
HAL Id: tel-04483299
https://theses.hal.science/tel-04483299v1

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Music encoding and deep learning for music
transcription and classification based on visually

represented audio features
Charbel El Achkar

To cite this version:
Charbel El Achkar. Music encoding and deep learning for music transcription and classification based
on visually represented audio features. Computer Vision and Pattern Recognition [cs.CV]. Université
Bourgogne Franche-Comté, 2023. English. �NNT : 2023UBFCD054�. �tel-04483299�

https://theses.hal.science/tel-04483299v1
https://hal.archives-ouvertes.fr
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ABSTRACT

Music Encoding and Deep Learning for Music Transcription and Classification
based on Visually Represented Audio Features

Charbel El Achkar
University of Bourgogne Franche Comté, 2023

Supervisors: Raphaël Couturier, Abdallah Makhoul and Talar
Atéchian

In the last decade, new music scores following the occidental genre have been constantly

composed by musicians and many of them are encoded using XML-based formats for

analysis purposes. As for the oriental genre, it lacks the support of XML-based formats

due to the lower interest of digitisation communities. Thus, the inability to process orien-

tal notations and failure to accurately encode the latter genre. The fast growth of deep

learning encouraged both developers and musicians to discover its benefits for the music

domain. This thesis focuses on music genre classification and automatic music transcrip-

tion among many deep learning-related music applications. Consequently, our efforts

for encoding Eastern music and leveraging deep learning for music applications are the

following:

An ontology named MusicPatternOWL is proposed to structure the knowledge extraction

process of a music pattern analysis algorithm for encoding Eastern music scores.

Additionally, the MEI2JSON converter is proposed for transforming MEI-encoded music

scores into JSON format, catering to artificial intelligence pre-processing requirements.

Comparative analysis with two existing converters reveals that MEI2JSON outperforms

the combined approach in terms of data quality and storage efficiency.

In the context of deep learning’s impact on music streaming services, we propose a pre-

processing method for generating Short Time Fourier Transform (STFT) spectrograms

and enhancing a CNN-based music genre classifier. Our approach is benchmarked

against state-of-the-art classifiers, demonstrating superior accuracy scores.
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Furthermore, we introduce two novel networks, TabInception and Inception Transformer

(InT), for guitar tablature transcription. Evaluation against state-of-the-art networks in the

field using Multi-pitch and Tablature metrics reveals that both proposed solutions outper-

form benchmark networks, with InT demonstrating the highest scores in various metrics,

making it the preferred choice.

KEYWORDS: Ontology, Pattern Analysis, Music Information Retrieval, Music Score Con-

verter, Eastern Music, Music Genre Classification, STFT Spectrogram, CNN, Transform-

ers, Music Recommendation Systems, Deep Learning, Computer Vision, Automatic Mu-

sic Transcription, Guitar Tablature Transcription, Constant-Q Transform.



RÉSUMÉ

Encodage de musique et apprentissage en profondeur pour la transcription et la
classification de la musique basées sur des caractéristiques audio représentées

visuellement

Charbel El Achkar
Université de Bourgogne Franche Comté, 2023

Encadrants: Raphaël Couturier, Abdallah Makhoul et Talar Atéchian

Au cours de la décennie écoulée, les nouvelles partitions de genre occidental ont été

constamment composées par des musiciens, et plusieurs d’entre elles sont encodées

à l’aide des formats XML pour les besoins d’analyses. Quant aux partitions de genre

oriental, elles ne peuvent pas être encodées à l’aide des formats XML à cause d’un

manque d’intérêt de la part de la communauté de numérisation, ainsi l’incapacité à traiter

les notations musicales et à coder ce genre avec précision. Le développement rapide de

l’apprentissage profond (deep learning) encourage les développeurs et les musiciens à

découvrir ses avantages dans le domaine musical. Cette thèse porte sur la classifica-

tion des genres musicaux et la transcription automatique de la musique, parmi les nom-

breuses applications musicales liées à l’apprentissage profond. Par conséquent, nous

essayons d’encoder de la musique orientale et tirer parti de l’apprentissage profond pour

les applications de musique à travers :

Une ontologie, MusicPatternOWL, est proposée pour structurer le processus d’extraction

des connaissances d’algorithme d’analyse des séquences musicales pour encoder des

partitions orientales.

De plus, le convertisseur MEI2JSON est proposé pour transformer les partitions musi-

cales codées MEI au format JSON, répondant ainsi aux exigences de prétraitement de

l’intelligence artificielle. Une analyse comparative avec deux convertisseurs existants

révèle que MEI2JSON surpasse l’approche combinée en termes de qualité des données

et d’efficacité du stockage.

Dans le contexte de l’impact de l’apprentissage profond sur les services de streaming mu-
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sical, nous proposons une méthode de pré-traitement pour générer des spectrogrammes

de transformée de Fourier à court terme (STFT) et améliorer un classificateur de genre

musical basé sur CNN. Notre approche est comparée à des classificateurs de pointe,

démontrant des scores de précision supérieurs.

De plus, nous introduisons deux nouveaux réseaux, TabInception et Inception Trans-

former (InT), pour la transcription de tablatures de guitare. L’évaluation par rapport aux

réseaux de pointe dans le domaine à l’aide des métriques Multi-pitch et Tablature révèle

que les deux solutions proposées surpassent les réseaux de référence, InT démontrant

les scores les plus élevés dans diverses métriques, ce qui en fait le choix préféré.

Mots clés: Ontologie, Analyse de modèles, Récupération d’informations musicales, Con-

vertisseur de partition musicale, Musique orientale, Classification des genres musicaux,

Spectrogramme STFT, CNN, Transformateurs, Systèmes de recommandation musicale,

L’apprentissage en profondeur, Vision par ordinateur, Transcription automatique de la

musique, Transcription des tablatures de guitare, Transformation Constant-Q.
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INTRODUCTION

Over the last decade, researchers have been exploring the benefits of their software-

related innovations in the music industry to help musicians in their daily tasks. These

tasks include encoding their musical piece as music scores using markup languages

such as XML for better digitisation and archiving purposes. Having these music scores

in a digital format helps the musicians and the developers create computer-aided tools

that facilitate musicians’ studies across different categories like analysis, encoding, tran-

scription, and classification. The music analysis is performed by retrieving semantic infor-

mation from the music scores and exposing all its underlying music features. The music

encoding consists of adding the pre-analysed features in an explicit form to the music

score for better clustering and similarity studies. Music transcription is the technology

of accurately annotating musical pieces from hard copies to digital music scores. As for

music classification, it consists of grouping the digitised music scores based on several

musical characteristics such as genre, timbre, rhythm, melody, etc. This thesis focuses

on improving the state of the art of Music encoding, transcription and classification. It

presents two main axes: the first axe handles the knowledge extraction and format con-

version of music scores studied on a specific corpus of Eastern music. The second axe

handles music genre classification and automatic music transcription using deep learning

technologies, especially Computer Vision.

This chapter provides an introduction of the previously mentioned axes while explaining

the flow of the thesis for passing from one axe to another, then enumerates briefly the

contributions while ending with a brief outline.

1.1/ MUSIC ENCODING

The journey of seeking digitally aided solutions for music applications started with a col-

laborative project among the engineering and musicology faculties at Antonine University

(UA). This project consists of a music encoding and analysis platform where musicians

7



8 CHAPTER 1. INTRODUCTION

can analyse and interpret traditional modal monodies of Eastern music. The latter pro-

vided lossless analysis to the musicians while providing instant and accurate results that

would have taken longer time and more effort when performed manually. The core of this

platform relied on the Modal Semiotic Theory proposed in [91]. ”This theory offers an

innovative approach to modelling traditional monodies across a vast cultural space that

extends from South Asia to medieval Europe, including modern Greece, Central Asia,

Western Asia and North Africa. It is based on a transformational morphophonological

rhythmic-melodic matrix rewriting of the surface of the monodic segments and on a vec-

tor syntactic transformational rewriting of the same monody, which allows a complete

description of its derivational and integrative elaboration.” As for the platform created,

which we will address as Modal Monodies (MM) analyser in this thesis, behaves as fol-

lows: It expects as input a traditional modal monodies music score encoded in Music

Encoding Initiative (MEI) format [8], analyzes the music scores following the programmat-

ically embedded Modal Semiotic Theory, adds a custom module to the MEI schema to

integrate the analysis of the underlying theory, and finally generated a PDF file showing

the analysis result and the encoding made to the music score as a visual representation.

This output is beneficial for music researchers to understand and analyse this rare cat-

egory of Eastern music. One of MM analyser’s main challenges is that neither the MEI

format nor any other encoding format such as MusicXML [7] can support eastern music

representations due to better interest in occidental music in the global music industry.

Thus, the encoding formats focus on occidental music and lack encoding, analysing, and

representing when working with Eastern music. This challenge motivated us the most to

pursue the study of this music category and provide better support for Eastern music to

help musicians in their analysis studies. It helped us create fruitful contributions that we

will present further in section 1.3.

1.2/ DEEP LEARNING FOR MUSIC APPLICATIONS

The studies held in the music encoding and analysis part helped us improve the sup-

port of Eastern music in the digital encoding domain. Nevertheless, these improvements

concerned the post-representation phase of music scores, meaning that they benefit the

parts of music encoding where music scores are already digitally transcribed using MEI

or MusicXML. Since the majority of Eastern music, especially modal monodies, are rep-

resented only in hard copy versions and due to the lack of support for easily digitalising

this category of music, it was very challenging to gather a minimum amount of music

scores for our deep learning and artificial intelligence (AI) interests in the field. The fast

growth of AI and the high interest of the music industry in benefiting from its capabilities

motivated us greatly to start experimenting in that domain. Thus, we decided to switch
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from the music encoding axe and start learning and experimenting with deep learning

for different usages in music applications. Based on the digitalization problem of Eastern

music and since deep learning requires a lot of data to function correctly and make pre-

dictions accurately, it was decided to search for another music dataset openly available for

experimental studies. Moving from the eastern music dataset to the occidental dataset

digitally available and already exploitable by other research studies, we explored many

deep learning applications such as music genre classification, automatic music transcrip-

tion, multi-instrument audio separation, music generation, etc. This research focuses on

both, music genre classification and automatic music transcription, where we found con-

venient room for improvement due to challenging competitors in some areas as well as

further copyright constraints in others e.g. music generation.

1.3/ MAIN CONTRIBUTIONS OF THIS DISSERTATION

The main contributions in this dissertation fall within the aforementioned phases of mu-

sic encoding and deep learning for music applications. The main contributions can be

summarized as follows:

1. First, we propose the MusicPatternOWL ontology that structures the knowledge

extraction process of a music pattern analysis algorithm for encoding Eastern music

scores. This algorithm consists of the core of the MM analyzer previously presented

(section 1.1). The proposed ontology relies on contextual and descriptive elements

and attributes of music scores to operate the pattern analysis [91, 119]. It supports

the entire music score and its produced pattern analysis to perform information

retrieval and analysis. The ontology is not exclusive to Eastern music. Thus, it can

support other pattern analysis algorithms in the future.

2. Second, we propose the MEI2JSON converter capable of transforming music

scores encoded in MEI to JSON format for pre-processing purposes and future

usage in AI techniques. The converter relies on the MusicPatternOWL ontology

mentioned previously to structure standard music score content in addition to ele-

ments and attributes specific to Eastern music. Thus, MEI2JSON shares the same

support for Eastern music scores as the mentioned ontology.

3. Third, we propose a pre-processing approach for generating Short Time Fourier

Transform (STFT) spectrograms and upgrades to a CNN-based music genre classi-

fier named Bottom-up Broadcast Neural Network (BBNN). The upgrades concerned

the expansion of the number of inception and dense blocks, as well as the en-

hancement of the inception block through reduction block implementation. The pro-
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posed music genre classifier is experimented with the well-known GTZAN and FMA

datasets.

4. Finally, we evaluate the state-of-the-art guitar tablature transcription network named

”TabCNN” against state-of-the-art computer vision networks. We operate the eval-

uation using the same dataset and the evaluation metrics of the tablature transcrip-

tion network. Furthermore, we propose a new CNN-based network named TabIn-

ception to transcribe guitar tablatures. This network relies on a custom inception

block converged by dense layers. Motivated by the fast growth of Transformer-

based networks, we propose a new CNN-Transformer-based network named In-

ception Transformer that relies on an inception block connected to a Transformer

Encoder. The proposed networks, the TabCNN network, and state-of-the-art com-

puter vision networks are evaluated against the GuitarSet dataset to study their

leverage for automatic guitar tablature transcription.

1.4/ DISSERTATION OUTLINE

The rest of this dissertation is organized as follows: Chapter 2 discusses the state-of-

the-art studies on both music encoding and deep learning for music applications while

providing a flow from the first axe to the other. Chapter 3 presents the proposed Mu-

sicPatternOWL ontology, its relation with the previous work of the MM analyzer, and the

utility of such ontology for pattern analysis algorithms. Chapter 4 resolves the issue of

converting an Eastern music score from MEI to JSON without losing the generated anal-

ysis elements and attributes. Chapter 5 suggests improvements in state-of-the-art mu-

sic genre classifiers for achieving top accuracy scores over two well-known music genre

datasets. Chapter 6 proposes a CNN-based network and a hybrid CNN-Transformer

network for guitar tablature transcription. Both propositions were evaluated against the

state-of-the-art guitar tablature transcription network and well-known computer vision net-

works. Last but not least, chapter 7 concludes the work performed in this thesis while

opening new possibilities for future work endeavours.
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RELATED WORK

2.1/ INTRODUCTION

In recent years, a dynamic fusion of technology and music has brought a wave of inno-

vation that has profoundly reshaped the music industry and addressed the continuously

evolving needs of musicians. This harmonious integration of technology and music has

resulted in a spectrum of transformative advances that provide musicians with both cre-

ative opportunities and practical tools in their daily routines. The integration of deep learn-

ing and artificial intelligence into the music industry represents a profound shift. Musicians

and researchers now have the tools to reach deep into the realm of music, exploring com-

plex patterns and pushing the boundaries of composition, analysis and performance. This

convergence is not only transforming the process of how music is created and shared,

but also expanding the horizons of musicians and composers, enabling them to reach

new dimensions in their creative endeavours. In this chapter, we explore the landscape

of related work in two key axes: Music Encoding and Deep Learning for Music Applica-

tions. This comprehensive review will clarify the foundational studies that have informed

this research and guided its contributions. In the Music Encoding axis, Section 2.2 ex-

plores the domain of encoding Eastern music scores using the MEI format, emphasizing

the significance of the Web Ontology Language (OWL) in music encoding and analysis

tools. These insights provided the foundation for developing the MusicPatternOWL ontol-

ogy, our introductory contribution. Section 2.3 builds upon this foundation by examining

various ontologies for music analysis and exploring related work on music score con-

verters for transforming compositions between different formats. We highlight different

converter approaches while focusing on the proposed MEI2JSON converter. Section 2.4

bridges the gap between music encoding and deep learning for music applications by

introducing essential audio features that find visual representation in audio signals. We

discuss their applications and draw insights from related work that directly influenced our

research. In the Deep Learning for Music Applications axis, Section 2.5 presents a syn-

thesis of studies that leveraged visualized audio features (discussed in Section 2.4) for

13
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various music applications. We delve into CNN networks, Transformer networks, and hy-

brid CNN-Transformer-based networks, as these are central to this study. Moving closer

to the domain of music genre classification, Section 2.6 focuses on recent and efficient

approaches using visually aided audio features, particularly spectrograms. We highlight

the application of these methods on well-known datasets like GTZAN and FMA. Section

2.7 explores the domain of automatic music transcription with a specific focus on guitar

tablature estimation. We discuss influential studies and their findings, contributing to the

development of effective guitar tablature transcribers. Lastly, in Section 2.8, we provide

an overview of essential music datasets used in music application experiments, including

those used in our study—GTZAN and FMA for music genre classification and GuitarSet

for guitar tablature transcription. This comprehensive review of related work serves as

a paramount foundation for understanding the context and significance of the research

contributions in subsequent chapters.

2.2/ KNOWLEDGE EXTRACTION AND REPRESENTATION OF MUSIC

SCORES

Many studies were found in the literature to discover the benefits of digitally annotating

and analyzing music scores. A tool for analyzing music patterns was introduced in [83]. It

offers a platform where users can perform quantitative analyses on MusicXML files. The

platform displays an interface where users can search for music scores based on pat-

tern similarity factors. This approach was limited to support many mandatory parameters

(such as dynamics, octaves, and scores with limited notes number). The digitization of

musical analysis theories was found to be a collaborative opportunity between develop-

ers and musicians. Developers provide encoding solutions, while musicians can obtain

precise and efficient analytic results with a reduced amount of time.

Several theory-based solutions took place for analysing music scores and partitions. In

this paragraph, we discuss solutions developed for analyzing music and present contex-

tualised modules added to MEI for enriching the MEI standard schema. The author in [46]

developed a user interface for Schenkerian Analysis, aiming to analyse musical scores

based on the Schenkerian theory proposed by Heinrich Schenker. Challenged by the

complexity of its computer implementation, the authors in [87] developed a solution for

Lerdahl and Jackendoff’s Generative Theory of Tonal Music. The developed solution was

implemented and tested using four different analyzers. The results revealed that FATTA

(Fully Automatic Time-Span Tree Analyser) outperformed ATTA (Automatic Time-Span

Tree Analyser), particularly in the analysis of metrical structures. Additionally, this study

explored optimal clustering in the σGTTM-II analyzer, demonstrating its superior perfor-

mance compared to other methods. Furthermore, the study included comparisons with
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manual analyses by musicologists, highlighting both alignment and variations in results,

emphasising the complex nature of music analysis.

The Text Encoding Initiative (TEI), a standard developed for encoding texts, extended its

support to reach the encoding of music within texts. The TEI encodes texts and music

occurring within texts, considering musical pieces or notes as images [69]. By adding the

notatedMusic element to the TEI, the latter was able to support the inclusion of music

expressed in MEI, a graphical representation of the music or any other format represent-

ing the music [69]. All MEI elements within the notatedMusic element are prefixed with

”mei:”, for example, mei: music [69]. The project described in [84] uses both MEI and

TEI, creating a data model and using both the MEI and TEI for encoding holdings of the

Detmold Court Theatre (1825-1875), providing a catalogue, which was also used as a

searching tool for specific data [84, 151]. The Solesmes module proposed in [43] cap-

tures Solesmes-specific music notation about Gregorian chant. According to [43], while

the MEI supports encoding neume music notation, it lacks certain features specific to

Solesmes neume notation. Therefore, a new module is introduced, adding elements and

attributes to the MEI schema, allowing for a more accurate representation of Solesmes

neume notation features. Another module creation effort was proposed in [60]. It consists

of adding layout-related components in MEI since the latter does not encode information

concerning the layout. The layout module creation enabled encoding information con-

cerning multiple visual representations of the music while keeping the musical content

intact.

A musical analysis theory named ”Modal Semiotics theory” proposes an innovative ap-

proach to traditional modal monodies (T.M.M) across a vast cultural space stretching from

South Asia to medieval Europe, via modern Greece, Central Asia, West Asia and North

Africa [91]. It is based on a transformational morphophonological rhythmic-melodic matrix

rewriting of the surface of monodic segments and on a transformational syntactic vector

rewriting of the same monody, which allows a complete description of its derivational and

integrative elaboration. The semantic component of this grammar is based on its phono-

logical, morphological and syntactic components, with particular emphasis on the vector

semantic modalities inherent in modal syntax. This approach leads to a neurocognitive

perception of the structures revealed by modal semiotic analysis.

Among this vast cultural space of the theory, this thesis focuses on supporting the studies

of the Middle Eastern and Mediterranean cultures. In [119], a semantic-based platform

is proposed to encode and analyse T.M.M . Thus, The encoder analyses T.M.M music

scores by extracting the underlying semantic features, and in the end, adds a custom

module to the MEI schema to provide a explicit visualization of the encoding. It is im-

portant to mention that the extraction process consists of applying two input matrices

that correspond to several combinations of music score patterns. Thus, it is significant to
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develop an ontology to structure the elements of a music score.

Ontologies validate the semantic representation of musical concepts, such as notes,

rhythms, dynamics, instruments, and musical structures. This semantic representation

allows for a more meaningful and machine-understandable description of musical ele-

ments in a score. Music notation software and systems often use different file formats

and data structures. Ontologies help bridge the gap between these diverse systems by

providing a common, standardized vocabulary and structure for representing musical in-

formation. Musicologists and researchers can use ontologies to annotate and analyse

musical scores. They can assist them in exploring the relationships between musical ele-

ments, styles, and contexts. In addition, they enhance the search and retrieval of musical

scores and related resources. Users can query a database or digital library using seman-

tic terms defined in the ontology, thus helping search for specific musical elements and

attributes. Ontologies can inform the development of music notation standards, ensuring

that notation systems remain consistent and expressive while accommodating the needs

of different musical genres and traditions.

2.3/ MUSIC SCORES ORGANIZATION AND CONVERSION

Numerous studies were proposed to develop and manage ontologies related to music

score content. Jones et al. (2017) [110] developed an ontology to semantically annotate

and reason upon Western music scores. The proposed ontology helped in exploring the

benefits of the web ontology language (OWL) in music-related fields. Also, due to the

need to extract knowledge out of music data and manage this extraction process, an

ontology took place in Cherfi et al. (2017) [100] to integrate semantic music elements.

This work helped in normalising the representation of music theories in a way they can

be linked together.

Studies went extensive in the music field, especially when both developers and musicians

found fruitful results in their collaborative opportunities. We proposed an ontology named

MusicPatternOWL (El Achkar and Atéchian, 2020) [150] to cover the structural and be-

havioural aspects of a pattern analysis algorithm for encoding eastern music scores. This

ontology supports the semantic information retrieval and analysis processes of music

score contents. The paper presented a proof of concept of its usage with an algorithm pro-

posed by Abou Mrad (2016) [91] and developed in Asmar et al. (2018) [119] for analysing

and encoding traditional modal monodies of the Mashreq, a unique corpus in eastern

music.

Many music scores are usually encoded using symbolic formats such as MEI (Roland,

2002) [8] and MusicXML (Good, 2001) [7] . These formats and especially MEI, are XML-
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based formats relying on XML schemas to describe the structure of their elements and at-

tributes. This is where frameworks like JXML2OWL took place in Rodrigues et al. (2008)

[26] to manually map XML schemas to existing OWL ontologies and later, automate the

transformation of XML instances into individuals of the mapped ontology. These frame-

works helped efficiently transform the syntactic representation of data (using XML) to a

semantic one (using OWL). This transformation provided the ability to perform inference

on a knowledge-based model for better data exchange and integrity. Another mapping

solution was to develop (Lacoste et al., 2011) [44] an efficient framework for generating

ontologies automatically out of XML instances. This framework helped in creating a good

description of the OWL model and XML instance files. The introduction of both manual

and automatic mapping frameworks (between OWL ontology and the XML schema) al-

lowed accessing XML encoded data from Semantic Web applications that are already

connected to OWL ontologies. This is where frameworks like SPARQL2XQuery took

place to accentuate the adjacency and interoperability of both OWL and XML. Therefore,

the proposed framework (Bikakis et al., 2009) [28] was able to evaluate SPARQL queries

over XML data after mapping XML to OWL Schemas.

Mapping frameworks were inspirational especially when the transformation rules between

XML and OWL Schemas could be saved and reused upon demand by storing them in

XSL stylesheets. The usage of XSL files as the holder of mapping rules encouraged their

employment in multiple data format converters, by the fact that they will ensure data con-

version without losing data quality through the direct mapping between schemas in terms

of datatypes and property rules. As for music-related research, a toolkit named music21

took place in Cuthbert and Ariza (2010) [32] to provide software tools for both musi-

cians with little programming experience and to programmers for analysing, searching

and transforming music scores in symbolic forms. This toolkit did not use XSL stylesheets

but provided several conversion supports to its specific format. This project supports the

conversion of several symbolic formats including MEI, MusicXML, and MIDI (The MIDI

Manufacturers Association, 1995) [3]. With the evolution of the MEI format, Verovio, a

music engraving library was developed by Pugin et al. (2014) [76] to provide a visual

representation of music scores encoded in MEI into SVG. This library also provided the

capability to convert MusicXML to MEI and vice-versa based on the MEI XSL stylesheets

available on the MEI encoding tools on GitHub (https://github.com/music-encoding/music-

encoding).

The conversion via Verovio had limited capabilities, it focused on the main elements and

attributes of music scores while excluding others. Also, an MEI-related conversion frame-

work named Meico took place in Berndt et al. (2018) [121] to provide a novel tool that

processes MEI-encoded music scores. Meico helped in converting MEI data to multiple

symbolic formats like MusicXML. The conversion was based on the same XSL stylesheets

used in Verovio where it also lacked the conversion of all the elements and attributes of a
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music score encoded in MEI. Another study presented in Alvaro and Barros (2010) [30]

focused on developing a music composing system named Computer Music Cloud (CMC)

as well as a suitable data representation format named MusicJSON to efficiently compose

and store music scores in the computer music cloud. The MusicJSON was considered

a music interchange tool between different services of the CMC. It was used also as a

music data unification tool by converting several symbolic formats including MusicXML to

a music representation format in JSON.

While there isn’t a specific tool for converting MEI directly to JSON, this process is still

achievable using generic programming languages to parse MEI files and extract the de-

sired information in JSON format. Below we list the most common methods for achieving

MEI to JSON conversion, along with the major drawbacks of each method.

The first method would be custom scripting, which consists of writing custom scripts in

a programming language such as Python or JavaScript to parse MEI files and convert

them to JSON. Common XML parsing libraries can be used in this case, such as lxml

[9] and BeautifulSoup [22], which are commonly used for web scripting utilities such as

data crawling and web scraping. The disadvantages of the latter approach are the lack of

capacity to handle all MEI documents and to keep up with changes to the MEI and JSON

schemas.

The second method is the idea of converting the score from MEI to the most common

format called MusicXML [32, 76] and then converting the MusicXML to JSON. The disad-

vantage of such an approach is that multiple conversions may result in the loss of some

MEI-specific information since the MusicXML format is not able to encode all the schema

details of the MEI format.

The third and final method is to use a combination of existing converters, such as using

the converter proposed in [121] to achieve the first half of the conversion, and then using

the converter proposed in [30] to process the result of [121] and achieve MEI to JSON

conversion. The main drawback of this method is the limited coverage of such converters

to encode new variants and updated schemas of MEI, which affects the output quality of

the combined approach.

The most common and essential drawbacks of all the latter methods are the challenge

of continuously changing the configuration of the converters to support MEI schema

changes, as well as the loss of semantic information when converting music data from

one format to another where some music notations, elements and attributes are not avail-

able. To address these challenges, an effective solution involves the use of ontology-

based approaches. These approaches provide a structured and adaptable framework for

representing music data, allowing ontologies to evolve along with schema changes. The

use of ontologies significantly optimises the ongoing reconfiguration process and offers a

promising solution to these persistent problems.
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2.4/ FROM MUSIC SCORES TO VISUALLY REPRESENTED AUDIO

FEATURES

In this section, we will discuss essential audio signal processing techniques to extract

visual representations of the music datasets. These visual representations serve as vital

preprocessing steps and play a fundamental role in enabling our deep learning-related

contributions, particularly within the domain of computer vision. Also, we will elaborate

on our motivation for handling audio data as a computer-vision use case, found to be an

unconventional approach for this type of data.

Taking a detour to define audio signal processing and highlight its visual representation

studies, this field consists of the analysis and transformation of audio signals represented

in digital forms. It includes various techniques and algorithms for extracting, modifying

and visualizing information from audio data. Audio signal processing can be used as a

converter from audio to visual representation for various audio-related use cases, such as

music analysis [20, 59, 13], speech recognition [57, 64, 41], sound synthesis [37, 2, 34],

music generation [115, 133, 104], etc.

Audio signal processing consists of the following steps:

The first step, Data Acquisition, concerns capturing analogue audio signals using a micro-

phone or other audio-capturing sensors and converting them into digital form for further

processing [5]. This step involves analogue-to-digital converters (ADCs) to transform con-

tinuous analogue audio signals into discrete digital samples [24]. The result of this step

is digitised audio data represented as a time-domain waveform, where amplitude values

are recorded depending on the time.

The second step, Digital Signal Processing (DSP), involves applying several techniques

for modifying and analysing digitised audio data [21]. This step is widely exploitable by

researchers where a wide range of studies can be performed such as filtering, equal-

isation, compression, and effect processing [36]. The majority of DSP studies rely on

Fourier transforms for passing from time domains to frequency domains, as well as filter-

ing through convolution and basic mathematical operations over audio samples.

The third step, Feature extraction, identifies and extracts relevant parameters from audio

data for better interpretation and visualisation. This step is essential for deep learning

studies since it reduces the dimensionality of audio data while preserving the needed

information only. Thus, it is considered a pre-processing technique for AI use cases [65,

93, 108]. The extracted features consist of three categories: domain features, frequency-

domain features, and time-frequency features. We will showcase the most used and

beneficial features in the upcoming step while providing a visual representation of each

feature.



20 CHAPTER 2. RELATED WORK

The fourth and last step, Visualization, involves the previously extracted features in a

visual format to provide assistance for analysis, interpretation, or use of case studies.

This step is influential for quality control and debugging especially in applications like

music production, audio analysis, or anomaly detection through audio surveillance.

In the following, we display common audio feature visualization processed on a 30 sec-

onds Blues music from the GTZAN dataset [6]. These visualisations represent an essen-

tial preprocessing phase, which we will discuss in more detail in subsequent sections.

These steps are essential for preparing the data to feed into deep learning models, which

we utilise extensively for various analytical studies, including music classification and tran-

scription, both of which are central to this study.

Figure 2.1: Waveform Visualization of a Blues Track in the GTZAN Dataset

1. Waveform, is a visual representation of the audio signal that shows the amplitude

of the signal as a function of time. The vertical axis of the waveform represents the

intensity of the signal, usually measured in decibels (dB), while the horizontal axis

represents time, usually measured in seconds. The shape of a waveform varies de-

pending on the sound being represented. Common waveform shapes include sine

waves, square waves, triangle waves and complex waveforms (see figure 2.1) which

are a combination of different frequencies and amplitudes. Although waveforms are

a basic visual representation, researchers have not been interested in exploiting

this visual representation because the community is interested in analysing and

processing the signal, not just the basic representation of audio signals. Neverthe-

less, the music industry, and producers in particular, rely heavily on the waveform
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of the signal to identify and manipulate specific parts of the signal, such as cut-

ting, copying and pasting, or applying special effects to different parts of the signal

[55, 166, 31].

2. Mel-Frequency Cepstral Coefficients (MFCCs), are a set of features that repre-

sent the spectral characteristics of an audio signal. The Mel scale is a perceptual

pitch scale that approximates the human auditory system’s response to different

frequencies. MFCCs are computed by dividing the audio signal into small overlap-

ping frames and applying a series of filters spaced according to the Mel Scale to

produce a filter-based spectral energy representation. The output of the previous

step is compressed using the mathematical logarithmic scale for better perception

of the loudness of the audio signal. Finally, a Discrete Cosine Transform (DCT) is

applied to the result to decorrelate the coefficients and reduce the dimensionality of

the extracted feature. The resulting coefficients are the MFCCs (see figure 2.2).

Figure 2.2: Mel-Frequency Cepstral Coefficients Visualization of a Blues Track in the
GTZAN Dataset

In short, MFCCs are popular in various audio processing applications such as

speech recognition [1, 63, 82], music information retrieval [4], and other audio-

related tasks such as music genre classification [10] and music transcription [66]

due to their efficiency in capturing spectral information while reducing the dimen-

sionality of the feature vector.

3. Spectrogram, is a visual representation of the spectrum of frequencies in an audio
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signal as they vary with time. The time is represented on the horizontal axis, while

the frequency is on the vertical axis. The intensity of the frequencies at a given time

is represented in colors or shades. The low-level frequencies are colored in light

colors and the high-level frequencies are colored in dark colors. Spectrograms can

be used for a variety of applications in audio processing. They are flexible in helping

us visualize and compute many audio features such as the MFCCs shown earlier

in figure 2.2, the Short Time Fourier Transform presented in the figure 2.3 and used

in our contribution [165], as well as the constant-Q Transform (CQT) (figure 2.4),

and many more. Since our contributions exploited STFT and CQT spectrograms

the most, it is important to explain both techniques.

Figure 2.3: STFT Spectrogram Visualization of a Blues Track in the GTZAN Dataset



2.4. FROM MUSIC SCORES TO VISUALLY REPRESENTED AUDIO FEATURES 23

Figure 2.4: CQT Spectrogram Visualization of a Blues Track in the GTZAN Dataset

STFT is a technique to transform time-domain signals into time-frequency represen-

tations. It works by dividing the signal into small overlapping time frames and per-

forming a Fourier transform on every frame. Unlike STFT, CQT relies on a logarithm-

spaced frequency scale to transform time-domain signals into time-pitch represen-

tations. This provides a better frequency resolution at lower frequencies found to be

useful for music analysis purposes. The choice between STFT and CQT depends

on the analysis task. STFT are more commonly used in general audio signal pro-

cessing due to its versatility [99, 33], while CQT is preferred in perceptual-related

tasks [59], such as pitch detection and musical note transcription [51].
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Figure 2.5: Chromagram Visualization of a Blues Track in the GTZAN Dataset

4. Chromagram, is a representation of the twelve music pitches in an audio signal. It

provides a method to summarise the distribution of musical notes in a specific audio

signal. Each bin in the chromagram corresponds to one of the twelve pitches (C,

C#, D, D#, E, F, F#, G, G#, A, A#, B) and the values inside each bin represent the

energy of that pitch in the audio signal.

Chromagrams are created by computing the previously mentioned STFT spectro-

grams at the first stage. The energy of each pitch class is then computed by group-

ing the bins of the spectrogram that fall within the same pitch range. Thus, the

spectrogram bins are grouped by the twelve different pitch classes. The values of

the chromagram are then normalized to ensure a relative pitch energy among each

pitch class, and a logarithmic scale is applied in the end to provide a realistic human

perception of each present pitch class (see figure 2.5). Chromagrams are generally

exploitable in music analysis tasks [174, 42], melody or pitch extraction [61, 140],

and chord recognition [14, 112].
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Figure 2.6: Common Audio Features Visualization of a Blues Track in the GTZAN Dataset

The audio feature visualizations presented above are the features that we leverage the

most in this study. Nevertheless, other common features can be exploited out of the audio

signal. Figure 2.6 gathers all these features together while showing their visualizations

when processed over the same Blues track used across this section. We will list these

features below while mentioning the best studies that leveraged them.

Pitch Contour is a rendering of the fundamental frequency (F0) variations over time in an

audio signal. F0 is the frequency of the lowest harmonic in a sound wave. It corresponds

to the perceived pitch of a sound. The pitch contour visualization is used in several audio

and music processing tasks such as speech processing [16], music analysis [61], and

emotion recognition [39]. It helps identify specific audio characteristics like the melody,

intonation patterns in speech [68], and other musical or prosodic features [72].



26 CHAPTER 2. RELATED WORK

Zero Crossing Rate (ZCR) is a visual representation of how many times the signal

crosses the 0 dB (from negative to positive or vice versa) in addition to the rate of this

crossing within a given time frame. This feature is mostly useful for speech and music

analysis [185, 27] tasks due to the information that it provides concerning the frequency

distribution as well as the periodicity of the signal. Since the ZCR feature is very specific, it

is often combined or leveraged alongside other features to extract useful information from

the audio signal [86]. It can also be used in broader tasks such as electrohysterogram

signals in [175] or speech analysis for medical diagnosis in [177].

Energy Envelope is the representation of the energy (also known as magnitude) varia-

tions in an audio signal as a function of time. While there aren’t any major researchers

who have relied on this feature extensively, it remains a very useful feature for speech

and music analysis and is embedded in most music production platforms [166, 55]. An

interesting use of the latter feature is to perform envelope extraction. This extraction is

often used in voice activity detection systems to distinguish between speech, silence, and

background noise in an audio signal [48, 192]. It can also help in speaker identification

tasks to identify and separate different speakers in an audio recording [176]. The energy

envelope helps by segmenting the audio into speaker-related locations.

Spectral Centroid represents the weighted average of the frequencies present in an

audio signal’s spectrum. This audio feature can be calculated using the following mathe-

matical formula :

S C =
∑

f ( f ·S ( f ))∑
f S ( f )

f representing the frequency of the spectral component. S(f) is the energy or magnitude

of the spectral component at the given frequency f. The result given in the SC variable is

the sum of all the frequencies multiplied by their corresponding magnitude over the sum of

all magnitudes. Similar to previous features, the Spectral Centroid is often used in audio

classification [186, 181], speech processing, and music analysis applications [194, 195].

Spectral Bandwidth is the feature that measures the range of the frequencies present

in the audio signal. A common way of calculating the Spectral Bandwidth is by adopting

the standard deviation of the frequencies in the signal. It can be calculated using the

following mathematical formula :

S B =
√∑

( fi− fmean)2

N
f i represents individual frequency components in the spectrum, while f mean is the mean

frequency of all frequency components, and N is the total number of frequency compo-

nents. While this audio feature has not been exploited as a key feature for audio-related

research fields, it remains available in processing libraries such as [196, 193] for music

analysis purposes.
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Spectral Contrast is a feature that interprets the difference in magnitude peaks and val-

leys in the audio signal’s spectrum. It measures the degree of contrast between different

frequency bands in a spectrogram. Computing the Spectral Contrast can be performed

by first dividing the audio signal into frames of equal duration sizes. The STFT technique

is then applied to each frame to compute the magnitude spectrum. Last but not least, the

resulting spectrum is divided into frequency bins where the spectral contrast can be cal-

culated by differentiating the maximum magnitude in a frequency bin from the minimum

magnitude of the adjacent frequency bin.

Some insightful usages of this feature are combining it with other features to classify

emotional states [164, 163], or adopting the combining approach for music-related studies

such as music genre classification [19].

Spectral Flux is the feature that measures how swiftly the energy distribution evolves in

the frequency domain from a time frame to its adjacent. It can be calculated by computing

the squared Euclidean distance between the magnitude spectrum of the current frame

and the magnitude spectrum of the previous frame. The spectral flux is typically computed

for each time frame of the audio signal, thus resulting in a time series of spectral flux

values that describe the spectral changes over time. This feature is often used to detect

onset events for music analysis purposes [52, 77, 23].

Spectral Rolloff is the feature used to represent the shape of the spectral distribution

of an audio signal. It is defined as the frequency below which a specified percentage

of the total spectral energy is located. The latter frequency represents the threshold in

the frequency spectrum below which the specified percentage of energy is concentrated.

Spectral Rolloff is used in audio-related tasks that rely on the distribution of energy in the

frequency domain. Some interesting applications of the spectral rolloff feature include

speech recognition [137], audio classification [67, 58], and musical instrument classifica-

tion [157, 62].

When explaining the previous features, we defined some as representing energy and

others as representing magnitude. These two measures are related to the field of audio

signal processing, but they are not the same. Both provide information about the ampli-

tude of the signal. However, energy measures the overall power of the signal over time,

while magnitude measures the instantaneous amplitude at a given point in time. Mathe-

matically, the energy is calculated by summing the squared values of the signal samples.

As for the magnitude, it is the absolute value of each sample in the signal.
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2.5/ COMPUTER VISION FOR MUSIC APPLICATIONS

The processed audio features to visual representations presented in the section 2.4 are

key elements for the use of Computer Vision (CV) in this domain. They provide visual rep-

resentations of audio data, which can then be processed and analysed using computer

vision techniques for various purposes in music applications. Computer vision is an inter-

disciplinary field of artificial intelligence that aims to replicate human visual perception by

extracting meaningful data or features from visual data. Therefore, in the music applica-

tion context, CV refers to processing visual data associated with music-related content,

such as spectrograms and chromagrams.

We present the three main practices of computer vision in music:

The first practice, music transcription, corresponds to the conversion of musical record-

ings into symbolic notations, such as sheet music [8, 7] or MIDI files [3]. This practice

is essential for music education, analysis and the creation of new arrangements. A ma-

jor project called ”Magenta” was initiated by Google, where several researchers studied

music transcription using deep learning models. They demonstrated the use of WaveNet

[93], CNNs and deep generative models [132] for music transcription tasks. The latter

project involved note detection, where CV models are trained to detect musical notes

and their corresponding attributes within spectrograms. The extracted knowledge can

then be used to transcribe music into symbolic notation. Another initiative in this area

is the use of Transformer-based models [187] for polyphonic music transcription, which

corresponds to the transcription of multiple instruments played simultaneously in a music

recording [191, 198].

The second practice, music classification, involves sorting music recordings into differ-

ent categories (genres, instruments, etc.). This practice is valuable for music recom-

mendation systems in music streaming services (Spotify, Anghami, Deezer), where such

classification can help organise content and predict new music to play based on user

preferences. An insightful approach to music classification is to extract visual features

from album covers using CV models [45]. The extracted features can be combined with

other audio features to detect the genre or mood of the music [103]. While some re-

searchers have relied on visual features alone, others have combined both audio and

visual information, such as music videos and album art, to achieve an improved version

of their classification models [92]. This combining technique is also called multimodal

fusion, where information belonging to different modalities can be integrated for a con-

verged purpose [117, 173]. Last but not least is the use of computer vision techniques

to facilitate the analysis and classification of rendered audio features based on acoustic

characteristics [159, 171].

The last practice, music generation, involves creating new music compositions based
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on previously trained music datasets. This practice is reflected in several applications

such as music composition and soundtrack creation for cinematic movies. Some music

generation efforts include symbolic music transcription where both Variational Autoen-

coders (VAEs) and Generative Adversarial Networks (GANs) are used as CV-based net-

works to achieve multi-track music generation [122]. Other efforts relied on both CNN

and transformer-based networks to generate coherent music compositions by modelling

dependencies in music sequences [126, 154].

While mentioning the main practices of computer vision for music applications, several

research studies were cited. These citations presented different classes of deep learning

for music-related applications. Some researchers relied on CNN and Transformer-based

networks, while others relied on VAEs and GANs. Since our thesis focuses the most

on CNNs and Transformers, we will elaborate on each in the following, while mentioning

some of their most efficient usages in music applications. Also, we will elaborate on the

most recent studies that leveraged combining both CNN and Transformers networks, as

we did in our guitar tablature transcription contribution developed in Chapter 6.

Convolutional Neural Networks (CNNs) are a class of deep learning designed to process

images and, in our case, spectrograms. CNNs have a great ability to automatically extract

hierarchical features from raw pixel data using their many layers. These layers include,

but are not limited to, convolutional layers, pooling layers, and fully connected layers.

Convolutional layers are small filters applied to the input image to extract local patterns

or features. They are reliable for capturing low-level details such as edges, textures and

shapes. In the music context, this behavior is essential to capture the harmonics and

the beat from the spectrogram, which often resides in the lowest part of the spectrogram

[168, 165]. The pooling layers are the downsamplers of the data to reduce its spatial

dimension. They are used as essential layers to minimise the networks’ complexity and

to avoid overfitting scenarios. The deeper the network, the greater its ability to compute

complex features. Thus, we rely on fully connected layers to ensure a connection among

all neurons of the networks and learn global patterns that help us predict accurate results.

The researchers have exploited CNN-based networks in many music applications that we

have already cited in this chapter. We elaborate below on some of the studies that had an

influential impact on this research field. A paper proposed in [101] explored various CNN

architectures to achieve music classification as well as content-based music recommen-

dation. Other studies leveraged CNN for achieving instrument recognition [89]. Moreover,

studies went broader in the field, where some researchers were interested in modelling

the body and finger movements of musicians when they perform music [152].

Transformers are a class of deep learning originally introduced for Natural Language Pro-

cessing (NLP) use cases [118]. The latter class relies on a self-attention mechanism that

enables the modelling of complex dependencies in data. The self-attention mechanism
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is responsible for computing weighted sums of all elements in the data sequence based

on their relevance to each other. This mechanism allows each element in the sequence

to examine the importance of the remaining elements. Transformers enable analytical

decision-making by using multiple attention heads to capture different dependencies and

features in parallel. The analysis of elements per sequence in Transformers is not exe-

cuted in a mathematical order. Therefore, they use positional coding at the input layers of

the network to provide order information about each element.

The positive impact of the Transformers in NLP-related use cases encouraged re-

searchers to adopt this deep learning class in the vision domain. These studies were

also reflected in music applications since it can be seen from a mathematical point of

view as a data series of notes, making it an approachable field with NLP studies. A

Transformer-based network took place in [126] to reduce the intermediate memory re-

quirement to linear in the sequence length of Transformers. The latter approach proved

its capability to generate minute-long music compositions while being evaluated using

the JSB Chorales [54] and the Piano-e-Competition [142] datasets. Inspired by the se-

quence modelling capabilities of Transformers, another music-related study took place in

[154] where it created a Pop Music Transformer that can compose piano music of the Pop

genre with improved rhythmic structure with regard to previous efforts.

As enlisted previously, both CNNs and Transformers have a great contribution in multiple

music application use cases. CNN-based networks can efficiently capture the local pat-

terns and features through convolutional layers for classification tasks. They typically in-

volve fewer training parameters than Transformers, making them the convenient approach

for resource-constrained devices, such as mobile applications. Transformers-based net-

works can capture global context information efficiently making them suitable for music

generation tasks. Also, Transformers require fewer preprocessing steps in comparison

with CNNs, which is helpful in versatile use cases such as speech recognition.

Consequently, CNNs are ideal for tasks involving spatially structured data with local pat-

terns, while Transformers are more suitable for sequential data.

The clear advantages of CNNs in capturing local features and the advantages of Trans-

formers in perceiving global dependencies encouraged the researchers to study a com-

bination of both networks for various use cases. A hybrid model that combines CNN

and Transformers was proposed for decoding motor imagery Electroencephalography

(EEG) signals. The results showed that the created CNN-Transfomer model is a compet-

ing strategy for improving EEG classification use cases [190]. Another network named

CTC-NET relied on combining a CNN-based network with the decoder of the Swin Trans-

former [169] for image segmentation studies. The proposed network surpassed CNNs

and Transformers performances on different medical applications, including multi-organ

segmentation and cardiac segmentation [202]. A further study on multi-organ segmen-
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tation led to create the CoTr network for achieving accurate 3D medical image segmen-

tation. This approach bridges CNN and Transformers’ efforts to achieve a recognisable

solution for processing high-resolution 3D feature maps. Likewise, a combination of CNN

and the Swin Transformer networks created a pyramid structure network for feature en-

coding and decoding [201]. This approach proved its importance while outperforming

state-of-the-art image segmentation methods on breast ultrasound lesion datasets. On

the path to creating resource-efficient networks for mobile vision applications, another hy-

brid network named EdgeNeXt took benefit from combining CNN and Transformers. The

proposed network was able to outperform the well-known MobileViT network in terms of

accuracy score [199]. The leverage of image super-resolution in many industrial fields,

such as medical diagnosis by providing a detailed image through their zoom abilities or

surveillance and security by enhancing image details for forensic analysis, encouraged

researchers to apply the hybrid approach to such techniques [183]. Last but not least,

a recent hybrid approach took place to provide quality assessment for full-reference and

no-reference images. The approach relied on combining a Vision Transformer [149] En-

coder with a CNN-based decoder for quality estimation. The proposed solution achieved

great results over all the datasets used in the paper [203].

As shown in the previous paragraph, many researchers studied the leverage of a network

combination in different areas, where the majority resulted in fruitful improvements in their

corresponding domains of use. However, and to the best of our knowledge, there haven’t

been any CNN and Transformer combination efforts for music-related applications.

The deep learning contributions of our thesis had two different approaches. The first ap-

proach relied on CNN-based only to achieve music genre classification, and the second

approach leveraged a CNN-based approach and a hybrid CNN-Transformer-based ap-

proach to achieve automatic music transcription. The common point between these two

approaches is the fact that their CNN-based improvements were inspired by the architec-

ture of the well-known Inception network [81], and precisely the 4th version of it [116]. We

list below the best efforts related to Inception for music applications while explaining the

advantages of each version in comparison with its precedent.

The Inception network or GoogLeNet is a CNN-based architecture built by the Google

research team for image classification and object detection tasks. The inspiration behind

this network is the idea of creating multiple filters with multiple scales to capture differ-

ent depth views of the same feature in an image. The Inception network then relies on

convolutional layers and pooling layers both in parallel at the same layer level to capture

fine-grained and large-scale features simultaneously [81]. The first version, Inception v-1,

was considered computation-efficient since it consisted of fewer parameters than other

deep learning networks. It introduced a parallelism behavior for convolution and pooling

layers before being fed to the next layer in a concatenated form. This parallelism behavior,
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also known as the Inception module, helped reduce overfitting scenarios [162, 161]. The

added value that the Inception network was able to bring led to the release of improved

versions for achieving better performances. The Inception-v2 introduced the ”Batch Nor-

malization” layer for training stability and faster convergence. It also implemented fac-

torized convolutions to reduce the computational cost [79]. The Inception-v3 proposed

replacing big convolutional filters with multiple filters of smaller size to reduce complexity

[96]. Inception-v4 introduced the concept of ”reduction blocks” to reduce spatial dimen-

sion and increase efficiency. It was also combined later on with a residual connection

to increase performance and achieve faster convergence. This version was known as

Inception-ResNet [116]. Furthermore, some minor design refinements were made in the

same version and a last combination was proposed with Feature Pyramid Network (FPN)

[111] for object detection usages.

As for the implementation of Inception Networks in music-related applications, a CNN

architecture based on Inception v2 and v3’s improvements took place to achieve music

genre classification over the GTZAN [70], Ballroom [11], and Extended Ballroom [90]

datasets. The proposed approach accentuates the role of multi-scale time-frequency

information extraction from spectrograms to discriminate the genre of unknown music

recordings [168]. Another approach leveraged the use of Residual-Inception blocks for

music emotion classification. The proposed contribution takes Mel-spectrogram as input

parameters and takes advantage of Inception’s reduced complexity to design a music

playback algorithm [189]. Interested in the field of music information retrieval, a network

of 1D CNN with the Inception-GRU structure took place to extract features of different

dimensions and perform music compression and decompression tasks for music emotion

recognition purposes [197]. As for audio classification studies, an effort to test pre-trained

ImageNet standard CNN models ( Inception, DenseNet [109], ResNet [88]) showed that

they can achieve state-of-the-art results when tested over the UrbanSound8k and the

GTZAN dataset. This approach relied on generated Mel-spectrograms out of the audio

dataset as input features to the CNN networks [156]. An effort to generalise broadcast

networks for music streaming services investigated many variants of broadcast networks

including inception schemes. The experiments showed that such variants can efficiently

localise temporal features for music classification use cases [184]. They achieved state-

of-the-art results over the GTZAN [6], Free Music Archive (FMA) [85], HOMBURG [15],

and Extended Ballroom [90] datasets. Intrigued by the huge amount of songs released

on music streaming services, a study for music information retrieval took place by exam-

ining harmonic-percussion source separation, the Mel-spectrogram and the modulation

spectrogram for the feature extraction stage, and different versions of an inception block

for nonlinear features. The proposed model achieved the best accuracy in comparison to

its related work [178].
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2.6/ MUSIC GENRE CLASSIFICATION USING COMPUTER VISION

Our previous work and interests in creating the MEI2JSON [182] converter while relying

on the proposed MusicPatternOWL [150] ontology helped us understand the importance

and the benefits of ensuring a lossless data extraction, conversion, and processing so-

lution for further usages. Our path of pursuing the studies over Eastern music scores

was interrupted by the fact that this music genre lacked digital availability compared to

occidental music, where a sufficient number of music scores is digitally ready to be used

in experimental studies such as deep learning. At this stage, we were interested in ex-

periencing the impact of deep learning on the music industry. Thus, it was decided to

search for publicly available open-source occidental music datasets to pursue our first

deep learning experiment, music genre classification.

Many studies took advantage of deep learning technologies to build efficient music genre

classifiers. They adapted visual-related features (audio spectrogram) to build CNNs for

audio classification tasks [105, 78, 97]. The audio data is converted to spectrograms and

used as input features to CNN classifiers. These spectrograms are the visual represen-

tation of the spectrum of frequencies of the audio signal. In this thesis, the proposed

contribution is validated through experimental results. These experiments are applied

using both the GTZAN dataset [6] and the FMA dataset [85]. Thus, the most recent and

relevant experiments on the two datasets are presented below.

Starting with GTZAN-related contributions, a framework achieved an accuracy of 93.7%

over the GTZAN dataset by producing a multilinear subspace analysis. It reduced the

dimension of cortical representations of music signals [35]. Further studies took profit

from DNNs and CNNs to try to reach higher accuracies over music datasets. Inspired by

multilingual techniques for automatic speech recognition, a multilingual DNN was used in

[78] for music genre classification purposes. It was able to achieve an accuracy of 93.4%

through 10-fold cross-validation over the GTZAN dataset. Several approaches used CNN-

based networks but were not able to exceed the accuracy of 91% such as [105, 97, 102,

141]. Others tried refining their results by overcoming the blurry classification of certain

genres inside the GTZAN dataset. Their study did not surpass the accuracies mentioned

previously [128]. After several attempts to outperform the accuracy reached in [35], three

literature studies succeeded in using Mel spectrograms as input features to their DNNs.

The use of convolutional long-short term memory-based neural networks (CNN LSTM) in

combination with a transfer learning model helped in achieving an accuracy of 94.20% in

[124]. As for the two remaining academic efforts, the BBNN network proposed in [168]

was able to achieve an accuracy of 93.90% by fully exploiting Mel spectrograms as a

low-level feature for the music genre classification. The GIF generation method proposed

in [172] was able to achieve the highest accuracy of 94.70% by providing efficient audio

processing for animated GIF generation through acoustic features. Although this dataset
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has several faults [70], it is still the most dataset used in music genre classification use

cases. These faults are taken into consideration in the preprocessing process that we will

develop in later sections. Concerning the FMA-related scholarly contributions, a method

of vertically slicing STFT spectrograms took place, in addition to applying oversampling

and under-sampling techniques for data augmentation purposes. This method achieved

an F-score of 62.20% using an MLP classifier [138]. Another study trained a convolutional

recurrent neural network (C-RNN) using raw audio to provide a real-time classification of

FMA’s music genres. It achieved an accuracy of 65.23% [147].

Motivated by FMA’s challenges, an approach of two Deep Convolutional Neural Networks

(DCNN) was proposed to classify music genres. The first DCNN was trained by the

whole artist labels simultaneously, and the second was trained with a subset of the artist

labels based on the artist’s identity. This approach achieved an accuracy of 57.91%

taking Mel spectrograms as input features to the DCNNs created [114]. Moreover, a

method proposed in [141] took advantage of Densely Connected Convolutional Networks

(DenseNet), found to be better than Residual Neural Networks (ResNet) in music classi-

fication studies. It achieved an accuracy of 68.20% over the small subset of FMA.

The extensive research on music genre classification, particularly on the GTZAN and

FMA datasets, has provided valuable insights and findings that serve as a solid founda-

tion for our upcoming discussion. In light of these research contributions, we are inspired

to present a novel music genre classifier that builds on the insights we’ve gained and

takes us a step further in improving music genre classification. Key factors such as the

selection of appropriate visual-audio features and their pre-processing techniques, the

use of a CNN network with densely connected layers, and the use of the powerful Incep-

tion network have emerged as critical findings. These findings will play a central role in

guiding our exploration as we explore the details of this classifier in chapter 5.

2.7/ GUITAR TABLATURE ESTIMATION USING COMPUTER VISION

The experiments held in the music genre classification field [165] helped us understand

the leverage of deep learning and especially computer vision in such techniques. How-

ever, the quest to make substantive contributions in this area has been challenging,

largely due to the high level of commitment from prestigious research institutions. This

led us to take a deliberate detour and shift our focus to identifying areas within deep

learning where we could make distinctive contributions. Our investigation involved music

generation, music composition and transcription, multi-instrument music separation, as

well as many recent areas of interest until we reached the automatic music transcrip-

tion field, especially tablature transcription of the string-based instruments (guitar, lute,

vihuela, etc.).
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Many studies are proposed for automatic tablature transcription, but only a few seek to

detect the real fretting of the guitarist. One of the first approaches leverages the funda-

mentals and partials for candidate pitches to determine the most used string per pitch,

I. Barbancho et al. (2012) [50]. This approach is limited to detecting no more than four

pitches sounding simultaneous. Two years later, a system for applying the Blind Har-

monic Adaptive Decomposition Algorithm was developed to classify several performance

parameters, including the detection of the note’s guitar string, implemented in Fuentes et

al. (2012) [56]. This system is not evaluated for framewise tablature estimation. Neverthe-

less, it is considered an insightful approach for multi-pitch estimation and guitar tablature

estimation.

Additionally, several studies focused on the guitar in their pursuit of automatic transcrip-

tion. For instance, A. M. Barbancho et al. (2012) [49] transcribed guitar chords and

fingering using a hidden Markov Model, while Humphrey and Bello (2014) [73] took the

benefit of a convolutional neural network (CNN) model to achieve chord recognition.

The results of the latter approach encouraged the researchers to take advantage of CNN

for similar music-related tasks. A combination of a CNN for framewise acoustic modelling

and a recurrent neural network (RNN) model is proposed for piano transcription in Sigtia

et al. (2016) [95].

The use of neural networks for music-related tasks helped in providing solutions for tabla-

ture arrangement problems (Tuohy et al. (2006) [18]). It tackled various music information

retrieval tasks such as instrument classification in Gómez et al. (2018) [125] and Han et

al. (2017) [107], music genre classification in El Achkar et al. (2021) [165], and singing

voice detection in Schlüter and Lehner (2018) [134]. It also helped in achieving the first

guitar tablature estimation model using CNNs. The model was trained using solo acoustic

guitar performances of the GuitarSet dataset presented in Xi et al. (2019) [139], while out-

performing state-of-the-art multi-pitch estimation algorithms. This paper also introduced

a set of metrics found to be specific for evaluating guitar tablature estimation models, as

described in Wiggins and Kim (2019) [146].

Several attempts took place to improve the TabCNN’s results presented in Wiggins and

Kim (2019) [146]. One of those attempts was the thesis report in Maaiveld et al. (2021)

[170]. It yielded insights into the CNNs’ functioning for automatic music transcription.

The proposition relied on several adaptations such as data augmentation, Oracle method

adaptation, and increasing the amount of training data. The latter study was not able

to outperform the results of the TabCNN (Wiggins and Kim (2019) [146]) but presented

intuitive conclusions, such as the fact that Dense layers play a major role in tablature es-

timation CNNs and that the size of the dataset is a key factor in the model’s performance.

The fast growth of neural networks encouraged researchers to test the latest approaches

in the music industry. An unsupervised pitch estimation model was reported by Wiggins

and Kim (2020) [158] to analyse audio clips by estimating their pitches and amplitudes.
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The model was not tested through experiments but gave thoughtful ideas for further unsu-

pervised acoustic guitar transcription attempts. Also, a method for generating note-level

transcription for guitar transcription is proposed to demonstrate successful transcription

using notes rather than frames [188]. This work outperformed the conventional frame-

level CNN methods. Nevertheless, it did not outperform all TabCNN’s estimation metrics

results [146]. Last but not least, a unified model and methodology for estimating pitch

contours took place to transcribe guitar tablatures [180]. It produced pitch estimates with

a higher resolution than modern models. However, and to the best of our knowledge, nei-

ther the approaches listed in this section nor any other associated work can outperform

all TabCNN’s [146] estimation metrics for guitar tablature transcription.

The extensive research in the field of guitar tablature estimation, in particular on the Gui-

tarSet dataset, has provided valuable insights that serve as a primary source of inspiration

for our upcoming research. Key factors such as the selection of appropriate visual-audio

features and the necessary pre-processing methods are at the core of our approach.

We also investigate different networks, including CNN-based, Transformer-based and hy-

brid CNN-Transformer models. At the same time, we conduct a comprehensive review

of state-of-the-art computer vision networks. These essential insights and discoveries

will serve as the basis for our pursuit as we proceed to the in-depth investigation of this

transcription solution in chapter 6.

2.8/ MUSIC DATASETS FOR EXPERIMENTAL STUDIES

In this section, we showcase some of the most used occidental and Middle Eastern open

music datasets since our thesis concerned a private Middle Eastern dataset for traditional

modal monodies for the first two contributions, in addition to publicly available occidental

datasets for the last two contributions that leveraged deep learning capabilities. Before

starting to enumerate the datasets, it is important to note that the TMM dataset used in

the MEI2JSON contribution is a private dataset owned by Antonine University. It consists

of a large number of music compositions archived in hard copy format. The common

interest of musicians and engineers made it possible to encode 150 music compositions

as music scores in MEI [8], which were used for experimental studies for our MEI2JSON

converter. We list below the most used Middle Eastern and occidental music datasets,

including the GTZAN, FMA, and GuitarSet datasets that we leverage in this thesis.

1. AudioSet [106] is a public dataset created to facilitate research in music appli-

cations such as audio tagging [123, 200], sound event detection [145, 136] and

environmental sound classification [179]. This dataset contains over two million 10-

second audio clips (27,778 hours). This large number makes it suitable for many
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audio analysis studies. The AudioSet includes musical instruments, speech, natural

sounds and various environmental sounds. Each audio clip is tagged with one or

more audio event categories, allowing for fine-grained categorisation. The majority

of the audio clips are extracted from YouTube videos. The clips are linked to their

corresponding video to make additional contextual and metadata information more

accessible. The dataset has been manually tagged for better assessment and is

hosted in the cloud for easy access and download. The AudioSet contains a Middle

Eastern music dataset consisting of 2088 video clips with 5.8 hours of audio data.

This subset covers a vast region of countries stretching from Morocco to Iran.

2. IRMAS [53] (”Instrument Recognition in Musical Audio Signals”) is a dataset of dif-

ferent musical instruments that can be used to analyse music from different cultures,

including the Middle East. The dataset was created to address the challenges of

instrument recognition [127] given an audio clip. It has been used in music informa-

tion retrieval studies and recommendation systems to improve previous recognition

solutions [129, 157]. IRMAS consists of short audio clips, each containing a single

musical instrument. The clips are a few seconds long and are all sampled at a stan-

dard rate, as most deep learning use cases require normalisation of sampling rates.

The dataset consists of 10 different instrument categories, in addition to the human

voice as an 11th category. It includes variations in pitch, dynamics and playing style

for each instrument category, making the recognition task more challenging and

realistic. In total, IRMAS contains around 7000 audio clips. Although this size is

relatively small compared to other datasets, it is one of the most valuable resources

for evaluating contributions to instrument recognition.

3. Million Song Dataset (MSD) [40] is one of the largest and most diverse datasets

in the field of Music Information Retrieval (MIR). The MSD dataset supports various

research studies, including music recommendations for music streaming services

[71, 80], genre classification [113, 131], mood analysis [98], tempo estimation [135],

and more. It contains approximately one million songs, each song having an asso-

ciated metadata file. This metadata is useful for recommendation tasks, where

streaming services rely on artist information, song release dates, and other music-

related data to suggest new music to users. The MSD dataset provides a set of

audio features extracted from the audio recordings (timbral, rhythmic and harmonic

descriptors) that can be used alongside the metadata information to perform gen-

eral tasks. While the MSD dataset is not widely available to everyone, most of its

subsets remain available for research purposes.

4. Ballroom [11] and Extended Ballroom [90] datasets consist of audio recordings

that are often used for music genre classification studies [168, 160, 75]. The main

purpose of the Ballroom dataset is to focus on dance music genres that are com-
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monly played in ballroom dancing settings. This dataset consists of approximately

700 audio recordings, where each recording has its genre label. The genres in-

clude but are not limited to, waltz, tango, Viennese waltz, foxtrot, quickstep, etc.

The researchers leveraged this dataset by extracting spectral and rhythmic descrip-

tors from the recordings to solve the challenging variety of music played in ballroom

dance styles. The Extended Ballroom dataset is an augmented version of the Ball-

room dataset, which includes an extensive range of music genres and increases the

number of audio clips to approximately 4180. The extended version was adopted to

benchmark music genre classification studies that have previously been evaluated

on large datasets, to better assess the performance of the work.

5. Free Music Archive [85] (FMA) is a large tagged dataset for music-related re-

search and analysis. Similar to MSD and AudioSet, it has a metadata file associ-

ated with each audio track. Each metadata file contains the artist name, track title,

genre labels and release date. FMA contains tens of thousands of audio tracks

covering a wide range of popular music genres such as rock, hip-hop, jazz, elec-

tronic and more. It is often used for music genre classification and music genre

recommendation use cases [130, 167]. The majority of tracks in the FMA can be

used for research and creative purposes without violating copyright restrictions. The

FMA dataset consists of three subsets: FMA Small, FMA Medium and FMA Large.

These subsets differ in the number of tracks and their audio quality, allowing re-

searchers to choose the most appropriate subset for their study.

6. GTZAN [6] is a dataset created for benchmarking music genre classification and

audio analysis [153, 25]. This dataset contains 1000 audio tracks of 30 seconds

each. These audio tracks are divided into ten popular music genres. These gen-

res include rock, blues, jazz, reggae, hip-hop, country, classical, pop, disco and

metal, and thus have common genre similarities with the FMA dataset. The GTZAN

dataset is manually tagged with the aforementioned genres to provide ground truth

information for deep learning use cases such as genre classification. This dataset is

also used for feature extraction and analysis, helping to identify discriminative audio

features for the development of music recommendation systems.

7. GuitarSet [139] is an audio dataset focusing on guitar-related audio analysis and

various areas related to stringed instrument playing, chord recognition, finger po-

sitions (tablature notations) and strumming patterns. Thus, this dataset supports

the training and evaluation of deep learning models for guitar-related use cases

[146, 155, 148]. This dataset covers different playing styles and techniques of the

guitar instrument. Each audio recording is annotated with chord labels and tablature

labels. The chord labels indicate the guitar chords played at a particular time inter-

val in the audio, and the tablature labels indicate the finger positions on the guitar
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fretboard when each chord is played. Both annotations are great features for chord

recognition tasks and tablature recognition tasks for research studies. The Gui-

tarSet includes a strumming annotation, which provides another area of research

for identifying and improving strumming patterns and techniques. All of the above

annotations are stored in JAMS [74] files as JSON annotations for reproducible MIR

research.

The datasets presented above do not represent all the efforts in creating Middle Eastern

and Occidental music datasets. However, they are the most widely used by researchers

due to their availability, the quality of the recordings, and fewer copyright restrictions for

free and open-access use. It is important to note that the majority of these datasets are

manually labelled or verified by humans, especially musicians, thus providing a reliable

background for researchers to build real music applications and replicate real scenarios

while training and evaluating their solutions with authentic music datasets.

2.9/ CONCLUSION

This chapter has guided us on an extensive journey through the landscape of related re-

search in two key areas: Music Encoding and Deep Learning for Music Applications. By

diving into these areas, we’ve uncovered the preceding studies that formed the foundation

for our contributions. From fundamental research on Eastern music encoding using the

MEI format and the creation of the MusicPatternOWL ontology and the MEI2JSON con-

verter, to the exploration of visualised audio features and their integration into advanced

Deep Learning models, this review has given us a comprehensive view of the existing

knowledge that informs this study. We have bridged the gap between music encoding

and deep learning, demonstrating how traditional music representation is integrated with

state-of-the-art Deep Learning techniques. Our review of studies using visualised audio

features, convolutional neural networks (CNNs), transformer networks and hybrid models

has highlighted the evolution of music analysis and classification. Moreover, we have

looked at specific applications such as music genre classification and guitar tablature es-

timation, providing insights into the latest methods and influential studies in these areas.

We’ve also emphasised the importance of relevant music datasets, including those that

played a key role in our experiments. This comprehensive review of related work not

only enhances our understanding of the research landscape but also serves as a solid

foundation upon which the subsequent chapters of this thesis are built.
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SUPPORTING MUSIC PATTERN

RETRIEVAL AND ANALYSIS

Analyzing music notations is found useful for musicology purposes. This can be applied

by retrieving semantic information from digitally annotated music scores. In this chapter,

we propose an ontology that structures the knowledge extraction process of a music

pattern analysis algorithm. In addition to mandatory elements that describe music scores,

the proposed ontology relies on contextual elements and attributes for pattern analysis.

The ontology then supports the semantic information retrieval and analysis processes of

music score contents. We illustrate the whole mechanism by explaining the workflow of

the ontology integrated inside a music encoding platform for eastern music.

3.1/ INTRODUCTION

New music scores are being constantly composed by musicians, and many of them are

encoded for analysis purposes through XML formats such as MusicXML [7] or MEI [8].

The analysis of a music score consists of extracting its underlying features.Therefore,

many ontologies are proposed to structure music score content for better information

retrieval [100, 110].

Researchers have developed text-based platforms to archive and restore music scores.

These platforms store music scores based on their meta-data. Thus, users can search

for many scores based on the composer’s name, the date of the publication, the title, etc.

However, there are other important features for musicians, known as semantic features,

that are not covered by many platforms such as the number of instruments in the music

score, the tonality in which it was written, as well as the number and the order of occur-

rence of several specific notes inside a music score. All these features and many more

hold essential information, that, when organized, constitute a criterion for music scores.

In this chapter, we present a new ontology named MusicPatternOWL that aims to explore
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the advantages of the Web Ontology Language (OWL) on encoding and annotating music

scores, based on their pattern analysis. The ontology is based on the schema structure

of the MEI format.

The remainder of this chapter is organized as follows: In Section 2, we introduce the

MusicPatternOWL ontology, describing its main goals, restrictions, and structural aspects.

Section 3, explores the use of the proposed ontology in a musical analysis platform,

followed by a conclusion in Section 4.

3.2/ MUSICPATTERNOWL

In this section, the MusicPatternOWL ontology is detailed. This ontology structures music

score elements for music pattern retrieval and analysis. The main goal of MusicPatter-

nOWL, its restrictions and structural features are explained below.

3.2.1/ GOALS AND RESTRICTIONS

Numerous studies have engaged in developing and managing ontologies related to music

score content. Jones et al. [110] introduced an ontology tailored for semantically anno-

tating and reasoning upon Western music scores. Their research primarily focused on

investigating the benefits of using the web ontology language (OWL) in various music-

related applications. Similarly, Cherfi et al. [100] proposed an ontology that integrate

semantic music elements for facilitating the extraction and management of knowledge

from music data. Their work contributed to standardizing the representation of music the-

ories and enabling interconnectedness between different musical elements. However, it’s

important to note that neither study explicitly addressed the support for Eastern music

within their ontological frameworks, thus neglecting essential elements such as scales,

modes, rhythmic patterns, and instruments unique to Eastern traditions.

Ontologies provide the semantic means to represent any data formats. They improve data

integration and data-driven analytics for structured and unstructured data. The proposed

ontology serves for many music-oriented web services relying on pattern analysis. It

accentuates the role of Semantic Web in knowledge extraction platforms. The platform

developed in [119] extracts underlying features of a music score using a pattern analysis

algorithm. It serves as knowledge extractor for traditional modal monodies of the Middle

East and the Mediterranean cultures ( including medieval European monodic music, as

well as Mashriq and Maghreb traditions). Our ontology provides a structured separation

of music score elements that helps the platform in the knowledge extraction process.

Therefore, the MusicPatternOWL ontology focuses only on the music score and excludes

meta-data features. Its structural properties are based on the MEI schema [8], adding to
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Figure 3.1: MusicPatternOWL - General Overview.

that several contextualized elements and attributes for oriental music analysis.

3.2.2/ STRUCTURAL ASPECTS

Based on the MEI schema, the MusicPatternOWL ontology shares the same contribution

proposed in [119]. It proposes new elements and attributes to provide a structured form

for analyzing the pattern of notes inside a music score (see Figure 3.1).

Before citing the elements and the attributes related to pattern analysis, it is important

to mention that a single music score contains many measures, where each measure is

composed of multiple notes.

snr (Syllabic Nuclear Reduction) Attribute for the note element. It contains only two

values α or β . The pattern analysis algorithm developed in [119] considers the final note

of a music score as a main input element. Then, for each note of the music score, α or

β values are assigned. According to a phonological component of the theory developed

in [91], α represents a primary/basic note and of β represents a secondary note, Thus,

at the level of the music score containing many measures of notes, we derive a pattern

formed of α and β values.

mnr (Metasyllabic Nuclear Reduction) Attribute for the note element. It contains only

boolean values. This attribute presents a rhythmic parameter (morphological rewriting),

where a value of ”true” is assigned to a note containing a snr attribute and has the

highest duration among adjacent notes. A value of ”false” is assigned when one of the
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previous conditions is not applied. The highest duration is calculated through a matrix of

notes provided by the musicians. Thus, using different matrices for a single music score

generates different pattern analysis possibilities.

The Figure 3.2 presents the first measure of a music score. It is encoded in MEI format

[8] after applying the analysis (3.2.a), and rendered to SVG (3.2.b), placing snr and mnr
values above notes respectively. snr with a value of ”\alpha” in (a) will be given a value

of α in (b), and ”\beta” a value of β respectively. mnrs with a value of ”true” will hold the

same value of snr in its current note. mnrs with a value of ”false” are left without labels.

As presented in the MEI preview in (3.2.a), the snr of the third note is assigned a value of

”\alpha” and the mnr a value of ”true”; this is interpreted by a value of α for the mnr when

rendered to SVG in (3.2.b). It is important to mention that notes that are neither primary

nor secondary will not be assigned any snr and mnr values. Therefore the second note

in Figure 3.2 is not labeled.

(a) Score encoded in MEI (b) Score rendered to SVG

Figure 3.2: A sample of a music score encoded in MEI (a) then rendered to SVG (b)
throughout the analysis.

mrmr (Morphophonological Rhythmic and Melodic Rewriting) Child of the measure

element. It contains matrices and mathematical equations. This element holds different

patterns extracted from the music score, based on the melodic attribute (snr) and the

rhythmic attribute (mnr) already presented.

phonoRealization (Phonological Realization) Child of the measure element. This

element holds matrices and equations like the mrmr element, but encodes only the

underlying phonological features of a music score.

vecTrans (Vector Transcoding) Child of the measure element and the music element.
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This element contains generated vectors formed from combining snr and mnr attributes.

The result is a vector at the level of a measure and a series of vectors at the level of

the entire music score (music element). The generation of vectors is considered the last

step of the algorithm proposed in [119], providing meaningful knowledge extraction for

the musicians.

In addition, we note the number attribute for the mrmr, phonoRealization and vecTrans
elements. It serves as an identifier for each measure of a music score.

The remaining elements of the MusicPatternOWL shown in Figure 3.1 constitute typical

elements of a music score. Based on the MEI schema developed in [8], our ontology

achieves full coverage of any element and attribute needed to digitally encode or annotate

music scores in MEI format. It is important to mention that the elements and attributes

discussed in this section are optional, as we aim to extend this ontology to cover western

music’s pattern analysis.

3.3/ PROOF OF CONCEPT

3.3.1/ SCORE ANALYSES

The music encoding algorithm proposed in [119] is used as a starting point to create

the MusicPatternOWL. In short, the algorithm has been integrated into a music encoding

platform for the traditional modal monodies of the Mashreq called ”MM analyzer”. The

platform expects as input an MEI document and two matrices mentioned earlier in the

section 2 above. It outputs another MEI document rendered with all the corresponding

analysis in a PDF file using Verovio [76] and SVG processing for placing alphas and betas

above notes.

Analyzing music scores exposes the underlying features by assigning α and β values to

the snr attribute. snrs of a music score will be grouped in SNR, and mnrs with a value

of ”true” will be assigned the same snr value of their current note and grouped in MNR.

The process above creates a pattern of α and β grouped in SNR and afterwards in MNR

for each music score (see Fig. 3.3). Therefore, the proposed ontology keeps track of

the analysis to provide a structured knowledge extraction in each progressive step of the

encoding. It covers the analysis from the step of pattern establishment to the generation

of the vectors through its elements and attributes already presented. Also, it will restrict

any false or abnormal insertion of any musical notation through its elements, handling

not only the analysis itself but the structure and the regulations of the music score. It is

important to note that the entire analysis process is expressed in terms of mathematical

expressions. This enhances the need to have a rule-based ontology to validate all related
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Figure 3.3: SVG output from MM analyzer.

properties for error-less platform behavior.

3.3.2/ THEME QUERIES

It was previously mentioned that the proposed ontology structures the information re-

trieval for music pattern analysis. Following that, this section comes to show several

examples of search criteria and their correspondent SPARQL Queries. The following

prefixes are used for the queries below:

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

owl: http://www.w3.org/2002/07/owl#

rdfs: http://www.w3.org/2000/01/rdf-schema#

xsd: http://www.w3.org/2001/XMLSchema#

mpo: https://github.com/elachkarcharbel/MPOWL/blob/master\/mpowl.owl#

Query 1: The following query searches the mandatory attributes of each note. The query

will result in a gathering of all the information of all notes which are essential to start the

analysis. Also, the counter of the notes is added to easily index the final note of a music

score - the necessary criteria to initiate the pattern analysis algorithm [119].

SELECT ?measure ?note ?duration ?octave ?pitchname ?dots

(COUNT(?note)AS noteSum)

WHERE {

?score mpo:hasPerformersParts ?part .

?part mpo:isSinglePartContainer ?section .

?section mpo:isSingleMeasureContainer ?measure .

?measure mpo:isNote ?note .

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#
https://github.com/elachkarcharbel/MPOWL/blob/master\/mpowl.owl#
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?note mpo:hasPname ?pitchname .

?note mpo:hasDur ?duration .

?note mpo:hasOct ?octave .

OPTIONAL{ ?note mpo:hasDots ?dots}

} GROUP BY ?measure ?note ?dots ?duration ?octave

?pitchname

Query 2: Once the information of the note are gathered, the platform assigns snr values.

The query below extracts the duration of all the notes and their snr values so that the

pattern analysis algorithm receives needed information to achieve the next step of the

analysis, which is the assignment of mnr values.

SELECT ?measure ?note ?duration ?snr

WHERE {

?score mpo:hasPerformersParts ?part .

?part mpo:isSinglePartContainer ?section .

?section mpo:isSingleMeasureContainer ?measure .

?measure mpo:isNote ?note .

?note mpo:hasDur ?duration .

OPTIONAL{ ?note mpo:hasSNR ?snr}

} GROUP BY ?measure ?note ?duration ?snr

Query 3: It shows a retrieval example of the total amount of notes and explores the

values of snr and mnr at the level of each specific note inside a music score. This query

serves for the last step of the pattern analysis algorithm, where snr and mnr values will

be gathered to form vecTrans’s generated vectors.

SELECT ?score ?measure ?note ?snr ?mnr

(COUNT(?note) AS ?noteSum)

WHERE {

?score mpo:hasPerformersParts ?part .

?part mpo:isSinglePartContainer ?section .

?section mpo:isSingleMeasureContainer ?measure .

?measure mpo:isNote ?note .

OPTIONAL{ ?note mpo:hasSNR ?snr.

?note mpo:hasMNR ?mnr}

} GROUP BY ?score ?measure ?note ?snr ?mnr

It is important to mention that the platform will provoke multiple inserts to the Music-

PatternOWL: generated vectors are stored in the vecTrans element and mathematical
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equations are stored in mrmr and phonoRealization elements, based on their musical

role respectively.

3.4/ CONCLUSION

In this chapter, we proposed the MusicPatternOWL ontology that covers the structural and

behavioral aspects of a pattern analysis algorithm for encoding Eastern music scores. As

explained, the proposed ontology structures the entire music score in addition to its pat-

tern analysis, to achieve information retrieval and analysis of music score content. The

ontology has the potential for future expansion to accommodate different pattern analysis

theories in the field of music. It already covers essential elements and attributes for music

scores, both in Western and Eastern music compositions. Additionally, it is designed to

be scalable, allowing for the introduction of new optional elements and attributes, as out-

lined in this study. This scalability simplifies the process of incorporating similar pattern

analysis components for more extensive music analysis algorithms. However, it’s impor-

tant to note that when adding new elements to the ontology, caution must be exercised to

prevent potential complications to the existing elements. These complications might re-

late to increased complexity and potential performance issues (decrease in query speed,

lower computational efficiency) when overscaling the size of the ontology.
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MUSIC SCORE PRE-PROCESSING AND

CONVERSION

Converting music score content from symbolic formats to simplified data formats is found

useful for artificial intelligence purposes. The conversion can be applied using XSL

stylesheets and ontologies to ensure the preserving of the data quality throughout the

transformation. In this chapter, we proposed a new converter capable of transforming

music scores encoded in MEI to JSON format for pre-processing purposes, and future

usage into artificial intelligence techniques. The proposed converter uses an eastern mu-

sic score ontology capable of structuring standard music scores content in addition to

elements and attributes specific to eastern music. Thus, the converter shares the same

support for eastern music scores. We illustrate the conversion process by assessing

the performance analysis, the data quality, and the storage of the proposed converter in

comparison with a combined approach composed of two state-of-the-art converters.

4.1/ INTRODUCTION

Combining artificial intelligence (AI) techniques with software solutions was found inter-

esting for researchers and developers in the recent decade. The usage of AI helped in

providing digital assistance as well as handling repetitive jobs for employees in their daily

tasks. It helped with digital platforms where the need to reduce errors is one of the most

essential and challenging criteria to improve its performance and reliability. Studies went

deeper until they reached music-related interests. Many researchers and musicians took

benefit of AI in their music-related studies. The latter provided digital assistance in mu-

sic annotation platforms, such as predicting the next note of a real-time annotated music

score or generating new music scores depending on a pre-defined dataset. However,

both, the prediction of the next note and the generation of an entire music score require

a well-defined pre-processing process to prevent data loss and reach higher accuracy

post-training. This process and especially in music-related fields consist of applying sev-
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eral progressive tasks, such as finding the needed elements and attributes of a music

score, filter the music score upon the use case, and finally, reshape the data and con-

vert it to a specific format for training ingestion. A platform for encoding and analysing

eastern music scores named traditional modal monodies encoder (MM analyser) in As-

mar et al. (2018) [119] was capable of encoding a corpus specific to modal monodies of

the Mashreq. The MusicPatternOWL ontology proposed in [165] assisted in the analysis

process of the encoder, ensuring errorless export of eastern music scores encoded in

MEI format. The results of both, the encoder and the ontology, encouraged the use of

resultant music scores in machine learning use cases, by the fact that they provide ready-

to-ingest eastern music scores in MEI format. While gathering the music scores out of the

MM analyser, it was found that the MEI format is not the optimal format used to feed AI

models. MEI is an XML-based format that holds multiple elements, each element gathers

multiple music-related attributes to encode detailed music score content. This is where

we highlight the need to convert the MEI outputs to simplified formats to reach our target

of applying AI techniques on music score content. Based on a related work investigation,

we found that the MEI format can be converted to multiple formats such as MIDI and

MusicXML. The latter formats were similar to the MEI in the matter of providing simpli-

fied data to the AI models. MusicXML is also an XML-based format and MIDI represents

only recorded and played audio information. Further investigations led us to discover the

MusicJSON format proposed in Alvaro and Barros (2010) [30] capable of converting Mu-

sicXML music scores to JSON. JSON is an easy-to-use data ingestion format over XML.

Its improved readability and lightweight approach support a bigger amount of information

for feeding the AI models.

The MEI to MusicXML converters use the MEI encoding tools (https://github.com/music-

encoding/musicencoding) provided by the MEI community for applying MEI conversions.

These tools lack encoding and representing eastern music scores elements and at-

tributes. Thus, the usage of existing MEI to MusicXML converters at the first stage, and

the conversion of the resultant MusicXML outputs to JSON format at a second stage, gen-

erate JSON data that does not support eastern music score content. In this chapter, we

present a new data converter named MEI2JSON that aims to convert the music scores

encoded in MEI to JSON format while preserving their eastern music score content. The

converter is based on the MusicPatternOWL ontology [165], in addition to a modified

schema of MEI proposed in Asmar et al. (2018) [119] capable of providing a structured

knowledge extraction of music scores elements and attributes for eastern music encoded

in MEI. The MEI2JSON is also capable of providing an MEI to JSON conversion without

the need to combine multiple converters from multiple sources. The remainder of this

chapter is organized as follows: In Section 2, we introduce the MEI2JSON converter,

describing its main components, their behaviour, and the role of the MusicPatternOWL

ontology inside these components. Section 3 explores the full implementation of the pro-
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posed converter through its application on an eastern music scores dataset encoded in

MEI. In Section 4, we compare through experiments the proposed converter with a com-

bination of two existent converters, followed by a conclusion in Section 5.

4.2/ THE MEI2JSON CONVERTER

4.2.1/ MOTIVATION

The MM analyser in Asmar et al. (2018) [119] and the MusicPatternOWL ontology [165]

treated one of the most primary problems in music-related platforms. The latter is the lack

of support for eastern music encoding and analysis. The MM analyser helped in encoding

and analysing eastern music scores, and the MusicPatternOWL assisted in that analysis

process by ensuring an errorless knowledge extraction at each progressive step of the

encoding. At this stage, we were able to export lossless music scores encoded in MEI

format.

The advantages of combining AI techniques with music-related platforms (presented in

Section 1) motivated us to integrate those techniques and improve the MM analyser. Sim-

ilar to any AI use case, the data must be prepared and simplified as much as possible

before its training ingestion in neural networks. Therefore, it was needed to convert our

MEI exports to another data format by the fact that MEI holds many elements and at-

tributes that can be reduced upon the use case. Based on the music-related converters

presented in Sections 1 and the Related Work chapter, the absence of a converter capa-

ble of transforming MEI music scores into JSON format was noticed, in addition to one of

the essential criteria in question: converting music scores without losing data quality and

preventing errors.

All the reasons mentioned above motivated us to create the MEI2JSON converter capable

of transforming MEI music score to a simplified JSON format while preserving data quality

and reducing data manipulation errors, especially for eastern music score datasets.

4.2.2/ MEI2JSON COMPONENTS

By definition, “MEI is a community-driven, open-source effort to define a system for en-

coding musical documents in a machine-readable structure.” Its schema is developed us-

ing a literal programming XML format and expressed using the Relax NG (RNG) schema

language. This music representation format and other primary ones focus on supporting

occidental music because of its major worldwide usage. Therefore, it is not accurate for

encoding eastern music scores as mentioned in Asmar et al. (2018) [119] and El Achkar

and Atéchian (2020) [165]. As stated in Sections 1 and the related work chapter, our need
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is to obtain the most simplified format out of eastern music scores encoded in MEI for fu-

ture AI usage. The absence of a converter capable of handling eastern music elements

and attribute at a first step, and the disability to convert MEI music scores to a simplified

format using a single converter at a second, led us to create the MEI2JSON converter.

The MEI2JSON converter consists of three main components. Each component is re-

sponsible for a specific task to achieve successful MEI to JSON music scores conversion.

As illustrated in Figure 4.1, any MEI in question should enter the MEI2XML component

at a first phase, redirect the result of the first component to the XML2RDF component

at a second phase, and at last convert the RDF data to JSON through the RDF2JSON

component.

Figure 4.1: MEI2JSON Main Components Overview

4.2.2.1/ THE MEI2XML COMPONENT

As mentioned earlier, MEI is an XML-based format expressed using the RNG schema lan-

guage. Thus, the MEI2XML component re-structures the schema of the MEI, producing a

simplified XML output for the second component. Inside the MEI2XML, we use the mod-

ified MEI schema proposed in Asmar et al. (2018) [119] to keep track of all the schema

structure proposed by the MEI community, in addition to the elements and attributes pro-

posed in Abou Mrad (2016) [91] and contributed to the MEI schema in Asmar et al. (2018)

[119]. These elements and attributes are essential when analysing and encoding eastern

music scores. For this purpose, we configured an XSL stylesheet to embed our MEI to

XML transformation rules. These rules hold structuring aspects to make the XML output

the simplest possible. The proposed method consists of converting the RNG schema of

MEI to a legacy XML schema. This consists of transforming the attributes of the MEI ele-

ments to sub-elements of the element itself and filters the concluding in the most optimal

way possible.
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After running the XSL stylesheet over several MEI files, we found that the modified MEI

schema and the custom rules configured, lack consistency and normalisation. The config-

uration of custom rules resulted in different forms of output for a single MEI music score.

Thus, we perceived the need to replace our custom rules with the MusicPatternOWL

ontology [165]. The MusicPatternOWL contains all the rules and restrictions needed to

structure a music score encoded in MEI. It supports the same elements and attributes

existent in the modified MEI schema, in addition to its power to extract and preserve the

semantic information in an errorless manner.

Based on the XML to OWL frameworks mentioned in the Related Work chapter, the map-

ping between XML schemas and OWL schemas can be build using two different ap-

proaches. In case the OWL schema is existent, the XML and OWL schemas should be

mapped manually, and in case the OWL schema does not exist, the OWL schema can

be generated out of the existent XML schema, and by that, obtain an automatic mapping

between them. Both, manual and automatic mapping approaches are used to transform

the XML instances into OWL individuals. On the other side, our approach was not to

transform MEI to OWL individuals directly but to transform them to XML instances with

OWL rules included, to structure and filter the needed data and exclude irrelevant ones.

Since the MusicPatternOWL is inspired by the MEI schema and shares the same con-

tribution as the modified MEI schema proposed in Asmar et al. (2018) [119], a half-way

mapping was already established. As for the MEI2XML component, we completed this

mapping process by configuring an XSL stylesheet holding all the necessary mapping

and transformation rules to convert an MEI music score into a simplified XML format.

The mapping rules are classified into three distinct types:

• Class mapping

• Datatype property mapping

• Object property mapping

The class mapping concerns creating a link between a node of the modified MEI schema

with an OWL concept of the MusicPatternOWL ontology. The datatype property mapping

links an MEI node to a datatype property of the MusicPatternOWL. The object property

mapping relates two-class mappings to an OWL object property of the MusicPatternOWL.

As for the transformation rules, in addition to the ones embedded through mapping, we

note the re-structuring shown in the XML representation below, to obtain the optimal XML

output possible. The first representation is a measure of an MEI score entered as input,

and the second one is the same measure converted to the XML output through the config-

ured XSL stylesheet. Since the MusicPatternOWL ontology excludes meta-data features,

the latter is excluded from the XML output generated, due to the absence of mapping

between the MEI schema and the MusicPatternOWL for this purpose. This feature is
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found essential by the fact that it can automatically filter irrelevant data, focusing on the

music-score itself to achieve a successful pre-processing process.

At this stage, the MEI2XML component relies on an XSL stylesheet capable of transform-

ing MEI scores to XML format, while preserving music elements and attributes specific to

eastern music.

The measure rep resen ta t i on i n an MEI f i l e

<measure x m l : i d = ”m−32 ” l a b e l = ” 1 ” l e f t = ” r p t s t a r t ” n= ” 1 ”>
<s t a f f x m l : i d = ”m−34 ” n= ” 1 ”>

< l a ye r x m l : i d = ”m−35 ” n= ” 1 ”>
<beam x m l : i d = ”m−37 ”>

<note x m l : i d = ”m−36 ” dur= ” 8 ” dur . ges= ” 128p ” oct= ” 4 ” pname= ” d ” pnum= ” 50 ”
stem . d i r = ” up ” snr= ” \alpha ” />
<note x m l : i d = ”m−38 ” dur= ” 8 ” dur . ges= ” 128p ” oct= ” 4 ” pname= ” g ” pnum= ” 55 ”
stem . d i r = ” up ” snr= ” \beta ” mnr= ” yes ” />
<note x m l : i d = ”m−40 ” dur= ” 8 ” dur . ges= ” 128p ” oct= ” 4 ” pname= ” f ” pnum= ” 54 ”
stem . d i r = ” up ”>

<acc id x m l : i d = ”m−41 ” acc id= ” s ” />
< / note>

< / beam>
< / l a ye r>

< / s t a f f>
< t i e x m l : i d = ”m−39 ” endid= ” #m−40 ” s t a r t i d = ” #m−38 ” />

< / measure>

The measure rep resen ta t i on i n the XML output

<measure number= ” 1 ”>
<beam>

<note>
<pname>d< / pname>
<oct>4< / oc t>
<snr>\alpha< / snr>
<dur>8< / dur>

< / note>
<note>

<pname>g< / pname>
<oct>4< / oc t>
<snr>\beta< / snr>
<mnr>\beta< / mnr>
<dur>8< / dur>

< / note>



4.2. THE MEI2JSON CONVERTER 57

<note>
<pname> f< / pname>
<oct>4< / oc t>
<dur>8< / dur>
<acc id>s< / acc id>

< / note>
< / beam>

< / measure>

4.2.2.2/ THE XML2RDF COMPONENT

The usage of XSL stylesheet in the MEI to XML conversion of the first component en-

couraged us to take the same approach in the next one. The objective of the XML2RDF

component is to convert the XML data into RDF without losing any semantic information.

Therefore, we decided to use the XSL stylesheet proposed in Breitling (2009) [29]. The

latter contains all the standard transformation rules capable of providing efficient XML to

RDF conversion. In other terms, we can apply this converter to any XML dialect which

supports then both, the elements and attributes proposed in the modified MEI schema

in Asmar et al. (2018) [119]. At this stage, we were able to convert MEI scores to XML

using MEI2XML and convert the XML to RDF using the XML2RDF component, without

losing any semantic information related to eastern music scores.

Note that mentioning the support of eastern music scores does not eliminate the fact that

music encoding formats were initially built to support occidental music scores. Therefore,

the MEI2JSON converter supports the latter if encoded in MEI format.

4.2.2.3/ THE RDF2JSON COMPONENT

The previous components of the MEI2JSON converter managed to convert MEI scores

to RDF using several methods to prevent loss of semantic information and data quality.

Thus, the job of the RDF2JSON component is to proceed with the conversion process to

convert the music score encoded in MEI to JSON format. As mentioned in Section 1, the

MEI2JSON converter aims to transform MEI files to JSON for pre-processing purposes.

The pre-processing process, in addition to data cleaning and filtering, consists of applying

feature engineering selection to choose the needed input variables for training ingestion.

In music related cases, these input variables are the elements and attributes of a music

score, where we must select the needed ones only, to solve targeted use cases. As an

example, when the use case is to predict the next note of a music score, we must select

the input variables (elements and attributes) that affect only the note element of a mu-
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sic score. Therefore, we use the MusicPatternOWL ontology [165] as element selector

and validator in the RDF2JSON component. This way we can produce the most optimal

JSON output by selecting the needed elements from the music score upon the use case,

validating once again the three mapping types of the MEI2XML component, and finally

building the JSON output to achieve a successful pre-processing process.

It is important to mention that this component excludes the attributes of a music score

since the MEI2XML component transforms the attributes to sub-elements as shown in

the earlier XML representation. Also, the RDF2JSON component contains a knowledge

graph builder so that using SPARQL queries the MusicPatternOWL is capable of selecting

the needed features through a simple query builder. Note that the query result is passed

through JSON libraries to ensure the creation and validity of the output.

To recapitulate and converge, the MEI2JSON relies on three components. The first com-

ponent, the MEI2XML, converts the structure of an MEI music score to XML by trans-

forming its schema represented in RNG to the XML schema. Its conversion relies on

a mapping between the modified MEI schema presented in Asmar et al. (2018) [119]

and the MusicPatternOWL [165]. This mapping is implemented in an XSL stylesheet,

the core of the MEI to XML conversion. The second component, the XML2RDF, uses

the existing XSL stylesheet proposed in Breitling (2009) [29] for converting XML to RDF.

Since this stylesheet supports any XML dialect, we only configured this component to

reach the RDF format for input in the last component. The third and last component,

the RDF2JSON component uses the MusicPatternOWL as a music score validator en-

suring a lossless flow of information. It converts RDF data to JSON while implementing

the idea of query builder where users can filter and retrieve their needed music elements

upon future AI use cases. Therefore, the unification of these components constitutes the

MEI2JSON capable of transforming eastern music scores to a ready-to-ingest format in

AI models.

4.3/ IMPLEMENTATION

The previous section presented each component of the MEI2JSON converter. It exposed

the role, the composition, and the benefit of each component to achieve a successful

conversion of music scores encoded in MEI to JSON output. The present section ex-

poses the necessary technical details to achieve the full implementation of the proposed

converter, in addition to the implementation of two combined converters for further exper-

imental comparison.
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Figure 4.2: MEI2JSON Activity Diagram
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4.3.1/ MEI2JSON PROCESS

Figure 4.2 presents the MEI2JSON converter through an activity diagram. The first part

of the diagram illustrates the progressive steps of the MEI2XML component to achieve

successful conversion (MEI to XML). The converter pulls an MEI score taken from an MEI

file (.mei extension), loads the custom XSL stylesheet created and converts if possible,

the MEI file to XML. The custom XSL stylesheet named mei2xml.xsl is the file respon-

sible for handling the conversion needed. Thus, the mei2xml.xsl needs to be loaded by

an XSLT processor to perform this conversion. Therefore, we use the Saxon XSLT and

XQuery processor (Kay, 2010) [12] based on its previous usage in most of the converters

presented in Section 2. In the case of a successful conversion, the generated XML file will

be redirected to the second component to perform further steps. Otherwise, the system

logs the errors so that we can easily find and solve the problems related to the failure in

conversion.

The generated XML file proceeds its path to the XML2RDF component. Like the previous

component, the xml2rdf.xsl proposed in Breitling (2009) [29] is loaded using the Saxon

processor to apply the corresponding conversion to the XML file. Also, the generated

RDF file proceeds to the next component in success cases, and in case of failure, the

error loggings will guide the user to solve the problems faced.

Finally, the generated RDF file is loaded in the RDF2JSON component using the library

(RDFLib, https://github.com/RDFLib/rdflib). This library provides powerful parsers and

serialisers to load the knowledge graph out of RDF/XML data. Once loaded, the RDF

file can be queried through custom SPARQL queries to extract the semantic information

needed for pre-processing purposes. The SPARQL query then can be customised upon

the use case. In case of a successful query, the result will be sorted and formed in a

JSON file as output. The RDF2JSON component ensures the validity of the JSON file

by applying schema syntax definitions such as the JSON schema proposed in Pezoa et

al. (2016) [94]. Thus, the MEI2JSON made several progressive steps passing from a

component to another, to achieve a successful conversion of MEI scores to JSON.

Note that the MEI2JSON converter is currently implemented using the Python language

(Van Rossum and Drake, 2009) [38], although, it can be implemented using other pro-

gramming languages since we are loading the XSL stylesheet through command-line

usage of the Saxon library. Also, the RDF related libraries are available in many program-

ming languages which helps in providing enhanced coverage of the MEI2JSON converter.
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Figure 4.3: Meico + MusicJSON Activity Diagram
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4.3.2/ Meico + MusicJSON PROCESS

The related work presented all the converters capable of transforming MEI scores to

other symbolic formats such as MusicXML or MIDI. Also, it was mentioned that the music

community does not have a straightforward approach to convert MEI scores to JSON.

In this part, we present the usage of two different converters so that once implemented,

they can be used in combination to assess the MEI2JSON converter. The first converter

named Meico can convert MEI scores to MusicXML, and the second one, the MusicJSON

converter can convert MusicXML scores to JSON format.

Figure 4.3 presents the combined converters through an activity diagram. The first

portion of this diagram concerns the insertion of the MEI score as input to the Me-

ico converter, loading the mei2musicxml stylesheet provided by MEI encoding tools

(https://github.com/music-encoding/music-encoding), and converting the MEI score to

MusicXML format. In case of a successful conversion, the obtained MusicXML file pro-

ceeds to the second converter. Otherwise, the system logs the errors found while convert-

ing to detect and solve related problems. The second portion of this diagram concerns

the insertion of the MusicXML file generated by the Meico converter and converting this

file to JSON format using MusicJSON proposed in Alvaro and Barros (2010) [30]. In suc-

cessful cases, the result will be a valid JSON output that respects the schema proposed

by the MusicJSON contributors.

It is important to mention that both, the Meico (Berndt et al., 2018) [121] and Verovio

(Pugin et al., 2014) [76] converters rely on the same XSL stylesheet provided by MEI

encoding tools (https://github.com/musicencoding/music-encoding) to run the transforma-

tion over MEI scores and convert them to MusicXML. Also, they use the same approach

of using the command-line interface to apply this conversion which makes them identical

in this matter. Therefore, using Meico with MusicJSON as the combined approach or

using Verovio with MusicJSON will result in the same experimental results in terms of

data quality and complexity metrics. Note that the MusicJSON converter consists of a

package written in JavaScript programming language, loaded using the Node.js runtime

environment to achieve the corresponding conversion. This package, in addition to the

whole process, is called using Python programming language (Van Rossum and Drake,

2009) [38] for better comparison with the proposed converter.

4.4/ EXPERIMENTS

In the implementation section, we presented both the MEI2JSON converter and the two

combined converters Meico+MusicJSON. We elaborated the two processes using activity

diagrams to technically describe the role of each component inside both approaches. In
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this section, we aim to compare the MEI2JSON with the Meico+MusicJSON in terms of

performance analysis and the quality of the data produced out of these converters. For

this purpose, we use a dataset of 150 traditional modal monodies music scores encoded

in MEI. These music scores are considered a unique corpus in eastern music. Also,

these MEI scores are the output of the MM analyser, the platform proposed in Asmar et

al. (2018) [119] to analyse and encode eastern music. Thus, the music scores contain

elements and attributes specific to eastern music analysis, in addition to the standard

elements and attributes present in any music score encoded in MEI.

4.4.1/ DATASET

Considering that our primary objective is to provide successful MEI to JSON conversion

of eastern music scores, we chose a dataset related to traditional modal monodies. Modal

monodies are eastern music scores, thus the dataset used in our experiments contains

the following four eastern music modes:

• Hijāz (31 music scores)

• Dūlab Bāyāti (33 music scores)

• Dūlab Rāst (40 music scores)

• Jāhārkā (46 music scores)

Once grouped, we obtain 150 eastern music scores encoded in MEI format. The size of

an MEI score varies between 4.4 to 42.6 kB of music score data. Musicians transcribe

modal monodies from eastern music score books such as Abou Mrad (2016) [119] to MEI

format. They encode and validate their digitalized transcriptions using the MM analyser,

and provide us with the needed MEI scores for further studies.

4.4.2/ PERFORMANCE ANALYSIS

The performance analysis concerns analysing algorithms based on an input size required

to run it. The complexity then is expressed as a function of n, where n is the input size.

In this chapter, we compare the MEI2JSON with the Meico+MusicJSON in terms of two

complexity metrics, the time and space complexity. The time complexity describes the

amount of time to run an algorithm, and space complexity reports the amount of memory

space to run an algorithm. We calculated the time complexity through experimental eval-

uation, and used the memory-profiler python module to evaluate the space complexity for

both approaches.
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4.4.2.1/ TIME COMPLEXITY

Figure 4.4 presents the time complexity chart for the MEI2JSON and the Me-

ico+MusicJSON converters. We use an orange-dashed line to visualize the MEI2JSON

converter, and a blue line to illustrate the Meico+MusicJSON converter. The two ap-

proaches use the same number of input (150 music scores) and the same number of

elementary operations performed by the algorithm for better comparison purposes. Fig-

ure 4.4 shows the same performance of both approaches when the input size is smaller

than 40 music scores. However, the time complexity changes clearly after reaching a

value of 60 music scores, taking a different trajectory for each approach.

Figure 4.4: Time Complexity Chart

The algorithm of the Meico+MusicJSON is not distinctly affected by the size of each mu-

sic score. On the other hand, the proposed MEI2JSON converter lacks this stability due

to his final component, the RDF2JSON component. The usage of the RDF format for

data selection and second validation through the MusicPatternOWL forces the algorithm

to load the entire RDF file inside the knowledge graph of the RDF2JSON component.

The latter slows the converter dependent on the size of the RDF file in question, the time

to load the RDF inside the knowledge graph, and the selection of the needed elements

using SPARQL queries.

Therefore, the Meico+MusicJSON outperforms the MEI2JSON in terms of time complex-

ity due to the dependency of the latter on the size of each music score. Note that the
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number of operations of the Meico+MusicJSON augmented quickly after exceeding a

value of 140 music scores as input size. This unpredicted augmentation could result in a

draw between the two approaches when using bigger datasets.

4.4.2.2/ SPACE COMPLEXITY

Regarding the space complexity, we use the memory-profiler python module to monitor

the memory consumption of both the Meico+MusicJSON and the MEI2JSON converters.

Figures 4.5 and 4.6 present the memory consumption (in MiB) expressed as a function of

time to respectively estimate the space complexity of Meico+MusicJSON and MEI2JSON.

The space complexity in both graphs is calculated by running the memory-profiler on the

algorithms using the entire dataset of 150 music scores.

In Figure 4.5, we can visualise an approximate constant line with a value of 48.0 MiB

during the whole process. We interpret the chart by the fact that the Meico converter start

by loading the mei2musicxml.xsl stylesheet to convert the MEI score to MusicXML. This

loading allocates an amount of memory equal to 48.0 MiB until the conversion completes.

Once completed, the MusicJSON converter allocates an amount of 48.7 MiB to load its

package and convert the MusicXML scores to JSON format (from 310 to 330 millisecond

in Figure 4.5). The entire process took 330 milliseconds to convert the 150 music scores

to JSON.

As for Figure 4.6, we can visualise two main variations of memory consumption. The first

is a continuous line taking a value of 48.0 MiB from the beginning till a time equal to 380

milliseconds. The second is an approximate line to 72.0 MiB from 380 milliseconds to

the end (630 milliseconds). The first line stable on 48.0 MiB concerns loading the custom

mei2xml.xsl stylesheet responsible of converting the MEI scores to XML format.

Once the first conversion completes, the same memory consumption is given to load the

xml2rdf.xsl stylesheet responsible for converting the XML format to RDF. Both stylesheets

use the processor proposed in Kay (2010) [12], which explains the fact that they have

the same memory consumption (from 0 to 380 milliseconds). Therefore, the MEI2XML

and XML2RDF components allocate the same amount of memory. Once the role of

the XML2RDF component completes, the line chart varies to reach a value stable on

72.0 MiB approximatively, to highlight the third component, the RDF2JSON. The load of

the RDF results using the proposed library (RDFLib, https://github.com/RDFLib/rdflib) is

responsible for reaching this memory consumption value. This library handles the loading

of RDFs into the knowledge graph at first, and querying the needed elements out of the

RDF file loaded in second. The entire process took 630 milliseconds to convert the 150

music scores to JSON.

Note that MEI2JSON’s last component is the part responsible for increasing the time and

memory consumption in comparison with the Meico+MusicJSON approach. Therefore,
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the RDF2JSON component is responsible for increasing the space complexity and the

time complexity as seen in the previous interpretations. Improving this component in the

future can make the proposed converter outperform the two combined ones in terms of

time and space complexity.

Figure 4.5: Space Complexity Chart - Meico+MusicJSON

Figure 4.6: Space Complexity Chart - MEI2JSON
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4.4.3/ DATA QUALITY ASSESSMENT

The performance of converters is usually evaluated by calculating its complexity and en-

suring it preserves the quality of the data produced out of its transformation. In Figure

4.7, we present four different data quality metrics used on both the Meico+MusicJSON

and the MEI2JSON converters to assess their quality preserving upon the used dataset.

The MEI2JSON metrics are visualised using orange bars in the histogram, and the Me-

ico+MusicJSON ’s using blue bars. Before explaining the quality metrics, we note the us-

age of the jsonix (https://github.com/highsource/jsonix) mapping library to obtain a JSON

schema out of the modified MEI schema proposed in Asmar et al. (2018) [119]. Thus, we

used the resulted JSON schema and the MusicJSON schema to respectively evaluate

the output of the Meico+MusicJSON and the MEI2JSON converters upon each metric. It

is valuable to mention that the mandatory elements in this experiment concern the note

element and its attributes, including the eastern music score ones.

Figure 4.7: Histogram - Data Quality Metrics

Below we present the assessment metrics to compare both approaches:

• Availability is a metric used to measure whether all the necessary elements of a

music score are present in a specific dataset. The dataset in this matter concerns

the output generated out of both converters. We measure the availability of both

approaches by calculating the percentage of music score fields that have values

entered into them. The MEI2JSON resulted in an availability percentage of 98.2%

and the Meico+MusicJSON of 63.9%. The gap between both results is mainly due
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to the lack of support of the modified MEI schema in the Meico+MusicJSON ap-

proach. This lack is responsible for discarding undefined elements and preserving

only the standard occidental music score elements. In this case, the undefined

elements are the ones related to eastern music scores.

• Accuracy is a metric used to evaluate the correctness of the music score in ques-

tion. We measure the accuracy of both approaches by calculating the percentage

of the correctly converted music score elements compared to the initial values.

Since the future usage of the converted music scores is in the AI field, we chose

to estimate accuracy using the accuracy score function provided by Pedregosa et

al (2011) [47]. Considering the usage of several essential elements for encoding

music scores, we estimate the accuracy as a multilabel approach. We calculate the

accuracy at the level of multiple elements, each element containing multiple labels.

As shown in the equation below, the accuracy is the sum of accuracies at the level

of each music element divided by N - the number of music score elements used.

The true label are the labels of the initial music elements before conversion and

the output label are the labels of elements after JSON or MusicJSON conversion.

It is important to mention that since music score elements have labels encoded as

characters in MEI, we had to use the LabelEncoder function provided by Pedregosa

et al. (2011) [47] to convert characters to numeric. This way the element’s labels

would be compatible for usage in the accuracy score function.

For example, and before using the accuracy score function, we use the La-

belEncoder to transform the labels of the PitchName element from [a, b, c, d, e, f,

g] to [0, 1, 2, 3, 4, 5, 6] so that we can calculate the accuracy of the PitchName

using accuracy score at first, calculate the accuracy of the remaining elements,

sum all the accuracies and divide them by the number of elements used. Finally, we

multiply the resulting accuracy by 100 to obtain the accuracy value as a percentage.

Accuracy =
∑

accuracy score(true label, output label)
N

× 100

The Meico+MusicJSON resulted in an accuracy of 82.4%, and the MEI2JSON an

accuracy of 92.5%.

• Consistency is a metric used to evaluate the synchronicity of music score in terms

of data types and schema structure. We measure this metric by calculating the

percentage of data types that match across different records. We use the schema

structure of both approaches to detect the structure and data types changes while

passing from a component/converter to another.

Similar to accuracy calculation, we took the same approach to calculate the con-



4.4. EXPERIMENTS 69

sistency at the level of data types per music score element. Therefore, we use

the LabelEncoder function to transform data type values to numeric labels and use

the v measure score function provided in Pedregosa et al. (2011) [47] to estimate

consistency of music score elements.

By definition the v measure score clusters the labels given a ground truth. In our

case, it clusters the element’s data type labels reflecting the consistency of the

latter elements. The v measure score function takes as parameters the following:

The true label which stands for the element’s data type labels before using the

MEI to JSON or MusicJSON converters. The output label whichs stands for the

element’s data type labels after MEI to JSON or MusicJSON conversion. The last

parameter, β, is the ratio of weight attributed to homogeneity and completeness.

We will leave this value to its default meaning that the resultant score should have

the same weight regarding homogeneity and completeness. The v measure score

results in a score between 0.0 and 1.0. The greater the result, the better is the

consistency.

Once the v measure score is calculated against all the essential elements of a

music score, we sum all the resultant scores, divide them by N - the number of

music score element used. Finally, we multiply the whole result by 100 to obtain

the final consistency value as a percentage.

Consistency =
∑

v measure score(true label, output label, β)
N

× 100

As shown in Figure 4.7, the consistency percentage of Meico+MusicJSON is

equal to 82% and the MEI2JSON equal to 94%. This slight improvement of the

MEI2JSON over the combined approach is due to the existence of the MusicPat-

ternOWL ontology present in the first and last converter, to structure and filter the

music score elements in question.

• Validity is a metric used to measure how well data conforms to the required value

attributes. We measured the validity by calculating the percentage of music score

elements and attributes that have values within the domain of acceptable values.

We used the JSON schema of both approaches, in addition to the syntax defini-

tion proposed in Pezoa et al. (2016) [94] to calculate the validity metric. Both

approaches resulted in a validity percentage of 100%. This high percentage is due

to MusicJSON’s built-in validator in the first approach and the presence of the Mu-

sicPatternOWL ontology in the second.
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4.5/ STORAGE ASSESSMENT

The previous assessment reflected the outperforming of the MEI2JSON converter over

the Meico+MusicJSON in terms of data quality metrics. The current assessment presents

the storage reduction of both approaches at different input size scales.

Numbers of Inputs (Files) 10 20 30 40 50 60

Initial input size (in kB) 58.9 115.3 208.1 267.5 546.2 861.4
Meico+MusicJSON output size (in kB) 58.5 113.9 191.4 249.5 398.0 542.6
MEI2JSON output size (in kB) 55.9 100.7 146.9 181.4 224.7 259.1

70 80 90 100 110 120 130 140 150 Reduction(%)

1100 1200 1500 1900 2200 2500 2800 3100 3300 ——-
658.7 704.3 829.9 1000 1200 1300 1400 1500 1700 45.3
305.2 325.4 346.5 414.3 450.2 497.0 542.6 595.6 645.8 74.1

Table 4.1: Storage Overview Table.

In Table 4.1, we demonstrate the storage allocation of both conversion approaches using

the same input size scale as the complexity study. The first row of the table presents

the different scales of input sizes. The second corresponds to the initial size of the

MEI music scores before conversion. The third and the last concern the output sizes

of the Meico+MusicJSON and the MEI2JSON converter. The input and output sizes

expressed in kiloBytes (kB). While assessing the storage, it was clear that the Me-

ico+MusicJSON reduced the storage allocation depending on the input size. Therefore,

we calculated the average reduction percentage that resulted in a decrease of 45.3%. On

the other side, the MEI2JSON was able to reduce the storage with an average of 74.1%.

Thus, the MEI2JSON is capable of reducing the storage by 28.8% more than the Me-

ico+MusicJSON approach. This improvement is beneficial for database systems where

it can ensure the integrity of music score using one of the most optimal format possible,

the JSON format. Also, it has a positive influence on our pre-processing target, since

ingesting smaller inputs makes the neural network handle bigger datasets while keeping

the hardware in healthy conditions.

To briefly summarise our experiments, we calculated the time and space complexity, the

data quality metrics, and the storage assessment of both converters using an eastern mu-

sic dataset presented at the beginning of Section 5. The Meico+MusicJSON approach

outperformed MEI2JSON in terms of time and space complexity. The latter outperformed

Meico+MusicJSON in terms of data quality assessment and storage assessment. Thus,

the MEI2JSON proved its role as a converter for eastern music scores from MEI to JSON

format where other converters focused primarily on supporting occidental music scores.
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On the other hand, the comparison between the previously mentioned converters will nor-

mally differ using occidental music scores. The existing solution should outperform the

MEI2JSON in terms of data quality metrics since occidental music scores are in continu-

ous development in the MEI community. These continuous updates are supported by the

MEI converters like Meico (Berndt et al., 2018) [121] since they use the latest versions

of the MEI encoding tools (https://github.com/musicencoding/music-encoding). However,

the MEI2JSON relies on the MusicPatternOWL [165] that supports eastern music scores

more than the occidental because of the latter’s continuous updates.

4.6/ CONCLUSION

In this chapter, we proposed the MEI2JSON converter that covers the transformation

of music scores encoded in MEI to JSON format for pre-processing purposes. As ex-

plained, the proposed converter consists of three components. The components rely on

the MusicPatternOWL ontology to achieve information retrieval and structure music score

content throughout the conversion process. We compared the MEI2JSON with a com-

bined approach composed of two existent converters, Meico and MusicJSON. We used

a dataset of 150 eastern music scores encoded in MEI to obtain the needed results. The

experiment results were promising by the fact that our converter was able to outperform

the combined converters in terms of data quality and storage assessment. The converter

proved its capability of preserving the quality of the data while reducing the allocated stor-

age space. However, the combined approach still outperforms the MEI2JSON in terms of

analysis performance. The outperformance was mainly due to the behaviour of the last

component, the RDF2JSON component.
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5

MUSIC GENRE CLASSIFICATION USING

COMPUTER VISION

Embedding music genre classifiers in music recommendation systems offers a satisfy-

ing user experience. It predicts music tracks depending on the user’s taste in music.

In this chapter, we propose a preprocessing approach for generating STFT spectro-

grams and upgrades to a CNN-based music classifier named Bottom-up Broadcast Neu-

ral Network (BBNN). These upgrades concern the expansion of the number of inception

and dense blocks, as well as the enhancement of the inception block through reduction

block implementation. The proposed approach is able to outperform state-of-the-art mu-

sic genre classifiers in terms of accuracy scores. It achieves an accuracy of 97.51%

and 74.39% over the GTZAN and the FMA dataset respectively. Code is available at

https://github.com/elachkarcharbel/music-genre-classifier.

5.1/ INTRODUCTION

Modern studies found interest in building robust music classifiers to automate genre clas-

sification of unlabeled music tracks. There were diverse approaches in their feature en-

gineering process as well as the neural network selection [105, 168, 128, 78, 172]. In

this chapter, we propose a custom approach for music genre classification. STFT spec-

trograms are generated and diversified by slicing each spectrogram into multiple slices to

ensure a variety of visual representations among the same music track. Furthermore, up-

grades to a state-of-the-art Convolutional Neural Network (CNN) network for music genre

classification named BBNN [168] are proposed. The contribution of this chapter relies on

two main improvements: expanding the number of inception and dense blocks of the net-

work and enhancing the inception block by implementing the reduction block B proposed

in [116] instead of the existing block inspired by [81]. The proposition is evaluated through

its application using the GTZAN [6] and the FMA [85] music datasets.
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The remainder of this chapter is organized as follows: in Section 2, we present the pre-

processing process in addition to the contributed upgrades. Section 3 explores the ex-

perimental results of the proposed upgrades over competitive CNN networks, followed by

a conclusion in Section 4.

5.2/ PROPOSED APPROACH

In this section, the BBNN network proposed in [168] is briefly introduced. Later, the pro-

posed approach is elaborated while mentioning the proposed upgrades to achieve higher

accuracy results against the GTZAN and the FMA dataset. As mentioned in the related

work, the Bottom-up Broadcast Neural Network (BBNN) is a recent CNN architecture

that fully exploits the low-level features of a spectrogram. It takes the multi scale time-

frequency information transferring suitable semantic features for the decision-making lay-

ers [168]. The BBNN network consists of inception blocks interconnected through dense

blocks. The inception block is inspired by the inception v1 module proposed in [81]

while adding a Batch Normalization (BN) operation and a Rectified Linear Unit activa-

tion (ReLU) before each convolution. This approach relied on generating coloured Mel

spectrograms from the music tracks while providing the latter as input features to the CNN

network. The spectrograms had the size of 647 × 128 and were used as-is for training

purposes. This network was able to achieve the second-best accuracy over the GTZAN

dataset (93.90%) by stacking three inception blocks with their corresponding dense con-

nections.

5.2.1/ PREPROCESSING

Spectrograms are the key to successful music genre classification using CNN-based net-

works. Based on the approaches mentioned in the Related Work chapter, greyscale STFT

spectrograms are adopted instead of coloured Mel spectrograms. The majority of CNN

based music genre classifiers relied on Mel spectrograms, since STFT spectrograms re-

quired greater GPU memory for their increased quantity of embedded features. Thus, we

use STFT spectrograms in our experiments to leverage the latter increase on accuracy

scores, in addition to the availability of efficient GPUs for experimental testing. Using the

Sound eXchange (SOX) package, the greyscale spectrograms are generated with a size

of 600 × 128. As expressed in the Related Work, the GTZAN dataset has several faults

[70]. For instance, three audio tracks were discarded while recursively generating the

spectrograms using the SOX package. Each music track of the discarded ones was as-

sociated with a separate genre of the dataset. Therefore, we randomly removed a single

audio track from the remaining genres to normalize the number of music tracks per genre.
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Figure 5.1: Spectrogram slicing approach

Subsequently, the Python Imaging Library (PIL) is used to slice the STFT spectrograms

into multiple images. The spectrogram is divided into three to four separated slices. Each

slice is a normalized 128 × 128 slice that represents a 6.4 seconds (s) track out of the

initial 30 s music tracks. Therefore, the last one and a half slices of the spectrogram are

discarded, keeping only the first three slices (a, b and c in Figure 5.1). This approach is

mainly used for better data preparation for CNNs by normalizing the spectrogram’s width

and height. It also increases the diversity of the music genres, since spectrograms variate

dependently on the time axis. Thus, this normalization does not accentuate overfitting due

to the variety in every spectrogram’s slices. It is important to mention that the discarded

slices may hold useful data for our classification. However, we adopted this approach to

limit the number of training/testing images as well as ensuring the obtention of the same

number of slices per music track (music tracks length is not always consistent to 30 s).

5.2.2/ NETWORK CONTRIBUTION

Inspired by the BBNN network [168], custom modifications are proposed to achieve higher

accuracy results. Even though the BBNN stacks three inception blocks connected with

dense blocks, the trained model possessed a tiny size (only 0.18 M). Using a small sample

of both datasets, we performed a hyperparameter search taking the number of inception

and dense blocks as the hyperparameter in question. The search result showed that the

optimal number of blocks is equal to 6 for achieving the greatest accuracy.
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Figure 5.2: Proposed inception block modifications over the BBNN network

At this stage, the proposed network consisted of doubling the number of inception and

dense blocks in the Broadcast Module (BM) of the BBNN, leaving the remaining layers

(Shallow, Transition, and Decision) as proposed in [168].

Increasing the number of blocks reflected an increase in accuracy scores. On the other

hand, it expanded the size of the training model and slowed the training process. Conse-

quently, the architecture of the BBNN network was modified to reduce significant draw-

backs due to overfitting and computation problems in the inception v1 block [116]. Many

CNN related studies, in particular a music-related study in [141], proved that dense blocks

are better than residual blocks. Thus, it was decided to keep the dense connection of the

BBNN network intact. Moreover, the BBNN network relied on the inception v1 proposed

in [81] while adding BN and ReLU operations before each convolution. The original incep-

tion v1 was found computationally expensive as well as prone to overfitting in many cases.

At this stage, the next contribution was to replace the modified inception v1 blocks with

modified inception v4 blocks in order to improve the computation efficiency and most im-

portantly to increase the accuracy. As mentioned in [116], the earlier inception modules

(v1, v2, v3) were found more complicated than necessary. They proposed specialized

“Reduction Blocks” A and B to change the width and height of the grid. This change

produces a performance boost by applying uniform and simplified operations to the net-

work. Figure 5.2 presents the modified inception blocks in detail. The block on the left
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concerns the custom inception v1 block of BBNN, and the block on the right concerns our

proposed inception v4 block. As previously mentioned, the left block is inspired by the

inception v1 block in [81], while adding BN and ReLU operation before each convolution.

On the other hand, the proposed inception block is inspired by the “Reduction Block B”

introduced in [116]. Compared with BBNN’s inception block in [168], the “Reduction Block

B” of inception v4 [116] reduces the network complexity by mainly removing unnecessary

1 × 1 convolution operations and replacing the 5 × 5 convolution with a stack of 1 × 7, 7

× 1, and 3 × 3 convolution operations. Also, it accentuates memory optimization to back-

propagation by implementing the factorization technique of inception v3. This technique

is responsible to reduce the dimensionality of convolution layers, which reduce overfitting

problems. In this matter, it was proposed to use the same architecture as the “Reduction

Block B”, while implementing BN and ReLU operations before each convolution.

5.3/ EXPERIMENTAL EVALUATION

In this section, the training hyperparameters are presented while evaluating the proposed

contribution against state-of-the-art music genre classifiers. The training operations are

performed using an NVIDIA Tesla V100 SXM2 GPU with 32 GB of memory.

5.3.1/ HYPERPARAMETERS AND TRAINING DETAILS

As mentioned in Section 2, the input images were prepared by generating a STFT spec-

trogram out of each music track of the GTZAN and the FMA dataset. Each spectrogram

(600 × 128) was sliced into 128 × 128 slices, taking only the first three slices as a visual

representation of each music track. At this stage, the input images for GTZAN classifica-

tion were 297 slices of spectrograms per genre (99 music tracks per genre), and the input

images for FMA classification were 3000 per genre (1000 music tracks per genre).

Inspired by BBNN [168], the proposed network upgrades were added as well as the

hyperparameters to start the training. Considering that the BBNN network was initially

tested against the GTZAN dataset [6], the same hyperparameters as the BBNN network

were used for this case. The ADAM optimizer was selected to minimize the categorical

cross-entropy between music genre labels, a batch size of 8 and an epoch size equal to

100. An initial learning rate of 0.01 was configured, while automatically decreasing its

value by a factor of 0.5 once the loss stops improving after 3 epochs. The early stopping

mechanism was implemented to prevent overfitting, and the GTZAN input spectrograms

were fed to the classifier through 10-folds cross-validation training. Since all related pub-

lications used different dataset split ratios, the same ratio as BBNN’s [168] is adopted to

compare our results with BBNN in particular and with other publications in general. Thus,
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GTZAN Classification
Methods Preprocessing Accuracy
AuDeep[105] Mel Spectrogram 85.40
NNet2[97] STFT 87.40
Hybrid model[128] MFCC, SSD, etc. 88.30
Transform learning[102] MFCC 89.80
DenseNet+Data
augmentation[141]

STFT Spectrogram 90.20

Multi-DNN[78] MFCC 93.40
TPNTF[35] MFCC 93.70
BBNN[168] Mel Spectrogram 93.90
DNN+Transfer learning[124] Mel Spectrogram 94.20
GIF generation
Framework[172]

MFCC Spectrogram 94.70

Our approach STFT Spectrogram 97.51

Table 5.1: Comparative table for GTZAN classification methods in terms of accuracy (%)

the training, testing and validation sets were randomly divided following an 8/1/1 propor-

tion (80% for training, 10% for testing, and 10% for validation). The resulting training

and testing accuracies were calculated by averaging all the accuracies concluded in the

cross-validation folds.

Concerning the FMA dataset, the increase in the batch size revealed an accuracy in-

crease. However, the same hyperparameters as GTZAN were used, in addition to keep-

ing the same value of the batch size (8), to align our results with the existing ones. Before

initiating the training, the inception block’s training parameters were calculated for both,

the BBNN network and the proposed approach. This calculation showed that the pro-

posed inception block uses less than 26.78 percentage points (pp) of BBNN’s inception

block parameters.

5.3.2/ TESTING RESULTS

In the tables below (Table 5.1 and Table 5.2), the proposed approach is compared to the

most recent and accurate methods. These methods either rely on deep learning models

or hand-crafted feature descriptors to provide an efficient classification of the GTZAN and

the FMA datasets.

Table 5.1 compares the music genre classifiers used on the GTZAN dataset. It shows

the different methods used over this dataset, including its preprocessing features and the

resulted accuracies. As mentioned in the Related Work chapter, each method relied on a

different preprocessing and training approach to achieve the highest accuracy possible.

The classification methods are enumerated in ascending order based on the accuracy

score. As for the proposed approach, its related fields are displayed in bold in the table.
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FMA Classification (fma-small subset)
Methods Preprocessing Accuracy
Representation learning[114] Mel Spectrogram 57.91
BBNN[168] Mel Spectrogram 61.11
SongNet[147] Raw audio 65.23
DenseNet+Data
augmentation[141]

STFT Spectrogram 68.20

Our approach STFT Spectrogram 74.39

Table 5.2: Comparative table for FMA classification methods in terms of accuracy (%)

The results show that the proposed method can outperform the accuracy of the BBNN

network [168] specifically by 3.61 pp, and outperform the highest accuracy mentioned

[172] by 2.81 pp.

As for the small subset of FMA, Table 5.2 presents the methods applied over the latter

to provide accurate music genre classification. Similar to Table 5.1, this table shows the

different methods used over this dataset, in addition to the preprocessing features used

and the resulted accuracies. As for the proposed approach, it outperformed the highest

accuracy over the FMA small subset [85] by 6.19 pp. Since the proposed approach was

inspired by the BBNN network and the latter is not tested against the small subset of FMA,

the BBNN Github code1 was used as-is over this dataset for experimentation purposes.

It resulted in an accuracy of 61.11%, found to be less than 13.28 pp of the proposed

approach. It is important to note that the outperformance against the related publications

is not limited to the proposed network contribution only. The proposed preprocessing

process assisted in this outperformance, especially with the GTZAN faults, where we

reduced the number of music tracks per genre. Furthermore, the idea of slicing the

generated spectrograms to obtain a diversity of visual representations among the same

music track.

5.4/ DISCUSSION

5.4.1/ LIBROSA VS SOX

In this study, we used the Sound eXchange (SoX) library to generate the greyscale STFT

spectrograms. However, other studies have used the Librosa Python library to perform

such audio-visual computations. Fig 5.3 and 5.4 presented below represent the same

Blues track computed to a greyscale STFT spectrogram, Fig 5.3 is the Librosa-computed

version and Fig 5.4 is the SoX-computed version that we adopt in this study. Below are

the common differences between SoX and Librosa while adding our observations and

motivation for adopting the SoX version. Librosa provides a high-level and user-friendly
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interface to work with the data, while SoX is a command-line utility, which makes the

scripting and programming part less user-friendly.

Figure 5.3: STFT greyscale spectrogram of a Blues track computed using Librosa

Figure 5.4: STFT greyscale spectrogram of a Blues track computed using SoX
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In the STFT spectrogram generation part, the Librosa library allows for various param-

eters that provide more computational control and flexibility over the characteristics of

the spectrogram. On the other hand, the SoX library has fewer parameters, requiring

more manual configuration and scripting to achieve the flexibility of Librosa. The SoX

library focuses on basic audio format conversion, editing and effects, while Librosa offers

additional audio processing features such as beat tracking, pitch estimation and feature

extraction for machine learning tasks. While the comparison showed better usability of

Librosa over SoX, we present the observation that motivated us to adopt the SoX ap-

proach:

The spectrograms calculated with Librosa have a white background (subtractive colour

synthesis), while the spectrograms calculated with SoX have a black background (addi-

tive colour synthesis). The additive synthesis approach helped to visualise a vivid and

dynamic colour control of the greyscale spectrogram compared to the subtractive ap-

proach. This frequency representation, using a variation of white on a black background,

emphasises the sharpness of the recorded frequencies, as well as the melodic features

of the audio track, such as the harmonics, which we have marked in red (easier to detect

by human observation). This feature, among others, encouraged us to adopt the SoX

library, where the distinctive representation of melodic features helps to discriminate the

visual features of audio tracks to achieve more accurate music genre classification. It is

important to note that this observation was not our only reason for using SoX instead of

Librosa. Nevertheless, it encouraged us to carry out a comparative approach, where a

small sample of the GTZAN dataset was computed using both libraries. The empirical

test results showed promising results of the SoX approach over Librosa.
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5.4.2/ GENRE BY GENRE PRECISION PERCENTAGES OF THE PROPOSED AP-
PROACH

Figure 5.5: Comparison by genre of the proposed approach with BBNN using the GTZAN
dataset

In the experiments section, we gathered state-of-the-art networks and evaluated their

accuracy against either the GTZAN dataset or a smaller subset of the FMA dataset. No-

tably, the BBNN network, as described in [168], provided per-genre precision visualiza-

tions over the GTZAN dataset. We conducted a similar analysis to compare our proposed

approach with BBNN. Figure 5.5 presents a comparative histogram displaying precision

percentages for both networks. Precision measures the proportion of true positive pre-

dictions relative to all positive predictions made by the model, gauging its performance

in correctly identifying positive cases. Mathematically, precision is calculated by dividing

the number of true positive predictions by the sum of true positives and false positives,

followed by multiplying the result by 100 to obtain a percentage. In Figure 5.5, the pre-

cision percentages for BBNN over the GTZAN dataset are displayed in blue, as per the

original manuscript, while those for our proposed approach are shown in green. For

clarity, we’ve included exact percentage scores above each histogram bar. Our analysis

in Figure 5.5 reveals that, in the majority of genres, our proposed approach surpasses
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BBNN in terms of precision percentages. Notably, it significantly improves precision for

genres like Rock, Country, and Metal, which were challenging to distinguish in BBNN

due to their closely related frequency distributions. This improvement can be attributed

to our approach’s expansion of inception and dense blocks, providing a more detailed

perspective on spectrogram frequency variations. It emphasised a more detailed view of

the frequency variations in the spectrograms, which allowed a better pattern recognition

performance of each genre. Similarly, our proposed approach also enhances the clas-

sification of genres like Blues, Hip-Hop, and Pop, which exhibit a high correlation with

Rock.

5.5/ CONCLUSION

In this chapter, we introduce significant enhancements to the CNN-based music genre

classifier known as BBNN, coupled with a custom preprocessing procedure for generat-

ing STFT spectrograms from music tracks. These enhancements represent a significant

improvement in music genre classification. They allow for a more accurate and robust

solution to this task. We improve the user experience by predicting music tracks based

on individual preferences by embedding music genre classifiers in music recommenda-

tion systems. Our approach introduces several improvements, including increasing the

number of inception and dense blocks in the BBNN network, as well as enhancing the

inception block with a novel reduction block B inspired by previous work. These en-

hancements have led to remarkable improvements in accuracy, consistently exceeding

the performance of other music genre classifiers on both the GTZAN and FMA datasets.

Specifically, our approach achieved superior accuracy scores of 97.51% on the GTZAN

dataset and 74.39% on the FMA dataset. The preprocessing step plays a major role

in our approach. We use greyscale STFT spectrograms instead of color Mel spectro-

grams, a choice validated through empirical tests. This preprocessing step, combined

with the slicing of the spectrograms into multiple images, allows for a more diverse set

of visual representations for each music track, thus contributing to improved accuracy. In

particular, our approach demonstrates not only accuracy but also efficiency. It consists

of an optimised inception block that uses fewer training parameters while achieving supe-

rior results. This reduction in training parameters highlights the innovative nature of our

approach, simplifying the classification process for improved efficiency.





6

AUTOMATIC MUSIC TRANSCRIPTION

USING COMPUTER VISION

Generating music-related notations offers assistance for musicians in the path of replicat-

ing the music using a specific instrument. In this chapter, we evaluate the state-of-the-

art guitar tablature transcription network named TabCNN against state-of-the-art com-

puter vision networks. The evaluation is performed using the same dataset as well as

the same evaluation metrics of TabCNN. Furthermore, we propose a new CNN-based

network named TabInception to transcribe guitar-related notations, also called guitar

tablatures. The network relies on a custom inception block converged by dense lay-

ers. The TabInception network outperforms the TabCNN in terms of multi-pitch preci-

sion (MP), tablature precision (TP), and tablature F-measure (TF). Moreover, the Swin

Transformer achieves the best score in terms of multi-pitch recall (MR) and tablature re-

call (TR), while the Vision Transformer achieves the best score in terms of multi-pitch

F-measure (MF). These results were acquired while training all the networks with 8

or 16 epochs. Motivated by the previous insights, we train the networks with more

epochs and propose another network named Inception Transformer (InT) to surpass

all the estimation metrics of TabCNN using a single network. The InT network relies

on an inception block converged by a Transformer Encoder. The TabInception and the

InT network outperformed all estimation metrics of TabCNN except the tablature dis-

ambiguation rate (TDR) when trained using a bigger epoch size. Code is available at

https://github.com/elachkarcharbel/Guitar-Tablature-Transcription.

6.1/ INTRODUCTION

Over the last decade, researchers have been exploring the benefits of their innovations in

music-related fields while producing tools that can facilitate musicians’ daily tasks. One

of the latter fields is automatic music transcription (AMT). The AMT is the task of gener-

ating a symbolic notation, and instructing a musician how to play a song using a specific
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instrument. Several studies have been conducted in the AMT field, but only a few of them

dealt with the guitar instrument, such as I. Barbancho et al. (2012) [50], Fuentes et al.

(2012) [56], and A. M. Barbancho et al. (2012) [49]. As for automatic guitar transcription,

the guitarist generally relies on both the music score and the tablature notation to play

the song in question, as shown in Fig. 6.1. The music score represents the distribution

of pitches in time, and the tablature notation defines the guitar strings and the position of

the fingers along the fretboard to produce those pitches.

As described by Klapuri (2006) [17], the pitch is a perceptual property of sounds that

allows their ordering on a frequency-related scale. It can be perceived as the property

that measures the loudness of the sound. Contrarily, the tablature is a form of musical

notation that indicates instrument fingering rather than pitches. This notation is mostly

common for fretted stringed instruments like the guitar, where frets can be defined as thin

strips of material inserted laterally at a specific position along the fretboard of the guitar.

Figure 6.1: Music score and tablature notation illustrating the first four bars of the song
Radioactive by Imagine Dragons. The tablatures in the bottom represent the string to be
played by the guitarist, in addition to the number of the fret to press.

This chapter explores several computer vision techniques for automatic guitar transcrip-

tion. Inspired by the TabCNN model published in Wiggins and Kim (2019) [146], Constant-

Q spectrograms are generated from each audio track and computed through Computer

Vision approaches as visual representations of the audio data. Furthermore, we pro-

pose a new CNN-based network named TabInception that relies on Inception and Dense

Blocks for automatic guitar transcription. Moreover, we propose another network named

Inception Transformer (InT) to attempt to improve the results of TabInception and other

featured networks. The Int network relies on an Inception Block converged by the Trans-

former Encoder Block proposed in [118].

Thus, the leading purpose of this study is to evaluate the TabCNN network against state-

of-the-art computer vision networks while proposing new networks that might be capable

of outperforming the latter network in the field of guitar tablature transcription. All the

aforementioned networks, in addition to the TabInception and the InT network, are eval-

uated using the GuitarSet dataset published in Xi et al. (2019) [139], by the fact that

TabCNN was assessed earlier against this dataset in Wiggins and Kim (2019) [146]. At

a broader level, the aim is to explore which of the shallow networks like TabCNN or the
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deeper networks, such as the proposed ones, can perform better on music transcription

use cases. The remainder of this chapter is organized as follows: Section 2 presents the

selected dataset in addition to the adopted preprocessing procedure. Section 3 interprets

the proposed networks for automatic guitar transcription, while Section 4 compares the

proposed networks with state-of-the-art CNNs and Transformer-based networks in terms

of multi-pitch and tablature estimation metrics. Section 5 concludes the work and gives

some directions for future work.

6.2/ DATA SELECTION AND PREPARATION

The TabCNN model proposed in Wiggins and Kim (2019) [146] holds the state-of-the-

art record for guitar tablature transcription using CNNs. In this study, the same dataset

chosen in TabCNN is used, in addition to the preprocessing procedure for computing

audio features to images.

6.2.1/ THE GUITARSET DATASET

The GuitarSet dataset proposed in Xi et al. (2019) [139] consists of 360 solo guitar

recordings, with a length of approximately 30 seconds for each one. The guitar solos were

recorded using a hexaphonic pickup and a condenser microphone inside a soundproof

recording studio. The authors used the JAMS file format of Humphrey et al. (2014) [73]

to annotate the recorded guitar performances. Thus, the GuitarSet consists of 360 guitar

recordings encoded in WAV format and annotated with 360 JAMS files separately. Each

JAMS file contains various musical features such as tempo, key, beats and downbeats,

note-level transcription (including string and fret position), and many more. Similar to

TabCNN, the TabInception and InT networks use only the monophonic microphone signal

to estimate the tablature.

6.2.2/ DATA PREPROCESSING

Similar to the TabCNN approach of Wiggins and Kim (2019) [146], the audio recordings

were downsampled from 44100 to 22050 Hz to reduce the input signals’ dimension. The

input signals were normalized to obtain an identical range of amplitudes among all the

recordings. This normalization is essential to achieve the next step: computing the con-

venient audio signal feature out of each recording.

Inspired by previous experiences in guitar tablature transcription, the Constant-Q Trans-

form (CQT) is adopted as the feature to compute. For this reason, and to directly compare

all studied networks with TabCNN, similar CQT parameters are adopted.
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Figure 6.2: Audio to Image transformation through Constant-Q Transform computation

As shown in Fig. 6.2, and using the Librosa Python library, the CQT is computed over the

audio recording in the first place. A value of 192 is selected for the bins and 512 for the

hopsize parameter. The bins parameter consists of the intervals between samples in the

frequency domain. It is estimated by dividing the sampling rate by the Fast Fourier Trans-

form (FFT) size. On the other hand, the hopsize is the number of samples between each

successive FFT window. It is processed by dividing the FFT size by an integer defining

the overlap factor of FFT windows. As for this parameter selection validation, we plotted

the chroma cqt features using the selected bins and hopsize parameters. The chroma

features captures harmonic and melodic characteristics of music while being robust to

changes in timbre and instrumentation. In this case, the chroma cqt analyzes these mu-

sical features following the CQT parameter already computed. While visualizing the plots,

it was found that the produced chroma features were slightly noisy and unclear. Thus, the

number of bins per octave parameter was scaled from its default value (12) to 24 to clarify

the computed CQT by increasing its resolution. The CQT is then computed using the new

parameter values: hopsize = 512, number of bins = 192, and number of bins per octave

= 24.

At this stage, the computed CQT can be obtained as a visual representation of size

970x192, while adding zero padding on both sides of the CQT to achieve the sampling

step (the initial size is 946x192 since the audio used in this example has a 22 seconds

length and the hopsize used corresponds to 43 frames per seconds approximately). In

addition, the sampling step (second in Fig. 6.2) is where the sliding context window of 9

frames takes place to generate multiple images of size 9x192 out of the initial computed

CQT. The entire process results in multiple CQT images out of the same audio recording.

Each image concerns nine successive frames of the initially computed CQT.

It was essential to resize the sampled CQT images into square-shaped images to com-

pare the proposed and the existing approaches with state-of-the-art computer vision net-
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works. The majority of the latter networks are trained and evaluated using squared im-

ages. Thus, the need to resize the images to the smallest recurrent size, 224x224. Con-

sequently, using the function of the numpy Python library, we repeated the same pixels of

the sampled image in width to achieve a size of 192x192. Then, the images were resized

from 192x192 to 224x224.

It is important to note that this is the most convenient resizing technique, since resiz-

ing from 9x192 directly to 224x224 may distort the image content. Also, both versions

were kept, the 9x192 sampled images and the 224x224 resized images for further net-

work comparisons. Concerning the annotations, the same approach in Wiggins and Kim

(2019) [146] is adapted to sample the stringwise pitch features stored in the JAMS files.

These features are transformed into binary matrices. Each matrix represents a frame

belonging to a computed audio recording.

Figure 6.3: Label associated to the 512th frame of the 02 Rock 1 130.wav recording

Fig. 6.3 represents a matrix associated with one of the frames in the 02 Rock 1 130.wav

recording. The matrix is of shape 6x21, equal to the six strings of the guitar having 21

different fret classes. Since the GuitarSet is recorded using an acoustic guitar of 19 frets,

the remaining two frets correspond to two descriptive states of a guitar string. The first

fret associated with the first column (from left to right) of the matrix indicates if the string

is in an open state (no frets are pressed), while the second fret (second column) indicates

if the latter is in a closed state. The remaining 19 frets correspond to the remaining 19

columns of the matrix to define the pressed fret at a given frame.

6.3/ PROPOSED NETWORKS

6.3.1/ THE TABINCEPTION NETWORK

Inspired by the insightful conclusion in Maaiveld et al. (2021) [170], especially the point

mentioning the essential role of Dense layers in guitar tablature transcription, a custom

CNN-based network named TabInception is proposed.
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Figure 6.4: Architecture of the TabInception network

As shown in Fig. 6.4, the TabInception starts with an input layer taking images of shape

(192, 9, 1). Thus, it involves swapping the axes of the computed images in the prepro-

cessing steps to provide a proper data fitting. Consequently, we propose adding a two-

dimensional convolutional layer of 32 filters adjacent to a Batch Normalization, a Relu

activation, and a Max Pooling layer with a pool size equal to (4,1). The output of the latter

bundle is fed into an Inception block that can be described as follows:

The proposed Inception block uses a similar architecture to the Inception v4 architecture

implemented in Szegedy et al. (2017) [116], while adding Batch Normalization and Relu

activation layers among adjacent Conv2D layers. Fig. 6.4 shows a high-level visualization

of the Inception block, where several base convolutional blocks (base conv block) are

interconnected together and are concatenated at the end with a MaxPooling2D layer.

Each base conv block consists of a Batch Normalization, a Relu activation, and a Conv2D

layer with 32 filters. This technique ensures that the adopted inception approach will be

less likely to over-fit. Also, the Batch Normalization improves memory optimization to

backpropagation while reducing the intensive computations caused by convolutional lay-

ers. After concatenating the Inception block’s calculations, the output is fed to the Transi-

tion Block. As presented in Fig. 6.4, the Transition block is the same as a base conv block

with the addition of an AveragePooling2D layer after the Conv2D one. This approach is

essential to downsample the huge spatial dimensions caused by the Inception block, and

to converge the network into its decisive and final layers. Since TabInception concerns
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guitar tablature transcription, the network should be able to compute multidimensional

calculations. Hence, the use of the Flatten layer to convert the sixth channelled output to

a single channelled one for Dense layer calculations. Each of the sixth channels consists

of a guitar string having 21 frets. The Dense calculations are dropped out with a value

of 0.5 while re-iterating the Dense computations using a number of units equal to the

multiplication of the number of strings and frets (6 × 21 = 126 units). The output of the

concluding layer is reshaped back to (6, 21) to compute the activation of each guitar string

separately. Finally, the softmax by string activation function proposed in Wiggins and Kim

(2019) [146] is used to concatenate the separately computed six softmax calculations and

to unify the output.

Figure 6.5: Architecture of the Inception Transformer (InT) network

6.3.2/ THE INCEPTION TRANSFORMER NETWORK

The TabInception network was trained over the computed CQT images besides other

CNN-based and Transformer-based models. The latter networks could not surpass all

the estimation metrics results of TabCNN (check detailed insights in the experiments sec-

tion). Thus, a new network named Inception Transformer (InT) is proposed to attempt to

exceed all the results of TabCNN.

Inspired by the precision of the TabInception network and the recall and the F-measure
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of the Transformer-based models, the InT proposes a fusion between the Inception block

of the TabInception network and the Transformer Encoder proposed in [118] and adopted

in the Vision Transformer (ViT) model [149].

Similar to TabInception, The InT network relies on similar Input layers except using a num-

ber of filters equal to 64 instead of 32, as well as adding 4 strides to the initial Conv2D

layer. The increased number of filters is adapted into the Inception Block of the InT net-

work. The latter Block is identical to the one used in TabInception except for the number

of filters. Furthermore, the computed calculations are concatenated and reshaped to (96,

64) to match the input shape needed for the Transformer Encoder. The Transformer En-

coder adopted in [149] expects a sequence of embeddings vector that serves as input.

These vectors consist of positional embeddings in addition to those of previously gener-

ated patches. As for the Transformer Encoder of the InT network, it expects a sequence

of positional embedding along with the reshaped tensors produced out of the previously

mentioned Inception block. Thus, the idea of generating patches and feeding them to the

encoder is replaced by loading the encoder with convolutional-based tensors. The Trans-

former Encoder is responsible for alternating mutlihead self-attention blocks with MLP

blocks. A LayerNormalization layer is applied before every block in addition to a residual

connection after every block inside the encoder [144, 120]. The Transformer Encoder

used in the proposed InT network relies on six transformer layers, an MLP dimension of

128, and a patch size equal to 4. The output of the latter encoder is fed to a ReduceMean

layer to reduce the dimension of the tensor for the succeeding Dense layer. The Dense

layer of shape 126 is then fed to the same concluding layers as TabInception to compute

the activation of each guitar string separately. The same activation function and optimizer

are adopted for both, the TabInception and the Inception Transformer networks.

It is important to note that the choice of the hyperparameters for both proposed networks

(the number of filters, the number of transformer layers, and the MLP dimension...) is

based on various trainings previously performed to find the most optimal value.

6.4/ EXPERIMENTS

In this section, the TabCNN network is compared to the TabInception and InT networks, in

addition to state-of-the-art computer vision (CV) networks such as Liu et al. (2021) [169],

Tan and Quoc (2019) [143], and Dosovitskiy et al. (2020) [149]. The CV networks were

modified slightly by reshaping their decisive layers to provide a unified output across all

networks (shape of (6, 21) as a matrix of 6 strings with 21 frets each). The implementation

took place using the official version of the CV networks or its equivalent in Keras.
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Image Size Epochs Network MP MR MF TP TR TF TDR

192x9 8 TabCNN
0.9 0.764 0.826 0.809 0.696 0.748 0.899
±0.016 ±0.043 ±0.025 ±0.029 ±0.061 ±0.047 ±0.033

192x9 16 TabCNN
0.927 0.7805 0.8474 0.8101 0.711 0.757 0.873
±0.008 ±0.003 ±0.0176 ±0.0115 ±0.0268 ±0.0151 ±0.006

192x9 300 with ES TabCNN
0.8549 0.722 0.782 0.815 0.697 0.751 0.953
±0.013 ±0.021 ±0.0172 ±0.0185 ±0.0346 ±0.0237 ±0.0136

192x9 8 TabInception
0.941 0.7189 0.815 0.7973 0.6455 0.7134 0.8473
±0.008 ±0.031 ±0.0176 ±0.0115 ±0.0268 ±0.0151 ±0.006

192x9 16 TabInception
0.9688 0.7454 0.8425 0.8519 0.6911 0.7631 0.8793
±0.0192 ±0.0518 ±0.0317 ±0.0199 ±0.0608 ±0.0443 ±0.0244

192x9 300 with ES TabInception
0.9533 0.7834 0.86 0.8639 0.739 0.7965 0.906
±0.0147 ±0.0339 ±0.0187 ±0.0158 ±0.0356 ±0.0221 ±0.0104

192x9 8 ViT
0.908 0.8209 0.8622 0.7291 0.7144 0.7216 0.802
±0.0165 ±0.0373 ±0.0204 ±0.0329 ±0.0444 ±0.0349 ±0.0313

192x9 16 ViT
0.882 0.8 0.839 0.7043 0.6901 0.6971 0.798
±0.0066 ±0.0155 ±0.0056 ±0.0074 ±0.0183 ±0.0099 ±0.0093

192x9 300 with ES ViT
0.937 0.8524 0.8927 0.7586 0.7441 0.7512 0.8096
±0.0115 ±0.0264 ±0.013 ±0.0201 ±0.0313 ±0.0224 ±0.0203

192x9 8 InT
0.8785 0.8213 0.8489 0.7202 0.7206 0.7203 0.8198
±0.0083 ±0.0092 ±0.0056 ±0.0128 ±0.0132 ±0.0117 ±0.0089

192x9 16 InT
0.891 0.82 0.854 0.7134 0.7019 0.7076 0.8
±0.0031 ±0.0062 ±0.0031 ±0.0356 ±0.0738 ±0.0473 ±0.0034

192x9 300 with ES InT
0.9481 0.914 0.9307 0.8551 0.8041 0.828 0.901
±0.0057 ±0.0077 ±0.0043 ±0.0242 ±0.0435 ±0.0295 ±0.00615

224x224 8 SwinTF
0.8875 0.8034 0.843 0.709 0.693 0.7 0.798
±0.0146 ±0.0374 ±0.0146 ±0.0226 ±0.0212 ±0.041 ±0.031

224x224 16 SwinTF
0.9035 0.8421 0.8717 0.7331 0.726 0.729 0.8114
±0.0075 ±0.0034 ±0.0024 ±0.0019 ±0.0069 ±0.002 ±0.007

224x224 300 with ES SwinTF
0.9259 0.8531 0.888 0.7307 0.7191 0.7248 0.789
±0.011 ±0.0204 ±0.0085 ±0.0122 ±0.014 ±0.0215 ±0.019

224x224 8 EfficientNetB0
0.839 0.7691 0.8025 0.6739 0.6406 0.656 0.803
±0.0176 ±0.0071 ±0.016 ±0.026 ±0.048 ±0.034 ±0.031

224x224 16 EfficientNetB0
0.861 0.691 0.766 0.733 0.615 0.668 0.851
±0.006 ±0.067 ±0.0386 ±0.0359 ±0.0695 ±0.0475 ±0.0401

224x224 300 with ES EfficientNetB0
0.8947 0.7747 0.83 0.748 0.6723 0.708 0.836
±0.0118 ±0.037 ±0.0273 ±0.0309 ±0.0587 ±0.0407 ±0.0355

Table 6.1: Comparative table for guitar tablature transcription using computer vision net-
works. The best score per metric is highlighted in black, the second best in green, and
the third best in red.
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The same parameters and hyperparameters are used across all the networks for better

comparison with TabCNN. A batch size of 128 and a 6-fold cross-validation training

method were selected while relying on the preprocessed CQT as input images to the

network. The images were divided using an 85% training and 15% testing ratio for all

networks.

The Swin Transformer (SwinTF) in Liu et al. (2021) [169] and the EfficientNetB0 in

Tan and Quoc (2019) [143] 1 networks perform their best when trained using squared

images since they rely on patch-based architectural structures. Therefore, it was

favourable to experiment with both networks using a squared image format instead of

performing architecture changes for fitting non-squared images. Hence, the resized

224x224 CQT images are used for these approaches. In contrast, the 192x9 CQT

images are adopted to train the TabCNN, the TabInception, The InT, and the Vision

Transformer (VIT) networks (Dosovitskiy et al. (2020) [149]) by the fact that they are not

image size dependent. Thus, the proposed networks can be directly compared with the

TabCNN network of Wiggins and Kim (2019) [146], while presenting other approaches

where an image resizing may impact the training results.

It is important to mention that the VIT network relies on a patch-based structure. Nev-

ertheless, it can be fed with non-squared images by its ability to transform each image

into patches of equal width and height size. Thus, the input images are transformed into

patches before being fed to the VIT encoder. In this experiment, and for the VIT network

exclusively, we adopt a patch size of 4 and a hidden size of 64 after performing several

empirical tests where both parameters were varied to maximize the evaluation results.

Consequently, each of the 192x9 input images is transformed into 64 patches, having a

size of 64x64 for each patch. The latter is conducted using the patch generation function

proposed in the original code of the VIT [149] for rescaling and transforming the input

images into patches.

Table 6.1 presents all the networks that we compare with TabCNN. The first training

of TabCNN is written in italic to indicate that its results are shown as they appear

in the official contribution. Contrarily, the remaining training is performed in our test

environment.

The table header presents seven different multi-pitch and tablature estimation metrics.

Each metric manifests an essential role already proposed in Wiggins and Kim (2019)

[146]. The metrics referenced in Table 6.1 are the following:

Multi-pitch Precision (MP) measures the frequency of correctly detected pitches.

Multi-pitch Recall (MR) measures the frequency of existent pitch detection.

1The B0 base model of EfficientNet is the only selected model for this experiment since it is the only
compatible model for computing 224x224-sized images. As for the SwinTF, we use the base architecture for
this experiment, also known as swin b.
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Multi-pitch F-measure (MF) summarizes the overall multi-pitch estimation performance.

Tablature Precision (TP) measures the frequency of correctly detected tablatures.

Tablature Recall (TR) measures the frequency of existent tablature detection.

Tablature F-measure (TF) summarizes the overall tablature estimation performance.

Tablature Disambiguation Rate (TDR) measures the frequency of correctly detected

pitches assigned to correctly detected tablatures.

As shown in Table 6.1, the networks were trained using two different epoch sizes. An

epoch size of 8 is used to compare the results with the official TabCNN results. Further-

more, an epoch size of 16 is adopted to identify the behaviour of each network using

longer iterations.

At an epoch size of 8, the TabInception outperformed the TabCNN by 4.1 percentage

points (pp in terms of multi-pitch precision (MP). On the other hand, the InT network and

the transformer-based networks (ViT and SwinTF) can either outperform or obtain the

same results as the TabCNN in terms of multi-pitch recall (MR) and F-measure (MF). The

VIT exceeded the TabCNN by 3.62 pp in terms of MF and 5.69 pp in terms of MR. Also,

the SwinTF exceeded TabCNN’s MF by 1.7 pp, and TabCNN’s MR by 3.94 pp. As for the

InT network, it exceeded TabCNN’s MF by 2.29 pp and TabCNN’s MR by 5.73 pp. These

results show that the TabInception network is a good solution for better pitch detection,

while both, the proposed InT network and the transformer-based networks are better op-

tions when the comparison concerns the MR and MF metrics.

The TabInception network outperformed the TabCNN network in terms of MP, TP, and TF

metrics when increasing the epoch size to 16. It achieved the greatest results concerning

the multi-pitch precision metric. It outperformed TabCNN’s MP by 4.18 pp, the TP by 4.17

pp, and the TF by 0.61 pp. As for the proposed InT network, it surpassed the TabCNN

network in terms of MR and MF. Moreover, among the remaining networks, the SwinTF

improved its results using an increased epoch size. Contrarily, the EfficientNetB0 could

not exceed TabCNN’s results in either epochs variations.

Motivated by the increase in metrics when raising the epochs size, we configured an

epochs size of 300 while establishing the early stopping mechanism with a patience value

equal to 5. Thus, the models will keep training until they reach a safe point to stop without

overfitting. All the tests produced using the latter configuration are highlighted in a dashed

outline in Table 6.1 to discriminate the latter from the legacy configuration ( 8-16 epochs

without an early stopping mechanism). Also, we highlight the best score per metric with

a black bold color, the second best with a green bold color, and the third best with a red
bold color. The results show that the TabInception network achieved the best result in

terms of TP, and the InT network achieved the best results for MR, MF, TR, and TF. Both

proposed networks were able to surpass all of TabCNN’s results except the TDR met-

ric. The TabCNN preserved the best result in terms of TDR in that case. The significant
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TDR value of TabCNN is due to the closer MP and TP values compared to the remain-

ing networks. As for the SwinTF, the ViT, and the EfficientNetB0, some of their metrics’

results increased but could not considerably surpass TabCNN’s values at all times. It is

essential to note the preference to choose the InT network over the TabInception for sig-

nificantly exceeding TabCNN and for clustering the remarkable metrics’ results among all

the studied networks.

6.5/ CONCLUSION

In this chapter, two networks were proposed for guitar tablature transcription. The first net-

work, TabInception, relies on a custom inception block converged by dense layers. The

second network, Inception Transformer (InT), relies on a similar inception block of TabIn-

ception converged by a Transformer Encoder. Both networks were compared against the

state-of-the-art guitar tablature transcription network named TabCNN and other recent

computer vision networks. The experiment results showed that the proposed networks

can outperform the TabCNN in terms of multi-pitch precision (MP), multi-pitch recall (MR),

multi-pitch F-measure (MF), tablature precision (TP), tablature recall (TR), and tablature

F-measure (TF). On the other hand, the latter networks could not outperform the TabCNN

network in terms of tablature disambiguation rate (TDR) due to larger gaps between their

MP and TP values. As for the Transformer-based networks (ViT and SwinTF), the in-

crease in the epochs size reflected an increase in the majority of their estimation metrics.

These networks achieved relevant values in terms of MR and MF. Nevertheless, they did

not exceed TabCNN’s results in the remaining metrics. Last but not least, the Efficient-

NetB0 also improved when increasing the epochs size but did not produce as promising

results as the previously mentioned networks. Our future work should focus on exploring

the performance and the usability of both proposed networks for transcribing tablatures

of other string instruments such as the violin, cello, and harp. Furthermore, it would be

essential to test the proposed networks on computer vision use cases beyond the tabla-

ture transcription or even the music field to better evaluate and explore the importance of

such contribution.
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CONCLUSION & PERSPECTIVES

7.1/ CONCLUSION

This thesis proposes novel approaches to music encoding and deep learning techniques

in the context of music applications. The primary motivation behind this research is to

address the lack of support for oriental music genres within the music industry and to

enhance the capabilities of deep learning models for tasks such as music genre classi-

fication and automatic music transcription. This dissertation is structured into three key

parts. The first part provides a comprehensive overview of the foundational principles

and related research studies on music encoding and deep learning in music applications.

The subsequent parts present specific contributions made to the fields of music encoding

and deep learning in music applications.

The first part encompasses a thorough review of related tools, software, and research

literature that connect to either music encoding or deep learning for music applications. It

introduces the concept of extracting knowledge from music scores and underscores the

significance of such tools for music analysis and archival purposes. Additionally, it high-

lights cutting-edge technologies for converting music scores from XML-based formats

to other formats, emphasising their utility for targeted analysis and research on music

scores. Furthermore, this part focuses on the challenges encountered when employing

these tools in the context of oriental music datasets, particularly Middle Eastern ones.

Subsequently, following the discussion of music encoding, the focus shifts to audio signal

processing techniques used to extract visual features from audio-related data. The pro-

cesses involved the generation of spectrograms, which play a pivotal role in subsequent

contributions. Various research techniques utilising these technologies for music analysis

purposes are presented. The concept of computer vision is introduced, emphasising its

relevance to music applications and the crucial role played by audio signal processing

techniques as input data for computer vision networks. The broader concept of computer

vision is further condensed into the main themes of the second and third parts, namely

music genre classification and guitar tablature estimation. The latest and most effective

101
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studies in music genre classification are detailed, with an emphasis on the achieved accu-

racies when applied to datasets such as GTZAN and FMA. Additionally, state-of-the-art

tablature transcription techniques are outlined, along with key metrics used to assess

their performance. Finally, the last section of this part provides an overview of commonly

utilised datasets for music application studies, with a primary focus on the three datasets

used in this research: GTZAN, FMA, and GuitarSet.

The second part focuses on knowledge extraction and format conversion of music scores

for music encoding purposes. Challenged by the lack of support for the Eastern music

dataset in the field of music encoding, an ontology called MusicPatternOWL is proposed

to structure the pattern retrieval and analysis of music scores. The ontology is inspired by

an algorithm for encoding traditional modal monodies of the Middle East, which makes it

supportive of Eastern music scores. The structural aspects and motivation for creating the

latter ontology are presented, while a proof of concept of its use through SPARQL queries

is shown. The MusicPatternOWL is seen as an initiative to improve pattern retrieval

analysis algorithms, especially those related to Eastern music datasets. Motivated by

the positive impact of deep learning on music applications, and challenged by the lack of

support for eastern music score conversion, a music score converter from MEI to JSON

is proposed to ensure a lossless data process while converting the score from one format

to another. The MEI2JSON converter is evaluated in terms of time and space complexity,

quality assessment and storage evaluation. It showed great potential in both reducing the

storage allocation size and ensuring high data quality throughout the conversion process.

The third and final part consists of exploiting two different topics in the use of computer

vision networks for music applications. The first topic, music genre classification, pro-

poses preprocessing approaches to better compute and prepare spectrograms from au-

dio features, in addition to network upgrades to a well-known music genre classifier called

BBNN that exploits low-level features of audio computations. The proposed contribution

is evaluated against state-of-the-art music genre classifiers using the GTZAN and FMA

datasets. The proposed approach can outperform the existing approaches on the two

datasets in terms of accuracy score. A further discussion was elaborated to show our

motivation for the use of one audio processing tool over the other, while a result visualisa-

tion was added to further compare the proposed approach with the benchmark network.

The second topic, automatic music transcription, is where a CNN-based network called

TabInception and a CNN-Transformer-based network called Inception Transformer (InT)

took place in an attempt to outperform the state-of-the-art network for guitar tablature

transcription called TabCNN. All previous networks, as well as state-of-the-art computer

vision networks, were evaluated on multi-pitch and tablature metrics using the GuitarSet

dataset. The audio data of GuitarSet was computed to visual Constant-Q Transform

spectrograms, which were considered input data images to the networks evaluated in this

study. Both proposed networks were able to achieve the best results, while the InT net-
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work is considered the most convenient solution to adopt for its top score results in the

majority of the presented metrics.

We believe that all the proposed solutions, both in the music encoding part and in the deep

learning for music applications part, can serve as initiatives to suggest further phases of

improvement for different music-related challenges.

7.2/ PERSPECTIVES

This thesis has presented innovative approaches to music encoding and deep learning

techniques in the context of music applications, with a particular focus on addressing

the under representation of oriental music genres and enhancing the capabilities of deep

learning models. The contributions of this work have laid the foundation for several po-

tential research and development areas to be explored in the future.

Concerning music encoding, an important avenue for further exploration is the extension

of our initiative to Middle Eastern music scores. It is imperative to investigate the behav-

ior of MusicPatternOWL on more extensive datasets, encompassing a diverse range of

musical forms beyond traditional modal monodies. This exploration will facilitate a deeper

understanding of the ontology’s behavior and adaptability, enabling it to support enhanced

knowledge extraction and structured pattern retrieval. Furthermore, the integration of ma-

chine learning techniques with music coding ontologies holds promise in providing auto-

matic adaptation and support for multiple datasets, thereby promoting a generalisation

effect and strengthening their overall credibility in diverse musical contexts.

Shifting our focus to deep learning applications in music, it is essential to subject the pro-

posed music genre classifier to a more comprehensive evaluation. This requires testing

the classifier on a larger and more diverse set of music genre datasets, including those

referenced in the related work chapter. Furthermore, the practical deployment of these

classifiers within music recommendation systems or realistic simulations of music stream-

ing services is essential. Such implementations will not only demonstrate their usability

but also evaluate their speed in delivering recommendations based on a user’s playlist

history. Additionally, these classifiers can play a key role in automating the categorisation

of music databases by genre, facilitating content indexing and organisation. Motivated

to explore new music application fields, we merged our focus from music genre classifi-

cation to automatic music transcription. However, there might be still room for improving

the proposed classifier. Thus, it would be interesting to test Transformer-based networks

and diffusion networks to explore further the best network approach for music genre clas-

sification. In the field of guitar tablature transcription, there is an immediate opportunity

for future work. It is imperative to assess the versatility of the proposed CNN-based and
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CNN-transformer-based networks by applying them to a broader spectrum of music and

audio-related use cases. The versatility test will help provide a more comprehensive

understanding of the significance and adaptability of these contributions. Furthermore,

conducting comparative studies to benchmark the behavior of our networks against other

hybrid network solutions and emerging models, such as diffusion models, within the con-

text of automatic music transcription will offer valuable insights into the strengths and

weaknesses of various approaches.

Since the Transformer-based networks were generally created for NLP use cases, and

since the music data can be represented in XML-based formats as a music score, it would

interesting to exploit NLP techniques for classification, transcription, and generation tasks

and compare the resulting outcomes with the computer vision-based ones. The latter

comparison will help us get insightful ideas for either pursuing music application studies

using visual audio features or shifting to vectorised audio features.

Considering the close correlation between music generation and music transcription, a

convincing avenue for future research is to remodel the tablature transcription networks

for music generation tasks. Leveraging these networks to generate entirely new musical

compositions, including novel guitar recordings, represents an exciting frontier. The au-

dio generated in this manner can serve as synthetic data for broader research studies

in music composition and generation, providing unique insights into the creative capabil-

ities of deep learning algorithms when confronted with the complex nuances of musical

expression.

Both deep learning contributions relied on generating spectrograms out of the audio sig-

nal for further purposes. A fascinating avenue for future exploration involves harnessing

the power of Generative networks to reverse-engineer these spectrograms while retain-

ing critical phase information. This could facilitate the generation of synthetic audio data,

which can significantly contribute to the expansion of experimental datasets, enabling the

execution of more extensive and robust tests in various applications.

In this research, we explored both visual audio characteristics and textual representa-

tions, specifically those in XML-based formats like MEI. Consequently, it is valuable to

examine multi-modal strategies that merge these two representations to assess how their

combined modelling can enhance various music-related tasks. Additionally, a significant

endeavour is the creation of AI-based automated tools for encoding and annotating mu-

sic datasets, particularly those that lack digital coverage, to help the manual workload for

musicians.
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Leveraging Computer Vision Networks for Guitar Tablature Transcription”. In:
Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Ad-
vances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science,

vol 14495. Springer, Cham. https://doi.org/10.1007/978-3-031-50069-5 2

105





BIBLIOGRAPHY

[1] DAVIS, S., AND MERMELSTEIN, P. Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences. IEEE

transactions on acoustics, speech, and signal processing 28, 4 (1980), 357–366.

[2] COOK, P. R. Physically informed sonic modeling (phism): Percussive synthe-
sis. In Proceedings of the 1996 International Computer Music Conference (1996),

The International Computer Music Association, pp. 228–231.

[3] MIDI MANUFACTURERS ASSOCIATION. Complete midi 1.0 detailed specification,

March 1996.

[4] LOGAN, B., AND OTHERS. Mel frequency cepstral coefficients for music mod-
eling. In Ismir (2000), vol. 270, Plymouth, MA, p. 11.

[5] BRANDSTEIN, M., AND WARD, D. Microphone arrays: signal processing tech-
niques and applications. Springer Science & Business Media, 2001.

[6] GEORGE, T., GEORG, E., AND PERRY, C. Automatic musical genre classifi-
cation of audio signals. In Proceedings of the 2nd international symposium on

music information retrieval, Indiana (2001), vol. 144.

[7] GOOD, M. D. Musicxml for notation and analysis. In in Hewlett, W.B. and

Selfridge-Field, E. (Eds.): The Virtual Score: Representation, Retrieval, Restora-

tion (MIT Press, Cambridge (MA); London (UK), 2001), pp. 113–124.

[8] ROLAND, P. The music encoding initiative (mei). In Proceedings of the First

International Conference on Musical Applications Using XML (2002), pp. 55–59.

[9] SIN, D., AND CHAN, C. B. H. Lxml: lightweight xml for storing data in smart
card wallets. In International Conference on Internet Computing (2002).

[10] TZANETAKIS, G., AND COOK, P. Musical genre classification of audio signals.

IEEE Transactions on speech and audio processing 10, 5 (2002), 293–302.

[11] 5th international conference on music information retrieval (ismir 2004)
rhythm description contest, 2004.

[12] MH, K. Saxon—the xslt and xquery processor, 2004.

107



108 BIBLIOGRAPHY

[13] BELLO, J. P., DAUDET, L., ABDALLAH, S., DUXBURY, C., DAVIES, M., AND SAN-

DLER, M. B. A tutorial on onset detection in music signals. IEEE Transactions

on speech and audio processing 13, 5 (2005), 1035–1047.

[14] HARTE, C., AND SANDLER, M. Automatic chord identifcation using a quan-
tised chromagram. In Audio Engineering Society Convention 118 (2005), Audio

Engineering Society.
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[91] MRAD, N. A. Eléments de sémiotique modale. Essai d’une grammaire mu-
sicale pour les traditions monodiques. Éditions Geuthner et Éditions de

l’Université Antonine, 2016.

[92] NANNI, L., COSTA, Y. M., LUMINI, A., KIM, M. Y., AND BAEK, S. R. Combining
visual and acoustic features for music genre classification. Expert Systems

with Applications 45 (2016), 108–117.

[93] OORD, A. V. D., DIELEMAN, S., ZEN, H., SIMONYAN, K., VINYALS, O., GRAVES,

A., KALCHBRENNER, N., SENIOR, A., AND KAVUKCUOGLU, K. Wavenet: A gen-
erative model for raw audio. arXiv preprint arXiv:1609.03499 (2016).

[94] PEZOA, F., REUTTER, J. L., SUAREZ, F., UGARTE, M., AND VRGOČ, D. Foun-
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[125] GÓMEZ, J. S., ABESSER, J., AND CANO, E. Jazz Solo Instrument Classification
with Convolutional Neural Networks, Source Separation, and Transfer Learn-
ing. In Proceedings of the 19th International Society for Music Information Retrieval

Conference (Paris, France, Sept. 2018), ISMIR, pp. 577–584.

[126] HUANG, C.-Z. A., VASWANI, A., USZKOREIT, J., SHAZEER, N., SIMON, I.,

HAWTHORNE, C., DAI, A. M., HOFFMAN, M. D., DINCULESCU, M., AND ECK, D.

Music transformer. arXiv preprint arXiv:1809.04281 (2018).

[127] HUNG, Y.-N., AND YANG, Y.-H. Frame-level instrument recognition by timbre
and pitch. arXiv preprint arXiv:1806.09587 (2018).

[128] KARUNAKARAN, N., AND ARYA, A. A scalable hybrid classifier for music genre
classification using machine learning concepts and spark. In 2018 Inter-

national Conference on Intelligent Autonomous Systems (ICoIAS) (2018), IEEE,

pp. 128–135.



118 BIBLIOGRAPHY

[129] KIM, D., SUNG, T. T., CHO, S. Y., LEE, G., AND SOHN, C. B. A single predom-
inant instrument recognition of polyphonic music using cnn-based timbre
analysis. International Journal of Engineering & Technology 7, 3.34 (2018), 590.

[130] KIM, J., WON, M., SERRA, X., AND LIEM, C. C. Transfer learning of artist group
factors to musical genre classification. In Companion Proceedings of the The

Web Conference 2018 (2018), pp. 1929–1934.

[131] ORAMAS, S., BARBIERI, F., NIETO CABALLERO, O., AND SERRA, X. Multimodal
deep learning for music genre classification. Transactions of the International

Society for Music Information Retrieval. 2018; 1 (1): 4-21. (2018).

[132] OUSSIDI, A., AND ELHASSOUNY, A. Deep generative models: Survey. In 2018

International conference on intelligent systems and computer vision (ISCV) (2018),

IEEE, pp. 1–8.

[133] ROBERTS, A., ENGEL, J., RAFFEL, C., HAWTHORNE, C., AND ECK, D. A hi-
erarchical latent vector model for learning long-term structure in music. In

International conference on machine learning (2018), PMLR, pp. 4364–4373.
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Au cours de la dernière décennie, de nouvelles
partitions occidentales ont été régulièrement
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Pour les partitions orientales, l’absence de support
XML est due au manque d’intérêt pour la
numérisation, entraı̂nant une difficulté d’encodage
précis. L’expansion rapide de l’apprentissage
profond motive les développeurs et musiciens à
explorer ses avantages en musique. Cette thèse
se concentre sur la classification musicale et la
transcription automatique grâce à l’apprentissage
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de MusicPatternOWL, une ontologie structurant

l’extraction de connaissances pour l’analyse de
partitions orientales. (2) Le développement du
convertisseur MEI2JSON pour transformer les
partitions MEI en JSON simplifié en vue du
prétraitement de l’Intelligence Artificielle. (3)
L’introduction d’une méthode de prétraitement pour
les spectrogrammes STFT et l’amélioration d’un
classificateur musical CNN, pour évaluer l’impact
de l’apprentissage profond sur les services de
streaming musical. (4) La présentation de réseaux
basés sur CNN et CNN-Transformateur pour la
transcription de tablatures de guitare, évalués par
rapport aux réseaux de pointe dans le domaine.
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