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Introduction

More than a century ago, the Rutherford gold foil experiments taught us that the atom
had a positive charged nucleus surrounded by electrons. These experiments consisted in
scattering alpha particles into a foil of gold. Thus, nuclear physics was born. Indeed, the
preponderant idea of nuclear physics that has persisted to this day was to scatter particles
to gain knowledge of the atomic nucleus.

One may say that nuclear theory is the perfect laboratory for quantum mechanics.
Theoretical nuclear physics involves developing models to understand nuclear phenomena
based on the fundamental principles and mathematical formulations. However, nuclear
theory faces challenges due to the complexity of the many-body problem in the atomic
nucleus. The presence of a large number of particles makes it difficult to solve the problem
exactly, and conversely, the presence of not enough particles prevents a simple thermo-
dynamic treatment, except in some nuclear astrophysics contexts such as neutron stars.
As a result, there is no standard model of nuclear theory, and instead, different regions
of the nuclear chart are treated in their own unique way.

For many decades, studies of the nuclear structure focused on bound states, whereas
studies of reactions focused on unbound scattering states. This dichotomy has led to a
somewhat artificial division between the theory of nuclear structure and the theory of
nuclear reactions. The nuclear Shell Model (SM), pioneered by Goeppert-Mayer [1] and
Jensen, Haxel and Suess [2], became the preferred tool for exploring nuclear structure.
This model and its subsequent developments treated the nucleus as a closed quantum
system (CQS) isolated from the environment of scattering continuum. On the other
hand, nuclear reactions relied on various approaches depending on the considered reaction
mechanism, range of masses or excitation energies. These approaches oftentimes disregard
the internal structure of the nucleus by using effective potentials for solving the scattering
problem.

An important step towards the unification of structure and reactions was made by
Feshbach [3, 4], whose idea was to break the interaction into two parts: one that de-
scribes the bound states and another that describes the scattering states. This gave the
foundation for the development of the Continuum Shell Model (CSM) [5, 6]. However,
the real motivation to advance the studies of unified theories of structure and reactions
was given by the experiments. Indeed, nuclear experimental facilities have evolved over
the years to be able to produce more and more exotic nuclei far from the valley of the
β-stability. As the drip lines were approached, phenomena like nuclear halo in weakly
bound or unbound states, among others, were observed. Nuclei in a vicinity of the drip
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2 Introduction

lines play a significant role in astrophysical processes, such as, e.g., the nucleosynthesis
during stellar evolution and supernova explosions. Ikeda et al. [7] noted that there exist
α-cluster states close to the α-particle emission thresholds. Later it has been conjectured
that this observation is more general and one should find states close to any particle emis-
sion thresholds [8, 9]. These phenomena can be studied within unified theories like the
Shell Model Embedded in the Continuum (SMEC) [10], the Gamow Shell Model (GSM)
[11–15] and its realization in coupled channels [15–17], the ab initio approaches of the
no-core Shell Model (NCSM) with Resonating Group Method (RGM) [18, 19], the no-
core Shell Model with Continuum (NCSMC) [20–22], the no-core Gamow Shell Model
(NCGSM) [23, 24] and its coupled-channel representation [25].

In the realm of nuclear structure, resonances play a crucial role. Resonances, which
are quasi-bound states, have been of theoretical interest since Gamow’s seminal paper
on α-decay [26]. The scattering matrix (S-matrix) formalism developed by Heisenberg
[27] and the formulation of resonances by Rosenfeld and Humblet [28] paved the way for
a comprehensive theory of nuclear reactions. However, incorporating resonances into a
theory of nuclear structure remained challenging.

Resonance states in quantum mechanics are characterized by their decay time and
cannot be measured in the same way as bound states. Their characteristics are instead
extracted from scattering amplitudes and phase shifts, obtained from the S-matrix [27].
In experimental nuclear physics, resonance widths can be measured via phase shifts and
scattering cross-sections of nuclear reactions, where resonances appear as quasi-Lorentzian
peaks in the cross-section [28].

To describe quantum systems, one typically uses a complete basis of orthonormal
functions. A basis set is considered complete if any quantum state can be expressed as
a linear combination of these eigenfunctions. A well known example is the harmonic
oscillator (HO) basis. While this basis is complete and orthogonal, it is limited to de-
scribing bound states. In the 60s, Newton derived a completeness relation in Hilbert
space that included bound states and the non-resonant real-energy continuum but not
resonances per se. In 1968, Berggren introduced a different completeness relation where
bound states, resonances, and non-resonant scattering states are treated symmetrically
[29]. The Berggren completeness relation also introduces complex observables, reflecting
the interference between continuum and resonance states [29–31]. The main feature of
these completeness relations is the inclusion of a continuous spectrum. However, this
does not fit into standard Hilbert space quantum mechanics and requires a generaliza-
tion of Hilbert space into the equipped Hilbert space, the so-called rigged Hilbert space
(RHS) [32–34], to include continuous spectra and resonances in quantum mechanics in a
consistent way.

The configuration mixing approach based on Gamow states and the Berggren basis is
the GSM [11–15]. The GSM is a generalization of the standard SM in HO representation.
The symmetric treatment of the one-body resonant states (bound states and resonances)
and (complex energy) non-resonant scattering states in the Berggren basis means that
the corresponding many-body states are also treated symmetrically. This means that the
GSM not only can deal with well-bound nuclear states but is designed to also describe
exotic states in nuclei far from the stability. For well-bound states, the GSM and the SM
in a harmonic oscillator basis (SM-HO) become indistinguishable.

Nevertheless, the GSM is limited to studies of nuclear structure. This stems from
the fact that one cannot describe the asymptotic behavior of reaction channels in the
Slater determinant representation. This is remedied by going into the GSM in coupled
channel representation (GSM-CC) [15–17]. Although originally formulated for the inclu-
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sion of single-nucleon decay channels [16, 17], the GSM-CC has been recently expanded
to describe deuteron-decay channels [35]. Further developments on the treatment of the
deuteron channels can be found in Ref. [36] and the treatment of heavier cluster channels,
namely A = 3,4 clusters, can be found in the present thesis.

One of the objectives of this work is to further the understanding of nuclear structure
by doing GSM-CC calculations with many reaction channels corresponding to several mass
partitions. Specifically, the aim is to do calculations of nuclear structure and reactions
with heavier projectiles in a large network of coupled reaction channels. Another advan-
tage of the method is that treating both cluster-like states and shell model-like states
symmetrically in the coupled channels framework provides insight into the competition
of both effects. The systems chosen for such calculations are 7,8Be and 7Li because they
posses both the low-energy cluster thresholds, and the intricate variation of the struc-
ture of many-body states in a narrow range of excitation energies, with coexisting ’shell
model-like’ states and the ’cluster-like’ states. However, to stress the advantage of the
GSM-CC over other models, we also present results for 42Sc, which were carried out with
a 40Ca core. Let us also mention in passing that the no-core GSM-CC has been recently
applied for a study of the first excited 0+2 state of 4He [25].

Spectroscopic factors serve as an essential link between cross-sections and nuclear
structure, with complex SFs characterizing resonant states. Furthermore, the near-threshold
clustering, observed in various nuclei [8, 9], points to a general phenomenon present at
different emission thresholds. In this work, we investigate the near-threshold phenomena
within the framework of the GSM-CC, providing a comprehensive understanding of near-
threshold effects in nuclear reactions and their significance in the study of nuclear structure
in various nuclei. These studies are focused on the dependence of reaction channel prob-
abilities and SFs on a distance from the decay thresholds. Furthermore, the definition of
the continuum coupling correlation energy in GSM-CC, which could become in the future
a convenient theoretical tool to quantify the configuration mixing in resonance states has
been proposed in this thesis.

Near-threshold effects are crucial in unraveling the universal behavior of atomic nuclei.
The unitarity of the S-matrix ensures the preservation of probability flux, leading to the
redistribution of probability when particle emission thresholds are crossed. Wigner cusps
[37] play a vital role in understanding these effects. Experimental studies confirmed the
existence of cusps in cross-sections, and their implications extend to nuclear structure cal-
culations, particularly when dealing with resonances. Specifically, in this work we expand
on previous GSM results of near-threshold effects [38, 39] and further generalize it with
clusters in the GSM-CC framework. This analysis provides an insight into the clustering
as an emergent near-threshold phenomenon which is a consequence of the alignment of
near-threshold shell model states of an OQS with the cluster emission threshold. Indeed,
by looking at the distribution of reaction channels probabilities, SFs, and a continuum
coupling energy correction, we can analyze those effects in some details. This analysis is
done for the light nuclei: 7,8Be and 7Li using a network of the coupled reaction channels
constructed with different partitions of the total masses of nucleons.

This thesis is divided as follows. Chapter 1 contains a brief introduction to the scatter-
ing theory concepts like the S-matrix and Gamow states. Afterwards, the focus is shifted
on introducing the Berggren completeness relation and the RHS.

Chapter 2 contains an introduction to various many-body approaches to nuclear struc-
ture. Both OQS and CQS formulations are addressed. Next, in Chapter 3, we introduce
the GSM and draw comparisons with other OQS approaches like the SMEC or NCSMC.

The coupled channel formulation of the GSM is presented in Chapter 4 alongside the
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comparison with other models. The results of GSM-CC calculations with multiple mass
partitions for spectra of 7,8Be, 7Li, 42Sc, and the reactions corresponding to the elastic
scattering of 3He and triton on 4He target, and the transfer reaction 40Ca(d,p)41Ca, are
discussed in Chapter 5.

Chapter 6 is devoted to the study of near-threshold effects. We present the concept
of Wigner cusp and then we show results of near-threshold effects in 7,8Be and 7Li by
studying the probability weights of different channels, the SFs, and the continuum coupling
correlation energy appropriately defined for the GSM-CC. Finally, we summarize and
conclude this work in the conclusion. Few technical details are presented in the Appendices
A.1 and A.2.



CHAPTER 1

The single particle Berggren basis

Resonances have been of particular theoretical interest since its conception as quasi-bound
states in the paper of Gamow on α decay [26]. In the late 30s, Siegert [40] utilized complex
energies in the context of nuclear scattering to derive a dispersion formula for resonances.
These two developments meant that complex eigenvalues could be useful for the descrip-
tion of nuclei. At the same time, the S-matrix formalism has been developed by Heisen-
berg [27], building up from the work of Wheeler [41]. Although originally formulated for
quantum scattering, the S-matrix would later prove to have meaning in nuclear struc-
ture. Indeed, the poles of the S-matrix correspond to the resonant states of a system. A
few decades later, the concept of resonances has been rigorously formulated by Rosenfeld
and Humblet [28] in a comprehensive theory of nuclear reactions. This of course did not
address the problems of including resonances in a theory of nuclear structure.

In quantum mechanics, one can expand a solution of the Schrödinger equation using
a complete basis set. This of course is generally addressed when one deals with discrete
eigenvalues. Problems arise when trying to do so for a basis with continuous eigenvalues,
because the elements of such basis are not in the Hilbert space. For a complete theory,
we would need both discrete basis elements representing bound states, resonances and
continuous basis elements representing the scattering continuum. A method to normalize
Gamow vectors was proposed by Zel’dovich [42], hence one last piece was missing: how to
put both Gamow vectors and continuum states together? The first one to find a solution
was Berggren in 1968 [29], who proved the completeness relation that treats bound, reso-
nance and scattering states symmetrically. Nevertheless, a consistent formulation within
quantum mechanics arrived much later with the RHS formalism [32–34, 43]. In this for-
malism, the resonances find a place naturally alongside bound states and non-resonant
continuum states.

In this chapter, we attempt to give all the needed information to not only formulate
the Berggren basis but also to be able to build it numerically. We start by giving the
definition of Gamow states where we also introduce an important concept that comes
recurrently in the theory of resonances which is the complex k-plane with the S-matrix
poles. Then we give a refresher on scattering theory, the S-matrix and the Jost functions.
Afterwards, we introduce the Berggren completeness relation as originally introduced by
Berggren and also other completeness relations like the Newton or the Mittag-Leffler
completeness relations. We follow the theory with some practical steps to construct a
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6 The single particle Berggren basis

Berggren basis for a given one-body interaction. Finally, we end up with some elements
of the RHS formalism. The latter part does not provide an extensive description but it is
aimed to include the necessary theory to understand resonant expansions.

1.1 Gamow states
In any quantum mechanics experiment, we find a system in either a bound (stationary)
state or a scattering state. A resonance or quasi-stationary state will decay over time
and hence one says that it has a finite lifetime. This means that resonances cannot be
measured in the same way as bound states, but should be measured via the characteristics
of the scattering states like scattering amplitudes and phase shifts. This information can
be extracted from the S-matrix [27].

In the advent of quantum mechanics, Gamow introduced complex energy eigenvalues
in his paper about α-decay [26]. The traditional definition of a resonance express it as a
solution of the Schrödinger equation Ψ(r, t) = Φ(r) exp (−itz/h̵) with a complex energy
eigenvalue: z = E−iΓ/2. This means that the probability amplitude of the wave functions
is:

∣Ψ(r, t)∣2 = ∣Φ(r)∣2 exp(−Γ
h
t) , (1.1)

where Φ is the complex eigenfunction of this state, which together with the decaying
exponential factor is called quasi-stationary as Ψ decays exponentially in time.

We follow Humblet and Rosenfeld’s [28] definition of the resonant states. Assuming
spherical symmetry, we can separate the radial and angular parts of the Schrödinger
equation. The angular solutions are the spherical harmonics and will not be discussed in
this work as they are already discussed in any elementary quantum mechanics book. The
radial Schrödinger equation is:

u′′ℓ (r, k) = [
ℓ(ℓ + 1)
r2 + vl(r) − k2]uℓ(r, k) , (1.2)

with boundary conditions:
uℓ(0, k) = 0 , (1.3)

uℓ(R)u′+ℓ (kR) − u′ℓ(R)u+ℓ (kR) = 0 , (1.4)
where uℓ is the radial solution for angular momentum ℓ, vl is the interaction (which for
atomic nuclei is nuclear + Coulomb interaction), k is the momentum eigenvalue, R is a
radius greater than the range of the nuclear interaction, and u+ℓ is the outgoing solution
with vℓ(r) = 0.

The roots of Eq. (1.4) may be complex, hence we define for each eigenfunction uℓn ≡
uℓ(r, kℓn) a complex eigenvalue kℓn as

kℓn = κℓn − iγℓn . (1.5)

We can relate κ and γ to the well known energy E and widths Γ via the following formulae

h̵2

2mkℓn ≡ Eℓn −
1
2iΓℓn , (1.6)

with
Eℓn =

h̵2

2m(κ
2
ℓn − γ2

ℓn), Γℓn =
h̵2

2m 4κℓnγℓn . (1.7)

We can categorize eigenstates by their asymptotics as follows:
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• if κℓn > γℓn > 0 then uℓn is a decaying narrow resonance state1

• if γℓn > κℓn > 0 then uℓn is a decaying subthreshold resonance state 2

• If if κℓn > 0 > γℓn the uℓn is a capturing resonance state

• if κℓn = 0 and γℓn < 0 then uℓn is a bound state

• if κℓn = 0 and γℓn > 0 then uℓn is a virtual or antibound state

Figure 1.1: Schematic representation of the complex k-plane. Positions of S-matrix poles
corresponding to bound states, antibound states, decaying resonances and capturing reso-
nances are shown in magenta, green, blue and red, respectively. Classification of decaying
resonances is made explicitly as a subthreshold resonance is denoted SR, a broad resonance
BR and narrow resonances as NR. Decaying and capturing resonances are symmetric with
respect to the imaginary k axis because of complex conjugation symmetry. The -45o line
separates subthreshold resonances from other decaying resonances.

Before we shall discuss the experimental characteristics of resonant states, we stress
the difference between a resonance and a decaying particle. A resonance refers to the
energy distribution of an outgoing particle in a scattering process and is characterized
by its energy and width. Whereas a decaying particle is described in a time-dependent
setting by its energy and lifetime τ . Both are related by:

Γ = h̵
τ
. (1.8)

Experimentally, most systems allow for the measurement of either width or lifetime.
In nuclear physics, we can measure a resonance width via phase shifts/scattering cross-

sections of nuclear reactions. Resonances will show up as quasi-Lorentzian peaks in the
1We stress the distinction between the terms resonant and decaying resonance. A resonant state

corresponds to a pole of the S-matrix whereas a resonance state corresponds to the definition given
above. Hence resonance, bound and antibound states are all resonant states.

2Another way to distinguish narrow and subthreshold resonances is that narrow resonances are above
the 45○ line in the fourth quadrant of the complex k-plane and subthreshold resonances are below the
45○ line.
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cross-section. The ’quasi’ part is very important, because in a Lorentzian distribution the
peak would be at the energy of the resonance. However, for a resonance it is not necessarily
true. This means that the narrower the resonance is, the more a peak coincides with the
resonance energy and is better fitted by a Breit-Wigner distribution3.

Contrary to bound states asymptotics that tend to zero for large distances, antibound
states have the following asymptotics:

uℓ(r) ∼ eγℓnr . (1.9)

Therefore they grow exponentially at long distances. It is difficult to give a physical
interpretation to antibound states. Strictly speaking, antibound states live within the
second energy Riemann sheet which is inaccessible to experiments, hence one can say that
it is not actually a state but a feature of the system. Low energy antibound states greatly
increase the density of real-energy scattering states just above the threshold [44, 45]. This
means that antibound states influence the behavoir of the scattering cross-sections at low
energy. Some classic examples include the l = 0 neutron-neutron scattering phase shift
[46], the scattering of slow electrons on molecules [47–49], and the eep-Coulomb system
[50].

1.2 Scattering states
Before we can introduce the Berggren basis, we need to add one additional final ingredient.
A scattering state is also a solution to the Schrödinger equation, however, it is not a pole
of the S-matrix contrary to the Gamow states. Physically, it describes the behavior of
particles that scatter away from each other and are no longer strongly interacting.

Broadly speaking, in an experiment one sends a projectile with the wave function
φin towards a target. After the collision, φin becomes an outgoing state φout. What we
measure is the probability of finding a particular projectile state ψout given by:

⟨ψout∣φout⟩ = ⟨ψout∣S∣φin⟩ , (1.10)

where S stands for the S-matrix. The incoming states are determined by the preparation
of the experiment while the outgoing states are determined by both the initial condi-
tions through φin and by the scattering process through the S-matrix. Finally, ψout is
determined by the final conditions of the detection system.

More importantly, asymptotically the states φin and ψout form the so called incoming
φ+ state and outgoing ψ− state in the remote past and in the distant future, respectively.
The probability amplitude (1.10) becomes:

⟨ψout∣φout⟩ = ⟨ψ+∣φ−⟩ . (1.11)

Moreover, the states φin and ψout are related to the states φ+ and ψ− via the Møller
operators:

Ω+φin =φ+

Ω−ψout =ψ−. (1.12)

The physical interpretation of the Møller operators is that they convert the free states
φin and ψout into the states φ+ and ψ− that are equal to them in the remote past and

3Lorentz and Breit-Wigner distribution are the same. However, in physics we typically use the term
Breit-Wigner distribution when referring to resonance measurements.
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remote future, respectively. The theory of quantum scattering is rather broad. For more
details on the Møller operators and what follows until the derivation of the cross-sections
one can see for example Ref. [51]. For a detailed physical interpretation of preparing an
experiment and what is measured by a detector see Ref. [52]. Ultimately, what really
matters in quantum scattering is the probability amplitude (1.10), (1.11), so there is focus
on the calculation of the incoming and outgoing states and/or the S-matrix.

Solutions to equation (1.2) which can be conveniently categorized as incoming and
outgoing, describe the behavior of a particle before and after it interacts with the nuclear
potential, respectively. We can do this separation because Eq. (1.2) is a second order
differential equation and hence, it has two independent solutions. In order to properly
define an incoming and outgoing solution we first consider the asymptotic solutions of Eq.
(1.2), which becomes:

u′′ℓ (r, k) = [
ℓ(ℓ + 1)
r2 + 2ηk

r
− k2]uℓ(r, k) , (1.13)

where η is the Sommerfeld parameter:

η = mZ
h̵2k

. (1.14)

The solutions to Eq. (1.13) are the regular Fℓ,η(kr) and irregular Gℓ,η(kr) Coulomb wave
functions [53]. Moreover, from the asymptotic behavior of the Coulomb wave functions,
we can define the incoming and outgoing Coulomb wave functions as:

H+ℓ,η(kr) =Gℓ,η(kr) + iFℓ,η(kr) (1.15)
H−ℓ,η(kr) =Gℓ,η(kr) − iFℓ,η(kr) . (1.16)

Thus, we have the following asymptotic solutions:

u(r, k) = C0rl+1 r ∼ 0
u(r, k) = C+H+ℓ,η(kr) +C−H−ℓ,η(kr) r →∞ ,

(1.17)

where C0,C+,C− ∈ C are constants to be determined. Now we can define the general
outgoing and incoming solutions with the following boundary condition:

u±(r.k) =H±(r, k) , r →∞ . (1.18)

Therefore, an arbitrary scattering state is:

u(r, k) = C+u+(r, k) +C−u−(r, k) . (1.19)

In comparison, the asymptotics requirements of bound and resonance states require the
amplitudes u to vanish when r →∞, therefore C− = 0 is necessary for these states.

1.3 The S-matrix and Jost functions
An important concept in scattering theory is the S-matrix. It is a mathematical object
that describes the behavior of a quantum system when two or more particles interact.
The concept was originally conceived by Wheeler in 1937 [41] and later expanded upon
by a series of papers of Heisenberg starting in 1942 [27]. Physically, the scattering matrix
relates the initial state with the final state of a quantum mechanical system. This lead
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Heisenberg to believe that the S-matrix would replace the Hamiltonian, however, it was
not the case [54]. Although the S-matrix theory is very broad and interesting, for the
purposes of this work it is better to skip part of the formalism before its description in
terms of the Jost functions.

The Jost functions were originally introduced by Res Jost [55]. The concept was con-
ceived as a means to describe the asymptotic behavior of the solutions to the Schrödinger
equation. One can define the Jost functions via the Wronskian:

J±(k) =W [u(r, k), u±(r, k)] = u(r, k)u′±(r, k) − u′(r, k)u±(r, k) , (1.20)

where u± are the outgoing and incoming solutions. The Jost function is independent of
r. This can be easily proven by taking Eq. (1.2) and the derivative of the Jost function
with respect to r. The S-matrix can be defined from the Jost functions as:

Sℓ(k) =
J−(k)
J+(k)

= −C
+

C−
. (1.21)

Since the S-matrix is unitary, then it can also be defined as:

Sℓ(k) = exp (2iδℓ(k)) , (1.22)

where δℓ(k) is the phase shift of the scattering state u(r, k). Generally, phase shift refers
to the amount by which a phase of wave functions differs from a reference wave. In this
case the reference wave is that of a free particle.

1.4 The Berggren basis
One usually uses a complete basis or orthonormal eigenfunctions to describe a quantum
system. A basis set {∣n⟩} is complete if any quantum state ∣Ψ⟩ can be expressed as a
linear combination of the basis states ∣n⟩:

∣Ψ⟩ = ∑
n

cn ∣n⟩ , (1.23)

where cn = ⟨n∣Ψ⟩. If the set is complete, then we have the completeness relation:

⟨Ψ∣Ψ⟩ = ∑
n

∣cn∣2 = 1 , (1.24)

and the closure relation:
δ(r − r′) = ∑

n

vn(r)v∗n(r′) , (1.25)

where vn(r)/r = ⟨r∣n⟩, which can be written as a projection operator :

1 = ∑
n

∣n⟩ ⟨n∣ . (1.26)

In the theory of resonant states expansion, it is customary to call Eqs. (1.25) and (1.26)
the completeness relations [56].

An example of a complete and orthogonal basis is the HO basis. However, due to the
nature of the HO potential one can only describe bound states using this basis. In the
60s, Newton derived the completeness relation in Hilbert space for neutral particles [51].
This completeness relation goes as follows:

∑
n

uℓ,n(r)u∗ℓ,n(r′) + ∫
∞

0
dk uℓ(k, r)u∗ℓ (k, r′) = δ(r − r′) , (1.27)
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where uℓ,n(r) are bound states with positive imaginary momentum k, and uℓ(k, r) scatter-
ing states with real momentum. Even though it is possible to use the Newton completeness
relation (1.27) to describe resonance phenomena, however its application would be im-
possible in most cases as it would require a very fine discretization of the integral [15].
Thus if the resonance is narrow, one risks to miss it.

Nevertheless, it was this approach that Berggren used [29] to show the completeness
relation that included not only scattering and bound states but also decaying resonance
states. Here we show the outline of the proof of the Berggren completeness relation which
was based on the Newton completeness relation [51]. Berggren improved upon Newton by
instead taking a deformed contour in k-plane that would embed narrow resonances, i.e.
the poles in the second Riemann sheet of the S-matrix [29]. The Berggren completeness
relation reads:

∑
n

uℓ,n(r)ũ∗ℓ,n(r′) + ∫
L+
dk uℓ(k, r)ũ∗ℓ (k, r′) = δ(r − r′) . (1.28)

The difference with the Newton completeness relation is two-fold. First of all the discrete
sum contains not only bound states but also narrow resonances. Second, the contour
integral over non-resonant scattering states is deformed into the path L+ in the fourth
quadrant of the complex k-plane embedding all important resonances. This allows for the
simultaneous treatment of bound, resonance and non-resonant scattering states.

The idea of the original proof of Berggren was to evaluate the integral:

I(r) = ∫
C
k dk∫

∞

0
dr′h(r′)Gℓ(−k, r, r′) , (1.29)

where h is at least square integrable, Gℓ is the Green’s function associated to Eq. (1.2)
and C is a contour to be defined. The contour C that is used for Gamow Shell Model
(GSM) applications is a semicircle in the upper k plane and a deformed contour that
encloses the resonance poles as shown in Fig. 1.1. The integral can be divided into two
parts: the outer semicircle IR and the deformed L part IL. It can be shown using the
asymptotic properties of the regular and irregular solutions of Eq. (1.2) alongside the
properties of the Jost functions that

IR(r) = iπh(r) . (1.30)

On the other hand:

IL(r) = −iπ∫
∞

0
dr′ h(r′)∫

L+
dk uℓ(k, r)ũ∗ℓ (k, r′) , (1.31)

where ul are non-resonant solutions of Eq. (1.2) and the tilde refers to time conjugation.
Lastly, the integral in Eq. (1.29) can be evaluated using the analytic properties of the
Jost functions and the Cauchy residue theorem. It gives:

I(r) = iπ∫
∞

0
dr′ h(r′)∑

n

uℓn(r)ũ∗ℓn(r′) , (1.32)

where uln are bound or resonant solutions of Eq. (1.2). Using Eqs. (1.30, 1.31, 1.32) we
find:

∫
∞

0
dr′ h(r′)δ(r − r′) = ∫

∞

0
dr′ h(r′) [∑

n

uℓn(r)ũ∗ℓn(r′) + ∫
L+
dk uℓ(k, r)ũ∗ℓ (k, r′)] . (1.33)
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Hence, the Berggren completeness relation is:

δ(r − r′) = ∑
n

uℓn(r)ũ∗ℓn(r′) + ∫
L+
dk uℓ(k, r)ũ∗ℓ (k, r′) . (1.34)

Here we have skipped the definitions of resonant and non-resonant solutions of Eq.
(1.2) in terms of Jost functions and the incoming and outgoing solutions, but details can
be found in Refs. [29, 51, 56].

An issue with this proof is that it assumes that the interaction vl is analytic in the
upper complex k-plane. This is not the case for the Coulomb interaction. However, a
complete proof has been given by Michel [57] for not only Coulomb interaction but also
for non-local potentials. The tilde in Eq. (1.27) and (1.28) corresponds to time reversal.
Indeed, differently from standard quantum mechanics where the inner product takes the
form ⟨uf ∣ui⟩ = ∫ dr u∗f(r)ui(r), the inner product is not the standard one. This requires
a reformulation of quantum mechanics in RHS [32–34]. In the theory of RHS the inner
product changes and all observables for unbound states are complex.

Eq. (1.28) includes only bound states and few resonances, however it is not unique.
Indeed if one were to modify the contour of integration, one can derive relations that
include different combinations of poles of the S-matrix [56] which will redistribute the
imaginary part from the sum to the integral or vice-versa. To distinguish among the
following completeness relations we introduce the labels a, b, c, d for antibound, bound,
capturing resonance and decaying resonance, respectively. If we were to use a contour
that includes both capturing and decaying resonances, the completeness relation would
be:

δ(r − r′) = ∑
n=b
uℓn(r)ũ∗ℓn(r′) +

1
2 ∑n=c,d

uℓn(r)ũ∗ℓn(r′) + ∫
W
dk uℓ(k, r)ũ∗ℓ (k, r′) , (1.35)

where W is the red contour shown in Fig. 1.2 which includes bound, decaying and
capturing resonances. If now we also include the antibound states using contour U from
Fig. 1.2 then we would obtain:

δ(r − r′) = 1
2 ∑

n=a,b,c,d

uℓn(r)ũ∗ℓn(r′) + ∫
U
dk uℓ(k, r)ũ∗ℓ (k, r′) . (1.36)

Moreover, the completeness relation that arises using the Mittag-Leffler theory [58] is:

δ(r − r′) = 1
2∑n

uℓn(r)ũ∗ℓn(r′) , (1.37)

where the sum goes over all poles of the S-matrix. The relation (1.37) is valid for a given
radius Rc smaller that the range of the potential generating the basis {uℓn}.

Eqs. (1.35), (1.36) and (1.37) are called overcompleteness relations. This comes from
the fact that the basis states are not linearly independent, and this is embodied by the 1/2
factors. Eq. (1.35) is not useful in practice as we are just double counting the resonances
as their contribution is the same due to symmetry under complex conjugation. Eq. (1.36)
has a 1/2 factor that indicates that the antibound states may have a similar contribution
as bound states. However, the need of both bound and antibound states may indicate
that the eventual difference between them is formally important and not compensated by
the integral.

Finally, Eq. (1.37) may seem more practical due to the absence of a contour integral,
however it is difficult to deal with the non-orthogonality in numerical application because
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Figure 1.2: Schematic representation of the complex k-plane with different possible con-
tours. Positions of S-matrix poles corresponding to bound states, antibound states, de-
caying resonances and capturing resonances are shown in magenta, green, blue and red,
respectively. Figure inspired from Ref. [56].

one has to solve generalized eigensystems. Additionally, the absence of the integral im-
plies that the contour integral from the other completeness relations is equivalent to the
infinite sum of the resonances outside of them. To achieve convergence, one would re-
quire a large cut-off radius. Moreover, the amplitude of antibound and resonance states
increase exponentially with r, adding instability to any calculation. Hence, even though
the Mittag-Leffler completeness relation seem to be more practical at first glance, it is in
fact not. This is why we stick to Eq. (1.28).

Another feature of the Berggren basis are complex observables. The mean value of an
observable O is complex and is given by:

⟨O⟩ = Re [O] + iIm [O] , (1.38)

where the real part is the measured mean value of this observable and the imaginary part
can be interpreted as its uncertainty [29–31, 59] coming from the interference between the
continuum states and resonance states.

Lastly, even though the aforementioned completeness relations work for a basis {uℓ}
generated by a real potential, they also work for eigenfunctions generated by complex
potentials [15]. This can be proven by using a potential:

V (λ, r) = VR(r) + λVI(r) , (1.39)

where λ ∈ C. If λ is real then the potential is real. One can make it complex by an
analytic continuation such that λ = i. This has to be done cautiously because if one
has a spectral singularity (a resonance on the real axis) [60], then nonanalytic points are
generated and it is not possible to use a real energy contour. Nevertheless, this is easily
avoided by deforming the contour and the spectral singularities can be normalized with
complex scaling.

Another case when the analytic continuation does not work for complex potentials cor-
responds to the exceptional point (EP) [10, 61–64]. EPs appear when two resonances with
the same quantum numbers coincide in the complex k-plane. This makes the Berggren
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basis incomplete. However one can regain completeness by adding the derivative with
respect to k of the wave functions associated to the exceptional states [65]. The latter
happens because un(r) and dun(r)/dk are linearly independent.

1.4.1 Normalization and regularization of the Berggren basis
Due to the complex nature of the momentum k, the magnitude of the resonance states
oscillations increase exponentially in space. This poses a problem when trying to compute
observables and also in the normalization of the basis. Integrals that appear in the
calculations for resonant and scattering states have to be regularized. One method of
regularization has been proposed by Zel’dovich [42]. This method consisted in adding an
exponential factor with a limit:

Reg ∫
∞

0
dr uf(r)Ô(r)ui(r) = lim

ϵ→0 ∫
∞

0
dr e−ϵr2

uf(r)Ô(r)ui(r) , (1.40)

where Ô is an arbitrary operator. This method though formally correct, is not useful in
practical applications as the convergence requires very large computational resources to
obtain stable results [66]. Nevertheless, this allowed Berggren [29] to normalize the Gamow
states. A more convenient approach, called external complex scaling, has been proposed
by Gyarmati and Vertse [66]. This method relies on the wave functions being regular in
the first quadrant of the complex plane. By using the Cauchy Theorem, integrating in
the contour given by:

z =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r R ≤ r < ∞ on C1
∣z∣eiα ∣z∣ → ∞ 0 ≤ α ≤ ϕ on C2

R + ρeiϕ arctan γ
κ < ϕ <

1
2π 0 ≤ ρ < ∞ on C3

(1.41)

(see Fig. 1.3) yields zero. Thus, for a radius larger than a given rotation point R we can
do a change of the variable.

Since the integrands are regular, the contour integral is zero. This allows for a substi-
tution r → R + ρeiθ, where θ is an angle that is chosen to ensure convergence [13]. In this
way, we are able to construct numerically a Berggren basis of normalized single-particle
eigenstates. Following Kukulin et al. [67], we introduce the functional on (−∞, Vlim):

F (V0) =
Oij

NiNf

, (1.42)

which is just a matrix element where the Gamow vectors are assumed to be not normalized.
Using the complex rotation method, the normalization factors are:

N2
i = ∫

∞

0
dr u2

i (r) + ∫
∞

0
dρu2

i (R + ρeiϕ)eiϕ , (1.43)

and the not normalized matrix elements are:

Oij = ∫
R

0
dr uf(r)Ô(r)ui(r) + ∫

∞

0
dρuf(R + ρeiϕ)Ô(R + ρeiϕ)ui(R + ρeiϕ)eiϕ . (1.44)

In Ref. [67], the analytic continuation of Eq. (1.42) was done using Padé approximants.
In contrast, the complex rotation method allows the calculation for potentials with V0 >
Vlim. Regardless if ui and uf are bound or resonance states, one defines the following angles
αi, αf from the momenta ki = ∣ki∣eiαi and kf = ∣kf ∣eiαf . One also knows the asymptotics
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Figure 1.3: The integration path in the complex plane corresponding to the complex
rotation technique at a point R with an angle θ. R is large compared to the nuclear
radius which means that the nuclear potential is negligible for r > R. The blue lines
indicate the integration done in practice that is equivalent to integrating on the real axis.

of the radial wave functions u(r) → a(r)eikr, where a(r) is an increasing function of
polynomial order4. Hence, the second integrand in Eq. (1.44) becomes

af(R + ρeiϕ)Ô(R + ρeiϕ)ai(R + ρeiϕ)ei(ki+kf )Reiϕei(ki+kf )ρeiϕ

. (1.45)

Assuming that Ô is also a function of polynomial order, the only term that can make the
integrand equal to zero at the limit ρ → ∞ is the term ei(ki+kf )ρeiϕ . In particular, if we
separate the argument of the exponential in real and imaginary parts, only the imaginary
part leads to the exponential decay. We have the following inequalities that would allow
for convergence

Im [(ki + kf)ρeiϕ] > 0
Im [(ki + kf)eiϕ] > 0

Im [∣ki∣ei(ϕ−αi) + ∣kf ∣ei(ϕ−αf )] > 0 .
(1.46)

Relations (1.46) mean that we need to rotate the momenta of resonances in such a way
that the sum of both imaginary parts are positive. Additionally, since every other part
of the integrand is of polynomial order, the exponential decay will make the integral
converge. Therefore, all integrals are properly regularized. The result is independent of
the choice of ϕ, however it must follow the condition:

2ϕ > αf + αi . (1.47)

Lastly, this method can be used also for the regularization of scattering states but
one must consider separately the incoming and outgoing parts of the wavefunction u(r).
Contrary to resonances and bound states, the presence of both incoming and outgoing
parts in the same integral does not allow to find a unique path in the complex plane
along which the integrand decreases exponentially. Hence, the one-body matrix element

4By polynomial order we mean that the function increases or decreases as fast as a polynomial function.
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for scattering states is:

F (kf) =∫
R

0
dr [uf(r)V (r)ui(r)] +AfAiF++(kf)

+AfBiF+−(kf) +BfAiF−+(kf) +BfBiF−−(kf) , (1.48)

where

• uf(r) = Afu+f(r) +Bfu−f(r)

• ui(r) = Aiu+f(r)+Biu−f(r), where ki in F (kf) is fixed and ui(r) can be either bound,
resonance, or scattering state

• Fsf ,si
= ∫

∞
0 dxu

sf

f (R + x)Ô(R + x)u
si
i (R + x) with sf , si ∈ {+,−}.

Additionally, the normalization of scattering states cannot be done in the traditional sense
because the integrals diverge. Therefore the normalization to the Dirac delta function is
used:

∫
∞

0
dr u(ka, r)u(kb, r) = δ(ka − kb) , (1.49)

which leads to the normalization condition

2πC+C− = 1, ∀uk . (1.50)

1.4.2 Numerical calculation of Berggren basis states
In this subsection, we shall discuss how to generate a Berggren basis. The outline can be
found in Ref. [15] and here we develop from there. There are two problems: first we have
to be able to calculate the wave functions u for any k ∈ C, and second we would like to
find where the poles of the S-matrix are, otherwise we would never be able to compute
bound and resonance wave functions. From Eq. (1.21), we need to find the zeroes of
J+(k).

We need both boundary conditions in Eq. (1.17). Next we choose a matching radius
Rm which is of the order of the nuclear interaction range. Typically if one uses a Woods-
Saxon potential, one would set Rm = R0. This is what is done in GSM calculations.

We start by integrating in the interval r ∈ [ri,Rm] using the first boundary condition
in (1.17) where ri is a very small initial radius. This allows to obtain u(Rm, k). Next,
we integrate in the interval r ∈ [Rm,Rmax] using the second boundary condition in (1.17)
where Rmax is big enough so that the nuclear interaction is negligible. This allows to
obtain C+u+ℓ,η(kRm) +C−u−ℓ,η(kRm). Finally, we end up with the system of equations to
solve for C+ and C−:

C+u+ℓ,η(kRm) +C−u−ℓ,η(kRm) = u(Rm, k)
C+u′+ℓ,η(kRm) +C−u′−ℓ,η(kRm) = u′(Rm, k) .

(1.51)

This is true for both scattering and resonant states. However, for resonant states C− = 0
and this is what will allow us to find the poles of the S-matrix.

To find the poles of the S-matrix, we use the following algorithm:

1. We start with an initial guess kstart which can be from the diagonalization of the
potential with a HO basis or may as well be obtained with a bisection method if it
is loosely bound, antibound or resonance state.
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2. We obtain the wave function for r ∈ [ri,Rm], integrate it in the interval r ∈ [Rm,Rmax]
where Rmax >> Rm, and also set the constants C+ = 1 and C− = 0. C+ is set to unity
for convenience, whereas C− is zero from the definition of resonant states with out-
going asymptotics.

3. We calculate the Jost function J+(k). We find the zeroes of this function by means
of a Newton-Raphson method calculating new wave functions until convergence.

Afterwards, we just have to normalize the basis as it was discussed in Sect. 1.4.1. Similar
figures to Fig. 1.1 are usually shown in the literature to showcase the different S-matrix
poles, however, it is quite different for practical cases.

(a) (b)

(c) (d)

Figure 1.4: Modulus of J+ for different ℓj partial waves in the complex k plane for neutrons.
Each calculation was done with the Woods-Saxon parameters (V0,R0,d,VSO) and all were
done for an A=4 core with the exception of (b) which is an A=16 core. (a) p3/2 (45 MeV,
2 fm, 0.65 fm, 3.8 MeV), (b) d5/2 (55 MeV, 2 fm, 0.65 fm, 3.8 MeV) (c) s1/2 (53 MeV,
2.2 fm, 0.65 fm, 0 MeV), (d) s1/2 (55 MeV, 2 fm, 0.65 fm, 0 MeV). Some values were not
included in the figures as they were very large.

Fig. 1.4 shows examples where this algorithm can be employed. Here, we have the
logarithm of the modulus of the Jost function. Capturing and decaying resonances mirror
each other. This is a consequence of Eq. (1.2) being symmetric under complex conjugation
of k. Figs. 1.4a and 1.4b are typical cases that come up in calculations with 4He and
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16O cores. A particular difference between them is that Fig. 1.4b has an antibound state.
However when one does a GSM calculation one would select the decaying resonance.

On the other hand, Figs. 1.4c and 1.4d showcases particular issues that may arise in
GSM calculations and in fact will be mentioned again in Chap. 5. These would be the
Jost functions for a 4He core calculation. The bound state will typically correspond to
the frozen core 0s1/2 shell. Hence, calculations with a 4He core are generally stable as
long as we include only the p-shell. However if one would like to do a 4He calculation in
the psd-shell, one would have to deal with the antibound state in Fig. 1.4c.

Lastly, Figs. 1.4c and 1.4d show how changing the Woods-Saxon parameters change
the nature of the S-matrix. For example, the antibound state can become a broad reso-
nance. Moreover, the further one goes away from the real axis, the bigger are the values
of the Jost functions. This can lead to numerical inaccuracies and tells us that one must
not choose a contour L+ that extends too deep into the complex plane for the scattering
states.

It may happen that the potential needed for a particular calculation gives very un-
bound poles of the S-matrix. A way to circumvent the numerical limitations is by applying
the Berggren completeness relation. One typical application consists of expanding high
energy, unbound single-particle states in a more stable basis generated by a binding po-
tential [13]. Such an expansion of a one-body state uWS in a basis generated by another
potential {uB} is:

uW S(r) = ∑
i

cki
uB(ki, r) + ∫

L+
dk c(k)uB(k, r) , (1.52)

where, due to the basis being normalized, the overlap amplitudes follow the condition:

∑
i

c2
ki
+ ∫

L+
dk c2(k) = 1 . (1.53)

For certain applications it is useful to use the properties of a HO state. For ex-
ample, one can expand matrix elements in Berggren basis using the HO basis. This is
particularly useful when calculating two-body matrix elements. Another example is the
transformation from relative to laboratory coordinates using a Talmi-Brody-Moshinsky
[68, 69] transformation. This transformation is straightforward in the HO basis, however
it is computationally demanding in any other basis. This difficulty has been circumvented
in Berggren basis by expanding the two-body matrix elements with a HO basis truncated
to Nmax:

⟨ab∣V̂ ∣cd⟩ =
Nmax

∑
αβγδ

⟨αβ∣V̂ ∣γδ⟩ ⟨a∣α⟩ ⟨b∣β⟩ ⟨c∣δ⟩ ⟨d∣δ⟩ , (1.54)

where the Latin letters correspond to the Berggren basis, the Greek letters to the HO
basis and V̂ is a generic interaction [70]. This method is not limited to the Hamiltonian
matrix elements but can also be conveniently used for the computation of electromagnetic
operators.

1.5 Rigged Hilbert space
We began the discussion of the previous section by defining a completeness relation for a
space that has only discrete states and then proceeded to derive the Berggren complete-
ness relation and discuss other overcompleteness relations which are comprised of both
a discrete part and a continous part. In standard quantum mechanics, one would work
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with the former as those eigenfunctions would belong to the Hilbert space. We define the
Hilbert space for three dimensions as the space of square integrable functions:

L2 = {f(r)∣∫
R3
dr∣f(r)∣2 < ∞, r ∈ R3} . (1.55)

One can easily prove that a system with a continuous spectrum does not fit in the Hilbert
space. Let us take as example the free particle case5 of Eq. (1.2) with angular momentum
l = 0 whose solution is:

Ψfree(r) = Aeikr, (1.56)

where A is a normalization constant and its norm is:

∣∣Ψfree(r)∣∣2 = ∫
∞

0
dr∣Ψfree(r)∣2 = ∫

∞

0
drA2 = ∞ . (1.57)

Hence, Ψfree is not in the Hilbert space.
One can make sense of these cases and also of Dirac’s bra-ket notation in the RHS [32–

34, 71, 72]. RHS is neither an extension nor an interpretation of the physical principles
of quantum mechanics [34]. The main idea of the RHS is to include distributions in the
theory in a consistent way. Without too many details6, a RHS or Banach-Gelfand triple
[43] is a triad of spaces:

Φ ⊂ H ⊂Φ×, (1.58)

where H is a Hilbert space, Φ is a dense subspace of H and Φ× is the space of antilinear
functionals over Φ. Every RHS (1.58) has associated another RHS:

Φ ⊂ H ⊂Φ′, (1.59)

where Φ′ contains instead the linear functionals over Φ. Mathematically speaking, Φ
can be interpreted as the space of test functions while Φ× the space of distributions. On
the other hand, physically, Φ× and Φ′ will include kets and bras, respectively, that are
eigenstates which are not necesarilly normalizable in the traditional sense. This is very
important, as it will give a raison d’être to those wave functions that are not square
integrable like the Dirac delta [78, 79].

The construction of the space Φ has been discussed for example in Refs. [73, 74] for
the Lippmann–Schwinger bras and kets; in Ref. [75] for the Gamow states; and in Ref.
[34] for the one-dimensional case with a potential barrier. More interestingly, we can
define a ket in the context of RHS. Given a function f(r) and a space of test functions Φ,
the antilinear functional F that corresponds to the functions f(r) in an integral operator
whose kernel is precisely f(r):

F (φ) = ∫
∞

0
drφ∗(r)f(r) . (1.60)

Rewriting (1.60) in Dirac’s notation, it becomes:

⟨φ∣F ⟩ = ∫
∞

0
dr ⟨φ∣x⟩ ⟨x∣f⟩ . (1.61)

5This may seem like a one dimensional case, however the other two dimensions are within the angular
part.

6See for example Refs. [32–34, 43, 71–77] for a more rigorous definition.
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Let us consider the position Q̂ and momentum P̂ operator which have continuous
spectra:

Q̂ ∣r⟩ = r ∣r⟩ , ∣∣r∣∣2 < ∞
P̂ ∣p⟩ = p ∣p⟩ , ∣∣p∣∣2 < ∞ , (1.62)

whose wave functions:

⟨r′∣r⟩ =δ(r′ − r)

⟨r∣p⟩ = 1
(2πh̵)3/2 e

i
h̵

p⋅r , (1.63)

are not square integrable, hence they do not belong to the Hilbert space. However, if we
choose the functional F in Eq. (1.61) to be the position and momentum:

⟨φ∣r⟩ ≡∫
∞

0
drφ∗(r)δ(r′ − r) ≡ ∫

∞

0
dr ⟨φ∣r⟩ ⟨r′∣r⟩ (1.64)

⟨φ∣p⟩ ≡∫
∞

0
drφ∗(r) 1

(2πh̵)3/2 e
i
h̵

p⋅r ≡ ∫
∞

0
dr ⟨φ∣r⟩ ⟨r∣p⟩ , (1.65)

then the fact that the eigenfunctions with continuous spectrum are distributions and
are well defined in RHS becomes explicit. Moreover, the definition of a bra can be done
analogously to the ket except that they will be defined in a linear space. The completeness
relation (1.28) has both a discrete and a continuous part, therefore we need a formalism
that allows to properly define normalization for both. Normalization for eigenfunctions
with a continuous spectrum is done via the Dirac delta normalization [34].

In conclusion, the RHS allows for the natural inclusion of resonances and non-resonant
continuum states in the formulation of quantum mechanics. Here we can include a con-
tinuous spectrum part in the completeness relations, unlike standard quantum mechanics
that do not allow this because of the requirements of the Hilbert space. Moreover, the nor-
malization of scattering states also makes sense as concepts such as delta normalization
make sense within the RHS framework. Thus, making the RHS ideal as the theoreti-
cal framework to include the Berggren basis completeness relation (1.28) into quantum
mechanics.



CHAPTER 2

Closed versus open quantum systems

Across different fields in physics, the definition of an OQS varies. In particular, in nuclear
physics an OQS is a system A that is coupled to system B, where A is a studied microscopic
localized system and B is the environment. In contrast, a CQS is the system A that
is decoupled from the environment B. Although many applications exist for an OQS
description in other fields like e.g. nanoscience and mesoscopic physics, the focus of this
work is in its applications to the atomic nucleus.

In the standard SM [1, 2], one describes the nucleus as completely isolated from the
rest of the universe (environment). This approximation is satisfactory for bound states
in particle stable nuclei because they are almost decoupled from the environment, as
they do not decay and their separation energies are high. However, if we move towards
the drip lines far from the valley of stability we encounter a different situation. In this
region, we have to deal with weakly bound or unbound nuclei, hence a CQS treatment
would be insufficient as the environment of decay channels and scattering states play here
an important role. One might argue that it could be possible to treat the continuum
perturbatively. However, Fano realized that the perturbative approach is inadequate
[80]. Indeed, beyond the drip lines or above the lowest energy reaction threshold, nuclei
may decay via the particle emission. This means that the decay channels have to be
coupled somehow to the bound and resonance states. Moreover, a SM description of
resonances is impossible as it yields real energies (no widths and no information about
emission thresholds) and/or no information about scattering (no S-matrix therefore no
phase shifts, hence no widths) processes.

In this chapter, we describe some many-body approaches for the description of the
atomic nucleus both in CQS and OQS frameworks with the aim to draw comparisons with
the GSM in Chaps. 3 and 4. We start first with the SM described originally by Goeppert-
Meyer [1] and Haxel, Jensen and Suess [2]. Then we move to the ab initio method NCSM
[81–83] that treats all particles in the A-body system as active. Afterwards, we move to
approaches that include some continuum effects such as the NCSM with RGM [18, 19]
approach that treats the atomic nucleus as a pair of clusters and the NCSMC [19, 20].
We end this chapter with the CSM [5, 6] and its recent realization the SMEC [10, 84–89]
that are based on the Feshbach projection formalism [3, 4] to define the environment.

21
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2.1 Shell Model
The SM is perhaps the most emblematic tool for studying nuclear structure. In its simplest
version, the SM was used for explaining the magic numbers of nucleons in a one-body
picture. The principal innovation was a spin-orbit coupling that allowed grouping shells
in such a way that the magic numbers appeared naturally. The skeleton of the SM is
provided by single-particle eigenstates. Each state is labelled by quantum numbers like
angular momentum and parity. Improvement of the model consisted of using different
two-body interactions in valence space. On one hand, we can find interactions that fit the
one- and two-body matrix elements like for example the so-called KB3G interaction [90]
and on the other hand, interactions that focus on symmetries like Elliot’s SU(3) model
[91] and Dufour and Zuker multipole Hamiltonian [92].

Figure 2.1: Example of a single particle spectra for protons and neutrons including the
degeneracies of the HO and the spin-orbit coupling cases. Taken from Ref. [93].

The basic idea of the SM is assuming an inert spherical core consisting of fully occupied
orbitals. This inert core is ’surrounded’ by valence nucleons that can be in any shell in
the valence space and may not be outside of this valence space. The first approximation is
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that the nucleons in the inert core exert an effective one-body interaction on the valence
nucleons. The other is the choice of the nucleon-nucleon interaction.

The A-nucleon Hamiltonian of the SM, restricted to two-body interactions is:

H = ∑
i∈val

Ti + ∑
i<j∈val

Vij , (2.1)

where Ti is the kinetic term and Vij is the two-body interaction term. Since in SM we
assume an inert core that exerts an effective mean field for the valence particles, we can
express Eq. (2.1) as:

H = ∑
i∈val
[Ti +U(ri)] + [ ∑

i<j∈val
Vij − ∑

i∈val
U(ri)]

= H0 +Hres = ∑
i∈val

h0(i) +Hres ,
(2.2)

where H0 describes the motion of the A nucleons as if they were independent from each
other, Hres is the so-called residual interaction which generates configuration mixing and
h0(i) is the single particle Hamiltonian for particle i. H0 term generates the single particle
basis that is later used to build the Slater determinants of the A-nucleon wave function.
An example of U(ri) can be a HO potential with a spin-orbit coupling term:

U(ri) =
1
2mω

2r2
i + VSO (ℓ⃗ ⋅ s⃗) , (2.3)

where m is the particle mass and ℓ⃗, s⃗ are the angular momentum and spin, respectively.
Fig. 2.1 shows the splitting of the HO degeneracy by a spin-orbit coupling and how this
splitting generates the correct magic numbers.

The SM wave function ∣Ψ⟩ that describes a nucleus is a linear combination of Slater
determinants ∣Φa⟩ such as:

∣Ψ⟩ = ∑
a

ba ∣Φa⟩ , (2.4)

where ba is the amplitude of each Slater determinant. The Slater determinants ∣Φa⟩ are
built using the single particle basis eigenstates ∣ϕi⟩ generated by H0. We should also
remember that for a chosen inert core and valence space, we have an effective interaction
Heff and, hence, effective wave functions ∣Ψeff⟩. This means that we cannot use the same
interaction in different model spaces.

2.1.1 Diagonalizing the Shell Model interaction: the Lanczos
method

The Lanczos method [94] is the numerical method of choice to solve the SM [95]. The
idea of this method is to express the interaction first as a tridiagonal matrix and then
diagonalize. The aforementioned matrix arises from the orthogonalization of the states
Heff∣1⟩, where the Hamiltonian Heff is applied repeatedly on a basis state ∣1⟩, called pivot.
This state is a linear combination of Slater determinants. The first step of the Lanczos
algorithm is:

Heff ∣1⟩ = E11 ∣1⟩ +E12 ∣2⟩ , (2.5)

where Eij = ⟨i∣Heff ∣j⟩. E12 can be obtained by applying ⟨2∣ to:

E12 ∣2⟩ =Heff ∣1⟩ −E11 ∣1⟩ = (Heff −E11) ∣1⟩ . (2.6)



24 Closed versus open quantum systems

The next step is:
Heff ∣2⟩ = E21 ∣1⟩ +E22 ∣2⟩ +E23 ∣3⟩ , (2.7)

where the hermicity of the Hamiltonian implies E12 = E21, E22 = ⟨2∣Heff ∣2⟩ and E23 is
obtained by normalization:

E23 ∣3⟩ = (Heff −E22) ∣2⟩ −E21 ∣1⟩ . (2.8)

Finally, we get the recursion relation:

Heff ∣N⟩ = ENN−1 ∣N − 1⟩ +ENN ∣N⟩ +ENN+1 ∣N + 1⟩ , (2.9)

where ENN+1 ∣N + 1⟩ = (H −ENN) ∣N⟩. These leads to a tridiagonal matrix:

⎛
⎜⎜⎜⎜⎜⎜
⎝

E11 E12 0 0 0 0 ⋯
E12 E22 E23 0 0 0 ⋯
0 E23 E33 E34 0 0 ⋯
0 0 E34 E44 E45 0 ⋯
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

(2.10)

This algorithm has variational properties and the convergence to the lowest eigenvalues
is very efficient [96]. However, it slows down if more eigenvalues are calculated since the
more eigenvalues we have the greater the number of steps. In the n-th step there is an
n × n matrix to be diagonalized, leading to n eigenvectors, therefore each step becomes
increasingly demanding. Eventually, the energy of the first m eigenvectors converges and
these are the ones that are kept [95].

2.2 No-core Shell Model
The NCSM is a many-body approach for the description of the atomic nucleus. This
method was first used by Navrátil and Barrett [81]. It differs from a standard SM as
it does not assume a pre-existing frozen core, instead it treats all A nucleons as active.
In this model, one considers an A-body system of point-like non-relativistic nucleons
that interact by a realistic interaction that may be NN or NN + NNN. Therefore the
Hamiltonian is:

H = 1
A
∑
i<j

(pi − pf)2
2m +∑

i<j
VNN,ij + ∑

i<j<k
VNNN,ijk . (2.11)

The NCSM uses a HO basis because it allows for the use of second quantization
representation while conserving translational invariance. The many-body wave function
∣ΨJπT

A ⟩ is therefore expanded over a complete set of antisymmetric A-nucleon HO basis
states ∣ANiJπT ⟩ characterized by a HO length b that contain up to Nmax HO excitation
above the lowest possible configuration:

∣ΨJπT
A ⟩ =

Nmax

∑
N

∑
α

cNα ∣ANαJπT ⟩ , (2.12)

where N is the total number of HO excitation above the minimum configuration, Jπ is the
total angular momentum and parity, T is the isospin and α contains any other quantum
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number associated to the HO state. Moreover, Jacobi coordinates are used because the
NN and NNN interactions depend on relative coordinates and/or momenta:

ξ0 =
√

1
A
[r1 + r2 +⋯ + rA]

ξ1 =
√

1
2[r1 − r2]

ξ2 =
√

2
3 [

1
2(r1 + r2) − r3]

⋮

ξA−1 =
√

A − 1
A
[ 1
A − 1(r1 + r2 +⋯ + rA−1) − rA]

The antisymmetrization procedure of the Jacobi-coordinate HO basis is discussed in Refs.
[81–83].

As the number of particles increase, so does the computational resources necessary to
antisymmetrize the wave function. A generalization to systems with A ≥ 3 nucleons can
be done with Slater determinants [97, 98]. The Slater determinant basis is constructed
from single nucleon HO wave functions such as:

φnℓjmmt(r⃗, σ, τ ; b) = Rnℓ(r; b) [Y ℓ(r̂)χ(σ)]j
m
χ(τ)mt , (2.13)

where Rnℓ are the radial HO wave function, b the HO length and χ are spinors for spin
σ and isospin τ . The wave functions in Eq. (2.13) are eigenstates of a translationally
invariant Hamiltonian that can be factorized into a relative part and a CM part. Thus,
the HO many-body expansion of the wave function ∣ΨJπT

A ⟩
SD

in the Cartesian coordinate
Slater determinant basis is:

⟨r1...rA∣ΨJπT
A ⟩SD =

Nmax

∑
N=0
∑
α

c
(SD)
Nα ⟨r1...rA∣ΦJπT

A ⟩SD , (2.14)

where ∣ΦJπT
A ⟩

SD
corresponds to a HO many-body state. NCSM calculations require a

renormalization procedure to facilitate convergence of calculations. Such methods are the
Lee-Suzuki or Okubo-Lee-Suzuki schemes [99–101] and the Similarity Renormalization
Group [102]. More details can be found for example in Ref. [97].

One of the main difficulties of the NCSM is the rapid increase of the model space as
one includes more particles in the calculations. An amelioration to the model has been
proposed with the symmetry adapted NCSM. This model reduces the basis by considering
only the physically relevant elements considering the SU(3) ∈ SO(3) subgroup chain[103,
104] or the symplectic SP(3,R) group [105, 106]. Another approaches that allow for all
nucleons to be active are the Monte Carlo Shell Model [107–109] and the Green’s Function
Monte Carlo approach [110, 111].

2.2.1 No-core Shell Model and continuum
Although originally developed for the study of nuclear structure, the NCSM has been
extended to include nuclear reactions. The first extension came by combining the NCSM
with the RGM [112–116]. The basic idea of the RGM is to describe the nucleus as a
collection of clusters rather than a single entity. This allows for the inclusion of cluster
effects for example.
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In NCSM/RGM [18, 19], the wave function for a scattering process involving a pair
of clusters can be cast as:

∣ΨJπT ⟩ = ∑
c
∫ dr r2u

JπT
c (r)
r
Âc ∣ΦJπT

c r ⟩ , (2.15)

through an expansion over binary-cluster channel states of total angular momentum J ,
parity π and isospin T . This binary-cluster channel states are:

∣ΦJπT
c r ⟩ = [(∣A − aα1I

π1
1 T1⟩ ⊗ ∣aα2I

π2
2 T2⟩)sT

Yℓ(r̂A−a,a)]
JπT δ(r − rA−a,a)

rrA−a,a

, (2.16)

where clusters 1 and 2 have A−a and a nucleons respectively, angular momentum Ii, parity
πi and additional quantum numbers αi for i = 1,2. The symbols Yℓ and δ correspond to
a spherical harmonic and Dirac delta, respectively. The CM of clusters are separated by
the relative radius:

rA−a,a = rA−a,ar̂A−a,a =
1

A − a

A−a

∑
i=1

ri −
1
a

A

∑
j=A−a+1

rj , (2.17)

where {ri, i = 1,2, ...,A} are the single particle coordinates. Finally, the channel index c
includes the following quantum numbers c = {A − aα1Iπ

1 T1;aα2Iπ
2 T2}.

The goal of the NCSM/RGM is to solve the Schrödinger equation spanned by the
basis states (2.16):

∑
c
∫ dr r2 [HJπT

c′c (r′, r) −ENJπT
c′c (r′, r)]

uJπT
c (r)
r

r2dr = 0 , (2.18)

where

HJπT
c′c (r′, r) = ⟨ΦJπT

c′ r′ ∣ÂcHÂc∣ΦJπT
c r ⟩ (2.19)

NJπT
c′c (r′, r) = ⟨ΦJπT

c′ r′ ∣ÂcÂc∣ΦJπT
c r ⟩ , (2.20)

are named the Hamiltonian and norm kernels, respectively, and H is the intrinsic A-
nucleon Hamiltonian. Once the relative wave functions uJπT

c (r) are determined, one can
extract the S-matrix with the asymptotic form for large distances:

uJπT
c (r) = i2v

−1/2
c [δciH

−
ℓ,η(κcr) − SJπT

ci H+ℓ,η(κcr)] , (2.21)

where SJπT
ci is the S-matrix for a particular entrance channel i and exit channel c and vc

is the velocity of the projectile.
Another ab initio approach is the NCSMC [20–22]. This method assumes that the

many-body wave function includes both an A-body square-integrable (from NCSM) and
a (A − a, a) binary cluster continuous basis (from NCSM/RGM) as:

∣ΨJπT
A ⟩ = ∑

λ

cλ ∣AλJπT ⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NCSM

+∑
c
∫ dr r2u

JπT
c (r)
r
Âc ∣ΦJπT

c r ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

NCSM/RGM

. (2.22)

The NCSM sector of Eq. (2.22) describes the short to medium range A-body structures
and the NCSM/RGM sector provides the capability of the theory to handle scattering
physics. Thus, Eq. (2.22) is capable of describing both bound and unbound states. The
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quantities to determine are the discrete cλ and the continuous uJπT
c (r). For this end, one

solves the coupled equations

[ HNCSM h̄

h̄ H ][
c
u
] = E [ 1 ḡ

ḡ 1 ] [
c
u
] , (2.23)

where HNCSM is the NCSM Hamiltonian, H̄ is the NCSM/RGM Hamiltonian, and h̄ and
ḡ are related to the Hamiltonian and norm kernels from the NCSM/RGM formalism,
respectively.

Details of the NCSM/RGM and the NCSMC formalisms are out of the scope of this
work. More details can be found for example in Refs. [19, 20]. Moreover, these ab initio
approaches obtain the widths and any other scattering information from the phase shifts,
something that, as will be explained in Chaps. 3 and 4, is done differently in the GSM.

2.3 Continuum Shell Model
The CSM describes the nucleus as an OQS by coupling a continuum space to the SM
space via the Feshbach projection formalism [3, 4]. As described in Refs. [5, 6, 10], one
can define a set of two Schrödinger equations:

[HSM −ESM
i ] ∣ϕSM

i ⟩ = 0 (2.24)

and
∑
c′
[Hcc′ −E] ∣ξc′(+)

E ⟩ = 0 , (2.25)

where HSM is the SM Hamiltonian and Hcc′ = H0 + V c
res is the standard Hamiltonian of

coupled-channel calculations. In its simplest version, the main idea of the CSM is to
partition the A-nucleus wave function into an A − 1 part ∣ϕA−1

i ⟩ given by Eq. (2.24),
and an unbound particle state ∣ζc

E⟩ whose relative motion to the residual (A − 1)-nucleus
determines the channel c and is given by Eq. (2.25).

The basic idea of the Feshbach projection formalism [3, 4] is to divide the total space
into two subspaces such that:

Q̂ + P̂ = 1 , (2.26)

where Q̂ and P̂ are projection operators. In the CSM one defines them as:

Q̂ =
N

∑
i=1
∣ϕSM

i ⟩ ⟨ϕSM
i ∣ , P̂ =

Λ
∑
c=1
∫
∞

ϵc

dE ∣ξc
E⟩ ⟨ξc

E ∣ , (2.27)

where N and Λ are the number of shell model states and number of channels, respectively.
Moreover, the wave function ∣Ψc

E⟩ of the whole system has its own Schrödinger equation:

[H −E] ∣Ψc
E⟩ = 0 , (2.28)

where the Hamiltonian follows

H = (Q̂ + P̂ )H(Q̂ + P̂ )
= Q̂HQ̂ + P̂HP̂ + Q̂HP̂ + P̂HQ̂
=HQQ +HP P +HQP +HP Q , (2.29)
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where we use the convention X̂HŶ ≡ HXY . A third equation can be obtained by solving
the coupled-channel equations with a source term:

∣ω(+)i ⟩ = G
(+)
P HP Q ∣ϕSM

j ⟩ , (2.30)

where
G
(+)
P = P̂ 1

E −HP P

P̂ (2.31)

is the Green’s function in the P subspace. ∣ω(+)i ⟩ can be understood as the continuation
of ∣ϕSM

i ⟩ into the scattering continuum.
Using the three sets of wave functions {∣ϕSM

i ⟩}, {∣ξc
E⟩} and {∣ω(+)i ⟩}, one can obtain

the solution of Eq. (2.28):

∣Ψc
E⟩ = ∣ξc

E⟩ +∑
ij

(∣ϕSM
i ⟩ + ∣ω

(+)
i ⟩) ⟨ϕSM

i ∣(E −HQQ(E))−1∣ϕSM
i ⟩ ⟨ϕSM

j ∣HQP ∣ξc
E⟩ , (2.32)

where E is the total energy, and HQQ(E) is the effective Hamiltonian in Q-space given
by:

HQQ(E) =HQQ +HQPG
(+)
P (E)HP Q . (2.33)

The effective Hamiltonian HQQ(E) is Hermitian for energies below the particle emission
threshold and non-Hermitian above the threshold. The effective Hamiltonian can be
interpreted as the SM Hamiltonian with a perturbation HQPG

(+)
P (E)HP Q that represents

the correction coming from the coupling to the continuum. Moreover, the wave function
Ψc

E contains two terms that describe the direct reaction part and the resonance reaction
part.

We can describe bound and resonance states via the effective Hamiltonian in Q-space.
The A-nucleon system will have a set of discrete states ∣Ψn⟩ following the Schrödinger
equation (H −E) ∣Ψ⟩ = 0 and by using the projectors Q̂ and P̂ we can separate the wave
functions as ∣Ψn⟩ = ∣ΨQ⟩ + ∣ΨP ⟩. Indeed, the states ∣ΨQ⟩ are eigenstates of the effective
Hamiltonian:

[E −HQQ(E)] ∣ΨQ⟩ = 0 , (2.34)
with complex eigenvalues En(E) − iΓn(E)/2. Now we define the extension of the wave
function in Q-space into P -space as:

∣ω̃(+)n ⟩ = G(+)P (E)HP Q ∣ΨQ⟩ . (2.35)

Hence, an eigenstate n of the A-nucleon system will be:

∣Ω̃(+)n ⟩ = ∣Ψn
Q⟩ +G

(+)
P (E)HP Q ∣ΨQ⟩ = ∣Ψn

Q⟩ + ∣ω̃
(+)
n ⟩ . (2.36)

Additionally, one can expand the states ∣Ψn
Q⟩ and ∣ω̃(+)n ⟩ using the basis sets {∣ϕSM

i ⟩} and
∣ω(+)n ⟩, and define their completeness relations, respectively as:

∣Ψn
Q⟩ = ∑

i

αn
i ∣ϕSM

i ⟩ , ∑
n

∣Ψn
Q⟩ ⟨Ψn

Q∣ (2.37)

∣ω̃(+)n ⟩ = ∑
i

αn
i ∣ω

(+)
n ⟩ , ∑

n

∣ω̃(+)n ⟩ ⟨ω̃(+)n ∣ , (2.38)

where αi are normalization constants. Finally, one can write the solution as:

∣Ψc⟩ = ∣ξc⟩ +∑
n

∣Ω̃+n⟩
γn

E − (En(E) − iΓn(E)
2 )

, (2.39)
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where
γn ≡ ⟨Ψn

Q∣HQP ∣ξc⟩ (2.40)

represents the coupling between pure scattering states in P -space and pure SM states in
Q-space. The states ∣Ψc⟩ and ∣ ˜Ω(+)n ⟩ are analogous to each other. The former consists of a
scattering state corrected for the influence of resonant states whereas the latter consists
of a resonant state corrected for the influence of the continuum.

In the CSM, given an entrance channel c0 and an exit channel c, the S-matrix is given
by:

Scc0 = S
(0)
cc0 − i exp [i(δ0

c + δ0
c0)]∑

n

γ̃n
c γ̃

n
c0

E − (En(E) − iΓn(E)
2 )

, (2.41)

where S(0)cc0 is the non-resonant part of the S-matrix, δ0
c are the phase shifts associated to

a scattering channel c and γ̃n
c = ⟨ξc∣HP Q∣Ψn

Q⟩.
The CSM allows for the unification of nuclear structure and reactions as we can use

it to calculate both spectra and cross-sections with the same Hamiltonian and using the
same many-body framework. The cross-section describing the scattering process involving
the incoming/entrance channel c0 and outgoing/exit channel c is given by

dσ

dΩ(c0 → c) = π

k2
c0

RRRRRRRRRRR
∑

ℓ,ℓ′,m′
iℓ−ℓ′
√

2ℓ + 1Y m′
ℓ′ (θ, ϕ)(Scc0 − δcc0)

RRRRRRRRRRR

2

, (2.42)

where Y m
ℓ are spherical harmonics and kc0 is the momentum of the entrance channel.

2.4 Shell Model Embedded in the Continuum
So far we have not discussed the Hamiltonian H used in the CSM. Generally, in the CSM
one uses a schematic phenomenological interaction. In contrast, in SMEC [10, 84–89]
one is using a more realistic SM interactions. In SMEC, we identify the Hamiltonian
in Q-subspace with the SM Hamiltonian HSM = HQQ and the P -subspace Hamiltonian
as Hcc = HP P . The coupling between Q and P -subspaces is generated by the residual
Wigner-Bartlett contact interaction. In general, the effective Hamiltonian in Q-space is
non-Hermitian and energy dependent. Below the lowest decay threshold, eigenvalues of
the effective Hamiltonian are real, whereas above the threshold, the eigenenergies become
complex.

The main difference between CSM and SMEC corresponds to the construction of Q
and P -subspaces. In the CSM/SMEC, Q-subspace contains bound states and localized
part of the resonance wave functions, P -subspace contains scattering states and tails
of the resonances included in the Q-subspace[6, 10, 117]. The separation between the
localized part of the resonance inside the potential and its tail is rather arbitrary in
CSM. It is characterized by a cut-off function, like for example a Fermi distribution [118],
but the cut-off radius is arbitrary. This induces arbitrariness in the definition of Q and
P -subspaces, which has influence on calculated cross-sections and energy spectra. This
problem is solved in SMEC with the method of anamneses [119]. The method consists
of replacing the resonances wave function by the anamneses, i.e. the quasi-bound state
embedded in the real-energy continuum. The anamnesis is constructed by:

1. Projecting the pole of the S-matrix corresponding to the resonance at kres in the
complex k-plane, on the real axis R(k) > 0: κ =

√
R(k2

res).
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2. Joining the solution of Eq. (1.2) in the inner region [0,R] with the scattering wave
function in the external region [R,∞) at, yet, an arbitrary matching radius R.

In the external region, we require that the anamnesis of the resonance has the bound state
asymptotic behavior corresponding to k = iκ. The continuity of the resonances anamnesis
wave function and its first derivative is fixing the matching radius R. It should be stressed
that the so-defined resonance anamneses in Q-subspace and its real-energy scattering wave
function tail in P -subspace reproduce exactly the phase-shifts of the original resonance
[119].



CHAPTER 3

Formulation of the Gamow Shell Model

The coupling to the scattering continuum and the decay channels change properties of
the wave functions. For bound states, virtual scattering to continuum states modifies the
nucleon-nucleon interaction. For unbound states, nuclei interact with neighboring nuclei
by decays and captures which explicitly modifies the wave functions. The cornerstone of
the SM success is the description of the magic numbers of nucleons. However far from
stability, one might ask if magic numbers remain unchanged. Indeed, in the case of the
nucleon drip lines there are three main components that change the structure of the shell
orbits [120, 121]: the tensor interaction which modifies the mean field as orbits are filled
[122, 123], the many-body correlations that involve weakly bound and unbound nucleons
which become significant when the nucleon (neutron/proton) separation energy is small
[10, 14], and the presence of particle emission thresholds [8, 9, 14]. The last two require
an OQS description of the nucleus.

In Chap. 2 we briefly introduced the SM. The SM has proven to be an excellent tool
for studies of nuclear structure in stable nuclei. Nevertheless, in SM one assumes that the
atomic nucleus is decoupled from the environment of scattering states and decay channels.
This of course is a good approximation for well bound states in the valley of stability.
In Sects. 2.3 and 2.4, we introduced the CSM and the SMEC. These models equip the
SM with the coupling to decay channels and allow for the description of resonances and
reaction cross-sections with simple projectiles.

An alternative many-body approach, introduced in Refs. [11–15] is based on using
the Berggren complete single-particle basis which allows for the symmetric treatment of
resonant and scattering single-particle states. The many-body basis based on Berggren
single-particle basis is used in the Gamow Shell Model and allows for the description of
many-body states in all regimes of bindings. In this chapter, the Gamow Shell Model,
which provides the generalization of the standard SM, will be discussed in some details.

Analogously to the standard SM, the many-body antisymmetric states are built with
Slater determinants of single-particle basis states. Even though the Berggren basis is
complete, an approximation has to be made in the completeness relation. The infinite
number of scattering states are approximated by the discretization of the integral in the
completeness relation in Eq. (1.28):

∫
L+
uℓ(k, r)ũ∗ℓ (k, r′) ≈

Nd

∑
i

uℓ,i(r)ũ∗ℓ,i(r′) , (3.1)

31



32 Formulation of the Gamow Shell Model

where we discretize the contour L+ with a Gauss-Legendre quadrature for a number Nd of
points with momentum ki ∈ L+ each [13]. Therefore the Berggren completeness relation
becomes:

N

∑
n
uℓ,n(r)ũ∗ℓ,n(r′) + ∫

∞
0 dk uℓ(k, r)ũ∗ℓ (k, r′) =

N

∑
n
uℓ,n(r)ũ∗ℓ,n(r′) +

Nd

∑
i
uℓ,i(r)ũ∗ℓ,i(r′)

=
N+Nd

∑
n

uℓ,n(r)ũ∗ℓ,n(r′) ,
(3.2)

where N is the number of poles to be taken inside the contour. This leaves us with a
discrete single-particle Berggren basis {uℓ}. Typically in GSM applications, we use a
contour as shown in Fig. 3.1 where important resonances lie between the real axis and
the triangle defined by kpeak and kmid. The choice of kmax is generally between 2 and 3
fm−1, where one usually achieves convergence. It is important to stress that there is a
contour for each partial wave and they do not necessarily need to be the same.

Using the discretized Berggren basis, we can now build the the many-body complete-
ness relation:

∑
n

∣SDn⟩ ⟨S̃Dn∣ ≈ 1 ; ∣SD⟩ = ∣uℓ11uℓ22...uℓM M⟩ , (3.3)

where different Slater determinants are obtained by occupying bound, resonance and
discretized single-particle scattering states. The precision of this relation depends on the
achieved precision of the discretized completeness relation (3.1). The tilde in Eq. (3.3)
keeps its meaning of time reversal. The many-body completeness relation will be used to
expand many-body states that go as eikrYljm(θ,φ), hence its applicability will depend on
its domain of k. This limits the value that a width of a resonance can have. Additionally,
one must select kmax big enough so that it becomes possible to expand the high-energy
many-body states [15].

Figure 3.1: Typical contour enclosing the resonance pole for a GSM calculation in the
complex k-plane.

3.1 Diagonalizing the Gamow Shell Model Hamilto-
nian: the Overlap method

An identification of resonances in GSM requires a special procedure. Even though it exists
a Lanczos method for complex matrices, it cannot be used in GSM because the Lanczos
algorithm yields the lowest energy eigenvalues. However, in GSM, we not only have bound
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and resonance states but also scattering states that are eigenstates of the Hamiltonian.
This means that resonances are embedded in a discretized continuum of scattering states
and the scattering states may have lower energy than the resonance. Fig. 3.2 shows
the first states given by a Lanczos algorithm for 6He in GSM. One can clearly see the
ground state because it is below the scattering continuum. However, as soon as the state
is embedded within the scattering states, it is impossible to differentiate scattering states
from a resonance. One way to overcome this difficulty is by doing several calculations
with different contours. The eigenvalues corresponding to the scattering states are going
to move in the k complex plane, whereas physical resonances will be stationary [12–14].

Figure 3.2: First few states with spin 0+ and 2+ given by the Lanczos method of a 6He
calculation with GSM. The physical states that are obtained via the overlap method are
marked with an X.

This is not very practical so a different approach, the so-called overlap method, was
developed. This method consist of doing a full diagonalization with an incomplete basis
including only poles of the S-matrix (bound and resonance states) to extract a pivot ∣Ψ0⟩.
Afterwards, one finds the many-body state ∣Ψ⟩ with the full Berggren basis that maximises
the overlap ∣ ⟨Ψ0∣Ψ⟩ ∣ [13] using the Jacobi-Davidson method [124].

3.2 Hamiltonian in Cluster Orbital Shell Model co-
ordinates

In a SM calculation, one removes the CM excitations using the Lawson method [125]. This
method cannot be applied in the GSM [12–14]. One option is to use Jacobi coordinates,
but its application is numerically demanding. In most applications GSM is solved in
the core + valence particle approximation. To deal with the problem, we transform the
Hamiltonian from the laboratory coordinates to the relative Cluster Orbital Shell Model
(COSM) coordinates [126]. The COSM coordinates are defined as:

ri = {
ri,lab −RCM,core i ∈ val
ri,lab i ∈ core (3.4)
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where ri,lab is the coordinate of a nucleon in laboratory coordinates and

RCM,core =
1

Mcore
∑

i∈core
miri,lab (3.5)

is the coordinate in laboratory of the CM of the core. A schematic representation of
COSM valence particle coordinates which are defined relative to the CM of the core is
shown in Fig. 3.3.

Figure 3.3: Schematic view of COSM coordinates (see Eq. (3.4)). The core is represented
by the bigger black circle, and a valence nucleon by the small blue circle. A nucleon inside
the core is denoted by a red circle.

Following Ref. [15], let us transform the Hamiltonian in laboratory coordinates to
COSM coordinates. First, let us note that the momentum is:

pi = −ih̵∇i = −ih̵(
∂

∂x
+ ∂

∂y
+ ∂

∂z
) . (3.6)

The transformation of the differential operator of coordinates xi,lab to COSM coordinates
reads:

∂

∂xi,lab
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂xi

− ∑
j∈val

mi

Mcore

∂

∂xj

i ∈ core
∂

∂xi

i ∈ val
(3.7)

The other coordinates are the same, and thus, we obtain the momentum in COSM coor-
dinates

pi,lab =
⎧⎪⎪⎨⎪⎪⎩

pi − ∑
j∈val

mi

Mcore
pj i ∈ core

pi i ∈ val
(3.8)

On the other hand, the CM linear momentum Plab in COSM coordinates is a function of
core linear momentum only:

Plab = ∑
i∈core

pi . (3.9)

Moreover, the squared momenta are:

p2
i,lab =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p2
i + ∑

j,j′∈val
( mi

Mcore
)

2
pj ⋅ pj′ − 2 ∑

j∈val

mi

Mcorepi ⋅ pj i ∈ core

p2
i i ∈ val

(3.10)
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for the individual particles, and:

P2
lab = ∑

i∈core
p2

i + 2 ∑
i<j∈core

pi ⋅ pj , (3.11)

for the CM linear momentum. Using Eqs. (3.10) and (3.11), one can calculate the kinetic
part of the Hamiltonian in COSM coordinates:

T̂ =
A

∑
i=1

p2
i,lab

2mi

−
P2

lab
2M = ∑

i∈val

p2
i

2µi

+ 1
Mcore

∑
i<j∈val

pi ⋅ pj

+ ∑
i∈core

p2
i

2µ′i
− 1
M

∑
i<j∈core

pi ⋅ pj −
1

Mcore
∑

i∈core
pi ⋅ ∑

j∈val
pj , (3.12)

where M is the total mass of the A-system and µi, µ′i are the reduced masses given by:

1
µ
= 1
mi

+ 1
Mcore

; 1
µ′i
= 1
mi

− 1
M

. (3.13)

The coupling between core and valence particle will vanish because typically the core will
be coupled to 0+ (e.g. 4He, 16O, 40Ca, etc.) and ∑

i∈core
pi is a spherical tensor of rank one.

Two-body matrix elements are straightforward to calculate in COSM coordinates and
their calculations will not differ from standard SM methods if they involve either only
core states or only valence states. Indeed, from Eqs. (3.4) and (3.8) one obtains

ri,lab − rj,lab = ri − rj (3.14)
pi,lab − pj,lab = pi − pj , (3.15)

so that the result is not different from using relative coordinates. On the other hand, if
it involves a core-valence coupling, Eqs. (3.4) and (3.8) yield:

ri,lab − rj,lab = ri − rj +RCM,core (3.16)

pi,lab − pj,lab = pi − pj + ∑
j′∈val

mj

Mcore
pj′ . (3.17)

One would like to avoid working with these extra terms. A solution is to make the
core-valence coupling vanish. We can achieve this with a SM treatment of the interaction
similar to Eqs. (2.1) and (2.2). We consider an effective Hamiltonian Ĥ = T̂ +Û +V̂ , where
Û is the one-body mean field interaction, and V̂ is a two-body interaction in laboratory
frame. Since the core is inert, it is not considered in the Hamiltonian. Therefore, the
effective Hamiltonian in COSM coordinates is:

Ĥ = ∑
i∈val
(

p2
i

2µi

+ Ûi(ri)) +
1

Mcore
∑

i<j∈val
pi ⋅ pj + ∑

i<j∈val
V̂ij(∣ri − rj ∣) , (3.18)

where V̂ij is translationaly invariant, therefore laboratory or COSM coordinates lead to
the same results. Ûi in Eq. (3.18) is the one-body operator of the mean field acting on
particle i.

We now focus on the mean field term Ui. First we separate Ui in central and spin-orbit
terms in laboratory coordinates:

Ûi(ri,lab) = Û (C)i (ri,lab) + Û (LS)
i (ri,lab)(li,lab ⋅ si) . (3.19)
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In order to transform from laboratory coordinates into COSM coordinates, one expands
Ûi(ri,lab) in a Taylor series. We begin with the central term:

Û
(C)
i (ri,lab) = Û (C)i (ri)+RCM,core ⋅∇Û (C)i (ri)+

1
2RCM,core ⋅∆Û (C)i (ri)⋅RCM,core+h.o. , (3.20)

where ∆Û (C)i is the Hessian matrix associated to Û (C)i . Higher order terms are neglected.
Similarly the spin-orbit part is expanded as:

Û
(LS)
i (ri,lab) = Û (LS)

i (ri,lab) [(ri +RCM,core) × pi] ⋅ si

= Û (LS)
i (ri)(li ⋅ si) + Û (LS)

i (ri) [RCM,core × pi] ⋅ si

+ (RCM,core ⋅ ∇Û (LS)
i (ri)) (li ⋅ si)

+ (RCM,core ⋅ ∇Û (LS)
i (ri)) [RCM,core × pi] ⋅ si

+ 1
2 (RCM,core ⋅∆Û (LS)

i (ri)) ⋅ [RCM,core × pi] ⋅ si + h.o. (3.21)

The first order terms of Eqs. (3.20) and (3.21) vanish because the core is coupled to 0+
and RCM,core is a spherical tensor of rank 1. The second order terms involving R2

CM,core
are of the order of ∆U/Mcore. Furthermore, the Laplacian of a Woods-Saxon potential
is around five times smaller than the potential itself and the derivative of the LS part is
even smaller. However, this means that removing the second- and higher-order terms will
induce an error in the calculations. This error is of the order of 5% for the worst case of
the lightest core: the 4He core [127].

3.3 No-core Gamow Shell Model
The Berggren basis applications in nuclear physics is not limited to the SM. Indeed, one
can use the Berggren basis in a no-core SM approach, the so called NCGSM [23, 24]. The
potential used to generate the Berggren basis is the one-body self-consistent multi-Slater
determinant Hartree-Fock potential UMSDHF(r) [15, 128–130]. Therefore, the one-body
Schrödinger equation to solve for generating the single-particle basis is:

u′′k(r) = [
ℓ(ℓ + 1)
r2 + 2m

h̵2 UMSDHF(r) + VC(Z, r) − k2]uk(r) , (3.22)

where VC(Z, r) is the one-body Coulomb potential.
By adopting such a single-particle basis, we describe the nucleus with 3A coordinates.

However, this breaks translational invariance, where one would need 3A-3 coordinates
instead. In the NCSM approaches with HO bases, it is possible to separate the relative
and center-of-mass degrees of freedom ∣ψrel⟩ ⊗ ∣ψCM⟩ by using properties of the HO single
particle basis in a full Nh̵ω space. Nonetheless, this limits the application of the method
to well-bound systems.

In NCGSM the separation between the relative part and the CM part is not guaran-
teed. Thus one must check the factorization numerically. Assuming that the relative-CM
factorization is valid and also that the wave function of the CM part has a Gaussian
shape, one can check the expectation value of the CM Hamiltonian given by:

HCM =
1

2mAP2
CM +

mAω2

2 R2
CM −

3
2 h̵ω , (3.23)
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where h̵ω is the parameter that characterizes the Gaussian wave function [131]. If ⟨HCM⟩ ∼
0 then the relative-CM factorization is valid [132]. Nevertheless, this condition works only
for bound states. Currently, the elimination of the spurious CM excitations in unbound
states is an open problem in the NCGSM [15].

3.4 Applications of the Gamow Shell Model
Since its conception at the turn of this century, the GSM has been applied in the descrip-
tion of the various neutron rich nuclei like 18−28O [12, 13, 87, 133, 134], 80Ni [11, 135],
5−10He [13, 127, 136], 5−11Li [127, 128, 136, 137] and their mirrors [137], 51−70Ca [138],
A=18-22 proton rich nuclei with a 16O core [139]. In Refs. [134, 136, 137, 140, 141]
the Density Matrix Renormalization Group technique [142, 143] has been applied for the
diagonalization of the GSM Hamiltonian. Many phenomena that have been investigated
in the GSM include, among others, studies of: (i) near-threshold spectroscopic properties
in light nuclei associated with the presence of particle emission thresholds [14, 38, 39]; (ii)
influence of antibound states [144, 145]; (iii) Thomas-Ehrman shift in light nuclei [137,
146]; (iv) halo nuclei [144, 147, 148]; (v) asymptotic normalization coefficients [149]; and
(vi) charge radii and the neutron-neutron correlations [150]. The implementation of Lee-
Suzuki regularization method [100] in GSM has been discussed in Ref. [151] for schematic
interactions and in Refs. [70, 152, 153] for realistic chiral N3LO interactions [154]. For
some additional applications see Refs. [14, 15].

Similarly to Sect. 2.2, the NCGSM has been proposed for the study of well bound
and unbound states of light nuclei with a realistic N3LO chiral interaction [23]. Studies
of NCGSM employ the density matrix renormalization group method [140, 141] to reduce
the size of the matrices to be diagonalized without decreasing the accuracy of the calcula-
tions. The NCGSM has been applied to study the tetraneutron hypothesis [155, 156], the
unbound isotopes of heavy hydrogen nuclei [23, 24, 156, 157], A = 4 T = 1 isospin triplet
states [156], and heavier light nuclei like 6Li [158].

3.5 Interaction for Gamow Shell Model
Over the years, the interaction for generating the one-body elements of the Berggren basis
for GSM has been the Woods-Saxon (WS) potential with a spin-orbit and a Coulomb
parts. The WS potential used is:

V (r) = −V0,ℓf(r) − 4VSO,ℓ (ℓ⃗ ⋅ s⃗)
1
r

df(r)
dr
+UC(r) , (3.24)

where the form factor f(r) of the WS potential is given by:

f(r) = [1 + exp(r −R0,ℓ

dℓ

)]
−1
. (3.25)

In the equation above, V0,ℓ is the potential depth, VSO,ℓ is the spin-orbit strength, R0,ℓ is
the radius of the potential and dℓ is the diffuseness and UC(r) is the Coulomb field. In
some applications, the potential for each partial wave ℓ, has different parameters because
it can be useful to fit the single particle energies where the shell separation energies may
not be correct if the potential is homogeneous in ℓ. The Coulomb field is generated by a
spherical Gaussian charge distribution given by

UC(r) =
2e2

r
erf (3

√
πr

4Rch
) , (3.26)
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where Rch is the charge radius.
On the other hand, the two-body interaction used for GSM has evolved over the years.

In one of the first applications of GSM, a surface delta interaction [159] was used [13] for
the nucleon-nucleon interaction. Nowadays, it is common to use the Furutani-Horiuchi-
Tamagaki (FHT) finite range interaction [160, 161] which consists of a central, spin-orbit
and tensor terms with Gaussian form factors. The general form of a nuclear interaction
was derived early in the 40s [162] by symmetry arguments.

The central, spin-orbit and tensor terms of the FHT interaction are given by:

Ṽc(r) =
3
∑
n=1

V n
c (W n

c +Bn
c Pσ −Hn

c Pτ −Mn
c PσPτ)e−βn

c r2 (3.27)

ṼLS(r) = L⃗ ⋅ S⃗
2
∑
n=1

V n
LS(W n

LS −Hn
LSPτ)e−βn

LSr2 (3.28)

ṼT (r) = Sij

3
∑
n=1

V n
T (W n

T −Hn
TPτ)r2e−βn

T r2
, (3.29)

respectively. Here W , B, H, and M correspond to coefficients of the Wigner, Bartlett,
Heisenberg and Majorana forces, respectively; Pσ and Pτ are spin and isospin exchange
operators, respectively; L⃗ is the relative orbital angular momentum; S⃗ = (σi + σj)/2; and
Sij = 3(σi ⋅ r̃)(σj ⋅ r̃)−σi ⋅σj. Each part of the interaction contains a Gaussian distribution
with a different range: the first to account for the hard core of the nucleon, the second
for mimicking the one-pion exchange potential, and the third for a description of an
intermediate range. An exception is done for the spin-orbit part as it will not contain a
long-range part [163].

Because we are dealing with a SM problem where the interaction is an effective in-
teraction that depends on the valence space, the interaction listed in Eqs. (3.27), (3.28)
and (3.29) should be modified to be easily applicable in a designated model space for a
particular GSM calculation. This is achieved by rewriting the FHT interaction in terms
of spin-isospin projectors ΠST [164, 165]:

Vc(r) = V 11
c f 11

c (r)Π11 + V 10
c f 10

c (r)Π10 + V 00
c f 00

c (r)Π00 + V 01
c f 01

c (r)Π01 (3.30)
VLS(r) = (L⃗ ⋅ S⃗)V 11

LSf
11
LS(r)Π11 (3.31)

VT (r) = Sij [V 11
T f 11

T (r)Π11 + V 10
T f 10

T (r)Π10] , (3.32)
where the parameters to be optimized are reduced to seven interaction strengths in spin-
isospin channels: V 10

c , V 10
c , V 00

c , V 01
c , V 11

LS, V 11
T , V 10

T . The form factors fST
c,LS,T are linear

combinations of the radial form factors of Eqs. (3.27), (3.28) and (3.29). They are
normalized to the first parameter V 1

c,LS,T for each central, spin-orbit and tensor term so
that they are dimentionless. The remaining parameters, namely the Wigner, Bartlett,
Heisenberg and Majorana strength, the relative strength of the Gaussian components,
and the Gaussians range remain unchanged from Ref. [160] and are listed in Tab. 3.1.

Additionally, one must consider the Coulomb interaction between valence nucleons.
We follow the method introduced in Ref. [166]. The Coulomb part of the interaction is
UZcore

C + VC and because the one-body Coulomb term is additive one can end up with:
UCoul = UZ−1

C
²

Infinite range

+VC −UZval−1
C

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Short range

, (3.33)

where we have separated the infinite and short range parts. The short range part can be
expanded with a HO basis as:

VC −UZval−1
C = ∑

αβγδ

∣αβ⟩ ⟨αβ∣VC −UZval−1
C ∣γδ⟩ ⟨γδ∣ , (3.34)
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Table 3.1: Parameters of the FHT interaction as given in Ref. [160]. The depths V n of
the central and spin-orbit interaction are given in MeV, whereas the tensor part in MeV
fm−2. The W , B, M and H parameters are dimensionless.

n V n βn [fm−2] W n Mn Bn Hn

Vc 1 -6.0 0.160 -0.2363 1.1530 0.5972 -0.5139
2 -546.0 1.127 0.4242 0.4055 0.1404 0.030
3 1655.0 3.400 0.4474 0.3985 0.1015 0.0526

VLS 1 1918.0 5.0 0.5 -0.5
2 -1519.0 3.0 0.5 -0.5

VT 1 -16.96 0.53 0.3277 0.6723
2 -369.5 1.92 0.4102 0.5898
3 1688.0 8.95 0.5 0.5

where Eq. (3.34) is reminiscent of Eq. (1.54). The infinite range part of the Coulomb
interaction is taken exactly into account. Since GSM involves an inert core, the treatment
of the Coulomb interaction is not exact, namely, we neglect the contribution to the ex-
change term arising from the protons in the core and neglect charge symmetry-breaking
electromagnetic terms like the Coulomb spin-orbit interaction [166].

3.5.1 Optimization of the interaction
When we optimize the interaction, we have to assess the statistical uncertainties of the
interaction parameters. Following Refs. [127, 167], given a model with Np parameters
p = {p1, ..., pNp} to be adjusted to describe Nd observables Oi (i = 1, ...,Nd), the penalty
function to minimize is:

χ2(p) =
Nd

∑
i=1
(
Oi(p) − Oexp

i

δOi

)
2

, (3.35)

where Oi(p) are calculated observables, Oexp
i are experimental data used to constrain

the model, and δOi are the adopted errors whose contribution stems from experimental
uncertainties, numerical inaccuracies and theoretical errors due to model deficiency.

There is some arbitrariness in the choice for the theoretical error. Part of this ar-
bitrariness can be removed or at least mitigated by adopting errors that are consistent
with the distribution of the residuals similarly to a case of a purely statistical distribution
[167]. In particular, one can require the penalty function to be normalized to the number
of degrees of freedom (dof) Ndof = Nd −Np at the minimum p0 [168]:

χ2(p0)
Ndof

←→ 1 . (3.36)

If there is only a single type of data (e.g. excitation energies) and assuming that exper-
imental and numerical error are negligible, then the condition (3.36) can be achieved by
doing a global scaling of the initial adopted errors:

δOi Ð→ δOi

√
χ2(p0)
Ndof

. (3.37)
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At the end, one can find the uncertainties of the fitted parameters with the correlation
matrix. More details on the treatment of the correlation matrix can be found in Refs.
[127, 167].

The probability distribution verified by p is arbitrary and has to be postulated based
on physical grounds. An option is to demand a Gaussian distribution with a dependence
on χ2(p) [167]:

P̄ (p) ∝ exp(−χ2(p)) , (3.38)

where the factor of proportionality is determined by normalization.
The standard procedure to calculate statistical errors in this framework is the Bayesian

analysis. For this, a prior probability distribution of parameters is postulated, from which
a posterior probability distribution is calculated, which can then confirm or infirm the
hypothesis borne by the prior. The theory of Bayesian analysis can be found, for example,
in Ref. [169]. The implementation of Bayesian analysis in GSM has not been implemented
yet.

3.6 Differences with other methods
Having introduced the theory behind GSM, we can now compare it to other methods
for nuclear structure described in Chap. 2. First big difference from methods like SM
or CSM is that GSM is formulated in RHS. As depicted in Fig. 3.4a, one can think of
CSM/SMEC as taking a subset of the Hilbert space and dividing it into two parts: Q, the
subspace of localized states, and P, the subspace of non-resonant continuum states. Here
our quantum system is represented by Q and therefore it is modified via couplings to the
designated external environment P. However, in the case of CSM/SMEC one chooses P,
hence one could say that the environment is encapsulated inside the topological sum of
Q and P which is the closed quantum system. This is why in Fig. 3.4a the outer circle
is depicted with a straight outline, and we conclude that the system as a whole Q∪P is
closed.

On the other hand, Fig. 3.4b depicts an OQS, like GSM formulated in the RHS.
Here we have the resonant states in the subspace D, and the background part containing
complex-energy scattering states in the subspace B. The OQS here is the combined system
D ∪ B since otherwise the basis would not be complete. In principle, it is an ideal OQS,
however in practice we need to do some approximations like the discretization of the
continuous part in B and truncation of a single particle basis by choosing a kmax.

Let us now compare GSM with the traditional SM. From the practical point of view,
the GSM basis is going to be significantly larger than that of a SM basis. For SM in
m-scheme, given a choice of valence space we will have nπ possible proton basis states
and nν possible neutron basis states. Let rπ and rν denote the number of protons and
neutrons in valence space for a given nucleus. The number NSM of possible many-body
states is:

NSM = (
nπ

rπ

)(nν

rν

) . (3.39)

For GSM, we take nπ and nν as the possible pole states and we add mπ and mν as the
total possible single particle scattering states from the discretized continuum part. Then
the number NGSM of possible many-body states is:

NGSM = (
nπ +mπ

rπ

)(nν +mν

rν

) . (3.40)



3.6. Differences with other methods 41

(a) (b)

Figure 3.4: Schematic representation of the OQS in (a) Hilbert space and (b) rigged
Hilbert space. Figure inspired from Ref. [15].

This limits the number of particles and the size of the model space that we can consider
in GSM. To this end we assume that the many-body states become less important as the
number of particles in the continuum increases. Therefore if we truncate the basis up to
sπ and sν particles in the continuum and up to s total particles in the continuum, the
number NGSM,truncated of many-body states becomes:

NGSM,truncated =
sπ ,sν

∑
i,j=0
i+j≤s

( nπ

rπ − i
)(mπ

i
)( nν

rν − j
)(mν

j
) . (3.41)

Let us take a simple example of 8Be with a 4He core, i.e. two protons and two neutrons
in the valence shells. Taking only lj ∶ p3/2, p1/2 shells in the pole space and 30 shells in the
discretized contour for each lj, we have a staggering 296 012 025 elements in the many-
body basis. If we truncate the basis to 2 particles in the continuum it becomes 1 682 325
many-body states. Hence, a reduction of two orders of magnitude is significant from a
practical point of view. For the sake of completeness, a SM (or the pole approximation
for GSM) calculation with the same valence space would be only 225 many-body states.
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CHAPTER 4

Coupled channel representation of Gamow Shell Model

Nuclear reactions should be treated within the formal theory of quantum scattering [170–
172]. The reactions of interest in this work are the direct reactions. Direct reactions are
defined as those that quickly and directly proceed from initial into final states without
forming an intermediate compound state. Indeed, if the initial and final states are un-
changed we have elastic scattering and if there is some excitation in the final states we
have inelastic scattering. This happens because the atomic nuclei have internal degrees
of freedom which can be excited in a proces of collision. Another case is that of transfer
reactions, where there is an exchange of nucleons between the target and the projectile.
The other two cases are the break-up reactions, where the projectile breaks into two or
more fragments; and the knock-out reactions, where a nucleon or cluster is removed from
the target after a collision.

In the preceding chapter, we argued that in GSM, which is formulated in the Slater
determinant representation, one cannot define reaction channels as the many-body scatter-
ing eigenstates in GSM are generally a linear combination of many channels and therefore
we cannot describe the asymptotic behavior of a reaction properly. We define a channel
as the arrangement:

A + x→ B + y , (4.1)
where A,B are the initial and final states of the target, respectively, and x, y are the
initial and final states of the projectile, respectively1.

In order to do calculations of cross-sections and phase-shifts, one formulates the GSM
in the representation of coupled channels. The GSM-CC formulation, allows the definition
of entrance and exit channels with correct asymptotics and hence, allows the calculation
of reaction observables. In this representation, we can also calculate spectroscopic observ-
ables. This yields a unified theory of nuclear structure and nuclear reactions in Berggren
basis.

The asymptotic Hamiltonian for a particular reaction channel between a projectile
particle with a nucleons towards a target particle with A − a nucleons is:

Hasymptotic =HA−a + Va + Ta + VC , (4.2)

where HA−a is the full nuclear Hamiltonian of the (A − a)-nucleon system, Va is the
nuclear interaction for the a-nucleon projectile, Ta is the kinetic term of the a-nucleon

1In here we are disregarding break-up reactions involving three of more particles in the exit channel.

43
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(a) (b)

Figure 4.1: Schematic representation of the two asymptotic situations that should be
properly addressed for a simultaneous treatment of nuclear structure and reactions. The
(A − a)-nucleon target system is depicted with the big blue circle and the a-nucleon
projectile system with the small red circle. (a) Is the situation where projectile and target
relative distance r is less or similar to the nuclear interaction range R. (b) Is the situation
where projectile and target are far from each other and thus decoupled.

system and VC is the Coulomb interaction. This is the situation depicted in Fig. 4.1b.
We can diagonalize such a Hamiltonian but we cannot define an initial and final reaction
channels.

This chapter presents the formalism of GSM-CC. We follow closely Ref. [15] and refer-
ences therein, however clarification and some additional details are given when considered
necessary. Particular detail has been given to angular momentum couplings. Sects. 4.1-
4.5 deal with the definition of the target and projectile wave functions. Sect. 4.6 deals
with the calculation of the kernels of the Hill-Wheeler equation in the context of GSM-
CC. Afterwards, the methods to solve the Hill-Wheeler equation are presented in Sect.
4.7. The nuclear reaction solution for the calculation of cross-section is presented in Sect.
4.8. We finish the chapter with the past applications of the GSM-CC formalism in Sect.
4.8.1 and a comparison with other methods that attempt to unify nuclear structure and
reactions in Sect. 4.9.

4.1 Definition of channels in Gamow Shell Model
We proceed as in the RGM [113] to define channels with proper asymptotics. We begin
with the usual definition of the channel wave functions

∣c, r⟩ = A{∣ΨJT

T ⟩ ⊗ ∣Ψ
JP

P ⟩}
JA

MA
, (4.3)

where the indices T and P refer to target and projectile, respectively. The quantum
number c→ {Z−z,N −n,JT ; z, n, ℓ, Jint, JP} includes the quantum numbers of both target
and projectile which are proton number, neutron number, and spin. In particular, ℓ is
the angular momentum of the projectile, and Jint is the intrinsic spin of the projectile.
The spins are coupled as ℓℓℓ + Jint = JP and JT + JP = JA. Here we can define the channel
completeness relation as:

∑
c
∫
∞

0
dr r2 ∣c, r⟩ ⟨c, r∣ = 1 , (4.4)

and we can use it to expand the solution of a Hamiltonian for a particular nucleus with
A ≡ Z +N nucleons. One obtains:

∣Ψ⟩JA

MA
= ∑

c
∫
∞

0
dr r2u

JA
c (r)
r
∣c, r⟩ , (4.5)
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where uJA
c is the radial amplitude that describes the relative motion of the projectile with

respect to the core with a total angular momentum JA.
With this expansion, the Schrödinger equation:

Ĥ ∣Ψ⟩JA

MA
= E ∣Ψ⟩JA

MA
, (4.6)

can be written as:

∑
c
∫
∞

0
[Hcc′(r, r′) −ENcc′(r, r′)]

uc(r)
r

r2dr = 0 , (4.7)

where

Hcc′(r, r′) = ⟨r, c∣Ĥ ∣r′.c′⟩ (4.8)
Ncc′(r, r′) = ⟨r, c∣r′, c′⟩ (4.9)

are the interaction matrix elements and the overlap functions, respectively. Eq. (4.7)
is called Hill-Wheeler equation. The channel states ∣c, r⟩ are expanded in a one-body
Berggren basis ∣c, n⟩ to calculate the kernels Hcc′(r, r′) and Ncc′(r, r′). The many-body
matrix elements Ncc′ are computed using the Slater determinant expansion of the cluster
wave functions ∣c, n⟩.

4.2 Hamiltonian in the coupled channel formalism
Since we are constructing the total wave function with a product of the target and pro-
jectile wave function, one would like to separate the total Hamiltonian into projectile and
target parts. Indeed, as the target and projectile at high energy do not interact any longer
due to a large difference in momenta, one can express the Hamiltonian Ĥ as:

Ĥ = ĤT + ĤP + ĤT P , (4.10)

where Ĥ is the standard SM Hamiltonian, ĤT is intrinsic Hamiltonian of the target, ĤP

is the projectile Hamiltonian and ĤT P = Ĥ − ĤT − ĤP .
In particular, one would like to separate the CM part from the intrinsic part in the

projectile Hamiltonian. To this end, the total Hamiltonian in laboratory coordinates is:

Ĥ = ∑
i

pi,lab

2mi

+∑
i<j
V̂ij , (4.11)

where i, j goes over all nucleons and V̂ij is the nucleon-nucleon interaction in laboratory
coordinates. From the point of view of the projectile, the nucleons in the target will
generate a mean field ÛT

i acting on the projectile nucleons:

∑
j∈T

V̂ij Ð→ ÛT
i , (4.12)

where i is a nucleon in the projectiles and ÛT
i is assumed to be spherical. Thus, under

this approximation, one can write the projectile Hamiltonian as:

ĤP = ∑
i∈P
(

p2
i,lab

2mi

+ ÛT
i )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
one−body

+ ∑
i<j∈P

V̂ij

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
two−body

. (4.13)



46 Coupled channel representation of Gamow Shell Model

Now we transform Eq. (4.13) into COSM coordinates [126]:

ĤP = ∑
i∈P

(pi − 1
aPCM)

2

2mi

+ ∑
i<j∈P

V̂ij

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Intrinsic part

+
P2

CM
2MP

+∑
i∈P
ÛT

i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CM part

, (4.14)

where PCM = ∑
i∈P

pi is the CM momentum of the projectile, mi is mass of nucleon i, and
MP is the reduced mass of the projectile.

The last step is to define the mean field. Assuming the cluster approximation where
ri ≈ RCM, the central part of the mean field ÛCM,C created by the nucleons in the target
can be approximated by:

Û ℓ
CM,C(RCM) = zÛ ℓ

p,C(RCM) + nÛ ℓ
n,C(RCM) , (4.15)

where p and n sub-index refer to proton and neutron, respectively; z and n is the number
of protons and neutrons in the projectile, respectively; and ℓ is the angular momentum.
Moreover, the cluster approximation also implies that ℓi ≈ LCM/a and ∑

i∈P
si ≈ Jint, there-

fore the spin-orbit part of the potential can be expressed as:

Û ℓ
CM,SO(RCM) =

z

a
Û ℓ

p,SO(RCM) +
n

a
Û ℓ

n,SO(RCM) . (4.16)

Finally, the mean field potential part reads:

∑
i∈P
ÛT

i = Û ℓ
CM(RCM) = Û ℓ

CM,C(RCM) +
1
a
Û ℓ

CM,SO(RCM)(LCM ⋅ Jint) , (4.17)

and will be used to generate the ∣KCM, LCM⟩ wave functions.

4.3 Construction of the target and projectile wave
functions

Before we can solve the Hill-Wheeler equation, we must define the wave functions of the
projectiles and the targets in order to generate the channels. Following from Ref. [15], the
target wave functions will be calculated with a GSM calculation, and it will be expressed
in Slater determinants:

∣ΨJT

T ⟩ = ∑
m

dm ∣SDm,A−a⟩ , (4.18)

where the single-particle basis used can be a Berggren basis or a HO basis. In the case
of a nucleon scattering it is possible to use the Berggren ensemble, however, as will be
explained later, we use a HO basis if clusters are involved.

On the other hand, projectiles are not calculated in the GSM but within the NCSM
framework. Additionally, we can divide the projectile wave function into CM part and
intrinsic (int) part:

∣ΨJP

P ⟩ = [∣KCMLCM⟩ ⊗ ∣KintJint⟩]JP

MP
, (4.19)

where KCM and LCM are the linear and angular momentum of the CM, respectively, Kint
is the intrinsic linear momentum, and Jint is the intrinsic angular momentum. The two
parts couple as JP = Jint +LCM. One would like to express the projectile wave function in
Slater determinants similarly to the target wave function:

∣ΨJP

P ⟩ = ∑
n

cn ∣SDn,a⟩ . (4.20)
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However, the overlap:
⟨ΨJP

P ∣Ψ
JP ′
P ′ ⟩ = δ(KCM −K ′CM) (4.21)

is difficult to treat numerically [35]. This is because the treatment of the Dirac delta
would require a fine discretization of the continuum for the CM/int separation of the
projectile wave functions at large distances.

The solution to this is to proceed indirectly and use the properties of the HO basis
that the Berggren basis lacks. Hence we define the projectile wave function in the HO
basis as:

∣ΨJP

P ⟩
HO = [∣NCMLCM⟩HO ⊗ ∣KintJint⟩HO]

JP

MP

= ∑
N

CN ∣SDN,a⟩HO
, (4.22)

where ∣NCMLCM⟩HO is a CM HO state, ∣KintJint⟩HO is the intrinsic projectile cluster state
expanded with a HO basis, ∣SDN,a⟩HO is a Slater determinant made with the one-body
HO states.

The intrinsic part ∣KintJint⟩ is constructed by diagonalizing the NN interaction, e.g.
the chiral effective interaction, in the intrinsic part of Eq. (4.14). This leaves only the
CM part. To this end, one begins by calculating with the Lawson method the ground
state of the cluster with a 0s CM part:

∣NCM = 0, LCM = 0,MCM = 0⟩ ⊗ ∣JintMint⟩ . (4.23)

We introduce the rank-1 spherical tensor ladder operator A†
µ,CM

2 to calculate the rest of
the HO states:

Â†
µ,CM =

√
Mω

2h̵ R̂
(1)
µ − i

√
1

2Mh̵ω
P̂
(1)
µ , (4.24)

where R(1)µ and P (1)µ represent the position and momentum of the projectile in CM system:

R̂
(1)
µ =

1
a

a

∑
i=1
r̂
(1)
i,µ , P̂

(1)
µ =

a

∑
i=1
p̂
(1)
i,µ , (4.25)

where r(1)i,µ and p
(1)
i,µ are the position and momentum of nucleon i in the center-of-mass

system, respectively. Nevertheless, the action of A† over ∣SDN,a⟩HO is computed in second
quantization using:

R̂
(1)
µ =

1
a
∑
α,β

⟨α∣r̂(1)µ ∣β⟩ ĉ†
αĉβ , P̂

(1)
µ = ∑

α,β

⟨α∣p̂(1)µ ∣β⟩ ĉ†
αĉβ , (4.26)

where the kets with greek letters represent one-body HO states, and ĉ†
α, ĉβ are the creation

and annihilation operators.
Now we take a look at what happens when applying A† on a state ∣NLM⟩. Firstly,

applying the A† tensor increases 2N +L by one unit:

2N +LÐ→ 2N +L + 1 = 2N ′ +L′ (4.27)

Afterwards, we couple A† and ∣NL⟩ to L′M ′:

[A† ∣NL⟩]L
′

M ′ = CN ′L′
NL ∣N ′L′M ′⟩ , (4.28)

2µ = −1, 0, 1 for a rank-1 spherical tensor.
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where we have suppressed the intrinsic part as it does not play a role in these couplings.
The coefficient CN ′L′

NL can be found as follows:

CN ′L′
NL = ⟨N ′L′M ′∣ [A† ∣NL⟩]L

′

M ′

= ∑
µM

⟨LM1µ∣L′M ′⟩ ⟨N ′L′M ′∣A†
µ∣NLM⟩

= ∑
µM

⟨LM1µ∣L′M ′⟩ ⟨LM1µ∣L′M ′⟩ 1√
2L′ + 1

⟨N ′L′∣∣A†∣∣NL⟩

= 1√
2L′ + 1

⟨N ′L′∣∣A†∣∣NL⟩ , (4.29)

where we have used the orthogonality properties of the Clebsch-Gordan coefficients and
the Wigner-Eckart theorem.

Now we can build a set of HO states {∣NCMLCMMCM⟩⊗ ∣JintMint⟩} because the degen-
eracy induced by A†

µ is lifted by coupling to LCM. It follows that we can couple the CM
part and the intrinsic part to the total angular momentum JP of the projectile with the
appropriate Clebsch-Gordan coefficients ⟨LCMMCMJintMint∣JintMint⟩. Finally, the coupled
states:

[∣NCMLCM⟩ ⊗ ∣Jint⟩]JP

MP
= ∑

N

CN ∣SDN,a⟩HO
, (4.30)

can be expanded in the Berggren basis via the many-body completeness relation:

∑
n

∣SDn,a⟩ ⟨SDn,a∣ = 1 , (4.31)

as follows:

∣ΨJP

P ⟩ = ∑
N

CN ∣SDN,a⟩HO

= ∑
N

CN∑
n

∣SDn,a⟩ ⟨SDn,a∣SDN,a⟩HO

= ∑
n

cn ∣SDn,a⟩ , (4.32)

where we identify the constants cn with

cn = ∑
N

CN ⟨SDn,a∣SDN,a⟩HO
. (4.33)

Because ∣SDa,n⟩ and ∣SDa,n⟩HO are built from different one-body bases, the overlap
is calculated using the Slater determinant definition as a linear combination of non-
antisymmetrized tensor products:

⟨SDn,a∣SDN,a⟩HO = ∑
k

(−)φk ⟨s1...sa∣Pk∣σ1...σa⟩ , (4.34)

where Pk is the permutation operator labeled by an index k that goes over all permu-
tations, ∣si⟩ are the single-particle states of the Berggren basis occupied in ∣SDn,a⟩, ∣σi⟩
are the single-particle states of the HO basis occupied in ∣SDN,a⟩HO, and (−)φk is the
reordering phase associated with the permutation Pk.
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4.4 Construction of the total many-body wave func-
tions

Now that we have derived the projectile and target wave functions, we can proceed to
coupling them together in order to generate the A-body wave function. This will yield
the A-body wave function ∣Ψ⟩ that will be used to evaluate the matrix elements in a com-
plete basis of A-body Slater determinants. Defining A†

[∣NCMLCM⟩⊗∣Jint⟩]
JP
MP

as the projectile

creation operator, the expansion of the A-body wave function is:

∣Ψ⟩JA

MA
= [A†

[∣NCMLCM⟩⊗∣Jint⟩]JP
∣ΨJT

T ⟩]
JA

MA

= ∑
α

CA
α ∣SDα,A⟩ , (4.35)

where ∣SDα,A⟩ are A-body Slater determinants. To this end, we use the Slater determinant
expansions of the projectile and target wave functions as in Eqs. (4.18) and (4.20), which
are obtained from the diagonalization of the GSM Hamiltonian:

∣ΨJT

MT
⟩ = ∑

β

BA−a
β ∣SDβ,A−a⟩ (4.36)

[∣NCMLCM⟩ ⊗ ∣Jint⟩]JP

MP
= ∑

γ

Ba
γ ∣SDγ,a⟩ , (4.37)

where we have made explicit the number of nucleons in each of the Slater determinant
coefficients. Using Eqs. (4.35), (4.36) and (4.37) one can obtain the uncoupled fully
antisymmetrized A-body wave function:

A†
[∣NCMLCM⟩⊗∣Jint⟩]

JP
MP

∣ΨJT

T ⟩ = ∑
β

BA−a
β A†

[∣NCMLCM⟩⊗∣Jint⟩]
JP
MP

∣SDβ,A−a⟩

= ∑
βγ

BA−a
β Ba

γA[∣SDβ,A−a⟩ ⊗ ∣SDγ,a⟩]

= ∑
α

BA
α ∣SDα,A⟩ , (4.38)

where ∣SDα,A⟩ = A[∣SDβ,A−a⟩ ⊗ ∣SDγ,a⟩], and BA
α = (−)φαBA−a

β Ba
γ , with (−)φα a rear-

rangement phase. In particular, if ∣SDβ,A−a⟩ and ∣SDγ,a⟩ share a particle with the same
quantum numbers then the corresponding ∣SDα,A⟩ vanishes. The final step is to couple
the result of Eq. (4.38) to a total angular momentum JA with projection MA using the
appropriate Clebsch-Gordan coefficients. Few more details concerning Eq. (4.38) are
discussed in Appendix A.1.

4.5 Orthogonalization of composites with respect to
the core.

As stated in Sect. 3.2, all occupied states should be orthogonal to the core. In princi-
ple, should the target and projectile satisfy the orthogonalization condition they can be
diagonalized with the same Berggren basis, where the occupied core one-body states are
removed. An option to ensure the orthogonalization is through the use of a basis of HO
states or Jacobi coordinates. However, it is cumbersome to apply [15].

We instead proceed with an alternative method to impose the orthogonalization condi-
tion for composite eigenstates with a cluster projectile. Indeed, the cluster wave function
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can be factorized into a CM part times a relative part. In order to avoid problems aris-
ing from the change between COSM- and CM-relative coordinates, one can define the
projectors [3]:

Q̂CM = ∑
NCM≤NCM,min

∣NCMLCMJintJPMP ⟩ ⟨NCMLCMJintJPMP ∣ (4.39)

P̂CM = 1 − Q̂CM , (4.40)

where NCM,min is chosen so as to include the cluster eigenstates of ĤP sizably occupying
the core. We can now redefine ĤCM as:

ĤCM → P̂CMĤCMP̂CM = ĤCM − Q̂CMĤCM − ĤCMQ̂CM + Q̂CMĤCMQ̂CM , (4.41)

which adds an additional short-range interaction to ĤP in Eq. (4.13). This also changes
the coupling between target and projectile, even though, Ĥ does not change. This proce-
dure has been checked to be numerically reliable and stable [15].

4.6 Calculation of the kernels of the Hill-Wheeler
equation

Repeating from Sect. 4.2, it is convenient to express the Hamiltonian as Ĥ = ĤT +
ĤP + ĤT P , where ĤT and ĤP are the target and projectile Hamiltonians, respectively.
Moreover, it was shown that ĤP can be decomposed as ĤP = Ĥint + ĤCM, where Ĥint
describes its intrinsic properties and ĤCM the dynamics of its CM.

The action of the projectile and target Hamiltonians is considered over non-antisymmetrized
A-body wavefunctions as:

ĤT [∣ΨJT

T ⟩ ⊗ ∣Ψ
HP

P ⟩]
JA

MA
= [ĤT ∣ΨJT

T ⟩ ⊗ ∣Ψ
HP

P ⟩]
JA

MA
= ET [∣ΨJT

T ⟩ ⊗ ∣Ψ
HP

P ⟩]
JA

MA
(4.42)

ĤP [∣ΨJT

T ⟩ ⊗ ∣Ψ
HP

P ⟩]
JA

MA
= [∣ΨJT

T ⟩ ⊗ ĤP ∣ΨHP

P ⟩]
JA

MA
= (ECM +Eint) [∣ΨJT

T ⟩ ⊗ ∣Ψ
HP

P ⟩]
JA

MA
,

(4.43)

where ET , ECM and Eint are the target energy, the projectile CM energy, and the projectile
intrinsic energy, respectively. Thus, we now show how to compute the kernels (4.8)
and (4.9). First of all, we expand the A-body wave functions with the Berggren basis
{∣NCM,LCM⟩} 3 generated with HCM such that we have the completeness relation:

∑
NCM

∣NCM,LCM⟩ ⟨NCM,LCM ∣ = 1 , (4.44)

3Here we are not including the projection of the angular momentum MCM. This only means that the
corresponding spherical harmonic is not included in the wave function. The dependence on LCM comes
from the angular momentum in the Schrödinger equation used to generate the Berggren basis. Moreover,
NCM depicts the number of the discretized states of the Berggren basis and has nothing to do with the
HO basis.
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and thus

∣ΨJA

MA
⟩ = A[∣ΨJT

T ⟩ ⊗ [∣RCMLCM⟩ ⊗ ∣Jint⟩]Jp]
JA

MA

= A[∣ΨJT

T ⟩ ⊗ [∣RCM,LCM⟩ ⊗ ∣LCM⟩ ⊗ ∣Jint⟩]Jp]
JA

MA

= A
⎡⎢⎢⎢⎢⎣
∣ΨJT

T ⟩ ⊗ [ ∑
NCM

∣NCM,LCM⟩ ⟨NCM,LCM ∣RCM,LCM⟩ ⊗ ∣LCM⟩ ⊗ ∣Jint⟩]
Jp⎤⎥⎥⎥⎥⎦

JA

MA

= A ∑
NCM

UNCM(RCM)
RCM

[∣ΨJT

T ⟩ ⊗ [∣NCM,LCM⟩ ⊗ ∣LCM⟩ ⊗ ∣Jint⟩]Jp]
JA

MA

= A ∑
NCM

UNCM(RCM)
RCM

[∣ΨJT

T ⟩ ⊗ [∣NCM, LCM⟩ ⊗ ∣Jint⟩]Jp]
JA

MA
, (4.45)

where we have defined the wave functions UNCM(RCM)/RCM = ⟨NCM,LCM ∣RCM,LCM⟩ and at
some point we separated the radial and angular parts of the CM wave function.

We calculate the overlap and Hamiltonian kernels (4.9) and(4.8), respectively, using
the results of Eq. (4.45):

NJA,MA

cc′ (RCM,R
′
CM) = ∑

NCM,N ′CM

NJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM
(4.46)

HJA,MA

cc′ (RCM,R
′
CM) = ∑

NCM,N ′CM

HJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM
, (4.47)

where we identify the overlap and Hamiltonian kernels in Berggren basis as:

NJA,MA

cc′ (NCM,N
′
CM) =

[⟨ΨJT

T ∣ ⊗ [⟨NCM, LCM∣ ⊗ ⟨Jint∣]Jp]
JA

MA
AA[∣ΨJT ′

T ′ ⟩ ⊗ [∣N ′CM, L
′
CM⟩ ⊗ ∣J ′int⟩]

Jp′ ]
JA

MA

HJA,MA

cc′ (NCM,N
′
CM) = (4.48)

[⟨ΨJT

T ∣ ⊗ [⟨NCM, LCM∣ ⊗ ⟨Jint∣]Jp]
JA

MA
AĤA[∣ΨJT ′

T ′ ⟩ ⊗ [∣N ′CM, L
′
CM⟩ ⊗ ∣J ′int⟩]

Jp′ ]
JA

MA

.

(4.49)

The overlap kernels are straightforward to calculate:

NJA,MA

cc′ (RCM,R
′
CM) =

= ∑
NCM,N ′CM

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM
⟨ΨJt

T ∣A[∣NCMLCM⟩⊗∣Jint⟩]
JP
MP

A†
[∣NCMLCM⟩⊗∣Jint⟩]

JP
MP

∣ΨJt

T ⟩

= ∑
NCM,N ′CM

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM
∑
α,α′

CA
αC

A
α′ ⟨SDα,A∣SDα′,A⟩ . (4.50)

The targets will consist of bound or resonance states, thus their high-energy components
in Berggren basis are extremely small. Therefore, if the projectile momentum is moderate
to high, then antisymmetry does not play a role, and thus channels become orthogonal
[16].

Afterwards we define a particular Nmax whose momentum is large and divide the sum
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in Eq. (4.47) into four cases:

HJA,MA

cc′ (RCM,R
′
CM) = ∑

NCM≤Nmax
N ′CM≤Nmax

HJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM

+ ∑
NCM>Nmax
N ′CM≤Nmax

HJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM

+ ∑
NCM≤N ′max
NCM>N ′max

HJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM

+ ∑
NCM>Nmax
N ′CM>Nmax

HJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM
. (4.51)

The first term is finite and thus, can be computed using standard SM formulas. Since
antisymmetry can be neglected when NCM > Nmax or N ′CM > Nmax, the matrix elements
in Berggren basis are:
HJA,MA

cc′ (NCM,N
′
CM) =

= [⟨ΨJT

T ∣ [⟨NCM, LCM∣ ⟨Jint∣]Jp]
JA

MA
(ĤT + ĤP +AĤT PA)[∣ΨJT ′

T ′ ⟩ [∣N ′CM, L
′
CM⟩ ∣J ′int⟩]

Jp′ ]
JA

MA

= [ET +ECM +Eint] δcc′δNCMN ′CM
+∑

αα′
CA

αC
A
α′ ⟨SDA,α∣ĤT P ∣SDA,α⟩

= [ET +ECM +Eint] δcc′δNCMN ′CM
+ ∑

αα′
αβγδ

⟨αβ∣ (V̂res − Û0) ∣γδ⟩ ⟨SDA,α∣a†
αa

†
βaδaγ ∣SDA,α⟩ .

It can be proven that the residual matrix elements which involve target-projectile coupling
at high energy can be neglected [15, 35]:

⟨αβ∣ (V̂res − Û0) ∣γδ⟩ ≈ 0 if ∃(i, j) ∈ {α,β, γ, δ} ∣ ki ≪ kmax and kj ⪆ kmax , (4.52)
where ∣α⟩ , ∣β⟩ , ∣γ⟩ , ∣δ⟩ are Berggren states with momentum kα, kβ, kγ, kδ and kmax is an
arbitrarily large one-body momentum corresponding to Nmax. Therefore, the second and
third sums in Eq. (4.51) are zero because NCM ≠ N ′CM and the matrix elements satisfy
condition (4.52). Hence, Eq. (4.51) simplifies to:

HJA,MA

cc′ (RCM,R
′
CM) = ∑

NCM≤Nmax
N ′CM≤Nmax

HJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM

+ ∑
NCM>Nmax

[ET +ECM +Eint] δcc′
UNCM(RCM)

RCM

UNCM(R′CM)
R′CM

. (4.53)

The second sum in Eq. (4.53) can be written as:
∑

NCM>Nmax

Ð→ ∑
NCM

− ∑
NCM≤Nmax

, (4.54)

where the terms in the first sum can be expressed in terms of Dirac’s delta due to the
completeness of the {UNCM} basis:

∑
NCM

[ET +ECM +Eint] δcc′
UNCM(RCM)

RCM

UNCM(R′CM)
R′CM

= (ET +Eint)
δ(RCM −R′CM)
RCMR′CM

+ T̂CM
δ(RCM −R′CM)
RCMR′CM

+ ÛCM(RCM,R
′
CM) , (4.55)
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where T̂CM and ÛCM are the kinetic and potential CM parts in Eq. (4.14). The final result
for the Hamiltonian kernels is:

HJA,MA

cc′ (RCM,R
′
CM)

= δcc′ [−
h̵2

2Mp

∂2

∂R2
CM
+ h̵2

2MP

LCM(LCM + 1)
R2

CM
+ET +Eint]

δ(RCM −R′CM)
RCMR′CM

+ δcc′ÛCM(RCM,R
′
CM) + Ṽcc′(RCM,R

′
CM) , (4.56)

where Ṽcc′ includes the short-range terms and is given by:

Ṽcc′(RCM,R
′
CM) = ∑

NCM≤Nmax
N ′CM≤Nmax

HJA,MA

cc′ (NCM,N
′
CM)

UNCM(RCM)
RCM

UN ′CM
(R′CM)

R′CM

− ∑
NCM≤Nmax

[ET +ECM +Eint] δcc′
UNCM(RCM)

RCM

UNCM(R′CM)
R′CM

.

Ṽcc′ contains the calculation of ⟨αβ∣ (V̂res − Û0) ∣γδ⟩ matrix elements. Since the residual
interaction is of short range, then we can use a HO oscillator basis expansion to calculate
them. Using the method in Eq. (1.54) allows for a more stable calculation.

4.7 Solution of the Hill-Wheeler equation
The coupled-channel and Slater determinant representations of GSM are mathematically
equivalent, however truncations of model spaces in both representations are not. Indeed,
in the Slater determinant representation we truncate the number of allowed Slater deter-
minants. On the other hand, the truncation at the level of channels consists of choosing
the relevant channels under the assumption that only a few of them contribute to the
total wave function. Therefore in practice the solutions of GSM and GSM-CC are going
to be different.

So far, we have gathered the necessary tools to begin solving the Hill-Wheeler equation
(4.7) in the context of GSM-CC. First, we will transform the generalized eigenvalue prob-
lem into a standard eigenvalue problem. Afterwards, we will solve the entrance channel
by direct integration. Then, we will solve for the resonant states using a version of the
overlap method discussed in Chap. 3. Finally we will solve for the scattering states using
a Green’s function method.

4.7.1 Transformation to a standard eigenvalue problem
Eq. (4.7) is a generalized eigenvalue problem which is solved by first transforming it into
a standard eigenvalue problem. One starts by rewriting it in the matrix form as:

HU = ENU . (4.57)

By defining: W = N 1/2U and Hm = N −1/2HN −1/2, where W is a vector containing the
orthogonal channel wave function and Hm is the modified Hamiltonian [16], Eq. (4.57)
becomes:

HmW = EW . (4.58)
One can separate the overlap kernels in their orthogonal part and their short-range target-
projectile coupling part Ñ :

N = 1 + Ñ , (4.59)
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which means that we can express N −1/2 similarly as

N −1/2 = 1 +∆ , (4.60)

where ∆ will carry all contributions from the short-range interaction. In particular,
N −1/2 is calculated using the Moore-Penrose pseudo-inverse. The modified Hamiltonian
in matrix form becomes:

Hm = H +H∆ +∆H +∆H∆ . (4.61)
This allows to write equation (4.58) as:

HW + (H∆ +∆H+∆H∆)W = HW +DW = EW , (4.62)

where we identify:
D = H∆ +∆H +∆H∆ , (4.63)

and which in non-matricial form is:

∑
c′
∫ dR′CMR

′2
CMHcc′(RCM,R

′
CM)wc′(R′CM)

+∑
c′
∫ dR′CMR

′2
CMDcc′(RCM,R

′
CM)wc′(r′) = Ewc(RCM) . (4.64)

In this equation, we identify Dcc′(r, r′) as the matrix element of D and wc(r) is the
orthogonalized wave function. Plugging Eq. (4.56) in Eq. (4.64) we get:

[ h̵2

2MP

(− ∂2

∂R2
CM
+ LCM(LCM + 1)

R2
CM

) +ET +Eint]wc(RCM) +U local
c (RCM)wc(RCM)

+∑
c′
∫ dR′2CMR

′2
CMV

non−local
cc′ (RCM,R

′
CM)wc′(R′CM) = Ewc′(R′CM) . (4.65)

Here we have identified the local potential coming from the mean-field, and the non-local
part given by:

V non−local
cc′ (RCM,R

′
CM) = Ṽcc′(RCM,R

′
CM) +Dcc′(RCM,R

′
CM) . (4.66)

The final missing piece after solving Eq. (4.65) is to recover the non-orthogonal wave
functions uc(RCM). One obtains the physical channel wave functions via:

uc(RCM) = wc(RCM) +∑
c′
∫ dR′CMR

′2
CM ∆cc′(RCM,R

′
CM)wc′(R′CM) , (4.67)

where the kernel ∆cc′(RCM,R′CM) = ⟨RCM, c∣∆∣R′CM, c
′⟩ .

4.7.2 Solution in the coordinate space: the equivalent potential
method

In this section we will describe the method to solve Eq. (4.65). It consist of a gener-
alization of the equivalent potential method described in Ref. [129]. We will express
the system of equations with non-local potentials into a system of equations with local
potentials and a source term. We define the following equivalent potential:

V eq
cc′ (RCM) = δcc′Uc′(RCM)+(

1 − Fc′(RCM)
wc′(RCM)

)∫ dRCMR
2
CM V

non−local
cc′ (RCM,R

′
CM)wc′(R′CM) ,

(4.68)
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and the following source term:

Seq
c = ∑

c′
F ′c(RCM)∫ dR′CMR

′2
CM V

non−local
cc′ (RCM,R

′
CM)wc′(R′CM) , (4.69)

where we have used a smoothing function Fc′(RCM). The job of this function is to remove
the singularities due to the zeros of wc′ . We require that Fc′ ∼ 1 close to the singularities
of wc′ and zero elsewhere4. We also define the following matrix:

M eq
cc′ = [

LCM(LCM + 1)
R2

CM
− k2] δcc′ +

2MP

h̵2 V eq
cc′ (RCM) , (4.70)

where k2 = (2MP /h̵2)(ET +Eint +E). Finally, the equivalent potential equation in matrix
form becomes:

W(RCM) =M eq(RCM)W(RCM) + Seq(RCM) , (4.71)
and is solved iteratively. As any other iterative method, it is crucial to have a good
starting point. It is obtained by diagonalizing Eq. (4.65) with the non-local terms set to
zero.

We now move into details of the boundary conditions. In particular, we expand wc in
the forward basis in the interval r ∈ [0,R] corresponding to the internal region where the
nuclear potential is non-negligible:

wc(RCM) = ∑
b

c
(0)
b w

(0)
c,b (RCM) , (4.72)

and we expand wc in the backward basis in the interval r ∈ [R,Rmax] corresponding to
the asymptotic region where the nuclear potential is negligible:

wc(RCM) = ∑
b

c
(+)
b w

(+)
c,b (RCM) +w(−)e (RCM) . (4.73)

Here we have included the entrance channel, which is zero if we are describing a resonant
state. The idea of using these bases is that they have a simplified asymptotic behavior,
namely:

w
(0)
c,b (RCM ∼ 0) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩

R
LCM,b+1
CM c = b

O(RLCM,b+1
CM ) c ≠ b

(4.74)

for the forward basis, and:

w
(+)
c,b (RCM) →

⎧⎪⎪⎨⎪⎪⎩

C
(+)
b H+LCM,bηb

(kbRCM) c = b

0 c ≠ b
(4.75)

for the backward basis. In particular, the backward basis is zero for different channels
because there is no channel-channel coupling in this region. On the other hand, we
cannot ignore the channel-channel coupling in the internal region. Thus we need to find
the behavior of wc,b for c ≠ b.

We can rewrite Eq. (4.71) for small CM distances in the forward basis as:

w
′′(0)
c,b (RCM) = [

LCM(LCM + 1)
R2

CM
+ ac]w(0)c,b (RCM) + ∑

c≠c′
acc′w

(0)
c′,b(RCM) , (4.76)

4In particular, this means that for RCM ∼ 0 the source term is zero as the channel wave functions are
non-zero in that region.
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where we made the identifications:

ac =
2Mp

h̵2 V eq
cc (RCM → 0) − k2 (4.77)

acc′ =
2Mp

h̵2 V eq
cc′ (RCM → 0) . (4.78)

If c ≠ b, then Eq. (4.76) becomes:

w
′′(0)
c,b (RCM) =

LCM(LCM + 1)
R2

CM
w
(0)
c,b (RCM) + abR

LCM,b+1 +O (RLCM,b+1) . (4.79)

The terms O(RLCM,b+1) are neglibible and thus, Eq. (4.79) becomes a simple differential
equation problem, which can be dealt with by the ansatz:

w
′′(0)
c,b (RCM) =

⎧⎪⎪⎨⎪⎪⎩

CRt
CM LCM,c ≠ LCM,b + 2

DRt
CM ln(RCM) LCM,c = LCM,b + 2

(4.80)

and solved for the constants C,D, t. This allows to write the full solution in the internal
region for the forward basis:

w
(0)
c,b (RCM) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
LCM,b+1
CM c = b

abR
LCM,b+3
CM

(LCM,b + 3)(LCM,b + 2) −LCM,c(LCM,c + 1) c ≠ b, LCM,c ≠ LCM,b + 2

ab

2LCM,b + 5R
LCM,b+3
CM ln(RCM) c ≠ b, LCM,c = LCM,b + 2

(4.81)
Finally, with both the forward and backward bases properly defined, we move to

the determination of the constants c(0)b , c
(+)
b . This is straightforward from matching the

forward and backward solutions and its derivatives at a matching radius Rm:

∑
b

[c(0)b w
(0)
c,b (Rm) − c(+)b w

(+)
c,b (Rm)] = w(−)c (Rm) (4.82)

∑
b

⎡⎢⎢⎢⎢⎣
c
(0)
b

dw
(0)
c,b (Rm)
dRCM

− c(+)b

dw
(+)
c,b (Rm)
dRCM

⎤⎥⎥⎥⎥⎦
= w(−)c (Rm) . (4.83)

If it is a scattering state, the system to solve is of the form AX = B, and thus, straight-
forward to calculate. However, for a resonant state, it is of the form AX = 0 and thus the
problem is solved when detA = 0. This allows the interpretation of detA as a generaliza-
tion of the Jost functions described in Sect. 1.3. Once the solution for detA = 0 has been
found, the constants c(0)b and c(+)b are given by the eigenvector X of A of zero eigenvalue.

4.7.3 Bound and resonance states: overlap method in the con-
text of coupled channels

The method presented in the previous section is iterative, and thus it can present instabil-
ities. To calculate spectra, it is more convenient to use a different method. Reminiscent
to the GSM, we can also use the overlap method. In order to do this, we expand the
channel wave functions in the Berggren basis as in Eq. (4.45) and then use Eq. (4.58)
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which yields a complex symmetric matrix for the modified Hamiltonian. However, it can
be casted using orthogonal channels defined as:

o⟨c′, r′∣c, r⟩o =
δ(r − r′)
rr′

δcc′ , (4.84)

where the transformation from the non-orthogonal channel basis {∣c, r⟩} to the orthogonal
basis {∣c, r⟩o} is given by ∣c, r⟩ = N 1/2 ∣c, r⟩o. This allows to write Eq. (4.58) as:

∑
c′
∫ dR′CMR

′2
CM (o ⟨c′,R′CM∣Ĥ ∣c,RCM⟩o −E

δ(RCM −R′CM)
RCMR′CM

δcc′) o ⟨c′,R′CM∣Φ
JA

MA
⟩

o
= 0

(4.85)
where ∣ΦJA

MA
⟩

o
= N 1/2 ∣ΨJA

MA
⟩ , and we do the following identifications:

o ⟨c′,R′CM∣Ĥ ∣c,RCM⟩o ≡ ⟨c′,R′CM∣Hm∣c,RCM⟩ (4.86)

o ⟨c′,R′CM∣Φ
JA

MA
⟩

o
≡wc(RCM)

RCM
. (4.87)

Diagonalizing this matrix yields eigenstates consisting of bound, resonance and scat-
tering states. The resonances are embedded among the scattering states, which is the
same situation as in the GSM, and thus it is possible to use the overlap method to find
the resonances. In the context of coupled-channels, the pole approximation consists of
building channels only with the pole states of the Berggren basis coming from the projec-
tile CM Hamiltonian. Finally, the overlap is maximized in the same fashion as described
in Sect. 3.1.

4.7.4 Scattering states: solution via Green’s function method
We need an alternative and more stable method to calculate the scattering states. This is
done with the Green’s function method [35] to get the scattering solutions of Eq. (4.65).
The idea is to proceed perturbatively, so we define the zeroth-order Hamiltonian Ĥ(0) and
its eigenvector ∣Ψ(0)⟩:

Ĥ(0) = { t̂ + Ûbasis (nucleon)
T̂CM + ÛCM (cluster) (4.88)

Ĥ(0) ∣Ψ(0)⟩ = E ∣Ψ(0)⟩ . (4.89)

To be more specific, Ĥ(0) is a matrix whose off-diagonal elements are zero due to the
absence of channel-channel coupling, and only one nonzero diagonal term corresponding
to the entrance channel c0 that is activated. Hence, Eq. (4.89) is a one-dimensional
differential equation.

We now separate the total Hamiltonian Ĥ and the total wave function ∣ΨJA

MA
⟩ into

their zeroth order parts and the rest:

Ĥ = Ĥ(0) + Ĥrest (4.90)
∣ΨJA

MA
⟩ = ∣Ψ(0)⟩ + ∣Ψrest⟩ . (4.91)

Using Eqs. (4.6),(4.89),(4.90), and (4.91), one obtains:

(Ĥ −E) ∣Ψrest⟩ = −Ĥrest ∣Ψ(0)⟩ = ∣ΨS⟩ , (4.92)
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Figure 4.2: Typical contour enclosing the resonance pole for a GSM-CC calculation in
the complex k-plane.

where we have introduced a source term ∣ΨS⟩. Eq. (4.92) implies that the asymptotic
behavior of the source term is limr→∞ΨS(r) = 0 because Ĥrest is of finite range. This
means that the source term can be expanded in the Berggren basis generated by Ĥ0, so
that Eq. (4.92) becomes a linear system:

[Ψrest]n,c = ⟨n, c∣Ψrest⟩ (4.93)
[ME]n,c;n′,c′ = ⟨n′, c′∣Ĥ −E∣n, c⟩ (4.94)
[ΨS]n,c = ⟨n, c∣ΨS⟩ (4.95)
MEΨrest = ΨS , (4.96)

where ∣n, c⟩ is a Bergren basis state with index n and of the channel c. The matrix
elements of Ĥ are calculated with the complex scaling method.

To solve Eq. (4.96) one has to invert the matrix ME. However, similarly to the
Lippmann-Schwinger equation, ME is not invertible on the real axis. Thus, the solution
is to impose a small imaginary part ε → 0+ such that E → E + iε. Additionally, since
channels other than the entrance channel consist only of outgoing wave function parts,
one can impose an outgoing wave function condition for uc(r) when c ≠ c0. Nevertheless,
this method becomes unstable for small ε.

This instabilities are mended by defining the contour of the discretized part of the
Berggren basis differently than what was shown in Fig. 3.1. Instead we choose a contour
like the trapezoid shown in Fig. 4.2, where the contour points have non-zero imaginary
part. Additionally, the outgoing wave function behavior for Ψrest is guaranteed in a
Berggren basis representation. Indeed, from the Parseval equality:

∣∣Ψrest∣∣2 = ∑
n

∣cn∣2∣∣u(n)c ∣∣2 , (4.97)

it can be deduced that the ∣Ψrest⟩ is a localized state when complex rotation is applied
because the Berggren basis states are.

This method offers a numerical advantage over the method of equivalent potential
for the solution of the GSM-CC. It is sufficient to compute one representation of the
Hamiltonian Ĥ in the Berggren basis, and then solve for different energies. Nevertheless,
it has been checked that both the equivalent potential method and the Green’s function
method yields the same solution for ∣ΨJA

MA
⟩ [15, 35]. Additionally, due to the increased

numerical cost of solving the GSM-CC as compared to the GSM, the matrix Ĥ is first
transformed into a diagonal or tridiagonal form.



4.8. Calculation of reaction observables 59

4.7.5 Summary of the numerical methods to solve the coupled
channels equation

In the previous subsections, we have described different methods used to solve the GSM-
CC equations (4.6). However, it is fair to ask why the equivalent potential method
has been introduced in this work if it can be replaced with the overlap method and the
Green’s function method. Indeed, current GSM-CC calculations for spectra and spectrum
related calculations are done with the overlap + Green’s function method. However, the
calculations for reaction observables need the equivalent potential method as the S-matrix
elements are constructed via the c(0) and c(+) constants in Eqs. (4.82) and (4.83).

4.8 Calculation of reaction observables
After calculating the scattering and resonant solutions of the GSM-CC equation (4.6),
we can now move on to calculate reaction observables from standard scattering theory
formulas. In order to do this, one has to build the many-body scattering wave functions
with the correct asymptotics. Indeed, as we build these wave functions we obtain in-
formation about the S-matrix and hence, the phase shifts. Finally, we can extract the
scattering amplitude from the scattering wave functions, which allows for the calculation
of cross-sections.

We rewrite Eq. (4.5) as:

∣Ψe,JA

MA
⟩ = ∑

c
∫
∞

0
dRCMR

2
CM

ue,JA
c (RCM)
RCM

∣c,RCM⟩ , (4.98)

where the entrance channel e has been made explicit and the channels c indicate all
possible exit channels. We repeat the definition of the channels wave functions:

∣c,RCM⟩ = A[∣ψJT

T ⟩ ⊗ [∣RCMLCM⟩ ⊗ ∣Jint⟩]JP ]
JA

MA
, (4.99)

where we use the angular momentum coupling scheme:

LCM + Jint = JP (4.100)
JP + JT = JA. (4.101)

Ultimately, the choice of coupling scheme does not matter as there exists the unitary
transformation using angular momentum algebra that relates one coupling scheme with
another.

In the presence of a spherically symmetric short range potential, the asymptotic be-
havior of the radial amplitude associated to the channel c is given by:

ue,JA
c (RCM) Ð→−

1
2i [δecH

−
Le

CMηe
(Ke

CMRCM) − SJA
ec H

+
Lc

CMηc
(Kc

CMRCM)]

= δecFLe
CMηe(Ke

CMRCM) + T JA
ec H

+
Lc

CMηc
(Kc

CMRCM) , (4.102)

where FLe
CMηe and H±Lc

CMηc
are the regular and outgoing/incoming Coulomb wave functions,

respectively. SJA
ec is the S-matrix element representing the scattering to the channel c with

T JA
ec the T -matrix element and they are related by:

T JA
ec =

SJA
ec − δec

2i . (4.103)
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In a reaction, the magnetic number is to be conserved. Therefore, the physical scat-
tering state must contain this information. Additionally, since the Schrödinger equation
is a linear, a linear combination of solutions is also a solution. Moreover, light projectiles,
particularly those that have four or less nucleons, can be assumed to be not excited in
the reaction. Given these assumptions, the physical scattering state5 is:

∣φẽ
M ẽ

P M ẽ
T
⟩ = ∑

Le
CMJe

P JA

A
Je

P (L
e
CMJint)J ẽ

T JA

M ẽ
P M ẽ

T

K ẽ
CM

∣ΨJe
P (L

e
CMJint)J ẽ

T JA

M ẽ
P M ẽ

T

⟩ , (4.104)

where we separate the channel set of quantum number c into the set (c̃, Le
CM, J

e
P ) and

thus c̃ is the set of quantum number that completely defines a target state. Moreover, we
have made explicit the angular momentum coupling scheme with the superscripts.

The factors AJe
P (L

e
CMJint)J ẽ

T JA

M ẽ
P M ẽ

T

have to be chosen such that we obtain the correct asymp-
totic behavior for the scattering state ∣φẽ

M ẽ
P M ẽ

T

⟩. The idea is that if there was no short-range
potential, we could recover the asymptotic of a Coulomb scattering. The appropriate co-
efficients are therefore:

A
Je

P (L
e
CMJint)J ẽ

T JA

M ẽ
P M ẽ

T

= ⟨Le
CM0JintMint∣Je

PM
ẽ
P ⟩ ⟨J ẽ

PM
ẽ
PJ

e
TM

ẽ
T ∣JAMA⟩ iL

e
CM

√
4π(2Le

CM + 1)eiσLe
CM ,

(4.105)
where σℓ = arg [Γ(ℓ + 1 + iη)] is the Coulomb phase shifts. The first Clebsch-Gordan
coefficient in equation (4.105) contains a zero term for the projection of the CM angular
momentum Le

CM. This is a consequence of assuming that the incoming beam is aligned
with the z-axis. This allows to use the properties like [173]:

∑
ℓ

iℓ
√

4π(2ℓ + 1)eiσℓ
Fℓ,η(kr)
kr

Y ℓ
0 (θ)

r→∞ÐÐ→ ei[kz+η ln(k(r−z))] + fC(θ)
ei(kr−η ln(2kr))

r
. (4.106)

It can be shown that the scattering state defined in Eq. (4.104) using the coefficients
in (4.105) gives the correct asymptotic behavior. That is to say:

⟨R⃗CM∣φẽ
M ẽ

P M ẽ
T
⟩ r→∞ÐÐ→ ei[K ẽ

CMz+η ln(K ẽ
CM(RCM−z))] ∣JintMP ⟩ ⊗ ∣ψẽ,JT

MT
⟩

+ ∑
c̃M ẽ

P M ẽ
T

fẽM ẽ
P M ẽ

T→c̃M c̃
P M c̃

T
(θ, ϕ)e

i(K ẽ
CMRCM−η ln(2K ẽ

CMRCM))

RCM
∣JintMP ⟩ ⊗ ∣ψẽ,JT

MT
⟩ ,

(4.107)

where the scattering amplitude has the expected behavior fC(θ) + f ′(θ, ϕ) due to the
inclusion of the nuclear potential:

fẽM ẽ
P M ẽ

T→c̃M c̃
P M c̃

T
(θ, ϕ) = δẽc̃δM ẽ

P M c̃
P
δM ẽ

T M c̃
T
fC(θ)

+ ∑
Le

CMJe
P Lc

CMJc
P JA

C
Je

P (L
e
CMJint)J ẽ

T Jc
P (L

c
CMJint)J c̃

T

M ẽ
P M ẽ

T M c̃
P M c̃

T

K ẽ
CM

T JA

ẽLe
CMJe

P ,c̃Lc
CMJc

P
Y

Lc
CM

M ẽ
P+M ẽ

T−M c̃
P−M c̃

T

(θ, ϕ) , (4.108)

5This is not to be confused with a scattering solution pertaining to the complex contour in the k-plane
in the Berggren basis.
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where:

C
Je

P (L
e
CMJint)J ẽ

T Jc
P (L

c
CMJint)J c̃

T

M ẽ
P M ẽ

T M c̃
P M c̃

T

= ⟨Le
CM0JintM

ẽ
P ∣Je
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ẽ
P ⟩ ⟨Lc
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P +M ẽ
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P ∣J c

P (M ẽ
P +M ẽ

T −M c̃
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ẽ
PJ

ẽ
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ẽ
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P +M ẽ
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T −M c̃
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CM−Lc
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√
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CM + 1) ei(σLe
CM
+σLc

CM
)
. (4.109)

Thus, the cross-section follows as:

dσẽM ẽ
P M ẽ

T→c̃M c̃
P M c̃

T

dΩ (θ, ϕ) =
K c̃

CM
K ẽ

CM
∣fẽM ẽ

P M ẽ
T→c̃M c̃

P M c̃
T
(θ, ϕ)∣

2
. (4.110)

However, generally a scattering process involves non-polarized beams, so the cross-section
is the average of all possible random configurations of magnetic numbers:

dσẽ→c̃

dΩ (θ, ϕ) = 1
(2Jint + 1)(2J ẽ

T + 1) ∑
M ẽ

P M ẽ
T M c̃

P M c̃
T

K c̃
CM

K ẽ
CM
∣fẽM ẽ

P M ẽ
T→c̃M c̃

P M c̃
T
(θ, ϕ)∣

2
. (4.111)

The sum in the amplitude (4.108) goes over infinite partial waves JA and the angular
momentum LCM. However, in practice one has to do truncations in the calculation of cross-
sections, i.e. selecting relevant partial waves for a particular studied process. Moreover,
we also truncate the maximum allowed angular momentum LCM. Additionally, we are
neglecting, for convenience of notation, the parity tag so that all previous formulae goes
as JA → Jπ

A.
Since we start from a SM calculation, the construction of certain partial waves may

sometimes prove to be difficult due to the choice of valence space. The S-matrix elements
are calculated with the equivalent potential method described in Sect. 4.7.2 and in this
form is currently used for such calculations in the GSM-CC scheme. Since we know
that the equivalent potential method is unstable for purely scattering states, trying to
construct a partial wave with scattering states can lead to unstable results.

4.8.1 Applications of the Gamow Shell Model in coupled chan-
nels representation

The GSM-CC formalism was applied first for the description of proton scattering on 18Ne
[16]. Soon after, it was extended to the studies of radiative capture [17] of nucleons.
These studies include the reactions 18Ne(p,p) [16]; 15O(p,p) and the spectra of 16F and
16N [174]; 7Be(p,γ)8B and 7Li(n,γ)8Li [17]; 6Li(p,γ)7Be and 6Li(n,γ)7Li [175]; 8Li(n,γ)9Li
[176]; and 8Be(n,γ)9B [177]. The previously mentioned studies involve reactions with
nucleon projectiles only. However, the GSM-CC formalism was extended to clusters and
first tested with the elastic scattering reaction 4He(d,d) [35]. The GSM-CC with clusters
has been used to study the transfer reaction 40Ca(d,p)41Ca [36], which will be presented
in Chap. 5. Additionally, it has been used to describe 7Li and 7Be and the evolution of
spectroscopic factors and probability weights as a function of the distance to the emission
thresholds [178]. This will be presented in both Chaps. 5 and 6. Recently, the coupled-
channels version of the NCGSM has been developed and applied to study the 0+2 resonance
of 4He [25].
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4.9 Differences with other methods
Having introduced the theory behind GSM, we can now compare it to other methods for
nuclear structure described in Chap. 2. In the case of the no-core approaches and the
continuum shell model approaches, focus is on the calculation of phase shifts. From the
phase shifts one extracts the widths. On the contrary, in GSM-CC the focus is on the S-
matrix. Additionally, the width arises naturally in the diagonalization of the Hamiltonian
because of the inclusion of the Berggren basis. Moreover, in GSM-CC we do not have
divergent wave functions for resonances as we can regularize them with complex scaling.

Nevertheless, the biggest difference between the GSM-CC and the no-core approaches
discussed in Sect. 2.2 is the inclusion of a core. This, of course, presents advantages
and disadvantages. The main advantage is that we are not bound to light systems and
we can instead use heavier cores to do calculations in heavier nuclei. Of course, the
disadvantage is that the effect of nucleons in the inert core is reduced to a mean field
effect and the excitation energies are restricted to those below the threshold of inelastic
channel corresponding to the core excitation. Another advantage is that the interaction
is an effective interaction that can be fitted depending on the chosen model space. And
again, paired to this is the disadvantage of not using the interaction derived from first
principles. This difference is of course no longer valid for comparing SMEC and GSM-CC
results. The difference here is similar to GSM as was discussed in Sect. 3.6. Hence we do
not repeat the arguments related to the difference in the respective definition of OQS in
both approaches.

One may notice that the coupled channels approach is very similar to the RGM [113].
However the difference between both method lies in the calculation of the wave functions
of the components of the target-projectile system. Indeed, in GSM-CC one uses Slater
determinants similarly to no-core approaches to build the wave functions, whereas in
RGM one construct the wave function as a linear combination of many different basis
functions, where each basis function represents a possible configuration of the nucleus.
These basis functions are constructed by treating the nucleus as a collection of clusters or
groups of nucleons, and then taking linear combinations of these cluster wave functions
to construct the total wave function of the nucleus. This means that the RGM includes
clustering in a more phenomenological manner and GSM-CC in a more mathematically
rigorous manner.



CHAPTER 5

Multiple mass partitions in Gamow Shell Model Coupled Channel
representation

Low energy nuclear reactions are of great importance in nuclear astrophysics, particularly
in the study of stellar nucleosynthesis. By examining reaction rates, scientists can gain a
valuable insight into essential processes of the nucleosynthesis such as the proton-proton
chain of reactions and the CNO cycle. These reactions provide a deeper understanding
of the birth, evolution, and energy production of stars. Additionally, they play a vital
role in unraveling the mechanisms behind supernova explosions, neutron star formation,
and the synthesis of heavy elements in the Universe. Moreover, the investigation of low
energy nuclear reactions enables to probe fundamental properties of the matter under
extreme conditions, paving the way for conceptual advances in both nuclear physics and
astrophysics.

The conventional method in reaction theory involves constructing few-body nuclear
systems using uncorrelated cluster wave functions. Cross sections are then calculated by
employing coupling potentials, which are directly adjusted to match experimental data.
One popular framework for such calculations is the R-matrix theory, as discussed by
Descouvemont and Baye [179]. In Chap. 4 we have described the GSM-CC approach
for a unified description of structure and reactions. Moreover, in Chap. 2 we have
discussed other approaches for a description of nuclear reactions and nuclear structure
like the NCSMC and SMEC. Particularly, the 7Be and 7Li nuclei have been studied in
the NCSMC approach [180, 181] where up to two mass partitions were studied. Unlike
in the GSM-CC, these two mass partitions have not been coupled. 7Be and 7Li have
also been studied within the GSM-CC framework [175], however this was done with one
mass partition involving nucleons. Recently, 8Be was also studied in the multiple mass
partition NCSMC framework [182].

7Be and 7Li offer particular conditions that make them ideal candidates for pioneering
studies of GSM-CC with multiple mass partitions. Unlike heavier nuclei, they have a
small density of states, which means that calculations of cross-sections do not need a
suppresion of any important partial wave. One can see that by adding one more valence
particle, the density of states around and above the proton and neutron thresholds increase
significantly, like in 8Be. Moreover, we do not need to worry about core excitations, as
the first excited state of 4He is more than 20 MeV above the ground state. On the other
hand, the advantage of the GSM-CC over ab initio approaches is the possibility to do
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calculations with heavier systems because it uses an inert core approach. Hence, the
calculations with several valence nucleons outside of the cores: 12C, 16O, 40Ca, etc. are
possible.

In this chapter, we present results of GSM-CC studies with the multiple mass parti-
tions. We begin with the definition of spectroscopic factors in Sect. 5.1. In Sect. 5.2
we present the spectra of 7Be and 7Li and cross-sections of elastic scattering of clusters
and protons. Afterwards, in Sect. 5.3, we show results for the spectrum of 8Be. Finally,
in Sect. 5.4 we present results of the deuteron transfer reaction 40Ca(d,p)41Ca and the
spectra of A = 42 nuclei calculated with a 40Ca core.

5.1 Spectroscopic factors in GSM
Experimentally, the SF is given by the proportionality coefficient between the cross-section
in a single-particle model and the measured cross-section in a given channel:

σnℓjm = Snℓjmσ
nℓjm
s.p. . (5.1)

In this expression, Snℓjm is the SF associated to the state with quantum numbers nℓjm
and σnℓjm

s.p. is the cross-section containing all the kinetic dependence related to the transfer
of the nucleon of the projectile and without the nucleon-nucleon interaction [170, 183].
To get the total cross-section σ, one sums over all quantum numbers (nℓjm)

σ = ∑
nℓjm

σnℓjm . (5.2)

The SF can be interpreted as a measure of the occupancy of a particular j-shell. The
information about internucleon correlations is contained in the SF.

Theoretical calculations of SF are based on some configuration interaction approach
like the SM. Usually, in standard SM calculations, one takes only one major HO shell.
Such a space is incomplete, which creates a spurious basis dependence of the calculated
SFs [184–188].

In SM calculations, the one-nucleon spectroscopic factor S2 is given by:

S2 = 1
2JA + 1 ⟨Φ

JA

A ∣∣a
†
ℓj ∣∣Φ

JA−1
A−1 ⟩

2
. (5.3)

ΦJA

A and ΦJA−1
A−1 in this expression are the wave functions of nuclei with A and A − 1

nucleons, and a†
ℓj is the creation operator related to the oscillator shell (ℓ, j). Eq. (5.3)

is approximately valid for states that are well bound, and should not be applied for near-
threshold and unbound states.

A consistent definition of the theoretical SFs can be obtained in the Berggren basis,
extending Eq. (5.3) to OQS. We can define the SF as the norm of the radial overlap
function Iℓj(r) [170, 171, 183]:

Iℓj(r) = ⟨ΨJA

A ∣ [∣Ψ
JA−1
A−1 ⟩ ⊗ ∣ℓ, j⟩]

JA
, (5.4)

where ΨJA

A and ΨJA−1
A−1 are the wave functions of nuclei with A and A − 1 nucleons, re-

spectively, and ∣ℓ, j⟩ is the angular-spin part of the channel functions. The radial overlap
functions can be expanded using a complete Berggren basis as:

Iℓj(r) = ⨋
B

⟨Ψ̃JA

A ∣∣a
†
ℓj(B)∣∣Ψ

JA−1
A−1 ⟩ ⟨rℓj∣B⟩ , (5.5)
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where B runs over all Berggren basis states ∣B⟩, including resonant and discretized con-
tinuum states with quantum numbers (ℓ, j). a†

ℓj(B) in Eq. (5.5) is the creation operator
associated to the state ∣B⟩. Finally, the one-nucleon spectroscopic factor S2 is given by:

S2 = 1
2JA + 1 ⨋

B

⟨Ψ̃JA

A ∣∣a
†
ℓj(B)∣∣Ψ

JA−1
A−1 ⟩

2
. (5.6)

Since the SF in Eq. (5.6) is defined in a complete basis, therefore it is basis independent.
As such, it is useful in any regime of binding energies: for well bound states, weakly bound
states or for resonances in the continuum.

In GSM-CC, the spectroscopic factor is calculated in the following way :

S2
LCMJP

= ∫
+∞

0
uc(r)2 dr

+ [ ∑
NCM

A2
LCMJP

(NCM) − ∫
+∞

0
uc(r)2 dr]

(HO)

, (5.7)

where c is the non-orthogonalized channel associated to the LCM and JP quantum numbers
(see Chap. 4), the superscript (HO) indicates than one projects wave functions on a basis
of HO states, and ALCMJP(NCM) is the k-particle spectroscopic amplitude :

ALCMJP(NCM) =
⟨ΨA∣∣A†

NCM LCMJP
∣∣ΨA−k⟩√

2JA + 1
. (5.8)

In Eq. (5.8), ΨA and ΨA−k are the wave functions of the systems with A and A − k
nucleons, respectively. JA is the total angular momentum of the system with A nucle-
ons, and A†

NCM LCMJP
is a creation operator associated with the HO projectile basis state

∣NCM LCM Jint JP⟩. Integral of the uc(r)2 in Eq. (5.7) is the GSM-CC spectroscopic fac-
tor where asymptotic properties are included exactly but antisymmetry between target
and projectile is neglected. As antisymmetry is localized inside the nuclear region, it is
restored by adding the GSM spectroscopic factor projected in a HO basis, where antisym-
metry is exactly taken into account via the use of Slater determinants, and by removing
the HO projected uc(r)2 function.

One should stress that the SFs are not observables [189, 190]. On the contrary, the
radial overlap function is an observable, at least its asymptotic behavior. Indeed, for a
particular process a→ b + c, the radial overlap function Ia

bc in the asymptotic region is:

Ia
bc;ℓj(r) =

1
r
CℓjW−η,ℓ+1/2(2κr), (5.9)

where W−η,ℓ+1/2 is the Whittaker function, Cℓj is the asymptotic normalization coefficient
(ANC), and r is the relative distance between particles b and c. In this expression:

κ =
√

2µS(a)c /h̵2 , (5.10)

where µ is the reduced mass of b + c and S
(a)
c the separation energy of particle c in the

nucleus a. The ANCs being measured directly [191, 192] makes the radial overlap function
an observable.

Let us consider the case that either the A-nucleus or the (A−1)-nucleus is unbound. In
this case the corresponding radial overlap integral is complex and its asymptotic behavior:

Iij(r) ∼ eκr , (5.11)
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is determined by the complex one-nucleon separation energy [39]:

S̃1n ≡ E(A − 1) −E(A) = S1n −
i

2 [Γ(A − 1) − Γ(A)] . (5.12)

In this expression, S1n = Re[E(A − 1)] − Re[E(A)] is the standard, real one-nucleon
separation energy [38].

5.2 Description of 7Be and 7Li
7Li and 7Be hold significant importance in nuclear astrophysics, particularly concerning
the Big Bang Nucleosynthesis (BBN). The radiative capture reaction 3H(4He,γ)7Li plays
a crucial role in determining the primordial abundance of 7Li. The intriguing abundance
of 6Li and 7Li has sparked a substantial interest within the field of nuclear astrophysics.
The origin of 7Li in hot, low-metallicity stars is believed to stem from BBN, while 6Li is
thought to originate from spallation and fusion reactions in the interstellar medium [193].
Consequently, the abundance ratio of 6Li and 7Li can serve as an effective time scale for
stellar evolution [194].

In the determination of the fraction of branches in the pp-chain resulting in 7Be and
8B neutrinos, the radiative capture reaction 3He(4He,γ)7Be plays a pivotal role [195, 196].
Considerable attention has been devoted to the study of reactions that can produce 7Be
in stellar environments, with particular emphasis on the 6Li(p,γ)7Be reaction, which is
essential for the removal of 6Li and the formation of 7Be. Recent experimental investiga-
tions of this reaction have suggested a potential resonant enhancement of the 6Li(p,γ)7Be
cross section near the threshold [197].

Calculations of 7Be and 7Li were done using two different mass partitions. For 7Be
we use the partitions: 4He + 3He and 6Li + p, which represent the two lowest particle
emission threshold. Similarly, for 7Li we use the partitions: 4He + 3H and 6Li + n.
The theoretical framework for the calculations of spectra and reaction cross-sections is
the GSM-CC, described in Chap. 4. Both partitions are treated symmetrically in each
calculation. In Sect. 5.2.1 we define our model space and is Sect. 5.2.2 we obtain an
effective interaction to reproduce experimental spectra of 6,7Li and 7Be.

5.2.1 Model space for 6Li, 7Be, and 7Li
The GSM calculations of the 6Li targets are performed using a 4He core with two valence
nucleons (one proton and one neutron). This means that the 0s1/2 HO shells are fully
occupied and inert. The valence space consists of two resonant-like HO shells 0p3/2, 0p1/2
and several scattering-like subdominant HO shells in {s1/2},{p3/2}, {p1/2} {d5/2}, {d3/2},
{f7/2}, {f5/2} partial waves, with n ∈ [1 ∶ 4] in s, p waves and n ∈ [0 ∶ 4] in other partial
waves. The small number of scattering-like HO states approximate the non-resonant
continuum, and additionally, this approximation reduces the size of the GSM matrix.
Moreover, the basis of Slater determinants is truncated by limiting the excitation energy
to 8h̵ω.

The internal structure of 3He and 3H projectiles is calculated using the N3LO in-
teractions [198] without the three-body contribution, fitted on phase shifts properties of
proton-neutron elastic scattering reactions. The N3LO realistic interaction is diagonalized
in six HO shells to generate the intrinsic states of 3He and 3H. The oscillator length in this
calculation is b = 1.65 fm. With this space and oscillator length, the calculated energy of
the ground state 1/2+1 of 3He is -6.35 MeV, whereas the experimental value is -7.71 MeV.
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A similar discrepancy is found in 3H, where the calculated ground state 1/2+1 energy is
-7.14 MeV, compared to -8.48 MeV experimentally. These modifications of binding energy
add no significant changes to the structure of the wave functions. In the coupled-channel
equations of GSM-CC, we use the experimental binding energies of 3He, 3H to assure
correct 4He + 3He and 4He + 3H thresholds .

Antisymmetric eigenstates of the GSM-CC are expanded in the basis of channels:
[4He(0+1)⊗3He(LCM Jint JP)]J

π and [6Li(Kπ
i )⊗p(ℓj)]Jπ for 7Be, and [4He(0+1)⊗3H(LCM Jint JP)]J

π

and [6Li(Kπ
i ) ⊗ n(ℓj)]Jπ for 7Li. Here, the considered 6Li target states are: Kπ

i = 1+1 , 3+1 ,
0+1 , 2+1 , 2+2 and 1+2 . Of course, the formalism discussed in Chap. 4 applies for projectiles in
a single Jπ states, hence we only consider the ground state 1/2+1 of 3He/3H.

The relative motion of the 3He and 3H and the 4He target is calculated in the Berggren
basis generated by proton and neutron Woods-Saxon potentials. For the clusters, this
Berggren basis includes different LCM = 0,1,2,3 partial waves with 3, 3, 2, 2 pole states,
respectively, which are included along with the respective contours. On the other hand,
for protons and neutrons we take only the poles for the 0p3/2 and 0p1/2 shells but we
include contours up to ℓ = 3 shells. All contours consist of three segments, defined by the
origin of the KCM complex plane and the complex points KCM: 0.2-i0.1 fm−1, 1.0-i0.1 fm−1

and 2 fm−1. Each segment is discretized with 15 points, so that each contour possesses
45 points. All unbound pole states lie below the Berggren basis contours, so that they
do not belong to the considered Berggren bases. The CM parts of 3He and 3H projectiles
bear LCM ≤ 3, therefore the total angular momentum of 3He and 3H projectiles satisfies
JP ≤ 7/2.

The use of two different interactions to deal with the structure of 7Be and 7Li and
the elastic scattering of 3He and 3H on α-particle is necessary as we have two different
pictures in the GSM-CC. Before and after the reaction occurs, cluster properties of the
projectiles are prominent, whereas during the reaction, properties of the composite nuclei
7Be and 7Li are decisive. The FHT interaction is defined from properties of the 6Li, 7Be
and 7Li nuclei, therefore, it cannot describe the cluster behavior of the projectiles at large
distances. Conversely, the N3LO interaction cannot be used in a core and valence particles
approximation. Added to that, the N3LO interaction generating 3He and 3H projectiles
makes use of laboratory coordinates, which are directly replaced by COSM coordinates
when building channels.

It is cumbersome to transform from laboratory to COSM coordinates and its effect is
also much smaller than the other assumptions of the model, such as a restricted number of
reaction channels, truncated model spaces, etc. Moreover, as the N3LO interaction enters
only the basis construction of 3He and 3H, it is not explicitly present in the Hamiltonian
but just insures that the projectiles 3He and 3H have correct both the wave function
(binding energy) and the asymptotic behavior. This also implies that the use of both
laboratory and COSM coordinates is consistent therein, as they coincide asymptotically.
Indeed, cross sections are always calculated in the asymptotic region, whereby rlab −
R(core)

CM ≃ rlab as rlab → +∞ therein and ⟨R(core)
CM ⟩ equals a few fm. As a consequence, the

use of both realistic interaction for projectiles and effective Hamiltonian for composites
induces no problem in the GSM-CC framework.

5.2.2 Interaction for A=6,7 systems
We remind ourselves that as in any other SM, we are working with an effective interaction
in an effective model space. This means that we cannot directly use interactions like those
of Ref. [127] (see Sec. 3.5). However, since we are working with the same core in a similar
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Table 5.1: Parameters of the one-body potential for protons and neutrons optimized to
describe spectra of 6Li, 7Be, 7Li in GSM. From top to bottom: central potential depth,
spin-orbit strength, radius, diffuseness and charge radius. The numbers in parentheses
correspond to the statistical uncertainties given by the fitting procedure.

Parameter Neutrons Protons

V0 (MeV) 52.9(0.9) 52.2(0.7)
Vℓs (MeV fm2) 3.39(1.04) 3.77 (1.38)
R0 (fm) 2.0 2.0
d (fm) 0.65 0.65
Rch (fm) – 2.5

space it can give us a fair initial point for fitting the spectra of A = 6,7 nuclei. In this
work, we use the optimization scheme outlined in Sect. 3.5.1.

The systems that we optimize are 6Li (for the target), 7Be and 7Li (for the combined
systems). The basis of channels used for a GSM-CC calculation is not complete because
channels made of non-resonant continuum states of the target nucleus are not included.
Nevertheless, the GSM and GSM-CC results should be similar if all relevant channels are
taken into account in the GSM-CC. Moreover, for bound states, like the ground states
of 7Be and 7Li, the SM calculation in HO representation (HO-SM) is a good approxi-
mation of the GSM calculation. Therefore, the optimization of the interaction is done
within a HO-SM framework. Furthermore, the matrix elements of the microscopically
calculated channel-channel coupling potentials will be modified by tiny corrective factors
to reproduce the experimental particle emission thresholds.

For 6Li we take the following states: Kπ
i = 1+1 , 0+1 , 2+1 and 2+2 . Out of all these states, the

most important is the ground state 1+1 , because it gives the position of the one neutron
and one proton thresholds for 7Li and 7Be, respectively. We do neglect the 3+1 state
because it is close to the deuteron emission threshold and we cannot account for deuteron
correlations in a Slater determinant formulation. The remaining 0+1 , 2+1 and 2+2 states are
fitted to obtain the correct order of states. The 1+2 state is excluded from the fit and its
energy will be used as a check of the validity of the fitting procedure. We are not including
other states as the next known state of 6Li is the 2−1 state with an excitation energy of
17.98 MeV, which has too large particle emission width for the HO-SM approximation to
be justified.

For 7Li and 7Be we take the states: Jπ
i = 3/2−1 , 1/2−1 , 7/2−1 , 5/2−1 , 5/2−2 , 3/2−2 , 7/2−2 ,

and 1/2−2 (7Li only 1). The most important states are the ground state and the first four
excited states. Particularly 7/2−1 and 5/2−1 show up in experimental cross-sections of 3He
and 3H scattering on 4He. Moreover, 5/2−2 shows up in the elastic scattering of protons
over a 6Li target. Furthermore, the 3/2−2 , 7/2−2 , and 1/2−2 (7Li only) states are included
because one risks obtaining these states too close in energy to other states, what would
contaminate the calculated cross-section.

Parameters of the optimized one-body potential which imitates the effect of 4He core
on valence nucleons are shown in Tab. 5.1. Only the potential depth V0 and the spin-orbit
term Vℓs were fitted, whereas standard values were taken for the radius R0, the diffuseness
d and the charge radius Rch. The statistical properties of the FHT interaction parameters
for p-shell nuclei have been analyzed in Ref. [127], where it has been noticed that they

1The 1/2−2 state for 7Be has not been observed.
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Table 5.2: Parameters of the FHT interaction used in this study to describe 7Be, 7Li and
8Be nuclei are compared to the FHT parameters reported in Ref.[127] for p-shell nuclei.
The statistical uncertainties of the calculated parameters are given in parentheses.

Parameter FHT [127] FHT (this work) FHT(8Be)

V 11
c -3.2 (220) 13.8 (232) 11.5 (26.4)
V 10

c -5.1 (10) -5.38 (0.24) -6.16 (0.47)
V 00

c -21.3 (66) -31.5 (145) -12.5 (9.3)
V 01

c -5.6 (5) -5.3 (0.33) -5.19 (0.33)
V 11

LS -540 (1240) -249.2 (2.7) -202.3 (0.3)
V 11

T -12.1 (795) -11.1 (29) -19.4 (14.2)
V 10

T -14.2 (71) -0.05 (4.7) 0.05 (6.68)

bear a sizable statistical error. Because the effective space used in Ref. [127] is different
than the effective space used in our work, we expect that these two interactions will be
different. Nevertheless, we find that they are rather similar.

Table 5.2 compares parameters of the FHT interaction optimized in this work with
those given in Ref.[127]. One can see that the parameters of the interaction obtained in
the present optimization agree with those of Ref.[127] within the statistical errors.

5.2.3 Spectra of 7Be and 7Li
The lowest particle emission thresholds in 7Be and 7Li are 4He + 3He and 4He + 3H,
respectively. Therefore, the description of low-energy states in 7Be and 7Li requires the
inclusion of the coupling to 3He and 3H continua in 7Be and 7Li, respectively. In this
section, we shall discuss the spectra of mirror nuclei 7Be and 7Li in the channel basis
comprising [4He(0+1) ⊗ 3He(LCM Jint JP)]J

π , [6Li(Kπ
i ) ⊗ p(ℓj)]Jπ in 7Be, and [4He(0+1) ⊗

3H(LCM Jint JP)]J
π , [6Li(Kπ

i ) ⊗ n(ℓj)]Jπ in 7Li.
Figure 5.1 shows the GSM spectrum of 6Li and the GSM-CC spectrum of 7Li and

7Be. Wave functions of 6Li states shown in this figure are used to build channel states in
7Li and 7Be. To correct for missing channels in the model space, the matrix elements of
the channel-channel coupling potentials involving nucleon-projectile channels have been
multiplied by the tiny real factors c(Jπ) for 3/2−1 , 1/2−1 , 7/2−1 , and 5/2−2 states. These
scaling factors are: c(3/2−) = 1.0092, c(1/2−) = 1.0156, c(7/2−) = 1.0173, c(5/2−) = 0.9955.

The agreement with experimental data for resonance energies is excellent. The cal-
culated widths are smaller than found experimentally. One may notice a change in the
order of higher lying levels 1/2−2 , 3/2−2 , 7/2−2 between 7Be and 7Li due to different threshold
energies and Coulomb energies. All energies of the states are given relative to the energy
of 4He core. Calculated particle emission thresholds: 4He + 3He and 6Li + p in 7Be and
4He + 3H and 6Li + n in 7Li, are corrected in the coupled-channel equations so that the
threshold energies correspond exactly to the experimental values.

The channels [6Li(Kπ
i ) ⊗ p(ℓj)]Jπ ([6Li(Kπ

i ) ⊗ n(ℓj)]Jπ) in 7Be (7Li), are built by
coupling the 6Li wave functions with Kπ

i = 1+1 , 1+2 , 3+1 , 0+1 , 2+1 , 2+2 with the proton (neutron)
wave functions in the partial waves ℓj: s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, f7/2. The cluster
channels [4He(0+1)⊗3He(LCM Jint JP)]J

π ([4He(0+1)⊗3H(LCM Jint JP)]J
π) are constructed

by coupling 3He (3H) wave function in partial waves: 2S1/2, 2P1/2, 2P3/2, 2D3/2, 2D5/2,
2F5/2, 2F7/2, with the inert 4He core in Jπ

i = 0+1 state. Detailed information about the
wave functions of low-energy 7Be and 7Li states can be seen in Tabs. 5.3, 5.4.
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Figure 5.1: (Color online) The calculated energy spectra of 6,7Li and 7Be, are compared
with experimental data [199]. 7Li and 7Be are calculated in GSM-CC using the channel
basis with two mass partitions: 4He+ 3He, 6Li+p and 4He+ 3H, 6Li+n, respectively. The
spectrum of 6Li is calculated in GSM and wave functions are expanded in the HO basis.
Numbers in the brackets indicate the resonance width in keV.

Fig. 5.2 shows the information about proton and 3He channels in 7Be. As it can be
deduced from Tab. 5.3, the mirror system 7Li shares a very similar channel decomposition
of the states as seen in 7Be. The definition of orthogonal channel probability weights is
given by:

⟨Ψ∣Ψ⟩ = ∑
c

∣⟨wc∣wc⟩∣2 = ∑
c

b2
c = 1 + 0i . (5.13)

The sum over all channels of the real parts of channel weights Re[b2
c] is normalized to

1, whereas the sum of imaginary parts Im[b2
c] is equal to 0. Additional information is

provided by the spectroscopic factors S2 and by the occupancies of single-particle shells
for dominant configurations in the considered states (see Tab. 5.4).

Major amplitudes of channels [4He(0+1)⊗ 3He(LCM Jint JP)]J
π , [6Li(Kπ

i )⊗p(ℓj)]Jπ in
7Be are given in Tab. 5.3. A significant probability of the channel wave function [4He(0+1)⊗
3He(LCM Jint JP)]J

π is seen only in low-energy states: Jπ
i = 3/2−1 ,1/2−1 ,7/2−1 ,5/2−1 , which

are close to the 4He + 3He threshold. In higher lying states, the probability of this cluster
channel drops below 1%.

The ground state 3/2−1 and the first excited state 1/2−1 are influenced mainly by the
channels [4He(0+1)⊗3He(LCM Jint JP)]J

π and [6Li(1+1)⊗p(p1/2)]J
π . In the 7/2−1 resonance,

the dominant contribution to the resonance wave function comes from the closed proton
channels: [6Li(3+1) ⊗ p(p3/2,1/2)]7/2

− , [6Li(2+2) ⊗ p(p3/2)]7/2
− , and the open 3He channel:

[4He(0+1) ⊗ 3He(2F7/2)]7/2
− .

The 5/2−1 resonance has still a significant component of the open channel [4He(0+1) ⊗
3He(2F5/2)]5/2

− . However, the dominant contribution in the wave function of this res-
onance comes from the closed proton channels: [6Li(2+1) ⊗ p(p3/2,1/2)]5/2

− , [6Li(1+2) ⊗
p(p3/2)]5/2

− . The contribution of the open proton channel [6Li(1+1)⊗p(p3/2)]5/2
− amounts

to about 2%.
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Table 5.3: Major GSM-CC probabilities of channels [6Li(Kπ
i )⊗p(ℓj)]Jπ and [4He(0+1)⊗

3He(LCM Jint JP)]J
π for 7Be, and [6Li(Kπ

i )⊗n(ℓj)]Jπ and [4He(0+1)⊗ 3H(LCM Jint JP)]J
π

for 7Li. Re[b2
c] denotes the real part of the channel probability ⟨w̃c∣wc⟩2. S2 corresponds

to the GSM-CC spectroscopic factor. The imaginary parts smaller than 0.01 have been
suppressed.

7Be ; Jπ 6Li ; Kπ 3He p Re[b2
c] S2 7Li ; Jπ 6Li ; Kπ

3H p Re[b2
c] S2

3/2−1 2P3/2 0.31 0.04 3/2−1 2P3/2 0.28 0.04
1+1 p3/2 0.22 0.43 1+1 p3/2 0.23 0.44
1+1 p1/2 0.10 0.20 1+1 p1/2 0.11 0.22
3+1 p3/2 0.18 0.41 3+1 p3/2 0.18 0.43
0+1 p3/2 0.10 0.22 0+1 p3/2 0.10 0.22
2+1 p1/2 0.02 0.05 2+1 p1/2 0.03 0.08
2+2 p3/2 0.03 0.07 2+2 p3/2 0.03 0.07
2+2 p1/2 0.03 0.08 2+2 p1/2 0.02 0.07

1/2−1 2P1/2 0.33 0.04 1/2−1 2P1/2 0.31 0.03
1+1 p3/2 0.31 0.64 1+1 p3/2 0.33 0.67
1+1 p1/2 0.06 0.05 1+1 p1/2 0.03 0.06
0+1 p1/2 0.07 0.17 0+1 p1/2 0.08 0.19
2+1 p3/2 0.12 0.27 2+1 p3/2 0.11 0.23
2+2 p3/2 0.06 0.14 2+2 p3/2 0.08 0.19
1+2 p1/2 0.06 0.12 1+2 p1/2 0.06 0.13

7/2−1 2F7/2 0.22 0.03+0.02i 7/2−1 2F7/2 0.21 0.03+0.01i
3+1 p3/2 0.33 0.70 3+1 p3/2 0.32 0.68
3+1 p1/2 0.18 0.37 3+1 p1/2 0.19 0.40
2+1 p3/2 0.07 0.16 2+1 p3/2 0.11 0.23
2+2 p3/2 0.19 0.43 2+2 p3/2 0.17 0.38

5/2−1 2F5/2 0.24 -0.15+0.06i 5/2−1 2F5/2 0.26 -0.09+0.08i
1+1 p3/2 0.02 0.02-0.02i 1+1 p3/2 0.01 0.01-0.02i
3+1 p3/2 0.05 0.11-0.07i 3+1 p3/2 0.05 0.11-0.04i
2+1 p3/2 0.22 0.45-0.11i 2+1 p3/2 0.19 0.40-0.08i
2+1 p1/2 0.09 0.19-0.06i 2+1 p1/2 0.08 0.14-0.03i
2+2 p3/2 0.05 0.09-0.04i 2+2 p3/2 0.07 0.13-0.04i
2+2 p1/2 0.10 0.23-0.06i 2+2 p1/2 0.11 0.27-0.06i
1+2 p3/2 0.23 0.47-0.12i 1+2 p3/2 0.23 0.47-0.10i

5/2−2 2F5/2 0.01 -0.01+0.01i 5/2−2 2F5/2 0.01 -0.004+0.006i
1+1 p3/2 0.46 0.61+0.06i 1+1 p3/2 0.54 0.67+0.04i
3+1 p3/2 0.18 0.27+0.02i 3+1 p3/2 0.15 0.24+0.01i
3+1 p1/2 0.27 0.40-0.04i 3+1 p1/2 0.25 0.37-0.04i
2+1 p3/2 0.06 0.10-0.07i 2+1 p3/2 0.05 0.08-0.05i
2+2 p3/2 0.01 0.03+0.01i 2+2 p3/2 0.01 0.02+0.01i
2+2 p1/2 0.01 0.03-0.03i 2+2 p1/2 0.01 0.02-0.02i

3/2−2 1+1 p3/2 0.12 0.16+0.02i 3/2−2 1+1 p3/2 0.13 0.17+0.02i
1+1 p1/2 0.35 0.46+0.01i 1+1 p1/2 0.35 0.46+0.02i
3+1 p3/2 0.04 0.05+0.02i 3+1 p3/2 0.04 0.05
2+1 p3/2 0.28 0.42-0.05i 2+1 p3/2 0.27 0.41-0.06i
2+1 p1/2 0.09 0.14-0.01i 2+1 p1/2 0.09 0.15-0.02i
1+2 p3/2 0.12 0.18-0.03i 1+2 p3/2 0.10 0.16-0.03i
1+2 p1/2 0.01 0.02 1+2 p1/2 0.01 0.01

1/2−2 1+1 p3/2 0.02 0.03+0.01i 1/2−2 1+1 p3/2 0.03 0.03+0.01i
1+1 p1/2 0.45 0.61+0.02i 1+1 p1/2 0.46 0.60+0.04i
2+1 p3/2 0.11 0.16 2+1 p3/2 0.11 0.17-0.01i
1+2 p3/2 0.39 0.60-0.07i 1+2 p3/2 0.37 0.59-0.08i
1+2 p1/2 0.02 0.03 1+2 p1/2 0.02 0.04-0.01i

7/2−2 3+1 p3/2 0.45 0.61+0.05i 7/2−2 3+1 p3/2 0.48 0.66+0.06i
3+1 p1/2 0.40 0.53-0.06i 3+1 p1/2 0.36 0.50-0.04i
2+1 p3/2 0.16 0.23-0.07i 2+1 p3/2 0.16 0.24-0.02i
2+2 p3/2 0.01 0.001+0.003i 2+2 p3/2 0.01 0.01+0.01i
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Figure 5.2: The channel decomposition for selected states of 7Be. In different colors, we
show the summed GSM-CC probabilities of p and 3He channels. Detailed information
about major GSM-CC channel probabilities and spectroscopic factors in individual states
of 7Be can be found in Tab. 5.3. Information about the number of protons and neutrons
in different shells is given in Tab. 5.4.

The close lying 5/2−2 resonance has a completely different structure than the 5/2−1 res-
onance. The amplitude of 3He channel: [4He(0+1)⊗ 3He(2F5/2)]5/2

− , is close to 1% and the
wave function is influenced mainly by the open proton channel: [6Li(1+1) ⊗ p(p3/2)]5/2

− ,
and the closed proton channels: [6Li(3+1)⊗p(p3/2,1/2)]5/2

− . Hence, we predict that 5/2−1 res-
onance is excited mainly in 4He + 3He reaction and decays mostly by the emission of 3He,
whereas 5/2−2 resonance is excited mainly in 6Li + p reaction and decays predominantly
by the proton emission.

In the 7/2−2 resonance, the summed probability of [6Li(3+1) ⊗ p(p3/2,1/2)]7/2
− channels

is 85% and the weight of the cluster channel [4He(0+1) ⊗ 3He(2F7/2)]7/2
− is negligible.

In the resonances 3/2−2 and 1/2−2 , the channels [6Li(1+1) ⊗ p(p3/2,1/2)]J
π dominate with

a summed probability of 47%. Slightly smaller contributions come from the channels
[6Li(1+2)⊗ p(p3/2,1/2)]1/2

− , [6Li(2+1)⊗ p(p3/2,1/2)]3/2
− for 1/2−2 and 3/2−2 , respectively. Other

channel wave functions, including the [4He(0+1) ⊗ 3He(LCM Jint JP)]J
π channel, have a

negligible weight in these states.
Major amplitudes of the channels [4He(0+1) ⊗ 3H(LCM Jint JP)]J

π and [6Li(Kπ
i ) ⊗

n(ℓj)]Jπ in 7Li can be found in Tab. 5.3. As in 7Be, a significant probability of the
channel wave function [4He(0+1)⊗3H(LCM Jint JP)]J

π is seen only in the low-energy states:
Jπ

i = 3/2−1 ,1/2−1 ,7/2−1 ,5/2−1 , which are close to the 4He + 3H threshold. At higher excitation
energies, the probability of the [4He(0+1)⊗ 3H(LCM Jint JP)]J

π channel diminishes rapidly
below 1%.

In general, mirror symmetry between low-energy wave functions in 7Be and 7Li is
satisfied very well. Major probabilities are close in higher energy resonances 3/2−2 , 5/2−2 ,
and 7/2−2 states. For example, the probability of channels: [6Li(1+1) ⊗ p(p3/2)]5/2

− and
[6Li(3+1)⊗p(p3/2,1/2)]5/2

− in 7Be are 0.46 and 0.45, respectively, whereas the mirror channels
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Table 5.4: Number of protons (neutrons) in resonant shells: ℓ = 1 (p) and non-resonant
shells of the scattering continuum: ℓ = 0 ({s}), ℓ = 1 ({p}), ℓ = 2 ({d}) are shown for the
largest configurations in different GSM eigenfunctions of 7Be (7Li). Re[a2

c] denote real
parts of the studied squared configuration amplitudes. Only occupancies higher than 5%
are shown.

Jπ p {p} {d} {s} Re[a2
c] Jπ p {p} {d} {s} Re[a2

c]
7Be 3/2−1 2p1n 0 0 0 0.83 7Li 3/2−1 1p2n 0 0 0 0.83

1p 0 1p1n 0 0.06 1p 0 1p1n 0 0.07
1/2−1 2p1n 0 0 0 0.82 1/2−1 1p2n 0 0 0 0.83
7/2−1 2p1n 0 0 0 0.84 7/2−1 1p2n 0 0 0 0.85
5/2−1 2p1n 0 0 0 0.83 5/2−1 1p2n 0 0 0 0.83
5/2−2 2p1n 0 0 0 0.77 5/2−2 2p1n 0 0 0 0.78

1p1n 1p 0 0 0.09 1p1n 1n 0 0 0.09
1p 0 1p1n 0 0.05 1n 0 1p1n 0 0.06

3/2−2 2p1n 0 0 0 0.75 3/2−2 1p2n 0 0 0 0.76
1p1n 1p 0 0 0.12 1p1n 1n 0 0 0.11
1p 0 1p1n 0 0.05 1n 0 1p1n 0 0.05

1/2−2 2p1n 0 0 0 0.75 1/2−2 1p2n 0 0 0 0.77
1p1n 1p 0 0 0.11 1n 0 1p1n 0 0.05
1p 0 1p1n 0 0.06 1n 0 1p1n 0 0.05

7/2−2 2p1n 0 0 0 0.77 7/2−2 1p2n 0 0 0 0.78
1p1n 1p 0 0 0.13 1p1n 1n 0 0 0.11

in 7Li have the weights 0.54 and 0.40.
Occupancies of single-particle shells in the GSM wave functions of 7Be and 7Li are very

similar in all considered many-body states. The probability of occupying the scattering
continuum shells in 7Be and 7Li is small and does not exceed 15% (see Tab. 5.4). However,
even in low-lying states: Jπ

i = 3/2−1 , 1/2−1 , 7/2−1 , 5/2−1 , the occupation of shells in the
scattering continuum, i.e. the complement of the resonant-shell probability (proton only
in Tab. 5.4), amounts to about 17% and increases to ∼25% for higher lying states.

Table 5.3 shows also the real part of GSM spectroscopic factors for different states
of 7Be and 6Li. One may notice a good qualitative agreement between the real part of
the one-proton channel weights and their corresponding SFs, i.e. large probabilities of
channels: [6Li(Kπ

i ) ⊗ p(ℓj)]Jπ , are closely related with the large SFs: 7Be(Jπ) → p(ℓj) ⊕
6Li(Kπ

i ). Similarly for 7Li, there is a close qualitative relation between the magnitude of
the channel amplitudes: [6Li(Kπ

i )⊗n(ℓj)]Jπ and SFs: 7Li(Jπ) → n(ℓj)⊕ 6Li(Kπ
i ). Hence

the channel amplitudes and the SFs, both independent of the choice of the single-particle
basis, provide useful information about the structure of many-body states. One may also
notice the negative SFs for the cluster wave functions. These require a different analysis
to give an interpretation and will be discussed in Chap. 6.

5.2.4 Reaction cross-sections involving 7Be and 7Li as composite
systems

In this section, we shall discuss the reaction cross-sections 4He(3He, 3He) , 4He(3H,
3H), and 6Li(p,p). The GSM-CC cross sections are calculated by coupling the real-
energy incoming partial waves to the states of 4He or 6Li given by the Hermitian Hamil-
tonian. GSM-CC calculations are performed using COSM coordinates [126] but the
reaction cross sections will be expressed in the CM reference frame. The initial en-
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Figure 5.3: (Color online) The GSM-CC elastic differential cross sections of the reaction
4He(3H,3H)4He, calculated at four different CM angles, are compared with the experi-
mental data (in dots) [199]. 3H bombarding energy is given in the laboratory frame.

ergy is E(COSM) = E(COSM)
proj + E(COSM)

T , where E(COSM), E(COSM)
proj , and E

(COSM)
T are the

total energy, the projectile energy, and the GSM target binding energy, respectively.
One has E(lab)

proj ≃ 1.25 E
(COSM)
proj for 4He(3H,3H)4He and 4He(3He,3He)4He reactions and

E
(c.m.)
proj ≃ 1.07 E(COSM)

proj for the 6Li(p,p)6Li reaction [15].

Figure 5.4: The same as in Fig. 5.3 but for the reaction 4He(3He,3He)4He. Experimental
data (in dots) are from Ref.[199].
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Figure 5.3 shows the 4He(3H,3H)4He differential cross section calculated in GSM-CC
(solid line). Triton bombarding energy is given in the laboratory frame. The calculation
is performed using the same Hamiltonian and the same model space as used in the cal-
culation of the spectra of 6,7Li. 3H energies in Fig. 5.3 are in the CM reference frame.
The estimated error on experimental results varies with the 3H bombarding energy and
amounts to about 10% [199]. Peaks in the calculated cross section correspond to 7/2−1 ,
5/2−1 , and 5/2−2 resonances (see Fig. 5.1). The agreement between theory and experi-
ment is satisfactory at backward angles whereas at forward angles the GSM-CC approach
underestimates experimental cross-sections.

Similarly, Fig. 5.4 shows the 4He(3He,3He)4He elastic differential cross section calcu-
lated in GSM-CC (solid line) at different CM angles. The GSM-CC cross section provides
a good description of experimental cross-sections at large angles. At ΘCM ≤ 90 deg, the
calculated cross sections underestimate the experimental ones. The situation seems to
be similar to the analogous reaction 4He(3H,3H)4He. However there is a subtle difference
in the 5/2−2 peak. Indeed, in the reaction with the triton projectile the peak is more
pronounced than with a 3He analogue peak. This agrees with what is observed in experi-
mental data. The discrepancies observed at low angles may be attributed to the absence
of cancelations arising from missing partial waves.

Figure 5.5 shows the proton elastic differential cross section 6Li(p,p)6Li calculated in
GSM-CC (solid line) at different CM angles. The reproduction of the experimental data
is decent. The width of the 5/2−2 state is narrower than observed experimentally. The
5/2−1 state does not show up in the proton scattering cross-section. This correlates with
the small probability of the [6Li(1+1) ⊗ p(p3/2)]5/2

− channel in the spectrum calculations.

Figure 5.5: The GSM-CC elastic differential cross sections of the reaction 6Li(p,p)6Li at
three different CM angles are plotted as a function of proton energy and compared with
experimental data (in dots) [200]. Proton bombarding energy is given in the c.m. frame.
Both GSM-CC and experimental cross sections are divided by the Rutherford cross sec-
tion.
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5.3 Description of 8Be
The 8Be nucleus plays a crucial role in the He-burning process, particularly in the for-
mation of the Hoyle state in 12C, which ultimately leads to the production of 16O. A
fundamental aspect underlying the production of 12C, 16O, and heavier elements through
the He-burning process is the presence of α-clustering, which consistently emerges near
the threshold for α-cluster decay in these nuclei. The α-clustering phenomenon plays a
key role in understanding the synthesis of these elements.

The lowest particle emission threshold in 8Be is 4He + 4He. Hence, the description
of low-energy states in 8Be demands the inclusion of the coupling to 4He continuum. In
addition, we use the partitions: 7Be + n, 7Li + p, and 6Li + d. Hence, we shall discuss the
spectrum of 8Be in the channel basis comprising four partitions calculated in the GSM-CC
formalism.

5.3.1 Model space for 8Be
Similarly to Sect. 5.2.1, the GSM calculations of 6,7Li and 7Be are done with a 4He
core and two or three valence nucleons (one proton and one neutron for 6Li, and two
protons(neutrons) and one neutron(proton) for 7Be(7Li)). Hence, the 0s1/2 HO shells are
fully occupied and inert. The valence space is the same as described in Sect. 5.2.1 with
an added set of shells {g9/2} and {g7/2} in the scattering continuum to account for ℓ = 4
interactions.

On the other hand, the internal structure of 4He-projectiles is calculated using the
N3LO interaction [198] without a three-body contribution. The N3LO realistic interaction
is diagonalized in eight HO shells to generate intrinsic states of 4He. The oscillator length
chosen for this calculations is b = 1.70 fm. With this space and oscillator length, the
calculated energy of the ground state 0+ of 4He is -26.32 MeV, whereas the experimental
value is -28.30 MeV. Using the same parameters and interaction, we can also calculate
the internal structure of deuteron projectiles. This yields an energy of -1.95 MeV for the
1+ ground state of deuteron, whereas the experimental value is -2.2 MeV. Similarly to the
calculations done with the 7Be and 7Li systems, we use the experimental binding energy
of 4He to assure the correct energy of the 4He + 4He threshold.

Channels with one-proton (one-neutron) projectile are built by coupling the 7Li (7Be)
wave functions having Kπ

i = 3/2−1 , 1/2−1 , 7/2−1 , 5/2−1 , 5/2−2 , 3/2−2 , 1/2−2 , 7/2−2 with the proton
(neutron) wave functions in the partial waves ℓj: s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, f7/2, g7/2,
g9/2. The cluster channels [4He(0+1) ⊗ 4He(LCM Jint JP)]J

π are constructed by coupling
4He wave function in partial waves: 1S0, 1P1, 1D2, 1F3, 1G4 with the 4He core in Kπ

i = 0+1
state. The deuteron channels [6Li(Kπ

i )⊗ 2H(LCM Jint JP)]J
π are constructed by coupling

the deuteron wave function in partial waves: 3S1, 3P0, 3P1, 3P2, 3D1, 3D2, 3D3, with the
6Li target in Kπ

i = 1+1 ,3+1 ,0+1 ,2+1 ,2+2 ,1+2 states.

5.3.2 Interaction for A=7,8 systems
Because the model space differs slightly from what was used in the previous example for
A = 6,7 nuclei (we include also the g-shells), we expect that the effective interaction will
change as well. Nevertheless, the interaction for 6,7Li and 7Be should provide a good
starting point for constructing the interaction in 8Be. We do not change the optimization
scheme from the previous calculations, so we keep the one outlined in Sect. 3.5.1. The
systems that we optimize are 7Li and 7Be (for the targets), and 8Be (for the compound
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Table 5.5: Parameters of the one-body potential optimized to describe the GSM spectrum
of 8Be. From top to bottom: central potential depth, spin-orbit potential depth, radius,
diffuseness and charge radius. The statistical uncertainties of optimized parameters are
given in parentheses.

Parameter Neutrons Protons

V0 (MeV) 50.0(1.6) 49.8(1.6)
Vℓs (MeV fm2) 4.78(1.65) 5.02(1.74)
R0 (fm) 2.0 2.0
a (fm) 0.65 0.65
Rch (fm) – 2.5

system). The same argument to justify a fit with a HO-SM calculation given in the
A = 6,7 case is valid for this calculation. Hence, the optimization of the interactions is
done also within a HO-SM framework.

In the optimization procedure for 7Li and 7Be, we take the following states: Kπ
i = 3/2−1 ,

1/2−1 , 7/2−1 , 5/2−1 , 5/2−2 . The 5/2−1 and 5/2−2 states of 7Li are close to the neutron emission
threshold, therefore we expect that near-threshold correlations can be important. Thus,
the HO-SM will not give an appropriate result for these particular states. Nevertheless,
we choose to include the 5/2− doublets of 7Li to treat both A = 7 nuclei symmetrically in
the optimization. The higher lying 3/2−2 , 1/2−2 (7Li only) and 7/2−2 states are used to check
the fitted interaction. For 8Be, we do not take the 0+1 , 2+1 and 4+1 states in the fit because
they may have strong α-particle correlations that the GSM and HO-SM cannot take into
account. We instead focus on fitting states that are closer to the proton and neutron
thresholds. We choose the states: Jπ

i = 2+2 , 2+3 , 1+1 , 1+2 , 3+1 , 3+2 , 4+2 , 0+2 , and 3+3 . The most
important states for this case are the doublets with spin 1+ and 3+ as they are supposed
to be close to each other and close to the thresholds. This means that if we want to see
the near-threshold effects in the structure of 8Be, these states are ideal for that purpose.

The parameters of the optimized one-body potential which simulate the effect of 4He
core are shown in Tab. 5.5. The parameters of the FHT interaction are shown in Tab.
5.2. The statistical errors are considerably smaller for V 11

c and V 00
c . The reason for this

reduction may be related to the larger number of states included in the fit as compared
to the studies presented in Sect. 5.2 and in Ref. [127].

Detailed information about the wave functions of low-energy 8Be states can be seen
in Fig. 5.7 and Tabs. 5.7 and 5.6. The decomposition of low-energy wave functions in
the channel probabilities is shown in Tab. 5.6. Additional information is provided by the
occupancies of single-particle shells for dominant configurations in the considered states
(see Tab. 5.7).

5.3.3 Spectrum of 8Be
The ground state of 8Be is unbound and slightly above the α-particle emission threshold.
Therefore, the description of the ground state and the first few excited states requires
the inclusion of couplings to the 4He continuum. In this section, we shall discuss the
spectrum of 8Be in the channel basis comprising the [4He(0+1) ⊗ 4He(LCM Jint JP])]J

π ,
[6Li(Kπ

i )⊗ 2H(LCM Jint JP])]J
π , [7Li(Kπ

i )⊗p(ℓj)]Jπ , and [7Be(Kπ
i )⊗n(ℓj)]Jπ channels.

Fig 5.6 shows the GSM-CC spectrum of 8Be. The interaction matrix elements entering
the microscopic channel-channel coupling potentials for one-nucleon reaction channels
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Table 5.6: Major probabilities of channels [7Li(Kπ
i ) ⊗ pℓj]Jπ , [7Be(Kπ

i ) ⊗ nℓj]Jπ ,
[6Li(Kπ

i )⊗ 2H(LCM Jint JP)]J
π , and [4He(0+1)⊗ 4He(LCM Jint JP)]J

π for selected states in
8Be. Re[b2

c] and S2 denote the real part of the orthogonal channel probability ⟨w̃c∣wc⟩2

and the GSM-CC spectroscopic factor, respectively.

8Be ; Jπ 7Li ; Kπ 7Be ; Kπ 6Li ; Kπ 4He p/n d Re[b2
c] S2

0+1 3/2−1 p3/2 0.27 1.21
3/2−1 p3/2 0.26 1.19

1S0 0.15 0.37
1/2−1 p1/2 0.09 0.41

1/2−1 p1/2 0.09 0.41
1+1 3S1 0.07 0.33

2+1 3/2−1 p3/2 0.11 0.46-0.03i
3/2−1 p3/2 0.11 0.46-0.03i

1D2 0.10 0.30+0.16i
1/2−1 p3/2 0.09 0.41-0.03i

1/2−1 p3/2 0.09 0.31-0.02i
3/2−1 p1/2 0.07 0.31-0.02i

3/2−1 p1/2 0.07 0.31-0.02i
2+2 3/2−1 p3/2 0.26 0.61

5/2−1 p3/2 0.12 0.47
3/2−1 p3/2 0.11 0.23

1/2−1 p3/2 0.08 0.19
2+2 3D3 0.07 0.31

2+3 5/2−1 p3/2 0.18 0.76
3/2−1 p3/2 0.14 0.37

1+1 3S1 0.08 0.37
5/2−1 p3/2 0.08 0.37
1/2−1 p3/2 0.05 0.14
5/2−1 p1/2 0.05 0.22

3+1 3S1 0.05 0.01
3/2−2 p3/2 0.05 0.24

1+1 1/2−1 p3/2 0.19 0.43
1/2−1 p3/2 0.15 0.33

3/2−1 p1/2 0.12 0.25
5/2−1 p3/2 0.10 0.33

5/2−1 p3/2 0.08 0.26
3/2−1 p1/2 0.08 0.16

1+2 3/2−1 p1/2 0.16 0.34-0.01i
3/2−1 p1/2 0.13 0.29+0.01i

3+1 3D2 0.12 0.38-0.01i
1/2−1 p3/2 0.11 0.24+0.01i

2+1 3D3 0.10 0.16
1/2−1 p3/2 0.07 0.14-0.01i
5/2−1 p3/2 0.06 0.23

1/2−2 p3/2 0.06 0.22
1/2−2 p3/2 0.06 0.21-0.01i

3+1 7/2−1 p3/2 0.18 0.50-0.01i
3/2−1 p3/2 0.13 0.29+0.01i

5/2−1 p3/2 0.11 0.36
7/2−1 p3/2 0.11 0.28-0.01i

7/2−1 p1/2 0.07 0.21+0.01i
5/2−1 p1/2 0.07 0.21

3+2 3/2−1 p3/2 0.13 0.32+0.01i
7/2−1 p1/2 0.13 0.40

5/2−1 p3/2 0.09 0.27
7/2−1 p3/2 0.07 0.21+0.01i

1+1 3D3 0.06 0.26-0.01i
3+1 3S1 0.06 0.29-0.01i

5/2−1 p1/2 0.06 0.17
7/2−1 p1/2 0.05 0.19-0.01i

4+1 7/2−1 p3/2 0.14 0.62+0.03i
7/2−1 p3/2 0.13 0.60+0.03i
5/2−2 p3/2 0.12 0.58+0.01i

5/2−2 p3/2 0.12 0.55+0.01i
7/2−1 p1/2 0.10 0.46

7/2−1 p1/2 0.10 0.47
1G4 0.03 0.09+0.15i
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Table 5.7: Number of protons and neutrons in resonant shells: ℓ = 1 (p) and non-
resonant shells of the scattering continuum: ℓ = 0 ({s}), ℓ = 1 ({p}), ℓ = 2 ({d}) for largest
configurations in different GSM eigenfunctions of 8Be. Re[a2

c] denote the real parts of
the squared configuration amplitude.

Jπ p {p} {d} {s} Re[a2
c]

8Be 0+1 2p2n 0 0 0 0.82
2+1 2p2n 0 0 0 0.82
2+2 2p2n 0 0 0 0.83
2+3 2p2n 0 0 0 0.81

1p1n 0 1p1n 0 0.05
1+1 2p2n 0 0 0 0.80

1p1n 0 1p1n 0 0.05
1+2 2p2n 0 0 0 0.80
1+3 2p2n 0 0 0 0.79
3+1 2p2n 0 0 0 0.81
3+2 2p2n 0 0 0 0.81

1p1n 0 1p1n 0 0.05
3+3 2p2n 0 0 0 0.80

have been rescaled by the tiny complex multiplicative corrective factors c(Jπ): c(0+) =
1.022, c(2+) = 1.034 + 0.0015i, c(4+) = 1.036 + 0.02i, c(1+) = 1.022 + 0.00013i, c(3+) =
1.019 + 0.0035i to correct for missing channels in the model space.2 Additionally, the
channel-channel coupling potentials for α channels have been rescaled by the corrective
factors cα(2+) = 1.0+0.06i and cα(4+) = 1.0+0.2i. The channel-channel coupling potentials
associated to deuteron channels are left unchanged.

Figure 5.6 shows the spectrum of 8Be calculated with and without the deuteron chan-
nel. One may notice that the agreement with the experimental data for resonance energies
and widths is good, especially if the deuteron channels are included. In contrast to the
calculation of A = 7 nuclei, where real correction factors were used, the studies of 8Be
have been done with complex corrective factors to correct for missing reaction channels.
The energy spacing of resonances in the (1+1 ;1+2) doublet is somewhat larger in GSM-CC
calculation than in the data. The inclusion of the deuteron channel helps to close the gaps
between states of each doublet: (1+1 ;1+2), (2+2 ;2+3), (3+1 ;3+2). In the description of the ground
state 0+1 , and excited states 2+1 , 4+1 , inclusion of the deuteron channel does not improve
the agreement between the GSM-CC calculation and the data.

Fig. 5.7 shows the relative probability of channels [7Li(Kπ
i ) ⊗ p(ℓj)]Jπ , [7Be(Kπ

i ) ⊗
n(ℓj))]Jπ], [6Li(Kπ

i )⊗2H(LCM Jint JP)]J
π , and [4He(0+1)⊗4He(LCM Jint JP)]J

π in different
states of 8Be for a full calculation and a calculation without the deuteron channel. One
may notice that the [4He(0+1) ⊗ 4He(LCM Jint JP)]J

π channels play a role only in the two
lowest states: 0+1 , 2+1 . The contribution of α-cluster channels is small in 4+1 resonance, and
disappears whatsoever in higher-lying states.

The weight of proton and neutron channels in these states is roughly identical (see
Tab. 5.8) whether the deuteron channels are included or not. This is not the case in
higher energy doublets: (1+1 ;1+2), (2+2 ;2+3), (3+1 ;3+2). Independently on whether we include
the deuteron channels or not, the lower-energy member in each of those doublets car-

2The calculation without deuteron channels uses the corrective factors: c(Jπ): c(0+) = 1.024, c(2+) =
1.034 + 0.0015i, c(4+) = 1.033 + 0.02i, c(1+) = 1.023 + 0.00016i, c(3+) = 1.018 + 0.004i. The corrective
factors for the alpha channels are cα(2+) = 1.0 + 0.06i and cα(4+) = 1.0 + 0.2i.
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Figure 5.6: Energy spectrum of 8Be calculated in GSM-CC using the channel basis with
four mass partitions: [4He(0+1) ⊗ 4He(LCM Jint JP)]J

π , [6Li(Kπ
i ) ⊗ 2H(LCM Jint JP)]J

π ,
[7Li(Kπ

i )⊗p(ℓj)]Jπ , and [7Be(Kπ
i )⊗n(ℓj)]Jπ is compared with the experimental spectrum

and a spectrum calculated without the deuteron channels. Numbers in the brackets
indicate the resonance widths in keV. All energies of the states are given relative to the
energy of 4He core. Experimental particle emission thresholds: 4He + 4He and 7Li + p,
and 7Be + n are given in dashed lines in the figure.
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Figure 5.7: The channel decomposition for selected states of 8Be. In different colors, we
show the summed GSM-CC probabilities of p, n, 4He, and d channels. On the left panel
we show the distribution where the deuteron channels are absent, and on the right panel
we show the calculation with all channels. The dashed horizontal line at 0.5 in the left
panel is drawn to facilitate analysis of the symmetry between proton and neutron channels
in the doublet states. Detailed information about major GSM-CC channel probabilities
and SFs in individual states of 8Be can be found in Tab. 5.6. Information about the
number of protons and neutrons in different shells is given in Tab. 5.7.

ries a larger weight of [7Li(Kπ
i ) ⊗p(ℓj)]Jπ proton channels, whereas in the higher-energy

partner the neutron channels [7Be(Kπ
i ) ⊗ n(ℓj)]Jπ] are more important. In particular,

this effect is attenuated in the doublet (3+1 ;3+2) which is seen slightly above the neutron
channel [7Be(Kπ

i ) ⊗ n(ℓj)]Jπ . The lower-energy member still carries a larger weight of
the [7Be(Kπ

i )⊗p(ℓj)]Jπ] proton channels, whereas its higher-energy partner the neutron
channels [7Li(Kπ

i ) ⊗n(ℓj)]Jπ play a slightly larger role. The isospin structure of states
in the doublets cannot be calculated in GSM-CC. The main difficulty of the calculation
of T 2 comes from the fact that it would require all channels, like those with mass parti-
tions core + p/n, core + 2p/2n/d, core + 3p/3n/3He/3H, etc., which require 2/3/4-body
asymptotics, etc. Moreover, for an exact treatment of T 2, the wave functions of protons
and neutrons need to be the same and this is not the case in GSM-CC.

The deuteron channels play an important role in the considered wave functions. The
probability of these reaction channels surpass even the channels [4He(0+1)⊗4He(LCM Jint JP)]J

π

in 2+1 , 4+1 resonances. The uneven distribution of the deuteron channels in the doublets
(1+1 ;1+2), (2+2 ;2+3), and (3+1 ;3+2) allows to understand why the energy gap between members
of the doublet changes when this channel is included. As seen in Tab. 5.8, the inclusion
of the deuteron channels does not change qualitatively the relative importance of proton
[7Li(Kπ

i )⊗p(ℓj)]Jπ and neutron [7Be(Kπ
i )⊗n(ℓj)]Jπ channels in the partner state of each

doublet. Therefore, it does not correct the interplay between the other partitions, but its
uneven contribution between doublet states corrects the energy gaps that are otherwise
bigger. Generally, the contribution of the deuteron channels is in the range from ∼10% to
∼25%. The higher lying 4+2 state contains no α-channel component and is symmetric in the
contribution of proton and neutron channel functions. The probability of the deuteron
channel in this state is very important and equals ∼16%. However, this probability is
distributed equally among all deuteron channels with small individual probabilities up to
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Table 5.8: The summed real parts of the channel probabilities for each mass partition
in a GSM-CC calculation of 8Be. On the left, the calculation without the 6Li + d mass
partition. On the right, the calculation with all four mass partitions.

state No deuteron included Full calculation
Jπ

i
7Li + p 7Be + n 4He + 4He 7Li + p 7Be + n 4He + 4He 6Li + d

0+1 0.409 0.404 0.186 0.368 0.363 0.139 0.130
2+1 0.439 0.433 0.128 0.381 0.375 0.104 0.139
4+1 0.486 0.478 0.036 0.409 0.402 0.029 0.160
2+2 0.535 0.465 0.000 0.479 0.391 0.000 0.130
2+3 0.479 0.521 0.000 0.364 0.432 0.000 0.204
1+1 0.537 0.463 0.000 0.486 0.417 0.000 0.096
1+2 0.479 0.521 0.000 0.358 0.388 0.000 0.254
3+1 0.513 0.487 0.000 0.467 0.413 0.000 0.119
3+2 0.494 0.506 0.000 0.378 0.421 0.000 0.201
4+2 0.501 0.498 0.001 0.380 0.377 0.001 0.242
2+4 0.529 0.471 0.000 0.477 0.422 0.000 0.100
0+2 0.522 0.478 0.000 0.472 0.461 0.000 0.067

∼3%.

The probability of an open cluster channel [4He(0+1)⊗ 4He(1S0)]0
+ in the ground state

0+1 amounts to 15% if the deuteron channels are included. This cluster component con-
tributes in the first excited state 2+1 as well, with a contribution of 10%. The total contri-
bution of closed channels in this 2+1 state is spread over many proton and neutron channels.
The second excited state 4+1 contains only a small contribution of the channel function
[4He(0+1) ⊗ 4He(1G4)]4

+ : Re[b2
c]=3%. The major contributions to the wave function are

given by closed proton channels: [7Li(7/2−1)⊗ p(p3/2, p1/2)]4
+ , [7Li(5/2−2)⊗ p(p3/2)]4

+ , and
neutron channels: [7Be(7/2−1)⊗n(p3/2, p1/2)]4

+ , [7Be(5/2−2)⊗n(p3/2, p1/2)]4
+ , [7Be(5/2−2)⊗

n(p3/2)]4
+ .

The real parts of the channel weights Re[b2
c] and spectroscopic factors S2 in different

eigenstates of 8Be follow a similar qualitative tendency, namely large channel probabilities
are associated with large spectroscopic factors (see Tab. 5.6). In a GSM calculation, major
occupation of single-particle shells in different states of 8Be is seen for resonant shells p3/2,
p1/2. The occupation of non-resonant shells in the scattering continuum is not negligible
only in higher-energy eigenstates, such as 2+3 , 1+1 or 3+2 , but the real part of the squared
configuration amplitude in these cases is rather small and does not exceed around 5% (see
Tab. 5.7).

As can be seen in Tab. 5.6, the states of the doublet (2+2 ;2+3) do not show the presence
of the same dominant deuteron channels in the decomposition of their wave function.
Significant differences in deuteron channels composition are also seen among the states
of the doublets (1+1 ;1+2), (3+1 ;3+2). The asymmetry of the deuteron contributions in the
doublets (1+1 ;1+2), (2+2 ;2+3), (3+1 ;3+2) can be attributed to the orthogonality of these states
rather than to the deuteron threshold effect, which is too high in energy to be of any
importance.
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5.4 Description of spectra of 42Sc, 42Ca, 42Ti, and
transfer reaction 40Ca(d,p)41Ca

In this section, we shall discuss in GSM-CC the reactions: 40Ca(p,p)40Ca, 40Ca(n,n)40Ca,
40Ca(d,p)41Ca, and spectra of A = 41,42 nuclei using a 40Ca with valence nucleons.

Measuring the cross sections directly at stellar energies poses significant challenges,
particularly when dealing with charged particles. Consequently, indirect methods such as
transfer reactions are employed to determine the desired reaction rates relevant to astro-
physics [201, 202]. Specifically, (d,p) reactions have been extensively studied to extract
SFs for isotopes of astrophysical importance, enabling the constraint of neutron-capture
rates [203–207]. These one-nucleon transfer reactions are particularly valuable in the in-
vestigation of nuclear response to nucleon addition (single-particle strength) across various
energy, angular momentum, and parity conditions. Traditionally, one-nucleon transfer re-
actions to bound states provide insights into direct capture, while those populating the
continuum are employed to extract information about resonant and/or compound capture.

Calculations with a 40Ca core were done for: 42Ca, 42Sc and 42Ti. A single mass
partition was used for 42Ca and 42Ti consisting of 41Ca + n and 41Sc + p, respectively. For
42Sc we use three different partitions: 41Ca + p, 41Sc + n and 40Ca + d. In this section
we shall discuss the spectra and reactions associated to these systems, with particular
emphasis in the 40Ca(d,p)41Ca transfer reaction.

5.4.1 Model space for calculations with a 40Ca core
The GSM calculation of the A = 41 targets: 41Ca and 41Sc, are performed with a 40Ca
core with one valence neutron and proton, respectively. This means that the 0s1/2, 0p3/2,
0p1/2, 0d5/2, 1s1/2 and 0d3/2 shells are fully occupied and inert. The valence space consist
of four main resonant-like HO shells 0f7/2, 0f5/2, 1p3/2, 1p1/2 and several scattering-like
subdominant HO shells in {s1/2},{p3/2}, {p1/2} {d5/2}, {d3/2}, {f7/2}, {f5/2}, {g9/2}, {g7/2}
partial waves, which verify n ≤ 5. Similarly to the studies with a 4He core presented
above, the scattering-like HO states approximate the non-resonant continuum, and addi-
tionally, reduce the size of the GSM matrix. In this case, we truncate the basis of Slater
determinants by limiting the excitation energy to 14h̵ω.

The internal structure of the deuteron projectiles is calculated using the N3LO in-
teractions withouth the three-body contribution [198]. The N3LO realistic interaction is
diagonalized in ten HO shells to generate the intrinsic states of deuteron. The oscillator
length chosen for this calculations is b = 1.88 fm. With this space and oscillator length
the calculated energy of the ground state 1+ of deuteron is −1.95 MeV, whereas the ex-
perimental value is −2.22 MeV. Contrary to the examples shown in previous sections, we
set the binding energy of the deuteron to −2.1 MeV to reproduce better the calculated
spectra and reactions.

Channels with one-nucleon projectile are built by coupling the 41Ca(41Sc) wave func-
tions with (Kπ

i = 7/2−1 ,3/2−1 ,5/2−1 ,1/2−1) and a proton or a neutron wave function in the
partial waves ℓj: s1/2, p1/2, p3/2, d3/2, d5/2, f5/2, f7/2, g7/2, g9/2. The deuteron channels
[40Ca(0+1) ⊗ 2H(LCM Jint JP)]J

π are constructed by coupling the deuteron wave function
in partial waves: 3S1, 3P0, 3P1, 3P2, 3D1, 3D2, 3D3, with the inert 40Ca core in Kπ

i = 0+1
state. The break-up of deuteron can be taken into account by including the scattering
deuteron eigenstates arising from a Berggrem basis diagonalization [35]. However, for the
study of the (d,p) reaction, we only consider a small deuteron projectile energy of about
1.8 MeV, hence deuteron break-up cannot occur. Finally, the HO composite states have
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Table 5.9: Parameters of the one-body potential for protons and neutrons optimized to
describe the spectra of 41,42Ca and 42Sc. From top to bottom: central potential depth for
protons, spin-orbit strength for protons, central potential depth for neutrons and spin-
orbit strength for neutrons for partial waves ℓ = 0,1,2,3,4.

Parameter ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
V0(p) 50 55.142 62 56.601 56.5
Vℓs(p) — 6.012 5 2.884 7
V0(n) 60.5 54.302 59.5 54.204 40
Vℓs(n) — 5.007 2 2.850 2

Table 5.10: Parameters of the FHT interaction used in this study to describe 41,42Ca and
42Sc nuclei.

Parameter FHT

V 11
c 17.745
V 10

c -4.516
V 00

c -0.210
V 01

c -7.386
V 10

LS -2509
V 11

LS 1000
V 11

T -4.102
V 10

T -1.257

their energy truncated at EHO
max = 8h̵ω.

5.4.2 Interaction for A = 41,42 systems
Parameters of the optimized one-body potential which simulates the effect of 40Ca core
are shown in Tab. 5.9. Both the WS potentials for protons and neutron use a standard
value for diffuseness d = 0.65 fm and a radius R0 = 1.27A1/3 = 4.34 fm and they are the
same for all partial waves. Parameters of the WS potential for ℓ = 1,3 have been fitted to
reproduce the single-particle states of 41Ca and 41Sc: Kπ

i = 7/2−1 , 3/2−1 , 5/2−1 , and 1/2−1 . The
core potentials for ℓ = 0,2,4 partial waves do not play a significant role in the structure of
A = 41,42 nuclei. Their values were instead fitted to reproduce the reaction cross-sections
that will be presented in Sect. 5.4.3.

The parameters of the FHT interaction are shown in Tab. 5.10. The FHT interaction
is fitted to reproduce the low lying spectra of A = 42 nuclei. For 41Ca and 41Sc only the
ground state 0+1 and the first excited state 2+1 were fitted, whereas for 42Sc the states:
Jπ

i = 0+1 , 1+1 , 7+1 , 3+1 , 5+1 and 2+1 were taken into account.

5.4.3 Spectrum and reactions with a 40Ca core and valence par-
ticles

Let us now discuss the spectra of 42Ca, 42Ti and 42Sc. 42Ca and 42Ti use a single mass
partition consisting of 41Ca + n and 41Sc + p, respectively. Whereas 42Sc is described
with three mass partitions: 41Ca + p, 41Sc + n and 40Ca + d. This allows to study the
(d,p) transfer reaction within the GSM-CC framework.
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Figure 5.8: GSM-CC low energy spectra of 42Ca, 42Sn, and 42Ti nuclei are compared to
the experimental data [208].

Fig. 5.8 shows the GSM-CC spectrum of 42Ca, 42Sn, and 42Ti. The real scaling factors
in this case are: c(0+) = 1.14, c(1+) = 0.99, c(2+) = 1.08, c(3+) = 1.04, c(5+) = 1.1, and
c(7+) = 1.12. The large corrective factors for 0+, 5+, and 7+ channels may be attributed
to the absence of 0+2 , 3−1 , and 2+1 low-energy core excitation states in 40Ca. One- and
two-nucleon separation energies Sn/p and S2n/2p, respectively, and the deuteron separation
energy Sd calculated in GSM-CC for A = 41,42 nuclei are shown in Tab. 5.11 and are
compared to the data.

Fig. 5.9 shows the cross-section for the elastic scattering reactions 40Ca(p,p)40Ca
and 40Ca(n,n)40Ca at CM energies of 9.71 MeV and 2.69 MeV, respectively. Similarly
to what was presented in Sect. 5.2.4, the same Hamiltonian was used for reactions and
structure. As only nucleon projectiles are present in these reactions, the reaction channels
[40Ca(0+1) ⊗ p(ℓj)]Jπ and [40Ca(0+1) ⊗ n(ℓj)]Jπ are defined directly in the Berggren basis.
The calculated cross-section reproduce the experimental data quite well, nevertheless,
there are small oscillation at large angles θCM for the neutron scattering.

Fig. 5.10 shows the cross-section of the transfer reaction 40Ca(d,p)41Ca at a CM en-
ergy of 2.69 MeV. This cross-section can be reproduced only by fine-tuning the parameters
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Table 5.11: Comparison of theoretical separation energies Sn/p, S2n/2p and Sd with exper-
imental values. Energies are given in units of MeV.

Nucleus Sth
n/p Sexp

n/p Sth
2n/2p

Sexp
2n/2p

Sth
d Sexp

d
41Ca 8.38/— 8.363/— — — — —
42Ca 11.36/— 11.48/— 19.74/— 19.8/— — —
42Sc 11.42/4.15 11.48/4.27 — — 12.53 12.48
41Sc —/1.11 —/1.09 — — — —
42Ti —/3.57 —/3.75 —/12.53 —/12.48 — —

Figure 5.9: Cross-sections for the reations: 40Ca(p,p)40Ca (top panel) at CM energy of
9.71 MeV and 40Ca(n,n)40Ca (bottom panel) at CM energy of 2.69 MeV. Proton and
neutron experimental cross-sections are taken from Refs. [209, 210], respectively.
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Figure 5.10: Cross-section for the transfer reaction 40Ca(d,p)41Ca at CM energy of 1.853
MeV. The cross-section and angle are given in laboratory coordinates. The experimental
data has been taken from Ref. [211].

of both the Hamiltonian and the WS basis-generating potential describing the continuum
wave functions and their asymptotic behavior [212]. In this example, the GSM-CC ap-
proach provides a good reproduction of the cross-sections, except for neutron scattering
at large angles. However, the price to pay is the fine tuning of the Hamiltonian as well as
the Berggren basis parameters. Consequently, it remains difficult to study systematically
the transfer reactions in the GSM-CC framework. Although not presented in this thesis,
the calculation of transfer reaction 4He(3He,p)6Li yields cross-sections which are one order
of magnitude smaller than reported experimentally in Ref. [199]. The GSM-CC approach
for nuclear reactions requires further development and systematic studies to improve its
predictive power.
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CHAPTER 6

Near-threshold effects within the Gamow Shell Model

We still have not addressed the unitarity of the S-matrix in the context of nuclear reac-
tions. The unitarity means conservation of the probability flux. This leads to the question:
what happens with the probability flux at the opening of a particle emission threshold?
Indeed as the threshold is crossed the probability flux bifurcates and is distributed into
other channels. The theory of the near-threshold effects began with an analysis of the
asymptotic behavior of the wave functions [37] and later with the R-matrix theory [213].
For neutral particles, this led to the identification of the so-called Wigner cusps [37] in
the cross-sections. This theoretical result has been verified experimentally in various sys-
tems (see for example Refs. [214–216]). Nevertheless, one could ask which aspects of this
nuclear reaction phenomenon can be found in the nuclear structure.

One way to connect cross-sections to nuclear structure is via the SFs. If nuclear
structure and reactions are described in an OQS framework, then the threshold effect in
the cross-section might cause an analogous effect in the SFs. GSM studies [38, 39, 166]
have shown that the coupling to the continuum is necessary to obtain Wigner cusps in
nuclear structure calculations.

Another near-threshold effect, this time related to clustering, has been noted by Ikeda
et al. in 1968 [7]. They remarked that α-cluster states exist close to the α-particle emission
threshold in many ’Nα-nuclei’ . There is no particular argument that this finding should
be limited exclusively to the α-clustering in Nα-nuclei. In Refs. [8, 9], it was conjectured
that the near-threshold clustering is a general OQS phenomenon which might exist at
any particle emission-threshold, even the one where the emitted particle is unbound, like
the dineutron [217] or diproton [218, 219]. In the R-matrix framework, this phenomenon
has been related to an enhancement in the density of states close to the particle emission
threshold [213]. A recent experimental observation of a very narrow 1/2−1 resonance in the
vicinity of the 2p-threshold in 15F confirms this hypothesis [220]. However, this case is not
special as narrow near-threshold resonances are omnipresent in many nuclei. Extensive
literature on nuclear clustering and cluster modeling can be found in Ref. [221].

In SMEC, studies of the near-threshold effects that may lead to clusterization, have
been done using the continuum-coupling correlation energy [222, 223]. Particle emis-
sion thresholds considered in this theoretical framework were restricted to at most two
nucleons [88, 89, 218]. This limitation has been avoided in the coupled-channel formula-
tion of the GSM. In the GSM framework, one can define a similar, albeit not the same,

89
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continuum-coupling correlation energy, where the role of different reaction channels can
be investigated. The goal of this chapter is to lay ground for these studies in the GSM-CC.

In this chapter, we will briefly describe the theory of Wigner cusps and then follow
with a discussion of the structure of many-body wave functions, with the focus on reaction
channels probabilities. In particular, in Sects. 6.3.1 and 6.3.2 we will discuss variations
of the channel weights depending on the distance from different particle/cluster emission
thresholds, and the emergence of aligned, cluster-like configurations, in the vicinity of
the cluster threshold. In Sect. 6.3.3 we will present results of calculations regarding the
dependence of the continuum-coupling correlation energy on the distance of the particle
emission thresholds. As shown in SMEC studies [8, 9, 224–230], the continuum-coupling
correlation energy is a useful tool to quantify the configuration mixing of SM states in
the vicinity of the particle emission threshold. Finally, in Sect. 6.3.4 we will discuss the
features of the SFs in many-body states and their changes depending on the distance from
the decay thresholds.

6.1 Wigner cusps in reaction cross-sections and spec-
troscopic factors

In 1948, Wigner derived the threshold law for cross-sections [37] by analyzing the asymp-
totic behavior of the wave functions. Indeed, an anomaly shows up at the decay threshold
due to different asymptotic conditions above and below the threshold. This law explained
the appearance of cusps near the particle emission threshold cross-sections as well as
their properties. A decade later, discussion of the Wigner cusps was done in the R-matrix
theory [231–237].

Wigner cusps in cross-sections for neutral particles show a rather intriguing behavior.

• For endoergic reactions (e.g. production of slow neutral particles) one finds:

σ(i→ j) ∼ k2ℓj+1
j ∼ Eℓj+1/2

j . (6.1)

• For exoergic reactions (e.g. absorption of slow neutral particles) one obtains:

σ(i→ j) ∼ k2ℓi−1
i ∼ Eℓi−1/2

i . (6.2)

The best example for the relation (6.2) is the absorption of slow neutrons where the cross
section is inversely proportional to the velocity (σabsorption ∝ 1/v). This law was developed,
earlier than the R-matrix formalism [238–240]. From Eq. (6.1) and (6.2), one can see
that there is a discontinuity, which is shaped as a cusp for ℓ = 0,1. For higher ℓ values,
the cross-section is smooth and the discontinuity shows up in the (ℓ − 1)th derivative of
the cross-section with respect to the energy of the system.

For charged particles the dependence of the cross-section near threshold is more com-
plicated:

• For endoergic reactions is:
σ(i→ j) ∼ e−2πηj . (6.3)

• For an exoergic reactions one finds:

σ(i→ j) ∼ k2
i e
−2πηi , (6.4)
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Figure 6.1: Cross-section in arbitrary units for the reactions 7Li(t, n)9Be∗ and 7Li(t, p)9Li
is shown as a function of the energy of the triton projectile in laboratory coordinates.
One can clearly see the opening of the channel 7Li(t, n)9Be∗ at ∼ 5.68 MeV. Experimental
data is taken from Ref. [249].

where η is the Sommerfeld parameter (see Eq. (1.14)). Eqs. (6.3) and (6.4) provide useful
relations to extrapolate cross-sections for charged particles to low bombarding energies
[237].

The conservation of particle flux is a consequence of the unitarity of the S-matrix.
Consequently, the appearance of a Wigner cusp in a vicinity of the channel threshold will
modify the cross-section in other channels. Indeed, the opening of a new reaction channel
removes some of the flux from other reaction channels. Transfer of the particle flux among
open reaction channels at the threshold of a new channel can be conveniently studied in
a multichannel framework, like the GSM-CC [15, 16, 35, 36].

Wigner cusps are not related to any particular physical system or interaction among
its constituents. They have been found experimentally not only in nuclear physics, but
also in condensed matter in studies of carbon nanotubes [241, 242], in atomic physics in
scattering of positrons by He atoms [243], in electron photodetachment and in collisions of
ultracold atoms [244, 245], in hadronic physics in the π−p → π0n reaction at the opening
of the η channel [246], and in many other systems (see Refs. [247, 248]).

More relevant to this work, there have been observations of Wigner cusps in nu-
clear reactions. For example, a Wigner cusp was found in the excitation functions in
90Zn(d,p)91Zn (d5/2, g.s.) and 90Zn(d,p)91Zn (s1/2, Ex=1.21 MeV) at the thresholds of
the analogue states, namely the 90Zn(d,n)91Nb (d5/2, Ex=9.48 MeV) and 90Zn(d,p)91Zn
(s1/2, Ex=1.69 MeV) channels, respectively [215]. Another examples of cusps in the cross-
sections where found in the study of the 65Cu(p, γ)66Zn and 65Cu(p, α0)62Ni reactions,
where at the opening of the 65Cu(p,n)65Zn reaction threshold at ECM =2.13 MeV there is
a clear depletion of the cross-section at the threshold which is shaped as a cusp [216].

Reaction studies in light nuclei have also reported the observation of Wigner cusps.
For example, the reactions 7Li(t,n)9Be and 7Li(t,p)9Li show a cusp in the cross-section
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of both reactions at the threshold of the latter. Cusps in the excitation function of the
7Li(3He,p)9Be reaction were also reported as a consequence of interference with T = 2, 10B
states, which were corroborated with the cross-sections of the 7Li(3He,n)9B reaction [214,
249–251]. For further discussion and reactions reporting the existence of Wigner cusps
in light nuclei see Ref. [214] and references therein. Other examples of nuclear reactions
that show Wigner cusps as a consequence of the opening of reaction thresholds are given
in Refs. [248, 252–256].

Fig. 6.1 shows an example of the flux transfer among different reaction channls in
the case of triton induced reactions: 7Li(t,n)9Be∗ and 7Li(t,p)9Li [249]. In this case, the
opening of the 7Li(t,n)9Be∗ threshold removes some flux from the 7Li(t,p)9Li reaction
channel, resulting in a very clear Wigner cusp. The conclusion of experimental studies
is that multichannel coupling manifests itself in salient changes of the cross-sections at
various reaction thresholds. These changes have a counterpart in the modifications of
many-body states, as will be discussed in the following sections.

Discrepancies between theory and experiment regarding SFs are well known. For
example in studies of (e,e′p) reactions there is a difference of about 35% with respect to
a standard SM approach [257]. This discrepancy has been attributed to many diverse
effects, like the coupling to high-momentum states, long-range, short-range, or tensor
correlations [258–261].

More recently, it has been observed that the ratio between experimental and theoreti-
cal cross-sections depends on the asymmetry of neutron (S1n) and proton (S1p) separation
energies [262–264]. The physical interpretation of the origin of discrepancies arising from
the asymmetry between S1p and S1n remains debated [264]. One explanation was put for-
ward in Ref. [230] where SMEC and GSM calculations indicated that the SF of well-bound
orbits are strongly suppresed, whereas SFs of weakly bound states are less impacted. This
non-intuitive result has been explained by the coupling to the non-resonant continuum.
When a minority species nucleon (nucleon from the well bound fluid) is removed, the
daughter nucleus moves in the direction of the dripline which leads to significant changes
in the configuration of weakly-bound nucleons that are impacted by continuum effects.
As a consequence, the SF is reduced. On the contrary, when a majority species nucleon
(nucleon from the weakly bound nucleon fluid) is removed, the daughter nucleus moves
away from the dripline and stays close to the core of the parent system. In this case, one
expects that the SF is large [230]. The isospin dependence of spectroscopic factors has
been discussed in Refs. [265–275]. Further discussion of the SFs can be found in Ref.
[261].

The theoretical study of ∣S1n −S1p∣-dependence of the SFs can be conveniently studied
in the OQS framework of the continuum shell models, such as the SMEC or the GSM. By
an appropriate adjustment of the Hamiltonian parameters, one can tune the separation en-
ergies in such a way that it is possible to verify what happens close to the particle emission
threshold or, in other words, when the one nucleon separation energy tends to zero. This
was done in GSM first for 6,7He nuclei in Ref. [38] where it was shown that Wigner cusps in
the SFs: ⟨6He(0+1)∣ [5He(3/2−1) ⊗ n(p3/2)]

0+⟩
2

and ⟨7He(3/2−1)∣ [6He(0+1) ⊗ n(p3/2)]
0+⟩

2
, are

noticeable at the particle emission thresholds. In this study, the SFs calculated in GSM
have been compared to the SFs calculated in the SM to see the effect of the continuum
coupling. It was found that the coupling between discrete states and the non-resonant
continuum is necessary to account for the Wigner threshold effect because both the SM
calculations and the GSM calculations in the pole approximation did not show any Wigner
cusp behavior while the full GSM calculations did. Hence the cusps in the SF can be in-
terpreted as the interference between the non-resonant continuum and resonant states at
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the particle emission threshold.
The Wigner cusp in SFs is a consequence of the unitarity which is rigorously re-

spected in the GSM approach. At the particle emission threshold, some of the prob-
ability flux goes to the new channel(s) that in turn changes the occupancy of single-
particle shells. In Ref. [39] a calculation for ℓ = 2 waves was done in 18O for the SF
⟨18O(0+3)∣ [17O(3/2+1) ⊗ n(d3/2)]

0+⟩
2
, where the cusp was reported in the first derivative of

the SF with respect to the neutron separation energy. Moreover, in Ref. [166] the SFs:
⟨6He(0+1)∣ [5He(3/2−1) ⊗ n(p3/2)]

0+⟩
2

and ⟨6Be(0+1)∣ [5Li(3/2−1) ⊗ p(p3/2)]
0+⟩

2
, were analysed

by setting both proton and neutron emission threshold at the same energy with respect
to the threshold. Different dependencies on energy distance from the decay threshold in
⟨6He(0+1)∣ [5He(3/2−1) ⊗ n(p3/2)]

0+⟩
2

and ⟨6Be(0+1)∣ [5Li(3/2−1) ⊗ p(p3/2)]
0+⟩

2
imply that the

mirror many-body systems at the respective neutron and proton dripline will, in general,
have different SFs. From this study it was concluded that the coupling to the continuum
could cause isospin and mirror symmetry breaking.

6.2 From threshold effects to clusterization
Ikeda diagram [7] for Nα nuclei, where N is the number of α-clusters systematize the
appearance of molecular like nuclear states close to the alpha particle emission thresholds.
Later, Ikeda diagram was extended to include neutrons in the molecular-like states close
to the particle emission thresholds [276–279]. Near-threshold states have been modeled
with either a priori models like the SM or a posteriori models like the cluster models
[280–282]. In the former models, degrees of freedom are those of the valence nucleons
moving in selected single-particle levels, whereas the latter models, based on a molecular
viewpoint, use cluster building blocks, such as α-particles. Near-threshold cluster states or
cluster correlations are present in several systems like the ground state of the Borromean
nucleus 11Li which resembles the configuration [9Li⊗2n] rather than [10Li⊗n] [283], with
a similar situation in its mirror 11O being a 2p emitter [284]. Further examples include
9He, 6Li, 7Be, 7Li, 11C, 17O, 20Ne, 26O, etc.

The observation of Ikeda et al. has been extended to any cluster-like structure includ-
ing unstable systems like dineutron or 8Be [8, 9]. Let us consider 11Li, as an example. This
Borromean nucleus has a well known halo structure [285–287]. Indeed, the two-neutron
separation energy is very close to the ground state, which, assuming that the conjecture of
Refs. [8, 9] is correct, would explain the appearance of the two neutron correlations in the
ground state of 11Li. An even more famous example is 0+2 state of 12C, the so-called Hoyle
state [288]. This state, however, is expected to be dominated by the 8Be + α correlations
rather than 3α correlations because the 8Be + α threshold is closer in energy to the Hoyle
state than the 3α threshold. Another recent example comes from an observation of the
1/2−1 resonance in 15F about 4.5 MeV above the 16O + p threshold and close to the 13N
+ 2p threshold. Indeed, this state was found to be narrow because of the strong coupling
to the two proton threshold and a very small Q-value for the 2p-decay (Q2p = 129 keV)
[220]. Structure of the near-threshold states cannot be the consequence of a specific fea-
ture of the nuclear interaction because then the nucleon-nucleon correlations or clustering
correlations in near-threshold states would appear at random. The experimental data are
telling us the contrary, by providing countless examples of the close relation between the
structure of a near-threshold state and the nature of a nearby channel.

Universality of the clustering phenomenon is motivated by the basic properties of the
S-matrix in a multichannel framework [236]. Each threshold is a branching point (a non-
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analytic point) of the S-matrix. So for example, below any particle emission threshold
we have one scattering solution, which is regular in the whole space. As the first reaction
threshold opens at energy E1 we obtain the particle emission solution in addition to the
regular solution. As we keep opening new decay channels, we obtain a regular scattering
solution that coexists with a set of different decay channels, forming together the coupled
multichannel representation of the OQS. Hence, going to higher excitation energies, the
complexity in the wave function gradually builds up.

In the OQS approach, different SM states with the same quantum numbers couple to a
given decay channel. This induces a mixing among them, which may lead to the formation
of the collective eigenstate, the so-called aligned eigenstate, which couples strongly to the
decay channel and carries an imprint of its features. This is a generic feature of the OQS
which is absent in the standard SM.

An indication for the enhanced probability of near-threshold states comes from the R-
matrix approach [213]. In this approach, a near-threshold resonance could appear because
of the increased density of levels with large reduced widths [213, 237, 289]. The density
of states is given by:

ρ(E) =
1
2Γλ

(Eλ +∆λ −E)2 + (1
2Γλ)2

, (6.5)

where Eλ and Γλ are the energy and width of a level λ, respectively, and ∆λ are the
level shifts. In this formalism, the resonance energy is defined as Er = Eλ +∆λ, which
corresponds to the maximum of the function ρ(E) in Eq. (6.5)1. Using Eq. (6.5),
Barker [213] showed that there is an enhancement of the level density close to the particle
emission thresholds and that this enhancement is strongest for low potential barriers or
lack thereof. This means that ℓ = 0 neutrons should show the strongest effect. Moreover,
the maximum of the enhancement is shifted from the thresholds according to how high
the potential barrier is.

A more intuitive form of the level density is associated to the phase shifts [290, 291]:

ρℓ(E) =
1
π

dδℓ(E)
dE

. (6.6)

This relation suggests the connection between the Wigner cusp phenomenon in cross-
sections and the appearance of near threshold states, as one would expect a sharp change
in phase shifts close to the resonance [292]. This sharp change of the phase shift and
associated enhancement of the level density is not limited to resonances, but one also
expects a similar result for antibound states [292].

The key question is how to characterize the configuration mixing in OQSs. This
mixing is directly or indirectly responsible for resonance trapping [293–297], and super-
radiance phenomenon [298, 299], modification of spectral fluctuations [300], clustering
and exceptional points [8, 301], violation of orthogonal invariance and channel equivalence
[297], pairing anti-halo effect [86], anti-odd-even staggering of separation energies [302],
etc.

One way of analyzing the configuration mixing is to study the avoided crossing of
resonances that are associated with a nearby EP. EPs [62], exist in non-Hermitian Hamil-
tonians. The basic idea of how an EP is formed can be grasped by considering a 2 × 2
matrix with real or complex energies E1 and E2 at the diagonal, and complex off-diagonal
matrix elements. By a suitable choice of real and imaginary parts of the off-diagonal mix-
ing matrix elements, the energies and the wave functions of the two levels may coalesce

1This means that the narrower the resonance, the closer the resonance and level energies are.
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forming an EP. The EP is a singular point in the Hilbert space which locally, at the energy
of the EP, has one linearly independent vector less, i.e. the Hilbert space has locally one
dimension less.

A more convenient way to look into effects of configuration mixing in near-threshold
states is to calculate the suitably defined correlation energy. In SMEC, one defines a
continuum-coupling correlation energy as the difference between the effective Hamiltonian
HQQ, which includes effects of the coupling to the scattering continuum on discrete SM
states (see Eq. (2.33)), and the CQS SM Hamiltonian HSM ≡ HQQ, in a certain OQS
eigenvector ∣Ψi⟩ of the HQQ:

E
(ℓ)
corr,i(E) = ⟨Ψi∣HQQ(E) −HQQ∣Ψi⟩ . (6.7)

Here, E(ℓ)corr,i is the correlation energy in the OQS eigenstate i with angular momentum ℓ
[8, 229, 303]. As seen in the above expression, the idea is that the continuum-coupling
correlation energy (6.7) captures the influence of coupling between discrete and continuum
states and provides an account of the interplay between the continuum-coupling induced
configuration mixing and the effects of the Coulomb and centrifugal potentials. Indeed,
it was found that the maximum of the correlation energy is at the threshold for ℓ = 0
neutrons. For protons the effect is shifted above the threshold due to the Coulomb barrier
[8]. Moreover, the minimum of the correlation energy Ecorr,min indicates the optimal energy
where the coupling to the decay channel is the strongest one [8, 9]. The optimal energy
is also a centroid of the opportunity window where the appearance of the aligned state
is most probable. The magnitude of the correlation energy is of the same order as the
pairing correlation energy which greatly modifies the nucleon-nucleon correlations in the
vicinity of the Fermi surface [304].

To see the effects of configuration mixing, we can express the eigenstates of the effective
Hamiltonian ∣∣Ψi⟩ as a mixture of SM eigenstates ∣ϕSM

i ⟩ [10]:

∣ϕSM
i ⟩ → ∣Ψi⟩ = ∑

i

dji ∣ϕSM
i ⟩ , (6.8)

where the [dji] is an orthonormal transformation matrix. The square of the matrix element
d2

ji ∈ C is the weight of the SM eigenstate ∣ϕSM
i ⟩ in the correlated OQS eigenstate ∣Ψi⟩, so

it follows:
∑

i

Re[d2
ji] = 1, ∑

i

Im[d2
ji] = 0 . (6.9)

Mixing matrix elements between different SM states are strongest at the minimum of the
continuum-coupling correlation energy and decrease with increasing distance between SM
states and the studied threshold. Consequently, the strength of the optimal correlation
energy decreases with increasing distance to the threshold. This optimal distance depends
on the competition between the attractive continuum-coupling and the repulsive Coulomb
and centrifugal interactions. Indeed, the continuum coupling effects for heavier nuclei will
be negligible at the charged particle thresholds [8, 9].

In GSM, one cannot define the correlation energy in the same way as in SMEC because
there is no projection of continuum-coupling effects on discrete eigenvalues which would
generate the energy dependence in the Hamiltonian. Contrary to SMEC, where one
defines the open quantum subsystem of the CQS by the projection technique [3, 4], in
GSM the whole system can be either open or close (see Fig. 3.4). The discrete part of the
spectrum in GSM is embedded in the background of complex energy scattering states.

A possible solution is to reformulate GSM in a reaction channel representation, i.e.
the GSM-CC. In a vicinity of a threshold of a certain channel c, one can define the
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continuum-coupling correlation energy in a given many-body GSM-CC eigenstate ∣ΨJπ⟩
by a difference of energies:

EJπ

corr,c = ⟨ΨJπ ∣H ∣ΨJπ⟩ − ⟨ΨJπ

�c
∣H ∣ΨJπ

�c
⟩ = EJπ

full −EJπ

�c
, (6.10)

where ∣ΨJπ⟩ is the full GSM-CC solution defined in Eq. (4.5) as an expansion in terms of
reaction channels, and ∣ΨJπ

�c
⟩ is the wave function expansion without the channel c. EJπ

full
and EJπ

�c
in Eq. (6.10) are the energy eigenvalues corresponding to the eigenfunctions

∣ΨJπ⟩ and ∣ΨJπ

�c
⟩, respectively.

6.3 Near threshold effects in the coupled channel frame-
work

In this section we will present the application of the GSM-CC in the multi-mass partition
formulation to study consequences of the continuum-coupling on the structure of near-
threshold states in 7,8Be and 7Li. First, we will address features of the wave function
expressed in a basis of reaction channels. Second, we will analyze near-threshold effects
in the continuum coupling correlation energy defined in Eq. (6.10). Third, we will study
the spectroscopic factors for resonances and compare them with the reaction channel
probabilities.

6.3.1 Near-threshold effects in 7Be and 7Li
To study the near-threshold effects, we proceed as follows. We take the same model space
and effective interaction as described in Sect. 5.2. Afterwards, to vary the distance of a
state to the threshold we change the depth V0 of the Woods-Saxon potential. V0 is kept
the same for all ℓ partial waves. The one-body potential generating the single-particle
basis remains unchanged when the depth of a core potential varies. The states of 6,7Li
and 7Be are calculated with the same effective interaction. This means that the energy
of 6Li moves alongside with the energy of 7Li and 7Be. However, the binding energy of
3H and 3He remains unchanged.

We focus on the reaction channel distribution to study effects of the particle emission
thresholds in the wave function. As discussed previously and seen in Fig. 5.1, the lowest
decay threshold in 7Li is the 4He + 3H threshold. Neutron decay thresholds [6Li(Kπ

i ) ⊗
n(ℓj)]Jπ open at higher excitation energies. Proton decay thresholds are not considered
in the case of 7Li.

Figure 6.2 presents the dependence of the orthogonal channel weights b2
c and partial

widths Γc in the 5/2−2 state on the energy difference with respect to the lowest one-neutron
decay threshold [6Li(1+1) ⊗ n(ℓj)]5/2− . It should be noticed that in the complex-energy
framework of the GSM-CC, the squared wave-function amplitude (channel weight) Re[b2

c]
can be negative [14]. At the leading order, the statistical uncertainty of the Re[b2

c]
is associated with its imaginary part Im[b2

c] [15]. Re[b2
c] is the average value of the

corresponding channel probability in different measurements, while Im[b2
c] can be related

to the dispersion rate over time in the measurement, and hence represents its statistical
uncertainty [15]. The partial widths are calculated using the current formula [15, 305].
For details of the current formula, see App. A.2. The energy difference between the 5/2−2
state and neutron-threshold energy is varied by changing the depth V0 of the 4He core
potential.
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Figure 6.2: From top to bottom: the real and imaginary parts of the channel probability
weights b2

c = ⟨w̃c∣wc⟩2, and the partial widths of each reaction channel in the 5/2−2 state
of 7Li. Contributions of all partial waves ℓj in reaction channels [6Li(1+1) ⊗ n(ℓj)]5/2− are
summed and everything is plotted as a function of the distance of the state to the neutron
threshold. The meaning of curves for different channels is explained in the attached insert.
Each curve represents the sum of all reaction channels built on the same many-body state
of 6Li.

Both real and imaginary parts of the channel weights are shown in Fig. 6.2. Below
the neutron emission threshold at E − En

th[6Li(1+1)] < 0, all neutron reaction channels
are closed, i.e. the state 5/2−2 is bound with respect to the emission of neutron. At
E − En

th[6Li(1+1)] ≃ −0.8 MeV, the triton channel [4He(0+1) ⊗ 3H(2F5/2)]5/2
− opens. This

opening has no visible consequences on the wave function 5/2−2 . This is consistent with
the results in Sect. 5.2, where the 5/2−2 state has a small component of cluster in the wave
function. At E−En

th[6Li(1+1)] = 0, the energy of the 5/2−2 GSM-CC state coincides with the
energy of the decay threshold in the channel [6Li(1+1)⊗n(ℓj)]5/2− , and for E−En

th[6Li(1+1)] >
0, neutron and triton can be emitted.

The contribution of the reaction channel [6Li(1+1) ⊗ n(ℓj)]5/2− dominates below the
neutron emission threshold. The second largest probability corresponds to the channel
[6Li(3+1) ⊗ n(ℓj)]5/2− . In the vicinity of the lowest neutron threshold, the probability of a
channel [6Li(1+1) ⊗ n(ℓj)]5/2− in the wave function of 5/2−2 state promptly increases, what
is a manifestation of the alignment of the GSM-CC state 5/2+2 with the neutron decay
channel. One may notice a cusp in the energy dependence of probability of the channel
[6Li(1+1) ⊗ n(ℓj)]5/2− . The increased probability of this channel is associated with the
opposite effect in other channels, mainly in the channel [6Li(3+1) ⊗ n(ℓj)]5/2− .

At higher energies, below opening of the next neutron channel [6Li(3+1) ⊗ n(ℓj)]5/2− ,
the probability of this closed channels increases gradually. The 5/2−2 state in this example
changes the nature depending on the embedding continuum. For E−En

th[6Li(1+1)] ∼ 0, the
structure of the 5/2−2 state is dominated by the coupling to the reaction channel [6Li(1+1)⊗
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Figure 6.3: The same as in Fig. 6.2 but for the mirror state 5/2− in 7Be. All quantities
are plotted as a function of the distance of the state to the proton threshold [6Li(1+1) ⊗
p(ℓj)]5/2− .

n(ℓj)]5/2− and the weight of this channel dominates the 5/2−2 wave function. However, at
higher energies for E − En

th[6Li(1+1)] ≥ 1.5 MeV, close to the threshold of the channel
[6Li(3+1) ⊗ n(ℓj)]5/2− , the 5/2−2 state changes its nature and becomes strongly influenced
by the channel [6Li(1+1) ⊗ n(ℓj)]5/2− . Hence, the 5/2−2 behaves like a ’chameleon state’,
changing its nature depending on the surrounding environment, i.e. on the scattering
states and nearby decay channels in the case of the nuclear chameleon state.

The imaginary parts of channel weights b2
c are zero below the neutron emission thresh-

old and show a complicate behavior above it. Above the decay threshold [6Li(1+1) ⊗
n(ℓj)]Jπ and below the next threshold [6Li(3+1)⊗n(ℓj)]Jπ , the major contribution comes
from the open reaction channel [6Li(1+1)⊗n(ℓj)]5/2− . The magnitude of this contribution
decreases when we approach the threshold of the channel [6Li(3+1) ⊗ n(ℓj)]5/2− whereas
the magnitude of the (negative) contribution of the channel [6Li(3+1)⊗n(ℓj)]5/2− strongly
increases. The interplay between these two reaction channels continues to dominate the
evolution pattern of imaginary parts above this threshold. The dependence of the partial
neutron decay width on energy with respect to the lowest neutron-energy threshold is
plotted in the lowest part of Fig. 6.2. One may see a gradual increase of the width with
increasing excitation energy.

Figure 6.3 shows results of calculations of the channel weights and partial widths
of the in the 5/2−2 state of the mirror nucleus 7Be. As expected, the mirror system
preserves the main features seen for the 5/2−2 state of 7Li, namely roughly the same
wave function composition. Moreover, the chameleon-like features in the proximity of
the [6Li(3+1) ⊗ n(ℓj)]Jπ threshold are also preserved. The opening of the 3He channel
[4He(0+1) ⊗ 3H(2F5/2)]5/2

− does not have any appreciable effects. In the vicinity of the
proton emission threshold, there is an increase of the weight of the channel [6Li(1+1) ⊗
p(ℓj)]5/2− which similarly to the neutron case [6Li(1+1)⊗n(ℓj)]5/2− in 7Li, is a manifestation
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Figure 6.4: The real and imaginary parts of the channel probability weights b2
c = ⟨w̃c∣wc⟩2

and the partial decay widths in various reaction channels of the 7/2−1 state in 7Li are
shown as a function of the distance with respect to the lowest decay threshold 4He + 3H.
The dashed vertical line shows the GSM-CC energy of the 7/2−1 resonance. Each curve
represents the sum of all reaction channels built of the same state of 6Li.

Figure 6.5: The same as in Fig. 6.4 but for the mirror state 7/2− in 7Be. All quantities
are plotted with respect to the lowest decay threshold 4He + 3He. The dashed vertical
line gives the GSM-CC energy for the 7/2−1 resonance.
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of the alignment with the proton decay channel. Differences between proton and neutron
cases (see Figs. 6.2 and 6.3) are mainly the delayed and smoothed effects at the [6Li(1+1)⊗
p(ℓj)]5/2− threshold due to the Coulomb interaction. Indeed, in the proton case there is
no cusp but a smooth bump after crossing the threshold.

Figure 6.4 presents the dependence of channel weights and partial widths Γc in the 7/2−1
state of 7Li on the energy difference with respect to the lowest decay threshold [4He(0+1)⊗
3H(LCM Jint JP)]J

π . This state has a pronounced 3H-cluster structure (see Table 5.3).
However, in the whole interval of energies, neutron reaction channel [6Li(3+1) ⊗ n(ℓj)]7/2−

provides the major contribution. The probability of the triton channel [4He(0+1)⊗3H(2F7/2)]7/2
−

grows when approaching the emission threshold and has a maximum close to 3.3 MeV
above the threshold energy E3H

th . The maximum of the imaginary part of 3H probability
is shifted to slightly higher energy with respect to the maximum of the real part.

The alignment of 7/2−1 state with the channel [4He(0+1)⊗3H(2F7/2)]7/2
− arises at a higher

energy than seen in 5/2− state (see Fig. 6.2) due to both the Coulomb interaction and the
angular momentum involved in this reaction channel. At E−E3H

th ≃ 6.8 MeV, at the opening
of the channel [6Li(1+1) ⊗ n(ℓj)]7/2− whose weight is barely visible in Fig. 6.4, the partial
width of the 3H decay channel strongly diminishes and the channel [6Li(1+1) ⊗ n(ℓj)]7/2−

becomes dominant. Above the threshold of [6Li(1+1)⊗n(ℓj)]7/2− channel, the triton partial
width dominates again. This radical change of the 7/2−1 eigenstate in the vicinity of the
neutron threshold [6Li(1+1) ⊗ n(ℓj)]7/2− is seen only in the singular energy dependence of
decay partial widths. This singularity is a threshold effect due to an interplay between
neutron and triton channels in a narrow range of energies around the neutrons decay
threshold.

Figure 6.5 presents the dependence of channel weights and partial widths in the 7/2−1
state of the mirror nucleus 7Be on the energy difference with respect to the lowest decay
threshold 4He + 3He. The effects due to the 3He emission threshold appears at slightly
higher energies than seen in the mirror system because of a stronger Coulomb interaction.
One may notice that the singular variation of partial widths, seen at the neutron threshold
[6Li(1+1)⊗n(ℓj)]7/2− in 7Li, is absent at the proton threshold [6Li(1+1)⊗p(ℓj)]7/2− in 7Be.

6.3.2 Near-threshold effects in 8Be
Low-lying states in this nucleus exhibit a presence of α-correlations (see Table 5.6). In
the following, we shall discuss the evolution of orthogonal reaction channel probabilities
and α-emission decay width as a function of the energy distance E −E4He

th [4He(0+1)] from
the α-decay threshold. In all calculations presented in this section we used three mass
partitions, leaving out the 6Li + d channels. Therefore there are differences compared to
results presented in Sect. 5.3. We then proceed in a similar fashion as in the previous
section where we use the same interaction described in Sect. 5.3 and vary the depth V0
of the core potential.

Figure 6.6 shows the energy variation of channel weights for the ground state 0+1 . The
dashed vertical line corresponds to the experimental energy of the 0+1 state. The real part
of the channel weights Re[b2

c] in the channel [4He(0+1) ⊗ 4He(1S0)]0
+ has a maximum at

energy E −E4He
th [4He(0+1)] ≃ 0.7 MeV, above the 4He + 4He threshold energy. Therefore,

at the GSM-CC energy of the resonance 0+1 , the value of Re[b2
c] is significantly lower

than at the optimal energy for 4He clusterization. The maximum of the imaginary part
of the channel weight Im[b2

c] at E − E4He
th [4He(0+1)] ≃ 1 MeV is shifted slightly above

the maximum of the real part. At energies E − E4He
th [4He(0+1)] ≥ 1 MeV, both real and

imaginary parts of the α-channel probability drop rapidly, approaching nearly a constant
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Figure 6.6: From top to bottom: the real and imaginary parts of the channel probability
weights b2

c = ⟨w̃c∣wc⟩2 in the 0+1 state of 8Be. Different 7Li+p, 7Be+n, and 4He+4He reaction
channels are shown in the left, middle and right column, respectively. The meaning of
different curves is given in the insert attached to each column. Each curve for proton
and neutron channels represents the sum of all channels which are built on the same
many-body state of 7Li and 7Be, respectively. The dashed vertical line gives the GSM-CC
energy of the 0+1 resonance (see Fig. 5.6).

value.
The maximum in the α-channel [4He(0+1) ⊗ 4He(1S0)]0

+ probability is associated with
the opposite behavior in both proton [7Li(3/2−1) ⊗ p(ℓj)]0+ , [7Li(1/2−1) ⊗ p(ℓj)]0+ and
neutron [7Be(3/2−1)⊗n(ℓj)]0+ , [7Be(1/2−1)⊗n(ℓj)]0+ channels. Other proton and neutron
channels do not play any role in this phenomenon. In fact, both, proton (7Li + p) and
neutron (7Be + n) parts of the 8Be wave function collapse in the vicinity of the α-channel
threshold. It should be noticed that, away from the α-threshold, the 0+1 state appears to a
large extent as the SM-like state which is composed mainly by 7Li+p and 7Be+n reaction
channels. Thus, the α-clustering appears as the OQS threshold phenomenon resulting
from the coupling of SM states to the [4He(0+1) ⊗ 4He(1S0)]0

+ decay channel.
Figure 6.7 shows the energy variation of channel probability weights for 2+1 , the first

excited state of 8Be. At low energies, E − E4He
th [4He(0+1)] ≃ +1.7 MeV, above the decay

threshold in the channel [4He(0+1) ⊗ 4He(1D2)]2
+ , the 2+1 state has some features of α-

clustering and the corresponding α-channel weight is: Re[b2
c] ≃ 0.11. The maximum of

the imaginary part Im[b2
c] is found at higher energy E−E4He

th [4He(0+1)] ∼ 2.5 MeV. Within
an interval of about 4 MeV, the α-clustering is strongly reduced and the probability of
the channel [4He(0+1) ⊗ 4He(1D2)]2

+ decreases from 11% to about 5% and stabilizes at
higher energies. The maximum of Re[b2

c] is at lower energy than the calculated GSM-CC
energy of this state (see Fig. 5.6). The fall-off of the α-clustering at higher energies is
accompanied by the raise of probabilities of the one-nucleon channels built on the ground
state 3/2−1 and excited states 1/2−1 , 7/2−1 and 5/2−1 of 7Be and 7Li. Within an interval of ∼4
MeV, the 2+1 state changes its nature from a SM-like state with some α-cluster features to
essentially a pure SM state. The significant decrease of the α-cluster weight going from
the ground state 0+1 to the first excited 2+1 state could be caused by three factors: (i) the
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Figure 6.7: The same as in Fig. 6.6 but for the 2+1 state of 8Be. The dashed vertical line
gives the GSM-CC energy of the 2+1 resonance.

Figure 6.8: The same as in Fig. 6.6 but for the 4+1 state of 8Be. The dashed vertical line
gives the GSM-CC energy of the 4+1 resonance.
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increased separation of the 2+1 resonance from the α-decay threshold, (ii) the centrifugal
barrier, and (iii) the large width of the 2+1 resonance at its experimental energy.

Figure 6.9: The dependence of α-decay width on energy distance E −E4He
th [4He(0+1)] from

the α-threshold for 0+1 (left panel) and 2+1 (right panel) states in 8Be. The vertical dashed
line in both panels shows the corresponding energy of 0+1 and 2+1 states.

Figure 6.8 shows the energy variation of channel weights for the second excited state
4+1 . The patterns of the channel weights is similar to the preceding case of the 2+1 resonance
(see Fig. 6.7). The maximum of Re[b2

c] for the channel [4He(0+1)⊗ 4He(1G2)]4
+ lies below

the calculated energy of the 4+1 of this state (see Fig. 6.8). The cluster probability in 4+
state reaches its maximum at ∼ 6 MeV above the threshold. Further away from that point
it becomes a SM state. The maximum of Im[b2

c] is shifted by ∼3 MeV with respect to
the maximum of Re[b2

c]. This energy shift is larger than what can be seen for the 2+1
resonance.

Figure 6.9 shows the energy dependence of the decay width for the ground state 0+1
and the first excited state 2+1 in 8Be. Contrary to the 0+1 state, the α-decay width of the 2+1
state is close to maximal at its experimental energy. One may notice that the maximum
of the α-clustering in this state (see Fig. 6.7) corresponds to the excitation energy where
the α decay width is relatively small.

6.3.3 Correlation energy in 7,8Be and 7Li
In this section we shall discuss results for the continuum-coupling correlation energy (6.10)
in GSM-CC calculations. For 7Li and 7Be we use the same method as before in Sect. 6.3.1,
i.e. we vary the distance of a state to the threshold by changing the Woods-Saxon depth
V0. For 8Be we keep the depth of the Woods-Saxon potential constant and change the
distance to the threshold manually. In the following calculations we use ECM max = 8.

An example is shown in Fig. 6.10 for the 5/2−2 state in 7Li. Here the orthogonal chan-
nel probability weights for the states ∣Ψ5/2−2 ⟩, ∣Ψ5/2−2

�c
⟩ and the correlation energy E5/2−2corr , are

shown as a function of the energy distance from the lowest one-neutron decay threshold
[6Li(1+1) ⊗ n(ℓj)]5/2− . In the state ∣Ψ5/2−2

�c
⟩, the channel [6Li(1+1) ⊗ p(ℓj)]5/2

− is absent.
Probability of the neutron channel [6Li(1+1) ⊗ n(ℓj)]5/2− in the state ∣Ψ5/2−2 ⟩ grows while
approaching the channel threshold and exhibits a cusp slightly above the neutron thresh-
old. The minimum of the correlation energy associated with this channel is shifted by
about 0.35 MeV above the threshold. This shift between the maximum of the real part
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Figure 6.10: From top to bottom: (i) the real part of the channel weights Re[b2
c] for the

state ∣Ψ5/2−2 ⟩, (ii) the imaginary part of the channel weights Im[b2
c] for the state ∣Ψ5/2−2 ⟩,

(iii) the correlation energy E5/2−2corr , and (iv) the real part of the channel weights Re[b2
c] for

the state ∣Ψ5/2−2
�c
⟩, are shown as a function of the distance with respect to the one-neutron

decay threshold [6Li(1+1) ⊗ n(ℓj)]5/2− .

Figure 6.11: The same as in Fig. 6.10 but in a mirror nucleus 7Be. All quantities are
plotted as a function of the distance from the one-proton decay threshold [6Be(1+1) ⊗
p(ℓj)]5/2− .
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of the channel weight and the minimum of the corresponding correlation energy which
is seen in Fig. 6.10, might be related to a different behavior of the imaginary part of
the channel weight which has a maximum shifted to higher energies with respect to the
maximum of the real part.

Figure 6.11 shows the GSM-CC results for 5/2−2 state of 7Be, a mirror of the state 5/2−2
in 7Li. One can see that indeed the mirror symmetry is well satisfied and Figs. 6.10 and
6.11 are quite similar. The minima of the correlation energy in the mirror states differ
by about ∼0.2 MeV. This is consistent with the observation done in the 7/2−1 states (see
Figs. 6.12 and 6.13).

Figure 6.12: From top to bottom: (i) the real part of the channel weights Re[b2
c] for the

state ∣Ψ7/2−1 ⟩, (ii) the imaginary part of the channel weights Im[b2
c] for the state ∣Ψ7/2−1 ⟩,

(iii) the correlation energy E
7/2−1corr , and (iv) the real part of the channel weights Re[b2

c]
for the state ∣Ψ7/2−1

�c
⟩, are shown as a function of the distance with respect to the triton

decay threshold 4He + 3H. The dashed vertical line gives the GSM-CC energy for the
7/2−1 resonance.

Figure 6.12 presents dependence on the energy difference with respect to the lowest
decay threshold 4He + 3H of the real and imaginary parts of the channel weights b2

c in the
state ∣Ψ7/2−1 ⟩ of 7Li, the real part of the channel weights b2

c in the state ∣Ψ7/2−1
�c
⟩ calculated

without the triton channel [4He(0+1) ⊗ 3H(LCM Jint JP)]7/2
− , and the correlation energy

E
7/2−1corr (see Eq. (6.10)). As discussed previously, the state 7/2−1 has a pronounced 3H-cluster

structure. In the whole interval of energies, neutron reaction channel [6Li(3+1)⊗n(ℓj)]7/2π

provides a smaller contribution to the wave function 7/2−1 . Probability of the 3H channel
[4He(0+1)⊗3H(2F7/2)]7/2

− in ∣Ψ7/2−1 ⟩ grows when approaching the emission threshold and has
a maximum ∼4.5 MeV above the threshold energy E3H

th . The minimum of the correlation
energy is seen at ∼ 6 MeV above the cluster emission threshold, which is intermediate
between the maxima of Re[b2

c] and Im[b2
c] for the channel 4He + 3H. Removal of the

triton channel [4He(0+1)⊗3H(2F7/2)]7/2
− in ∣Ψ7/2−1

�c
⟩ leaves the real part of the wave function

nearly unchanged, bearing a small increase towards ∼ 9 MeV where we approach the
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Figure 6.13: The same as in Fig. 6.12 but for a 7/2−1 state in the mirror nucleus 7Be. All
quantities are plotted as a function of the distance with respect to the 3He decay threshold
4He + 3He. The dashed vertical line gives the GSM-CC energy for the 7/2−1 resonance.

proton emission threshold. However, this effect is small and should not interfere with the
minimum of the correlation energy.

Results for the mirror state are shown in Fig. 6.13. This figure shows a dependence
of the real and imaginary parts of the channel weights b2

c in the state ∣Ψ7/2−1 ⟩, the real
part of the channel weights b2

c in the state ∣Ψ7/2−1
�c
⟩ without the 3He channel [4He(0+1) ⊗

3He(2F7/2)]7/2
− , and the correlation energy E

7/2−1corr , on the energy difference with respect
to the 3He decay threshold 4He + 3He in 7Be. One can see that the mirror symmetry in
7/2−1 states of 7Li and 7Be is obeyed and the dependence on energy difference from the
respective thresholds in 7Li and 7Be is qualitatively the same. There is in fact a small
deviation of ∼ 0.3 MeV of the minima of 7Li and 7Be. This can be attributed to a stronger
Coulomb interaction in the channel [4He(0+1) ⊗ 3He(2F7/2)]7/2

− .
Figure 6.14 shows the dependence of real and imaginary parts of the channel weights

b2
c in the state ∣Ψ0+1 ⟩ of 8Be, the real part of the channel weights b2

c for the state ∣Ψ0+1
�c
⟩

without the α-cluster channel, and the correlation energy E0+1corr, on the energy difference
with respect to the lowest decay threshold [4He(0+1) ⊗ 4He(LCM Jint JP)]J

π . The 4He-
channel does not dominate the structure of this state. The real part of b2

c in the channel
[4He(0+1) ⊗ 4He(1S0)]0

+ has a maximum at energy E − E4He
th [4He(0+1)] ≃ 0.7 MeV, above

the 4He threshold energy and approximately coincides with the minimum of E0+1corr.
It should be noticed that the 0+1 state in this GSM-CC study appears as the SM-like

state which is composed mainly by 7Li+p and 7Be+n reaction channels. Slightly above
the decay threshold of the channel [4He(0+1) ⊗ 4He(1S0)]0

+ , a very strong 4He clustering
appears in a relatively narrow range of energies and disappears at still higher energies.
Hence, α-clustering in the state 0+1 is an emerging threshold phenomenon resulting from
the interplay between the attractive coupling to the α-decay channel and the repulsive
Coulomb interaction.
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Figure 6.14: The top and the middle panels show respectively the real and imaginary
parts of the channel weights b2

c in the 0+1 state of 8Be. Different 7Li+p, 7Be+n, and
4He+4He reaction channels are shown in the left, middle and right column, respectively.
Each curve for proton and neutron channels represents the sum of all channels which are
built on the same many-body state of 7Li and 7Be, respectively. On the bottom panels,
the left and middle column show the real parts of the channel weights of the proton and
neutron channels in the calculation without the channel [4He(0+1) ⊗ 4He(LCM Jint JP)]0

+ ,
respectively, and the right column shows the continuum-coupling correlation energy. The
dashed vertical line gives the GSM-CC energy of the 0+1 resonance (see Fig. 5.6).

Figure 6.15: The same as in Fig. 6.14 but for a first excited state 2+1 of 8Be. All quantities
are plotted as a function of the distance with respect to the 4He + 4He decay threshold.

Figure 6.15 presents the dependence on the energy difference with respect to the lowest
decay threshold [4He(0+1) ⊗ 4He(LCM Jint JP)]J

π of the real and imaginary parts of the
channel weights for ∣Ψ2+1 ⟩ of 8Be, the real part of the channel weights b2

c for the state
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∣Ψ2+1
�c
⟩ without the α-cluster channel, and the correlation energy E

2+1corr. As compared to
Fig. 6.14 for 0+1 resonance, one may notice an energy shift of the maximum of Re[b2

c] for
the α-cluster channel with respect to the minimum of E2+1corr. Since the Coulomb repulsion
in 0+1 and 2+1 states of 8Be is similar, this energy shift has to be related to the effect of the
centrifugal barrier in the 2+1 state. One may notice that a decrease of the magnitude of
Re[b2

c] in the 2+1 state is connected with a decrease in the magnitude of E2+1corr as comparted
to E0+1corr.

Figure 6.16 presents similar quantities for the 4+1 state of 8Be. One can see a decreasing
magnitude of both α-clustering and E

4+1corr, and an increased energy shift between the
maximum of Re[b2

c] for the α-cluster channel and the minimum of E4+1corr. The same
tendency has been found for the 2+1 resonance (see Fig. 6.15).

Figure 6.16: The same as in Fig. 6.14 but for the second excited state 4+1 of 8Be. All
quantities are plotted as a function of the distance with respect to the 4He +4He decay
threshold.

We can see in Figs. 6.15 and 6.16 that the effect of continuum-induced α-clusterization
in these broad resonances is relatively small. However, it is most interesting to notice the
angular momentum effect on the minimum of the correlation energy. Indeed, if we look
back to Figs. 6.13 and 6.12, one may notice that the minima of the correlation energy
for f -wave clusters are closer to the decay threshold than seen for g-wave clusters (Fig.
6.16 ) and further away from the threshold than seen for d-wave clusters (Fig. 6.15 ).
This indicates that the angular momentum is an important factor in shifting the optimal
energy for clustering away from the cluster decay threshold. In light nuclei studied here,
the angular momentum effects seem to be even more pronounced than the effect of the
Coulomb interaction.

6.3.4 Near-threshold effects in the spectroscopic factors
In this section we shall discuss the near-threshold effects in the SFs calculated using the
GSM-CC wave functions. We calculate SFs in the formalism presented in Sect. 5.1. The
number of calculated SFs is limited to just a few relevant ones chosen from Tabs. 5.3
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and 5.6. The difference between SFs and channel probabilities is that the calculation of
SFs use non-orthogonal channels whereas the channel probabilities b2

c correspond to the
orthogonalized channels.

First of all, we would like to reproduce the Wigner cusp-like behavior expected for neu-
trons and protons. Figs. 6.17 and 6.18 show the dependence of the real and imaginary
parts of the SFs with respect to the neutron/proton threshold [6Li(1+1) ⊗ n/p(ℓj)]5/2− ,
respectively. One can immediately notice the Wigner cusp for the neutron case and
the delayed, smooth effect for the proton case. This is a proof of consistency of the
method. Additionally, as it can be seen in Fig. 6.17, the ’anti-cusp’ effect of the
closed [6Li(3+1) ⊗ n/p(ℓj)]5/2− channel is also seen for the SF associated to this chan-
nel. Similarly to the channel probabilities b2

c discussed in Sect. 6.3.1, the imaginary parts
of the SFs present a complicated behavior above the nucleon emission threshold. Ap-
proaching the [6Li(3+1) ⊗ n/p(ℓj)]5/2− threshold, we see a significant variation of the SFs
⟨7Li(5/2−2)∣[6Li(1+1/3+1) ⊗ n(p3/2)]5/2

−⟩2.

Figure 6.17: From top to bottom: (i) the real part Re[S2] of the SFs (ii) the imaginary
part Im[S2] of the SFs and (iii) the real part Re[b2

c] of the channel probability are given
for the state ∣Ψ5/2−2 ⟩. The SFs and the channel probabilities are shown as a function of
the distance with respect to the one-neutron decay threshold [6Li(1+1) ⊗ n(ℓj)]5/2− .

Figure 6.19 shows the behavior of the real and imaginary parts of the SFs with respect
to the [4He(0+1)⊗3H(LCM Jint JP)]J

π triton decay threshold in 7/2−1 resonance of 7Li. The
real part of the SFs behave similarly to the channel weights. Indeed, the minimum of
the triton SF is ∼ 1 MeV below the minimum of the triton channel weight. Nevertheless,
the physical distance to the threshold correspond to ∼ 2.2 MeV, which explains why we
found such a small cluster SF in Tab. 5.3. Moreover, the minimum of the real part of
the triton SF is negative, with a large uncertainty associated with the imaginary part
Im[S2]. The triton SF increases again after ’recovering’ from the effects of the emission
threshold. This may mean that even though their presence in the wave function is small,
it does not necessarily mean that their contribution to physical phenomena is small.
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Figure 6.18: Same as Fig. 6.17 but in a mirror nucleus 7Be. The SFs and the channel
weights are shown as a function of the distance with respect to the one-proton decay
threshold [6Li(1+1) ⊗ p(ℓj)]5/2− .

Figure 6.19: Same as Fig. 6.17 but for the state ∣Ψ7/2−1 ⟩ of 7Li. The SFs and the channel
weights are shown as a function of the distance with respect to the 4He + 3H decay
threshold.

Similarly, Fig. 6.20 shows the behavior of the real and imaginary parts of the SFs with
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Figure 6.20: Same as Fig. 6.17 but for the state ∣Ψ7/2−1 ⟩ and the mirror system. The SFs
and the channel weigths are shown as a function of the distance with respect to the 4He
+ 3He decay threshold.

respect to the [4He(0+1) ⊗ 3He(LCM Jint JP)]J
π , 3He-decay threshold. The effects of the

continuum do not differ from previous analysis of the correlation energy and the channel
weights. Indeed, the minimum of the real and imaginary parts of the SFs in 7Be is found
shifted by ∼0.5 MeV with respect to the minimum in 7Li.

Figs. 6.21, 6.22, and 6.23 show the dependence of the SFs in 8Be as a function of the
distance to the threshold of channels [4He(0+1)⊗4He(1S0)]0

+ , [4He(0+1)⊗4He(1D0)]2
+ , and

[4He(0+1)⊗ 4He(1G0)]4
+ . Similarly to the orthogonal channel weights, the effect of contin-

uum induced α-clusterization in the cluster SFs is small. Nevertheless, the maximum of
the real part of the cluster SF associated to the 8Be(0+) state is at ∼ 0.8 MeV, the one for
the 8Be(2+) state is at ∼ 2.2 MeV, and the one associated to the 8Be(4+) state is at ∼ 7.6
MeV. This is consistent with the expected shift of the near-threshold effects as a function
of the strength of the centrifugal barrier discussed in previous sections.

The case of 8Be with the SF associated to the channels [4He(0+1) ⊗ 4He(1S0)]0
+ ,

[4He(0+1)⊗4He(1D0)]2
+ , and [4He(0+1)⊗4He(1G0)]4

+ shows the opposite behavior as those
associated to triton (see Fig. 6.19). As one moves away from the maximum effect due
to the crossing of the emission threshold, the SFs are smaller than before crossing the
threshold. In general, the behavior far away from the particle emission threshold is com-
plicated and hence, not easy to interpret. Whereas in the vicinity of the particle emission
threshold, behavior of SFs or channel probabilities is to a large extent universal, deter-
mined by the singularity of the branching point, far away from it the dependencies of
those quantities are not universal. They depend on the specific features of the model and
the NN interactions. Therefore, even though in this regime the open reaction channels
still play a very important role, their effects cannot be easily disentangled from specific
features of the model.
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Figure 6.21: Same as Fig. 6.17 but for the state ∣Ψ0+1 ⟩ of 8Be. Only the channel weights
associated to the shown SFs are plotted. The SFs and the channel weigths are shown as
a function fo the distance with respect to the 4He + 4He decay threshold.

Figure 6.22: Same as Fig. 6.21 but for the state ∣Ψ2+1 ⟩ of 8Be. Only the channel weights
associated to the shown SFs are plotted. The SFs and the channel weigths are shown as
a function fo the distance with respect to the 4He + 4He decay threshold.
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Figure 6.23: Same as Fig. 6.21 but for the state ∣Ψ4+1 ⟩ of 8Be. Only the channel weights
associated to the shown SFs are plotted. The SFs and the channel weigths are shown as
a function fo the distance with respect to the 4He + 4He decay threshold.
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Conclusion

The present work has addressed two main objectives. The first one is related to the appli-
cability of the GSM-CC model to describe the structure and reactions in a multi-channel
framework with different mass partitions, whereby the nuclei 7,8Be, 7Li and 42Sc have
been described. This paves the way for future studies with heavier and more complex
nuclei. The second objective is to address the near-threshold effects with focus on clus-
tering within a multi-channel framework which allows for the analysis of the competition
between clustering and shell model-like effects.

In recent decades, tremendous efforts have been made to formulate and apply ab initio
methods for a description of the structure of atomic nuclei. Applications of those novel
microscopic approaches depend heavily on the parallel enhancement of computational
resources available to run such sophisticated calculations. Nevertheless, one may ask a
question if we are still gaining new insights by just running the same model with more
sophisticated interactions and/or a bigger basis that requires more computation resources.
In this work we have attempted to follow a different strategy. Instead of joining the ab
initio efforts for the description of light nuclei, we have chosen to use an inert core and
valence particles, just as in the original SM. As a result, all calculations discussed in this
thesis can be done, in principle, using a commercial laptop.

Chapter 5 was devoted to GSM-CC calculations for structure and reactions. We began
with successful GSM-CC calculations for 7Be and 7Li, using two mass partitions: [6,1]
(6Li and a nucleon) and [4,3] (4He core and 3H/3He cluster). The major result of these
studies was the observation of strong clustering in the wave function for states that are
close to the cluster emission threshold. Out of these, the most interesting is the 5/2−
doublet of states. The lowest state in the doublet, the 5/2−1 state, is not observed in the
scattering of low energy protons on 6Li, whereas it is most pronounced in the scattering of
3He on 4He. On the contrary its partner, the 5/2−2 state, appears most pronounced in the
scattering of low energy protons, but it is seen only as a small signal in the scattering of
3H/3He. In Chap. 5 we have explained this by the microscopic structure of 5/2−1 and 5/2−2
states in 7Be. A similar features are predicted in the reactions 6Li(n,n) and 4He(3H,3H).
Differences between experimental and calculated cross-sections are seen for small CM
scattering angles. This may be in part attributed to an insufficient number of partial
waves in the calculated of cross-section what might have prevented certain interference
effects.

Following the calculations of A = 7 systems, we have done GSM-CC calculations for
8Be including either three mass partitions ([7,1]: 7Li + p, 7Be + n, and [4,4]: 4He + 4He)
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or four mass partitions ([7,1]: 7Li + p, 7Be + n, [6,2]: 6Li + d, and [4,4]: 4He + 4He). In
the latter case, the energy spectrum was well reproduced by GSM-CC calculations with
very small complex corrective factors to account for the missing scattering channels. It
was found that the closed 6Li + d channel was not negligible in all studied states.

The GSM-CC calculation in 8Be was focused on the structure of this nucleus. In the
GSM-CC calculation without the 6Li + d channel we have observed that in the proximity
of neutron and proton decay channels, the symmetry of the distribution of proton and
neutron projectile channels is broken in the (1+1 ;1+2) and (3+1 ;3+2) doublets. This shows
importance of the threshold effects on the composition of the wave function. In the ground
state, 8Be is slightly unbound with respect to the α-particle emission. Hence, we might
expect α-clustering to be important in the ground state. This is indeed what we observed
in our calculations. α-clustering was found only in the lowest states 0+1 , 2+1 and 4+1 of 8Be.
On the contrary, deuteron clustering is more robust and appears in all low energy states
with characteristic variations of the deuteron channel probability in the doublets (1+1 ;1+2),
(2+2 ;2+3), and (3+1 ;3+2) namely, the larger probability of the deuteron channel is always in
the higher energy member of the doublet. Moreover, the inclusion of deuteron channels
[6Li(Kπ

i )⊗2H(LCM Jint JP)]J
π allows a better description of the (1+1 ;1+2 , (2+2 ;2+3) and (3+1 ;3+2)

energy doublets by closing the energy distance between members in each doublet. One
may note that in all low-energy states of 8Be, major contributions to the wave functions
are provided by the neutron [7Be(Kπ

i )⊗n(ℓj)]Jπ and proton [7Li(Kπ
i )⊗p(ℓj)]Jπ channels.

At the end of Chap. 5 we presented the calculations of spectra in 41,42Ca, 41,42Sc,
42Ti, as well as the proton/neutron elastic scattering 40Ca(p/n,p/n) and the transfer
reaction 40Ca(d,p)41Ca. The GSM-CC description of 42Sc has been done using three mass
partitions: [41,1]: 41Ca + p, 41Sc + n, and [40,2]: 40Ca + d. The spectra of 42Ca and
42Ti have been successfully described by considering only proton and neutron channels
([41,1]). Using the same interaction, it was possible to describe the cross-section for
the elastic scattering reactions 40Ca(p,p) and 40Ca(n,n) simultaneously with the transfer
reaction 40Ca(d,p)41Ca. The correct reproduction of these cross-sections depends on the
fine tuning of the interaction to find a compromise between the satisfactory description
of A = 42 spectra on one side and the considered cross-sections, on the other side.

The extensive studies in SMEC [8, 9] have shown that the coexistence of cluster-like
and SM-like configurations at low energies can be reconciled in the OQS approach to the
SM. This intriguing phenomenon arises due to the presence of the branching point at
the particle emission threshold, which leads to a collective mixing of SM states and the
formation of the aligned state of an OQS which shares many properties of the nearby
particle-emission threshold. The OQS nature of the alignment phenomenon was investi-
gated using GSM-CC for the first time. The presence of cluster states near their corre-
sponding cluster emission thresholds serves as a significant indicator of a profound change
in the near-threshold SM wave function and the direct manifestation of the correlations
induced in SM wave functions by the continuum-coupling.

Near-threshold effects investigated in Chap. 6 have been inspired by the GSM studies
of SFs. [38, 39]. We have extended these studies by analyzing the dependence on the
energy distance to the particle emission thresholds of the wave function expanded in
reaction channels. In addition to the reaction channel probabilities, we have studied
partial decay widths of various channels, continuum coupling correlation energy and SFs.
Thus, this is the first time that the phenomena of clusterization in near-threshold states
have been studied with GSM-CC. When looking at the change of the properties of 8Be as a
function to the energy distance to the α-decay threshold, we found a shift in the maximum
effect of the threshold effects associated to the angular momentum. The presence of
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chameleon features for states, such as the 5/2−2 resonances in 7Be and 7Li, suggest that
the nature of the states changes depending on their environment of reaction channels and
scattering continuum states.

The continuum-coupling correlation energy defined in this work measures the effect
of the decay thresholds in the configuration mixing. We found that properties of the
correlation energy mirror the properties of the channel probability weights. Moreover, the
effects of the Coulomb interaction and the centrifugal barrier in the continuum-coupling
correlation energy are similar to what is observed in the channel probabilities. In the
studied nuclei with A = 7,8, the effects of the Coulomb interaction was small as compared
to the effects of angular momentum.

We concluded Chap. 6 with the studies on the SFs for nucleons and 3H, 3,4He clusters.
We found that the alignment effects are carried over from the channel weights to the SFs.
The maxima/minima of the SFs do not correspond to those of the channel probabilities,
but they are close to each other.

In summary, the effect of the particle emission thresholds on SM states are important.
The calculations presented in this work are the first GSM-CC calculations done in a mul-
tiple mass-partition framework. These calculations provide evidence for the importance
of not only one-nucleon decay thresholds, but also of 3H, 3He, or 4He more complex emis-
sion thresholds for the structure of SM states. We have shown that the near-threshold
α-clustering is an emergent OQS phenomenon due to the alignment of the SM eigenstate
with the nearby α-decay channel. In the future, similar calculations should be carried
for heavier nuclei using a different core, like 12C or 16O cores. Additionally, further ex-
ploration of mass partitions whose decay thresholds are not necessarily at low energies
is required, as demonstrated on the example of 6Li + d partition in low energy states of
8Be. The GSM-CC approach formulated in the inert core + valence particles approxima-
tion, should be completed by the no-core GSM-CC calculation. Such studies are certainly
possible in nuclei with A ≤ 6 [25].

My contribution to the results presented in this work is contained mainly in Chaps.
5 and 6. These include the application, testing, and correction of numerical codes of
the GSM-CC approach with the reaction channels corresponding to the multiple-mass
partitions. These studies comprise the development of the interaction for A = 7,8, and 9
nuclei. Results for A = 9 nuclei have not been included in the written document. Next,
in Chap. 6, I defined the correlation energy which provides a syntetized information
about the continuum-coupling correlations calculated in GSM-CC. This quantity is now
ready to be applied in many nuclei. Extensive studies were done to define the correlation
energy for GSM (not included in this manuscript), however the results obtained were
not satisfactory. I have also developed scripts that allow for several consecutive GSM
and GSM-CC calculations and also that extract important data from the output files of a
calculation. Although the calculations presented in the thesis can be done in a commercial
laptop, scripts that allows to take advantage of a computer cluster have been developed
that parallelize multiple GSM calculations. Finally, the threshold effects calculations for
probabilities of orthogonal reaction channels, the spectroscopic factors and the correlation
energy were prepared and ran by me using the GSM-CC computer code.
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APPENDIX A

Annexes

A.1 On the Slater determinants of the wave function
in GSM-CC

In this Appendix we give details about the construction of the total wave function in
GSM-CC in terms of Slater determinants. We begin with the projectile wave function:

∣ΨJP

MP
⟩ = A†

[∣NCMLCM⟩⊗∣Jint⟩]
JP
MP

∣0⟩ , (A.1)

where ∣0⟩ is the Fock space. We can express the projectile creation operator in single-
particle creation operators a† as:

A†
[∣NCMLCM⟩⊗∣Jint⟩]

JP
MP

→∑
γ

Ba
γ

a

∏
i=1
a†

γi
, (A.2)

where γi = (τi, si, ℓi) is the set of quantum numbers that characterizes a particular nu-
cleon i of isospin τi, spin si and angular momentum ℓi. Additionally, we can make the
identifications aℓ⃗i = L⃗CM and ∑

i∈core
ℓ⃗i + s⃗i = J⃗int. By considering the angular momentum

couplings, the projectile wave function is:

∣ΨJP

MP
⟩ = ∑

MCMMint

⟨LCMMCMJintMint∣JPMP ⟩∑
γ

Ba
γ

a

∏
i=1
a†

γi
∣0⟩ . (A.3)

Similarly, the target wave function can be expressed as:

∣ΨJT

MT
⟩ = A†

∣ΨJT
MT
⟩
∣0⟩ = ∑

β

BA−a
β

A−a

∏
j=g

a†
βj
∣0⟩ , (A.4)

where g is the number of particles in the core plus one unit. Finally, we can couple both
projectile and target wave functions of Eqs. (A.3) and (A.4) into the full wave function
as:

∣ΨJA

MA
⟩ = K ∑

MP MT
MCMMint

⟨LCMMCMJintMint∣JPMP ⟩ ⟨JPMPJTMT ∣JAMA⟩

×∑
βγ

BA−a
β Ba

γ (
a

∏
i=1
a†

γi
)(

A−a

∏
j=g

a†
βj
) ∣0⟩ , (A.5)
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where K is a normalization constant.
If we want to define a proper Slater determinant for the full wave function, we have

to set a convention in the order of the creation operators. This order however, means
a rearrangement of the single particle creation operators in equation (A.5). This is the
origin of rearrangement phase factors (−)φ. Thus the sum of creation operators in the
total wave function can be expressed as

∑
βγ

BA−a
β Ba

γ (
a

∏
i=1
a†

γi
)(

A−a

∏
j=g

a†
βj
) →∑

α

BA
α

A

∏
i=g
a†

αi
, (A.6)

where BA
α = (−)φαBA−a

β Ba
γ .

A.2 The current formula for the calculation of partial
widths of channel wave functions

We emulate [28, 306] to derive the so-called current formula for the calculation of partial
widths for channel wave functions. In the following we simplify the notation by removing
the CM tag from the equations. For large CM distances, the coupling between channels
is negligible and thus, using Eqs. (4.50) and (4.56) the Hill-Wheeler Eq. (4.7) becomes:

[ ∂
2

∂r2 +
ℓ(ℓ + 1)
r2 +

2mp

h̵2 (ET +Eint) −
2mp

h̵
E]uc(r) +∑

c′
Vcc′uc′(r) = 0 . (A.7)

The usual trick is to multiply by the conjugate u∗c(r) and then subtract the complex
conjugate of the whole equation (A.7) to yield:

u∗c(r)u′′c (r) − uc(r)u′′∗c(r) +
2mp

h̵2 iΓ +∑
c

Vcc′(r) [u∗c(r)uc′(r) − uc(r)u∗c′(r)] = 0 , (A.8)

where the energy E is assumed complex such that E = Re[E] − iΓ/2. If we now notice
that

∫
r

0
dr′ [u∗c(r)u′′c (r) − uc(r)u′′∗c(r)] = u∗c(r)u′c(r) − uc(r)u′∗c(r) , (A.9)

and that
∑
cc′
Vcc′(r) [u∗c(r)uc′(r) − uc(r)u∗c′(r)] = 0 . (A.10)

So by applying the operators ∫
r

0 dr and ∑c′ we derive the current formula:

Γ(r) = i h̵
2

2mp

∑c [u∗c(r)u′c(r) − uc(r)u′∗c(r)]
∑c′ ∫

r

0 dr
′ ∣uc′(r′)∣2

. (A.11)

Thus, since the width can be expressed as the sum of partial widths Γ = ∑c Γc, then, the
expression for the partial width for a specific channel c is simply:

Γc(r) = i
h̵2

2mp

u∗c(r)u′c(r) − uc(r)u′∗c(r)
∑c′ ∫

r

0 dr
′ ∣uc′(r′)∣2

. (A.12)
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Title: Collective phenomena at the particle emission thresholds
Most of the nuclear chart consists of unstable nuclei, which are subject to various decay

modes. Therefore, it is more appropriate to describe these nuclei in the open quantum
system formalism. Natural formulation of this problem is given by the Gamow Shell
Model in the Coupled Channels representation (GSM-CC), that allows to unify nuclear
structure and reactions.

In the first part, the multiple mass-partition GSM-CC has been developed. In this
unifying approach, we have calculated spectra of 7,8Be,7Li, and low-energy cross-sections:
4He(3He,3He), 4He(3He,3He), and 6Li(p,p). Inclusion of different mass partitions in the
GSM-CC proved to be crucial for describing the structure of low-energy states in these
nuclei. α-correlations in the 0+1 , 2+1 , 4+1 resonances of 8Be emerged naturally as the near-
threshold open quantum system phenomenon. Deuteron correlations turned out to be
important in all low-energy states of 8Be. In heavier nuclei, the GSM-CC has been
applied to calculate the spectra of 42Ca, 42Ti, 42Sc, and cross-sections of direct reactions,
with a special focus on the transfer reaction 40Ca(d,p)41Ca.

The second part has been devoted for understanding how the clustering appears in the
near-threshold states. The GSM-CC studies were carried out by looking at the evolution
of reaction channel probabilities, spectroscopic factors and continuum-coupling correlation
energy as a function of the distance to various particle emission thresholds. This has given
gave insight into the origin of near-threshold clustering as a consequence of an alignment
of the collective GSM-CC state with the decay channel.

Keywords: Nuclear physics, nuclear structure, nuclear reactions, clustering, near-
threshold effects, direct reactions.

Titre: Phénomènes collectifs aux seuils d’émission de particules
La majeure partie de la carte de nucléides est composée de noyaux instables soumis

à divers modes de désintégration. Il est donc plus approprié de décrire ces noyaux dans
le formalisme des systèmes quantiques ouverts. La formulation naturelle de ce problème
est donnée par le Modèle en Couches Gamow en représentation des Canaux Couplés
(GSM-CC), qui permet d’unifier la structure nucléaire et les réactions.

Dans la première partie, le GSM-CC à partitions de masse multiples a été développé.
Dans cette approche unificatrice, nous avons calculé les spectres de 7,8Be, 7Li, et les
sections efficaces à basse énergie : 4He(3He,3He), 4He(3He,3He), et 6Li(p,p). L’inclusion
de différentes partitions de masse dans le GSM-CC s’est avérée cruciale pour décrire la
structure des états à basse énergie de ces noyaux. Les corrélations α dans les résonances
0+1 , 2+1 , 4+1 de 8Be ont émergé naturellement en tant que phénomène du système quantique
ouvert proche du seuil. Les corrélations de deutons se sont révélées importantes dans tous
les états à basse énergie de 8Be. Dans les noyaux plus lourds, le GSM-CC a été appliqué
pour calculer les spectres de 42Ca, 42Ti, 42Sc, et les sections efficaces des réactions directes,
avec un accent particulier sur la réaction de transfert 40Ca(d,p)41Ca.

La deuxième partie a été consacrée à comprendre comment le clustering apparaît
dans les états proches du seuil. Les études GSM-CC ont été réalisées en examinant
l’évolution des probabilités de canaux de réaction, des facteurs spectroscopiques et de
l’énergie de corrélation de couplage au continuum en fonction de la distance par rapport
aux différents seuils d’émission de particules. Cela a permis de mieux comprendre l’origine
de la clusterisation proche du seuil en tant que conséquence de l’alignement de l’état du
GSM-CC collectif avec le canal de désintégration.

Mots-clé: Physique nucléaire, structure nucléaire, réactions nucléaires, clustering,
effets proches du seuil, réactions directes.


	Acknowledgments
	List of acronyms
	Introduction
	The single particle Berggren basis
	Gamow states
	Scattering states
	The S-matrix and Jost functions
	The Berggren basis
	Normalization and regularization of the Berggren basis
	Numerical calculation of Berggren basis states

	Rigged Hilbert space

	Closed versus open quantum systems
	Shell Model
	Diagonalizing the Shell Model interaction: the Lanczos method

	No-core Shell Model
	No-core Shell Model and continuum

	Continuum Shell Model
	Shell Model Embedded in the Continuum

	Formulation of the Gamow Shell Model
	Diagonalizing the Gamow Shell Model Hamiltonian: the Overlap method
	Hamiltonian in Cluster Orbital Shell Model coordinates
	No-core Gamow Shell Model
	Applications of the Gamow Shell Model
	Interaction for Gamow Shell Model
	Optimization of the interaction

	Differences with other methods

	Coupled channel representation of Gamow Shell Model
	Definition of channels in Gamow Shell Model
	Hamiltonian in the coupled channel formalism
	Construction of the target and projectile wave functions
	Construction of the total many-body wave functions
	Orthogonalization of composites with respect to the core.
	Calculation of the kernels of the Hill-Wheeler equation
	Solution of the Hill-Wheeler equation
	Transformation to a standard eigenvalue problem
	Solution in the coordinate space: the equivalent potential method
	Bound and resonance states: overlap method in the context of coupled channels
	Scattering states: solution via Green's function method
	Summary of the numerical methods to solve the coupled channels equation

	Calculation of reaction observables
	Applications of the Gamow Shell Model in coupled channels representation

	Differences with other methods

	Multiple mass partitions in Gamow Shell Model Coupled Channel representation
	Spectroscopic factors in GSM
	Description of 7Be and 7Li
	Model space for 6Li, 7Be, and 7Li
	Interaction for A=6,7 systems
	Spectra of 7Be and 7Li
	Reaction cross-sections involving 7Be and 7Li as composite systems

	Description of 8Be
	Model space for 8Be
	Interaction for A=7,8 systems
	Spectrum of 8Be

	Description of spectra of 42Sc, 42Ca, 42Ti, and transfer reaction 40Ca(d,p)41Ca
	Model space for calculations with a 40Ca core
	Interaction for A=41,42 systems
	Spectrum and reactions with a 40Ca core and valence particles


	Near-threshold effects within the Gamow Shell Model
	Wigner cusps in reaction cross-sections and spectroscopic factors
	From threshold effects to clusterization
	Near threshold effects in the coupled channel framework
	Near-threshold effects in 7Be and 7Li
	Near-threshold effects in 8Be
	Correlation energy in 7,8Be and 7Li
	Near-threshold effects in the spectroscopic factors


	Conclusion
	Annexes
	On the Slater determinants of the wave function in GSM-CC
	The current formula for the calculation of partial widths of channel wave functions

	References

