicates the number of
images per class for fine-tuning process. Source: Big Transfer (BiT): General Visual Represen-
tation Learning[112]

that you trained it with. Second, you would divide your network into two pieces: a
body and a head. Head is the last or penultimate layer(s) responsible to transform latent
representations for the loss you set. Third, you would simply discard the head and keep
the body which is capable of encoding generalized representations. Lastly, you would
construct a new head for a downstream task you want, and may want to fine-tune it a
bit. Transfer learning is becoming more and more common not just because the cost of
training a large-scale model started soaring exponentially, but because it actually helps
to push performance, as demonstrated in figure 1.23.

Domain adaptation considers relatively small changes in comparison to transfer learn-domain
adaptation ing. A given pretext task stays the same and only the data changes. The shift that occurs

when data distribution changes is called domain shift. See figure 1.24.

Source

Target

MNIST S�� N������ SVHN S�� S����

MNIST-M SVHN MNIST GTSRB

Figure 1.24: Examples of domain shift. Here are presented 6 different datasets. Domain
adaptation has a goal to adapt a model trained with a source dataset and to a target dataset.
Source: [114]

42

3. Self-supervised Learning in This Thesis

3 Self-supervised Learning in This Thesis
As computer vision research is seeking ways out of supervised learning towards self-
supervised learning, there are already a few promising frameworks introduced in the
previous section. But a common caveat that these frameworks share is that they were ex-
plicitly designed as a pretext task. A pretext tasks could help models to get used to data
before a downstream task that actually has a practical use but eventually involves super-
vised learning. But for bioimages, even labels for a downstream task are already hard
to come by. The ideal route would be that self-supervised models not only learn input
data without any labels but also perform real tasks to solve problems. To develop such
algorithms or to construct losses for machine learning approaches, one needs to know fun-
damental principles of self-supervised learning. Two fundamentals are generative model
and representation learning, which will be briefly explained here and will be the main
subject in chapter 3.

3.1 Generative Model
Generative model is, in a way, a machine learning itself. If supervised learning forms
a model that links answers from given inputs, a generative model, from a perspective
of self-supervised learning, generates new data points by learning a distribution of data
itself. A brief introduction to the generative model can be found in appendix 2.

GAN Generative adversarial network[48] introduced what’s called discriminator to help
model 𝑝(x) beside the generator. The generator is a network which I denoted G in the
figure 1.25 to simulate new data from a structured noise. Discriminator, referred as D,
is another network to perform binary classification whether a generated data x′ is real or
fake. They play a minimax game that the generator tries to maximize its capability to
fool the discriminator while the discriminator will be randomly given a sampled data x
or a generated data x′ each time. The game starts easy, because the generator would not
do well at first and the discriminator could easily pick up fake images. This game ends
when discriminator is no longer able to tell the given data x′ is fake. This adversarial
approach is clever, because modeling x ∈ R𝒟 with large 𝒟 is not a trivial task, but the
discriminator effectively reduces it down to a binary classification task.

The generated images, as shown in figure 1.26, were incredible since the quality was guar-
anteed by the objective of the discriminator and the generator was capable enough thanks
to a powerful deep CNN. However, GANs almost always experienced mode collapsing, mode

collapsingwhich means that the generated data x′ covers only a part of 𝑝(x) (imagine that x′ cov-
ers only one of three branches of 𝑝𝜃(x) in figure 1.25). Conceptually, it means that the
generator would create the same types of images again and again however the input z
changes and the discriminator does not even see other types of images. In the end, this
generator can only generate images of adult faces, for instance, even though we had a full
spectrum of faces. One of the main causes of mode collapsing is simply that the objective
of GAN allows this case. Another fundamental cause is the way of sampling z. I said
that it is a structured noise that becomes the input to the generator. Fundamentally,
the generator needs an input and researchers simply sample it from a known distribution,
such as the beloved normal distribution. As a result, in this case, the generator learns
to map19 the normal distribution to 𝑝(x). In fact, it might have been possible to avoid a map

43

Chapter 1. Introduction

AE

VAE

GAN

0/1G D

GE

E G

1

0

approximate identity

approximate identity

Figure 1.25: Overview of generative models: generative adversarial network (GAN), autoen-
coder (AE), and variational autoencoder (VAE). An input is x and an output is x′. z is a latent
variable. 𝑝(x) is a probability density distribution of a dataset and 𝑝𝜃(x) is a parameterized
approximation of it. In terms of models, G is a generator (or a decoder), 𝒟 is a discriminator,
and E is an encoder. A couple of notes: (i) Probability density distribution 𝑝(x) no longer has
a nice shape because it has a large dimension 𝒟. It looks 2-dimensional, but it is not. It helps
to visualize an arbitrary distribution in a large 𝒟-dimension. (ii) 𝑝(x) with a dotted outline in-
dicates approximation, namely 𝑝𝜃(x) parameterized by 𝜃. (iii) Latent variable z can be sampled
from a nice prior distribution like the one in a solid circle background, from nice but multiple
priors like the one in blurred circle, or from nothing. (iv) z for GAN is not a latent variable, in
fact, and simply an input to the generator. Read each section to learn more. The diagram was
inspired by [115].

mode collapsing, if the sampling method had been “correct”. Who does model and sample
z then? It is us, humans. Can we fix it? Maybe, if we optimize sampling methods too.
But it should not be us humans, because human intelligence is specialized20. In a word,
both the generator and the discriminator are capable enough, but lack of our imagination
to sample z is limiting their potentials.

VAE Variational autoencoder is a variant of the autoencoder (AE). Autoencoder is aautoencoder
(AE) model to learn the way to encode an input and to decode it to reconstruct the input,

basically learning identity, therefore “auto-”. As shown in figure 1.25, an autoencoder has
a pair of an encoder (E) and a decoder (G), and in the middle, a bottleneck layer, oftenencoder

decoder called latent layer. In principle, the encoder encodes or compresses data x to small codes,
latent layer so-called latent variable z. We can write down how the process of estimation is done,
latent
variable

19 Mapping is equivalent to making a function, though it usually indicates 1 to 1 transformation.
20 Can you say something completely random languages and somehow cover all the existing languages

over the world? I do not think so. It is difficult even to make any sounds that you do not know. It is
another evidence that human intelligence is very specialized.

44

3. Self-supervised Learning in This Thesis

Figure 1.26: Astonishing results from GANs. All images are not real. (left) BigGAN [116].
(right) StyleGAN[117, 118], known as “thispersondoesnotexist”. It is a webpage hosting gen-
erated face images from StyleGAN2[118]. The address is https://thispersondoesnotexist.com/.
Refresh the page to see other faces once you are there.

involving the generation process from z:

𝑝𝜃(x) =
∫︁

𝑝𝜃(x|z)𝑝𝜃(z)dz (1.2)

We can interpret above equation as follows: (i) we find the distribution of z, namely 𝑝𝜃(z),
(ii) we scan every z and generate x (𝑝𝜃(x|z)) to make an estimation 𝑝𝜃(x) for the data
distribution 𝑝(x). In practice, we do not get to choose 𝑝𝜃(z) nor have any constraints on
z. As a result, the latent space (z ∈ 𝑍) where the latent variable z lies in, becomes too latent space
large and unpredictable. Instead, we have direct access to both 𝑝𝜃(x) and 𝑝(x). Hence,
we can simply compare x′ to x. Though it is useful to have a concise feature of a data in
a low dimension in the latent layer, we end up having a huge latent space and have little
control over it21.

Variational autoencoder is an attempt to model the distribution of the latent variable variational
autoencoder
(VAE)

z from a known distribution to have control over it. See the diagram of VAE in figure
1.27. First, the encoder maps x to z, and its process can be written as 𝑝𝜑(z|x), same as
the autoencoder. But VAE does not do it that way. Instead, VAE estimates 𝑝𝜑(z|x) with
a prior distribution, and we will call the estimated posterior distribution 𝑞𝜑(z|x). Simply
put, we would like to condition the encoding method with a known distribution, and the
popular choice of 𝑝(z), as you may have guessed, is the Gaussian distribution. But if
we were to sample z randomly from a Gaussian distribution, it loses connection to the
encoding process, which means that we cannot use the gradient descent to optimize it.
It is the reparameterization trick that fixes it, and it lets the encoder samples z, not us.
It is called “reparameterization” because it uses the output of the encoder, z, and use it
to parameterize 𝑞𝜑(z|x) with a multivariate Gaussian distribution with a diagonal covari-
ance 𝒩 (0, 𝐼). At the end of the day, the reparameterized z′ looks like a set of Gaussian

21 It is generally true that a variable in a high dimension has a bigger space than that in a low dimension.
But in the case of autoencoder, the dimension of the latent space is given as a hyperparameter and fixed,
and researchers want it small. Yet, it could grow sparse and large in terms of the volume.

45

https://thispersondoesnotexist.com/

Chapter 1. Introduction

Encoder:

Prior distribution:

Decoder:

x-space

z-space

Dataset

Figure 1.27: Variation autoencoder. Source: [119]

distributions22 in figure 1.28. Notice that what was a vector z becomes a set of samples
from a multivariate Gaussian distribution, z′.

(𝜇, 𝜎) = z = 𝑝𝜑(z|x)
𝜖 ∼ 𝒩 (0, 12)

z′ = 𝜇 + 𝜎𝜖

z′ ∼ 𝑞𝜑(z|x) = 𝒩 (z; 𝜇, Σ2)

(1.3)

Second, now we can describe a data distribution 𝑝𝜃(x) from a known latent variable
z′ by replacing z in equation 1.2. Accordingly, its generation process is referred as the
variational inference 𝑝𝜃(x|z′). Furthermore, this latent variable is not totally random andvariational

inference has connection to the encoder so that we can calculate gradients to train a VAE.

Third, the loss will have another term to approximate the posterior distribution 𝑞𝜑(z|x)
to 𝑝𝜑(z|x), in addition to maximize the log-likelihood of data log 𝑝𝜃(x).

ℒ𝑉 𝐴𝐸(𝜃, 𝜑) = −(log 𝑝𝜃(x)−𝐷𝐾𝐿(𝑞𝜑(z|x)||𝑝𝜑(z|x))) (1.4)

Advantages of VAE are clear. (i) VAE is mathematically sound. The objective is also
known as the variational lower bound from variational Bayesian methods and has long-
lived. (ii) It is more explainable. One issue that people keep raising questions against

22 We can consider this multivariate Gaussian distribution as a set of Gaussian distributions, because
they are not correlated.

46

3. Self-supervised Learning in This Thesis

1.1

1.3

-0.6

1.6

-1.0

-1.8

0.4

0.4

-0.5

-1.0

Figure 1.28: An example of reparameterization trick with numbers in equation 1.3. z ∈ R10

is a vector that has 10 dimension. Through the process, the reparameterized latent variable z′

is sampled from a multivariate Gaussian distribution constructed by z. Usually, z′ ∈ R5 has
half dimension (not necessarily). The reparameterization trick is why VAE is sometimes called
a “stochastic mapping”.

deep neural networks is that they are like black boxes that give us little explanation how
they work. VAE has separate parts that serve separate roles: an encoder, a decoder,
and a latent variable. (iii) We can actually manipulate the latent variable to generate
somewhat intended results to a degree. Figure 1.29 demonstrates 𝛽-VAE[120] which was
designed to enforce disentanglement of the latent variable.

There are disadvantages, too. Variational inference is nice to gain control over the latent
space, but it is compromising the quality at the same time because of the stochastic nature
of the reparameterized latent variable (z′). Besides, the prior distribution yet has a simple
form just like GANs, while the real data distribution (or a resulting posterior distribution)
is presumably much more complex than that. As you may have noticed in figure 1.29,
the results become blurry and not as realistic as those from a GAN.

3.2 Representation Learning

Representation learning is an important component for incorporating uncertainty to train-
ing process. Again, learning is not solely about a memorization. When we recognize a
chair, we construct an abstraction of it, e.g. legs, low height, sometimes a backrest, then
you can recognize other chairs. Autoencoder usually has targets in the data space which is data space
a direct observation. As we saw throughout section ??, deep CNNs are powerful abstrac-
tion machines. So instead of constructing a loss in data space, representation learning
does it in latent space or feature space to learn the abstraction. latent space

Deep convolutional neural networks (CNNs) excels at encoding data and its features. Re-
sulted feature maps from each hidden layer are representations of a given data. Style
transfer vision task became viral because of its expressiveness and visually plausible re-
sults. It did so, utilizing representation learning at its full potential. I will cover basic representation

learningideas of neural style transfer (style transfer using deep neural network learning), but it
neural
style transfer

will be discussed further in chapter 3.

47

Chapter 1. Introduction

(a
)

A
zi

m
u
th

 (
ro

ta
ti

o
n
)

(b
)

e
m

o
ti

o
n
 (

sm
ile

)
(c

)
h
a
ir

 (
fr

in
g
e
)

VAE InfoGANβ-VAE

Figure 1.29: 𝛽-VAE[120] investigated disentanglement of the latent variable z in VAE. Each
row represents a different seed image used to infer the latent values in the VAE-based models,
or a random sample of the noise variables in InfoGAN [121]. In general, changing a dimension
of the latent variable does not mean changing a single attribute that we perceive. For instance,
the rotation and the emotion change simultaneously in VAE. In addition, the rotation attribute
is hardly possible to manipulate except in 𝛽-VAE. Note: italicized sentence was kept original
from the source[120].

48

3. Self-supervised Learning in This Thesis

Figure 1.30: What is a texture or a visual feature? These are all images of corks, randomly
sampled from KTH-TIPS database[124]. They look different, but there is something that we
perceive them all as corks. Julesz ensemble supposes that there will exist a set of filters whose
responses are all identical across these images.

Julesz ensemble and neural style transfer Style transfer is categorized as texture
modeling and representation learning.

Julesz ensemble[122, 123] is a concept from texture modeling and a fascinating one.
It says that images are identical if their visual features are the same (it may sound ob-
vious), or an image is an averaged response of many visual features (this one may sound
obvious too). Let’s consider a filter 𝐹𝑙 that can extract a certain feature from an image x,
a discrete pixel space Ω = {1, . . . , 𝐻} × {1, . . . , 𝑊}, and a location 𝑢 ∈ Ω. Thus, we can
express a feature from a filter at a location as 𝐹𝑙(𝑥, 𝑢). The overall observation 𝜇𝑙 through
a filter 𝐹𝑙 is a spatial average of a feature over all locations 𝜇𝑙(x) = ∑︀

𝑢∈Ω 𝐹𝑙(x, 𝑢)/|Ω|.

Now, let’s imagine two images x𝐴, x𝐵, and a filter 𝐹𝑙. If you wear this filter and their
visual observations look the same (𝜇𝑙(x𝐴)− 𝜇𝑙(x𝐵))2 < 𝜖 (𝜖 is a number small enough to
ignore), can you say that they are identical? No, a single filter might not be enough. But
what if you have a bank of filters {𝐹1, 𝐹2, . . . , 𝐹𝐿} and say:

𝜇𝑙(x) =
∑︁
𝑢∈Ω

𝐹𝑙(x, 𝑢)/|Ω|

ℒ(x𝐴, x𝐵) =
𝐿∑︁

𝑙=1
(𝜇𝑙(x𝐴)− 𝜇𝑙(x𝐵))2 < 𝜖

(1.5)

Then, yes, it is likely that they are identical. Julesz ensemble is a set of images that
satisfies the following condition:

𝒥𝜖(x′) = {x ∈ 𝒳 : ℒ(x, x′) < 𝜖} (1.6)

Say x′ is a cork image (see figure 1.30), then 𝒥 (x′) represents all cork images. What’s
interesting is that, in reverse, we can think that an image x is an averaged response of a
bank of filters, like following:

x =
𝐿∑︁

𝑙=1

𝜇𝑙(x)
𝐿

(1.7)

If you think of it, this is exactly what convolutional neural networks (CNNs) are doing.
We could consider each layer as a filter 𝐹𝑙 and its feature map as 𝜇𝑙. Example from a
CNN in figure A.21 is also a Julesz ensemble.

49

Chapter 1. Introduction

Figure 1.31: They are image patches augmented from a single image. The one in a red box in
the top left corner is the only patch not augmented. Used augmentation are translation, scaling,
contrast and color changes. Source: [125]

Representation learning is a learning method to learn representations instead of
data itself in data space. Data (𝑝(𝑥)) is an observation of a thing. Depending on many
conditions, its observation can change small or dramatic. The idea is to learn an ab-
straction, an essence (𝑝*(𝑧)), or an invariant feature. Figure 1.31 shows a set of images
augmented from a single image. Data augmentation technique simulates different aspectsdata aug-

mentation of data while we want that it will not change the essence of data. Just as we saw in Julesz
ensemble, we could assume a feature map 𝐹𝑙(x) from a layer 𝑙 in CNNs and consider it as
a representation to learn.

Neural style transfer Neural style transfer is a highlight of a representation learning as
well as of chapter 3 of this thesis. Once researchers found that a deep CNN trained with a
large-scale of dataset can express rich representations, an application[87] appeared which
became the genesis of the neural style transfer23. Neural style transfer approach made aneural

style transfer huge impact in texture modeling[127]. The neural style transfer model could model very
sophisticated styles of artistic drawings beyond simple textures, and the result was good
enough to yield many variants (see figure 1.33). The model took two input images and
mixed them in a way that one keeps content (objects), and the style (colors, touches,content

style textures, etc.) of the other is to be transferred.

What made the style transfer model special was how it manipulated feature maps from a
pre-trained deep CNN to represent a style (a.k.a. style representation). In particular, theystyle

representation employed Gram matrix to achieve that. Gram matrix being 𝐺𝑙 ∈ 𝑅𝑁𝑙×𝑁𝑙 , the vectorized
feature map 𝐹𝑙 ∈ 𝑅𝑁𝑙×𝑀𝑙 has 𝑁𝑙 number of filters and has the size of 𝑀𝑙, where 𝑙 indicates
𝑙-th block24 inside a CNN:

𝐺𝑙
𝑖𝑗 =

∑︁
𝑘

𝐹 𝑙
𝑖𝑘𝐹 𝑙

𝑗𝑘 (1.8)

The idea of Gram matrix is to collapse spatial dimension of the feature map so that
it can sort of correlate and represent overall style of a given image. Simply optimizing
a mean square error of Gram matrices made it possible to apply one style to the other
image along with content loss, which plays a role to keep the contents. Diagram in figure
1.32 explains the whole process.

23 The primary author Leon Gatys had already worked on texture modeling and synthesis[126] and
used CNNs to model textures even before the neural style transfer.

24 Beware that it does not necessarily indicate 𝑙-th layer.

50

3. Self-supervised Learning in This Thesis

It is worth mentioning that style represented by Gram matrix still remains an ambiguous
concept in literatures, because style itself is a complicated notion. When it comes to style
transfer application, it seems that style concerns spatial characteristic, luminance profile,
color distribution, brush stroke (pattern or texture), etc [128, 129].

Concerning what optimizing Gram matrix means, one particular study [130] claimed
that the mean square loss of Gram matrices is equivalent to finding maximum mean
discrepancy with a second order polynomial kernel in Hilbert space. The study showed
that transferring style worked well even with a linear kernel or a Gaussian kernel.

conv3_
1

256
...

4
3

2
1

conv1_ 2
1

1
64

...

conv4_
1

512
...

4
3

2
1

conv5_
1

512
...

4
3

2
1

feature
maps

pool1

pool2

pool4

pool3

conv2_
1

128
...

2
1

input
Gradient
descent

conv3_
4

3
2

1

conv1_ 2
1

conv4_
4

3
2

1

conv5_
4

3
2

1

pool1

pool2

pool4

pool3

conv2_ 2
1

input

Figure 1.32: Style transfer algorithm. First content and style features are extracted and stored.
The style image 𝑎⃗ is passed through the network and its style representation 𝐴𝑙 on all layers
included are computed and stored (left). The content image 𝑝 is passed through the network
and the content representation 𝑃 𝑙 in one layer is stored (right). Then a random white noise
image 𝑥⃗ is passed through the network and its style features 𝐺𝑙 and content features 𝐹 𝑙 are
computed. On each layer included in the style representation, the element-wise mean squared
difference between 𝐺𝑙 and 𝐴𝑙 is computed to give the style loss ℒ𝑠𝑡𝑦𝑙𝑒 (left). Also, the mean
squared difference between 𝐹 𝑙 and 𝑃 𝑙 is computed to give the content loss ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (right). The
total loss ℒ𝑡𝑜𝑡𝑎𝑙 is then a linear combination between the content and the style loss. Its derivative
with respect to the pixel values can be computed using error back-propagation (middle). This
gradient is used to iteratively update the image 𝑥⃗ until it simultaneously matches the style
features of the style image 𝑎⃗ and the content features of the content image 𝑝 (middle, bottom).
Caption is kept original from the source[87].

51

Chapter 1. Introduction

D

B

F

A

C

E

Figure 1.33: Images that combine the content of a photograph with the style of several well-
known artworks. The images were created by finding an image that simultaneously matches
the content representation of the photograph and the style representation of the artwork. The
original photograph depicting the Neckarfront in Tübingen, Germany, is shown in A (Photo:
Andreas Praefcke). The painting that provided the style for the respective generated image is
shown in the bottom left corner of each panel. B The Shipwreck of the Minotaur by J.M.W.
Turner, 1805. C The Starry Night by Vincent van Gogh, 1889. D Der Schrei by Edvard Munch,
1893. E Femme nue assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky,
1913. Caption is kept original from the source[87].

52

4. Objectives of The Thesis

4 Objectives of The Thesis
This thesis concerns developing and applying versatile machine learning model for neu-
rodevelopmental imaging. Throughout the introduction, I presented:

• What kind of data is the interest of this work and techniques to acquire it. This
thesis deals with bioimages that are large in data size and have resolutions as small
as cells nuclei. Microscopy techniques able to acquire such data are introduced.

• What tasks and problems are there to solve in bioimage analysis. Bioimage in-
formatics handle topics such as how to store data, how to transfer data, how to
visualize data, and eventually how to prepare or process data to conduct the anal-
ysis. Image segmentation task is the essential computer vision task required for
qualitative analysis and the main focus of this thesis.

• What benefits deep learning brings in bioimage analysis compared to existing algo-
rithms and methods that are linear or based on strong assumptions. Deep learning
is a particular machine learning technique combined with deep neural networks. It
demonstrated unprecedented generalizability in computer vision tasks. Many mod-
els and datasets were curated and released to segment, restore, or denoise bioimages
far better than before. Software tools gained attention again to better distribute
these models to users.

• What the current state of deep learning for bioimages is, and what limitations and
challenges of current deep learning solutions are facing. They mainly stemmed
from supervised learning which is a machine learning scheme that requires a fully-
curated dataset. And it is not trivial to curate a bioimage dataset due to its innate
properties.

• What general trends are in general computer vision tasks to overcome these limi-
tations and challenges and to further build foundations. General computer vision
tasks had the same issue with supervised learning. People started questioning its
versatility, biases, and generalizability.

• What other learning schemes there are other than supervised learning. Unsupervised
learning is the opposite scheme that does not involve any supervision. Whereas,
there are intermediate schemes in-between, such as semi-supervised, weakly super-
vised, and self-supervised learning. Among them, self-supervised learning is the one
currently standing.

• What self-supervised learning is and how it changed the prospect of deep learning,
especially in natural language processing. Self-attention, the key module enabling
the current framework of self-supervision, essentially builds relationships among
data points. It generated a plethora of language models and opened the door to
large language models (LLMs).

• What progresses are made in terms of self-supervision in computer vision. Although
self-attention could not be easily applied to image data, other methods were devised
based on the similar dictionary look-up idea. For examples, contrasive learning and
InfoNCE loss turned out to be effective as pretext tasks, they were never meant to
perform real tasks.

53

Chapter 1. Introduction

• What fundamental ideas of self-supervised learning are to develop and seek for a
new framework that fits to bioimages. It all comes down to generative modeling
and representation learning. There have been already powerful computer vision
solutions for generating images, such as GAN, VAE, and neural style transfer.

Eventually, the goal of this thesis is to find versatile image analysis model that could
work for a variety of bioimages through self-supervised learning. Community still lacks
of large-scale datasets curated for machine learning and, as a result, lacks of versatile and
generic models. Therefore, tackling the data issue will be a recurrent topic throughout
the rest of the manuscript. In the following chapters, first, I tried supervised learning
and assessed its versatility and its limits. Second, I explored self-supervised learning to
go beyond those limits. Lastly, I applied these techniques to biological applications via
tools integrated in open source software, as I believe that usability and accessibility are
what matter at the end of the day.

Contributions of this work are:

• Building a meta-dataset by collecting and combining existing datasets

• Building bioimageloader, a python library to easily manage it

• Using it to assess supervised learning as a path to versatile models in bioimage
analysis, using in particular a new kind of ablation study

• Proposing the use of deep filter as a smart drop-in replacement for old linear filters

• Introducing a novel self-supervised loss and its resulted model NU-Net, a blob
enhancement filter

• Building software tools to integrate machine learning in image processing pipelines

• Developing applications in collaboration with microscopists and biologists

54

4. Objectives of The Thesis

What to expect ahead

Chapter 2: Supervised learning
We have a number of challenges involving data science even before getting into machine
learning. I mentioned overall data issues already, but I will cover them in more technical
details. In particular, I propose bioimageloader, a Python library that I wrote to answer
data issues in bioimages. I gathered a large and diverse ensemble of datasets and thanks
to bioimageloader, I used it to benchmark the versatility of well known methods and
push supervised learning to its maximum.

Chapter 3: Self-supervised learning
Deep neural networks trained with large scale datasets are the prevailing answers for gen-
eralized models. Versatility can be achieved by transfer learning and domain adaptation
afterwards. The main focus here is NU-Net, a self-supervised deep CNN which is a
generic filter for cellular-like or nuclear-like objects.

Chapter 4: Practicality
Developing an algorithm is cool but making it useful is even cooler and can be more
fulfilling. I will detail the every project I was involved in during my thesis and highlight
some additional contributions to the bioimage informatics software ecosystem.

Chapter 5: Conclusions and Beyond
I will conclude my works and discuss things beyond them. Some advances in machine
learning are not directly related to my work but have high impacts. Vision transformer,
diffusion model, and DALL·E that bridged text and vision are definitely shaping new
movements. The more capable deep learning gets, the more people are concerned about
its bias, interpretability, and privacy vulnerability.

55

Chapter 2

Supervised learning and Versatility

- Data Pipeline -
https://xkcd.com/2054/

Contents
1 How powerful and versatile SOTA supervised models? 58

1.1 Existing solutions . 59
1.2 Why they failed and What to do next 60
1.3 Supervised learning in practice 60

2 Bioimageloader: facilitate machine learning for bioimages . . 64
2.1 Why bioimageloader? . 65
2.2 Overview . 65
2.3 Technical details . 71

3 Versatile supervised learning 75
3.1 Clustering . 75
3.2 Versatile supervised instance segmentation models 80

4 Conclusions . 87
5 Discussions and Perspectives 87

https://xkcd.com/2054/

Chapter 2. Supervised learning and Versatility

This chapter is dedicated to maximizing versatility of supervised machine learning models
for segmentation tasks for bioimages. Machine learning solutions based on supervised
learning have been proven powerful in a short period of time. However, because they are
relatively new, there are still a lot of rough edges when it comes to either developing or
to using them. It is often the case that developers do not know where to start research
with machine learning models and that users find it difficult to use models, considering
that they were given a set of raw programming codes. Therefore, before going into its
main topic, this chapter will cover practicality first. To be precise, it will try to answer
how typical supervised learning looks like in practice and will attempt to perform instance
segmentation task on bioimages, which is a typical and real case problem. Afterwards, it
will pose the problem of versatility in bioimages analysis: how do existing models perform
given a new and unseen dataset by the models? How can we improve versatility on that?
The work presented here gave rise to one preprint [131], presenting BioIm-
ageLoader and included as appendix E, curently submitted to Bioinformatics.

1 How powerful and versatile SOTA supervised
models?

Let’s suppose that we just collected a new set of images to analyze cells within. This hap-
pens to be LOB-THG dataset acquired from THG (third-harmonic generation) microscopy
which utilizes nonlinear optical process to make imaging contrast in interfaces and optical
heterogeneities. See a few samples in figure 2.1. To analyze this cerebellum folia through
THG microscopy, we would like to use machine learning methods to segment cells as a
first step. The state-of-the-art solutions are namely StarDist[22] and Cellpose[29], and we
would like to try them out.

Figure 2.1: (left) Cerebellum folia image acquired from THG (third-harmonic generation)
microscopy at LOB by J. Morizet. (right) A few crops from a mouse cerebral cortex image from
the same microscope. Black dark spots are cells to segment. These crops will be our bioimages
to try out. This dataset will be referred to as LOB-THG.

58

1. How powerful and versatile SOTA supervised models?

1.1 Existing solutions

Accompany results in figure 2.2. Jumping to conclusions, they all failed to segment cells
in our THG images. It was because THG images are nothing like typical fluorescence
microscopy images that these models were trained on.

StarDist StarDist[22] offers two pre-trained models suitable for our images1: paper-
dsb2018-diam and versatile-fluo-diam. Both are trained with a subset of DSB2018
dataset[58]. They are supposedly versatile models for segmenting nuclei and cells in
fluorescent microscopy images.

Cellpose Cellpose[29] offers more diverse pre-trained models: nuclei, cyto, cyto2,
tissuenet, livecell. For nuclei, cyto, and cyto2 models, the group used their
own dataset, while they used TissueNet[43] for tissuenet model and LIVECell[64] for
livecell model. It was found that the cyto model showed the best results.

IN
P
U
T

accuracy@0.5=0.17 accuracy@0.5=0.42 accuracy@0.5=0.36 accuracy@0.5=0.00 accuracy@0.5=0.04

P
R
E
D
IC
T
IO

N

A B C D E

accuracy@0.5=0.00 accuracy@0.5=0.00 accuracy@0.5=0.00 accuracy@0.5=0.00 accuracy@0.5=0.00

C
e
ll
p
o
s
e
(c
y
to
)

S
ta
tD

is
t(
v
e
rs
a
ti
le
_fl

u
o
)

P
R
E
D
IC
T
IO

N

Figure 2.2: Instance segmentation results of pre-trained StarDist (versatile-fluor) and
Cellpose (cyto) models on LOB-THG images. They are current state-of-the-art models for nucle-
ar/cellular segmentation but failed to segment cells in our images. Annotation: cyan blobs =
ground truth, red contour = false positive, green contour = true positive. False negatives are
masks in cyan without a contour. “Accuracy” metric is what both StarDist and Cellpose used
in their papers. Find its definition in appendix C.

1 There is another model versatile-he, specialized for H&E stained cell images from brightfield
microscopy. But it is not suitable for our images.

59

Chapter 2. Supervised learning and Versatility

1.2 Why they failed and What to do next
There are multiple factors why supposedly versatile and generic pre-trained models failed.
Superficially speaking, the models probably have never seen modalities of images like
THG. In other words, THG images were out-of-distribution of the tried models. As a
matter fact, there is a trick to make these pre-trained models to work better on the
LOB-THG images. We could invert the images, and they would work better because typical
cells and nuclei in fluorescence microscopy images look brighter than the background.
Consequently, data distribution of LOB-THG will become closer to that of typical cellular
bioimages. But that is not the fundamental solution. The problem is that these pre-
trained models do not know how to deal with THG images even though they are cell
images which these models were designed to target.

That being said, one apparent solution is to train a model using your own images. How-
ever, then you need to manually label targets for supervised machine learning if you would
like to use the state-of-the-art models such as StarDist[22], Cellpose[29], NucleAIzer[40],
Mesmer[43], Mask R-CNN[41], etc., because they are all based on supervised learning for
the moment. It may not be the worst idea since you might need only a few tenths of
pairs. But there are better ways. Provided pre-trained models are already capable by
learning to solve similar problems, what we need is domain shift so that they can adapt
themselves to a new domain. In other words, we can do domain adaptation by fine-tuning
pre-trained models. It would require fewer data than training a new model from scratch.
Now the question is where to find more generic and versatile models or how to build
them, because the more generic they are the easier it gets to achieve domain adaptation
or transfer learning.

It is not like we do not know how to build generic models. There are already a lot
of generic vision models pre-trained with large scale datasets for transfer learning, and
people have been using them for various applications. The fundamental reasons why such
models, in biomedical images, are hard to find, or rather do not exist at the moment, are
in the nature of biomedical images in general, thus the data itself. Building a versatile and
generic models primarily comes down to curating a large scale generic dataset. Challenges
of biomedical computer vision were already dicussed in section 1.4 and how they are
different from “normal” computer vision. In summary, it is challenging to build a dataset
that covers inherently diverse bioimages across samples, platforms, and whatnot, let alone
to make it large scale. In the next section, the mentioned data issues in bioimages will
be addressed and a so-called meta-dataset which is a diverse and large in scale will be
introduced by using bioimageloader, a programming library. Then, with this meta-
dataset, this chapter will demonstrate how to achieve versatility in machine learning
models based on supervised learning.

1.3 Supervised learning in practice
Since available pre-trained machine learning models failed, the next step is to fine-tune
them or to train a new model from scratch. Either ways, it will be supervised learning
to be used. Supervised learning is the simplest, yet the most powerful and practical
machine learning strategy to this date. Suppose that you would have pairs of data and
its labels, train a model, and use it to solve your problem. It all sounds simple in theory,

60

1. How powerful and versatile SOTA supervised models?

but machine learning and deep learning are still relatively young and transforming fast.
There are already a number of tools available for developers, and it is the first challenge
for a developer to choose which to use. Assume that you, as a machine learning developer,
chose one of the most popular tools out there. What would be the next step? How does
machine learning research look like? The answer is the data from the beginning to
the end. Data will determine how you would curate and structure your dataset, what
types of models would be suitable, and what metrics to use to evaluate your model.

Data pipeline
Chances are, you already have some data and want to use supervised learning on it to use
the results for your analysis. However, in most cases, you would like to collect as much
data as you can before you start or even after. After all, machine learning is a data-driven
and an iterative process. You can automate the whole data pipeline, but it will not be
easy (or almost impossible, see xkcd comics in the beginning of this chapter).

1. Collect Your would collect data of your interest. A good strategy is just to grab
anything you can find. At this stage, the quantity is more important than the quality.
You would like to have a rough idea what data you want and what you do not. Automated
process can be helpful. However, at the same time, you do not want to overdo it, because
of biases it might bring.

2. Curate You would curate the collected data and create a dataset. A dataset is
more than a collection of data. It carries a purpose, and it is especially so in supervised
learning, because you need target labels for each data point. You would like to be more
cautious about biases in this stage. Labeling data takes a lot of time, energy, and money,
thus you want to do it properly. Crowdsourcing is an option, but in essence, labeling is a
manual labor. Additionally, it is time to think about organization, structure, and formats
of collected data. It is likely that you sourced the data from different places, and that
they come in all different forms. You want to standardize and have them in canonical
formats for easy handling.

3. Load It may seem obvious, but you do not drag and drop your data into a machine
learning model. From this stage on, you need a programming environment to load data
and make it ready to be consumed by models, which are usually available through APIs
(application programming interfaces). Loading process is fundamentally related to com-
puter resources such as file I/O, RAM (random-access memory), CPU (central processing
unit) if your data is compressed and needs to be decompressed, or even network if data
is stored in remote servers. They all have limited resources or bandwidths, thus it is
important to balance them since we deal with large amount of data.

Figure 2.3: Source:
xkcd - ISO 8601, https:
//xkcd.com/1179/

4. Clean and Normalize You do not want to use data
without inspection. You may want to check each data point
one by one, but it is not practical nor correct. This step
is often referred as data mining. Data mining is a statisti-
cal analysis to find patterns in data. What’s important is
to build a dataset that is representative for the given task

61

https://xkcd.com/1179/
https://xkcd.com/1179/

Chapter 2. Supervised learning and Versatility

and “clean”. By clean, it means something either not cor-
rupted or not entirely unrelated. In particular, sorting out
unrelated data is usually not apparent. Aggressive filter-
ing might lead biases in your models and could further de-
grade the performance. Normalization helps especially when
your data is multidimensional and has high discrepancy across
them.

5. Augment Every machine learning algorithm is data-hungry. Data augmentation is
a technique not only to increase the amount of data but also to reach to underlying data
distribution. Not every augmentation strategy is necessary, but some are indispensable.
See figure 2.4.

Figure 2.4: Some data augmentations are not an option anymore for the sake of generalization.
In vision, transformations such as cropping, affine transformation (scaling, translation, rotation,
shearing), or flipping are considered essential basics and important for models to learn an object
itself rather than its look when it was imaged. For instance, an image of a cute quokka in the top
left corner was augmented not just to have more cute quokkas. By learning how a quokka may
look like in different perspectives and scales, the model will be able to find one in the wild more
easily with fewer errors. Quokka is a mascot of imgaug[132], which used be a popular image
augmentation Python library. It inspired albumentations[133], a current popular library and
the one used to create this figure.

Machine learning frameworks
Once you went through the data pipeline and built a dataset, next step is to train a
model. There are a lot of frameworks for machine learning, which are free and open-
source software (FOSS). A framework already implemented a lot of functions ready to
be used and expose them through a programming interface so that developers can build
an application with ease. Compared to the data pipeline, the machine learning part is
relatively easy with help of these frameworks, introduced in appendix 3.3.

Evaluation
When you have a model after preparing a dataset and using one of above machine learning
frameworks, the last step is to evaluate it. Generally, there are two ways to evaluate
a machine learning model. One way is to monitor loss values during training. The
magnitude of training loss cannot be an absolute measure because it depends on many

62

1. How powerful and versatile SOTA supervised models?

hyperparameters and variables, but validation loss could indicate overfitting. The other
way is to have proper metrics for the task. A metric is an absolute measure and designed
to quantify a specific quality. Yet, you may not want to rely completely on a single metric
for evaluation because metrics do have biases[134]. It is always a good idea to monitor
losses, coupled with multiple metrics.

Figure 2.5: Typical loss curves. Validation loss is often slightly higher than training loss. In
general, the model is being overfitted once the validation loss stared increasing. This point to
stop training would be around iteration 4 or 5 in this example.

63

Chapter 2. Supervised learning and Versatility

2 Bioimageloader: facilitate machine learning for
bioimages

“Bio-Formats currently supports 162 formats”

- Bio-Formats[70] v6.10.1 by OME team
as of 2022 -

- .NORM Normal File Format -
https://xkcd.com/2116/

bioimageloader is a Python library to make it easy to load bioimage datasets for machine
learning and deep learning development. Bioimages come in numerous and inhomogeneous
structures and formats. bioimageloader attempts to wrap them in unified application
programming interfaces (APIs), so that you can easily concatenate, perform image aug-
mentation, and batch-load them to develop machine learning models.

bioimageloader provides

• collections of interfaces of popular and public bioimage datasets for machine
learning applications

• image augmentation using albumentations, which is popular and powerful
image augmentation library (for 2D images)

• compatibility with pytorch

• and with others such as scikit-learn and tensorflow

bioimageloader is FOSS and available on The Python Package Index (PyPI) and GitHub.

PyPI : https://pypi.org/project/bioimageloader/
GitHub : https://github.com/LaboratoryOpticsBiosciences/bioimageloader

I supervised Xingjian Zhang, an M1 student who contributed to bioimageloader
by implementing new collections and improving documentation. The preprint of
bioimageloader is available at [131] on arXiv and can be found in appendix E.

64

https://xkcd.com/2116/
https://pypi.org/project/bioimageloader/
https://github.com/LaboratoryOpticsBiosciences/bioimageloader

2. Bioimageloader: facilitate machine learning for bioimages

2.1 Why bioimageloader?
Power of machine learning comes from the data. Making data approachable is the first
step and important one to build a great machine learning model. I needed a lot of diverse
bioimages to make a versatile and generic vision model for biomedical images. While I
managed to find many great datasets, each dataset often represented a single platform or
microscope, or a single tissue or experiment. Specificity of each dataset was not desired
for my goal. My idea was to combine them to make one big dataset while keeping their
identities. Also, they all came with different folder structures and formats. Because of
that, I encountered many issues to load and process them, which were sometimes technical
or just rooted from the nature of bioimages.

For instances of technical issues, some datasets were missing one or two pairs of image
and annotation, had broken files, had very specific file formats that cannot be easily read
in python, or provided mask annotation not in image format but in XML format. Some
filenames have typos, so sometimes I failed to iterate them.

For an example of intrinsic issues of bioimages, selecting a certain channel was an im-
portant functionality that I needed, and it was not easy for bioimage datasets. When a
dataset provided separate files for each channel image, it was easy to select one. But in
many cases, they just put all channels together in one image file. And even worse for 2
channel images (which are quite common), if they chose to use RGB(A) image formats
such as JPEG or PNG other than TIFF, I needed to figure out manually which channel
refers to what and which channel is the empty one.

There were other issues not mentioned above of course, but we made sure to deal with
all these edge cases one by one. Overall, this work is valuable to package and share it
with community so that others avoid this low level data curation and enjoy developing
machine learning models with bioimages.

2.2 Overview
Goals of bioimageloader are following

• easy to load a bioimage dataset via APIs

• easy to combine multiple datasets via unified APIs

• supporting as many datasets as possible

• easy to do machine learning

• facilitating reproducible experiments

• compatible with existing libraries and frameworks

• extensible

• easy to contribute

65

Chapter 2. Supervised learning and Versatility

Figure 2.6: Numbers of images of available collections in two categories: total, mask collections.
For now, they are all datasets of nuclei, cells or both. Beware of the difference between the
number of images and the number of annotations (in comparison to figure 1.11). LIVECell[64]
and TissueNetV1[43] certainly stand out in terms of numbers. Find sample images in the next
figure 2.7.

66

2. Bioimageloader: facilitate machine learning for bioimages

Collections One of the biggest merits bioimageloader is the collections. My answer
to a generic dataset is simply to gather a lot of data from different sources. For the
moment, I have focused on nuclear and cellular bioimages which preferably have the
mask annotation, which includes semantic segmentation masks, instance segmentation
masks, and outline masks. Having annotations is helpful not only for supervised learning
but in general for evaluation. For the time being, bioimageloader offers 28 collections
in total, 17 of which have mask annotations. In addition, the number of images amount
to around 12,000 in total. Find numbers of images for each dataset in figure 2.6.

DSB2018 TNBC ComPath UCSB DigitPath S-BSST265 MurphyLab

FRUNet Cellpose LIVECell TissueNetV1 BBBC006 BBBC007 BBBC008

BBBC018 BBBC020 BBBC002 BBBC041 BBBC013 BBBC014 BBBC015

BBBC016 BBBC021 BBBC026 BBBC004 BBBC009 BBBC030 BBBC039

Figure 2.7: Two sample images from 28 datasets that bioimageloader currently supports.
Find sources in the table at appendix B.

67

Chapter 2. Supervised learning and Versatility

How to get started Another focus of bioimageloader is the unified API and its
object-oriented interfaces2. It means that every collection is built on top of a base object
that holds common properties and unified interfaces. Still, collections can remain indi-
vidual objects that can hold private properties and functions to keep their originalities.
Below code snippet is a “Hello World”3 example of how to load a single dataset, for
instance DSB2018[58].

From this moment, I will show some Python codes. I hope that they are intuitive
enough to understand even if you do not have prior knowledge of Python nor any
programming languages. Sharp (#) and slated texts indicate comments.

1 # import DSB2018 collection from bioimageloader package
2 from bioimageloader . collections import DSB2018
3

4 dataset = DSB2018 ('path_to_data_directory ')
5 for data in dataset : # iterate data one by one
6 image = data['image '] # get image
7 mask = data['mask '] # get mask label

Listing 2.1: Hello World

Loading other datasets has the same interface, even though they come with different
internal structures and formats. We can join or concatenate them all as a one variable
while keeping the iteration process the same.

1 # import DSB2018 , TissueNetV1 , LIVECell
2 from bioimageloader . collections import DSB2018 , TissueNetV1 , LIVECell
3 from bioimageloader import ConcatDataset
4

5 dsb2018 = DSB2018 ('path_to_DSB018_directory ')
6 tissuenet = TissueNetV1 ('path_to_TissueNetV1_directory ')
7 livecell = LIVECell ('path_to_LIVECell_directory ')
8 # concatenate and assign them to a single variable
9 cat = ConcatDataset ([dsb2018 , tissuenet , livecell])

10 for meow in cat: # iterate data one by one
11 image = meow['image '] # get image
12 mask = meow['mask '] # get mask label

Listing 2.2: Multiple datasets

Data augmentation relies on a popular image augmentation library albumentations
[133]. Instead of reinventing a wheel, bioimageloader officially supports albumentations
and provides a few custom augmenters specific to bioimages as well.

1 # import albumentations and simply name it 'A'
2 import albumentations as A
3 from bioimageloader . collections import DSB2018
4

5 # define augmentations
6 transforms = A. Compose ([
7 A. SmallestMaxSize (max_size =256) , # make sure cropping works

2 Object-oriented programming is often compared to functional programming. Some programmers
argue that one is better than the other in general. In my opinion, though sometimes it is just a preference,
they have their own places to be preferred.

3 Every programming language tutorial starts with printing out “Hello World”.

68

2. Bioimageloader: facilitate machine learning for bioimages

8 A. RandomCrop (width =256 , height =256) ,
9 A. HorizontalFlip (p=0.5) , # with 50% chance

10 A. RandomBrightnessContrast (p=0.2) , # with 20% chance
11])
12 # pass it to 'transforms ' argument
13 dataset = DSB2018 ('path_to_data_directory ', transforms = transform)
14 for data in dataset : # iterate data one by one
15 image = data['image '] # get image
16 mask = data['mask '] # get mask label
17 # they will all have width =256 , height =256
18 # assert is a builtin function that asserts a following condition
19 assert image.shape == (256 , 256, 3)
20 assert mask.shape == (256 , 256, 3)

Listing 2.3: Data augmentation with albumentations

Batch loading is important in terms of the computing resource management as well
as the dynamic data augmentation. As the size of data grows, developers need more
system memory. Batch loading allows to load just as much data each iteration needs,
thus reduces the memory usage. Data augmentation is inherently a random process.
Combined with it, batch loading permits every new batch to be dynamically augmented.
It could potentially help generalization of models. In addition, bioimageloader combines
multiprocessing protocol to parallelize heavy load of the dynamic augmentation. The
responsible object is BatchDataloader, and its design was inspired by DataLoader from
PyTorch[135], a popular deep learning framework. In fact, you can use DataLoader in
place of BatchDataloader without any issues.

1 from bioimageloader import BatchDataloader
2

3 # we will invite a 'cat ' from a previous example
4 call_cat = BatchDataloader (
5 cat , # dataset
6 batch_size =16, # 16 data points become a batch
7 drop_last =True , # if the last batch doesn 't have 16
8 num_workers =4, # 4 workers will work in parallel
9)

10 for meow in call_cat :
11 batch_image = meow['image ']
12 batch_mask = meow['mask ']
13 # len is a builtin function to get a length of an array
14 assert len(batch_image) == 16
15 assert len(batch_mask) == 16

Listing 2.4: Batch loading

Config Configuration file helps experiments. When developing a machine learning model,
it is likely that you would change your codes occasionally and have multiple scripts us-
ing the same configuration of data. Coding environment is deemed to change and not
consistent. Furthermore, each collection in bioimageloader is unique and has several in-
dividual arguments, which pollutes coding environment. bioimageloader supports config
file (configuration file), so that you can write a static file that can help consistent and
reproducible experiments. It follows YAML format, whose focus is human readability.

1 # (You can comment in YAML)
2 # This is a bioimageloader configuration file

69

Chapter 2. Supervised learning and Versatility

3 # Check arguments for each dataset in the documentation
4 # [DocsLink](https :// laboratoryopticsbiosciences . github .io/

bioimageloader -docs /)
5 # file : config .yaml
6 # author : Seongbin
7 # date : 2022 -xx -xx
8 # exp : test bioimageloader
9 # used by : model_test1 , model_test2 , model_test3

10 TissueNetV1 :
11 root_dir : ./ data/ tissuenet_1 .0/
12 image_ch : [nuclei] # TissueNetV1 has two channels
13 anno_ch : [nuclei] # can load either nuclei , cells , or both
14 LIVECell :
15 root_dir : ./ data/ LIVECell /
16 mask_tif : true # LIVECell 's annotation needs conversion
17 BBBC020 :
18 root_dir : ./ data/ BBBC020_v1 /
19 image_ch : [cells , nuclei]
20 drop_missing_pairs : true # some images do not have annotations

Listing 2.5: Config file example (config.yaml)

1 from bioimageloader import Config , ConcatDataset
2

3 # load 'config .yaml ' file above
4 config = Config ('config .yaml ')
5 # load defined datasets
6 datasets = config . load_datasets ()
7 print(datasets) # check by printing
8 # print output : [TissueNetV1 , LIVECell , BBBC020]
9 # concatenate and assign them to a single variable

10 cat = ConcatDataset (datasets)

Listing 2.6: Load datasets using config.yml

Compatibility bioimageloader simply helps to load bioimage datasets for machine
learning applications. Though it is designed to be most compatible with PyTorch, its
APIs are generic to be used with other frameworks, such as TensorFlow and Scikit Learn.
To demonstrate, I will use them all three frameworks with bioimageloader later in the
next section 3.

Extensibility What if you have a local dataset and want to benefit all the functionalities
that other collections are capable of, or further want to combine it with them? You need
to follow the basic structure of bioimageloader, which may sound a little difficult and
cumbersome. However, it is relatively easy in bioimageloader thanks to the object-
oriented programming (OOP) interface. The hierarchical architecture allows users to
implement only the particular parts, and the rest is inherited automatically. It is also
helpful when a user wants to extend or modify existing collections for different behaviors.
The template for implementing new datasets and the guide to modify existing collection
are included as examples in the documentation.

Aside from the basic features introduced so far, bioimageloader provides a lot of
utilities, such as custom image augmentations specialized to bioimages, training/valida-
tion/testing subset splitting function, filtering data with their indices, etc.

70

2. Bioimageloader: facilitate machine learning for bioimages

2.3 Technical details
This section covers the design choices of bioimageloader and what it actually does.
The library was designed in a way that it could be easily managed, extended, and get
contribution. Following contents are rather technical. Please feel free to skip it and jump
to the next section 3.

Interface and Typing Programming languages evolve and Python has been evolving
faster than ever since it attracted a large crowd of users from all different domains.
bioimageloader makes use of advanced new features and requires a minimum version
3.84.

Abstract base classes (ABCs) was introduced since Python 3.4, thus particularly
not a new feature. It allows writing interfaces, a concept brought from object-oriented
languages. Interface is not an actual class, therefore abstract. Rather, it defines how
a class and its subclasses should look like. It might seem redundant, but it helps to
organize and to structure classes at the programming level, so that it becomes easy for
contributors. Once you missed something or attempted to do something illegal to the
interface, you will get errors both from a static type checker5 or the Python interpreter.

Object-oriented programming (OOP) builds hierarchical relationships of objects.
Accompany figure 2.8. Based off of DatasetInterface, Dataset defines a concrete class
which can hold properties and methods. All existing classes in bioimageloader are
subclasses of Dataset class. In this way, they could all share common properties and
methods without reimplementing, and more importantly get combined with other classes.
In addition, OOP with ABCs allows users to extend these base classes and make their
own objects by subclassing them. It ensures compatibility with existing objects and all
the other functionality of bioimageloader.

Typing is a tool for developers to find bugs based on types of variables while they
code. Type annotation was thought to be only useful in compiled languages which were
choices of large projects. However, as software got more complex, developers started
building large and complex software using scripting languages as well6. Python started
embracing the type system around version 3.5. bioimageloader tries to use types as
much as possible, so that developers can avoid errors much easily and quickly. Typing
has another benefit in autocompletion. It helps both developers and users by indicating
types of expected variables.

Caching could give a huge performance gain. bioimageloader uses cache in particular
to search for image files and their labels. As some datasets can have over several thousands

4 For the time being, the stable versions of Python are 3.9 and 3.10 in practice. Python 3.11.0 (the
first stable version of 3.11) was released 24 October 2022.

5 Static type checker is a program to iterate through all the type annotations and report if there are
errors related to types. It is static, because you do not have to run and break the actual software.

6 One apparent example is TypeScript. JavaScript is the language of web browsers and the most pop-
ular language because of internet. JavaScript is also a scripting language like Python. Yet, developers
built so many things and complicated software using it that they need other programming language fea-
tures from compiled languages. One of them was the type annotation and Microsoft created TypeScript,
which is a superset of JavaScript with many advanced language features.

71

Chapter 2. Supervised learning and Versatility

of files, searching process can become a bottleneck. Since version 3.8, Python offers a
native way to cache class properties.

Dataset

MaskDataset BboxDataset

TwoDimDataset ThreeDimDataset

DatasetInterface

Figure 2.8: Class structure of bioimageloader. Hierarchical architecture helps organize dif-
ferent types of data. It is DatasetInterface that defines the very base interface of all the other
classes. Dotted line indicates a work in progress.

Cleaning Curating a dataset is a combination of machine automation and human labor.
Both entities can make mistakes. Sometimes, annotators forgot some files, which result
in missing label pairs. They can make typos. They may have forgotten to save labels
and left annotations empty. When transferring or compressing data, files can be broken
(corrupted files). These are all I experienced while building bioimageloader. Once a
dataset were distributed, these errors get copied too. They look small, but it takes time
and energy to correct them all. bioimageloader corrected them as many as possible and
documented each of them in each collection.

Standardization Making a standard interface allows combining and processing different
datasets. Fragmented formats and structures of biomedical datasets are rooted from the
fragmented tools and lack of consensus, already mentioned in section ??.

Image file formats are fine as long as they are well adopted and available in any
tools. Dataset curators usually make right choices and provide TIFF, PNG, or BMP
extension files which are universal these days. These images formats are easy to read
and manipulate, but they may depend on different programming libraries. One thing to
note about PNG format is that it actually has two internal types: one with RGB and the
other with RGBA channels. “A” refers to the alpha (transparency) channel and is used
for composition with other images. It is useless in bioimages and convey no information,
thus dropped. In bioimageloader, all these different image formats are loaded according
to their extensions and all stored as NumPy[136] array in memory ready to be consumed.

Data types could be more important than you anticipated. Depending on data types,
some data may not be recognized properly as intended. Typical images have UINT8
and FLOAT32 data type7, where values range from 0.0 to 1.0 in FLOAT32. However,
biomedical images have no standard data types, and they come with all different types:
UINT8, INT16, UINT16, INT32, UINT32, and rarely FLOAT32. Difference of data types
causes a fundamental problem that computer cannot do arithmetic nor stack data with
different data types. Another issue with the data type is compatibility with other image-
related libraries. Data augmentation library albumentations, which bioimageloader

7 Unsigned 8-bit integer (UINT8) ranges from 0 to 255. Single-precision floating-point (FLOAT32)
encodes numbers in the exponent format and can express decimal digits. I can encode both positive and
negative numbers as small as 2−126 and as large as 2127.

72

2. Bioimageloader: facilitate machine learning for bioimages

uses, supports a certain set of data types, namely UINT8 and FLOAT32. Moreover, some
augmenters work only with specific data types. bioimageloader’s choice is FLOAT32
since it can embrace lower-bit data types and keep high enough precision for computation.
Additionally, FLOAT32 is the default data type in GPUs, and thus so in all the deep
learning frameworks.

Channels are a big issue in bioimages. Often one channel correspond to a fluorescent
response. The issue is that there is no limitation of the number of channels nor there is
a standard format such as RGB channel. There are two cases when it comes to multiple
channels in bioimages. Either they come in a single image file with multiple channels or
in multiple image files each of which refers to a channel. In either cases, bioimageloader
gives users an option to select a single channel or multiple channels. When returned they
all have three channels because albumentations does not recognize two channels or more
than three channels. So far, there was no case that a dataset comes with more than three
channels, but it is possible. When it happens, it is to be discussed.

Parsing annotation is a chore. In terms of mask datasets (MaskDataset in figure
2.8), which consists a majority of the current collections, annotation could be an image
format, a set of polygon coordinates, or other formats such as ImageJ’s RoI (region of
interest) format. For examples, some come with an encoded format such as RLE (run-
length encoding) or with a specific format, for instance, one following specification of MS
COCO[137]. Image format is the easiest to handle and the default format bioimageloader
has chosen for the MaskDataset, because it can be directly consumed for segmentation
tasks. Parsing different formats to image formats is sometimes computationally heavy.
For that reason, bioimageloader recommends and warns users to pre-parse and store
them as image formats when it is the case.

Normalization is optional only when it is necessary, but it happens quite often in
bioimages. Not to lose precision when converting data types, the common strategy is
to use the maximum value for a given data type, e.g. UINT8 (255; 28 − 1), UINT16
(65536; 216 − 1). However, as an example, some image sensors have 12-bit resolution,
and they store images in 16-bit or 32-bit simply because 12-bit data type is not native
to most storage devices and processing units, nor common. As a result, these images
ended up having empty bits above 12-bit. In some cases, it is fine to drop the empty
bits and normalize images with 12-bit (4095; 212 − 1). However, it is not always the
best strategy, because the capability of image sensors does not necessarily correspond to
the right contrast. In many cases, bioimages look very dim right after acquisition, far
below sensors’ maximum values. Images become visible once the contrast is adjusted or
normalized. For this reason, bioimageloader gives the normalization option to certain
collections.

Optional arguments are what allow individual behaviors in each collection. For
instance, some datasets have subsets such as a training set and a testing set, or different
types of annotations, etc. bioimageloader respects individual specifications of each
collection as much as possible and gives optional arguments to opt them in or out.

Documentation bioimageloader provides APIs to both users and developers, therefore
it is imperative to have a proper documentation. Documentation contains extensive guides

73

Chapter 2. Supervised learning and Versatility

from basics to application examples, and its source is managed in a separate Git repos-
itory8. The whole code base is documented in NumPy[136] style docstring9. Docstring
behave like a markup language and can get automatically rendered in HTML format, so
that users can read it on their browser easily.

8 https://github.com/LaboratoryOpticsBiosciences/bioimageloader-docs
9 Docstring is a documentation directly attached to objects. When it exists, users can easily access to

documentation in a coding environment. In Python, people usually follow either Google style or NumPy
style.

74

https://github.com/LaboratoryOpticsBiosciences/bioimageloader-docs

3. Versatile supervised learning

3 Versatile supervised learning
In the previous section 1, as presented, pre-trained StarDist[22] and Cellpose[29] failed
to segment cells in THG images. It led options either to train a model specialized to
the new data from scratch or to fine-tune them. Either way may result in good enough
performance, but they are hard to do properly. A model specialized to a dataset can
become useful when there is large enough data available. As we discussed, curating a
bioimage dataset is not an easy job. Fine-tuning pre-trained models is relatively easy,
but we will see that the pre-trained models are not generic in the first place, as we will
see later through a series of analyses.

As you may have noticed, datasets will be written in upper camel case in a
monospaced font, sometimes with a hyphen, such as DBS2018, Cellpose, ComPath,
BBBC006, LOB-THG, and so on. Find the details in appendix B.

I supervised Tanguy Rolland, an ENSTA 2A student who contributed to analyzing
collections of bioimageloader.

Instead of aforementioned solutions that might end up suboptimal, this chapter will ex-
plore an alternative solution with the help of bioimageloader. We will compose a generic
meta-dataset and further build generic supervised models for instance segmentation, in
particular using StarDist and Cellpose models.

3.1 Clustering
We have in our hands 28 nuclear/cellular datasets supported by bioimageloader, plus
4 internal datasets from LOB, which will be called LOB-THG, LOB-MNTB, LOB-TCYT5,
LOB-P14. Their samples are shown in figure 2.9. Except LOB-THG, three datasets are
acquired from a confocal microscope and ChroMS[2] microscope. Clustering was done
through 4 steps in large: pre-processing, computing features, reducing feature dimension
for visualization, and finally clustering.

LOB-MNTB LOB-TCYT5 LOB-P14 LOB-THG

sa
m
p
le
1

sa
m
p
le
2

Figure 2.9: Four local datasets at LOB, which will be used in this chapter. Two images
were randomly sampled from each dataset. Note that the contrast was adjusted for better
visualization. Find their details in appendix B.

75

Chapter 2. Supervised learning and Versatility

Pre-processing Before extracting features, it is important to normalize different datasets.
The biggest divergence among them is channel. Some datasets have multiple channels
while others have grayscale. It makes no sense to augment grayscaled images to have
multichannels. Instead, we can convert all multichannel images to grayscale with con-
sideration of the number of channels and how they are constructed. Since they are not
RGB images in general, except for some, the typical recipes10 for grayscale conversion was
not used. The most reasonable way is to average multichannels equally. In addition, the
size of datasets is all different. To balance it, we could sample 50 images, for example,
from each one, by resizing or by cropping images for those whose size was less than 50.

Deep style features There are a lot of image features you can get using traditional
methods such as histogram of oriented gradients (HOG) [138] or scale-invariant features
(SIFT) [139], etc. However, recently, it has become increasingly popular to use fea-
tures from pre-trained deep CNNs [128, 40, 18, 140, 141, 29, 142, 143] in the form of
representation learning. I used a pre-trained VGG16[85] and computed features from the
10th weight layer (out of 16) and computed Gram matrices, assuming that they repre-
sent general “styles”[126, 29, 88, 142, 143, 130], as it was explained in section 3.2 from
introduction. Deep style features are suited for clustering datasets since we would like to
know their overall relationship.

UMAP visualization Visualizing high-dimensional data is challenging. Dimensionality
reduction is a technique to crunch dimensions to lower ones while preserving relevant
structures. It is especially useful for visualization once the dimension is reduced to 1-3
dimension with which we are familiar. Our deep style features have dimension of 262,144
(5122; from 10-th layer of VGG16), which is a large number. UMAP (uniform manifold
approximation and projection for dimension reduction) [144] is a dimensionality reduction
algorithm, designed to work with high dimensional data, like popular t-SNE (stochastic
neighbor embedding; t stands for Student-t distribution)[145]. The algorithm cares less
about interpretability of reduced axes and focuses on finding relationship among data
points. I used UMAP to visualize data in two-dimension as shown in figure 2.10.

KMeans clustering As for clustering the deep features, I chose KMeans, which is an
unsupervised clustering algorithm. Given the number of clusters 𝐾 as a parameter, the
algorithm attempts to find centroids of clusters and to minimize distances from data
points to these centroids, while keeping distance among the centroids. I set 10 clusters
(𝐾 = 10) after inspecting inertia values sweeping 𝐾 from 1 to 15. The result is visualized
on top of UMAP at (b) in figure 2.10.

Interpretation Overall, UMAP tells that there is no single dataset that covers the whole
space reduced by UMAP. It matches our expectation that bioimages are highly diverse and
existing bioimage datasets are fragmented and unique on their own in most cases. This
is the primary reason why both pre-trained StarDist and Cellpose failed on LOB-THG.

10 Grayscale conversion linearly considers human perceptions for RGB and light source devices
(monitors or TVs). The most common one is 𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵. Another variant is
𝑌 = 0.2125𝑅 + 0.7154𝐺 + 0.0721𝐵.

76

3. Versatile supervised learning

StarDist was trained on a subset of DSB2018 and Cellpose was trained on a superset11 of
Cellpose, and both have little to do with LOB-THG in terms of visual features. Second
thing we can notice is an outlier, specifically BBBC004. As a matter fact, BBBC004 is a
synthetic cell dataset[146, 147] and became an outlier apart from all the other datasets.
Third, we can observe large overlaps of datasets, and that they are forming groups in
UMAP (a) figure 2.10. These groups are in good accordance with results of KMeans in
(b) 2.10.

Based on the result of KMeans, correlation coefficients can be derived based on the
numbers of images in each cluster (𝐾 = 10), and they are shown in figure 2.11. Two big
groups from the correlation figure correspond to groupA and groupB from (b) in figure
2.10. GroupA and groupC make the third-largest group, which contains all ChroMS
datasets (LOB-MNTB, LOB-TCYT5, LOB-P14). GroupC represents relatively a few datasets.
GroupD comprises TNBC and LOB-THG and has little to do with the others. Lastly, again,
BBBC004 is a big outlier as a synthesized dataset.

11 Cellpose team supposedly received a bit of anonymous contribution and published new lines of pre-
trained models. But they have not updated the public Cellpose dataset as well as nuclei and cyto
models. Dataset Cellpose used in this manuscript is the one that they released when they published the
preprint and that I could download at the time of writing.

77

Chapter 2. Supervised learning and Versatility

(a)

(b)

BBBC004

BBBC004

group1

group2

group3

groupA

groupB

groupC

groupD

TNBC

BBBC014
UCSB

ComPath
BBBC041

DigitPath
LOB-THG

Figure 2.10: Results of (a) UMAP dimensionality reduction and (b) KMeans clustering overlaid
on UMAP. Best viewed in color. 50 images were sampled from all 32 dataset, which makes 1600
data point in total. As for features, “deep style features” were used from pre-trained VGG16[85].
BBBC004 clearly does not go along with all the other datasets, because it was synthesized. Added
annotations are in black: (a) groups (1, 2, 3) and BBBC004, (b) dotted circles, groups (A, B,
C, D), and BBBC004. Note that the grouping did not have a rigorous rationale, though indeed
both UMAP and KMeans results were considered.

78

3. Versatile supervised learning

B
B

B
C

0
0

9
B

B
B

C
0

2
1

B
B

B
C

0
0

8
B

B
B

C
0

3
0

B
B

B
C

0
2

0
B

B
B

C
0

0
6

B
B

B
C

0
1

5
D

S
B

2
0

1
8

C
e
llp

o
se

B
B

B
C

0
3

9
B

B
B

C
0

0
2

M
u
rp

h
y
La

b
B

B
B

C
0

1
6

B
B

B
C

0
1

3
B

B
B

C
0

2
6

B
B

B
C

0
0

7
B

B
B

C
0

1
8

S
_B

S
S
T
2

6
5

Ti
ss

u
e
N

e
tV

1
FR

U
N

e
t

LO
B

_P
1

4
LI

V
E
C

e
ll

LO
B

_M
N

T
B

LO
B

_T
C

Y
T
5

T
N

B
C

U
C

S
B

B
B

B
C

0
1

4
C

o
m

Pa
th

B
B

B
C

0
4

1
D

ig
it

Pa
th

B
B

B
C

0
0

4
LO

B
_T

H
G

BBBC009
BBBC021
BBBC008
BBBC030
BBBC020
BBBC006
BBBC015
DSB2018
Cellpose

BBBC039
BBBC002

MurphyLab
BBBC016
BBBC013
BBBC026
BBBC007
BBBC018

S_BSST265
TissueNetV1

FRUNet
LOB_P14
LIVECell

LOB_MNTB
LOB_TCYT5

TNBC
UCSB

BBBC014
ComPath
BBBC041
DigitPath

BBBC004
LOB_THG

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Pe
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 c

o
e
ffi

ci
e
n
t

groupA-B groupA-C groupC groupD

Figure 2.11: Correlation of datasets based on KMeans clustering (𝐾 = 10) using deep style
features from VGG16. Annotation of groups at the top of figure roughly corresponds to that at
(b) in figure 2.10. It is clear that BBBC004 in red is an outlier. GroupC includes all the ChroMS
datasets in magenta. DSB2018 and Cellpose in blue were the ones used to train StarDist and
Cellpose, respectively (find details in the main text). The table was first sorted by the size of
clusters, then sorted again within each cluster by the portion of datasets.

79

Chapter 2. Supervised learning and Versatility

3.2 Versatile supervised instance segmentation models
To reiterate, the goal of this section is to build a versatile model. To do so, we are going to
curate a large meta dataset using bioimageloader. Though bioimageloader supports
28 collections in total, not all of them have annotation nor instance mask labels. So, 10
collections that have instance mask annotations were piceked since retraining StarDist[22]
and Cellpose[29], designed for the instance segmentation task, requires them. In addition,
we could add 4 private datasets from LOB, which were introduced in figure 2.9. Find the
list of datasets to be used in table 2.1. Before training and building versatile StarDist
and Cellpose, the strategies to combine all 14 unique datasets need to be discussed.

Dataset # of images # of training images # of samples
after augmentation

of samples
balanced

DSB2018 735 670 670 300
ComPath 30 25 334 300
S-BSST265 79 72 216 300
FRUNet 72 65 1,007 300
BBBC006 768 692 1,492 300
BBBC020 20 15 215 300
BBBC039 200 150 446 300
Cellpose 100 89 267 300
LIVECell 5,239 1,512 7,884 300
TissueNetV1 6,990 2,601 14,332 300
LOB-MNTB 41 36 144 300
LOB-TCYT5 14 9 226 300
LOB-P14 40 35 367 300
LOB-THG 14 9 146 300
Total 4,200

Table 2.1: List of datasets used to train new StarDist and Cellpose models and their numbers
of images and of samples. For the training subset, 15% of or at minimum 5 images were taken
from each dataset. Data augmentation was applied to match the target sizes, which were 17 and
20. At last, the same number was sampled for all the datasets, and the total number reached
4,200 samples.

Composing a meta dataset

1. Training/Testing split : The collections and datasets listed are all well curated for
machine learning applications. Some collections come with training and testing subsets,
or even validation subsets, though the validation subsets were not common12. We could
simply take pre-defined training subsets if they existed. For the rest, we will randomly
split each into training and testing subsets by taking 10%. However, 10% for some datasets
was already a significant number. To avoid having too small number of images for testing
subsets, we may set the minimum number of testing subset to 5. For the validation
subset, we could sample 15% from the training subset. It is worth mentioning LIVECell
and TissueNetV1 because they both pre-defined huge portions for validation and testing
subsets. But the numbers of training subsets are already much bigger than the others, so
we could ignore them for the moment.

12 The reason is reproducibility.

80

3. Versatile supervised learning

2. Balancing the number of samples : For a reminder, the goal is to build generic
models, followed by a generic dataset. As we saw results of UMAP and KMeans, bioimage
datasets are highly specific and fragmented. Also, we saw that the numbers of images each
dataset provides are all different and have sometimes huge gaps. If we simply combine
them as they are, the resulted dataset will have huge biases towards those with large
numbers. Hence, we could, for example, sample the same number for all datasets, even if
some, such as LIVECell and TissueNetV1, come with the huge numbers of images.

3. Data augmentation considering the target diameter : However, we could not
sample more images than what a dataset offers because it is duplication and the models
will become more prone to overfitting. Instead, consider a data augmentation strategy
with the average size of targets in mind. Intrinsically, object detection or segmentation
CNNs, are sensitive to the size of objects since they have a fixed set of receptive field sizes
from convolutional layers. Both StarDist and Cellpose give users an option to suggest
an expected size of nuclei or cells. Accordingly, they both have expected input sizes too.
StarDist expects inputs whose resolution is 256 × 256 and objects to have diameter of
around 20 pixels on average. Cellpose is similar but expects a resolution of 224 × 224
and the average diameter of 17 pixels (30 for cells, which are larger than nuclei). As you
might have guessed, all datasets have different diameters as well as resolutions. There
are all combinations: a small diameter with a high resolution, a small diameter with a
big resolution, a large diameter with a high resolution, and a large diameter with a low
resolution. We could come up with the following rules for data augmentation:

• small diameter, high resolution
=⇒ resize (zoom in) and crop

• large diameter, high resolution
=⇒ resize (zoom out), pad if needed, and crop

• small diameter, low resolution
=⇒ resize (zoom in), pad if needed, and crop

• large diameter, low resolution
=⇒ resize (zoom out), pad if needed, and crop

small diam
high res

large diam
high res

small diam
low res

large diam
low res

ideal

Figure 2.12: Cases of relative sizes of an object to resolutions. The average image resolution
and the averaged diameter were precalculated for each dataset and were applied to image aug-
mentation accordingly. The ideal cases were a diameter of 20 pixels in a 256×256 image array
for StarDist and a diameter of 17 pixels in a 224×224 image array for Cellpose.

The chief strategy was to pre-calculate average diameters for each dataset and to match
the size of objects to the desired one, which was 20 for StarDist and 17 for Cellpose, by

81

Chapter 2. Supervised learning and Versatility

resizing the whole image. Then, they were cropped to the size of 256 × 256 for StarDist
and 224 × 224 for Cellpose, after padded if needed. The augmentation allowed having
enough samples to balance the number among dataset, which was especially important for
those with small numbers of images. Consequently, those datasets went through heavier
augmentation in order to sample 300 from each dataset. The augmentation included
horizontal and vertical flipping and random brightness contrast changes.

4. Single-channel input : To be clear, StarDist was designed to work with single-
channel images, while Cellpose with two channels images where both cell bodies (cyto-
plasms) and nuclei are tagged. But Cellpose is capable even with single-channel images,
and so it was used to compare it to StarDist in this experiment. Hence, for each dataset,
a nuclei channel was picked when applicable, otherwise the images were converted to
grayscale following the same pre-processing protocol for clustering.

Building versatile models
The experiment respected all the suggested default arguments and hyperparameters, ex-
cept the number of epochs in terms of retraining StarDist and Cellpose with the meta
dataset that we just created. Since the size of the dataset got much larger, the training
iteration had to be longer. It was found that 400 epochs and 500 epochs yielded the best
results for StarDist and Cellpose, respectively. The qualitative results on LOB-THG images
that we failed to segment with the pre-trained StarDist and Cellpose can be found in
figure 2.13. Also, find the F-1 score metric (find its definition in appendix C) on testing
subsets in figure 2.15.

The retrained Cellpose will be called CP and the retrained StarDist SD from here
on with an italic font. Pre-trained models will be denoted in lower-case letters in
a monospaced font, like cyto, 2D-versatile-fluo, and the like. Datasets are in
upper camel case in a monospaced font, same as before: Cellpose, TissueNetV1,
LOB-THG, and so on.

In general, the retrained models outperformed almost all the pre-trained models. In
case of Cellpose, the result on the Cellpose dataset between the pre-trained cyto model
and the retrained CP is particularly interesting, because cyto model was specialized to
Cellpose. Yet, it was outperformed by CP model. We can hypothesize that the other
datasets were helping to learn segment Cellpose dataset better. Results on TissueNetV1
also tells the same thing. LIVECell was the only exception, and back in the results of
UMAP and KMeans, LIVECell had rather big difference from the other datasets. We
could suppose that the capacity of the architecture was limiting or the other datasets
outbalanced. But it is still impressive that the F-1 score of CP on LIVECell dataset was
behind livecell model only by 0.06, considering CP was trained with as little as 20%
of the intended size (300/1512; see table 2.1).

Case of StarDist is similar to that of Cellpose. The retrained Stardist SD mostly out-
performed pre-trained models except for one dataset which was S-BSST265. S-BSST265
is a typical fluorescence microscopy images and has relatively broad connections to many
datasets (again, refer to table 2.1). Assuming that 2D-versatile-fluo model was trained

82

3. Versatile supervised learning

IN
P

U
T

accuracy@0.5=0.79 accuracy@0.5=0.73 accuracy@0.5=0.82 accuracy@0.5=0.42 accuracy@0.5=0.43

P
R

E
D

IC
T
IO

N
A B C D E

accuracy@0.5=0.85 accuracy@0.5=0.87 accuracy@0.5=0.77 accuracy@0.5=0.64 accuracy@0.5=0.81

re
tr

a
in

e
d

 C
e
ll
p

o
s
e
 (
C
P
)

re
tr

a
in

e
d

 S
ta

tD
is

t
(S
D
)

P
R

E
D

IC
T
IO

N

Figure 2.13: Instance segmentation results of retrained StarDist (SD) and Cellpose (CP)
models on LOB-THG images. Compare the results to those of the pre-trained ones in figure 2.2.
Annotation: cyan blobs = ground truth, red contour = false positive, green contour = true
positive. False negatives are masks in cyan without a contour. “Accuracy” metric is what both
StarDist and Cellpose used in their papers. Find its definition in appendix C.

specifically for fluorescence microscopy images, the retrained SD may have sacrificed ca-
pability for bioimages that are not from fluorescence microscopy. There were notable
score differences between CP and SD on Cellpose and LIVECell. Both datasets actually
have whole cell annotations unlike most datasets that have nucleus annotations. Whole
cells have more arbitrary shapes than nuclei, which was one of the very reasons, which
Cellpose[29] was designed for. See figure 2.14.

Ablation study: Leave-one-out
An immediate follow-up question would be how much impact does one dataset have? And
conversely how good is a model on a dataset it has not seen? To study that, an ablation
study was performed, which will be referred to “leave-one-out”, where a single dataset
one was taken out one by one out of 14 ones shown in table 2.1. For each ablation, a new
model was trained, and dataset-agnostic F-1 scores were calculated. The result of the
leave-one-out experiment is at figure 2.15, and that of score difference is at figure 2.16.

Scores across the diagonal showed direct impact from the ablation. Big impacts (ΔF-1
≤ −0.20) were observed for TissuNetV1, LOB-P14, BBBC020, LOB-THG, ComPath, FRUNet,
LIVECell, Cellpose datasets in both CP and SD. It means that these datasets have loose
connections to other datasets do not resemble other datasets. Especially, LIVECell and
Cellpose showed huge drops in F-1 score once each was left out. The composed dataset
may still lack diversity because the score dropped rapidly when a certain dataset was left

83

Chapter 2. Supervised learning and Versatility

Cellpose

accuracy@0.5=0.97

accuracy@0.5=0.93 accuracy@0.5=0.90

accuracy@0.5=0.54

LIVECell

accuracy@0.5=0.35

accuracy@0.5=0.55

S-BSST265

IN
P

U
T

P
R

E
D

IC
T
IO

N

re
tr

a
in

e
d

 S
ta

rD
is

t
(
S
D
)

re
tr

a
in

e
d

 C
e
ll
p

o
s
e
 (
C
P
)

P
R

E
D

IC
T
IO

N

Figure 2.14: What is Cellpose good at? For the instance segmentation task, it is required for
a model to recognize morphology of an object class. In comparison to nuclei, cell bodies are
more diverse, thus have more diverse shapes. StarDist[22] is good at segmenting circular shapes
but not at irregular blobs due to its uniformly parameterized polygon prior. Cellpose[29] is
better at segmenting irregular blobs thanks to its diffusion based prior. I think that their logos
represent well what their targets are. I used the retrained StarDist (SD) and Cellpose (CP) for
predictions. S-BSST265 is a typical dataset with DAPI, which stains nuclei, whereas Cellpose
has whole cell annotations though it is also a fluorescence microscopy dataset. LIVECell is a
bright field microscopy dataset with whole cell annotations. Annotation: cyan blobs = ground
truth, red contour = false positive, green contour = true positive. False negatives are masks in
cyan without a contour.

out, which implies the specificity of that dataset.

At the same time, it seemed okay to remove certain datasets. This is a type of versa-
tility we could achieve from the strategy of combining datasets. For examples, BBBC039,
BBBC006, S-BSST265 had little impact whether they were excluded or not, meaning their
data domains likely overlap and can be easily transferred from one to another. Once we
acquired new images that fall into this domain, we could expect that these models would
be versatile enough not to be retrained. This is the main reason why we would like to
gather as many datasets as possible from various sources. Also, leaving one dataset out
either decreased or increased scores on the other datasets, though their changes were small
because the number and the diversity of the generic dataset do not change much with a
single dataset left out. It demonstrates that the generic dataset is large enough not to
have a huge impact when a single dataset is missing out.

84

3. Versatile supervised learning

2
D
_
p
a
p
e
r
_
d
s
b
2
0
1
8

2
D
_
v
e
r
s
a
t
i
l
e
_
f
l
u
o

S
D

S
D
^
B
B
B
C
0
3
9

S
D
^
B
B
B
C
0
0
6

S
D
^
S
_B

S
S
T
2
6
5

S
D
^
L
O
B
_T
C
Y
T
5

S
D
^
D
S
B
2
0
1
8

S
D
^
L
O
B
_M

N
T
B

S
D
^
T
is
s
u
e
N
e
tV

1

S
D
^
L
O
B
_P

1
4

S
D
^
F
R
U
N
e
t

S
D
^
B
B
B
C
0
2
0

S
D
^
C
o
m
P
a
th

S
D
^
L
IV
E
C
e
ll

S
D
^
C
e
ll
p
o
s
e

S
D
^
L
O
B
_T
H
G

StarDist Model (SD)

BBBC039

BBBC006

S_BSST265

LOB_TCYT5

DSB2018

LOB_MNTB

TissueNetV1

LOB_P14

FRUNet

BBBC020

ComPath

LIVECell

Cellpose

LOB_THG

D
a
ta

s
e
t

0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.93

0.91 0.90 0.94 0.95 0.91 0.95 0.94 0.95 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.95

0.82 0.88 0.81 0.76 0.79 0.76 0.82 0.78 0.78 0.74 0.82 0.76 0.77 0.78 0.80 0.85 0.79

0.23 0.30 0.50 0.50 0.45 0.47 0.43 0.50 0.51 0.50 0.47 0.47 0.49 0.48 0.48 0.47 0.49

0.69 0.70 0.71 0.70 0.68 0.67 0.71 0.64 0.68 0.66 0.69 0.70 0.69 0.63 0.68 0.73 0.68

0.47 0.46 0.71 0.62 0.73 0.70 0.69 0.58 0.56 0.66 0.65 0.71 0.65 0.68 0.67 0.68 0.63

0.72 0.79 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.67 0.88 0.88 0.87 0.88 0.87 0.88 0.88

0.14 0.23 0.73 0.72 0.71 0.73 0.73 0.73 0.75 0.75 0.43 0.73 0.73 0.74 0.74 0.72 0.72

0.38 0.50 0.70 0.61 0.65 0.68 0.69 0.73 0.69 0.69 0.75 0.31 0.68 0.71 0.62 0.66 0.64

0.71 0.70 0.88 0.92 0.89 0.89 0.90 0.88 0.91 0.90 0.90 0.89 0.41 0.90 0.90 0.89 0.89

0.02 0.06 0.73 0.72 0.70 0.73 0.74 0.71 0.72 0.75 0.74 0.71 0.72 0.22 0.72 0.74 0.71

0.01 0.00 0.59 0.60 0.59 0.60 0.61 0.60 0.61 0.61 0.60 0.61 0.58 0.60 0.04 0.60 0.61

0.26 0.15 0.76 0.78 0.76 0.76 0.74 0.77 0.79 0.74 0.77 0.73 0.76 0.78 0.76 0.16 0.77

0.00 0.00 0.88 0.86 0.88 0.88 0.87 0.87 0.84 0.86 0.87 0.87 0.88 0.88 0.89 0.90 0.11

n
u
c
l
e
i

c
y
t
o

c
y
t
o
2

t
i
s
s
u
e
n
e
t

l
i
v
e
c
e
l
l

C
P

C
P
^
B
B
B
C
0
3
9

C
P
^
S
_B

S
S
T
2
6
5

C
P
^
B
B
B
C
0
0
6

C
P
^
D
S
B
2
0
1
8

C
P
^
L
O
B
_M

N
T
B

C
P
^
L
O
B
_T
C
Y
T
5

C
P
^
T
is
s
u
e
N
e
tV

1

C
P
^
L
O
B
_P

1
4

C
P
^
B
B
B
C
0
2
0

C
P
^
L
O
B
_T
H
G

C
P
^
C
o
m
P
a
th

C
P
^
F
R
U
N
e
t

C
P
^
L
IV
E
C
e
ll

C
P
^
C
e
ll
p
o
s
e

Cellpose Model (CP)

BBBC039

S_BSST265

BBBC006

DSB2018

LOB_MNTB

LOB_TCYT5

TissueNetV1

LOB_P14

BBBC020

LOB_THG

ComPath

FRUNet

LIVECell

Cellpose

D
a
ta

s
e
t

0.92 0.91 0.94 0.94 0.46 0.95 0.94 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95

0.86 0.78 0.71 0.80 0.00 0.83 0.75 0.79 0.85 0.83 0.86 0.83 0.82 0.78 0.83 0.84 0.85 0.81 0.79 0.86

0.84 0.88 0.89 0.89 0.58 0.94 0.94 0.94 0.87 0.93 0.94 0.94 0.93 0.93 0.92 0.93 0.93 0.93 0.94 0.93

0.55 0.72 0.69 0.60 0.07 0.74 0.72 0.73 0.74 0.66 0.74 0.74 0.72 0.71 0.76 0.73 0.71 0.74 0.74 0.76

0.67 0.68 0.67 0.45 0.04 0.79 0.75 0.79 0.78 0.77 0.66 0.79 0.82 0.84 0.83 0.83 0.82 0.81 0.83 0.82

0.22 0.45 0.43 0.31 0.00 0.51 0.51 0.47 0.49 0.51 0.51 0.36 0.48 0.51 0.49 0.51 0.47 0.48 0.52 0.49

0.82 0.84 0.83 0.87 0.04 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.71 0.93 0.92 0.93 0.93 0.93 0.93 0.92

0.21 0.41 0.44 0.21 0.01 0.78 0.75 0.74 0.76 0.77 0.78 0.74 0.77 0.54 0.77 0.76 0.75 0.77 0.75 0.74

0.85 0.46 0.54 0.87 0.02 0.89 0.89 0.89 0.90 0.90 0.89 0.91 0.91 0.88 0.64 0.89 0.90 0.90 0.91 0.89

0.01 0.30 0.43 0.00 0.00 0.78 0.80 0.76 0.78 0.79 0.77 0.76 0.78 0.79 0.79 0.46 0.77 0.77 0.74 0.78

0.04 0.50 0.63 0.09 0.28 0.80 0.80 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.79 0.80 0.42 0.80 0.79 0.79

0.43 0.54 0.52 0.47 0.04 0.71 0.60 0.63 0.78 0.66 0.71 0.54 0.72 0.69 0.59 0.62 0.68 0.24 0.65 0.70

0.17 0.45 0.48 0.11 0.78 0.71 0.73 0.72 0.72 0.72 0.73 0.72 0.72 0.73 0.71 0.72 0.71 0.72 0.03 0.72

0.06 0.89 0.86 0.45 0.02 0.92 0.92 0.92 0.92 0.92 0.91 0.92 0.92 0.92 0.93 0.90 0.92 0.92 0.93 0.17

leave-one-out models

pre-trained

0.0

0.2

0.4

0.6

0.8

F
-1

 S
c
o
re

0.0

0.2

0.4

0.6

0.8

F
-1

 S
c
o
re

highest score for the Dataset0.73pre-trained models

Figure 2.15: F-1 scores on datasets over models, including pre-trained models, models trained
with all appeared datasets, and models from the “leave-one-out” experiment. On the model axes
(x-axes), the name of a dataset after a caret (ˆ) indicates a model trained with that dataset
left out. Bold number with blue box indicates the best score for the dataset on the same row.
Note that a retrained model with the highest score was annotated only once. But, when there
are multiple models with the same highest score, they were all annotated. Also, the scores were
rounded to two decimal places. The table was sorted by the score drop of diagonal entries of the
leave-one-out experiment from the pre-trained CP or SD. For the delta values, see figure 2.16.

85

Chapter 2. Supervised learning and Versatility

leave-one-out models

pre-trained

pre-trained models

0.00 -0.00 0.00 -0.01 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00

-0.04 -0.04 0.00 0.00 -0.03 0.00 -0.00 0.00 -0.00 0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.01 0.00

0.01 0.06 0.00 -0.05 -0.02 -0.06 0.00 -0.04 -0.03 -0.08 0.01 -0.05 -0.05 -0.03 -0.01 0.04 -0.02

-0.27 -0.20 0.00 0.00 -0.05 -0.03 -0.06 0.00 0.01 0.01 -0.03 -0.02 -0.01 -0.01 -0.01 -0.03 -0.00

-0.02 -0.01 0.00 -0.01 -0.03 -0.04 -0.00 -0.07 -0.03 -0.05 -0.02 -0.01 -0.02 -0.08 -0.03 0.02 -0.03

-0.24 -0.25 0.00 -0.09 0.01 -0.01 -0.03 -0.13 -0.15 -0.06 -0.06 0.00 -0.06 -0.03 -0.04 -0.03 -0.08

-0.15 -0.08 0.00 0.00 0.00 0.00 0.00 0.01 0.01 -0.21 0.00 0.01 0.00 0.01 0.00 0.01 0.00

-0.60 -0.51 0.00 -0.01 -0.02 -0.01 -0.01 -0.01 0.02 0.02 -0.31 -0.00 -0.00 0.00 0.00 -0.01 -0.01

-0.32 -0.20 0.00 -0.08 -0.05 -0.02 -0.01 0.03 -0.01 -0.01 0.05 -0.39 -0.02 0.01 -0.08 -0.04 -0.06

-0.17 -0.18 0.00 0.04 0.01 0.02 0.03 0.00 0.04 0.02 0.02 0.01 -0.47 0.02 0.02 0.01 0.01

-0.71 -0.68 0.00 -0.01 -0.03 -0.00 0.01 -0.02 -0.01 0.01 0.01 -0.02 -0.01 -0.51 -0.02 0.00 -0.02

-0.58 -0.59 0.00 0.01 -0.01 0.01 0.01 0.00 0.02 0.02 0.01 0.01 -0.01 0.01 -0.55 0.01 0.01

-0.50 -0.61 0.00 0.01 -0.00 -0.00 -0.02 0.01 0.03 -0.03 0.01 -0.03 -0.00 0.02 0.00 -0.60 0.01

-0.88 -0.88 0.00 -0.01 0.00 0.00 -0.01 -0.01 -0.04 -0.02 -0.00 -0.01 0.00 -0.00 0.01 0.02 -0.76

2
D
_
p
a
p
e
r
_
d
s
b
2
0
1
8

2
D
_
v
e
r
s
a
t
i
l
e
_
f
l
u
o

S
D

S
D
^
B
B
B
C
0
3
9

S
D
^
B
B
B
C
0
0
6

S
D
^
S
_B

S
S
T
2
6
5

S
D
^
L
O
B
_T
C
Y
T
5

S
D
^
D
S
B
2
0
1
8

S
D
^
L
O
B
_M

N
T
B

S
D
^
T
is
s
u
e
N
e
tV

1

S
D
^
L
O
B
_P

1
4

S
D
^
F
R
U
N
e
t

S
D
^
B
B
B
C
0
2
0

S
D
^
C
o
m
P
a
th

S
D
^
L
IV
E
C
e
ll

S
D
^
C
e
ll
p
o
s
e

S
D
^
L
O
B
_T
H
G

StarDist Model (SD)

BBBC039

BBBC006

S_BSST265

LOB_TCYT5

DSB2018

LOB_MNTB

TissueNetV1

LOB_P14

FRUNet

BBBC020

ComPath

LIVECell

Cellpose

LOB_THG

D
a
ta

s
e
t

−0.8

−0.6

−0.4

−0.2

0.0

Δ
F-

1
 S

co
re

n
u
c
l
e
i

c
y
t
o

c
y
t
o
2

t
i
s
s
u
e
n
e
t

l
i
v
e
c
e
l
l

C
P

C
P
^
B
B
B
C
0
3
9

C
P
^
S
_B

S
S
T
2
6
5

C
P
^
B
B
B
C
0
0
6

C
P
^
D
S
B
2
0
1
8

C
P
^
L
O
B
_M

N
T
B

C
P
^
L
O
B
_T
C
Y
T
5

C
P
^
T
is
s
u
e
N
e
tV

1

C
P
^
L
O
B
_P

1
4

C
P
^
B
B
B
C
0
2
0

C
P
^
L
O
B
_T
H
G

C
P
^
C
o
m
P
a
th

C
P
^
F
R
U
N
e
t

C
P
^
L
IV
E
C
e
ll

C
P
^
C
e
ll
p
o
s
e

Cellpose Model (CP)

BBBC039

S_BSST265

BBBC006

DSB2018

LOB_MNTB

LOB_TCYT5

TissueNetV1

LOB_P14

BBBC020

LOB_THG

ComPath

FRUNet

LIVECell

Cellpose

D
a
ta

s
e
t

-0.03 -0.04 -0.00 -0.00 -0.49 0.00 -0.01 -0.00 -0.00 -0.00 -0.00 -0.00 0.00 -0.00 -0.00 0.00 0.00 0.00 0.00 0.00

0.03 -0.05 -0.12 -0.03 -0.83 0.00 -0.08 -0.04 0.02 0.00 0.03 -0.00 -0.01 -0.05 0.00 0.01 0.02 -0.02 -0.04 0.03

-0.09 -0.06 -0.04 -0.05 -0.36 0.00 0.00 0.00 -0.07 -0.01 -0.00 -0.00 -0.01 -0.01 -0.02 -0.01 -0.00 -0.00 -0.00 -0.01

-0.19 -0.02 -0.05 -0.14 -0.67 0.00 -0.02 -0.01 -0.00 -0.08 -0.00 0.00 -0.02 -0.03 0.02 -0.02 -0.04 -0.00 -0.00 0.02

-0.12 -0.11 -0.12 -0.34 -0.75 0.00 -0.04 0.00 -0.01 -0.02 -0.13 0.00 0.03 0.05 0.04 0.04 0.03 0.02 0.04 0.03

-0.30 -0.06 -0.08 -0.21 -0.51 0.00 0.00 -0.04 -0.02 -0.00 -0.01 -0.15 -0.03 -0.01 -0.03 0.00 -0.04 -0.03 0.00 -0.03

-0.11 -0.08 -0.09 -0.06 -0.89 0.00 0.00 0.01 0.00 0.00 0.01 0.00 -0.22 0.00 -0.00 0.00 0.00 0.00 0.01 -0.00

-0.57 -0.38 -0.34 -0.57 -0.77 0.00 -0.03 -0.04 -0.02 -0.01 -0.00 -0.04 -0.01 -0.24 -0.01 -0.02 -0.03 -0.02 -0.03 -0.05

-0.04 -0.42 -0.35 -0.02 -0.87 0.00 0.01 0.00 0.02 0.01 0.00 0.02 0.02 -0.01 -0.25 0.00 0.01 0.01 0.02 0.00

-0.77 -0.49 -0.36 -0.78 -0.78 0.00 0.02 -0.02 -0.00 0.01 -0.01 -0.02 0.00 0.01 0.01 -0.33 -0.01 -0.01 -0.05 -0.01

-0.76 -0.30 -0.17 -0.72 -0.52 0.00 0.00 -0.01 -0.00 -0.01 0.00 -0.00 -0.00 -0.01 -0.01 -0.01 -0.38 -0.00 -0.01 -0.01

-0.27 -0.16 -0.18 -0.24 -0.67 0.00 -0.11 -0.08 0.07 -0.04 0.00 -0.16 0.01 -0.02 -0.12 -0.09 -0.02 -0.47 -0.06 -0.01

-0.54 -0.26 -0.23 -0.60 0.07 0.00 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.00 0.01 0.00 0.01 -0.68 0.01

-0.85 -0.02 -0.06 -0.47 -0.90 0.00 -0.00 0.00 0.00 0.00 -0.01 -0.00 0.00 0.00 0.01 -0.01 0.00 -0.00 0.01 -0.75

−0.8

−0.6

−0.4

−0.2

0.0

Δ
F-

1
 S

co
re

diag(ΔF-1) ≤ -0.20

Figure 2.16: ΔF-1 scores. The scores show differences relative to those of the pre-trained
models CP and SD. The delta representation accentuates the diagonal for the leave-one-out
study. The table was sorted in the same as in figure 2.15. Leaving one dataset out has a direct
impact on the score of that dataset. But the degree differs from dataset to dataset. In the
meantime, it does not affect much on the other datasets in general because the generic dataset
is large enough to ignore one dataset missing out.

86

4. Conclusions

4 Conclusions

Powerful machine learning algorithms are becoming widely available and easily accessi-
ble. We supposed a real case where we have nuclei to segment in local bioimages by
using state-of-the-art instance segmentation deep CNNs, pre-trained in supervised ways,
namely StarDist[22] and Cellpose[29]. We found that pre-trained models are likely to fail
on images out of the distribution with which the models were trained. The problem of
making a versatile model essentially boils down to curating a generic dataset, which is not
trivial due to highly diverse nature of bioimages as well as fragmented bioimage datasets.
I attempted to make a generic bioimage datasets by combining as many existing datasets
as possible. To address the inhomogeneous structures and formats of different datasets,
I created bioimageloader. bioimageloader is a Python library to provide application
programming interfaces (APIs) of public bioimage datasets, called collections. Users can
easily load and combine collections thanks to a unified interface, and perform data aug-
mentation, which is essential for generalization, utilizing a powerful and dedicated image
augmentation library albumentations. Before retraining instance segmentation models,
I demonstrated UMAP, a dimensionality reduction algorithm and KMeans, an unsuper-
vised clustering algorithm based on deep style features to inspect 32 different datasets.
The results of UMAP and KMeans provided insights and revealed relationships among
datasets. Afterwards, I composed a generic dataset for the instance segmentation task
combining 14 different datasets. Then, I retrained Cellpose and StarDist with balancing
the size of individual datasets and keeping the target diameter of nuclei in mind through
a set of data augmentation. The retrained models outperformed the pre-trained mod-
els across most individual datasets, thus achieving versatility. From the ablation study,
where I left one dataset out for training, we could observe huge F-1 score drops for cer-
tain datasets. It tells that the composed dataset still lacks diversity. At the same time,
though, the retrained models were highly robust against other datasets, thus achieving
some degree of generalization.

5 Discussions and Perspectives

The size of the biomedical dataset, I think, is still small and limiting and have a lot
of room to grow. Compared to normal computer vision, the size of curated biomedical
datasets is far smaller for the moment. Though it is hard to compare it to different
domains, COCO[137] has around 164K images whereas the total number of images that
I used was a bit shy of 10K even after combining 10 collections. Open Images v4[148]
has 1.9M images with 15M bounding box annotations, which is roughly 15 times of what
TissueNet[43], the latest and the largest bioimage dataset, offers.

Annotation formats need to be standardized as well as the image formats. While mask
annotation formats have been converging and are relatively consistent and shown rather
rapid progress, tasks like cell tracking[19] and neuron tracing[68] are showing slow progress.
I think that it has to do with the lack of consensus how to annotate them and evaluate
them. Unifying tools could be the first step to have uniform formats[43]. The issue of
image formats is more about organizing dimension rather than file extensions, though the
issue of biomedical file extensions is also important and has been addressed by OME team
and community[74, 73].

87

Chapter 2. Supervised learning and Versatility

The diversity is also lacking based on the results I presented. Specifically, the leave-one-
out study revealed that certain datasets have no similar alternatives. Balancing collections
that I went through is essentially a similar process to ensure diversity when curating a
dataset. Though, Cellpose[29] and TissueNet[43] have already tried to gather diverse
images from different sources, to classify images within a big dataset, and to measure
class-agnostic metrics, I found that their data has rather small overlap with other data.

Speaking of the balancing strategy, I only applied the simplest data augmentation not
to overcomplicate the experiment. More elaborate augmentation strategy could further
improve overall performance, like NucleAIzer[40] that used deep style transfer.

Study of architecture might be a key to see an immediate improvement over the increased
size of the dataset. Two architectures that I tired, StarDist and Cellpose, used roughly
a few hundreds of images, which is a small number compared to what I tried (about 8K,
though I did not use all due to the balancing procedure), and both were based on small
U-Net architectures[20]. Mesmer[43] already attempted a bigger one, namely ResNet[49]
to accommodate the larger TissueNet dataset, though Mesmer is not a native instance
segmentation model.

In terms of bioimageloader itself, I found that it turned out to be more than I antic-
ipated. It enabled me not only to manage many inhomogeneous datasets, but also to
conduct experiments in a reliable and reproducible way. I am glad that I poured a lot of
time to make it easy to use and get contribution, so that others can try what I could not
think of and further develop machine learning algorithms using bioimageloader as well
as the library itself. Bioimageloader has a lot of potential. Firstly, it needs to support
more existing datasets. It could support other types of Dataset interfaces, such as time
series and 3D volume, as well as other annotation types, such as bounding box, key point,
panoptic mask, and so on.

Lastly, while I tackled relatively poor versatility of existing supervised machine learning
solutions in bioimages from the perspective of the data curation, realizing versatility and
generalization can be achieved in different ways. Recently, self-supervised learning has
been proven effective to build large and generalized models and been gaining a lot of
attention[84, 102, 111, 105, 91]. The next chapter will be about self-supervised learning.

88

Chapter 3

NU-Net: Self-supervised versatile
CNN filter

Contents
1 Introduction . 90

1.1 Background . 90
1.2 Related works . 92

2 Methods . 94
2.1 Perceptual loss . 94
2.2 Morphological loss . 95
2.3 Data . 96
2.4 Training . 98
2.5 Early NU-Nets . 100

3 Results . 103
3.1 Perceiving styles . 103
3.2 Loss curves . 104
3.3 Contrast enhancement . 104
3.4 Controlling filtering magnitude 106
3.5 Side effect: Long objects . 107
3.6 Application: Napari plugin . 108
3.7 Artifacts and Limitations . 110
3.8 More figures . 111

4 Discussions and Perspectives 113
5 Conclusions . 118

Chapter 3. NU-Net: Self-supervised versatile CNN filter

Abstract
Supervised deep neural networks have become the dominant method for segmentation
tasks in computer vision. Yet, supervised learning suffers from the cost of curating labels,
in particularly in life sciences where each experimental dataset is different and highly
specific. I propose NU-Net, a self-supervised convolutional neural network architecture.
Self-supervision allowed training NU-Net with large amount of images without paired
target labels thanks to a novel loss named morphological loss, inspired by deep style
transfer applications. By incorporating around 12K images from 25 different datasets,
NU-Net is versatile and robust to new images. In practice, NU-Net is an enhancement
filter for blobs, such as cells and nuclei. I will demonstrate its ability to improve con-
trast across a wide range of datasets and be used as a filter prior to segmentation. The
pre-trained model is available on online and potentially useful to related vision tasks via
transfer learning. NU-Net is also accessible through a plugin for Napari viewer.

The work presented in this chapter form the basis of a preprint, included in appendix
D. It has been submitted to the ICCV (International Conference on Computer
Vision) 2023 workshop on bioimage computing. The preprint includes a couple of
additional numerical experiments and validation not included in the chapter.

1 Introduction

NU-Net is a recursive acronym, meaning “NU-Net is not a U-Net[20]”a. U-
Net was born in biomedical imaging community and used so many times that it
was hard to find any other architectures when it comes to biomedical vision task.
Their outputs may look alike, but NU-Net is positioned between a generative
model and a segmentation model, whereas U-Net predicted probability maps as a
segmentation model, at least when it was first introducedb. Surprisingly, NU-Net
is not at all based on U-Net architecture, though it could have been.

a Its code name was “nude net” in the sense that it strips out small details and keeps big
structures.

b Diffusion model is the state-of-the-art generative model and has been recognized since
2020[33]. It picked up U-Net architecture. The gap between a generative model and a seg-
mentation model is narrow.

1.1 Background
Supervised learning has shown excellent performance in overall computer vision tasks
with advent of convolutional neural networks (CNN) as well as of large datasets such
as ImageNet (ILSVRC)[149] with 14M images, MS-COCO[137] with 300K, Open Im-
age Dataset V4[148] with 9M, JFT-300M[113] with 300M images. When it comes to
bioimages where images are acquired through microscopes, however, it is difficult and
expensive to curate such large datasets for supervised learning for a number of reasons.
First, bioimages are highly diverse. Acquiring bioimages requires a pipeline of multiple
steps which take time and add complexity. It means that the look of acquired images
could be easily shifted depending on any changes from the pipeline, such as types of

90

1. Introduction

150

300

AlexNet
VGG

ResNet-50

ResNet-101

Inception ResNet-v2

Paramaters

6000

12000

2012 2013 2014 2015 2016

G
F

lo
p

s
#
 o

f
L

a
y
e
rs

#
 o

f
Im

a
g

e
s
 (

M
)

1

1.5
Dataset Size

Model Size

GPU Power

Figure 3.1: JFT-300M team questioned why the size of dataset remains relatively unchanged
and studied it by constructing JFT-300M dataset with 300M images. Biomedical imaging com-
munity also has been facing the same issue, however, the size of both dataset and model is much
smaller compared to general computer vision. One way to detour the issue is self-supervised
learning where we do not need to worry about the costly annotation process. Source: JFT-300M
dataset[113]

samples, sample preparation steps, lasers, microscopes, and even environments. Second,
labeling targets demands scientists and experts from preprocessing images to identifying
targets. Third, making a dataset public, which has become de facto standard way to do
machine learning, is complicated when it comes to bioimages due to licenses and funds
bound to researches as well as logistic difficulty to share. As a consequence of lack of large
curated datasets for machine learning, the size of state-of-the-art neural networks in the
bioimage community still remains small as well as their capability. For instance, popular
networks like StarDist[22] and Cellpose[29] were both based on almost unchanged U-Net
architecture[20] and trained just with a few hundreds of images. In the meantime, the
computer vision community, in general, moved on to bigger and deeper vision models such
as VGG[85], Inception[96], ResNet[49, 150], and ConvNeXt[151], utilizing large datasets.
However, recently, the expansion of both networks and datasets seemed slowing down,
partially because they started facing the intrinsic limitation of supervised learning: lack
of curated, unbiased, and diverse data [113].

Naturally, other learning schemes have gained popularity over the supervised one. Such
schemes are unsupervised learning, weak supervised learning, semi-supervised learning,
and self-supervised learning. In the nutshell, these schemes attempt to get rid of paired
target labels at the cost of compromising performance of fully supervised learning. Self-
supervised learning, among these, has become promising, starting from self-attention
(transformer)[102] and contrasive learning[152, 110] to vision transformer (ViT)[105], in
order to address such limitations of supervised learning in computer vision tasks. Apart
from its biggest advantage, that is to get rid of need of target labels, self-supervised learn-
ing allows inclusion of more diverse and unbiased data and subsequently building larger
and more generic models, which in turn benefits transfer learning[153, 154, 155] and foun-
dation models[91]. But the current self-supervision frameworks have their own limitations.

91

Chapter 3. NU-Net: Self-supervised versatile CNN filter

One of the biggest limitations is that self-supervision alone is often not enough to perform
actual downstream tasks, and thus it is used as pretext tasks (or surrogate tasks). The
pretext task is in essence a process for neural networks to get accustomed to given data
ahead of downstream tasks which are typically accompanied by supervised learning.

I devised a novel self-supervised loss named morphological loss, and built NU-Net, a
deep CNN to filter nuclei and cells in bioimages. NU-Net not only takes advantages of
self-supervised learning, but it can also be directly used as a content-enhancing filter for
better detecting nuclei and cells. In addition, we managed to utilize 28 different datasets
together, including 4 local and novel datasets, to train a single generic model. Combin-
ing more than 20 datasets has not been reported yet to our knowledge. This strategy
to combine datasets, which have the same targets but have been acquired from various
sources, allowed us to build a versatile and generic model. Potentially being a generic
model, NU-Net can be applied to a broad range of tasks like detecting nuclei and cells,
and could play a role as a foundation model[91, 153, 154, 155] and transferred to solve
larger and more sophisticated tasks.

Contributions of this work are

• a novel loss for self-supervised learning

• combining multiple datasets from different sources for generalization

• a functioning machine learning model only with self-supervision (without down-
stream training)

• a novel content-enhancing filter based on a CNN

• sharing pre-trained NU-Net for transfer learning and open science

• an application for easy use of NU-Net (a Napari plugin)

Pre-trained NU-Net is available on its project page [not public yet]a and is up-
loaded on Bioimage Model Zoo [WIP, too]b[79]. In addition, the application of
NU-Net is available in a form of plugin for Napari viewer[37] (available but not
released yet).

a Project Git repository on GitHub: https://github.com/sbinnee/nunet/
b BioImage Model Zoo: https://bioimage.io/

1.2 Related works
NU-Net is a variant of neural style transfer applications[87, 86, 156], which are a type of
representation learning. In particular, it shares a lot of ideas from the paper “Perceptual
Losses for Real-Time Style Transfer and Super-Resolution”[88]. For examples, the neural
network architectures was adapted as well as the training procedure. What is distinct
in NU-Net is that it attempts to generalize a single style via, so-called morphological
loss, compared to other style transfer applications which predominantly sought ways to
improve quality of resulted outputs[157, 158, 159, 160], or ways to incorporate as many
styles as possible[161, 143, 162] in a single model.

92

https://github.com/sbinnee/nunet/
https://bioimage.io/

1. Introduction

NU-Net employs the self-supervised learning approach but differs from currently popular
self-supervised learning methods such as self-attention[102, 103, 84], contrasive learning[110,
109, 163, 111], and discriminative learning[125]. Self-attention is an architectural module
in neural networks, which encodes relationships of given data using their representations or
embeddings. Contrasive learning constructs a loss which makes contrast of positive sam-
ples and negative samples. Discriminative learning is similar to the contrasive learning in
the fact that it classifies targets into two groups, but mainly focuses on data augmentation
to realize discrimination. Generally, these self-supervised learning methods act as a pre-
text task and use the transfer learning technique for a downstream task [155, 164, 112, 91].

Cellpose[29] is the state-of-the-art instance segmentation neural networks for nuclear and
cellular images. Though it is not a directly related work, NU-Net shares one of its
goals, that is to build a generic model. Cellpose team gathered bioimages from mul-
tiple sources as well as natural images such as those of fruits, rocks, etc., in order to
generalize their model. I took a different route and collected existing bioimage datasets
instead of collecting images. Also, Cellpose is a supervised model whereas NU-Net is
self-supervised. With the recent success of machine learning in bioimages, many public
datasets have become curated and available. I gathered 23 public datasets specifically
targeting nucleus/cell images, anticipating that diverse sources of the same target would
help to generalize NU-Net. The total number of images amounted to 7.6K which is
about 10 times bigger than that Cellpose was trained with.

NucleAIzer[40] is another state-of-the-art instance segmentation neural network that aims
to be versatile and generic, and shares some ideas with NU-Net. In contrast to StarDist[22]
and Cellpose[29] which used U-Net as a base architecture, nucleAIzer is based on Mask
R-CNN[41] as well as “style transfer”1 using pix2pix[47]. The main idea is to simulate
training image/label pairs from synthesized nucleus masks for supervised learning. While
nucleAIzer utilized “style transfer”, it was used to simulate a supervised training set.
NU-Net extends the loss of style transfer, and it is a style transfer network itself, in a
sense.

CEM500K[165] is a dataset of 500K cellular images from electron microscopy (EM). Their
team collected images without labels and applied a self-supervised learning method, specif-
ically the momentum contrasive learning[163]. They focused on data curation process and
effectively reduced 5.3M raw images to a compact set of 500K images by getting rid of
uninformative images via image hash and Hamming distance. They demonstrated effec-
tiveness of transfer learning with self-supervised learning through a set of downstream
tasks. NU-Net focuses more on fluorescence nuclei which look vastly different from cel-
lular EM. I actually decided to exclude CEM500K from the experiment for that reason.
Furthermore, as a contrasive learning model, their model had to be transferred to func-
tion, whereas NU-Net can be used an enhancement filter for nuclei and blob-shaped cells.

SalienceNet[166] was published recently, in fact, while drafting this manuscript. Their
work is based on CycleGAN[167], which is an image-to-image translation[47] model. Cy-

1 “Style transfer” by pix2pix is methodologically different from aforementioned style transfer[87, 88]
which NU-Net utilizes. The former uses generative adversarial network (GAN)[48] to generate fake
images, whereas the latter uses a pre-trained neural network to replicate input images using their repre-
sentation.

93

Chapter 3. NU-Net: Self-supervised versatile CNN filter

cleGAN is an unsupervised generative model since it is a GAN[48], and it jointly trains
two GANs and was already tried in bioimages by SECGAN[168] (segmentation-enhanced
CycleGAN) for EM images. SalienceNet employed CycleGAN too but targeted light-
sheet microscopy images with low SNR (signal-to-noise ratio) to achieve high SNR as
a super-resolution application. Overall, the idea of SalienceNet is somewhat similar to
that of NU-Net. It employed an unsupervised learning method and functions as an
enhancement filter for nuclei. However, NU-Net’s target is broader and not specific to a
dataset. Additionally, NU-Net can be considered as a super-resolution network too since
the original architecture[88], which NU-Net is based on, had super-resolution usage. But
its behavior is closer to that of semantic segmentation models.

Speaking of behavior of NU-Net in comparison to other applications, the output may
look similar to that of image restoration[50, 166] or that of noise removal models[54, 51].
But they all have fundamentally different target losses and different purposes. NU-Net
is a content enhancing filter, not an image restoration nor a denoising model.

2 Methods

Figure 3.2: Neural style transfer applications focused on improving the quality and the capacity
to adopt different styles as many as possible. This particular network in the figure[143] was
trained on roughly 80K paintings and was even able to interpolate unseen styles. NU-Net was
built on the idea that it should be fairly easy to represent a single style once a model has many
images with the same style.

Neural style transfer application can be a powerful tool, and the idea came from what
if it is extended to the semantic segmentation task. Binary semantic masks have such a
distinct look that background is black and foreground is white. Then, it should be easy
for deep CNNs to represent the look of these masks and generalize it as a style through
representation learning. This is the main idea behind NU-Net, and its manifestation
is the morphological loss. In large, this method section has three parts: loss, data, and
training scheme.

2.1 Perceptual loss
Perceptual loss is a type of representation learning. It was used to understand what
CNNs[141] perceive. It was also picked for texture modeling[126, 169]. DeePSiM (deep

94

2. Methods

perceptual similarity metrics)[170] used it to generate images together with GANs. But, it
was mostly used in neural style transfer applications. The gist of the perceptual loss is to
borrow and take advantage of perceptions (representations or features in other words) of
a pre-trained deep CNN. Deep CNNs often have logical blocks of layers, and these blocks
can individually perceive certain features[142]. Then, notions of so-called content loss
and style loss were introduced[87]. The content loss is a generative loss that attempts to
reproduce input data through a single latent feature vector from a pre-trained deep neural
network. The definition of the content loss ℒ𝑐 is shown in equation 3.1. The content loss
ℒ𝑐 optimizes 𝑦 to reproduce content 𝑐 based on features at layer 𝐹 𝑙 of a pre-trained deep
CNN. The loss is defined incorporating the mini-batching technique where 𝑁 denotes a
mini-batch size:

ℒ𝑐(𝑐, 𝑦, 𝑙) = 1
𝑁

𝑁∑︁
𝑛=1

∑︁
𝑖,𝑗

(𝐹 𝑙
𝑖𝑗(𝑐)− 𝐹 𝑙

𝑙 𝑖𝑗(𝑦))2 (3.1)

The choice of layer 𝑙 has great importance in particular for the content loss, because what
is considered as content is determined largely by the size of their receptive fields at layer 𝑙.
In general, the concept of content is recognized as a high-level feature, thus the required
receptive field should not be too small.

2.2 Morphological loss
Morphological loss is what makes NU-Net original. It is an extension of the style loss
described in neural style transfer applications[87, 86, 88]. In the context of the neural
style transfer, the morphological loss generalizes a certain style, which has binary values
with a set of targets having a consistent morphology. In fact, there has been few attempts
to model or generalize one particular style, because supposedly a style usually meant a
single painting instead of a group of the same style of paintings, probably due to their
high complexity. Generalizing a simple style from multiple images with the same style
should be easier. In principle, the morphological loss could generalize any morphologies
as long as the given morphologies are consistent. We focused on round shapes, which
can represent nuclei or cells. This morphological prior will be called, in another name,
blob-mask style. In this sense, StarDist[22] has a similar goal to provide star-convex prior
to pick nuclei. However, StarDist’s approach is explicit, and the prior is deterministic and
parameterized, whereas NU-Net’s approach is implicit, and the prior is learned through
the loss.

Morphological loss is calculated in mini-batch fashion. The idea is similar to that of
the memory bank[171], to sample mini-batches from a bank of images, which consists
of a fixed number of predefined classes. But our bank has only one style, to be specific
blob-mask style, defined by a set of targets. Morphological loss (ℒ𝑚) is defined in the
equation below with 𝑁𝑠 referring to a mini-batch size of targets, 𝑦 to an image to be
optimized, and 𝑠𝑛 to 𝑛-th target within a mini-batch 𝑠:

ℒ𝑚(𝑠, 𝑦) = 1
𝑁𝑠𝑁𝑙

𝑁𝑠∑︁
𝑛=1

∑︁
𝑙

(𝐺𝑙(𝑠𝑛)−𝐺𝑙(𝑦))2 (3.2)

Combining equations 3.1 and 3.2, the total loss (𝐿𝑡) is defined as below, where we linearly
weight each loss with coefficients 𝑤𝑐 and 𝑤𝑚, respectively.

95

Chapter 3. NU-Net: Self-supervised versatile CNN filter

ℒ𝑡 = 𝑤𝑐ℒ𝑐(𝑥, 𝑦, 𝑙) + 𝑤𝑚ℒ𝑚(𝑠, 𝑦)

ℒ𝑡 = ℒ𝑐 + 𝑤𝑚

𝑤𝑐

ℒ𝑚 = ℒ𝑐 + 𝑤ℒ𝑚

𝑤 = 𝑤𝑚

𝑤𝑐

(3.3)

2.3 Data
Whether it is supervised learning or self-supervised learning, it is imperative to use various
sources of data in order to make a machine learning model generic and versatile. Massive
and well curated datasets such as ImageNet[149] and MS-COCO[137] are great examples
that paved the road towards generic models for computer vision tasks. But currently
such large nucleus/cell datasets do not exist. Even TissueNet[43], which is supposedly
the largest dataset for nuclei and provides over 2M annotations, turned out not generic
enough in other experiments (such as one in chapter 2). And the total number of images
is less than 7K, which is impressive but still lacking.

We gathered 25 datasets having nuclei, cells or both, of which one dataset was from local
THG (Third-Harmonic Generation) microscopy. The total number of images amounted to
12K. They are listed in table 3.1 and some sample images can be found in figure 3.3. Not
all of them provide annotation, nor they provide the same types of annotation. However,
they are all useful for training NU-Net as long as they contain the round nucleus/cell
targets in images.

Due to the nature of bioimages, in particular to staining techniques, most datasets offer
a single channel which tagged either nuclei or cells. We selected those channels if we
could and converted multichannel images to grayscale ones otherwise. Another treatment
we applied was related to the average sizes of nuclei and cells within each dataset. We
believed that the relative size of target objects to the input image size plays a significant
role in fully connected CNNs[172], and that it was important to keep it as consistent as
possible. Most datasets had consistent looks within each, including sizes of target objects,
however, they all had different resolutions of images and sizes of nuclei and cells across
datasets. Therefore, we built data augmentation protocols, which consist of random crop-
ping and resizing for each dataset individually. Then we sampled images to match the
relative sizes of nuclei and cells from one dataset to another. Last but not least, balanc-
ing number of samples across datasets was the most tricky issue, since all datasets had
different numbers of images, inducing biases. We chose the minimum number of samples
among the datasets after considering data augmentation, and simply set it as a constant
number of samples throughout all datasets mainly to avoid big bias towards those having
larger number of samples.

As for actual morphological targets in practice, we used foreground mask annotation of
DSB2018 and BBBC006. Although, it could have been all the available annotation, for the
proof-of-concept, we selected a few with primary criteria being diversity and availability.
DSB2018 is a collection of images from various sources, known for its annotation quality,
and widely used in many studies. BBBC006 was selected to prove that morphological
targets need not be precise and manual, because its mask annotations were automatically

96

2. Methods

Id Acronym Number Annotation Id Acronym Number Annotation
1 TissueNetV1 6990 ○ 14 S-BSST265 79 ○
2 BBBC041 1328 △ (U) 15 FRUNet 72 ○
3 BBBC026 864 X (B,C) 16 BBBC016 72 X (B)
4 BBBC006 768 ○ 17 BBBC018 56 ○
5 DSB2018 735 ○ 18 TNBC 50 ○
6 BBBC021 240 X (B) 19 BBBC002 50 X (C)
7 BBBC039 200 X 20 ComPath 30 ○
8 BBBC015 144 X (B) 21 UCSB 58 △
9 DigitPath 141 △ 22 BBBC020 25 ○

10 MurphyLab 100 ○ 23 BBBC007 16 ○
11 BBBC013 96 X (B) 24 BBBC008 12 ○
12 BBBC014 96 X (B) 25 LOB-THG 14 ○
13 Cellpose 100 ○ - Total 12,336

Table 3.1: List of nucleus/cell datasets used to train NU-Net. Annotation availability and
type are usually the most important factors when it comes to selecting datasets for machine
learning, but not for NU-Net thanks to the self-supervised learning characteristic. In total, 25
datasets were used, including an in-house dataset (LOB-THG), and the total number of images
amounted to 12,336. Symbols for annotation (○: provide complete segmentation mask targets,
△: partially annotated masks, X: do not provide mask targets; C: counts, B: biological labels,
U: bounding boxes). Find the full table in appendix B. Note that only a portion of BBBC021
was used.

G
ro
u
p
1

G
ro
u
p
3

G
ro
u
p
4

G
ro
u
p
2

a)

c)

b)

d)

e)

S-BSST265
MurphyLab

BBBC002

BBBC020

BBBC007

ComPath TNBC DigitPath
DSB2018

FRUNet

BBBC041

LOB-THG

TissueNetV1

Figure 3.3: Sample images grouped by image types. Note that not all datasets are presented. a)
Group1: grayscale images. b) Group2: two channel images, mostly tagging nuclei and cytoplasm.
c) Group3: histopathology images. d) Group4: others. DSB2018 is a collection of nucleus and cell
images from various sources; FRUNet is an EM (electron microscopy) dataset; BBBC041 presents
blood cells. e) LOB-THG: local images.

97

Chapter 3. NU-Net: Self-supervised versatile CNN filter

feature block VGG19 layer content loss morphological loss
block1 relu2_2 X ○
block2 relu3_4 ○ ○
block3 relu4_4 X ○
block4 relu5_4 X ○

Table 3.2: Feature blocks and their corresponding layers in pre-trained VGG19. And used
blocks to calculate each content and morphological loss (a.k.a. perceptual loss).

Figure 3.4: Schematic for training NU-Net. 𝑥 denotes input image, 𝑦 output image. 𝑦𝑖
𝑠 is a

sample target from a mini-batch used for morphological loss. 𝑁𝑠 (𝑖 ∈ 𝑁𝑠) refers to a batch size
for the morphological loss, same as in equation 3.2. 𝑙 ∈ {1, 2, 3, 4} indicates the feature block in
VGG19. This schematic was inspired by [88].

acquired by using CellProfiler[173]2.

2.4 Training
NU-Net overall follows the same training procedure of neural style transfer application
using perceptual losses[88]. The main difference is the morphological loss, which needs its
own mini-batch from its own bank of targets. Also, we used AdamW[174] as the optimizer.
We kept the same architecture as [88] for NU-Net, while replacing a pre-trained VGG16
with VGG19[85] for perceptual losses. We used predefined feature blocks (in table 3.2) to
calculate content and morphological losses. Schematic for training procedure is presented
in figure 3.4.

Architecture NU-Net is a fully convolutional network (FCN)[172]. The architec-
ture is almost identical to the image transform network in [88], which got inspired by
DCGAN[175] and ResNet[49]. In particular, the residual block of ResNet is an important
component because it encourages learning the identity function, which aligns well with
the generative function of NU-Net. The only change that we made was the normaliza-
tion layer after convolutional layers. All the batch normalization layers[176] were replaced
with the instance normalization layers[157]. The purpose of the batch normalization is to
get rid of instance variance and to make training fast. However, it may simplify the input
too much that it hurts generalization, especially in the presence of naturally diverse image

2 Find out more details at https://bbbc.broadinstitute.org/BBBC006.

98

https://bbbc.broadinstitute.org/BBBC006

2. Methods

source like bioimages. Instance normalization does a channel-wise normalization for each
instance. The benefit is that each channel is independent thus encodes more diversity.
Find the diagram in figure 3.5

residual block

x5

+

NU-N��

conv
up-conv

in-norm
relu

Figure 3.5: Architecture of NU-Net. It is almost identical to one from [88]. The residual block
repeats 5 times in the middle, encouraging NU-Net to learn the identity function. Instance
normalization[157] allows more diversity compared to the batch normalization[176]. It has 16
convolutional layers in total, which is not particularly deep and makes NU-Net fast and light.

The architecture is intended to be small and fast because the behavior of NU-Net is
mainly to reconstruct the input in a coarse way and to apply small changes. In addition,
the size of data still remained relatively small, so there was no reason to have a big
architecture.

Data augmentation A set of contrast augmentation was performed as well as a set of
basic transformations during training. Simply put, one aspect of given task is, in a way,
reduced down to detecting local contrast between foreground and background. That be-
ing the case, contrast augmentation would make NU-Net robust whichever value ranges
input images lie in, and would cover as many contrast ratios from low to high as possible.

In detail, three contrast augmentation algorithms in random order and set certain ranges
of each parameter so that the augmented images do not saturate above or cut off below the
data range of unsigned 8-bit integer (UINT8). The three augmentations were gamma (𝑣𝛾),
logarithm (𝑣𝑙𝑜𝑔) and sigmoid (𝑣𝜎) contrast adjustment method, defined such in equation
3.4, where 𝑣 denotes a pixel value as in UINT8, and 𝛾, 𝐴 and 𝑏 are constant scalar
parameters.

𝑣𝛾(𝑣, 𝛾) = 255× ((𝑣/255)𝛾)
𝑣𝑙𝑜𝑔(𝑣, 𝐴) = 255× 𝐴 log2(1 + 𝑣/255)

𝑣𝜎(𝑣, 𝐴, 𝑏) = 255× (1 + exp(𝐴(𝑏− 𝑣/255))−1
(3.4)

Contrast inversion Foreground does not always mean having higher pixel values than
those of background, which will be denoted WB3. It was the case for some datasets
that foreground objects appeared darker than background, which will be referred to BW,

3 WB : White foreground on Black background. BW : Black foreground on White background.

99

Chapter 3. NU-Net: Self-supervised versatile CNN filter

when rendered. It turned out that NU-Net got confused in case of BW, because the
morphological loss targets WB images. In the end, all BW cases were inverted to WB
during training for NU-Net to have a consistent behavior.

2.5 Early NU-Nets
This small section is retrospective and describes the evolution of designing NU-Net.

in
p
u
t

o
u
tp
u
t

(a)

in
p
u
t

o
u
tp
u
t

(b)

in
p
u
t

o
u
tp
u
t

(c) (d)

in
p
u
t

o
u
tp
u
t

Figure 3.6: Early NU-Nets based on VAE with the attractive and repulsive losses. Three
different models were used: (a, b) together from one, (c) from another, and (d) from the other.
(a, b) Outputs have angled stripes. (c) An output with a different angle. (d) An output with a
highly structured pattern. All the outputs were not expected nor desired, but gave me hints to
move forward. Input sources: (a, b) Simulated blobs on textures from KTH-TIPS database[124];
(c, d) DSB2018[58]

VAE and disentanglement The first direction that we took after the main idea of
translating the segmentation task into the neural style transfer task was VAE (variational
autoencoder)[119]. The assumption was to disentangle the style from the content features
in a latent space. Even though, all the neural style transfer applications do a bit of dis-
entanglement of the two, we wanted more control and a proof-of-concept for the purpose
of study. VAE was a good choice, at least for the first trial, because its latent space was
much smaller than normal feature maps, meaning that latent vectors were easy to control,
manipulate, and study. Also, there were some research papers regarding disentanglement
of attributes in generative modeling [120, 121, 177, 178, 179].

The initial form of losses was a cosine similarity and had three parts as opposed to two
in the final form. The content loss was the same, but there were two other losses for
modeling the style part, which we called attractive loss and repulsive loss. The idea was
essentially similar to contrasive loss[110] and SimCLR[109] in the sense that there were
one force to encourage and the other to discourage a target. The goal of two losses was to
search a hyperplane in a latent space, which represents a style of given targets, assuming
that all the given targets have a single consistent style. When the dimension of a latent
space (𝑍 ∈ R𝒟) is big, finding a hyperplane becomes much harder and needs far more
data points than when the dimension is small. Say the hyperplane we aimed to find had
a dimension of 𝒟 − 1, then we need at least 𝒟 − 1 vectors to define that plane. But
we need far more data points in practice, since the solution is only an approximation.
For VGG[85], this would mean 𝒟 ∼ 10K at the minimum, which we could not afford.

100

2. Methods

So the latent space must be small, however, at the same time, if 𝒟 were too small, the
hyperplane may not capable of representing complicated features. For this reason, we
needed to manipulate the size of latent space, and it was easy in VAE.

We trained VAEs and confirmed that Gram matrices of latent vectors of 𝑥 and 𝑦𝑠 could
be separable just like in figure 3.9 using a couple of clustering algorithms. As for losses,
the attractive loss was a simple cosine similarity loss between z(𝑦) and z(𝑦𝑠), and the
repulsive loss acted as a regularizer to make z(𝑦) away from z(𝑥). The repulsive loss
could be defined either as L1 loss or L2 loss as below where 𝑁 is a batch size:

ℒrepulsive = 1
𝑁

𝑁∑︁
𝑖=1
||𝐺(𝑦𝑖) ·𝐺(𝑥𝑖)||1

or = 1
𝑁

𝑁∑︁
𝑖=1
||𝐺(𝑦𝑖) ·𝐺(𝑥𝑖)||22

(3.5)

Fast-forwarding, we ended up getting images that stylized with foreign textures which did
not seem to come neither from both content image (𝑥) nor style image (𝑦𝑠). The outputs
seemed to have too much influence of 𝑦𝑠, as shown in figure 3.6. We believed that the
assumption had a hole. That is, the target vector 𝐻(𝑦) being orthogonal to the content
vector 𝐻(𝑥) does not guarantee regularizing effect. To ensure it, we needed a subspace
where 𝐻(𝑠) and 𝐻(𝑦) were possibly orthogonal. If this subspace were not guaranteed, the
repulsive loss that supposedly should have regularized only the content loss, could also
regularize the attractive loss too. At the same time, the capability of VAE was lacking
because we could not get clear outputs no matter how hard we push.

It turned out that VAE was known to have quality issues because it directly opti-
mizes log-likelihood of data, which is difficult [180, 181] VAE alone without methods like
autoregressive[182, 183, 184] or normalizing flow[119, 185, 186]. Both methods showed
some progress but not quite as much as we liked. In the end, we moved away from VAE
and from cosine similarity as well because I wanted quality by having bigger latent spaces
over interpretability. We believe that the disentanglement property is a hot topic to study
[187, 188, 189], especially in self-supervised learning.

Feature or perception networks Needless to say, pre-trained feature networks that pro-
vide perceptions were the main component to realize NU-Net, and we wanted to better
understand the effects of the receptive field. It was already reported that the neural style
transfer model keeps different sizes of details depending on which layers to use in a pre-
trained VGG [87]. However, there were more options available for pre-trained networks
since it had been reported. We chose MobileNetV2[190] since it was lighter than VGG
but still had deeper architecture. It had 7 feature blocks compared to 4 in VGG16 or
VGG19.

However, as it turned out, having more blocks was not better and the quality was compro-
mised. Practically, there was no difference after the 4th feature block and their magnitudes
turned out to be smaller in general than those from the 1st to 3rd blocks. Furthermore,
we noticed more visual artifacts than VGG. See figure 3.7.

101

Chapter 3. NU-Net: Self-supervised versatile CNN filter

l=0 l=1 l=2 l=3inputannotation
outputs

Figure 3.7: Study of feature blocks of pre-trained MobileNetV2[190] for the morphological loss.
MobileNetV2 has 7 feature blocks in total. The first three blocks (𝑙 = {0, 1, 2}) were significant,
while blocks after the 3rd one (𝑙 = {3, . . . }) had little impact and showed no visual difference
from the one 𝑙 = 3. It seemed that the first block did not provide enough information and the
output had a checker pattern, which was frequently observed when the weight of morphological
loss was pushed too hard. The second (𝑙 = 1) and the third (𝑙 = 2) ones enhanced structures
on background as well.

This was also when we realized that the magnitude of morphological losses from each
block was higher, in general, when an image was BW (black foreground on white back-
ground), though it was obvious because targets of the morphological loss were all WB.

* *

(a) (b)

* *

Figure 3.8: Statistics of feature maps from each feature block in MobileNetV2[190], given
WB and BW inputs. In each block, the top left figure represents a histogram of the input
image, and the right figure has 7 rows of value distributions, corresponding to 7 feature blocks
in MobileNetV2. Depending on whether an input was WB or BW, statistics differed a lot,
especially at blocks tagged with red asterisks (*). (a) Input was WB. (b) Input was BW.

102

3. Results

3 Results
Overall, evaluation of NU-net is complicated by the fact that our aim here is different
from segmentation or restoration models, and no clear benchmark and metrics exists that
we could use ‘off the shelf’. On top of the results presented here, some additional nu-
merical experiments and evaluation, on real life workflow aiming at showing the practical
usefulness of NU-net, are available in the preprint, which is included in appendix D.

Evaluation As a metric to evaluate NU-Net, the contrast ratio (CR) was defined to
quantify contrast change and to compare NU-Net to multiple filters, quantitatively. CR
is a fraction of a mean value of foreground pixels over that of background pixels, as in
equation 3.6.

𝐶𝑅 = 𝜇𝑓𝑔

𝜇𝑏𝑔

(3.6)

Post-processing For all the results presented from here on, we applied percentile-based
contrast stretching as a post-processing step. There were two reasons. First, we com-
pared results of NU-Net to those of methods that enhance contrast, namely median filter,
Gaussian filter, logarithmic lookup table (LUT) mapping, global histogram equalization,
local histogram equalization, and difference of Gaussians (DoG) filter. In fact, many of
these do not stretch the contrast by themselves. Thus, they need a contrast-stretching
strategy afterwards. We decided to apply the same contrast stretching strategy to all the
method including NU-Net, which was a percentile-based contrast stretching. Second,
the direct outputs of NU-Net tend to have low values and look dark. Even though the
morphological loss enforces binary values and NU-Net to change value ranges, the values
are inclined towards 0. This is because targets for the loss have mostly low density, mean-
ing they have far more 0 pixels than 255 pixels. However, thanks to continuous property
and floating point computation of neural networks, the output keeps the precision even
within a seemingly small value range. For these reasons, we used 99th-percentile (99%)
for the upper bound and 2nd-percentile (2%) for the lower bound to stretch value ranges
of all outputs except those from NU-Net. For NU-Net, we only applied 99% upper
bound since its outputs were already inclined towards 0 and many times meaningless.

3.1 Perceiving styles
Gram matrix from a deep CNN was already proven effective to represent complicated
styles of paintings as well as photographic images [87, 86, 88, 130]. However, what mat-
tered to NU-Net was to know whether perceptions of a pre-trained CNN, trained with
mainly photographic images from ImageNet[62], can distinguish blob-mask targets from
raw microscopy images. The targets are basically binary mask images where foreground
pixels have 255 values and background pixels have 0 values, with one important constraint
that they should have consistent morphological features.

We chose a pre-trained VGG19 and DSB2018, which is representative dataset for its di-
versity and high quality segmentation annotations. We inferred images and masks to get
feature vectors from predefined feature blocks of VGG19. Then, their Gram matrices were
computed as features for UMAP[144] and for plotting the results in figure 3.9. The figure

103

Chapter 3. NU-Net: Self-supervised versatile CNN filter

shows that all the feature blocks from a pre-trained VGG19 were able to differentiate
masks from images using style features, which proved potential of the morphological loss.

Figure 3.9: 2D UMAP results of Gram matrices from a pre-trained VGG19. 670 data points
for each image and mask class are presented, from the DSB2018 training set. Well separated
clusters tell that VGG19 perceives and can distinguish them in two groups. In turn, it implies
that the morphological loss could generalize the blob-mask style. Actual layers of VGG19 that
correspond to feature blocks are shown in table 3.2.

3.2 Loss curves
Two main losses, the content loss and the morphological loss, are supposed to compete,
because the content loss, being a generative loss, hinders outputs to become blob-mask
style as per the morphological loss, and vice versa. Thus, balancing two losses was crucial,
meaning their magnitudes should match one to the other. Hence, there is a balancing
process before the actual training, where NU-Net goes through a few iterations of dry
running to estimate magnitudes of the losses and match them. During the training, a
desired loss behavior is to have a constantly decreasing morphological loss and a content
loss increasing in the middle of training. The rationale is that, in the beginning, we want
NU-Net to learn images themselves through the content loss, and to learn how to enhance
blobs according to the morphological loss afterwards. As a result, the ideal loss curves
looks as in figure 3.10. In general, weight coefficient 𝑤 (in equation 3.3) in range of 5 to
10 yielded good results.

3.3 Contrast enhancement
We compared results of NU-Net to existing filtering and contrast enhancement algo-
rithms in terms of the contrast gain. Those were median filter (med), Gaussian filter
(gaus), logarithmic lookup table (LUT) mapping, global histogram equalization (eq-glob),
local histogram equalization (eq-loc), and difference of Gaussians (DoG) filter. Logarith-
mic lookup table mapping (LUT) is the simplest method among them, which makes use
of 𝑙𝑜𝑔 curve to remap pixel values and to stretch value intervals. Median and Gaussian
filters are both denoising filters using parameterized kernels. While denoising does not
have a direct impact on contrast, it could enhance contrast removing noisy background
signals, combined with range stretching strategy. Histogram equalization methods are
not intended to maximize fg/bg contrast, but to rather to see all the details equally.

The result can be found in figure 3.11. Contrast gain was significant once the algorithm
had a notion of foreground and background. For examples, simple filtering methods like
the median filter (med) and the Gaussian filter (gaus) made the distinction by blurring

104

3. Results

Figure 3.10: Ideal training curves. Total loss is a sum of the content loss and the morphological
loss. The desired trajectory would be to have a constantly decreasing morphological loss and a
content loss to increase after a decent drop. Note that the curves were from a real case but were
smoothed to demonstrate the ideal forms.

off the noise and the background as well as the foreground. They accentuated cells, but
the contrast was barely improved because they did not make clear distinction between
foreground pixels and background pixels. Two histogram equalization methods also had
the same issue in principle. Although they may be helpful to accentuated cells, the gain
remained insignificant for the same reason.

Among the filters, the DoG filter showed the most comparable results to NU-Net because
they are both aware of contents. Figure 3.12 shows three sample images of comparing
NU-Net to DoG filter. DoG filter supposes that the objects of interest have a consistent
look (values, sizes, etc.) and could enhance visibility of objects and remove noise at the
same time, by subtracting two Gaussian filters with different kernel sizes. DoG is, in a
way, aware of contents and could detect foreground from background. It is a popular
object detection or segmentation tool for bioimage analysis and widely adopted for its
easy implementation to many applications and software, as in ilastik[75], TrackMate[15],
BigStitcher[7], etc.

While both DoG filter and NU-Net picked up objects, DoG suffered from blurring arti-
facts from its algorithmic nature, just as other rule-based algorithms suffer from their own
pitfalls. Blurring merged objects together making it hard to recognize individual objects.
Moreover, DoG accentuated other structures too in presence of noise. NU-Net, however,
did not suffer from blurring, though it may show others visual artifacts, which we will
discuss later. Additionally, NU-Net not just detected contents but also directly enhances
contrast by pushing foreground pixels up towards 255 (maximum value in UINT8) and
background pixels down towards 0 though the morphological loss, as shown in the his-
togram. Overall, NU-Net suppressed background texture as in (a, b, c), can handle a
dense image (b), and can handle a noisy environment (c) as well.

Contrast gain Changes of contrast ratio after applying these filters are shown in table
3.3. LUT, median filter (med), and Gaussian filter (gaus) showed modest increases. These
methods have none to little knowledge about target objects. In contrast, both DoG and
NU-Net have significant knowledge about them, thus their contrast gains were huge.
Note that a contrast gain largely depended on the type of images and its initial contrast.

105

Chapter 3. NU-Net: Self-supervised versatile CNN filter

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1.5
N

u
m

b
e
r

o
f

p
ix

e
ls

1e4

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1.5

1e4

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1.5

1e4

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1.5

1e3

0 64 128 192 255
Pixel intensity (UINT8)

0

2

4

1e3

0 64 128 192 255
Pixel intensity (UINT8)

0

1

2

1e4

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1e5

input LUT eq-glob eq-loc gaus med DoG

0.0

0.5

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

in
put

LU
T

eq
-g

lob

eq
-lo

c
gau

s
m

ed
DoG

NU-N
et

0

1

2

3

4

5

6

7

C
o
n
tr

a
st

(f
g
/b

g
)

(a
.u

.)

GT label NU-Net

0 64 128 192 255
Pixel intensity (UINT8)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
u
m

b
e
r

o
f

p
ix

e
ls

1e5

0.0

0.5

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

c)b)

a)

Figure 3.11: Comparing NU-Net to various contrast enhancement filters. They were median
filter (med), Gaussian filter (gaus), logarithmic lookup table (LUT) mapping, global histogram
equalization (eq-glob), local histogram equalization (eq-loc), and difference of Gaussians (DoG)
filter. a) It shows the input image and the filtered images as well as their histograms. The red line
shows the cumulative distribution of pixels values and gives a rough idea of image contrast. b) It
shows the ground truth (GT) mask and NU-Net’s result. Though, its cumulative distribution
looks similar to that of DoG, the qualitative result is much cleaner than DoG. c) Quantified
contrast ratio (CR) of foreground pixels over background pixels. Find the definition of CR in
equation 3.6.

For instance, DSB2018 dataset shows a huge standard deviation since it comprises various
sources of images, which means the initial contrasts have a high variance.

In general, CR of NU-Net was not always higher than DoG. It was usually the case
that CR was lower when an input image had rather clear contrast, and NU-Net tended
to under-segment foreground objects4. However, the qualitative outputs were visually
better, as shown in figure 3.18.

3.4 Controlling filtering magnitude
Compared to most segmentation methods, one big advantage of NU-Net as a filter is
the ability to control the filtering magnitude. It can be achieved by adjusting the ratio
between the morphological loss and the content loss. In practice, it is as simple as to
manipulate 𝑤 in equation 3.3. Essentially, the larger the ratio 𝑤 is, the more binarized
the outputs become. An example of varying 𝑤 is shown in figure 3.14.

As 𝑤 decreases in figure 3.10, the content loss curves do not follow ideal curves anymore,
which means that the resulted model would become more like an antoencoder. Yet, due

4 Under-segmentation means segmenting more than needed with less confidence, covering more area.
In contrast, over-segmentation means segmenting too much with high confidence, not fully covering the
region of interest.

106

3. Results

annotation input:raw output:DoG output:NU-Net

c)

input:raw

output:DoG output:NU-Net

annotation output:DoG output:NU-Netb)

annotationa) input:raw

Figure 3.12: Three examples to compare NU-Net to DoG filter. a) Clustered cell image with
highly textured background. Note that it has no full mask annotation available. b) Dense cell
image. c) Relatively low contrast image with a lot of noise. Overall, DoG blurred images and
failed to keep details in comparison to NU-Net. Sources: a) DigitPath [66], b) ComPath [67],
c) LOB-THG, in-house dataset. Find details of each dataset in appendix B.

to presence of the morphological loss, resulted NU-Nets could still filter images. In the
perspective of histogram of images, filtered output roughly keeps the original distribution
and has large portion of 0 pixels which correspond to background.

3.5 Side effect: Long objects
NU-Net can also enhance long objects, as long as they have a comparable size and a
consistent thickness. It could be useful, although it was not expected nor desired behav-
ior since they are not in blob-mask style. But, in fact, nothing prevents NU-Net to do
so because long objects can be considered as continuous blobs. This behavior is more
pronounced when NU-Net was used in 3D volume via a trick. The trick is to process

Dataset
filter BBBC008 DSB2018 BBBC006 S-BSST265 BBBC039 BBBC020 TNBC LOB-THG ComPath FRUNet

raw 6.0±1.7 7.1±4.8 4.6±1.0 4.3±2.4 3.9±0.6 15.4±6.1 2.1±0.8 1.7±0.3 1.4±0.1 1.0±0.0
eq-glob 1.6±0.1 1.9±0.3 1.8±0.2 2.1±0.3 1.6±0.2 1.7±0.1 1.9±0.1 1.8±0.0 1.8±0.2 0.9±0.2
eq-loc 1.4±0.0 1.7±0.3 1.7±0.2 1.9±0.3 1.5±0.2 1.6±0.1 1.9±0.2 1.7±0.0 1.8±0.2 1.1±0.2
LUT 25.5±1.7 16.0±14.6 18.9±7.4 10.4±2.9 16.8±4.7 15.4±6.2 3.8±3.3 1.7±0.3 1.5±0.1 0.9±0.2
gaus 23.7±6.5 18.6±16.7 16.3±25.9 8.7±2.8 10.4±3.7 14.7±5.8 4.0±3.4 1.9±0.3 1.6±0.1 0.8±0.2
med 27.6±6.6 20.9±20.9 24.2±29.6 10.2±3.0 16.3±5.0 15.2±6.2 3.6±3.3 1.8±0.2 1.6±0.2 0.8±0.3
DoG 232.6±137.9 156.7±148.3 109.0±103.0 94.0±77.2 77.2±68.6 77.5±24.1 11.5±4.3 3.4±0.7 4.4±1.2 5.2±4.8
NU-Net 402.6±202.0 221.7±361.6 78.4±101.5 80.7±44.1 59.1±77.6 63.2±19.7 18.3±7.1 8.0±1.7 4.5±0.9 3.2±1.5

Table 3.3: Averaged contrast ratio (CR), defined in equation 3.6, over test images from each
dataset. Plus-minus sign (±) indicates a standard deviation. Values after ± refer to their
standard deviations. We have eq-glob (global histogram equalization), eq-loc (local histogram
equalization), LUT (logarithmic lookup table mapping), gaus (Gaussian filter), med (median
filter), DoG (difference of Gaussians), and finally NU-Net. Check the actual outputs too in
figure 3.18

107

Chapter 3. NU-Net: Self-supervised versatile CNN filter

each z-stack individually and stack them later since NU-Net does not support multidi-
mensional images. Since the intersections of a long object could be perceived as blobs in
2D, they form a long object naturally when viewed in 3D. This trick yields its own issues
but can produce relatively fine results. See figure 3.13

b) input (XYZ)

filtered (XYZ)filtered (XY)

input (XY)
xy

xy

a)

Figure 3.13: NU-Net filters long objects too because they can be considered as continuous
blobs. This behavior is more pronounced in 3D volume though the mechanism is different,
because intersections of long objects are blobs in 2D. The image is an area of dense blood vessels
in a mouse hippocampus, acquired by ChroMS.

3.6 Application: Napari plugin
NU-Net is easily accessible and easy to use via Napari viewer[37], a fast-growing image
viewer. In fact, NU-Net requires a lot of system memory to train mainly due to comput-
ing perceptual losses, and its architecture could potentially become bigger and deeper.
However, the current architecture is small to deploy and fast to run because of relatively
small amount of training data, for the moment. NU-Net is made available as a plugin of
Napari. The plugin comes with a simple GUI and 5 pre-trained NU-Net with varying 𝑤
value from 5.0 to 10.0, whose size is about 33 MB in total (∼6.5MB per model). Users
may adjust filtering magnitude via 𝑤 value and run the process either on CPU or GPU.
An exampled is demonstrated in figure 3.15.

108

3. Results

0 200 400 600 800 1000
Training iteration

3

4

5

6

Lo
ss

 (
a
.u

.)

Content loss

0 200 400 600 800 1000
Training iteration

20

25

30

35

40

45

Lo
ss

 (
a
.u

.)

Morphological loss

Losses with varing weights (w)

w4.0 w6.0 w8.0 w8.5 w9.0 w9.5 w10.0

a)

b)

0 128 255
Pixel value (UINT8)

0

5

H
is

to
g
ra

m 1e3 raw

0.0 0.5 1.0
Pixel value (FLOAT32)

0.0

2.5
1e3 NU-Net: w4.0

0.0 0.5 1.0
Pixel value (FLOAT32)

NU-Net: w6.0

0.0 0.5 1.0
Pixel value (FLOAT32)

NU-Net: w9.0

0.0 0.5 1.0
Pixel value (FLOAT32)

NU-Net: w10.0

Figure 3.14: Controlling filtering magnitude by manipulating the loss coefficient 𝑤. a) Loss
curves with varying 𝑤 values. Each morphological loss looks barely changing, but that is because
𝑤 value is a multiplier of the morphological loss. They kept decreasing individually. b) An
example of applying NU-Nets trained with different magnitudes of weight (𝑤). Note that 𝑤
is a ratio of the morphological weight to the content weight in equation 3.3. Note that, in
histograms of (b), y-axes share the same range for all NU-Net outputs. Image source: DSB2018
dataset.

raw image

filtered

Plug-in interface

Figure 3.15: Snapshot of NU-Net plugin for Napari viewer[37]. Users may select one of 5
pre-trained models with different filtering intensities. It automatically detects the input dimen-
sion and process it either on CPU or on GPU. This volume was cropped from a whole mouse
hippocampus image acquired by ChroMS[2]. The volume had a size of 130× 400× 400 (depth,
height, width), consumed 1.3 GB of GPU memory, and took around 8 seconds on a laptop GPU.
Note that NU-Net does not support 3D volume inputs natively, meaning that it processes each
z-plane one by one. Also, the processing time depends on hardware. On a workstation, it took
only 3 second (∼23 ms/plane), while it took around 20 seconds on CPU (∼150 ms/plane).

109

Chapter 3. NU-Net: Self-supervised versatile CNN filter

a) input filtered b) input filtered

Figure 3.16: Visual artifacts and limitations of NU-Net. a) It makes fragments out of a
big object when multiple sizes exist in an input and sharpens their edges. b) When holes are
present, objects may not be detected and become false negatives. Sources: a) FRUNet, b) USCB

3.7 Artifacts and Limitations
NU-Net may show some unexpected behaviors and visual artifacts. Some need more
study, but some turned out to be intrinsic. Accompany figure 3.16.

Sharp edges and Fragments When there were multiple blob-shaped objects in an input
image with big difference in their sizes, NU-Net tended to filter bigger objects into small
fragments. Example (a) had two big cells in the center, and NU-Net did not consider
them as single objects. Regardless which one is correct, it is true that NU-Net struggles
in the presence of objects with different sizes. In addition, in the process, each fragment
had sharpened edges, even though the edges were not pronounced in the input image.
This behavior is not entirely alien because NU-Net attempts to filter out a certain size
of objects individually according to the selected layer for the content loss. Since only a
feature map was selected, information during training was limited and some features were
supposed to be lost.

Holes When objects of interest have holes, NU-Net tends to fail to fill hollow holes or
to even pick them up. NU-Net should have learned that the output should look like the
blob-mask style, which does not have any objects with holes, and a style like the one in
(b) should not have happened. But it happens rather frequently, and it even contributes
to many false negatives.

110

3. Results

3.8 More figures
Supplementary figures.

filtered

raw

200 µm

200 µm 100μm

100μm

Figure 3.17: Application of NU-Net to a whole volume image with multichannels. Although
NU-Net is a 2D model and only works on singe-channel images, it is possible to deal with a
3D volume with colors. The trick is to process it across z-stacks and channels, though the result
has some issues because of the trick. Additionally, this example was tiled into small tiles to be
filtered since each plane were too large to process it at once. This image is the same as 1.1, which
is a whole mouse brain image with Brainbow[1] staining technique, acquired by ChroMS[2] at
LOB.

111

Chapter 3. NU-Net: Self-supervised versatile CNN filter

raw DoG NU-Net
0

25

50

75

100

125

150

175

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

50

100

150

200

250

300

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

20

40

60

80

100

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

5

10

15

20

25

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

10

20

30

40

50

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

10

20

30

40

50

60

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

5

10

15

20

25

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

2

4

6

8

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

1

2

3

4

5

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

raw DoG NU-Net
0

1

2

3

4

5

C
o
n
tr

a
st

 r
a
ti

o
 (

fg
/b

g
)

fg mask input:raw output:DoG output:NU-Net Contrast ratio (fg/bg)

B
B
B
C
0
0
8

D
S
B
2
0
1
8

B
B
B
C
0
0
6

S
-
B
S
S
T
2
6
5

B
B
B
C
0
3
9

B
B
B
C
0
2
0

T
N
B
C

L
O
B
-
T
H
G

C
o
m
P
a
t
h

F
R
U
N
e
t

Figure 3.18: Comparing output images and contrast ratios of NU-Net to those of DoG filter.
The presented datasets were chosen because they had segmentation masks, so that the contrast
ratio (CR) could be calculated. For some datasets, a contrast gain of NU-Net was smaller than
that of DoG filter. However, NU-Net’s outputs were visually crisp and easy to identify objects
in foreground, in general. This figure is coupled with table 3.3 that showed averaged contrast
gains for each dataset.

112

4. Discussions and Perspectives

4 Discussions and Perspectives
Segmentation after filtering It may seem helpful for a segmentation algorithm to use
filtered images instead of raw ones. While it could be true for some combinations of
filters and segmentation algorithms, this was a counter-intuitive thought. Filtering may
be helpful by filtering out noise or insignificant details. But NU-Net is not a denoising
filter, and its role is closer to that of a segmentation algorithm. In consequence, it in-
evitably generates some false negatives. It is like applying a segmentation algorithm over
and over and having nothing left in the end because the algorithm will not filter in what
was already filtered out. This is why, for example, using StarDist after filtering with
NU-Net, does not always yield better results. Find samples in figure 3.19 and table 3.4.

0.5 0.6 0.7 0.8 0.9
IoU threshold

0.0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

mean(S���D���)=0.51
mean(NU-N��+S���D���)=0.12

S���D���
NU-N��+S���D���

raw NU-N��

S���D��� NU-N��+S���D���ground truth

0.5 0.6 0.7 0.8 0.9
IoU threshold

0.2

0.4

0.6

0.8

1.0
A

cc
u
ra

cy

mean(S���D���)=0.88
mean(NU-N��+S���D���)=0.82

S���D���
NU-N��+S���D���

raw NU-N��

S���D��� NU-N��+S���D���ground truth

b)

a)

Figure 3.19: Applying a pre-trained StarDist segmentation model on images filtered by NU-
Net. a) An easy example whose contrast is strong and clear. The output of NU-Net is not
bad. But it missed one small object at the left edge, it resulted in lower accuracy. b) A hard
example where foreground objects have more texture. NU-Net failed to pick up some and
divided some into fragments because of heavy texture. Also, overall segmented area got smaller
because objects were technically segmented twice. Find the definition of the accuracy metric and
IoU (intersection over union) in appendix C. Note that NU-Net that used here was developed
a while ago and slightly inferior to the current version. Images were sourced from the testing
subset of StarDist dataset, which is a subset of DSB2018, containing only grayscale images.

113

Chapter 3. NU-Net: Self-supervised versatile CNN filter

StarDist NU-Net+StarDist
Accuracy@IoU=0.5 0.85 0.76

Table 3.4: Averaged accuracy at IoU=0.5 over images segmented by a pre-trained StarDist
model (StarDist column) and those that filtered by NU-Net and segmented by the same
StarDist model right after (NU-Net+StarDist column). Find the definition of the accuracy
metric and IoU (intersection over union) in appendix C. The testing subset was StarDist
dataset, which is a subset of DSB2018, containing only grayscale images.

In details, NU-Net preferred blobs since it was trained so. Some elongated objects were
sometimes divided into small blob fragments. Also, it is certain that NU-Net changed
the value distribution and might be possible that it resulted in a slight domain shift in a
way that the image was no longer familiar to a pre-trained model.

It might be worth trying segmentation after filtering on images that are not optimized
for the pre-trained model as a future work.

Perception network Another perspective of the feature network is its data domain. To
this date, there is no generic vision model for the biomedical domain. Although available
pre-trained vision models are supposed to be generic, they are generic mostly in natural
images. Given that, one apparent question is how much domain overlap exists between
natural images and biomedical images in deep neural networks. It is something worth in-
vestigating and comparing once a generic biomedical vision model appears. In the mean-
time, what seems promising is to update existing models gradually with momentum[111]
so that they can become slowly adapted to a new domain.

Transferability Transfer learning is the main purpose of building generic models. A
typical way to measure transferability, at least in vision models, is to freeze the generic
model and add a supervised linear classifier to test it with ImageNet classification task[62]
(the generic model should not be trained with ImageNet). The criteria are how efficiently
it adapts itself and whether it could even outperform supervised models.

We followed the aforementioned common protocol for which we pre-trained NU-Net,
froze the weights, and trained it a few shots of supervised learning for a semantic seg-
mentation task. The difference from the common protocol was that I did not have to
replace the head because both pretext and downstream tasks were FCN (fully convolu-
tional network)[172]. What we found was that it certainly outperformed one trained only
with supervision, given the same number of training iterations. See F-1 scores in table
3.5 and loss curves in figure 3.20.

However, the gain was too small for the effort, and the starting loss did move much away
from the one with supervision. It meant that pre-training was not helpful enough to be
useful in general. It is known that for self-supervised learning to be useful as a pretext
task, it needs a lot of data [91, 103, 84], probably orders of magnitude more compared to
what we had for NU-Net. The issue always comes back to data. As you may have noticed,
only 3 datasets were used in this experiment. It would be worth investigating again the
transferability of NU-Net since a fairly large TissueNet dataset[43] had become available
recently.

114

4. Discussions and Perspectives

Figure 3.20: Loss curves of a supervised model (SUP) and a combination of self-supervision and
supervision (SELF+SUP). More precisely, SELF+SUP model was trained on top of a pre-trained
NU-Net. Note that curves were smoothed with an exponential moving average algorithm.

Dataset Precision Recall F-1 score
Otsu’s SELF SUP SELF+SUP Otsu’s SELF SUP SELF+SUP Otsu’s SELF SUP SELF+SUP

DSB2018 0.90 0.91 0.88 0.88 0.70 0.54 0.80 0.83 0.76 0.65 0.82 0.84
TNBC 0.56 0.52 0.53 0.62 0.84 0.57 0.84 0.83 0.51 0.48 0.59 0.66
ComPath 0.28 0.70 0.74 0.78 1.00 0.50 0.79 0.79 0.43 0.58 0.76 0.78

Table 3.5: F-1 score comparison of Otsu’s thresholding method and three NU-Nets. SELF is
one trained only with self-supervision, SUP is one trained only with supervision, and SELF+SUP
is one trained with a combination of self-supervision and supervision. Bold numbers indicate
the highest score among four models in each metric for each dataset. Note that metrics are all
pixel metrics.

Versatility and model capacity NU-Net was trained with 25 datasets all from different
sources and expected to be versatile in that sense. But the issue is that not all datasets
have annotations to test the performance against. Also, versatility is something not easy
to define across different datasets for many factors. We left designing a proper metric to
quantify the degree of versatility for a future work.

For capacity as well as versatility, it is important to consider bigger and deeper neural
network architectures once data grows bigger. So far, we have intentionally stuck to
relatively small architecture, which is tiny compared to popular deep models. For instance,
U-Net[20] architecture is sightly bigger than the current one by default, and there have
been a few advances in the design choice[33, 191]. Also, U-Net will be easy to compare
and transfer since it has become a de-facto standard when it comes to segmentation tasks
in bioimages. For a comparison, while the current architecture comprised of around 7
millions parameters, the base U-Net has roughly 130 millions ones. As the amount of
data grows, the model would require bigger and deeper architectures to embrace it all.

Synthetic data Simulating and utilizing synthetic data is a popular way to augment
data. The way we tried was to randomly generate blobs on various textures from KTH-TIPS
database[124]. The idea was soon dropped because its data domain was vastly different
from biomedical images. More elaborate data generation approach such as mentioned
NucleAIzer[40] or SalienceNet[166] may be beneficial to multiply numbers of samples and
mitigate imbalance among datasets.

115

Chapter 3. NU-Net: Self-supervised versatile CNN filter

Training stability The loss of NU-Net is not typical because it is a multitask learning[192]
and two parts of the loss compete each other. Essentially, it attributes to instability in
training process. It is rather ambiguous what the best ratio would be to balance them
or when to stop training. It took me a fair amount of time to figure out good ratios and
ways to normalize components that contribute to the loss during training, so that they do
not change depending on hyperparameters, such as a batch size, an input size, etc. For
the moment, an empirical approach seems to be most viable.

Scheduling the learning rate has been already studied extensively[193, 194, 195]. It can be
useful NU-Net but for NU-Net, scheduling coefficients of two losses would be more dire
and effective for stabilizing the training process. The rough idea is to weigh the content
loss more in the initial stage and to gradually increase contribution of the morphological
loss as the training goes on. This way, NU-Net will be able to learn data itself first and
gradually learn how to adapt outputs according to the morphological loss, just as much
the ideal loss curve suggest in figure 3.10.

Colors The main target image of NU-Net was in-house ChroMS and Brainbow[1] data
that we saw in figure 3.17. Its originality comes from the multicolor labeling technique
based on a limited number of colors and their combinations, which is not common in
bioimages at all. It is possible to train NU-Net keeping colors, but it would become
complicated as soon as it needs more data that do not have colors or different combi-
nations of colors. We have not found a reasonable way to embrace all cases including
grayscale images.

So far, the best way is to convert color images into grayscale ones, which is more reason-
able. Since colors in microscopy images do not follow conventional conversion equation for
natural images, converting colors requires understanding of each color and a great deal of
attention. This approach would also be closely linked to the particular biological aims of
the experiments and thus would be done in close discussion with the experimentalists. In
alternative, NU-Net may benefit from a certain degree of color augmentation techniques.

Morphology prior We tested NU-Net with a blob-shaped prior and made it a blob
filter. In theory, the morphological loss should be able to learn and generalize other
morphologies. We tried to make a cellpose prior that Cellpose uses [29], which encodes
directional information or poses of cells both vertically and horizontally. This cellpose
prior has a visually distinct style as shown in figure 1.8, which should make learning
process easy. If it had worked, NU-Net could have been an instance segmentation model
like Cellpose. That being said, it did not work out, and we have been investigating why
since.

Slider The last perspective is about practicality and usability. A particular paper[142]
suggested a way to control the degree of style transfer in inference time. Its approach
is similar to that of conditional inference[161]. In both training and inference time, the
model accepts an additional variable in a limited range. This variable could encode the
loss ratio 𝑤 in NU-Net and provide continuous filtering magnitudes, not like the current
discrete numbers. In effect, users may use a slider to control this variable in inference time,
and it will also eliminate the need of shipping multiple NU-Net models with different
ratios. But this approach has a caveat that the additional variable eventually divides

116

4. Discussions and Perspectives

capacity of a model. Consequently, the model must have big architectures than what
NU-Net currently has. As a matter of fact, the training process turned out not optimal.
Instead, we resorted to ship multiple models for the moment.

117

Chapter 3. NU-Net: Self-supervised versatile CNN filter

5 Conclusions
Supervised learning has intrinsic issues bound to curated datasets. In bioimages especially,
the lack of large-scale datasets has been one of the biggest bottleneck when it comes to
development of versatile and generic machine learning models. Self-supervised learning
could address the high cost of annotating bioimages as well as the high specificity and
fragmented datasets. In this chapter, we gathered 25 nucleus/cell datasets from various
sources to compose a generic dataset. Despite that not every dataset has fully curated
annotation, it was possible to build a versatile filter NU-Net based on a self-supervised
learning scheme.

NU-Net is built on top of the perceptual loss and the neural style transfer framework.
Its novelty is the morphological loss, which generalizes a morphological characteristic via
a bank of consistent binary target images. The loss is dissimilar to any other popular self-
supervised frameworks such as the contrasive learning or the self-attention. Although, for
the sake of comparison, morphological loss used in NU-Net is closer to the contrasive
learning than to the prevalent self-attention in the sense that the loss deliberately manipu-
lates training losses. Yet, it differs from the constrasive learning because the morphological
loss of NU-Net is a type of perceptual loss and does not suppose counter examples. More
importantly, it is not only for a pretext task. NU-Net can be directly used as a filter.
We defined a blob-mask style and made NU-Net able to enhance or filter nuclei and cells.

As a content-aware filter, NU-Net is comparable to the difference of Gaussians (DoG)
filter. Though their contrast gains were alike, NU-Net does not suffer from the blurring
artifact and delivers clear and overall superior outputs. We also demonstrated that it was
easy to control a filtering magnitude and packaged it as a plugin for Napari viewer, so
that users can easily use it. The plugin is light and fast and easily works on a laptop with
no heavy system requirement.

118

Chapter 4

Applications

Contents
1 Segmenting fibroblasts on human skins 119
2 Workflow integration . 123

2.1 Napari plugin: Proofreading ChroMS Brainbow 123
2.2 Napari plugin: BigAnnotator 125

3 Segmentation in ChroMS’s pipeline 128

I joined other projects during my study and made technical contributions. Some of them
involved machine learning methods, but others did not and were purely technical.

1 Segmenting fibroblasts on human skins

Ung, T. P. L., Lim, S., Solinas, X., Mahou, P., Chessel, A., Marionnet, C.,
Bornschlögl, T., Beaurepaire, E., Bernerd, F., Pena, A.-M., & Stringari, C.
(2021). Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long
UVA–induced metabolic stress in reconstructed human skin. Scientific Reports,
11(1), 22171. https://doi.org/10.1038/s41598-021-00126-8 [10].

The goal of this project was to show the value of the multicolor two-photon fluorescence
lifetime microscopy (FLIM), by assessing damage to UV (ultraviolet) light (specifically
UVA1; 340-400 nm, long UVA wave) on human skin and demonstrating effectiveness of a
sunscreen. We used multicolor two-photon FLIM and reconstructed human skins[196] in
vitro. UV exposure induces damage and metabolic changes in dermal fibroblasts. To mon-
itor this process, label-free and non-invasive microscopy technique is important. We used
nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) as
biomarkers for multicolor two-photon FLIM. For the single-cell analysis, it was required
to implement an automated segmentation process, and we chose to use deep learning.

The direct output from the multicolor two-photon microscopy[197], accordingly, has two
channels: one from NAD(P)H intensity the other from FAD intensity. In addition to

https://doi.org/10.1038/s41598-021-00126-8

Chapter 4. Applications

them, FLIM generates lifetime maps for each pixel and each response, based on the pha-
sor analysis[198]. That gave us 2 images and 2 maps that correlated each other. All the
four modes conveyed information to localize fibroblasts.

There was a need to automate the segmentation process and there were already some
annotated labels. It looked a perfect candidate to apply the machine learning technique.
A convolutional neural network (CNN), specifically U-Net, was a perfect fit for reasons.
(i) It was well studied and performant. (ii) Objects of interest, fibroblasts, have rather
free-forms unlike circular nuclei. It meant that models relying on shape priors were of no
use, and U-Net did not require such things. (iii) CNN was natively capable of handling
multi-modal data. It was imperative to use all the four modes jointly, and the CNN met
the need.

Figure 4.1: Workflow of single-fibroblast segmentation by deep learning with multi-modal im-
ages. Four inputs are given to the deep learning network: intensities and lifetimes of NAD(P)H
and FAD. The output of the network provides a probability map. The map was thresholded
above 0.5, then individual fibroblasts were localized by a simple structure-based labeling algo-
rithm.

Methods
U-Net had to be modified so that it could take in image arrays with four channels. We
also added the batch normalization layer[176] after each convolutional layer, which lacked
in the original paper. During training, a set of simple transformations was applied to
augment images. The output of the model was a probability map, which was thresholded
at 0.5 to get a binary segmentation map. Then, removed too small objects based on
the smallest size of fibroblasts from annotations. Lastly, we processed it with a simple
structure-based labeling technique to separate individual fibroblasts, which found a con-
nected label via its neighboring 8 pixels. It was possible because fibroblasts were sparse

120

1. Segmenting fibroblasts on human skins

enough and rarely overlapped.

Challenges
Training a deep learning model was not difficult, but challenges appeared in other parts.
First one was the data organization. As mentioned, it throughout chapter 2, managing
and cleaning data is the very first step of any computational analysis and often underrated.
The project spanned for more than 2 years and the image acquisition occurred several
times in different times and conditions, depending on the availability of the reconstructed
human skins and the FLIM microscope. The quality of image was constant and was not
an issue. The challenge was to organize and arrange files. The specimens were treated in
different conditions: control group with or without a sunscreen and UVA exposure group
with or without a sunscreen. Also, there were subgroups within the UVA exposure group
depending on the exposure duration and power, not to mention four image modes. All
these variables could be identified via folder names and file names, but they were not
consistent across acquisition dates. So, sorting data was the first challenge.

Another challenge was more critical. We found that manual annotations were not precise.
The edges of annotation were presumptuous and rather simple polygons, not aligned well
with the actual boundary. See examples in figure 4.2. It was the case that localizing and
annotating fibroblasts was not easy even for experts. We assessed value changes around
boundaries of the manual annotation and the prediction, assuming that gradients around
boundaries should be larger when the segmentation was more precise. As it turned out,
indeed, that the prediction showed larger gradients in value around boundaries, confirming
our assumption. To mitigate errors in manual segmentation, we closely monitored this
statistics as well as validation losses not to overfit the model. Additionally, we post-
processed the output with erosion by one or two pixels.

Conclusion and Perspectives
This project already had a clear goal and enough data to analysis. It just needed a bit
of help of an automated segmentation process. The task was a perfect fit to apply a
supervised machine learning method thanks to existing manual annotations. U-Net, as
a deep CNN, served well because it could handle multi-modal data easily and effectively.
The challenges were in the data organization due to many experimental variables and to
the quality of manual annotations. I was able to address both challenges and contributed
to the project by providing an automated segmentation process for the analysis.

What I learned about this project was that so many projects like this would be out there,
which needed a simple automated process to get a momentum. Also, executing machine
learning methods was a relatively easy process thanks to advances in computational tools
and software. It was rather the data science part to manage data that was challenging.

Besides, I felt that deep learning was versatile and flexible to deal with highly specific types
of data. The multicolor two-photon FLIM was not a typical microscope, and handling
multi-modal image data would have been difficult if it were not for deep CNNs. Deep
CNN showed performance exceeding the poor quality of manual annotations.

121

Chapter 4. Applications

Intensity FAD Intensity NADH Lifetime FAD Lifetime NADH

Intensity FAD Intensity NADH Lifetime FAD Lifetime NADH

Manual annotation Manual annotationPrediction Prediction

(a)

(b)

Figure 4.2: Manual annotation of fibroblasts had low quality. (a) Comparison of manual
annotations and predictions. Manual annotations had simple polygon shapes likely due to lack
of capability of an annotation tool, thus failed to localize fibroblasts precisely. Prediction was
often more precise even though the model was trained with incomplete annotations. (b) This
simple statistics gave an idea how precise the boundaries of manual annotations or predictions
were. The total mean was the averaged pixel values belonging to fibroblasts. Individual data
points were ratios of an averaged pixel value on boundary compared to the total mean. Note
that the mean values differed in modes and annotation/prediction. +2, +1 means pixels whose
distance were 2 and 1 pixels inwards from the boundary. −2, −1 means those outwards from
the boundary. In general, signals were strongest at the center of each fibroblast and dampened
down towards the boundary. Therefore, small ratio changes meant that the boundary of either
a manual annotation or a prediction was far inside or far outside a fibroblast. Note that the
FAD lifetime got shorter whereas the NAD(P)H lifetime and both intensities increased. Find
details in the paper[10].

122

2. Workflow integration

2 Workflow integration
Other than machine learning, there are a lot of places where computer technology can be
helpful to improve workflow of experiments. I developed two plugins for Napari viewer[37]:
one to improve the proofreading process of an automated prediction, the other to facilitate
the manual annotation process for big data.

2.1 Napari plugin: Proofreading ChroMS Brainbow

This plugin is called napari-proofread-brainbow and available through Napari
Huba, PyPIb, and GitHubc.

a https://www.napari-hub.org/plugins/napari-proofread-brainbow
b https://pypi.org/project/napari-proofread-brainbow/
c https://github.com/sbinnee/napari-proofread-brainbow

ChroMS[2] and Brainbow[1] project that appeared multiple times in this manuscript in-
volves many collaborators, one of whom is I. Arganda-Carreras from Computer Science
and Artificial Intelligence Department at the University of the Basque Country (UP-
V/EHU). They provide us a deep learning model which detects centers of Brainbow cells
in the multicolor 3D-volume image. We approached it with the human-in-loop strategy
where we constantly improve training annotations while training the model, since the
number of cells were massive and sometimes too dense to localize them. For this strategy,
it was important to set up an efficient proofreading workflow.

We could have used an existing tool, FIJI[14] for instance, to proofread. However, I
decided to use Napari instead, for a few reasons. (i) We needed many specific pre- and
post-processing steps. While FIJI also provided scripting functions and macros, Napari’s
native Python scripting environment was simply more intuitive, easier, and flexible. (ii)
Annotation tool was more modern and intuitive to use. Not every collaborator was
familiar with FIJI and struggled with its outdated interface. But they could use Napari
with ease because of its modern interface. (iii) There were more 3D-viewing functions to
the viewer in Napari. Since the image was 3D, some functions were invaluable and missing
in FIJI. One example was “out of slice” function on the prediction layer. Prediction layer
contains positions of centers and probability information. The “out of slice” function let
users see centers on z-planes (depth-planes) other than the current z-plane, which was
helpful to localize centers.

Details

The plugin has two modules in large: a main proofreading module and an experimental
module. The main module also consists of several submodules. (i) Convert to RGB
submodule detects the input dimension and converts it to RGB, so that Napari viewer can
recognize the input data and display it properly. It is a purely technical operation because
of the difference of dimension convention in software. (ii) Normalize submodule auto-
detect value ranges of the input and adjust contrast with a one button. Users could adjust
contrast natively in Napari viewer, but the function is basic. This module clips values at 99
percentile to filter out big outliers as well. (iii) Contrast max submodule adjust contrast

123

https://www.napari-hub.org/plugins/napari-proofread-brainbow
https://pypi.org/project/napari-proofread-brainbow/
https://github.com/sbinnee/napari-proofread-brainbow

Chapter 4. Applications

of every loaded layers with a single slider. It is especially useful when the viewer was set
to the 3D rendering mode. Without this module, users need to visit each layer and adjust
it one by one. (iv) ZYX scale submodule is only effective in the 3D rendering mode. It
adjusts the scaling factor of three axes. (v) Points size submodule manipulates the size
of the all predicted points at once. Again, without this module, users needed to select
points manually and change the size. (vi) Grid submodule generates grids. Grids turned
out to be extremely useful to plan and focus on the proofreading process. It also helped
to communicate with other proofreaders by pointing out corresponding coordinates. (vii)
Threshold probability is an experimental module that filter prediction points with a
probability greater than a certain threshold value.

plugin interface

Figure 4.3: Snapshot of the Napari viewer window and the plugin interface. There are two
groups of interfaces: a main module and an experimental module. Read the main text for the
details.

124

2. Workflow integration

2.2 Napari plugin: BigAnnotator

This plugin remains incomplete and unpublished. But its ideas are still valid. I su-
pervised Slimane Baamara who was involved in developing ideas of bigannotator.

BigAnnotator is a plugin for Napari viewer[37] with multiple goals for interactive ma-
chine learning in large images. Its main idea was to integrate machine learning, especially
deep learning, segmentation methods in Napari and to provide interactive interfaces.
It helps users to annotate cells and nuclei in biomedical images, taking advantage of
Napari’s capability to view large n-dimensional images interactively and Python’s avail-
ability to use powerful machine learning algorithms from open-science libraries, such as
sklearn, opencv, scikit-image, as well as deep learning libraries such as TensorFlow
and PyTorch. Also, it is expected to handle big images taking advantage of the octree
rendering1, which is still a work-in-progress feature of Napari viewer.

Its main goal is the interactive learning. Machine learning and deep learning showed
remarkable accuracy for segmentation task in papers. However, these models would not
work very well on your own data, simply because they were not optimized for your data.
As a result, their predictions are not going to be perfect and almost always need human
efforts in the end. BigAnnotator will provide a set of interfaces to facilitate machine
learning processes which include image/annotation loading and correcting predicted an-
notations. Then, BigAnnotator will use the corrected annotation to fine-tune the model
to be optimized for your own data.

Its features are

• Iterating images from the root directory of a dataset

• Merging or splitting mask annotations as well as painting

• (WIP) Contour assistance that guides the contour of each object

• (WIP) Interface to train a machine learning model

Details

The plugin is supposed to have four modules in total. Currently, only two of them are
available. (i) DataLoader module iterates through a dataset directory and exposes but-
tons for users to load the next image and annotation more easily. It supports simple
glob pattern2 to match image files and annotation files. (ii) Annotator module let users
modify, add, or delete annotations. It has three modes: paint, merge, and split. The
paint mode allows free painting and deletion. The merge mode provides an intuitive way
to merge two or more than two labels. The split mode is used to split a label into two
separate labels. These modes come with shortcuts or keybindings to help the operations.
There are two utility functions in this module. One is to show label numbers, which is

1 Octree rendering constructs an octree by dissecting a big volume into small subvolumes and loads only
necessary parts in the view window. It also supports the mipmap rendering (a.k.a. pyramid rendering)
which supports multiple resolutions of the same view depending on a zoom level in the view window.

2 Glob pattern is a simple way to match multiple strings with wild card characters, which are usually
a question mark character ? and an asterisk *.

125

Chapter 4. Applications

trivial but useful to localize labels. The other is to relabel the modified labels in continu-
ous ID numbers. After modifying labels, the label IDs get corrupted. This utility corrects
that. Lastly, users can save the modified label.

Contour assistance module is supposed to suggest tight contour annotation. This module
is inspired by AnnotatorJ plugin[78] for ImageJ[30]. AnnotatorJ uses a small CNN to
segment a single object in an interactive way, integrated in ImageJ. Users may draw a
bounding box around an object of interest. Then, the region is cropped and fed into the
CNN to segment the object. The output is the boundary of that object. This approach
can result in precise contour because free drawing is often shaky. The goal of the con-
tour assistance module of BigAnnotator was to improve the model and port it to Napari.
However, it has been already ported to Napari, recently3.

Interfaces to train a deep learning model are going to be complex, because there are
too many hyperparameters to consider, and they will likely differ from an architecture
to another. The plan is to integrate BioImage Model ZOO[79] and to use its resource
description file specification (RDF) to dynamically generate GUIs for each variable.

plugin interface

Figure 4.4: Snapshot of BigAnnotator plugin for Napari viewer. An image is overlaid with its
mask annotation. Read the main text for the details. Sample image is from ComPath dataset[67].

Discussions and Perspectives

This plugin started off with a small idea but a grand goal. Many features ended up incom-
plete either because some APIs were not available from Napari side or because the goal
was too big. OME (Open microscopy environment) team was pushing OME-NGFF[74]
format for multidimensional large-scale image data and implemented the OME-NGFF
specification in Napari. I thought that OME-NGFF would evolve fast and Napari would

3 Napari-AnnotatorJ plugin is available on Napari Hub (https://www.napari-hub.org/plugins/
napari-annotatorj).

126

https://www.napari-hub.org/plugins/napari-annotatorj
https://www.napari-hub.org/plugins/napari-annotatorj

2. Workflow integration

be able to handle multidimensional large-scale image data soon. Apparently, OME-NGFF
itself was not a simple project and required a lot of discussions. Also, the octree rendering,
the most important feature to handle multidimensional large-scale data, was not stable
and still is not at the time of writing.

I believe that the idea of BigAnnotator will circulate and appear constantly and that there
will be similar attempts to accomplish the same goal either a part of it or the whole until
one definite solution will emerge. For examples, for the annotation part, there are already
multiple solutions, such as Annotator plugin[42] for ImageJ and napari-segment-blobs-
and-things-with-membranes plugin[199] for Napari. I also think that I put too many high
goals together in a plugin, while the purpose of the plugin is to make a small utility per
plugin.

127

Chapter 4. Applications

3 Segmentation in ChroMS’s pipeline
The ChroMS[2] with Brainbow[1] project has two main goals: to develop and improve
ChroMS at LOB and to analyze a mouse brain with Brainbow at Institut de la vision.
I built a segmentation pipeline to help the analysis. The pipeline segmented cells in
the image and quantized colors to identify Brainbow cells. The colors from Brainbow
technique come from three main stains, and they get combined with others throughout
the development cycle. This mechanism is similar to how we perceive colors in RGB, and
therefore displaying Brainbow images in RGB is natural. However, fundamentally, the
colors are just markers, and the ratio of channels is what is important and meaningful.
Eventually, the goal was to build a pipeline to identify and localize Brainbow cells using
ratios of three channels.
Part of the work described in this section will be published as part of a larger
article in preparation on the ChroMS microscopy platform later this year

Method
I simply used a pre-trained Cellpose[29] for segmentation mainly because there was no
annotation to train a new model. Although the Cellpose model was not supposed to work
well with Brainbow images, since they were not common and very specific, the result
turned out to be good enough to build a pipeline even if I replace it later with a model,
more tailored to Brainbow images.

I parallelized processes by making chunks of data because the whole data was too big to
fit into memory. To do so, I used new Zarr file format[200], which supports chunked N-
dimensional data, and is also a default file format of OME-NGFF[74]. The raw image was
converted to Zarr file format with multiple resolutions, then I picked the second largest
one because it provided fine resolution for Cellpose to identify cells. During inference of
Cellpose, the channels were separated first. After, a batch of patches was loaded using
Zarr APIs with a pre-defined size appropriate for Cellpose. The batch size was adjusted
empirically to maximize the use of GPU resources, thus to maximize the efficiency. Fi-
nally, the patches were stitched together. Figure 4.5 shows a result.

After the segmentation, I tried to quantize colors by using KMeans clustering algorithm
with the number of clusters set to 6, hoping the algorithm to extract 6 main clusters.
The result is presented in figure 4.6 and turned out a failure. The color palette did not
contain colors close to yellow (red + green) nor cyan (green + blue). Overall, the palette
was too dark too. The main issue was that each cell had more diverse color pixels than
it seemed.

128

3. Segmentation in ChroMS’s pipeline

1. Run Cellpose separately on RGB
2. Sum up all 3 results (=FG)
3. Clip the rest to black (0,0,0) (=BG)

RGB Angle(θ,φ) = Color

θ = -20

R G

B

Y

CM

θ = 50

(a) (b)

Figure 4.5: Segmenting Brainbow cells[1] for each channel using a pre-trained Cellpose
model[29]. (a) After stitched, combining three channels was simply a summation of them.
Using this mask, I set all the other pixels to black. The ratio of foreground area to the total
area was about 15% (4,071,265/26,369,840). (b) I sampled 1% of masked pixels, which were
from about 40K pixels, and plot in 3D space. A huge cluster at the origin (𝑂), which has
low values in all three axes, was identified. In addition, it was clear that Brainbow cells have
the largest populations along main axes and second largest along three combinations of these
main axes. This result well matches to the mechanism of Brainbow staining technique. For
convenience, identified clusters were named red (R), green (G), blue (B), cyan (C), yellow (Y),
magenta (M).

<Cellpose FG> <KMeans Labels>

<KMeans(K=6) Palette>

Figure 4.6: Kmeans clustering with 𝐾 = 6 on masked pixels from figure 4.5. The clustering
turned out to a failure by looking at the obtained color palette. The issue comes from the fact
that the image is dense, and each object is essentially superposed with many layers of other
colors, which makes a huge color deviation within each detected cell.

129

Chapter 4. Applications

Conclusions and Perspectives
I identified two main issues in the pipeline. One issue was that using a segmentation model
which was not designed for this task would always be a suboptimal solution. We needed a
3D model specific to Brainbow images. The other was that the color quantization process
was a struggle because of the nature of the image. The image is dense and superimposed
with layers of cells, which made unclear boundaries of cells. The solution we came up
with was to detect only the center of cells and to extract the color from it. I could have
extracted centers from the segmentation result that I got, but we also had to resolve the
first issue. In the end, we found a collaborator, who was, as you may have noticed, I.
Arganda-Carreras from Computer Science and Artificial Intelligence Department at the
University of the Basque Country (UPV/EHU).

I tried other things too, like averaging colors in each cell and cluster them, or clustering
colors with less or greater than 6 clusters in Kmeans algorithm. However, in the end, I
have been holding this pipeline until a new model is ready from the collaborators because
the model will change the pipeline in many ways.

130

Chapter 5

Conclusions

1 General conclusions and Perspectives

Machine learning has become more and more prevalent as we entered the era of digital
data in which everything is stored as data, in a digital form. Among many other methods,
deep learning has established a solid ground and demonstrated unprecedented advances in
machine learning technology. Deep learning methods led paradigm shifts in every domain
including our daily life. So far, deep learning stood out mainly in two domains: natural
languages and vision tasks, which had been the hardest machine learning problems. In
my work in interest, which is to solve computer vision tasks and to develop a versatile
model for neurodevelopmental images, to be precise, it was natural to use deep learning.

As a data-driven method by nature, machine learning requires a well curated dataset. It
means that the dataset should cover a large variety of data from different sources and
big enough to represent the real data distribution behind the observations. Also, to per-
form the supervised learning, which is the most common and easiest way to get the best
performance, every data point should be paired with a target annotation that guides and
teaches a machine learning model. However, unlike natural images, biomedical images
have multiple issues to expect such large-scale curated datasets, which are not easy to
resolve.

My approach to address the data issue was to gather as many existing datasets as possi-
ble. I collected more than 20 datasets from multiple sources to cover diverse images, and
I managed to curate a generic training dataset by combining them. In the process, I cre-
ated a programming library called bioimageloader to easily manage individual datasets.
I confirmed that collected datasets have high variability in general and some share sim-
ilar characteristics via a clustering algorithm based on machine learning. Afterwards, I
trained StarDist and Cellpose, both of which are the state-of-the-art instance segmenta-
tion models, after I found that their pre-trained models performed poorly on local data at
LOB. The resulted models outperformed their pre-trained baselines by large margins for
some dataset and were robust to missing a dataset. However, it also turned out that an
absence of a certain dataset had a huge impact, which means that the combined dataset
was not generic and diverse enough. Until there will appear a large-scale generic dataset
in biomedical imaging community, I believe that this approach will be the most effective
way to obtain a generic and versatile model through the supervised learning.

Chapter 5. Conclusions

While the supervised learning sets a direct target task and gives us good results to that,
it has intrinsic limitations. It relies too much on annotations, is prone to biases, and too
rigid to be transferred to other tasks. Consequently, the self-supervised learning, a type
of the unsupervised learning, emerged as a promising solution to a generic and versatile
machine learning model. I devised a new self-supervised loss, called morphological loss,
based on the representation learning, to be precise, the perceptual loss and the neural style
transfer framework. The idea was to make a model to generalize a blob-mask style from
a bank of examples. Combined with a generative loss, or the content loss, the resulted
model, so-called NU-Net could filter blob-shaped objects and enhance their contrast.
Again, I combined multiple datasets to secure versatility and generalizability. The mor-
phological loss has high potential to represent other morphologies. NU-Net itself could
be used as a foundation model to be transferred to other tasks or domains.

Machine learning is essentially a tool or a part of a pipeline to automate a certain process.
I contributed to other projects either using machine learning or even without. Supervised
learning to segment fibroblast turned out to be fruitful. A simple plugin could greatly
improve the proofreading process. Some projects seemed to need more time and branching.

All around, this has been a good journey to data science and machine learning. In
biomedical imaging, machine learning will thrive more and more, and deep learning will
dominate and solve many problems. I explored machine learning in between the transition
from the supervised learning to the self-supervised learning. I hope that my contribution
will help bridge this transition smoothly and result in more and more versatile and generic
machine learning models.

132

2. Wider Perspectives

2 Wider Perspectives
In this section, I would like to discuss topics that are important in machine learning
research in general and see how they could affect bioimage analysis.

Figure 5.1: Growth of AlphaFold database over time. Since its publication in 2020, the size
of the database has grown exponentially. The image was sourced from one of the official blog
posts about AlaphaFold, published on July 2022[201].

AlphaFold AlphaFold[202] by Google DeepMind team was a big milestone without a
doubt. Protein folding is known as one of the hardest problem because of the high un-
predictability of the folding process. The number of proteins is endless and the same
composition of molecules may end up with completely different functions depending on
how they are folded. What AlphaFold achieved was not only meaningful solely in protein
research but also meaningful in general because it demonstrated what deep learning could
accomplish.

Largely, I believe that AlphaFold was possible because data was available from PDB
(protein data bank) and got recognized in a competition called CASF which provided a
benchmark. Although there are a few continuous competitions to push computational
methods in biomedical imaging, they are rather fragmented and specific to certain tasks,
because of the nature of the biomedical image. What I think we need in biomedical
imaging community is to run a large-scale competition with a generic task and a solid
benchmark. Once we have that, all the innovations will follow suit.

DALL·E Both generic computer vision models and large-scale natural language mod-
els were two big milestones in machine learning, but bridging them together was also a
huge one. DALL·E[203] was revealed by OpenAI in 2021, which was a deep learning
model to generate an image from a text prompt. DALL·E could be born thanks to

133

Chapter 5. Conclusions

the advent of Transformer, a self-supervised large-scale natural language model based
on self-attention[102], such as GPT-3[84], and contrasive learning[180], specifically CLIP
model[204]. CLIP stands for Contrastive Language–Image Pre-training and is a model
that connected texts and images. The capability of DALL·E simply amazed people and
made a lot of noise in social media.

DALL·E did not stop there, and soon OpenAI released DALL·E 2 which greatly im-
proved overall quality and added more functionalities to generate more creative images.
DALL·E 2 was internally referred as unCLIP, which means inverting CLIP mode. Ad-
ditionally, DALL·E 2 utilized Vision Transformer[105] which is an implementation
of self-attention in vision, and GLIDE[205], which was based on diffusion model[33, 191].
The diffusion model is the current state-of-the-art generative model. Combining all the
state-of-the-art advances in deep learning, the quality and capability of DALL·E 2 was
extraordinary. On top of that, OpenAI team added many other functionalities other than
just generating an image from a text.

In summary, DALL·E 2 adopted self-supervised learning approach wherever possible,
benefiting large-scale datasets. The only reason, that I can think of, why there have
not been many self-supervised models in biomedical imaging community is again lack of
large-scale datasets and benchmarks. Also, diffusion model is a super-resolution model,
by definition, and has high potential in microscopy pipelines.

Model bias and interpretability I felt that the model bias has been silently ignored
behind the amazing advance of machine learning technology. There was a big red flag
that Google fired AI researchers who were going to publish papers that concerned biases
in deep learning models [208, 209, 210]. One of the fired moved to another company and
published the paper anyway, though some contributors asked to take out their names from
the paper. The paper was named “Gender Shades: Intersectional Accuracy Disparities
in Commercial Gender Classification” and talked about gender biases as well as other
biases [94] in deep learning models. The concern was already circulating a long time ago
[211] because it was obvious that the model will be biased by a dataset, and the unbiased
dataset does not exist or is very hard to come by.

I believe that model interpretability should be an important criterion to consider when
developing and releasing a machine learning model, especially when it concerns social
problems. But I must admit that there are not many methods to investigate internals of
deep learning model. Feature attribution is one of those, which can be used to evaluate
how much a feature attributes to the ouput [212]. There is also a programming library
called Captum[213, 214] that tightly works with Pytorch[135], a popular deep learning
framework.

It is needless to say that both model biases and interpretability of models are highly
important in biological applications. However, biomedical imaging is not in a leading
position of developing deep learning and is busy catching up new methods from other
domains. Or maybe it should be biomedical applications that start innovating model
biases and interpretability since commercial sectors do not seem to care them as much.

134

2. Wider Perspectives

Figure 5.2: Example of DALL·E’s image generation from a given prompt. The image was
sourced from its official blog by OpenAI, published on January 2021[206].

Figure 5.3: Outpainting feature of DALL·E 2. The starting image was a famous painting
Girl with a Pearl Earring by Johannes Vermeer. Repeating outpainting processes, DALL·E
2 generated environment outside of paintings based on the given input and the text prompt.
DALL·E 2 comes with many other functions other than just generating an image from a text.
And the quality is far superior to the previous release. The slide was a page from The DALL·E
2 Prompt Book, published on July 2022[207].

Privacy and Open science In early explosion of deep learning technology, everything
was open-sourced and shared with anyone. Most resources are still so and many re-
searchers willingly open-source their works. However, more and more major works have
been closed by walled gardens. It is apparent for tech-giant companies that make profits
using the technology, which include Google, Meta, Microsoft, Netflix, Amazon, etc. But
the case of OpenAI was a bit of shock and disappointing to the community.

As its name suggests, OpenAI started off as a non-profit research group whose goal was
to do open science to develop AIs. Around 2019, right after they proved their values
by publishing GPT family, they gave up the non-profit principle while keeping the name
OpenAI. Since then, OpenAI has become basically a for-profit company, getting invest-

135

Chapter 5. Conclusions

Figure 5.4: Machine learning models could be all “stochastic parrots”?

ment mainly from Microsoft. They stopped open-sourcing their resources as well as codes.
Their products can be accessed by APIs and need to be paid.

It was true that OpenAI could accomplish so much thanks to a massive investment and de-
velop GPT-3, DALL·E, and CODEX[215], all of which are milestones to the science and
technology. Getting investment is not a bad thing. What’s bad is not sharing resources,
especially when deep learning method is still young and needs a thorough assessment
before deployed and abused. For an example, GPT-3 is extremely capable, but it also
showed weird behaviors and vulnerable to certain attacks. One of them is the prompt
injection [216] that can be used to exploit the security. For another example, CODEX is
a model behind the infamous GitHub Copilot, which auto-completes programming codes
(by the way, GitHub is owned by Microsoft). There have been multiple reports that
Copilot violated license of some open-source projects. Recently, a group of people filed a
lawsuit against the product [217].

Open science in machine learning is becoming more and more closed. In biomedical
applications, the aspect of privacy and open science is more dire and sensitive. Biomedical
data is more closed than other data by nature. Sharing data needs more attention for its
consequences. If we do not address and ignore these issues, open science will have hard
time. I feel like it came to a point that it requires a huge amount of resources, which an
individual cannot afford, to develop a machine learning model rather than a brilliant idea.
I think that deep learning is going too fast, and we need to look back and be conscious
to our decision more than ever to secure privacy vulnerability.

Brains and Deep neural networks The artificial neural network (ANN) is a foundation
of deep learning and a breakthrough in machine learning technology. The interesting
thing is that it shows a lot of similarity how the actual brain works. My knowledge is
narrow on neuroscience and cognitive science, but I found a few articles [218, 219, 220]
that talked about a mutual reinforcement between neuroscience and machine learning
based on ANN. Basically, scientists learn more about brains from ANN and vice versa.
For instance, a group of researchers recorded brain signals showing images using fMRI
(functional Magnetic Resonance Imaging) and tried to reconstruct the images using deep

136

2. Wider Perspectives

neural networks [221]. It corresponds to mapping the visual function of a brain to an
ANN. Analyzing this ANN may give some insights to how visual signals work in a real
brain backwards.

The book The Brain: The Story of You [222] contained a lot of examples of how brains
work, and I found a lot of similarities with ANN. For examples, learning process is mostly
about reinforcing or removing links between neurons. It could partially explain why the
dropout layer in ANN, which drops neurons randomly, works. The fact that pruning
process can improve the performance is similar. It is said in neuroscience that the brain
predicts observations at various levels of abstraction, which explains the way deep layers
in ANN work. Procedural memory is a way to link a memory with related memories1. It
is also the case in ANN that features are linked through layers of abstraction [140].

All of these similarities may have been intentional because ANN was an implementation
of a biological neural network anyway from the start. But for me, who do not have much
knowledge in neuroscience, finding the common mechanism is extremely fascinating and
makes me wonder if I can have better understanding of ANN by learning neuroscience,
or the other way around. I am sure that I can, but I do not have intention to do another
PhD degree at least for a while.

1 Like a mind palace that Sherlock, played by Benedict Cumberbatch, uses.

137

About me

First of all, thank you for picking my thesis up. And I appreciate that you read this
seemingly long and daunting story about three years of my PhD. I would like to make a
brief introduction to myself and this book, because when you pick up some films or books,
you expect something from their authors, directors, or genres (at least, I do). I hope that
my background makes you interested enough to read it through.

Gaming to display engineering As a child born in early 90s, I was always fascinated
by computer technology, read “I spent a lot of time gaming in front of computer”. From
simple games like pacman and pinball to tactic games like StarCraft2 and Warcraft3 as
well as console games on super nintendo and PlayStation2, computer games painted a
big part of my childhood. Then I had to make a big decision, a life-time decision when I
just became an adult and went to college. That was what I would like to do and study
for the rest of my life (now I know better that the choice may not be a life-time choice
and I do not have to keep it for life). So I started studying display engineering. The
study was basically to learn how displays work and how to make them. I liked it because
the display is always a part of every computer, desktop, TV, and smartphone (iPhone4
was around that time. My first smartphone was iPhone5, and it was such a beauty)
and it could display amazing images and movies. I watched the movie Avatar in 2009 by
James Cameron three times. And I remembered that everyone was replacing old monitors
and TVs by FHD LCDs (Full High Definition Liquid Crystal Display) and the display
technology itself was still very much evolving for advanced stuffs like OLEDs (Organic
Light Emitting Diodes).

To France How did I end up doing Master’s degree, and what did I study? The time
I was about to graduate from Bachelor’s degree, companies like Samsung, LG, and other
giants were selling a ton of LCDs. Had I graduated right then, I would have ended up
in a factory doing some boring quality check for them. Frankly speaking, I did not want
that and wanted to do real science and research for future technologies. Coming to France
was actually easy, since my department had a dual Master’s degree program with École
Polytechnique in France, and not many wanted to study more at the cost of getting an
easy but well paying job in Samsung or LG. I applied and got in. The program was
to do half of study in Korea and the rest in France2. I liked the opportunity because
I wanted to learn other things, and I liked traveling (I know that the decision was not
purely academic. But come on, it is France, a big European country. And surely it took
a big part in my decision.). For disclaimer, I made transition to computer science as soon

2 It later turned out that it was not exactly a year for each half. Due to the difference in semester
system, that Korean semester starts on March whereas French one starts on September, I took me a year
in Korea and a year and a half in France.

Chapter 5. Conclusions

as I came to France. You ask what I studied in Korea then? It was about doing research
to develop future display devices using graphene (it is a super-duper material, which is
the thinnest, strongest and has even amazing conductivity, theoretically speaking) and
its photosensitivity, which I would say had little to do with displays in near future, but
maybe do in far future.

Computer science So I made transition to computer science as soon as I arrived at
École Polytechnique, main reason being that everyone, including me, was into it. I found
that the scenery in display technology, over the years, had been shifted from hardware to
software. Hardware was already good enough. More and more films relied on VFX (Visual
Effects) like Marvel movies, and animations from Pixar and Disney showed totally different
level of visual details. In fact, there were paradigm shifts everywhere due to computer
technology. There was AlphaGo in 2016, a computer program beat one of the best go
players3. And computer started playing complex tactic games, such as AlphaStar playing
StarCraft II, and beating professional human players. Tech giants, such as FAANG4,
became influential to all industries and to our daily life. The most fascinating technology
to me at the moment was a powerful image processing on smartphones and how good the
pictures were even from a tiny computing processing unit (CPU) and from an even tinier
image sensor. Then I noticed that machine learning was the driving force, and I liked
the idea of solving computer vision problems using this new technology (new to me back
then).

Finally, PhD Chances are you already know where this story is going, either because
you already knew me or because you picked up this book by the title and the abstract.
This PhD gave me chances to work on real computer vision problems and bought me time
to dip my feet completely into machine learning and of course to stay more in France.

3 Who happened to be Sedol Lee, a Korean. All the Korean media talked about AlphaGo and him all
day. They still mention him when they talk about AI (artificial intelligence) or vice versa.

4 The term refers to Facebook, Amazon, Apple, Netflix, and Google. FAANG already does not
represent all the tech giants anymore. It changes now and then. Facebook changed their name to Meta.
Some include Microsoft, Nvidia, or Tesla.

140

Appendix A

Short Introduction to Machine Learn-
ing

I explain basics of machine learning and deep learning in general. This appendix is
included for those who are not familiar with the topics and may have difficulty to follow
the main text.

1 Machine learning with Examples
You may think that machine learning is simply to make a machine that learns or to make
a machine to learn. You are not wrong, but when scientists talk about a certain subject,
we first make sure whether you and I are actually talking about the same thing. So in
order to talk about machine learning in depth, I will give you some context and explain machine

learningit in the current climate, because scientific terminologies are more prone to change over
time and convey more meanings than you think.

Firstly, you may think a machine as a robot1 that slides down to the kitchen on wheels
and picks up an apple for you with their metal hands. I believe that this kind of robot is
not far away from current technology, but I do not expect to see it at least in a decade.
When computer scientists say a “machine”, it is rather an abstract thing. It can be
a system, a logic, a mathematical equation, a statistical model, or more concretely an
actual program from some programming codes. The process of making a machine is often
called “modeling” and the resulted machine as model. I prefer to use model to refer to a model
machine, and I will use it a lot from now on. Secondly, a machine does not “learn” in
a way that we humans learn. To this date, the most well known definition of “machine
learning” is written below. It is an excerpt from the book Machine Learning by Tom
Mitchell and McGraw Hill in 1997.

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.”
- [book]Machine Learning, Tom Mitchell and McGraw Hill, 1997. -

1 For me, robots always remind me of either those in the movie A.I. by Steven Spielberg in 2001 or
Bicentennial Man played by Robin Williams in 1999. Okay, I will slide in R2-D2 and C-3PO from Star
Wars. Speaking of AI (artificial intelligence), we will define it later.

Appendix A. Short Introduction to Machine Learning

Imagine a baby learning how to walk or how to pick up an apple. Can you tell what each
E, T, and P means in this case? Maybe yes, but you will find it hard to specify or even
to quantify them. Essentially, the definition needs rigorous mathematical measures, and
this mathematical foundation, til now, has been statistics and linear algebra.statistics

linear
algebra In early days of machine learning, these so-called tasks (T) have been relatively “simple”.

They were not even about picking an apple nor sliding down the kitchen, because they
are not actually a single task, but a set of tasks for machines and, I tell you, hard ones.
They were things like, (i) predicting human population, (ii) playing checkers
game2, (iii) having a chat with a computer, or relatively recently, (iv) recognizing
handwritten digits. These problems were hard, and some still are. You may have
already guessed why they can be hard, but let’s see these four tasks one by one together
and let me tell you the current state of machine learning with above examples. For a
disclaimer, in this introduction to machine learning, I am going to cover not only computer
vision, which is the main topic of thesis, but also other topics, one example being languagecomputer

vision processing to show you larger pictures of the machine learning landscape. As a matter of
language
processing

fact, computer vision and language processing have been two leading forces of a modern
form of machine learning, known as deep learning, and they have grown together sharing

deep
learning

ideas from one to the other.

1.1 Population: Regression
First problem is to predict population, say, til the end of 21st century. Supposing that
you are given population data from 1950, you may want to draw a graph: time on x-axis
and population on y-axis and put all data points in. Then you feel like that you want
to connect these points with a smooth line, because you know that the line is supposed
to be smooth and continuous, as per our intuition of big numbers (we are talking about
billions). Once you have a line, you would notice a certain tendency of the curve and
think that you found an answer. This method is called regression3. Nobody can tell youregression
that your answer is wrong, because who knows the future, but one can tell that you lack
of reasoning. This is why mathematics and statistics came up with machines that could
model data. Now, see UN’s prediction of world population in 2022 in figure A.1. It is
actually a band of lines with probability indicated. Although I do not know the details of
actual data and how they built their regression model, predicting population must have
required them not only population data in the past but also other data, at least mortality
rate and birth rate. As soon as new types of data are added, the problem gains layers of
complexity, and you need more proper tools than eyeballing on a graph.

Main takeaways from this example are

• Big data is smooth and continuous

• Prediction comes with probability

• More layers of data would yield more accurate prediction but require more sophis-
ticated models

2 Search Arthur Samuel for more; in 1956
3 In practice, depending on the context, this is often called fitting, because we are literally fitting a

line to data. Interpolation or extrapolation are also used.

142

1. Machine learning with Examples

Figure A.1: UN’s prediction of world population in 2022

1.2 Checkers: Memorization vs. Learning
Second problem is to make a program that plays checkers. This one might be daunting,
because you may not know how to code a computer program. But I am not talking about
an actual computer program, we can design a program on a piece of paper with rules
and logics. Checkers have rules: it has a board, two players, players take turn, pieces
jump, and so on. Given these rules, we can imagine opponent’s moves and make winning
sequences. You know that it is already too many cases and seems almost infinite. But it is
not infinite and computer can solve things much faster than us, given a problem is finite.
We can make a program that plays checkers over and over and records all possible cases.
This method is called brute-force approach, and the checkers was solved in 2007 [223]. brute-force
Best you can do against this machine is a draw. Even so, the searching space amounts
to 5 × 1020 and you need more than your laptop only to navigate this space let alone to
compute it4.

I call this machine stupid not that it is not efficient enough to run it on my laptop. The
resulted machine did not actually learn how to play checkers but rather memorized all the
sequences in checkers. It has the book of winning and the only thing it does is to look for
sequences in the book. For example, if I were to play variations, I simply cannot with this
machine. Memorization does not hurt, but we want an efficient and intelligent machine
which can learn the rules and play with logics, and it would be cool if it is just good
enough to beat the world champion on your laptop. You know what would be cooler?
What if it can adapt itself to variations of checkers with some rules changed? In a word,
we want efficient and intelligent machines that learn and have potential to improve. This
concept can be summarized by a one word, that is generalization. I will bring up the term generalization

4 Chess is known to have complexity between 1040 to 1050 and go has around 10172.

143

Appendix A. Short Introduction to Machine Learning

generalization throughout this book, and it is the key towards versatility as you mightversatility
have guessed. 5

Takeaways from this example are

• Brute-force approach memorizes, which is not bad. But we want machines to learn
logics.

• Efficiency matters.

• We want versatility, meaning a room to improve and even an ability to adapt.

• Generalization is what we want to achieve.

1.3 Chatbot: Natural language processing and Self-supervised
learning

Third one is to make a chatbot. You may have already seen some on certain websites,
like I did. I bought a product, and it turned out having some flaws, so I wanted to get
a refund. I opened their website looking for a phone number to their customer service,
but to no avail. Then I saw this chat window at the bottom of the webpage. I started
explaining my issues and realized that the conversation was a bit awkward because maybe
they were too nice with perfect punctuations and capital letters. At some point, I noticed
that I was not actually talking to a person but to a program, which basically looks for
certain keywords, such as problem, issue, refund, return, delay, or delivery, and parrots
prerecorded sentences. At last, I got a phone number because my problem was not simple
enough for a chatbot to deal with (why would they make a refund process easy?), only
to discover that there was also prerecorded audio on the line, and I had to wait for 10
minutes. Alas, how annoying the world has become!

Natural language processing I wanted to know how you would feel about my story.
Instead of asking you, which is physically impossible over this book, I asked a machine
called GPT-3[84], developed by a company called OpenAI. Below are the prompts I put
in and the answers from the machine.

Prompt 1:
(copy the whole paragraph above from “You may ...”) + What do you think?

Answers 1:
I think it is quite annoying. I also think that it is quite sad that companies

5 If you are a gamer, you may know about the ray tracing. Ray tracing is another good example why
people want machine learning approach rather than brute-force one. Ray tracing calculates all the light
paths and interactions given a 3-D environment. Since the complexity is so enormous, it has mainly
used what’s called Monte-Carlo method, which is a half-way brute-force approach. Ray tracing using
Monte-Carlo method randomly samples a portion of light at a time just until you get plausible results and
call it done. Although there are many ways of doing Monte-Carlo, such as Markov-Chain Monte-Carlo
(MCMC), ray tracing is still too demanding to catch up 60Hz refresh rate (in another term, 60 frames
per second; 60FPS is a minimum specification many feel that the scene is real-time). However, already
out there, is a machine learning solution from the company Nvidia, called Deep Learning Super Sampling
(DLSS). Check it out, because the result is amazing.

144

1. Machine learning with Examples

are resorting to this type of customer service instead of hiring actual people
to help their customers.

Prompt 2:
(copy the whole paragraph above from “You may ...”) + Why do you think
that chatbots are so dumb?

Answers 2:
There are a few reasons. First, it is still unclear what is the best way to design
a chatbot. It is said that people do not like talking to chatbots, and often find
them frustrating. Second, chatbots are often not very good at understanding
natural language. They may be able to understand some simple questions,
but often fail to understand more complex questions. Finally, chatbots are
often not very good at dealing with unexpected situations. For example, if a
customer asks a chatbot a question that it is not prepared for, the chatbot
may not be able to give a sensible answer.

The first answer is some sympathetic answer which people and I used to not expect to
get from a machine for a long time. The second one actually seemed dare to ignore all my
story and to take only the question in the end. Although I did not actually hope to get
analytical answer from the question, the answer seems to be a correct self-critique that
makes sense. Overall, the answers feel natural6.

Let’s go back to how we should make a less annoying chatbot. Language is far more
complicated than checkers. Furthermore, natural languages have rules, but there are too
many and all sorts of exceptions are accepted. Naturally, you could imagine that brute-
force approach would not work, let alone coming up with all different cases. In fact,
natural language processing (NLP) is one of two big topics that current machine learning natural

language
processing
(NLP)

has been addressing and seen big progress over the years, together with computer vision.
Though the language modeling has been one of the oldest machine learning problems7,
with really hard one such as NLP, for language to be felt natural like examples above,
we need to talk about a particular way of teaching, or more generally, training machines, training
which is self-supervised learning. Self-supervised learning turned out to be a good way self-

supervised
learning

to make a generalized model, given a large amount of data. However, I am going to save

generalized
model

answers what self-supervised learning is and how to use it to make NLP models such as
GPT-3, for now. We will deep dive into it shortly after, because self-supervised learning
is the main focus of my thesis and deserves its own section. If you cannot wait, you could
jump to section ?? and have a peek. But I recommend you to stay and continue, because
the next topic is about computer vision which is another main focus of the thesis.

6 Do you feel unproductive? You should ask GPT-3 some tips!
https://adolos.substack.com/p/feeling-unproductive-maybe-you-should. This is a blog post gener-
ated by GPT-3, not long after it was released in 2020. It gained a lot of attention because it managed
to trick some people.

7 Turing test is one of the earliest attempts to define artificial intelligence. Basic idea is following.
You talk to a computer and a human only with texts, not knowing which one is which. If you cannot tell
a computer from a human, this computer is considered passing Turing test, and thus intelligent. Turing
test was proposed in 1950 by Alan Turing. Search Turing test or imitation game, if you are interested.

145

https://adolos.substack.com/p/feeling-unproductive-maybe-you-should

Appendix A. Short Introduction to Machine Learning

We have an answer but not a full one, yet. Currently, to make the best chatbot, we
had better take self-supervised learning approach. Takeaways from chatbots or natural
language processing are

• Chatbots are annoying.

• Current state-of-the-art NLP models, e.g. GPT-3, feel natural.

• For tasks where there is no rule or are too many rules, such as natural languages,
we cannot consider a brute-force approach.

• We need to think about other ways to train a generalized model.

• Self-supervised learning is the answer.

1.4 Handwritten digits: Computer vision and Convolutional
layer

Fourth and the last task is to make a machine that recognizes handwritten digits.
Computer vision is a term to describe a group of tasks for computer to recognize im-computer

vision ages. Main computer vision tasks are image classification, semantic segmentation,
object detection, instance segmentation, keypoint detection, and panoptic seg-
mentation. Their examples are shown in figure A.2. Image classification itself went
through some changes. At first, images were small, and a machine was given an image
with a single object centered, like in (a) PascalVOC[224] and (b) ImageNet[62] datasets.
Then, people wanted to classify normal images with different objects within (c) and to
know to which class each pixel belongs (d), and they realized that it was not the im-
age classification task they had known, so they called it semantic segmentation or pixel
classification. Naturally, they wanted to know where each object is located (e) and to sep-
arate it from others by putting bounding boxes and called this task object detection. (f)
Instance segmentation goes further to overcome constraints of rectangular bounding boxesinstance

segmentation and classifies pixels instead. (g) Panoptic segmentation assigns classes and instances for
every pixel. (h) Keypoint detection focuses on each object and predicts their structures
and poses. Note that these are not all the computer vision tasks and that most tasks
introduced here are from a dataset called Microsoft COCO (Common Object in Context)
[137].

(c) image classification (d) semantic segmentation

(e) object detection (f) instance segmentation (h) keypoint detection(g) panoptic segmentation(b) image classification

(a) image classification

Figure A.2: Common computer vision tasks: (a, b, c) image classification, (d) semantic seg-
mentation, (e) object detection, (f) instance segmentation, (g) panoptic segmentation, (h) key-
point detection. Sources: (a) PascalVOC[224], (b) ImageNet[62], (c, d, e, f, g, h) MSCOCO[137].

146

1. Machine learning with Examples

0 28

0

28 0

128

255

Figure A.3: Samples from MNIST database, which is a classic image classification task. Right
one shows pixels with grid lines and their values coded as brightness in 8-bit integer (as known
as UINT8 that ranges in 0-255).

Recognizing handwritten digits is a classic image classification task. One of the mostimage
classification famous datasets for the task is MNIST database (Modified National Institute of Stan-

dards and Technology database). It was introduced in 1998 together with a convolutional
neural network (CNN) called LeNet[225]. The database contains 70,000 digital images of convolutional

neural
network
(CNN)

handwritten digits in 28x28 pixels, whose samples are shown in figure A.3. And LeNet
already achieved an error rate less than 1% on 10,000 test images. To this date, the
convolutional layer which is a core building block of LeNet, is used for the state-of-the-art
models for this task. So we will take a shortcut and look into the convolutional layer right
away.

Convolutional layer To process image data, which is basically a sequence of numbers,
we need to make it an array or a matrix ready to be computed. Naïve way is flattening
pixels to make an array with 784 (= 28 × 28) elements and to consider each element as
a feature. As soon as it is flattened, however, it loses relationship of rows and columns
depending on the direction of flattening. We could already imagine that this approach is
not going to work well. The most important characteristics of image data is the localized
information with neighboring pixels, and we want to preserve that.

Convolutional layer is the core building block of CNNs. It is named after the convolution convolutional
layeroperation in mathematics and was mainly designed for 2-dimensional (2D) data, such as

images8. In fact, there are a lot of image filters based on the same convolution operation
in 2D, such as a Sobel filter, Gaussian filter, etc9. The difference is, for many cases, in
kernels. You can think a kernel as a window or a pair of glasses to look through something, kernels
in our case images. They are not just transparent though. Sobel filter has fixed kernels,
Gaussian filter has those parameterized by standard deviation values (𝜎). Convolutional parameterized
layer is one of those parameterized, but it is specifically designed for machine learning.
Its parameters are randomly initialized and learned during training process. Figure A.4 initialized
shows these three kernels, figure A.5 demonstrates how to apply them, and figure A.6

8 Convolutional layer works well in any data that has localized properties. It turned out that it works
well on audio data too. Another application is to develop a fast PDE (partial differential equation) solver.
It makes sense to use convolutional layer because derivatives look for tiny changes or neighboring values.

9 If you use microscopes, you may know PSF (point spread function). Fundamentally, PSF is a scatter-
ing pattern of light, and it looks a lot like Gaussian filter or elongated kernels, once reproduced spatially.
Scattering is one of the main factors that hinder resolving crisp images in microscopy. Compensating
PSF is called deconvolution and is a common post-processing after acquiring microscopy images. This
type of problem that finds the origin of cause is called inverse problem, in general.

147

Appendix A. Short Introduction to Machine Learning

+1

+2

+1

0

0

0

-1

-2

-1

kernel of
Sobel filter

kernel of
Gaussian filter

kernel of
Convolutional layer

0.50

0.75

1.00

−2

0

2

Figure A.4: Kernels of the Sobel filter, the Gaussian filter, and a randomly initialized 7 × 7
convolutional layer, from left to right. Note that the kernel of the convolutional layer was
initialized with standard normal distribution, and did not go through any training.

displays results convolved with these kernels.

Sobel filter is an edge detection filter as you can see in figure A.6. Gaussian filter blurs
images, which does not seem to do much in this example, but it becomes useful when you
have a lot of noise or small objects that you do not want. Lastly, we have a result with a
kernel of convolutional layer, and it looks useless and in fact it is. It is mainly because it
was not learned or optimized for a certain task through a training process. In addition, aoptimized
convolutional layer, in fact, has more than one kernel, and they are called channels. Bychannels
stacking all channels with different initial values, convolutional layer makes feature mapsfeature maps
of a given input, just like a certain composition of a kernel can be used for detecting
edges or for blurring effect. In a way, a convolutional layer can be considered as a group
of filters, each of which captures different characteristics of a given input. We just do not
know how these filters will end up after a training process. But what we know for certain
is that they would become optimized for a task that we will set.

We can formulate the actual calculation as in equation A.1 below. X refers to an
input, W is called a weight and represents kernels of a convolutional layer, and Y is anweight
output. 𝑏⃗ is called bias because it makes easy to make biases across channels. Remember
that I initialed convolutional kernels by randomly sampling from the standard normal
distribution, which has mean value at 0 and has standard deviation of 1, 𝒩 (0, 12) in
formal notation. Bias also has the same number of channels, but each channel has a
scalar, meaning a single value. We can use these values to give biases to each kernel
across channels by adding them, essentially making each channel to have its own mean
value 𝒩 (𝑏𝑐, 12). Since it is a 2D operation, we can simply consider them as 2D matrices or
tensors.10 Let 𝑁 indicate the number of channels of a convolutional layer. We can assigntensors
actual numbers to make it easy to understand the below equation A.1 and its operation
in figure A.7. X ∈ R28×28; W ∈ R𝑁×7×7; 𝑏⃗ ∈ R𝑁 ; the resulted output Y ∈ R𝑁×28×28.
11 As you might have noticed, the operator * has its own parameters, namely the size of
kernel, the number of stride, the number of padding, and the mode of padding. We can
tweak these to have different behaviors of a convolutional layer.

10 N-dimensional array, where N is greater than 2, is often called tensor. Google developed an open
source library called TensorFlow and a new type of processing unit called TPU (Tensor Processing Unit),
specialized for tensor calculation. You can see that both are named after tensors.

11 Bold variables, such as X, Y, W, mean matrices or tensors. Variables with an arrow on top, like 𝑏⃗,
mean 1D arrays or vectors.

148

1. Machine learning with Examples

step=1 step=4 step=7

step=25step=13step=10

input

output

kernel

padding

Figure A.5: 2D convolution operation. It performs pixel-wise product and summation between
the kernel and input to yield an output. It starts from the top left corner and move on to the
next to the right one step at a time. Once it reaches to the end of right corner, it goes down by
one and starts from the left corner again. Given that the input has 25 elements and the stride
(step size) is 1, the total number of steps is 25. Notice that dotted area is padded in input to
ensure the same size of output. By changing the size of kernel, stride, or number of padding,
we can make a lot of variations. As a side note, in practice, these computations are efficiently
parallelized on GPU. In this case, theoretically, if you have more than 25 cores, GPU can do
all the jobs at the same time. And current GPUs usually have more than thousands of cores.
Illustration was taken from [226] and annotated.

raw Sobel Gaussian random normal

Figure A.6: Resulted images convolved with kernels of Sobel filter, Gaussian filter, and con-
volutional layer from figure A.4. Since the kernel of convolutional layer was not trained, the
resulted image (at the right most) conveys little meaning or information.

149

Appendix A. Short Introduction to Machine Learning

...

N channels

2

1

0

−1

−2

...

input kernel output

Figure A.7: Convolutional layer has multiple channels and all of them are initialized separately
to produce rich feature maps. Symbol * represents convolution, and here I used 1 for the step
size (stride) and 3 for the zero-padding (for each edge). Beware that input, kernel and output
are different in size and the spatial ratio is not respected.

Y𝑐 = W𝑐 *X + 𝑏𝑐 , 𝑐 ∈ {1, 2, 3, ...𝑁} (A.1)

We have a half answer to build a state-of-the-art machine through machine learning to
recognize handwritten digits, that we would like to use the convolutional layer. Lastly,
believe or not, MINST database together with LeNet is one of the milestones that ignited
development of neural networks and deep learning, which is the remaining half answerneural

networks
deep
learning

and the most crucial part enabling the current success of machine learning.

Takeaways from recognizing handwritten digits are

• Digital images consists of pixels, each of which has a numerical value.

• Common computer vision tasks are classification, semantic segmentation, object
detection, instance segmentation, etc.

• For images, we want to preserve localized information taking into account neighbor-
ing pixels.

• Convolutional layer is one way to achieve that. It is a core building block of convo-
lutional neural networks (CNNs) which is the base for many current state-of-the-art
machine learning models for computer vision tasks.

• Convolutional layer is parameterized and is optimized for a given task through a
training process.

• Convolutional layer has multiple channels to make a handful of feature maps.

• Convolutional layer is one of two keys to make a vision model, and the other one is
neural networks and deep learning that we are going to talk about shortly.

150

2. Generative model

2 Generative model
Generative model is at the heart of machine learning and a general interest of all deep generative

modelCNNs. Generative model is a machine to generate data, which sounds simple but not so
much to do properly. Combined with machine learning, the goal of the generative model
is to make or simulate new data. Essentially, to make new data, the generative model simulate
needs to learn how to model the given data, which is close to the definition of machine
learning itself. Generative modeling in computer vision became viral when the generative
adversarial network (GAN) came out[48]. Therefore, starting with GAN, I am going generative

adversarial
network
(GAN)

to give brief introduction to two generative models in vision: generative adversarial
network (GAN), and variational autoencoder (VAE). For the heads-up, VAE will
be covered more in depth in chapter 3. Accompany figure 1.25 to follow along.

2.1 Probability Density Distribution
Before talking about generative models, I am going to present the probability density
distribution. It is an abstract concept and might be hard to grasp the idea at first, but probability

density
distribution

it will be helpful to move forward. We will begin with a set of one-dimensional data
and its probability density distribution and generalize it to 𝒟-dimensional data. This
one-dimensional dataset looks as in figure A.8. I generated 1,000 numbers, and it is hard
to see patterns when they are written as digits. Once you put them on a line, you start
seeing some. Though I applied transparency to see overlapped data points, it is still not
clear. A better way is to make a density function, so that data sums up to 1. I randomly density

functionsampled 20 numbers (𝑛 = 20) and draw a dotted line, where a solid line is the actual
density function (𝑝*(𝑥)) from which I generated, or sampled, 1,000 numbers. sample

1.1256, 4.0858, 5.6443, 0.7326,

3.5948, 3.9649, 0.9362, 1.3194,

1.9758, 3.0341, ...

1 2 3 4 5
x

0 2 4 6
x

0.0

0.2

0.4

p
x(
)

n=20
* ()p x

x=

(1)
(2)

Figure A.8: One dimensional data, its approximated probability density distribution, and its
true density function. Displaying numbers is not useful to spot patterns. Probability density
distribution could reveal the underlying true distribution, or an oracle distribution 𝑝*(𝑥). The
oracle distribution 𝑝*(𝑥) was a sum of two Gaussian distributions. For the dotted line of 20
samples, I used the kernel density estimation method with Gaussian kernels.

Real data is usually multidimensional and image data is especially so. We can generalize
this notion of probability density distribution to represent our data x ∈ R𝒟 that has
arbitrary dimension of 𝒟. We assume that it has an underlying true distribution, or an
oracle distribution, 𝑝*(x). To find it out, we make observations, or sample x and model oracle

distributiona probability density distribution 𝑝(x). In theory, generative modeling is a process of
making 𝑝(x) to approximate 𝑝*(x). However, in practice, we rarely use 𝑝*(x) because it is

151

Appendix A. Short Introduction to Machine Learning

the ideal goal that is not supposed to be achievable12. More precisely, the approximated
distribution is written as 𝑝𝜃(x), where 𝜃 implies a set of parameters of a model, suggesting
that 𝑝𝜃(x) is a parameterized approximation.parameterized

approximation

2.2 Generation Process
Conditional probability is an essential tool since we set our data distribution as the
probability density function. A conditional probability describes a probability of an eventconditional

probability after another. It is written as 𝑃 (𝐴|𝐵) and read “probability of A given B”. Naturally,
𝑃 (𝐵) is a prior probability and 𝑃 (𝐴) becomes a posterior probability. Once appliedprior

probability
posterior
probability

to a density function, 𝑝(x|z) represents the generative process of G, which is read “a
probability density distribution of x given z, or conditioned on z”.

2.3 Distance between Distributions
Kullback-Leibler divergence is a simple and popular choice to calculate a distance of
two probability distributions. Kullback-Leibler divergence (𝐷𝐾𝐿) is defined in the belowKullback-

Leibler
divergence

equation A.2 for two discrete functions 𝑝 and 𝑞. As you may have noticed, log(𝑝/𝑞) is just
a difference of their log-likelihoods, and 𝑝(𝑥) term weights it (therefore, 𝐷𝐾𝐿 is not com-
mutative nor a symmetric measure, meaning 𝐷𝐾𝐿(𝑝|𝑞) ̸= 𝐷𝐾𝐿(𝑞|𝑝)). What’s important
to remember is that 𝐷𝐾𝐿 computes a distance of two probability density functions and
becomes 0 when they are identical. With this in mind, let’s dive into generative models.

𝐷𝐾𝐿(𝑝|𝑞) =
∑︁

𝑝(𝑥) log 𝑝(𝑥)
𝑞(𝑥)

𝐷𝐾𝐿(𝑝|𝑞) =
∑︁

𝑝(𝑥)(log 𝑝(𝑥)− log 𝑞(𝑥))
(A.2)

12 It is hardly possible to find the oracles or the universal rules in real life, just like physics. Newtonian
physics can explain and successfully approximate many things, but it cannot explain quantum phenom-
ena such as nuclear fusion and fission, or predict deviation from quantum effects such as the speed of
light changing under the general relativity. That being said, versatile and generalized modeling can be
considered as a process of finding the oracle 𝑝*(x) from a limited set of data 𝑝(x).

152

3. Artificial neural network

3 Artificial neural network
For the time being, the word artificial intelligence (AI) is almost equivalent to (artifi-
cial) neural network or deep learning. It only requires basic knowledge of linear algebra,
probability theory, and calculus to understand the building blocks of the artificial neural
network. That being said, its strength does not come from some advanced mathematical
breakthroughs that few people understand, but rather from its simplicity combined with
its ability to scale big.

3.1 AI or AGI? Call it simply Deep learning

Artificial intelligence

Machine learning

Deep learning

Figure A.9: Relationship among AI, machine learning, and deep learning. Reproduced from
book Deep learning[227].

I must admit that the word artificial intelligence (AI) has become a buzzword in media artificial
intelligence
(AI)

over the years. As a matter of fact, AI, at least how it used to be in computer science,
was almost equivalent to computer itself that automates any little things. It was partially
because computer never had enough intelligence to content human expectations, and the
definition of computer intelligence was elusive, let alone any intelligence13. As a result,
it was never a main stream topic and the term itself became mediocre (some call it
literally “weak AI”). If you think of human-like androids for AI, that you saw in science
fiction films, the correct terminology, you are looking for at the moment, is artificial
general intelligence (AGI)14. AGI is also often called “strong AI” to differentiate from artificial

general
intelligence
(AGI)

the weak one. Its definition is still a hot-topic and very much in discussion. And some
apparently do not like “general” in AGI either, because it means more or less human-like
intelligence, but they believe that human intelligence is a highly specialized one (and I
agree to that). For that reason, computer scientists rarely say either AI or AGI referring to

13 Richard Feynman, one of the most important and influential scientists in modern history commented
on AI in 1985. You can easily find the recording on internet, and I highly recommend it (Video link:
[228]). He said that artificial intelligence will never be the same as human intelligence as long as computer
does not have the same neurons that we have. Also, the quote at the very first page of introduction is
his. But you will see shortly the artificial neural network and may find its similarity to biological neural
networks.

14 Even AGI may not be enough to describe such intelligent robots at the current time.

153

Appendix A. Short Introduction to Machine Learning

current machine learning technologies. They rather directly use (artificial) neural networkartificial
neural
network

and deep learning, which are two foundations that have been leading current success of

deep
learning

machine learning and what we are going to cover in the following sections.

3.2 Perceptron

...

Forward

Input
layer

Output
layer

Hidden layer

Figure A.10: An artificial neural network with two layers of perceptrons. Every circle except
blue ones, a.k.a. the input, is a perceptron or a neuron, if you like. 𝑥⃗ is an input, 𝑦⃗ is an output,
and 𝑧⃗ is a hidden layer. W𝑥𝑧 is a group of weights between 𝑥⃗ and 𝑧⃗, and W𝑧𝑦 is another between
𝑧⃗ and 𝑦⃗. Notice that it has a direction, and for that, it is sometimes called feed-forward neural
network. Also, lines have differences in brightness, referring to weights of bonds.

Artificial neural networks (ANNs) was born around 60s, and it is said that it got inspired
from a biological neural network. We have knowledge of individual biological neurons and
a concept of synapse that transmits electrical signal from one neuron to others. Each
neuron is simple, but a network built upon many of them can do complex things and
have certain functions15. Artificial neural network consists of a lot of simple elements too,
so-called perceptrons, which are equivalent to neurons (researchers just call them neuronsperceptrons
in the context of artificial neural networks). Single perceptron has a single parameter (I
omitted a bias because it is not as important and some even choose not to optimize) that
will be optimized and performs a simple linear operation, literally a multiplication with
input and an addition.

The first line of below equation A.3 has 𝑤 as a weight, 𝑥 for an input, 𝑦 for an output,weight
and 𝑏 for a bias. This equation is almost identical to the equation A.1 for the convolutional
layer. Once you scale it and make an array of 𝑁 perceptrons, then you have a layer withlayer
a size of 𝑁16. Let’s assume that we have an input array 𝑥⃗ ∈ R𝑀 , and we want an output
array 𝑦⃗ ∈ R𝑁 . If all elements in 𝑥⃗ are connected to 𝑦⃗, we have 𝑀 × 𝑁 connections in
between, and these connections become a weight matrix W ∈ R𝑁×𝑀 . It also has a bias
term 𝑏⃗ just like the convolutional layer.17

15 Collective intelligence is common and natural. I remember that I was amazed by collective intelli-
gence of ants while reading Les Fourmis by Bernard Werber in my childhood. Single entity looks tiny
and trivial per se, but once they are gathered they can do complex tasks.

16 This layer is called linear layer, dense layer, or fully connected layer.
17 Again, a variable with an arrow on top refers to an array or a vector, and bold one is a matrix or a

tensor.

154

3. Artificial neural network

Single perceptron : 𝑦 = 𝑤𝑥 + 𝑏

Layer of perceptrons : 𝑦⃗ = W · 𝑥⃗ + 𝑏⃗
(A.3)

One missing ingredient is the activation function or transfer function that comes right activation
function,
transfer
function

after this calculation. Activation function also has similarity to biological neurons. As we
know, a biological neuron has a threshold, a certain electric potential, that allows for a
signal to be transferred. Popular choices of the activation function are simple non-linear
functions just to add a bit of non-linearity in the process, because the whole network,
without an activation function, is a big linear function, which is not an interesting thing.
The most popular and the simplest one is the rectified linear unit[229] (ReLU) in figure ReLU
A.11. ReLU lets a signal through if it has a value greater than 0 and blocks it otherwise,
which can be written as 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥). Combined with a bias 𝑏⃗, ReLU makes
gates with different threshold values to a layer of perceptrons 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥+𝑏).18

−1 0 1
x

0.0

0.5

1.0

f(
x
)

−1 0 1

x

0

1

f'
(x
)

−1 0 1
x

−1

0

1

2

f(
x
)

Figure A.11: (left) ReLU activation function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) and its derivative 𝑓 ′(𝑥) in
inset, (right) ReLUs with 5 different biases.

Once we stack layers of perceptrons, we have a multi-layer perceptron (MLP) or an
artificial neural network as in figure A.10. This example has two layers of perceptrons, multi-layer

percep-
tron, neural
network

one of which being an output layer. All the perceptron layers that have learnable or
trainable parameters are called hidden layer and are commonly represented as 𝑧⃗ (notice
that this is not anymore 𝑦⃗ as in equation above. 𝑦⃗ denotes the output layer in common.).
Though we have only two layers, the total number of parameters to optimize has already
become relatively huge.

To give an example for MNIST, let’s set the number of perceptron 𝑁 = 1000 and
make the output a vector whose size is 10 for each element to represent a digit from 0
to 9, which is known as one-hot vector19. The image input vector is 𝑥⃗ ∈ R784 (once it one-hot vec-

toris flattened), thus the weight of the hidden layer becomes W𝑥𝑧 ∈ R1000×784. The output
layer also has a weight that would be W𝑧𝑦 ∈ R3×1000. As a result, this seemingly simple
neural network with one hidden layer ended up having 787,000 trainable parameters
(not counting biases). When you have two hidden layers with the same size, the number
grows to 1,787,000. You can see that neural networks can grow really fast in terms of
complexity, and training a neural network was not a simple task back in the past when

18 ReLU is generally not used in the last layer as known as the output layer, because we want as much
information as possible.

19 The idea is to have a vector whose size is the same as the number of classes, or categories, we want
and to treat values as pseudo-probability. For example, if the first element has the greatest value, we
would know that it is likely to be digit 0, the second is to be digit 1, and so on.

155

Appendix A. Short Introduction to Machine Learning

the computing power was limited. LeNet-5 [225] that had 5 hidden layers and 60,000
trainable parameters took 2-3 days to train on a CPU (Computing central Processing
Unit) in 1998. High complexity and slow training time were main reasons why neural
networks were not a popular choice back in the past, because computer scientists thought
that networks’ huge complexity is an overkill and that they could find more efficient
algorithms to solve the problem. And they did find more efficient algorithms for MNIST
that performed on par with LeNet. However, as data has higher dimensions and moredimensions
features, and as tasks become more complicated, it turned out that neural networks are
more scalable, more adaptable, and result in by far the best performing models. Now the
question is how to train your neural networks?

3.3 Optimization and Training
The goal of pretty much all optimization algorithms is to find a minimum, just like
how physics wants to reach the minimal energy, and optimizing a neural network is no
exception. What we need is a performance measure P (remember the definition of machine
learning by Tom Mitchell and McGraw Hill?), that we are going to call objective function,
loss function, or simply loss20.objective

function,
loss function Entropy loss and Mean squared error Two most common losses are the entropy lossentropy loss and the mean squared error (MSE). The choice depends on what we want for our outputmean square
error to be. When we want our outputs to be probabilities, which by definition have values in
probabilities range between 0 and 1, the entropy loss is likely what we want. Otherwise, we can use

the mean squared error, in general.

Entropy is a concept brought from thermodynamics as you may have noticed and
has a lot to do with probability theory. Natural phenomena can be mathematically best
explained in the form of exponential and logarithm functions21, and probability theory
uses them as well. A probability is a value in range between 0 and 1, and we follow special
rules when we do arithmetic with it. For example, we multiply probabilities (𝑝1 ·𝑝2) when
we talk about a sequence of events with their probabilities22. And its logarithmic form,
log-likelihood (log 𝑝), not only makes computation easy but also quantifies information.log-

likelihood Multiplication becomes an addition log(𝑝1 · 𝑝2) = log 𝑝1 + log 𝑝2. Probability is intuitive
to us, but the concept of it is not something linear where we can just add them as we saw
right before. Shannon information defines the content of information as − log 𝑝. FigureShannon

information A.12 visualizes logarithm functions in value range between 0 and 1.

Entropy loss is essentially a loss function of probabilities and employed for classifica-
tion tasks. When defined for a binary classification task where we define a target to be

20 What if you want higher performance, higher P? Then you can simply negate it and make a loss
function −P to minimize. Optimization algorithms are designed to minimize values, in general.

21 When defined with the base being Euler’s number (𝑒; in my mother tongue, Korean, it is called
approximately natural constant), they become the natural exponential (𝑦 = 𝑒𝑥) and the natural logarithm
function (𝑦 = ln(𝑥)). One is the inverse function of the other, which means that you get the other one
by exchanging 𝑦 and 𝑥. Note that, often, ln refers to a logarithm with 𝑒 being the base and log with 10
as the base. I am going to use log not specifying a base, because computationally it is not important.

22 Multiplication of probabilities is something we take naturally. We can simply multiply two prob-
abilities if one does not impact the other. But when two events are entangled, you need a theorem to
estimate its probability. Bayer’s theorem defines generalized rules of probability arithmetic.

156

3. Artificial neural network

0.00 0.25 0.50 0.75 1.00

−14

−12

−10

−8

−6

−4

−2

0

Lo
g
-l

ik
e
lih

o
o
d

y p= log()

Probability ()p

0.00 0.25 0.50 0.75 1.00
Probability ()p

0

2

4

6

8

10

12

14

In
fo

rm
a
ti

o
n
 c

o
n
te

n
t

(S
h
a
n
n
o
n
 i
n
fo

rm
a
ti

o
n
)

y p= − log()

0

2

4

6

8

10

12

14

y p= − log(1−)

Figure A.12: When computing probabilities, they are often converted to logarithms. Log-
likelihood (left) and Shannon information (right) have close relationship to entropy and quantify
information. Shannon information intuitively tells that when an event has probability of 1, it
is deterministic and carries no information and when it has probability of 0, we cannot predict
anything, thus it has infinite information. Blue dotted line (· · ·) indicates binary cross entropy
when the target is 0 (read the entropy loss and see equation A.4).

either 0 or 1 (𝑦 ∈ {0, 1}), the binary entropy loss function ℒ(𝑝, 𝑦), given a probability 𝑝
can be written as followed, and you can see that it is measuring Shannon information in
figure A.12:

ℒ(𝑝, 𝑦) = −(𝑦 log 𝑝 + (1− 𝑦) log(1− 𝑝))

ℒ(𝑝, 𝑦) =

⎧⎨⎩− log 𝑝 if 𝑦 is 1
− log(1− 𝑝) if 𝑦 is 0

(A.4)

However, how can we ensure the output layer to have probabilities from a neural network?
The output from a linear layer without an activation function technically can have any
values and its values are not bound between 0 and 1. We can either truncate each
prediction value 𝑥 by using a function such as a sigmoid or normalize all predictions
(𝑥⃗ = (𝑥1, 𝑥2, . . . , 𝑥𝑖, . . .); where 𝑖 ∈ {0, 1} for binary case) to be summed up to 1 by using
functions such as Softmax. Below equation A.5 shows the logistic function which is a Softmax

logistic
function

popular choice of sigmoid functions, and the Softmax function 𝜇(𝑥⃗) and its binary case.
Figure A.12 visualizes the logistic function and Softmax, more generally, for 10 cases.

logistic: 𝑝 = 𝑓(𝑥) = 𝑒𝑥

1 + 𝑒𝑥

Softmax: 𝑝𝑖 = 𝜇(𝑥⃗)𝑖 = 𝑒𝑥𝑖∑︀
𝑗 𝑒𝑥𝑗

, so that
∑︁

𝑖

𝑝𝑖 = 1

Binary Softmax: 𝑝 = (𝑝0, 𝑝1) = (𝜇(𝑥⃗)0, 𝜇(𝑥⃗)1) = (𝑒𝑥0

𝑒𝑥0 + 𝑒𝑥1
,

𝑒𝑥1

𝑒𝑥0 + 𝑒𝑥1
)

(A.5)

Mean square error (MSE) is a loss function more appropriate for regression, allowing
for predictions to have any values. MSE is fundamentally an averaged value of squared
differences and is defined as below in equation A.6. What is nice about MSE is that it is
only a second-order polynomial and that its order is an even number. It is cheap enough
to compute, and its derivative becomes a linear function that allows negative value as well.

157

Appendix A. Short Introduction to Machine Learning

−5.0 −2.5 0.0 2.5 5.0
x

0.0

0.5

1.0

Lo
g
is

ti
c

fu
n
ct

io
n

y= e
e

x

x1 +

− 0 +
x

0.0

0.1

0.2

S
o
ft

m
a
x
(

(
))

μ
x

area=1.0

y= () = ⋅μ x e1
c

x

Figure A.13: Logistic function (left) and Softmax function for 10 cases (right). Output values
from neural networks are not guaranteed to be probabilities. To treat them as such, they need to
be converted to behave like probabilities. Logistic function and Softmax are two popular choices.
They also have relatively simple derivatives, which are helpful for gradient based optimizations.

An alternative would be the L1 loss function23 (ℒ(𝑥, 𝑦) = |𝑥 − 𝑦|), which has simpler,
maybe too simple, derivatives: -1 if 𝑥 − 𝑦 < 0 and 1 if 𝑥 − 𝑦 > 0. The reason I keep
talking about the derivative is that it is our main tool to optimize neural networks.derivative

ℒ(𝑥𝑖, 𝑦𝑖) = (𝑥𝑖 − 𝑦𝑖)2

ℒ(𝑥⃗, 𝑦⃗) = 1
𝑁

𝑁∑︁
𝑖=1
ℒ(𝑥𝑖, 𝑦𝑖)

𝜕ℒ(𝑥, 𝑦)
𝜕𝑥

= 2(𝑥− 𝑦)(1− 𝜕𝑦

𝜕𝑥
)

(A.6)

Blindfolded hiker When it comes to optimizing neural networks, the stochastic gradient
descent (SGD) is the foundation of all the other algorithms that are widely used. Tostochastic

gradient
descent
(SGD)

understand SGD, we need basic calculus. But I am going to first explain it without

calculus

calculus through the blindfolded hiker analogy. Imagine that you are in a mountain with
blindfolded and would like to descend. To help you, I have a 3D visualization of an object
function in figure A.14. You would like to be very careful with every step you take, so
you make a following set of rules. First, figure out your surrounding, especially slopes
of each direction. You could use a foot, for example, to do so. Mathematically, this
action corresponds to finding derivatives and gradients24. Second, you would go forwardgradients
a certain distance to a direction whose slope is the steepest downward, because it is likely
to lead you further down. Third, you repeat until you get to the bottom. The process is
essentially iterative.iterative

You may have a lot of questions for these rules, because your life may depend on them.
Most of all, why are you blindfolded? How many directions you would like to set? How to
determine a step size, one foot or two feet? How far should you go for a step? And how
do you know that you reached the bottom? Optimization process is highly complicated
and slow process and even so for neural networks because they have a huge number of

23 MSE is sometimes called L2 loss because it is a second-order compared to L1 loss.
24 Derivative is a function and a gradient is a value of it given a point.

158

3. Artificial neural network

Figure A.14: Visualization of a loss surface in 3D of a popular neural network, called ResNet-
56[85]. Note that loss function has very high dimension which is not easy to visualize. This
surface was generated by using a very specific technique from [230]. The goal is to get to the
lowest point of this mountain though it looks like a free fall rather than home.

neurons, and the optimizer should figure out how each individual neuron should behave.
One major breakthrough to speed up the process was a stochastic exploration (or a divide-
and-conquer approach, if you like).

Stochastic Gradient Descent (SGD) Do you think that it is easier and quicker to
find the bottom of a mountain if you were not blindfolded and thus could see far ahead?
Normally yes, if you were hiking on an easy terrain. But it turns out that the loss surface
of neural networks has the number of dimensions as large as that of trainable parameters,
meaning it is very complex and processing all the information at the same time is highly
complicated and time and energy consuming. It is sometimes more confusing when you
have more information available around you and a step further does not seem to change
much of landscapes you see. So blindfolding limits information and actually makes you
more decisive and thus makes you move quickly.

Stochastic gradient descent (SGD) is an optimization algorithm to randomly sample stochastic
gradient
descent

a small portion of data, called mini-batch, from the entire dataset and to update trainable

mini-batch
update

parameters of the network. In this case, you may want to take a small step, because you
know that your information is limited. So it is common to have a small learning rate with

learning rate
a small mini-batch size. Note that parameters other than those of neural networks are
called hyperparameter to be differentiated, and the size of mini-batch and the learning

hyper-
parameter

rate are considered as the most important hyperparameters. Updating a parameter is a
simple process once you know the gradient. Let 𝑡 indicate the current step and 𝑡 − 1 a
previous step. 𝜃 is a parameter (or your position) to update. 𝛼 is a constant learning
rate (or a step size). Lastly, a gradient (a slope) is 𝑔. Hence, updating process can be updating

processdescribed as follows:

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼𝑔𝑡−1 (A.7)

159

Appendix A. Short Introduction to Machine Learning

You could add more rules and strategies, one of which being a momentum. Basically,momentum
once you find that you have been walking in the same direction for a while, you may
want to take a further step or may not want to change the direction. You could add a
constant momentum hyperparameter to SGD to make it faster, or there are other choices,
for instance Adam[231] that dynamically calculates a momentum for each step25.

Validation and Testing subsets How do you know that you reached the bottom or
when to stop? The answer is you never know. In fact, you do not even know there will be
“the bottom”, and you will likely find a lot of “bottoms”, which are not the one you were
looking for. Gradient-based optimization assumes convexity of the objective function so
that it has minima. The smallest minimum is called global minimum among local minima.
At all the minima, the slope becomes flat and has slopes towards it, as known as convex
slopes. So when you, as a blindfolded hiker, feel that the terrain started becoming flat
downwards, you could assume that you likely reached a bottom. You will find flat surfaces
a lot, and still you never know if the one you just found is the global minimum or even a
local minimum. To find that out, you just need to walk more and inspect its surrounding.
Solely relying on flat surfaces to find out minima is lacking, as you can imagine.

Validation subset is what researchers use and can help find minima more quickly. The
hiker analogy becomes a bit of science fiction at this point and breaks some physics26. For
a hiker, it is like making a replica of the mountain by taking out some parts of it, say 20%,
in a virtual universe. There is more. The parts taken out are physically moved to the
virtual universe, so you are no longer able to see or walk on them in the real world. You
can open a portal to this virtual world every several steps you take in the real world and
test your hiking skill virtually and check whether you could reach further down. Once it is
done, you can come back to where you were left off and continue hiking in the real world.
Isn’t it like learning to hike in a parallel universe as well? Unfortunately, you cannot
bring what you learned in the parallel universe, because knowledge belongs to their own
universes, if you did not know (or you might actually have gone to future and forgot what
you learned, because it is actually what you will learn, thus you cannot learn what you
will learn, just yet). No, actually you do not want to learn on the virtual mountain. You
want to isolate the validation process from the learning one to get an objective measure
of your skills. Otherwise, you get confused between what you learn and what you can do.

Your validation subset, or a replicated mountain in a virtual universe, serves two pur-
poses. First, it gives you a relatively objective measure how you are performing. Though
the subset still comes from the same dataset, isolating a subset from a training one gives
you a counter metric to observe your progress. Second, it tells you whether you are
cheating and memorizing data. Let’s say that you hiked a mountain so many times.
You would start memorizing passages without noticing. The danger is that you may not
perform well and not challenge on other types of terrains once you get too familiar with
one terrain. This slump or a stagnating state, not learning much of new knowledge and

25 Two most popular optimizers are probably SGD and Adam. There are a lot of variants of SGD
and Adam where Adam itself is a variant of SGD. The key factor is how efficient they can be at the
cost of accuracy. The name, Adam, is derived from adaptive momentum estimation. Adam estimates a
momentum based on first-order derivative of gradients, which is cheap to compute and provides enough
accuracy.

26 Do not forget to get a towel before hitchhiking to the galaxy!

160

3. Artificial neural network

Input
layer

Output
layer

Hidden layers

Forward

... ...
Backward

Figure A.15: A simple neural network where all layers have only one neuron, including the
input and output layer. Neurons are linked forward. To get a gradient, it needs to propagate
all the linked neurons backwards til the input. Note that all variables are scalars.

memorizing, is called overfitting in machine learning. The validation set tells when you overfitting
start becoming overfitted, and that you need to stop and face a new challenge.

Testing subset tells whether you could hike other mountains, so to speak. Remember
that our goal is to learn how to hike and to improve your hiking skills in general. The
validation set is not objective enough because you already used it during training to
measure your performance. The testing set should be a subset which you never saw
before, especially during training, to give you an objective measure (this is why I said
that the validation set is relatively objective) to tell how versatile and how general your versatile

generalacquired skills are. It would be best if you could try out other mountains to test your
ability. However, often in practice, we sample and set aside a portion of data from the
given dataset and save it for testing later once you finished your training. In short, before
you doing anything, you would like to split your dataset into three subsets: training,
validation, and testing sets. training,

validation,
testing sets

Vanishing gradients and ReLU Gradients are very useful tools for optimization. What
we need to think about is how to actually compute them. A neural network consists of
numerous neurons linked together as in figure A.10. It means that a gradient of a neuron
is linked to other gradients. Thankfully, calculating gradients has an analytic solution27 analytic

solutionand is easy thanks to the chain rule. We will start from a simple network that has 𝑁
chain rulehidden layers (𝑧𝑛, 𝑛 ∈ {1, 2, . . . , 𝑁}) between an input 𝑥 and an output 𝑦. Every layer

has only one neuron, thus all become scalar values. In addition, there is no activation
function after each layer. We can visualize it in figure A.15 and write down how a hidden
neuron 𝑧𝑛 is calculated:

𝑧1 = 𝑤1𝑥 + 𝑏1

𝑧𝑛−1 = 𝑤𝑛−1𝑧𝑛−2 + 𝑏𝑛−1

𝑧𝑛 = 𝑤𝑛𝑧𝑛−1 + 𝑏𝑛

(A.8)

Getting a gradient of 𝑧𝑛 becomes very easy thanks to the aforementioned chain rule.
27 Analytic solution is a closed form of solution, which we are familiar with from a math classroom.

Polynomial equations have nice analytic solutions for their derivatives, for example, and you can avoid
using a numerical solver. Numerical solver is what a computer uses to find a solution relying on values,
when it does not know the underlying formula. It is fundamentally slow and requires a heavy computation.

161

Appendix A. Short Introduction to Machine Learning

d
d𝑥

𝑧1 = 𝑤1

d
d𝑥

𝑧𝑛 = 𝑤𝑛
d
d𝑥

𝑧𝑛−1

= 𝑤𝑛𝑤𝑛−1
d
d𝑥

𝑧𝑛−2

= 𝑤𝑛𝑤𝑛−1𝑤𝑛−2 . . . 𝑤2
d
d𝑥

𝑧1

=
𝑛∏︁

𝑖=𝑖

𝑤𝑖

(A.9)

Once we applied ReLU activation functions (𝑓) to all the layers, the gradient of 𝑧𝑛 (∇𝑧𝑛)
becomes:

∇𝑧𝑛 = d
d𝑥

𝑧𝑛 =

⎧⎨⎩ 0 at least one of 𝑓(𝑧𝑖) is 0∏︀𝑛
𝑖=𝑖 𝑤𝑖 otherwise

(A.10)

This process of calculating gradients going backward is called backpropagation. Both thebackpropagation
forward pass and the backpropagation are computationally demanding processes when
updating a neural network. However, it is easy to solve the backpropagation at least
in neural networks, and neural networks were designed to be so. Since we know their
analytic derivatives for every neuron, and we can simply chain their gradients.

You may think that the result is a bit weird because ReLU activation outputs 0 with
half probability (when the input is less than 0) and the gradient ∇𝑧𝑛 is most likely to
become 0, meaning not being updated. You are wrong and correct. We talked about a
single neuron in each hidden layer, but a functioning neural network would have from
several hundreds to a few thousands in a layer, if not more. So, it is okay to have a lot of
zero gradients. Also, it is not like that those neuron are not going to be updated at all,
because we considered a single data point and a single iteration. In truth, ReLU activation
function is a well-thought-out choice and actually helps to train the network fast[229, 18].
Researchers used to use a sigmoid for an activation function, because, you know, sigmoid
functions have nice curves and are natural. But if you look back at the logistic function in
figure A.13, you would notice long tails at the both ends of the curve. These long tails, in
derivative, caused what’s called vanishing gradients, since their derivatives easily becomevanishing

gradients less than 1 and many times close to 0. Once you chain them all, gradients preferably
become 0, and they end up barely meaningful though many neurons would get updated.

GPU, TPU, and CUDA We saw that getting a gradient was an easy task in neural
networks. However, when we consider the actual network that has a countless number
of neurons, it becomes a heavy burden. Graphical processing unit (GPU) was designedgraphical

processing
unit (GPU)

to handle computation of graphical elements for the display or the monitor. GPUs have
typically thousands of cores to parallelize computing visuals of each pixel28, compared to

parallelize
computing

several or a few tenths at the most for CPUs (central processing units). As industries

28 Basic visual traits are color, transparency, and texture.

162

3. Artificial neural network

moved towards FHD, 4K, and 8K resolution29 display devices, chip companies started
developing powerful GPUs to meet the demands. In parallel, the machine learning com-
munity discovered that GPUs can be used for neural networks and be a better fit than
CPUs, because of the sheer numbers of neurons and computations.

CUDA is an API (application programming interface)30 for GPUs produced by com- API
pany Nvidia. CUDA provides a set of instructions which could be useful for computational
tasks other than the displaying functionality. Nvidia pioneered GPU computation earlier
than its competitors and has been dominating in the market. It is not an overstatement
that majority of recent neural network researches used GPUs from Nvidia and CUDA
API. Google invested computing cloud platforms early and developed the TPU (tensor
processing unit) which focuses on parallel computation, the omitting displaying function-
ality. Their API is called XLA, and it has been well received by researchers thanks to their
mature frameworks such as TensorFlow and JAX. There are other APIs such as ROCm
by AMD and oneAPI by Intel, which are supposed to be more open and to support wider
ranges of processing units and operating systems31 (OSs) but lagging far behind CUDA
and XLA.

In brief, it was powerful GPUs that accelerated development of neural networks thanks
to their capability of parallel computation. As they get more and more powerful, people
could afford more demanding computation, meaning that neural networks got larger and
deeper. And we have arrived in the deep learning era. deep

learningDepending on the task, you may need certain algorithms, or you may simply want to
try things out. Machine learning frameworks can be grouped into two: machine learning
frameworks that are not deep learning and deep learning.

Deep learning Frameworks To utilize GPU, TPU, and CUDA, people use frameworks.
There are two main runners in deep learning frameworks: Google and Meta. Thankfully,
their frameworks are FOSS32, and their APIs are consistent and easy to use. GPU support
is the most important feature to accelerate and parallelize tensor (or matrix) computation.
These frameworks, in common, can calculate gradients automatically, which is the key
technology to optimize neural networks. Three frameworks have stood out: TensorFlow,
PyTorch, and JAX.

TensorFlow[232] is maintained by Google. It was one of the first deep learning frame-
works available in Python. For every instruction, TensorFlow draws a computation graph
which is translated to XLA (accelerated linear algebra) API and CUDA API (by Nvidia)

29 FHD (Full high-definition) is denoted as 1080p in many cases. It refers to a resolution that has
1920 ×1080 pixels, which has 16:9 ratio. The letter “p” means the progressive scan as opposed to the
interlaced scan (“i”), which alternates half of pixels at a frame to mimic 60 Hz refresh rate with two 30
Hz frames and to reduce power by half. Interlaced scan died out rather quickly, as consumers prefer high
refresh rate displays like 120 Hz. 4K and 8K correspond to rough numbers of vertical pixels.

30 API, in a plain language, is a set of programming instructions to make useful applications. Driver is
also an interface that takes these instructions and directly talks to hardware through operating systems
(OSs). API exists on top of drivers.

31 Computer operating systems such as Windows, Linux, and MacOS.
32 I believe that they think that technical development at the moment is more important than mon-

etizing it. And it is not like they are not making money out of machine learning technologies. Another
trend, that I see, is to keep software free and open, but make and sell hardware that is optimized for it.

163

Appendix A. Short Introduction to Machine Learning

that perform actual computation later. Graph mode is fast for execution, but it turned
out inconvenient because it behaves like a compiled language, meaning that actually com-
putation happens once a graph is complete. Therefore, it felt unnatural in Python, which
is a scripting language. TensorFlow started supporting the eager mode, which executes
computation right away, since version 2.0. TensorFlow’s native APIs are known unfriendly.
Keras is a library on top of TensorFlow that provides intuitive high-level APIs. Tensor-
Flow later decided to ship Keras in the package. TensorFlow and Keras are good choice if
you care more about performance than development, or you have TPU (tensor processing
unit) which is Google hardware. TensorFlow also has a JavaScript library, which can be
helpful if you are aiming to deploy your deep learning model through a web application.

PyTorch[135] is probably the most popular framework for developing neural networks.
It is maintained by Meta. It pioneered eager execution thanks to the autograd module,
which automatically keeps track of gradients for the later optimization step. Thus, Py-
Torch is more development-friendly because you get the results right away even without
loosing gradients. Additionally, PyTorch’s APIs are Pythonic, which makes it more ap-
proachable and easier to integrate other Python libraries compared to other frameworks
(for me, TensorFlow feels like a wrapper for XLA, which is closer to pure linear algebra
than deep learning).

JAX[233] is yet another framework designed for deep learning, developed by Google.
JAX also uses XLA for its backend, but it is more Pythonic than TensorFlow. It focuses on
eager execution as well as JIT (just-in-time) compilation. JIT compiles a piece of codes
on demand, so it has advantages of both compiled languages and scripting languages.
It is useful to compensate performance loss in scripting languages, which is the biggest
drawback in Python.

164

4. Deep learning in Computer vision

4 Deep learning in Computer vision
Small neural networks are good enough to be useful, but larger networks can excel. The
real power of neural networks comes from their scales, once they get bigger to accommo-
date millions and billions of learnable parameters. Deep learning initially gained its fame
through computer vision tasks, and luckily our main interest in this thesis is the computer
vision. I am going to mention notable deep neural networks and attempt to answer how
and what they see.

64 64
22

4

224

conv1

128 128
11

2

conv2

256 256 256
56

conv3

512 512 512
28

conv4

512 512 512
14

conv5

1
40

96

fc6
1

40
96

fc7

1
fc8+softmax

K

convolutional layer
max pooling layer
fully connected layer
softmax

Figure A.16: VGG16[85] architecture. It has 16 layers in total, not counting max pooling
layers, ReLUs, and softmax at the end. Dimmed area in convolutional layers and fully connected
layers indicates ReLU activation. The input is an image whose size is 224 × 224 pixels and
three channels. The output size remains a variable for 𝐾 categories of classification task. In
my opinion, VGG is the “pure” deep neural network which consists of simple types of layers.
Deep neural networks after VGG introduced custom modules to go deeper. The figure is created
using codes from PlotNeuralNet[234] and the legend is added.

4.1 Deep neural network and Deep learning
The term “deep”, used for deep neural network and deep learning, is said to be coined from
the Deep Belief Nets[235] by G. Hinton33. However, it was not until AlexNet[18]34

in 2012 that deep learning really took off. AlexNet won the famous ILSVRC (ImageNet
large scale visual recognition challenge) in 2012 by a large margin against the second place.
His network, clearly named after his name, had 8 weight layers (or trainable layers), which weight layers
was deep enough to be called “deep” at the time being. A lot of people saw the potential of
deep neural networks or deep learning and started developing larger and deeper networks
as well as hardware and software to facilitate researches.

Deep vision models could emerge thanks to large-scale datasets. In particular,
ImageNet dataset[62] used for ILSVRC 2012 played an important role. ImageNet-1K ImageNet

33 G. Hinton won Turing Award in 2018 together with J. Bengio and Y. LeCun for their contribution
to deep learning, which is considered as “Nobel Prize of Computing”.

34 The primary author Alex Krizhevsky was a PhD candidate supervised by G. Hinton at the moment
and also created famous CIFAR-10 and CIFAR-100 datasets in 2009.

165

Appendix A. Short Introduction to Machine Learning

dataset provides over a million of annotated images for 1,000 categories35 and resulted in
novel neural architectures that are still frequently used and inspired more advanced ones.
Followed by AlexNet which had 8 layers, VGG[85] had 16 layers and up to 19 layers (see
figure A.16). Though after VGG, it seemed that simply putting more layers would not do
magic (see equation A.10), and some tricks were needed to go deeper. GoogLeNet[236],
also known as Inception v136, devised, what they called, an inception module and
achieved 22 layers. ResNet[49] invented what’s called residual block and was particu-
larly impressive, because it reached up to 152 layers. WRN (wide residual network)[150]
suggested that it is also important to go wider. Concurrently, researchers started inves-
tigating efficiency and redundancy of deep neural networks and looking for a way to use
them on small devices, for instance, our smartphones. MobileNet[239, 190, 240] and
EfficientNet[238, 241] have a lot of layers, but effectively reduced the number of pa-
rameters to fit themselves into small devices. The current state-of-the art CNN as of 2022
is ConvNeXt[151] which did not go deeper than others but compiled advanced modules
and layers, and even suggested learning methods too to modernize vision models.

But why deeper? Because the deeper the network, the more capacity you can afford.
The hype was real and researchers could see visible improvement simply by doing so,
telling how big ImageNet dataset was as well as how scalable neural networks were. In
addition, their ability to generalize seemed unprecedented. The error rate for ILSVRCgeneralize
already reached below that of humans, supposedly[149]37, and it kept going further down.
Fundamentally, it led to the question: how and what do they generalize?

4.2 Deep convolutional neural networks
All the deep neural networks that I introduced above are, in fact, convolutional neural
networks (CNNs or ConvNets). I will focus on its core component, the convolutional layer
which I covered for recognizing handwritten digits inside section 1.4 to give my answer
how deep CNNs achieve a generalized vision.

Receptive field As we stack multiple convolutional layers together, deeper layers have
more and more links with all the previous layers, as depicted in figure A.17. Naturally, a
neuron deep in a network receives more signals through all its previous layers than one
right after an input layer. Receptive field tells the amount of signals that a neuron receives.
Difference in the size of receptive field creates levels of feature maps and of abstraction ofreceptive

field
feature
maps
abstraction

35 To this date, there are two most used subsets: ImageNet-1K and ImageNet-22K. ImageNet-1K was
what was used for ILSVRC in 2012. ImageNet dataset had been growing ever since it was introduced
around 2010, and stopped growing and reached to ImageNet-22K (or ImageNet-21K because the number
is slightly less than 22K) with nearly 14 million images.

36 The title of the paper was “Going deeper with convolution” and was named after an internet meme
“We need to go deeper” inspired by the movie Inception by Christopher Nolan from 2010. I enjoy seeing
such titles that Google sometimes puts out, because they feel friendly and less daunting. “Attention is
all you need”[102] is another and there is also “rethinking” series[96, 237, 238] that improved Inception
models and EfficientNet.

37 Human accuracy depends on limited knowledge of individuals. For example, I do not know all the
dog breeds and would fail many of them because ImageNet has images of dog breeds that I have never
heard of. However, it is not only about an error rate. It is also important to consider how fast you
can finish the task. If I were assigned with 100,000 images to test, which is the size of the testing set
of ImageNet-1K, I would probably stop after 100 images or so, spending about an hour, and then give
random labels for the rest and go home.

166

4. Deep learning in Computer vision

Co
nv
1

Co
nv
2

1
3

9
7

8
6

2
0

3
7

2
3

1
4

5
8

8
9

8
7

Ma
xP
oo
l

(a) (b)

La
ye
r1

La
ye
r2

La
ye
r3 La

ye
r1

La
ye
r2

Figure A.17: Going deeper means larger receptive fields. (a) Two layers of convolutional layers
that have 3×3 kernels and strides of 1. (b) Max pooling layer is simple and useful to reduce the
field of a previous layer as well as the size. It picks a maximum value within its kernel. This
max pooling layer has a 2×2 kernel and a stride of 2.

data in a trained CNN. A common strategy of building a CNN is to gradually reduce the
spatial size of inputs while increasing the number of channels as go deeper. This strategy
is well suited for the object classification task, where we want to reduce a group of pixels,
an image, down to a single vector, or a one-hot-encoded answer. The figure of VGG16
A.16 demonstrates it well. Pooling layers are often combined with convolutional layers to pooling

layerspool down the spatial size (width and height) of feature maps, because they are intuitive
and cheap to compute. Max pooling layer is a popular choice because it also reduces the max

poolingamount of computation for backpropagation by picking only the maximum values.

Figure A.18: Illustration of a deep neural network. This figure is taken from Deep learning,
I. Goodfellow et al. 2016 [227], and in turn, it was an adaptation of [140]

.

167

Appendix A. Short Introduction to Machine Learning

th
e
ta

=
0

fr
e
q
=

0
.4

0

(a)

~

th
e
ta

=
0

fr
e
q
=

0
.1

0

real part imag part

th
e
ta

=
4

5
fr

e
q
=

0
.1

0
th

e
ta

=
4

5
fr

e
q
=

0
.4

0

~(b) (d)

(c)

Figure A.19: Visualization of kernels of convolutional layers. (a) Sources: (a)[18], (b, d)[140],
(c) was generated using [16].

What and How do CNNs see? Frankly speaking, I do not have a definite answer. What
and how CNNs see is hard to tell, and is still and will always be a big research topic. I am
going to demonstrate a few approaches and related researches. First, we could visualize
weights themselves. Second, we could inspect direct outputs of each convolutional layer.
Third, we could indirectly find out what’s encoded in each layer.

Visualizing kernels is not the best way because kernels of convolutional layers are
usually spatially as small as from 3×3 to 11×11, and they have a few tenths or hundreds
of channels which makes it difficult to visualize them38. But at least, weights of the first
convolutional layer have three channels (assuming that the input has three channels),
and we could easily visualize them. Figure A.19 (a, b) shows 96 kernels, whose size is
11×11×3, from the first convolutional layer of a trained neural network[18, 140]. They
found that some of them actually looked like existing image filter, for instance, Gabor
filters ((c) in the same figure A.19) which are used for analyzing textures. Kernels of
the second layer, (d), also shows consistent visuals. Though it is hard to precise what
each layer is doing, it is generally accepted that early layers capture low-level features,low-level

features such as edges and corners, and deeper layers capture high-level features, like bigger visual
high-level
features

appearances and also semantic features, as shown in figure A.18.

Inspecting direct outputs could be more intuitive even though it is still not easy
to visualize feature maps having many channels. Figure A.20 shows an experiment that
it covered a certain area in the input image and observed changes in the activation of a
feature map and those in the final prediction[140]. They wanted to know whether networks
are truly able to read the context and tell positions of objects. They constructed a CNN
with 8 layers, where the 5th one is the last convolutional layer. We could imagine that
feature maps from this layer contain coarse and object-level features. In figure A.20
(b), when they occluded a part of the given images, they found a drop of activation
signals in certain regions, not necessarily the region they covered. We could consider this
region what the network thought the most important feature in the image. For examples,

38 By definition, digital images can have limited numbers of color channels: one channel, three channels,
or four channels. One channel image has a gray scale that only tells brightness. Three channel ones usually
represent RGB. Fourth channel can optionally indicate amount of transparency.

168

4. Deep learning in Computer vision

(a) input image
(b) Layer 5

strongest feature map
(c) Layer 5

feature map projections

Car wheel
Racer
Cab
Police van

Pomeranian
Tennis ball
Keeshond
Pekinese

Afghan hound
Gordon setter
Irish setter
Mortarboard
Fur coat
Academic gown
Australian terrier
Ice lolly
Vizsla
Neck brace

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05

0.1

0.15

0.2

0.25

True Label: Pomeranian

True Label: Car Wheel

True Label: Afghan Hound

(d) Classifier, probability
of correct class

(e) Classifier, most
probable class

Figure A.20: An experiment to observe responses of feature maps of a CNN, sourced from
[140]. (a) Three input images. Gray boxes were used to occlude appeared regions for (b) and
(c). (b) Feature maps that showed the strongest response to the input from the 5th layer. (c)
Visualization of feature maps of the 5th layer for the input (black squared ones) and three other
randomly selected images. (d) Changes in probability for the correct class as a function of
occlusion position. (e) The most probable class as a function of occlusion position. Note that
this network had 8 layers in total where the 5th layer was the last convolutional layer.

when they covered a part of a pomeranian in the first row (a), the activation of the face
went down, which we could assume the most important feature in the image. Indeed,
when they covered the face, the probability for the correct label dropped significantly,
as appeared in (d). However, sometimes the most important features have negative
correlation with the label, as in the third row. When they covered a face, which seemed
to be the most important feature, the network was less confused to predict the afghan
hound. Overall, this experiment confirmed the hypothesis that deeper layers contain larger
features based on receptive field, and more importantly, managed to visualize importance
of features. Yet, the visuals of feature maps by themselves, for example (b), were still
hard to interpret. Projecting feature maps to the image space seemed intuitive and easy
for us, humans, to understand, just like (c) showed rough but interpretable images.

Indirectly decoding layers is proven an effective way to get intuition what and
how deep CNNs see the image. The task becomes basically an inverse problem to figure inverse

problemout how an image looks like when we start from a convolutional layer. To answer this
question, a group[141] took the pre-trained AlexNet[18] and trained another CNN to
reconstruct or optimize images from the codes encoded through the AlexNet. See the
results in figure A.21. Notice that reconstructed images do not look real, but for the
model they trained, all six images are the same, since they optimized it so. This approach
to optimize visuals is commonly called feature visualization and soon became a main tool feature

visualizationto investigate how individual layer or neuron works.

169

Appendix A. Short Introduction to Machine Learning

Figure A.21: What’s encoded by a CNN? The figure shows five possible reconstructions of the
reference image obtained from the 1,000-dimensional code extracted at the penultimate layer of
a reference CNN[18] (before the softmax is applied) trained on the ImageNet data[62]. From the
viewpoint of the model, all these images are practically equivalent. This image is best viewed
in color/screen. Caption was kept original from the source[141].

Buildings Birds & InsectsTower & Pagodas

Horizon Trees Leaves

"Inceptionism"Anemone Fish Banana Parachute Screw

StarfishAntMeasuring CupHartebeest

optimize
with prior

Figure A.22: Examples, a.k.a. dreams, of DeepDream. (left) Starting with a random noise,
DeepDream enforces a certain label. (middle) Starting with an image, it overrides it with
other labels. (right) Make a fractal-like image by iteratively zooming and applying DeepDream.
Source: the original blog post[242] and its “inceptionism” gallery.

DeepDream[242] was one of them and pushed the feature visualization approach further
than ever, not just that it was intuitive, but also that the resulted images were intriguing
enough to attract a lot of attention. Check them out for yourself in figure A.22. What
they did was to pick a layer and keep telling it “I want more of {something}”. For
examples, you could start with a noise and tell how a banana looks like. Or you could
start with an exiting image and alter it to {something}, so that the network think that it
is {something}. Or make an infinite loop enhancing the same target again and again by
cropping and zooming within an image to end up with a fractal-like image, which they
called “inceptionism”39.
Feature visualization approach did not stop at the level of layers and went down
to individual channels and neurons[243]. Figure A.23 displays selected sets of images
optimized through channels in convolutional layers. Even though it was still challenging

39 Soon after DeepDream was revealed, it was used for NSFW (not safe for work), in particular nudity,
because of its bizarre looking results, and you know, because of people. For instance, an inception of
penises was a popular thing (do not ask me why).

170

4. Deep learning in Computer vision

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layer mixed4a&mixed4c) Objects (layer mixed4d&mixed4e

Figure A.23: Feature visualization of some channels in selected layers. Layer names are
denoted at the bottom. Note that the CNN they used was GoogLeNet[236]. Visit this website
https://microscope.openai.com/models to explore more feature visualization from various neural
networks. Source: [243].

to interpret, they found that resulted images were visually rich, and it was an intuitive
way to have a glimpse of how components of CNNs beyond layers were working. The
results clearly showed that each channel was distinctive, as intended when we constructed
a convolutional layer with biases. For instance, some units preferred certain directions
when enhancing edges. Some units enhanced polka-dot like textures while others enhanced
stripes, and so on.

171

https://microscope.openai.com/models

Appendix B

List of Datasets

The following table in the next two pages lists biomedical datasets that were either men-
tioned or used in experiments.

Note that

• not all the datasets were used

• only subsets were considered for some datasets for individual reasons

• find table annotations (𝑎,𝑏,1,2,3) at the end of the table

• links in the source column work only when viewed in the digital format

• APIs of most datasets listed here are implemented in bioimageloader

A
ppendix

B
.

L
ist

of
D

atasets

Table B.1: Collected datasets (page 1/2)

Id Acronym Resolution Channel Number1 Dtype Format Annotation2 Description Full name Source

1 DSB2018 (∼300,∼300) 1,3 735
(670/65)

uint8 PNG ○ Kaggle; Mixture of images here and there Data Science Bowl 2018 link𝑎 [58]

2 TNBC (512,512) 3 50 uint8 PNG ○ H&E; Triple Negative Breast Cancer (TNBC) Segmentation of Nuclei in Histopathology Images by
Deep Regression of the Distance Map

link𝑎 [21]

3 ComPath (1000,1000) 3 30 uint8 PNG ○ H&E; Instance segmented, dense A Dataset and a Technique for Generalized Nuclear Seg-
mentation for Computational Pathology

link𝑎 [67]

4 UCSB (768,897) 3 58 uint8 TIF △ H&E; Partially annotated (benign, malignant) A biosegmentation benchmark for evaluation of bioim-
age analysis methods

link𝑎 [65]

5 DigitPath (2000,2000) 3 141 uint8 TIF △ H&E; Partially annotated Deep learning for digital pathology image analysis: A
comprehensive tutorial with selected use cases

link𝑎 [66]

6 S-BSST265 (430,550)
-(1024,1360)

1,3 79 (42/37) uint8 TIF ○ IF images; Designed for ML An annotated fluorescence image dataset for training
nuclear segmentation methods

link𝑎 [92]

7 CRCHisto (500,500) 3 100 uint8 BMP △ H&E, Only center coordinates for each cell; Cells are
quite small

Locality Sensitive Deep Learning for Detection and
Classification of Nuclei in Routine Colon Cancer His-
tology Images

link𝑎 [244]

8 MurphyLab (1024,1344),
(1030,1349)

1 100 uint8 PNG ○ Two annotation formats; Photoshop and GIMP, 97 seg-
mented images

Nuclei Segmentation In Microscope Cell Images: A
Hand-Segmented Dataset And Comparison Of Algo-
rithms

link𝑎 [245]

9 FRU-Net (2048,2048) 1 72 uint16 TIF ○ TEM images FRU-Net: Robust Segmentation of Small Extracellular
Vesicles

link𝑎 [246]

10 Cellpose (383, 512) 2 100
(89/11)

uint8 PNG ○ Only biologically relevant subset (a.k.a. “specialized im-
ages”); nuclear and whole-chell channels and annotation

Cellpose: a generalist algorithm for cellular segmenta-
tion

link𝑎 [29]

11 LIVECell (520, 704) 1 5,239
(3,727/1,512)

uint8 TIF ○ Bright field images LIVECell—A large-scale dataset for label-free live cell
segmentation

link𝑎 [64]

12 TissueNet (512, 512)
(256,256)

2 6,990
(2,601/3,140/1,249)

float32 TIF ○ Nuclear/whole cell annotation. 2M in total 1M for each;
Version1

Whole-cell segmentation of tissue images with human-
level performance using large-scale data annotation and
deep learning

link𝑎 [43]

13 BBBC006 (520,696) 2 768 uint16 TIF ○ z-stack; z=16 is in-focus ones; sites (s1, s2);
w1=Hoechst, w2=phalloidin

Human U2OS cells (out of focus) link𝑎 [55]

14 BBBC007 (400,400)
- (512,512)

2 16 uint8 TIF ○ Outline annotation Drosophila Kc167 cells link𝑎 [55]

15 BBBC008 (512,512) 2 12 uint8 TIF ○ F/B semantic segmentation Human HT29 colon-cancer cells link𝑎 [55]

16 BBBC018 (512,512) 3 56 uint8 DIB ○ Outline anno; One missing annotation (55) Human HT29 colon-cancer cells (diverse phenotypes) link𝑎 [55]

17 BBBC020 (1040,1388) 2 25 uint8 TIF ○ Cell & Nuclei annotation; 5 missing annotations Murine bone-marrow derived macrophages link𝑎 [55]

18 BBBC004 (950, 950) 1 100 uint8 TIF ○ Synthetic cells; five subsets with increasing degree of
clustering

Synthetic cells link𝑎 [55, 146, 147]

19 BBBC039 (520,696) 1 200 uint16 PNG ○ Annotated samples from BBBC022; May have some
overlap with DSB2018

Nuclei of U2OS cells in a chemical screen link𝑎 [55]

20 BBBC009 (600, 800) 3 5 uint8 TIF ○ DIC images; 3 channels (R, G, B) Human red blood cells link𝑎 [55]

21 BBBC030 (1032, 1376) 3 60 uint8 TIF ○ DIC images; 3 channels (R, G, B) Chinese Hamster Ovary Cells link𝑎 [55]

174

https://www.kaggle.com/c/data-science-bowl-2018
https://ieeexplore.ieee.org/document/8438559
https://ieeexplore.ieee.org/document/7872382
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777895/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4977982/
https://www.nature.com/articles/s41597-020-00608-w
https://warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe
http://murphylab.web.cmu.edu/data/2009_ISBI_Nuclei.html
https://www.nature.com/articles/s41598-019-49431-3
https://www.nature.com/articles/s41592-020-01018-x
https://www.deepcell.org/
https://www.deepcell.org/
https://bbbc.broadinstitute.org/BBBC006
https://bbbc.broadinstitute.org/BBBC007
https://bbbc.broadinstitute.org/BBBC008
https://bbbc.broadinstitute.org/BBBC018
https://bbbc.broadinstitute.org/BBBC020
https://bbbc.broadinstitute.org/BBBC004
https://bbbc.broadinstitute.org/BBBC039
https://bbbc.broadinstitute.org/BBBC009
https://bbbc.broadinstitute.org/BBBC030

Table B.2: Collected datasets (page 2/2)

Id Acronym Resolution Channel Number1 Dtype Format Annotation2 Desc Full name Source

22 BBBC041 (1200,1600),
(1383,1944)

3 1,364
(1,208/120)

uint8 PNG, JPEG △ (U2) Bounding box annotation; 36 bbs missing (1364-
(1208+120)=36)

P. vivax (malaria) infected human blood smears link𝑎 [55]

23 BBBC002 (512,512) 1 50 uint8 TIF X (C2) Might overlap with DSB2018 Drosophila Kc167 cells link𝑎 [55]

24 BBBC042 (708,990) 3 1,117 uint8 TIF X (U,B2) Bounding box annotation; partially annotated Rat astrocyte cells link𝑎 [55]

25 BBBC013 (640,640) 2 96 uint8, uint16 BMP, FRM X (B2) Cytoplasm Human U2OS cells cytoplasm–nucleus translocation link𝑎 [55]

26 BBBC014 (1024,1360) 2 96 uint8 BMP X (B2) Second channel is usually very clear with a few artifacts Human U2OS cells cytoplasm–nucleus translocation link𝑎 [55]

27 BBBC015 (768,1000) 2 144 uint8 JPEG X (B2) 2 channels (Green, Crimson); texture in green channel Human U2OS cells transfluor link𝑎 [55]

28 BBBC016 (512,512) 2 72 uint8 TIF X (B2) 2 channels (G,B)/ cells are Blue Human U2OS cells transfluor link𝑎 [55]

29 BBBC021 (1024,1280) 3 720
(132,000)3

uint16 TIF X (B2) HUGE dataset; 3 channels; DAPI(w1), Tubulin(w2),
Actin(w4); Only 720 images were used

Human MCF7 cells – compound-profiling experiment link𝑎 [55]

30 BBBC026 (1040,1392) 1 864 uint8 PNG X (B,C2) Only centers are annotated for 5 imgages Human Hepatocyte and Murine Fibroblast cells – Co-
culture experiment

link𝑎 [55]

31 LOB-THG (512, 512) 2 14 uint16 TIF ○ LOB in-house; THG and GFP channels; mouse cortex;
cropped and tagged

Mouse brain cortex THG and GFP images LOB𝑏

32 LOB-P14 (512, 512) 3 40 uint16 TIF ○ LOB in-house; Brainbow + ChroMS; cropped and
tagged

Mouse brain cortex using ChroMS and Brainbow LOB𝑏

33 LOB-TCYT5 (512, 512) 3 14 uint16 TIF ○ LOB in-house; Brainbow + ChroMS; cropped and
tagged

Mouse brain cortex using ChroMS and Brainbow LOB𝑏

34 LOB-MNTB (512, 512) 3 41 uint16 TIF ○ LOB in-house; Brainbow + Confocal; cropped and
tagged

Mouse brain auditory neurons; medial nucleus of the
trapezoid body (MNTB) using confocal and Brainbow

LOB𝑏

- Sum - - 19,303 - - -

Table annotation:
1 numbers in parentheses indicate training/testing split provided by the dataset (number of training, number of testing).
2 ○: provide complete segmentation mask targets, △: partially annotated masks, X: do not provide mask targets; C: counts, B:

biological labels, U: bounding boxes
3 BBBC021 is such a huge dataset, but all the images look more or less the same. Only a portion was taken.
𝑎 link is only available in digital format
𝑏 Laboratoire d’optique et biosciences; in-house data

175

https://bbbc.broadinstitute.org/BBBC041
https://bbbc.broadinstitute.org/BBBC002
https://bbbc.broadinstitute.org/BBBC042
https://bbbc.broadinstitute.org/BBBC013
https://bbbc.broadinstitute.org/BBBC014
https://bbbc.broadinstitute.org/BBBC015
https://bbbc.broadinstitute.org/BBBC016
https://bbbc.broadinstitute.org/BBBC021
https://bbbc.broadinstitute.org/BBBC026

Appendix C

Metric

A metric measures performance of machine learning models. Following metrics concern
computer vision tasks, in particular, the semantic segmentation or the instance segmen-
tation. I recommend this comprehensive review paper[134] to learn more.

Jaccard index or IoU
Jaccard index is identical to IoU (intersection over union). But when it is used in the
context of object detection, it also considers a matching threshold. Say 𝑅 is a group of
pixels to a reference and 𝑃 is for a prediction. Jaccard index (𝒥) is:

𝒥 = |𝑅 ∩ 𝑃 |
|𝑅 ∪ 𝑃 |

(C.1)

In object detection, a matching of an object is counted when the intersection, or the
overlap, is greater than a certain ratio of the reference (𝑅), say 0.5. For objects that do
not meet this condition, the index value is set to 0.

𝒥𝑛(𝑅𝑛, 𝑃) =

⎧⎨⎩𝒥𝑛(𝑅𝑛, 𝑃) if |𝑅𝑛 ∩ 𝑃 | > 0.5|𝑅𝑛|
0 else

(C.2)

The final value is the mean of Jaccard indices for all reference objects.

𝒥𝑜𝑏𝑗𝑒𝑐𝑡 = 1
𝑁

𝑁∑︁
𝑛=1
𝒥𝑛(𝑅𝑛, 𝑃) (C.3)

Appendix C. Metric

Accuracy (ver. DSB2018)
The famous data science bowl 2018 competition (DSB2018), which was hosted on online
platform Kaggle, defined their own metric for instance segmentation task. I will simply
call this metric “accuracy”, which has a rather generic name. But this is the only metrics
with this name in this thesis, so I will use “accuracy” as a proper noun. It is similar to an
object detection variant of Jaccard index. However, instead of averaging indices, accuracy
counts numbers of true positives (TP), false positive (FP), and false negatives (FN) given
a IoU threshold (𝑡).

accuracy𝑡 = 𝑇𝑃 (𝑡)
𝑇𝑃 (𝑡) + 𝐹𝑃 (𝑡) + 𝐹𝑁(𝑡) (C.4)

The threshold values ranged from 0.5 to 0.95 with a step size of 0.05: (𝑡 = 0.5, 0.55, 0.6,
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95) in the actual competition. The final metric is an
averaged value across the thresholds, where |𝑇 | indicates the number of threshold values.

accuracy = 1
|𝑇 |

∑︁
𝑡

𝑇𝑃 (𝑡)
𝑇𝑃 (𝑡) + 𝐹𝑃 (𝑡) + 𝐹𝑁(𝑡) (C.5)

As a side note, DSB2018 called their metric “mean average precision” (mAP), but it is a
misnomer. mAP that researchers are familiar with is different from their “accuracy”. The
average precision (AP) metric that researchers know was recognized by Pascal VOC[224],
where “average” meant averaging over categories because Pascal VOC was a classification
task. But in fact, DSB2018 has nothing to average because it is an instance segmentation
task (Technically, it is not false though, because they have only one category. So it is the
same as doing nothing). Moreover, precision is defined as 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), but DSB2018
added 𝐹𝑁 in the denominator, thus they should not have called it precision in the first
place. “mean” was added later to AP and meant a mean over multiple IoU threshold
values. Mean average precision (mAP) is used in datasets such as MS COCO[137].

178

F-1 score
F-1 score is a common metric in both binary semantic segmentation and instance seg-
mentation tasks. It is defined as a harmonic mean of precision and recall. Precision is a
ratio of true positives over positives. Recall is a ratio of true positives over trues. When
it is used for instance segmentation, it is common to consider IoU with threshold 0.5 for
each instance and count the numbers of TP, FP, and FN, same as Jaccard index.

precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(C.6)

F-1 = 2
recall−1 + precision−1 = 2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
(C.7)

relevant elements

retrieved elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many retrieved
items are relevant?

How many relevant
items are retrieved?

Figure C.1: F-1 score is a harmonic mean of precision and recall. Image source: [247]

179

Appendix D

[Publication] NU-Net

This is a paper for NU-Net presented in chapter 3, which has been accepted to BIC (Bio-
image Computing) workshop at ICCV (International Conference on Computer Vision)
2023. It was streamlined for the workshop paper and included additional experiments
compared to what was introduced in this manuscript.

NU-Net: a self-supervised smart filter for enhancing blobs in bioimages

Seongbin Lim
Laboratoire d’Optique et Biosciences, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris

91128 PALAISEAU Cedex, France
sungbin246@gmail.com

Emmanuel Beaurepaire
emmanuel.beaurepaire@polytechnique.edu

Anatole Chessel
anatole.chessel@polytechnique.edu

Abstract

While supervised deep neural networks have become the
dominant method for image analysis tasks in bioimages,
truly versatile methods are not available yet because of the
diversity of modalities and conditions and the cost of re-
training. In practice, day-to-day biological image analysis
still largely relies on ad hoc workflows often using classical
linear filters. We propose NU-Net, a convolutional neural
network filter selectively enhancing cells and nuclei, as a
drop-in replacement of chains of classical linear filters in
bioimage analysis pipelines. Using a style transfer architec-
ture, a novel perceptual loss implicitly learns a soft separa-
tion of background and foreground. We used self-supervised
training using 25 datasets covering diverse modalities of
nuclear and cellular images. We show its ability to selec-
tively improve contrast, remove background and enhance
objects across a wide range of datasets and workflow while
keeping image content. The pre-trained models are light
and practical, and published as free and open-source soft-
ware for the community. NU-Net is also available as a plu-
gin for Napari.

1. Introduction
Machine learning solutions, especially those based on

deep neural networks, have had huge impact on bioimage
analysis. Very successful segmentation models, in particu-
lar, have been introduced, starting with U-Net [32]. Over
the years, semantic segmentation task evolved into instance
segmentation with its ability to address touching boundaries
of nuclei and cells and identify instances, such as StarDist
[34], nucleAIzer [17], Cellpose [37], CDNet [15], and Mes-
mer [14].

These segmentation models were essentially based on
supervised learning, resulting in capable and performant
models once sufficient annotated data were provided. How-

input:raw

output:NU-Net

annotation

output:DoG

Figure 1. Proposed model, NU-Net, is a nuclear and cellular filter
built on convolutional neural network and self-supervised learning
scheme via perceptual losses, to be used in place of linear filters.
This example compares NU-Net to difference of Gaussians (DoG).
Sample image is a histopathology image containing dense cells
and is sourced from [26]. (The sample image was converted into
gray-scaled).

ever, in biological imaging, each experiment is different,
with varied image modality or sample type, condition and
labeling, making the design of a truly generic pre-trained
model conplicated. In practice, it is common in analysis
pipelines to annotate a few local data again, which is a
time-consuming process needing expertise, and to retrain
or fine-tune these models. Alternatively, users resort to less
demanding machine learning software, compromising per-
formance, e.g. ilastik [5] and LABKIT [3], to interactively
acquire a model, usually built on random forest classifier.

One very common way to circumvent this issue, in par-
ticular, since machine learning expertise is not always avail-
able in experimental labs, is to use the same set of classical
linear filters in increasingly complex pipelines. Use cases
include a quick and light way to adjust contrast, a post-
acquisition step to denoise, enhance images, or clean their

background or a pre-analysis step to detect/segment/count
objects of interest. Linear filters are reliable and well proven
over time, but most of them are parametric algorithms with
strong assumption, meaning needs of parameter search and
low versatility, respectively.

In this paper, we propose a novel filter, we call NU-Net
(Not a U-Net and read new net), built on convolutional neu-
ral networks (CNNs) and self-supervised learning scheme.
NU-Net enhances contrast of images based on morphologi-
cal traits of nuclei and cells perceived by a large pre-trained
vision model. NU-Net’s behavior is positioned between
a binary semantic segmentation model that classifies fore-
ground and background pixels and an autoencoder that re-
constructs input images as accurately as possible. During
training, it learns morphological perception as well as a gen-
erative loss and does not require paired target labels as in
supervised learning. This self-supervision advantage can
address highly diverse nature of biological images across
many modalities because one can include as many images
as suited regardless of their target label availability. Also, it
makes NU-Net highly adaptable to local images and practi-
cal in real application.

To leverage its training benefit, we gathered 25 nu-
clear and cellular datasets with or without target labels and
trained NU-Net with this meta dataset to promote it as a
generalized filter that can cover a large range of different
modalities of nuclear and cellular images. We kept the ar-
chitecture of NU-Net rather small, so it can be used on a
local CPU without heavy computing power or reliance of
graphical processing units (GPUs). In addition, training
NU-Net from scratch can be done within an hour with a
proper setup, if needed.

Evaluation of NU-Net is complicated by the fact that it is
not directly comparable to other recent work and thus can-
not reuse existing metrics and benchmarks. Since the main
objective of this work is a practical one, adding a new tool
to the bioimage analysis toolbox, we focused on integrating
NU-Net into actual object detection workflow, to show its
usefulness in practice, as well as try it on a wide range of
images to show its versatility.

Contributions of this work can be summarized as fol-
lowed:

• introducing a novel filter built on machine learning and
CNN, which can replace classical linear filters

• using perceptual losses for self-supervised learning to
circumvent supervised learning and avoid costly label-
ing process in biological images

• gathering 25 different nuclear and cellular datasets and
training NU-Net to cover large range of modalities

1.1. Related work

Perceptual losses were used effectively for neural style
transfer application [22]. They take advantage of a pre-
trained large vision model such as VGG [35] and its percep-
tion or feature vectors from certain neural layers. The losses
reconstruct input images given features or details that each
layer keeps. In neural style transfer, there are two losses in
general [11, 10, 19]: content loss and style loss. The con-
tent loss is a generative loss to preserve content and the style
loss is a modified generative loss using Gram’s matrices that
attempts to reconstruct a certain style.

To seek generalizability in machine learning models,
foremost one needs diverse sources of data. Many works fo-
cused on segmentation tasks. In biological images, Cellpose
[37] is an instance segmentation model that transforms tar-
get masks based on diffusion process, and for training they
scraped nuclear and cellular images from multiple sources
including internet to make their models more generic. Nu-
cleAIzer [17] is another instance segmentation model that
defined a set of modalities and combined simulation and
neural style transfer (pix2pix [20]) to augment training data.
TissueNet [14] is a dataset that provides about 2.5M of an-
notations for tissue images across 9 organs and 6 different
modalities to support general-purpose tissue segmentation
models.

For machine learning applications beside segmentation
tasks, image restoration and denoising models turned out
to be practical and effective. CARE [40] is a super-
resolution model that learns how to restore poorly resolved
microscopy images from pairs of high and low quality im-
ages. Noise2Noise [27] demonstrated denoising MRI im-
ages as a supervised model. To avoid the necessity of hav-
ing paired labels, Noise2Void [25] proposed self-learning
model to denoise images. Self-learning approach made it
easy to apply Noise2Void model to any images since it does
not need paired images nor annotations.

As supervised learning approach remains difficult in bi-
ological images in practice, classical filters are still fre-
quently used as off-the-shelf methods in many biomedi-
cal image analysis pipelines. For contrast enhancement,
Gamma and logarithm adjustment methods are the simplest,
yet remain versatile and available in most software tools.
More elaborated approach is to remove background, that is
to identify foreground and background pixels, often with
morphological assumption. DoG (difference of Gaussians)
and LoG (Laplacian of Gaussian) are such filters that con-
sider blobs as objects of interest or foreground pixels given
univariate Gaussian kernels. These linear filters are not de-
pendent on data unlike machine learning approach and thus
universally applicable. However, they are rigidly bound by
their strong assumption and prone to visual artifacts and
errors. Despite being thoroughly characterized mathemat-
ically, their use is still very much empirical and problem

specific. DoG and LoG are popular choices for object detec-
tion or segmentation task when it comes to bioimage anal-
ysis and widely adopted for their easy implementation to
many applications and software, as in Fiji [33], ilastik [5],
TrackMate [38], BigStitcher [18] and so on.

2. Method
We will describe losses, training scheme and architecture

of NU-Net, a self-supervised nuclear and cellular filter we
propose. In addition, we will introduce 25 datasets that we
used and the concept of meta-dataset with which we trained
NU-Net.

2.1. Losses

NU-Net uses perceptual losses and the work of Johnson
et al. [22] as a starting point. They used a pre-trained VGG
[35] for perception and demonstrated neural style transfer
and super-resolution applications. Neural style transfer ap-
plications usually have two losses: content loss and style
loss [11, 10, 19, 12, 4].

2.1.1 Content loss

The content loss is a generative loss that attempts to repro-
duce input data through a single latent feature vector from
a certain layer of pre-trained deep neural network. The def-
inition of content loss is shown as in equation 1. The con-
tent loss (Lc) optimizes ŷ to reproduce content c (which is
identical to x in our setting) based on features at layer F l

of a pre-trained deep neural network. The loss is defined in-
corporating the mini-batching technique where N denotes a
mini-batch size:

Lc(x, ŷ, l) =
1

N

N∑

n=1

∑

i,j

(F l
ij(x)− F l

l ij(ŷ))
2 (1)

The choice of layer l has great importance in particular
for content loss, because what is considered as content is
determined largely by convolutional layers and the size of
their receptive fields at layer l. In general, the concept of
content is recognized as a high-level feature, thus the re-
quired receptive field should not be too small or too large.

2.1.2 Morphological loss

The morphological loss we propose is an extension of the
style loss from [22]. The plain style loss from literatures
[11, 10, 22] uses Gram matrix to represent styles. Gram
matrix being Gl ∈ RNl×Nl , the vectorized feature map
Fl ∈ RNl×Ml has Nl number of filters and has the size
of Ml, where l indicates l-th block inside a CNN: Gl

ij =∑
k F

l
ikF

l
jk.

In the context of style transfer applications [11, 10, 22],
the morphological loss can be interpreted to generalize a
certain style, which has binary values with a set of targets
having a consistent morphology. In fact, there have been
few attempts to model or generalize one particular style
with multiple images, because supposedly a style usually
meant one from a single painting instead of a group of the
same style of paintings, possibly due to their high complex-
ity. Our idea started from an assumption that generalizing a
simple style from multiple images with the same style, as in
our case, should be easier. In principle, the morphological
loss could generalize any morphologies as long as the given
morphologies are consistent. We focused on round shapes
or blobs, which can represent nuclei or cells. We will call
this morphological prior “blob-mask style”.

Morphological loss is calculated in mini-batch fashion
same as for the content loss in equation 1. The idea is
similar to that of the memory bank [42], to sample mini-
batches from a bank that contains a fixed number of prede-
fined classes. Our bank represents only one style, to be spe-
cific blob-mask style. Morphological loss (Lm) is defined
as below with Ns referring to a mini-batch size of morpho-
logical targets s, ŷ to an image to be optimized, and sn to
n-th target within a mini-batch s:

Lm(s, ŷ) =
1

NsNl

Ns∑

n=1

∑

l

(Gl(sn)−Gl(ŷ))2 (2)

2.1.3 Total loss

Combining equation 1 and 2, total loss (Lt) is defined as
below, where we put linear weights on each loss with wc

and wm, respectively.

Lt = wcLc(x, ŷ, l) + wmLm(s, ŷ)

Lt ∝ Lc +
wm

wc
Lm = Lc + wLm where w =

wm

wc

(3)

The fraction (w) between two coefficients play an important
role to balance two losses and can bring in practical func-
tionality later in inference time as we will show in the result
section.

2.2. Training scheme

Overall training scheme is displayed in figure 2. There
are two separate groups of image sources. One is for the
content loss and the other is for the morphological loss. We
will call the former content images and the later style im-
ages for brevity. The content images are a set of raw images
whose contents need to be preserved. The style images are
also a set of binary images or mask labels that serves two
purposes. The primary purpose of the style images is to de-
fine “contents” to keep, against what its name suggests, or

NU-N��
Input
Image pretrained

VGG19

Content images

"Blob-mask style" images

Figure 2. Diagram describing training losses. Total loss consists of two losses: content loss and morphological loss. Both are perceptual
losses from a pre-trained large vision model, VGG19 [35] in this case. Note that the content images and the “blob-mask style” images
are not paired, neither are the two losses. x denotes input image, ŷ output image. yi

s is a sample target from a mini-batch used for
morphological loss. Find details in equation 1, 2 and 3. l ∈ {1, 2, 3, 4} indicates four feature block in VGG19, described in [22].

to apply “blob-mask style” to the content images in the per-
spective of neural style transfer. The secondary purpose is
to maximize contrast between foreground and background.
Note that the content images and the style images are en-
tirely separate and not paired unlike a typical supervised
learning scheme.

We chose a pre-trained VGG19 [35] as our perception
network and employed the same architecture from the work
of Johnson et al. [22]. The architecture of NU-Net makes
use of residual blocks [16] which are important for the pur-
pose because they are effective to preserve input data. We
followed the recipe from [22] to calculate perceptual losses.
The number of parameter is about 1.7M, which seems small
but capable enough to apply complex styles of paintings.
NU-Net is light and fast benefiting from small architecture.

2.3. Data

2.3.1 Meta dataset

We wanted to make NU-Net as generic and applicable to
many modalities of nuclear and cellular images as possible
and promote it as a superior alternative to classical linear
filters. Whether it is supervised learning or self-supervised
learning, it is imperative to use various sources of data in or-
der to make a generic machine learning model. Massive and
well curated datasets such as ImageNet [23] and MS-COCO
[29] are great examples that paved the road for computer
vision foundation models [6]. It was not until TissueNet
[14] that such large dataset appeared for nuclear or cellu-
lar images. TissueNet sourced images from 6 platforms and
9 organs, which were unprecedented diversity for a dataset
curated for machine learning. However, it cannot cover all
types of images due to highly diverse nature of biomedical
image modalities, such as our local images of mouse cere-
bral cortex acquired via THG (third-harmonic generation)
microscopy as TissueNet simply does not have the same
platform nor the same sample.

To address the issue of lacking diversity of data source
in nuclear and cellular datasets, we gathered 24 datasets
having nuclei, cells or both, plus one additional local THG
dataset. Thus, the total number of gathered datasets was 25
and the total number of images amounted to 12K. They are
listed in table 1. Not all of them provide annotation, nor
they provide the same types of annotation. However, they
are all useful for training NU-Net as long as they contain
nuclei or cells in images.

Dealing with the diversity of datasets, each with its for-
mat and preprocessing step, across many numerical exper-
iments is a non-trivial MLOps task. To handle it, we used
BioImageLoader [28].

2.3.2 Data pre-processing and augmentation

We carried out a set of data pre-processes to have consis-
tent inputs format across different datasets. Due to the na-
ture of microscopy and biological images, in particular of
staining techniques, most datasets offer a single channel
which tagged nuclei or cells. We selected those channels
if we could and converted multichannel images to gray-
scaled ones otherwise. Another process was to ensure con-
sistent contrast of foreground and background pixels across
datasets. While most datasets have object of interests in
higher pixel values than background pixels, a few datasets
have the opposite contrast. Therefore, we inverted contrast
of these few datasets to match the others. This process
turned out to be important since all the target images for
the morphological loss had the same contrast.

Balancing volumes of each dataset was an inevitable
step. Every dataset is different not only in the number of
images, but in resolution of images, size of objects and
density of objects. To account for all the datasets rather
equally, we designed data augmentation protocols, which
consist of random cropping, resizing and flipping for each
dataset with appropriate parameters. Then we sampled im-

ID Acronym number Annotation Ref. ID Acronym number Annotation Ref.
1 TissueNet 6,990 ⃝ [14] 14 S-BSST265 79 ⃝ [24]
2 BBBC041 1,328 △ (U) [30] 15 FRUNet 72 ⃝ [13]
3 BBBC026 864 X (B,C) [30] 16 BBBC016 72 X (B) [30]
4 BBBC006 768 ⃝ [30] 17 BBBC018 56 ⃝ [30]
5 DSB2018 735 ⃝ [1] 18 TNBC 50 ⃝ [31]
6 BBBC021 240 X (B) [30] 19 BBBC002 50 X (C) [30]
7 BBBC039 200 ⃝ [30] 20 ComPath 30 ⃝ [26]
8 BBBC015 144 X (B) [30] 21 UCSB 58 △ [9]
9 DigitPath 141 △ [21] 22 BBBC020 25 ⃝ [30]

10 MurphyLab 100 ⃝ [8] 23 BBBC007 16 ⃝ [30]
11 Cellpose 100 ⃝ [37] 24 BBBC008 12 ⃝ [30]
12 BBBC013 96 X (B) [30] 25 LOCAL-THG 14 ⃝ -
13 BBBC014 96 X (B) [30] - Total 12,336

Table 1. List of nuclear and cellular datasets used to train NU-Net.
Annotation availability and type are usually the most important
factors when it comes to selecting datasets for machine learning,
but not for NU-Net thanks to a self-supervised learning scheme.
In total, 25 datasets were used, including a local dataset (LOCAL-
THG), and the number of images amounted to 12,336. Symbols
for annotation (⃝: provide complete segmentation mask targets,
△: partially annotated masks, X: do not provide mask targets;
C: counts, B: biological labels, U: bounding boxes). Note that
BBBC021 originally has massive 132,000 images and only a por-
tion was used because data comes from the same platform and
would have led huge imbalance.

ages to roughly match the relative sizes of nuclei and cells
from one dataset to another. Last but not least, we chose the
minimum number of samples among 25 datasets after con-
sidering data augmentation, and simply set it as a constant
number of samples throughout all the datasets mainly to
avoid big bias towards those having larger number of sam-
ples. Our rationale was that we did not need huge amount
of one modality when our primary goal was to cover many
modalities and the architecture was rather small. In the end,
we randomly sampled 900 images as inputs for every epoch.

2.3.3 Blob-mask style images

As shown in figure 2, so-called blob-mask style images are
merely binary segmentation masks. Therefore, in a sense,
NU-Net is a neural style transfer network that mimics be-
havior of binary segmentation. We selected mask labels of
DSB2018 [1], BBBC039 and BBBC006 datasets [30] and
used them as targets for the morphological loss. DSB2018
dataset was introduced through a competition on online
platform Kaggle and has been used in many computer vi-
sion models for biological images [34, 17, 7]. We selected
DSB2018 because its wide inclusiveness of data sources.
BBBC039 is one of sources of DSB2018 and represents typ-
ical cellular microscopy images. We included BBBC006,
whose annotation was automated, to show that it is possible
to use automated labels to train NU-Net.

3. Numerical experiments
We think of NU-Net as filling a new niche in biological

image analysis and as such it does not belong to a clear ex-
isting class of deep learning models, like segmentation or
image restoration models. Thus, classical metrics and com-

parison are hard to apply. To evaluate it, we will 1) use
a simple contrast enhancement metric and compare with
classical filters, 2) use a realistic biological image analy-
sis quantitative workflow, to show how it can improve day-
to-day bioimage informatics work 3) apply it to a range of
openly available images, to qualitatively show its versatility.

0 250 500 750 1000
Training iteration

2

4

6

8

Lo
ss

 (a
.u

.)

content loss

0 250 500 750 1000
Training iteration

46

48

50

52

54

56

58

Lo
ss

 (a
.u

.)

0 500 1000
Training iteration

35

40

45

50

55

Lo
ss

 (a
.u

.)

morphological loss

total loss

Ideal loss curves

Figure 3. Ideal training loss curves. Total loss is a weighed sum
of a content loss and a morphological loss. The desired trajec-
tory would be to have a constantly decreasing morphological loss
and a content loss to increase after a decent drop. Note that the
curves were from a real case but smoothed out using exponen-
tially weighted moving average (EWMA) to demonstrate the ideal
forms. Transparent lines indicate raw data.

3.1. Training losses

Two main losses, the content loss and the morphologi-
cal loss, are supposed to compete, because the content loss,
being a generative loss, hinders outputs to become blob-
mask style as per the morphological loss, and vice versa.
Thus, balancing two losses was crucial, meaning their mag-
nitudes should match one to the other. Hence, we imple-
mented a dry-run before an actual training, where NU-Net
goes through a few iterations of dry-run to estimate mag-
nitudes of the losses and match them. During the training,
a desired loss behavior is to have a constantly decreasing
morphological loss and a content loss increasing in the mid-
dle of training. The rationale is that, in the beginning, we
want NU-Net to learn images themselves through the con-
tent loss, and to learn how to enhance blobs according to
the morphological loss afterwards. As a result, the ideal
loss curves looks as in figure 3. In general, weight coeffi-
cient w (in equation 3) in range of 5 to 10 yielded good re-
sults. Training took about 1-2 hours on a workstation with
a computational GPU for 20 epochs with batch sizes being
16 and 128 for the content loss and the morphological loss,
respectively.

3.2. Comparison to classical filters

We compared results of NU-Net to existing filtering and
contrast enhancement algorithms in terms of a contrast gain.
Those were logarithmic lookup table (LUT) mapping, me-
dian filter (med), Gaussian filter (gaus), and difference of
Gaussians (DoG) filter. Logarithmic lookup table mapping

LUT Gauss Med DoG NU-Net
contrast gain avg. 12.9±24.3 4.9±6.7 8±8 90.6±100.4 99.5±121.5
change avg. (times) x2.7±2.2 x2±1.1 x2.4±1.4 x14.6±11.7 x16±16.7

Table 2. Improvement of contrast ratio (CR) over raw images from
several classical algorithms and NU-Net, as the before/after dif-
ference and the fold increase. Average over datasets of average
over test images from each dataset. NU-Net shows slightly better
contrast gains compared with DoG filter across the datasets. See
Fig. 1 and 4 for the much more significant but harder to assess
difference in image quality.

(LUT) is the simplest method among them, which makes
use of logarithm to remap pixel values and to stretch value
intervals. Median and Gaussian filters are both denoising
filters using parameterized kernels. While denoising does
not have a direct impact on contrast, it could enhance con-
trast by smoothing out noisy background signals, combined
with value range stretching strategy based on percentile val-
ues (upper bound to 99.8% and lower bound to 2%).

We defined contrast ratio (CR =
µfg

µbg
) to quantify con-

trast change and to compare NU-Net to other filters, quanti-
tatively. CR is a fraction of a mean value of foreground pix-
els over that of background pixels. Note that contrast gain
depends a lot on the initial contrast of a given image. Note
as well that this metric is blind to resulting image quality.

The result of contrast change can be found in table 2.
In addition, a qualitative result on a sample from LOCAL-
THG dataset can be found in figure 4. Contrast gain was
significant once the algorithm had a notion of foreground
and background. For examples, LUT mapping is a merely
pixel-wise method, and kernel-based filtering methods like
median filter (med) and Gaussian filter (gaus) made the dis-
tinction by blurring off the noise and the background as well
as the foreground. They accentuated cells, but the contrast
was barely improved because they did not make clear dis-
tinction between foreground pixels and background pixels.

Among the tested filters, the DoG filter showed the most
comparable results to NU-Net. The DoG filter is a band
pass filter, and assumes that the objects of interest have a
consistent size. It enhances visibility of objects by subtract-
ing two Gaussian filters with different kernel sizes. DoG
is, in a way, aware of contents and could detect foreground
from background.

Figure 1 compares details of NU-Net to those to DoG
filter. While both DoG filter and NU-Net picked up objects,
DoG suffered from blurring artifacts from its algorithmic
nature, just as other rule-based algorithms suffer from their
own pitfalls. Blurring merged objects together making it
hard to recognize individual objects. Moreover, DoG ac-
centuated other structures too in presence of noise. NU-Net,
however, did not suffer from blurring and was more robust
to noise. Additionally, NU-Net not just detected contents
but also actively enhances contrast by pushing foreground
pixels up towards 255 (maximum value in unsigned integer

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1.5

N
u
m

b
e
r

o
f

p
ix

e
ls

1e4

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1.5

1e4

0 64 128 192 255
Pixel intensity (UINT8)

0

2

4

1e3

0 64 128 192 255
Pixel intensity (UINT8)

0

1

2

1e4

0 64 128 192 255
Pixel intensity (UINT8)

0.0

0.5

1.0

1e5

input LUT gaus med DoG

0.0

0.5

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

in
put

LU
T

gau
s

m
ed

DoG

NU-N
et

0

1

2

3

4

5

6

7

C
o
n
tr

a
st

(f
g
/b

g
)

(a
.u

.)GT label NU-Net c)(b)

(a)

0 64 128 192 255
0.00
0.25
0.50
0.75
1.00
1.25
1.50

1e5

0.0

0.5

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

N
u
m

b
e
r

o
f

p
ix

e
ls

Pixel intensity (UINT8)

Figure 4. Comparing NU-Net to various filters. They were loga-
rithmic lookup table (LUT) mapping, Gaussian filter (gaus), me-
dian filter (med) and difference of Gaussians (DoG) filter. (a) It
shows the input image and the filtered images as well as their his-
tograms. The red line shows the cumulative distribution of pixel
values and gives a rough idea of image contrast. (b) It shows the
ground truth (GT) mask and NU-Net’s result. Though, its cumula-
tive distribution looks similar to that of DoG, the qualitative result
is much cleaner than DoG. (c) Quantified contrast ratio (CR) of
foreground pixels over background pixels.

8-bit) and background pixels down towards 0 though the
morphological loss. As shown in the histogram in figure 4,
histogram of image after NU-Net had all over lower back-
ground pixel values than that after DoG or than those after
any filters presented.

3.3. Evaluation on realistic workflows

Given the clear aim of having an impact on actual, daily
use of image analysis across labs and facility, the clearest
path to evaluate NU-Net is through studying its use within
a classical, end-to-end workflow.

3.3.1 Evaluation on a training set dataset

Figure 5. Use of NU-Net to improve a cell detection workflow of
neuron in inverted contrast in a THG dataset. Left image: original
image with detections from scikit-image blob-lob in red, right im-
age: same with NU-Net filtered image. Right: distribution of F1
score across the dataset

First we study the effect of NU-Net in an object detection
workflow on the LOCAL-THG dataset. To voluntarily use

a simple and straightforward workflow, similar to one that
would be tried first in practice, we use the scikit-image[39]
function blob_log as a point detection algorithm. It is
actually not so simple as it scan through the Gaussian scale
space of a Laplacian of Gaussian filter for stable detection,
using a set threshold. The dataset comprises 14 2D images
taken from a 3D Third Harmonic Generation (THG) mi-
croscopy volume of a slice of mouse brain. Due to the fact
that THG signal is mainly from myelinated axons and not
from cell bodies, the neuron are seen as noisy black spots
in inverted contrast. A manual annotation of the positions
of the cells was done, and the blob_log function was ap-
plied, with and without NU-Net. The results can be seen
Fig. 5 and show a clear improvement of the detection, with
the average F1 score across the dataset going from 0.54 to
0.72.

3.3.2 Evaluation on an unseen dataset

Obviously this assessment is biased since the LOCAL-THG
dataset is part of the training set. As an unbiased assess-
ment, we performed a similar numerical experiment on an-
other dataset, unseen by the algorithm. We used a published
dataset from [2], available on the Image Data Resource[41]
https://idr.openmicroscopy.org under the accession idr0048,
image ID 9846151, accessed through an OME-zarr end-
point (see code in section 5). It shows a section of a mouse
cortex where the astrocytes are labeled with brainbow, and
thus where the neuron are not labeled and again seen in in-
verted contrast. This problem is more challenging though
since the background, consisting of astrocytes of various
colors and intensities, is quite diverse. We randomly se-
lected 15 crops out of the large volume and manually anno-
tated them. This time, since the problem is more challeng-
ing and to be fair, the detection threshold was optimized in-
dependently for both conditions. The results are shown Fig.
6, with the mean F1 score rising from 0.49 to 0.61 from the
use of NU-Net.

3.4. Controlling filtering magnitude

One big advantage of NU-Net as a filter is an ability to
control the filtering magnitude. It can be achieved by adjust-
ing the ratio between the morphological loss and the content
loss. In practice, it is as simple as to manipulate the frac-
tion of loss weights, that is w in equation 3, during training.
Essentially, the larger the ratio w is, the more binarized the
outputs become. An example of varying w is shown in fig-
ure 7.

We noticed that as w decreases, the content loss curves
do not follow ideal curves anymore, which means that the
resulted model would become closer to an antoencoder. Yet,
due to presence of the morphological loss, resulted NU-
Nets could still filter blobs. In the perspective of histogram

of images, it also means that filtered output roughly keeps
the original distribution as close as possible. In compari-
son, when w increases, outputs becomes more like those of
binary segmentation.

3.5. Inference time and resources

NU-Net is light and fast. The size of a model is about as
small as 6.5 MB. To run inference over a volume whose
size is 130 x 400 x 400 pixels (depth, height, width), it
consumed 1.3 GB of GPU memory, which can fit in lap-
top hardware. On a workstation, it took only 3 second (23
ms/plane), while it took around 20 seconds on CPU (150
ms/plane).

3.6. Assessing versatility on open images

To test pre-trained NU-Net and to assess its versatil-
ity, we explored IDR (Image Data Resource) [41], an on-
line database where researchers share their biological image
data, and selected a handful of image crops that contained
nuclei or cells; they include various modality in various
sample and conditions. A pre-trained NU-Net with w = 8.0
was applied, and the results are shown in figure 8. Overall,
NU-Net could spot and enhance blobs, acting as denoising,
textured or inhomogeneous background subtraction and se-
lective object enhancement, depending on the image.

3.6.1 Graphical user interfaces

NU-Net is easily accessible and available via Napari viewer
[36], a multidimensional image viewer. We made NU-Net
available as a plugin of Napari. The plugin comes with
simple graphical user interfaces (GUIs) and 5 pre-trained
NU-Net with varying w value from 5.0 to 10.0. Users may
adjust filtering magnitude via w value and run the process
either on CPU or GPU.

4. Conclusion

We propose a nuclear and cellular filter, NU-Net, built on
perceptual losses as a drop-in alternative to classical filters.
Those are very useful in biological image analysis pipelines
but limited by their simplicity and strong assumptions. We
introduced a novel loss based on perceptual losses, which
attempts to generalize a single style given multiple images.
Training is self-supervised as it does not require paired la-
bels contrary to supervised learning. Our model result in
appreciable contrast gain against even complex and textured
background while keeping details, proved useful in prac-
tical use cases and is versatile, giving good results across
the diversity of biological images. By adjusting loss coeffi-
cients during training, NU-Net can exert different degrees of
filtering power. We made NU-Net easy to use via a Napari
plugin with GUIs, including 5 pre-trained models. Overall,

Figure 6. Use of NU-Net to improve a cell detection workflow of neuron in inverted contrast in a public brainbow astrocytes dataset. Left
image: original image with annotation in blue, middle image: grayscale projection with detections from scikit-image blob-lob in red, right
image: same with NU-Net filtered image. Right: distribution of F1 score across the dataset

0 200 400 600 800 1000
Training iteration

3

4

5

6

Lo
ss

 (
a
.u

.)

Content loss

0 200 400 600 800 1000
Training iteration

20

25

30

35

40

45

Lo
ss

 (
a
.u

.)

Morphological loss

Losses with varing weights (w)

w4.0 w6.0 w8.0 w8.5 w9.0 w9.5 w10.0

(a)

(b)

0 128 255
Pixel value (UINT8)

0

5

H
is

to
g
ra

m 1e3 raw

0.0 0.5 1.0
Pixel value (FLOAT32)

0.0

2.5
1e3 NU-Net: w4.0

0.0 0.5 1.0
Pixel value (FLOAT32)

NU-Net: w6.0

0.0 0.5 1.0
Pixel value (FLOAT32)

NU-Net: w9.0

0.0 0.5 1.0
Pixel value (FLOAT32)

NU-Net: w10.0

Figure 7. Controlling filtering magnitude by manipulating the loss
coefficient w. (a) Loss curves with varying w values. Each mor-
phological loss looks barely changing, but that is because w value
is a multiplier of the morphological loss. (b) An example of ap-
plying NU-Nets trained with different magnitudes of weight (w).
Note that w is a ratio of the morphological weight to the content
weight in equation 3. Image source: DSB2018 dataset [1].

(a) (c) (d)(b)

In
p
u
t

O
u
tp
u
t

Figure 8. Application of a pre-trained NU-Net (w = 8.0) to nu-
clear and cellular images hosted on IDR (Image Data Resource)
[41].

our aim is for NU-Net to be included into existing biolog-
ical analysis workflow and allow for improved analysis of
biological images across the board, to enable biological un-
derstanding.

5. Code and data availability
The source code of NU-Net resides at https://

github.com/LaboratoryOpticsBiosciences/
nunet and comes with codes to reproduce a large
part of the figure of the paper. Additionally, the
module is packaged and available through Python
Package Index (PyPI) for easy installation and us-
age. A Napari plug-in is available at https:
//github.com/sbinnee/napari-nunet. Fi-
nally, the data used for training is used through https://
github.com/LaboratoryOpticsBiosciences/
bioimageloader, where information on how to obtain
the various datasets is available.

6. Acknowledgement
We thank Tanguy Rolland for contributing to the Na-

pari plugin. This work was supported by HOPE - Euro-
pean Research Council - Horizon 2020 programme (grant
No 951330 HOPE), Morphoscope - Agence Nationale de
la Recherche - ANR-EQPX-0029, and France BioImaging
- Agence Nationale de la Recherche - ANR-10-INBS-04.

References
[1] 2018 Data Science Bowl.

https://kaggle.com/competitions/data-science-bowl-2018. 5,
8

[2] Lamiae Abdeladim, Katherine S. Matho, Solène Clavreul,
Pierre Mahou, Jean-Marc Sintes, Xavier Solinas, Ignacio
Arganda-Carreras, Stephen G. Turney, Jeff W. Lichtman,
Anatole Chessel, Alexis-Pierre Bemelmans, Karine Loulier,
Willy Supatto, Jean Livet, and Emmanuel Beaurepaire. Mul-
ticolor multiscale brain imaging with chromatic multipho-
ton serial microscopy. Nature Communications, 10(1):1–14,
Apr. 2019. 7

[3] Matthias Arzt, Joran Deschamps, Christopher Schmied, To-
bias Pietzsch, Deborah Schmidt, Pavel Tomancak, Robert
Haase, and Florian Jug. LABKIT: Labeling and Segmen-
tation Toolkit for Big Image Data. Frontiers in Computer
Science, 4, 2022. 1

[4] Mohammad Babaeizadeh and Golnaz Ghiasi. Adjustable
Real-time Style Transfer. In International Conference on
Learning Representations, Sept. 2019. 3

[5] Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N.
Straehle, Bernhard X. Kausler, Carsten Haubold, Martin
Schiegg, Janez Ales, Thorsten Beier, Markus Rudy, Kemal
Eren, Jaime I. Cervantes, Buote Xu, Fynn Beuttenmueller,
Adrian Wolny, Chong Zhang, Ullrich Koethe, Fred A.
Hamprecht, and Anna Kreshuk. Ilastik: Interactive ma-
chine learning for (bio)image analysis. Nature Methods,
16(12):1226–1232, Dec. 2019. 1, 3

[6] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S. Bern-
stein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Ro-
drigo Castellon, Niladri Chatterji, Annie Chen, Kathleen
Creel, Jared Quincy Davis, Dora Demszky, Chris Donahue,
Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn,
Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman,
Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle
Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Juraf-
sky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar,
Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle
Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik,
Christopher D. Manning, Suvir Mirchandani, Eric Mitchell,
Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak
Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva
Portelance, Christopher Potts, Aditi Raghunathan, Rob Re-
ich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo
Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srini-
vasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Flo-
rian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jia-
jun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,
Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and
Percy Liang. On the Opportunities and Risks of Foundation
Models. arXiv:2108.07258 [cs], Aug. 2021. 4

[7] Tim-Oliver Buchholz, Mangal Prakash, Alexander Krull,
and Florian Jug. DenoiSeg: Joint Denoising and Segmen-
tation. arXiv:2005.02987 [cs], June 2020. 5

[8] L. P. Coelho, A. Shariff, and R. F. Murphy. Nuclear segmen-
tation in microscope cell images: A hand-segmented dataset
and comparison of algorithms. In 2009 IEEE International
Symposium on Biomedical Imaging: From Nano to Macro,
pages 518–521, June 2009. 5

[9] Elisa Drelie Gelasca, Boguslaw Obara, Dmitry Fedorov,
Kristian Kvilekval, and BS Manjunath. A biosegmenta-
tion benchmark for evaluation of bioimage analysis methods.
BMC Bioinformatics, 10:368, Nov. 2009. 5

[10] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-
lur. A Learned Representation For Artistic Style.

arXiv:1610.07629 [cs], Feb. 2017. 2, 3
[11] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

Image Style Transfer Using Convolutional Neural Networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2414–2423, 2016. 2, 3

[12] Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent
Dumoulin, and Jonathon Shlens. Exploring the structure
of a real-time, arbitrary neural artistic stylization network.
arXiv:1705.06830 [cs], Aug. 2017. 3

[13] Estibaliz Gómez-de-Mariscal, Martin Maška, Anna Kotr-
bová, Vendula Pospı́chalová, Pavel Matula, and Arrate
Muñoz-Barrutia. Deep-Learning-Based Segmentation of
Small Extracellular Vesicles in Transmission Electron Mi-
croscopy Images. Scientific Reports, 9(1):13211, Sept. 2019.
5

[14] Noah F. Greenwald, Geneva Miller, Erick Moen, Alex Kong,
Adam Kagel, Thomas Dougherty, Christine Camacho Full-
away, Brianna J. McIntosh, Ke Xuan Leow, Morgan Sarah
Schwartz, Cole Pavelchek, Sunny Cui, Isabella Camplisson,
Omer Bar-Tal, Jaiveer Singh, Mara Fong, Gautam Chaudhry,
Zion Abraham, Jackson Moseley, Shiri Warshawsky, Erin
Soon, Shirley Greenbaum, Tyler Risom, Travis Hollmann,
Sean C. Bendall, Leeat Keren, William Graf, Michael An-
gelo, and David Van Valen. Whole-cell segmentation of tis-
sue images with human-level performance using large-scale
data annotation and deep learning. Nature Biotechnology,
40(4):555–565, Apr. 2022. 1, 2, 4, 5

[15] Hongliang He, Zhongyi Huang, Yao Ding, Guoli Song, Lin
Wang, Qian Ren, Pengxu Wei, Zhiqiang Gao, and Jie Chen.
CDNet: Centripetal Direction Network for Nuclear Instance
Segmentation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 4026–4035,
2021. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep Residual Learning for Image Recognition.
arXiv:1512.03385 [cs], Dec. 2015. 4

[17] Reka Hollandi, Abel Szkalisity, Timea Toth, Ervin Tasnadi,
Csaba Molnar, Botond Mathe, Istvan Grexa, Jozsef Molnar,
Arpad Balind, Mate Gorbe, Maria Kovacs, Ede Migh, Allen
Goodman, Tamas Balassa, Krisztian Koos, Wenyu Wang,
Juan Carlos Caicedo, Norbert Bara, Ferenc Kovacs, Lassi
Paavolainen, Tivadar Danka, Andras Kriston, Anne Eliza-
beth Carpenter, Kevin Smith, and Peter Horvath. nucle-
AIzer: A Parameter-free Deep Learning Framework for Nu-
cleus Segmentation Using Image Style Transfer. Cell Sys-
tems, 10(5):453–458.e6, May 2020. 1, 2, 5

[18] David Hörl, Fabio Rojas Rusak, Friedrich Preusser, Paul Till-
berg, Nadine Randel, Raghav K. Chhetri, Albert Cardona,
Philipp J. Keller, Hartmann Harz, Heinrich Leonhardt, Math-
ias Treier, and Stephan Preibisch. BigStitcher: Reconstruct-
ing high-resolution image datasets of cleared and expanded
samples. Nature Methods, 16(9):870–874, Sept. 2019. 3

[19] Xun Huang and Serge Belongie. Arbitrary Style Trans-
fer in Real-time with Adaptive Instance Normalization.
arXiv:1703.06868 [cs], July 2017. 2, 3

[20] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-To-Image Translation With Conditional Ad-
versarial Networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1125–
1134, 2017. 2

[21] Andrew Janowczyk and Anant Madabhushi. Deep learning
for digital pathology image analysis: A comprehensive tuto-
rial with selected use cases. Journal of Pathology Informat-
ics, 7, July 2016. 5

[22] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
Losses for Real-Time Style Transfer and Super-Resolution.
arXiv:1603.08155 [cs], Mar. 2016. 2, 3, 4

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In Advances in Neural Information Processing Sys-
tems, volume 25. Curran Associates, Inc., 2012. 4

[24] Florian Kromp, Eva Bozsaky, Fikret Rifatbegovic, Lukas
Fischer, Magdalena Ambros, Maria Berneder, Tamara Weiss,
Daria Lazic, Wolfgang Dörr, Allan Hanbury, Klaus Beiske,
Peter F. Ambros, Inge M. Ambros, and Sabine Taschner-
Mandl. An annotated fluorescence image dataset for train-
ing nuclear segmentation methods. Scientific Data, 7(1):262,
Aug. 2020. 5

[25] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug.
Noise2Void - Learning Denoising from Single Noisy Images.
arXiv:1811.10980 [cs], Apr. 2019. 2

[26] Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi
Bhargava, Abhishek Vahadane, and Amit Sethi. A Dataset
and a Technique for Generalized Nuclear Segmentation for
Computational Pathology. IEEE Transactions on Medical
Imaging, 36(7):1550–1560, July 2017. 1, 5

[27] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli
Laine, Tero Karras, Miika Aittala, and Timo Aila.
Noise2Noise: Learning Image Restoration without Clean
Data. arXiv:1803.04189 [cs, stat], Oct. 2018. 2

[28] Seongbin Lim, Xingjian Zhang, Emmanuel Beaure-
paire, and Anatole Chessel. BioImageLoader: Easy
Handling of Bioimage Datasets for Machine Learning.
https://arxiv.org/abs/2303.02158v1, Mar. 2023. 4

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
COCO: Common Objects in Context. arXiv:1405.0312 [cs],
Feb. 2015. 4

[30] Vebjorn Ljosa, Katherine L. Sokolnicki, and Anne E. Car-
penter. Annotated high-throughput microscopy image sets
for validation. Nature Methods, 9(7):637–637, July 2012. 5

[31] Peter Naylor, Marick Laé, Fabien Reyal, and Thomas Wal-
ter. Segmentation of Nuclei in Histopathology Images by
Deep Regression of the Distance Map. IEEE Transactions
on Medical Imaging, 38(2):448–459, Feb. 2019. 5

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional Networks for Biomedical Image Seg-
mentation. arXiv:1505.04597 [cs], May 2015. 1

[33] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin
Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch,
Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Ben-
jamin Schmid, Jean-Yves Tinevez, Daniel James White,
Volker Hartenstein, Kevin Eliceiri, Pavel Tomancak, and Al-
bert Cardona. Fiji: An open-source platform for biological-

image analysis. Nature Methods, 9(7):676–682, July 2012.
3

[34] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and
Gene Myers. Cell Detection with Star-convex Polygons.
arXiv:1806.03535 [cs], 11071:265–273, 2018. 1, 5

[35] Karen Simonyan and Andrew Zisserman. Very Deep Con-
volutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs], Apr. 2015. 2, 3, 4

[36] Nicholas Sofroniew, Talley Lambert, Kira Evans, Juan
Nunez-Iglesias, Grzegorz Bokota, Philip Winston, Gonzalo
Peña-Castellanos, Kevin Yamauchi, Matthias Bussonnier,
Draga Doncila Pop, Ahmet Can Solak, Ziyang Liu, Pam
Wadhwa, Alister Burt, Genevieve Buckley, Andrew Sweet,
Lukasz Migas, Volker Hilsenstein, Lorenzo Gaifas, Jordão
Bragantini, Jaime Rodrı́guez-Guerra, Hector Muñoz, Jeremy
Freeman, Peter Boone, Alan Lowe, Christoph Gohlke, Loic
Royer, Andrea PIERRÉ, Hagai Har-Gil, and Abigail Mc-
Govern. Napari: A multi-dimensional image viewer for
Python. Zenodo, May 2022. 7

[37] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius
Pachitariu. Cellpose: A generalist algorithm for cellular seg-
mentation. Nature Methods, 18(1):100–106, Jan. 2021. 1, 2,
5

[38] Jean-Yves Tinevez, Nick Perry, Johannes Schindelin,
Genevieve M. Hoopes, Gregory D. Reynolds, Emmanuel
Laplantine, Sebastian Y. Bednarek, Spencer L. Shorte, and
Kevin W. Eliceiri. TrackMate: An open and extensible plat-
form for single-particle tracking. Methods, 115:80–90, Feb.
2017. 3

[39] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-
Iglesias, François Boulogne, Joshua D. Warner, Neil Yager,
Emmanuelle Gouillart, and Tony Yu. Scikit-image: Image
processing in Python. PeerJ, 2:e453, June 2014. 7

[40] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas
Müller, Alexandr Dibrov, Akanksha Jain, Benjamin Wil-
helm, Deborah Schmidt, Coleman Broaddus, Siân Culley,
Mauricio Rocha-Martins, Fabián Segovia-Miranda, Caren
Norden, Ricardo Henriques, Marino Zerial, Michele Soli-
mena, Jochen Rink, Pavel Tomancak, Loic Royer, Florian
Jug, and Eugene W. Myers. Content-aware image restora-
tion: Pushing the limits of fluorescence microscopy. Nature
Methods, 15(12):1090–1097, Dec. 2018. 2

[41] Eleanor Williams, Josh Moore, Simon W. Li, Gabriella Rus-
tici, Aleksandra Tarkowska, Anatole Chessel, Simone Leo,
Bálint Antal, Richard K. Ferguson, Ugis Sarkans, Alvis
Brazma, Rafael E. Carazo Salas, and Jason R. Swedlow. Im-
age Data Resource: A bioimage data integration and publica-
tion platform. Nature Methods, 14(8):775–781, Aug. 2017.
7, 8

[42] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-
supervised Feature Learning via Non-Parametric Instance-
level Discrimination. arXiv:1805.01978 [cs], May 2018. 3

Appendix E

[Publication] bioimageloader

This is a preprint for bioimageloader presented in chapter 2, which is available on arXiv:
https://arxiv.org/abs/2303.02158.

https://arxiv.org/abs/2303.02158

BIOIMAGELOADER: EASY HANDLING OF BIOIMAGE DATASETS
FOR MACHINE LEARNING

A PREPRINT

Seongbin Lim
Laboratoire d’Optique et Biosciences

CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris
91120 Palaiseau, France
sungbin246@gmail.com

Xingjian Zhang
Laboratoire d’Optique et Biosciences

CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris
91120 Palaiseau, France

Emmanuel Beaurepaire
Laboratoire d’Optique et Biosciences

CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris
91120 Palaiseau, France

Anatole Chessel
Laboratoire d’Optique et Biosciences

CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris
91120 Palaiseau, France

anatole.chessel@polytechnique.edu

ABSTRACT

BioImageLoader (BIL) is a python library that handles bioimage datasets for machine learning
applications, easing simple workflows and enabling complex ones. BIL attempts to wrap the numerous
and varied bioimages datasets in unified interfaces, to easily concatenate, perform image augmentation,
and batch-load them. By acting at a per experimental dataset level, it enables both a high level of
customization and a comparison across experiments. Here we present the library and show some
application it enables, including retraining published deep learning architectures and evaluating their
versatility in a leave-one-dataset-out fashion.

Keywords Bioimage · Generic model · Python ·Machine learning ·MLOps

1 Introduction

Machine learning (ML) has taken biology by storm and bioimage informatics (BII) is one of the first discipline impacted.
But core methodological advances and impressive application [1, 2, 3, 4] are the tip of the iceberg; the larger part of ML
work involves a large number of careful numerical experiments comparing a variety of models, their hyperparameters,
datasets or training regimen across losses and metrics. This implies specialized software to handle all those data,
metadata and results. This operational side of ML, abbreviated as MLOps, has gathered a lot of attention across machine
learning, with for example the libraries MLflow https://mlflow.org or Catalyst https://catalyst-team.com
or start-ups Hugging Face https://huggingface.co or Weights & Biases https://wandb.ai.

ar
X

iv
:2

30
3.

02
15

8v
1

 [
q-

bi
o.

Q
M

]
 2

 M
ar

 2
02

3

BioImageLoader: easy handling of bioimage datasets for machine learning A PREPRINT

In BII specifically, one can cite ZeroCostDL4Mic [5] which tries and provides a high level interface to train or study
deep learning models. It implements an ‘MLOps for all’ approach by using a free web application as well as free but
limited resources provided by Google. Other linked efforts includes the Bioimage Model Zoo [6], a free, open, and
community-driven hub on web for deep learning models for bioimages that helps developers to share and deploy their
models and ImJoy [6], which aims to integrate the whole MLOps through web interfaces. DeepImageJ [7] is an ImageJ
plugin aiming at using models, in particular from the model zoo above, within ImageJ.

We propose BioImageLoader (BIL), a python library to facilitate the handling of image datasets for ML workflows
(Fig 1.A). It introduces the experimental dataset as a unit, corresponding to the practical, daily use in biology of a
set of images of similar sample, condition and imaging protocol. By building individual wrapper around each such
dataset, BIL make it easy to scale numerical experiments across many datasets, tailoring them to the specifics of each
experimental datasets. In particular, it allows to assess the versatility of ML models by training them in a leave-one-
dataset-out fashion. In the following we briefly present BIL and some applications it directly enables, including the
retraining of common segmentation architecture on larger datasets. The code is open-source under BSD-3 license,
and full documentation is available at https://github.com/LaboratoryOpticsBiosciences/bioimageloader,
with the library being available to install through PyPI.

2 Implementation

BIL is a Python programming library. It followed object-oriented programming (OOP) scheme using abstract base
classes (ABCs). Each dataset interface is called a collection and is based on the same ABC which allows sharing
common properties and methods while keeping originality with concrete classes (cf Fig 1.B). It prioritized compatibility
and extensibility with popular ML libraries such as PyTorch and TensorFlow as well as a data augmentation library,
in particular, albumentations. Separate configuration file can be used to manage settings and to help keep track of
individual experiments with ease. For additional usability, it makes use of cache and batch loading for high performance.

Every collection implemented original structures of each dataset and intended ways to load data as well as its metadata.
They expose APIs (application programming interfaces) and allows either shared operations or individual manipulation.
Basic capabilities shared across datasets includes unified interface for data and annotation, easy concatenation, batching,
train/test splitting, and data augmentation. Custom changes per datasets would include specific I/O tailored to the
specific way each dataset files is organized, selecting channels, normalizing value ranges, etc.

We have so far built interfaces for 28 open data datasets across many disciplines, sample and modalities, with new
ones being easy to add. They include 17 datasets with annotations. We chose to not include the datasets themselves to
avoid licensing issues, beyond the scope of this work, but they are all available online. In addition, we are releasing
four additional annotated datasets from the Laboratory of Optics for Biosciences (LOB) with more challenging 2D
segmentation problems from non-linear THG microscopy and multiphoton multicolor brainbow samples. They will be
available on https://zenodo.org.

3 Applications

Example applications are developed at https://github.com/sbinnee/nunet. In particular, we can more eas-
ily look at image clustering across datasets to explore data similarity or retraining/fine-tuning of models on
specific datasets. Specifically, the table in Fig. 1.D shows the retraining of StarDist architecture [3], one of
the current state-of-the-art instance segmentation neural networks, with Fig 1.C showing an example on one
of the new LOB dataset. Suggested model was trained across 14 datasets, either in a leave-one-dataset-out
fashion, to assess the versatility of the models, or across all available datasets, to build a new generalist pre-
trained StarDist model; see https://laboratoryopticsbiosciences.github.io/bioimageloader-docs/
notebooks/train_models.html for details. The pretrained model demonstrated in this example is made avail-
able to the community on Bioimage Model Zoo (https://bioimage.io) [6].

4 Conclusions

Machine learning will revolutionize the way we do biology but only if running the many numerical experiments to
build methods, scale them to larger dataset and/or tailor them to specific problems and workflow is not too cumbersome.
We present BioImageLoader a python library to help in handling bioimage datasets. A particular exciting perspective is
scaling up current deep learning studies toward ever larger datasets, the main limitation keeping us away from proper
generic models. Part of a larger MLOps effort, we believe community wide adoption and development of such open
source tools will enable rapid growth in the application of ML to biology.

2

BioImageLoader: easy handling of bioimage datasets for machine learning A PREPRINT

MLOps

Data
Machine
Learning

DevOps

Data acquisition
Data curation
Data cleaning
Data mining
Data pipeline...

Algorithm
Architecture
Optimization (training)
Monitoring training
Testing models...

Workflow
User interfaces
Managing resources
CI/CD
...

ZeroCostDL4Mic

BioImageLoader

◦ APIs for public datasets
◦ OOP for extensibility
◦ Work with ML/DL frameworks
◦ Image data augmentation

Internals of BioImageLoader

DatasetInterface

(ABC)
Dataset

BboxDataset

MaskDataset

BBBC002

BBBC021...

TissueNetV1

DSB2018...

BBBC041...

accuracy@0.5=0.00 accuracy@0.5=0.72

PRED:
retrained (SD‡)INPUT:LOB_THG*

Retrained StarDist

Leave-one-out experiment

cyan
Ground truth

green
True positive

red
False positive

(A)

(B)

(C)

(D)

2
D
_
p
a
p
e
r
_
d
s
b
2
0
1
8

2
D
_
v
e
r
s
a
t
i
l
e
_
f
l
u
o
†

S
D

‡

S
D
^
B
B
B
C
0
3
9

S
D
^
B
B
B
C
0
0
6

S
D
^
S
_B

S
S
T
2
6
5

S
D
^
L
O
B
_T
C
Y
T
5

S
D
^
D
S
B
2
0
1
8

S
D
^
L
O
B
_M

N
T
B

S
D
^
T
is
s
u
e
N
e
tV

1

S
D
^
L
O
B
_P

1
4

S
D
^
F
R
U
N
e
t

S
D
^
B
B
B
C
0
2
0

S
D
^
C
o
m
P
a
th

S
D
^
L
IV
E
C
e
ll

S
D
^
C
e
ll
p
o
s
e

S
D
^
L
O
B
_T
H
G

Column: StarDist Model (SD)

BBBC039

BBBC006

S_BSST265

LOB_TCYT5

DSB2018

LOB_MNTB

TissueNetV1

LOB_P14

FRUNet

BBBC020

ComPath

LIVECell

Cellpose

LOB_THG*

R
o
w

:
D

a
ta

s
e
t

0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.93

0.91 0.90 0.94 0.95 0.91 0.95 0.94 0.95 0.94 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.95

0.82 0.88 0.81 0.76 0.79 0.76 0.82 0.78 0.78 0.74 0.82 0.76 0.77 0.78 0.80 0.85 0.79

0.23 0.30 0.50 0.50 0.45 0.47 0.43 0.50 0.51 0.50 0.47 0.47 0.49 0.48 0.48 0.47 0.49

0.69 0.70 0.71 0.70 0.68 0.67 0.71 0.64 0.68 0.66 0.69 0.70 0.69 0.63 0.68 0.73 0.68

0.47 0.46 0.71 0.62 0.73 0.70 0.69 0.58 0.56 0.66 0.65 0.71 0.65 0.68 0.67 0.68 0.63

0.72 0.79 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.67 0.88 0.88 0.87 0.88 0.87 0.88 0.88

0.14 0.23 0.73 0.72 0.71 0.73 0.73 0.73 0.75 0.75 0.43 0.73 0.73 0.74 0.74 0.72 0.72

0.38 0.50 0.70 0.61 0.65 0.68 0.69 0.73 0.69 0.69 0.75 0.31 0.68 0.71 0.62 0.66 0.64

0.71 0.70 0.88 0.92 0.89 0.89 0.90 0.88 0.91 0.90 0.90 0.89 0.41 0.90 0.90 0.89 0.89

0.02 0.06 0.73 0.72 0.70 0.73 0.74 0.71 0.72 0.75 0.74 0.71 0.72 0.22 0.72 0.74 0.71

0.01 0.00 0.59 0.60 0.59 0.60 0.61 0.60 0.61 0.61 0.60 0.61 0.58 0.60 0.04 0.60 0.61

0.26 0.15 0.76 0.78 0.76 0.76 0.74 0.77 0.79 0.74 0.77 0.73 0.76 0.78 0.76 0.16 0.77

0.00 0.00 0.88 0.86 0.88 0.88 0.87 0.87 0.84 0.86 0.87 0.87 0.88 0.88 0.89 0.90 0.11

0.0

0.2

0.4

0.6

0.8

F
-1

 S
c
o
re

leave-one-out models highest score for the Dataset0.73pre-trained models

pre-trained
M. Weigert, U. Schmidt et al. (2018)

pretrained (versatile_fluot)
PRED:

Figure 1: (A) MLOps refers to three main pillars: data, machine learning and DevOps. BioImageLoader (BIL) is a
tool to handle data, which was missing. (B) BIL follows OOP (object-oriented programming) approach and makes use
of ABC (abstract base class) to provide unified interfaces while keeping originality of each collection or dataset. (C)
An example of a retrained StarDist architecture [8] over 14 datasets on one of four datasets we are releasing, called
LOB_THG (refer annotations (∗, †, ‡) to figure D on its right). (D) An ablation study in leave-one-out fashion that
could be easily enabled by BIL. Column represents StarDist models that were either pretrained, retrained, or trained in
leave-one-out fashion. Row represents datasets used to train or test models. Performance was measured by F-1 score.

5 Availability

BioImageLoader (BIL) is an open-source project. Source code is available at https://
github.com/LaboratoryOpticsBiosciences/bioimageloader, and user manual at https://
laboratoryopticsbiosciences.github.io/bioimageloader-docs/. The four new annotated datasets
will be available on https://zenodo.org.

References

[1] Oren Z Kraus, Ben T Grys, Jimmy Ba, Yolanda Chong, Brendan J Frey, Charles Boone, and Brenda J Andrews.
Automated analysis of high-content microscopy data with deep learning. Molecular systems biology, 13(4):924,
2017.

[2] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr Dibrov, Akanksha Jain, Benjamin
Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân Culley, et al. Content-aware image restoration: pushing the
limits of fluorescence microscopy. Nature methods, 15(12):1090–1097, 2018.

[3] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: A generalist algorithm for
cellular segmentation. Nature Methods, 18(1):100–106, January 2021.

[4] Noah F Greenwald, Geneva Miller, Erick Moen, Alex Kong, Adam Kagel, Thomas Dougherty, Christine Camacho
Fullaway, Brianna J McIntosh, Ke Xuan Leow, Morgan Sarah Schwartz, et al. Whole-cell segmentation of tissue
images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology,
40(4):555–565, 2022.

[5] Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel Krentzel, Elias Nehme, Martina
Lerche, Sara Hernández-Pérez, Pieta K. Mattila, Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander
Krull, Tim-Oliver Buchholz, Martin L. Jones, Loïc A. Royer, Christophe Leterrier, Yoav Shechtman, Florian Jug,
Mike Heilemann, Guillaume Jacquemet, and Ricardo Henriques. Democratising deep learning for microscopy with
ZeroCostDL4Mic. Nature Communications, 12(1):2276, April 2021.

[6] Wei Ouyang, Fynn Beuttenmueller, Estibaliz Gómez-de-Mariscal, Constantin Pape, Tom Burke, Carlos Garcia-
López-de-Haro, Craig Russell, Lucía Moya-Sans, Cristina de-la-Torre-Gutiérrez, Deborah Schmidt, Dominik Kutra,

3

BioImageLoader: easy handling of bioimage datasets for machine learning A PREPRINT

Maksim Novikov, Martin Weigert, Uwe Schmidt, Peter Bankhead, Guillaume Jacquemet, Daniel Sage, Ricardo
Henriques, Arrate Muñoz-Barrutia, Emma Lundberg, Florian Jug, and Anna Kreshuk. BioImage Model Zoo: A
Community-Driven Resource for Accessible Deep Learning in BioImage Analysis, June 2022.

[7] Estibaliz Gómez-de Mariscal, Carlos García-López-de Haro, Wei Ouyang, Laurène Donati, Emma Lundberg,
Michael Unser, Arrate Muñoz-Barrutia, and Daniel Sage. Deepimagej: A user-friendly environment to run deep
learning models in imagej. Nature Methods, 18(10):1192–1195, 2021.

[8] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers. Cell Detection with Star-convex Polygons.
arXiv:1806.03535 [cs], 11071:265–273, 2018.

4

Bibliography

[1] Jean Livet, Tamily A. Weissman, Hyuno Kang, Ryan W. Draft, Ju Lu, Robyn A.
Bennis, Joshua R. Sanes, and Jeff W. Lichtman. Transgenic strategies for com-
binatorial expression of fluorescent proteins in the nervous system. Nature,
450(7166):56–62, November 2007. 10, 15, 31, 111, 116, 123, 128, 129

[2] Lamiae Abdeladim, Katherine S. Matho, Solène Clavreul, Pierre Mahou, Jean-
Marc Sintes, Xavier Solinas, Ignacio Arganda-Carreras, Stephen G. Turney, Jeff W.
Lichtman, Anatole Chessel, Alexis-Pierre Bemelmans, Karine Loulier, Willy Su-
patto, Jean Livet, and Emmanuel Beaurepaire. Multicolor multiscale brain imaging
with chromatic multiphoton serial microscopy. Nature Communications, 10(1):1–14,
April 2019. 10, 15, 17, 31, 75, 109, 111, 123, 128

[3] Periklis Pantazis and Willy Supatto. Advances in whole-embryo imaging: A quan-
titative transition is underway. Nature Reviews Molecular Cell Biology, 15(5):327–
339, May 2014. 11, 18

[4] Willy Supatto, Thai V Truong, Delphine Débarre, and Emmanuel Beaurepaire.
Advances in multiphoton microscopy for imaging embryos. Current Opinion in
Genetics & Development, 21(5):538–548, October 2011. 14, 15

[5] Yinan Wan, Katie McDole, and Philipp J. Keller. Light-Sheet Microscopy and Its
Potential for Understanding Developmental Processes. Annual Review of Cell and
Developmental Biology, 35:655–681, October 2019. 15

[6] Peter G Pitrone, Johannes Schindelin, Luke Stuyvenberg, Stephan Preibisch,
Michael Weber, Kevin W Eliceiri, Jan Huisken, and Pavel Tomancak. OpenSPIM:
An open-access light-sheet microscopy platform. Nature methods, 10(7):598–599,
July 2013. 16

[7] David Hörl, Fabio Rojas Rusak, Friedrich Preusser, Paul Tillberg, Nadine Randel,
Raghav K. Chhetri, Albert Cardona, Philipp J. Keller, Hartmann Harz, Heinrich
Leonhardt, Mathias Treier, and Stephan Preibisch. BigStitcher: Reconstructing
high-resolution image datasets of cleared and expanded samples. Nature Methods,
16(9):870–874, September 2019. 17, 105

[8] Hanchuan Peng. Bioimage informatics: A new area of engineering biology.
Bioinformatics, 24(17):1827–1836, September 2008. 17, 18

[9] Ivo F. Sbalzarini. Seeing Is Believing: Quantifying Is Convincing: Computational
Image Analysis in Biology. Advances in Anatomy, Embryology, and Cell Biology,
219:1–39, 2016. 18

Bibliography

[10] Thi Phuong Lien Ung, Seongbin Lim, Xavier Solinas, Pierre Mahou, Anatole Ches-
sel, Claire Marionnet, Thomas Bornschlögl, Emmanuel Beaurepaire, Françoise Bern-
erd, Ana-Maria Pena, and Chiara Stringari. Simultaneous NAD(P)H and FAD fluo-
rescence lifetime microscopy of long UVA–induced metabolic stress in reconstructed
human skin. Scientific Reports, 11(1):22171, November 2021. 18, 119, 122

[11] Ko Sugawara, Cagri Cevrim, and Michalis Averof. Tracking cell lineages in 3D by
incremental deep learning, September 2021. 18

[12] Siqi Liu, Donghao Zhang, Yang Song, Hanchuan Peng, and Weidong Cai. Auto-
mated 3-D Neuron Tracing With Precise Branch Erasing and Confidence Controlled
Back Tracking. IEEE Transactions on Medical Imaging, 37(11):2441–2452, Novem-
ber 2018. 18

[13] Zohaib Salahuddin, Matthias Lenga, and Hannes Nickisch. Multi-Resolution 3D
Convolutional Neural Networks for Automatic Coronary Centerline Extraction in
Cardiac CT Angiography Scans. arXiv:2010.00925 [cs, eess], December 2020. 18

[14] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark
Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Ben-
jamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker Hartenstein, Kevin
Eliceiri, Pavel Tomancak, and Albert Cardona. Fiji: An open-source platform for
biological-image analysis. Nature Methods, 9(7):676–682, July 2012. 18, 21, 22, 27,
28, 123

[15] Jean-Yves Tinevez, Nick Perry, Johannes Schindelin, Genevieve M. Hoopes, Gre-
gory D. Reynolds, Emmanuel Laplantine, Sebastian Y. Bednarek, Spencer L. Shorte,
and Kevin W. Eliceiri. TrackMate: An open and extensible platform for single-
particle tracking. Methods, 115:80–90, February 2017. 18, 22, 105

[16] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François
Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu.
Scikit-image: Image processing in Python. PeerJ, 2:e453, June 2014. 18, 168

[17] Christophe Zimmer. From microbes to numbers: Extracting meaningful quantities
from images. Cellular Microbiology, 14(12):1828–1835, 2012. 18

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.
18, 29, 76, 162, 165, 168, 169, 170

[19] Vladimír Ulman, Martin Maška, Klas E. G. Magnusson, Olaf Ronneberger, Carsten
Haubold, Nathalie Harder, Pavel Matula, Petr Matula, David Svoboda, Miroslav
Radojevic, Ihor Smal, Karl Rohr, Joakim Jaldén, Helen M. Blau, Oleh Dzyubachyk,
Boudewijn Lelieveldt, Pengdong Xiao, Yuexiang Li, Siu-Yeung Cho, Alexandre C.
Dufour, Jean-Christophe Olivo-Marin, Constantino C. Reyes-Aldasoro, Jose A.
Solis-Lemus, Robert Bensch, Thomas Brox, Johannes Stegmaier, Ralf Mikut, Stef-
fen Wolf, Fred A. Hamprecht, Tiago Esteves, Pedro Quelhas, Ömer Demirel, Lars
Malmström, Florian Jug, Pavel Tomancak, Erik Meijering, Arrate Muñoz-Barrutia,

200

Bibliography

Michal Kozubek, and Carlos Ortiz-de-Solorzano. An objective comparison of cell-
tracking algorithms. Nature Methods, 14(12):1141–1152, December 2017. 20, 21,
25, 87

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. arXiv:1505.04597 [cs], May 2015. 21,
29, 88, 90, 91, 115

[21] Peter Naylor, Marick Laé, Fabien Reyal, and Thomas Walter. Segmentation of
Nuclei in Histopathology Images by Deep Regression of the Distance Map. IEEE
Transactions on Medical Imaging, 38(2):448–459, February 2019. 21, 26, 174

[22] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers. Cell De-
tection with Star-Convex Polygons. In Alejandro F. Frangi, Julia A. Schnabel,
Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger, editors, Medical
Image Computing and Computer Assisted Intervention – MICCAI 2018, Lecture
Notes in Computer Science, pages 265–273, Cham, 2018. Springer International
Publishing. 21, 22, 28, 29, 30, 58, 59, 60, 75, 80, 84, 87, 91, 93, 95

[23] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. RefineNet: Multi-Path
Refinement Networks for High-Resolution Semantic Segmentation, November 2016.
21

[24] Hongying Liu, Xiongjie Shen, Fanhua Shang, and Fei Wang. CU-Net: Cascaded U-
Net with Loss Weighted Sampling for Brain Tumor Segmentation. arXiv:1907.07677
[cs, eess], July 2019. 21

[25] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully
Convolutional Neural Networks for Volumetric Medical Image Segmentation.
arXiv:1606.04797 [cs], June 2016. 21

[26] Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf
Ronneberger. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse
Annotation. arXiv:1606.06650 [cs], June 2016. 21

[27] Yongjin Zhou, Weijian Huang, Pei Dong, Yong Xia, and Shanshan Wang. D-
UNet: A dimension-fusion U shape network for chronic stroke lesion segmentation.
arXiv:1908.05104 [cs, eess], August 2019. 21

[28] Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. Star-
convex Polyhedra for 3D Object Detection and Segmentation in Microscopy. In
2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pages
3655–3662, Snowmass Village, CO, USA, March 2020. IEEE. 21, 28

[29] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose:
A generalist algorithm for cellular segmentation. Nature Methods, 18(1):100–106,
January 2021. 21, 22, 28, 29, 30, 58, 59, 60, 75, 76, 80, 83, 84, 87, 88, 91, 93, 116,
128, 129, 174

[30] Curtis T. Rueden, Johannes Schindelin, Mark C. Hiner, Barry E. DeZonia, Alison E.
Walter, Ellen T. Arena, and Kevin W. Eliceiri. ImageJ2: ImageJ for the next
generation of scientific image data. BMC Bioinformatics, 18(1):1–26, December
2017. 21, 27, 126

201

Bibliography

[31] David R. Stirling, Madison J. Swain-Bowden, Alice M. Lucas, Anne E. Carpenter,
Beth A. Cimini, and Allen Goodman. CellProfiler 4: Improvements in speed, utility
and usability. BMC Bioinformatics, 22(1):1–11, December 2021. 21, 22, 28

[32] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature Pyramid Networks for Object Detection. arXiv:1612.03144
[cs], April 2017. 21, 23

[33] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Mod-
els, December 2020. 21, 90, 115, 134

[34] Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi,
and Tim Salimans. Cascaded Diffusion Models for High Fidelity Image Generation,
December 2021. 21

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-Resolution Image Synthesis with Latent Diffusion Models, April 2022.
21

[36] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and
Mohammad Norouzi. Image Super-Resolution via Iterative Refinement, June 2021.
21

[37] Nicholas Sofroniew, Talley Lambert, Kira Evans, Juan Nunez-Iglesias, Grzegorz
Bokota, Philip Winston, Gonzalo Peña-Castellanos, Kevin Yamauchi, Matthias
Bussonnier, Draga Doncila Pop, Ahmet Can Solak, Ziyang Liu, Pam Wadhwa,
Alister Burt, Genevieve Buckley, Andrew Sweet, Lukasz Migas, Volker Hilsen-
stein, Lorenzo Gaifas, Jordão Bragantini, Jaime Rodríguez-Guerra, Hector Muñoz,
Jeremy Freeman, Peter Boone, Alan Lowe, Christoph Gohlke, Loic Royer, Andrea
PIERRÉ, Hagai Har-Gil, and Abigail McGovern. Napari: A multi-dimensional
image viewer for Python. Zenodo, May 2022. 21, 22, 28, 92, 108, 109, 123, 125

[38] Kevin J. Cutler, Carsen Stringer, Paul A. Wiggins, and Joseph D. Mougous. Omni-
pose: A high-precision morphology-independent solution for bacterial cell segmen-
tation, November 2021. 22

[39] Dmitry Ershov, Minh-Son Phan, Joanna W. Pylvänäinen, Stéphane U. Rigaud,
Laure Le Blanc, Arthur Charles-Orszag, James R. W. Conway, Romain F. Laine,
Nathan H. Roy, Daria Bonazzi, Guillaume Duménil, Guillaume Jacquemet, and
Jean-Yves Tinevez. TrackMate 7: Integrating state-of-the-art segmentation algo-
rithms into tracking pipelines. Nature Methods, 19(7):829–832, July 2022. 22

[40] Reka Hollandi, Abel Szkalisity, Timea Toth, Ervin Tasnadi, Csaba Molnar, Botond
Mathe, Istvan Grexa, Jozsef Molnar, Arpad Balind, Mate Gorbe, Maria Kovacs, Ede
Migh, Allen Goodman, Tamas Balassa, Krisztian Koos, Wenyu Wang, Juan Carlos
Caicedo, Norbert Bara, Ferenc Kovacs, Lassi Paavolainen, Tivadar Danka, Andras
Kriston, Anne Elizabeth Carpenter, Kevin Smith, and Peter Horvath. nucleAIzer:
A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image
Style Transfer. Cell Systems, 10(5):453–458.e6, May 2020. 22, 29, 60, 76, 88, 93,
115

202

Bibliography

[41] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
arXiv:1703.06870 [cs], January 2018. 22, 25, 60, 93

[42] Thierry Pécot, Maria C. Cuitiño, Roger H. Johnson, Cynthia Timmers, and Gustavo
Leone. Deep learning tools and modeling to estimate the temporal expression of cell
cycle proteins from 2D still images. PLOS Computational Biology, 18(3):e1009949,
March 2022. 22, 127

[43] Noah F. Greenwald, Geneva Miller, Erick Moen, Alex Kong, Adam Kagel, Thomas
Dougherty, Christine Camacho Fullaway, Brianna J. McIntosh, Ke Xuan Leow, Mor-
gan Sarah Schwartz, Cole Pavelchek, Sunny Cui, Isabella Camplisson, Omer Bar-
Tal, Jaiveer Singh, Mara Fong, Gautam Chaudhry, Zion Abraham, Jackson Moseley,
Shiri Warshawsky, Erin Soon, Shirley Greenbaum, Tyler Risom, Travis Hollmann,
Sean C. Bendall, Leeat Keren, William Graf, Michael Angelo, and David Van Valen.
Whole-cell segmentation of tissue images with human-level performance using large-
scale data annotation and deep learning. Nature Biotechnology, 40(4):555–565,
April 2022. 22, 24, 26, 29, 30, 31, 32, 59, 60, 66, 87, 88, 96, 114, 174

[44] Sergey I. Nikolenko. Synthetic Data for Deep Learning. arXiv:1909.11512 [cs],
September 2019. 22

[45] Clément Douarre, Richard Schielein, Carole Frindel, Stefan Gerth, and David
Rousseau. Transfer Learning from Synthetic Data Applied to Soil–Root Segmenta-
tion in X-Ray Tomography Images. Journal of Imaging, 4(5):65, May 2018. 22

[46] Clément Douarre, Carlos F. Crispim-Junior, Anthony Gelibert, Laure Tougne, and
David Rousseau. Novel data augmentation strategies to boost supervised segmen-
tation of plant disease. Computers and Electronics in Agriculture, 165:104967,
October 2019. 22

[47] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-To-
Image Translation With Conditional Adversarial Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1125–1134,
2017. 22, 93

[48] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial
Networks. arXiv:1406.2661 [cs, stat], June 2014. 22, 43, 93, 94, 151

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. arXiv:1512.03385 [cs], December 2015. 23, 29, 88, 91, 98,
166

[50] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr Dibrov,
Akanksha Jain, Benjamin Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân
Culley, Mauricio Rocha-Martins, Fabián Segovia-Miranda, Caren Norden, Ricardo
Henriques, Marino Zerial, Michele Solimena, Jochen Rink, Pavel Tomancak, Loic
Royer, Florian Jug, and Eugene W. Myers. Content-aware image restoration: Push-
ing the limits of fluorescence microscopy. Nature Methods, 15(12):1090–1097, De-
cember 2018. 23, 29, 94

203

Bibliography

[51] Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2Void - Learning
Denoising from Single Noisy Images. arXiv:1811.10980 [cs], April 2019. 23, 24, 29,
94

[52] A. Buades, B. Coll, and J. M. Morel. A Review of Image Denoising Algorithms,
with a New One. Multiscale Modeling & Simulation, 4(2):490–530, January 2005.
24

[53] Jérôme Boulanger, Charles Kervrann, Patrick Bouthemy, Peter Elbau, Jean-
Baptiste Sibarita, and Jean Salamero. Patch-based nonlocal functional for denoising
fluorescence microscopy image sequences. IEEE transactions on medical imaging,
29(2):442–454, February 2010. 24

[54] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras,
Miika Aittala, and Timo Aila. Noise2Noise: Learning Image Restoration without
Clean Data. arXiv:1803.04189 [cs, stat], October 2018. 24, 94

[55] Vebjorn Ljosa, Katherine L. Sokolnicki, and Anne E. Carpenter. Annotated high-
throughput microscopy image sets for validation. Nature Methods, 9(7):637–637,
July 2012. 24, 30, 174, 175

[56] David N. Orloff, Janet H. Iwasa, Maryann E. Martone, Mark H. Ellisman, and
Caroline M. Kane. The cell: An image library-CCDB: A curated repository of
microscopy data. Nucleic Acids Research, 41(Database issue):D1241–1250, January
2013. 25, 30

[57] Eleanor Williams, Josh Moore, Simon W. Li, Gabriella Rustici, Aleksandra
Tarkowska, Anatole Chessel, Simone Leo, Bálint Antal, Richard K. Ferguson, Ugis
Sarkans, Alvis Brazma, Rafael E. Carazo Salas, and Jason R. Swedlow. Image Data
Resource: A bioimage data integration and publication platform. Nature Methods,
14(8):775–781, August 2017. 25, 30

[58] 2018 Data Science Bowl. https://kaggle.com/competitions/data-science-bowl-2018.
25, 59, 68, 100, 174

[59] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation. In 2014
IEEE Conference on Computer Vision and Pattern Recognition, pages 580–587,
June 2014. 25

[60] Ross Girshick. Fast R-CNN, September 2015. 25

[61] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. arXiv:1506.01497 [cs],
January 2016. 25

[62] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255, June 2009. 26, 29, 30,
103, 114, 146, 165, 170

204

Bibliography

[63] Mischa Schwendy, Ronald E Unger, and Sapun H Parekh. EVICAN—a balanced
dataset for algorithm development in cell and nucleus segmentation. Bioinformatics,
36(12):3863–3870, June 2020. 26

[64] Christoffer Edlund, Timothy R. Jackson, Nabeel Khalid, Nicola Bevan, Timothy
Dale, Andreas Dengel, Sheraz Ahmed, Johan Trygg, and Rickard Sjögren. LIVE-
Cell—A large-scale dataset for label-free live cell segmentation. Nature Methods,
18(9):1038–1045, September 2021. 26, 59, 66, 174

[65] Elisa Drelie Gelasca, Boguslaw Obara, Dmitry Fedorov, Kristian Kvilekval, and
BS Manjunath. A biosegmentation benchmark for evaluation of bioimage analysis
methods. BMC Bioinformatics, 10:368, November 2009. 26, 174

[66] Andrew Janowczyk and Anant Madabhushi. Deep learning for digital pathology im-
age analysis: A comprehensive tutorial with selected use cases. Journal of Pathology
Informatics, 7, July 2016. 26, 107, 174

[67] Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Va-
hadane, and Amit Sethi. A Dataset and a Technique for Generalized Nuclear Seg-
mentation for Computational Pathology. IEEE Transactions on Medical Imaging,
36(7):1550–1560, July 2017. 26, 107, 126, 174

[68] Todd A. Gillette, Kerry M. Brown, and Giorgio A. Ascoli. The DIADEM Met-
ric: Comparing Multiple Reconstructions of the Same Neuron. Neuroinformatics,
9(0):233–245, September 2011. 26, 87

[69] Tobias Pietzsch, Stephan Preibisch, Pavel Tomančák, and Stephan Saalfeld.
ImgLib2—generic image processing in Java. Bioinformatics, 28(22):3009–3011,
November 2012. 27

[70] Melissa Linkert, Curtis T. Rueden, Chris Allan, Jean-Marie Burel, Will Moore,
Andrew Patterson, Brian Loranger, Josh Moore, Carlos Neves, Donald MacDonald,
Aleksandra Tarkowska, Caitlin Sticco, Emma Hill, Mike Rossner, Kevin W. Eliceiri,
and Jason R. Swedlow. Metadata matters: Access to image data in the real world.
Journal of Cell Biology, 189(5):777–782, May 2010. 27, 64

[71] Robert Haase, Loic A. Royer, Peter Steinbach, Deborah Schmidt, Alexandr Dibrov,
Uwe Schmidt, Martin Weigert, Nicola Maghelli, Pavel Tomancak, Florian Jug, and
Eugene W. Myers. CLIJ: GPU-accelerated image processing for everyone. Nature
Methods, 17(1):5–6, January 2020. 27

[72] Chris Allan, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa Linkert, Scott
Loynton, Donald MacDonald, William J. Moore, Carlos Neves, Andrew Patterson,
Michael Porter, Aleksandra Tarkowska, Brian Loranger, Jerome Avondo, Ingvar
Lagerstedt, Luca Lianas, Simone Leo, Katherine Hands, Ron T. Hay, Ardan Pat-
wardhan, Christoph Best, Gerard J. Kleywegt, Gianluigi Zanetti, and Jason R.
Swedlow. OMERO: Flexible, model-driven data management for experimental bi-
ology. Nature Methods, 9(3):245–253, March 2012. 28

[73] Ilya G. Goldberg, Chris Allan, Jean-Marie Burel, Doug Creager, Andrea Falconi,
Harry Hochheiser, Josiah Johnston, Jeff Mellen, Peter K. Sorger, and Jason R.
Swedlow. The Open Microscopy Environment (OME) Data Model and XML file:

205

Bibliography

Open tools for informatics and quantitative analysis in biological imaging. Genome
Biology, 6(5):1–13, May 2005. 28, 87

[74] Josh Moore, Chris Allan, Sébastien Besson, Jean-Marie Burel, Erin Diel, David
Gault, Kevin Kozlowski, Dominik Lindner, Melissa Linkert, Trevor Manz, Will
Moore, Constantin Pape, Christian Tischer, and Jason R. Swedlow. OME-NGFF: A
next-generation file format for expanding bioimaging data-access strategies. Nature
Methods, pages 1–3, November 2021. 28, 87, 126, 128

[75] Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N. Straehle, Bernhard X.
Kausler, Carsten Haubold, Martin Schiegg, Janez Ales, Thorsten Beier, Markus
Rudy, Kemal Eren, Jaime I. Cervantes, Buote Xu, Fynn Beuttenmueller, Adrian
Wolny, Chong Zhang, Ullrich Koethe, Fred A. Hamprecht, and Anna Kreshuk.
Ilastik: Interactive machine learning for (bio)image analysis. Nature Methods,
16(12):1226–1232, December 2019. 28, 105

[76] Matthias Arzt, Joran Deschamps, Christopher Schmied, Tobias Pietzsch, Deborah
Schmidt, Pavel Tomancak, Robert Haase, and Florian Jug. LABKIT: Labeling and
Segmentation Toolkit for Big Image Data. Frontiers in Computer Science, 4, 2022.
28

[77] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific
computing. Computing in Science and Engineering, 9(3):21–29, May 2007. 28

[78] Réka Hollandi, Ákos Diósdi, Gábor Hollandi, Nikita Moshkov, and Péter Horváth.
AnnotatorJ: An ImageJ plugin to ease hand annotation of cellular compartments.
Molecular Biology of the Cell, 31(20):2179–2186, July 2020. 28, 29, 30, 126

[79] Wei Ouyang, Fynn Beuttenmueller, Estibaliz Gómez-de-Mariscal, Constantin Pape,
Tom Burke, Carlos Garcia-López-de-Haro, Craig Russell, Lucía Moya-Sans, Cristina
de-la-Torre-Gutiérrez, Deborah Schmidt, Dominik Kutra, Maksim Novikov, Martin
Weigert, Uwe Schmidt, Peter Bankhead, Guillaume Jacquemet, Daniel Sage, Ri-
cardo Henriques, Arrate Muñoz-Barrutia, Emma Lundberg, Florian Jug, and Anna
Kreshuk. BioImage Model Zoo: A Community-Driven Resource for Accessible Deep
Learning in BioImage Analysis, June 2022. 28, 92, 126

[80] Wei Ouyang, Trang Le, Hao Xu, and Emma Lundberg. Interactive biomedical
segmentation tool powered by deep learning and ImJoy. 28

[81] Lucas von Chamier, Romain F. Laine, Johanna Jukkala, Christoph Spahn, Daniel
Krentzel, Elias Nehme, Martina Lerche, Sara Hernández-Pérez, Pieta K. Mattila,
Eleni Karinou, Séamus Holden, Ahmet Can Solak, Alexander Krull, Tim-Oliver
Buchholz, Martin L. Jones, Loïc A. Royer, Christophe Leterrier, Yoav Shecht-
man, Florian Jug, Mike Heilemann, Guillaume Jacquemet, and Ricardo Hen-
riques. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nature
Communications, 12(1):2276, April 2021. 28

[82] Estibaliz Gómez-de-Mariscal, Carlos García-López-de-Haro, Wei Ouyang, Laurène
Donati, Emma Lundberg, Michael Unser, Arrate Muñoz-Barrutia, and Daniel Sage.
DeepImageJ: A user-friendly environment to run deep learning models in ImageJ.
Nature Methods, 18(10):1192–1195, October 2021. 28

206

Bibliography

[83] Joshua Batson and Loic Royer. Noise2Self: Blind Denoising by Self-Supervision.
arXiv:1901.11365 [cs, stat], June 2019. 29

[84] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language Models are Few-Shot Learners, July 2020. 29, 38, 88, 93,
114, 134, 144

[85] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv:1409.1556 [cs], April 2015. 29, 30, 76, 78, 91,
98, 100, 159, 165, 166

[86] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A Learned Represen-
tation For Artistic Style. arXiv:1610.07629 [cs], February 2017. 29, 92, 95, 103

[87] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer
Using Convolutional Neural Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2414–2423, 2016. 29, 50, 51, 52,
92, 93, 95, 101, 103

[88] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. arXiv:1603.08155 [cs], March 2016. 29, 76,
92, 93, 94, 95, 98, 99, 103

[89] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox,
and Peter Gehler. Towards Total Recall in Industrial Anomaly Detection, May
2022. 29

[90] Hanqiu Deng and Xingyu Li. Anomaly Detection via Reverse Distillation from
One-Class Embedding, March 2022. 29

[91] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri
Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Demszky, Chris
Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy,
Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan
Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karam-
cheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass,
Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee,
Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma,
Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Mun-
yikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie,
Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher

207

Bibliography

Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani,
Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav San-
thanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W.
Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu,
Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia,
Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn
Zhou, and Percy Liang. On the Opportunities and Risks of Foundation Models.
arXiv:2108.07258 [cs], August 2021. 30, 34, 41, 88, 91, 92, 93, 114

[92] Florian Kromp, Eva Bozsaky, Fikret Rifatbegovic, Lukas Fischer, Magdalena Am-
bros, Maria Berneder, Tamara Weiss, Daria Lazic, Wolfgang Dörr, Allan Hanbury,
Klaus Beiske, Peter F. Ambros, Inge M. Ambros, and Sabine Taschner-Mandl. An
annotated fluorescence image dataset for training nuclear segmentation methods.
Scientific Data, 7(1):262, August 2020. 31, 174

[93] Neeraj Kumar, Ruchika Verma, Deepak Anand, Yanning Zhou, Omer Fahri Onder,
Efstratios Tsougenis, Hao Chen, Pheng-Ann Heng, Jiahui Li, Zhiqiang Hu, Yun-
zhi Wang, Navid Alemi Koohbanani, Mostafa Jahanifar, Neda Zamani Tajeddin,
Ali Gooya, Nasir Rajpoot, Xuhua Ren, Sihang Zhou, Qian Wang, Dinggang Shen,
Cheng-Kun Yang, Chi-Hung Weng, Wei-Hsiang Yu, Chao-Yuan Yeh, Shuang Yang,
Shuoyu Xu, Pak Hei Yeung, Peng Sun, Amirreza Mahbod, Gerald Schaefer, Isabella
Ellinger, Rupert Ecker, Orjan Smedby, Chunliang Wang, Benjamin Chidester, That-
Vinh Ton, Minh-Triet Tran, Jian Ma, Minh N. Do, Simon Graham, Quoc Dang
Vu, Jin Tae Kwak, Akshaykumar Gunda, Raviteja Chunduri, Corey Hu, Xiaoyang
Zhou, Dariush Lotfi, Reza Safdari, Antanas Kascenas, Alison O’Neil, Dennis Es-
chweiler, Johannes Stegmaier, Yanping Cui, Baocai Yin, Kailin Chen, Xinmei Tian,
Philipp Gruening, Erhardt Barth, Elad Arbel, Itay Remer, Amir Ben-Dor, Ekate-
rina Sirazitdinova, Matthias Kohl, Stefan Braunewell, Yuexiang Li, Xinpeng Xie,
Linlin Shen, Jun Ma, Krishanu Das Baksi, Mohammad Azam Khan, Jaegul Choo,
Adrián Colomer, Valery Naranjo, Linmin Pei, Khan M. Iftekharuddin, Kaushiki
Roy, Debotosh Bhattacharjee, Anibal Pedraza, Maria Gloria Bueno, Sabarinathan
Devanathan, Saravanan Radhakrishnan, Praveen Koduganty, Zihan Wu, Guanyu
Cai, Xiaojie Liu, Yuqin Wang, and Amit Sethi. A Multi-Organ Nucleus Segmen-
tation Challenge. IEEE Transactions on Medical Imaging, 39(5):1380–1391, May
2020. 31

[94] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Dis-
parities in Commercial Gender Classification. In Proceedings of the 1st Conference
on Fairness, Accountability and Transparency, pages 77–91. PMLR, January 2018.
34, 134

[95] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei.
Novel dataset for fine-grained image categorization. In First Workshop on
Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and
Pattern Recognition, Colorado Springs, CO, June 2011. 34

[96] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the Inception Architecture for Computer Vision.
arXiv:1512.00567 [cs], December 2015. 35, 91, 166

208

Bibliography

[97] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. When Does Label Smoothing
Help?, June 2020. 35

[98] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for
Machine Learning. Cambridge University Press, April 2020. 35

[99] Andres Rodriguez. Deep Learning Systems: Algorithms, Compilers, and Processors
for Large-Scale Production. Springer International Publishing, Cham, 2021. 36

[100] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov,
Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali
Sridhar, Tianlu Wang, and Luke Zettlemoyer. OPT: Open Pre-trained Transformer
Language Models, June 2022. 36, 38

[101] YouTube. Predictive learning, nips 2016 | yann lecun, facebook research. https:
//youtu.be/Ount2Y4qxQo, Aug 2017. [Online; accessed 26-October-2022]. 37

[102] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
arXiv:1706.03762 [cs], December 2017. 38, 40, 41, 88, 91, 93, 134, 166

[103] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs], May 2019. 38, 93, 114

[104] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019. 38

[105] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. arXiv:2010.11929 [cs], October 2020.
39, 88, 91, 134

[106] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A.
Efros. Context Encoders: Feature Learning by Inpainting. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2536–2544,
2016. 39

[107] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and locally con-
sistent image completion. ACM Transactions on Graphics, 36(4):107:1–107:14, July
2017. 39

[108] Xiaoqiang Zhou, Junjie Li, Zilei Wang, Ran He, and Tieniu Tan. Image Inpaint-
ing with Contrastive Relation Network. In 2020 25th International Conference on
Pattern Recognition (ICPR), pages 4420–4427, January 2021. 39

[109] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple
Framework for Contrastive Learning of Visual Representations. arXiv:2002.05709
[cs, stat], February 2020. 40, 41, 93, 100

209

https://youtu.be/Ount2Y4qxQo
https://youtu.be/Ount2Y4qxQo

Bibliography

[110] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with
Contrastive Predictive Coding. arXiv:1807.03748 [cs, stat], January 2019. 40, 41,
91, 93, 100

[111] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
Contrast for Unsupervised Visual Representation Learning. arXiv:1911.05722 [cs],
March 2020. 41, 88, 93, 114

[112] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. Big Transfer (BiT): General Visual Representation
Learning. arXiv:1912.11370 [cs], May 2020. 42, 93

[113] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Re-
visiting Unreasonable Effectiveness of Data in Deep Learning Era. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 843–852, Oc-
tober 2017. 42, 90, 91

[114] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-
Adversarial Training of Neural Networks, May 2016. 42

[115] Lilian Weng. What are diffusion models? lilianweng.github.io, Jul 2021. 44

[116] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training for
High Fidelity Natural Image Synthesis, February 2019. 45

[117] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture
for Generative Adversarial Networks. arXiv:1812.04948 [cs, stat], March 2019. 45

[118] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and Improving the Image Quality of StyleGAN, March 2020.
45

[119] Diederik P. Kingma and Max Welling. An Introduction to Variational Autoencoders.
Foundations and Trends® in Machine Learning, 12(4):307–392, 2019. 46, 100, 101

[120] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. Beta-VAE: Learn-
ing Basic Visual Concepts with a Constrained Variational Framework. November
2016. 47, 48, 100

[121] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximiz-
ing Generative Adversarial Nets. arXiv:1606.03657 [cs, stat], June 2016. 48, 100

[122] Ying Nian Wu, Song Chun Zhu, and Xiuwen Liu. Equivalence of Julesz Ensembles
and FRAME Models. International Journal of Computer Vision, 38(3):247–265,
July 2000. 49

[123] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved Texture Net-
works: Maximizing Quality and Diversity in Feed-forward Stylization and Texture
Synthesis. arXiv:1701.02096 [cs], November 2017. 49

210

Bibliography

[124] Fritz Mario, Hayman Eric, and Caputo Barbara. The kth-tips and kth-tips2 image
databases. https://www.csc.kth.se/cvap/databases/kth-tips/index.html,
1999. 49, 100, 115

[125] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller,
and Thomas Brox. Discriminative Unsupervised Feature Learning with Exem-
plar Convolutional Neural Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(9):1734–1747, September 2016. 50, 93

[126] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Texture Synthesis Using
Convolutional Neural Networks. arXiv:1505.07376 [cs, q-bio], November 2015. 50,
76, 94

[127] Li Liu, Jie Chen, Paul Fieguth, Guoying Zhao, Rama Chellappa, and Matti Pietikäi-
nen. From BoW to CNN: Two Decades of Texture Representation for Texture Clas-
sification. International Journal of Computer Vision, 127(1):74–109, January 2019.
50

[128] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron Hertzmann,
and Eli Shechtman. Controlling Perceptual Factors in Neural Style Transfer.
arXiv:1611.07865 [cs], May 2017. 51, 76

[129] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu, and Mingli
Song. Neural Style Transfer: A Review. arXiv:1705.04058 [cs, eess, stat], October
2018. 51

[130] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying Neural Style
Transfer. arXiv:1701.01036 [cs], July 2017. 51, 76, 103

[131] Seongbin Lim, Xingjian Zhang, Emmanuel Beaurepaire, and Anatole Chessel.
BioImageLoader: Easy Handling of Bioimage Datasets for Machine Learning.
https://arxiv.org/abs/2303.02158v1, March 2023. 58, 64

[132] Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving,
Christoph Reinders, Sarthak Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft,
Zheng Rui, Jirka Borovec, Christian Vallentin, Semen Zhydenko, Kilian Pfeiffer,
Ben Cook, Ismael Fernández, François-Michel De Rainville, Chi-Hung Weng, Ab-
ner Ayala-Acevedo, Raphael Meudec, Matias Laporte, et al. imgaug. https:
//github.com/aleju/imgaug, 2020. Online; accessed 01-Feb-2020. 62

[133] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov,
Mikhail Druzhinin, and Alexandr A. Kalinin. Albumentations: Fast and flexible
image augmentations. Information, 11(2), 2020. 62, 68

[134] Annika Reinke, Minu D. Tizabi, Carole H. Sudre, Matthias Eisenmann, Tim Räd-
sch, Michael Baumgartner, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon
Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina,
Beth Cimini, Gary S. Collins, Keyvan Farahani, Ben Glocker, Patrick Godau, Fred
Hamprecht, Daniel A. Hashimoto, Doreen Heckmann-Nötzel, Michael M. Hoffmann,
Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Alexandros Karar-
gyris, Alan Karthikesalingam, Bernhard Kainz, Emre Kavur, Hannes Kenngott,
Jens Kleesiek, Thijs Kooi, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A.

211

https://www.csc.kth.se/cvap/databases/kth-tips/index.html
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug

Bibliography

Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter
Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Hen-
ning Müller, Felix Nickel, Jens Petersen, Gorkem Polat, Nasir Rajpoot, Mauricio
Reyes, Nicola Rieke, Michael Riegler, Hassan Rivaz, Julio Saez-Rodriguez, Clar-
isa Sanchez Gutierrez, Julien Schroeter, Anindo Saha, Shravya Shetty, Bram Stielt-
jes, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Bram van Ginneken,
Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Annette Kopp-Schneider, Paul
Jäger, and Lena Maier-Hein. Common Limitations of Image Processing Metrics: A
Picture Story. arXiv:2104.05642 [cs, eess], April 2022. 63, 177

[135] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017. 69, 134, 164

[136] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020. 72, 74

[137] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs], February
2015. 73, 87, 90, 96, 146, 178

[138] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 886–893 vol. 1, June 2005. 76

[139] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2):91–110, November 2004. 76

[140] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional
Networks, November 2013. 76, 137, 167, 168, 169

[141] Aravindh Mahendran and Andrea Vedaldi. Understanding Deep Image Represen-
tations by Inverting Them. November 2014. 76, 94, 169, 170

[142] Mohammad Babaeizadeh and Golnaz Ghiasi. Adjustable Real-time Style Transfer.
In International Conference on Learning Representations, September 2019. 76, 95,
116

[143] Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin, and Jonathon
Shlens. Exploring the structure of a real-time, arbitrary neural artistic stylization
network. arXiv:1705.06830 [cs], August 2017. 76, 92, 94

[144] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat],
December 2018. 76, 103

212

Bibliography

[145] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(86):2579–2605, 2008. 76

[146] Antti Lehmussola, Pekka Ruusuvuori, Jyrki Selinummi, Heikki Huttunen, and Olli
Yli-Harja. Computational Framework for Simulating Fluorescence Microscope Im-
ages With Cell Populations. IEEE Transactions on Medical Imaging, 26(7):1010–
1016, July 2007. 77, 174

[147] Antti Lehmussola, Pekka Ruusuvuori, Jyrki Selinummi, Tiina Rajala, and Olli Yli-
Harja. Synthetic Images of High-Throughput Microscopy for Validation of Image
Analysis Methods. Proceedings of the IEEE, 96(8):1348–1360, August 2008. 77,
174

[148] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi
Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
Tom Duerig, and Vittorio Ferrari. The Open Images Dataset V4: Unified image clas-
sification, object detection, and visual relationship detection at scale. International
Journal of Computer Vision, 128(7):1956–1981, July 2020. 87, 90

[149] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211–252, December 2015. 90, 96,
166

[150] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks.
arXiv:1605.07146 [cs], June 2017. 91, 166

[151] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. A ConvNet for the 2020s. arXiv:2201.03545 [cs], March 2022. 91,
166

[152] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning an In-
variant Mapping. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742, June 2006. 91

[153] Sebastian Thrun. Lifelong learning algorithms. In Learning to Learn, pages 181–209.
Kluwer Academic Publishers, USA, May 1998. 91, 92

[154] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition, October 2013. 91, 92

[155] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
CNN Features off-the-shelf: An Astounding Baseline for Recognition, May 2014.
91, 92, 93

[156] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky.
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images.
arXiv:1603.03417 [cs], March 2016. 92

213

Bibliography

[157] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normalization:
The Missing Ingredient for Fast Stylization. arXiv:1607.08022 [cs], November 2017.
92, 98, 99

[158] Leon A. Gatys, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. Preserving
Color in Neural Artistic Style Transfer. arXiv:1606.05897 [cs], June 2016. 92

[159] Chuan Li and Michael Wand. Combining Markov Random Fields and Convolutional
Neural Networks for Image Synthesis. arXiv:1601.04589 [cs], January 2016. 92

[160] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and Controllable Neural
Texture Synthesis and Style Transfer Using Histogram Losses. arXiv:1701.08893
[cs], February 2017. 92

[161] Xun Huang and Serge Belongie. Arbitrary Style Transfer in Real-time with Adaptive
Instance Normalization. arXiv:1703.06868 [cs], July 2017. 92, 116

[162] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.
Universal Style Transfer via Feature Transforms. arXiv:1705.08086 [cs], November
2017. 92

[163] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved Baselines with
Momentum Contrastive Learning. arXiv:2003.04297 [cs], March 2020. 93

[164] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks?, November 2014. 93

[165] Ryan Conrad and Kedar Narayan. CEM500K – A large-scale heterogeneous unla-
beled cellular electron microscopy image dataset for deep learning. bioRxiv, page
2020.12.11.421792, December 2020. 93

[166] Emmanuel Bouilhol, Edgar Lefevre, Thierno Barry, Florian Levet, Anne Beghin,
Virgile Viasnoff, Xareni Galindo, Remi Galland, Jean-Baptiste Sibarita, and Macha
Nikolski. SalienceNet: An unsupervised Image-to-Image translation method for
nuclei saliency enhancement in microscopy images, October 2022. 93, 94, 115

[167] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. arXiv:1703.10593
[cs], March 2017. 93

[168] Michal Januszewski and Viren Jain. Segmentation-Enhanced CycleGAN. Preprint,
Neuroscience, February 2019. 94

[169] G. Berger and R. Memisevic. Incorporating long-range consistency in CNN-based
texture generation. arXiv:1606.01286 [cs], November 2016. 94

[170] Alexey Dosovitskiy and Thomas Brox. Generating Images with Perceptual Similar-
ity Metrics based on Deep Networks. arXiv:1602.02644 [cs], February 2016. 95

[171] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised Feature
Learning via Non-Parametric Instance-level Discrimination. arXiv:1805.01978 [cs],
May 2018. 95

214

Bibliography

[172] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3431–3440, June 2015. 96, 98, 114

[173] Lee Kamentsky, Thouis R. Jones, Adam Fraser, Mark-Anthony Bray, David J.
Logan, Katherine L. Madden, Vebjorn Ljosa, Curtis Rueden, Kevin W. Eliceiri, and
Anne E. Carpenter. Improved structure, function and compatibility for CellProfiler:
Modular high-throughput image analysis software. Bioinformatics, 27(8):1179–1180,
April 2011. 98

[174] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.
arXiv:1711.05101 [cs, math], January 2019. 98

[175] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks.
arXiv:1511.06434 [cs], January 2016. 98

[176] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs], March
2015. 98, 99, 120

[177] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo
Rezende, and Alexander Lerchner. Towards a Definition of Disentangled Represen-
tations. arXiv:1812.02230 [cs, stat], December 2018. 100

[178] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Varia-
tional Inference of Disentangled Latent Concepts from Unlabeled Observations.
arXiv:1711.00848 [cs, stat], December 2018. 100

[179] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic De-
noyer, and Marc’Aurelio Ranzato. Fader Networks: Manipulating Images by Sliding
Attributes. arXiv:1706.00409 [cs], January 2018. 100

[180] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Diverse High-
Fidelity Images with VQ-VAE-2. arXiv:1906.00446 [cs, stat], June 2019. 101, 134

[181] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation
of generative models, April 2016. 101

[182] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent
Neural Networks. arXiv:1601.06759 [cs], August 2016. 101

[183] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves,
and Koray Kavukcuoglu. Conditional Image Generation with PixelCNN Decoders.
arXiv:1606.05328 [cs], June 2016. 101

[184] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:
Masked Autoencoder for Distribution Estimation. arXiv:1502.03509 [cs, stat], June
2015. 101

[185] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normal-
izing Flows. arXiv:1505.05770 [cs, stat], June 2016. 101

215

Bibliography

[186] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible
1x1 Convolutions. arXiv:1807.03039 [cs, stat], July 2018. 101

[187] Prashnna K. Gyawali, Rudra Saha, Linwei Wang, V. S. R. Veeravasarapu, and
Maneesh Singh. Wavelets to the Rescue: Improving Sample Quality of Latent
Variable Deep Generative Models. arXiv:1911.05627 [cs, eess, stat], October 2019.
101

[188] Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly
Supervised Disentanglement with Guarantees. arXiv:1910.09772 [cs, stat], October
2019. 101

[189] Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly,
Bernhard Schölkopf, and Olivier Bachem. Challenging Common Assumptions in
the Unsupervised Learning of Disentangled Representations. arXiv:1811.12359 [cs,
stat], June 2019. 101

[190] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
arXiv:1801.04381 [cs], March 2019. 101, 102, 166

[191] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of
the Data Distribution, October 2020. 115, 134

[192] Michael Crawshaw. Multi-Task Learning with Deep Neural Networks: A Survey.
arXiv:2009.09796 [cs, stat], September 2020. 116

[193] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-
tance of initialization and momentum in deep learning. In International Conference
on Machine Learning, pages 1139–1147, February 2013. 116

[194] Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks.
arXiv:1506.01186 [cs], April 2017. 116

[195] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm
Restarts. arXiv:1608.03983 [cs, math], May 2017. 116

[196] Corinne Vioux-Chagnoleau, François Lejeune, Juliette Sok, Cécile Pierrard, Claire
Marionnet, and Françoise Bernerd. Reconstructed human skin: From photodamage
to sunscreen photoprotection and anti-aging molecules. Journal of Dermatological
Science Supplement, 2(1):S1–S12, December 2006. 119

[197] Chiara Stringari, Lamiae Abdeladim, Guy Malkinson, Pierre Mahou, Xavier Soli-
nas, Isabelle Lamarre, Sébastien Brizion, Jean-Baptiste Galey, Willy Supatto, Re-
naud Legouis, Ana-Maria Pena, and Emmanuel Beaurepaire. Multicolor two-photon
imaging of endogenous fluorophores in living tissues by wavelength mixing. Scientific
Reports, 7(1):3792, June 2017. 119

[198] Chiara Stringari, Amanda Cinquin, Olivier Cinquin, Michelle A. Digman, Peter J.
Donovan, and Enrico Gratton. Phasor approach to fluorescence lifetime microscopy
distinguishes different metabolic states of germ cells in a live tissue. Proceedings of
the National Academy of Sciences, 108(33):13582–13587, August 2011. 120

216

Bibliography

[199] Robert Haase, Draga Doncila Pop, and Laura Žigutytė. Haesleinhuepf/napari-
segment-blobs-and-things-with-membranes: 0.3.2. Zenodo, August 2022. 127

[200] Alistair Miles, John Kirkham, Martin Durant, James Bourbeau, Tarik Onalan, Joe
Hamman, Zain Patel, shikharsg, Matthew Rocklin, raphael dussin, Vincent Schut,
Elliott Sales de Andrade, Ryan Abernathey, Charles Noyes, sbalmer, pyup io bot,
Tommy Tran, Stephan Saalfeld, Justin Swaney, Josh Moore, Joe Jevnik, Jerome
Kelleher, Jan Funke, George Sakkis, Chris Barnes, and Anderson Banihirwe. Zarr-
developers/zarr-python: V2.4.0. Zenodo, January 2020. 128

[201] Demis Hassabis. Alphafold reveals the structure of
the protein universe. https://www.deepmind.com/blog/
alphafold-reveals-the-structure-of-the-protein-universe, July 2022.
133

[202] Andrew W. Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre,
Tim Green, Chongli Qin, Augustin Žídek, Alexander W. R. Nelson, Alex Bridg-
land, Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet
Kohli, David T. Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. Im-
proved protein structure prediction using potentials from deep learning. Nature,
577(7792):706–710, January 2020. 133

[203] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-
ford, Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation, Febru-
ary 2021. 133

[204] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning Transferable Visual Models From Natural
Language Supervision, February 2021. 134

[205] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,
Bob McGrew, Ilya Sutskever, and Mark Chen. GLIDE: Towards Photorealistic
Image Generation and Editing with Text-Guided Diffusion Models, March 2022.
134

[206] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, and Scott Gray. Dall·e: Creating
images from text. https://openai.com/blog/dall-e/, January 2021. 135

[207] Guy Parsons. The dall·e 2 prompt book. https://dallery.gallery/
the-dalle-2-prompt-book/, July 2022. 135

[208] Tom Simonite. What Really Happened When Google Ousted Timnit Gebru. Wired,
June 2022. 134

[209] Tom Simonite. A Second AI Researcher Says She Was Fired by Google. Wired,
February 2021. 134

[210] Google fires Margaret Mitchell, another top researcher on its AI ethics team. The
Guardian, February 2021. 134

[211] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In CVPR
2011, pages 1521–1528, June 2011. 134

217

https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe
https://www.deepmind.com/blog/alphafold-reveals-the-structure-of-the-protein-universe
https://openai.com/blog/dall-e/
https://dallery.gallery/the-dalle-2-prompt-book/
https://dallery.gallery/the-dalle-2-prompt-book/

Bibliography

[212] Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and Julie Shah. Do Feature Attri-
bution Methods Correctly Attribute Features?, December 2021. 134

[213] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh,
Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi
Yan, and Orion Reblitz-Richardson. Captum: A unified and generic model inter-
pretability library for PyTorch, September 2020. 134

[214] Narine Kokhlikyan, Vivek Miglani, Bilal Alsallakh, Miguel Martin, and Orion
Reblitz-Richardson. Investigating sanity checks for saliency maps with image and
text classification, June 2021. 134

[215] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Niko-
las Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saun-
ders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. Evaluating Large Language Models Trained on
Code, July 2021. 136

[216] Simon Willison. Prompt injection attacks against gpt-3. https://simonwillison.
net/2022/Sep/12/prompt-injection/, September 2022. 136

[217] Matthew Butterick. We’ve filed a lawsuit challenging github copilot, an ai product
that relies on unprecedented open-source software piracy. because ai needs to be
fair & ethical for everyone. https://githubcopilotlitigation.com/, November
2022. 136

[218] Neil Savage. How AI and neuroscience drive each other forwards. Nature,
571(7766):S15–S17, July 2019. 136

[219] Blake A. Richards, Timothy P. Lillicrap, Philippe Beaudoin, Yoshua Bengio,
Rafal Bogacz, Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de
Berker, Surya Ganguli, Colleen J. Gillon, Danijar Hafner, Adam Kepecs, Nikolaus
Kriegeskorte, Peter Latham, Grace W. Lindsay, Kenneth D. Miller, Richard Naud,
Christopher C. Pack, Panayiota Poirazi, Pieter Roelfsema, João Sacramento, An-
drew Saxe, Benjamin Scellier, Anna C. Schapiro, Walter Senn, Greg Wayne, Daniel
Yamins, Friedemann Zenke, Joel Zylberberg, Denis Therien, and Konrad P. Kord-
ing. A deep learning framework for neuroscience. Nature Neuroscience, 22(11):1761–
1770, November 2019. 136

[220] Charlotte Caucheteux and Jean-Rémi King. Brains and algorithms partially con-
verge in natural language processing. Communications Biology, 5(1):1–10, February
2022. 136

218

https://simonwillison.net/2022/Sep/12/prompt-injection/
https://simonwillison.net/2022/Sep/12/prompt-injection/
https://githubcopilotlitigation.com/

Bibliography

[221] Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou. Seeing
Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for
Vision Decoding, November 2022. 137

[222] David Eagleman. The Brain: The Story of You. Canongate Books, November 2015.
137

[223] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin
Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers Is Solved. Science,
317(5844):1518–1522, September 2007. 143

[224] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and An-
drew Zisserman. The Pascal Visual Object Classes (VOC) Challenge. International
Journal of Computer Vision, 88(2):303–338, June 2010. 146, 178

[225] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, November
1998. 147, 156

[226] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv:1603.07285 [cs, stat], January 2018. 149

[227] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
November 2016. 153, 167

[228] YouTube. Richard feynman: Can machines think? https://youtu.be/
ipRvjS7q1DI, Nov 2019. [Online; accessed 26-October-2022]. 153

[229] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference on
International Conference on Machine Learning, ICML’10, pages 807–814, Madison,
WI, USA, June 2010. Omnipress. 155, 162

[230] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the Loss Landscape of Neural Nets. arXiv:1712.09913 [cs, stat], November 2018. 159

[231] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], January 2017. 160

[232] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org. 163

[233] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

219

https://youtu.be/ipRvjS7q1DI
https://youtu.be/ipRvjS7q1DI

Bibliography

Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. 164

[234] Haris Iqbal. HarisIqbal88/PlotNeuralNet v1.0.0. Zenodo, December 2018. 165

[235] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning Algorithm
for Deep Belief Nets. Neural Computation, 18(7):1527–1554, July 2006. 165

[236] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. arXiv:1409.4842 [cs], September 2014. 166, 171

[237] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-
thinking Atrous Convolution for Semantic Image Segmentation. arXiv:1706.05587
[cs], December 2017. 166

[238] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convo-
lutional Neural Networks. arXiv:1905.11946 [cs, stat], June 2019. 166

[239] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications, April 2017. 166

[240] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and
Hartwig Adam. Searching for MobileNetV3, November 2019. 166

[241] Mingxing Tan and Quoc V. Le. EfficientNetV2: Smaller Models and Faster Training,
June 2021. 166

[242] Inceptionism: Going Deeper into Neural Networks. 170

[243] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Visualization.
Distill, 2(11):e7, November 2017. 170, 171

[244] Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-Wah Tsang, David R. J. Snead,
Ian A. Cree, and Nasir M. Rajpoot. Locality Sensitive Deep Learning for Detec-
tion and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE
Transactions on Medical Imaging, 35(5):1196–1206, May 2016. 174

[245] L. P. Coelho, A. Shariff, and R. F. Murphy. Nuclear segmentation in micro-
scope cell images: A hand-segmented dataset and comparison of algorithms. In
2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
pages 518–521, June 2009. 174

[246] Estibaliz Gómez-de-Mariscal, Martin Maška, Anna Kotrbová, Vendula
Pospíchalová, Pavel Matula, and Arrate Muñoz-Barrutia. Deep-Learning-
Based Segmentation of Small Extracellular Vesicles in Transmission Electron
Microscopy Images. Scientific Reports, 9(1):13211, September 2019. 174

[247] Wikipedia contributors. F-score — Wikipedia, the free encyclopedia, 2022. [Online;
accessed 26-October-2022]. 179

220

Titre : Apprentissage statistique versatile pour l’imagerie neurodéveloppementale

Mots clés : Imagerie neurodéveloppementale, Modèle d’apprentissage automatique versatile, Analyse des
bioimages, Apprentissage auto-supervisé, Défis liés aux données

Résumé : Cette thèse se concentre sur le
développement de modèles polyvalents d’ap-
prentissage automatique pour l’imagerie neu-
rodéveloppementale. Elle couvre divers as-
pects, notamment les techniques d’imagerie neu-
rodéveloppementale, l’informatique des images bio-
logiques et les approches d’apprentissage profond.
L’apprentissage profond émerge comme une solu-
tion supérieure pour l’analyse d’images biologiques,
surpassant les méthodes traditionnelles. Cette thèse
aborde les limites des solutions actuelles, en parti-
culier les difficultés de l’apprentissage supervisé, qui
nécessite des ensembles de données entièrement
curatés. Elle explore l’évolution de l’apprentissage
automatique, y compris les tendances dans les
tâches de vision par ordinateur et l’importance de
l’apprentissage auto-supervisé, qui, stimulé par des
mécanismes d’auto-attention, a transformé le do-

maine, notamment dans le traitement du langage na-
turel. L’objectif central de la thèse est de développer
des modèles d’analyse d’images polyvalents pour les
images biologiques par le biais de l’apprentissage
auto-supervisé, en traitant les limitations persistantes
des données. Les contributions incluent la création
d’un méta-ensemble de données, le développement
de la bibliothèque Python “bioimageloader” pour une
gestion efficace des ensembles de données, la pro-
position d’une nouvelle perte auto-supervisée et du
modèle “NU-Net” résultant, ainsi que la création d’ou-
tils logiciels pour l’intégration de l’apprentissage auto-
matique dans les pipelines de traitement d’images. En
résumé, cette thèse vise à faire progresser l’image-
rie neurodéveloppementale grâce à un apprentissage
automatique auto-supervisé polyvalent, en traitant les
défis liés aux données et en favorisant la convivialité
et l’accessibilité.

Title : Versatile machine learning for neurodevelopmental imaging

Keywords : Neurodevelopmental imaging, Versatile machine learning model, Bioimage analysis, Self-
supervised learning, Data challenges

Abstract : This thesis focuses on developing versa-
tile machine learning models for neurodevelopmental
imaging. It covers various aspects, including neurode-
velopmental imaging techniques, bioimage informa-
tics, and deep learning approaches. Neurodevelop-
mental imaging involves capturing data with varying
resolutions, from cell nuclei to complex microscopic
structures, using specialized microscopy techniques.
Bioimage informatics deals with the challenges of bioi-
mage analysis, with a primary focus on image seg-
mentation as a critical task for qualitative analysis.
Deep learning emerges as a superior solution for bioi-
mage analysis, outperforming traditional methods. It
has led to the development of various models and
datasets, enhancing bioimage segmentation, restora-
tion, and denoising. This has also increased the fo-
cus on software tools for model distribution. The the-
sis addresses the limitations and challenges of cur-
rent solutions, particularly the difficulties associated
with supervised learning, which requires fully curated
datasets. The evolution of machine learning is explo-

red, including trends in computer vision tasks and the
pursuit of unsupervised learning, with a specific focus
on self-supervised learning. Self-supervised learning,
driven by self-attention mechanisms, has transformed
deep learning, especially in natural language proces-
sing. It has shown transformative potential and paved
the way for large language models. The core objective
of the thesis is to develop versatile image analysis mo-
dels for bioimages through self-supervised learning,
addressing persistent data limitations. Contributions
include creating a meta-dataset, developing the “bioi-
mageloader” Python library for efficient dataset mana-
gement, proposing a novel self-supervised loss and
resulting “NU-Net” model, and building software tools
for machine learning integration in image processing
pipelines. Collaborations with microscopists and bio-
logists have led to the development of applications.
In summary, this thesis aims to advance neurodeve-
lopmental imaging through versatile self-supervised
machine learning, addressing data-related challenges
and promoting usability and accessibility.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Preface
	Acknowledgement
	Résumé de la thèse en français
	Abbreviations and Symbols
	Introduction
	Microscopy and Bioimage Data
	Neurodevelopmental Imaging Techniques
	Bioimage Informatics and Computer Vision
	Deep Learning Approaches for Bioimages
	Limitations and Challenges of Current Solutions

	General Trends of Computer Vision Solutions
	Supervised Learning Dominates
	Unsupervised Learning is Pursued
	Self-supervised Learning Arrives
	Self-supervised Learning in Computer vision

	Self-supervised Learning in This Thesis
	Generative Model
	Representation Learning

	Objectives of The Thesis

	Supervised learning and Versatility
	How powerful and versatile SOTA supervised models?
	Existing solutions
	Why they failed and What to do next
	Supervised learning in practice

	Bioimageloader: facilitate machine learning for bioimages
	Why bioimageloader?
	Overview
	Technical details

	Versatile supervised learning
	Clustering
	Versatile supervised instance segmentation models

	Conclusions
	Discussions and Perspectives

	NU-Net: Self-supervised versatile CNN filter
	Introduction
	Background
	Related works

	Methods
	Perceptual loss
	Morphological loss
	Data
	Training
	Early NU-Nets

	Results
	Perceiving styles
	Loss curves
	Contrast enhancement
	Controlling filtering magnitude
	Side effect: Long objects
	Application: Napari plugin
	Artifacts and Limitations
	More figures

	Discussions and Perspectives
	Conclusions

	Applications
	Segmenting fibroblasts on human skins
	Workflow integration
	Napari plugin: Proofreading ChroMS Brainbow
	Napari plugin: BigAnnotator

	Segmentation in ChroMS's pipeline

	Conclusions
	General conclusions and Perspectives
	Wider Perspectives

	About me
	Short Introduction to Machine Learning
	Machine learning with Examples
	Population: Regression
	Checkers: Memorization vs. Learning
	Chatbot: Natural language processing and Self-supervised learning
	Handwritten digits: Computer vision and Convolutional layer

	Generative model
	Probability Density Distribution
	Generation Process
	Distance between Distributions

	Artificial neural network
	AI or AGI? Call it simply Deep learning
	Perceptron
	Optimization and Training

	Deep learning in Computer vision
	Deep neural network and Deep learning
	Deep convolutional neural networks

	List of Datasets
	Metric
	[Publication] NU-Net
	[Publication] bioimageloader

