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Abstract

The biological carbon pump (BCP) plays a central role in the global
ocean carbon cycle, transporting carbon from the surface to the deep
ocean and sequestering it for long periods. This work aims to analyse
two key players of the BCP: zooplankton and particles. To this end, we
use in situ imaging data from the Underwater Vision Profiler (UVP5) to
investigate two primary axes: 1) the global distribution of zooplankton
biomass and 2) carbon export in the context of a North Atlantic spring
bloom. Our objectives includes a quantification of global zooplankton
biomass, enhancing our comprehension of the BCP via morphological
analysis of particles, and assessing and comparing the gravitational
flux of detrital particles during a the North Atlantic spring bloom using
high-resolution UVP5 data.

With the help of UVP5 imagery and machine learning through habi-
tat models using boosted regression trees, we investigate the global
distribution of zooplankton biomass and its ecological implications.
The results show maximum zooplankton biomass values around 60◦N
and 55◦S and minimum values within the oceanic gyres, with a global
biomass dominated by crustaceans and rhizarians. By employing ma-
chine learning techniques on globally homogeneous data, this study
provides taxonomical insights into the distribution of 19 large zoo-
plankton groups (1-50 mm equivalent spherical diameter). This first
protocol estimates global, spatially resolved zooplankton biomass and
community composition from in situ imaging observations of individual
organisms.

In addition, within the unique context of the EXPORTS 2021 cam-
paign, we analyse UVP5 data obtained by deploying three instruments
in a highly retentive eddy. After clustering the 1,720,914 images using
Morphocluster, a semi-autonomous classification software, we delve
into the characteristics of the marine particles, studying their morphol-
ogy through an oblique framework that follows a plume of detrital
particles between the surface and 800 m depth. The results of the plume
following approach show that, contrary to expectations, aggregates
become unexpectedly larger, denser, more circular and more complex
with depth. In contrast, the evolution of fecal pellets is more hetero-
geneous and shaped by zooplankton activity. Such results challenge
previous expectations and may require a reassessment of our view of
sinking aggregates and fecal pellets.
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We also studied concentration and carbon flux dynamics using a
more traditional 1D framework where we explore the three key ele-
ments in flux estimation from in situ imaging data by comparing UVP5

and sediment trap flux estimates: size range covered, sinking rate and
carbon content. According to the current literature, neutrally buoyant
sediment traps (NBST) and surface-tethered traps (STT) usually cover
a size range from 10 µm to approximately 2 mm. In our study, we
have found that by expanding the UVP size range to 10 µm and lim-
iting it to 2 mm, a more consistent comparison can be made between
UVP5-generated flux and sediment trap fluxes (obtained by colleagues).
However, it is worth noting that there remains a large flux contribution
above this size threshold, necessitating further investigation of its im-
plications through the use of complementary approaches such as the
use of sediment traps with larger openings.

This manuscript not only advances our knowledge, but also addresses
critical challenges in estimating zooplankton biomass and particle dy-
namics during export events. The findings of this study open up new
avenues for future research on the biological carbon pump and deepen
our understanding of marine ecosystems.
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Résumé

La pompe à carbone biologique (PCB) joue un rôle central dans le cycle
global du carbone océanique, en transportant le carbone de la surface
vers les profondeurs et en le séquestrant pendant de longues périodes.
Ce travail vise à analyser deux acteurs clés de la PCB : le zooplancton
et les particules. Pour cela, nous utilisons les données d’imagerie in

situ de l’Underwater Vision Profiler (UVP5) pour étudier deux axes
principaux : 1) la distribution globale de la biomasse du zooplancton
et 2) l’exportation de carbone dans le contexte d’une efflorescence
printanière dans l’Atlantique Nord.

À l’aide de l’UVP5 et de l’apprentissage automatique par le biais
de modèles d’habitat utilisant des arbres de régression boostés, nous
étudions la distribution mondiale de la biomasse du zooplancton et
ses implications écologiques. Les résultats montrent des valeurs maxi-
males de biomasse autour de 60◦N et 55◦S et des valeurs minimales au
niveau des gyres océaniques, avec une biomasse globale dominée par les
crustacés et les rhizaires. En utilisant des techniques d’apprentissage au-
tomatique sur des données globalement homogènes, cette étude fournit
des informations sur la distribution de 19 grands groupes de zooplanc-
ton (1-50 mm de diamètre sphérique équivalent). Ce premier protocole
permet d’estimer la biomasse du zooplancton et la composition de la
communauté à l’échelle globale à partir d’observations d’imagerie in

situ d’organismes individuels.

Dans le contexte unique de la campagne EXPORTS 2021, nous
analysons les données UVP5 obtenues par le déploiement de trois
instruments dans un tourbillon à forte rétention. Après avoir regroupé
les 1 720 914 images à l’aide de Morphocluster, un logiciel de classifi-
cation semi-autonome, nous nous intéressons aux caractéristiques des
particules marines, en étudiant leur morphologie à travers un cadre
oblique qui suit un panache de particules entre la surface et 800 m. Les
résultats montrent que, contrairement aux attentes, les agrégats devien-
nent de manière inattendue plus grands, plus denses, plus circulaires et
plus complexes avec la profondeur. En revanche, l’évolution des pelottes
fécales est plus hétérogène et façonnée par l’activité du zooplancton.
Ces résultats remettent en question les attentes antérieures et appellent
à une réévaluation de notre vision des agrégats et des pelottes fécales.
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Nous avons également étudié la dynamique des concentrations et
des flux de carbone à l’aide d’un cadre 1D plus traditionnel dans
lequel nous explorons les trois éléments clés de l’estimation des flux
à partir d’imagerie in situ en comparant les estimations de l’UVP5 et
des pièges à sédiments: la gamme de tailles couvertes, la vitesse de
sédimentation et le contenu en carbone. Selon la littérature, les pièges à
sédiments à flottabilité neutre (NBST) et les pièges attachés à la surface
(STT) couvrent généralement une gamme de tailles allant de 10 µm à
environ 2 mm. Dans notre étude, nous avons constaté qu’en élargissant
la gamme de tailles de l’UVP5 à 10 µm et en la limitant à 2 mm, une
comparaison plus consistante peut être faite entre le flux issu de l’UVP5

et celui des pièges à sédiments (obtenus par des collègues). Toutefois,
il reste une contribution importante du flux au-dessus de ce seuil de
taille qui nécessite une étude plus approfondie de ses implications
par l’utilisation d’approches complémentaires telles que des pièges à
sédiments avec des ouvertures plus grandes.

Ce manuscrit ne fait pas seulement progresser nos connaissances,
mais il aborde également des défis critiques dans l’estimation de la
biomasse du zooplancton et de la dynamique des particules pendant les
événements d’export. Les résultats de cette étude ouvrent de nouvelles
voies pour la recherche future sur la PCB et approfondissent notre
compréhension des écosystèmes marins.
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Part I

General introduction





1
General introduction

1.1 The role of the Biological Gravitational Pump in
the oceanic carbon cycle

The biological carbon pump (BCP) designates the suite of biologi-
cal processes that produce and mediate the transport of carbon from
the upper ocean to depth (Fig. 1.1, (Honjo et al., 2008; Steinberg and
Landry, 2017; Turner, 2015; Volk and Hoffert, 1985)). It is a fundamental
mechanism responsible for the transport of particulate organic carbon
(POC) from the ocean surface to its deep layers where the carbon can
be sequestered for periods of decades to millennia (DeVries et al., 2012).
The BCP is estimated to have a magnitude of 5 to 12 Pg C year−1 (Boyd
et al., 2019; DeVries and Weber, 2017; Henson et al., 2011; Nowicki et al.,
2022; Siegel et al., 2014) and is composed of three main pathways: 1)
physically driven subduction pumps (Boyd et al., 2019; K. O. Buesseler
et al., 2020; Omand et al., 2015); 2) biologically driven pumps that de-
pend on the diel vertical migration of zooplanktonic organisms to depth
during the day and to the surface during the night (Bianchi et al., 2013;
Kiko et al., 2020; Lampert, 1989) or seasonal and ontogenetic vertical
migrations (Jónasdóttir et al., 2015) and 3) the biological gravitational
pump (BGP) which refers to the passive sinking of POC as marine par-
ticles through the water column (Alldredge and Gotschalk, 1988; Boyd
et al., 2019). The BGP dominates the BCP and is recognised as the major
contributor to global net carbon export (Boyd et al., 2019), accounting
for 56.1-70% (Nowicki et al., 2022; Stukel et al., 2022). While there are
global estimations of carbon flux, the large uncertainty illustrates the
lack of knowledge about particle dynamics.

1.2 The diverse nature of marine particles and their
role in oceanic systems

Marine detrital particles are prevalent in the Earth’s oceans and con-
sist of aggregates (macroscopic clusters with a diameter greater than
500 µm, Alldredge and Silver (1988)), dead bodies and fecal pellets.
Marine aggregates can result from the agglomeration of dead, but also
alive phytoplankton, discarded larvacean houses, fecal matter, and
other detritus (Alldredge et al., 1990; Alldredge and Silver, 1988). Sev-
eral factors influence their sinking dynamics, including density (Bach et

3
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al., 2019; Cael et al., 2021), size (Alldredge and Silver, 1988; Guidi et al.,
2008; Iversen et al., 2010), composition (Laurenceau-Cornec et al., 2015)
and morphology (Alldredge and Gotschalk, 1988; Trudnowska et al.,
2021). Given the highly variable nature of marine particles, their contri-
bution to the BGP exhibits significant spatio-temporal variability. Their
distribution has been primarily driven by the estimate of their POC
content and size distribution rather than by their individual character-
istics (Clements et al., 2022, 2023; Guidi et al., 2008, 2015; Kiko et al.,
2017). The majority of these particles are concentrated near the surface,
where primary production takes place, and exhibit a rapid decrease
in particle concentration as depth increases (Guidi et al., 2008, 2015;
Iversen, 2023; Kiko et al., 2017; Stemmann et al., 2002; L. Stemmann
et al., 2008).

Marine aggregates display a diverse range of morphologies, shaped
by various physical and biological forces that govern their formation
and modification. Physical processes can promote the aggregation (All-
dredge, 2001; Kiørboe, 2001; Stemmann, Jackson, and Ianson, 2004) or
disaggregation (Alldredge and Gotschalk, 1988; Song and Rau, 2022) of
particles, thus altering their morphology. Similarly, various biological
interactions may affect particle morphology, depending on the involved
actors, such as bacteria, micro- and macrozooplankton. Microorganisms
can enhance aggregation processes through swimming activities (All-
dredge, 2001). However, their primary impact on particles is through
their degradation, especially in the upper water column (Iversen, 2023;
Turner, 2015). They modify particle structure (Stemmann, Jackson, and
Ianson, 2004) to varying degrees depending on environmental factors
(Amano et al., 2022; Marsay et al., 2015; Weber and Bianchi, 2020). In
this context, it is crucial to clarify the role of the biological players
(zooplankton and microorganisms) and to include them in the models
in order to estimate the fluxes.
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Figure 1.1: Pathways of cycling and export of carbon by zooplankton in the
ocean. Phytoplanktonic organisms take up CO2 via photosynthesis
in the euphotic layer. They are grazed upon by micro and meso-
zooplankton. The latter participates in the biological carbon pump
through the production of sinking fecal pellets at the surface and
at depth. Figure taken from Steinberg and Landry (2017)
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1.3 Zooplankton: Key players in marine ecosystems
and the Biological Carbon Pump

First defined as organisms adrift in the water by Hensen in 1887

(Smetacek, 1999), planktonic organisms are classified into two pri-
mary groups: phytoplanktonic primary producers that take up CO2 via
photosynthesis in the euphotic layer (see 1.1); and zooplankton that
graze on them, serving as a major link between primary producers and
higher trophic levels (Ikeda, 1985; Steinberg and Landry, 2017). Due to
their position in marine food webs, zooplankton organisms are a crucial
food source for various higher predators, including marine mammals,
sea birds and fish (Chavez et al., 2008; Frederiksen et al., 2006; van der
Lingen et al., 2009; Ware and Thomson, 2005). Zooplanktonic organisms
exhibit an important diversity (de Vargas et al., 2015) and cover a large
size range from micrometre to several meters (Lombard et al., 2019).
Found in all of the world’s oceans, the distribution of zooplankton is
intricately linked with the environmental parameters that define the
water masses they inhabit (Hays et al., 2005; Steinberg and Landry,
2017). Just as these parameters change greatly according to time and
latitude, zooplankton biomass and diversity exhibit temporal and lati-
tudinal variations. While biomass is high at higher latitudes and low at
lower latitudes, diversity follows the opposite pattern (Ibarbalz et al.,
2019; Ikeda, 1985; Moriarty et al., 2012; Rombouts et al., 2009).

Defined as gatekeepers of POC flux (Jackson and Checkley, 2011),
zooplankton organisms are important actors of the BCP (Steinberg and
Landry, 2017; Turner, 2002, 2015). They have the important ability to
repackage small particles into large, rapidly sinking fecal pellets (Atkin-
son et al., 2012; Turner, 2002, 2015). In addition to this, zooplankton
can fragment sinking particles through their feeding activities (both
active and passive, Alldredge et al. (1990), Huntley and Boyd (1984),
and Steinberg et al. (2023)) and swimming capabilities (Dilling and All-
dredge, 2000; Goldthwait et al., 2004). Understanding the significance
of zooplankton in the BCP requires a thorough comprehension of their
dynamics at a vertical scale. Upscaling to basin and global levels would
aid in precisely quantifying their impact.

1.4 Shedding light on zooplankton and particles through
in situ imaging

While zooplankton has traditionally been collected using nets or Niskin
bottles, sediment traps have historically been used to collect particles.
These two types of instruments have provided significant data on the
distribution and biomass of zooplankton and particles (Moriarty and
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O’Brien, 2013; Moriarty et al., 2012; Mouw et al., 2016), although they
have some limitations. Indeed, they cannot determine the exact envi-
ronmental context of the sampled specimens and their spatio-temporal
definition is limited. Therefore, the data on biomass and concentra-
tion that is sampled is integrated over a large volume of water and
over a long period. Zooplankton samples also require manual sorting,
which is highly time-consuming. It should also be emphasised that
homogenisation of data is difficult when using manual counts and net
sampling. As a result, the production of comprehensive global distri-
butions of zooplankton is hampered by the difficulty of collecting and
standardising such diverse data sources. For example, comprehensive
databases such as COPEPOD (O’Brien, 2005) exhibit notable biases
towards regions with high sampling frequency despite covering 50

years of data (Moriarty and O’Brien, 2013). Moreover, nets have been
shown to be skewed towards crustaceans that are more resistant than
fragile organisms, namely rhizarians and gelatinous forms that end up
being destroyed by the sampling (Biard et al., 2016; Lucas et al., 2014).
The above statement holds for numerous particles, including larvacean
houses and large aggregates that have a significant role in the BGP
and possess a complicated and delicate structure that is vulnerable to
destruction by conventional techniques (Alldredge and Silver, 1988;
Remsen et al., 2004).

To address these limitations and gain a more comprehensive un-
derstanding, in situ methods to count (Herman, 1992; Reynolds et al.,
2010), image (Cowen and Guigand, 2008; Picheral et al., 2010; Remsen
et al., 2004) and record videos (Davis et al., 2005; Hoving et al., 2019)
of zooplankton and particles are valuable tools for informing on their
dynamics (Lombard et al., 2019). This is especially true for instruments
which are widely commercialised and inter-calibrated, as is the case for
the Underwater Vision Profiler 5 (Picheral et al., 2010). Together, these
instruments allow the coverage of an important part of the planktonic
size spectrum (Lombard et al., 2019).
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Figure 1.2: Four strategies to process raw plankton images identified by
four circled numbers. Efficient interaction between instruments,
computers, and human operators enables high throughput from
laboratory- or field-based image acquisition to ecological exploita-
tion. Figure taken from Irisson et al. (2022)
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Figure 1.3: Evolution of images uploaded on the Ecotaxa repository (Picheral
et al., 2017) using instruments such as the Underwater Vision
Profiler (UVP, Picheral et al. (2010, 2021), Imaging FlowCytobot
(IFCB, Olson and Sosik (2007)), FlowCam (Sieracki et al., 1998),
Zooscan (G. Gorsky et al., 2010), In Situ Ichthyoplankton Imaging
System (ISIIS, Cowen and Guigand (2008)). Figure taken from
Irisson et al. (2022)

Notably, in situ imaging offers the advantage of high-frequency data
acquisition and has emerged as a powerful tool for informing on zoo-
plankton and particle distribution on both global and regional scales
(Lombard et al., 2019). However, this advantage comes with a chal-
lenge: the high-frequency acquisition of data equates to a substantial
volume of information to manage. To effectively address this issue,
as demonstrated in Fig. 1.2 (Irisson et al., 2022), innovative strategies
and tools are required to streamline the handling and analysis of these
image-rich datasets. Images and videos can provide information on
the abundance of zooplankton and particles as well as measurements
that can all be archived for further analysis (G. Gorsky et al., 2010;
Lombard et al., 2019) as presented by strategy 1 (Fig. 1.2). While size-
based parameters have been the primary focus of numerous studies
(Cael et al., 2021; Guidi et al., 2008; Romagnan et al., 2016; Stemmann
et al., 2002), few have looked at changes in other morphological traits
(Giering et al., 2020; Trudnowska et al., 2021). Images can also undergo
manual validation by experts (strategy 2, Fig. 1.2). However, this pro-
cess can potentially introduce several cognitive biases, regardless of the
level of taxonomic knowledge, as highlighted in Culverhouse (2007)
and Culverhouse et al. (2014). The manual classification of such large
amounts of data would require a significant workforce of highly taxo-
nomically trained individuals, especially given the exponential rate of
image acquisition that has occurred in recent years (Fig. 1.3). Therefore,
the development and implementation of semi-automated (strategy 3,
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Fig. 1.2) or fully automated (strategy 4, Fig. 1.2) tools for classification
are now imperative in the field of in situ imaging.

1.5 Machine learning in marine ecology

Machine learning is a powerful computational approach that allows
systems to learn from a training data set and make predictions or
decisions on a test set without being explicitly programmed (Irisson
et al., 2022). It encompasses different techniques that serve distinct
purposes, such as classification and regression that have found util-
ity in diverse applications in marine ecology (Rubbens et al., 2023).
Classification entails assigning data points such as images into prede-
termined categories or classes, having learned from a learning set of
manually annotated images (Luo et al., 2018). Regression focuses on
predicting continuous numerical values (Elith and Leathwick, 2009;
Guisan and Zimmermann, 2000). Furthermore, machine learning can
be either autonomous (Luo et al., 2018; Trudnowska et al., 2021) or
semi-automatic (Biard et al., 2016; Panaïotis et al., 2023; Schröder et al.,
2020; Vilgrain et al., 2021).
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Figure 1.4: Steps taken by Morphocluster, a semi-autonomous software used
to classify images. Images are projected to the feature space. Figure
taken from Schröder et al. (2020)

Autonomous systems necessitate minimal human intervention, while
semi-automatic systems incorporate human-guided processes for ma-
chine learning. As classification and regression predictions are based on
a learning set, it is important to consider the potential for bias within
this dataset and take measures to limit its impact (Orenstein et al.,
2020).

One example of semi-autonomous classification is Morphocluster
(Schröder et al., 2020), a program designed to annotate large data
sets of images (Fig. 1.4). It extracts features from images which are
subsequently projected in the features space. The clustering of images is
then based on their position in this feature space. If a cluster is deemed
good by a human validator, it is then grown under human supervision,
and several iterations of the clustering and growing process are used
to assign images to clusters. The clusters are then manually arranged
hierarchically and named.



12 general introduction

The combination of data exploration techniques and machine learn-
ing has the potential to yield valuable insights into marine ecosystems
through the detection of hidden patterns and relationships within
complex ecological datasets.

1.6 Objectives of this work

In order to accomplish an "image-based global analysis of the biological
carbon pump", our study harnesses the capabilities of in situ imag-
ing through UVP5 data. In doing so, we embark on a multifaceted
investigation of the two primary components of the BCP for which the
UVP5 instrument was purposefully designed to observe: zooplankton
and particles (Fig. 1.5). In this framework, this manuscript is organised
around two main topics: the global distribution of zooplankton biomass,
as well as the detrital carbon export in the context of a North Atlantic
bloom. It aims (1) to quantify the global zooplankton biomass; (2) to
improve our understanding of the biological carbon pump through the
study of particle morphology and its change with depth in relation
to zooplankton distribution; (3) to compute and compare the flux of
the North Atlantic spring bloom utilizing both sediment traps and
high-resolution UVP5 data.

1.6.1 Global distribution of zooplankton biomass estimated by in situ

imaging and machine learning

The first chapter focuses on the use of a global UVP5 dataset to examine
the distribution of zooplankton biomass and addresses the following
key research questions: (1) Can we accurately estimate the geographic
distribution of large plankton groups across multiple depth layers
using in situ imaging? (2) Is it feasible to derive regional estimates
of zooplankton biomass using this methodology? (3) Do the obtained
results align with previously established patterns?

To investigate these questions, we harnessed the power of prediction
in Ecotaxa (Picheral et al., 2017) in collaboration with various experts
who dedicated years to meticulous classification of this impressive
dataset containing 466,872 images of zooplankton. We hypothesised
that the distribution of organisms and their biomass depends on envi-
ronmental factors. We utilised in situ imagery data from 3,549 UVP5

profiles worldwide and developed a novel technique for globally esti-
mating macrozooplankton biomass based on these images and habitat
models.
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Figure 1.5: Graphical abstract summarising the main pathways of carbon in the
water column taking into account 3 main actors: phytoplankton,
zooplankton and bacteria. Solid arrows present a process resulting
in particle formation or growth while dashed arrows correspond
to processes resulting in degradation and/or fragmentation. Large
circles represent the three chapters that compose this manuscript.

1.6.2 Export in the context of a North Atlantic bloom

The following two chapters focus on the EXPORTS 2021 campaign that
took place in a North Atlantic eddy during the spring bloom (Johnson
et al., 2023; Siegel et al., 2021). During this campaign three UVP5 units
were deployed from three scientific vessels yielding 1,720,914 images.
As we transition into the second and third chapters of this study,
it becomes evident that the vast volume of images collected during
the EXPORTS experiment necessitated a shift in approach. The sheer
magnitude of data acquisition precluded the utilization of the Ecotaxa
framework, prompting us to explore alternative methods. Moreover,
we recognized the need for a more thorough examination of detritus,
driving our pursuit of a deeper understanding in these subsequent
chapters and the classification of the 1,720,914 images was done using
Morphocluster, the semi-supervised method by Schröder et al. (2020)
presented above.
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In this context, Chapter 2 explores the export of imaged marine de-
tritus using a new framework that employs an oblique plume following
method. The chapter seeks to provide new perspectives on particle
dynamics, morphology, flux, and attenuation within a North Atlantic
eddy by answering the following questions: (1) How does the particle
community evolve within this large export event? (2) Are zooplankton
important relative to marine aggregates? (3) What is the attenuation rate
of the exported material and how does it relate to biological activity?
(4) How do aggregates and fecal pellets change in morphology with
depth and time, and what processes are driving these changes? Due to
the scarcity of research on particle morphology in situ with high vertical
resolution across a wide depth range, our objective was to offer a more
precise characterization of particle dynamics, focusing on aggregates
and fecal pellets.

Chapter 3 uses a more traditional vertical approach to compute and
compare the flux of the North Atlantic spring bloom using sediment
traps and UVP5 data. It focuses on particle counts derived from UVP5

data as well as images of aggregates and fecal pellets (1 - 16.4 mm)
and aims to answer the following questions: (1) What are the dominant
particle types and their sinking speeds within the eddy core during
the North Atlantic spring bloom? (2) How can the flux be effectively
computed and compared using sediment traps and UVP5 data?

Finally, we conclude and discuss the main findings from each of
these three chapters.
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2
Global Zooplankton Biomass

2.1 Abstract

Zooplankton plays a major role in ocean food webs and biogeochemical
cycles and provides major ecosystem services as a main driver of the
biological carbon pump and a pivotal actor in sustaining fish com-
munities. Zooplankton is also sensitive to its environment and reacts
to its changes. To better understand the importance of zooplankton
and to inform prognostic models that try to represent them, spatially-
resolved biomass estimates of key plankton taxa are desirable. In this
study, we for the first time predict the global biomass distribution of
19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using
observations by the Underwater Vision Profiler 5, a quantitative in situ

imaging instrument. After computer-assisted classification of 466,872

organisms from more than 3,478 profiles (0-500 m) obtained between
2008 and 2019 throughout the globe, we estimated their individual bio-
volume and converted it to biomass using taxa-specific factors. We then
associated these biomass estimates with climatologies of environmental
variables (temperature, salinity, oxygen, etc.), to build habitat models
using boosted regression trees. The results reveal maximal zooplank-
ton biomass values around 60◦N and 55◦S as well as minimal values
around the oceanic gyres. An increased zooplankton biomass is pre-
dicted centered on the equator. Global integrated biomass (0-500 m) was
estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%,
mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria
(16.4%, mostly in inter tropical areas). The used machine learning ap-
proach is sensitive to the amount of training data and generates reliable
predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but
not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study
offers a first protocol to estimate global, spatially resolved zooplankton
biomass and community composition from in situ imaging observa-
tions of individual organisms. The underlying dataset was obtained
within ten years, whereas similar approaches rely on data obtained
using plankton nets gathered since about 1960. Increased use of digital
imaging approaches should enable us to obtain zooplankton biomass
distribution estimates at basin to global scales in shorter time frames in
the future.
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2.2 Introduction

2.2.1 Zooplankton

Present in all the oceans of the globe, zooplankton corresponds to
organisms adrift in the water. They represent a great taxonomic diver-
sity and sizes ranging from a few micrometers to several meters (de
Vargas et al., 2015; Karsenti et al., 2011; Stemmann and Boss, 2012).
Zooplankton play a central role in the biogeochemical carbon cycle as
they contribute to the biological pump that drives the export of photo-
synthetically fixed organic carbon from the surface to the intermediate
and deep oceans (Longhurst and Glen Harrison, 1989; Steinberg and
Landry, 2017; Turner, 2002, 2015). As a major link between primary
producers and higher trophic levels (Ikeda, 1985), zooplankton have
central ecological as well as biogeochemical roles, with associated
socio-economic interests. This socio-economic impact of plankton can
be positive, such as their role as food source for fish (Lehodey et al.,
2006; van der Lingen et al., 2006) or as an indicator of water quality
(Suthers et al., 2019). It can also be negative, as e.g. harmful blooms
of phytoplankton impact aquaculture and human health (Griffith and
Gobler, 2020), jellyfish blooms can impact various human activities such
as aquaculture and fishing (Richardson et al., 2009).

2.2.2 Spatial Distribution of zooplankton and its biomass

Zooplankton organisms are sensitive to environmental conditions and
are thus considered sentinels of ocean changes. Their distribution is
finely governed by the interactions between physical (i.e., tempera-
ture (Steinberg and Landry, 2017), currents, light (Hays et al., 2005),
pressure) and chemical constraints (nutrients, oxygen (Steinberg and
Landry, 2017)), but also by biological interactions (e.g. predator-prey,
symbiosis, parasitism and commensalism). The dependence of zoo-
plankton on environmental variables leads to very clear global scale
patterns even at coarse taxonomic levels (Biard et al., 2016; Lucas et al.,
2014). On a global scale, zooplankton diversity is higher at the equator
and decreases towards the poles (Ibarbalz et al., 2019; Rombouts et al.,
2009). Conversely, zooplankton biomass tends to increase with latitude
and be low in the tropics, with large seasonal fluctuations in temperate
and polar regions (Ikeda, 1985; Moriarty et al., 2012; Soviadan et al.,
2022). Although global quantitative assessment of zooplankton biomass
and functional groups is needed (e.g. to be incorporated in biogeochem-
ical and ecological models), it is often hampered by the heterogeneity
of measurement methods and the uneven distribution of observations,



2.2 introduction 19

causing high uncertainty in biomass estimates (Le Quéré et al., 2016;
Moriarty and O’Brien, 2013; Moriarty et al., 2012).

2.2.3 The study of zooplankton and its difficulties

Assessments of the global distribution of zooplankton organisms are
often based on regional datasets, obtained with heterogeneous sam-
pling tools traditionally biased towards non-gelatinous taxa (Lucas
et al., 2014), and combined using different standardization procedures
(Buitenhuis et al., 2013; Moriarty and O’Brien, 2013; Moriarty et al.,
2012). Consequently, the global distribution of only a few zooplank-
ton groups that generally can be well sampled using plankton nets,
e.g. crustaceans, have been well studied (Buitenhuis et al., 2013; Rom-
bouts et al., 2009). Indeed, some zooplankton taxa are known to be
fragile (cnidarians, ctenophores, rhizarians, etc.) and their destruction
by traditional sampling methods (e.g., plankton nets) as well as their
poor preservation in fixatives (Beers and Stewart, 1970) resulted in
an underestimation of their biomass and their ecological role in ma-
rine ecosystems (Biard et al., 2016; Lucas et al., 2014). In this context,
non-intrusive in-situ methods using imaging (Cowen and Guigand,
2008; Grossmann et al., 2015; Picheral et al., 2010; Remsen et al., 2004;
Schulz et al., 2010; L. Stemmann et al., 2008; Sun et al., 2008) and video
(Davis et al., 1992, 2005; Hoving et al., 2019) instruments have been
developed in the past decades to allow the non destructive study of
zooplankton (Lombard et al., 2019). Among the different systems, only
the Underwater Vision Profiler (UVP) version 4 and 5 have been widely
used for plankton on a global level which allowed comparisons of
abundance patterns with the Longhurst (1995) provinces of the ocean
(Biard et al., 2016; L. Stemmann et al., 2008). Since 2008, the creation
and expansion of such a global dataset could be executed with the
UVP5 thanks to numerous participating teams around the world and
the wide commercialization of this in situ imaging tool. In this study,
we used data from the UVP5, an in-situ imaging system designed to
detect, measure and quantify the distribution of zooplankton organisms
and marine particles (Picheral et al., 2010). This instrument, designed
for the study of particle size spectra in the ocean (Guidi et al., 2009;
Stemmann et al., 2002) was also previously used to obtain plankton
data at a high spatial resolution (Forest et al., 2012) and to study fragile
organisms (Biard and Ohman, 2020; Biard et al., 2016; Christiansen
et al., 2018; Stukel et al., 2018). However, even with the progressive
increase in the spatio-temporal density of observations allowed by the
use of imaging instruments, the unevenness in the distribution of ob-
servations remains, preventing large scale biomass estimations. Such
global observation could nevertheless serve as the basis for large scale
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estimations through the use of interpolation or extrapolation methods,
including statistical habitat models.

2.2.4 Statistical habitat models

Habitat modeling is a machine learning tool to estimate the abundance
of a taxon at an unobserved location: instead of interpolating between
nearby observation points based on geographical distance, the environ-
mental conditions (i.e. the habitat) are used to inform the estimation.
Statistically, a regression analysis can be used to define the relationship
between the abundance (or presence) of a taxon at observation sites
and the environmental variables at those sites (Elith and Leathwick,
2009; Guisan and Zimmermann, 2000). Then continuous maps of those
environment variables can be used to predict continuous maps of the
taxon’s abundance (or presence), by applying the regression.

The objective of this work was the development of a method to
estimate zooplankton biomass on a global scale and to study the spatial
distribution of zooplankton in relation to its habitat. To obtain such a
global view we used global data from the UVP5 in-situ imaging system.
It is in most cases impossible to identify the imaged organisms to
species level. We therefore applied the habitat modeling approach to
broader taxonomic groups. We first estimated the individual biovolume
and biomass of organisms classified in 25 broad taxonomic groups,
within a global in-situ imaging dataset. We then applied the habitat
model methodology to each taxonomic group and built models using
different regional and vertical partitions of the data. E.g. we separated
data of the epipelagic (0-200 m depth layer) from the upper mesopelagic
(200 to 500 m depth layer), but also used a global partitioning to separate
data from low latitudes between 40◦S to 40◦N from the remaining high
latitude data. We hypothesize that these partitions should allow us to
separate subgroups within those broad taxa, which occupy different
horizontal and/or vertical habitats. Finally, we used the models’ output
to estimate the global marine zooplankton biomass distribution in the
first 500 m of the water column.

In situ imaging observation with UVP5 have been widely used during
the past decade to study zooplankton in the global ocean. Biard et al.
(2016) used 694 stations from the UVP5 dataset to reveal that Rhizaria
organisms were strongly underestimated in previous studies. We here
use an updated version of this dataset, now including 3 529 stations to
study the biomass distribution of Copepoda, Rhizaria and several other
groups of planktonic organisms in the 1.02-50 mm size range. Based on
current knowledge about zooplankton, we expect to obtain different
distributions for different taxonomic groups. We hypothesize that the
total biomass of zooplankton is distributed according to regional pro-
duction characteristics, associated to climatic and hydrological patterns,
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showing overall a high biomass in high latitudes and lower values in
the subtropical gyres (Ikeda, 1985; Moriarty et al., 2012).

2.3 Material and methods

2.3.1 Plankton data collection and processing

2.3.1.1 Global plankton imaging with the UVP5

UVP5 data (Fig. 2.1) was compiled from all oceans, covering a 10 year
period (2008-2018). A detailed description of the operation of the UVP5

is given in Picheral et al. (2010). All particles large than ≈ 100 µm
in Equivalent Spherical Diameter (ESD) are measured and counted,
but only images of particles (zooplankton and aggregates) larger than
≈ 600 µm ESD are kept by the UVP5 for further processing because
smaller objects contain too few pixels to be identifiable. Acquisition
of metadata (geographic location, date, etc.) and processing of all 8.46

million images (95% being detritus) was carried out by the ZooProcess
software which provided information on 42 morphological features
associated with each object (area, major and minor axis, etc.). The result
was imported into EcoTaxa (Picheral et al., 2017), an application which
allows a taxonomic classification of images via supervised learning
algorithms, followed by manual validation (Irisson et al., 2022). As
61% of the profiles have a maximum depth ≤500 m, only images of
organisms between 0-500 m were kept and the overall estimate of
biomass were restricted to this depth range. To ensure that profiles
were representative, a filter was also applied to only keep profiles that
covered at least 80% of the layer of interest.
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Figure 2.1: Map of the UVP5 dataset used in this study. Transparency was
used to illustrate the density of points on the map.
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2.3.1.2 Image classification and size range covered

Living organisms were separated from detritus (aggregates, fibers, fecal
pellets) as well as artifacts (e.g. bubbles) and classified according to
their taxonomic identity. Recognition and sorting of organisms can be
a source of bias depending on the levels of perception and experience
of the people who perform them. Several cognitive factors biases such
as boredom, fatigue or a classification biased towards the most used
groups have been presented by Culverhouse (2007) and Culverhouse
et al. (2014). To reduce the risk of poor identification, a shared UVP5

taxonomic guide was used to homogenize image sorting into 119 taxo-
nomic groups. The image data was thereafter grouped into 25 broader
taxonomic groups (Table S1), and a subset of the resulting dataset was
checked for homogeneity of sorting within these groups. A minimum
of 51 images and a maximum of 10% of all images were extracted from
each group and were independently checked after the assembly of the
final data set. The maximum error or uncertainty rate per taxon was
9.8% and a vast majority of taxa were under 2.5%. We checked the
classification and if accuracy was <95%, we rechecked the categories
to assure proper sorting. In addition, only fully validated profiles were
used for this analysis. The resulting global data set consisted of 466 872

images from 3 529 stations. Under-sampled groups with less than 500

images in the dataset which could not be used for a global study were
not included in the analysis.

We computed the organisms’ size spectrum to detect the size range
within which the UVP5 can be used to properly quantify their distribu-
tion. The concentration of objects in the ocean is expected to decrease
with size; when this is computed as a normalized size spectrum, the
relationship is expected to be linear (Forest et al., 2012). A peak in the
size spectrum at the lower size range generally reflects the minimum
size of objects efficiently recognized by in situ imaging while high vari-
ability in the large size range reflects the poor ability to detect rare large
objects (Stemmann and Boss, 2012). With that in mind, a linear shape of
the spectrum was observed between 1.02 and 50 mm with a peak found
in many conditions at size smaller than the bin range 1.02-1.29 mm
while stronger variability was observed at size larger than 50 mm ESD.
We therefore excluded organisms outside of this range from the further
analysis, as e.g. large mobile fauna (including large crustaceans) are
likely to be undersampled and small zooplankton organisms close to
the UVP5’s threshold of detection are difficult to identify. This size
range selection ensures that the data used in this study was properly
quantified by the UVP5.
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Method Formula

Spheroid 4
3 × π ×

(

ESD
2

)3
with ESD = 2 ×

√

Area
π

Ellipsoid 4
3 × π ×

major
2 ×

(

minor
2

)2

Table 2.1: Methods of calculating individual biovolume with area (mm2); ESD,
the equivalent spherical diameter equivalent (mm); major, the major
axis (mm) of the best fit ellipse; minor, the minor axis (mm) of the
most suitable ellipse.

2.3.1.3 Individual biomass estimation

To avoid errors due to incorrect ellipse fits (around appendages of
organisms rather than their body, ellipse fitted to non-ellipsoidal or-
ganisms, etc.), we chose the spheroid method: it is based on the area
(Table 2.1), which is more consistently measured by the image analysis
performed in ZooProcess.

For Rhizaria, biovolume (mm3) to carbon (mgC) conversions were
done using factors from the literature (Fig. S2.1, Table S2). For other
groups, the conversion from individual volume to individual wet
weight assumed a density of 1gcm3 (Kiørboe, 2013). Then the conver-
sion from individual wet weight to individual biomass in carbon units
(mgC) was calculated using taxon-specific linear conversion factors
from McConville et al. (2016) ; when several factors were available for a
taxon, their median was used for each group). To take into account dif-
ferences in density of some parts of the organisms, the Appendicularia
group was actually split into Appendicularia_body and Appendicu-
laria_house, whereby the "body" group contains images with only the
animal and the "house" group contains the house and the animal. For
the images labeled Appendicularia_house, we used the relationship
of house diameter (major axis) to Appendicularia trunk length from
Lombard and Kiørboe (2010). We then converted this body size equiv-
alent into carbon weight using the corresponding relationship from
Lombard et al. (2009). For the images labeled Appendicularia_body, we
converted the biovolume of the organism into carbon weight using the
corresponding relationship from Lombard et al. (2009). Two groups also
have been created to separate the Collodaria into solitary Collodaria and
colonial Collodaria. This choice was done based on the fact that solitary
Collodaria are smaller than colonial ones and have a different vertical
distribution (Faillettaz et al., 2016). For solitary collodarians with a dark
central capsule (subgroup of solitary Collodaria) described in Biard
et al. (2016), the estimation of carbon (0.189 mgC mm−3) by (Mansour
et al., 2021) was done on the capsule of the organisms. As Zooprocess
measures the area of the whole organism, we determined the ratio
area whole organism
area central capsule = 0.713 and applied this factor to avoid overestimation
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of carbon biomass for this group. For the rest of the collodarians, the
estimation of (Mansour et al., 2021) was directly applied.

2.3.2 Environmental data collection and processing

In order to develop relationships between regional characteristics of
the environment (Fig. S2.2 to 2.4)and observed biomass, climatologies
from the World Ocean Atlas (WOA) (Garcia et al., 2019) were used for
temperature (in ◦C), salinity, oxygen (converted from µmol kg−1 to kPa
for better physiological interpretation), and macronutrients (nitrate,
phosphate and silicate in µmolkg−1). We selected the data sets defined
on a 1◦ horizontal grid, over the 0-500 m range, and with a monthly
temporal resolution. Temporal coverage was 2005 to 2017 for salinity
and temperature and 1955 to 2017 for the other variables. We also
used monthly averaged surface chlorophyll-a data (Chl a in mg.m−3)
resolved to 1/24◦ from 2005 to 2017 from the Copernicus database
(OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082) as
well as bathymetry data from NOAA (Amante and Eakins, 2009) with
a spatial resolution of 10 minutes; both were re-gridded to a 1◦ grid.
Finally, distance to coast was computed by calculating the distance of all
1◦×1◦ cells to the closest cell associated to land using the raster package
(Hijmans, 2021). To obtain annual climatologies, when relevant, each
monthly variable was averaged over its time period of coverage.

This environmental data was then matched to the UVP5 data on the
1◦×1◦ grid. Since the 1◦x1◦ grid used by WOA does not necessarily
follow the contour line of the coast perfectly, some UVP5 profiles could
not be directly matched to the environmental grids. This is mostly the
case where e.g. the coast is situated in a 45 degree angle to latitude or
longitude, thereby creating triangle shaped areas that are not covered
by the rectangular grid. For profiles that lie in such corners of the grid,
we used the environmental values of the closest neighboring 1◦×1◦

WOA cell. In the epipelagic world model, 3 002 points have a direct
match while 156 points do not have a direct match. Out of these 156

points, 14 are not in a neighboring 1◦×1◦ WOA cell and were removed
from the model input. For the mesopelagic, 2 172 have a direct match,
while 104 points have a match in a neighboring grid cell and 2 points
do not and were removed from the model input. Maps that show the
close vicinity of non-matching points to adjacent WOA cells are shown
in supplementary figure 5.

To assess whether we are able to describe various environmental con-
ditions with the UVP5 samples, we compared the distributions of each
variable in the worldwide WOA dataset and in the subset matched to
UVP5 profiles (Fig. S2.6 and S2.7). Although the geographical coverage
is not homogeneous (Fig. 2.1), the coverage of environmental conditions
is good and warrants the use of habitat models.
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2.3.3 Habitat modeling

The steps of this process are summarized in figure 2.2.
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Figure 2.2: Methodology followed from data selection to prediction of global
biomass.

2.3.3.1 Modeling tools

In this work we used boosted regression trees (BRTs) to predict the
biomass of different zooplankton groups as they show different ad-
vantages over other commonly used machine learning approaches for
the nature of our dataset and intended application (Elith and Graham,
2009). This ensemble method uses regression trees, models that link
a response (here biomass) to predictors (environmental variables) by
successive dichotomous separations (Breiman et al., 1984; Hastie et al.,
2001). Regression trees automatically select the relevant explanatory
variables, can deal with categorical or continuous inputs, are not sensi-
tive to the distribution of the continuous ones, can represent relations
of arbitrary form and naturally include interactions among explana-
tory variables (Elith et al., 2006). With so-called surrogate splits, they
can also deal with missing values in the explanatory variables. They
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are therefore very comfortable to use, but their predictive power is
often limited and they have difficulties to capture smooth relationships.
Boosting is a way to overcome these drawbacks (Schapire, 2003). It is
based on the fact that it is easier to find many rough rules of thumb
than to find a single, highly accurate prediction rule (Schapire, 2003).
BRTs combine many short regression trees in succession, each new
tree being adjusted to consider the observations poorly predicted by
the previous ones (Elith et al., 2008; Elith et al., 2006; Leathwick et al.,
2006). This improves predictive performance and the smoothness of the
prediction (Leathwick et al., 2006). In addition, only a random subset
of the input data is used to fit each tree and this stochastic component
reduces the variance of the final model ensemble (Friedman, 2002).

Boosted regression trees (BRTs) have an ability to handle a large
number of variables and - other than Generalised Linear Models
(GLMs, Nelder and Wedderburn (1972)) or Generalised Additive Mod-
els (GAMs, De’ath (2007), Elith et al. (2008), and Hastie and Tibshirani
(1986)) - does not seek to fit one single model portraying the rela-
tionship of the response variable (here biomass) and its predictors
(environmental variables). Various recent studies (Chen et al., 2020;
González Carman et al., 2019; Hu et al., 2021) have compared BRTs
results to other modeling tools such as GAMs, GLMs, RFs, Maximum
Entropy modeling (Elith and Graham, 2009; S. J. Phillips et al., 2006)
or neural networks and have obtained better predictive performance
with BRTs. Other studies (Son et al., 2018; Zhang et al., 2018) used
complementary GAMs and BRTs to study the effects of explanatory
variables. However, BRTs could be slower than RFs (Chen et al., 2020)
and training parameters need to be chosen carefully to avoid overfitting
(Elith and Graham, 2009; Leathwick et al., 2006). BRTs were chosen
over Random Forests (RFs) because of their capacity to reduce both the
bias and the variance of model results (Hastie et al., 2001). BRTs are
also less sensitive to the effect of extreme outliers and the inclusion of
irrelevant predictors (Leathwick et al., 2006). This makes them suitable
for plankton datasets, as sometimes very high plankton biomass values
do occur during blooms (Brodeur et al., 2018; Pettitt-Wade et al., 2020).
BRTs also have the ability to handle sharp discontinuities which is
not the case of the GAMs (Elith et al., 2008) which is important when
modeling taxa which can have a narrow habitat.

In addition, in regression trees, the loss function, used to choose
which dichotomous split to perform, can be changed to be adapted
to the distribution of residuals. Here we explored the classic mean
squared error, which assumed a somewhat normal distribution of the
residuals, as well as a Tweedie loss adapted to zero-inflated data (Zhou
et al., 2019), and a Poissonian loss, which considered data as discrete
counts, also including many zeros. To use the Poisson loss, the biomass
was scaled so that the value of the 1% quantile was ≥1 and then
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rounded to the nearest integer; the inverse scaling was performed after
prediction. This later approach proved to produce the best fits and
more robust models in a few test taxa and all models were therefore
fitted with Poisson loss. The models and statistics were computed using
the xgboost package (Chen et al., 2021) in R version 4.1.2 (R, 2021).

2.3.3.2 Spatial partitioning of the data

Individual biomass values derived from UVP5 images and environ-
mental data measured at various layers were both averaged over a
depth range of interest and matched geographically, on the 1◦×1◦ grid.
Biomass values matched to the same 1◦ pixel, and therefore associated
to exactly the same environmental data, were averaged.

We hypothesized that an association between biomass and envi-
ronment done at a fine scale could be more efficiently learned by the
model because is contains less noise, so we divided the data vertically
between the epipelagic (0-200 m) and mesopelagic (200-500 m) zones
and also tried a finer partition, into 100 m depth bins between 0 and
500 m. Learning separate models for each layer could allow to focus
on finer subgroups within our quite coarse taxonomic units (some
species being mostly present in one of the layers) and therefore define
biomass-habitat relationships at a finer, more relevant biological level.

For the same reason, we also built models on subsets of data parti-
tioned geographically. Indeed, polar copepods have a different thermal
niche compared to tropical ones (McGinty et al., 2021; Rombouts et al.,
2009). So, in addition to a model fitted on the whole world (world),
we trained models on data from the region between 40◦S and 40◦N
(low latitude) and from the data collected outside of this latitudinal
band (high latitude). Out of the 3 529 profiles composing the UVP5

dataset, 2 837 are located between 40◦S and 40◦N and 712 were done
outside of this latitudinal band.

2.3.3.3 Data splits for model training, assessment and evaluation

For each taxon in each spatial partition, the data was split to distribute
80% of it in a training and validation set, on which the model was fitted
and assessed, and 20% to a test set, on which predictive performance
was evaluated. This split was stratified according to the deciles of
biomass in the data, to ensure that both the learning and test sets
contained low and high biomass points.

To choose model hyperparameters (i.e. parameters of the model
adjustment algorithm) and to evaluate the variability in the prediction
due to the constitution of the training set, each 80% portion set was
resampled through five-fold cross validation repeated 20 times (i.e.
100 resamples; Hastie et al. (2001)). For each cross-validation fold, the
model was actually trained on four folds and validated on the last one.
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The splits into the five folds were also stratified according to the deciles
of biomass, for the same reason invoked above.

2.3.3.4 Selection of hyperparameters and model evaluation

To extract as much information from the data, while avoiding overfit-
ting, various combinations of hyperparameters were tested for each
model (Elith et al., 2006). They included: 1) the learning rate per tree
determining the contribution of each tree to the ensemble model (0.05,
0.08 and 0.1 were tested); 2) the maximum depth of a tree (2, 4 and 8

were tested); 3) the minimum number of elements per leaf (which also
limits the depth of the trees; 1, 3 and 5 were used); 4) the number of
trees used for the prediction (values up to 600 were tested). For each
combination, the model was fitted on the training set and evaluated
on the validation set of each of the 100 resamples; the loss was then
averaged over the 100 resamples. The best set of hyperparameters is
usually the one for which this average loss is minimal. The differences
around that minimum are often small and not always meaningful; to
be sure to avoid overfitting, we applied an early stopping criterion
whereby the increase in the number of trees was stopped when the
error did not decrease by more than 1% after adding 10 trees.

Once the best set of hyperparameters had been chosen, the relevance
of the corresponding model was quantified by the Pearson correlation
between the observed biomass data in the test set and the predicted
biomass, where prediction is the average of the predictions of the 100

models fitted on the resamples. This metric captures the model’s ability
to correctly represent general trends and patterns in the data set and is
one way to compute the R2. The significance of this correlation can also
be tested and quantified with a p-value. These metrics can be readily
compared across the various spatial partitions of the data because they
represent the skill of the models on an independent data set, not the
quality of the fit on the training data (like the way the R2 is usually
computed). To compare the worldwide and regional approaches fairly,
it is important to focus on the same regional subset. To this effect, two
additional R2 were computed for the global model: on the test data
located inside the 40◦S-40◦N latitudinal band and on those outside of it
(world low latitude and world high latitude).

2.3.3.5 Effect of environmental variables

To identify which environmental variables drive the change of biomass
in each specific model, the percentage of variance explained by each
variable was calculated as the sum of the effects of the variable at
each node of each tree where it was used. To describe the shape of
the effect of each variable, univariate partial dependence plots were
computed as the average ± standard deviation marginal effect of the
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variable in the 100 resamples. Practically, the variable of interest was
set at a given value at all training points, the other variables were left at
their original values, the average biomass predicted over all points was
computed, for each resample; then the mean and standard deviation of
those averages were computed across resamples. Finally, the variable
was set to another value and so on. To describe the full range of each
variable, the partial dependence was estimated at 10% quantile.

2.3.3.6 Extrapolation to the globe

To obtain global maps of predicted biomass, the regression between
UVP5 biomass data and environmental variables was applied to all
points in the corresponding partition of the world, in depth and space.
Because 100 models were fitted to the resamples of the training data,
the standard deviation of biomass among the 100 predictions (σb) can be
computed in addition to the mean (mb), and the coefficient of variation
(CV), defined as CV = σb

mb
, then gives an indication of the uncertainty

of the model predictions.
To get a robust estimate of global zooplankton biomass in the 1.02 mm

to 50 mm size range, we chose to be conservative (i.e. ad minima): only
the taxonomic groups in the global partition for which the correlation
between predicted and observed biomass was significant were used.
The surface area of each 1◦×1◦ cell was computed using the following
formula:

A =
Π

180
×R2 × (sin(latS)− sin(latN))× 106

with the area A in m2, the south and north latitudinal limits of the cell
in radians and R, the earth radius (6378.137 km). For each group used,
the biomass was integrated over the relevant layer in each 1◦×1◦ cell
by the following calculation

b̂t = b̂ × A × l.

where b̂ is the estimated biomass in mgC.m−3, A in m2 is defined above,
l is the layer thickness in m and therefore b̂t is the total biomass in
mgC. Finally, the global ad minima zooplankton biomass estimate was
computed by adding up the biomass for all selected groups and the
0-200 and 200-500 m depth layer.
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2.4 Results

2.4.1 Model comparison

We estimated model performance on the worldwide UVP5 dataset and
on a spatial partition of the dataset in low (inside 40◦N and 40◦S) and
high latitudes (outside of the 40◦N-40◦S latitudinal band) as well as
on different depth layers. We hypothesized that a finer data selection
might enable the respective model to learn the regional or depth spe-
cific habitat more appropriately. Yet, this also meant fitting models on
fewer data points. In the end, we find that no clear trend emerges from
the relevant comparisons (Fig. 2.3) : global models are better in 13 com-
parisons and partitioned models are better in 14 comparisons, whereas
for 11 comparisons no clear decision can be made. Comparisons can
only be made within a given depth layer between the same regional
partitions (e.g. world low latitude only containing the data predicted
by the global model between 40◦N-40◦S vs low latitude ; world high

latitude only containing data north of 40◦N and south of 40◦S from
the global model vs high latitude).

In more detail, for some groups such as Annelida and some Mollusca,
the high latitude model could not be computed (symbolized by a grey
cell) either because they were considered as rare (<500 images in the
layer modeled) or because the model could not learn the link between
biomass and environment for this group. However, for others such as
Copepoda, solitary Collodaria or Phaeodaria, high and low latitude
models are generally better than the world model, as indicated by a
higher R2 value (Fig. 2.3). In the epipelagic layer, for Copepoda, the R2

of world low latitude is 0.26 vs 0.37 in the low latitude model. For
the mesopelagic, low latitude has an R2 of 0.07, lower than the one
for world low latitude (0.62). For Appendicularia in the epipelagic
layer, the best R2 values are obtained in the world low latitude (0.41)
and world high latitude (0.24) models respectively compared to low

latitude (0.01) and high latitude (0.19).
As for the vertical 100 m-bin layers partition, we obtained the best

results overall with the global model. The finer vertical definition also
gives better results for multiple other groups such as Appendicularia,
Phaeodaria and Ostracoda between 0 and 300 m. In most cases, only
the top 100m layer model worked for this 100 m vertical partition.
Overall, the most consistently good choice, when considering all taxa,
is a worldwide model fitted separately on the epipelagic (0-200 m)
and mesopelagic (200-500 m) layers. This is therefore the configuration
retained for the total, global biomass estimate. In figure 2.3, taxa are
arranged in decreasing order of global biomass in the epipelagic layer.
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Figure 2.3: Heatmap of the models’ R2 between observed and predicted biomass for all zooplankton
groups arranged from the most important in terms of biomass (Copepoda) to the least
important (Limacinidae) in the different depth layers. The regions correspond to: W for
world (model run on all data) ; WL for world low (data between 40N and 40S from the
world model) ; L for low latitude (model run between 40N and 40S) ; WH for world high
(data outside of 40N and 40S from the world model) ; H for high latitude (model run
outside of 40N and 40S). The stars indicate significant results (p-value < 0.05) obtained
with the Pearson correlation test.
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For the top five (Copepoda (R2 = 0.66), Eumalacostraca ((R2 = 0.31),
solitary Collodaria (R2 = 0.10), Appendicularia (R2 = 0.26)) other Crus-
tacea (R2 = 0.15), the correlation between true and predicted biomass is
significant (p-value < 0.05) in the epipelagic worldwide model. In the
mesopelagic layer the correlations for all five groups are also significant
(p-value < 0.05 with respective (R2 of 0.22, 0.10, 0.09, 0.30 and 0.72).

2.4.2 Group-wise contribution to global zooplankton biomass

Figure 2.4 shows the biomass per group predicted for the three spa-
tial partitions and divided into the epi- (0-200 m) and mesopelagic
(200-500 m) layer. For the worldwide model, the dominant groups in
terms of biomass in the epipelagic were Copepoda (0.083±0.020 PgC),
Eumalacostraca (0.058±0.017 PgC) and solitary Collodaria (0.038±0.008

PgC) (Fig. 2.4A). Among the groups displaying a significant correlation
(p-value < 0.05) between true and predicted biomass (and therefore
retained for the global estimate), crustaceans (Copepoda, Eumalacos-
traca, other Crustacea and Ostracoda) represented 68.4% (0.157 PgC) of
the biomass in this layer; Rhizaria (solitary Collodaria, Foraminifera,
Phaeodaria, other Rhizaria and Acantharea) made up 20.6% (0.047

PgC); but the Cnidaria (other Cnidaria and other Hydrozoa) repre-
sented only 0.56% (0.0013 PgC). In other words, Crustacea and Rhizaria
together made up ∼89.1% of the biomass predicted in the epipelagic
layer. In the deeper mesopelagic layer, Copepoda (0.061±0.016 PgC)
were still the dominant group in terms of biomass, followed by Eu-
malacostraca (0.049±0.014 PgC) and other Crustaceans (0.017±0.001

PgC) combined. Crustacea (Copepoda, Eumalacostaca, other Crustacea
and Ostracoda) represented 0.129 PgC, equivalent to 74.4% of this
layer’s biomass, while Rhizaria (Foraminifera, solitary Collodaria, other
Rhizaria and Acantharea) totaled 0.014 PgC, representing 10.1% equiv-
alent to most of the remaining biomass in the layer. When combining
the results from these two layers, Copepoda represented 44.4% of the
global integrated biomass, followed by Eumalacostraca (15.6%), solitary
Collodaria (13.1%) and other Crustacea (11.2%). And, more broadly,
Crustacea (Copepoda, Eumalacostraca, other Crustacea and Ostracoda)
represented 0.222 PgC or 71.3% of the biomass predicted over 0-500m,
while Rhizaria (Foraminifera, solitary Collodaria, other Rhizaria and
Acantharea) made up 0.019 PgC or 10.8% of biomass.

Copepoda were even more dominant in high latitudes especially
in the epipelagic layer. In the low latitude model, solitary Collodaria
were first in terms of biomass, followed by Eumalacostraca and Cope-
poda and Foraminifera in the epipelagic. In the mesopelagic layer,
Eumalacostraca is dominant in low latitudes followed by Copepoda
and Foraminifera.
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Figure 2.4: Barplots showing the mean biomass predicted in PgC at 0-200 m and 200-500 m depth for
each group ranked from highest to lowest biomass in 3 types of models : world, outside
40N-40S and inside 40N-40S. Error bars correspond to upper interval of the biomass
estimation’s standard deviation. The stars indicate a significant result (p-value < 0.05)
obtained with the Pearson correlation test.
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2.4.3 Spatial distribution patterns and occupied habitat

Presenting the global distribution patterns of all zooplankton groups is
beyond the scope of this paper. Instead, we focus on the results for the
three groups contributing most to the total global biomass (Copepoda,
Eumalacostraca and Solitary Collodaria) as well as on Phaeodaria and
Acantharea, Rhizarians that were shown to be important contributors
to zooplankton biomass that are underestimated by net-based sampling
(Biard et al., 2016). The predicted fields for all modeled groups will be
made available in PANGAEA upon publication of the article.

2.4.3.1 Copepoda

Copepoda is one of the best predicted groups in the epipelagic R2 = 0.66,
likely because it is the most abundant. The structuring environmental
variables were different for the epi- (Fig. S2.8A,B) and mesopelagic
layers (Fig. S2.8C,D) : temperature (33%) and oxygen (19%) for the
former and temperature (29%), bathymetry (19%) and chlorophyll a

(15%) for the latter. Accordingly, in the 0-200 m depth layer (Fig. 2.5A),
the highest predicted biomass can be found in high latitude water
masses with low temperatures and high oxygen concentrations. In the
mesopelagic layer (Fig. 2.5B), high biomass values were associated with
shallow coastal and cold water masses. The patterns of distribution
predicted by the global models were similar in both layers (Fig. 2.5A,
B), with the highest predicted biomass values surrounding Greenland
in the Baffin Bay, Labrador Sea and Greenland Sea as well as at the
level of the Southern Ocean polar front. The lowest were predicted at
oceanic gyres and in the Arctic and Antarctic Oceans. For both layers,
the highest values of the coefficient of variation (Fig. 2.5C) were found
in the Arctic Ocean, north of Canada and Greenland, as well as south
of 60◦S, especially for the epipelagic layer. These high values depict
disagreement among the 100 models fitted on the data resamples and
therefore inform on the uncertainty of the model in these zones. Caution
is therefore advised regarding the interpretation of the very low values
of biomass predicted in those regions. In the northern hemisphere,
except for the Arctic ocean, the values of the coefficient of variation
were rather low at locations where either low or high biomass values
were predicted. In the southern hemisphere, model predictions varied
relatively strongly at the level of the Antarctic polar front (Fig. 2.5C, D).
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Figure 2.5: Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by
the model on 0-200 m (A) 200-500 m data (B) as well as the coefficient of variation for the
0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation
has the same range for figures 5 to 9.



36 global zooplankton biomass

2.4.3.2 Eumalacostraca

Eumalacostraca contains mostly vignettes of euphausiids, amphipods
and decapods. They were predicted globally with an R2 of 0.31 for the
epi- and 0.1 for the mesopelagic layer, both with significant p-values
(p-value < 0.05; Figure 2.3). In the epipelagic, high biomass of these
organisms were explained by high concentrations of phosphate 22%
and low concentrations of silicate (17%) (Fig. S9A,B). In the mesopelagic
layer, the distribution of this group was associated with low concentra-
tions of silicate (16%), bathymetry (15%) and high chlorophyll textita
(15%) (Fig. S9C,D). In terms of spatial distribution, high biomass values
are predicted along the eastern border of the continents, but especially
at the level of the Peruvian and Californian upwellings (Fig. 2.6). Low
biomass values are predicted in high latitudes and in the oceanic gyres,
especially in the North Atlantic one. Similar patterns were predicted
in the mesopelagic layer, but with lower biomass values. The model
uncertainties are highest in the zones of low biomass (high latitudes
and oceanic gyres).

2.4.3.3 Solitary Collodaria

Solitary Collodaria were predicted globally with an R2 of 0.1 for the epi-
and 0.09 for the mesopelagic layer, both with significant p-values (p-
value < 0.05; Figure 2.3). In the epipelagic, the distribution of solitary
Collodaria were mainly associated with low salinity (21%, between
35 and 37) and bathymetry (14%) (Fig. S10A,B). In the mesopelagic,
high abundances of this group were explained by low distance to coast
(18%) and high chlorophyll a (17%) (Fig. S10C,D). In this layer, 65%
of the biomass was predicted at less than 1000 km distance from the
coast. This groups’ biomass was mainly located between 50◦N and
50◦S, in a rather diffuse manner (Fig. 2.7) with a maximum predicted
at the equator. The highest biomass found in the intertropical range
was found in productive areas such as the upwelling regions off the
western coast of Africa (Cape Verde and Angola) and of the eastern
boundary of the Pacific Ocean (Peru and California) in the epipelagic.
The model also predicted high biomass values in the Mediterranean
sea. The importance of the environmental variable "distance to coast"
in the learning process created unusual patterns in the prediction map
such as a hexagonal shape in the Pacific Ocean. North of 50◦N and
south of 50◦S, environments characterized by low salinity (1st most
structuring variable in the epipelagic) and high nitrate (4th variable),
the predicted biomass was rather low especially in the epipelagic layer.
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Figure 2.6: Map of the mean biomass (color scale is log-transformed) of Eumalacostraca as predicted
by the model on 0-200 m (A) 200-500 m data (B) as well as the coefficient of variation for
the 0-200 m model (C) and 200-500 m one (D).

Figure 2.7: Map of the mean biomass (color scale is log-transformed) of solitary Collodaria as
predicted by the model on 0-200 m (A), as well as the coefficient of variation (B) as well
as the coefficient of variation for the 0-200 m model (C) and 200-500 m one (D).



38 global zooplankton biomass

2.4.3.4 Phaeodaria

For this group, the worldwide epipelagic model was statistically signifi-
cant (p-value < 0.05 ; Figure 2.8) with an R2 of 0.27, but the mesopelagic
model was not (p-value > 0.05; Figure 2.3). Therefore, only the 0-200 m
layer is displayed (Fig. 2.8). In this layer, Phaeodaria was one of the best
predicted groups (Fig. 2.3) especially in the 100 m bin models between 0

and 200 m depth. The epipelagic distribution of Phaeodaria predictions
is associated with low values of salinity (38%) followed by bathymetry
(11%), surface chlorophyll a (10%) and oxygen and temperature (8%
each) (Fig. S11A,B). This is visualised on the map of global prediction
(Fig. 2.8A) on which high biomass was mainly predicted in the Califor-
nian upwelling (characterized by low salinity, cold and coastal waters),
with lower biomass north of the upwelling up to the Gulf of Alaska,
south of the upwelling. High biomass values were also predicted in the
Bay of Bengal and Adaman Sea. The coefficient of variation in zones of
high biomass is very low providing strong confidence in this pattern.
The lowest predicted biomass for this group are found in oceanic gyres
and high latitudes of the northern hemisphere.

2.4.3.5 Acantharea

The group Acantharea was predicted with low total biomass (Fig.
2.4). This group was well predicted in the world model fitted in the
epi- (R2 = 0.26) and mesopelagic (R2 = 0.63) layers (Fig. 2.9). In the
epipelagic layer, nitrate (18%), salinity (15%) and phosphate (12%) were
the main driving variables (Fig. S12A,B). In the mesopelagic layer, the
link between biomass and environment (Fig. 2.9B) was defined by the
influence of several variables: silicate (19%), phosphate (12%) followed
by chlorophyll a (12%) (Fig. S12C,D). The highest epipelagic biomass
(Fig. 2.9A) was predicted in the intertropical range, at the level of
productive areas such as the upwellings off the West coasts of Africa
(Cape Verde, Angola) and America (Peru and California). Those high
biomass patches are associated with a salinity around 35 as the 2nd

most structuring variable, as well as with high nitrate and phosphate
concentrations (respectively 1st and 3rd). Intermediate biomass values
were predicted mostly between 50◦N and 50◦s in a diffuse way, except
in the oceanic gyres where the predicted biomass was lowest. The most
important model uncertainty was present in the Southern and Artic
Oceans, Bering Sea and Gulf of Alaska where low biomass values were
predicted (Fig. 2.9C). In the mesopelagic layer, biomass was predicted
to be 16.7-times lower overall (Fig. 2.9B), with highest values found in
the Gulf of Alaska and the Bering Sea. Intermediate biomass values
were predicted for the upwelling regions and the Southern Ocean.
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In this layer, the high biomass estimates correspond with low coefficient of variation
values (Fig. 2.9D).

Figure 2.8: Map of the mean biomass (color scale is log-transformed) of Phaeodaria as predicted by
the model on 0-200 m (A), as well as the coefficient of variation for the 0-200 m model
(B). In the map of predicted biomass, 12 cells in the California upwelling presented a
value between 3 and 6 mgC m−3 and were represented here in yellow to observe the
distribution of this group on a global scale. The color scale for the coefficient of variation
has the same range for all plots.

Figure 2.9: Map of the mean biomass (color scale is log-transformed) of Acantharea as predicted
by the model on 0-200 m (A), 200-500 m data (B), as well as the coefficient of variation
for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of
variation has the same range for all plots.
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2.4.4 In situ imaging compared to net based sampling

The latitudinal biomass distribution of Copepoda and Rhizaria ob-
tained by combining the predictions of global models for the epi- and
mesopelagic is shown in figure 2.10. It is compared against data (inter-
polated on 0-500 m) from the Tara Oceans mission (Pesant et al., 2015;
Soviadan et al., 2022) acquired using 300 µm multinet samples and
ZooScan (G. Gorsky et al., 2010). To make the comparison meaningful,
we only selected organisms in the ZooScan samples with an ESD >1

mm. For Copepoda, the values observed by the UVP5 and the nets
reveal a similar latitudinal pattern between 70◦N and 60◦S.

The trend computed on the output of the models shows lower
biomass between 40◦N and 40◦S compared to Tara observations. For
Rhizaria, the highest biomass was found in the UVP5 observations
and models around the equator. Generally, almost no Rhizaria were
observed in nets whereas they were consistently observed with the
UVP5.

2.4.5 Global zooplankton biomass distribution

The biomass integrated over 0-500 m was predicted to be maximal at
around 60◦N and 55◦S, with values decreasing both north and south
of these two latitudes (Fig. 2.11). The lowest values of biomass were
predicted in the Arctic Ocean and the Weddell Sea as well as in the
oceanic gyres (especially in the southern hemisphere). We also observed
an increase of the predicted biomass around the equator. The highest
biomass values were predicted between 50 and 80◦N, in coastal cells
in the Labrador Sea and Baffin Bay, as well as in the Greenland Sea.
Relatively high biomass was predicted around these points as well
as in the Gulf of Alaska, Bering Sea and Sea of Okhotsk. A band of
high biomass was predicted between 40 and 50◦S around the Arctic
polar front. Finally, by summing the predictions of models for which the
predictions significantly correlate with observations, we can get to a first
robust, conservative, global biomass estimate of zooplankton biomass
based on UVP5 in situ imaging. As not all groups could be included
in this computation, we refer to the following numbers as biomass
ad minima. With that in mind, the zooplankton biomass estimated by
the models was 0.229 PgC for the epipelagic, and 0.173 PgC for the
mesopelagic. This sums to 0.403 PgC between 0-500 m.
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Figure 2.10: Comparison of the latitudinal distribution of biomass (mgC m−2)
integrated over 0-500m depth between our models’ estimation
and the results from the Tara Ocean multinet (300 µm mesh size),
for Copepoda and Rhizaria. Trends were obtained by using Loess
regression on: "BRT models" using the global model outputs for
Copepoda or Rhizaria (summed across 0-200 m and 200-500 m
depth) ; "UVP5" using the biomass as seen by the UVP5 between
0-500m ; "TARA Ocean net" using the sampling points between
0-500m. The shaded areas represent the 95% confidence interval
of the Loess fit.

2.5 Discussion

2.5.1 Sensitivity of model prediction to partitioning

In this study, we explored whether a partitioning approach would
improve model performance through the use of different horizontal
and vertical divisions of our dataset. The aim of using partitioned
models was to test if we could model local organism subgroups that
would be mixed within the coarse taxonomic definition imposed by
the dataset. The R2 computed on the models’ output show a high
variability across groups, layers and regional combinations. Overall,
when comparing each partitioned model to the same zone in the global
one, neither the global nor the partitioned approach is overall better
suited. The reduction in dataset size might be the explanation why in
many cases global models perform better than the smaller partitioned
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Figure 2.11: Distribution map of the minimum global biomass between 0 and
500m using taxa which obtained a p-value < 0.05 in Pearson test
between the predicted and the biomass calculated from UVP5

data.

models. The high latitude dataset contains 712 UVP5 profiles, the low

latitude 2 837 and the world 3 549 data points. Another drawback
of the partitioned models could be that some groups might have an
environmental habitat associated with regions on both sides of the
limits of the two models (here 40◦N or 40◦S). A vertical resolution of 0-
200 (epipelagic) and 200-500 m (mesopelagic) depth gave the best results
compared to a finer depth separation. The reduction of data per model
with a finer depth layer resolution probably made it impossible for some
models to learn the association between a group’s biomass distribution
and the associated habitat properties, either because the model could
not learn this association or because the group was considered rare
(<500 images). If enough data is available, however, a finer vertical
model might perform better, because it better delimits the vertical
habitat structure. This seems to be the case e.g. for the Phaeodaria
for which models with 100 m resolution obtained higher R2 results,
especially for those between 0 and 300 m depth.

2.5.2 Group-wise contribution to global zooplankton biomass

Globally, in the 1.02 - 50 mm size range, we observed up to four zoo-
plankton groups dominating each region and layer (Fig. 2.4), mainly
including Crustacea (Copepoda, Eumalacostraca, other Crustacea) and
Rhizaria (solitary Collodaria, Phaeodaria, Foraminifera). The domi-
nance by copepods was expected: they are known to be a central trophic
link in marine ecosystems (Steinberg and Landry, 2017) and their dom-
inance was already shown in several studies (Dai et al., 2016; Forest
et al., 2012; Turner, 2004). Rhizaria were also presented as substantial
participants in the global zooplankton biomass by Biard et al. (2016)
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with Phaeodaria and Collodaria being the most important contributors
to rhizarian biomass. In addition, Rhizaria were previously shown to
play an important role in the biological carbon pump by intercepting
(Stukel et al., 2018, 2019) but also generating particle flux (Lampitt
et al., 2009). In contrast, gelatinous predators such as Chaetognatha and
other Cnidaria (other Cnidaria, other Hydrozoa, Siphonophorae) can
be well predicted but their predicted biomass is low. This might be due
to different reasons, ranging from their low carbon content (McConville
et al., 2016), their size range which can exceed the specific range of the
UVP5 (1.02 - 50 mm), their lower abundance reducing the probability
of observation in the rather small volume of the UVP5 and the reduced
capacity of the UVP5 to image them due to their transparency. Other
instruments, such as the pelagic in-situ observation system (PELAGIOS,
Hoving et al. (2019)), the Zooglider (Ohman, 2019) or the In-Situ Ichthy-
oplankton Imaging System (ISIIS, Cowen and Guigand (2008)) might be
more adapted to study these organisms, thanks to their larger sampling
volumes or different image approach.

2.5.3 Distribution patterns and occupied habitats

2.5.3.1 Copepoda

Copepoda biomass was predicted to be highest in high latitudes in
both epi- and mesopelagic layers of the global models. The lowest
values were predicted at the gyres and an increase of biomass was
observed centered at the equator. In the global models, temperature
always appeared within the top three environmental factors explain-
ing the distribution of copepods (except for 0-100 m model where it
appeared 4th), which is in agreement with previous work suggesting
that surface temperature and thermal tolerance of marine ectotherms,
including copepods, are important constraints for their distribution
and abundance (Beaugrand et al., 2009; Sunday et al., 2012). We also
predict significant Copepoda biomass centered at 50◦S in the Southern
Ocean, at the location of the strongest horizontal gradient of tempera-
ture within the epipelagic layer. This geographic pattern is in agreement
with earlier observations of high Copepoda occurrence along the Polar
front (Pinkerton et al., 2020). Hence, despite a low number of UVP5

profiles in this latitudinal band, the model is able to retrieve this fun-
damental pattern. Higher values of the coefficient of variation (Fig.
2.5C) are found in the Arctic Ocean, as well as south of 60◦S. More data
from these regions could help to further reduce the uncertainty of our
models.
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2.5.3.2 Eumalacostraca

The distribution of the predicted Eumalacostraca biomass presented
high values in coastal areas mainly on the eastern border of the Atlantic
and Pacific Oceans and low values at high latitudes and at the locations
of the oceanic gyres. Due to the low image resolution, a finer taxonomic
resolution than Eumalacostraca (mostly euphausiids, decapods and
amphipods) is not possible for UVP5 vignettes and especially a distinc-
tion of euphausiids and decapods is rarely possible. Euphausiids are
well known for their ability to avoid capture by standard oceanographic
plankton nets (Brinton, 1967; Sameoto et al., 1993; Wiebe et al., 1982)
and even low noise gliders (Guihen et al., 2022). This behavior might
also be dependent on the species and stage development while the
UVP5 mostly detects small Eumalacostraca (≤ 50 mm) for which taxo-
nomic identification is not possible. Nevertheless, as Euphausiids are
the second most abundant crustacean taxon after copepods (Castellanos
et al., 2009) they may compose a large fraction of the biomass in this
group. They are described as widely distributed in high numbers in
the world ocean between 0-300 m with the exception of the eastern
Canadian Arctic and the Arctic Ocean (Castellanos et al., 2009). This
coincides with our predictions of higher biomass in the epipelagic
(0.058 PgC) than the mesopelagic (0.049 PgC), and low values predicted
for the Arctic Ocean. The high Eumalacostraca biomass predicted in the
North Atlantic also coincides with high abundances of krill observed by
(Edwards et al., 2021). Euphausia superba and Euphausia mucronata have
been described as keystone species of the Antarctic and the Humboldt
Current System, respectively (Antezana, 2010). The comparatively low
values of biomass predicted in the Antarctic in the epipelagic layer (Fig.
2.6A) might be too low, as Euphausia superba is known to show a patchy
distribution (Siegel, 2005, 2016). As we only have very few samples
from the Antarctic Ocean, we probably under-sampled this region and
specifically krill. The high coefficient of variation in this region seems
to reflect this problem. Overall, we need to state that we might underes-
timate the abundance of Euphausiids and of Eumalacostraca in general
due to avoidance of the CTD/UVP5 system, the comparatively small
sampling volume of the system and the low sample abundance in the
Southern Ocean.

2.5.3.3 Solitary Collodaria

Global models in epi- and mesopelagic layers predicted a widespread
distribution of solitary Collodarians between 50◦N and 50◦S, from
oligotrophic to eutrophic zones. Their distribution can be explained
by the selective advantage of their mixotrophy, since all collodarian
species live in symbiosis with photosynthetic microalgae (Biard et al.,
2016; Suzuki and Not, 2015). Consistently with the models’ prediction
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of solitary Collodaria as the third most important group in terms of
global biomass in 0-200 m, it has been shown by Biard et al. (2016)
that Collodaria contribute most to the biomass of the Rhizaria between
0-100 m.

2.5.3.4 Phaeodaria

The distribution of Phaeodaria shows a latitudinal pattern with three
peaks, one at 50◦N (with high biomass values at the level of the subarc-
tic gyres), one at 5◦N and at 60◦S. These three peaks were not observed
by Biard et al. (2016). The highest values being predicted in the subarc-
tic gyre are consistent with D. K. Steinberg et al. (2008) who estimated
their mean biomass there as 5.5% (range 2.7–13%) of the metazoan
biomass sampled using a MOCNESS (Wiebe et al., 1985). The distri-
bution of this group in the epipelagic (high biomass in coastal regions
especially around the Californian upwelling and low biomass in gyres
conditions) could be related to food availability which might not be
abundant enough in the open ocean. In the models’ output, this group
only contributes to ∼1.2% of the global biomass in the epipelagic.
This is consistent with previous work describing these organisms as
being distributed in water below 150-200 m (Biard and Ohman, 2020;
Boltovskoy et al., 2017; L. Stemmann et al., 2008; Suzuki and Not, 2015).
The high (R2 = 0.50) and low latitude (R2 = 0.39) models done on the
mesopelagic layer reveals similar patterns as the ones shown for the
epipelagic layer in Figure 2.8. This pattern of high biomass predicted
in the North Pacific can be put in perspective with a previous study
(Ikenoue et al., 2019) which highlighted Phaeodaria in the Western
North Pacific as one of the major carriers of carbon in the twilight zone,
defined by K. O. Buesseler and Boyd (2009) between 200-1000 m depth,
with an organic carbon standing stock reaching its highest value at
depths between 200-500 m. A maximum in abundance of Phaeodaria
was observed in the lower epipelagic or mesopelagic zone in the Sea
of Japan by Nakamura et al. (2013) as well as in the Antarctic beneath
the sea ice with similar abundances as the North Atlantic and Pacific
(Morley and Stepien, 1984). In the regional mesopelagic predictions,
the mean biomass in the Sea of Japan is not particularly high, but it
reached higher values in the Southern Ocean.

2.5.3.5 Acantharea

Here, we present results on large Acantharea only, but it should be
kept in mind that most species are smaller than 600 µm (Biard et al.,
2016). Most Acantharea species are associated with symbiotic algae
(Michaels, 1991) which could explain the rapid observed biomass de-
cline with depth. Indeed, the biomass predicted is 16.7-times lower
in the mesopelagic (1.36 10−5 PgC) compared to the epipelagic layer
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(2.27 10−4 PgC). These mixotrophs are present throughout the world
oceans (Suzuki and Not, 2015) and commonly distributed in intertropi-
cal latitudes (Bottazzi and Andreoli, 1982) mostly in the surface with an
abundance rapidly declining below 20-50 m depth (Michaels, 1988). The
model confirmed this biomass diminution in the epi- and mesopelagic
layers (Fig. 2.9). We also observed latitudinal distributions which were
maximal in intertropical areas consistent with these previous stud-
ies. The highest biomass of Acantharea predicted in the mesopelagic
global model in the Gulf of Alaska coincides with a large number of
organisms imaged by the UVP5. This is surprising knowing the above
described distribution patterns. More observations from this region are
required to clarify whether this was a temporally limited occurrence
or whether this represents a region of permanent abundance maxima.
The predicted biomass in the Antarctic waters in this depth layer is also
surprising. Acantharea are marine planktonic unicellular eukaryotes in
the Rhizaria group and produce a mineral skeleton made of strontium
sulfate (Decelle and Not, 2015; Michaels, 1991). The surprisingly high
abundance at high latitudes might be important for studies done on
the strontium biogeochemical cycle (Bernstein et al., 1987; Decelle et al.,
2013).

2.5.4 Comparison between net sampling and in-situ imaging

The integrated global predicted biomass is dominated by Copepoda
(35.7%), Eumalacostraca (26.6%) and Rhizaria (16.4%). Because of their
important contribution to the predicted global biomass, the distribution
map of total biomass ad minima (Fig. 2.11) reflects in part the major
distribution patterns of these three groups: polar waters are dominated
by Copepoda and intertropical waters are dominated by mixotrophic
Rhizaria. Eumalacostraca follows the predicted distribution of zoo-
plankton with 3 peaks of biomass at 60◦N (55◦N for zooplankton),
at the equator and at 45◦S (55◦S for zooplankton). The comparison
of the models’ output with data from the Tara Ocean expedition, ob-
tained with a 300 µm mesh size multinet (Pesant et al., 2015; Soviadan
et al., 2022) shows a good agreement for the latitudinal patterns of
Copepod biomass. Net data is estimated to be higher than biomass
estimated from UVP5 data in the intertropical latitude range for this
group. Results in the high latitudes regions with strong seasonality
and sea ice cover should be taken with care as no data was available
in the UVP5 dataset in winter for these latitudes. For Rhizaria, we
observe that at most locations the biomass estimated by the nets is
zero, whereas the UVP5 yields considerable biomass in this group
(Fig. 2.10). In the TARA Ocean multinet samples, only Acantharea,
Foraminifera and Phaeodaria are sometimes detected, while Collodaria
are consistently absent from these samples. Indeed, Collodaria and
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Study Size range Depth Global estimates

Moriarty et al., 2012 ≥2 mm 0-350 m 0.02 PgC

Moriarty and O’Brien, 2013 ≥200 µm 0-200 0.19 PgC

Buitenhuis et al., 2013 ≥200 µm Integrated 0.33-0.59 PgC

Buitenhuis et al., 2013 ≥2 mm 0-500 m 0.22-1.52 PgC

Hatton et al., 2021 ≥200 µm 0-200 m 0.53-31.57 PgC

Hatton et al., 2021 ≥2 mm 0-200 m 0.02-2.64 PgC

This study ≥765 µm-37.5 mm 0-200 m 0.229 PgC

Table 2.2: Comparison of global biomass estimates in the literature. Please
note that we have converted the size range we cover with the UVP5

(1.02-50 mm ESD) to meshsize using the empirical Nichols and
Thompson, 1991’s 3/4 law of mesh selection.

Acantharea are poorly sampled by nets and are not well preserved in
plankton samples fixed with regular fixatives such as formaldehyde
(Suzuki and Not, 2015). Yet, solitary Collodaria are predicted as the 3rd

most important group in terms of biomass in the upper 200 m of the
global model. We here show that in situ imaging is far more suitable
for the study of these and all other fragile plankton groups. As de-
scribed above, several important zooplankton groups are generally well
modeled, allowing us to combine the taxon-specific models to yield a
global estimate of zooplankton biomass in the 1.02 to 50 mm size range.
Previous studies (Table 2.2) have computed such global zooplankton
biomass obtained largely (Hatton et al., 2021) or completely (Buitenhuis
et al., 2013; Moriarty and O’Brien, 2013; Moriarty et al., 2012) from net
collected organisms. These studies also used a proportionality method
by estimating the global biomass presented in Table 2.2 by multiplying
the median value of biomass with the surface of the ocean and the
studied depth. Our predictions are within the same order of magnitude
— but at the lower limit — of these compilations if one combines their
meso- and macrozooplankton biomass estimates. We refrain from a
more detailed comparison due to the difference in size studied (here
1.02 - 50 mm ESD — equivalent to 765 µm to 37.5 mm meshsize ac-
cording to Nichols and Thompson (1991)’s 3/4 law of mesh selection
— compared to ≥ 200 µm for the cited meso- and macrozooplankton
studies), sampling methods and depth covered (Buitenhuis et al., 2013).
Contrary to the complementary use of nets and Zooscan, such as with
the TARA dataset, these previous studies are based on data obtained
through methods which do not allow to split the organisms based on
fixed criteria (size, area of the organism or taxonomy). One would
expect a large contribution to biomass in the 200 to 765 µm mesh size
range (Gallienne, 2001; Hwang et al., 2007).
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2.5.5 Global zooplankton biomass distribution

The distribution of the global integrated biomass (0-500 m) ad minima

follows the patterns described by Ikeda (1985), Moriarty et al. (2012)
and Hatton et al. (2021) which correspond to a latitudinal distribution
of the biomass with high values north of 55◦N and south of 55◦S, low
values in between increase around the equator between 15◦N and 15◦S.
The benefit of our work and of compiled datasets such as the ones
used in Moriarty et al. (2012), Moriarty and O’Brien (2013), Buiten-
huis et al. (2013) and Hatton et al. (2021) is that they bring together
numerous single transects and allow to have an integrated view of
global zooplankton distribution. The results depicted in Figure 2.11

in the Southern Ocean are consistent with a recent study done with
BRTs (Pinkerton et al., 2020) showing that the highest environmental
suitability for zooplankton was located between the Subantarctic Front
and the southern limit of the Antarctic Circumpolar Current with a
lower suitability north and south of this band. The spatial distribu-
tion of plankton biomass thus shows the importance of oceanographic
hydrodynamics leading to oligotrophy in central gyres and mesotro-
phy in areas of high latitudes and equatorial and coastal upwellings.
Zooplankton plays a crucial role in fisheries in these environments e.g.
in the Humboldt Current System which harbors the largest fishery in
the world and most economically important fish species, supported by
the upwelling of Peru (Chavez et al., 2008). Peruvian anchovies and
sardines obtain most of their energy from zooplankton (van der Lingen
et al., 2009).

2.5.6 Conclusions and outlook

In summary, our results show, for the first time, that spatial patterns
and global biomass of key zooplankton groups can be calculated using a
machine learning method (BRT) to extrapolate individual zooplankton
biomass estimates from sparse UVP5 observation. They also highlight
the important contribution of Rhizaria (predicted mainly in the in-
tertropical range) and Copepoda (predicted mainly in high latitudes) to
the global estimate of zooplankton biomass. Within the size range cov-
ered, Copepoda contributes 35.7%, Eumalacostraca 26.6% and Rhizaria
16.4% to global zooplankton biomass. This suggests that it is especially
crucial to extend work on the fragile Rhizaria, which are comparatively
little studied. As a biogeographical study, our aim was not to represent
proximal mechanisms that drive the distribution of zooplankton, or
to describe seasonal or transient (e.g. mesoscale) features, but rather
to represent the global distribution patterns of biomass according to
general properties of the water masses. This method worked well in
general as seen in Figure 3 for at least 3 of the combinations of regions
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and depths. It made it possible to model 19 groups of zooplankton and
obtain corresponding maps with the relative importance of the envi-
ronmental variables used for the model. The WOA climatologies used
in this study compiles data of salinity and temperature (2005-2017) and
other variables(1955-2017). The temporal coverage of the latter being
much rarer, we hope to use more constrained nutrient dataset for our
future work once a narrower time frame will be available.

The zooplankton biomass predictions based on UVP5 datasets pre-
sented here are important for global biogeochemical modeling of
pelagic ecosystems because they usually lack zooplankton observa-
tions to constrain their development (Buitenhuis et al., 2013; Séférian
et al., 2020; Stemmann and Boss, 2012). A current trend is to add more
realism in plankton representation to better predict future ecosystem
states and ocean conditions to inform sustainable management strate-
gies for climate mitigation at global scale (Séférian et al., 2020). The
UVP5, the newly developed UVP6 (Picheral et al., 2021) and other
commercialized in situ systems, provided that they are inter-calibrated
(Lombard et al., 2019), will continue to be used in the foreseeable future
increasing data availability. Still, the bottleneck lies in the classification
of the massive amount of images which still require human valida-
tion, but new algorithms to recognise plankton types and traits are
expected (Irisson et al., 2022). The further anticipated expansion of im-
age datasets will enable the quantitative assessment of rare groups that
were not well predicted here. In addition, the deployment of the UVP6

on autonomous platforms will also help to sample certain areas with
very specific environmental characteristics, difficult to access during
a period of the year such as polar regions in winter. The large dataset
used in this study was acquired in 10 years which can be compared to
the COPEPOD database collected since about 1960. The possibilities
given by imaging systems could hence help to reach a useful amount of
data in a much smaller time frame. It would be interesting to use other
imaging system’s datasets such as the ones presented by Lombard et al.
(2019) to reconstruct the wider size spectrum of these groups in terms
of biomass. To have a better understanding of the vertical habitat of
zooplanktonic groups, we highly recommend that UVP5 and 6 profiles
should be done to at least 1000 m when the bathymetry allows it. Long
term inter annual data acquisition is also highly recommended. This
will enable us to monitor global zooplankton biomass changes at pace
with the speed of global change.
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2.6 Supplementary Material
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Figure S2.1: Distribution of the conversion factors from biovolume (mm3 to biomass mgC in logarith-
mic scale) for the studied taxa according to their source in the literature. For Rhizaria,
biovolume (mm3) to carbon (mgC) conversions were done using factors from Biard et
al., 2016, Mansour et al., 2021 and Marcolin et al., 2015. For other groups, the conversion
from individual volume to individual wet weight assumed a density of 1gcm3 (Kiør-
boe, 2013). Then the conversion from individual wet weight to individual biomass in
carbon units (mgC) was calculated using taxon-specific linear conversion factors from
McConville et al. (2016) ; when several factors were available for a taxon, their median
was used for each group). For solitary collodarians, the estimation of carbon (0.189

mgCmm3) by Mansour et al., 2021 applied as explained in the subsection 2.1.3
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Figure S2.2: Distribution maps of the environmental variables used in the model in the layer 0-200 m
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Figure S2.5: Distribution of UVP5 sampling points (symbolized by black dots) for which a match
was found in the neighboring cell in the regions of the western coast of South America
(A,B), in the Baffin Bay and Labrador Sea (C,D) and in the Mediterranean Sea (E,F). The
colored cells represent the temperature (in °C) from the WOA dataset. In the epipelagic
layer, 142 points have a neighboring match out of which 130 points (91%) are represented
here (The map A contains 20 points, C contains 51 points and E contains 59 points). In
the mesopelagic layer, 104 points have a neighboring match out of which 81 points (78%)
are represented here (The map B contains 22 points, D contains 24 points and F contains
35 points).
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Figure S2.6: Distribution of sampling of environmental variables by UVP5 in red compared to global
data from World Ocean Atlas in blue in the layer 0-200 m.
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Figure S2.8: Distribution of the order of importance of variables in the model for Copepoda between
0-200 m (A) and 200-500 m (C). Partial dependence plots of the 3 most important
variables in the model for 0-200 m (B) and 200-500 m (D). The ticks on the x axis inform
on the probability of the predicted data. There is 10% of the prediction between 2 ticks.
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Figure S2.9: Distribution of the order of importance of variables in the model for Eumalacostraca
between 0-200 m (A) and 200-500 m (C). Partial dependence plots of the 3 most important
variables in the model for 0-200 m (B) and 200-500 m (D). The ticks on the x axis inform
on the probability of the predicted data. There is 10% of the prediction between 2 ticks.
For this group the model for the 200-500 m layer does not yield a significant correlation
between model and data and results are therefore not shown.
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Figure S2.10: Distribution of the order of importance of variables in the model for solitary Collodaria
between 0-200 m (A) and 200-500 m (C). Partial dependence plots of the 3 most
important variables in the model for 0-200 m (B) and 200-500 m (D). The ticks on the
x axis inform on the probability of the predicted data. There is 10% of the prediction
between 2 ticks. For this group the model for the 200-500 m layer does not yield a
significant correlation between model and data and results are therefore not shown.
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Figure S2.11: Distribution of the order of importance of variables in the model for Phaeodaria
between 0-200 m (A). Partial dependence plots of the 3 most important variables in the
model for 0-200 m (B). The ticks on the x axis inform on the probability of the predicted
data. There is 10% of the prediction between 2 ticks.
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Figure S2.12: Distribution of the order of importance of variables in the model for Acantharea
between 0-200 m (A) and 200-500 m (C). Partial dependence plots of the 3 most
important variables in the model for 0-200 m (B) and 200-500 m (D). The ticks on the
x axis inform on the probability of the predicted data. There is 10% of the prediction
between 2 ticks.
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Table S2.1: List of groups used for the analysis

Groups Organisms classified as such

Acantharea Acantharea

Annelida Annelida

Appendicularia Body or house of Appendicularia

Cephalopoda Cephalopoda

Chaetognatha Chaetognatha

other Cnidaria Cnidaria with the exception of Hydrozoa

Colonial collodaria Colonial collodaria

Copepoda Copepoda or Copepoda_like

other Crustacea Crustacea with the exception of Copepoda, Ostracoda and Eumalacostraca

Ctenophora Ctenophora

Doliolida Doliolida

Eumalcostraca Eumalacostraca

Foraminifera Foraminifera

Gymnosomata Gymnosomata

other Hydrozoa Hydrozoa with the exception of Narcomedusae and Siphonophorae

Limacinidae Limacinidae

other Mollusca Mollusca with the exception of Gymnosomata, Limacinidae, Cavolina

and Creseis

Narcomedusae Narcomedusae

Ostracoda Ostracoda

Phaeodaria Phaeodaria

Pyrosoma Pyrosoma

other Rhizaria Rhizaria with the exception of Acantharea, Collodaria, Foraminifera

and Phaeodaria

Salpida Salpida

Siphonophorae Siphonophorae

Solitary Collodaria Collodaria classified as Collodaria,

solitary collodarians with dark central capsule,

solitary collodarians with a fuzzy central capsule,

solitary collodarians with a grey central capsule,

solitary collodarians with a globule-like appearance

Thecosomata Cavolina or Creseis
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3
Follow the plume

3.1 Abstract

Understanding the dynamics of particle flux and morphology in oceanic
biogeochemical cycles is critical for unravelling the complexity of ma-
rine ecosystems and the global carbon cycle. In this study, we used a
Lagrangian plume approach by deploying three Underwater Vision
Profiler 5 (UVP5) units in a North Atlantic eddy during the EXPORTS
2021 experiment. Over 26 days, we tracked the plume of sinking detritus
during a large export event.

Our investigation revealed major changes in the particle community
within the plume. A power-based decrease in the abundance of MiPs
(small particles, 0.14-0.53 mm diameter) and MaPs (large particles, 0.53-
16.88 mm diameter) suggested degradation, aggregation, and potential
microbial remineralisation contributions. We also investigated the slope
dynamics of the particle size distribution (PSD), which revealed a
two-step pattern with a flattening of the slope below the surface core
waters (SCW). Our approach reliably estimated the carbon export flux
compared to published estimates of the North Atlantic spring bloom.

Characterisation of the morphology of aggregates and fecal pellets
within the plume using in situ imaging and semi-supervised clustering
showed that aggregates followed an almost linear evolution, becoming
darker, more circular and denser with depth. Conversely, fecal pellets
exhibited distinct dynamics, shaped by their production by zooplankton
and degradation with depth. Our results challenge previous assump-
tions and reveal an increase in size with depth for some aggregates and
fecal pellets, likely caused by zooplankton compaction and differential
settlement.

To understand flux attenuation, we investigated the carbon-specific
degradation rate (Cspec) within the plume. Building on previous re-
search, our analysis suggests that microbial remineralisation activity
was dominant in the mid to lower mesopelagic region (300-800 m).
However, this activity did not fully explain the attenuation observed in
the upper mesopelagic zone (50-300m), suggesting that zooplanktonic
organisms may have contributed to the remainder of this attenuation
in this layer.

This study provides new perspectives on particle dynamics, sinking
particle morphology, flux and attenuation within a North Atlantic eddy.
The results emphasise the need to consider morphological features in
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future flux calculations and advocate for a deeper understanding of
particle complexity in marine ecosystems. These findings open new av-
enues for research into particle dynamics and biogeochemical processes
in the ocean.

3.2 Introduction

3.2.1 The rain of detritus

Marine detritus particles have long captivated scientists (Silver, 2015).
They comprise aggregates, fecal pellets and dead bodies. Aggregates
are found throughout the world’s oceans and designate macroscopic
clusters (>500 µm, Alldredge and Silver (1988)) comprising aggregated
phytoplankton, abandoned larvacean houses, fecal matter, and other
detrital material (Alldredge et al., 1990; Alldredge and Silver, 1988). De-
trital particles play a significant role in the biological carbon pump. As
they sink, they contribute to the biological gravitational pump, which
involves the settling of particles (Alldredge and Gotschalk, 1988) from
the ocean’s surface (Boyd et al., 2019). In conjunction with the diurnal
vertical migration-based pump (Steinberg and Landry, 2017), the gravi-
tational pump represents one of the two fundamental mechanisms that
drive the carbon storage in the global ocean (Boyd et al., 2019; Nowicki
et al., 2022).

Particles present a variety of shapes and sizes resulting from multiple
competing physical and biological processes leading to aggregation and
fragmentation (Alldredge, 2001; Alldredge and Gotschalk, 1988). As a
result, marine aggregates can take various forms during their sinking
journeys such as spheroids, compact spheres, strands or comet-shaped
(Alldredge, 1998; Alldredge and Silver, 1988). The structure of newly-
created particles is determined by a variety of characteristics, most of
which depend on the concentration and nature of the phytoplankton
that compose them.

Until recently, observing the change in aggregate morphologies was
not possible in situ over a large depth range, necessitating reliance
on ecological insights stemming from in situ collection and laboratory
experiments.

3.2.2 An ever-changing morphological alteration

Marine aggregates can be affected by numerous processes (Fig. 3.1)
which can be classified as either physical or biological acting either
towards particle formation and growth or towards particle degrada-
tion and fragmentation. In this context, the main biological actors of
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aggregate morphological alteration are zooplankton (micro- and macro-
zooplankton) and bacteria.

Aggregation

Formation or growth
Degradation and/or fragmentation

Microbial 

activity

Filter feeding

Passive flux feeding

Active flux feeding

Fragmentation

Discarded houses
Biomass loss

Sinking

Impact on the particles

Fecal 

pellets

?

Figure 3.1: Main processes potentially affecting marine detrital particle mor-
phology. Solid arrows present a process resulting in particle for-
mation or growth while dashed arrows correspond to processes
resulting in degradation and/or fragmentation.

3.2.2.1 Particle formation and growth

Physical processes can induce aggregation, or coagulation, in which
two particles combine to form a larger one (Stemmann, Jackson, and
Ianson, 2004). Brownian motion, shear, differential settlement, surface
coagulation, and diffusive capture can promote this process (Alldredge,
2001; Kiørboe, 2001). If aggregation occurs in the presence of minerals
that hinder larger particle formation, resulting aggregates may exhibit
smaller, spherical, and compact characteristics (Laurenceau-Cornec et
al., 2015).

Alongside physical processes, biology significantly influences aggre-
gate morphology. Zooplankton’s feeding strategies impact the nature
and abundance of aggregates within a specific space and time. They
package marine snow material, producing fast-sinking compact fecal
pellets (Atkinson et al., 2012; Turner, 2002, 2015). Fecal pellet charac-
teristics like shape, density and size (Durkin et al., 2021) vary with
the nature and concentration of food sources (Dagg and Walser, 1986;
Feinberg and Dam, 1998). Moreover, producer species and individual
size affect fecal pellet attributes (Atkinson et al., 2012): salps generate
large flakes, euphausiids form long, thin cylindrical ones (Atkinson



68 follow the plume

et al., 2012; Gleiber et al., 2012), and copepods produce ellipsoid or
ovoid pellets (Gleiber et al., 2012; Koster et al., 2011). Fecal pellets are
highly attenuated in the upper water column (Alldredge et al., 1987;
Durkin et al., 2021) and can be integrated into aggregates through
differential settlement.

Zooplankton impact aggregation through filter feeding, as seen in
appendicularians using houses (Alldredge et al., 1990; Lombard and
Kiørboe, 2010; Robison et al., 2005), salps (Steinberg et al., 2023) and
crustaceans (Huntley and Boyd, 1984). This strategy lowers particle
concentration, and filtration rates depend on particle concentration,
saturating at high concentrations (Harbison et al., 1986; Lombard et al.,
2009).

Small copepods (Toullec et al., 2019) and microorganisms (Alldredge,
2001) can foster the aggregation of free-floating cells or small aggregates
through their swimming activities. Moreover, biological influence on
aggregation can arise at the phytoplankton level, where sufficiently
large and sticky cells can enhance encounter likelihood and coagulation
efficiency (Laurenceau-Cornec et al., 2015).

3.2.2.2 Degradation and fragmentation of particles

Aggregates, as per laboratory studies, exhibit reduced porosity and
increased density as their size decreases (Laurenceau-Cornec et al.,
2015). This size decrease (Alldredge et al., 1990) has been associated
with the deformation of sinking aggregates due to fluid flow around
them (Alldredge and Gotschalk, 1988). In rolling tanks, Song and Rau
(2022) observed aggregates elongate under shear until they became too
fragile and split into separate particles. Appendicularian houses were
found to become denser over time, which also resulted in lower fractal
dimensions and higher sinking speed (Lombard and Kiørboe, 2010).

Filter feeding reduces particle abundance and volume across size
spectra (Gillard et al., 2022). Flux feeding, on the other hand, decreases
total biovolume (Burd and Jackson, 2009; Gillard et al., 2022; Stemmann,
Jackson, and Ianson, 2004). It can be passive (Christiansen et al., 2018;
Gilmer and Harbison, 1986; Gowing, 1989; Kiørboe, 2011) or active
(Dilling, 2004; Dilling and Alldredge, 2000; Frost, 1972; Jackson and
Kiørboe, 2004; Kiørboe and Jackson, 2001). Zooplankton may consume
particles partially (Steinberg and Landry, 2017; Stemmann, Jackson, and
Ianson, 2004), altering concentration and biovolume. Particle fragmen-
tation, caused by organisms like euphausiids (Bach et al., 2019; Dilling
and Alldredge, 2000) and copepods (Toullec et al., 2019), disrupts ag-
gregates and can create smaller slower-sinking particles, increasing
their residence time and remineralization potential (Alldredge et al.,
1990; Bach et al., 2019; Dilling and Alldredge, 2000).
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Bacterial degradation of marine snow (particles and fecal pellets)
primarily occurs in the upper water column (Iversen, 2023; Turner,
2015), facilitated by bacterial colonization and growth (Kiørboe, 2001;
Kiørboe et al., 2002). This process causes a rapid attenuation of sinking
particulate organic carbon (POC) (Iversen, 2023), diminishing marine
snow volume without loss in particle abundance (Gillard et al., 2022;
Iversen and Ploug, 2010). Microbial consumption alters the geometry
of a given particle, either hollowing it out or shrinking it (Stemmann,
Jackson, and Ianson, 2004), leading to increased porosity and a reduced
fractal level. Bacterial remineralization declines with depth as aggre-
gates are colonized by surface-derived bacteria that sink into the deep
sea (Iversen, 2023). Their activity then depends on environmental fac-
tors; high activity occurs in warmer waters (E. Cavan and Boyd, 2018;
Marsay et al., 2015), impacting microbial physiology. In contrast, low
activity was measured in oxygen minimum zones (Weber and Bianchi,
2020) and at high pressure (Amano et al., 2022). Particle composition
similarly influences their activity (Laurenceau-Cornec et al., 2015). All
these processes exert an influence on particle morphology, an aspect
for which our current understanding remains limited.

3.2.2.3 A difficult study of particles morphology

Due to the constraints associated with aggregate research, the in situ

continuous change in particle morphology has been seldom explored
in the past (Trudnowska et al., 2021). Over recent decades, marine snow
studies have mainly concentrated on quantifying particle abundance,
sinking speed, and flux (Cael et al., 2021; Guidi et al., 2008; Iversen
and Ploug, 2010), degradation rates (Kiørboe, 2000; McDonnell et al.,
2015) or modelling various processes impacting their abundance or flux
(Burd and Jackson, 2009; Stemmann, Jackson, and Ianson, 2004). While
particle size has been the focus of various studies (Cael et al. (2021),
Guidi et al. (2008), and Stemmann et al. (2002)), few have explored
changes in other morphological traits (Giering et al., 2020; Trudnowska
et al., 2021). Individual particles can be sampled using instruments such
as the Marine Snow Catcher (Lampitt et al., 1993) or gel traps (Durkin
et al., 2021), as well as by examination in laboratory-controlled settings
like flow chambers (Ploug and Jørgensen, 1999), settling columns or
roller tanks (Ionescu et al., 2015; Shanks and Edmondson, 1989; Song
and Rau, 2022). Some studies even generate particles artificially to
study their temporal evolution (Laurenceau-Cornec et al., 2020; H.
Ploug et al., 1999; H. Ploug and Grossart, 2000). While these methods
aid aggregate analysis and chemical study, they overlook various in

situ parameters influencing particle morphology in the water column
(Alldredge and Gotschalk, 1988; Cael et al., 2021). In particular, the
diverse marine organisms and their impacts on particle morphology
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can hardly be studied with the above-mentioned focus on individual
particles studied ex situ. Enhanced understanding and modelling of
processes shaping particle morphology while sinking necessitate more
in situ data acquisition and analysis.

This limitation can be addressed by employing non-intrusive in situ

imaging technologies like the Underwater Vision Profiler 5 (UVP5,
Picheral et al. (2010)). The UVP5 was successfully used to study particle
abundance and distribution with high temporal and vertical resolution
(Guidi et al., 2008; Kiko et al., 2017; Kiko et al., 2022; Stemmann et
al., 2002). These in situ sensors were predominantly used to assess
particle size (Guidi et al., 2009), but a recent study has also for the
first time explored particle morphology (Trudnowska et al., 2021).
This research used UVP5 images to investigate aggregate morphology
evolution in Baffin Bay and in Fram Strait using k-mean clustering. This
unsupervised technique enabled the exploration of Arctic ice-associated
phytoplankton bloom dynamics at a larger scale through changes in
marine snow morphology over space and time.

Our study focuses on an anticyclonic retentive eddy observed in May
2021 in the North Atlantic near the Porcupine Abyssal Plain (PAP) sta-
tion as part of the EXport Processes in the Ocean from RemoTe Sensing
(EXPORTS) program (Siegel et al., 2016, 2021). The EXPORTS initiative
employs satellite remote sensing, field sampling, and modelling to
enhance understanding of the biological carbon pump’s mechanisms
(Siegel et al., 2016, 2021). We aimed to explore the North Atlantic spring
bloom (Omand et al., 2015) within a drifting eddy situated between 14.9
and 14.7°W and 49.1 and 48.7°N (Erickson et al., 2022). To gain insights
into open ocean particle distribution and dynamics, we deployed three
Underwater Vision Profiler 5 units (UVP5, Picheral et al. (2010)) on a
CTD rosette aboard the three research vessels RRS Discovery DY130,
RRS James Cook JC214, and R/V Sarmiento de Gamboa SG2105. In
this article, we present a series of 26-day deployments using the UVP5.
We introduce a plume-based approach employing UVP5 counts and
images to enhance the understanding of in situ particle morphology
during an export event. By tracking an export plume, our study aims to
achieve the following objectives: 1) Quantify carbon flux and its atten-
uation during export by following the particle plume; 2) Characterize
the evolving community of imaged particles; 3) Investigate potential
changes in the morphological features of aggregates and feces within
this plume over time and with depth.
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3.3 Material and Methods

3.3.1 Data collection and processing

3.3.1.1 In situ imaging in the EXPORTS 2021 experiment

The UVP5 was developed to detect, measure, and quantify the vertical
distribution of zooplankton and marine particles (Kiko et al., 2022;
Picheral et al., 2010). All particles with an Equivalent Spherical Diameter
(ESD) ≥ 100 µm were measured and counted by the UVP5 during its
descent. Additionally, vignettes of zooplankton and aggregates with an
ESD ≥ 600 µm were recorded by the UVP5. A thorough description of
the UVP5’s operation is provided in Picheral et al. (2010). For further
information on raw data treatment, see also Kiko et al. (2022).

Criteria for detecting and monitoring eddies were established months
before the field campaign began. This was done to find an eddy that
would remain coherent and retentive until the completion of the field
campaign (Erickson et al., 2022). Through the use of altimetry data, nu-
merical modelling and the deployment of ocean gliders and SeaGliders,
the eddy-tracking team ended up selecting a small anticyclonic eddy
(Erickson et al., 2022) with a core region diameter of approximately
30 km (Johnson et al., 2023).

In total, the dataset includes 173 vertical profiles done by the three
UVP5s intercalibrated before the cruise (Fig 3.2). We downloaded the
corresponding Ecopart file from Ecotaxa (Picheral et al., 2017) contain-
ing the metadata and particle counts.

3.3.1.2 Inside the eddy core

The eddy core waters demonstrated high retention, and as a result, offer
an opportunity to investigate the connection between the evolution of
particle morphology and the associated sinking fluxes. The Surface
Core Water (SCW) was defined by Johnson et al. (2023) as the lower
limit of the SCW based on the depth of the 27.1 kg m-3 isopycnal.
Below this SCW is the Eddy Core Waters (ECW), defined by this same
context paper as being between the lower boundary of the SCW and
around 600 m depth. Although many profiles were conducted at various
distances from the eddy’s centre, we will focus in this article on the
eddy core as defined by Johnson et al. (2023) (<15km from the eddy
centre). We computed the distance between each profile and the eddy
centre at the sampling time and selected for further analysis the 99

profiles located less than 15 km away from the eddy centre.
As only 6% of the profiles covered the 800-1000 m layer, only images

between 0-800 m were kept for further analysis. Once the artefacts -
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Figure 3.2: Sampling points inside (≤ 15 km from the eddy center) and outside
(> 15 km) of the eddy core. The points represent the UVP5 vertical
profiles done during the three epochs. The coloured background
corresponds to the daily sea level anomaly (in m) for the middle
day of each epoch: (A) May 7th for epoch 1, (B) May 16th for epoch
2 and (C) May 25th for epoch 3. The black star in each of the 3

figures corresponds to the centre of the eddy on the corresponding
day.

mainly due to bubbles and unfocused images - were removed, the data
set contained 1,720,914 images.

3.3.1.3 Image sorting and classification

The Zooprocess software was used to process all 1,720,914 images and
log metadata (geographical position, date, etc.). To deal with this large
data set, the images were grouped using Morphocluster, a program
designed to annotate large data sets of images (Schröder et al., 2020). A
more extensive description of the Morphocluster steps can be found in
Schröder et al. (2020). The 1,720,914 images were clustered in the 155

clusters leaving 61,374 images non-clustered.
The Ecotaxa program (Picheral et al., 2017) was then used to manually

validate the clustered images (Irisson et al., 2022), reclassifying by
hand the wrongly classified ones. In order to do that, we treated each
annotated class separately. We arranged the images with 100 images
per page and sorted them by decreasing size. If less than five objects
were relocated from three consecutive pages for each annotated class,
sorting was halted. Once this was done, we used the Ecotaxa embedded
random forest classifier to learn on the clean clusters and classify the
61,374 images that were not clustered by Morphocluster.
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3.3.1.4 Morphology of imaged objects

The Zooprocess software also provided information on 42 morphologi-
cal features associated with each object. Porosity is not computed by
Zooprocess but is described by Alldredge and Gotschalk (1988) as the
fraction of an aggregate not occupied by solid matter. It was computed
following this formula:

porosity =
Vempty space

Vtotal

with

Vempty space =
4
3

π

(

area empty space
2

)3

Vtotal =
4
3

π

(

area empty space
2

)3

The circularity computed by Zooprocess does not have a unit and
ranges from 0 (elongated polygon) to 1 (perfect circle). The mean grey
level corresponds to the average grey value within the object (G. Gorsky
et al., 2010). It is a sum of the grey values of all pixels in the object
divided by the number of pixels and its value can range from 0 (black) to
255 (white) (G. Gorsky et al., 2010). The fractal variable corresponds to
the fractal dimension of the object boundary and is computed following
Bérubé and Jébrak (1999).

3.3.2 Data selection according to the export plume

3.3.2.1 Sinking speed estimation of the export plume

Following a similar method to the one described by Briggs et al. (2020)
in which the evolution of particulate optical backscattering (bbp, a
proxy for particulate mass concentrations (Reynolds et al., 2016)) of
small and large aggregates was studied for different export events, we
applied a Gaussian fit to the daily median concentration of different
aggregate size classes per 100 m bins. This method was applied both to
the concentration of imaged particles (either aggregates or feces) and
also to the UVP5 particle counts. For each size class, a linear regression
was done on the coordinates in depth and time of each of the Gaussian
fits’ maximums. The value of the slope was stored as an indicator of
the sinking speed if the Gaussian fit was successful for at least half
the 100 m bin. We obtained a sinking speed of 41.7±5.7 m d-1 for
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aggregates, of 36.4±0.3 m d-1 for feces and of 44.3±7.3 m d-1 for particle
counts. Nevertheless, this method did not work for all the size classes
because of the low signal-to-noise ratio at both limits of the size range.
A comparison with sinking speed-to-size linear relationships from the
literature was done with the obtained slope values. The relationship
presented in Kriest (2002) (Reference 9, Table 2) seemed to be closest to
both estimation based on counts and images, we computed the MiPs
(small particles with 0.14-0.53 mm diameter, Kiko et al. (2017)), MaPs
(large particles with 0.53-16.88 mm diameter, Kiko et al. (2017)) and
total flux in mgC m-2 d-1 based on it.

To investigate the plume depicted in Figure 3.3, we assumed a ho-
mogeneous sinking speed for the particle community at 50 m d-1,
selecting a value that was slightly higher than the upper boundary of
previously computed values for different types of particles that did not
yield significantly different estimates. This makes it possible to keep
track of rapidly sinking particles. Six equally-spaced lines were traced
starting at the surface from the 11th to the 21st of May with an interval
of 2 days and a 50 m d-1 slope creating five different masks (Fig. 3.3A
and B). These masks allow a study of the plume through time from
mask 1 to mask 5. We then computed the mean value of the different
parameters and morphological variables presented in Figure 3.8 per
20 m bins of every profile in each of the five masks. Note that the first
mask (the one furthest to the left) covers the whole depth range from 0

to 800 m but this coverage is reduced as we go from mask 1 through
5. A power-based Martin fit was then computed on each of the masks’
flux estimations following Martin et al. (1987). The mean mixed layer
depth (MLD) at 42.7 m was used as the depth of reference.

3.3.2.2 Computation of the particle community metrics inside the
plume

The morphological variables (ESD, mean grey level, circularity, fractal,
porosity, elongation) were computed using the images’ Zooprocess fea-
tures while the parameters (MiP and MaP abundance) were computed
on the particle count. Concentration and biovolume were computed
per 5 m bins along each profile using water volume data from the
UVP5 in m3. The Particle Size Distributions (PSD) were computed on
both particle counts and image aggregates. The PSD is computed by
dividing the abundance of particles within a given size bin by the
width of the ESD bin (Jouandet et al., 2011). The PSD slope is a useful
tool for analysing the mechanisms that determine particle distributions
and relative proportion based on their diameter (Clements et al., 2022;
McCave, 1984; Stemmann, Jackson, and Ianson, 2004)). It was computed
following Kiko et al. (2022).
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Figure 3.3: Interpolated field of A) aggregate concentration (in number per
m3) and B) aggregate Equivalent Spherical Diameter (ESD in mm).
Note that the colour bar is in logarithmic scale for the aggregate
concentration. The 6 red lines correspond to the delimitation of
the 5 masks with a 50 m d-1 slope. The continuous white line
corresponds to the mean MLD. The black dashed line corresponds
to the fit presented in Johnson et al. (2023) as the lower limit of the
Surface Core Water based on the depth of the 27.1 kg m-3 isopycnal.

3.3.2.3 Computation of the POC loss inside the plume

The carbon-specific degradation rate (Cspec) was computed following
Iversen (2023):

Cspec =
POCloss

POCconc

with POCloss in gC m-3 d-1 and POCconc in g m-3

POCloss = 1 −
∆F

∆z

where ∆F and ∆z correspond to the differences in POC flux (gC m-2

d-1) and in depth (m) inside the layer of interest.

POCconc =
Ftop

wav
where wav corresponds to the assumed constant average particle settling
velocity for particles at all depths, and Ftop, the POC flux (gC m-2 d-1)
at the top of each layer of interest. We here choose the mean value of
sinking speed obtained for aggregates (41.7 -1). Cspec was computed on
the following depth definition: 50-100, 100-300, 300-500, 500-800 m.
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3.4 Results

3.4.1 Evolution of particle concentration and size distribution inside
the plume

The composition of the plume particles is largely dominated by fluffy
particles with 92% of total images (particles with an ESD > 600µm)
inside the plume between 0-50 m. This percentage decreases inside the
plume and reaches its lowest value between 650-700 m with 81%. In
the whole plume data, fluffy aggregates dominate (87.8%) followed by
dense aggregates (10%), fecal pellets (1.1%), living organisms (0.94%)
and fibers (0.2%) .

The UVP5 counts of particles with a size between 100-600 µm show
a power law-based decrease in the MiP abundance at the surface to
much lower values below 400m depth (Fig. 3.4A). The rapid decrease
observed in the first 100 m for the MiP abundance is also observed, in
a lesser intensity, for the MaPs (Fig. 3.4B). In terms of values, the mean
MiP abundance is divided by 22.3 from 0-50 m to 750-800 m, while
the MaP abundance is divided by 10 (Table S1). Furthermore, we may
investigate the evolution of particle community metrics over time using
the five masks, such as the exponent of the power law fit, which is a
measure of export efficiency across depth. The MiP exponent is higher
than the MaP exponent for the masks 1 through 3. They have the same
exponent for mask 4 and the MaP exponent is higher for mask 5.

While representing the mean MiP and MaP abundance per 100 m
depth bins throughout time inside the plume all masks combined,
we observe different dynamics for the two sizes. The MiPs exhibit a
general decrease in the top 100 m depth layer with two maximums
around the 17th and 21st of May. The second layer also exhibits the
second maximum on the 21st but presents low values (28-106 MiPs
m−3) compared to the first (175-430 MiPs m−3). From the third layer
(200-300 m) to the last (700-800 m) we observe very low values (< 35

MiPs m−3). The MaPs tell a different story with an increase in mean
abundance in all layers from the surface to the 700-800 m layer.

The slope of the particle size distribution spectra (PSD slope) is
negative throughout the whole plume (Fig. 3.4C). Its mean value is
at -3.6 between 0-50 m and follows a linear decrease until it reaches
the base of the SCW. Below this depth, its value remains relatively
constant between 2.5 and 2.7 (Table S1), but with lower values and
large variation in the first two masks (representing the beginning of the
export) and higher values with very much reduced variation in masks 3

to 5 (representing the massive export). The slope value becomes flatter
in the ECW from mask 1 to 5.
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Figure 3.4: Evolution of (A) MiP and (B) MaP abundance as well as the PSD
slope. Each point corresponds to a profile’s 20m mean value. Power
law functions were fitted to the (A) MiP and (B) MaP abundances
(in numbers L-1). For the PSD slope (C), the linear regression was
performed on the SCW data. The black horizontal dashed line
corresponds to the mean depth of the SCW inside the plume.



78 follow the plume

3.4.2 Evaluation of flux and vertical attenuation inside the plume

The b values obtained using the power law regression fit are a reflection
of the attenuation rate and the biological carbon pump efficiency in
the different masks (Fig 3.5). For the global flux, the b value for mask
5 (0.259) was two-fold lower than the one for mask 1 (0.474). Higher
values of b were obtained for the MiPs flux (Fig. 3.5A) compared to the
MaPs (Fig. 3.5B) and global flux (Fig. 3.5C). In contrast, the values of
MiPs flux reached much lower values (maximum around 200 mgC m-2
d-1) compared to the MaPs flux which reached up to around 700 mgC
m-2 d-1 for the 2nd mask in dark blue.

The carbon-specific degradation rates (Cspec, fig. 3.5D) obtained fol-
lowing Iversen (2023)’s methods presented two main messages. The
first one was that Cspec values decrease rapidly in the first 300 m of
the water column. The second was that these values were always dis-
tributed the same way when comparing the mask with a decrease from
mask 1 to mask 5. A comparison is made in Figure 3.5D with other
studies made in the North Atlantic using aggregates from trap (Collins
et al., 2015) or from Marine Snow Catcher samples (Belcher et al., 2016).
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Figure 3.5: Power law regressions fitted the mean values of flux in mgC m-2

d-1 for (A) MiPs, (B) MaPs and (C) all particles. Points in figures A
through C represent the mean value per 20m bins. The jumps in the
vertical profiles are due to averaging overtime in the succeeding
depth bins. The carbon-specific degradation rate (D, Cspec in d-1)
is represented according to depth in figure D with circular points.
The squared-shaped points represent data of carbon-specific rem-
ineralisation rate (Cremin) from Belcher et al. (2016) and Collins
et al. (2015) with the horizontal lines corresponding the standard
deviation. The colours used to represent the masks in Figures A
through D are presented in Figure D.
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Figure 3.6: Evolution of mean concentration (in numbers m−3) of aggregates
(A) and fecal pellets (B). Each point corresponds to a 20 m mean
value for each mask for which the colour legend is presented in
Figure B.

3.4.3 Evolution of the morphological properties of aggregates and
fecal pellets inside the plume

The previous sections showcased results concerning particle size distri-
bution, without differentiation by type; we now shift our focus to an
in-depth analysis of aggregates and feces sorted using Morphocluster.

Aggregates have ESD values ranging from 0.89 to 27.7 mm, whereas
feces have sizes ranging from 0.89 to 5.22 mm. Aggregates present an
important decrease in concentration (Fig. 3.6A), especially in the first
200 m of the water column. Concentration decreases less sharply from
mask 1 to 5. In terms of feces (Fig. 3.6B), we observe two dynamics:
a reduction in mean concentration between 0 and 250 m, and almost
constant values below that. The masks show a larger feces concentration
in mask 5, as it did for the aggregates in Figure 3.6A, showing a higher
aggregate concentration in the plume later in the experiment. It is worth
noting that the aggregates/feces ratio decreases with depth, starting at
the surface with 132 aggregates for one fecal pellet and reaching 17 at
700 m. It then increases again to 29 at 800 m (Fig. 3.8H).
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Figure 3.7: Aggregates images selected randomly inside the plume for masks
1, 3 and 5 between 0-100, 100-300, 300-500 and 500-800 m. ESD
values correspond to the mean ± standard deviation Equivalent
Spherical Diameter. MGL values correspond to the mean ± stan-
dard deviation Mean Grey Level.



82 follow the plume

1.2 1.4 1.6 1.8 2.0 2.2
ESD [mm]

0

100

200

300

400

500

600

700

800

De
pt

h 
[m

]

A

120 140 160 180 200 220
Mean grey level

0

100

200

300

400

500

600

700

800

B

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Circularity

0

100

200

300

400

500

600

700

800

C

taxon
aggregate
feces

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
Fractal level

0

100

200

300

400

500

600

700

800

De
pt

h 
[m

]

D

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Porosity

0

100

200

300

400

500

600

700

800

E

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Elongation

0

100

200

300

400

500

600

700

800

F

1 0 1 2 3 4 5 6
Kurtosis grey level

0

100

200

300

400

500

600

700

800

De
pt

h 
[m

]

G

20 40 60 80 100 120
Ratio Aggregates/Feces

0

100

200

300

400

500

600

700

800

H

Figure 3.8: Comparison of aggregate and feces morphological variables. Each point corresponds
to a 20 m mean value on all the profiles for either aggregate (in purple) or feces (in
orange) among the five masks for figures A through G. Horizontal bars represent the
95% confidence interval. The ratio of aggregate over feces in the plume over depth is
represented in Figure H. For each subplot, the black horizontal line corresponds to the
mean depth of the Surface Core Waters inside the plume.
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Regarding their morphology, aggregates exhibit a different dynamic
in the SCW and below its lower bound. These two dynamics were
represented through two linear regressions in two different layers (Fig.
S3.5): the first fitted between 0 and the depth of the mean SCW lower
bound, and the second fitted below this limit. All linear regressions
are significant (Kruskall-Wallis, p − value < 0.05). They demonstrate
variances in dynamics at various levels. First, we observed differences
comparing variables, e.g. the ESD (Fig S3.5A) has a trend of increase for
both layers while other variables show more heterogeneity. Secondly,
we also noted differences in the trends for one variable inside one of
the layers, e.g. for the mean grey level, circularity and fractal level (Fig
S3.5B, C, D), the linear regressions did not have the same trend of
increase or decrease within the same layer of water. On average inside
the plume, aggregates became bigger (ESD decreased from 1.3 mm
between 0-50 m to 2.1 mm between 750-800 m, Tables S3.2, S3.3),
darker (mean_grey decreased from 225 to 177), more circular (from
0.4 to 0.6) and less elongated (from 1.8 to 1.5). They also presented
a higher fractal dimension (from 0.91 to 0.98) and a lower porosity
(from 4.2 to 2.1). Figure 3.7 illustrates the evolution of the aggregates
by presenting 49 random images from masks 1, 3 and 5 for the depth
layers 0-100, 100-300, 300-500, 500-800 m. The ESD increased as the
mean grey level decreased across all depth layers and masks from 1 to 5,
indicating that the particle grew darker. We also noticed the increasing
prevalence of black components in fluffy particles, as well as a rise in
the fraction of dense particles. Another indicator of aggregate structure
is the kurtosis of grey level which indicates a peaked (positive values) or
flat distribution (negative values) of grey values in a particle (Legendre
and Legendre, 2012). Aggregates kurtosis level (Fig 3.8G) depicts an
increasingly more peaked distribution than normal distribution in the
first 60 m translating homogeneous aggregates with more observed
values around the mean grey level. It then decreases below this depth
to reach less than 1 at 800 m depth indicating more heterogeneous
aggregates with a more spread out distribution of observed grey level
values. The linear regressions throughout the five masks from mask 1

to 5 can also be an indication of the evolution of the morphology in
time. A trend of increased slope in aggregates’ circularity, porosity and
elongation can also be noted. In contrast, the ESD slopes appear more
stable throughout the masks.

In regards to the SCW limit, some parameters behaved differently
above and below it e.g. particle mean grey level increased above it and
decreased below the SCW. Porosity and elongation also seemed to be
affected by the same trend of increase in the SCW and decrease below
it.

No clear pattern emerges from the feces results compared to the
aggregates’ (Figure S3.6) with more spread out values than compared
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with figure S3.5. In comparison to aggregates, fecal pellets were smaller,
and darker (mean grey level between 127-172 for feces compared to 176-
226 for aggregates), with a lower porosity and more elongated (between
2.1 and 4.5 compared to 1.5 to 1.8 for the aggregates, Fig. 3.8). The
mean kurtosis grey level is negative and takes values approximately
between -2 and 0 throughout the water column. This corresponds to
a flatter distribution than the normal distribution of grey level values,
indicating heterogeneity in the images’ grey level. The 95% confidence
intervals were wider for feces compared to aggregates. Note that the
SCW limit seemed to have an effect on the ESD as well as the fractal
level (values almost constant for both aggregates and feces above this
limit and increasing for aggregates below this limit while feces have a
more heterogeneous distribution). These patterns can be observed in
Figure S3.7 which contrasts with Figure 3.7 by a lack of visible pattern
from surface to 800 m and from mask 1 to 5.
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Figure 3.9: Particle Size Distribution of imaged aggregates and feces for data
between 0-200, 200-400, 400-600 and 600-800 m. The two axes are
log-transformed. The colour of the points corresponds to the mean
grey level of the corresponding combination of particle type, depth
layer and size bin. Values for feces are linked with dashed lines
and the ones for aggregates are linked with dotted lines.

The development of imaged aggregates and feces normalised abun-
dance with their respective mean grey level throughout binned depth
layers are summarised in Figure 3.9). It illustrates the decrease through
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depth and size classes of aggregates and feces abundance. It also high-
lights that aggregates darkened from surface to depth and from small
to large size classes. In terms of size classes, aggregates populate a
larger range than feces that goes beyond 5 mm. Aggregates spectrum
exhibits a flattening of the curve from surface to depth for the size
classes <2 mm with a similar slope above 600 m for sizes >2 mm.
Note an important flattening of the slope for 600-800 m. For feces, we
also see a difference between 0-600 m and 600-800 m, the lowest curve
showing a more important reduction in abundance. The abundance of
large fecal pellets bigger than >3 mm does not decrease with depth
and presents an increased abundance in the 300-500 m layer compared
to the shallower depths.

Overall, these results show that aggregates presented a clear morpho-
logical change with depth. Changes in fecal pellets are more dynamic
and heterogeneous.

3.5 Discussion

Using three UVP5 instruments within a retentive eddy in the North
Atlantic, approximately 170 km east of the PAP site (Johnson et al.,
2023), we gathered a significant 26-day dataset during the EXPORTS
2021 experiment and tracked the plume of settling detritus during a
large export event. Our study quantified for the first time the devel-
opment of an extensive export plume within an eddy core in terms of
composition, flux, and attenuation across both time and space using a
Lagrangian approach. We aimed to elucidate the decrease in estimated
flux through the evolving morphology of aggregates and feces. We
now discuss the observed changes in the entire particle community and
their relationship to flux attenuation within the plume, followed by an
exploration of the evolving morphological characteristics of aggregates
and feces within the plume.

3.5.1 The plume approach

In distinction from the conventional vertical approach that attempts
to link layers with distinct but unrelated particle dynamics, the plume
approach employs a Lagrangian framework to follow a particle popula-
tion, resulting in a more coherent method. We postulated that employ-
ing the Martin approach within the extracted plume is more suitable
than cutting vertical data bands, as our dataset allows direct plume
monitoring as it sinks. Our study took advantage of the initial scarcity
of particles in the eddy, providing a clear insight into the particle com-
munity through depth within the plume, and time through the applied
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masks. Furthermore, we calculated the sinking speed for various parti-
cle types (aggregates and fecal pellets) in this plume. Our approach’s
results align with the previously observed range of 10 to 100 m d−1

for 0.81 to 3.25 mm sized particles (Riley et al., 2012; Villa-Alfageme
et al., 2014). Notably, it revealed a significant relationship for aggregates
between size and sinking speed in the narrow observed size range.

3.5.2 Major changes in the particle community inside the plume

3.5.2.1 Power-based decline of MiPs and MaPs abundance

We observed a power-based reduction in the abundance of MiPs and
MaPs within the plume. This decline could be influenced by degrada-
tion and aggregation processes. If fragmentation were the dominant
factor, we would anticipate an increase in MiP abundance following a
decrease in MaP abundance, as MaPs break down into smaller particles.
However, we do not observe this trend, even though MiP abundances
significantly outnumber MaP abundances. Another possibility is that
particles are fragmenting into <100 µm aggregates than what the UVP5

detects.

Another potential contributor to biovolume reduction (Fig. S3.2) is
microbial activity associated with particle remineralization. This process
entails a decrease in overall volume without necessarily leading to a
commensurate decrease in total particle abundance (Gillard et al., 2022).
This mechanism has been demonstrated to be more effective in the
upper 300 m, with up to 50% of carbon being remineralised (Martin et
al., 1987). Remineralisation shrinks particles without obliterating them
(Iversen and Ploug, 2010). However, in our observation, the decrease
in total biovolume, particularly for MiPs, aligns with a decline in total
particle abundance. This suggests that remineralization might not be
the predominant process at play, especially in the upper water layers.
For MaPs, we observe a different trend with a decline in biovolume
vertically but an increase over time from mask 1 to 5 (Fig. S3.2 B).

Examining the mean abundance of MiPs and MaPs within fixed-
depth layers in the plume revealed distinct behaviours for the two size
categories (Figures S3.2, S3.3). The observed increase in MaPs at these
layers could suggest a higher influx of larger sinking aggregates over
time, possibly due to elevated particle production and export in the
surface layer. Furthermore, the smaller exponent for the MiPs power
fit compared to the one obtained for the MaPs indicates a less efficient
export of MiPs within the water column. This disparity in exponents
might imply that the slower sinking rate of MiPs, attributed to their
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size, makes them more susceptible to processes like remineralization
and differential settling with denser particles such as fecal pellets.

The reduction in the abundance of larger particles, along with a
decline in their biovolume (Fig. S3.2), may indicate the influence of
passive flux feeders such as pteropods and certain copepods (Gillard
et al., 2022; Gilmer and Harbison, 1986; Kiørboe, 2011), as well as filter
feeders like larvaceans, salps, and crustaceans (Alldredge et al., 2005;
Huntley and Boyd, 1984; Robison et al., 2005). These feeding strategies
intercept particles, leading to an overall decrease in the concentra-
tion and biovolume of MiPs and MaPs that the UVP5 detects. While
large pteropods were observed in net samples above 500 m during
the EXPORTS experiment, their contribution to fecal pellet production
was relatively small compared to other zooplankton taxa (Steinberg
et al., 2022). Though we observed a reduction in large particles through
depth, it is much less pronounced than the reduction in small particles
hinting that flux feeding is not a preponderant process at play here
(Stemmann, Jackson, and Ianson, 2004). Moreover, zooplankton was in
a highly reproductive phase with a high number of eggs and juveniles
observed during the cruise (A. Maas, personal communication, August
24, 2023).

3.5.2.2 Two PSD slope dynamics

The PSD slope calculated for particle counts is a valuable indicator of
particle dynamics (Clements et al., 2022; Stemmann and Boss, 2012). A
flatter slope indicates a higher proportion of larger particles or a lower
proportion of smaller particles (Clements et al., 2022; Jouandet et al.,
2011). The observed reduction in MiPs and MaPs abundance leads to a
flatter PSD slope with increasing depth. However, this vertical decrease
follows a two-step pattern rather than a continuous change. Initially, as
we descend in the SCW, the decrease in MiPs and the influx of larger
particles from the surface causes the slope to flatten. Below the SCW,
the slope stabilizes and continues to flatten over time from mask 1 to 5.
In a previous study (Clements et al., 2022)using the UVP5 dataset (Kiko
et al., 2022), the projected PSD slope values for May were observed to
range from 3.65 to 3.7 at the base of the euphotic zone in the North
Atlantic region. This layer was estimated to be around 40-50 m deep in
our experiment, corresponding to PSD slopes of 2.9-3.5. These estimates
are in line with those of Clements et al. (2022), albeit closer to their
lower limit, indicating that our approach yields reasonable outcomes.

3.5.2.3 Flux and attenuation

Our ability to effectively track the evolution of aggregates and feces
morphology and flux within the export event was made possible by
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the utilization of the plume-following technique. Previous studies that
used isotope disequilibrium techniques, modelling, bbp signal and
lagrangian floats measurements did yield a range of carbon export
flux values for the North Atlantic spring bloom (Table 3.1). POC flux
estimations varied between 170-620 mgC m-2 d-1 at 100 m depth (Bag-
niewski et al., 2011; Briggs et al., 2011; Martin et al., 2011; Omand et al.,
2015) which is compatible with our results ranging from 128.8 mgC
m-2 d-1 for mask 1 to 373.7 mgC m-2 d-1 in mask 4. At 200 m, Briggs
et al. (2011) computed a value of 270 mgC m-2 d-1 from bbp signal and
(Bagniewski et al., 2011) estimated values based on lagrangian float
data between 74.4-332.4 mgC m-2 d-1 which is also compatible with our
results ranging from 92.7 mgC m-2 d-1 for mask 1 and 287.7 mgC m-2

d-1 for mask 4.

Our POC flux results reveal two notable patterns: a power-based
decrease and an increase in carbon flux within the plume, particularly
pronounced in the initial three masks. The last three masks present
much closer values characterising the export at its highest strength
in the UVP5 dataset. The comparison made with previous studies
indicates that our method not only offers improved suitability for
tracking the morphology of a sinking detritus plume but also yields flux
values that are comparable to those obtained in traditional approaches.

The b values obtained in our study indicate a low attenuation rate of
the computed POC flux within the export plume and a high efficiency
of the biological carbon pump, which increases over time from mask 1

to 5. Notably, our estimated b values of 0.259 to 0.474 are considerably
lower than those reported for the PAP site in previous studies (0.71

in Belcher et al. (2016), 0.7 in Marsay et al. (2015), and 0.57 in Cavan
et al. (2017)). Previous global studies conducted in a vertical context by
Guidi et al. (2015) and Henson et al. (2012) demonstrated substantial
seasonal and regional variability in this b exponent. Their findings
showed values ranging from 0.24 to 1.75, with higher regionalized b
values of 0.92 in Guidi et al. (2015) and 0.69 in Henson et al. (2012)
for this section of the global ocean. Remarkably, our results fall at the
lower end of their modelled ranges, suggesting that b is significantly
lower during an export event compared to steady-state situations,
as typically encountered in studies not following plumes of settling
particles. The b values derived from the traditional method (Figure
S3.4) exhibited notably higher values at the plume’s inception. This
discrepancy is likely attributed to the substantial differences in particle
distribution between the densely populated surface and the sparsely
populated depth. Conversely, b values for the experiment’s later days,
when concentration was high throughout the water column, aligned
closely with those obtained through the plume technique. Opting for
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Reference Source Depth (m) Flux estimate

Buesseler et al. (1992) 234Th disequilibria 35 60-492

Bagniewski et al. (2011) Modeling 100 476.4-568.8

Bagniewski et al. (2011) Modeling 200 74.4-332.4

Martin et al. (2011) 234Th disequilibria 100 369-620

Martin et al. (2011) 234Th disequilibria 320 76.2

Martin et al. (2011) 234Th disequilibria 600 164

Martin et al. (2011) 234Th disequilibria 750 154

Briggs et al. (2011) bbp signal 100 514

Briggs et al. (2011) bbp signal 200 270

Alkire et al. (2012) Lagrangian float 57 432-684

Omand et al. (2015) Modeling 100 170

This study UVP5 100 128.8-373.7

This study UVP5 200 92.7-287.7

Table 3.1: Flux estimates (in mgC m-2 d-1) from various studies done on the
North Atlantic spring bloom. Buesseler et al. (1992) and Alkire et al.
(2012) sampled at the JGOFS (Joint Global Ocean Flux Study) North
Atlantic Bloom Experiment (NABE) at approximately 47°N 20°W.
Bagniewski et al. (2011), Briggs et al. (2011), Omand et al. (2015) and
Martin et al. (2011) sampled in the south of Iceland.

the plume-following strategy facilitated a more comprehensive and
specific understanding of the particles’ progression across both time
and depth. Given our goal of investigating the export process, the
decision to track the plume diagonally was the most suitable approach.

The change in flux with depth offers insights into the carbon-specific
degradation rate (Cspec, Iversen (2023)), corresponding to the sum of
processes leading to particle flux attenuation (zooplankton feeding
and swimming activity, bacterial remineralisation). The obtained Cspec

values in our study exhibited a decline with both depth and time from
mask 1 to 5. The rapid decrease observed in the upper layer indicates
heightened biological activity in the uppermost water column, aligning
with existing literature (Iversen, 2023; Martin et al., 1987; Stemmann,
Jackson, and Ianson, 2004). However, the reduction in Cspec values was
more gradual in the 3 deeper layers (100-300, 300-500, and 500-800 m).
This suggests either lower biological activity or that biological factors
had limited influence during the export event.
Previous research by Belcher et al. (2016) derived bacterial respiration
rates within a small range of average values (0.011-0.014 d-1) using
Marine Snow Catcher samples from 36 to 500 m depth at the PAP
site. One additional study on trap aggregates was conducted in the
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North Atlantic Ocean (Collins et al., 2015), aligning with Belcher et
al. (2016) for the shallowest depth layer (50-100m). Between 100 and
300m, the values reported by Collins et al. (2015) are higher than those
proposed by Belcher et al. (2016), and these values are much closer to
our estimations. The variance between our results and these studies in
the shallowest layer can probably be attributed to other processes than
bacterial respiration such as zooplankton-related activities (flux and
filter feeding, as well as fragmentation through swimming behaviour).
These processes could significantly contribute to the pronounced flux
attenuation observed near the surface. Nevertheless, given that the
bacterial respiration rate estimates cited above generally align with the
lower end of our Cspec values between 100 and 800 m, it is reasonable to
conjecture that the attenuation of the export plume in the mesopelagic
is mainly driven by bacterial respiration. This is in agreement with prior
studies, which conclude that zooplankton and bacterial activity are both
accountable for the large flux attenuation in the upper mesopelagic (50-
300 m) (Iversen et al., 2010; Stemmann, Jackson, and Ianson, 2004), and
that the dominant attenuation process below these depths is bacterial
activity (Stemmann, Jackson, and Ianson, 2004).

The combined insights from the b and Cspec values offer a compre-
hensive understanding of flux attenuation. Globally, the attenuation
is low (indicated by low b values). However, when examining vari-
ous depths, the most significant attenuation occurs near the surface
(evident by high Cspec values), in line with existing literature (Iversen,
2023; Martin et al., 1987; Stemmann, Jackson, and Ianson, 2004). It is
worth noting that over time, the attenuation rates lessen, as indicated
by declining b and Cspec values from mask 1 to 5, suggesting a potential
slowdown in the export process. The biogeochemical perspective does
not allow for a complete understanding of sinking particles, suggesting
the need to delve into morphology for a more complete understanding.

3.5.3 Evolution of morphological variables inside the plume

For the first time, we characterise the distribution of detritus (fecal
pellets, dense and fluffy aggregates) within an export plume and offer
a morphological description using in situ imaging of aggregates and
feces, achieved through a semi-supervised and ecologically relevant
clustering technique.

3.5.3.1 While aggregates’ morphology is altered through depth...

Prior studies have primarily examined aggregate evolution in controlled
laboratory settings, as described earlier. However, our study presents
a novel approach by describing the continuous evolution of aggregate
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features in an in situ context over a considerable depth range. We
confirm the expected trends of denser and less porous aggregates with
increasing depth, consistent with prior research (Laurenceau-Cornec
et al., 2015). However, contrary to previous assumptions, we find that
the ESD of the aggregate community increases along the export plume.
This size increase of aggregates with depth is likely influenced by
various factors, including zooplankton-induced particle compaction
(Turner, 2002, 2015) and differential settlement (Alldredge, 2001; Burd
and Jackson, 2009). The hypothesis of aggregation through differential
settlement gains support from our observation of a reduced abundance
of small aggregates with depth in the particle size distribution, along
with the decrease in kurtosis grey level from 60 to 800 m. These findings
suggest increased heterogeneity in aggregates further down the plume,
likely enriched with elements like fecal pellets.

Deep within the plume, we observed a trend towards more circular
and less elongated aggregates which could be linked to the fragmenta-
tion of elongated aggregates (Song and Rau, 2022). It’s plausible that
biological processes are also contributing, as the outer, more accessible
parts of aggregates could undergo remineralization or shedding (Kiko
et al., 2017).

3.5.3.2 ...feces exhibit a different dynamic.

Fecal pellets come in various shapes, influenced by factors such as
the organism producing them (Atkinson et al., 2012; Gleiber et al.,
2012; Koster et al., 2011), food source concentration and type (Dagg
and Walser, 1986; Feinberg and Dam, 1998), and the processes that
might have affected their structure (Iversen, 2023; Lampitt et al., 1990;
Svensen et al., 2012; Turner, 2002). This inherent variability, coupled
with the relatively limited number of fecal pellet images compared to
aggregates, could account for the heterogeneous signal observed in our
study.

The highest elongation and minimal circularity values were observed
in the SCW and between 400 and 500 m, where potential producers
of fecal pellets, such as crustaceans and rhizarians, were found at
higher levels. Zooplankton act as POC flux gatekeepers (Jackson and
Checkley, 2011) and their contribution to fecal pellet production varies
both spatially and temporally (Turner, 2015). We hypothesise that
crustaceans are present at these depths likely through diel vertical
migration (Steinberg and Landry, 2017; Steinberg et al., 2022), which
has been linked to gut flux (Kiko et al., 2020; R. Lampitt et al., 2010),
enhancing the efficiency of carbon export (Gorgues et al., 2019) through
the production of fecal pellets which can be incorporated in marine
snow through differential settlement.
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This is supported by the maximal fecal pellet concentration observed
in the SCW and between 250-600 m (particularly for masks 3-5). Among
the zooplankton, Rhizaria have been demonstrated to influence the
biological carbon pump by intercepting particles (Stukel et al., 2018,
2019) and generating particle flux (Lampitt et al., 2009). In our dataset,
Rhizaria concentrations increased between 300 and 500 m (Fig. S3.8),
coinciding with the elevated mean feces concentration, especially in
masks 3-5. In this layer, rhizarians were primarily represented by Phaeo-
daria but also by Foraminifera, consistent with prior observations of
their vertical distribution (Biard and Ohman, 2020). Phaeodarians, often
found below 150-200 m (Biard and Ohman, 2020; Boltovskoy et al., 2017;
Nakamura and Suzuki, 2015; L. Stemmann et al., 2008), are known flux
feeders (Gowing, 1989) and significant contributors to the POC flux
(Ikenoue et al., 2019). These organisms have been associated with the
formation of fast-sinking gelatinous aggregates in the region (Lampitt
et al., 2009; Riemann, 1989), suggesting that their presence in our data
in the mesopelagic layer influences both POC flux attenuation and
generation through mini pellet production (Ikenoue et al., 2019).

Fecal pellets present both at the surface and at depth showcase
various morphologies ranging from stick-like to curled-up forms across
the plume (Fig. S3.7). Below 500 m, the size and fractal level distribution
appear heterogeneous, likely due to the presence of fresh, stick-like
fecal pellets generated by zooplankton organisms, alongside curled-up
fecal pellets that have undergone bacterial (Svensen et al., 2012; Turner,
2015) and zooplankton-mediated degradation (Iversen, 2023; Lampitt
et al., 1990).

3.6 Conclusion and perspective

Our study uncovered distinct dynamics across the water column, likely
influenced by a combination of physical and biological processes that
impact particle flux and its attenuation. Parameters such as porosity
(Bach et al., 2019; Cael et al., 2021), composition (Laurenceau-Cornec
et al., 2015), structure (Johnson et al., 1996), and density have been pre-
viously recognized as important for sinking aggregates, but our study
uniquely provides insights in a lagrangian and in situ context, utilizing
a plume-following technique. The evolution of aggregates and fecal
pellets morphology observed in this study is a strong indication that
UVP5 particle counts should be used keeping in mind that these counts
do not encompass the complete detritus narrative. When computing
flux, a more comprehensive understanding of particle morphology can
be crucial. The impact of phytoplankton community composition on
the morphological characteristics of aggregates and feces may be of
particular significance.
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Similar to the application of trait-based approaches to planktonic
organisms (Buitenhuis et al., 2013; Le Quéré et al., 2016) to explore
the functioning of phytoplankton (Guidi et al., 2009) and zooplankton
(Brun et al., 2016; Orenstein et al., 2022; Vilgrain et al., 2021) com-
munities and their impact on biogeochemical cycles, we propose that
the traits identified in this study should be considered to enhance our
comprehension of the life cycle of marine snow from the ocean’s surface
to its depths. Building upon the work of Trudnowska et al. (2021), who
employed unsupervised clustering to study marine snow particles, our
approach benefits from the intrinsic meaningfulness of Morphoclus-
ter’s classifications which enabled the extraction of well-recognized
categories such as aggregates and feces. Our results clearly show that
multiple morphological characteristics (porosity, density, circularity,
elongation, etc.) show an unexpected evolution during the settling of
the plume. Consequently, this study advocates for the development of
tools and methodologies that can incorporate these factors into future
flux calculations.

Much like the attention given to zooplankton, which has led to the
creation of various classification tools based on morphological traits
rather than just size (Irisson et al., 2022), this work underscores the im-
portance of classifying marine particles with greater attention (Schröder
et al., 2020). By acknowledging the complexity of particle morphol-
ogy and its dynamic evolution, we can unlock a more comprehensive
understanding of the intricate processes driving particle flux and bio-
geochemical cycling in the ocean.
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Figure S3.1: Sampling points inside (< 15 km from the eddy center) and outside (> 15 km) of the
eddy core. The points represent the UVP5 vertical profiles done during each day of the
EXPORTS 2021 campaign from May 4th to May 29th 2021.
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Figure S3.2: Evolution of (A) MiP and (B) MaP biovolume (in mm3 m−3). Each point corresponds to
a profile’s 20 m mean value. Power law functions were fitted to the (A) MiP biovolumes.
The black horizontal dashed line corresponds to the mean depth of the SCW inside the
plume. Two very high MaP biovolume values (417,054 and 476,708 mm3 m−3 obtained
respectively at 5 on the 13th and at 345 m on the 21st were removed from this figure to
make it more readable.
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Figure S3.3: Evolution of (A) MiP and (B) MaP abundance (in numbers m−3) per 100 m depth bins.
The depth bins values in the legend corresponds to the centre of the depth bin. Each
point corresponds to a mean daily value for the corresponding depth bin.
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Figure S3.4: Power law regressions fitted the mean values of flux (in mgC m-2 d-1) computed in a
vertical framework for every day of the dataset from the 4th to the 29th May 2021. Points
represent the mean value per 20 m bins.
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Figure S3.5: Evolution of aggregates morphological variables. Each point corresponds to a 20 m
mean value for one profile. Linear regressions were fitted between 0 and SCW bottom
limit and between this bottom limit and 800 m. They drawn in this figure if they had
a significant slope and intercept. The corresponding slope and intercept values can be
found in the Table S3.2 and S3.3
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Figure S3.8: Concentration (in numbers m−3) of two zooplankton groups: Crustacea in orange and
Rhizaria in purple. Horizontal bars represent the 95% confidence interval.

Table S3.1: Evolution of mean values of particles community parameters between 0 and 800 m inside
the plume. The fluxes are in mgC m−2 d−1 according to Kriest, 2002 and Guidi et al.,
2008. The column Depth corresponds to the center of the 50 m depth bin.

Depth MiP abun MaP abun Flux Kriest2002 Flux Guidi2008 PSD slope %fluffy

25 491.9 10.0 505.6 474.8 -3.6 0.92

75 237.1 8.9 417.7 403.2 -3.2 0.91

125 87.6 5.7 260.1 254.8 -2.9 0.90

175 43.6 3.6 175.3 172.6 -2.6 0.89

225 33.5 2.4 137.2 135.1 -2.7 0.86

275 32.0 2.3 136.8 134.9 -2.6 0.86

325 31.1 2.1 132.1 130.3 -2.6 0.86

375 29.8 2.0 135.9 134.2 -2.6 0.86

425 30.1 2.1 142.0 140.2 -2.5 0.86

475 27.7 1.7 127.3 125.6 -2.5 0.85

525 28.0 1.5 112.5 110.9 -2.6 0.83

575 22.7 1.3 112.7 111.3 -2.5 0.83

625 23.0 1.1 106.9 105.5 -2.6 0.82

675 24.8 0.9 88.9 87.3 -2.7 0.81

725 25.4 0.9 100.1 98.5 -2.6 0.84

775 22.3 1.0 109.8 108.5 -2.6 0.84
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Table S3.2: Linear regressions from Figure S3.5 for the SCW

Parameter Mask Slope Intercept R2 p-value slope p-value intercept

ESD 1 83.94 -56.71 0.13 0.00 0.02

ESD 2 52.10 -10.82 0.04 0.10 0.80

ESD 3 167.95 -170.22 0.44 0.00 0.00

ESD 4 53.35 -31.24 0.05 0.07 0.46

ESD 5 223.96 -234.71 0.63 0.00 0.00

Mean grey level 1 -0.98 276.71 0.14 0.00 0.00

Mean grey level 2 -1.58 417.28 0.10 0.01 0.00

Mean grey level 3 0.92 -142.43 0.01 0.28 0.45

Mean grey level 4 -1.43 368.20 0.03 0.18 0.12

Mean grey level 5 1.52 -259.86 0.12 0.02 0.06

Circularity 1 11.42 52.03 0.00 0.72 0.00

Circularity 2 3.32 61.22 0.00 0.95 0.01

Circularity 3 -486.97 273.09 0.46 0.00 0.00

Circularity 4 -162.87 115.11 0.03 0.18 0.03

Circularity 5 -432.86 274.94 0.41 0.00 0.00

Fractal level 1 206.64 -133.69 0.06 0.00 0.03

Fractal level 2 151.10 -78.45 0.02 0.20 0.47

Fractal level 3 839.14 -710.45 0.56 0.00 0.00

Fractal level 4 305.07 -238.36 0.06 0.05 0.09

Fractal level 5 949.30 -792.20 0.64 0.00 0.00

Porosity 1 0.07 56.38 0.00 0.92 0.00

Porosity 2 -0.57 65.75 0.00 0.67 0.00

Porosity 3 16.36 2.29 0.43 0.00 0.77

Porosity 4 0.08 45.66 0.00 0.98 0.00

Porosity 5 15.79 28.63 0.19 0.00 0.04

Elongation 1 -4.44 64.73 0.00 0.90 0.29

Elongation 2 -73.18 195.55 0.08 0.02 0.00

Elongation 3 -134.48 301.21 0.06 0.02 0.00

Elongation 4 -79.10 188.72 0.03 0.17 0.07

Elongation 5 70.90 -55.30 0.03 0.27 0.62
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Table S3.3: Linear regressions from Figure S3.5 between the lower limit of the SCW and 800 m

Parameter Mask Slope Intercept R2 p-value slope p-value intercept

ESD 1 495.75 -433.08 0.58 0.00 0.00

ESD 2 595.83 -650.92 0.63 0.00 0.00

ESD 3 519.39 -538.35 0.51 0.00 0.00

ESD 4 416.35 -351.53 0.34 0.00 0.00

ESD 5 318.11 -193.33 0.11 0.00 0.02

Mean grey level 1 -4.94 1328.42 0.17 0.00 0.00

Mean grey level 2 -11.19 2595.80 0.67 0.00 0.00

Mean grey level 3 -8.98 2180.39 0.73 0.00 0.00

Mean grey level 4 -7.06 1772.00 0.63 0.00 0.00

Mean grey level 5 -5.52 1422.63 0.37 0.00 0.00

Circularity 1 804.17 -55.07 0.07 0.00 0.56

Circularity 2 2669.00 -1025.48 0.56 0.00 0.00

Circularity 3 2112.56 -706.04 0.65 0.00 0.00

Circularity 4 1948.47 -668.37 0.76 0.00 0.00

Circularity 5 1859.72 -689.30 0.72 0.00 0.00

Fractal level 1 2647.15 -2072.23 0.29 0.00 0.00

Fractal level 2 3851.68 -3283.33 0.27 0.00 0.00

Fractal level 3 2153.71 -1683.87 0.10 0.00 0.00

Fractal level 4 782.18 -379.68 0.02 0.02 0.24

Fractal level 5 -1078.02 1337.74 0.03 0.00 0.00

Porosity 1 -11.36 420.69 0.01 0.11 0.00

Porosity 2 -50.67 528.20 0.14 0.00 0.00

Porosity 3 -62.88 579.70 0.36 0.00 0.00

Porosity 4 -65.99 548.17 0.41 0.00 0.00

Porosity 5 -63.16 483.99 0.29 0.00 0.00

Elongation 1 -521.94 1264.21 0.18 0.00 0.00

Elongation 2 -1472.19 2783.57 0.52 0.00 0.00

Elongation 3 -1160.28 2272.84 0.39 0.00 0.00

Elongation 4 -1129.95 2182.43 0.47 0.00 0.00

Elongation 5 -1107.26 2088.19 0.49 0.00 0.00
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Table S3.4: Evolution of mean values of particles morphological parameters between 0 and 800 m
inside the plume. The column depth corresponds to the center of the 50 m depth bin.

Type Depth ESD mean_grey circ fractal porosity elongation

aggregate 25 1.3 225.1 0.4 0.9 4.2 1.8

aggregate 75 1.4 222.3 0.4 0.9 4.6 1.8

aggregate 125 1.4 216.3 0.4 0.9 4.1 1.8

aggregate 175 1.5 210.8 0.5 0.9 3.7 1.7

aggregate 225 1.6 203.9 0.5 0.9 3.2 1.7

aggregate 275 1.6 202.2 0.5 0.9 3.1 1.7

aggregate 325 1.7 198.2 0.5 0.9 2.7 1.6

aggregate 375 1.7 195.3 0.5 0.9 2.5 1.6

aggregate 425 1.7 193.9 0.6 0.9 2.3 1.6

aggregate 475 1.8 190.8 0.6 0.9 2.4 1.6

aggregate 525 1.8 188.1 0.6 0.9 2.2 1.6

aggregate 575 1.9 183.9 0.6 1.0 2.4 1.6

aggregate 625 2.0 181.4 0.6 1.0 2.3 1.6

aggregate 675 2.0 180.9 0.6 1.0 2.5 1.5

aggregate 725 2.1 179.3 0.6 1.0 2.4 1.5

aggregate 775 2.1 177.7 0.6 1.0 2.1 1.5

feces 25 1.2 172.6 0.5 0.9 0.9 3.1

feces 75 1.3 166.0 0.5 0.9 0.6 3.1

feces 125 1.4 162.4 0.5 0.9 1.3 2.9

feces 175 1.3 159.9 0.5 0.9 1.0 2.8

feces 225 1.3 155.9 0.5 0.9 0.9 2.8

feces 275 1.3 152.8 0.5 0.9 0.6 3.0

feces 325 1.4 150.5 0.5 0.9 0.5 3.2

feces 375 1.3 153.4 0.5 0.9 0.5 3.3

feces 425 1.3 153.8 0.5 0.9 0.5 3.5

feces 475 1.4 150.9 0.5 0.9 0.3 3.4

feces 525 1.3 152.1 0.5 0.9 0.7 3.3

feces 575 1.3 143.8 0.6 0.9 0.8 2.9

feces 625 1.4 150.3 0.6 0.9 2.7 2.8

feces 675 1.5 146.0 0.6 0.9 1.2 2.3

feces 725 1.4 157.2 0.5 0.9 0.9 3.8

feces 775 1.3 139.7 0.5 0.9 3.0 3.4
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EXPORTS carbon flux

4.1 Abstract

The EXPORTS experiment conducted in the North Atlantic aimed to
compute and compare the flux resulting from the North Atlantic spring
bloom utilizing both sediment traps and high-resolution Underwater
Vision Profiler 5 (UVP5) units. This study focused on the composition
of particles in the eddy core, revealing a significant predominance of
aggregates, particularly in surface waters. The data highlighted the
large predominance of aggregates (97.8% of the images between the
surface and 1000 m depth) during this North Atlantic bloom event.

Particle sinking speed was computed by analysing the propagation
of the export plume to depth. The sinking speed of both aggregates
and fecal pellets exhibited a positive size-sinking speed relationship,
consistent with previous research. Differences between these two cate-
gories were not significant. Specifically, aggregates between 0.81 and
3.25 mm displayed increasing sinking speeds, with values ranging from
33.9 to 45.91 m d¹. This relationship supported the notion that larger
particles tend to sink more rapidly in marine environments. However,
challenges arose when dealing with smaller particles, as limitations
in image analysis and UVP counts hindered precise sinking speed
estimation for this size fraction.

Computing particle fluxes using previously published relationships
emphasized the need for context-specific methods. Previous research
showed that the the neutrally buoyant sediment traps (NBST) and sur-
face tethered sediment traps (STT) deployed at EXPORTS quantitatively
sample flux in the size range 10 µm to 2 mm. We find the best fit be-
tween sediment trap data (obtained by colleagues) and UVP estimates
when the UVP size range is extended to 10 µm, constrained to 2 mm.
A hybrid approach using both the UVP counts and the aggregates and
feces images to calculate the flux was tested in this study, but it did
not give any better results than the one carried out on the UVP counts
alone. Our results underscore the importance of matching size ranges
observed by UVP and sediment traps for an accurate comparison of
UVP-derived flux data with sediment trap measurements. In future re-
search, extending sinking speed estimation to smaller particles presents
an avenue for enhancing our understanding of particle dynamics. In
addition, we found that 30-46% of the flux derived from the UVP origi-
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nated from particles between 2 and 16 mm in size and may be missed
by the NBST and STT traps.

4.2 Introduction

The biological carbon pump is the process by which particulate organic
carbon (POC) is exported from the surface to depth, primarily by
the biological gravitational pump (Boyd et al., 2019; Nowicki et al.,
2022). This pathway corresponds to the passive sinking of POC as
marine detritus consisting of aggregates and fecal pellets (Alldredge
and Gotschalk, 1988; Boyd et al., 2019; Turner, 2015) and is recognised
as the major contributor to net carbon export globally (Boyd et al., 2019;
Nowicki et al., 2022), accounting for 56.1-70% (Nowicki et al., 2022;
Stukel et al., 2022). The study of aggregates and fecal pellets is complex
as they can be altered by a variety of physical (Alldredge, 2001; Kiørboe,
2001; Stemmann, Jackson, and Ianson, 2004) and biological (Gillard et
al., 2022; Iversen, 2023; Steinberg and Landry, 2017; Stemmann, Jackson,
and Ianson, 2004) processes. They have been extensively examined
using various instruments, such as sediment traps (Bach et al., 2019;
Collins et al., 2015; Lampitt et al., 1993) and marine snow catchers
(Belcher et al., 2016; Durkin et al., 2021). Though these instruments
can sample aggregates and allow for their laboratory-controlled study
(Ionescu et al., 2015; Ploug and Jørgensen, 1999; Song and Rau, 2022),
they are limited in their spatiotemporal coverage and their ability to
collect without breaking the fragile marine particles.

More recently, in situ imaging instruments have been deployed
around the world’s oceans to study particles across a wide size range
(Lombard et al., 2019). Among these tools is the Underwater Vision
Profiler (UVP, Picheral et al. (2010, 2021)) which was specifically de-
signed for the study of the distribution of marine particles. Previous
studies have used this instrument to inform on particle distribution at
global (Clements et al., 2022, 2023; Guidi et al., 2008, 2015), and regional
scales (e.g. Kiko et al. (2017)) without any attempt to identify the nature
of particles. A recent publication presented the extensive and unique
data set gathered over the years using UVP5 instruments through an
international collaboration (Kiko et al., 2022). In another recent study
where particle images were sorted, the usefulness of particle classifica-
tion was demonstrated by the observed change in particle type during
an Arctic bloom (Trudnowska et al., 2021).

In May 2021, our study investigated an anticyclonic retentive eddy
located in the North Atlantic close to the Porcupine Abyssal Plain (PAP)
station within the framework of the EXport Processes in the Ocean from
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RemoTe Sensing (EXPORTS) initiative (Siegel et al., 2016, 2021). This
unique experiment was conducted in an international collaboration
to investigate the dynamics of the biological carbon pump during the
North Atlantic spring bloom (Omand et al., 2015) using instruments
deployed from three research vessels (RRS Discovery DY130, RRS James
Cook JC214, and R/V Sarmiento de Gamboa SG2105), alongside satellite
remote sensing and modelling efforts (Johnson et al., 2023). 4.3 million
images were sorted to determine which type of particle dominated the
flux and to assess whether the nature of the particle community affected
the flux. Based on the 26-day UVP5 deployments done during this
scientific campaign we investigate in more detail how gravitational flux
estimates can be calculated based on UVP5 data that match observed
sediment trap measurements of gravitational flux, acknowledging the
advantages of the UVP5 in providing higher spatial and temporal
resolution.

We first provide a spatiotemporal analysis of the composition of the
particle community within the top 1,000 m of the water column. We
then propose a comparison method between UVP5 and sediment trap
flux, using an adapted UVP5 size spectrum and various previously
published relationships. This comparison relies on UVP5 counts and
a hybrid method using both counts as well as aggregates and fecal
pellet images clustered using a semi-autonomous approach (Schröder
et al., 2020). Finally, we discuss the optimal parameter combination
and the impact of the various methods applied to obtain particle flux
estimations.

4.3 Material and Methods

4.3.1 Data collection

The UVP5 was designed to detect, measure, and quantify the vertical
distribution of zooplankton and marine particles (Picheral et al., 2010).
It counts particles with a size of 100 µm or larger during its descent
and records images of zooplankton and aggregates larger than 600

µm. Detailed operational information can be found in Picheral et al.
(2010), and data processing details are in Kiko et al. (2022). During the
EXPORTS experiment, 173 vertical profiles were obtained from three
intercalibrated UVP5 instruments deployed each on a CTD rosette from
the research vessels RRS Discovery DY130, RRS James Cook JC214, and
R/V Sarmiento de Gamboa SG2105. Metadata and particle counts were
collected from the Ecopart file on Ecotaxa, as described by Picheral
et al. (2017).
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The EXPORTS experiment targeted the spring bloom inside a North
Atlantic eddy chosen according to criteria established well in advance
of the field campaign to select a stable eddy (Erickson et al., 2022).
This small anticyclonic eddy with a core diameter of approximately
30 km was identified using altimetry data, numerical modelling, ocean
gliders, and SeaGliders (Johnson et al., 2023). It was highly retentive,
enabling the study of carbon export flux within the eddy core that was
characterized as the central 15 km of the eddy.

4.3.1.1 Data processing

Profiles done in the eddy core were kept for further analysis. As only
6% of the profiles covered the 800-1000 m, they were only kept for data
set composition analysis and not for flux calculations, which were done
down to 800 m. These images and metadata (geographical position,
date, etc.) were first processed with Zooprocess and then clustered
with Morphocluster (Schröder et al., 2020), a program designed to
annotate large image datasets. The clustered images were then manually
validated or reclassified using the Ecotaxa program (Picheral et al.,
2017). After removing the artefacts, mainly caused by bubbles and
blurred images, the dataset consisted of 1,720,914 images. Concentration
in numbers (numbers m-3) and biovolume (mm3 m-3) using both UVP5

particle counts and imaged particles were computed per 5 m bins for
each profile with UVP5 water volume data in m3.

To study the evolution of imaged aggregates and feces concentration
(numbers m-3) and biovolume (mm3 m-3), we grouped the images per
layer using the following vertical definition: 0-100, 100-300, 300-500,
500-800, 800-1000 m. Percentages in aggregates and feces over the whole
dataset were computed using the same vertical definition.

4.3.1.2 Sinking speeds

To estimate the sinking speed of imaged particles, aggregates and
feces we employed a similar method as the one described by Briggs
et al. (2020). We used a Gaussian curve fitting technique to analyze
the distribution of the daily median concentration profiles of different
aggregate size classes within 100 m depth bins and to obtain a robust
estimate of the date at which the concentration peaked at a given
depth. This same methodology was applied to the particle counts
obtained from UVP5 data. For each size class, we then conducted
a linear regression analysis on the depth and time coordinates of the
Gaussian fits’ maximum values. The resulting slope from this regression
analysis as well as its 95% confidence interval served as an indicator of
the sinking speed, provided that the Gaussian fit was successful for at
least half of the 100 m depth bins. When possible, a linear regression
was performed on the sinking speed values according to ESD. These
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sinking speed-to-size estimates were then compared to relationships
found in the literature (Fig. 4.3).

Our estimations were not successful for all size classes but show that
relationship 9 from Table 2 of Kriest (2002) was the most appropriate
for our dataset. This method did not work for small classes or for
categories of objects that were too rare.

4.3.1.3 Flux estimation

In general, two methods were employed to estimate flux in different
size ranges using the UVP5 data: 1) from particle counts without
consideration of particle identity, and 2) hybrid method from particle
counts between 10 µm and 1 mm as well as from imaged aggregates
and feces in the 1 to 16.4 mm size range. UVP5 particle counts are
generated for the size range 102 µm to 16.4 mm. However, the neutrally
buoyant sediment traps (NBST, 12cm diameter opening) and surface-
tethered traps (STT, 7.5cm diameter opening) used during the EXPORTS
experiment covered a size range of approximately 10 µm-2 mm (Durkin
et al. (2021); personal communication Durkin, 2023; sediment trap
data available on SeaBASS, see Data Availability section). To compare
the UVP5 and sediment traps flux estimates as precisely as possible,
we therefore also estimated particle abundances in the 10 to 100 µm
size range by applying a linear regression on UVP5 counts between
0.102-3.25 mm following Baudena et al. (in review) (Fig. S4.1). Several
metrics were computed on the comparison between sediment trap flux
(obtained by colleagues) and UVP flux: coefficient of determination
(R2), the root mean square error (RMSE), the mean bias error (MBE)
and the slope. The slope and R2 were computed by doing a linear
regression between the sediment trap and UVP fluxes. The MBE was
computed as the mean difference between UVP5 and sediment trap
flux. It has a positive value if UVP5 overestimate the sediment trap flux
on average and a negative value if it underestimates it on average.

We first computed POC flux on particle counts following previously
published relationships between flux and size. Two types of approaches
were present in the literature: 1) methods separating the size-carbon
content and/or size-sinking speed relationships (such as Alldredge
(1998), Durkin et al. (2021), and Kriest (2002)); 2) methods that defined
size-flux relationship based on a minimization procedure between UVP
and sediment trap data (such Clements et al. (2023), Fender et al. (2019),
Forest et al. (2013), and Guidi et al. (2008)). Table 4.1 presents A and b
couples published in these previous studies.

The sinking flux of each size class was computed as follows: A×ESDb

(mgC m d-1) with ESD in mm for all the previous studies except for
Kriest (2002) for which ESD was in cm. While A represents the mass
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Source A b

Kriest (2002) 2.865 2.24

Guidi et al. (2008) 12.5 3.81

Forest et al. (2013) 28.1 2

Fender et al. (2019) 15.4 1.05

Clements et al. (2023) 18 2.63

Table 4.1: Values of A and b used to compute flux from previous studies
(Clements et al., 2023; Fender et al., 2019; Forest et al., 2013; Guidi
et al., 2008; Kriest, 2002). Values labelled from Kriest (2002) were
obtained following the method from Kiko et al. (2017).

flux of particles of the smallest size, b is related to the fractal dimension
of aggregates (D) with D = (B + 1)/2 (Guidi et al., 2008).

POC flux (mgC m-2 d-1) was obtained by multiplying the sinking
flux with the particle concentration in each size class (in particles m-3)
and by integrating over all size classes. This computation was done for
five size ranges: all size classes from 10 µm - 16.4 mm, between 10 -
100µm, 10µm - 1 mm, 10 µm - 2 mm and between 2 - 16.4 mm. These
size ranges were chosen to allow a quantitative comparison of UVP
flux and sediment trap flux in the size range covered by the sediment
traps (10 µm - 2 mm), to enable the combination of particle count and
image-derived flux (10 µm - 1 mm), and to diagnose the contribution
of the flux not "seen" by the UVP5 (10 - 100µm) and the sediment traps
(2 - 16.4 mm).

POC flux was also computed for imaged aggregates and feces >

1 mm ESD. Individual aggregate and feces carbon content were esti-
mated using Durkin et al. (2021) and Alldredge (1998) while the sinking
speed for aggregates or feces was estimated using the Kriest (2002) (ref-
erence 9 of Table 2) size to sinking speed relationship, as this showed
highest consistency with our estimates (Fig. 4.3).

The individual carbon content and particle sinking speeds were then
multiplied to obtain the individual flux. The flux per 5 m depth bins for
each UVP5 profile was obtained by adding up the individual particle
flux values in the corresponding depth bins.

4.3.1.4 UVP5 and sediment trap match

To compare flux estimates obtained from UVP5 and sediment traps, a
spatio-temporal match-up was done between the deployments of these
two instruments. For each sediment trap deployment in the eddy core,
we computed the mean UVP5 flux in a 20 m layer above the sediment



4.4 results 115

Source Category Volume A b

Alldredge1998 Aggregate 8 × 10−4 × ESD−2.3 0.99 0.52

Alldredge1998 Fecal Pellets 8 × 10−4 × ESD−2.3 1.05 0.51

Durkin2021 Aggregate Sphere 0.1 × 10−9 0.8

Durkin2021 Dense detritus Sphere 0.1 × 10−9 0.83

Durkin2021 Large loose fecal pellet Cylinder 0.1 × 10−9 0.83

Durkin2021 Long cylindrical fecal pellet Cylinder 0.1 × 10−9 1

Table 4.2: Carbon content estimates from previous studies (Alldredge, 1998;
Durkin et al., 2021). Alldredge (1998) uses biovolume in mm3 while
Durkin et al. (2021) uses biovolume in µm3. The sphere biovolume

is Vsphere = 4
3×π ×

(

ESD
2

)3
and Vcylinder = l ×π × (w

2 )
2 with w =

553×ESD
ESD+996 and l =

π( ESD
2 )

2

w .

trap deployment depth for all eddy core UVP5 profiles conducted
between the opening and closing of the respective trap.

This allowed for a comparison between sediment traps and the two
types of UVP5 flux obtained from either particle counts (10 µm-2 mm)
or images (1-2 mm) supplemented by particle counts (10 µm-1 mm).

4.4 Results

4.4.1 Data composition

The detrital particle community inside the eddy core is largely domi-
nated by detritus comprising 99.27% and only 0.73% living organisms.
For the detritus, 97.8% of the images were labelled as aggregates (88%
fluffy and 9.8% dense) and 1% as fecal pellets.

Looking at the aggregates which make up most of the data, we
observe an increase in their concentration (Fig. 4.1A) in the 0-100 m
layer from 796 aggregates per m3 on May 5th to 6027 aggregates per
m-3 on May 18th, which represents a 7.6-fold increase. This pattern of
increased concentration is reflected progressively in deeper layers as the
campaign progresses, with less intensity as we move down the water
column. Aggregate concentrations go down after reaching a peak on
May 18th for 0-100 m and on May 21st for 100-300 m. The concentration
is reduced by a factor of 2.1 between the two peaks (from 6027 to 2844

aggregates per m3)
A similar pattern is observed for the biovolume (Fig. 4.1C) even

though the values obtained by the end of the cruise are much more
similar than those observed for the concentration.
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Fecal pellets also present a pattern of an important increase in con-
centration (Fig. 4.1B), especially after the first storm when their number
increases by a factor of 3, going from 11-13 feces per m3 between May
4th to 7th to 34 feces per m3 on May 11th. A maximal value is observed
for all three layers between 100 and 500 m between May 27th. The pat-
tern observed for the concentration is also mirrored in the biovolume
for fecal pellets (Fig. 4.1D).

The large domination of aggregates in the dataset is striking (Figure
4.2A), as all layers are found to present a percentage consistently supe-
rior to 80%. This predominance becomes even more evident following
the initial storm in the uppermost 100 metres, continuing in the lower
layers to nearly 100% in all of them except the lowest one that reaches
90%.

Fecal pellets, however, make up a small percentage of the global
dataset. This contribution decreases over time.

Figure 4.1: Evolution of concentration (in number m−3) and biovolume (in
mm3 m−3) of (A, C) aggregates and (B, D) feces for 0-100 m,
100-300 m, 300-500 m, 500-800 m. The mean concentration is rep-
resented by points and linked with a dashed line. The shaded
areas represent the 95% confidence interval for the dashed line.
The grey-coloured vertical bars correspond to the storms.
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Figure 4.2: Evolution of concentration (in number m−3) and biovolume (in
mm3 m−3) of (A, C) aggregates and (B, D) feces for 0-100 m,
100-300 m, 300-500 m, 500-800 m. The mean concentration is repre-
sented by points and linked with a dashed line. The shaded areas
represent the 95% confidence interval for the dashed line.

4.4.2 Sinking speed and flux estimations

Aggregates between 0.81 and 3.25 mm exhibited an increasing sinking
speed according to ESD from 33.9 to 45.91 m d-1 with a significant
linear regression following the equation y = 7.94x + 29.31 (Fig. 4.3).
For fecal pellets, our method worked for two sizes classes between
1.02-1.29 mm as well as 1.29-1.63 mm, yielding a mean sinking speed of
36.13 and 36.71 m d-1 respectively. The size-to-sinking speed relation-
ship Kriest (2002) (reference 9 Table 2) shows a steeper slope than the
relationship we established, but is the only published relationship that
coincides (within uncertainties) with the aggregate, feces and particle
sinking speeds we could establish. The relationship from Alldredge and
Gotschalk (1988) has a similar slope as our fitted regression line for ag-
gregates, but generally overestimates the sinking speeds, particularly at
small particle sizes, whereas Kriest (2002) (reference 8 Table 2) generally
predicts too low sinking speeds. Compared to our results, Iversen et al.
(2010) and Cael et al. (2021) predict too high sinking speeds, whereas
Guidi et al. (2008) predicts a too steep slope of the size to sinking speed
relationship.

4.4.3 Flux comparison between UVP5 and sediment traps

As mentioned above, the sediment traps used during EXPORTS 2021

covered a size range from 10 µm to 2 mm. We hence used UVP5 flux
estimations extended to a lower bound of 10 µm and restricted to
an upper bound of 2 mm to compare UVP5-based flux estimates to
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p-value: 0.032
R-squared (R2): 0.72
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Figure 4.3: Estimation of sinking speed (in m d-1) according to the Equivalent
Spherical Diameter (ESD in mm). The circular dots represent the
estimations of mean sinking speed done on UVP5 images for
aggregates (in blue) and feces (in orange) with the 95% confident
interval represented by the vertical error bars and on UVP5 counts
(in black). The dashed blue line corresponds to the linear regression
done on the imaged aggregates sinking speed. Continuous lines
correspond to relationships found in the literature in Alldredge
and Gotschalk (1988), Cael et al. (2021), Iversen et al. (2010), and
Kriest (2002).

sediment trap flux estimates. The flux estimation from UVP5’s first
method produced the findings displayed in Figure 4A through F. We
use four factors to identify the best-suited fit for our data, namely the
slope of the linear regression that should be as close to 1 as feasible, the
highest possible R2, as well as a small Root Mean Square Error (RMSE)
and a small Mean Bias Error (MBE).

Apart from Fender et al. (2019) for which the comparison shows a
very bad matchup to sediment trap flux (as shown by the high RMSE
and MBE), the results show R2 values between 0.52 for Forest et al.
(2013) and 0.73 for Guidi et al. (2008). Slope values are between 0.43 for
Guidi et al. (2008) and 0.76 for Forest et al. (2013). The results obtained
using Guidi et al. (2008)’s A and b show much lower flux estimates for a
group of UVP-sediment trap matchups (Fig. 4.4C). These are located in
the lower range of flux estimates from the sediment traps as illustrated
by the negative MBE. Using Forest et al. (2013) A and b values leads to
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an overestimation of the flux for the UVP compared to the sediment
trap with an RMSE of 219.03 and an MBE of -111.24 (Fig. 4.4D). Using
Kriest (2002) and Clements et al. (2023) leads to the best results with a
slope value of 0.69 and 0.57, an R2 of 0.64 and 0.71 respectively and low
values of MBE (8.93 and 1.03 respectively). With the obtained metrics,
Kriest (2002) seems to be the most appropriate algorithm to convert
particle size information to flux for our data.

Using the Kriest (2002) method, the flux computed on the size spec-
trum covered by the sediment traps (10 µm-2 mm) produces superior
results compared to the same method applied across the entire size
spectrum (0.128-16.4 mm). Although a higher R2 is obtained for the
whole spectrum (0.71 compared to 0.64), this is merely a reflection of
the linear regression between UVP flux and sediment trap. The three
other metrics offer more valuable insight into the optimal correlation
between UVP and sediment flux. They are more suitable for the size
spectrum that the sediment trap covers than for the entire size spec-
trum. We obtained a lower RMSE of 100.72 versus 161.96, a lower MBE
of 8.93 versus 47.79 and a steeper slope of 0.69 versus 0.5.

The hybrid method, which involves utilising both UVP5 counts
(10 µm to 1 mm) and images (1 mm and larger), results in reason-
able results using Kriest (2002) for the size-sinking speed relationship
and either Durkin et al. (2021) (Fig. 4.4G) or Alldredge (1998) (Fig. 4.4H)
for the size-carbon relationship. They both present a high R2 (0.67 and
0.73) but the three other metrics indicate that the use of Durkin et al.
(2021)’s size-to-carbon content relationships yielded the best results.
Indeed, it gets a lower RMSE of 6.01 versus 209.82 and a steeper slope
of 0.62 versus 0.51. The MBE indicates that this carbon-size relationship
also leads to an underestimation of the flux compared to the sediment
trap with a value of -42.12 while using Alldredge (1998) leads to an
overestimation of the flux with an MBE of 120.5.

4.4.4 Contribution of different size range compartments to export flux

Depending on the method used to compute the flux between 10 µm-
16.4 mm, the variability in terms of representation by the 3 size ranges
10-100 µm (small), 100 µm-2 mm (medium) and 2-16.4 mm (large) varies
a lot. Figure 4.5 illustrates this with a median distribution of the flux
being mostly in the small and medium size classes using Kriest (2002)
and Forest et al. (2013) while it is shared between large and medium for
Clements et al. (2023) and almost completely in the large one for Guidi
et al. (2008). The contributions to total flux by the extrapolated 10 to 100

µm size range in the case of Kriest (2002) and Clements et al. (2023) are
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Figure 4.4: Comparison sediment trap and UVP flux estimations (see next
page).

comparatively low (maximum 18.6%), indicating that the extrapolation
does not add large biases to flux estimation in these cases.
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Figure 4.4: (on the previous page) Comparison between sediment trap and
UVP flux estimations done using UVP5 counts between 10µm
and 2 mm and published A and b couples: A) (Kiko et al. (2017)
following Kriest (2002)), B) Clements et al. (2023), C) Guidi et al.
(2008), D) Forest et al. (2013) and E) Fender et al. (2019). Figure F
is a comparison between sediment trap and UVP flux estimations
done using UVP5 counts between 0.128 and 16.4mm using the
A and b couple from Kiko et al. (2017) following Kriest (2002).
Figures G and H were obtained by adding flux computed on UVP5

counts between 100 µm-1 mm to flux computed on UVP5 images
of aggregates and feces. The flux computed on the images was
done using Kriest (2002) Table 1 2a relationship for sinking speed
and (G) Durkin et al. (2021) or (H) Alldredge (1998) for the carbon
content. The dashed black line corresponds to a 1:1 ratio. The
values presented in each subplot correspond to the coefficient of
determination (R2), the root mean square error (RMSE), the mean
bias error (MBE) and the slope. The slope and R2 were computed
by doing a linear regression between the sediment trap and UVP
fluxes. All slopes are statistically significant (p-value < 0.05), as
denoted by an asterisk.

4.5 Discussion

4.5.1 The dominance of aggregates

The dataset composition indicates a significant prevalence of aggre-
gates. As expected, there are more aggregates in the uppermost layer,
with aggregate formation surging at the surface during the start of the
cruise. These aggregates sink to greater depth afterwards. The observed
large dominance of these aggregates over zooplanktonic organisms is
in agreement with previous studies (Stemmann and Boss, 2012; Trud-
nowska et al., 2021). The North Atlantic bloom observed during the
EXPORTS experiment is associated with significant surges of particles
(Lampitt, 1985), probably stemming from the formation of phytoplank-
ton aggregates. The dominance observed in the images leads us to
believe that this dominance persists in the size classes smaller than
1 mm suggesting that UVP particle counts could offer insights into
aggregate dynamics and enable us to calculate gravitational flux from
particle counts.

4.5.2 The most appropriate parameters to estimate flux

Three elements are crucial in flux computation: particle sinking speed,
particle carbon content and size range observed. We first examine the
suitability of published size-to-sinking speed relationships for our flux
calculations, before undertaking a sensitivity analysis of different ap-
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18.6 ± 21.2 % 50.1 ± 16.6 % 31.2 ± 19 % 7.8 ± 11.3 % 45.8 ± 15 % 46.5 ± 19.4%

28.1 ± 26.3 % 49.5 ± 19.9 % 46.5 ± 15.8 % 0.1 ± 0.2 % 17.9 ± 10.5 % 81.9 ± 10.6%
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Figure 4.5: Flux (in mgC m-2 d-1) per size classes (in mm) computed on UVP
particle counts for each matchup with sediment traps. Colours
represent the method used to compute the flux. Values on top of
each subplot represent the mean percentage ± standard deviation
of flux from particles between 10-100 µm, 100 µm-2 mm and 2-
16.4 mm.

proaches to combine these with size-to-carbon relationships to calculate
flux, and of approaches to estimate flux using relationships obtained
using statistical approaches. We use sediment trap data as ground truth
for flux calculations and, importantly, we restrict the size range we use
to calculate flux to the size range that is efficiently captured by the
sediment traps that were used during EXPORTS 2021.

Size-sinking speed relationship

Sinking speed has been previously estimated to range from a few m d-1

for small particles to a few thousand m d-1 for dense salp fecal pellets
(Phillips et al., 2009; Steinberg et al., 2023; Turner, 2002). In this study,
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we estimated a significant positive size-sinking speed relationship for
aggregates between 0.81 and 3.25 mm. Though we obtained enough
data points for aggregates, it was more complicated for fecal pellets
whose concentrations were much lower compared to the aggregates.
The sinking speed of fecal pellets between 1 and 1.6 mm exhibits a
higher variability than aggregates. While our approach demonstrated
effectiveness in estimating sinking speeds within the size range of
0.81 to 3.25 mm, we encountered limitations when it came to smaller
particles, both in terms of image analysis and UVP counts. Smaller
particles typically exhibit reduced sinking velocities (Alldredge and
Gotschalk, 1988; Cael et al., 2021; Iversen and Ploug, 2013; Kriest,
2002), which, in turn, may lead to an insufficient amount of available
data across multiple depth layers for the accurate determination of the
Gaussian maxima and subsequent sinking speed estimations.

In the past, the relationship between particle size and sinking speed
in the marine environment has been considered to be a positive rela-
tionship (Alldredge and Gotschalk, 1988; Iversen et al., 2010), indicating
that as particle size increases, their sinking speed also increases. When
comparing our estimates to the parameterizations provided in (All-
dredge and Gotschalk, 1988; Iversen et al., 2010), both overestimated
sinking speed. However, this view has come under scrutiny by recent
studies that suggested that the relationship should be considered in a
more nuanced manner (Williams and Giering, 2022), taking into account
factors such as particle porosity and density (Iversen and Lampitt, 2020)
or more context-dependent factors (Cael et al., 2021). While it’s worth
mentioning that the study by Iversen and Lampitt (2020) examined a
limited number of in situ particles with a unique setup, Cael et al. (2021)
supports the idea that the relationship between particle size and sink-
ing speed can vary in different local contexts. However, we currently
cannot estimate porosity based on UVP5 counts or images and when
using context-dependent factors for aggregates (log(alpha) = 2.04 and
beta = 0.61) and fecal pellets (log(alpha) = 2.52 and beta = 0.79) from
Cael et al. (2021), we obtain much higher sinking speeds for aggregates
and fecal pellets than those we observed. In their compilation, most of
the data used to estimate a and b came from laboratory experiments
where aggregates were selected from the available community (from
MSC or grown in the laboratory). This process may have influenced the
results towards faster-sinking aggregates. Comparable studies which
utilized the sinking speed from a plume (Briggs et al., 2011; Stemmann
et al., 2002; Trudnowska et al., 2021) observed values similar to those
obtained here. This suggests that the in situ population of particles may
not necessarily sink at the rate given by experiments.

Overall, our results suggest that there is no strong deviation of the
size-to-sinking speed relationship for the aggregates and fecal pellets
observed during the EXPORTS experiment to Kriest (2002)’s equations
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8 and 9 with the latter showing a better match. While equation 9 from
Kriest (2002) produces the most favourable outcomes for this dataset, it
should not be assumed to be applicable in all other situations.

Size-carbon relationship

Particle carbon content can vary greatly depending on their compo-
sition. Because carbon content for the in situ imaged particles could
not be obtained, we relied on prior studies (Alldredge, 1998; Durkin
et al., 2021) that determined size-carbon content relationships to, in
combination with the size-sinking speed relationship from Kriest (2002)
to obtain particle flux. By utilising the identical size-sinking speed
relationship for both UVP counts and the hybrid method based on UVP
counts (for elements with an ESD 10-1000 µm) and images (for elements
> 1000 µm ESD), we can compare the two approaches to estimate car-
bon content from size. In addition, we also examined other previously
published relationships (Clements et al., 2023; Forest et al., 2013; Guidi
et al., 2008) that utilize statistical approaches to determine the A and b
values of the size-to-flux relationship without distinguishing between
the size-carbon and size-sinking speed relationships. In general, these
empirical approaches used minimization approaches to optimize the
A and b estimates for a close matchup between UVP5-derived flux
estimates and sediment trap data. To ground-truth our estimates of
carbon flux from the diverse methods used, we utilized carbon flux
observations obtained using NBSTs and STTs during the EXPORTS
campaign.

Covered size range

While the selection of the size-to-sinking speed, size-to-carbon, and/or
size-to-flux relationships have long been debated (Iversen and Lampitt,
2020; Laurenceau-Cornec et al., 2020; Williams and Giering, 2022), there
remains no agreement regarding size restrictions for comparing UVP5

and sediment trap data. Previous studies have implemented various
size ranges that cover part or all of the size spectra encompassed by
the UVP5 counts (100 µm to larger than 26 mm ESD). While Guidi
et al. (2008) focuses on 0.25-1.5 mm, Kiko et al. (2017) and Kiko et al.
(2020), both based on Kriest (2002) implement a size range between
0.14-16.4 mm. Forest et al. (2013) uses classes between 0.08 - 4.2 mm and
Clements et al. (2023) extends the size range at the lower limit via ex-
trapolation and then uses 0.035–5 mm. However, in these efforts, it was
not considered that sediment traps have an effective size limit. Durkin
et al. (2021) showed that with NBSTs and STTs, with diameters of 12 cm
and 7.5 cm, significant flux was observed in the 10 µm to 2 mm size
range. To compare sediment trap and UVP flux, we, therefore, extrapo-
lated the concentration of particle counts in the UVP data between 10

and 100 µm, similar to the approach used by Clements et al. (2023) and
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following Baudena et al. (in review). Supplementary Figure S4.1 shows
that these extrapolated values show a good alignment with the larger
size categories. After this extension, we could constrain the size range
to 10 µm to 2 mm to calculate flux using different parameterizations
and to enable the comparison to the sediment trap data.

4.5.3 Flux results

Using A and b couples on UVP5 counts

When evaluating the suitability of the different models used to calculate
flux, it is important to consider several criteria. An ideal fit between
sediment trap data and UVP-derived flux estimates should demonstrate
a slope close to 1, minimal mean bias error (MBE) and root mean square
error (RMSE), with the coefficient of determination (R²) being of minor
importance in this context. The best fit between UVP flux estimates for
the 10 µm to 2 mm size range and sediment trap flux was achieved
using the Kriest (2002) (MBE = 8.93 and slope = 0.69) and Clements
et al. (2023) (MBE = 1.03 and slope = 0.57) approaches. In our study, we
found that using the A and b couple from Guidi et al. (2008) led to an
underestimation of the flux with an MBE of -15.97 and a comparably
flat slope of 0.43. In contrast, the use of the couple from Fender et al.
(2019) led to a large overestimation of the flux compared to sediment
traps with an MBE of 966.58 which was also the case for the Forest
et al. (2013) A and b couple with an MBE of 111.24 and a slope of
0.76. The low values of parameter b in the pairs generating the optimal
fit imply that the particles in our dataset possess a relatively high
porosity, suggesting that they are mostly aggregates. This hypothesis
is reinforced by the prevalence of aggregates (in particular, the fluffy
variety) seen in this dataset. This further highlights the need to tailor
UVP flux estimates to specific occasions, both in terms of region and
biogeochemical context (Fender et al., 2019; Iversen et al., 2010). The
methods used to obtain these results are determined by the factor
A and the exponent b, with the first representing the mass flux of
particles of the smallest size and the latter being linked to the fractal
dimension of particles (Guidi et al., 2008). In a prior investigation of
the export plume observed in this dataset, we discovered an increase
in the fractal level of aggregates within the plume, which comprises a
significant proportion of the dataset. To date, we have not been able
to integrate this factor into our flux estimates due to limitations in the
available data. Nonetheless, it would be advantageous to explore the
development of a tool capable of accounting for the fractal level using
UVP5 images in future research.

In the past, it was commonly assumed that small particles either do
not sink at all or sink at such a slow rate that they were metabolized
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within the upper mesopelagic zone, participating in the flux mainly
through aggregation and disaggregation processes (Giering et al., 2014;
Riley et al., 2012; Stemmann, Jackson, and Gorsky, 2004). According to
the A and b couple utilised to calculate the flux, the impact of these
small particles can vary greatly, mainly due to the exponent b, which
will give greater importance to large particles compared to small ones if
b is high (e.g. as is the case for (Guidi et al., 2008)). When we conducted
flux estimations within the original UVP size range of 0.128 to 16.4 mm
ESD using the Kriest (2002) parameterization, the linear regression
metrics between these results and sediment trap flux exhibited lower
performance, compared to the 10 µm to 2 mm size range. Apart from
the coefficient of determination (R2) that increased from 0.64 to 0.71

and is a reflection of the linear regression done between the UVP and
sediment trap flux, the root mean square error (RMSE) increased from
100.72 to 161.96, the mean bias error (MBE) increased from 8.93 to 47.79

and the slope flattened from 0.69 to 0.5. This comparison highlights
that the adjustment of the size spectrum used to match the UVP flux
estimates with sediment trap data is a useful approach.

Having established that we can match UVP-derived fluxes with sedi-
ment trap fluxes using an extended (down to 10 µm) and constrained
(upper limit 2 mm) particle size distribution, we can now inquire about
the fraction of flux that occurs in the larger size range and is there-
fore not captured by the sediment traps used as well as the fraction
that occurs in the smaller size range (10 µm-128 µm). Our findings,
obtained using the Kriest (2002) method, unveiled a potential 31.2 ±
19% underestimation of carbon flux by sediment traps in the size range
of 2 to 16.4 mm. Using the A and b couples from Clements et al. (2023)
which also gave a satisfactory result estimates the flux in this fraction
to be higher with 46.5 ± 19.4% In the small fraction, the flux estimated
using this method accounts for 18.6 ± 21.2% of the overall flux. These
results underscore the critical importance of considering the specific
size range that the sediment trap covers when attempting to compare
UVP-derived flux data to take into account the part of the particle
flux that is captured by both instruments. Future investigations could
further validate these findings by examining additional datasets not
only from this campaign but also from others, including the utilization
of thorium data, which could help test these results.

Using the hybrid method

The hybrid method was performed by summing flux estimates made
on UVP counts for size classes 10 µm-1 mm using the Kriest (2002)
method and flux estimates made on UVP images of aggregates and
feces 1-2 mm size-range using the size-sinking speed relationship from
Kriest (2002) and the size-carbon relationship from either Durkin et al.
(2021) or Alldredge (1998).
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So far, in almost all studies that used UVP data to estimate flux, no
distinction was made between detrital particles, artefacts and zooplank-
ton (Clements et al., 2022, 2023; Guidi et al., 2008; Kiko et al., 2017). This
is primarily because particle images are only available for a portion of
the size distribution (roughly 1 mm and up), but also because it is time-
consuming to classify thousands or millions of images. Morphocluster
allowed for the separation of aggregates and feces from zooplanktonic
organisms and artefacts that represent respectively 0.7% and 17.4% of
the complete dataset. With that in mind, this hybrid method didn’t
give the expected better results than those obtained using A and b
couples from Kriest (2002) and Clements et al. (2023). Specifically, the
hybrid approach tends to underestimate flux when using the size-
carbon relationship from Durkin et al. (2021) and overestimate flux
when relying on Alldredge (1998). It should be noted that the current
dataset is primarily comprised of aggregates (80.8% of the complete
dataset); however, other datasets may have more prevalent zooplank-
tonic organisms and fecal pellets (Turner (2002), Table 3). Given that
the majority of the images (1 mm up) were composed of aggregates, we
can hypothesise that a similar distribution may have occurred in the
UVP5 counts. This could account for why the hybrid method did not
produce significantly superior results compared to the other method.
On this note, it is important to bear in mind that the UVP undersam-
ples rare elements due to its low sampling volume, such as large fecal
pellets, which can potentially transport significant amounts of carbon
within the water column (Stamieszkin et al., 2021). Similarly, we show
that sediment traps undersample the flux. While the analysis of the
EXPORTS dataset reveals an abundance of aggregates, the applicability
of the hybrid method may become more noticeable in different environ-
mental contexts characterized by a substantial presence of zooplankton
or artefacts.

4.6 Conclusion and perspectives

In summary, our study offers valuable insights and potential avenues
for future research. Firstly, our analysis of the EXPORTS experiment
has shed light on the preponderance of aggregates in particle abun-
dance, highlighting the possibility of using UVP counts in the study
of aggregate behaviour in this experiment. Secondly, our investigation
has established that on average in this North Atlantic bloom, aggre-
gates and fecal pellets manifested sinking speeds in alignment with
earlier observations and modelling endeavours. Our study also un-
derscores the need for better knowledge of the aggregates and fecal
pellets’ sinking speed and carbon content in order to obtain better
matches between UVP and sediment trap using the hybrid approach.
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We suggest that this method might be particularly useful in scenarios
characterized by a more substantial contribution of living organisms
to particle abundance. In the future, we advise that the deployment of
UVP5 units in conjunction with sediment traps may help facilitate the
estimation of particle carbon content imaged by the UVP5. Both gel-
filled sediment traps (to get the size spectrum sampled by the sediment
traps) and standard traps (to get the carbon flux) should be used in this
configuration. As demonstrated in this study and previous research,
small particles sinking slowly can significantly contribute to the carbon
flux in the ocean (Durkin et al., 2015). Therefore, we recommend that
future studies calculate the flux on the same size range as the sediment
traps before comparing the UVP5 flux with them to facilitate a more
accurate comparison. Additionally, our study highlighted the potential
underestimation of the mean flux by sediment traps to be between 30%
(using Kriest (2002)) and 46.5% (using Clements et al. (2023)), which
could partially mitigate the missing carbon supply (Burd et al., 2010).

Lastly, our findings advocate for the necessity of comprehensive cov-
erage across the entire size range sampled by both sediment traps and
UVP before conducting the flux comparison between the two instru-
ments. In this regard, the use of in situ instruments designed to look
at organisms from 10 to 200 µm could play a pivotal role in enhancing
our understanding of microplankton dynamics. Furthermore, apply-
ing the sinking speed estimation method employed in this study to
smaller particles has the potential to provide additional data points for
comparing size and sinking speed. Collectively, these insights pave the
way for enhanced comprehension of particle dynamics within marine
ecosystems and point to promising avenues for further exploration.

Data availability

UVP5 and sediment trap datasets are available on SeaBASS: https:
//seabass.gsfc.nasa.gov/cruise/EXPORTSNA
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Figure S4.1: Concentration of UVP counts normalised by the width of the ESD
size bin [ m-3 mm-1].
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Figure S4.1: (on the previous page) The red dashed line corresponds to a
size of 100 µm. Concentrations were obtained from the UVP5

particle counts per m3 between 0.102-16.4 mm (on the right of
the red dashed line) and extrapolated to size classes between
0.010-0.102 mm. Both axes are on a logarithmic scale. Each sub-
plot corresponds to the matchup between one sediment trap
and the corresponding UVP profile as described in the Material
and Method section. The vertical black lines correspond to the
standard error of the standardised concentration.
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5
General discussion and Perspectives

At the heart of our investigation into the Biological Carbon Pump (BCP)
using in situ imaging lie two fundamental components: zooplankton
and particles. Zooplankton was the focus of our comprehensive global
examination (Chapter 1) and was also considered in a regional (Chapter
2) study, while particles were the focus of the regional study in the
context of a North Atlantic eddy (Chapters 2 and 3).

5.1 General discussion

5.1.1 Zooplankton Biogeography and Ecological Impact

Prior to the publication of Chapter 1, the biogeography of zooplankton
biomass was primarily derived from punctual studies and heteroge-
neous datasets characterised by differences in data collection, tools
and analytical methods. Previous studies heavily (Hatton et al., 2021)
or completely (Buitenhuis et al., 2013; Moriarty and O’Brien, 2013;
Moriarty et al., 2012) relied on net-based datasets that contained data
sampled using different net types and measurement methods, reflecting
the distribution of zooplankton larger than 200 µm. However, net sam-
pling is biased towards crustaceans (Lucas et al., 2014). Furthermore,
estimates of global zooplankton biomass were calculated in most of
these studies using a proportionality method by multiplying the mean
observed zooplankton biomass by the area of the world ocean and
the depth studied (Buitenhuis et al., 2013; Moriarty and O’Brien, 2013;
Moriarty et al., 2012). It’s important to note that this methodology may
introduce a bias, as it relies on data that is distributed heterogeneously
and does not cover large parts of the ocean, potentially leading to
skewed results. The sampling coverage from biomass net samples is
often patchy and skewed towards high latitudes and upwelling areas
(Moriarty et al., 2012), undersampling open ocean regions (Buitenhuis
et al., 2013; Moriarty and O’Brien, 2013; Moriarty et al., 2012). The esti-
mation of zooplankton biomass is not a simple task, but an important
one due to zooplanktons’ position as a crucial link between primary
producers and higher trophic levels (Ikeda, 1985; Steinberg and Landry,
2017). Through their feeding activities (Alldredge et al., 1990; Huntley
and Boyd, 1984; Steinberg et al., 2023), swimming capabilities (Dilling
and Alldredge, 2000; Goldthwait et al., 2004) and ability to repackage

133
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small particles into large, rapidly sinking fecal pellets (Atkinson et al.,
2012; Turner, 2002, 2015), zooplankton organisms are important actors
of the BCP (Steinberg and Landry, 2017; Turner, 2002, 2015). In order
to accurately quantify the potential impact of zooplankton on the BCP,
it is essential to have a clearer understanding of their distribution.

In this context, the work published in Drago et al. (2022) for the
first time used boosted regression trees (a machine learning technique)
on the global UVP5 in situ imaging dataset. The aim of this study
was to develop a methodology to estimate zooplankton biomass on a
global scale while examining how zooplankton’s spatial distribution
related with its habitat. It targeted large zooplankton between 1 and
50 mm using 3,549 profiles distributed all around the globe. Although
the geographic coverage of the data points was not homogenous, we
assessed that environmental conditions were adequately covered, en-
abling the use of habitat models. We employed a broad taxonomic
definition, as imposed by the dataset, in order to homogenise the taxo-
nomic definition across the scientific campaigns. Using this approach,
we made a notable contribution to biological carbon pump research
by producing continuous zooplankton biomass distribution maps for
the 0-200, 200-500 and 0-500 m depth layers, using both global and
regional perspectives and a homogeneously acquired dataset. With this
approach, we also produced a more robust estimation of zooplankton
biomass for depth ranges of 0-200, 200-500, and 0-500 m. We estimated
the global integrated biomass (0-500 m) at 0.403 PgC. This estimation
was in the same order of magnitude as previous studies (Buitenhuis
et al., 2013; Hatton et al., 2021; Moriarty and O’Brien, 2013; Moriarty
et al., 2012) though we refrained from a more detailed comparison due
to the variations in sampling instruments, data analysis, and scaling
techniques.

Predictions placed Copepoda as the most important contributor to
biomass (35.7%) corroborating with previous studies (Dai et al., 2016;
Forest et al., 2012; Turner, 2004). Their participation was especially
high in the polar regions and their distribution was mostly driven by
temperature, in agreement with previous studies (Beaugrand et al.,
2009; Pinkerton et al., 2020; Sunday et al., 2012). This group was fol-
lowed by Eumalacostraca (26.6%) and Rhizaria (16.4%). The vertical and
horizontal distribution (mostly in the intertropical convergence zone)
of the Rhizaria groups followed the description of previous studies
(Biard et al., 2016; Michaels, 1988; Nakamura et al., 2013; Nakamura
and Suzuki, 2015; Suzuki and Not, 2015).

We also attempted a more regional approach by partitioning the
dataset in both latitude and depth. Unfortunately, this resulted in less
satisfactory outcomes than the global methodology, primarily due to
the diminished size of the learning datasets. The need for big enough
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datasets is also what prompted us to use large zooplankton groups.
In the future it may be possible to achieve a more detailed taxonomic
and vertical definition after the collection of more data. More detailed
models could potentially achieve better performance by providing
a more accurate delineation of the vertical habitat structure of finer
taxonomic group definitions. This appears to be the case for Phaeodaria,
where 100 m resolution models gave higher R2 results, particularly in
the depth range between 0 and 300 m.

A prior study conducted on a more restricted UVP5 dataset indicated
that Rhizaria contributed 5.2% to the carbon standing stock in the 0-200

meter range (Biard et al., 2016). Our findings validate the significance of
this group on a greater depth range, revealing Rhizaria’s contribution of
16.4% to the global biomass integrated over 0-500 meters, suggesting a
more important role of Rhizaria, in particular in the upper mesopelagic.
These findings emphasise that traditional net-based sampling methods
are unsuitable for the study of Rhizaria. The comparison I conducted
using the Tara Oceans dataset (Chapter 1, Figure 10) provides further
evidence for this conclusion and advocates for the deployment of mul-
tiple instruments during zooplankton sampling (Lombard et al., 2019)
in order to comprehensively study these fragile organisms alongside
other large zooplankton groups.

Our study not only contributed with global maps of biomass for the
main zooplankton groups but also presented the main variables influ-
encing the observed distribution of zooplankton biomass. It showed the
evolution of zooplankton biomass within the ranges of these variables
using partial dependence plots, although these partial dependence plots
sometimes proved difficult to interpret. A recent study conducted by
Soviadan et al. (2023) analysed the normalised biovolume size spectrum
of major zooplanktonic groups in tropical, temperate and polar regions
using a combination of UVP5 and multinet data. The study found that,
in the polar region, crustacean organisms dominated, while Rhizaria
dominated in the tropics, with Collodaria showing high contribution
in the 0-200 m layer and Phaeodaria below 200 m, aligning with our
findings.

In Chapter 2, our investigation of zooplankton centred on a North
Atlantic eddy during the spring bloom. This study was the first to
use Morphocluster (Schröder et al., 2020) to classify UVP5 images to
determine the relative contribution of zooplankton to total particles in
the water column. Our objective was to elucidate the complex depth
scales and temporal dynamics occurring within this export event. In
this context, we sought to investigate the potential role of zooplankton
in influencing the BCP. Comparing our attenuation results with earlier
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research conducted on bacterial respiration rates during a comparable
season in the region (Belcher et al., 2016; Collins et al., 2015) suggested
that zooplankton were not the main gatekeepers of the BCP. This was
particularly the case below 300 m where bacterial activity was sug-
gested to be the main driver of the observed attenuation. Surface and
mesopelagic zooplankton populations were rather rare, casting doubt
on their ability to significantly influence carbon flux through fecal pellet
production in this particular dataset. However, their feeding activity
via filter (Alldredge et al., 1990; Harbison et al., 1986; Huntley and
Boyd, 1984) and flux feeding (Burd and Jackson, 2009; Gillard et al.,
2022; Stemmann, Jackson, and Ianson, 2004), coupled with fragmen-
tation through swimming behaviour (Dilling and Alldredge, 2000),
may account for some of the high attenuation observed in the layer
between 50 and 100 m, which cannot be attributed to bacterial activity
alone (Belcher et al., 2016; Collins et al., 2015). The observed increased
abundance of zooplankton noted in this layer with a maximum of
rhizarians observed at 50 m and crustaceans at 125 m provides sup-
porting evidence for this hypothesis. During the EXPORTS experiment,
zooplankton organisms were in a highly reproductive phase, with a
substantial number of eggs and juveniles observed both in net samples
and through experiments conducted onboard (A. Maas, personal com-
munication, August 24, 2023). It may have proven beneficial to plan
for a longer sampling period to monitor the response of zooplankton
productivity to increased productivity and export. Doing so might have
revealed changes in zooplankton composition and abundance.

However, our observations uncovered changes in the morphology
of fecal pellets which became more elongated and less circular within
the mesopelagic layer, which coincided with an increased abundance
of zooplankton, as confirmed by acoustic (M. Sato, EXPORTS meeting,
September 17, 2021) and net data (A. Maas, personal communication,
August 24, 2023). These observations prompted us to consider the
potential influence of zooplankton on particle attenuation and dynamics
within the mesopelagic layer through various processes.

One important process of interest is the differential settling of fast-
sinking fecal pellets compared to relatively slow-sinking aggregates
(Alldredge, 2001; Burd and Jackson, 2009; Kiørboe, 2001; Kriest and
Oschlies, 2008). This difference in settling speed can lead to the inte-
gration of fecal pellets within aggregates, as they might collide and
interact during their descent. Ultimately, this could result in larger and
denser aggregates, which is consistent with some of the observations
made. Notably, the increasing density and size of aggregates can have
a significant effect on sinking rates and carbon content, potentially
leading to a greater export of carbon from the surface ocean to deeper
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layers. This process is essential for comprehending carbon fluxes in the
marine environment, as it is linked to the efficiency of the BCP.

To advance our understanding in this area, it is essential to broaden
the scope of our investigations. In this regard, the extensive EXPORTS
2021 dataset could offer further understanding of zooplankton impacts
by using datasets such as those collected by nets and various on-board
experiments. Coupled with the findings obtained from chapters 2 and
3, they have the potential to elucidate further aspects of the zooplank-
ton ecology. Investigating different oceanic environments beyond this
North Atlantic eddy can present a more comprehensive outlook on the
influence of zooplankton on carbon flux, resulting in a more global
overview of these processes.

5.1.2 Particle characteristics and flux patterns: insights from a UVP-
based analysis

The EXPORT 2021 experiment (Johnson et al., 2023; Siegel, 2016; Siegel
et al., 2021) comprised three ships and a vast array of assets from in situ
instruments to satellites, which were used to gather data before and
during the on-site study. The experiment aimed to describe a selected
eddy (Erickson et al., 2022) during a North Atlantic bloom event using
instrumentation to examine the interplay between physics, biology, and
ecology through a holistic view. Prior to the EXPORTS experiment, no
previous studies involving the massive deployment of three UVP5 units
within a geographically restricted area had been conducted. Operating
within the unique framework of a highly retentive eddy allowed for a
precious opportunity to conduct in-situ observations, providing novel
insights into particle characteristics and flux patterns.

Previous in situ imaging studies using the UVP5 have predominantly
focused on zooplankton (Biard et al., 2016; Panaïotis et al., 2023; L.
Stemmann et al., 2008; Vilgrain et al., 2021) or particle counts (Clements
et al., 2022, 2023; Fender et al., 2019; Forest et al., 2013; Guidi et al.,
2008), with aggregates and fecal pellets often being grouped under
the classification of "detritus" on the Ecotaxa repository (personal ob-
servation from work on chapter 1). However, this classification fails
to acknowledge the considerable diversity among these particles and
their potential ecological significance. The investigation of particle mor-
phology and the factors that affect it presented significant difficulties
resulting in a lack of knowledge regarding the evolution of both ag-
gregate and fecal pellet morphology at a high temporal and spatial
scale that Chapter 2 aimed to address. With the deployment of the
UVP5 system in a lagrangian framework, we gained the capability to
track and describe the morphology of particles within an exported
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plume, offering a unique 2D perspective. Inspired by the method used
in Briggs et al. (2020) to study the particulate optical backscattering
(bbp) which is a proxy for particulate mass concentrations (Reynolds
et al., 2016), we implemented, for the first time, an oblique framework
to follow the plume of imaged particles through five parallel masks
in depth and time. This allowed us to better understand the dynamic
nature of the particle flux within the plume. Our observations revealed
distinct patterns for aggregates and fecal pellets: aggregates displayed
a nearly linear change with depth, while fecal pellets exhibited more
dynamic and heterogeneous alterations. Contrary to previous obser-
vations (Alldredge et al., 1990; Laurenceau-Cornec et al., 2015), our
findings indicate that on average aggregates become larger as well as
denser as depth increases. This could be explained by the differen-
tial settlement hypothesis by which fast sinking particles collide with
smaller ones (Alldredge, 2001; Kiørboe, 2001; Kriest and Oschlies, 2008).
This assumption is supported by a lower mean kurtosis value for aggre-
gates in the lower plume, suggesting more heterogeneous aggregates.
In the pictures shown in Chapter 2, aggregates appear to have incorpo-
rated more elements during their descent. A previous study of export
events in Baffin Bay and Fram Strait also found that aggregates became
denser, as their observations showed that most of the aggregates ended
up in their dark morphotype associated with mostly compact objects,
especially in Baffin Bay (Trudnowska et al., 2021). However, this dark
morphotype was mostly associated with the smallest observed objects,
which is not consistent with our observations in the North Atlantic
eddy. However, Trudnowska et al. (2021) presented results showing that
the k-means clustering method predominantly relied on size-related
parameters for clustering images in their study. In contrast, before
extracting features from the images, Morphocluster scales them to the
same size (Schröder et al., 2020), removing the risk that images would
be mainly clustered based on their size. The algorithm then conducts
unsupervised clustering of the images while the operator supervises the
next phases of validation and growth. While the unsupervised k-means
clustering method is efficient and relatively easy to apply to a dataset, it
may not provide enough information about the content of each cluster,
as was possible with Morphocluster. The latter method, though much
more time consuming, successfully distinguished between fecal pellets,
various zooplankton and aggregate types within the dataset thanks to
the semi-supervised approach.

The UVP5 provides particle counts that have historically been used
to compute particle flux and attenuation in a vertical 1D framework
(Clements et al., 2023; Fender et al., 2019; Forest et al., 2013; Guidi et al.,
2008), disregarding the dynamic characteristics of particle communities
at varying depths. That is one of the aspects that we addressed through
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the plume following approach. We hypothesized that the characteristics
and composition of particles at depth may not correspond to those
present in shallower layers on a given day since most particles do not
sink at a sufficiently rapid rate to reach depth in a single day. The previ-
ous studies (Clements et al., 2023; Fender et al., 2019; Forest et al., 2013;
Guidi et al., 2008) utilized UVP5 counts across different size ranges to
estimate carbon flux. The procedures used in these studies involved
implementing a minimization process on a specific part of the UVP5

dataset and comparing it to the sediment trap estimates. However, they
did not attempt to establish a definitive agreement regarding the size
range employed. To achieve the most accurate flux estimates possible
using the EXPORTS dataset, in Chapter 3 different flux calculation
methods (Clements et al., 2023; Fender et al., 2019; Forest et al., 2013;
Guidi et al., 2008; Kriest, 2002) were evaluated and compared with
sediment trap flux estimates by varying the three main components of
flux estimation: the size range considered, the size-carbon relationship
and the size-sinking speed relationship. This comparison revealed that
the best agreement between UVP5 and sediment trap flux estimates
was obtained by extending and constraining the size spectrum for the
UVP5 data to 10 µm-2 mm, corresponding to the size range covered by
the used sediment trap, as well as using parameters from Kriest (2002)
and Clements et al. (2023), with a better result for the former for flux
estimation. This study also highlighted that due to their limitation to
the 10 µm-2 mm size range, the used sediment traps could potentially
underestimate carbon flux by 31.2-46.5%. This revelation suggests that
our current methods of assessing carbon flux in marine ecosystems may
be incomplete. Sediment traps, while valuable tools, could potentially
fail to capture a substantial portion of carbon flux in the system. This
result may have profound impacts on our understanding of carbon
dynamics and resolve some of the imbalances found for mesopelagic
carbon budgets between BGP export fluxes and those derived from
biogeochemcial tracers (Burd et al., 2010). On a global scale, this could
potentially have significant implications for assessing the global perfor-
mance of the biological carbon pump and marine carbon sequestration.
This work compared UVP5 flux estimates with neutrally buoyant sedi-
ment traps (NBST, 12cm diameter opening) and surface-tethered traps
(STT, 7.5cm diameter opening). Sediment traps with a wider opening
such as the Kiel trap (Zeitzschel et al., 1978) could prove helpful in
trying to cover a larger size range, but also in this case the potential
for undersampling flux in the upper end of the size spectrum needs to
be considered. While the use of images was anticipated to enhance the
outcome of the hybrid flux computation method, it is worth noting that
it did not produce satisfactory results. Given that the sinking speed
estimates using the Kriest (2002) method appear to be fitting, it raises
questions about the appropriateness of the conversion factors utilized
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for estimating the carbon content of aggregates and fecal pellets (All-
dredge, 1998; Durkin et al., 2021) within the context of this dataset.
Our results have important implications for particle dynamics research
and encourages the testing of this method on datasets from different
biogeochemical contexts to see if this also leads to more consistent and
comparable results across studies.

5.1.3 Exploring the boundaries: challenges in studying zooplankton
biomass and particle evolution morphologies

As discussed above in chapter 1, the estimation of global zooplankton
biomass has brought significant advances to the field, in particular
as it presents the first global assessement of zooplankton biomass us-
ing a completely homogeneous sampling and data analysis approach.
However, we faced some limitations during our journey that prompted
critical reflection. An essential challenge was the carbon content values
available in the existing literature, which often proved unsatisfactory,
especially for the enigmatic Rhizaria group. Since the publication of
Drago et al. (2022), a significant advancement has been published by
Laget et al. (in review) where the carbon content of Rhizaria organ-
isms collected in the California Current Ecosystem and in the Bay of
Villefranche-sur-Mer, France was directly measured. The authors de-
termined conversion factors from volume to carbon content for the
Phaeodaria, Collodaria, Acantharia, and Foraminifera groups that were
utilised in the habitat models outlined in Chapter 1. These factors ex-
hibited a much lower carbon density than what was used in Drago
et al. (2022). A revision of these models was subsequently carried out
using even more UVP5 profiles down to 1,000 m, which should provide
a more accurate global biomass estimate with greater depth coverage
(Laget et al., in review).

In addition, the datasets at our disposal presented challenges as they
did not allow us to construct reliable models for various taxonomic
groups. This limitation stemmed from either an unclear relationship
between biomass and environmental factors or an insufficient volume
of data to establish meaningful associations.

With 19 groups of zooplankton, seven layers of depth, and five
geographical definitions, there was a total of 665 models. Manually
tuning all these models was not realistically feasible. To address this,
we automated the tuning of hyperparameters for each model, aiming
to avoid overfitting and to minimize average loss. This automated
approach enabled us to find the best hyperparameter combinations
for each model. Acquiring additional data for each combination could
further enhance the model’s ability to capture complex relationships
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between biomass and environmental features, leading to improved
generalization across the global ocean.

Our investigation of particle evolution provided compelling insights
into morphological changes, concentration and biovolume dynamics.
To achieve a more comprehensive understanding, an ecologically rel-
evant clustering technique (Schröder et al., 2020) was implemented
to reveal concealed patterns within the observed particle community
during the EXPORTS experiment. A previous study used a k-mean
clustering method on UVP5 detritus images, which yielded 5 clusters
of detritus (Trudnowska et al., 2021). Although this gave an insight
into the composition of the exported detritus through five ecologically
relevant clusters, it did not allow the aggregates to be separated from
the fecal pellets to be studied individually, as was done in our study.
Although sorting detritus images is a laborious task, our endeavours
allowed us to describe the progression of these two groups’ morphol-
ogy and hypothesise the processes that shape it. This database is now
a valuable learning dataset for prospective investigations, providing a
fundamental basis for the construction of classification models.

Finally, our investigation presented a new framework for studying
UVP data in the context of an export event. Tracking particle commu-
nity dynamics through this framework enabled us to gain a deeper
understanding of the intricate processes that govern particle dynamics
during this observed export event. One notable limitation of this ap-
proach is the requirement for an almost empty water column before
the flux event and the necessity for high-frequency sampling within
a Lagrangian framework. However, potential solutions to these limi-
tations can be explored, such as the use of UVP6 mounted on ARGO
floats to enhance sampling and capture a more comprehensive view of
particle dynamics in diverse oceanic conditions.

5.2 Conclusion

In summary, our comprehensive study of the distribution of zooplank-
ton at both global and regional scales, as presented in Chapter 1, has
greatly improved our understanding of the biogeography of zooplank-
ton biomass. We hope that the dataset will be of use for modelers
studying the global ocean’s biogeochemical cycles and the distribu-
tion of species feeding on zooplanktonic organisms. Additionally, our
investigation of an export event in a North Atlantic eddy during the
spring bloom in Chapter 2 has provided insight into the potential role
of zooplankton in shaping particle dynamics and carbon fluxes in the
top 500 m of the water column during a large export event.
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We introduced a new framework for studying UVP5 data in the
context of an export event through a plume following method. This
approach allowed us to track particle community dynamics and gain
a deeper understanding of the processes shaping particle flux within
an export plume. Our investigation into flux calculation methods has
shown that harmonizing the size range used in UVP5 data analysis
with that of sediment traps can improve the accuracy of flux estimates
and that sediment traps could miss a large part of this carbon flux.
The findings presented in Chapters 2 and 3 on the EXPORTS exper-
iment challenged existing assumptions on the evolution of particles
morphology down the water column and brought contributions to the
understanding of particle characteristics, attenuation patterns, and flux
dynamics.

To conclude, this collection of studies not only pushes the boundaries
of knowledge but also addresses critical challenges in estimating zoo-
plankton biomass and deciphering the evolution of particle morpholo-
gies and flux in the context of an export event. These developments
open up new avenues for future research that will be needed to address
the challenges and unanswered questions that have emerged from this
work.

5.3 Perspectives

In this section, we broaden the scope of our discussion, going beyond
the immediate findings of this thesis to explore broader issues in data-
driven research. While our primary focus remains on the biological
pump and imaging aspects, we also recognize the significance of these
discussions in the context of advancing ocean science.

5.3.1 Navigating the challenges and opportunities of data-driven ecol-
ogy.

The field of data-driven ecology has opened up a new era of scientific
inquiry that is redefining our understanding of the natural world. Data-
driven science necessitates a substantial investment in resources, both
human and technological. The enormous amount of data produced,
gathered and examined in present-day ecological investigations (Irisson
et al., 2022) can be overwhelming and is qualified as big data (Guidi
et al., 2020). Big data and machine learning tools have assisted studies
related to ecosystem management, including marine protected areas
(Benedetti et al., 2019; Muñoz et al., 2017) and the identification of
zooplankton indicators (Uusitalo et al., 2016). Despite the potential of
this data to transform our understanding of ecosystems, it also presents
challenges in implementing good data management practices following
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the FAIR data principles outlined by Wilkinson et al. (2016) that aim to
facilitate the options to find, access, interoperate and reuse data.

In addition, the use of big data raises significant concerns regarding
resource management due to the increased need for storage capacity
and computing power to analyse the data. This increased need for
resources raises crucial inquiries regarding the balance between sus-
tainability, affordability, and equitable access to cutting-edge scientific
tools and knowledge. In light of these challenges, innovative frugal
tools have been developed such as the PlanktoScope, a compact modu-
lar imaging platform (Pollina et al., 2022) or the Foldscope, a low-cost
origami-based microscope (Cybulski et al., 2014).

As data-driven ecology advances, researchers and institutions must
proactively address these issues. Reconciling the enormous potential of
big data with today’s resource constraints and ethical considerations
is crucial to ensuring that data-driven ecology continues to be a pow-
erful and inclusive tool for scientific exploration and environmental
conservation.

5.3.2 Future of global zooplankton biomass research

As we explore the future of understanding zooplankton biomass dis-
tribution, several exciting avenues await exploration. One promising
avenue involves the continued deployment of the UVP5 during research
cruises and the autonomous deployment of the UVP6 (Picheral et al.,
2021) on floats, gliders, moorings and other vectors. The expansion of
the UVP datasets is expected to contribute to improved annual biomass
predictions and perhaps even enable seasonal modelling of zooplankton
biomass at global levels. The deployment of UVP6 units on BGC Argo
floats, gliders and moorings will offer long-term series that enhance
our comprehension of local dynamics. In chapter 1, we saw that 61%
of the profiles had a maximum depth of 500 m. Consequently, system-
atically extending vertical profiles when possible to cover the entire
0-1000 m depth range has the potential to provide a more extensive
understanding of the distribution of zooplankton throughout a larger
water column coverage.

Furthermore, it is worth noting that ongoing efforts (Dugenne et al.,
2023) in the exploration of zooplankton size distribution using a multi-
parameter learning approach could represent a critical advancement.
The structure of the plankton and its particle size has been used as
a means to study complex ecological processes (Sheldon et al., 1972;
Soviadan et al., 2023; Stemmann and Boss, 2012). This method has the
potential to improve our comprehension of zooplankton functions in
marine ecosystems and to explore more thoroughly the subtle con-
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nections and ecological importance between different size groups of
zooplankton.

Additionally, as we venture into the realm of data analysis, it is
essential to consider the continuous evolution of deep learning, a sub-
field of machine learning (LeCun et al., 2015). These rapidly advancing
technologies offer exciting prospects for managing and extracting mean-
ingful insights (Luo et al., 2018; Orenstein et al., 2022; Schröder et al.,
2020) from the ever-expanding volumes of data at our disposal (Irisson
et al., 2022). They have already found various applications in plankton
studies as recently presented by Goodwin et al. (2022). By embracing
these advancements, we can enrich our understanding of zooplankton
in marine ecosystems and their intricate dynamics.

5.3.3 Future prospects for studying particles via the follow the plume
approach

In the course of studying carbon export using the plume following
approach, several important considerations have emerged that point to
promising avenues for future research. First and foremost, the plume
following approach has the potential to be applied to various other
export events. Applying this methodology to different scenarios would
not only help to generalise our findings but also shed light on the
variability of export processes across different contexts. Achieving this
may require deploying UVP6 units on moorings or mounted on BGC
Argo floats in various biogeochemical environments. These expanded
data sets would allow for a more comprehensive view of carbon export
dynamics, providing better insights into variations over time and under
different scenarios. The learning set of images of particles created using
MorphoCluster on the EXPORTS dataset could be used and extended
in such research efforts. Recent research was conducted by colleagues
(Ricour, 2023) to implement an embedded recognition algorithm in
UVP6 units mounted on BGC Argo floats to classify imaged particles.
At present, aggregates and fecal pellets are tagged as "detritus" in
accordance with the classification usually done on Ecotaxa that was
discussed earlier. Although this detection algorithm was limited in the
number of classes that could be used, it would be worthwhile to try
using Morphocluster on UVP6 detritus images in order to differentiate
between aggregates and fecal pellets and to determine if the embedded
algorithm can achieve satisfactory results for their identification.

An interesting question arises regarding the determination of the
appropriate flux attenuation factor - whether to follow the plume or
to use a standard approach. While we have suggested that the former
is the most appropriate for our data set, it would be important to in-
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vestigate this aspect further. The validation of the attenuation factor,
possibly through comparative studies, would provide valuable insights
into the robustness and applicability of our approach. Moreover, we
must emphasise that our research primarily concentrated on observa-
tions rather than detailed modelling of the plume event, including the
calculation of disaggregation and aggregation rates. Modeling these
rates and their impact could provide a deeper understanding of particle
dynamics within the plume. Expanding the scope of our research to
cover additional export events could also help to address these ele-
ments. Furthermore, we do not know whether the patterns identified
in this dataset for both aggregates and fecal pellets represent a normal
signature or are more of an exception. Do aggregates generally become
larger and denser with depth, as our results suggest? Do they gen-
erally also become more complex and circular with depth? Applying
this method to other export events may help answer these questions
and enhance the comprehensiveness of our findings, contributing to a
broader understanding of carbon export dynamics

Moreover, while implementing the plume methodology, limitations
have been identified concerning data availability for sinking speed esti-
mations, especially for smaller particle sizes. Therefore, collecting more
data for sinking velocity estimation covering a wider range of particle
sizes could be beneficial. An important future goal should be to estab-
lish a direct relationship between the sinking rate and the morphology
and carbon content of aggregates. This link would provide insight into
the factors that affect in situ sinking rates of diverse particle types and
their potential for carbon export, thus advancing our understanding of
this key process. Deploying UVP5 and sediment traps simultaneously
could provide comprehensive datasets, complementing insights into
carbon export dynamics. This integrated approach would significantly
increase the accuracy and reliability of the data collected.

Overall, this manuscript not only advances our knowledge, but also
addresses critical challenges in estimating zooplankton biomass and
particle dynamics during export events. The findings of this study open
up new avenues for future research on the biological carbon pump and
deepen our understanding of marine ecosystems.
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6.1 Introduction

6.1.1 La Pompe Biologique Gravitationnelle

La pompe à carbone biologique transporte le carbone de la surface de
l’océan vers ses profondeurs (Fig. 6.1, Honjo et al. (2008) and Volk and
Hoffert (1985)), séquestrant le carbone organique particulaire (POC)
pendant de longues périodes (DeVries et al., 2012). Elle comprend des
mécanismes physiques (Boyd et al., 2019; K. O. Buesseler et al., 2020;
Omand et al., 2015) et biologiques (Bianchi et al., 2013; Jónasdóttir
et al., 2015; Lampert, 1989), la pompe gravitationnelle biologique (BGP)
étant le principal facteur de l’exportation nette de carbone à l’échelle
mondiale (Boyd et al., 2019; Nowicki et al., 2022). Bien qu’il existe des
estimations du flux de carbone mondial, des incertitudes subsistent
en raison des lacunes dans notre compréhension de la dynamique des
particules.

6.1.2 Les particules marines

Les particules marines, y compris les agrégats, les organismes morts et
les pelotes fécales, sont très répandues dans les océans (Alldredge et al.,
1990; Alldredge and Silver, 1988). Leur dynamique de chute dépend
de leur densité (Bach et al., 2019; Cael et al., 2021), de leur taille (Guidi
et al., 2008; Iversen et al., 2010), de leur composition (Laurenceau-
Cornec et al., 2015) et de leur morphologie (Trudnowska et al., 2021),
la majorité d’entre elles étant concentrées près de la surface où se
produit la production primaire (Guidi et al., 2015; Kiko et al., 2017;
Stemmann et al., 2002). Ces particules présentent diverses morphologies
façonnées par des processus physiques (Alldredge, 2001; Kiørboe, 2001;
Stemmann, Jackson, and Ianson, 2004) et biologiques (Alldredge, 2001;
Marsay et al., 2015; Turner, 2015), ce qui nécessite la prise en compte
des microorganismes et du zooplancton dans les modèles d’estimation
des flux.

149
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6.1.3 Les rôles du zooplancton dans les écosystèmes marins

Définis pour la première fois comme des organismes à la dérive dans
l’eau par Hensen en 1887 (Smetacek, 1999), les organismes planc-
toniques sont classés en deux groupes principaux : les producteurs
primaires phytoplanctoniques qui absorbent le CO2 par photosyn-
thèse dans la couche euphotique (voir Fig. 6.1) ; et le zooplancton qui
les broute, servant de lien majeur entre les producteurs primaires et
les niveaux trophiques supérieurs (Ikeda, 1985; Steinberg and Landry,
2017). Le zooplancton est un groupe diversifié dont la taille varie du mi-
cromètre aux mètres (Lombard et al., 2019). Ces organismes présentent
des variations temporelles et latitudinales de biomasse et de diversité
liées aux paramètres environnementaux (Ibarbalz et al., 2019; Ikeda,
1985; Moriarty et al., 2012; Rombouts et al., 2009). Le zooplancton
contribue de manière significative à la pompe biologique à carbone
en convertissant les petites particules en pelotes fécales qui coulent
rapidement (Atkinson et al., 2012; Turner, 2002, 2015) et en fragmentant
les particules qui coulent par le biais de diverses activités de nutri-
tion (Alldredge et al., 1990; Huntley and Boyd, 1984; Steinberg et al.,
2023) et de nage (Dilling and Alldredge, 2000; Goldthwait et al., 2004).
Il est essentiel de comprendre leur dynamique à différentes échelles
pour quantifier avec précision leur impact sur la pompe biologique à
carbone.
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Figure 6.1: Voies du cycle et de l’exportation du carbone par le zooplancton
dans l’océan. Les organismes phytoplanctoniques absorbent le CO2
par photosynthèse dans la couche euphotique. Ils sont broutés
par le micro et le mésozooplancton qui participent à la pompe à
carbone biologique en produisant des pelotes fécales qui coulent
de la surface jusqu’en profondeur. Figure extraite de Steinberg and
Landry (2017)
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6.1.4 Etude du zooplancton et des particules grâce à l’imagerie in situ

Alors que les paramètres basés sur la taille ont fait l’objet de nom-
breuses études (Cael et al., 2021; Guidi et al., 2008; Romagnan et al.,
2016; Stemmann et al., 2002), peu d’entre elles ont examiné les change-
ments d’autres traits morphologiques (Giering et al., 2020; Trudnowska
et al., 2021). En outre, les images peuvent également faire l’objet d’une
validation manuelle par des experts (stratégie 2, Fig. 6.2). Toutefois, ce
processus peut potentiellement introduire plusieurs biais cognitifs, quel
que soit le niveau de connaissance taxonomique des individus, comme
le soulignent les études de Culverhouse (2007) and Culverhouse et al.
(2014). La classification manuelle de ces grandes quantités d’images né-
cessiterait un nombre important de personnes hautement qualifiées en
taxonomie, en particulier compte tenu du taux exponentiel d’acquisition
d’images observé ces dernières années (Fig. 6.3). Toutefois, comme le
montre la Figure 6.2, la gestion de jeux de données riches en images
nécessite des stratégies innovantes (Irisson et al., 2022), notamment des
méthodes de classification semi-automatiques (stratégie 3, figure 6.2)
ou entièrement automatisées (stratégie 4, figure 6.2) afin de simplifier
le traitement et l’analyse de ces jeux de données riches en images.

6.1.5 L’apprentissage automatique en écologie marine

L’apprentissage automatique est une approche informatique puissante
qui a trouvé des applications en écologie marine (Rubbens et al., 2023).
Il comprend des techniques de classification (Luo et al., 2018; Orenstein
et al., 2020) et de régression (Elith and Leathwick, 2009; Guisan and
Zimmermann, 2000) des données. Ces méthodes peuvent être automa-
tiques (Luo et al., 2018; Trudnowska et al., 2021) ou semi-automatiques
(Biard et al., 2016; Panaïotis et al., 2023; Schröder et al., 2020; Vilgrain
et al., 2021), avec la nécessité de traiter les biais potentiels présents
dans les données d’entraînement. La combinaison de l’exploration des
données et de l’apprentissage automatique peut révéler des patrons et
des relations cachées dans des données écologiques complexes, ce qui
permet de mieux comprendre les écosystèmes marins.
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Figure 6.2: Quatre stratégies de traitement de collections d’images brutes de
plancton identifiées par quatre numéros encerclés. L’interaction
efficace entre les instruments, les ordinateurs et les opérateurs
humains permet un débit élevé depuis l’acquisition d’images en
laboratoire ou sur le terrain jusqu’à l’exploitation écologique. Fig-
ure tirée de Irisson et al. (2022)
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Figure 6.3: Évolution du nombre d’images téléchargées sur le site Ecotaxa
(Picheral et al., 2017) à l’aide d’instruments tels que l’Underwater
Vision Profiler (UVP (Picheral et al., 2010, 2021)), FlowCytobot
(IFCB, (Olson and Sosik, 2007)), FlowCam (Sieracki et al., 1998),
Zooscan (G. Gorsky et al., 2010), In Situ Ichthyoplankton Imaging
System (ISIIS, (Cowen and Guigand, 2008)). Figure tirée de Irisson
et al. (2022)

6.1.6 Objectifs de ma thèse

Ce travail vise à réaliser une analyse globale de la distribution du
zooplancon et de l’export vertical de particules basée sur l’imagerie in
situ à partir des données de l’UVP5 (Fig. 6.4). L’étude s’articule autour
de deux thèmes principaux : la distribution mondiale de la biomasse
du zooplancton et l’exportation de carbone détritique dans le contexte
d’une efflorescence de l’Atlantique Nord. Elle vise (1) à quantifier la
biomasse mondiale de zooplancton (2) à améliorer notre compréhension
de la pompe à carbone biologique par l’étude de la morphologie des
particules et de son changement avec la profondeur en relation avec la
distribution du zooplancton (3) à calculer et à comparer le flux issus de
la production lors de l’efflorescence printanière de l’Atlantique Nord
en utilisant à la fois les pièges à sédiments et les données UVP5 à haute
résolution.

6.1.6.1 Distribution mondiale de la biomasse du zooplancton

Le premier chapitre se concentre sur l’utilisation d’un ensemble de
données UVP5 mondiales pour examiner la distribution de la biomasse
du zooplancton et aborde les questions de recherche clés suivantes :
1) Pouvons-nous estimer avec précision la distribution géographique
des grands groupes de plancton à travers plusieurs couches de pro-
fondeur en utilisant l’imagerie in situ ? 2) Est-il possible d’obtenir des
estimations régionales de la biomasse du zooplancton à l’aide de cette
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Figure 6.4: Résumé graphique résumant les principales voies du carbone dans
la colonne d’eau en tenant compte de trois acteurs principaux
: le phytoplancton, le zooplancton et les bactéries. Les flèches
pleines présentent un processus aboutissant à la formation ou
à la croissance de particules tandis que les flèches en pointillés
correspondent à des processus aboutissant à la dégradation et/ou à
la fragmentation. Les grands cercles représentent les trois chapitres
qui composent ce manuscrit.

méthodologie ? 3) Les résultats obtenus s’alignent-ils sur les données
existantes et sur les modèles précédemment établis ?

Pour étudier ces questions, nous avons exploité la capacité de pré-
diction d’Ecotaxa (Picheral et al., 2017) en collaboration avec divers
experts qui ont consacré des années à la classification méticuleuse de
cet impressionnant ensemble de données contenant 466 872 images
de zooplancton. Nous avons émis l’hypothèse que la distribution des
organismes et leur biomasse dépendent de facteurs environnementaux.
Nous avons utilisé ces données d’imagerie in situ provenant de 3 549

profils UVP5 dans le monde entier et avons développé une nouvelle
technique pour estimer globalement la biomasse du macrozooplancton
sur la base de ces images et de modèles d’habitat.
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6.1.6.2 Export durant une efflorescence en Atlantique Nord

Les deux chapitres suivants se concentrent sur la campagne EXPORTS
2021 qui s’est déroulée dans un tourbillon de l’Atlantique Nord pen-
dant l’efflorescence printanière (Johnson et al., 2023). Au cours de cette
campagne, trois unités UVP5 ont été déployées à partir de trois navires
scientifiques, ce qui a permis d’obtenir 1 720 914 images. Alors que
nous abordons les deuxième et troisième chapitres de cette étude, il
devient évident que le grand volume d’images collectées au cours
de l’expérience EXPORTS a nécessité un changement d’approche.
L’ampleur de l’acquisition des données a empêché l’utilisation du
cadre Ecotaxa, ce qui nous a incités à explorer d’autres méthodes. En
outre, nous avons reconnu la nécessité d’un examen plus approfondi
des détritus, ce qui a motivé notre recherche d’une compréhension plus
profonde dans les chapitres suivants et la classification des 1 720 914

images à l’aide de Morphocluster, une classification semi-supervisée
conçue pour annoter de grands ensembles de données d’images (Fig.
6.5, Schröder et al. (2020)). Ce programme extrait des traits d’images
qui sont ensuite projetés dans l’espace des traits. Le regroupement des
images est ensuite basé sur leur position dans cet espace de traits. Si
un groupe est jugé satisfaisant par un validateur humain, il est ensuite
agrandi sous supervision humaine, et plusieurs itérations du processus
de regroupement et d’agrandissement sont utilisées pour affecter les
images aux groupes. Les groupes sont ensuite organisés manuellement
de manière hiérarchique et nommés.

Dans ce contexte, le chapitre 2 explore l’exportation de détritus
marins imagés en utilisant un nouveau cadre qui emploie une méthode
de suivi du panache d’export oblique. Ce chapitre vise à fournir de
nouvelles perspectives sur la dynamique, la morphologie, le flux et
l’atténuation des particules dans un tourbillon de l’Atlantique Nord en
répondant aux questions suivantes : 1) Comment la communauté de
particules évolue-t-elle au cours de ce grand événement d’exportation ?
2) Le zooplancton est-il important par rapport aux agrégats marins ?
3) Quel est le taux d’atténuation du matériel exporté et comment est-il
lié à l’activité biologique ? 4) Comment la morphologie des agrégats
et des pelotes fécales évolue-t-elle en fonction de la profondeur et du
temps, et quels sont les processus à l’origine de ces changements ? En
raison de la rareté des recherches sur la morphologie des particules
in situ avec une haute résolution verticale sur une large gamme de
profondeur, notre objectif était d’offrir une caractérisation plus précise
de la dynamique des particules, en se concentrant sur les agrégats et
les pelotes fécales.
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Le chapitre 3 utilise une approche verticale plus traditionnelle pour
calculer et comparer le flux de l’efflorescence printanière de l’Atlantique
Nord en utilisant des pièges à sédiments et des données UVP5. Il se
concentre sur les comptages de particules dérivés des données UVP5

ainsi que sur les images d’agrégats et de pelotes fécales (1 - 16,4 mm)
et vise à répondre aux questions suivantes : 1) Quels sont les types
de particules dominants et leurs vitesses de chute dans le cœur du
tourbillon pendant l’efflorescence printanière de l’Atlantique Nord ?
2) Comment le flux peut-il être calculé et comparé efficacement en
utilisant les pièges à sédiments et les données de l’UVP5 ?

Enfin, nous concluons et discutons les principaux résultats de chacun
de ces trois chapitres.
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Figure 6.5: Étapes suivies par Morphocluster, un logiciel semi-autonome util-
isé pour classer les images. Figure extraite de Schröder et al. (2020)

6.2 Distribution mondiale de la biomasse du zoo-
plancton

6.2.1 Contexte et méthodes

Comme décrit précédemment, le zooplancton correspond aux organ-
ismes dérivant avec les courants. Il est très diversifié (de Vargas et al.,
2015; Karsenti et al., 2011) et fait partie intégrante du cycle biogéochim-
ique du carbone et de l’équilibre écologique de l’océan (Longhurst and
Glen Harrison, 1989; Steinberg and Landry, 2017; Turner, 2002, 2015).
Le zooplancton est sensible aux facteurs environnementaux, ce qui se
traduit par des schémas mondiaux distincts en termes de diversité et
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de biomasse (Ibarbalz et al., 2019; Rombouts et al., 2009). Alors que la
biomasse est élevée aux hautes latitudes et faible aux basses latitudes, la
diversité suit le schéma inverse (Ibarbalz et al., 2019; Ikeda, 1985; Mori-
arty et al., 2012; Rombouts et al., 2009). Ces schémas, déterminés par la
température, les courants, les nutriments et les interactions biologiques,
permettent de mieux comprendre les changements océaniques. Cepen-
dant, les évaluations de la biomasse sont entravées par l’hétérogénéité
des données et des observations limitées (Le Quéré et al., 2016; Moriarty
and O’Brien, 2013; Moriarty et al., 2012).

Les méthodes d’échantillonnage traditionnelles, biaisées en faveur
des taxons non gélatineux, sous-estiment la biomasse et le rôle écologique
d’organismes fragiles comme les cnidaires et les rhizaires (Biard et al.,
2016; Lucas et al., 2014). Les outils d’imagerie in situ non intrusifs
comme l’UVP5 (Underwater Vision Profiler 5, (Picheral et al., 2010)) ont
révolutionné l’étude du zooplancton, mais les données restent inégale-
ment réparties. Après une classification assistée par ordinateur de 466

872 organismes provenant de plus de 3 478 profils (0-500 m) obtenus
entre 2008 et 2019 à travers le monde, nous avons estimé le biovolume
individuel et l’avons converti en biomasse en utilisant des facteurs spé-
cifiques à chaque taxon pour 25 grands groupes taxonomiques. Nous
avons ensuite associé ces estimations de biomasse aux climatologies
des variables environnementales (température, salinité, oxygène, etc.),
afin d’élaborer une nouvelle technique pour estimer globalement la
biomasse du macrozooplancton grâce à des modèles d’habitat utilisant
des arbres de régression boostés (Elith and Graham, 2009; Hastie et al.,
2001). Pour cela, nous avons utilisé différentes partitions des données
basées sur la profondeur et la latitude, afin de capturer les différentes
préférences en matière d’habitat.

6.2.2 Principales conclusions et perspectives

Les résultats révèlent des valeurs maximales de biomasse de zooplanc-
ton autour de 60◦N et 55◦S ainsi que des valeurs minimales autour des
gyres océaniques (Fig. 6.6). Une augmentation de la biomasse de zoo-
plancton est prédite autour de l’équateur. La biomasse intégrée globale
(0-500 m) a été estimée à 0,403 PgC. Elle était largement dominée par
les copépodes (35,7 %, principalement dans les régions polaires), suivis
par les Eumalacostraca (26,6 %) et les Rhizaria (16,4 %, principalement
dans les zones intertropicales). L’approche d’apprentissage automa-
tique était sensible à la quantité de données d’entraînement et a généré
des prédictions fiables pour les groupes abondants tels que Copepoda
(R2 20-66%) mais pas pour les groupes rares (Ctenophora, Cnidaria, R2

< 5%). Néanmoins, cette étude offre le premier protocole permettant
d’estimer la biomasse globale et spatialement résolue du zooplancton
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et la composition de la communauté à partir d’observations d’imagerie
in situ d’organismes individuels. L’ensemble des données sous-jacentes
a été obtenu en l’espace de dix ans, alors que des approches similaires
s’appuient sur des données obtenues à l’aide de filets à plancton collec-
tés depuis 1960 environ. L’utilisation accrue des méthodes d’imagerie
numérique devrait nous permettre à l’avenir d’obtenir des estimations
de la distribution de la biomasse du zooplancton à l’échelle du bassin
et à l’échelle mondiale dans des délais plus courts.

Figure 6.6: Carte de distribution de la biomasse globale minimale entre 0 et
500 mètres en utilisant les taxons qui ont obtenu une p-value <

0,05 dans le test de Pearson entre la biomasse prédite et la biomasse
calculée à partir des données UVP5.

Les prédictions ont placé les Copépodes comme les contributeurs les
plus importants à la biomasse (35,7 %), ce qui corrobore avec des études
précédentes (Dai et al., 2016; Forest et al., 2012; Turner, 2004). Leur
participation était particulièrement élevée dans les régions polaires, et
leur distribution était principalement influencée par la température, en
accord avec des études antérieures (Beaugrand et al., 2009; Pinkerton
et al., 2020; Sunday et al., 2012). Ce groupe était suivi par les Eumala-
costracés (26,6 %) et les Rhizaires (16,4 %). La distribution verticale
et horizontale de ces groupes de Rhizaires suivait la description des
études antérieures (Biard et al., 2016; Michaels, 1988; Nakamura et al.,
2013; Nakamura and Suzuki, 2015; Suzuki and Not, 2015).

Nous avons également tenté une approche plus régionale en par-
titionnant le jeu de données à la fois par latitude et par profondeur.
Malheureusement, cela a donné des résultats moins satisfaisants que la
méthodologie globale, principalement en raison de la diminution de la
taille des jeux de données d’apprentissage. Le besoin de disposer de
jeux de données suffisamment importants est également ce qui nous a
poussés à utiliser une définition large des groupes de zooplancton. À
l’avenir, il pourrait être possible d’obtenir une définition taxonomique
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et verticale plus fine grace à la collecte de plus de données. Les modèles
plus détaillés pourraient potentiellement obtenir de meilleures perfor-
mances en fournissant une délimitation plus précise de la structure de
l’habitat vertical des groupes taxonomiques. Cela semble être le cas
pour les Phaeodaria, où les modèles à résolution de 100 mètres ont
donné des résultats de R2 plus élevés, en particulier dans la plage de
profondeur entre 0 et 300 mètres.

Dans le contexte de la modélisation biogéochimique mondiale, les
données sur la biomasse du zooplancton générées par cette étude
comblent une lacune importante, car ces modèles manquent souvent
d’observations sur le zooplancton. À l’avenir, alors que la technologie
continue de progresser, le déploiement de systèmes d’imagerie tels que
l’UVP6 (Picheral et al., 2021) sur des plateformes autonomes (profileurs
BGC-Argo et planeurs) devrait améliorer notre capacité à échantillonner
et à surveiller les populations de zooplancton dans une gamme plus
large de profondeurs et de régions océaniques, ce qui nous permettra
de suivre plus efficacement les changements globaux de la biomasse de
zooplancton.

6.3 Dynamique de la pompe biologique dans un tour-
billon anticyclonique

6.3.1 Contexte et méthodes

Les détritus marins, y compris les agrégats et les pelotes fécales, présen-
tent un grand intérêt pour les scientifiques en raison de leur impor-
tance dans la pompe à carbone biologique (Alldredge and Gotschalk,
1988; Boyd et al., 2019). Les agrégats, qui consistent en des amas
macroscopiques (>500 µm, Alldredge and Silver (1988)), sont com-
posés de divers matériaux tels que le phytoplancton, les logettes
d’appendiculaires et la matière fécale (Alldredge et al., 1990; Alldredge
and Silver, 1988). Ces particules détritiques jouent un rôle crucial dans
le transfert du carbone de la surface de l’océan vers ses profondeurs,
contribuant ainsi à la pompe gravitationnelle biologique (Boyd et al.,
2019; Nowicki et al., 2022). Les agrégats marins présentent des formes
diverses (Alldredge, 1998; Alldredge and Silver, 1988) qui résultent
de processus physiques (Alldredge, 2001; Kiørboe, 2001; Stemmann,
Jackson, and Ianson, 2004) et biologiques complexes (Dilling and All-
dredge, 2000; Steinberg and Landry, 2017; Stemmann, Jackson, and
Ianson, 2004).

Les processus biologiques affectent de manière significative la mor-
phologie des agrégats. Le zooplancton et les bactéries jouent un rôle
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important dans la modification de la structure des agrégats. Le zoo-
plancton contribue à la formation des particules grâce à diverses straté-
gies d’alimentation et à la production de pelotes fécales compactes
(Atkinson et al., 2012; Gleiber et al., 2012). Les agrégats peuvent subir
des processus de dégradation et de fragmentation qui peuvent impacter
leur porosité et leur taille (Alldredge et al., 1990; Laurenceau-Cornec
et al., 2015). Les populations de zooplancton dans les couches de sur-
face et mésopélagique étaient peu nombreuses, jetant des doutes sur
leur capacité à influencer de manière significative le flux de carbone
par la production de pelotes fécales dans ce jeu de données particulier.
Cependant, leur activité alimentaire via la nutrition par filtration (All-
dredge et al., 1990; Harbison et al., 1986; Huntley and Boyd, 1984) et la
consommation directe des particules (Burd and Jackson, 2009; Gillard
et al., 2022; Stemmann, Jackson, and Ianson, 2004), couplée à la frag-
mentation due à leurs comportements de nage (Dilling and Alldredge,
2000), pourrait expliquer une partie de l’atténuation élevée observée
dans la couche entre 50 et 100 mètres, qui ne peut pas être attribuée
uniquement à l’activité bactérienne (Belcher et al., 2016; Collins et al.,
2015). L’augmentation observée de l’abondance du zooplancton dans
cette couche, avec un maximum d’observations de rhizaires à 50 mètres
et de crustacés à 125 mètres, constitue une preuve à l’appui de cette
hypothèse.

Les études antérieures se sont principalement concentrées sur la
quantification de l’abondance, de la vitesse de chute et du flux de car-
bone (Cael et al., 2021; Guidi et al., 2008; Iversen and Ploug, 2010). Peu
d’entre elles ont étudié les changements d’autres traits morphologiques
(Trudnowska et al., 2021; Williams and Giering, 2022). Notre étude se
concentre sur un tourbillon rétentif anticyclonique dans l’Atlantique
Nord dans le cadre du programme EXPORTS (Johnson et al., 2023;
Siegel, 2016). Nous avons déployé trois unités UVP5 à partir de navires
de recherche pour explorer l’efflorescence printanière de l’Atlantique
Nord (Omand et al., 2015) en mai 2021 et avons obtenu 1 720 914

images. Pour traiter ce grand ensemble de données, les images ont
été regroupées à l’aide de Morphocluster, un programme conçu pour
annoter de grands ensembles d’images présenté dans l’introduction
(Schröder et al., 2020). Nos objectifs comprennent la quantification du
flux de carbone, la caractérisation de la communauté de particules
et l’étude des changements dans la morphologie des agrégats et des
pelotes fécales au sein d’un panache d’export en fonction du temps et
de la profondeur. Cette étude vise à obtenir une meilleure compréhen-
sion de la dynamique et de la distribution des particules en haute mer.
Pour cela, nous avons utilisé une approche de sélection du panache
d’export de manière oblique (Fig. 6.7) en définissant 5 masques qui
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nous ont donc permis de suivre l’export des particules et des pelotes
fécales en profondeur et au cours du temps.

Figure 6.7: Champ interpolé de A) concentration d’agrégats ([nombre par
m3]) et B) diamètre sphérique équivalent des agrégats (ESD [mm]).
Veuillez noter que la barre de couleur est à l’échelle logarithmique
pour la concentration d’agrégats. Les 6 lignes rouges correspondent
à la délimitation des 5 masques avec une pente de 50 m d-1. La
ligne blanche continue correspond à la profondeur moyenne de
la couche de mélange. La ligne noire en pointillés correspond à
l’ajustement présenté dans Johnson et al. (2023) en tant que limite
inférieure de la couche d’eau de base de surface définie en fonction
de la profondeur de l’isopycne 27,1 kg m-3.

6.3.2 Principales conclusions et perspectives

Notre étude a révélé des changements significatifs dans la commu-
nauté des particules du panache, indiquant des processus tels que la
dégradation, l’agrégation et la reminéralisation microbienne potentielle
pour les petites (MiPs, 0,14-0,53 mm de diamètre) et les grandes (MaPs,
0,53-16,88 mm de diamètre) particules. Les spectres de taille des par-
ticules (PSD) ont montré un schéma en deux étapes, s’aplatissant sous
les eaux centrales de surface du tourbillon (SCW). Notre approche a
permis d’estimer de manière fiable le flux d’exportation de carbone, en
accord avec les estimations publiées sur l’efflorescence printanière dans
l’Atlantique Nord.

L’analyse morphologique des agrégats et des pelotes fécales à l’intérieur
du panache par imagerie in situ et regroupement a révélé des schémas
distincts. Les agrégats sont devenus plus sombres, plus circulaires et
plus denses avec la profondeur, suivant une évolution linéaire. Inverse-
ment, les pelotes fécales présentaient une dynamique influencée par la
production et la dégradation du zooplancton.
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Pour mieux comprendre l’atténuation du flux de carbone, nous
avons examiné le taux de dégradation spécifique du carbone (Cspec,
Iversen (2023)) correspondant à la somme des processus conduisant
à l’atténuation du flux de particules (nutrition et activité natatoire du
zooplancton, reminéralisation bactérienne) ainsi que les valeurs du
facteur b issu des régressions utilisant un modèle puissance effectuées
sur les valeurs de flux estimées à l’intérieur du panache. Les valeurs b
obtenues dans notre étude indiquent un faible taux d’atténuation du
flux de carbone particulaire calculé à l’intérieur du panache d’export
et une efficacité élevée de la pompe à carbone biologique qui aug-
mente avec le temps. Sur la base des valeurs de Cspec précédemment
publiées pour la zone (Belcher et al., 2016; Collins et al., 2015) et sur
la distribution verticale du zooplancton dans la zone étudiée, nous
avons émis l’hypothèse que la reminéralisation microbienne dominait
dans la région mésopélagique moyenne à inférieure (300-800 m), tandis
que les organismes zooplanctoniques contribuaient probablement à
l’atténuation dans la zone mésopélagique supérieure (50-300 m).

Cette étude offre de nouvelles perspectives sur l’étude de la dy-
namique et de la morphologie des particules qui sédimentent, le flux
de carbone et son atténuation au sein d’un tourbillon de l’Atlantique
Nord. Les résultats soulignent la nécessité de prendre en compte les
caractéristiques morphologiques des particules dans les futurs calculs
de flux de carbone et plaident en faveur d’une meilleure connaissance
de la complexité des particules dans les écosystèmes marins. Ces ré-
sultats ouvrent de nouvelles voies de recherche sur la dynamique des
particules et les processus biogéochimiques dans l’océan global.

6.4 Estimation des flux de carbone à partir des don-
nées de l’UVP

6.4.1 Contexte and méthodes

Dans le prolongement du deuxième chapitre, nous utilisons le jeu de
données UVP5 provenant de la campagne scientifique EXPORTS 2021.
L’utilisation de cet instrument répond aux limites des instruments
traditionnels tels que les pièges à sédiments et les collecteurs de neige
marine, qui offrent une couverture spatio-temporelle limitée et risquent
d’endommager les particules fragiles (Durkin et al., 2021; Lampitt et al.,
1993; Ploug and Jørgensen, 1999). En analysant 4,3 millions d’images,
nous avons évalué le type de particule dominant qui affecte le flux
et exploré le potentiel de l’UVP5 pour estimer le flux gravitationnel
avec précision par rapport aux mesures des pièges à sédiments. Nous
avons selectionné et étendu la gamme de taille observée par l’UVP5
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pour correspondre à celle des pièges à sédiments entre 10 µm et 2 mm.
Afin d’obtenir la meilleure correspondance entre ces deux instruments,
nous avons joué sur les deux autres paramètres qui influencent les
estimations de flux de carbone: les relations entre taille de particules et
leur contenu en carbone mais également celle entre la taille et la vitesse
de sédimentation de ces particules. Pour cela, nous avons estimé le
flux de carbone en utilisant diverses relations publiées (Clements et al.,
2023; Fender et al., 2019; Forest et al., 2013; Guidi et al., 2008; Kriest,
2002) et avons exploré une méthode hybride combinant les comptages
de l’UVP5 et l’analyse d’images.

6.4.2 Principales conclusions et perspectives

Cette étude s’est concentrée sur les particules dans le centre du tourbil-
lon, révélant une prédominance des agrégats, notamment aux niveaux
de la surface (97,8% des images entre la surface et une profondeur de
1000 mètres ont été annotées comme étant des particules). Notre étude
a trouvé une relation positive entre la taille des aggrégats et leur vitesse
de sédimentation entre 0,81 et 3,25 mm. Cependant, nous n’avons pas
pu estimer la vitesse de sédimentation de plus petites particules dû
à un manque de données. En comparant nos résultats à des relations
précédemment publiées sur le lien entre taille et vitesse de sédimen-
tation (Alldredge and Gotschalk, 1988; Cael et al., 2021; Iversen et al.,
2010; Kriest, 2002), il a été avéré que la relation la plus proche de nos
estimations correspondait à la relation 9 publiée dans l’article de Kriest
(2002).

Pour la méthode hybride utilisant les images et les comptages de par-
ticules, nous avons également pris en compte les relations entre la taille
et la teneur en carbone des particules des aggrégates et pelotes fécales
des images en nous appuyant sur des études antérieures (Alldredge,
1998; Durkin et al., 2021). Cela nous a permis de comparer différentes
approches pour calculer le flux, en utilisant à la fois les relations entre
la taille et la vitesse de sédimentation et les relations entre la taille et la
teneur en carbone.

L’extension de la gamme de taille de l’UVP à 10 µm, limitée à 2

mm, a donné la meilleure adéquation entre les données des pièges à
sédiments et les estimations de l’UVP5. Bien qu’une approche hybride
combinant à la fois les comptages de l’UVP5 et les images d’agrégats
et de pelotes fécales ait été testée, elle n’a pas produit de meilleurs
résultats par rapport à l’utilisation des seuls comptages de l’UVP5.
De plus, une partie importante (30-46 %) du flux dérivé de l’UVP5,
provenant de particules comprises entre 2 et 16 mm, a été estimée
comme potentiellement manquée par les pièges à sédiments qui ont
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observé des particules entre 10 µm et 2 mm pendant cette campagne.
Notre étude discute des combinaisons de paramètres optimales et des
implications de ces méthodes sur les estimations du flux de particules.

6.5 Discussion

Au cœur de nos travaux sur la Pompe à Carbone Biologique à l’aide
de l’imagerie in situ se trouvent deux composants fondamentaux : le
zooplancton et les particules. Le zooplancton était au centre de notre
étude globale (Chapitre 1) et a également été pris en compte dans une
étude régionale (Chapitre 2), tandis que les particules étaient au centre
du contexte régional d’un tourbillon de l’Atlantique Nord pendant un
bloom printannier (Chapitres 2 et 3).

6.5.1 La biogéographie et l’impact écologique du zooplancton

Les études précédentes sur la biogéographie du zooplancton se sont ap-
puyées sur des ensembles de données basées sur des filets (Buitenhuis
et al., 2013; Hatton et al., 2021; Moriarty and O’Brien, 2013; Moriarty
et al., 2012). La plupart se sont également basées sur des méthodes
de proportionnalité, ce qui a également entraîné des biais et des lim-
itations. Notre travail dans le chapitre 1 a proposé l’utilisation d’une
technique d’apprentissage automatique pour analyser un ensemble de
données d’imagerie in situ mondial UVP5, ce qui a abouti à des cartes
de distribution continue de la biomasse de grands groupes du zoo-
plancton pour différentes couches de profondeur. Nous avons fourni
une estimation plus robuste de la biomasse du zooplancton et identifié
l’importance des rhizaires dans la biomasse mondiale, soulignant la
nécessité de méthodes d’imagerie in situ pour l’étude de ces organ-
ismes. De plus, nous avons exploré les principales variables influençant
la distribution du zooplancton et leurs relations grâce aux figures de
dépendance partielle.

Le chapitre 2 s’est concentré sur un tourbillon de l’Atlantique Nord
pendant la floraison du printemps, en utilisant Morphocluster pour
classifier les images de l’UVP5. Nous avons étudié différentes échelles
de profondeur et les dynamiques temporelles au sein de ce phénomène.
Nous avons également évalué le rôle potentiel du zooplancton dans
l’influence sur la pompe biologique à carbone. Notre étude souligne
la complexité du rôle du zooplancton dans le cycle du carbone de
l’océan. Alors que notre analyse globale a fourni des informations
précieuses sur la biogéographie du zooplancton, l’étude locale a révélé
des dynamiques complexes au sein de cet écosystème spécifique.
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En conclusion, notre travail contribue de manière significative à notre
connaissance de la distribution du zooplancton et de leur impact po-
tentiel sur l’écosystème marin, soulignant l’importance de l’utilisation
de techniques avancées et de méthodes d’échantillonnage exhaustives
pour étudier efficacement ces organismes.

6.5.2 Caractéristiques des particules et modèles de flux

Avant l’expérience EXPORTS (Johnson et al., 2023; Siegel, 2016), il n’y
avait eu aucune recherche basée sur l’UVP5 sur un ensemble de don-
nées aussi important obtenu en déployant trois unités UVP5 dans une
zone géographiquement aussi restreinte. Ce cadre unique au sein d’un
tourbillon hautement rétenteur a offert une opportunité exceptionnelle
pour des observations in situ de haute qualité, apportant de nouvelles
informations sur les caractéristiques des particules et les schémas de
flux.

Les précédentes études d’imagerie in situ utilisant l’UVP5 se sont
principalement concentrées sur le zooplancton (Biard et al., 2016; L.
Stemmann et al., 2008; Vilgrain et al., 2021) ou les comptages de par-
ticules (Clements et al., 2022, 2023; Fender et al., 2019; Forest et al.,
2013; Guidi et al., 2008), regroupant souvent les agrégats et les pelotes
fécales sous la classification de "détritus". Cependant, cette classification
néglige la diversité existant parmi ces particules et leur importance
écologique. L’étude de la morphologie des particules et des facteurs
qui l’influencent a été confrontée à des défis en raison de la fragilité des
agrégats et des limitations dans leur manipulation. Le chapitre 2 visait
à combler cette lacune en suivant et en décrivant la morphologie des
particules au sein d’un panache exporté, offrant une perspective unique
en 2D. Un nouveau cadre oblique a été utilisé pour suivre le panache
de particules imagées en profondeur et dans le temps, révélant des
patrons distincts pour les agrégats et les pelotes fécales. Contrairement
aux observations précédentes, nos résultats indiquent que les agrégats
avaient tendance à devenir plus gros mais également plus denses avec
la profondeur, peut-être en raison de la chute différentielle (Alldredge,
2001; Burd and Jackson, 2009). Ce processus d’intérêt important est dû
à une différence de vitesse de sédimentation entre les pelotes fécales et
les agrégates. Il peut entraîner l’intégration des pelotes fécales au sein
des agrégats qui peuvent entrer en collision et interagir pendant leur
chute. Cela pourrait entraîner la formation d’agrégats plus gros et plus
denses, ce qui est cohérent avec certaines des observations faites dans
cette étude. Notamment, l’augmentation de la densité et de la taille des
agrégats peut avoir un effet significatif sur les taux de sédimentation
et la teneur en carbone, potentiellement entraînant une plus grande
exportation de carbone de la surface de l’océan vers les couches plus
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profondes. Ce processus est donc essentiel à la compréhension des flux
de carbone dans l’environnement marin car il est lié à l’efficacité de la
pompe biologique à carbone.

L’UVP5 fournit des comptages de particules qui ont historiquement
été utilisés pour calculer le flux de particules et l’atténuation dans un
cadre vertical unidimensionnel (Clements et al., 2023; Fender et al., 2019;
Forest et al., 2013; Guidi et al., 2008), négligeant les caractéristiques
dynamiques des communautés de particules à différentes profondeurs.
Le chapitre 3 a abordé cette question en évaluant différentes méthodes
de calcul du flux et en les comparant aux estimations de flux des pièges
à sédiments. La comparaison a révélé des sous-estimations potentielles
du flux de carbone allant jusqu’à environ 40% dans certaines gammes
de tailles, suggérant que nos méthodes actuelles d’évaluation du flux de
carbone dans les écosystèmes marins pourraient être incomplètes. Cela
pourrait avoir des implications significatives pour la compréhension de
la dynamique du carbone et la résolution des problèmes liés au budget
du carbone mésopélagique à l’échelle mondiale (Burd et al., 2010).

De plus, l’évaluation de l’atténuation, un aspect crucial de la dy-
namique des particules, a produit des résultats significatifs. Le chapitre
2 a montré des niveaux d’atténuation faibles dans la région du panache,
principalement attribués aux zooplancton et aux micro-organismes de
la zone mésopélagique supérieure, avec une transition vers une pré-
dominance des micro-organismes dans les profondeurs mésopélagiques
plus profondes.

6.5.3 Contraintes dans l’estimation de la biomasse du zooplancton et
la morphologie des particules

L’estimation de la biomasse mondiale du zooplancton dans le chapitre
1 a marqué une avancée significative dans le domaine. Cependant,
nous avons rencontré plusieurs défis qui ont conduit à des réflexions
importantes. Un défi clé était la disponibilité des données sur la teneur
en carbone des différents groupes zooplanctoniques, en particulier pour
le groupe des Rhizaria.

Les limitations liées au jeu de données ont également entravé notre
capacité à créer des modèles fiables pour divers groupes taxonomiques
en raison de signaux peu clairs entre biomasse zooplanctonique et
environnement ou même en raison de données pas suffisamment nom-
breuses. Une étude récente de Laget et al. (in review) a mesuré directe-
ment la teneur en carbone des rhizaires, conduisant à l’amélioration
des facteurs de conversion pour les modèles d’habitat. Ces modèles
mis à jour, basés sur un plus grand nombre de profils UVP5 jusqu’à 1
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000 mètres de profondeur, promettent une estimation plus précise de
la biomasse mondiale avec une couverture en profondeur plus large
(Laget, en révision).

Notre étude sur l’évolution des particules a fourni des informa-
tions précieuses sur les changements morphologiques ainsi que sur
l’évolution de leur concentration et de leur biovolume. Nous avons
utilisé des techniques de regroupement écologiquement pertinentes
pour révéler des patrons au sein de la communauté de particules lors
de l’expérience EXPORTS. Nos efforts pour décrypter la morpholo-
gie des agrégats, bien que laborieux, ont établi un ensemble de don-
nées précieux pour les futures études d’images de l’UVP5 et pourront
représenter un jeu de données d’apprentissage pour la classification de
ces images.

Dans nos efforts pour calculer le flux à partir de données UVP5 et
le comparer aux pièges à sédiments, nous avons fait une découverte
significative. Il a été déterminé que la correspondance la plus précise
entre les données UVP et les données des pièges à sédiments était
obtenue en utilisant la même gamme de taille que celle couverte par les
pièges à sédiments (10 µm-2 mm). Cette harmonisation de la gamme de
taille améliore la fiabilité de nos calculs de flux, renforçant ainsi l’utilité
de la technologie UVP5 dans l’étude de la dynamique des particules.

Enfin, notre enquête a présenté un nouveau cadre pour l’étude des
données UVP dans le contexte d’un événement d’exportation. Le suivi
de la dynamique de la communauté des particules à travers ce cadre
oblique nous a permis d’acquérir une compréhension plus profonde
des processus complexes qui régissent la dynamique des particules lors
des événements d’export.

En conclusion, cette collection d’études repousse non seulement les
limites de la connaissance, mais elle aborde également les défis cruciaux
liés à l’estimation de la biomasse du zooplancton et à la compréhen-
sion de l’évolution des morphologies et des flux de particules dans
le contexte d’un événement d’export. Ces développements ouvrent
de nouvelles voies pour la recherche future et ouvrent la voie à une
compréhension plus profonde des écosystèmes marins.

6.6 Perspectives

Dans cette section, nous élargissons la portée de notre discussion, allant
au-delà des conclusions immédiates de cette thèse pour explorer des
questions plus larges liées à la recherche basée sur les données. Bien
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que notre accent principal reste sur la pompe biologique et ses aspects
liés à l’imagerie, nous reconnaissons également la pertinence de ces
discussions dans le contexte de l’avancement de la science dans le
domaine de l’écologie marine.

6.6.1 Défis et oppportunités des données en écologie

L’écologie axée sur les données révolutionne la recherche scientifique
mais exige d’importantes ressources. La quantité colossale de données
générées et analysées, appelée "big data" (Guidi et al., 2020), pose des
défis en matière de gestion des données, conformément aux principes
FAIR (findable, accessible, interoperable, reusable c’est à dire facile-
ment trouvable, accessible, interopérable et réutilisable) Wilkinson et
al. (2016). La gestion du "big data" nécessite une augmentation des
ressources liées à leur stockage et à la puissance de calcul nécéssaire
à leur étude, suscitant des préoccupations en matière de durabilité
et d’accès équitable. Ce besoin accru en ressources soulève des ques-
tions cruciales concernant l’équilibre entre la durabilité, l’accessibilité
économique et l’accès équitable aux outils scientifiques de pointe et
aux connaissances. Face à ces défis, des outils innovants et relativement
faiblement couteux comparés aux instruments utilisés actuellement ont
été développés, tels que le PlanktoScope, une plateforme d’imagerie
compacte et modulaire (Pollina et al., 2022), ou le Foldscope, un micro-
scope bas coût basé sur les principes d’origami (Cybulski et al., 2014).
Trouver un équilibre entre le potentiel du "big data", les contraintes
de ressources limitées et les considérations éthiques est essentiel pour
le succès de l’écologie axée sur les données et son inclusivité dans
l’exploration scientifique et la conservation de l’environnement.

6.6.2 Le future de l’étude du zooplancton

L’exploration de l’avenir de la distribution de la biomasse du zoo-
plancton ouvre des perspectives passionnantes. Le déploiement en
cours d’unités d’UVP5 ainsi que les déploiements autonomes d’UVP6

(Picheral et al., 2021) sur des flotteurs et des mouillages promet d’élargir
les jeux de données, ce qui pourrait améliorer les prédictions de
biomasse annuelles et potnetiellement permettre leur modélisation
saisonnière. Le déploiement d’unités d’UVP6 sur des mouillages a pour
but d’obtenir des séries temporelles de données à long terme, four-
nissant des informations sur les dynamiques locales au fil du temps.

Quant à l’utilisation de l’UVP5, nous encourageons l’expansion sys-
tématique, si possible, des profils verticaux pour couvrir la plage de
profondeur de 0 à 1000 mètres. Ceci pourrait permettre d’obtenir une
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compréhension plus complète de la distribution du zooplancton dans
l’ensemble de la colonne d’eau.

6.6.3 Perspectives futures pour l’approche de suivi des particules

L’étude de l’export du carbone grâce à l’approche de suivi du panache
de particules ouvre plusieurs pistes de recherche pour l’avenir. Des
jeux de données plus longs comprenant plusieurs événements d’export
peuvent être acquis en déployant des unités UVP6 sur des mouillages
ou des flotteurs BGC Argo dans différents environnements biogéochim-
iques. Ces jeux de données pourraient permettre d’obtenir des infor-
mations sur la dynamique de l’export du carbone au fil du temps et
dans des conditions variables en appliquant notre méthode de suivi du
panache.

Établir un lien direct entre les vitesses de sédimentation, la mor-
phologie et la teneur en carbone des agrégats pourrait également faire
progresser notre compréhension des processus d’export du carbone.
Pour ce faire, le déploiement simultané de l’UVP5 et de pièges à sédi-
ments pourrait fournir des jeux de données importants pour améliorer
la précision des relations entre la taille et le contenu en carbone, amélio-
rant ainsi notre compréhension de leur rôle dans l’exportation du
carbone.
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