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Résumé : Dans cette thèse, nous étudions la
dynamique neuronale pendant l'éveil attentif,
en se concentrant spécifiquement sur le type
de dynamique "asynchrone et irrégulière" (AI)
observée dans le cortex cérébral. On vise ici
à mieux comprendre les comportements des
réseaux neuronaux,  en mettant  l'accent sur
deux  modèles  :  le  modèle  adaptatif
exponentiel (AdEx) "integrate and fire", et le
modèle Hodgkin-Huxley (HH), avec un accent
particulier sur le modèle AdEx.

La  thèse  met  en  évidence  des  différences
intrigantes  entre  des  réseaux  neuronaux
apparemment similaires. 

Dans une première partie, nous montrons la
manière  dont  les  réseaux  neuronaux
répondent aux stimuli externes, en particulier
dans le contexte de l'épilepsie, en examinant
pourquoi  certains  systèmes  contrôlent  et
"tuent"  l'entrée  paroxystique  alors  que
d'autres la reproduisent et la propagent. 

Dans une deuxième partie, la thèse explore
la  manière  dont  les  réseaux  de  neurones
AdEx  ou  HH  faiblement  connectés  peuvent
présenter  des  états  AI  de  deux  manières
distinctes  :  des  états  "auto-entretenus"  ou
des  états  "pilotés"  nécessitant  une  entrée
externe (Driven).

Dans  une  troisième  partie,  nous
présenterons un autre outil de la physique
statistique moins usité : la dissipation. Nous
concentrerons  alors  notre  travail  sur  les
analyses  des  modèles  et  des  différents
réseaux permises par cet outil.

Pour  élucider  ces  différences,  une
combinaison  de  techniques  classiques  de
traitement  des  signaux,  d'analyse
structurelle de la configuration du réseau et
d'outils  de  systèmes  dynamiques  -
notamment les exposants de Lyapounov et
la dissipation du système -  est  employée.
L'étude  que  nous  avons  réalisée  utilise
également  des modèles de champ moyen
des  réseaux  AdEx  pour  comprendre
comment les variantes auto-entretenues et
pilotées se manifestent à un niveau global.

L'exploration de ces propriétés et variations
améliore  notre  compréhension  des
propriétés  émergentes  complexes  et  des
comportements  dynamiques  distincts  qui
existent  au  sein  de  réseaux  neuronaux
biologiques apparemment similaires.



Title :Hidden complexity  in biologically  inspired neural  networks  :  emergent  properties and
dynamical behavior

Keywords : computational  neuroscience,  modelization,  dynamical  systems,  Lyapunov
exponents, dissipation

This thesis investigates the neural dynamics
during  attentive  wakefulness,  specifically
focusing on the "asynchronous and irregular"
(AI)  type  of  dynamics  observed  in  the
cerebral cortex. The research aims to gain a
deeper  understanding  of  neural  network
behaviors,  with  a primary  emphasis  on two
models:  the  Adaptive  Exponential  (AdEx)
integrate  and  fire  model,  and  the  Hodgkin-
Huxley (HH) model, with a particular focus on
the AdEx model. 

The  thesis  uncovers  intriguing  differences
among seemingly similar neural networks. 

In a first part, it will shed light on how neural
networks  respond  to  external  stimuli,
particularly  in  the  context  of  epilepsy,
examining  why certain  systems control  and
kill  the  paroxysmal  input  while  others
reproduce and propagate it.

In  a  second  part,  the  thesis  explores  how
sparsely connected networks of AdEx or HH

neurons can exhibit AI states in two distinct
ways: self-sustained AI states, or AI states
requiring external input (Driven).

In  a  third  part,  we  will  introduce  the
Dissipation and focus our analysis of models
and different networks around this tool.

To unravel those differences, a combination
of  classical  signal  processing  techniques,
structural  analysis  of  the  configuration  of
the network, and dynamical systems tools -
including Lyapunov exponents and system
dissipation  -  are  employed.  The
investigation also makes use of mean-field
models  of  AdEx  networks  to  comprehend
how  self-sustained  and  driven  variants
manifest at a global level.
Exploring  these  properties  and  variations
enhances our understanding of the complex
emergent properties and distinct dynamical
behaviors  that  exist  within  apparently
similar biological neural networks.



Synthèse

Cette thèse vise à étudier la compléxité des réseaux neuronaux, un assemblage de modèles de neu-
rones uniques compréhensibles (et aisément représentables et visualisable, bien qu'apportant déjà une
dynamique riche) générant des propriétés émergentes complexe et des dynamiques à très hautes dimen-
sions impossible à représenter directement. Il est donc nécessaire de produire des outils spéci�ques pour
analyser ces systèmes, outils qui seront souvent en rapport plus ou moins direct avec la moyenne. Or,
nous allons montrer au cours de cette thèse que des réseaux avec des comportements moyens similaires -
c'est à dire par exemple avec une "fréquence de tir" calculée en prenant la moyenne de la fréquence de tir
de chaque neurone - qu'on pourrait donc avoir tendance à quali�é de dynamiquement similaire, peuvent
en fait se révélé être être très di�érent dans la pratique si on utilise d'autres outils plus adaptés.
Pour ce faire, nous allons piocher dans l'arsenal des systèmes dynamiques, en utilisant di�érentes méth-
odes d'analyses, et en particulier le � coarse graining �, les exposants de lyapunov et la dissipation.

Étudier exhaustivement tous les modèles, bien que passionnant, n'aurait pas été possible faute de temps.
En guise de cas d'étude, et parce qu'ils sont assez répandus tout en couvrant des usages et des niveaux de
complexités di�érents, nous nous concentrons sur deux modèles de neurones uniques : le modèle adaptatif
exponentiel (AdEx) d'intégration et tir, et le modèle Hodgkin-Huxley (HH), avec un accent particulier
sur le modèle AdEx. Dans chaque simulation produite au cours de ce travail, les réseaux sont construits à
partir de 10 000 neurones connectés aléatoirement avec une faible probabilité (5%). Dans un même réseau,
chaque neurone suis le même modèle (AdEx ou HH) et nous produisons à chaque fois une population
inhibitrice et une population excitatrice en changeant les paramètres spéci�ques des neurones. Tous
neurones excitateurs sont identiques entre eux, de même que les inhibiteurs, et les di�érences émergeront
avec les di�érentes connexions. Plus spéci�quement, cette thèse étudie la dynamique neuronale pendant
l'éveil attentif, en se concentrant spéci�quement sur le type de dynamique "asynchrone et irrégulière"
(AI) observée dans le cortex cérébral, et nous utilisons donc des paramètres pertinent pour reproduire
les données in vivo associées.

La thèse s'ouvre sur un chapitre introductif, avant de suivre trois chapitres abordant chacun des angles
spéci�ques de di�érences entre les réseaux, puis de �nir par une conclusion synthétisant l'ensemble.
L'introduction explique plus en avant les bases de neurosciences computationnelles utilisées dans la thèse
et nécéssaire à la compréhension des simulations, avant d'expliquer le choix de l'outil d'analyse utilisé :
les systèmes dynamiques .
Le chapitre deux montre comment le hasard - obtenu par des connectivités ou des "bruits poissoniens"
di�érents - su�t à avoir des comportements dynamiques complètement di�érents malgré des réseaux
identiques, mise à part l'aléatoire spéci�és.
Le chapitre trois illustre la di�érence entre réseaux dits � driven �, ou � entraînés � et réseaux dits �
self-sustained �, ou � auto-entretenus �, que nous expliciterons, au travers des exposants de Lyapunov.
Le chapitre quatre, ensuite, montre comment la dissipation, un outil peu utilisé dans l'étude des réseaux
de neurones, illustres des di�érences entre modèles de neurones et entre types de réseaux, en insistant
particulièrement sur la réponse à une perturbation.
Nous allons à présent détailler les di�érentes parties.

L'introduction commence par souligner l'importance de la modélisation de la réalité et la nécessité d'un
examen attentif des représentations.
Nous nous penchons ensuite sur l'analyse de réseaux neuronaux biologiquement réalistes, détaillant la
modélisation de neurones uniques et le détail de la création des di�érents réseaux, en mettant l'accent
sur les réseaux entraînés et auto-entretenus. Les premiers ont besoin d'un d'être constamment excités
par une source extérieurs (sans quoi ils n'ont plus d'activité), quand les seconds ont juste besoin d'un
démarrage initial qui peut ensuite être coupé.
L'approche analytique choisie est ensuite introduite en tant que théorie des systèmes dynamiques, présen-
tant des concepts clés et insistant sur les exposants de Lyapunov, un outil classique permettant de mesurer
la stabilité d'un système, et la dissipation, un outil plus complexe représentant la vitesse à laquelle le
système converge vers un sous-espace spéci�que.

Le chapitre deux reprend un article publié en 2022(Depannemaecker, Carlu, Bouté, & Destexhe, 2022).
Cette étude computationnelle examine comment l'activité épileptique envahit le tissu cérébral normal et
montre le rôle spéci�que de la population inhibitrice, ainsi que ses aspects dynamiques et structurels, à
l'aide de trois réseaux neuronaux di�érents. Nous mettons en lumière l'importance des aspects structurels



et dynamiques pour déterminer si l'activité épileptique envahit ou non le réseau. Nous constatons égale-
ment que, malgré ces déterminants, une partie de la raison de l'e�et reste aléatoire, ce qui laisse présager
une dynamique complexe que nous ne maîtrisons pas totalement. Nous montrons en�n l'existence d'une
fenêtre temporelle spéci�que favorable à l'inversion de la propagation des crises par des stimuli appropriés.

Le chapitre trois reprend un article pré-publié(Bouté & Destexhe, 2023).
Cette partie a pour but d'élucider les di�érences entre deux systèmes apparemment similaires, à savoir
les réseaux entraînés et les réseaux auto-entretenus présentés précédemment. Ici, les di�érents réseaux
ont une activité moyenne similaire, et pourraient donc paraître de même nature si seule cette activité
(décharge moyenne) était prise en compte.
Cependant, nous avons montré que, pour des réseaux AdEx (mais pas pour les réseaux HH), ce dernier
avait un premier exposant de Lyapunov d'un ordre de grandeur plus élevé que le premier, ce qui se traduit
par une tendance à avoir une réponse plus élevée aux perturbations. Nous avons également validé les
résultats de ces réseaux sur un modèle de champ moyen. Ces résultats ne sont cependant pas valides
pour les réseaux HH, ce qui nous a amenés à creuser les questions des di�érences entre ces modèles avec
d'autres outils.

Le chapitre quatre n'est pas encore publié, et reprend di�érents résultats obtenus en étudiant la dissipation
des réseaux.
Comme indiqué précédemment, nous utilisons ici la dissipation (et comme précédemment, les réseaux
ont, autant que possible, une activité moyenne similaire). Cette mesure nous a permis de produire des
observations de l'échelle du neurone à l'échelle du réseau, et a révélé de nouvelles similitudes et di�érences
entre les neurones AdEx et HH, d'une part, et les réseaux entraînés et auto-entretenus, d'autre part.
Nous avons d'abord véri�é que la dissipation des réseaux prédisait bien la vitesse de convergence d'un
réseau vers une activité stable.
Ensuite, nous avons montré que la corrélation entre le taux de décharge moyen et la dissipation moyenne
prédisait le type de réseau � entraînés ou auto-entretenus � indépendamment du modèle, nous permettant
donc d'obtenir des résultats plus robustes de ceux de la partie précédente.
En�n, une attention particulière a été portée à la réactivité des réseaux, et nous avons montrer que
la dissipation des réseaux AdEx (mais pas HH cette fois) prédisait mieux la réponse du réseau à une
perturbation que la cadence de tir moyenne.

Pour conclure, et comme énoncé précédemment, cette thèse explore les di�érences entre des réseaux
apparemment similaires, en se concentrant sur les modèles AdEx et HH.

Les réseaux AdEx présentent des dichotomies telles que la bistabilité et des di�érences dynamiques entre
les réseaux entraînés et les réseaux auto-entretenus, ce qui suggère une meilleure capacité à imité des
phénomènes avec des bifurcations et des comportements variés et bien catégorisés. Les réseaux HH
présentent quant à eux une continuité avec moins de variabilité, étant donc plus appropriés pour les
phénomènes continues, sans frontières strictes, mais étant aussi plus robuste face aux changements de
paramètres.

Les dynamiques di�èrent considérablement entre les réseaux entraînés et les réseaux auto-entretenus,
même avec des sources excitatrices externes similaires, en particulier dans les réseaux AdEx, comme
on peut le voir en étudiant leur premier exposant de Lyapunov. Il est important de noter que l'étude
de la dissipation a mis en avant des di�érences dynamiques similaires pour les réseaux HH, permettant
d'envisager une généralisation de ces di�érences si l'on use des outils appropriés.

Il est important de noter que l'étude de la dissipation a mis en avant des di�érences dynamiques similaires
pour les réseaux HH, permettant d'envisager une généralisation de ces di�érences si l'on use des outils
appropriés.

Dans cette thèse, nous utilisons la dissipation, un outil peu utilisé dans les neurosciences computation-
nelles mais néanmoins puissant, o�rant une perspective di�érente et informative par rapport aux plus
classiques exposants de Lyapunov. Cette thèse plaide donc en faveur d'une utilisation plus importante
de la dissipation pour mieux comprendre la dynamique des réseaux de neurones.

En�n, le principal résultat sur lequel nous voulons insister est la nécessité d'une analyse plus systématique
des réseaux neuronaux que nous utilisons. Ces objets constitués d'un modèle de neurones uniques -
que nous comprenons en grande partie - laissent émerger des dynamiques complexes que nous sommes
encore loin de maîtriser complètement, et il est probable qu'un grand nombre de réseaux aux activités
apparemment similaires aient en fait une dynamique fondamentalement di�érente, qui nous donnerait



alors des réponses di�érentes aux questions que nous nous posons. Une meilleure compréhension de la
dynamique de ces réseaux, de leurs spéci�cités, de leurs di�érences ou de leurs similitudes, et de leur
raison d'être, nous aiderait à utiliser ces outils avec plus de précision et, en �n de compte, à mieux
comprendre le cerveau.
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� AI : Asynchronous Irregular (macroscopic state of the network)

� AdEx : Adaptative Expontential Integrate and Fire (model of single neuron)

� CAdEx : Conductance-based Adaptive Exponential integrate-and-�re (model of single neuron)

� EEG : Electroencephalography

� FLE : First Lyapunov Exponent

� FR : Firing Rate(s)

� FS : Fast Spiking neurons (equivalent to inhibitory neurons)

� HH : Hodgkin Huxley (model of single neuron)

� LE : Lyapunov Exponent(s)

� LIF : Leaky Integrate and Fire (model of single neuron)

� RS : Regular Spiking neurons (equivalent to excitatory neurons)

� UD : Up and Down (macroscopic state of the network)

� Vm : Membrane potential
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1 What is it all about ?

Neural networks are made of single neurons, connected together in various ways to form a network. While
this de�nition is obvious, it leads to a lot of interesting and deep questions. To explore them, we will go
back from single neurons to how they are assembled to create networks, to the study of said networks as
an emergent whole.

But �rst, let us take a step back on the concept of models and modelling, speci�cally from (Frigg &
Hartmann, 2020). Models are often used as a way to represent reality in an easier and manipulable
manner, meaning a �rst de�nitions of models in science could be "simpler representation of complicated
phenomenon". But why is it so important to simplify reality ? Because reality itself is to complex, to
intertwined for us to understand it as a whole. We need to break it to smaller pieces, partially false, but
at least meaningful for our brain.

Ontologically wise, models can take various forms, from physical representation (e.g. small solar system
toy model), to abstract/�ctional objects (think of Bohr model of atom), to description and, more specif-
ically, mathematical descriptions with equations, which is what we focus on here. Those models aim to
describe the reality accurately within a certain range. As said before, it is still a simpli�ed representation
of reality, as we conceptualize an object as if it had some intrinsic reality outside of the rest of the possible
interactions it can have, but for that range and that conception, the object is represented well.

We can think here of the model of neurons : the goal is to study the neuron themself, it can be a 3D
object with lots of connections and gates modeled, and lots of electrophysiologic interactions. If the goal
is to represent the membrane potential of a neuron, it is possible to model things at the scale of the
molecules. That would be impossible if the goal was to represent the whole neuron, let alone a network
of them. But the limitations are not only on the scale. For example, neurons could also need models
of various astrocytes to have a complete behavior, and probably of many other objects, some of which
could still be unknown to us. On the other hand, if we want to model the e�ect on �ring rate and the
communication between neurons, then all that precision on the morphology of the neuron or the precise
behavior of the gates is no longer needed, and would be impossible to use at a bigger scale. Still, those
models, said of point neurons, are as valid as the previous ones, as the goal of models is not to have a
perfect representation of reality, but to have a useful representation of it.

This is why models are so important epistemologically speaking. As it is well known, George Box once
said "All models are false, some are useful". All models we use, including in this work, are always false
in the sense that they are not a perfect replication of reality. But they are still useful, because they
allow us to learn about them, to explore them, and to create knowledge for them. Knowledge that,
and it is important, is speci�cally valid for the model, was possible to obtain because it is a simpli�ed
representation of reality.
It is not certain if the knowledge we generate from models represent reality well, and this is an important
debate in epistemology (Chalmers, 2013; Frigg & Hartmann, 2020). But whether it does represent reality
directly or not, it is often knowledge that is operational, that can be used directly to in�uence reality
in a known way that is interesting to us. Yes, all models are wrong. They all have limitations, and are
only valid (in the sense that it is meaningful to use them) in a given range, a range that is often not well
known. This is an important point that was the beginning of this work : models are useful as long as
they are used correctly, in the range we know they are working in.

But a problem arose : some models are very complicated, especially when they are a construction made
from di�erent models, or even similar models interacting together. This is often (albeit, not always)
the case for neural networks : we have an established, already complex single neuron model that is well
studied and understood, and that has known limitations. And then, we put those modeled single neurons
together, creating emergent complex, complicated phenomena that actually become too big (when there
are enough neurons) to conceptualize. We created a model we can use, but no longer fully understand
and manipulate with ease, as would be the case, for example, of some mean-�eld models of a network :
although very complex and able to produce meaningful behaviors, they are way simpler to understand,
to conceptualize and therefore to properly use than networks of single neurons models.

The main goal of this thesis will be to show that apparently similar networks - meaning they are both
representations from the same object and, while it is known they are di�erent, are functionally used as
interchangeable - produce actually di�erent behavior.
As the subject would be too large to analyze entirely, we focus on some speci�c examples, both being
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made from changing the single neuron's precise descriptions and having in�uence on the whole network.

We �rst have the di�erence between models of single neurons that produce similar activities once put
in a network, and then the di�erences between a dichotomy of networks that appear while changing the
parameters of the single neuron models : Driven and Self-sustained networks.

To be able to study those cases, we will �rst introduce how computational neuroscience work, from a
brief description of the brains and neurons to the way we model them, in order to understand the objects
we will manipulate, and how they aim to represent some realities.
Then, we will present the tool we will use to analyze those networks : dynamical system theory. This
�eld in general and more speci�cally the Lyapunov exponents and the dissipation will be of great help to
unravel some of the speci�cities behind our networks.

After those introductions, we will start our actual research with a case aiming to represent to better
simulate a macroscopic brain pathology : epilepsy. This part will be our link between the world the
models aim to represent and the analysis of the models themselves, permitting us to see some important
di�erences between di�erent models of single neurons, and the in�uence of the connectivity in the net-
works. Most of all, this will show us the in�uence of randomness, and how we sometimes only master the
networks we use in a statistical way.

Then, we will focus speci�cally on the study of models themselves, aiming to understand the di�erence
between Driven and Self-sustained networks : similar in their activity except one requires an external
drive to function properly while the other does not. This study will make us really use the dynamical
systems tools we talked about previously, and show major di�erences between the two networks that
would not be obvious without a thorough study.

The previous study is focused on the so-called Lyapunov exponents which, while interesting, are limited
when it comes to studying very big systems such as the one we usually manipulate. This is why the next
part is focused on the use of the Dissipation, which allows us to continue the previous research with a
new approach, showing previously unheard similarities and di�erences.

In the end, in this thesis, we will not aim to "understand" or "conceptualize" neural networks as a whole.
We will not directly aim to use them to understand reality either (although the �rst part of our results
can create very good insights to understand epilepsy).
Our main goal will be to understand the limitations of our neural network model, and how apparently
similar networks could actually di�er. All models are wrong, some are useful. This work aims to delimit
the frontier of usefulness a bit more than it was known before.
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2 Computational neuroscience

2.1 How does the brain work ?

The human brain is a remarkable organ responsible for our thoughts, emotions, behaviors, and bodily
functions. It consists of a huge amount of interconnected nerve cells called neurons and supportive
glial cells (1011 neurons and roughly the same number of glial cells in the human brain (von Bartheld,
Bahney, & Herculano-Houzel, 2016)). Together, they form a complex network that allows for information
processing and communication within the brain.

When looked globally, from the outside, we can observe global states : the brain exhibits di�erent patterns
of activity depending on the state of consciousness : here we will only developed awakeness and sleep.
While those di�erent states are easy to qualify, the speci�cs were harder to quantify precisely. To do
so, on top of invasive methods with obvious limits, non invasive methods for analysing the whole brain
were developed, such as EEG (Michel & Brunet, 2019), MEG(Gross, 2019) or fMRI(Chow, Wu, Webb,
Gluskin, & Yew, 2017).

During wakefulness, the brain is in a state of heightened activity characterized by high-frequency, low-
amplitude electrical patterns known as beta waves (13-30Hz). This state is associated with alertness,
focused attention, and active cognitive processing.
While awake but resting, without speci�c focus, the brains idles a bit and become characterize by a lower
frequency pattern : alpha waves (8-13Hz).
In contrast, during sleep, the brain transitions through di�erent stages with distinct characteristics :
non-rapid eye movement (NREM) sleep, which consists of several stages, including light sleep (stage 1)
and deeper sleep (stages 2 and 3), and rapid eye movement (REM) sleep. NREM sleep is characterized
by slow-wave activity (delta waves, around 1-4Hz) in the brain's electrical patterns, re�ecting a more
synchronized and restorative state. REM sleep, often associated with dreaming, is characterized by
desynchronized brain activity resembling wakefulness.

These di�erent global states of wakefulness and sleep serve important functions for brain health, cognitive
processes, memory consolidation, and overall well-being.

Zooming a bit inside of the brain : at a macroscopic level, the brain can be divided into several major
areas, each with speci�c functions. One of the most prominent areas is the cerebral cortex, which is
the outer layer of the brain. The cortex plays a crucial role in higher-order cognitive processes, such as
perception, attention, memory, language, and decision-making. It is divided into four main lobes: the
frontal lobe, parietal lobe, temporal lobe, and occipital lobe, each responsible for di�erent functions.

Within these brain areas, we �nd cortical columns (Mountcastle, 1957). Cortical columns are vertical
columns of neurons that span through multiple layers of the cortex. They are specialized for processing
speci�c types of information, such as orientation, color, or motion. Cortical columns enable the brain to
perform complex computations and integrate sensory inputs.

At an even smaller scale, individual neurons are the fundamental units of the brain that we will take
some time to detail in the next part. Glial cells, such as astrocytes, oligodendrocytes, microglia, and
ependymal cells, provide support and maintenance functions for neurons, contributing to their well-being
and e�cient functioning.

2.2 Description of single neurons

Neurons are one of the fundamental bricks that construct the brain, and the core of our analysis. They
were �rst observed and characterized by Santiago Ramón y Cajal in the beginning of the 20th century.
A wide variety of neurons exist, and we will not describe them here, only pointing out that important
di�erences can arise depending on what we want to describe. An example of a neuron, a pyramidal cell,
is given at Fig.1.A). They are electrophysiological bodies that allow communication and transmission of
information in the brain.
We will just present the basics of neuron anatomy, as in Fig.1B). The main parts of neurons are :

� Cell Body (Soma): The cell body is the main part of the neuron that contains the nucleus and
other cellular organelles. It integrates incoming signals from dendrites and generates outgoing
signals along the axon.
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� Dendrites: Dendrites are branching extensions that receive signals from other neurons or sensory
receptors. They increase the surface area available for receiving synaptic inputs and play a crucial
role in transmitting information toward the cell body.

� Axon: The axon is a long extension of the neuron that carries the action potentials away from the
cell body. At the end of the axon, there are specialized structures called axon terminals, which
form synapses with other neurons to transmit signals.

� Synapses: Synapses are junctions between neurons where information is transmitted from one neu-
ron to another. They can be either chemical or electrical. In chemical synapses, neurotransmitters
are released from the presynaptic neuron's axon terminals, cross the synaptic gap, and bind to
receptors on the postsynaptic neuron's dendrites or cell body. Electrical synapses allow direct
electrical communication between neurons through gap junctions.

� The myelin sheath and the nodes of Ranvier: Nodes of Ranvier are small gaps in the myelin sheath
- a fatty substance made by some glial cells and responsible for increasing the speed of the electrical
signal - along the length of the axon. They facilitate the propagation of action potentials by allowing
the electrical signal to jump from one node to another, a process called saltatory conduction.

The membrane is present in all cells, including neurons. It is the speci�c part that will be responsible
to exchange ions with the exterior of the cell, allowing for variation in the polarization of the membrane
which, as we will see, allows for the creation and transmission of the action potential.
From now on, we will mainly focus on the representation of the membrane. For more detail on the neuron
anatomy, one can refer to (Martin, 2012).

The membrane of neurons contains various ion gates, also known as ion channels, which are specialized
proteins that regulate the �ow of ions across the neuron membrane. These ion channels play a crucial role
in generating and propagating the action potential : the electrical signal responsible for the transmission
of information in the brain. There are various channels in the membrane, the principal beings :

� Sodium channels: Sodium channels allow the passage of sodium ions (Na+) into the neuron. They
play a key role in the initiation and propagation of action potentials. Sodium channels have di�erent
states, including closed, open, and inactivated states.

� Potassium channels: Potassium channels facilitate the movement of potassium ions (K+) out of the
neuron. They are involved in repolarizing the cell membrane after an action potential, restoring the
resting membrane potential. Potassium channels contribute to maintaining the balance of electrical
charge and play a role in controlling the excitability of neurons.

� Calcium channels: Calcium channels allow the entry of calcium ions (Ca2+) into the neuron. They
are involved in various cellular processes, including neurotransmitter release, synaptic plasticity, and
gene expression. Calcium in�ux through these channels is essential for triggering cellular responses
and regulating neuronal activity.

These ion channels are dynamic and can be regulated by various factors, including voltage changes,
neurotransmitters, and intracellular signaling molecules. The opening and closing of ion channels control
the �ow of ions, which, in turn, determine the electrical properties and signaling capabilities of neurons.
While it is crucial for the functioning of the action potential, we will not talk again of Calcium channels,
only focusing on the Sodium and Potassium ones as they are directly responsible for the formation of the
action potential itself, and not its consequences.

Focusing on the action potential : when sodium gates open, sodium ions can enter the neuron, causing
a depolarization which in turn opens more voltage sensitive channels, causing an acceleration of the
depolarizing strong enough it can propagates to the rest of the axon. Then, the potassium gates open,
hyperpolarizing the neuron which goes back to a resting state. The action potential propagates through
the axon, and then allows the release of a quantum of chemical bodies outside of the neuron, through the
synapses connecting the action of the neuron to the dendrites of other neurons. Those chemical bodies will
then modify the membrane potential of the new neuron, depolarizing or hyperpolarizing it, in�uencing
its probability to spike. For more details on the mechanism of spike and the general biophysiological
presentation of the neuron, look at (Johnston D, 1994).
The goal of this brief and simpli�ed description is to give the reader the keys to understand the model
we use later.
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Figure 1: A) Picture of a neuron (a stained pyramidal cell in mouse hippocampus), Courtesy: National
Science Foundation. B) Schematic, simpli�ed representation of neurons (from www.freepik.com). C)
Electric representation of the membrane of neurons (that will be simulated by corresponding di�erential
equations), from Michael Klausen, Public domain, via Wikimedia Commons.

2.3 Models of single neurons

Half a century after the �rst observation of neurons, the famous paper of Hodgkin and Huxley (Hodgkin
& Huxley, 1952a) came, proposing a mathematical model of the squid giant axon which would reproduce
its action potential. This model, as many other, simulate the membrane of the neurons, modelling it as
an RC circuit as in Fig.1.C) with some added complexity.
From that time, a lot of di�erent models of single neurons were proposed, for various uses. The reader
can see a great introduction to computational models in neuroscience in (Sterratt, Graham, Gillies, &
Willshaw, 2011).
Those neuronal models add a lot of di�erence, and we will focus on two of them.

2.3.1 Major di�erences and classi�cation between models of single neurons

First, models could be more or less "realistic", or to be precise "biologically realistic". This is already
a complicated term because, as we said previously, models never reproduce reality perfectly. Here, it
actually means the model is a mechanistic one, that we try to understand how the neuron actually works
in real life, and to represent each important part in a simpli�ed way, combining the whole in order to
obtain an emergent activity similar to what we observed. This would serve two purposes : �rst, it would
validate the other, smaller models and representations that were used to create this emergent mechanistic
model. Then, it would allow direct correspondence to test speci�c hypotheses, and it would allow a clearer
understanding of any found phenomenon. A prime example is the Hodgkin Huxley model we presented
before. Here, the di�erent gates and their probability of opening are modelled, allowing a complex and
yet easy to grasp dynamic to arise and to model similar to experiment action potential. Changing one
parameter would be easy to interpret and possible to test, allowing a quick back and forth between
experiment on models and on live tissues.
On the other hand, models could be phenomenological, focusing on reproducing a speci�c phenomenon,
but not on understanding why it happens or how exactly the di�erent terms of the model translate to
real life. The end of that spectrum could be the neural networks used in machine learning, that no
longer tries to connect the parameters of the equations used to represent the neuron activity to real life
data, but only aim to optimize speci�c functions as well as possible. We could also mention Izhikevich's
quadratic model (E. M. Izhikevich, 2007) that only serves to reproduce the shape of the action potential
without caring about the structure of the neuron. To some extent, this is also the case of integrate and

18



�re models, at least compared to the Hodgkin and Huxley model. As they do not need to model as many
things as more realistic neurons, the equations that represent those models are often easier to use and less
computationally costing, allowing for long simulations, big networks (as we will see later), or powerful
mathematical tools to analyze them as in (E. M. Izhikevich, 2007). Most models would be somewhere
on the spectrum, but it is useful to remind the reader that they can both be useful, but generally not for
the same purpose.

Second, apart from the "realism" of the model, and among other important di�erences, we want to point
out that neuronal models do not reproduce every and all behavior of neurons. They generally allow to
reproduce some speci�c range of behaviors, but cannot represent others. A good example of that is the
AdEx model (Brette & Gerstner, 2005a) that we will de�ne later that can, thanks to an added part
modelling the "adaptation", show a huge range of behavior, speci�cally bursts (Naud, Marcille, Clopath,
& Gerstner, 2008a) that are not normally accessible for other neuron models, such as Hodgkin Huxley.
We can have models that reproduce very well some speci�c behavior, but fail to reproduce others, and
others that do not reproduce them as well but have access to a lot more behaviors. We could also have
models that can do both, of course, but they are generally more complex and computationally costly, so
a choice needs to be made.

2.3.2 What do the models represent ?

The computational model we will use in this work will represent action potentials with di�erent sets
of equations, but both of them will use di�erential equations showing the evolution of the membrane
potential.

AdEx model is part of the integrate and �re types of models, so it does require an "arti�cial" reset after
a certain threshold of that membrane potential Vm is past, while Hodgkin and Huxley model do not need
it.
Still, for both of them, it is when the Vm goes through a threshold that the spike is counted and has
e�ect on the network, which makes sense considering this is what happens in real neurons, although we
do not represent the propagation of the signal in the axon. But as we said before, no representation is
perfect, and they all serve a general purpose within certain limits.

While both of those equations are supposed to represent Vm, they use di�erent details to do so that
interact in speci�c ways with the rest of the equations. Therefore, can we actually say that the Vm from
the Adex and the one from another model, such as Hodgkin Huxley, are the same ?
It seems obvious that they are not, but does that mean we can't compare them ? Probably not either,
as they are supposed to represent the same object, just in a di�erent way. It is outside the scope of
this work to go deep in the ontology of the objects we model, but it is interesting to note that there is
generally no question in comparing apparently similar objects without questioning if such comparison is
actually possible in the �rst place.
While we will indeed compare the di�erent models and networks, this idea of the potential di�erences
between apparently similar objects is the core of that research, and it helps to think it is a more general
problem than we think at �rst, as it could give us more epistemological carefulness.

2.3.3 In practice : how are the models de�ned ?

Now that we are over with the theoretical and philosophical part, we will focus on the practical models
we will use. Those di�erent models are so-called point neurons models, meaning we do not consider the
morphology of the neurons, the axon, the soma and the dendrites, and that our representation will be a
1D one instead of a 3D object. It is useful to see those models as this : there is an input, the input is
transformed by the equations of the model, and then it produces an output. There is no spatiality, only
time is meaningful here. Let's see the details of the models !

Type of population When we create a network, all neurons follow the same model and therefore the
same equations, as the ones we will present later. On the other hand, neurons are not all identical in the
brain. While it is out of the scope of this study to try to represent all the types of neurons in the brain
(for such work, see (Markram et al., 2015) models of some simple types of neurons exist (E. M. Izhikevich,
2007). The most basic and broad categories, and the most useful to have a wide variety of dynamics, are
excitatory and inhibitory neurons.
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As all neurons, once they have an action potential, they modify the membrane potential of some other
neurons they are linked to. The di�erence lies in the modi�cation : excitatory neurons will make the
post-synaptic neurons more likely to �re by increasing their membrane potential, exciting them, while
inhibitory neurons will decrease their membrane potential and therefore the probability to �re, inhibiting
them.

Then, it is a matter of balance. If the network is too inhibited, whether because there are too many
inhibitory neurons or because their inhibition is too strong, then the network will just inhibit itself and
stop all activity. On the other hand, if the excitation is too strong, the network will "explode" and will
be always active. Due to the nature of our simulation, it means it will alternate between having an action
potential, going back to a reset value, wait for a refractory and �re again, leading to an average �ring
rate of the inverse of the refractory period (which, for our case, would be 200Hz).

There are di�erent kindss of excitatory and inhibitory neurons, but for simpli�cation we use one of each.
All our excitatory neurons are so-called Regular Spiking (RS) neurons: they have a fairly low �ring rate.
On the other hand, the inhibitory neurons are so-called Fast Spiking (FS) neurons and, as the name
suggests, have a (much) high �ring rate.

Spiking neurons model : AdEx The Adaptive Exponential integrate and �re model, or AdEx, is, as
we previously said and from its name, a type of integrate and �re. This means we do not model the whole
spike, but only the time upward part before arriving at a threshold, and then the membrane potential
Vm is arti�cially put back and clamped at a lower value for a few (5) milliseconds. Then, a spike is
generated and has some e�ects that we will describe later.
Each neuron in the AdEx network is described by Eq.(39) and Eq.(42) as follow :

Cm
dVm

dt
= gL(EL − Vm) + gL∆T exp

(
Vm − VT

∆T

)
− w + Isyn (1)

τw
dw

dt
= a(Vm − EL)− w

When the membrane potential crosses a threshold, a spike is emitted, and the system is reset:

if Vm ≥ VD then

{
Vm → VR

w → w + b
(2)

The �rst di�erential equation describes the evolution of the membrane potential. To begin with, we have
the leaky integrate and �re part of AdEx, with Cm the membrane capacitance (often equal to 200pF ), V m
the membrane potential (in mV , gl the leak conductance (around 10nS), EL the leak reversal potential
(around −65mV , all being analog to RC circuits. That part is an attractor to the value EL, lower than
the spike detection threshold. This means that without external current, the neuron would never spike.
This is the role of the additive synaptic current Isyn that correspond to the network activity and that
could increase or decrease the membrane potential depending on the excitatory/inhibitory balance.
Then, we have the "exponential" part of AdEx, that speci�cally aims to represent the upward part of
the spike better when the membrane potential is high enough and the neuron is on the way to spike.
This part will introduce a new "exponential" threshold VT (around −50mV ), di�erent from the spike
threshold. The latter will be responsible for the spike detection and is explained in Eq.(42), while the
former is an additive term that represents the sudden acceleration of the depolarisation that will lead to
a spike after a certain value. On top of VT , we introduce ∆T the spike sharpness (2mV for excitatory
neurons, and 0.5mV for inhibitory ones).
Finally, we have the adaptation part of AdEx : w (in pA). w being a positive value, it will tend to
hyperpolarize the membrane potential after a spike, meaning it will be harder for a neuron to spike a
second time immediately after a �rst spike : this is adaptation. As the second part of Eq.(39) shows, w
will leak to smaller values, meaning the diminution in membrane potential is just temporary. It will leak
more or less quickly depending on τw, the adaptation time constant (between 100ms and 1000ms), and
it will also depend on a, the adaptation conductance (often put to 0 in this work). Finally, as shown in
Eq.(42), w increases by a value b, the adaptation current increment (very variable, between 0 and 100pA)
when there is a spike.
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As said previously, Eq.(42) shows the consequences of a spike for the neuron : we introduce the spike
detection threshold VD that has various value, often between −45mV and −47.5mV , but some models
use as high as +20mV to see the complete spike. Of course such variation would change the dynamic of
the network as it would increase or decrease the frequency of spikes. We already talked about the e�ect
on the adaptation w, what is left is the resting potential VR (often at −65mV ) at which the spike is
clamped right after a spike for a refractory time Tref (not shown in those equation, Tref = 5ms).

Finally, we will also use the CAdEx model in this thesis, a derivative of the AdEx model. More precision
will be given in the appropriate section, as we want to emphasize the di�erence between AdEx and
Hodgkin-Huxley models here.

Spiking neurons model : HH From here, we will call the Hodgkin-Huxley model HH.
Contrary to before, HH is not an integrate and �re model, and the whole action potential is represented.
While not necessary (as there exist models that directly propagate the action potential), it will also
registered a spike after an arti�cial threshold, and the network will receive this output in a similar way
as for AdEx networks.
The HH model follows :

Cm
dVm

dt
= gL(EL − Vm) + gKn4(EK − Vm) + gNam

3h(ENa − Vm) + Isyn (3)

with gating variables (in ms):

dn

dt
=

0.032(15.− Vm + VT )

(exp( 15.−Vm+VT

5. )− 1.)
(1.− n)− 0.5exp(

10.− Vm + VT

40.
)n

dh

dt
= 0.128exp(

17.− Vm + VT

18.
)(1.− h)− 4.

1 + exp( 40.−Vm+VT

5. )
h (4)

dm

dt
=

0.32(13.− Vm + VT )

(exp( 13.−Vm+VT

4. )− 1.)
(1−m)− 0.28(Vm − VT − 40.)

(exp(Vm−VT−40.
5. )− 1.)

m

To sum it up, that gates variables dynamics are sometimes written as

dn

dt
= αn(V (t))(1− n)− βn(V (t))(n)

dh

dt
= αh(V (t))(1− n)− βh(V (t))(h) (5)

dm

dt
= αm(V (t))(1−m)− βm(V (t))(m)

The �rst equation describes, as previously, the evolution of the membrane potential. There are identical
terms that have the same range of values. The speci�city of HH, of course, is that it takes into account
various gates that allow for a depolarization or hyperpolarization of the membrane. Those are the
Potassium current and the Sodium current.
The �rst one introduces the terms gK and EK , the potassium conductance and reversal potential (typically
6nS and −90mV ). Due to the low value of EK , this current will hyperpolarize the membrane potential.
The strength of that hyperpolarization will depend on the term n4 a dimensionless probability of activation
the potassium channels, and whose evolution is described in Eq.(44).
The second one introduces the terms gNa and ENa, identical as before but for sodium (typically 20nS
and +60mV ). Contrary to before, the sodium current depolarizes the membrane potential, and the
modelization of its gate is a bit more complex, as it depends on two di�erent terms : m and h (also
dimensionless probabilities). The �rst one is similar to n and corresponds to the activation of sodium
channels, but the second one is the opposite and corresponds to the inactivation of those channels.

While we will note go further into the evolutions of n,m, h we note that they are depending, again, on the
di�erence between a reversal potential VT (−50mV for excitatory neuron, −52mV for inhibitory ones)
and the membrane potential Vm.

For this model, there is no external reset, but we still have a detection spike threshold VD as for AdEx,
although it has no e�ect on the intrinsic dynamic of the neuron.
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Di�erences and similarities Both models only model the dynamic of the membrane potential. When
it is high enough, the simulation considers a spike is done and its consequences start, but are not properly
modeled : there is no model of the quanta of chemicals that will be delivered from the dendrites to the
axons of other neurons, only an increment in some conductance. They are also point neurons models,
which means we do not consider them to have spatial dimensions : all the dynamic happens in a point
and we do not consider travel time, including to deliver the �spike information� to other neurons. Please
note that all values of parameters are within biophysical range (see (Hodgkin & Huxley, 1952a; Hille,
1992; Naud et al., 2008a; Górski, Depannemaecker, & Destexhe, 2021)). A major di�erence between
those two models is that Adex is part of the integrate and �re family of models, meaning there is a model
of the beginning of the action potential, and then a reset and a rest that is not modeled. HH on the
other hand reproduce the whole action potential, including the downward phase.
As we can see, another major di�erence is that Adex is a 2 dimensional model, while HH is a 4 dimensional
one.
There is also a conceptual di�erence that synthesize the last two points : HH was made as a model to
reproduce biological reality as well as possible. It therefore models what we know (or knew) of neurons
: the gates activation and deactivation that will result in the potassium and sodium current which have
antagonist e�ects and create the shape of our action potential. Adex on the other hand aim to reproduce
the phenomenon, caring less about how its components can be translated to the �reality� in a bijective
way (although there are still possibilities to do so and there exist way more phenomenological models).
Due to its simpli�ed nature, Adex is on the other hand able to represent another behavior that does not
exist with HH : adaptation. It allows to create burst of activity, or varying activity with a time interval
between spikes that is not constant (growing bigger or smaller depending on the parameters use) which
allow for a wider variety of phenomenons (for more details on what behaviors Adex can reproduce, see
(Naud et al., 2008a))

2.4 From neurons to networks

As explained before, neurons have synapses that are used to interact between each other. While we
consider point neurons and therefore no proper synapses, we still make a link between the neurons.
We start by creating a graph with all the links between the neurons. Links are unidirectional, so if
neuron A is linked to neuron B, neuron B is not necessarily linked to neuron A. We use conductance
based model, which means that the e�ect of said link is that when neuron A spikes, neuron B will receive
instantaneously (actually, in the next time step) an increase in a speci�c conductance, which will then
modify its current. We use di�erent nernst equilibrium to translate the excitatory or inhibitory nature
of the link, as follow :

Isyn = gE(EE − V ) + gI(EI − V ) (6)

With EE , EI the excitatory and inhibitory reversal potential (often at 0mV and −80mV ), and gE , gI the
excitatory and inhibitory conductance. As said previously, those conductances are the ones that receive
an increment when a connected neuron spikes. If it is an excitatory neuron, gE will increase. As the
threshold is below EE , the potential di�erence in the parenthesis will always be positive, and therefore
this contribution will increase the membrane potential value. On the other hand, if there is a spike from
an inhibitory neuron, as EI is always below the resting potential, making the di�erence of potential
always negative, an increase in gI will lead to a reduction in the membrane potential.
On top of that, those conductances are modeled as leaky currents, so we have two equations showing how
they evolve :

dgE/I

dt
= −

gE/I

TE/I
(7)

With TE/I = 5ms the excitatory/inhibitory decay.

There are various ways to organize the graph between neurons. First, we could think of the value of the
link. We could have a variation on the value of the link, or on a matrix, which would show how strongly
or weakly each neuron could be connected. We choose a simple � all or nothing � case where neurons
have a connectivity of either 0 or 1, and nothing in between.
On top of the value, we can also think of how to arrange the links. For example, we could try to reproduce
some speci�c patterns of activity and implement an adaptation rule, such as STDP (Hebb, 1949)for the
neuron connection to change. We could also have some in�uence on the topology, such as a simple �
neurons that are farther from each other are less likely to be linked �, which leads to speci�c results (such
as wave activity) (Davis et al., 2020). Here, we chose a simpler form : an Erd®s�Rényi graph, meaning all
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connections are random, independent from any notion of topology. To be precise, we have a 5% chance
that any two neurons are connected. This leads to an apparent lack of structure, but it is interesting to
see that there will still be di�erences between neurons as can be seen in Fig.2, some of them having more
or less links than the average, which could strongly in�uence their dynamics.

Figure 2: Example of the distribution of the excitatory (left) and inhibitory (right) connections for each
neuron in the network we use. There is typically 400 excitatory connections per neuron, with an std of
20, and 100 inhibitory connections with an std of 10.

It also matters to choose how many neurons we want to consider, knowing the goal is not to represent a
speci�c object (like a cortical column as in (Markram et al., 2015)) but simply something on the range of
a few thousands to tens of thousands of neurons, to have relevant behaviors that only arise when the scale
is big enough. Here, we consider populations of 10 000 neurons, 80% being excitatory neurons and 20%
being inhibitory, within range of what is observed experimentally (Wonders & Anderson, 2006; Alreja,
Nemenman, & Rozell, 2022).

2.5 Emergence, chaos and complex dynamics : behavior of networks

The global idea of the link between single neurons and networks, what it produces and why it could be
complex, can be sum up with a cartoon made in Fig.3

Figure 3: Cartoon of the path from single neuron to network activity

The idea is that the resulting interaction of the neurons in the network leads to an enormous space of
complex emergent dynamics. To help understand it, and while looking for said emergent dynamic in real
brains would be very relevant, we decided to focus on analysing simulations of a couple of models. Our
goal is to develop tools to better understand the behavior of the network at di�erent scales, despite the
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issue of it evolving in a very high dimension such as the so-called curse of dimensionality (Köppen, 2000).
There are some obvious candidates to do that, such as studying the membrane potential of all neurons.
There are actually two issues with this approach : the �rst one lies in the enormous phase space to
consider, which gets even worse when we consider networks of thousands or tens of thousands of neurons.
The second issue is the one we developed earlier : as it is represented in di�erent ways within di�erent
models, can we actually say we are studying the same object ?
We could also binarize the phenomenon and only consider whether there is a spike or not at each time
window we want to consider. While it simpli�es drastically the representation of the activity, it also raises
questions about how much is lost by said simpli�cation. If we consider all the neurons in a big network,
it also stays way too big to analyse, losing potentially precious information for a still very hard analysis.
Then, we can think of using averages of quantities, such as the �ring rate of the network, which is indeed
was easier to analyse. While an interesting approach, it obviously lose a lot of information, and mainly
makes it di�cult to know if we can still capture important emergent phenomena with it. If we want to
average things, we need a tool that is made for it and that depends on the activity itself, and not on
part of the network we are trying to modelled. To do that, we take the approach of looking at neural
networks as dynamical systems.

The question of information As we have said, the main interest of neural networks is the spike
production of individual neurons, and how those spikes will in�uence the network in the next place. There
is a constant exchange of scales between the single neurons and the whole network, always in�uencing
each other. We will call that spike production the "activity" of the network, and we will often link it to
the Firing Rate (FR) of the whole network, showing an average of this activity. Of course, this will mainly
inform us of the quantity of spikes and its variation, assuming this is where the meaningful information
produced by the network is. But there are actually lots of paper following a di�erent hypothesis, claming
information is actually in the so called "neural coding" (Borst & Theunissen, 1999; Azarfar, Calcini,
Huang, Zeldenrust, & Celikel, 2018), a complex term that englobes a lot of ideas including the one
claiming that the precise timing of the single neuron spike is what matters more than a quantity. It is
not the goal of this thesis to go further with this hypothesis : while it could be that the spike timing is
important to transmit speci�c information, the networks we use are not trained to reproduce any speci�c
kind of output apart from a similar FR as the ones observed in real data. This is also what will we do in
this work, focusing on the activity as the amount of spike produce, and observing what is linked to the
change of that activity.

Di�erent kind of networks behaviors Now that we have talk about what we meant by activity and
why it was important, what kind of activity can the network produce ?
In (Brunel, 2000b), Brunel introduced a typology of the dynamics of brain activity patterns. It involved
:

� Asynchronous Irregular: In this pattern, individual neurons in a network exhibit irregular �ring
activity with no synchronized �ring among neurons. The �ring times of neurons are highly variable,
and there is no clear pattern of coordination or synchronization. This activity pattern is often
associated with a balanced network state where excitation and inhibition are �nely tuned.

� Synchronous Irregular: In this pattern, neurons in a network �re in synchrony, but the �ring activity
is still irregular. The �ring times of neurons may exhibit some level of synchronization, but the
overall activity remains irregular. This pattern can arise from network interactions and can occur,
for example, during speci�c cognitive tasks or in certain pathological conditions.

� Asynchronous Regular: In this pattern, individual neurons exhibit regular �ring activity, but there
is no synchronization or coordinated �ring among neurons. Each neuron �res at a consistent rate,
but there is no temporal correlation between the �ring of di�erent neurons. This pattern may arise
in speci�c neural circuits or under certain experimental conditions.

� Synchronous Regular: In this pattern, neurons in a network �re in synchrony, and their �ring
activity is regular and highly correlated. The �ring times of neurons are precisely coordinated,
often in rhythmic patterns. This pattern can be observed in various brain states, such as during
certain oscillatory activities like gamma or theta rhythms, or during speci�c cognitive processes like
attention or perception.

An illustration of some of those states is given is Fig.4
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Figure 4: Illustration of Brunel typology, with raster plots (up) and �ring rates (down).
A) : Synchronous regular. B) : Fast oscillation, Synchronous Irregular. C) Asynchronous Irregular. D)
Slow oscillation, Synchronous Irregular

It's important to note that these patterns are simpli�cations and abstractions used to describe the dy-
namics of neural networks. The actual brain activity is highly complex and can involve a combination of
these patterns across di�erent brain regions and under various physiological or cognitive states.

We will focus here on AI states, as that type of activity is similar to that observed in awake animals
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(Matsumura, Cope, & Fetz, 1988; Steriade, Timofeev, & Grenier, 2001; Destexhe, Rudolph, & Paré, 2003;
Lee, Manns, Sakmann, & Brecht, 2006).

2.6 Taking a step back : the Mean-�eld

What is a mean-�eld ? Mean-�eld, and speci�cally those of neural networks, are mathematical frame-
works used to understand the collective behavior of large populations of neurons. These tools provide
a simpli�ed representation of the complex dynamics occurring within neural networks, focusing on the
average or mean activity of the population rather than individual neuron behavior, and allow to use
thorough analysis impossible to use if each single neurons were considered. While at �rst neural network
mean-�eld were studied such that the neurons are from a unique population and are (asymptomatically)
independant (Sompolinsky, Crisanti, & Sommers, 1988), many have since then used di�erent, correlated
populations and developed strong physical analysis of said neural network from the mean-�eld (Faugeras
& MacLaurin, 2015; van Meegen, Kühn, & Helias, 2021) and even created toolbox to use the mean-�eld
analysis of neural network easily (Layer et al., 2022).
By approximating the interactions between neurons with statistical measures, such as �ring rates or
membrane potentials, mean-�eld models can also describe the network's global dynamics using di�er-
ential equations or rate equations, which can be used as a simpli�ed version of the networks dynamics.
This mean-�eld approach enables us to study phenomena such as synchronization, oscillations, and tran-
sitions between di�erent network states (Muller, Reynaud, Chavane, & Destexhe, 2014; Capone, Volo,
Romagnoni, Mattia, & Destexhe, 2019; Goldman et al., 2023). It has been applied in various research
areas, including sensory processing, motor control, memory, and cognition. Mean-�eld models capture
the emergence of collective behaviors, such as pattern formation and decision-making processes. They
o�er a computationally tractable framework for investigating large-scale neural dynamics and making
predictions about network behavior under di�erent conditions.

It is important to note that mean-�eld models simplify the intricate details of individual neuron behavior
and local interactions. Nevertheless, they provide valuable insights into the global behavior of neural
networks, helping us understand how large populations of neurons process and transmit information.

Mean-�eld model of AdEx networks We used a mean-�eld models of AdEx networks, using the
model de�ned in (Volo, Romagnoni, Capone, & Destexhe, 2019). This mean-�eld model was origi-
nally based on a Master Equation formalism developed for balanced networks of integrate-and-�re neu-
rons (El-Boustani & Destexhe, 2009). This model was �rst adapted to AdEx networks of RS and FS
neurons (Zerlaut, Chemla, Chavane, & Destexhe, 2017), and later modi�ed to include adaptation (Volo et
al., 2019). This latter version corresponds to the following equations (using Einstein's index summation
convention where sum signs are omitted and repeated indices are summed over):

T
∂νµ
∂t

= (Fµ − νµ) +
1

2
cλη

∂2Fµ

∂νλ∂νη
(8)

T
∂cλη
∂t

= δλη
Fλ(1/T − Fη)

Nλ
+ (Fλ − νλ)(Fη − νη) +

∂Fλ

∂νµ
cηµ +

∂Fη

∂νµ
cλµ − 2cλη (9)

∂W

∂t
= −W

uw
+ bνe + a(µV (νe, νi,W )− EL) (10)

Where µ = {e, i} is the population index (excitatory or inhibitory),νµ the population �ring rate and cλη
the covariance between populations λ and η. W is a population adaptation variable (Volo et al., 2019).
The function Fµ={e,i} = Fµ={e,i}(νe, νi,W ) is the transfer function which describes the �ring rate of
population µ as a function of excitatory and inhibitory inputs (with rates νe and νi) and adaptation level
W . These functions were estimated previously for RS and FS cells and in the presence of adaptation (Volo
et al., 2019).

At the �rst order, i.e. neglecting the dynamics of the covariance terms cλη, this model reduces to:

T
dνµ
dt

= (Fµ − νµ) , (11)

together with Eq.(10). This system is equivalent to the well-known Wilson-Cowan model (Wilson &
Cowan, 1972), with the speci�city that the functions F need to be obtained according to the speci�c
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single neuron model under consideration. These functions were obtained previously for AdEx models of
RS and FS cells (Zerlaut et al., 2017; Volo et al., 2019) and the same are used here.

2.7 Autonomy in networks : Driven vs self-sustained

On top of those two models, we also represented what we call here two types of networks : driven and
self-sustained networks, and that will be more detailed in chapter 3.
Driven networks are the ones that are usually used : the network requires an external (here poissonian)
input to produce an activity (see Fig.5(a-b). The latter on the other hand only needs an initial "kick" to
start, and will, as the name suggests, have a self-sustained activity after (see (see Fig.5(c-d)). Both types
of networks are interesting for di�erent reasons : driven networks might be more realistic, as a small
network is never cut out of the rest of the brain, and has no speci�c reason to sustain itself. On the other
hand, self-sustained networks allow for an easier analysis of their dynamics, as there is no external input
and most of all no sources or randomness (through the poissonian input) that will a�ect them. Please
not that, while some change of parameters and study of the dynamics of the system gives good insight on
how to obtain a self-sustained network, it is beyond the scope of this thesis to prove they were actually
self-sustained forever and it was only checked that they would have a seemingly stable activity for longer
than the typical length of simulation we needed. While the self-sustained networks do not require it, we
sometimes add a drive to them for the sake of comparison.

Figure 5: Illustration of driven networks (a) and b)) and self sustained networks (c) and d)) with an
external poisson drive that stops at 1000ms. a) and c) represent raster plots, with green being RS
neurons and red being FS neurons. b) and d) represent the average �ring rate, with the same colour code
and blue being the poisson input. As can be seen, when said poisson input stops, the driven networks
immediately stop any activity, while the self-sustained reduce but maintain its activity.

2.8 Perturbations in neural networks

Finally, we need to introduce another concept. As we said previously, Driven networks require an external
drive to have an activity. But in principle, we can always put an external input to a network. This input
can be of various shape and form, and for various times. If it is always present, it will change the
dynamic of the network, shaping a di�erent attractor and a new stable state. This is the case for our
driven networks, for example, but it would also be the case for self-sustained networks that use a drive.
Studying those new states could be of great interest, showing how the networks react with di�erent
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amounts of constant drives, and could also lead to establish di�erences between networks, the goal of
this thesis. But a constant noise is just a new stable state, and there is another kind of state that is
interesting : transient ones. This arises due to perturbation, a shorter input that will temporarilly change
the networks without caring if it stabilizes or not before stopping. Those perturbations can vary a lot,
being more or less steep, more or less strong, more or less long, repetitive or unique, uniform or not,
focusing on a group of neurons or to the whole network, etc etc. Each of those di�erences could produce
various responses and represent various activity from the brain, whether healthy or pathological.
In this thesis, we will use perturbation following this form :

νpert(t) = β + α ∗ (exp(−(t− T1)
2/(2. ∗ τ2)) ∗H(−(t− T1))

+H(−(t− T2)) ∗H(t− T1) + exp(−(t− T2)
2/(2. ∗ τ2)) ∗H(t− T2))

(12)

where H being the Heaviside function, β the (potential) external drive (in the range of 0 to 5 Hz). This
function takes the general form of a high plateau, where T1 and T2 are the times when the perturbation
reaches its beginning and end respectively, α de�nes its maximal height and τ is the time constants
associated with the exponential rise and decay of the perturbation.
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3 Dynamical systems

In order to study our neuroscience system, we need a prism of observation. As the models will be
mathematical ones, made of di�erential equations, and some models can exist without any added noise,
we considered them as deterministic system instead of statistical ones (although that approach also does
make a lot of sense, eg with the approach of entropy in the brain (Cofre & Cessac, 2014; Herzog et al.,
2023)), which is why we naturally turn to dynamical system theory.

3.1 What are Dynamical systems ?

In general
Dynamical systems are mathematical models used to describe how certain quantities or variables change
over time. These systems can represent a wide range of phenomena, from the motion of celestial bodies
to the behavior of biological networks and the dynamics of �nancial markets. Dynamical systems are
typically described by di�erential equations (or iterative equations), and their behavior can be analyzed
using various mathematical tools. We will describe some of them in the next parts.

The general form of continuous-time dynamical systems is described by ordinary di�erential equations
(ODEs), such as:

dX

dt
= F (X, t) (13)

Where X represents the state variables of the system (either a single point or a vector), t is time, and
F (X, t) is a vector function that determines the rate of change of X at each time point. Here, the equation
represent the �ow of the system, as we have a continuous system. Had it been discrete, we would have
had a map instead.
The �ow is like a river with a current : everything that we put in the river will follow the current,
sometimes with some topological speci�city. Putting a small wooden branch on the river is like starting a
trajectory from an initial condition : from it, the branch will create a trajectory, going with the current.
If we put another branch on another initial condition, its trajectory will have similarities and di�erences
with the other one, unless the �ow is completely uniform.

A common way to analyze dynamical systems is through the phase space (Strogatz, 2019). The phase
space is a mathematical space representing all possible states of a system. It allows the visualization and
analysis of the system's behavior and properties, such as stability and attractors. Each point in phase
space corresponds to a speci�c state of the system at a given time. This global visualization is helpful to
get a feeling of how the system can evolve, instead of following that evolution through time. Actually, if
we follow enough trajectories in the phase space, we will start to be able to have a visual representation
of the �ow. Most of our analysis will be in the phase space, sometimes without a speci�c mention of it.

While a vast variety of dynamical systems categories exist, we will introduce a speci�c dichotomy : con-
servative and dissipative systems.
In conservative systems, the total energy remains constant over time. Energy can transfer between di�er-
ent components or variables within the system, but the overall energy of the system remains unchanged.
In these systems, the trajectories remain inside of a �xed volume, although its shape can change. Classical
examples include simple harmonic oscillators and ideal pendulums.
In contrast, dissipative systems are dynamic systems that lose energy over time. The system tends to
approach a state of equilibrium or lower energy. Energy is dissipated, often in the form of heat, sound,
or other forms of energy loss. In dissipative systems, trajectories in phase space tend to converge to-
wards speci�c attractors, indicating the loss of energy over time. Examples of dissipative systems include
damped oscillators, �uid dynamics with friction, and chemical reactions with energy dissipation.

As said here, conservative systems were the basics of the study of complex systems. However, being
by de�nition closed and isolated, conservative systems o�er little perspective on countless observable
phenomena involving openness at their core, such as complex chemical reactions, turbulent behaviors,
or living creatures. These phenomena would later be gathered under a key umbrella term : dissipative
structures.
Although they have been at the core of a great part of modern investigations of dynamical systems theory,
mostly through its chaotic branch, their dissipative nature and, more precisely, its formulation, has not
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drawn much attention as a subject per se, out of strongly mathematical backgrounds (Pikovsky & Politi,
2016).

It is from these perspectives that dissipative systems have gained a lot of importance. These systems
are the dynamical description of out-of-equilibrium thermodynamic systems, which embed �openness� in
their core : they can exchange energy or matter with their environment. However, dissipative systems are
poorly described and discussed in most courses and books dedicated to dynamical systems theory. On
the other hand, many have heard about chaos and strange attractors, which are exactly the manifestation
of a �stable� system out of equilibrium. But little is actually said on their dissipative nature, which has
important consequences : it is what allows them to feature all these very entangled structures. Actually
the mathematics literature on dynamical systems theory has taken these so-called Non-equilibrium Steady
State (Ruelle, 2003) (the word stable should not be used here as chaotic systems are unstable in essence)
as the center, the point of departure of further analyses.

Here, we will not dwell on those complex mathematical planes, as the goal of this thesis is not to give a
proper mathematical formalism of the study of various neural networks. We will stop at an early stage
of dynamical systems, using simpler tools, but it seems like a proper introduction was required, if only
to get a glimpse of how deep one could go by studying neural networks from that approach.

For computational neuroscience
Let us now go back to our main object of analysis. Dynamical systems modelling has played a major
role in the development of theoretical and computational neuroscience, covering a wide range of models,
from single neurons (E. Izhikevich, 2004) to neural tissues (Wilson-Cowan (Wilson & Cowan, 1972)),
and whole brain networks (TVB : The Virtual brain, as used in (Sanz-Leon, Knock, Spiegler, & Jirsa,
2015)). All of these models result from complex assemblies of experimental measures, observations, �rst
principles, and even intuitions, in order to yield the best possible approximations of the object under
investigation given the available means (being experimental or computational).
On top of the modeling, great analysis focus on thermodynamics and dynamical systems therory exist,
such as (Cessac, 2019), which shows the potential power of that method when it comes to understanding
computational neuroscience.

As said previously, modellers need to resort to some degree of phenomenology to represent neurons.
This opens the door to a rather common, yet particular type of dynamical system that we introduced
previously : dissipative systems.

In the computational neuroscience literature, the dissipative nature of phenomenological models is often
little discussed, although it might give deep insights on the multi-scale nature of the dynamical processes
involved : from such perspective, dissipation can be viewed as something "leaving" (or entering) the
system, being matter, energy, or other, depending on the nature of the description involved. Here, a short
note of importance is required : while the de�nition of energy is usually not that di�cult mathematically
speaking, a physical de�nition is often somewhat harder. Worse, we often introduce generalized energy
that functionnaly serve the same role but are not correctly de�ned mathematically. While we will not
explore the energy of the networks here, it is useful to remind us that it will be "pseudo energy" that
the will be dissipated, and that the study of said energy would likely be of great interest to understand
our dissipative networks better. As we said, a link with actual �physical" energy might sometimes be
complicated to establish from a phenomenological model, but a somewhat more fundamental one exists
with entropy de�ned from the phase space density : the dissipation of the system is directly related to
the rate at which it gives entropy to the outside world. Here we fall back on the centrality of dissipative
structures in Prigogine's perspective : being able to give entropy to the rest of the world, such a structure
can maintain a more ordered structure without violating the laws of thermodynamics.
Entropy, while a fascinating subject, often revolves around the thermodynamic analysis, which takes a
stochastich approach instead of the deterministic we chose here. There is no doubt that such an approach
would be very interesting, and there is in fact a lot of works between the dynamics of the system and the
entropy (Ruelle, 1996; Gallavotti, 2004; Gaspard, 2020).

3.2 Lorenz system

Dynamical systems are a complex subject, and it can be di�cult to understand it when it is mixed with
highly dimensional, non-trivial systems such as the simulation of neural networks we study here. It is
also hard to know if the algorithms we want to use are actually working as we cannot predict the results
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from said neural networks analysis. Therefore, to understand the concept and to test the algorithms, it is
useful to use a simpler, well-known model from which results are already well-established. The model we
choose to do that is a very famous one : the Lorenz system (Lorenz, 2004). It is a 3-dimensional system,
so it is easy to represent it, it shows a variety of behavior depending on a change of some parameters,
from �xed point attractor to chaos, and most of all it is well-known, eg in (Sparrow, 1982; Viana, 2000;
Pchelintsev, 2014; Leonov, Kuznetsov, Korzhemanova, & Kusakin, 2015).
The system is de�ned as such :

F (X) =


ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(14)

With x, y, z the three dimensions and σ = 10, β = 8
3 the classical parameters to have a chaotic system,

with ρ being variable to have di�erent kinds of dynamical behaviors, from going to a �xed point if
ρ < 24.74 to chaos if it is above, such as the typical system where ρ = 28.
Here is how the system looks like for various rho :

Figure 6: Illustration of the Lorenz system for three di�erent values of ρ showing three di�erent behaviors,
all simulations lasting for the same amount of time. For the �rst one, when ρ < 1, the dynamic goes
straight to the [0, 0, 0] point. When 1 < ρ < 24.74, the dynamic goes to either of twin �xed points in
a spiral way (only one of them is represented here). Finally, when 24.74 < ρ, the system is (generally)
chaotic.

3.3 Lyapunov exponents

3.3.1 General presentation

One of the main question asked about dynamical system is regarding their stability. Aleksandr Lyapunov
was the �rst to formally adressed that question is his PhD thesis, in 1892, and gave his name to the main
tool used to study said stability : Lyapunov Exponents (LE).
We will brie�y introduce the LE, for a more detailled and heavily mathematical presnetation, please refer
to (Eckmann & Ruelle, 1985), and for a more intuitive introduction, to (Pikovsky & Politi, 2016), which
is the main source of inspiration for this part.

Let us consider a system of N dimensions Ẋ = F (X), a time-independant �ow where X is a vector of
N dimensions, and F a function.
As we question the stability of the system, we are interested in the evolution of an in�nitely small
perturbation from a point x0. Said evolution ẋ will follow

ẋ =
∂F

∂X
(t)x(t) = J(X)x (15)

Where J is called the Jacobian of the system and is de�ned as the matrix of the partial derivative of F
such that Jij(X) = ∂Fi

∂Xj
.

Integrating this over t, we obtain

x(t) = H(X0, t)x(0) (16)
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with

H(X0, t) = exp(

∫ t

0

dt′J(X(t′)) (17)

Finding the stability of eq.(16) is equivalent to knowing if, when t → ∞, if x(t) grows or decays.
There is no reason to think x(t) will follow the same perturbations, thus we are actually interested in its
norm to only know of the amplitude of the perturbation.

||x(t)||2 = ||Htx(0)||2 = xT (0)HT (t)H(t)x(0) (18)

where xT , HT are the transpose of x, H.
We therefore only need to investigate the matrix M(t) = HT (t)H(t) to understand the evolution of the
perturbation x(t). But does M converges ? That question was answered in the seminal work of Oseledets
in 1968 (Oseledets, 1968), discovering the so-called Oseledets theorem which proves that, under certain
conditions, the following limit exists :

lim
x→∞

[M(t)]
1
2t = ∆ (19)

and ∆ is a matrix with N positive real eigenvalues µi.

Finally, we de�ned the Lyapunov exponents λ as :

λi = ln(µi) (20)

Which can intuitively be interpreted as follow : if λi is positive (respectively negative), it means the
perturbation is growing (respectively decreasing)following the associated eigenvector.

We did not go into the serious mathematical details, but it is essential to note that ehe main condition
to apply Osedelets theorem is that the system must be ergodic.
Ergodicity is one of the important part of dynamical system analysis, and a thorough presentation can
be seen in (Eckmann & Ruelle, 1985). Here, we will simply say that an intuitive understanding of
ergodicity is that a trajectory in the system will eventually visit all the points the system can visit. It
can be translated into thinking that the mean value of the system following a trajectory from one initial
condition for t → ∞ is the same as the mean value from n initial conditions, with n → ∞.

3.3.2 A speci�c case : �xed points

Now that we have introduce the genral case of Lyapunov exponents, we can focus on a speci�c, simpler
case to gain a more intuitive feeling of their usefulness and of the de�nition of stability : �xed points.
It is interesting to �nd points X⋆ where there is no longer any evolution, e.g.: when F (X⋆) = 0, the
so-called �xed points.

Here, we can see we have a very speci�c case compared to the general one : J(X⋆) is now a constant,
as X⋆ will stay the same for all t. This means that eq.(17) is now trivially H = exp(J(X⋆)t). Hence,
eq.(16) is now :

x(t) = x(0)eJ(X
⋆)t

If we diagonalize J(X⋆), we now have N eigenvalues µi (possibly with an imaginary part) and N cor-
responding eigenvectors eigi. Taking the real parts of µi gives us λi (as they are de�ned as reals), and
�nally :

xi(t) = xi(0)e
λit

Thus, all that it required to know the stability of �xed points is to know the real part of the eigenvalues
of the Jacobian matrix (and the eigenvectors if we want to know the direction of those (in)stabilities).

How do we interpret the LE we can now compute ?
If λ < 0, the perturbation will converge to the �xed point, said �xed point is called an attractor. If
λ > 0, the perturbation will go away from the �xed point (it is also called a source). More than one
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exponent can show us the same thing for di�erent directions, either being all positive or negative, or
being a mixture of both. The magnitude of λ will show how fast the system converges or diverges. As
they are related to an exponential term, the other LE after the �rst one will have less of an impact on
the dynamic, but they will still be relevant regarding their eigenvector direction, and will in�uence the
global dynamics in a chaotic system.

It is easy to represent those by thinking of a valley or a mountain. A point in the middle of the valley is
stable : even if you move it, it will come back to its initial position. A point on the top of the mountain
is unstable : by moving it a bit it will fall. At 2D, the same example applies if the 2 directions are stable
or unstable. If it's a mix, we have a so called saddle point. All three cases are represented in Fig.7

Figure 7: Illustrations of the di�erent LE values from https://www.o�convex.org/2016/03/22/saddlepoints/.
On the left, we have a local minimum, corresponding to all negative LE. In the middle, we have a local
maximum, corresponding to all positive LE. On the right, we have a saddle point : one LE is negative
(in the North-West/South-East axis) and the other one is positive (in the North-East/South-West axis).

This representation is identical as seeing how a local perturbation around the �xed point would evolve.

3.3.3 An example with the classical Lorenz system

In this part, we aim to apply the Lyapunov exponent analysis to the Lorenz system (Eq.(14), where
N = 3) in order to give a better understanding of its dynamics.
The easy, but nevertheless interesting way to analyse such system is to �nd their �xed points, as de�ned
previously.
Here, we can see trivially that one such a point is (0, 0, 0). Resolving the equations, we can also identify
two other points : (

√
β(ρ− 1),

√
β(ρ− 1), ρ− 1) and (−

√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1).

Now, we need to learn what happens around those points, to see if the dynamics will go toward them,
away from them, or a mixture of both. To do so, we linearized the equation around them, computing the
Jacobian J of the system.

J =

 −σ σ 0
ρ− z −1 −x
y x −β

 (21)

Replacing (x, y, z) with the values of the �xed points, we can obtain the linearized behavior of the system
around said points.
To know how they behave, we have to compute the eigenvalues of the matrix while diagonalizing it. The
real part of said eigenvalues will be the previously de�ned LE, ordered from the biggest to the lowest
exponents.

For the �xed points listed before, with the classical parameters, we have the (approximate) following LE
: (11.83,−2.67,−22.83) for (0,0,0) and (0.094, 0.094,−13.85) for the other two symmetric point.
All those points have a positive �rst lyapunov exponent. Let's focus on each of them to understand
correctly what they mean.

For (0,0,0), the �rst exponent is strongly positive, meaning the �ow will get quickly away from it in one
direction. The next 2 exponents are negatives, so there are 2 attractive directions in the phase space,
and when the trajectory is close enough to (0,0,0) it will get quickly away from it. All of them are only
real, so the trajectory will go directly toward or away from the points.
For the other 2 symmetric points, the �rst 2 exponents are weakly positive with an imaginary part, which
means the trajectory will slowly go away from the points in "spirals". The last exponent is strongly
negative and real, so there is a direction of attraction that goes straight to the points. This means that
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around the points, the trajectory will slowly spiral away of it, before arriving to the direction that pull
the trajectory strongly toward it, making said trajectory "turn around" the �xed point for a time before
leaving to go around the other symmetric point, which is the observed dynamics we see in Fig.6(right).

We can also infer that the dynamics is chaotic : there is no global attractor, (with all negative LE), so the
system will just follow the �ow toward some speci�c direction, going closer to some �xed point, then be
rejected outside, and continue like that. As we know the system is bounded (and is, in fact, dissipative,
as we will prove later), it means it is chaotic (although actually it could also be periodic, but we will
prove it is chaotic on the next part).

The LE helped us do an easy analysis of the behavior of the system and understand how it worked locally,
which gave us precious understanding around those three points, with good extrapolations on the global
dynamics, on top of the high suspicion of its chaotic nature.

3.3.4 Going deeper : using LE for the system instead of �xed points

We have used the simple case of the �xed points to get a feeling of how the LE can be used, but what
about the rest of the system ? Following the general de�nition we gave earlier, we see that it is possible to
�nd a converging LE from (almost) any starting points. Here we will brie�y de�ned the speci�c algorithm
that we will use, before we assess its validity.

The main idea behind the algorithm is to use the so-called QR decomposition. To do so we compute the
evolution of a vector in the tangent space and to decompose it. The main direction of evolution when
the evolution is long enough is due to the �rst LE. Then we impose that the second vector is orthogonal
to this one, in a hyper-plane. We force an orthonormalization through the Gram-Schmidt process, and
obtain the second vector. We keep doing as such, going to lower subspace, until we have created N
exponents. It is also possible to obtain the vectors, the CLV (Covariant Lyapunov Vectors) by using a
more complicated algorithm, but we will not detail it here. Note that those algorithms require to have
the equations of the �ow. For more details, we can refer to (Pikovsky & Politi, 2016).

While di�cult, it is possible to do it for simple systems such as the Lorenz system we have been studying.
It is possible to use various parameters to obtain good results in a reasonable time, which allow to have,
for the classic system, what can be seen in Fig.8

Figure 8: LE of the Lorenz system obtained from the Politi algorithm. Each panel shows a di�erent time
of evolution in the tangent space (1000,50 000 increments) of 20 di�erent origins taken randomly. The
colors represent the 3 LE : red is the �rst one, green the second one, blue the third one. When the time
of evolution is long enough, it converges to speci�c values.

Applying the algorithm, we �nd the values for the 3 system LE as follow [0.905,−8.26e− 05,−14.572] :
the �rst one is positive, indicating chaos (for sure this time), the second one is actually 0, and correspond
to the direction of the �ow (it always appears for dynamical systems as there is always a direction that
can follow the �ow) and the last one is highly negative, being responsible of the dissipative nature of the
system. To interpret it a bit more, going back to the exponential representations we showed earlier, it
means that on average, if we take a random point of the system and perturb it, the distance between the
initial point and the perturb one will grow to in�nity. This is the so-called sensitivity to initial conditions,
which is a marker of chaos. Here, one can observe that as the system is bounded, the perturbations will
actually not grow to in�nity. Actually, after some time of growing apart, they will start getting closer,
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then farther, without any speci�c pattern. This is because the linearization is only valid at the proximity
of any points that is used, and is technically invalid as soon as we are away from it. It is a representation
of what would happen if there were no other modi�cations of �ow around, which is why we talk of a
tangent space : a space that only touches the system locally and simpli�es it for the sake of �nding
what happens locally. Actually, more than a growing distance, what happens is that there is a growing
decorrelation between the two initially neighboring trajectory, however close they were to begin with.

As can be seen on the �rst panel of Fig.8, there are lines of the FLE that are sometimes below the one
of the second LE. This is due to the nature of the algorithm : we impose a direction corresponding to
the FLE, and while it is often true, the direction also shifts sometimes faster than what the algorithm
can predict, which is why we can have a mixture of a close LE at the beginning. This should be a good
reminder as to why we need to wait for convergence (as in the second panel).

3.3.5 Computing LE from time-series in the Lorenz system

In the previous parts, we were able to use the equations of the system. It is obviously impossible from
experimental data. Worst, they are always partial whether it is because we are recording only some
dimensions (like the membrane potential) and not others (like quantum e�ect at lower scale or the e�ect
of astrocytes) or because we are only recording some neurons out of the whole.
Often, when the goal is to measure an evolving activity, we have access to time series : partial data that
changes through time and aims to represent the whole. Time series have been studied a lot in general
(Broomhead & Jones, 1989; Härdle, Lütkepohl, & Chen, 1997; Fu, 2011) and within dynamical systems
(Packard, Crutch�eld, Farmer, & Shaw, 1980; Yu, Chen, Cao, Lü, & Parlitz, 2007), more speci�cally,
the question of how to use them as a medium to an inaccessible whole has been asked and some answers
have emerged. One of those answers is embedding, which aims to reproduce the whole many dimensional
activity for a one-dimensional time series (Strogatz, 2019).

Takens' theorem Takens' theorem, proposed by Floris Takens (Takens, 1981), states that it is possible
to reconstruct the underlying dynamics of a system from a single observable time series using a technique
called time delay embedding.The idea is to create a higher-dimensional space through the so called time
delay embedding.

The time delay embedding is a technique used to reconstruct the underlying dynamics of a system from a
single observable time series, x(t). It involves creating a higher-dimensional space called the embedding
space - and a higher dimensional corresponding vector X(t) - by embedding the time series with delayed
copies of itself. The creation of the new vector is done this way :

X(t) = [x(t), x(t− τ), x(t− 2τ, ..., x(t− (m− 1)τ ] (22)

Here, X(t) is the m-dimensional vector in the embedding space at time t, and τ represents the time delay
between successive copies of the time series. The parameter m is called the embedding dimension.
By selecting appropriate m and τ , the reconstructed state space preserves the essential dynamics of
the original system. This enables the analysis and prediction of complex systems, even when only one
observable variable is available.

Now that we have introduced how it is possible to reconstruct a system from time series, we will show
an application on the Lorenz system, as in Fig.9. We use an algorithm that takes care of the question
of the embedding dimension, greatly inspired from https://www.kaggle.com/code/tigurius/introduction-
to-taken-s-embedding.

To do so, we simulated the system, then took the simulated points (making them dense enough by doing
the simulation for a long enough time), choose a dimension (x,y or z) and use the points from that
dimension : this is our time series. We do not detail the process of the algorithm or the found delays and
embedding dimension, only the 3D representation that results from the reconstruction in Fig.9.
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Figure 9: Illustration of the reconstructed Lorenz system from Takens' theorem. On the left, we have
a pretty good reconstruction, following the original topology. This is the reconstruction obtained from
the �rst or second dimensions. On right, we have a not so good reconstruction obtained from the third
dimension

As can be seen in the �gure, the algorithm doesn't seem to "work well" for all dimensions. We can see
that the two wings of the butter�y seem to be folded together in the right part of Fig.9. This is an
interesting analogy considering Takens' theorem is supposed to "unfold" the dynamics.
But this result makes sense when we look at the equations of the Lorenz system : we can see that the
third dimension is symmetric when it comes to the other two, which means that we cannot completely
separate all the dimensions properly.

Most of the time, unless there are some speci�c symmetric issues as we have here (that also arise because
of the simplicity of the system), the reconstruction goes well, and it always gives meaningful information.

We now focus on the left reconstructed system to go further.

Computing the LE from the new system Then, when the new system is created through the
method of Takens' theorem (or while imposing the dimensions and their associated variables, which we
did in chapter 3), we can compute the LE.
The details are given in chapter 3, the core idea being that we can arti�cially "perturb" the system
by �nding nearest neighbors and follow the evolution of the two trajectories (the original one and the
"perturb" one) to compute the exponent (Wolf, Swift, Swinney, & Vastano, 1985; Eckmann, Kamphorst,
Ruelle, & Ciliberto, 1987). The details of the code are given in the annex.

We applied it and found Fig.10, with a FLE converging to 0.897, a fairly similar value to the previous
one at 0.905. This result is interesting because, as the FLE is positive, it already allows us to claim that
the system is chaotic. This means even one of the dimensions already contains the information we need
to see if the system is chaotic or not, which is generally the main goal of such time series algorithms.

Note that, as we will detail in the appropriate chapter, this algorithm is very good when it comes to
�nding positive exponents, but not so good for the rest. Knowing the 2nd LE was close to 0, we did
not try to compute it with this method and stopped at the FLE which was a success and allowed us to
properly test our algorithm.

3.3.6 Summary of Lyapunov Exponents

We have explained how the LE worked, how it was possible to use them on �xed points, on a whole system,
and from time-series. To illustrate those points, we used a classical example : the Lorenz system, and
reproduced well known results for the classical chaotic parameters representing the famous "butter�y"
shape. We presented the 3 �xed points, analyzed their stability, and explained how the system was
chaotic. Then we reproduce that chaotic result with only some partial data and without the equations,
using time-series algorithms. We will use that speci�c analysis in chapter 3.
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Figure 10: Applying the FLE algorithm on the reconstructed Lorenz system. On the left, we have the
values of the exponents at various steps. On the right, we have the cumulative mean. The algorithm
converges to 0.897

But while powerful, there is an issue with the Lyapunov analysis : it revolve in diagonalizing a matrix
of the equations, or using nearest neighbors with time-series. That works well for the Lorenz system,
as we have seen, but the story changes completely in high dimension, partly due to the so-called curse
of dimensionality (Köppen, 2000), partly because diagonalizing becomes extremely hard to operate. To
provide a solution to this issue, we will now present the dissipation.

3.4 A solution to analyze the dynamics in high dimensions : introducing the

dissipation

3.4.1 A mathematical description

Mathematically speaking, the dissipation relates to the evolution of volumes of initial conditions in phase
space. For a general system whose evolution equation can be written in the form:

ẋ(t) = F(x(t)) (23)

where x(t) is the state vector, we are concerned with the time evolution of a volume V, representing a
continuum of initial conditions, delimited by a closed surface S, with outward normal vector n:

dV
dt

=

∫
S

F(x) · n dA (24)

where dA is an in�nitesimal surface element taken on S. By the divergence theorem, it is straightforward
to obtain

V̇ =

∫
V

∇ · F(x) dV (25)

Hence the time evolution of the volume enclosed in the closed surface S is given by the divergence of the
evolution function integrated over the same volume. Volume preserving dynamical systems, such that
V̇ = 0 are called conservative.

A system for which F(x) · n < 0 in some region of phase space is called dissipative. Interestingly,
shrinking of volumes in phase space typically implies the existence of attractors, which (loosely speaking)
are bounded subsets to which nonzero volumes in phase space asymptotically converge.
Therefore, we will speci�cally study that part, that we de�ne as :

Diss = ∇ · F (26)

It is interesting to note that a negative global dissipation means that the system will keep losing volume,
and one could easily think the trajectories will therefore all converge to a volume of 0, which seems a bit
strange. Intuitively, it would seem that all go to a point, which would not be a very interesting dynamic.
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While this is a possibility, it is not the only one. In fact, the volume is de�ne on a speci�c space, and
one has to remember that every measure on subspaces will have a volume of 0 e.g : a surface in 2D and
a line in 1D, if put in a 3D space, have a volume of 0, the same is true for any measures on a subspace
of dimension m − i in a dimension m, for all 0 < i < m. This therefore means that the trajectories
will converge to a speci�c subspace of dimension lower than the original one. Without going into de-
tails, that is how fractal works : objects of non integer dimension, which is, for example, the case of the
butter�y shape of the Lorenz system (estimated to be around 2.06(Kuznetsov, Mokaev, Kuznetsova, &
Kudryashova, 2020)).
This means that dissipative systems can dissipate without their dynamics being reduced to mere unin-
teresting points.

3.4.2 Link with LE

Dissipation is related to the evolution of a volume of points within the �ow of the phase space. It is, of
course, related to the LE we presented earlier, and that does the same thing with more details, specifying
how directions evolve. We can see dissipation as a rough vision of LE, giving only the general sense of
stability, showing if we have a dissipative system or not, and if we do, how fast it dissipates. This is why
it is not surprising to know those two objects are linked : the dissipation is actually the sum of the LE.

Diss =
∑

λi (27)

Here is a rough proof, which also helps to understand what dissipation does :

� LE are de�ned as the real part of the eigenvalues of the Jacobian.

� The trace of matrices is the sum of eigenvalues.

� Therefore the trace of the Jacobian is the sum of all LE

� Therefore, the sum of LE is equivalent to the partial derivative of all dimensions of the system,
relatively to said dimension

� Therefore, the sum of LE is equivalent to the divergence of F

� Dissipation is the integral over a volume of the divergence of F

� Integrating on a volume in the phase space, dissipation is equivalent to the sum of LE.

Obviously, the sum of the LE gives way less information than the LE themselves, we only know the
general trend on how stable the system (or eventually sub-system) is, which can be translated by how
fast a the �ow goes back to the attractor after a perturbation.
On the other hand, as explained before, it is not reasonable to try to obtain the LE in very high dimension,
while this problem is no longer an issue with the dissipation. This explains why we focused here on the
dissipation: while being less precise than the LE, it is impossible to use them, and still possible to learn
a lot from the dissipation.

3.4.3 A feeling of dissipation : understanding with Lorenz

We come back to the Lorenz system to get a better feeling of what the dissipation means. Of course,
as we explained before, the LE analysis is perfect for low dimensions systems, and we actually already
learned a lot about the Lorenz system. Using the dissipation will make us learn new things, but, as it is
the sum of the LE and we already computed them all, nothing that we couldn't have known if we dug
a bit more what the LE could teach us. We therefore use this mostly as a way to understand what the
dissipation is : while it is not the best tool for such a simple system, it will be very useful in chapter 4.

As presented before, dissipation is the rate of convergence of the �ow. This should mean that the higher
the dissipation (meaning, the farther from 0), the faster the convergence.
First, we can compute the dissipation of the system. From eq.21, we remember the Jacobian of the
system, and using eq.27, we �nd that the dissipation for the Lorenz system is :

Disslorenz = −σ − 1− β (28)
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Which, with the typical values of σ and β gives:

Disslorenz = −13.7

As we can see, the dissipation of the Lorenz system is negative. This was the characteristic of dissipative
system we talked about previously : if we start a cloud of initial conditions and let the trajectories evolve,
they will converge to a subspace of the attractor (the butter�y shape), losing volume, as we presented
before.
It also has the interesting property of not depending on the position : it will remain identical at any
points for a given set of parameters. More interesting, we have seen before that various ρ leads to various
behaviors, but the dissipation is independent of ρ. This is interesting, as it is already telling us that 1)
Various behaviors can have an identical dissipation, and 2) that we should observe some similarities in
the dynamic of all simulations of the Lorenz system in the way they converge to an equilibrium, even if
said behavior is di�erent.

We test that, initializing a cloud of points, and letting them follow the �ow. We repeat that for various
values of ρ. In order to measure a convergence rate, we compute the volume of the cloud of points using
the Convex Hull.
It is important to stress a limitation of this method : while it can compute a volume easily when it is in
3D, the volume technically converge to 0 as the system goes to a subspace (a point if ρ is low enough,
and a fractal dimension <3 if ρ is high enough). As there will be small variation, the function cannot
really �nd a volume of 0 when there is a convergence to a subspace, which is what we �nd.
On top of that, some statistical outliers (although not random, the chaoticity of the system can lead to
far from the average points) could drastically change the volume, which is why we remove the top 20%
extreme points.
We can see the results in Fig.11:

Figure 11: Evolution of an initial volume of points with time, zoomed to observe the di�erences. In red,
we have the prediction curve, using the value of the dissipation. In green, we have the actual volume of
points, from 8000 points. In blue, �nally, we �tted the green curve to f(x) = eD∗t where D is written.
We repeat the process for various values of ρ.

As we have said the value of the dissipation and predicted rate of contraction is always the same for
various ρ. We can see that the superposition appears to be fairly good. The value of the dissipation is
therefore a good predictor of the time it takes for a system to converge to the equilibrium.

We also wanted to test the same situation with a perturbation. To do so, we let the system evolve until the
equilibrium is achieved, and then we perturb it in many di�erent ways, following with many simulations
from each of the perturb points, which gives a cloud of points as previously. We have a similar result as
before.

We also tried to check the time it takes for a perturbation to go back to the original equilibrium. To do
so, we did the same as previously and de�ned some borders corresponding to what we considered to be
"the space of the attractor". When a point re-enter this space, we consider it is back to the equilibrium.
We measure how long it took to go back, as a function of how strong the perturbation was (ergo, how far
was the perturb point from the original point). The goal here was to link that time to the dissipation,
which we did coarsely, as it is only for the sake of showing how dissipation works.

We know that a volume evolves with V (t) = V 0eDt where D is the dissipation. Therefore, the time t
to go to V 1, a volume within the stable volume is t = 1/DlnV 1

V 0 . We de�ne V 1 as the volume within

39



the borders we used previously to estimate when a perturb trajectory would be back to a stable system.
A crude approximation of V 0 is d3, where d is the distance between the original and the perturb point.
This means we can reduce the previous form to : t = aln(x)+ b, where a = −1

D , x = d3 and b = 1
D ln(V 1).

We can see the result of the simulation if Fig.12

Figure 12: Lorenz system with ρ = 28. Time to come back to the stable system for various perturb points
as a function of the distance of perturbation (blue) �tted (red) by a function t = aln(x) + b where t is
the time, d the distance and a,b parameters.

From the theoretical values of D and V 1, and the �t, we obtain :
atheory ≈ 0.0732, afit = 0.0998.
btheory ≈ −0.760, bfit = −0.881.

We can see that they are fairly similar despite the crude approximation we used. The dissipation can
therefore indeed be used to compute the time it takes for a perturb trajectory to go back to the stable
one.

3.4.4 Summary of the dissipation

The dissipation is the sum of all LE, but is very easy to compute as long as we have access to the
equations of the �ow, even in very high dimensions as it will just be a sum of more values. It gives us
less information than the LE, and we can not determine the chaoticity of a system from it, but it still
shows us directly how the system "recovers" from a perturbation. It is also a macroscopic measure that
gives us information of the dynamics of the system in, as we said, an easy way. We will see in the later
chapters that, due to its simplicity, it can also be used to unravel di�erences between networks.

As a side note, the power of the dissipation really lies on the simplicity to compute it with the equation
of the �ow. Conversely, it means the dissipation is not very useful with time-series are, more generally,
experiment data. To the best of our knowledge, the only way to compute it would be through the sum
of the LE using the method we presented earlier which gives, as we said, fairly bad results for negative
exponents. This means it is unlikely that we could use the dissipation on real data.
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4 What did we learn, and what will we need ?

This concludes our introduction, all the required knowledge and tools should have been presented so that
it is possible to understand the next three chapters that will provide some results to understand the
di�erences between apparently similar neural networks.

First, we have seen why we model reality, and we provided some warnings and urged to be careful about
the way we treat those representations, explaining why it was required to pay more attention to those
representations themselves in order to clearly di�erentiate those who could appear similar, and to select
the appropriate ones when needed.

Then, we started to explain our object of analysis : the biologically realistic neural networks. After
presenting how single neurons work, and mainly how we could model them using two di�erent models
(AdEx and HH), we explained how those single neurons could be connected to give a network. We
explained some speci�city of those networks, and presented the ones we will use in our work. We also
showed why they were complex and why their analysis was di�cult, and we presented the di�erence
between Driven and Self-sustained networks, which, with the di�erence between single neuron models,
will be the two main dichotomies we will explore. Finally, we presented a few computational tools that
we will use : the representation of the network as a mean-�eld (taking a speci�c approach developed by
the team), and the perturbations of the network.
We want to point out here that "models" might be used for two di�erent situations : modelling in general,
as in the very beginning of this introduction, which is similar to "�nding a way to represent some object",
and the single neuron models. We will most likely talk of the latter in the next chapters, and try to use
"representation" when we want to talk of the former to avoid confusion.

After that presentation on the object we will analyze, we introduce the angle we will use to analyze them
: dynamical system theory. We presented the concept of dynamical system theory, explaining how the
di�erential equations gave us the �ow in which each trajectories could evolve, and presented the so-called
phase-space, which we will use implicitly in the next chapters. We then presented two important tools,
starting with the Lyapunov Exponents (LE), explaining how they could help us understand local and
global stability, and how to compute them, including from time-series (we will mainly use them in chapter
3). Finally, we introduced the dissipation, the sum of the LE, showed why it was a useful alternative on
high dimensional systems (such as the networks we will use), and what it was measuring (we will mainly
use them in chapter 4).
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Chapter 2 : Propagation or

non-propagation of a

perturbation

Summary

Our computational study investigates how epileptic activity invades normal brain tissue, and shows the
speci�c role of the inhibitory population, and its dynamical and structural aspects, using three di�erent
neuronal networks. We �nd that both structural and dynamic aspects are important to determine whether
seizure activity invades the network. We also �nd that, despite those determinants, a part of the reason
behind the e�ect remains random, hinting for complex dynamics we do not fully master. We show the
existence of a speci�c time window favorable to the reversal of the seizure propagation by appropriate
stimuli.

In this work, I participated in the simulations, analysis and writing parts.

Publication : (Depannemaecker et al., 2022), in eNeuro:
https://www.eneuro.org/content/9/6/eneuro.0234-21.2022
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1 Paris-Saclay University, French National Centre for Scienti�c Research (CNRS),

Institute of Neuroscience (NeuroPSI), 91198 Gif sur Yvette, France
* equally contributing �rst authors

Abstract

Epilepsies are characterized by paroxysmal electrophysiological events and seizures, which can
propagate across the brain. One of the main unsolved questions in epilepsy is how epileptic activity
can invade normal tissue and thus propagate across the brain. To investigate this question, we
consider three computational models at the neural network scale to study the underlying dynamics
of seizure propagation, understand which speci�c features play a role, and relate them to clinical or
experimental observations. We consider both the internal connectivity structure between neurons
and the input properties in our characterization. We show that a paroxysmal input is sometimes
controlled by the network while in other instances, it can lead the network activity to itself produce
paroxysmal activity, and thus will further propagate to e�erent networks. We further show how the
details of the network architecture are essential to determine this switch to a seizure-like regime.
We investigated the nature of the instability involved and in particular found a central role for the
inhibitory connectivity. We propose a probabilistic approach to the propagative/non-propagative
scenarios, which may serve as a guide to control the seizure by using appropriate stimuli.

Signi�cance: Our computational study investigates how epileptic activity invades normal brain tissue,
and shows the speci�c role of the inhibitory population, and its dynamical and structural aspects, using
three di�erent neuronal networks. We �nd that both structural and dynamic aspects are important to
determine whether seizure activity invades the network. We show the existence of a speci�c time window
favorable to the reversal of the seizure propagation by appropriate stimuli.

5 Introduction

Epilepsy is one of the most common neurological disorders (Beghi, 2019), which can take numerous

forms. It is associated with the presence of paroxysmal electrophysiological events and seizures, usually

recorded in humans using the electroencephalogram (EEG). However, EEG recordings do not allow us

to probe the activity of single neurons within the network. More recently, the recording carried out with

microelectrode arrays made it possible to obtain spike information of the order of a hundred neurons

in human epileptic patients (Peyrache et al., 2012; Dehghani, Peyrache, Telenczuk, Quyen, et al., 2016;

Paulk et al., 2022).

Such microelectrode recordings showed that neuronal activity during seizures does not necessarily corre-

spond to synchronized spikes over the whole neuron population, as previously modeled (Soltesz & Staley,

2008), including models at di�erent scales from cellular to whole-brain levels (Depannemaecker, Des-

texhe, Jirsa, & Bernard, 2021; Depannemaecker et al., 2020). In fact, it turns out that the dynamics

of neural networks during seizures are more complex (Jiruska et al., 2013), and still poorly understood.
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In particular, it is not known how the paroxysmal activity of the seizure does propagate, driving other

networks into seizure activity.

Here, we investigate this problem using computational models.As a starting point, we consider examples

of seizures where the inhibitory network is strongly recruited, while excitatory cells' �ring is diminished.

Fig.13 shows three seizures from a patient which were recorded using Utah-arrays, before resection surgery

in a case of untractable epilepsy. From these intracranial recordings, 92 neurons have been identi�ed and

isolated and were classi�ed into two groups: Fast-Spiking (FS) neurons and Regular-Spiking (RS) neurons,

based on spike shape, autocorrelograms, �ring rates and cell-to-cell interactions (Peyrache et al., 2012).

Remarkably, direct cell-to-cell functional interactions were observed, which demonstrated that at least

some of the FS cells are inhibitory while at least some of the RS cells are excitatory (see details in

(Peyrache et al., 2012)). The three seizures shown in Fig.13 were taken from the analysis of (Dehghani,

Peyrache, Telenczuk, Quyen, et al., 2016) (see this paper for details), and are shown with the �ring rate

of each population of cells. During the seizure, we can observe a plateau of high activity of FS cells, and

a strongly reduced activity of RS cells. This phenomenon of unbalanced dynamics between RS and FS

cells was only seen during seizures in this patient (Dehghani, Peyrache, Telenczuk, Quyen, et al., 2016).

It shows that, in these three examples, the seizure was manifested by a strong �control� by the inhibitory

FS cells, which almost silenced excitatory RS cells.

Interestingly, a very di�erent conclusion would have been reached if no discrimination between RS and

FS cells were performed, which underlies the importance of discriminating RS and FS cells for a correct

interpretation of the dynamics during seizures. Based on such measurements, we built computational

models based on larger number of cells in order to consider network e�ect that are not directly accessible

with the recordings. We were interested in how seizure activity propagates or not, and what are the

determinants of such propagation.

The region of the brain where the seizure starts is called the seizure focus, although in certain patients it

can be distributed over several foci (Nadler & Spencer, 2014), then the seizure spreads to other regions

of the brain. When another such region is reached, it can in turn be driven into seizure activity, in which

case the seizure activity propagates. It can also control it (as in Fig.13, which was done with data from

(Dehghani, Peyrache, Telenczuk, Quyen, et al., 2016)), in which case the seizure would remain con�ned

to a more restricted brain region.

In order to gain understanding of the dynamics underlying hese two scenarios, we study the response of

networks using three di�erent neuron models (Adaptive exponential Integrate and �re (AdEx), Conductance-

based Adaptive Exponential integrate-and-�re (CAdEx), and Hodgkin-Huxley (HH) models), interacting

through conductance-based synapses, to an incoming paroxysmal (seizure-like) perturbation. We observe

two types of behavior which we represent in Fig.14: one where the incoming perturbation successfully
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Figure 13: Examples of inhibitory recruitment during seizures. a, Raster plot of three di�erent seizures
from the same patient, 92 neurons were identi�ed, 24 putative inhibitory cells (red) and 68 putative
excitatory cells (green). a, Corresponding �ring rate of the putative inhibitory population (red) and the
putative excitatory population (green). A plateau of high activity of the putative inhibitory cells can be
observed during the seizure (highlighted in dashed purple oval). This was done with data from the study
by (Dehghani, Peyrache, Telenczuk, Quyen, et al., 2016)

increases the activity of the excitatory population, thus making it stronger than the input, and the other

where only the inhibitory population strongly increases its activity, thus controlling the perturbation. In

the �rst case, where the excitatory population discharges very strongly, it is therefore likely to transmit,

or even amplify the perturbation transmitted to the next cortical column . We have therefore called this

situation the propagative scenario. In the opposite case, where the �ring rate of the excitatory population

remains much lower than the perturbation, the seizure-like event will not spread to the neighboring region,

we therefore call this situation the non-propagative scenario. We then propose a more precise approach,

based on the AdEx network, that mixes structural and dynamical ingredients in order to unravel key

aspects of the mechanisms at play. Focusing on the di�erent input connectivity pro�les for each node in

the network, we are able to build separate groups of neurons that display signi�cantly di�erent dynamics

with respect to the perturbation. Finally, we study the possibility of a proactive approach, based on the

application of an extra stimulus with the aim of reversing the propagative behavior, thus controlling the

spread of the seizure.
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Figure 14: Cartoon of the modeled scenarios

6 Material and methods

6.1 Computational models

We use for this study a mathematical model of electrophysiological activity based on ordinary di�erential

equations, describing the dynamics of the neurons' membrane potential through their interactions.

Each neuron model in the network is described by Eq.(29) and Eq.(30), the Adaptative Exponential

integrate and �re (AdEx) model (Brette & Gerstner, 2005b; Naud, Marcille, Clopath, & Gerstner, 2008b).

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
− w + Isyn (29)

τw
dw

dt
= a(V − EL)− w

When the membrane potential crosses a threshold, a spike is emitted, and the system is reset:

if V ≥ VD then


V → VR

w → w + b

(30)

Parameters used for the excitatory (RS) and inhibitory (FS) populations are respectively Vt = −50 mV

and Vt = −48 mV, ∆T = 2 mV and ∆T = 0.5 mV, b = 100 pA and b = 0 pA, and τw = 1000 ms

for RS. For both populations: C = 200 pF, gl = 10 nS, El = −65 mV, a = 0 nS, Vreset = −65 mV,

trefractory = 5 ms.

In order to compare some of the results obtained with the AdEx model we used two other models of
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neuronal activity. First the Conductance-based Adaptive Exponential integrate-and-�re model (CAdEx),

which solves some of the limitation of the AdEx model (Górski et al., 2021). The equations read:

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
+ gA(EA − V ) + Is (31)

τA
dgA
dt

=
ḡA

1 + exp
(

VA−V
∆A

) − gA

When the membrane potential crosses a threshold, a spike is emitted, and the system is reset as in:

if V ≥ VD then


V → VR

gA → gA + δgA

(32)

Parameters used for inhibitory (FS) populations are: gl = 10 nS, El = −65 mV, VT = −50 mV,

gA = 0. nS, EA = −70 mV, , δgA = 0 nS, C = 200 pF, ∆T = 0.5 ms, VA = −45 mV, Is = 0.0 nA,

trefractory = 5 ms, Vreset = −65 mV, τA = 0.01 ms, ∆A = 0.5 mV and for the excitatory (RS):

gl = 10 nS, El = −65 mV, VT = −50 mV, δgA = 1 nS, EA = −65 mV, δgA = 1 nS, C = 200 pF,

∆T = 2 mV, VA = −30 mV, Is = 0.0 nA, trefractory = 5 ms, Vreset = −65 mV, τA = 1.0 s, ∆A = 1 mV

Then we use the Hodgkin-Huxley model (Hodgkin & Huxley, 1952b), hereafter denoted HH, with the

following equations:

C
dV

dt
= −gl(El − V )− gKn4(V − EK)− gNam

3h(V − ENa) + Isyn (33)

with gating variables (in ms):

dn

dt
=

0.032(15.− V + VT )

(exp( 15.−V+VT

5. )− 1.)
(1.− n)− 0.5exp(

10.− V + VT

40.
)n

dh

dt
= 0.128exp(

17.− V + VT

18.
)(1.− h)− 4.

1 + exp( 40.−V+VT

5. )
h (34)

dm

dt
=

0.32(13.− V + VT )

(exp( 13.−V+VT

4. )− 1.)
(1−m)− 0.28(V − VT − 40.)

(exp(V−VT−40.
5. )− 1.)

m

With C = 200 pF, El = −65 mV, ENa = 60 mV, EK = −90 mV, gl = 10 nS, gNa = 20 nS, gK = 6 nS,

VTexc = −50 mV, VTinh = −52 mV.
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For all types of neuron models, the parameters have been chosen in biophysical range (see (Hodgkin &

Huxley, 1952b; Hille, 1992; Naud et al., 2008b; Górski et al., 2021)) in order to keep the basal asynchronous

irregular activities (Brunel, 2000a) into a range of �ring rate coherent with experimental observations

(El Boustani, Pospischil, Rudolph-Lilith, & Destexhe, 2007; Destexhe, 2009a; Zerlaut, Chemla, Chavane,

& Destexhe, 2018).

The network is built according to a sparse and random (Erdos-Renyi type) architecture where a �xed

probability of connection between each neurons is set to 5% to produce pairwise Bernouilli connectivity.

We consider a network model of ten thousand neurons, built according to speci�c properties of the cortex.

This network is made of an inhibitory (FS) and an excitatory (RS) population, respectively representing

20% and 80% of the total size of the system as previouly done in (Carlu et al., 2020). The communication

between neurons occurs through conductance-based synapses. The synaptic current is described by:

Isyn = gE(EE − V ) + gI(EI − V ) (35)

Where EE = 0 mV is the reversal potential of excitatory synapses and EI = −80 mV is the reversal

potential of inhibitory synapses. gE and gI , are respectively the excitatory and inhibitory conductances,

which increase by quantity QE = 1.5 nS and QI = 5 nS for each incoming spike. The increment of

conductance is followed by an exponential decrease according to:

dgE/I

dt
= −

gE/I

τsyn
(36)

with τsyn = 5 ms

The network thus formed receives an external input, based on the activity of a third population (excita-

tory) of the same size as the excitatory population. Each of its neurons is connected to the rest of the

network according to the same rule as mentioned earlier (�xed probability of 5 % for each connection).

This external population produces spikes with a Poissonian distribution at a given tunable rate. The

external perturbation that mimics the incoming seizure occurs through the augmentation of this �ring

rate.

The shape of the latter is described by:

νpert(t) = β + α ∗ (exp(−(t− T1)
2/(2. ∗ τ2on)) ∗H(−(t− T1))

+H(−(t− T2)) ∗H(t− T1) + exp(−(t− T2)
2/(2. ∗ τ2off )) ∗H(t− T2))

(37)
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where H is the Heaviside function and β = 6 Hz is the basal constant input. This function takes the

general form of a high plateau, where T1 and T2 are the times when the perturbation reaches its begin-

ning and end respectively, and α de�nes its maximal height. τon and τoff are respectively time constants

associated with the exponential rise and decay of the perturbation.

For all 3 types of networks, it is possible to have di�erent connectivities (i.e di�erent set of random

connectivities) and realizations of Poisson drive (i.e the generator of the Poisson noise can vary). It is

also possible to �x the seed of the noise either for the connectivity or for the Poisson drive (or both) to

analyse speci�c conditions.

We create network connectivities by allowing a 5% chance of connection between any 2 neurons, which

will indeed lead to an average of 5% of connection, but with some variation. Some neurons can have more

a�erent connections from inhibitory neurons than others, which will make them more inhibited, and the

same goes with excitatory connections, creating a variation between neurons due to the random nature

of the network.

6.2 Coarse graining and continuous analysis

In order to analyse in detail what mechanisms are at play in the network during a seizure-like event, we

resort to a combination of two methods : a so-called structural coarse-graining, that is we gather neuron

models in n groups according to their inhibitory in-degree (the number of inhibitory connections they

receive, as introduced before) and we study their time evolution through statistics of their membrane

potential (mean and alignment) over these groups. In other words, at each integration time step, we will

obtain n values of mean membrane potentials, one for each group, as well as n values of Kuramoto order

parameter (measuring alignment in groups).

To obtain the Kuramoto order parameter, we �rst transform the single neurons membrane potentials

into phase variables by applying a linear mapping vj ∈ [VR, VD] → θvj [0, π]. Then the Kuramoto order

parameter is computed through the following equation:

R exp iΨ =
1

N

∑
j

exp iθvj (38)

R ∈ [0, 1] gives the degree of �alignment" (if it persists in time, one would say synchronization) : R = 1

implies full alignment , while R = 0 implies no alignment whatsoever. Ψ ∈ [0, π] tells us the mean phase

of the transformed variables (directly related to the mean membrane potential).

Let us mention one caveat here. The membrane potentials are not mapped on the full circle, to avoid
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arti�cial periodicity of the obtained angles: having V = VR is not the same as having V = VD. One may

thus ask why such a measure is used instead of the usual measures of dispersion such as the standard

deviation. We use the Kuramoto order parameter because it gives a naturally normalized quantity, thus

allowing a direct comparison of what is happening at each time step.

6.2.1 Code Accessibility

The code/software described in the paper is freely available online at

https://github.com/HumanBrainProject/PropNoProp. The code is available as Extended Data and is

run on Linux operating system.

To produce the code simulation, we used Python 3 and speci�cally the library brian2 (https://brian2.readthedocs.io/)

to do the simulations of the network, add the perturbation, and save the various variables we analyzed.

An example of the code to produce an AdEx network is given in the annex in 19.1.

7 Results

We start by showing how, in networks of various neuron models, a paroxysmal external stimulation can

trigger a seizure, depending on various parameters. We show how the the dynamics can di�er from

model to model and what are their common features. Then, we propose a structural analysis based on

the mean �ring rates of individual neuron models to guide a particular coarse-graining, which we use as

a �lter to observe the dynamics and gain further understanding, from both qualitative and quantitative

perspectives. Finally we show how this study can guide a proactive approach to reduce the chances of

seizure propagation.

7.1 Propagative and Non-propagative scenarios

Throughout this study, we assume that the networks depicted in the previous section represent a small

cortical area receiving connections from an epileptic focus. Speci�cally, the arrival of the seizure is

modeled by a sudden rise in the �ring rate of the external (a�erent) Poisson region where the seizure

originates. In other words, we are not concerned with how seizures originate (epileptogenesis), but how

they can propagate. Therefore, we will frame our analysis into two main scenarios: propagative, i.e the

network develops an excitatory �ring rate greater than the input, which makes it able to propagate the

seizure to e�erent regions, and non-propagative scenario where the excitatory �ring rate is lower than the

input, thus attenuating the incoming signal. As described in the method section, the perturbation starts

with an exponential growth followed by a plateau and ends with an exponential decrease, going back to

the basal level : see blue curves in Fig.15. We show in this �gure the response of the various networks to

this type of perturbation.
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Figure 15: a�fFiring rate of the network populations in response to a perturbation (in blue the incoming
perturbation, in green excitatory and in red inhibitory populations): propagative and non-propagative
scenarios (respectively left and right columns) for AdEx model (a, b), with amplitude of perturbation
α = 80Hz and τon/off = 100ms ; CAdEx model (c, d) with α = 70Hz and τon/off = 80ms ; HH model
(e) with α = 60Hz and τon/off = 60ms and (f) with α = 140Hz and τon/off = 60ms. For each model
the networks are the same in the propagative of non-propagative scenarios, the only di�erence comes
from the incoming input with di�erent realizations.

Here we can distinguish between two classes of macroscopic di�erences between propagative and non-

propagative scenarios.

In the �rst class (for AdEx and CAdEx) the di�erence is binary, which means the network either features a

very strong increase in the �ring rate of the inhibitory and excitatory populations, or the sharp increase in

the �ring rate only concerns the inhibitory population, thus strongly limiting the activity of the excitatory

population (consequently preventing the seizure from spreading to the next region). From this perspective,

the propagative scenario can be understood as a loss of balance between excitatory and inhibitory �ring

rates, which the network struggles to �nd once the excitatory population has reached very high �ring rates.

Interestingly these two scenarios can occur for the same global shape of the perturbation but changing

only the noise and network realizations. It must be noted that the 200Hz maximum frequencies measured

here are the results of the temporal binning of the global spiking dynamics, taken as T = 5ms, which
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corresponds to the refractory time of the single neurons in Adex and CAdEx. Upon choosing a shorter

binning, e.g T = 1ms, higher frequency peaks are observed, going up to 800Hz, thus hinting at overall

faster dynamics.

In the second class (HH) there is a rather continuous di�erence between propagative and non-propagative

scenarios as can be seen in Fig.16(c), depending on the amplitude of the perturbation.

Figure 16: Grid search on the amplitude and slope of the incoming perturbation for each network. a,
b, The percentage of realizations that propagate (Prop.), respectively, for AdEx (a) and CAdEx (b)
networks. c, d, For HH networks, the means and SDs (over realizations) of the di�erence in �ring rates
between excitatory (c) and Poisson (d) populations (∆ firing rate = νe − νPois), averaged over the
length of the plateau.

7.2 In�uence of the perturbation's shape

To study how the shape of the perturbation a�ects the network's response, we screened in Fig.16 dif-

ferent time constants of the exponential growth rates and maximum amplitude of the plateau with 100

seeds (for both network and noise realizations for each couple of values, and probed, in the case of AdEx

and CAdEx (respectively (a) and (b)), the number of realizations which yield propagative behavior, as it

shows binary possible scenarios. Meanwhile, in the HH case, the perspective is a little di�erent : we chose

to show two �gures, displaying means and standard deviations over realizations of the di�erence in �ring

rate between excitatory and Poisson populations (averaged over the plateau), ∆ firing rate = νe− νPois

(respectively (c) and (d)). As can be expected, for all networks (AdEx, CAdEx and HH) the amplitude of
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the perturbation plays a determinant role in the type of scenario we eventually �nd (propagative or not),

however in opposite directions and of di�erent nature. Indeed, for both AdEx and CAdEx, increasing

the amplitude increases the chance of having a propagative scenario for a �xed slope, in a binary fashion,

while in the case of HH the contrary is observed, and in a continuous fashion.

Also, we observe a slight coupling e�ect between slope and amplitude : for higher amplitudes, the prop-

agation range extends to slower perturbations. On the contrary, in the HH network, it seems that the

slope does not play any major role, hinting at a much less dynamical e�ect : the di�erence manifests itself

as local equilibria of the networks under consideration, reached no matter the time course. Moreover, the

standard deviations, besides showing no clear dependence on neither amplitude nor slope, are very small

compared to the means, thus evidencing that noise neither plays any signi�cant role here. These obser-

vations highlight once again the deep di�erences between the two types of network and their respective

phenomenology.

Interestingly, in the case of AdEx and CAdEx, there exists a limit, bi-stable region here, around 80Hz,

where the perturbation may or may not propagate in the network, depending on the noise realisation.

Thus, the scenario does not trivially depend on the amplitude and time constants of the perturbation in

this region, which makes the latter a perfect test bed to study more deeply the internal mechanisms at

play, and will thus be the main focus of the remainder of this paper.

7.3 In�uence of structural aspects on the dynamics

In the following, we turn our attention to the bi-stable region of AdEx networks, where the two scenarios

are present, and investigate what can be the source of the divergence. There are two main di�erences

between the simulations under consideration: the realization of the network connectivity and the real-

ization of the external input, as both rely on random number generators. We have therefore successively

�xed each of them, and observed that the two behaviors were still present. Also, the global scenarios

were indistinguishable from those showed so far. First, this allows us to �x the network connectivity.

(which will become determinant in this part) without losing the richness of the phenomenology. Second,

this tells us that what shapes the distinction between the two phenomena is more complex than a simple

question of structure, or realization of the input. Another perspective is then needed to explore the

internal dynamics of the network in both scenarios. As the models into consideration have very large

number of dimensions, as well as quite intricate structures, brute force analytical approaches are simply

not conceivable.

Let us then take a step back and investigate the relationship between the �ring rate of each neuron and

its number of a�erent (input) connections for the three kinds of input: excitatory (NExc
inp ), inhibitory

(N Inh
inp ) and Poissonian (NPois

inp ). Fig.17(a) shows the average �ring rates (νNP
E and νNP

I ) measured over
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the whole non-propagative scenario for each neuron in the AdEx network (simply de�ned as the total

number of spikes divided by the total integration time, after having discarded a transient), plotted as a

function of the three di�erent connectivities.
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Figure 17: In�uence of connectivity on single neurons �ring rates: a In�uence of poissonian (NPois
inp ),

excitatory (NExc
inp ) and inhibitory (N Inh

inp ) in-degree on the �ring rates of excitatory neurons (νNP
E ), and

inhibitory ones (νNP
I ) in the non-propagative scenario of the AdEx network. The standard pearson

correlation coe�cient ρ is estimated. b Time averaged single neuron �ring rates and di�erences in
propagative vs non-propagative regimes, as a function of both inhibitory and Poissonian in-degrees.
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Note here that averaging over simulations for the sake of robustness might be a delicate matter, as we

might lose constitutive di�erences in the process. As we are dealing with highly variable situations, we

have to make compromises between generalizability and relevance. Therefore, we start with a single

realization to then guide larger and more systematic investigations.

Interestingly, we see a much stronger in�uence coming from the inhibitory in-degree than from the Poisso-

nian and excitatory ones. Counter-intuitively, it even seems that excitatory in-degree has almost no e�ect

at all on total measured �ring rates. Indeed, from the point of view of Pearson's correlation, inhibitory

in-degree is much more (anti)-correlated with the �ring rate than the excitatory in-degree (almost no

correlation) or the Poissonian in-degree (little correlation). Note that we observe the same structure

for propagative scenarios (results not shown). Based on these results, we can analyze whether the most

salient in-degrees (inhibitory and Poissonian) has any in�uence on the di�erence between propagative

and non-propagative scenarios, see Fig.17(b). Here, we see that the global dependency of the average

single neuron �ring rates on inhibitory and Poissonian connectivity does not qualitatively change between

propagative and non-propagative scenarios. However, the di�erences νP − νNP display an inverse depen-

dency on both variables: despite maintaining a qualitative similarity between �rst and second columns,

the seizure tends to compensate the initial disparity of �ring rates. In other words, the neurons that are

initially less �ring, due to their structural properties, are the most impacted by the seizure. Furthermore,

it must be noted that, although there is no correlation between inhibitory and Poissonian in-degrees (as

can be expected from random connectivities), the third column highlights that they both play a role in

the single neurons long term dynamics.

To further understand the e�ect of the inhibitory connectivity, we choose two points from Fig.16(a), one

known to be always non-propagative, with τ = 70ms and α = 70Hz, the other to be always propagative,

with τ = 70ms and α = 95Hz. In both situations, we varied the probability of connection from the

inhibitory population between p = 0.04 and p = 0.06, as shown in Fig.18. Note that the in�uence

of the incoming inhibitory connectivity shifts the boundary between propagative and non-propagative

behaviors. This is an important in�uencing factor in relation to the shape of the perturbation and in

particular its amplitude.
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Figure 18: Grid search on the in-degree inhibitory probability of connection for the AdEx network.a,
b, Percentage of propagation (Prop.) with parameters, as follows: α = 70Hz and τ = 70ms (a) and
α = 95Hz and τ = 70ms (b) , where for both �gures Pie is the probability of connection from inhibitory
to excitatory neurons and Pii is the probability of connection from inhibitory neurons to inhibitory
neurons. Decreasing the probability of connection from inhibitory to excitatory neurons or increasing the
probability of connection from inhibitory to inhibitory neurons, tends to decrease the overall inhibition
in the network and thus facilitates propagative behavior.

It is worth pointing out that these results establish a clear link between structure and dynamics, but

structure is by itself not a su�cient criterion to understand the underlying mechanisms. We therefore

focus on the temporal evolution of the propagating activity.

Beforehand, we take a step back and probe whether the di�erences in the individual mean �ring rates are

associated with speci�c roles in the dynamics. To achieve so, we start classifying, for the AdEx network,

the neurons' indices in the raster plot according to the total number of spikes they emit during the whole

simulation. We chose for this purpose a representative propagative scenario.

The sequence of propagation of the perturbation then appears visually in Fig.19(a). We observe, in

the case of propagation, a fast cascade (consistent with the experimental observations (Neumann et al.,

2017)) : some neurons are quickly driven into a sequence at the onset of the seizure.

In addition, there is no perfect synchronization of the action potentials of all neurons. This is an inter-

esting result, coherent with experimental observations on epilepsy (Jiruska et al., 2013).

Secondly, we examine the same situation, but sorting neuron indices as a function of the number of in-

hibitory inputs they receive, as shown Fig.19(b), as it is the most in�uential structural feature we observed

in our model. Here too, the cascade phenomenon is clearly visible, indicating that the inhibitory input

connectivity has a central in�uence on the dynamics at play during the perturbation in the propagative

scenario.

Fig.20 shows the same pictures for CAdEx and HH networks. We see here that CAdEx network's

behaviors are very similar to AdEx : sorting with �ring rate or inhibitory in-degree gives very similar
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Figure 19: Dynamics in the propagative scenario (AdEx). a, In a raster plot of a simulation with
propagative behavior, neuron indices are sorted according to the number of spikes during the simulation.
A �cascade� phenomenon can be observed when zooming on the onset of the perturbation propagation in
the excitatory population. b, The same cascade phenomenon is observed when neuron indices are sorted
as a function of the number of inhibitory inputs received. Note that the absence of excitatory activity
after the perturbation is because of a strong adaptation current (Eq.(29), and Eq.(30)).)

structures and we can distinguish here too the cascading e�ect at the onset of the perturbation, following

the indices. HH networks show quite a di�erent phenomenology. First the two sorting do not show the

same structures, which hints at a more subtle mapping between inhibitory in-degree and long-term single

neuron model dynamics. In the �ring rate sorting, we can still distinguish 3 blocs of distinct activity,

and thus of populations, corresponding to the 3 key periods of the simulation : before stimulation, at the

onset, and during the stimulation. Interestingly, it seems that before and during the stimulation di�erent

populations of neuron models are distinctly mobilized. While before the stimulation, the central neurons

(with respect to their indices) are active, a double cascade contaminates the rest of them (towards higher

and lower indices) at the onset, ending in a general surge of activity. This must be contrasted with

the in-degree sorting panel, where the cascade is more unidirectional, as the main activity slides from

low connectivity indices (less connected) to the higher ones, until all neurons �re. This emphasizes the

importance of the perspective chosen to analyse complex behavior : none of these perspectives alone

completely explains the intricate interplay between structure, long term, and short term dynamics.
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Figure 20: Dynamics in the propagative scenario (CAdEx and HH). a�d, Same plot as previously shown
but for the CAdEx network (spike sorting, a; inhibitory in-degree sorting, b) and HH network (spike
sorting, c; inhibitory in-degree sorting, d). Cascade phenomena are still observable in a,b and d hence
showing its robustness, but not in c, where propagation takes a slightly di�erent form, highlighting the
contrast induced by di�erent perspectives on a single-complex dynamics.

Altogether these results show the relevance of adopting a perspective based on the inhibitory in-degree :

it gives an operational method to rank single neurons, and this ranking is clearly associated with speci�c

dynamical features, hence allowing us to study the role of the internal organisation of the network before

and during the paroxysmal event. As the cascade phenomenon is similarly visible in all types of networks,

in the next section we focus on the AdEx network. We push further this analysis by comparing propagative

and non-propagative scenarios, and make use of the continuous measures introduced in Material and

Methods.

7.4 Continuous measures on subgroups of neurons

Focusing on the AdEx network, we �rst consider groups of neurons de�ned by their inhibitory in-degree.

Note that these are somewhat arti�cial, as they are only statistical re�ections of topological aspects of

the network (i.e, there is no reason to think a priori that all neurons having n inhibitory inputs would

have more privileged links among themselves than with those having a di�erent number. However, they

allow in principle a variable degree of categorization, based upon the sampling of the inhibitory in-degree

distribution, which eventually leads to di�erent levels of (nonlinear) coarse-graining (although we will

consider only one such sampling here). Secondly, we switch our analysis to continuous variables, which
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allow a �ner and more systematic analysis of the dynamics, as they don't depend on spike times. Indeed,

although spike timings are the most accessible collective measures in real-life systems, which make them

the most �tted candidates for �transferable" studies, we want here to take advantage of the virtues of

mathematical modeling to probe the underlying mechanisms in these simulations, to then be able to draw

conclusions on more accessible observables. We focus here uniquely on membrane potentials, as they are

the closest proxy of the �ring dynamics in the network and chose to use two main measures based on them:

the mean µV and a modi�ed Kuramoto order parameter R, which gives a naturally normalized measure of

instantaneous alignment (or similarity) of the membrane potentials. Both are de�ned in time, over a class

of neurons. As randomness plays a crucial role in our simulations, through network connectivity as well

as noise realization, it is important to control how much it a�ects the results we obtain. To achieve so, we

start by �xing the network connnectivity while averaging over noise realizations, and then average over

connectivities while looking for noise realizations that lead to propagative and non-propagative scenarios

for each structure.

Mean membrane potential in time

In Fig.21(a)-(b), the mean membrane potential µV de�ned for each group of excitatory (RS) and in-

hibitory (FS) neurons, in time. The top and bottom rows respectively refer to the averages and standard

deviations over noise realizations (input), as the network connectivity is held �xed. For propagative

(Fig.21a) and non-propagative (Fig.21b) scenarios, all the data presented from now were obtained by

regrouping neurons having the exact same inhibitory in-degree, thus corresponding to a discrete one-to-

one sampling of the input distribution. Note that, given the network architecture under consideration,

the number of a�erent inhibitory synapses de�ned over both populations of neurons follows a binomial

distribution with a mean around 100 connections. From that, we arrange neurons in groups of iden-

tical number of inhibitory connections, which gives us about 60 groups (varying with population and

connectivities) containing at least 1 neuron.

To con�rm that our results were not depending on the speci�c connectivity we had we simulated 50

di�erent networks with di�erent connectivities (otherwise being identical) and found a couple of noise

realizations for each corresponding to propagative and non-propagative scenarios. Those various networks

still have the same meta-structure and follow similar statistics. They only show that within those speci�c

choices, the variations that exist do not impact the results we show. We applied the same method to

create the di�erent groups, but the number of said groups could di�er due to the random variability in the

connections. Therefore, many�extreme" groups are poorly represented among the various connectivities,

which would make them hard to average over. We thus discarded them. The average and standard

deviation of µV over the 50 di�erent connectivities is shown in Fig.22(a)-(b). The white lines could be
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a weak manifestation of the previous e�ect, which made the standard deviation very high, coupled with

the �xed range of color scales, imposed for the need of clarity. We observe that this �gure looks very

similar to Fig.21, which suggest that the results are not limited to a speci�c connectivity.

We see from Fig.21 and Fig.22 that the inhibitory in-degree pro�le seems to play a major role in the overall

dynamics. Indeed, as the perturbation is growing (starting 250ms before the maximum at 2s), we can

�rst observe a strong increase of the mean membrane potential of all excitatory neurons, starting from low

indices, then followed by a low-potential cascade, also starting from low indices and then contaminating

to higher ones.

This latter e�ect is much clearer in the case of inhibitory neurons, where the cascade follows very well the

input pro�le, in both propagative and non-propagative scenarios. Note that the low-potential area can

be easily understood as a high-�ring regime: neurons �re as soon as they leave their resting potential,

thus displaying very low values of membrane potential when calculated (and sampled) over time.

Interestingly these pictures show that, up to the decisive point of the seizures, the continuous measures

look very similar, thus hinting at an instantaneous �nite-size �uctuation causing the whole network to

explode. Also, it is noteworthy that the new �hierarchy" set by the cascade is conserved in the non-

propagative regime, while the propagative regime seems to have an overall reset e�ect.

Also, we see from these graphs that there is a particular time window where the variance of the mean

membrane potential is larger for the most inhibitory-connected neurons, in both RS and FS populations

(although it appears clearer for RS ones here, because of the need to rescale the FS colorbar to have

comparable results). This increase of variance, while still present, is weaker and on a smaller time

window in the average over connectivities compared to the average over noise realizations. This suggest

connectivity plays a role in the intensity of the e�ect, although it remains qualitatively similar. We found

that this time window de�nes the period when the network can actually switch to propagation: the high

variance corresponds to di�erent times when various realizations �explode", and thus de�nes a region of

instability.

A central point to raise here is that what makes the di�erence between propagative and non-propagative

scenarios is most likely not an in�nitesimal instability de�ned from a macroscopic perspective [i.e., that

is because of a positive eigenvalue of a Jacobian de�ned from a large-scale representation (e.g., mean-

�eld)], otherwise the non-propagative behavior would simply not be observable (as, except for chaotic

dynamics, we do not observe unstable trajectories in phase space). Indeed, what di�ers between the

various simulations is either the noise, or the connectivity realization, which may, or may not, bring

the system to a point of instability. The external Poissonian drive, with �nite-size �uctuations is thus

constitutive of the scenarios we observe.
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Figure 21: Mean membrane potential over subgroups of neurons (same network connectivity, di�erent
noise realizations) for each group de�ned as a function of their incoming inhibitory connections (from top
to bottom : least amount of inhibitory connectivity to most amount), averaged over 50 noise realizations
(17 non-propagative and 33 propagative). a, b, Color maps correspond for each group to the average
membrane potential (top) and SD (bottom) across noise realizations in the propagative situations (a)
and non-propagative situations (b) for both excitatory (RS) and inhibitory (FS) populations. The blue
rectangle highlights the (time) region where the system either switches to a propagative regime or remains
stable.
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Figure 22: Mean membrane potential over subgroups of neurons (di�erent network connectivities) for each
group de�ned as a function of their incoming inhibitory connections (from top to bottom : least amount
of inhibitory connectivity to most amount). Here, we averaged over 50 network connectivities, for which
we found a couple of noise realizations corresponding to propagative and non-propagative scenarios. a, b,
Color maps correspond for each group to the average membrane potential (top) and SD (bottom) across
di�erent connectivities in the propagative (a) and non-propagative scenarios (b) for both excitatory (RS)
and inhibitory (FS) populations. The blue rectangle highlight the (time) region where the system either
switches to a propagative regime or remains stable.
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To gain more insight into the diversity of dynamics across neuron groups, we turn our attention to a

measure of alignment, or synchronisation, namely the Kuramoto order parameter R.

Kuramoto order parameter

The Kuramoto parameter represents a degree of alignment, a value of 0 meaning there is no alignment

while a value of 1 meaning everyone is perfectly alined. We show in Fig.23(a)-(b) the Kuramoto order

parameter R de�ned for each group of excitatory (RS) and inhibitory (FS) neurons in time, averaged

over noise realizations (top row), and standard deviation over realizations (bottom row), in propagative

(a) and non-propagative (b) scenarios (network connectivity held �xed).

Again, we reproduce the results with 50 network connectivities, for both propagative and non-propagative

scenarios, see Fig.24(a)-(b). We clearly see that the results are qualitatively similar, although with

seemingly higher contrast than Fig.23.

The cascade previously observed is clearly visible for the average R, in the form of a �desynchronization

cascade". For the propagative scenario, we note here a recruitment process between two radically di�erent

regimes having nonetheless alignment features: a �uctuation-driven asynchronous irregular (AI) dynam-

ics, where membrane potentials are mostly conditioned by the balance of inhibitory versus excitatory

inputs, and a seizure characterized by high spiking and membrane potentials clamped by refractoriness.

Interestingly, in the non-propagative scenario, it appears that the misalignment of the inhibitory neuron

groups �nally attained is fueled by the joint activity (of the network and the input), thus hinting at

a out-of-equilibrium steady state (that continues until the end of the plateau of the perturbation, 1s

later). From the standard deviation perspective, wo main features are worth pointing out. First, we

again observe the instability window, characterized by high standard deviation between realizations in

propagative scenarios. Secondly, we see that the two types of averaging leads to strikingly similar results,

although slightly di�erent quantitatively speaking, the average over connectivities leading to a higher

contrast during the cascade. Therefore, our results are independent of both the noise realization and the

speci�c connectivity, although an average over one or the other is useful to observe a typical case.
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Figure 23: Kuramoto R of membrane potentials over subgroups of neurons (same network connectivity,
di�erent noise realizations) for each group de�ned as a function of their incoming inhibitory connections
(from top to bottom : least amount of inhibitory connectivity to most amount), averaged over 50 noise
realizations (17 non-propagative and 33 propagative). a, b, Color maps correspond for each group to
the average Kuramoto parameter (top) and SD (bottom) across noise realizations in the propagative
(a) and non-propagative (b) scenarios for both excitatory (RS) and inhibitory (FS) populations. The
blue rectangle highlights the (time) region where the system either switches to a propagative regime or
remains stable.
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Figure 24: Kuramoto R of membrane potentials over subgroups of neurons (di�erent connectivities) for
each group de�ned as a function of their incoming inhibitory connections (from top to bottom : least
amount of inhibitory connectivity to most amount). Here, we averaged over 50 network connectivities
for which we found a couple of noise realizations corresponding to propagative and non-propagative
scenarios. a, b, Color maps correspond for each group to the average membrane potential (top) and SD
(bottom) across di�erent connectivities in the propagative ( a) and non-propagative scenarios ( b) for
both excitatory (RS) and inhibitory (FS) populations. The blue rectangle highlights the (time) region
where the system either switches to a propagative regime or remains stable.
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7.5 Dynamic versus static approach

We have seen that changing the slope and the amplitude of the signal alters the chances of triggering a

seizure, thus hinting that the time evolution of the perturbation is central. Then we observed a hierarchical

structure setting in from the point of view of continuous measures, following the perturbation. However,

fundamental questions remain: how much of this latter phenomenon is actually dynamic? Would we �nd

the same structures if we bombarded the network with a �xed input at, say, 80Hz? Can we observe the

same dynamical structures for scenarios which are always, or never, propagative (no matter the noise or

connectivity realization) ? This would indicate that the structures observed thus far might have little to

do with the seizure phenomenology itself but would either be the mere results of strong conditioning of

the network by the level of input (if static structures are similar), or simply not yield any explanation for

the instability we observe (if always/never propagative scenarios show similar features).

We now turn our attention to Fig.25(a), which displays the static µV pro�les in RS population obtained

for �xed external inputs ("Stat." curves), together with the pro�les captured at the typical onset of

the seizure, for various amplitudes: 60Hz (never propagative), 80Hz (sometimes propagative) and 100Hz

(always propagative). The network realization is the same as previously analyzed, except when explicitly

stated (Net. 2), where we refer to another connectivity realization. For the 80Hz scenarios with the �rst

network (the one we have been investigating so far), we kept the splitting of the realizations between

propagative and non-propagative, to highlight the potential di�erences of structures.

First, as previously observed, the pro�les obtained for propagative versus non-propagative regimes are

very similar for lower values of inhibitory connectivity. Then, we clearly see that the µV pro�les extracted

from the dynamical situations (hereafter called the dynamical pro�les) are very di�erent from the static

ones.

Besides, it is worth pointing out that the pro�le obtained for a 80Hz amplitude with a di�erent random

realization of the network (where all 50 noise realizations are put together, based on the previous observa-

tion that propagative and non-propagative scenarios show very similar structures) is very similar to those

already shown, with small standard error, which, together with the previous observation that noise and

network realizations seem to play similar roles, underlie a robust network phenomenology. Furthermore,

we see that the pro�les obtained for 60Hz, 80Hz and 100Hz amplitudes are di�erent. The nature of their

di�erences is of great interest for low indices, where we observe that 60Hz and 100Hz pro�les are located

on opposite sides of the central 80Hz pro�le: their ordering in this region is consistent with that of their

response to the perturbation we have observed so far (see Fig.16). This said, the dynamical pro�les yet

show similar qualitative features : they all are non-monotonous and display two well-separated parts.

Indeed, for low indices (until 30) µV is increasing with values starting around the lowest of the static

pro�les ( 10Hz), while their high indices part is more aligned with high static pro�les. Interestingly,
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we see that for 60Hz and 80Hz the right part is well aligned with the static pro�le obtained for similar

inputs. This does not seem to be the case for 100Hz, although the static input simulation displays some

instability, which makes their comparison less relevant. Although it is not straightforward to link µV with

the instantaneous regime, we have seen that low values can be associated with high �rings (the neurons

spending most of their time clamped at −65mV). This helps understanding what is happening here: for

higher values of amplitude, the less inhibitory-connected neurons are �ring more, and can thus lead the

rest of the network to higher activities.

Fig.25(b) shows the Kuramoto order parameter aspect of the latter �gure. Here the R pro�les display

structures quite di�erent from those observed for µV . Indeed, the various static pro�les do not display

such clear variability as for µV , although little di�erences can still be observed: high inputs seem to

show more variability in low indices, while ending at higher values for higher indices. More importantly,

the dynamical pro�les are here very di�erent, from the static ones, and among themselves. Besides,

the simulated propagative and non-propagative scenarios show little di�erences here as well, and the

pro�les corresponding to same amplitude (80Hz) and di�erent network architecture (Net. 2) also overlap

here. Interestingly we can also observe that the 60Hz and 100Hz pro�les are di�erent and located

apart from the 80Hz, although they also show di�erent magnitudes of their inverted peaks. Given that

the ordering of these magnitudes are not consistent with the various degrees of instability, we suggest

that the position of the peak might be the most discriminating factor to establish whether the scenario is

propagative. This would be consistent with the observations we made thus far, and con�rm our previously

suggested scenario: as the more we approach the center group, the more neurons are considered (Binomial

distribution), the green peak (100Hz) tells us that more neurons have undergone the desynchronization

cascade we mentioned earlier, that is, more neurons have already �switched side" and entered a high �ring

regime, thus giving more inertia to the cascade phenomenon. The middle scenario (80Hz) would then sit

on a tipping point, that is a point separating two radically di�erent dynamical regimes of the system.

These latter observations show that, from the perspective of both mean membrane potential and Ku-

ramoto order parameter calculated inside the groups formed from inhibitory in-degree, we are in the

presence of a structured behavior which emerges from an intricate interaction between dynamics and

architecture, and which cannot be recovered from static approaches.
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Figure 25: a,bSteady-state and dynamical pro�les of RS neurons for (a) µV and (b) Kuramoto R over
subgroups of neurons [same network connectivity (unless speci�ed), di�erent noise realizations], for �xed
external input. The steady-states, (Stat), represent the stable activity without perturbation. They
are drawn together with various pro�les for di�erent amplitudes of perturbation (Dyn) captured right
before seizure onset, at respectively 1950ms (60Hz), 1950ms (80Hz), 1930ms (100Hz, as the seizures
develop before 1950ms). Networks are the same as previously analyzed, except when stated Net. 2 which
represent another network connectivity, for robustness. Standard errors estimated over noise realizations
are shown in shaded areas.

7.6 Can seizure propagation be controlled by external inputs?

After having established that the structure of the dynamics allows or not the propagation of the parox-

ysmal perturbation, we now investigate whether we could use the previous �nding of a strong instability

window for the 80Hz dynamical scenario to alter the fate of the AdEx network dynamics. This approach

is based on the following reasoning : we have observed, with a detailed analysis, that switching to one

scenario or another is determined in a short time windows (just before the eventual seizure). Thus, we

want to design a stimulation protocol to reduce the chance of seizure propagation, based on this observa-

tion, but which does not require the same level of analysis, hence making it applicable inline and without

the need of extensive computational power. To do so, we will study the region around the seizure to

determinate this relevant time window.

To achieve so, we apply a Gaussian stimulation, with 10 ms time constant, two di�erent amplitudes (1Hz

and 5Hz), positive or negative, through a variation of the external excitatory input (which depending on

when the simulation is applied, can be the drive of 6Hz or the drive plus a value between 0 and 80Hz,

depending on the timing as we have a perturbation of the shape of 80Hz with a time constant of 100ms).

For simulations performed under the same conditions, the stimulations were applied at di�erent times as

detailed in Tables 1(a)-(b). These tables show, for a total number of 100 simulations (with same network

Connectivity but di�erent noise realizations), among which 72 were propagative, what relative percentage

of simulations has undergone a triggering and a cancellation of the seizure, respectively. In this tables,

the perturbation reach its maximal value of 80Hz at 2000ms.
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(a) time of peak +1Hz +5Hz -1Hz -5Hz
t = 1500ms 0.1806 0.1944 0.1528 0.1389
t = 1850ms 0.1389 0.1944 0.0972 0.1528
t = 1950ms 0.1528 0.2361 0.125 0.0694
t = 1975ms 0.0972 0.0 0.3472 0.3889
t = 2000ms 0.0139 0.0 0.25 0.5556
t = 2500ms 0.0 0.0 0.0 0.0972

(b) time of peak +1Hz +5Hz -1Hz -5Hz
t = 1500ms 0.25 0.1786 0.2857 0.25
t = 1850ms 0.178 0.1786 0.2143 0.2143
t = 1950ms 0.0357 0.6071 0.2143 0.5
t = 1975ms 0.7143 1.0 0.25 0.28572
t = 2000ms 0.6071 1.0 0.0 0.0714
t = 2500ms 0.0 0.0 0.0 0.0

Table 1: Triggered and prevented events: (a) Percentage of prevented events, from 72 initially
propagative behaviors. Highlighted in orange ≥ 25% and in red ≥ 50%. The time of peak corresponds
to the moment where the maximum of the stimulus is reached, the amplitude corresponds to a variation
of the external input (see the main text) (b) Percentage of triggered propagation events, from an initial
number of 38 non-propagative cases. Highlight in orange ≥ 25% and in red ≥ 50%.

We see that it is possible to �reverse" the scenario from propagative to non-propagative in the time

windows between 1975 ms and 2000 ms (and to vice versa, albeit for a larger time window) thanks to (or

because of) the stimulation as can be seen in (Table 1(a)) (see Table 1(b) for the opposite).

A notably interesting case is that more than 50% of the seizures are prevented if a stimulation of -5 Hz is

applied in the same time window. This could open interesting leads in furthering qualitative comparisons

between computational simulations and real-life situations, and eventually guide future interventions.

8 Discussion

In this computational work, we studied the response of various spiking neural networks to paroxysmal

inputs. We observed that the same networks can display various types of responses, depending on its

nature (the neuron model used at its nodes), the shape of the perturbation (here we analysed particu-

larly a plateau-like input with various slopes and amplitudes) and the realization of the random number

generator. In the case of AdEx and CAdEx networks, two radically di�erent responses to a qualita-

tively similar incoming excitatory perturbation are observed. Indeed, the latter could either recruit the

excitatory population and thus allow the seizure to propagate to e�erent areas, or be �controlled� by

the activity of the inhibitory population, keeping the excitatory population at a low activity level, thus

preventing further propagation. The response of the network depends not only on the amplitude of the

perturbation but also on its rising speed. This is consistent with experimental observations (Saggio et

al., 2020). Interestingly, in the case of a HH network, our investigations show very di�erent network

responses, where mostly the amplitude of the perturbation plays a role and where no variability on noise

realizations was observed.
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A rich literature shows that seizures can be classi�ed according to their onset/o�set features described

by bifurcation types(Saggio et al., 2020; Saggio, Spiegler, Bernard, & Jirsa, 2017; Jirsa, Stacey, Quili-

chini, Ivanov, & Bernard, 2014). The most observed bifurcation at the onset of a seizure is a saddle-node

bifurcation (Saggio et al., 2017), which is characterized by an abrupt change in the baseline of the electro-

physiological signal (Jirsa et al., 2014). We observed in the current work that seizures are propagative in

AdEx and CAdEx networks when they rise abruptly enough in the network. There is here an interesting

correspondence revealing the importance of the onset of seizure dynamics, as it has been shown from a

clinical point of view (Lagarde et al., 2018). It is worth noting that the absence of such phenomenology

in HH networks (for the scenarios we considered) raises interesting questions in the modeling of seizure

dynamics, but also more generally in neuronal networks : how the quantitative di�erences (number of

variables) and qualitative di�erences (types of processes taken into account) in the single neuron models

a�ect the global dynamics ? Are more precise models always the best in all respects ? This underlines

the importance of the choice of model and of parameters: by modeling a neuronal network and observing

a phenomenon which resembles reality, we are not testing whether the speci�c ingredients we chose are

constitutive of this phenomenon, but how they would be if they were chosen a priori. It is only the

systematic cross-model observations and comparisons that can yield such an answer as which are the

necessary and su�cient ingredients to observe a given phenomenon.

Note that, in clinical observations, the most accessible measurements are made on a macroscopic scale.

In the study proposed here, we observe the activities at a smaller descriptive scale by building a network

of neuron models. We thus have a complex system of very high dimension, rendering a priori impossible

to obtain a simple description of the dynamics, which motivates the statistical approach proposed here.

With this type of analysis, we were able to track in time key features of the underlying dynamics,

especially those supported by the structure of the network : inhibitory in-degree can be mobilized to

explain global di�erences in network response. Indeed, we proposed a coarse-grained description of the

network dynamics based on inhibitory in-degree, allowing us to capture internal processes that were not

visible at �rst, and which play a signi�cant role in the global out-of-equilibrium dynamics. We chose

inhibitory in-degree as it was found to be the most in�uential aspect determining the �ring rate (see

Fig.17(a)). It is interesting to note inhibitory neurons were also the ones that had the highest �ring rate

(around 15Hz) while the excitatory neurons were way lower (around 2Hz) and the Poisson noise lower

too (around 6Hz by construction). That di�erence could be the reason for the disparity in in�uence

more than the nature of the neurons, and while it could be interesting to investigate, it is not in the

scope of this study and does not change the main results as the categorization was only use as a tool

to visualize the data. This opens the way to a �exible modeling framework of internal subpopulations,

whose precision can be adapted to the most signi�cant level of description, depending on the context

and the questions asked. This is a �rst bottom-up step towards a coarser description of the system, and
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hence, may guide reliable modeling attempts at larger scales.

We have also established that not only this structure matters, but also its interaction with instantaneous

�nite-size �uctuations of the noise and the time evolution of the global dynamics. These are all constitutive

of the observed behaviors, and none can be neglected to understand them.

Also, our results showed that, for the AdEx network, there exists a time window, characterized by a

high variance across noise realizations, during which it is possible to reverse the behavior by applying an

appropriate stimulation. The use of a stimulus to interrupt a seizure has been applied in the past in the

case of absence seizure (Rajna & Lona, 1989). These results have been used as bases of computational

studies at the scale of the EEG (Taylor et al., 2014). Computational work on the response of a network

model to stimuli to disrupt seizure-like activities has shown the importance of the precise timing of

the stimulation (Anderson, Kudela, Cho, Bergey, & Franaszczuk, 2007). Then, the use of electrode

stimulation has been developed in rodents (Pais-Vieira et al., 2016). These di�erent approaches have

been implemented, including deep brain stimulation, vagus nerve stimulation (Boon, Cock, Mertens, &

Trinka, 2018) and magnetic stimulation (Ye & Kaszuba, 2019). However, experimental recordings of

the response to stimuli do not allow us to understand the mechanisms of large populations of neurons.

Indeed, even if progress in calcium imaging or in multi-electrode arrays has made it possible since this

last decade to record a large number of neurons simultaneously, we do not yet have access to the exact

structure of the network they constitute. The study presented here is thus a proof of concept, based on

a speci�c network model.

Finally, we also found that it is possible to �control� the propagation of the seizure by appropriate

stimulation in a given time window. We think that this constitutes not only an important prediction

of the model, but also a potential important possibility of treatment of some types of intractable focal

epilepsies. This prediction could be tested in future modeling work at the mesoscopic scale, with realistic

connectivity between the focus and neighboring areas. Such a model could be used to test the hypothesis

that appropriate stimulation in areas adjacent to the focus may prevent the propagation of the seizure.

Perhaps the most exciting perspective is that the same paradigm could be used experimentally to control

seizures. This would require a system to detect the onset of the seizure in the focus, and another system

to deliver appropriate stimuli in adjacent areas. Such a system could be applied to experimental models

of focal seizures, to evaluate if such a paradigm could revert the propagation � and thus generalization

� of the seizure. This could be another way of controlling seizures, not by suppressing the focus, but by

making sure that the paroxysmal activity does not propagate.
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Chapter 3 : Dynamical

properties of self-sustained and

driven neural networks

Summary

This computational study aimed at unraveling the di�erences between two apparently similar systems

: Driven and Self-sustained networks. We showed that later had a �rst Lyapunov exponent (FLE) an

order of magnitude higher than the �rst, which translated in a tendency to have a higher response to

perturbations. We also validated those networks results on a speci�c mean-�eld model.

In this work, I designed the experiment, did the simulations, the analysis, and I was the main contributor

behind writing the paper.

Publication : (Bouté & Destexhe, 2023), preprint available in biorxiv:

https://www.biorxiv.org/content/10.1101/2023.07.15.549166v1

75



Dynamical properties of self-sustained and driven neural

networks

Jules Bouté and Alain Destexhe

Paris-Saclay University, CNRS, Institute of Neuroscience (NeuroPSI), Saclay, France

Abstract

In the awake brain, cerebral cortex displays asynchronous-irregular (AI) states, where neurons �re

irregularly and with low correlation. Neural networks can display AI states that are self-sustained

through recurrent connections, or in some cases, need an external input to sustain activity. In this

paper, we aim at comparing these two dynamics and their consequences on responsiveness. We �rst

show that the �rst Lyapunov exponent (FLE) can di�er between self-sustained and driven networks,

the former displaying a higher FLE than the late. Next, we show that this impacts the dynamics of

the system, leading to a tendency for self-sustained networks to be more responsive, both properties

that can also be captured by the mean-�eld model we used. We conclude that there is a dynamical

and excitability di�erence between the two types of networks besides their apparent similar collective

�ring. The model predicts that calculating FLE from population activities in experimental data could

provide a way to identify if real neural networks are self-sustained or driven.

9 Introduction

Neural networks are a core subject of analysis when it comes to modeling the brain. They can behave

in vastly di�erent ways, and we will focus here on the so-called Asynchronous Irregular (AI) state as

de�ned (with the other types of behavior) in (Brunel, 2000b) and �rst observed in neural networks in

(Amit & Brunel, 1997; van Vreeswijk & Sompolinsky, 1996; Vreeswijk & Sompolinsky, 1998). This means

neurons �re without any signi�cant coherence between each other and that single neurons would not have

a regular pattern of activity.

That type of activity is similar to that observed in awake animals (Matsumura et al., 1988; Steriade et al.,

2001; Destexhe et al., 2003; Lee et al., 2006), including primates and humans (Dehghani, Peyrache, Te-

lenczuk, Le Van Quyen, et al., 2016) and therefore represent a basic type of activity of prime importance.

This is why it is useful for networks to be able to reproduce it, and how it is an interesting approach
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when testing common models.

Di�erent models of single neuron and networks allow to reproduce these dynamics, such as the AdEx

model (Brette & Gerstner, 2005a; Naud et al., 2008a), where it was shown that AdEx networks can dis-

play AI states (Destexhe, 2009b), which will be the focus of this study. The well-known Hodgkin-Huxley

model (Hodgkin & Huxley, 1952a), which can also display AI states (Carlu et al., 2019), which we use

here for comparison.

While the global activity can be reproduced well with such models, they can also have a large range of

di�erent behaviors as shown for example in (Naud et al., 2008a), and a change of parameters within the

single neurons models or the network model can lead to vastly di�erent dynamics. Although some of

those dynamics can be obvious to di�erentiate (such as a change in the average �ring rate that one would

adapt to reproduce speci�c brain data, or reactions to speci�c inputs that could also be modulated),

there are other sets of parameters that would appear very similar.

A good example is the existence of two di�erent types of networks : Driven networks, that need an

external drive such as in (Brunel, 2000b; Zerlaut et al., 2017) and Self-sustained networks, that just need

to be started to have an activity such as in (Vogels & Abbott, 2005; Destexhe, 2009b).

Those two types of networks appear very similar if we overlook the need for an external drive, and the

two of them could even be use with an external drive. Therefore, if they appear so similar, would those

two types of networks behave the same way ? Can those two categories be meaningful and predictive of

di�erent dynamics altogether ? This are the questions we will try to answer in this study.

To do so, we use tools from dynamical systems (Eckmann & Ruelle, 1985; Ruelle, 1989) applied to

computational neuroscience (Faure & Korn, 2001; E. M. Izhikevich, 2007; Cessac, 2009), and in particular

the Lyapunov Exponents (Cessac, 2009; Ruelle, 2009) (as de�ned in (Wolf et al., 1985; Eckmann et al.,

1987)), which we apply here to the two types of networks. We further probe the networks by studying

their responsiveness to external synaptic inputs, as in (Yger, El-Boustani, Destexhe, & Frégnac, 2011;

Zerlaut et al., 2017), allowing us to see how such network states could be used to process or transmit

information in the brain (Zerlaut & Destexhe, 2017) or generate pathological activity such as epilepsy

(Depannemaecker et al., 2022).

Finally, we will compare our �ndings with a speci�c mean-�eld models of the two network types, following

(El-Boustani & Destexhe, 2009; Zerlaut et al., 2017; Volo et al., 2019), allowing us to see if the concepts

and properties of Driven and Self-sustained networks are equivalent to that of the mean-�eld models we

used.
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10 Methods

10.1 Neural network model

We now present the model of single neurons that we use, and how said single neurons are linked together

to form a network.

It is useful to point that we took parameters such that our networks would be Asynchronous Irregular,

as de�ned in the Introduction.

10.1.1 AdEx model

To simulate a neural network, we �st need to simulate single neurons. We decided to focus on the

Adaptative Exponential (AdEx) Integrate and Fire model (Brette & Gerstner, 2005a; Naud et al., 2008a).

In the following, unless otherwise stated, we focus by default on the AdEx network.

Each neuron in the AdEx network is described by Eq.(39) and Eq.(42) as follows:

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
− w + Isyn (39)

τw
dw

dt
= a(V − EL)− w

With

Isyn = gE(EE − V ) + gI(EI − V ) (40)

And
dgE/I

dt
= −

gE/I

τsyn
(41)

When the membrane potential crosses a threshold, a spike is emitted, and the system is reset for a given

refractory time:

if V ≥ VD then


V → VR

w → w + b

(42)

Then, to create a biological networks, we simulate two kind of neurons, that we call populations : ex-

citatory and inhibitory neurons. As the name suggests, when the �rst kind of neuron will spike, it will

increase the chance of spiking of other neurons, while for the second kind it will decrease that chance. We

simulate a total of 10 000 neurons, 2000 being inhibitory - that we will call FS for Fast Spiking neurons

- and 8000 being excitatory - that we will call RS for Regular Spiking neurons. Those neurons will be

based on the same model, but with di�erent parameters. If we only give one parameter value, it means
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it is the same for the two populations.

In order to in�uence other neurons, they need to be connected to each other. We choose a random

Erd®s�Rényi one way connection of 5%, so every neurons is on average connected to 400 excitatory neu-

rons and 100 inhibitory neurons, and receives input for the same amount of neurons. Multi connection

from one neuron to another is allowed, albeit unlikely, and self-connection is not allowed.

On top of those neurons, we will often use an external excitatory input from 8000 excitatory Poisson

�neurons". The corresponding excitatory input will be used as a drive (see 11.1) or as a perturbation (see

Section 11.3). The strength of that drive/perturbation will be given in term of the average �ring rate of

the Poisson neurons (for example, 2Hz).

In our networks, Cm = 200pF , ∆T = 0.5mV for the FS population and 2mV for the Rs population,

a = 0nS, b = 0pA for the FS population and τw = 1ms for the FS population. EE = 0mV , EI = −80mV

and τsyn = 5ms.

As we use various networks with di�erent single neuron parameters, the rest of thge parameters, namely

gL, EL, VT , τw and b for the RS population, VD and VR will be given in sect.11.1.

10.1.2 Hodgkin-Huxley model

Although the primary model we used is the AdEx model, we also studied the Hodgkin-Huxley (Hodgkin

& Huxley, 1952a) model, that we will call �HH" model.

Cm
dV

dt
= gl(El − V ) + gKn4(V − EK) + gNam

3h(V − ENa) + Isyn (43)

with gating variables (in ms):

dn

dt
=

0.032(15.− V + VT )

(exp( 15.−V+VT

5. )− 1.)
(1.− n)− 0.5exp(

10.− V + VT

40.
)n

dh

dt
= 0.128exp(

17.− V + VT

18.
)(1.− h)− 4.

1 + exp( 40.−V+VT

5. )
h (44)

dm

dt
=

0.32(13.− V + VT )

(exp( 13.−V+VT

4. )− 1.)
(1−m)− 0.28(V − VT − 40.)

(exp(V−VT−40.
5. )− 1.)

m

Apart from the single neuron model, HH networks function the same way as AdEx networks described

previously, including eq.(40) and eq.(41) that are identical.

Although no arti�cial reset is required, we also have a speci�c VD = −10mV to detect the spike.

As previously, some parameters are the same for all networks.C = 200pF , GL = 10nS, EL = −65mV ,

VT = −47mV for the FS population and −46mV for the RS population. GK = 6000nS, ENa = 55mV
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and EK = −90mV . Finally, as for AdEx, EE = 0mV , EI = −80mV and τsyn = 5ms. GNa is a speci�c

parameter that will be given in sect.11.1.

10.2 Mean-Field

We used a mean-�eld models of AdEx networks, using the model de�ned in (Volo et al., 2019). This

mean-�eld model was originally based on a Master Equation formalism developed for balanced networks

of integrate-and-�re neurons (El-Boustani & Destexhe, 2009). This model was �rst adapted to AdEx

networks of RS and FS neurons (Zerlaut et al., 2017), and later modi�ed to include adaptation (Volo et

al., 2019). This latter version corresponds to the following equations (using Einstein's index summation

convention where sum signs are omitted and repeated indices are summed over):

T
∂νµ
∂t

= (Fµ − νµ) +
1

2
cλη

∂2Fµ

∂νλ∂νη
(45)

T
∂cλη
∂t

= δλη
Fλ(1/T − Fη)

Nλ
+ (Fλ − νλ)(Fη − νη)

+
∂Fλ

∂νµ
cηµ +

∂Fη

∂νµ
cλµ − 2cλη (46)

∂W

∂t
= −W/uw + bνe + a(µV (νe, νi,W )− EL) , (47)

where µ = {e, i} is the population index (excitatory or inhibitory), νµ the population �ring rate and cλη

the covariance between populations λ and η. W is a population adaptation variable (Volo et al., 2019).

The function Fµ={e,i} = Fµ={e,i}(νe, νi,W ) is the transfer function which describes the �ring rate of

population µ as a function of excitatory and inhibitory inputs (with rates νe and νi) and adaptation level

W . These functions were estimated previously for RS and FS cells and in the presence of adaptation (Volo

et al., 2019).

At the �rst order, i.e. neglecting the dynamics of the covariance terms cλη, this model reduces to:

T
dνµ
dt

= (Fµ − νµ) , (48)

together with Eq. 47. This system is equivalent to the well-known Wilson-Cowan model (Wilson &

Cowan, 1972), with the speci�city that the functions F need to be obtained according to the speci�c

single neuron model under consideration. These functions were obtained previously for AdEx models of

RS and FS cells (Zerlaut et al., 2017; Volo et al., 2019) and the same are used here.
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10.3 Lyapunov exponent algorithm

Considering the way we simulated the networks and mean-�eld, with di�erential equations, and the

apparent di�erences in term of activity due to subtle di�erences, we chose to analyse the simulations with

a dynamical systems lens, meaning we will study the trajectory of the dynamics on the phase space : the

space of the dynamic of the di�erent variables. To do so, we mainly focus on one of the primary tools of

dynamical system analysis : Lyapunov exponents, that we will hereafter write LE.

LE are often (Eckmann & Ruelle, 1985; Pikovsky & Politi, 2016) introduce as a way to observe the

stability of speci�c points of the system : �xed points, points in which the di�erential equations goes to

0, inducing an absence of evolution of the trajectory. Positive exponent means the point is unstable : a

small perturbation will just grow and goes away from the �xed point. Negative exponents mean the point

is stable : small perturbation will just decrease and come back to the �xed point. In multidimensional

systems, there is one LE per dimension, meaning that, when look at the phase space, there could be a

mixture of stable and unstable directions from a �xed point.

While useful, �xed point analysis is not the only thing that can be done with LE. A generalized version of

this analysis allows to compute the stability of a whole system (Pikovsky & Politi, 2016) (or at least of a

speci�c attracting object withing it), which is what interested us. Here, we would considered system that

are bounded, meaning that if there is some unstable directions due to positive exponents, they would not

go to in�nite : the perturbation would just grow, until the two path of the original and perturb trajectory

are completely uncorrelated. This is called deterministic chaos (Strogatz, 2019). Chaotic systems have,

on appearance, similar properties to random, noisy ones, but they are entirely deterministic which allows

for a whole di�erent kind of analysis and predictive power. Knowing if a system is chaotic or not, is

an important outcome of the estimation of LE, as at least one positive exponent is a de�ning feature of

deterministic chaos (Wolf et al., 1985; Eckmann et al., 1987). It was also shown that many systems in

the brain have properties consistent with chaotic systems (Korn & Faure, 2003).

Finding LE requires di�erent algorithms, depending on the situation, from simple to complex one, espe-

cially when the goal is to �nd the complete spectrum and the associated direction (Pikovsky & Politi,

2016). When the di�erential equations are available, the basic idea behind the algorithm is to do some

perturbation, let the system evolve, and check if the distance between the original and the perturb point

has grown or shrunk. The logarithm of this distance will be the exponent. Of course, this method should

be done a lot of time to converge to a good value, as there will be some di�erences in di�erent regions

of the system. As can be guessed, this only allows to compute the largest LE, that we will call FLE

for �First Lyapunov Exponent". We will rank each LE from higher to lower. If one wants to obtain the

rest of the spectrum, it is usually requires to go to an orthogonal subspace from the direction of the �rst

exponent, in order to cancel its e�ect, and to start over again for each exponent. For more detail, see
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(Pikovsky & Politi, 2016), as �nding more than the FLE is outside the scope of this work.

We said previously that understanding if a system was chaotic or not was of prime importance, which

is why this kind of analysis was not restricted to analysing systems for which the equations were known

: algorithm were created to compute the LE (and especially the FLE, as it was the required one to

determine if a system is consistent with chaos) from time series (Wolf et al., 1985; Eckmann et al., 1987),

in order to apply it to real data.

Those algorithms work basically the same way as what was explained before, except that nearest neighbors

are used instead of small perturbation. From then, the trajectory of the original point and the neighbor

are observed for a certain amount of time steps in order to compute the change of distance between

them. Finding the right amount is important : too many, and if the system is chaotic, all correlation

between the two trajectory will be lost, meaning the distance would be meaningless. Too short, on the

other hand, would not leave enough time for the trajectory to evolve, and would result in an increasingly

longer computational time, on top of adding more potential errors. This is why we always tested two

time steps, written as "Dt", to ensure the e�ect we found would be stable within a certain range. As

before, we would take the logarithm of that distance that would have either shrunk or grow, to compute

the FLE. It is again required to repeat the process and do an average on many times to converge to a

meaningful value. The complete algorithm that was used is given in the supplementary section.

It is important to note that those algorithm works very well to �nd positive LE (not necessarily only

the �rst one), but su�er from important bias when they try to compute negative ones (Wolf et al., 1985;

Eckmann et al., 1987). In our case, only the FLE was positive, and the second one would be either 0 or

negative, which is why we stopped our analysis in computing only the FLE of the systems (or the whole

spectrum when �xed points where considered, in the case of the mean-�eld we used, as it would only be

an analytical computation).

11 Results

We wanted to analyse the system using all variables, but it proved to be impossible due to their sheer

number, as all tested algorithms relied on a distance metric (generally to �nd nearest neighbors) that

always broke due to the curse of dimensionality.

Therefore, we needed fewer variables, which is why we chose variables that were the most relevant for

the system, on top of being the ones used to simulate a mean-�eld of said system, allowing for a great

connection between two di�erent representations of the same phenomenon. Two obvious choices were

the average �ring rates of the excitatory and inhibitory population, which gives an idea of the average

behavior of the system, and the last one is the average adaptation variable, only present in the excitatory

population, which is a speci�city of the AdEx model, and therefore an important feature to represent.
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For HH, we will choose the other 6 variables : n,h and m for of the inhibitory and excitatory populations.

It is worth noting that the �rst two variables are of a di�erent kind from the last ones : the adaptation

(or mn,h and m) is an intrinsic part of the description of the system, having its own dynamical equations,

while the �ring rates are product of the system, when the membrane potential reaches a threshold.

We start by describing the self-sustained and driven types of networks, then we compute their Lyapunov

exponents, and next their responsiveness to external inputs.

11.1 Driven and self-sustained networks

Neural networks can vary in term of the model of single neuron or the type of connectivity as shown

previously, but we want to add another di�erence : what we call the type of networks, which can be

driven or self-sustained.

11.1.1 AdEx

Driven networks are the networks that require an external (here Poissonian) input to produce an activity

(see Fig.5(A-B)). As most parameters will work to create driven networks, they are also the easiest to

obtain (if we allow an external drive).

Self-sustained networks on the other hand only needs an initial �kick" to start, and will, as the name

suggest, have a self-sustained activity after (see (see Fig.5(C-D)).

Both types of networks are interesting for di�erent reasons : driven networks might be more realistic, as

a small network is never cut out of the rest of the brain, and has no speci�c reason to sustained itself.

On the other hand, self-sustained networks allows for an easier analysis of their dynamics, as there is

no external input and most of all no sources or randomness (through the poissonnian input) that will

a�ect them. Self-sustained are more di�cult to obtained than driven : on top of requiring some �ne

tuning (although an important range of parameters is compatible with it), it also requires speci�c noise

realizations (so a speci�c random connectivity and a speci�c kick), as many noise realizations will just

die quickly (in less than a second, with a kick of 100ms).

It is important to note that, while some change of parameters and study of the dynamics of the system

gives good insight on how to obtain a self-sustained network, it is beyond the scope of this study to prove

they were actually self-sustained forever and it was only checked that they would have a seemingly stable

activity for longer than the typical length of simulation we needed (more than 20s), as even if it is only a

transient phase, its lifetime would be big considering the size of the network (Tél & Lai, 2008). While the

self-sustained networks do not require it, we sometimes add a drive to them for the sake of comparison

with the driven system.

83



Figure 26: Illustration, for an AdEx network, of driven networks (A) and B)) and self sustained networks
(C) and D)) with an external Poisson drive that stops at 1000ms. A) and C) represent raster plots, with
green being RS neurons and red being FS neurons. B) and D) represent the average �ring rate, with the
same colour code and blue being the Poisson input. As can be seen, when said Poisson input stops, the
driven networks immediately stop any activity, while the self-sustained reduce but maintain its activity.

HH

We created 2 Driven and 2 Self-sustained networks, each with speci�c parameters for the single neuron

model as we presented in sect.10.1.1. It is interesting to note that to obtain that change of macroscopic

regime, we did not change the connectivity or any "macroscopic" variables, but only the local, single

neurons ones. We give the values in the next table. If the value is di�erent for the FS and RS population,

we give the two of them in the same cell, as in FS/RS, if it is the same, we only give one value.

Driven 1 2

gL 15nS 10nS
EL −65mV −65/− 70mV
VT −50mV −50mV
τw (RS) 500ms 150ms
b (RS) 60pA 100pA
VD −47.5/− 40mV −47.5/− 40mV
VR −65/− 55mV −65mV

Table 2: Parameters of the AdEx single neurons to produce Driven networks. Parameters not presented
were given in sect.10.1.1. Parameters that are di�erent between the two Driven networks are given as
"X/Y ".
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Self-
sustained

1 2

gL 15nS 18nS
EL −65mV −60mV
VT −49/− 52mV −50/− 52mV
τw (RS) 500ms 100ms
b (RS) 60pA 60pA
VD −45mV −47.5/− 40mV
VR −65/− 55mV −65mV

Table 3: Parameters of the AdEx single neurons to produce Self-sustained networks. Parameters not
presented were given in sect.10.1.1. Parameters that are di�erent between the two Self-sustained networks
are given as "X/Y ".

11.1.2 HH

We obtained the same two types of networks for HH networks, as can be seen if Fig.27. Here we can see

that the �ring rates look very similar to the AdEx networks, albeit being a bit higher due to a choice

of parameters, especially for the self-sustained HH network (while it could have been possible, in theory,

to have lower �ring rates, �nding the correct parameters to obtain a self-sustained activity is a di�cult

task, so those parameters were kept).

Figure 27: Illustration, for an HH network, of driven networks (A) and B)) and self sustained networks
(C) and D)) with an external Poisson drive that stops at 1000ms. A) and C) represent raster plots, with
green being RS neurons and red being FS neurons. B) and D) represent the average �ring rate, with the
same colour code and blue being the Poisson input. As can be seen, when said Poisson input stops, the
driven networks immediately stop any activity, while the self-sustained reduce but maintain its activity.

As previously, we have di�erent parameters for the di�erent networks. Here, only one parameter changed,

85



and we only did one Driven and one Self-sustained network.

For the Driven network, we used GNa = 80000nS for the FS population and 40000nS for the RS

population.

For the Self-sustained network, GNa = 20000nS for both populations.

Mean-�eld

With the mean-�eld we used, it was also possible to obtain Driven like and Self-sustained like activity,

as can be seen in Fig.28 in the sense that with some parameters, the activity would go to 0 without

external drive for some networks, while it would go to some non-zero values for some other. Due to the

very di�erent dynamical nature of this mean-�eld, as it has attractive �xed points instead of chaos, as

we will see, it is hard to know if the Driven and Self-sustained networks are of the same type as the

corresponding networks.

We can see some oscillations after a change of state (at the beginning for each network simulation, and

when we stop the external input for the Self-Sustained network). This is most likely an artefact, due

to this mean-�eld being created to simulate steady states, and not particularly the transient state when

there is a change. This is why we will only consider the steady states values.

Figure 28: Driven (left) and self-sustained (right) mean-�eld, with �xed external input at 1.5Hz for 2.5s
and then no input for the last 2.5s.

11.2 Lyapunov exponents comparison between Driven and Self-sustained sys-

tems

Using the algorithm described earlier, we computed the FLE on a dynamical system made from the 3

dimensions described previously (8 for HH). Usually, the algorithm requires to obtain the phase space

using Takens reconstruction, but here we force it to operate in the three dimensions we constructed, as

they 1) make sense to represent all the system (the normal algorithm often assume we only have access

to partial information) and 2) make it easier to identify with the mean-�elds (for AdEx as our mean-�eld
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analysis was only performed for it, although the same would have been true for an HH mean-�eld similarly

de�ned).

AdEx

Figure 29: Example of FLE algorithm for typical self-sustained (up) and driven (down) AdEx networks.
On the left, we have the values of the exponents at various steps. On the right, we have the cumulative
mean.
The self-sustained converges to 0.05 and the driven converges to 0.002

Fig.29 is a good way to get a representation of how the algorithm works, and what it means to have a

given LE : we can see it is really a converging value of the whole system, that varies from time to time

(or more accurately, depending on when we take it in the system) but still converges, which is why there

is some meaning in talking about the FLE of the di�erent systems.

To explore the di�erences between Driven and Self-sustained networks, we computed the FLE for di�erent

conditions in Table.4

Here we can see that while the FLE is always fairly weak, it is also positive (meaning we have chaotic

systems) and an order of magnitude higher when we compare Driven to Self-sustained networks.

Or at least, that is what happens when we compute it with the �ring rates. As can be seen in the 2nd

part of Table.4, when we use the intrinsic variables of the membrane potential Vm, the result is very

di�erent, showing no signi�cant di�erences between Driven and Self-sustained networks. Interestingly, it
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FR Driven 1 Driven 2 Self-Sustained 1 Self-Sustained 2

Dt=10 0.01/0.003 0.007/0.0004 0.05/0.04 0.05/0.04
Dt=20 0.004/0.003 0.006/0.002 0.04/0.04 0.05/0.07

Vm
Dt=10 0.35/0.36 0.56/0.54 0.38/0.08 0.46/0.42
Dt=20 0.35/0.31 0.41/0.41 0.20/0.21 0.33/0.32

Table 4: Values of the FLE for the di�erent conditions. There are two parts : the �rst one is computed
with the two mean �ring rates (FR) and the mean adaptation, while the second part is computed with the
two mean membrane potentials (Vm) and the mean adaptation. The column represent di�erent networks,
2 driven networks with di�erent parameters, and two similarly di�erent self-sustained networks. The lines
represent 2 di�erent time steps used in the algorithm, to ensure some robustness. Finally, each condition
was repeated with a di�erent noise realization (including both the drive and the connections in the
network).

also shows much higher LE. This shows that depending on the way we compute them, the exponents can

be very di�erent, and encourage us to use them more as a method of comparing than with their absolute

values.

Table.5 shows similar results for a self-sustained network with an external drive, in order to see if the drive

was the cause of the di�erence. As can be seen, results are similar to those for the "normal" self-sustained

networks.

1.5Hz 1 1.5Hz2 5Hz 1 5Hz 2

Dt=10 0.05/0.05 0.06/0.06 0.06/0.05 0.06/0.06
Dt=20 0.05/0.03 0.06/0.06 0.06/0.04 0.06/0.04

Table 5: Values of the FLE for the di�erent conditions, computed from the FR. The column represent
di�erent self-sustained networks with di�erent drives, 2 1.5Hz drives and 2 5Hz drives. The lines represent
2 di�erent time steps used in the algorithm, to ensure some robustness. Finally, each condition was
repeated with a di�erent noise realization (including both the drive and the connections in the network).

HH

We also wanted to obtain the FLE for the HH networks, and as can be seen in Table.6 there is no

di�erence between driven and self-sustained, which is why we did not investigate it further, focusing on

the speci�city of AdEx.

FR Driven Self-Sustained

Dt=10 0.37/0.41 0.39/0.36
Dt=20 0.26/0.27 0.31/0.26

Vm
Dt=10 0.49/0.51 0.48/0.43
Dt=20 0.34/0.36 0.37/0.33

Table 6: Values of the FLE for the di�erent conditions for the HH model. There are two parts : the
�rst one is computed with the two mean �ring rates (FR) and the mean adaptation, while the second
part is computed with the two mean membrane potentials (Vm) and the mean adaptation. The column
represent di�erent networks, 1 driven and 1 self-sustained. The lines represent 2 di�erent time steps used
in the algorithm, to ensure some robustness. Finally, each condition was repeated with a di�erent noise
realization (including both the drive and the connections in the network).
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Mean-Field

Finally, we also computed the LEs for our AdEx mean-�eld. This analysis is a bit di�erent, as we actually

only have three equations and everything is continuous. It was therefore possible to compute the entire

spectrum directly using the torch library in python (torch.autograd.functional.jacobian). The results for

a Driven and a Self-sustained networks, with and without external drives, are given in Table.7. We can

see that we indeed have an attractive �xed points in all cases, as all exponents are negative. On top of

that, the 1st and 3rd are, interestingly, always the same. The only di�erence arise for the 2nd exponents,

which is always higher for self-sustained, although only the case without external input seems to be

signi�cantly di�erent.

Driven 1st exponent 2nd exponent 3rd exponent

Input = 0Hz -2.00 -66.67 -66.67
Input = 1.5Hz -2.00 -62.78 -66.67
Input = 3Hz -2.00 -65.96 -66.67
Self-sustained
Input = 0Hz -2.00 -44.18 -66.67
Input = 1.5Hz -2.00 -62.15 -66.67
Input = 3Hz -2.00 -65.77 -66.67

Table 7: Values of the FLE for the di�erent conditions for our AdEx mean-�eld. There are two parts
: the �rst one is for a driven network, and the second one for a self-sustained network. The column
represent each LE. The lines represent di�erent amount of external inputs (in Hz)

11.3 Responsiveness

Finally, we wanted to see if the di�erence in the FLE (2nd for this mean-�eld) would lead to di�erences

in the response to an short external input between driven and self-sustained networks (mean-�elds). As

only AdEx showed di�erences, we only studied it for both the network and the mean-�eld.

To do so, we added an external poisson input, in blue in Fig.30. That added external input was done on

top of the normal external drive for driven networks, and not in place of it, which is why we can see a

non zero value everywhere that rise higher in the left of Fig.30 compared to the right where there is no

external input apart from the perturbation.

We computed the response as follow :

Respabs =< FR >window − < FR >base (49)

Respperc =
Repabs

< FR >base
(50)

There are two measures of responsiveness that we used here : the �rst one is the absolute response,
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Respabs, and is the di�erence between the average FR during a speci�c window chosen to be inside of

the perturbation times, on one hand, and the average FR outside of the perturbation : the base FR.

While interesting by itself and enough to compare, said, similar networks (mean-�elds) with di�erent

external perturbation strength, we needed to compare networks (mean-�elds) that had di�erent base FR,

and it could be that it would in�uence the absolute value of the response. To avoid that issue, we also

computed the percentage response Respperc, which is the Respabs divided by the mean base FR. Those

two measures will be shown in the next Tables.

Network

Figure 30: Response to a perturbation of 3Hz centered at 1500ms. Green represent the excitatory
population, red is in inhibitory one, and blue is the external poisson drive. Up : raster plot. Down,
average �ring rates.Left part is for a driven network, right part for a self-sustained one.

Fig.30 shows Driven and Self-sustained networks responding to an external perturbation of 3Hz. The

responsiveness Respabs and the Respperc, as de�ned previously, were reported (for di�erent networks and

di�erent perturbation strength) in Table.8. Here we can see that Self-sustained networks seem to respond

more than Driven ones, although the di�erence is not big an variability within Driven or Self-sustained

networks is already high. The results are not as clear as they were for the FLE, but there seem to be a

clear tendency.

Mean-�eld

Fig.31 shows Driven and Self-sustained mean-�eld responding to an external perturbation of 3Hz. Con-

trary to Fig.30, there is no noise here and the dynamic is much simpler (as there is only 3 dimensions).

Table.9 is identical to Table.8, apart from the absence of di�erent noise realizations, as no noise were

used in the mean-�eld. It presents a similar result to Table.8 : self-sustained mean-�eld do indeed appear
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Driven Exc. FR 1 Exc. FR 2 Inh. FR 1 Inh. FR 2

Input = 3Hz 0.67/0.84,
6.1%/7.5%

0.11/0.11,
1.1%1.2%

3.28/3.58,
12.4%/13.4%

2.22/2.26,
9.8%/9.8%

Input = 5Hz 1.13/1.23,
10.2%/10.9%

0.17/0.17,
1.9%/1.9%

5.39/5.60,
20.3%/20.8%

3.65/3.71,
16%/16%

Self-sustained
Input = 3Hz 8.29/8.25,

25.7%/24.8%
11.87/11.12,
32.1%/34.4%

1.27/1.28,
9.9%/9.5%

2.79/2.35,
19.5%/19.4%

Input = 5Hz 13.12/12.84,
40.3%/38.2%

17.91/17.65,
47.5%/53.2

1.83/1.80,
14.2%/13.3%

4.05/3.66,
27.9%/29.7%

Table 8: Response of the network with di�erent external currents (in lines) for 2 Driven and 2 Self-
sustained networks and for the two neuronal populations (in columns) : excitatory and inhibitory. In
each cells, we have two Respabs for two noise realizations, followed by two Respperc, also for two noise
realizations.

Figure 31: Response to a perturbation centered at 2.5s. Green represent the excitatory population, red
is in inhibitory one, and blue is the external drive. Left part is for a driven mean-�eld, right part for a
self-sustained one.

to have a higher response than driven ones.

Driven Exc. FR 1 Exc. FR 2 Inh. FR 1 Inh. FR 2

Input = 3Hz 0.751,11.1% 1.348,13.0% 6.627,37.6% 66.319,28.7%
Input = 5Hz 0.869,12.7% 1.745,16.8% 10.228,58.1% 9.694,44.0%
Self-sustained
Input = 3Hz 0.994,13.6% 1.771,16.8% 7.160,46.2% 7.026,35.4%
Input = 5Hz 1.132,15.5% 2.230,21.1% 10.814,69.7% 10.509,52.9%

Table 9: Response of the Mean-Field with di�erent external currents (in lines) for 2 Driven and 2 Self-
sustained networks and for the two neuronal populations (in columns) : excitatory and inhibitory. In
each cells, we have Respabs followed by Respperc

It appears that, both for the AdEx networks and mean-�elds, self-sustained ones (which had higher LE)

have a higher response than driven ones.
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12 Discussion

In this work, we analyzed two types of neural networks, self-sustained networks and driven metworks.

We used Lyapunov exponents, an important tool in dynamical systems, to yield insight on the nature

of their dynamics, and found di�erences between the two types of networks. We also investigated the

responsiveness of such networks, and found that the self-sustained networks show a tendency to be more

responsive than driven networks. These di�erences can be captured to some extent by the mean-�eld

models we used. We discuss here these results and their implications.

One main �nding is that the FLE is di�erent for the two types of AdEx networks. It must be noted

here that we did not technically compute the FLE of the network, as the AdEx networks have 40 000

dimensions (and the HH networks have even more). As it would have been di�cult to use algorithms in

such a high-dimensional space, partly due to the curse of dimensionality (Köppen, 2000), we restricted our

use to a system made from the average values of the FRs and the Adaptation (or the other variables for

HH). It is interesting to note that the FRs are directly correlated to a change of activity of the network,

while the link between it and the Vm is more tenuous (due to the reset after the spike) and high or low

values of Vm are hard to link with the global activity of the network. This could explain why we obtained

interesting results with the FR but not with the Vm.

The positive FLE that was computed indicates we have chaotic system. It is interesting to note that this

system evolves here (by construction) in a low dimensional space, and is likely to follow high dimensional

chaos in the original 40 000 dimensions of the original system. But our main result, as show in Table 4 is

that Self-sustained networks had a FLE roughly an order of magnitude higher than Driven networks. Of

course, a major di�erence between Driven and Self-sustained systems, by de�nition, is that one of them

has a constant external drive applied to it while the other does not. It seems obvious that this potential

added drive would in�uence the dynamics one way or another, and that this in�uence would be found in

the system made from the average values as well. It could have very well been that we observed only the

di�erence due to the drive, that would have caused a decrease in the LE somehow. This is why we did

simulations with the same Self-sustained networks as before, but with an external drive similar to the one

we used for Driven networks. We then computed their FLE, as seen in Table. 5. If the di�erence between

Driven and Self-sustained was due to the drive, then similarly as before, the FLE should be lower, but

this is not the case : they are roughly of the same values, and higher drives do not seem to increase or

decrease much of the FLE. This means that the di�erence we observed is not due to an added external

drive, but due to the intrinsic dynamics and speci�c sets of parameters that create the di�erent types of

network.

Furthermore, di�erent set of parameters were used to obtain the four networks, two Driven and two Self-

sustained, and despite having only those parameters from the single neurons model changed, di�erences
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between their FLE were observed between di�erent types of networks, but not within the same type (or

at least, not to the same extent).

In other words, two networks that look similar if one only look at their activity through the FR, are

actually intrinsically di�erent. The di�erence in the FLE means Self-sustained networks are more chaotic

than Driven ones. This means they both behave di�erently, which can have an impact on how they

interact with other systems are tool to measure them, or how they would change when parameters are

changed.

As can be seen in Table.6, the result we just described is only valid for the AdEx model.

There are a few possible reasons explaining why we see a di�erence between the two types for AdEx but

not for HH networks : it could be that the di�erence also exists but is not captured by our method of

reconstructing a low-dimensional system, or that the di�erence is unique to AdEx networks, or that the

di�erence uniquely does not work in HH networks but would work with, said, other integrate and �re

models.

We want to emphasize that even if the result we show was only true for AdEx (which is not obvious

yet), that would already be useful for studying AdEx itself, obviously, but also to study the dynamical

di�erences between the networks created from AdEx and other models.

A second main result concerns the responsiveness of the two di�erent types of networks. We found that

self-sustained networks generally display a higher responsiveness compared to driven networks (Table.8).

However, this does not mean all Self-sustained networks would have a stronger response than Driven ones

: there is a huge di�erence between various networks of the same type, and numerous parameters could

in�uence the response to a perturbation (Volo et al., 2019; di Volo & Destexhe, 2021). Here we merely

show a tendency for a few speci�c examples. Future studies should scan the parameter space of such

models in more detail to determine if this feature is universal.

It is important to note that the link between LE and responsiveness was shown in another study (di Volo

& Destexhe, 2021), but the responsiveness was more related to the second Lyapunov exponent of the

system. Interestingly, we found a similar correlation between responsiveness and second exponent in the

mean-�eld model (Table.7 and Table.9). Such a relation between the LE spectrum and responsiveness, or

more generally between stability and responsiveness, is also an interesting direction to explore in future

work.

Finally, those results should be more analysed and considered carefully, because it is known that integrate

and �re models LE cannot be computed that easily because of the intrinsic discontinuities that exist in

the single neuron (Coombes, 1999), and how rich and complex the analysis can be because of it (Cessac,

2008; Cessac & Viéville, 2008). Here, the situation is slightly di�erent considering we only take average

values that should cancel the discountinuity e�ect, but a more careful analysis is required to con�rm the
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previous results.
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Chapter 4 : Dissipation, a tool to study

similarities and di�erences in neural

network

Summary

In this chapter, we introduced a follow-up of the Lyapunov Exponents : the Dissipation. This measures

allowed us to produce observations from the neurons scale to the network scale, and delivered some new

similarities and di�erences between AdEx and HH neurons, on one hand, and Driven and Self-sustained

networks, on the other hand. A special focus was put on the responsiveness of the networks, and intriguing

links were found between it and the Dissipation for AdEx networks.

In this work, I participated in designing the concept (the use of dissipation), designed the "experiments"

(how could we use the dissipation), and I did the simulations and analysis.
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13 Introduction

In this section, we will present meaningful results we obtained on dissipations and that help us understand

the di�erences between AdEx and HH, on one hand, and Driven and Self-sustained, on the other hand,

in a new way.

Dissipation is scarcely used in dynamical system theory, although it is far from being unheard of (Ruelle,

1996; Gallavotti, 2004; Gaspard, 2020). Although dissipative system theory and the �uctuation dissi-

pation theorem are occasionally used in neuroscience (Lindner, 2022; Deco, Lynn, Perl, & Kringelbach,

2023), the measure of dissipation itself appears very rarely.

As we said when we introduced it in section 3.4, the dissipation is a tool of dynamical system theory

linked with the LE, as it is the sum of all LE.

While it is far from being as precise as all the exponents, or while it does not give the same information as

the FLE that we used in the previous chapter (as the dissipation will not tell us if the system is chaotic,

for example), it still provides interesting information about the system we are studying.

We will start by showing how the dissipation works in our systems, to get a feeling of it.

To do so, we will �rst present the dissipation of di�erent systems, showing di�erences and similarities.

We will then show how the dissipation is directly related to the global dynamics of the system : how it

measures how fast a system dissipates, as the name suggest, to a stable structure.

To �nish this introduction on dissipation of our neural networks, we will focus on the speci�c case of

Self-sustained networks and what they mean.

Then, we will move on to our main results. Dissipation, due to its nature as a "coarser" version of the

LE, is also a macroscopic observable of the system, and not of average values as we had to do in the

previous chapter. This means the dissipation could be related to the core dynamic of the system in a

di�erent way than the LE.

Our �rst investigation was related to the link between the dissipation and the average activity of the FR.

This study allowed us to �nd more interesting di�erences between Driven and Self-sustained systems.

Then, in order to recall our two previous chapters, we checked the responsiveness of di�erent networks

and how it was related with the dissipation.

In general, we compared Driven networks of various drives and Self-sustained networks (which sometimes

had drives added on them, and sometimes didn't). If nothing speci�c is said, it means we are representing

a Driven network and all networks had similar results (at least in term qualitative results, quantitative

di�erences could happen but were not deemed relevant).
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14 Method

14.1 Models of neural networks

We use here the same models as before : AdEx (Eq.(39), Eq.(42)) and HH (Eq.(43), Eq.(44). On top

of that, for the responsiveness part, we also used another model : the leaky integrate and �re, or LIF,

which follows eq.(51) and eq.(52).

Cm
dVm

dt
= gL(EL − Vm) + gE(EE − Vm) + gI(EI − Vm) (51)

When the membrane potential crosses a threshold, a spike is emitted, and the system is reset:

if Vm ≥ VD then Vm → VR (52)

As can be seen it is the same as 39 and 42, but without the added exponential and adaptation part.

Actually, as we said previously, AdEx was build on integrate and �re models with some added complexity.

The parameters are similar to the one presented in 2.3.3. As before, there are two added equations related

to the synaptic conductances :

dgE
dt

= − gE
TE

dgI
dt

= − gI
TI

14.2 States of the network

In section 2.5, we introduce di�erent behavior of networks, and we then speci�cally used AI networks.

On top of those networks, we also represented Up and Down (UD) networks : as the name suggest they

will alternate between very high and very low activity, which are associated with sleep (Destexhe, 2009b;

Torao-Angosto, Manasanch, Mattia, & Sanchez-Vives, 2021). This is a complementary macroscopic state

that we used to analyze if the response rules we found for AdEx network would generalize.

14.3 Driven vs Self-sustained networks

Following chapter 3 we also used the dichotomy of Driven and Self-sustained networks for both AdEx and

HH network. As a reminder, Self-sustained networks only require an initial excitatory input to start their

activity, and they then keep going without any inputs, making them completely deterministic (Fig.5,

right). On the other hand, Driven networks will die without an external drive (Fig.5, left).
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14.4 Dissipation of neural networks

We already introduced the dissipation and how to compute it previously in 3.4, so we will now show the

equations allowing us to compute the dissipation of our di�erent models. To do so and to ease notation,

we present the dissipation for a neuron, knowing the total dissipation will be the sum of all the single

neurons dissipation.

First, the easiest one, the LIF model, in Eq.(53)

Diss = − 1

C
(gL + gE(t) + gI(t))− (

1

TE
+

1

TI
) (53)

Please remember that gE/I are variables depending on the inputs of the neuron, while the rest are

constants. This means that the only variation of the dissipation for LIF models will be related to the

input from other neurons, and the leaking of that added conductance. It is also worth noting that, as all

constant and variable are positive, the dissipation of the LIF network is always negative by construction.

In the AdEx model the dissipation function takes the following form in eq.(54)

Diss = − 1

C
(gL(e

Vm(t)−Vt
∆T − 1) + gE(t) + gI(t))− (

1

TE
+

1

TI
)− 1

τw
(54)

On top of what we said for the LIF network, here the AdEx dissipation also depend on the membrane

potential Vm, which is an important change. We can also note that, this time, a positive dissipation is

possible thanks to the exponential term.

Finally, in the HH model the dissipation function takes the form of eq.(55) :

Diss =



− 1
C (gL + gKn4(t) + gNam

3(t)h(t))

−αn(V (t))− βn(V (t))

−αm(V (t))− βm(V (t))

−αh(V (t))− βh(V (t))

− 1
C (gE(t) + gI(t))− ( 1

TE
+ 1

TI
)

(55)

Where we simplify the equation with α and β, as was done between eq.(44) and eq.(5).

Here the dissipation is a little bit more complicated, but we still have similar parts, like the leaking

conductance and the synaptic conductance contribution. As for AdEx, the dissipation will depend of
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the synaptic conductance and on the membrane potential. Now that we have introduce how we will

compute the dissipation for single neurons, it is useful to mention something important. Mathematically,

the dissipation is de�ned as the Divergence of the �ow, which is a sum of partial derivative from each

di�erential equations in our system. We represented it for one neuron, but of course, the system will just

be the sum over all the neurons of the dissipations de�ned for each single neuron. As we have explained,

to have the total dissipation one should integrates over the whole space, which corresponds to integrate

over time (although we do not demonstrate the ergodicity of our systems here).

This means the instantaneous Dissipation is properly de�ned (or, at least, the Dissipation on a very

short time scale, which is what we produce in our simulations). But what about the Dissipation over one

neuron ?

Technically, it is not properly de�ned. Going back to the Lorenz system in 3.2, it would be as if we

separated each of the 3 di�erential equations (14), which would be abusive and only give us a tendency

for our behavior on those speci�c directions in the phase space. The most interesting and solid information

is indeed the total dissipation, but we claim here that the dissipation per neuron is nonetheless interesting.

While it should be manipulated more carefully, it still gives information about the reaction of that speci�c

neuron, although it would be foolish to consider it isolated from the rest of the network.

Therefore, while it is necessary to be careful, we believe dissipation is a way to analyze the behavior of

single neurons in a network and to connect it to the rest of the network's behavior.

15 Results

15.1 What values does the dissipation take ?

We start by plotting the average dissipation through time, for both AdEx (Fig.32 up) and HH ((Fig.32

down) Driven networks. The result are similar for Self-sustained networks, so we do not show them.

We can see the dissipation per neuron is 20 times stronger for HH than it is for AdEx.

It also appears that the dissipation is mostly stable, although there are some variations. The distribution

through time does not reveal any speci�c tendencies.

There are some di�erences if a di�erent drive is used, but it merely changes the average value : the

stronger the drive, the stronger the dissipation, therefore we do not show them.
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Figure 32: Mean Dissipation for AdEx and HH for a drive of 5Hz

We also plotted the distribution of the dissipation through the whole simulation per neurons in Fig.33.

We can see that AdEx produce a mostly gaussian distribution, while for HH we have a skewed distribution,

with a long tail toward stronger dissipation, which means few neurons can dissipate way more when they

are excited enough.
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Figure 33: Distribution of the dissipation of the neurons for AdEx (up) and HH (down) Driven network

15.2 Transient time before the stable dynamics

Now that we have seen the typical values of the dissipation, we will see if it in�uences the time a network

needs to stabilize.

For Driven networks, we here show the evolution of the dissipation at the initialization of the network

(before it stabilize). We can see it takes about 1ms for HH (Fig.34 (down)) to stabilize, while it takes

AdEx 20ms (Fig.34 (up)). For both of them, the dissipation starts weak (close to 0) and then grow

stronger.

It is a bit counter intuitive : we could think the dissipation would be very strong when the system was

out of equilibrium/the trajectory of the attractor, and then gets weaker. It could be that, as a magnet,

the dissipation is stronger when the system is closer to the attractor.

Anyways, it appears the system stabilize more or less 20 times faster for HH networks than for AdEx

ones, which is of the same range as what we saw in Fig.32, con�rming what we said in the introduction

with Fig.11: in its core, dissipation shows how quickly a system goes to its attractor.
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Figure 34: Dissipation at the very beginning of the simulation, during the so-called "transient time",
before the networks reaches equilibrium, for an AdEx (up) and HH(down) network

15.3 Dissipation of Self-sustained activity

We observed some general truth on how the dissipation is a marker of the dynamics of networks created

with two di�erent models.

We will now observe the di�erences between Driven and Self-sustained networks, focusing on Self-

sustained networks here. As previously discussed, the neuron and network parameters have been chosen

such that the network only needs an initial kick to display some activity which seems stable over time.

In order to probe whether the system is dissipative, and how it is generally a�ected by the initial con-

ditions, we start by initialising with various amplitudes and duration of the initial kick, and measure its

average �ring rate and dissipation over time (after having discarded a transient). See Fig. 35.
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Figure 35: Global dissipation and �ring rates of Self-sustained dynamics with various amplitudes and
duration of initial kicks. A1 to A10 correspond to the amplitude of the kick, for values between 0.5Hz
to 5Hz with an increment of 0.5Hz. 0t correspond to the duration of the kicks, in ms, from 100ms to
500ms. Blue lines are for the excitatory population, and red lines for the inhibitory one.

The very �rst result that comes across is the fact that the Self-sustained regime under investigation is

globally dissipative. More interestingly, no matter which amplitude and time of initial kick is given to

start it, the system will eventually converge to the same non-equilibrium state (demonstrated through

same �ring rate and dissipation).

This latter observation must be compared with what is obtained with a Driven network, with various

levels of external drive, see Fig. 36. In this situation, both global �ring rate and dissipation strongly

depend on the level of input.

Also, it must be noted that, due to randomness of structure and noise, there are situations when the

Self-sustained network does not manage to reach its Self-sustained state.

Figure 36: Global dissipation and �ring rates of Driven network with various amplitudes of external
drives. Blue lines are for the excitatory population, and red lines for the inhibitory one.
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15.4 Link between dissipation and the FR

From this observation of Self-sustained systems, we wanted to compare them to Driven networks. We

said previously that their activity, through their �ring rates, appeared similar, but we wanted to dig that

question. To do so, we computed the Pearson correlation between the dissipation and the FR.

AdEx HH
1Hz 5Hz 1Hz 5Hz

FS 0.03, 0.07 0.14,0.13 0.19,0.21 -0.07,-0.15
RS -0.23, -0.17 -0.16,-0.17 0.18,0.21 0.56,0.53

Table 10: Values of the correlation between the dissipation and the FR for Driven networks of 2 drives
(1Hz and 5Hz) and 2 models (AdEx and HH), for two noise realizations

AdEx HH
Self-sustained Self-sustained

FS -0.58, -0.60 -0.42
RS -0.57,-0.60 -0.67

Table 11: Values of the correlation between the dissipation and the FR for Self-sustained networks and
2 models (AdEx and HH) for two noise realizations

First, we can see that di�erent realizations lead to very close results, so it is not a big factor here.

We found that there is a strong positive or weak positive or negative correlation for Driven networks,

whether AdEx or HH, while there is a strong negative correlation for Self-sustained networks, whether

AdEx or HH. It appears the type of the system (Driven, in Table.10 or Self-sustained Table.11) has more

impact on its relationship between dissipation and FR than the model itself, or the type of population

(RS or FS).

15.5 Responsiveness and dissipation

15.5.1 Introduction

Here, the goal is to evaluate how the network responds to a perturbation and what we can learn from

the dissipation. We de�ne as �response� the di�erence in FR between the basal FR and the FR during

the perturbation, as we did in section 11.3. We also compare both Driven and Self-sustained network,

and to compare them more easily, we put a drive in said Self-sustained network.

In the �rst part, we study the AdEx network.

We use 10 drives, from 2 to 20 (going by increment of 2), 3 amplitudes [2,5,10]Hz and 3 realizations.

On top of observing the plots, the result were �tted with a linear, quadratic and exponential functions,

and we then checked the error of the �t (distance between the real value and the �t). Please note that

said error is an absolute one, as it is a distance, which means it can only be compared with similar scales.

Fortunately, the error is a di�erence of response, and said response is the same whether we represent it
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as a function of the dissipation or as a function of the FR, or whether we compare the �t to a given

perturbation (said, 5Hz for the RS population) to another.

It is however not the same scale between the two populations : FS goes from 2.5 to 15Hz while RS goes

from almost 0 to barely 2Hz. An error of 0.1 around 1Hz is therefore 10 times bigger than one of 0.1

around 10Hz.

As it is, however, not the goal of this study to compare the error of the populations, the distance will

be enough. This also means it would be inconsiderate to compare the errors from di�erent amplitude

of perturbation as they correspond to di�erent typical response, the only things we can do is compare a

given perturbation with another from a di�erent �t.

On a side note, to analyse the �gures, we have seen that the weaker the drive, the higher the response will

be. Conversely, for dissipation, it means that set of points with high response correspond to low drive.

15.5.2 AdEx

We checked three di�erent parameters : 1 of Up and Down (UD) (technically doesn't work for Self-

sustained) and 2 of AI. All of them gave similar results. The simulations are 10s long with the 1s

perturbation starting at 7s.

Let's begin by observing the response as a function of the FR. Note that it can be expected for the

FR to give good predictions of the response, as they represent the "activity" of the network, and the

perturbation is closely related to said activity.

Figure 37: Response to a perturbation as a function of the FR for an AdEx network with AI behavior.
Each point represent averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.
On top of those points, we show a quadratic �t. The error is computed by taking the average absolute
di�erence between the prediction of the response from the �t given the value of the FR and the actual
response for all points.

We can see in Fig.37 that, for FS neurons, the FR does indeed predict the response fairly well. The
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error seem rather low for all �ts (we only show quadratic �ts here, as it was the best, especially for high

perturbations) and we can observe a collapse between the Driven and Self-sustained networks : the FR

prediction is only varying with the strength of the perturbation, not the type of the network. The RS

population is di�erent, as there is a clear separation between the two types of networks : the FR no longer

predict things correctly with only the strength of the perturbation, it also required the type of the network.

Now, we can observe the response as a function of the dissipation.

Figure 38: Response to a perturbation as a function of the dissipation for an AdEx network with AI
behavior. Each point represent averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.
We show a quadratic �t. The error is computed by taking the average absolute di�erence between the
prediction of the response from the �t given the value of the FR and the actual response for all points.

First we see the �collapse� between Self-sustained and Driven, that only depends on the amplitude of the

perturbation. The di�erence with the FR is that this collapse works for both populations of neurons.

Again, we found that the best �t was the quadratic one. We can observe that the error does not seem to

linearly follow the average value of the response for di�erent perturbations.

We can see that the error is smaller than the prediction from the FR, with a Z-score that shows signi�cant

di�erence that becomes higher with the amplitude :

Perturbation strength
1Hz 5Hz 10Hz

FS Z = 0.47ns Z = 0.45ns Z = 0.17ns

RS Z = −2.57∗ Z = −5.66∗∗∗∗ Z = −6.49∗∗∗∗

Table 12: Z-score di�erence between the error of prediction from the quadratic �t of the FR and the
quadratic �t of the dissipation for an AdEx network with an AI behavior. Negative values mean the
dissipation has a smaller error than the FR.
ns=non-signi�cant.
∗ = pvalue < 0.05.
∗ ∗ ∗∗ = pvalue < 0.0001.
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The same analysis was done for another AI state (meaning that di�erent parameters where used), and

while the dissipation part gave similar results, the FR part was di�erent as can be seen in Fig.39

Figure 39: Response to a perturbation as a function of the FR for an AdEx network with AI behavior
obtained with di�erent parameters than Fig.37. Each point represent averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.
We show a quadratic �t. The error is computed by taking the average absolute di�erence between the
prediction of the response from the �t given the value of the FR and the actual response for all points.

Here we can see that there is a sort of collapse between the Driven and Self-sustained networks that

did not existed before. The Z-scores is therefore di�erent, showing a weaker but nonetheless existing

superiority from the dissipation.

Perturbation strength
1Hz 5Hz 10Hz

FS Z = −1.52ns Z = −2.71∗∗ Z = −3.19∗∗

RS Z = −0.77ns Z = −1.58ns Z = −2.13∗

Table 13: Z-score di�erence between the error of prediction from the quadratic �t of the FR and the
quadratic �t of the dissipation for an AdEx network with another AI behavior. Negative values mean
the dissipation has a smaller error than the FR.
ns=non-signi�cant.
∗ = pvalue < 0.05.
∗∗ = pvalue < 0.01.

Finally, a similar analysis was done with a di�erent behavior of the network : an UD state.

Again, the dissipation is similar to what we observed before, with the collapse for both populations and

a rather low error, and here the FR is even more divided than it was in the Fig.37, with otherwise similar

results, suggesting the behavior of the network is of little importance for the response.
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Figure 40: Response to a perturbation as a function of the FR for an AdEx network with UD behavior.
Each point represent averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.
We show a quadratic �t. The error is computed by taking the average absolute di�erence between the
prediction of the response from the �t given the value of the FR and the actual response for all points.

We have the following Z-scores :

Perturbation strength
1Hz 5Hz 10Hz

FS Z = 0.71ns Z = 0.65ns Z = 0.60ns

RS
Z =
−4.52∗∗∗∗

Z = −7.02∗∗∗∗ Z = −7.62∗∗∗∗

Table 14: Z-score di�erence between the error of prediction from the quadratic �t of the FR and the
quadratic �t of the dissipation for an AdEx network with UD behavior. Negative values mean the
dissipation has a smaller error than the FR.
ns=non-signi�cant.
∗ ∗ ∗∗ = pvalue < 0.0001.

Which are very similar to the ones from Table.12, with the same behavior of having ns but positive

z-scores for FS and very negative z-scores for RS, while Table.13 had always negative z-scores with many

ns or weakly signi�cant.

We can see that in all cases, the stronger the perturbation was, the better the dissipation predicted it

compared to the FR.

All in all, it shows that dissipation is a good predictor of the response for the AdEx network, especially

compared to the FR.

It's important to emphasized that FR already represent the kind of activity of the network that is

measured with the response, and is therefore expected to be linked to it. It is therefore a powerful result

showing that this new way of looking at networks can indeed gives deep understanding of its activity.
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15.5.3 HH

We now turn to another model : HH.

HH network is harder to parameterize, speci�cally for the Self-sustained part, which means it was not

possible to have FRs as similar as for AdEx. This could partially explain the results we will show, but

does not explain everything.

Here, just one macroscopic behavior was tested, as it is not as easy (if not impossible) to have UD without

the adaptation variable.

Total dissipation

The analysis and subsequent Fig.41 and Fig.42 are done as before, with the same di�erent drives and

amplitude of perturbation. As HH takes longer to simulate, only 4s were simulated, with a a perturbation

at 2s.

First, let's check the FR :

Figure 41: Response to a perturbation as a function of the FR for an HH network. Each point represent
averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.

Here we can see a clear di�erence between the two types of networks, for the two populations. The
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Self-sustained networks always respond more. They also have a higher FR for the two populations, which

is due to the di�culty to parameterize them, as said previously.

Then, the dissipation :

Figure 42: Response to a perturbation as a function of the dissipation for an HH network. Each point
represent averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.

Unfortunately, the dissipation gives similar results as the FR.

While the Driven and Self-sustained networks followed lines regarding the perturbation and the drive,

they were separated by their type, meaning no collapse were available here.

On top of that (for both the dissipation and the FR), we can see the Self-sustained is reacting less to the

perturbation as its response is lower.

The e�ect we had for AdEx network does not seem to be present here.

We can notice that, for Driven networks, a same dissipation can give di�erent responses (an e�ect that

does not appear for the FR). Those responses belong to successive di�erent low drives, that will indeed

give response smaller and smaller, but sometimes an identical dissipation.

We already know from section 15.4 that Self-sustained system are negatively correlated to the FR, which

means the stronger the FR, the stronger the dissipation. Here, it would appear that for HH, adding a

drive change that correlation, while it does not for AdEx.
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We performed the three �ts again and found the quadratic �t is still the best, but it now gives fairly high

errors, with small di�erence between prediction by FR and dissipation (none of them giving a signi�cant

di�erence).

It could be useful to check with di�erent parameters, maybe trying to obtain higher FR for the Driven

networks, as it is di�cult to modify the Self-sustained ones.

Detailled dissipation We wanted to check if speci�c components of the dissipation (dissipation from

V m, m, n or h, as the dissipation from the Gsyn is constant) were more predictive of the responsiveness,

so we separated them and analysed them one by one. As we said for the single neurons, it is important

to remember they are no longer the actual dissipation, but merely a tendency of the dynamical behavior

of the network in one direction of the phase space.
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Figure 43: Response to a perturbation as a function of the di�erent dimensions of the dissipation for an
HH network. Each point represent averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.
The 4 lines represent the di�erent dimensions of the dissipation : from V m, m, n, and h respectively.

Unfortunately, we can see in Fig.43 that no better collapse or prediction arose from this analysis, giving

the same result as the total dissipation.

Still, we can see that the two responses for a dissipation only appears for h and m, which produce the

weakest dissipation, 8 times weaker than the one from V m and 20 times weaker than the one from n.

We can also see that V m and h have a dissipation from the Self-sustained that is stronger than the ones
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from the Driven. It becomes unclear if their is a di�erence for m, and it's actually the opposite for n.

On the other hand, and while n has the highest value, it has a smaller width (in absolute), than V m (2

to 3 times lower), which explains why the order of V m is the one we observe for the total dissipation.

It could also be that there are speci�c neurons that predict the responsiveness better, but the analysis

should be done and the results are far from obvious.

All in all, dissipation is useful to predict the response for AdEx, but not so much for HH, which raised

the question as to why, and also to know which one is the exception. It would be useful to test on a third

model to answer that question.

15.5.4 LIF

We did the same analysis as previously with a Leaky Integrate and Fire (LIF) network, to see if it is the

integrate and �re property that allows for the e�ect we observe on AdEx but not on HH.

First, we check the FR in Fig.44

Figure 44: Response to a perturbation as a function of the FR for a LIF network. Each point represent
averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.

Then, we do the same with the dissipation inf Fig.45
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Figure 45: Response to a perturbation as a function of the dissipation for a LIF network. Each point
represent averages from a whole simulation.
Colors indicate various amplitude of perturbation : 2Hz, 5Hz and 10Hz.
Circles represent Driven networks, while stars represent Self-sustained networks.
There are simulations with a drive from 2HZ to 20HZ, with a step of 2Hz, and each of those simulations
were done with 3 noise and connectivity realizations.
The two columns correspond the FS and RS populations of neurons.

We have the same comments as for HH : there is no collapse between the two types of networks.

We can see nonetheless that the Driven FR are all concentrated in a small volume, while the equivalent

dissipations still show more di�erences, which could mean dissipation allows for an easier di�erentiation

between the various drive, but it is not really related to the response.

On top of that, the dispersion regarding the response for the Self-sustained (for both RS and FS) de-

pending on the realization is way higher than for other models, suggesting that here the precise network

connectivity or the noise play an important role, but only on the case of Self-sustained networks. Apart

from that, we cannot really say there is the "doubling e�ect" we observed for HH Driven.

It could be that the adaptation is required, so it would be interesting to try another model with adaptation

(like a modi�ed HH with adaptation).

16 Discussion

First, we showed that the dissipation of networks created from di�erent models (AdEx and HH) was

di�erent, HH being 20 times more dissipative than AdEx.
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Then, we showed the direct implication of it : the HH is much faster at stabilizing to its stable manifold

than AdEx. The result would be similar after a perturbation, and we in fact observed it (although not

to the point of quantifying it) in the Annex.

Then, after those "global results" we started to observe the di�erence between Driven and Self-sustained

networks, following what was done in chapter 3.

We showed that the Self-sustained system was dissipative, which is actually a surprise. These observations

seem in contradiction with what is usually assumed in dynamical systems literature, in which, when a

system is able to sustain without external drive, it cannot be dissipative in principle, and vice versa.

In Hamiltonian systems, the canonical conservative systems, the trajectories will remain during the

whole simulation on an energy shell, de�ned by the initial conditions. However, in our situation, the

initial conditions seem to play no particular role, except giving enough �energy" for the system to reach

its sustained state. We thus �nd ourselves in the presence of a somewhat hybrid system : it is able to

sustain some activity with no forcing, but has to converge to it, and it is constantly dissipating.

However, this apparent contradiction can be resolved by acknowledging the fact that the models we study

are not totally situated in the �pure" dynamical systems framework : extra events are added, which are

not described by the equations of motion, such as spiking events, instantaneous jumps and resets. These

events not entering the continuous formulation of the global time derivative of the system, they are not

taken into account in the dissipation function. However, they do act on the global dynamics, which is

the real substrate of the dissipation function, which implies that it is indeed a�ected by them, but in

a rather indirect way. In other words, while the continuous dynamics is mostly dissipative, the discrete

events tend to maintain it, thus hinting at the possibility of establishing links between network activity

and dissipation.

This link is actually our next results, and one of our main ones : the correlation between the FR -

representing the global activity of the network - and the dissipation di�ers between Driven and Self-

sustained networks. It is mostly close to 0 or positive for Driven networks, without much clear di�erences

between AdEx and HH (although those di�erences would probably become clearer if an extensive analysis

was done). On the other hand, it is always negative (and much more than the eventual negative cases

from Driven networks) for Self-sustained networks, and again there does not seem to be much di�erences

between AdEx and HH.

Dissipation can be seen as the system containing itself to avoid exploding. It appears Self-sustained

systems link that with the FR, although the causal relation is unknown (all we know is that the stronger

the FR, the stronger the dissipation).

Exploring what causes this link and how it di�ers from Driven systems could help us analyse the di�erences
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between those two types.

But those results really shine when put in perspective with the results of chapter 3, where we showed

that the Self-sustained systems had a FLE an order of magnitude higher than the Driven ones, but only

for AdEx.

We wondered whether the di�erence between the two types was absent in HH, if it was that it was not

captured by the FLE, or if the algorithm was not working well for various reasons. The result we �nd here

is an indication toward the later : we show that there is indeed a di�erence between the types of network

independent of the model, so it cannot be the �rst assumption, and we showed that this di�erence is

linked to the dissipation, the sum of the LE, which raise questions on whether the FLE could really be

una�ected.

This result exemplify why the dissipation should be use on top of the LE analysis, as it allows to �nd

di�erences that were absent with the LE analysis alone.

More work would be needed to truly understand the link between the FR and the dissipation, but it seem

to be a promising area of research.

Finally, the links between the FR - the activity - and the dissipation made us wonder how the dissipation

could be link to the response of a perturbation - the change of activity. This question was important

for many di�erent reasons : 1) as we just said, it makes sense as it is link to the change of activity, 2)

dissipation is also linked to the "recovery" of the system after a perturbation, 3) perturbation were the

main subject of analysis in chapter 2 we presented (although we studied it in a very di�erent way, as we

only have healthy responses where the networks "control" the perturbation and let it die here) and 4) it

was also a measure we made in chapter 3, showing how it was in�uenced by the FLE di�erence between

Driven and Self-sustained networks.

Here we showed that, for AdEx, the average dissipation was a better prediction of the response of the

network than the average activity itself. This is not at all trivial, considering the activity is, obviously,

not a bad way to predict a change in said activity, and considering that the dissipation is not made to

predict the response. We can even see that the prediction can follow a rather simple equation, although

we did not tried too many �ts.

The interesting part for the rest of our analysis is that we no longer see di�erences between Driven

and Self-sustained (although it is useful to note that we used a Self-sustained with a drive to compare

perturbation perfectly, but results from chapter 3 showed that the drive did not change the di�erence

between Driven and Self-sustained).

Here, the only thing that matters was the value of the dissipation, and as we said in the �rst part of this

chapter, there was not obvious di�erences between the dissipation of Driven and Self-sustained networks.

This means that, while di�erent in types, and while it could still very well be that Self-sustained networks
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have a tendency to respond more than Driven ones, taking similar dissipation make this di�erence no

longer meaningful.

This is interesting as it shows limits to the results we found in the previous chapter. To explain it, our

main hypothesis is that Self-sustained networks have a tendency to be more dissipative than Driven ones,

but an extensive search on those types of networks would be required to show it.

On the other hand, we showed that this link between responsiveness and dissipation no longer holds for

HH. We �nd once again the di�erence between the two models we found in the previous chapter : we

have some dynamical observable (FLE or dissipation) that produce some interesting e�ects for AdEx,

and no speci�c e�ects for HH (although it is important to remember that an e�ect was also found for

HH, as we said a few paragraphs ago). The reason behind those di�erences could be the same one as for

the previous chapter.

The di�erence, though, is that we suggested previously to try other networks to see if they would behave

similarly to AdEx or HH networks, and we did it here with a LIF network (although we did not test its

FLE).

We were thinking that the di�erence was due to the integrate and �re part, but we can see that this was

not the case (at least when it comes to the special link between response and dissipation, but we think

it would be the same for the FLE).

Then we turn to our other hypothesis : AdEx is a special network that reacts speci�cally to dynamical

observable, contrary to other networks, whether it's with its FLE or the response to a perturbation.

It could be that the di�erence is due to the adaptation part, which allows for a wide range of behavior

impossible to have for other networks, but this needs to be investigate further, and the dissipation seems

like a promising way to do so.

It should be stressed out that dissipation has rarely been used in computational neuroscience, and those

results should therefor be taken with a grain of salt, considering it is unclear if said dissipation was

correctly applied, or wether it was possible to consider "single neuron" dissipation, for example. A possible

limitation arises from the discontinuity of the integrate and �re AdEx model, and could be responsible for

the di�erences we observe here, similarly to the issues we could have had with the Lyapunov exponents

in chapter 3.
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Chapter 5 : Global discussion and conclusion
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We will now go back to the main concepts we developed in the three previous chapters, and tie them

together in order to show how apparently similar networks can actually have a di�erent dynamic, and

how to study them.

Summary of the results

To begin with, we will make a quick summary of the main methods and results of the last 3 chapters.

First, in chapter 2, we studied the e�ect of a paroxysmal input on a network, di�erentiating between two

cases : when the input "propagates", meaning the network switches to a pathological activity where all

neurons spike as much as possible ; and when the input is "controlled", meaning the network shows a

simple increase in activity without showing pathological behavior.

To study those di�erences, we used three models : AdEx, CAdEx, and HH. The �rst two models are very

similar by construction and gave similar results, so we will only talk of AdEx and HH.

We showed AdEx networks had a bistability, switching between healthy and pathological behavior appar-

ently randomly, while HH seemed to mostly have a healthy reaction, albeit sometimes with very strong

responses, but more as a continuous change with the strength of the input.

We investigated the switch and the di�erent states for AdEx, �nding that the chances to have one or

another could change due to the strength of the input and its shape, but also the connectivity of the

network.

To understand the di�erences further, and as the analysis of the whole network did not seem to be fruitful

enough, but the analysis on the single neuron scale was too big, we created a coarse description of the

network by grouping neurons based on their inhibitory connections. This coarse description helped us

understand the propagation better, showing how the activity of those groups would change right before

what could be called a bifurcation (and, conversely, how it did not change when the network controlled

the input).

This analysis right at the moment of the bifurcation allowed us to �nd a critical time for propagating

cases for which another small input could be added to reverse the propagation.

Then, in chapter 3, we studied the di�erence between Driven and Self-sustained networks.

Self-sustained networks are autonomous networks : after an initial kick, a balance between the excitation

and the inhibition is achieved, and the network keeps as stable AI activity.

Driven networks, on the other hand, require an external drive to have an activity, if they don't have it

the inhibitory population becomes too strong and the kills all activity quickly.

As previously, we used AdEx and HH models of single neurons to create our networks, and both types

could be found in them. The two types of networks appear very similarly if we only look at their FR, so
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we had to �nd another way to analyze them : the LE.

We reconstructed a system from the average values of the two FR and the Adaptation, and computed

the FLE from it.

We found that for AdEx networks, the FLE of Self-sustained networks was an order of magnitude higher

than the one for Driven ones.

On top of that, it appears the response to an external perturbation had a tendency to be stronger for

Self-sustained networks than for Driven ones, a di�erence we attribute to their di�erence in FLE, as it

makes sense that a more chaotic network would react stronger to a perturbation.

We also validated those results on a mean-�eld made to reproduce the average values of the network we

used to create the system we presented earlier. We only did that analysis for AdEx networks : HH ones

did not show any di�erences between the FLE of Driven and Self-sustained networks, therefore we did

not push the rest of the investigation on them.

Finally, in chapter 4, we investigated how dissipation could help us understand the dynamics of neural

networks better, focusing on the di�erence between AdEx and HH, on one hand, and the one between

Driven and Self-sustained networks, on the other hand.

We showed that the absolute value and the distribution per neuron were di�erent between AdEx and

HH models, but similar between di�erent types of networks (as the FR was similar, although we can also

have similar FR for AdEx and HH networks).

Then, we showed that the correlation between the dissipation and the FR would drastically change

between Driven and Self-sustained networks, independent of the model of single neuron used, which con-

�rmed that di�erences between those two types are also present in HH networks.

Finally, we investigated the relation between the dissipation and the response of the network to a per-

turbation, showing an interesting link between the two of them for AdEx but not for HH networks.

Interpretations

To begin with, now that we look at all chapters at once, we can see that in chapter 2 we chose to measure

the membrane potential to capture the activity of the network, while on chapter 3 we chose the FR.

In both cases, we justify those choices claiming the other one would not work, which could appear as a

contradiction.

Both of those measures, as we said, are related to the activity of the network, which is the spike activity.

The main di�erence is the core nature of those observables : the Vm is an intrinsic part of the system,

as it is always the �rst of the di�erential equations that de�ne the single neuron. The FR, on the other

hand, is always an external measure we do after the simulation, as it refers to the time for which we have
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a spike. Another important distinction is that Vm is by nature a continuous variable at all scales, while

the FR, if only taken at the neuron scale, is discrete by de�nition. It only acquires a continuous like

state when we take averages of a lot of neuron, and it is questionable which amount would be enough.

Typically, it is uncertain the small subgroups we developed in chapter 2 would be big enough to assimilate

the FR to a continuous measure, which was required for the rest of the analysis. This, by itself, already

justify the use of Vm in chapter 2.

But then, why not using it in chapter 3 too ?

The interpretation of the FR is actually very easy. If it is high during a certain time window, it means

the network has a lot of neurons �ring at that time, and that those neurons �re a lot (both are required)

: the network as whole has a lot of activity. If the FR is low, it means the opposite is happening : not

many neurons �re, and the ones which �re don't do it at a high frequency. Intermediate values could be

a bit harder to understand, as it could be because either few neurons �re a lot, or all neurons �re a little,

but due to the AI nature of our networks and the homogeneity of the connectivity, it is more likely that

all neurons will have, on average, the same activity. It is not obvious to understand everything about the

variation of activity, but basics are easy : the �ring rate linearly follow the global activity.

Vm is more di�cult to interpret, because by de�nition the value of Vm for each neuron will go up until

a threshold, after which it will go back at a resting value for a short time. This means we do not have

a linear relationship between the activity and the Vm. A low average value of a single neuron Vm could

either mean the neuron never receives much excitatory input and therefore never �res, which means the

Vm value would only vary depending on the leaking nature of the neuron; or it could mean the opposite

: the neuron �res a lot and the low value is due to the resting state, because as soon as the neuron is

outside of it it quickly �res again, spending little time on higher Vm values.

In the end, the non linearity is not too much of a problem : it will be easy to identify if the network is

on a low FR or a high one, and if it is intermediate, we will be able to see the VM slowly change, which

mean we will still have changes correlated to the activity, but not as direct as the ones we have with the

FR.

On top of that, while the FR only inform us on the activity, the Vm give information about the internal

states of neurons, which is richer than only analyzing the activity. This is what we exploit in chapter

2, which allows us to determine the critical window to reverse the propagation that we talked about

previously.

This is why we chose to use the Vm in chapter 2 and the FR in chapter 3.

Speaking of the Vm, in the introduction (section 2.3.2) we talked about how similar objects, as the Vm,

would be represented with di�erent equations in di�erent models, and if it was alright to consider them
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as the same object.

The two (main) di�erent models we used in this work simulated the membrane potential in order to obtain

spikes in di�erent ways, but the next steps were identical : after a spike, an increment of conductance is

sent to other connected neurons, which will increase or decrease their own Vm depending on the original

neuron's population. The distribution of population and the connectivity are identical, therefore the only

di�erence, in practice, will be the timing of the spikes generated by the evolution of the Vm.

While we could indeed observe di�erences in the neuron scale, they become harder to see at the network

scale (although some can exist), and it is easy to obtain similar activity from networks made from di�er-

ent single neuron models. Therefore, it can appear that the two networks produce some similar dynamics

and are mostly interchangeable, which we proved was not the case in this work.

This is actually very important, as di�erent models can be use for various reasons without a deep un-

derstanding of their dynamics and only for their apparent functions or mechanism, making us often use

models we do not really master to simulate a reality we do not really understand. In this thesis, we

showed that despite those apparent similarities, studying the dynamics of the networks and how they

react show di�erent results.

We showed that AdEx networks have a lot of interesting behaviors : they show a bistability to propagate

a paroxysmal input or to control it, a di�erence between Driven and Self-sustained systems, and it is

possible to predict the response to a perturbation from its dissipation.

On the other hand, HH networks did not exhibit the drastic dichotomy we presented before, and did

not appear to show an obvious link between its dissipation and response. While it means we could not

generalize those �nding, it does not invalidate them, and it also shows how di�erent the behaviors of

those networks can be, even when their activity seem similar.

Out of the di�erences we presented before, the most interesting one is related to the di�erence between

Driven and Self-sustained networks that we explored in chapter 3 and chapter 4.

But �rst, even if there is no Self-sustained on chapter 2, we still have an interesting point to discuss

regarding the Driven networks. Fig.17.a) shows that the in�uence of the drive is 10 times stronger than

the one of the excitatory neurons, while they play the same role (same number of neurons, same gain of

conductance, same number of connections). This mean the excitatory neurons are basically useless here,

and the excitatory dynamics can be assimilated to a random behavior.

Of course, this could be di�erent with di�erent drives, and mainly di�erent drive strengths, but it is

still a fact that the drive will heavily in�uence the excitatory part of the network, and render it less

deterministic.

While it could be an hint on why Driven and Self-sustained seem to di�er in chaoticity, we have also seen
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that Self-sustained with a drive have the same LE as normal Self-sustained, which means the presence of

the noise and its disproportionate importance in the dynamic is probably not the only answer. It could

be that in Self-sustained networks, the excitatory population is proportionally more important (as it is

required to have a proper balance between the two populations of opposite e�ect). Or maybe the e�ect is

same for Self-sustained and the excitatory population already does not play a major role in the dynamics,

which explain why not much changes when we add another source of excitatory neurons, even if it is a

purely random one.

Now, regarding the Driven and Self-sustained networks, we showed that their activity and dissipation

seemed similar, but their were di�erences in their dynamics. The main result from chapter 3 was that

Self-sustained networks had a FLE an order of magnitude higher than Driven one, and we showed how

it could in�uence their dynamics. We con�rmed that result in chapter 4, showing how the correlation

between the FR and the dissipation was drastically di�erent depending on the type of network, but not

depending on the model. This is also our �rst result related to the di�erence between the two types

of networks for HH, which makes us wonder why the di�erences were not apparent with the LE. More

investigations will be needed to understand the di�erences between those two types of networks for other

neuron models than AdEx, but we think it is likely such di�erences will indeed appear.

We claim here that, at least for AdEx network (but, as we said, potentially for other ones), the cate-

gorization between the two types of networks is a useful one, as it is rather easy to �nd if a network is

Self-sustained or not (most of the time, it is created this way) and it leads to di�erent dynamics.

The di�erence would be especially useful when related to perturbation, constant external drives or "con-

nections" with other networks.

It is important to notice that we do not claim the dichotomy we propose is the only meaningful one, and

that it could very well be that other apparently innocuous "details" of the model of a network (here,

we are talking about all aspects of the network, not only the single neuron model) lead to important

di�erences while still having an apparently similar activity.

We have talked about apparently big di�erences : a change of models of single neurons. Then, we talked

about apparently smaller di�erences : a change of parameters within speci�c models. We want to talk

about a �nal, apparently even smaller di�erence : randomness.

There is, of course, the noise of the external input that we talked about a lot in chapter 2, and that could

greatly change the dynamic, sometimes leading to a pathological activity. But mostly, we want to talk

about he randomness in the connectivity of the network. While it appears the network is homogeneous,

because we do not create explicit di�erences in the topology of the connecting graph, there is in fact a

distribution as shown in Fig.2. It is that heterogeneity that allowed us to group the neurons depending
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on their inhibitory connections in chapter 2, which in turn allowed us to observe the behavior of the

network in a more precise way than it would have been if we only considered the global activity (which

would have been equivalent to thinking all neurons are the same).

That di�erence between the neurons is also shown in the distribution of their dissipation in Fig.33. Here,

interestingly, it appears HH neurons follow some speci�c distributions while AdEx ones are gaussian, as

one would normally predict.

But interestingly, it can actually be linked to another result we found and that we present in the Annex

but did not have time to analyze further : the ranking. The idea was to create a measure that could link

di�erent temporal scale for the neurons : a local, "instantaneous" one and a global, averaged one over

the simulation.

We ranked the neuron on those two scale, meaning we had ranks on the average �ring rate of a neuron,

and ranks on their local activity, which could allow us to see if neurons mostly always followed the same

behavior or not. It is important to note that we are ranking the neurons, comparing them between each

other, therefore this measure is a relative one.

We showed that AdEx neurons followed a monotonous relation between those two, meaning if a neuron

was globally �ring a lot, it was also mostly �ring a lot locally (at least, more than the other neurons).

But the HH neurons were di�erent : here, we observed a concave relationship : the neurons that were

globally not �ring a lot were indeed following the same trend locally, but then we would arrive to a

maximum of local ranking and neurons that �red more globally would start to rank less than other

locally.

This seem to be linked with the di�erent distribution of HH neurons, showing that some neurons have a

speci�c local activity when they sometimes �re a lot, and other time not as much. Of course, as we have

AI activity, it is normal to have some irregularities. But over the course of the simulation, it would be

expected for the di�erences to average out, which was not the case here.

This interesting and non trivial result could be a way to explain the di�erences we keep observing between

HH and AdEx, but we did not have time to test those results enough to ensure their validity. Most of

all, we did not have time to link the di�erences in the neurons to a di�erence in connectivity, although

this is certainly a future work we will do in order to deepen our understanding of what the dissipation

can tell us about neural networks.

Conclusion

In this thesis, we investigated the di�erence in apparently similar networks and found various interesting

ones.
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We showed that the AdEx networks show a lot of dichotomies such as the bistability on propagating

or controlling an external input and a dynamical di�erence between di�erent types of networks (Driven

or Self-sustained), while HH networks did not show much di�erences and were rather continuous. This

suggests the AdEx network is more variable, and probably has more dichotomies we did not looked for,

meaning it is probably well suited to simulate phenomenon that can be strictly categorized. On the

other hand, HH networks seem more continuous, without as much di�erences between di�erent types of

networks, which also means the choice of speci�c parameters seem less important and the e�ect on HH

networks will be more robust, with less variabilities.

We showed that Driven and Self-sustained networks had, on top of the obvious di�erence of the external

drive and the way we construct them, important di�erences in their dynamics. On top of that, we showed

in chapter 3 that those di�erences remained even when both had a similar external drive. This could

lead to accidentally use a Self-sustained network instead of a Driven one and to �nd results that would

not generalized for actual Driven networks.

We showed that such di�erence was mostly present for AdEx networks, but that there was also indications

it existed for HH ones (and probably others), and we conclude that this dichotomy should be pushed in

the analysis of various neural networks.

We also showed that the connectivity could have an in�uence on the global behavior, and that the

conception of random neural networks as homogeneous could be a problematic ones considering the

important variabilities that exist. It would be better to talk about uncontrolled heterogeneity if the goal

is to di�erentiate it from cases with speci�c topology, for example.

We found indications on how AdEx networks behave, from how it responded to external inputs to how

it could change through the Driven/Self-sustained dichotomy, which deepen our understanding of those

networks.

In this thesis, we introduced a tool from dynamical systems which is rarely used in the computational

neuroscience �eld : the dissipation.

We claim that this tool is a powerful one that allows us to explore the dynamics of high dimensional net-

works in a di�erent and easier way than the Lyapunov Exponent analysis, and that is highly informative,

enabling us to link di�erent scales of analysis, from single neurons to the whole network, or unravelling

systematic di�erences between Driven and Self-sustained in both AdEx and HH networks, something that

we could not obtain with LE.

The use of dissipation to study neural network should therefore continue, to understand properly every-

thing it could tell us and what are the limits of that method.

Finally, the main results we want to emphasize on is the need for a more systematic analysis of the neural
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networks we use. Those objects made from single neurons model that we mostly understand let complex

dynamics emerge that we are still far to completely control, and it is likely that a lot of apparently similar

activity have actually a crucially di�erent dynamics which would give us di�erent answers on important

questions we ask. Understanding those networks dynamics better, understanding their speci�cities, their

di�erences or similarities, and why they exist, would in turn help us use those tool more accurately and,

in the end, understand the brain better.

128



Annex

In this Annex, we will present more results that were either not conclusive enough, that required more

time to properly analyse, or that were simply not important enough to be in the core of this thesis.

First, we will present additional work from chapter 3, showing more analysis on the di�erences between

the variables used to reconstruct the average system for the Driven and the Self-sustained network.

We also tried to apply Takens theorem to reconstruct the network from only one of the variable, and we

show the results.

Then, we will show additional work from 12. Here, we will start by presenting more work on the link

between temporal evolution and the dissipation that we brie�y introduced in 15.2. A special interest

should be taken for the "ranking" results, although they need to be investigated more.

Then, we will observe the link between the membrane potential Vm and the dissipation at di�erent scales.

Finally, we will provide the main codes that we used in this thesis : the simulation of neural networks

(for AdEx) and the way to compute the FLE from time series.
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17 Complementary results from chapter 3

As mentioned before, we will start by the complementary results from chapter 3. Those results aim to

get a better understanding of the system we use to compute the FLE, but the di�erence between driven

and Self-sustained system, while apparent, would require a deeper analysis that we did not have the time

to do.

17.1 Behavior of the average variables

Figure 46: The three di�erent variables in lines, respectively : the �ring rates (FR) of the inhibitory
and excitatory populations and the adaptation variable, for both driven (left column) and self-sustained
(right column) systems. All variables were normalized to be compared and to apply the algorithms.

In Fig.46 we can see the averaged, normalized variables look similar between driven and self-sustained,

although the driven ones are smoother versions of the self-sustained ones, which is already an interesting

di�erence to point out. The �ring rates also look very similar between them, while looking di�erent from

the adaptation variable. While both variables are related to the spikes in the system, the adaptation also

has its own intrinsic dynamics, which explains why it is less smooth that the �ring rates.
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We also studied the same thing for HH networks, and we can see in Fig.47 that the �ring rates seem less

rough than with the AdEx networks, and also that the apparent distinction between the two of them

seem to have vanished. Then the �gure shows that the rest of the variables are very noisy, with di�erent

average values. While there seem to be some di�erences between Driven and Self-sustained networks, no

obvious pattern emerges.

In both AdEx and HH networks, it appears that there is a di�erence within the values of the variables

we consider when we compare them between Driven and Self-sustained networks (especially for AdEx

networks), although the di�erence seems fairly weak, which is why we did not focus on that part.
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Figure 47: Representation of the HH network.
A)-B) : Raster plot and average �ring rates of a driven (A) and self-sustained (B) HH network, with
inhibitory neurons in red and excitatory neurons in green (same for the averages).
C)-E) : Normalized variables of interest as a function of time. Firing rates of the inhibitory and excitatory
populations for the driven (C) and self-sustained (D) network. E) Represent the rest of the normalized
value, in order : n,h and m, each times with the inhibitory and excitatory population. The left column
represent the variables from the driven network, while the right column is the variables from the self-
sustained network.
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17.2 Power spectra and correlations

To further compare the two types of networks, we computed the power spectrum and the cross correlations,

as shown in Fig.48.
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Figure 48: Analysis of the three main variables. A)-B) for AdEx : the 2 Firing Rates (inhibitory and
excitatory) and the Adaptation.
A) Power spectrum of the three variables.
B) Cross correlations between the 3 variables (as a function of some lag). The red point indicate the
global maximum correlation, with its value and the associated lag.
C) is for HH : the cross correlation of the two �ring rates, for driven and self-sustained networks. Same
as B).
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As we could have seen from Fig.46, Fig.48.A) shows a vertical shift between the Driven and Self-Sustained

networks power spectrum, indicating a higher power of the later, but the di�erence is not that big and

the excitatory neurons part makes it harder to completely understand what is happening here.

Then, parts B) and C) show the cross correlation between the variables of interest (all of them for AdEx,

only the two FR for HH) for both Driven and Self-sustained networks. The main thing we can see is that

the FR are always very correlated in all cases, more than the other variables.

There is (again) not much di�erence between the two types of networks for HH, but a small di�erence

appear for AdEx : Driven networks have a slight lag for their maximum correlation compare to Self-

sustained ones, and are also less correlated. The link between the two FR is not as strong for Driven

networks than for Self-sustained ones.

This could be due to the presence of the drive, and it might explain the di�erence in LE. At least, it

would be a good path to investigate.

17.3 Takens reconstruction

We also used the so-called Takens reconstruction (Takens, 1981) to calculate the FLE, following the

procedure described in (Wolf et al., 1985), as shown in Table 15.

Driven Inh. FR Exc. FR Adapt.

Dt = 10 0.028/0.017 0.014/0.069 0.080/0.038
DT = 20 0.024/0.021 0.015/0.023 0.092/0.033
Self-sustained
Dt = 10 0.026/0.031 0.008/0.023 0.109/0.106
DT = 20 0.018/0.031 0.017/0.017 0.105/0.107

Table 15: FLE of the networks reconstructing from one dimension (the Excitatory and Inhibitory Firing
Rates, and the Adaptation, in columns) with the Takes reconstruction method. The �rst part is for a
driven network, and the second part for a self-sustained one. The lines represent 2 di�erent time steps
used in the algorithm, to ensure some robustness. Finally, each condition was repeated with a di�erent
noise realization (including both the drive and the connections in the network).

Here, interestingly, we see that we do not have the same results as those shown in chapter 3 : there is no

apparent di�erences between Driven and Self-sustained, or at least noting as big as the order of magnitude

we had previously. Interestingly, we can see reconstructing the network from di�erent dimensions lead to

di�erent FLE, so the global geometry of the network is not reproduce correctly. This means it was most

likely not possible to apply Takens theorem here.

A possible reason as to why it was not possible might be that, while the 2 spike timings and the adaptation

are de�nitely causally linked, it is far from obvious that their average value would follow the same trend.

Most likely, they each still carry relevant information about themselves, but fail to carry the one from

the other variables : it was lost with the averaging. Interestingly, we can see the reconstruction from the

Adaptation seem to follow the trend we found in chapter 3, and the adaptation is an intrinsic dimension
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from the network contrary to the FR which is an external observable (similar to what we discussed in

the Global discussion between FR and Vm).

It could also be interesting to dig in that direction in order to better understand the average system we

produced.
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18 Complementary results from chapter 4

18.1 Temporal evolution and Dissipation

As we said in chapter 4, dissipation is a rate of contraction in the phase space. Therefore, we will focus

here on an important part : the link between dissipation and temporal evolution of the system.

18.1.1 Recovery

First, we aimed to check the recovery time of the network to a perturbation, similarly to what we did in

the Introduction chapter for the Lorenz system. We will use driven networks here.

To do so, a square input of 2 lengths (100ms and 500ms) was injected in the Poisson noise (adding it to

the drive). The input can have two di�erent amplitude (2 and 10 Hz). The driven networks have drives

of 2Hz and 10Hz. All �ring rates have been binarized in bins of 5ms to smooth things up.

Two FRs (average of the whole network) that both last 500ms were used, which forms 2 datasets. The

�rst one is taken at some point way before the perturbation, the second one starts at the o�set of the

perturbation and is repeated with a sliding window every bin of 5ms until the end of the simulation.

Each comparison gives a Z score.

Therefore there is an estimation of how di�erent each sequence of the sliding window is from a random

sequence before the perturbation. As the sequence is long enough, the system �recovery� can be de�ned

as when the absolute Z score goes below a given value, that was �xed at 2.56, corresponding to a p-value

of 1%.

First, let's focus on AdEx. We represent the neuron z-score in Fig.49.
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Figure 49: Evolution of the Z-score as a function of time while the networks "recovers". We represent
the inhibitory (left) and excitatory (right) populations for an AdEx network, with various perturbation
as lines (P.=), and various drives, also in line (Drive=).

For inhibitory neurons, only the 2Hz drive takes some time to arrive below the line, the other drive is

already below it just after the end. We can see the strength of the perturbation has some e�ect, as it

takes more time to go below the line for 10Hz perturbation than for 2Hz one.

Excitatory neurons appear wilder, with a big amplitude. Apart from that, the same e�ect is observes

(although it takes longer to recover), and there is also some recovery time for the 10Hz drive big pertur-

bation (shorter than from the 2Hz drive though).
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Then, for the HH (Fig.50).

It never goes above the line. It already dissipated so much it doesn't change after the perturbation, this

makes sense considering the dissipation of HH networks is 20 times stronger than the AdEx ones.

Figure 50: Evolution of the Z-score as a function of time while the networks "recovers". We represent
the inhibitory (left) and excitatory (right) populations for an HH network, with various perturbation as
lines (P.=), and various drives, also in line (Drive=).

It appears that HH network go back quickly (or never quit) there �normal� trajectories compared to

AdEx, which makes sense as their dissipation is way higher.

On the other hand, it's not a simple linear relationship, so it's hard to say more. Maybe there is a

bifurcation that �stops the change� when the dissipation is strong enough, or maybe no such conclusion

can be taken with only two models and it's just that speci�c things regarding the dissipation can happen

to speci�c models, but no generalization can be made.
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It would be interesting to try di�erent source of noise and maybe to have a more precise cut-o� so that

we can see a di�erence for HH and actually quantify the di�erence between the two model.

Here, only one Driven network was used (with di�erent noise realization that gave the same results

and are not shown here), it would be interesting to test other driven networks and compare them to

Self-sustained networks.

18.1.2 Ranking

Here we provided a di�erent analysis through time, trying to link local and global time scales. We wanted

to know whether a neuron that dissipate on average more than other would also tend to dissipate at each

time bins more than others, or if there were strong local variations. To put it in another way, we wanted

to know if the "dissipative role" of a neuron (dissipate more compare to the other neurons, or dissipate

less) was homogeneous through time.

To do so, we computed the average dissipation through the simulation for each neurons and ranked all

the neurons, obtaining the global rank.

Then, for each bin of 5ms (and 20ms, but we do not show those results here as they were redundant), we

computed the average dissipation and ranked locally the neurons. We therefore had a ranking for each

bin, and we took their average to have the average of the local rank.

Plotting them against each other, we expected to observe a sigmoid (border condition would make it

di�cult for the average local rank to have extreme values).

Fig.51 shows the result for AdEx networks, representing a driven (up) and a self-sustained (down) network.

For the driven networks, the result is as expected although it was not exactly a sigmoid and the border

looked a bit weird : the low values of the local average are actually accessible, but the high ones are not).

Self-sustained networks has the same result for excitatory neurons, and something more symmetric for

inhibitory ones (still not a sigmoid).

It is not exactly as expected, and the di�erences could be worth investigating, but nothing is too surprising

here.
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Figure 51: Average local ranking as a function of global ranking for all neurons in a driven (up) and
self-sustained (down) AdEx networks. We separated inhibitory neurons (left) and excitatory ones (right)

The really non trivial result comes from HH in Fig.52, corresponding to a driven (up) and self-sustained

(down) networks. The excitatory driven is mostly similar to before (although the very low general rank

are weird), but for the other ones, we have at some point an opposite e�ect : when the global rank goes

up, the local rank goes down.

Those results suggest the neurons can have some short time when they dissipate a lot (enough to be

ranked high on average) but dissipate less than the other at the majority of bins. It means they have a

di�erent �role� at di�erent time scales.

To conclude Recovery gave us some new clari�cations on how the dissipation a�ect the networks, and

some more di�erences between AdEx and HH.

But the true di�erences arise for the ranking representation, that also allows us to link di�erent time

scales.It would be interesting to learn more by checking the connectivity of those speci�c neurons, to see
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if the heterogeneity that comes from the random connectivity of the network does indeed make neurons

having speci�c "roles" in the network. Then, it would be interesting to understand the functional role of

those neurons.

Please note that those results should be con�rmed with other simulations and are therefore only indica-

tions for now.

Figure 52: Average local ranking as a function of global ranking for all neurons in a driven (up) and
self-sustained (down) HH networks. We separated inhibitory neurons (left) and excitatory ones (right)

18.2 Vm and dissipation

After looking at the temporal evolution of the network, we want to see the links between the dissipation

and some important inner variable of the model : the membrane potential.

Here we stop analysing networks as a whole and focus on a few speci�c neurons (5% of them, chosen

randomly). Each neurons will give us their Vm and dissipation at each time step of 1ms (which is way

we couldn't take all of them : there would be way too much data). The simulation is done for AdEx and
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HH, for driven (2,5,10 and 20 Hz) and self-sustained, with 2 realizations.

18.2.1 Whole network

First, following what we did on chapter 4 for the FR, we analyse the correlation between Vm and the

dissipation for each neuron during the simulation. We then look at the distribution of the correlation.

For driven networks, the columns for driven are the drive, then two lines represent inhibitory neurons in

two di�erent noise realization, then the 2 next are for excitatory ones, as before. For Self-sustained net-

works, only two noise realizations are shown, which again a separation between excitatory and inhibitory

neurons.

Figures 53 and 54 represent AdEx networks (Driven and then Self-sustained), while Figures 55 and 56

represent HH networks (same).

Figure 53: Distribution of the correlations between Vm and dissipation for each neuron for a whole
simulation, for an AdEx network with various drives
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Figure 54: Distribution of the correlations between Vm and dissipation for each neuron for a whole
simulation, for a self-sustained AdEx network

First, we can see that the Driven network in Fig.53 always have positive correlation, and the distribution

is more or less Gaussian. It's fairly weak for FS (0.15, 0.05 wide) and a higher for RS (0.35, 0.1 wide).

There is no obvious e�ect of the drive.

The Self-sustained network in Fig.53 always shows a negative correlation.

That di�erence echoes with what we found in section 15.4, although the two measurement do not represent

the same thing. As we said in the discussion, Vm and FR both measure the activity and are e�ective at

di�erent scales. Here, at the scale of the neurons, it appears the correlation is deeper than for the FR at

the scale of the network.

The FS have this time a stronger (anti) correlation than RS. RS is Gaussian-like with a tail toward 0

(average around −0.15, 0.05 wide without the tail). FS on the other hand is a binomial around −0.48

and −0.35 and about 0.05 wide each.
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Figure 55: Distribution of the correlations between Vm and dissipation for each neuron for a whole
simulation, for an HH network with various drives

Figure 56: Distribution of the correlations between Vm and dissipation for each neuron for a whole
simulation, for a self-sustained HH network
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HH is, yet again, di�erent, as the Driven(Fig.55) and Self-sustained (Fig.56) go for very anti-correlated

to very correlated, being fairly polarized (with few values in between).

For the Driven network, the FS neurons show a peak in high anti-correlation (around −0.5) then few

values a bit everywhere. The drive seem to be correlated with a bit more values in the very correlated

region, but it's not impressive.

The RS on the other hand has a bunch of di�erent anti-correlation and then a peak of high correlation.

There is a clear e�ect of the drive : a weak drive has uniform values (between −0.25 until 0.75) and then

a peak, and his way closer to the positive correlation. Higher drives polarize more and more, making the

values closer to |0.8− 0.9|.

The self-sustained varies depending on the realization, but we can see it's also polarized between −0.7

and 0.9, although a realization has more in between.

In general, it would be useful to compare those results with more Driven and Self-sustained networks to

see if a trend seem to emerge. As with many other results we have previously, it appears AdEx networks

have a lot of possible dichotomy while HH networks seem more continuous with way less change between

di�erent conditions.

18.2.2 Speci�c neuron

Then, we analyses neurons directly by checking Vm as a function of the Dissipation. We represent 9

neurons to develop a feeling of what they do.
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Figure 57: Example of AdEx driven neurons with a drive of 2Hz from the FS population

We can see two things for AdEx driven(Fig.57 (similar results for RS neurons are not shown) : a kind

of tail on the part with higher dissipation and Vm, and the line of -65mV corresponding to the rest

potential after a spike. The form does seem more correlated for RS than FS. The tail part correspond

to the potential just before the spike, and gives access to the weaker dissipation (closer to 0, as expected

because of the exponential term in the equation).

147



Figure 58: Example of AdEx sustained neurons from the FS population

The self-sustained part is less trivial, as can be seen in Fig.58 : there are clearly two parts, one almost

horizontal line, and one that will hit a wall at a given value of dissipation : -450Hz.// Finding why

could lead to interesting discoveries and a better understanding of the di�erences between driven and

self-sustained systems.
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Figure 59: Example of AdEx sustained neurons from the FS population, zooming on the lower part of
the dissipation
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Figure 60: Example of AdEx sustained neurons from the FS population, zooming on the higher part of
the dissipation

Actually and non trivially, almost half of the points are contained in two or three di�erent spots of similar

Vm and di�erent dissipation Fig.60 (here only the FS population is represented, but it's similar for RS),

while the other part is more "normal" Fig.59 which means self-sustained AdEx is locked in speci�c states

most of the time.
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Figure 61: Example of HH driven neurons with a drive of 2Hz from the FS population

The HH (Fig.61 gives a �gure with two clear behavior : one anti correlated for strong Dissipation high

values of Vm (often positive) and one correlated for weaker Dissipation and lower values of Vm. The

same result was given for self-sustained networks. We can see where the two kind of correlations come

from, but it's hard to know why, for some neurons, the correlation turns positive and for other negative.

Maybe, as for the self-sustained of AdEx, few positions are actually accessible in the phase space, and

there are a lot of them in one our the other situation that is not really visible here.

18.2.3 Correcting the HH network into 2 subsets

We hypothesize that those two region of dissipation were giving the di�erent correlation, and that it might

have been an issue with the Pearson correlation formula that gives more strength to few very high values.
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We therefore made 2 subsets : one for the strongest 5% dissipation and the corresponding Vm (that we

expect to have a negative correlation) and the other for the rest (expecting a positive correlation).//

Figure 62: Distribution of the correlations between Vm and dissipation for each neuron from the previously
de�ned higher subset for a whole simulation, for an HH network with various drives
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Figure 63: Distribution of the correlations between Vm and dissipation for each neuron from the previously
de�ned lower subset for a whole simulation, for an HH network with various drives

Figure 64: Distribution of the correlations between Vm and dissipation for each neuron from the previously
de�ned higher subset for a whole simulation, for a self-sustained HH network
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Figure 65: Distribution of the correlations between Vm and dissipation for each neuron from the previously
de�ned lower subset for a whole simulation, for a self-sustained HH network

Our hypothesis was mostly what we found, as can be seen in Fig.62 and Fig.63.

The negative correlation is strong, and there is still some e�ect of the drive that allows to have some

positive correlation (very high) for higher drive. RS is more polarized than FS. The positive e�ect is

mostly the same but reversed, although the negative correlation when it happens is weaker and only

appears for high drive.

The new self-sustained work even better, with very few �unwanted� correlations.

This allows us to say that there are indeed two regions of activity that are correlated di�erently for HH,

and more work on the interpretation is required. It is worth to note that they don't perfectly split the

correlations, so there are still some other factors.

To conclude , the investigation of the link between the dissipation and Vm seem like a promising

one, as it allows us to go to the neuron scale, something that was not present enough in our general

analysis. It also shows us more di�erences between AdEx and HH networks, helping us understand how

their dynamics are functionally di�erent as networks and not only as single neurons. Finally, it also gives

us more information on the di�erence between Driven and Self-sustained system that where the core of

chapter 3, showing us the investigation on those di�erences is far from over.
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19 Codes

Finally, we will give here the two most useful codes in our analysis.

First, we give the code we use to simulate neural networks. Here, it is for a speci�c case of an AdEx

Driven network, but a change of parameters can give di�erent Driven or even Self-sustained networks,

and a change in the di�erential equation and the associated parameters can give HH networks).

Then, we give the functions used to compute the FLE from the reconstructed system. Calling the function

LE_algo with the appropriate parameters is all that is required to have the FLE as an output, similar

to Fig.

19.1 Code for the simulation of an AdEx network

Here we give an example of a simulation of an AdEx driven network.

import matplotlib.pyplot as plt

import numpy as np

from brian2 import *

from time import time

import pickle

N1=2000

N2=8000

prbC=0.05*2000/N1

def bin_array(array, BIN, time_array):

N0 = int(BIN/(time_array[1]-time_array[0]))

N1 = int((time_array[-1]-time_array[0])/BIN)

return array[:N0*N1].reshape((N1,N0)).mean(axis=1)

def multi_Standard(input_freq,N1,N2,prbC,NbSims):

tic=time()

start_scope()
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ResultsTotal=[]

for sim in NbSims:

print('Simulation #{} out of {}'.format(sim+1,NbSim))

DT=0.1

defaultclock.dt = DT*ms

TotTime=20000

duration = TotTime*ms

seed(sim)

eqs='''

dv/dt = (-GsynE*(v-Ee)-GsynI*(v-Ei)-gl*(v-El)+ gl*Dt*exp((v-Vt)/Dt)-w + Is)/Cm : volt (unless refractory)

dw/dt = (a*(v-El)-w)/tau_w:ampere

dGsynI/dt = -GsynI/Tsyn : siemens

dGsynE/dt = -GsynE/Tsyn : siemens

Is:ampere

Cm:farad

gl:siemens

El:volt

a:siemens

tau_w:second

Dt:volt

Vt:volt

Ee:volt

Ei:volt

Tsyn:second

'''

# Population 1 - FS

b1 = 0.0*pA

G1 = NeuronGroup(N1, eqs, threshold='v > -47.5*mV', reset='v = -65*mV', refractory='5*ms', method='heun')
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#init:

G1.v = -65*mV

G1.w = 0.0*pA

G1.GsynI=0.0*nS

G1.GsynE=0.0*nS

#parameters

G1.Cm = 200.*pF

G1.gl = 15.*nS

G1.El = -65.*mV

G1.Vt = -50.*mV

G1.Dt = 0.5*mV

G1.tau_w = 1.0*ms

G1.a = 0.0*nS

G1.Is = 0.0

G1.Ee=0.*mV

G1.Ei=-80.*mV

G1.Tsyn=5.*ms

# Population 2 - RS

b2 = 60.*pA

G2 = NeuronGroup(N2, eqs, threshold='v > -40.0*mV', reset='v = -55*mV; w += b2', refractory='5*ms', method='heun') #before : rest at 65-mV

G2.v = -65.*mV

G2.w = 0.0*pA

G2.GsynI=0.0*nS

G2.GsynE=0.0*nS

G2.Cm = 200.*pF

G2.gl = 15.*nS

G2.El = -65.*mV #before : -70mV

G2.Vt = -50.*mV

G2.Dt = 2.*mV

G2.tau_w = 500.*ms

157



G2.a = 0.*nS

G2.Is = 0.0*nA

G2.Ee=0.*mV

G2.Ei=-80.*mV

G2.Tsyn=5.*ms

W_tot = NeuronGroup(1,'W_tot : 1' , method='heun')

# external drive--------------------------------------------------------------------------

P_ed=PoissonGroup(8000, rates=input_freq*Hz)

# connections-----------------------------------------------------------------------------

Qi=5.0*nS

Qe=1.5*nS

prbC2=0.05

S_12 = Synapses(G1, G2, on_pre='GsynI_post+=Qi') #'v_post -= 1.*mV')

S_12.connect('i!=j', p=prbC2)

S_11 = Synapses(G1, G1, on_pre='GsynI_post+=Qi')

S_11.connect('i!=j',p=prbC2)

S_21 = Synapses(G2, G1, on_pre='GsynE_post+=Qe')

S_21.connect('i!=j',p=prbC)

S_22 = Synapses(G2, G2, on_pre='GsynE_post+=Qe')

S_22.connect('i!=j', p=prbC)
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S_ed_in = Synapses(P_ed, G1, on_pre='GsynE_post+=Qe')

S_ed_in.connect(p=prbC2)

S_ed_ex = Synapses(P_ed, G2, on_pre='GsynE_post+=Qe')

S_ed_ex.connect(p=prbC2)#0.05)

#Connect the control neurons to the populations. To do so, apply the interesting function as the post variable.

S_W=Synapses(G2, W_tot, 'W_tot_post = w_pre : 1 (summed)')

S_W.connect(p=1)

####################################################################################

#### RECORDER GROUPS ######

####################################################################################

dt_rec=1*ms

M1G1 = SpikeMonitor(G1)

FRG1 = PopulationRateMonitor(G1)

M1G2 = SpikeMonitor(G2)

FRG2 = PopulationRateMonitor(G2)

MonW_tot=StateMonitor(W_tot, 'W_tot', record=0)

print('--##Start simulation##--')

run(duration)

print('--##End simulation##--')
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tac=time()

print('Simulation took {}s'.format(tac-tic))

LfrG1=np.array(FRG1.smooth_rate(window='gaussian', width=500*ms)/Hz)

LfrG2=np.array(FRG2.smooth_rate(window='gaussian', width=500*ms)/Hz)

WG2_tot=MonW_tot.W_tot[0]

#Save all

FR_input=[LfrG1,LfrG2]

ResultsTotal.append([FR_input,WG2_tot])

with open('Simulation_AdEx_1',"wb") as f:

pickle.dump(ResultsTotal,f)

input_freq=1.5

NbSim=[42]

multi_Standard(input_freq,N1,N2,prbC,NbSim)

19.2 Code for the lyapunov exponents in time series

Here we give the main functions used to compute the FLE from time series

import numpy as np

from copy import deepcopy as dc

def find_close_points(numX,data,delta,dim,Dt):

"""Find the label numY of a point Y such that dist(X,Y)<delta for X, Y in data.
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If there is not at least 10 data points, return -1."""

X=np.array(data[numX])

Xmax=[]

for i in range(dim):

Xmax.append([X[i]-delta,X[i]+delta])

close_points=[]

flag=0

i=0

data_dt=data[:-Dt-1]

while i<len(data_dt):

val=data_dt[i]

i+=1

flag2=0

for j in range(dim):

if val[j]<Xmax[j][0] or val[j]>Xmax[j][1]:

flag2=1

break

if flag2==1:

continue

elif norm(X-val)<delta:

if i-1 not in range(numX-100,numX+100):

close_points.append(i-1)

flag+=1

if flag>1:

return close_points

else:

return -1

def find_points_ortho(numX,numY,data,delta,Dt,dim):

"""We have numX and numY, index of points X and Y that are respectively the
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fiducial point and a point that evolved and is aligned with the FLE vector.

We want to find a point aligned with the vector (X,Y) but closer to X,

that we will call Y1. This will help to keep finding local values of the FLE. """

points=find_close_points(numX,data,delta,dim,Dt)

angle1=0.95#min cos(angle) we allow

flag1=0

new_num1=-1

X=np.array(data[numX])

Y=np.array(data[numY])

v1=Y-X

delta_temp=delta

while points==-1:

points=find_close_points(numX,data,delta_temp,dim,Dt)

delta_temp+=0.5*delta

delta_temp1=delta_temp

points1=dc(points)

#Let's select the vector that aligns with the FLE

while flag1==0:

for num in points1:

v2=data[num]-X

ang=angle_between(v1,v2)#we want something as close to 1 as possible (colinear)

if ang>angle1:

flag1=1

angle1=ang

new_num1=num

if flag1==0:

delta_temp1+=0.5*delta

points1_2=find_close_points(numX,data,delta_temp1,dim,Dt)

points1=[val for val in points1_2 if val not in points1]

return new_num1

def LE_algo(Xs,t0,Dt,dt,delta,eps0,time_max):
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"""Standard algo for lyapunov spectrum with Dt a time between each

LE evaluation, dt a time step, eps a small perturbation, eps0 a tolerance

to end the algo, t0 the initial value x(t0) and u0 a set of orthonormal

vectors at time T0. Here we use time series instead of the flow. The main difference

is therefore that we use closer neighbors instead of perturbations."""

dim=np.shape(Xs)[1]

l_pert1=[0] #initialize the LE perturbated

#initialize the first point that will align with the FLE

ty0=-1

delta_temp=delta

while ty0==-1:

ty0=find_close_points(t0,Xs[:-Dt-1],delta_temp,dim,Dt)

delta_temp+=0.5*delta

ty0=np.random.permutation(ty0[:-1])[-1]

for t in range(time_max): #I prefer long time to while loops

#Evolution of the trajectory with a step dt until Dt

x0=np.array(Xs[t0])

#"Perturbation" like (finding points close and colinear to the vectors (x1,y1),

#and another one orthogonal to it)

x_pert1_nums=find_points_ortho(t0,ty0,Xs,delta,Dt,dim)

dists=norm(Xs[x_pert1_nums]-x0)

#2D distances between original points and "perturbation"

#"Evolve perturbation"

Dt_temp=0

for i in range(Dt):

Dt_temp+=1

if (x_pert1_nums+Dt_temp)>=len(Xs)-Dt:
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Dt_temp-=1

break

t1=t0+Dt_temp

x1=Xs[t1]

x_pert1_nums=x_pert1_nums+Dt_temp#2D index

x_pert1=Xs[x_pert1_nums] #2 3D-coordinates

#Compute difference

w1=x_pert1-x1

#Find growth

v_norms1=norm(w1)#gives the norm of the first vector and the norm of the projection

#Compute the LS

l_pert1.append(np.log(v_norms1/dists)/(Dt_temp*dt))

#Check if we can stop

if np.abs(np.mean(l_pert1[:-1])-np.mean(l_pert1[:-2]))<eps0:

return t+1,l_pert1

else:

t0=t1

ty0=x_pert1_nums

return -1,l_pert1
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