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Résumé: Le principal objectif de cette thèse
est d’accroître la confiance dans les modèles de
Machine Learning en développant des outils ca-
pables d’expliquer leurs prédictions et de quan-
tifier l’incertitude qui y est associée. La pre-
mière partie de cette thèse se concentre sur
les méthodes d’explication locales. Nous met-
tons d’abord en évidence les limites des esti-
mateurs existants des indices de Shapley pour
les modèles basés sur les arbres de décision,
ainsi que les problèmes liés à leur utilisation en
présence de variables catégorielles. Après avoir
proposé des solutions à ces problèmes, nous dé-
montrons que les indices de Shapley et la méth-
ode LIME ne sont pas fiables pour fournir des
explications locales. Nous introduisons ensuite
de nouvelles méthodes d’explication, sous forme
de mesures d’importance, de sélection de sous-
ensembles de variables importantes, de règles de
décision locales, d’action contrefactuelles et de
contrefactuels basés sur des règles de décision.
Toutes les méthodes que nous proposons sont

"model-free", c’est-à-dire qu’elles n’ont pas besoin
d’avoir accès au modèle pour effectuer des prédic-
tions. De plus, elles n’impliquent pas la généra-
tion de nouvelles observations, évitant ainsi les
problèmes d’extrapolation inhérents aux méth-
odes existantes qui se basent sur des prédictions
utilisant des observations improbables ou impos-
sibles, générées en combinant de manière aléa-
toire les attributs des variables provenant de mul-
tiples observations. En outre, les méthodes pro-
posées se distinguent des différentes heuristiques
que l’on trouve dans la littérature, car les quan-
tités qui les définissent sont clairement définies et
sont accompagnées de résultats de consistance.
Dans la deuxième partie, nous analysons la pré-
diction conforme, qui permet de construire des
intervalles prédictifs avec une garantie de cou-
verture non asymptotique, en se basant unique-
ment sur l’hypothèse d’échangeabilité des obser-
vations. Nous proposons une méthode pour ren-
dre ces intervalles plus adaptatifs, tout en garan-
tissant le taux de couverture conditionnellement
à un jeu de calibration donné.
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is to increase trust in Machine Learning models
by developing tools capable of explaining their
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Notations

Tout au long de cette thèse, les variables aléatoires sont définies sur l’espace de probabilité
(Ω,F ,P).

Si X est une variable aléatoire réelle positive ou intégrable1, nous notons

E(X) :=
∫

Ω
X(ω)P(dω) ∈ R,

son espérance mathématique.

Lorsque X est une variable aléatoire prenant ses valeurs dans un espace mesurable quelquonque
(E, E), nous utilisons la notation PX pour désigner la loi de cette variable aléatoire. Cette loi est
définie par PX(B) = P(X−1(B)) pour tout B ∈ E , il s’agit la mesure image de P par l’application
mesurable X : (Ω,F)→ (E, E). PX est l’unique mesure de probabilité sur (E, E) qui vérifie

E(X) :=
∫

Ω
X(ω)P(dω) =

∫
R

xPX(dx).

Ainsi, nous employons fréquemment la notation EPX
pour spécifier que l’espérance est cal-

culée selon la loi de la variable aléatoire X, notamment lorsqu’il existe des risques d’ambiguïté.
Plus particulièrement, si nous disposons de n variables aléatoires indépendantes (X1, . . . , Xn) à
valeurs dans (E, E) et partageant la même loi PX , nous adoptons la notation EP n

X
pour indiquer

que l’espérance est prise par rapport à la loi jointe de ces n variables aléatoires.

Nous utilisons des lettres majuscules pour représenter les variables aléatoires, des minuscules
pour leurs réalisations, et des caractères gras pour désigner des vecteurs. Dans les sections à
venir, nous supposons que nous avons à notre disposition un ensemble de p variables aléatoires,
notées X = (X1, . . . , Xp), qui représentent les entrées ou covariables. La réalisation de ces
variables aléatoires est représentée par x = (x1, . . . , xp). Nous utilisons la notation [p] pour
désigner l’ensemble {1, . . . , p}.

1C’est-à-dire une variable aléatoire X telle que E(|X|) < ∞.

iv



Introduction (français)

1 Contexte

Les modèles de Machine Learning (ML) sont omniprésents dans notre quotidien, que ce soit
à travers nos smartphones où ils animent l’assistant vocal et la reconnaissance faciale, dans le
secteur bancaire avec la prédiction d’octroi de crédit, ou encore dans les recommandations per-
sonnalisées de musique et de films que nous recevons. Leur fonctionnement est généralement
le même: l’algorithme reçoit des données et apprend à prédire une valeur cible en minimisant
une erreur. La quête incessante de modèles prédictifs de plus en plus performants a conduit
à la création de systèmes de plus en plus complexes, et, par conséquent, moins transparents.
Cette opacité a rendu difficile la compréhension du processus de prédiction de ces modèles et
leur contrôle. Cette situation a donné lieu à de nombreux scandales, comme celui survenu chez
Amazon [Dastin, 2018], où un biais de genre a été découvert dans leur système de recrutement
basé sur le Machine Learning. Les modèles avaient été entraînés sur des données historiques qui
présentaient un déséquilibre en faveur des hommes pour les postes techniques. En conséquence,
les modèles ont favorisés les candidats masculins aux dépens des candidates féminines. Cette
course effrénée vers la performance prédictive, au détriment de la transparence des processus
décisionnels, pose un problème majeur. Imaginons un modèle prédictif dans le secteur médi-
cal qui diagnostique un patient comme susceptible de développer une maladie, sans toutefois
expliquer pourquoi. Dans de telles circonstances, il serait difficile d’accorder notre confiance à
ce modèle. Cette opacité ne permet pas de valider cliniquement ces prédictions ni d’identifier
les éventuelles erreurs, compromettant ainsi la sécurité des patients. Ainsi, la transparence et
l’explicabilité des modèles de Machine Learning deviennent essentielles dans tous les domaines
où répondre au "pourquoi cette prédiction ?" est tout aussi important que connaître la prédiction
elle-même. De plus, l’un des objectifs fondamentaux de la science, au-delà de prédire les effets
d’une cause, est de comprendre les causes de l’effet. Il devient donc crucial que nous puissions
expliquer les prédictions de ces modèles pour mieux comprendre les données qu’ils utilisent et
faciliter leur déploiement dans tous les secteurs. Par ailleurs, pour renforcer la confiance entre
les utilisateurs et le Machine Learning, il est aussi nécessaire de mesurer l’incertitude associée
à chaque prédiction. Reprenant l’exemple médical précédent, avant même de vouloir expliquer
la prédiction d’une maladie par le modèle, il est primordial de s’assurer que cette prédiction est
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fiable. Cette thèse s’engage donc à renforcer la confiance envers les modèles de Machine Learn-
ing. Pour mériter cette confiance, un modèle de Machine Learning doit être capable d’exprimer
ce qu’il sait et ce qu’il ne sait pas. Ainsi, cette thèse se concentrera sur deux sujets cruciaux:
l’explication des modèles de Machine Learning (ce qu’ils savent) et l’estimation de l’incertitude
associée aux prédictions (ce qu’ils ignorent).

Contexte de la thèse. Cette thèse a été effectuée en collaboration avec Stellantis (ancien-
nement PSA Groupe) et le Laboratoire de Mathématiques et Modélisation d’Evry (LaMME),
avec le soutien de la Convention Industrielle de Formation par la Recherche (CIFRE) de l’
Association Nationale de la Recherche et de la Technologie (ANRT). Nous avons également tra-
vaillé avec les équipes de Quantmetry, une société de conseil en Intelligence Artificielle (IA),
qui nous a permis d’obtenir des retours terrains sur l’interaction entre les divers acteurs de IA
et les méthodes d’explicabilité. Plus spécifiquement, cela nous a permis d’identifier la nécessité
d’adapter les solutions d’explicabilité en fonction des différents acteurs impliqués, tels que les
auditeurs, les clients, les experts métiers et les data scientists, qui ont des besoins distincts. Ce
projet s’inscrit dans un appel récent de la société civile et de la communauté scientifique visant
à réguler, encadrer et maîtriser les modèles d’apprentissage automatique. En France, cet intérêt
se manifeste notamment par le rapport Villani qui aborde les questions éthiques posées par
l’usage des modèles de machine learning. En 2021, nous assistons à l’émergence du consortium
"Confiance AI" lancé par l’Etat dans le cadre du Grand Défi « Sécuriser, certifier et fiabiliser
les systèmes fondés sur l’intelligence artificielle », auprès d’une quarantaine de partenaires in-
dustriels et académiques, pour concevoir et industrialiser des systèmes à base d’IA de confiance.
À l’échelle internationale, ce mouvement se poursuit également avec des initiatives telles que la
proposition de réglementation de la Commission Européenne appelée "AI ACT". De même, la
Maison Blanche a aussi proposé une réglementation similaire intitulée "Blueprint for an AI bill
of rights". Notre travail a été finalement de traduire ces questions et besoins, et de proposer des
outils mathématiques pour y répondre.

Application industrielle chez Stellantis. Le cœur de l’industrie automobile réside dans
la fabrication de véhicules. Une chaîne de production de véhicules est composée d’une série
d’opérations complexes de transformation et d’assemblage de pièces, qui sont déterminées par
un grand nombre de variables telles que la température, la durée de chaque étape d’assemblage,
le type de pièce, le type de voiture, le type d’opération, etc. Afin de réduire les retours de
véhicules après vente, un processus de contrôle qualité a été mis en place, consistant à tester
de manière aléatoire certains véhicules à la sortie de l’usine. Cependant, ce processus, étant
coûteux et peu optimal, peut être remplacé par un modèle de machine learning qui apprend
le lien entre les variables d’entrée du processus et la présence ou absence de défauts sur le
véhicule. Il est donc essentiel de mesurer avec précision l’incertitude associée aux prédictions de
ces modèles, étant donné que le nombre de tests réalisables est limité en raison de contraintes
budgétaires. De plus, nous pouvons utiliser l’explication des prédictions de ces modèles afin de
mieux comprendre les conditions qui mènent aux défauts à la sortie de l’usine, et par conséquent,
ajuster le processus de production pour les éviter. Une autre application de l’explicabilité chez

https://www.stellantis.com/en
https://www.quantmetry.com/
https://www.enseignementsup-recherche.gouv.fr/fr/rapport-de-cedric-villani-donner-un-sens-l-intelligence-artificielle-ia-49194
https://www.confiance.ai/
https://artificialintelligenceact.eu/
https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf


Stellantis concerne l’amélioration de l’expérience client. Une plateforme permet aux utilisateurs
de laisser des commentaires pour partager leur avis. Cette plateforme est naturellement soumise
à des règles de modération, telles que l’interdiction des injures ou des données personnelles. Cette
modération a été automatisée grâce à des modèles de Machine Learning, dans le but d’optimiser
les performances et de réduire les coûts de modération. Ainsi, l’explication des prédictions de
ces modèles peut être intéressante pour accompagner les utilisateurs en leur fournissant une
explication sur le refus de leur commentaire. De plus, cela permet de détecter les motifs ou les
subtilités du langage dans lesquels le modèle se trompe fréquemment. Cette compréhension fine
des erreurs de modération peut ensuite être utilisée pour améliorer le modèle en production.

2 IA de confiance

2.1 Motivations

Dans cette section, nous mettons en évidence quatre raisons qui soulignent la nécessité d’ajouter
des mécanismes de protection aux modèles de Machine Learning, en développant des outils pour
expliquer les prédictions et évaluer l’incertitude qui leur est associée. Tout au long de la thèse,
nous considérons les prédictions du modèle comme la sortie Y ∈ Y étant donné les variables
X ∈ X , issues d’un processus (X, Y ) ∼ PXPY |X , où PY |X représente un processus aléatoire ou
un modèle déterministe. Ainsi, nous nous trouvons dans un contexte purement agnostique, qui
consiste à expliquer les données ou les sorties d’un modèle fixe.

Gérer les risques liés aux prédictions. L’objectif principal d’un modèle de Machine Learn-
ing est de réaliser des prédictions. Les modèles sont généralement construits en minimisant une
fonction de coût. Dans des situations réelles où les hypothèses classiques sur les données (nor-
malité, homoscédasticité, etc.) ne s’appliquent pas et où les données ne sont pas infinies, nous
disposons souvent uniquement que d’une mesure empirique de la performance globale de notre
modèle. Cependant, dans certains contextes où une seule erreur peut avoir des conséquences
graves, il est nécessaire d’estimer de manière raisonnable l’erreur individuelle. Une approche con-
siste à construire un intervalle de prédiction qui fournit un ensemble de valeurs ou d’intervalles
susceptibles de contenir la valeur cible de chaque observation avec une probabilité contrôlée.
Ainsi, en analysant la taille de l’intervalle prédictif, nous pouvons déduire l’incertitude associée
aux prédictions afin d’utiliser sereinement nos modèles de Machine Learning pour prendre des
décisions ou automatiser des tâches dans les domaines à haut risque.

Justifier les prédictions. Les dérives des modèles de Machine Learning ont entraîné la mise en
place de nombreuses réglementations à travers le monde. Par exemple, le Règlement Général sur
la Protection des Données (RGPD) comprend l’article 22 [Goodman, 2017], qui exige que toute
décision automatisée soit en mesure de justifier sa prédiction. En d’autres termes, cela donne
le droit à une explication à toute personne concernée par les modèles de Machine Learning.
Nous pouvons également trouver des réglementations similaires dans le secteur de l’assurance
ou bancaire [EBA, 2020], notamment en ce qui concerne la transparence des modèles utilisés
pour tarifer les produits d’assurance ou le droit à une explication après le refus d’un prêt.



Ces réglementations soulignent l’importance de pouvoir comprendre les raisons sous-jacentes
aux prédictions des modèles de Machine Learning. Il ne suffit plus de se fier uniquement aux
résultats obtenus, mais il est désormais nécessaire de pouvoir expliquer pourquoi ces résultats
ont été obtenus. Cela permet aux individus concernés de comprendre les critères utilisés, d’éviter
des discriminations, de remettre en question les décisions prises et de vérifier si celles-ci sont
conformes aux principes éthiques et légaux.

Détecter les biais. Les explications des prédictions peuvent être utilisées pour détecter les biais
présents dans les modèles [Corbett-Davies, 2018; Pessach, 2022]. Vous pourriez vous demander
comment cela est possible. Un algorithme peut-il être biaisé ? Ne serait-ce pas une forme de
personnalisation ? Cette question est d’autant plus pertinente à l’ère de ChatGPT [OpenAI,
2023], où beaucoup considèrent l’IA comme une forme d’intelligence mystérieuse, parfois associée
à une AGI (Intelligence Générale Artificielle) qui pourrait surpasser l’humain, dans la veine de
ce qu’on voit dans Terminator ou Blade Runner. Cependant, ce n’est pas le cas. L’IA n’est
ni consciente ni intelligente en tant qu’entité autonome. Ce sont simplement des modèles qui
se sont spécialisés dans des tâches bien spécifiques en extrayant des schémas à partir de nos
données. Ainsi, si les données elles-mêmes présentent des biais, tels que des biais de genre ou de
race, l’algorithme peut les reproduire. Prenons l’exemple de l’algorithme COMPAS [Washington,
2018], utilisé par certains systèmes judiciaires pour évaluer le risque de récidive des individus.
Des études [Washington, 2018] ont montré que ce modèle présente des biais raciaux, avec des
taux de fausses prédictions plus élevés pour certaines communautés. L’analyse des explications
des prédictions peut fournir des indices sur la présence de biais, en identifiant les facteurs
discriminatoires pris en compte par le modèle. De telles détections de biais peuvent aider à
corriger et à améliorer les modèles, afin de garantir une prise de décision équitable et impartiale.

Détecter les facteurs de confusion. Il est crucial de pouvoir détecter les facteurs de confu-
sion dans les modèles de Machine Learning, car un modèle peut obtenir de bonnes performances
prédictives pour de mauvaises raisons. Cela signifie qu’il peut être efficace dans un contexte
spécifique, mais incapable de généraliser ou de s’adapter à de nouvelles situations. De nom-
breux exemples mettent en évidence comment les modèles peuvent prendre des raccourcis afin
de minimiser leur fonction de coût, sans réellement comprendre les véritables caractéristiques ou
motifs liés aux prédictions. À titre d’exemple, [Beery, 2018] a exposé ce problème avec des mod-
èles entraînés pour reconnaître des animaux : les vaches dans des environnements communs tels
que les pâturages étaient correctement classifiées, tandis que celles dans des contextes atypiques
comme la plage étaient mal identifiées. Ceci démontre que le modèle privilégie l’arrière-plan
des images pour formuler ses prédictions. Ainsi, le modèle peut sembler performant, mais pas
pour les bonnes raisons. Il n’a pas réellement appris à détecter les vaches, mais exploite plutôt
l’arrière-plan de l’image pour minimiser sa fonction de coût. Cette situation a été récemment
observée par [DeGrave, 2021] lors de la détection du COVID-19 à partir d’images de radiogra-
phies pulmonaires. Certains modèles de Machine Learning se sont basés uniquement sur des
marqueurs présents sur les images qui étaient parfaitement corrélés avec la présence de la mal-
adie, sans utiliser aucune information de la région pulmonaire elle-même. Ainsi, en analysant



les explications des prédictions, nous pouvons repérer les signaux indiquant que le modèle se
base sur des facteurs de confusion plutôt que sur des caractéristiques significatives. Cela permet
d’ajuster et de corriger les modèles afin qu’ils se concentrent sur les aspects pertinents pour les
prédictions, favorisant ainsi une meilleure généralisation et une adaptation à différents contextes.

2.2 Explicabilité

Commençons par définir le concept d’explicabilité. Il n’existe pas de consensus absolu sur la
définition de ce terme, et les chercheurs utilisent souvent leurs propres intuitions pour définir ce
qui constitue une explication [Bellucci, 2021; Adadi, 2018; Doshi-Velez, 2017]. Par conséquent,
il existe dans la littérature de nombreuses taxonomies souvent contradictoires et une utilisation
interchangeable des termes tels que "interprétabilité" et "explicabilité". En réalité, la notion
d’explication n’est pas nouvelle et a alimenté de nombreuses discussions, aussi bien en philosophie
qu’en sciences cognitives. Les philosophes ont depuis longtemps cherché à comprendre ce qui
constitue une explication, se demandant si toutes les explications sont de nature causale et quelle
est leur structure sous-jacente [Salmon, 2006]. Au cours des deux dernières décennies, les sciences
cognitives ont étudié la manière dont nous générons des explications, évaluons leur pertinence
et pourquoi nous demandons des explications [Malle, 2006]. Sans nous égarer dans cette vaste
littérature composée d’opinions diverses, dans cette thèse, nous nous appuyons sur les travaux de
[Miller, 2019] qui a analysé plus de 300 articles en philosophie, en sciences cognitives et en sciences
sociales afin de trouver une définition adéquate pour le Machine Learning. Il en ressort que
l’explication est le résultat d’un processus cognitif, et la plupart des recherches s’accordent pour
dire qu’une explication est une réponse à une question du type "pourquoi". Dans notre contexte,
l’explication des modèles de Machine Learning consisterait à répondre à la question suivante:
Pourquoi le modèle a-t-il fait telle prédiction ? D’autre part, l’interprétabilité fait référence à la
capacité de comprendre, d’expliquer et de rendre compte des décisions ou des prédictions d’un
modèle ou d’un système. Elle est directement liée à l’humain, car c’est lui qui interprète les
résultats. Nous distinguons donc le Machine Learning Interprétable, qui regroupe les méthodes
intrinsèquement compréhensibles pour l’humain sans nécessiter d’explications supplémentaires,
telles que les modèles linéaires ou les arbres de décision, et l’IA explicable qui regroupe les
méthodes qui fournissent des explications, permettant de répondre à la question "Pourquoi le
modèle a-t-il fait telle prédiction ?". C’est ce dernier aspect que nous étudierons dans cette
thèse, en nous efforçant de répondre aux questions associées:

1. Quels sont les variables qui ont joué un rôle déterminant dans le processus de prédiction ?

2. Sous quelles conditions le modèle privilégie une certaine prédiction ?

3. Pourquoi le modèle a-t-il privilégié telle prédiction par rapport à une autre ?

Au cours de cette thèse, nous nous attacherons principalement à répondre à ces trois questions.
Plusieurs formes d’explications peuvent être utilisées pour y parvenir. Par exemple, les mesures
d’importance [Wei, 2015] ou l’analyse de sensibilité [Razavi, 2021; Da Veiga, 2021; Saltelli, 2008]
peuvent être employées pour la question 1, fournissant une valeur représentant la contribution



d’une variable donnée à une prédiction spécifique. Il y a aussi la sélection de sous-ensemble de
variables importantes, qui sont capables de maintenir la prédiction même en modifiant les autres
variables. Pour la question 2, les règles de décision permettent d’identifier les zones de l’espace
des variables où la prédiction du modèle est identique, ce qui permet d’expliquer les prédictions
en fonction de leur zone d’appartenance. La question 3 met en lumière une approche mimant
la façon dont les êtres humains fournissent habituellement des explications. Lorsqu’on nous
demande une explication, nous avons tendance à adopter une perspective contrefactuelle - plutôt
que de chercher à comprendre pourquoi l’événement P s’est produit, on cherche à comprendre
pourquoi l’événement P s’est produit au lieu d’un événement alternatif Q [Miller, 2019]. Par
conséquent, les modèles peuvent être expliqués en proposant des actions contrefactuelles, c’est-
à-dire en identifiant les changements minimaux des variables qui permettraient de modifier la
décision du modèle. Par exemple, si un modèle de scoring de crédit refuse un prêt et qu’il suffit
de modifier le salaire du demandeur pour changer la décision, nous pouvons en déduire que le
salaire est l’une des raisons possibles pour laquelle le crédit n’a pas été accordé. Dans cette
thèse, nous allons étudier toutes ces formes d’explications à savoir les mesures d’importance
locales, la selection de variables importantes, les règles de décisions et enfin les contrefactuelles.

La tâche d’expliquer les modèles de Machine Learning présente plusieurs difficultés majeures. La
plupart des méthodes d’explicabilité reposent essentiellement sur le principe de la modification
d’un sous-ensemble de variables puis à l’observation du comportement du modèle [Covert, 2021].
Cependant, cela soulève des défis importants liés à la sélection des variables à modifier et au choix
des nouvelles valeurs pour ces variables. Une approche couramment utilisée dans la littérature
consiste à utiliser la loi marginale de chaque variable pour générer des observations modifiées.
Par exemple, le MDA (Mean Decrease Accuracy) [Breiman, 2001] calcule la variation de l’erreur
du modèle suite à la permutation aléatoire des valeurs d’une variable dans le jeu de données.
Cependant, cette approche peut conduire à des observations impossibles dans la réalité. Par
exemple, dans le cas de la prédiction du prix d’une maison de telles approches peuvent amener à
appliquer le modèle à des maisons de 16 m2 ayant 10 pièces. L’un des objectives de notre travail
est de nous assurer de ne pas nous retrouver dans de telles situations comme le font la majeur
partie des méthodes d’explicabilité, car nous n’avons aucune garantie sur le comportement du
modèle dans ces scénarios impossibles. De telles extrapolations sont au minimum pas fiables, et
potentiellement dénuées de sens. Une autre source de complexité réside dans les relations entre
les différentes variables, qui peuvent être non linéaires ou interdépendantes, rendant ainsi difficile
l’identification des influences spécifiques de chaque variable sur les prédictions du modèle.

2.3 Quantification d’Incertitudes

Une autre façon de renforcer la confiance dans les modèles d’apprentissage automatique est de
pouvoir mesurer l’incertitude associée à leurs prédictions. Lorsque l’on parle d’incertitude, on
pense généralement aux intervalles de confiance. Cependant, dans cette thèse, nous nous intéres-
sons plutôt aux intervalles prédictifs, qui diffèrent des intervalles de confiance. Les intervalles de
confiance sont principalement utilisés pour trouver un intervalle qui contient un paramètre du



modèle génératif des données avec une certaine probabilité, généralement 1−α, ou α est le risque
de se tromper. Ces intervalles permettent d’estimer la précision ou la fiabilité de l’estimateur
du paramètre associé. En revanche, les intervalles prédictifs sont utilisés pour trouver un in-
tervalle ou un ensemble de valeurs qui contiennent la valeur cible en utilisant un modèle de
prédiction. Plus formellement, ayant un jeu de données {(Xi, Yi)}ni=1, une observation de test
(Xn+1, Yn+1), où (Xi, Yi) ∈ X × Y sont générées selon (X, Y ) ∼ PXPY |X et un modèle de
prédiction f̂ : X 7→ Y estimé pour prédire Y à partir de X. Nous souhaitons construire un
ensemble Ĉ(·) sachant Xn+1 qui contiendrait Yn+1 avec probabilité 1− α,

P
{

Yn+1 ∈ Ĉ(Xn+1)
}
≥ 1− α.

Ĉ(·) fournit une estimation de la plage de valeurs dans laquelle les sorties des futures observa-
tions sont susceptibles de se situer compte tenu de l’incertitude inhérente au modèle f̂ et aux
données, appelées respectivement incertitude épistémique et incertitude aléatorique. Les inter-
valles prédictifs permettent d’appréhender l’incertitude associée au modèle f̂ , en transformant
les prédictions ponctuelles de chaque observation en intervalle ou ensemble de valeur plausible,
ce qui peut être particulièrement utile pour la prise de décision.

Il existe plusieurs méthodes pour construire des intervalles prédictifs, telles que les techniques
de rééchantillonnage [Yu, 2002], les approches bayésiennes [Dawid, 1982; Fraser, 2011], et la
régression quantile [Koenker, 2001]. Cependant, l’application de ces méthodes dans un contexte
industriel présente des difficultés en raison de la nécessité de minimiser les hypothèses, compte
tenu de la complexité des modèles utilisés. Notamment, il n’est pas réaliste de supposer que
les résidus suivent une distribution gaussienne, comme le font certaines méthodes. De plus,
le besoin de calculer l’incertitude se présente fréquemment après avoir déjà choisi et estimé le
modèle. Nous avons aussi besoin de garanties non asymptotiques afin de prendre des décisions
en pratique. Les techniques de rééchantillonnage sont très coûteuses en temps de calcul et ne
fournissent pas de garanties de couverture. Les méthodes bayésiennes et la plupart des autres
méthodes ne donnent pas non plus de garanties de couverture non asymptotique. Bien que
les méthodes bayésiennes fournissent des garanties asymptotiques, nous ne savons pas ce qui
se passe dans le cas fini. Cette problématique est d’autant plus complexe avec le fléau de
la dimension. Idéalement, nous cherchons une méthode capable de construire des intervalles
prédictifs qui contiendraient notre variable cible avec une certaine probabilité controlée avec
des données finies, tout en ayant des hypothèses faibles, telles que l’échangeabilité des données
et aucune hypothèse sur le modèle. Un cadre qui permet de répondre à ces limitations ou
attentes est celui de la prédiction conforme [Vovk, 2005; Lei, 2016]. Dans la partie consacrée à
l’estimation de l’incertitude, nous allons essentiellement nous focaliser sur ce dernier. En utilisant
la prédiction conforme, nous construisons des intervalles prédictifs qui offrent des garanties de
couverture non asymptotique pour les prédictions générées par n’importe quel modèle de machine
learning. Cela permettra d’obtenir une mesure fiable de l’incertitude associée aux prédictions des
modèles, offrant ainsi une base solide pour la prise de décision et l’évaluation des performances
des modèles, adaptée aux exigences du contexte industriel.



3 Contributions

Cette thèse est divisée en six parties. Le chapitre 1 se compose de deux sections: la première
est consacrée à la description des techniques couramment utilisées pour l’explication locale des
modèles, tandis que la seconde introduit la prédiction conforme. Le chapitre 2 propose une
étude approfondie d’une des méthodes les plus populaires pour expliquer les modèles, à savoir
les indices de Shapley [Lundberg, 2017a]. Nous identifions quelques problèmes liés à l’estimation
des indices de Shapley et à leur utilisation en présence de variables catégorielles. Le chapitre
3 poursuit l’analyse précédente en soulignant que les indices de Shapley et la méthode LIME
[Ribeiro, 2016a] ne sont pas fiables comme explication locale, et propose une approche pour
construire une mesure d’importance locale de façon plus rigoureuse. Dans le chapitre 4, nous
proposons d’aller au-delà des mesures d’attribution et introduisons une méthode d’explication
capable de capter les interactions. Cette approche repose sur la sélection de sous-ensembles
minimaux de variables importantes, suffisants pour maintenir la prédiction lorsqu’on modifie les
autres variables en respectant la distribution des données. En utilisant les variables sélectionnées,
nous avons également proposé une méthode d’explication sous forme de règles de décision locales.
Le chapitre 5, le dernier chapitre consacré à l’explicabilité, est en quelque sorte le dual du
chapitre 4. Nous utilisons essentiellement la même approche, mais cette fois pour générer des
exemples contrefactuels. C’est-à-dire que nous cherchons le sous-ensemble minimal de variables
qui permet de changer la décision, puis les règles de décision locales permettant de modifier la
décision. Le chapitre 6 porte sur l’estimation des incertitudes. Nous proposons une stratégie de
pondération visant à améliorer la fidélité des intervalles de prédiction fournis par la prédiction
conforme, de manière à les rendre plus adaptatifs tout en contrôlant le taux de couverture
conditionnellement au jeu de calibration. Le dernier chapitre est essentiellement consacré aux
travaux futurs qui sont des prolongements des travaux de la thèse. Il s’agit notamment de
l’utilisation de la prédiction conforme pour effectuer des prédictions avec abstention, c’est-à-dire
utiliser la prédiction conforme pour établir une stratégie permettant de s’abstenir de prédire
lorsque l’incertitude est trop élevée, tout en contrôlant notre taux de faux positifs. Enfin, nous
décrivons un croisement entre explicabilité et la prédiction conforme, utilisant la prédiction
conforme pour obtenir des garanties non asymptotiques avec des hypothèses minimales sur les
explications retournées. Ces travaux ont données lieu à quatre publications et deux packages:

• Chapitre 2: Accurate Shapley Values for explaining tree-based models [Amoukou, 2022b],
publié à AISTATS 2022.

• Chapitre 4: Consistent Sufficient Explanations and Minimal Local Rules for explaining
regression and classification models [Amoukou, 2021a], publié à NeurIPS 2022.

• Chapitre 5: Rethinking Counterfactual Explanations as Local and Regional Policies [Amoukou,
2022a], soumis à NeurIPS 2023. Une première version du papier a été acceptée à un work-
shop (Counterfactuals in Minds and Machines) à ICML 2023.

• Chapitre 6: Adaptive Conformal Prediction By Reweighting Nonconformity Scores [Amoukou,
2023], soumis à NeurIPS 2023.

https://sites.google.com/view/counterfactuals-icml/home?authuser=0


Active Coalition of Variables. A Python package that provides explanations for any machine
learning model or data. It gives local rule-based explanations for any model or data (regression
and classification), different Shapley Values for tree-based models, and a new line of counterfac-
tual explanations.

Adaptive Conformal Prediction Intervals. A Python package that provides Adaptive Prediction
Intervals that effectively capture the uncertainty of any given model, with finite-sample marginal
and PAC coverage, as well as asymptotic conditional coverage. It has been proven to significantly
outperform the split-conformal approach, regardless of the nonconformity score used (e.g., mean
score, quantile score).

3.1 Chapitre 2: Accurate Shapley Values for explaining tree-based models

L’une des principales motivations de ce chapitre découle du constat de la sur-représentation
des indices/valeurs de Shapley dans les études d’explicabilité des modèles, en particulier pour
l’explication locale. Dans la plupart des échanges avec des Data Scientists au sujet des tech-
niques d’explicabilité qu’ils utilisent, les indices de Shapley sont mentionnés de manière quasi-
systématique. Ce phénomène est illustré par le nombre impressionnant d’étoiles attribuées au
package SHAP [Lundberg, 2017a], qui est de loin le package d’explicabilité le plus populaire avec
plus de 19 000 étoiles. La figure 1 compare le nombre d’étoiles attribuées au package SHAP
à celles attribuées à d’autres méthodes populaires telles que LIME [Ribeiro, 2016b], imodels
[Singh, 2021], et interpretML [Nori, 2019]. Pour une liste exhaustive des différentes méthodes
d’explicabilité disponibles, vous pouvez consulter le package awesome-explainable-ai.

Figure 1: Nombre d’étoiles du package SHAP [Lundberg, 2017a] par rapport à d’autres méthodes
populaires telles que LIME [Ribeiro, 2016b], imodels [Singh, 2021], interpretML [Nori, 2019].

https://github.com/salimamoukou/acv00
https://github.com/salimamoukou/ACPI
https://github.com/wangyongjie-ntu/Awesome-explainable-AI


Cette tendance a également été confirmée lors de notre collaboration avec le cabinet de conseil
Quantmetry, qui a observé le même phénomène au cours de leurs missions. Cette prédomi-
nance des indices de Shapley a été aussi mise en évidence lors de notre participation au tech-
sprint/hackathon organisé par l’Autorité de Contrôle Prudentiel et de Résolution [ACPR, 2022]
et la Banque de France, un événement où nous avons remporté la première place. L’objectif de
cette compétition était d’expliquer des modèles de risque de crédit. Les participants étaient au
nombre de 52, répartis en 12 équipes: Crédit Mutuel, BNP paribas, Crédit Agricole, Tinubu
square, MAIF, DataRobot, La Banque Postale, Zelros, NukkAI, Stellantis-Quantmetry pour
n’en citer que quelques uns. Le rapport final de la compétition montre que la grande majorité
des équipes participantes ont utilisé les indices de Shapley dans leurs solutions. Cet engouement
de l’industrie pour les indices de Shapley et leur utilisation comme une réponse systématique, a
été l’un des principaux facteurs qui nous ont incités à approfondir notre analyse de ces indices
afin de savoir si leurs utilisation était justifiée en terme de pouvoir explicatif.

Nous nous sommes concentrés sur l’analyse de l’algorithme TreeSHAP [Lundberg, 2020b] -
dédié au calcul des indices de Shapley pour les méthodes à base d’arbre de décision telles que
XGBoost [Chen, 2016] et Random Forest [Breiman, 2001]. Cet intérêt tient au fait que les
modèles d’ensemble d’arbre sont les modèles de référence pour l’analyse des données tabulaires
[Grinsztajn, 2022] et qu’ils sont massivement utilisés en pratique. Le papier original propose
l’algorithme sans toutefois détailler la quantité exacte qui est calculée, ni analyser le comporte-
ment de l’algorithme d’un point de vue théorique. Nous avons donc explicité l’estimateur exact
de cet algorithme, ce qui nous a permis de constater qu’il introduisait un fort biais lorsque les
variables présentaient une dépendance. Pour remédier à cette limitation, nous avons proposé
deux estimateurs moins biaisés, dont l’un permet de réduire considérablement la complexité ex-
ponentielle liée au calcul des indices de Shapley en fonction du nombre de variables. Par ailleurs,
nous avons identifié un autre problème fréquemment rencontré dans la pratique, lié au calcul
des indices de Shapley pour les variables catégorielles. Généralement, les variables catégorielles
sont encodées, ce qui introduit de nouvelles variables. Il était courant de prendre la somme
des indices de Shapley associées à ces nouvelles variables comme approximation de l’indice de
Shapley de la variable catégorielle. Cependant, nous avons démontré que cette pratique était
erronée et nous avons montré comment calculer correctement les indices de Shapley des variables
catégorielles après encodage. Enfin, nous avons soulevé une problématique plus générale qui se
cache derrière tous ces problèmes: la pertinence des indices de Shapley en tant qu’explications
locales.

3.2 Chapitre 3: Please stop using SHAP and LIME as Local Explanations
and use Regional Explanations instead

Ce chapitre constitue une extension directe du précédent, approfondissant notre analyse des
méthodes d’attribution locales, notamment les plus populaires telles que les indices de Shapley
et la méthode LIME [Ribeiro, 2016a]. À travers plusieurs exemples, nous mettons en évidence
les limitations de ces techniques pour donner une explication locale, même dans le cas de fonc-

https://acpr.banque-france.fr/tech-sprint-acpr-sur-la-mutualisation-confidentielle-de-donnees
https://acpr.banque-france.fr/tech-sprint-acpr-sur-la-mutualisation-confidentielle-de-donnees
https://www.quantmetry.com/blog/tech-sprint-acpr-2021-victoire/
https://acpr.banque-france.fr/tech-sprint-sur-lexplicabilite-des-algorithmes-dintelligence-artificielle


tions de régression simples et lorsque les variables sont indépendantes. Face à ces constats, nous
proposons une nouvelle approche pour le problème d’attribution locale. Notre approche consiste
tout d’abord à trouver une partition pertinente de l’espace des entrées, afin de délimiter des ré-
gions spécifiques. Ensuite, nous appliquons des techniques d’attribution globale à chaque région
ainsi définie. Cette approche nous permet de bénéficier de toutes les garanties statistiques offertes
par les méthodes d’attribution globale. En exploitant les avantages des méthodes d’attribution
globale tout en conservant une granularité locale, nous sommes en mesure d’obtenir des résultats
plus fiables et plus robustes lors de l’explication des prédictions spécifiques des modèles.

3.3 Chapitre 4: Consistent Sufficient Explanations and Minimal Local Rules
for explaining regression and classification models

Dans ce chapitre, nous nous efforçons d’aller au-delà des méthodes d’attribution locale, dont la
nature additive limite leur capacité à saisir les interactions. Pour illustrer ce problème, prenons
l’exemple du processus de croissance d’une plante. Pour pousser, une plante a besoin à la fois
d’eau et de soleil. Si elle n’a que l’un des deux éléments, elle ne pourra pas se développer. Il n’est
pas très pertinent d’expliquer ce phénomène en disant que la contribution de l’eau et du soleil
est de moitié chacun, car il y a un effet d’interaction difficile à appréhender avec les attributions.
Ainsi, notre objectif est d’aller au-delà de l’importance d’une variable individuelle et d’être
capable de mesurer simultanément l’importance d’un groupe de variables localement. De plus,
nous souhaitons disposer d’une méthode d’explication basée sur des quantités théoriques bien
définies, contrairement aux approches précédentes telles que les indices de Shapley et LIME.
Dans ce chapitre, nous développons une méthode permettant de trouver et de sélectionner un
sous-ensemble minimal de variables qui maintiennent la décision quelle que soit la variation
des autres variables selon la distribution des données. En guise d’illustration, considérons une
observation (x, y) avec x ∈ Rp, y = 1 issue d’un processus génératif (X, Y ) ∼ PXPY |X , nous
cherchons le sous-ensemble minimal de variables xS , S ⊆ {1, . . . , p} tel que

P(Y = 1 |XS = xS) ≥ π,

avec π une probabilité relativement grande. Cette approche permet l’identification des inter-
actions entre les variables, en determinant le sous-ensemble minimal de variables capable de
maintenir la prédiction. L’algorithme de Random Forest [Breiman, 2001] est au cœur de cette
méthode, car il nous permet d’estimer efficacement les différentes espérances conditionnelles,
tout en nous aidant à trouver plus rapidement ce sous-ensemble de variables importantes. De
plus, nous avons étendu cette approche pour construire des règles explicatives qui décrivent
le comportement du modèle localement. Ces règles sont également déduites à partir du par-
titionnement appris par la Random Forest. Ces approches sont applicables aux problèmes de
régression et de classification.



3.4 Chapitre 5. Rethinking Counterfactual Explanations as Regional and
Local Policies

Ce chapitre est le dual du chapitre précédent où nous utilisons essentiellement la même approche
pour générer des actions contrefactuelles, qui consiste à identifier les changements minimaux des
variables qui permettraient de modifier la prédiction du modèle. Nous débutons en recherchant
le sous-ensemble minimal de variables qui permet de modifier la prédiction, puis nous identifions
les règles de décision locales qui permettent également de modifier la décision. Une fois de
plus, l’algorithme de Random Forest joue un rôle central dans cette méthode, car il permet
d’identifier le sous-ensemble de variables qui influence la décision, ainsi que les règles pertinentes.
De plus, il nous aide à trouver les zones à haute densité, ce qui permet de générer des actions
contrefactuelles plausibles et stables. Notre approche permet aussi de proposer des actions pour
changer directement la vraie sortie Y des observations X.

3.5 Chapitre 6. Adaptive Conformal Prediction By Reweighting Nonconfor-
mity Score

Dans ce chapitre, nous proposons d’améliorer les intervalles prédictifs retournés par la Prédiction
Conforme (PC). Pour un jeu de calibration donné Dn = {(Xi, Yi)}ni=1 et une observation de test
(Xn+1, Yn+1), la PC permet de construire un ensemble Ĉ(Xn+1) à partir de l’observation Xn+1,
un modèle prédictif f̂ et du jeu de calibration Dn qui a un taux de couverture marginal,

PP n+1

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α,

où PP n+1 est la probabilité jointe des n+1 observations (X1, Y1), . . . , (Xn+1, Yn+1). Pour garan-
tir le taux de couverture marginal, la prédiction conforme calcul un terme de correction Q̂

qu’elle ajoute à toutes les prédictions pour construire l’intervalle Ĉ(Xn+1) =
[
f̂(Xn+1) ± Q̂

]
.

Pour améliorer les intervalles prédictifs, nous proposons une technique de pondération qui per-
met d’avoir un terme de correction adaptatif pour chaque instance Ĉ(Xn+1) =

[
f̂(Xn+1) ±

Q̂(Xn+1)
]
, rendant ainsi les intervalles plus adaptatifs tout en gardant les garanties de couver-

ture. Nous nous sommes aussi intéressés à la garantie du taux de couverture conditionnel au
jeu de calibration. En effet, le contrôle du taux de couverture marginal ne correspond pas à la
couverture que nous souhaitons contrôler en pratique, car elle garantie la couverture en utilisant
un jeu de calibration différent pour chaque observation de test, ce qui n’est pas réaliste. En pra-
tique, il est plus intéressant de pouvoir contrôler le taux de couverture en utilisant le même jeu
de calibration pour l’ensemble des observations de test. Nous souhaitons un taux de couverture
qui vérifie la propriété de PAC (Probably Approximately Correct) [Valiant, 1984] suivante

∀α, δ ∈ (0, 1), PP n

{
PP

{
Yn+1 ∈ Ĉ(Xn+1) | Dn

}
≥ 1− α

}
≥ 1− δ.

Nous proposons une étape supplémentaire de calibration afin que les intervalles adaptatifs que
nous proposons vérifient aussi le taux de couverture PAC. La Random Forest est au coeur
de la pondération que nous introduisons. Nous utilisons également les poids de la Random



Forest pour regrouper les instances similaires, ce qui permet d’accélérer le calcul de la cali-
bration et d’améliorer l’adaptabilité des intervalles prédictifs. Pour terminer, nous montrons
qu’asymptotiquement les intervalles de prediction de notre approche vérifient la propriété de
couverture conditionnel suivante

P(Yn+1 ∈ Ĉ(Xn+1) |Xn+1 = xn+1) = 1− α.

3.6 Chapitre 7. Future works

Dans ce chapitre, nous présentons deux travaux en cours. Le premier est une extension du
chapitre 6, dans le but d’apporter davantage de confiance aux modèles de machine learning en
gérant l’incertitude associée aux prédictions. Nous proposons une méthode de prédiction avec
abstention, où le modèle s’abstient de faire une prédiction si l’incertitude est trop élevée. Nous
avons formalisé ce problème comme un problème de tests multiples [Jin, 2022; Bates, 2023], où
nous testons si l’erreur du modèle dépasse un certain seuil. Nous utilisons la prédiction conforme
pour contrôler le taux de faux positifs de manière non asymptotique. Cette approche vise à
améliorer la fiabilité des prédictions en évitant les décisions lorsque l’incertitude du modèle est
trop élevée. La deuxième partie du chapitre consiste à réaliser un croisement entre l’explicabilité
et la prédiction conforme, dans le but d’apporter des garanties statistiques non asymptotiques
aux méthodes d’explicabilité. Nous explorons les possibilités d’intégrer des mesures d’incertitude
basées sur la prédiction conforme dans les techniques d’explicabilité existantes. Un exemple
d’application consiste à utiliser la prédiction conforme pour tester si les contrefactuels générés
sont des outliers.



Chapter 1
State Of The Art

In this chapter, we present a comprehensive review of two pillars of trustworthy
machine learning: Explainable AI and Distribution-Free Uncertainty Quantification.
The first part discusses inherently interpretable methods and post-hoc techniques,
with emphasis on those offering local explanations. We delve into the functionalities
of these models and methods, highlighting their strengths and weaknesses. In the
second part, we give an introduction to conformal prediction, presenting its foun-
dations, limitations, and the latest research trends, offering readers an up-to-date
perspective on the advancements in this field.
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1 Explanaible AI

In this thesis, our primary focus is on local explanations or uncovering the rationale behind
individual predictions. We define explanations as answers to "why-question" and, in particular,
for machine learning models to be able to answer this question:

"Why does the model predict Y given X ?

To provide an answer, we aim to address the following related questions:

1. Which features are important for this specific prediction?

2. Under what conditions does the model favor a certain prediction?

3. Why did the model choose one prediction over another?

Hence, our review is mainly directed toward methods that are appropriate for this purpose.
A more comprehensive review of the literature addressing global explanations can be found in
[Molnar, 2022]. This section begins by exploring interpretable or glass-box models, which offer
direct insights into the prediction process for each instance, then, we present various explanation
methods that can be employed to shed light on predictions generated by black-box models.

1.1 Interpretable models

Let us consider an observation (X, Y ), where X = (X1, . . . , Xp) ∈ X represents the input
variables and Y ∈ Y represents the output variable. These variables are generated from a
process (X, Y ) ∼ PXPY |X . The conditional distribution PY |X can represent either a random
process or a deterministic model f that we aim to explain. In the deterministic scenario, we
have Y = f(X).

In interpretable machine learning, the main idea is to approximate f using a simpler model
that the target audience can easily understand and interpret. This process can be perceived as
distilling [Hinton, 2015; Zhou, 2023; Gou, 2021] a complex model into a simpler one, enabling
us to derive insights into the relationship between input variables and output. [Bénard, 2021a;
Murdoch, 2019] emphasize that interpretable models must satisfy three essential properties:
Simplicity, Stability, and Accuracy. Simplicity can be measured in terms of the number of oper-
ations, variables used, or the simulatability of the interpretable models. Simulatability refers to
the ability of the target audience to internally simulate and reason about the complete prediction
process of the interpretable model. This requirement poses a stringent limitation on the model
and is only feasible when the important features are few and the model’s underlying relationship
is simple. Decision trees are a well-known example of simulatable models. Stability is another
crucial criterion for interpretable methods. Instability often indicates arbitrary inferences and
reduces confidence in the predictions. It is imperative to ensure the model’s stability to draw
reliable statistical conclusions [Yu, 2013]. This can involve assessing whether the prediction
remains consistent under minor input perturbations [Alvarez-Melis, 2018] or slight variations
in the training set [Bousquet, 2002]. Lastly, to ensure the validity of insights derived from the



interpretable model, it is essential that it is accurate and faithfully represents the model it seeks
to elucidate. Otherwise, the extracted information might be inaccurate.

1.1.1 Linear model

The simplest interpretable model is the linear model, which predicts the output of a given
instance x as the sum of the products between the feature values and corresponding coefficients:

f̂(x) =
p∑

j=1
β̂jxj . (1.1)

This additive combination allows for easy separation of individual effects. Nonetheless, to main-
tain interpretability, the linear model should have a limited number of nonzero coefficients to
ensure simplicity. The Lasso penalty [Tibshirani, 1996] can be employed to discover such sparse
linear models. However, sparse linear models are known to be unstable when features have de-
pendencies [Meinshausen, 2010b; Hebiri, 2012], leading to unreliable interpretations. Although
there exist strategies to stabilize sparse linear model [Zou, 2005; Bach, 2008; Meinshausen,
2010b; Lim, 2016; Hastie, 2015], if the target function f cannot be adequately captured by a
linear model, especially in the presence of interactions, then the practical applicability of the
linear model as an interpretable model may be circumscribed.

1.1.2 Generalized Additive Model

The linear model belongs to a more general class of functions called Generalized Additive Models
(GAM) [Hastie, 1987; Stone, 1985a]. GAMs express functions as a sum of univariate functions:

f̂(x) =
p∑

i=1
f̂i(xi),

where originally the f̂j are spline functions [Wahba, 1990], but in a broader sense, they can be
any functions. [Lou, 2013] have improved the predictive power of this model by using tree-based
methods, such as Random Forest or Boosted Trees, as the univariate functions f̂j and including
pairwise interactions:

f̂(x) =
p∑

i=1
f̂i(xi) +

p∑
i,j=1

f̂i,j(xi, xj).

This model, known as the Explainable Boosting Machine (EBM) [Nori, 2019], has demonstrated
performance comparable to state-of-the-art methods for tabular data such as Random Forest
and XGBoost. While this model may initially appear to be a black-box due to the complexity of
the fj functions, its modularity allows for the extraction of local explanations and the ability to
answer question 1, which features are important for this specific decision?, assuming the model is
accurate and stable. For instance, the contribution of xi to the prediction f̂(x) = f̂(x1, . . . , xp)



can be quantified as:

ϕxi = f̂i(xi) +
p∑

j=1
f̂i,j(xi, xj).

However, like multicollinearity in linear models, GAMs can suffer from feature dependencies
known as Concurvity [Buja, 1989; Ramsay, 2003], which is a nonparametric counterpart to
multicollinearity. In essence, if each function fj belongs to a class of functions Fj , such as
splines, boosted trees, or high-order polynomials, Concurvity arises when one variable, say Xp,
can be approximated as a linear combination of the others, as follows:

fp(Xp) ≈
p−1∑
i=1

fi(Xi). (1.2)

Note that the model becomes nonidentifiable if the equality in Equation (1.2) holds exactly.
When Concurvity is present, GAM estimates tend to be highly unstable, resulting in disparate
interpretations depending on the initialization. Some recent works propose variable selection
[Kovács, 2022] or regularization techniques [Siems, 2023] to mitigate these challenges.

1.1.3 Decision Tree

A decision tree is a machine learning algorithm that recursively partitions data into cells with
similar output. The algorithm starts at the root node, considering the entire data set. It
identifies the best feature to split on, according to a specified criterion, such as minimizing
entropy for classification or variance for regression tasks. The data are then divided into two
child nodes. This process is then recursively applied to each child node, resulting in a binary
tree structure until a termination condition is met. The terminal condition can be: all instances
at a node having the same value for the target variable, a node containing fewer instances than a
predetermined threshold, or the tree reaching a predetermined maximum depth. An illustration
of a decision tree is shown in Figure 1.1. The most popular decision trees are CART [Breiman,
1984], ID3 [Quinlan, 1986], C4.5 [Quinlan, 2014], and RIPPER [Cohen, 1995].

Figure 1.1: Illustration of a decision tree as a piece-wise constant model and binary tree [Singh,
2021].



A decision tree offers a highly interpretable model, as every prediction of the tree corresponds
to a specific condition on certain features. This provides a transparent and logical rationale for
each prediction, effectively addressing question 2: under what conditions does the model favor a
particular decision? However, most decision tree algorithms utilize a greedy local optimization
strategy, which tends to result in a suboptimal tree. This process often generates trees with
excess depth, compromising the inherent simplicity that is one of the key advantages of the
method.

Full optimization of decision trees is NP-hard, and a polynomial-time approximation is impos-
sible [Laurent, 1976]. However, some algorithms have been developed recently [Hu, 2019; Lin,
2020] that can discover optimal (or provably near-optimal) decision trees for classification tasks
within a reasonable time. Similar progress has also been made for regression tasks [Zhang, 2022].

1.1.4 Decision Rule

A rule is a simple IF-THEN statement that defines a condition on the input variables and specifies
the corresponding predicted output. For a given output y, and intervals Ri ⊆ R, i = 1, . . . p, a
rule can be defined as

IF X1 ∈ R1 AND X2 ∈ R2 . . . AND Xp ∈ Rp

THEN predict y.

In high-dimensional spaces, to ensure interpretability or simplicity, it is desirable to have a
limited number of active conditions (i.e., small number of intervals Ri that are not equal to R).
Capturing diverse data patterns often requires multiple rules. This raises the question of how
to effectively combine these rules. There are two common approaches: rule lists [Rivest, 1987]
and rule sets [Cohen, 1999]. In a rule list, the rules are ordered. When applying the rules to
an instance, we start with the first rule. If the condition of the first rule holds true, we use its
associated prediction. If not, we move on to the next rule and check if it applies. This sequential
evaluation continues until a matching rule is found or all rules have been exhausted. On the
other hand, a rule set combines multiple rules without a specific order. Each rule in the set
can contribute to the final prediction independently, and the prediction can be determined by
aggregating the individual rule predictions in some manner, such as voting or averaging. As
decision tree, rule-based models address question 2: under what conditions does the model favor
a particular decision?. Figure 1.2 illustrates the difference between a rule set, rule list, and
decision tree (rule tree).

Historically, each rule is learned using a greedy heuristic, where elementary constraints are added
one by one to maximize a given loss function on the training set. A comprehensive review of rule
learning algorithms can be found in [Fürnkranz, 2015]. Another strategy is to extract rules from
decision trees or tree-based ensemble models. One of the most popular rule-based algorithms
are RuleFit [Friedman, 2008] and Node Harvest [Meinshausen, 2010a]. These algorithms extract
rules from tree-based ensembles, treating the activations of these rules as binary variables. Each



Figure 1.2: Difference between rule set, rule list and decision tree (rule tree) [Singh, 2021]
.

variable is assigned a value of 1 if the rule is active and 0 otherwise. These binary variables are
then combined linearly within a sparse linear model using Lasso penalty [Tibshirani, 1996] for
RuleFit and constraint quadratic linear program for NodeHarvest.

However, RuleFit and Node Harvest have displayed certain limitations, such as instability and
a tendency to generate longer rules, which can impede interpretability. To overcome these
challenges, recent advancements have introduced novel approaches. One such approach is SIRUS
[Bénard, 2021c], which extracts rules from small trees utilizing empirical quantiles as split values
to improve stability. Another approach is FIGS [Tan, 2022], which is a generalized version of
the CART algorithm designed to handle additive functions, improving the effectiveness of rule
set methods. In a different direction, [Agarwal, 2022] proposes a post-hoc algorithm known
as "Hierarchical Shrinkage" that improves the predictive performance of any tree-based models
without changing the structure of the trees, instead, it regularizes each leaf’s prediction. The
algorithm replaces the average response over a leaf in the tree with a weighted average of the
mean responses over the leaf and each of its ancestors. Similarly, [Breiman, 1976; Bloniarz, 2016;
Friedberg, 2020; Künzel, 2022] propose fitting a linear model in each leaf to adapt to smooth
signal. A comprehensive list and implementation of rule-based methods can be found in the
package imodels [Singh, 2021].

1.2 Post-hoc explanations

In contrast to the interpretable machine learning framework, which aims to construct a simple
surrogate model of f , post-hoc explanation methods directly operate on the model f itself to
explain specific predictions f(x).

1.2.1 Explaining by vizualisation

The most natural way to analyze the effect of a given feature Xj on the model f(X1, . . . , Xp)
is to plot the function, which allows us to visualize the variation or behavior of the function.
However, visualizing a function becomes challenging when it involves more than three variables.



See this interesting video 1 showing how to represent the fourth dimension. Partial Dependence
Plot (PDP) [Friedman, 2001a] offers a methodology to plot and understand complex functions
with multiple variables. The idea is to plot the marginal expectation of f given Xj = xj , which
can be expressed as:

f̂(xj) = E [f(X−j , xj)] .

However, this method does not account for the dependencies among features. Consequently, this
approach may evaluate the model at potentially unrealistic or impossible points, thus limiting
its reliability. Marginal plots (M plots) [Apley, 2020] are alternatives to PDP that avoid such
extrapolation by using the conditional expectation in place of the marginal expectation. Hence,
plotting the function

f̂(xj) = E [f(X−j , xj) | Xj = xj ] .

Although M plots avoid the extrapolation problem, it faces a limitation in distinguishing the
primary effect of Xj from the effect of variables that depend on Xj . For instance, if f relies on
both X1 and X2, and X1 and X2 are dependent, modifying X1 would influence X2, thereby the
plot of f̂(xj) = E [f(X−j , xj)|Xj = xj ] against xj will reflect both of their effects. Accumulated
local effects (ALE) [Apley, 2020] aims to mitigate the influence of interdependent variables by
averaging the variations of the function f and accumulating them over a grid. By doing so, ALE
allows us to focus on the isolated effect of a particular variable while minimizing the confounding
effects caused by interdependencies. The ALE method utilizes the following function

f̂(xj) =
∫ xj

xmin
E
[

∂f

∂Xj
(X−j , zj) | Xj = zj

]
dzj .

These methods answer question 1: which features are important for this specific prediction?.
Figure 1.3 illustrates the ALE and PD main-effect plots for the variable "feeling temperature" in
a neural network model fitted to predict bike-sharing rental counts [Kaggle, 2015]. The PD plots
shown in Figure 1.3b indicates that the number of bike rentals monotonically increases as the
feeling temperature rises, even at feeling temperatures exceeding 40 degrees Celsius. However,
the ALE plot for feeling temperature shown in Figure 1.3a aligns much better with common
sense, indicating that bike rentals will decrease as the feeling temperature increases beyond
the comfortable range. However, care must be taken when interpreting the curve. It may be
tempting to perceive the curve as representing how the function varies when the other variables
are fixed, and we gradually modify the "feeling temperature" variable. In reality, the ALE
approach first decomposes the support of the variable into bins and calculates the variations of
the function within each bin. It then accumulates the interval-wise effects to create a smooth
curve.

1https://www.youtube.com/watch?v=IbV0UoXXcOY

https://www.youtube.com/watch?v=IbV0UoXXcOY


(a) ALE plots (b) PD plots

Figure 1.3: For the bike-sharing data example with neural network predicted counts for f(x),
ALE main-effect plot (left panel) and PD main-effect plot (right panel) for the variable feeling
temperature. The two plots differ substantially, and the ALE plot seems to agree more with
intuition [Apley, 2020].

[Apley, 2020] has demonstrated that ALE correctly recovers individual feature contributions for
additive functions, regardless of correlation, and for multiplicative functions without uncorre-
lated features. [Grömping, 2020] analyzed the properties of ALE in a simple linear model with
main effects and second-order interactions (f(X) = β1X1 + β2X2 + β3X1X2). He showed that
ALE main-effects plots are unaffected by noninteracting correlated features and interactions
with uncorrelated features. However, the main effect can be influenced by interacting corre-
lated features. [Apley, 2020] considers this as normal, while [Grömping, 2020] sees it as flawed.
Despite this, the main difficulty of this approach lies in the estimation of conditional estimands.

1.2.2 Local Shapley Values

Local Shapley Values [Lundberg, 2017a] is widely recognized as one of the most used local expla-
nation methods, mostly due to its nice implementation [Lundberg, 2017a] and game-theoretical
foundation. It drew inspiration from cooperative game theory [Osborne, 1994], which primarily
deals with the redistribution of contribution within a group. The original idea consists of a set
of players D = {1, . . . , d}, and a value function v : P(D) → R, where P(D) is the set of all
subsets of D, that represents the value of each coalition of players S ∈ P(D). The primary
objective is to determine an allocation strategy for redistributing the total contribution v(D)
among players. A popular allocation method is Shapley Values [Shapley, 1953] that defined the
attribution of each player i ∈ D as

ϕi = 1
d

∑
S⊆D\{i}

(
p− 1
|S|

)−1

[v(S ∪ i)− v(S)] . (1.3)

Intuitively, the SV is the weighted average of the marginal contribution of player i, v(S∪i)−v(S),
across all subsets S ⊆ D \ {i}. Four interesting properties arise from this allocation:



• Efficiency: ∑i∈D ϕi = v(D).

• Dummy: if v(S ∪ i) = v(S) for all S ∈ P(D), then ϕi = 0.

• Symmetric: if v(S ∪ i) = v(S ∪ j) for all S ∈ P(D), then ϕi = ϕj .

• Linearity: if two value function v and v′ yields to Shapley Values ϕi and ϕ′
i, respectively,

then the value function v + v′ yields Shapley Values ϕi + ϕ′
i.

[Shapley, 1953] proved Equation 1.3 is the only allocation method that satisfies these properties.

The framework of Shapley Values has been adapted for global sensitivity analysis, known as
Shapley Effects [Owen, 2014; Song, 2016; Owen, 2017]. In this adaptation, the players are
reinterpreted as the variables X = (X1, . . . , Xp) of a given model f , and v(S) measures the
part of the variance of Y = f(X) caused by the variables XS as v(S) = V(E [Y |XS ])/V(Y ). A
variant of the Shapley Effect, known as SAGE (Shapley Additive Global importancE) [Covert,
2020d], consists of defining v(S) = E[(Y −E[Y |XS ])2]−E[(Y −E[Y |X])2] = E[V(Y |XS)], which
can be interpreted as the drop in prediction accuracy when XS is omitted. By construction,
Shapley Effects sum to one and are positive since the value function is increasing, i.e., A ⊆
B, v(A) ≤ v(B). Consequently, Shapley Effects provides a valuable alternative to traditional
functional ANOVA decomposition [Hoeffding, 1948] or Sobol’s indices [Sobol, 1990; Chastaing,
2012], particularly when features are dependent [Owen, 2017]. It equally distributes the mutual
contribution of each subset, accounting for dependencies and interactions, to each individual
variable within the subset. Shapley Effects answer to question 1: which features are important
for this specific prediction?.

However, Shapley Effects can suffer from one main drawback: if exogenous inputs (i.e., not
used by the model f) are sufficiently correlated with endogenous inputs, their SV can be non-
zero [Herin, 2022; Verdinelli, 2023]. To address this issue, recent allocation methods have been
developed to resolve the non-zero Shapley Effects problem caused by correlated exogenous inputs.
This approach, known as Proportional Marginal Effects, was first introduced by [Feldman, 2005],
and has been further developed by [Herin, 2022] for global sensitivity analysis.

In this thesis, we are particularly interested in local explanations. To cater to this need, [Lund-
berg, 2017a] proposed an adaptation of Shapley Effects for local explanations by considering the
conditional expectation as value function v(S) = E [f(X)|XS = xS ]. We called the correspond-
ing attribution as Local Shapley Values. These Shapley Values encounter the same issue as the
Shapley Effects - they cannot discern exogenous variables to the models. Consequently, some
studies [Heskes, 2020; Janzing, 2020; Chen, 2020] advocate the use of marginal expectation as a
value function, expressed as v(S) = E[f(xS , X S̄)]. This variant of Shapley Values assigns zero
attribution to the exogenous variables but at the risk of depending on unreliable predictions as
the model’s predictions are based on improbable or impossible observations. Another significant
challenge posed by Shapley Values is its computational complexity, which increases exponentially
with the number of variables (2d), as well as the approximation of the conditional expectation.
The issue of computational complexity is commonly addressed through sampling among the pow-



erset P(D) [Covert, 2020c; Williamson, 2020; Song, 2016]. Recently, an importance-sampling
approach leveraging Random Forest to identify the most significant subsets has been proposed
[Bénard, 2021b]. The approximation of the conditional expectation is tackled by employing
machine learning models to learn the conditional expectation [Covert, 2020c; Williamson, 2020],
or by using parametric distribution such as Gaussian distribution [Aas, 2020] or vine-copula
[Aas, 2021] to approximate the features’ distribution. Notably, for tree-based models, polyno-
mial algorithms with simplified expressions of the conditional expectation have been introduced
[Amoukou, 2021b; Lundberg, 2020b]. Despite the increasing popularity of Local Shapley Val-
ues, as depicted in Figure 1, we have demonstrated in Chapters 2 and 3 that they suffer from
several limitations. These include estimation issues and reliability in identifying local important
variables.

1.2.3 LIME

Another popular method is Local Interpretable Model-Agnostic Explanations (LIME) [Ribeiro,
2016a]. The core idea is to construct a linear model in the vicinity of each instance and utilize
the corresponding linear model coefficients as local explanations. Given an instance x and model
f , the local explanation ξ(x⋆) is a model g ∈ G where G is the set of linear models such that

ξ(x⋆) = arg min
g∈G
L(f, g, πh

x⋆) + Ω(g), (1.4)

where L(f, g, πh
x⋆) measure of how unfaithful g is in approximating f over πh

x⋆ , a measure of
locality around x⋆ with width h, and Ω(g) is a measure of complexity of the local model g. The
loss L is defined as

L(f, g, πh
x⋆) =

∑
x′∼P ′

(
f(x′)− g(x′)

)2
πh

x⋆(x′),

In the original implementation, πh
x⋆ is a Gaussian kernel, and the sum is done over samples x′

drawn from the marginal distribution P ′ = ∏d
i=1 PXi , where PXi denotes the marginal distribu-

tion of the individual feature Xi. LIME answer to question 1: which features are important for
this specific prediction?

While the idea behind LIME is appealing, the method faces several technical difficulties. One
primary challenge is the lack of a clear guideline for defining the neighborhood πh

x⋆ or tuning
the kernel width h. Each choice of kernel width may yield different explanations, and we have
no idea about how to optimize it as we don’t know the ground truth local important variables.
Moreover, [Garreau, 2020] have highlighted the impact of poor parametrization on the effec-
tiveness of LIME. Their theoretical analysis on a linear model revealed that LIME’s coefficient
is directly proportional to the partial derivatives. Intriguingly, by changing a parameter of the
method, it is possible to cause the coefficient of important features to vanish. This emphasizes
the vulnerability of LIME to parameter settings, particularly given that we lack systematic
strategies for their selection. In addition to the aforementioned challenges, LIME exhibits sta-



bility issues as highlighted by [Alvarez-Melis, 2018]. Their work demonstrates that even very
close observations can have completely different explanations, which raises concerns about the
reliability and consistency of the method. In Chapter 3, we delve deeper into these limitations
and explore the technical difficulties associated with LIME.

1.2.4 Anchors

Similar to LIME, Anchors [Ribeiro, 2018] aims to construct an interpretable model that is locally
valid around an instance, specifically in the form of a rule. Let’s define a rule as a pair (AS , y)
where AS = [a1, b1] × · · · × [a|S|, b|S|] is a hyperrectangle that represents the conditions of the
rule on variables XS , S ⊆ {1, . . . , p}, ai, bi ∈ R̄ for all i ∈ {1, . . . , p} and y is the output of the
rule. Given an instance x, the explanation ξ(x) of the prediction f(x) is a rule (AS , f(x)) such
that xS ∈ AS and

EQS

[
1f(x)=f(X)

]
≥ τ.

where τ ∈ (0, 1) and the probability is taken under the distribution QS , which typically repre-
sents the marginal distribution of the features XS such that XS ∈ AS or QS ∝

∏p
i=1 PXi1XS∈AS

.
The intuition behind is to find a minimal set of conditions or rules satisfied by the instance x

as well as by its neighboring observations having the same output as f(x). Anchors aims to an-
swer question 2: under what conditions does the model favor a certain prediction?. The biggest
challenge here is the learning of the rule (AS , f(x)) while minimizing |S| for simplicity and en-
suring that the rule contains enough observation to be meaningful. The exact solution to this
problem is intractable. Anchors propose a heuristic strategy using beam search to construct
the rules and a multi-armed bandit approach for exploration. However, this method has sev-
eral limitations. For instance, it requires discretizing variables, which can lead to poor results
depending on the number of bins. It evaluates the model on impossible data to find the rule.
Additionally, as LIME, the method is quite unstable due to the numerous hyperparameters in-
volved in the approach. Nonetheless, [Lopardo, 2023] provide a theoretical analysis of Anchors
for text classification. Their analysis assumes an exhaustive search for the best subset S and a
linear or rule-based predictive model f . Anchors demonstrates meaningful results under these
assumptions. Notably, they show that if a word is not utilized by the classifier, it will not be
included in the subset S.

1.2.5 Counterfactual Explanations

Counterfactual Explanations (CE), also known as Algorithmic Recourse, have emerged as a
concept within the explainable AI community, drawing inspiration from the notion of adversarial
examples [Goodfellow, 2014]. A counterfactual explanation of a prediction describes the smallest
change to the feature values that changes the prediction to a predefined output [Wachter, 2017].
This approach is motivated by the observation that human explanations are often contrastive
in nature. In many cases, what we seek to understand is not the complete set of causes or
explanations for a given event, but rather why that event occurred instead of an alternative



event [Miller, 2019]. For instance, if someone wants to understand why his loan application was
rejected and how he can improve his chances of getting a loan, the question of "why" can be
formulated as a counterfactual scenario: what is the minimum change to his income, number
of credit cards, and other relevant features that would change the prediction from rejection to
approval. The counterfactual action or recourse could be that the loan would have been accepted
if his annual income were 10, 000 higher.

This notion of counterfactual reasoning is also relevant in the field of causality. Lewis [Lewis,
1973] argues that causation can be understood in relation to an imagined counterfactual scenario.
Event C is considered to have caused event E, if, in a hypothetical counterfactual case where
event C did not occur, event E would not have occurred either. This counterfactual reasoning
provides insights into causal relationships and helps us understand the influence of specific factors
on the outcome. In summary, counterfactual explanations capture the idea of minimal feature
changes required to achieve a different prediction outcome.

For instance, consider a binary classifier f : X → {0, 1} and an instance x ∈ X where f(x) = 0.
The objective of counterfactual explanation is to find an action a often called recourse that
alters the prediction to f(x + a) = 1, while minimizing a cost function c(a|x). This can be
formulated as follows:

min
a

c(a | x) subject to f(x + a) = 1

The cost function c may include terms such as ∥a∥, ensuring the changes are minimal, and
a function that ensures the resulting observation x + a remains plausible or satisfies domain-
specific constraints. Most CE methods depend on gradient-based algorithms or heuristic ap-
proaches [Karimi, 2020b] and are only available for classification. However, there have been
recent attempts to extend counterfactual explanations to regression problems [Spooner, 2021].
Counterfactual explanations aims to answer question 3: why did the model choose one decision
over another?.

This method faces several challenges. One of the challenges is the high number of possible
actions that can change the prediction that compromises the intelligibility or simplicity of the
resulting explanations, and the synthesis of various recourses or local explanations, in general,
remains an unsolved challenge [Lakkaraju, 2022]. Ensuring the plausibility of counterfactual
samples x + a is another active area of research. One approach to encourage plausibility is by
incorporating constraints based on outlier scores into the optimization process. This can be done
using techniques such as Local Outlier Factor [Kanamori, 2020], Isolation Forest [Parmentier,
2021], or density-weighted metrics [Poyiadzi, 2019]. Another line of research involves leveraging
causal knowledge about the variables and directly intervening on the variables that influence the
output Y to generate realistic samples [Kusner, 2017; Joshi, 2019; Mahajan, 2019; Karimi, 2021].
This approach utilizes Pearl’s causal modeling [Pearl, 2009], employing a structural causal model
(SCM) M = ⟨F, X, U⟩. The SCM consists of endogenous variables X ∈ X , exogenous variables
U ∈ U , and a sequence of structural equations F : U → X that specify how X is determined



from U. The SCM can be represented as a directed graphical model G, as shown in Figure 1.4

Figure 1.4: Illustration of an example of causal generative process governing the data, showing
both the graphical model G and the structural causal model M [Karimi, 2021].

From a causal perspective, actions can be carried out using Pearl’s do-operator [Pearl, 1994;
Pearl, 2000], which enforces a change in a set of variables while keeping the rest of the causal
mechanism untouched, resulting in realistic counterfactuals. However, this approach is often
impractical as it relies on knowing the causal graph, and structural equations, which is not
feasible in many real-world applications. To address this challenge, [Black, 2020; De Lara,
2021] propose substituting causality-based counterfactual reasoning with optimal transport. In
this approach, the counterfactual action is characterized as a coupling between two observable
distributions. To better illustrate this concept, let’s consider a binary classification problem.
Suppose we aim to find an action that changes the prediction Y = 0 of a given observation to
Y = 1. This can be framed as finding a mapping from the original observation to the most
similar observation in the set of observations where Y = 1.

Recently, [Ustun, 2019b; Barocas, 2020; König, 2021; König, 2023] have underscored the po-
tential risks associated with the traditional approach to generating counterfactual actions in
real-world contexts. The classic approach, introduced by [Wachter, 2017], is framed as an
optimization problem. It seeks an action a capable of changing the prediction for a specific
observation. Consider a binary classifier f̂(x) ∈ {0, 1} developed to predict whether a candidate
will default on their loan payment, using historical data {(Xi, Yi)}ni=1. Here, Xi denotes the
characteristics of a candidate, and Yi ∈ {0, 1} represents the true label indicating whether the
observation defaults or not. The action a proposed by the traditional counterfactual explanation
approach could potentially modify the model’s prediction without actually affecting the true la-
bel Y of the resulting observation x + a. Indeed, the fitted model f̂ may exploit not only the
direct cause of Y , but also the associated variable. Consequently, algorithmic recourse actions
suggested by the model may encourage the gaming of the predictor by intervening on non-causal
variables, thereby altering the prediction without genuinely changing the true label Y . In re-
sponse to this issue, [König, 2021; König, 2023] leverages on causal knowledge of variables to
suggest actions that can concurrently alter both the model’s prediction and the true label.

[Pawelczyk, 2022] highlights a new problem of CE called: noisy responses to prescribed recourses.
In real-world scenarios, some individuals may not be able to implement exactly the prescribed
recourses, and they show that most CE methods fail in this noisy environment. In Chapter 5,
we propose a solution to these problems.



2 Distribution-Free Predictive Inference

In statistics and machine learning, we typically rely on models and algorithms that are valid
under certain assumptions, such as parametric model, smoothness, sparsity, or gaussian residuals
of the data generating process. However, these assumptions may not always hold in real-world
scenarios. In this case, can we trust the output of these algorithms? Moreover, when we attempt
to check the assumptions through statistical tests, very often these tests only detect violations
under other assumptions. To address this concern, distribution-free inference aims to provide
guarantees that are valid universally over all data distributions.

Distribution-free inference encompasses various inference questions. This includes prediction,
where we seek to determine the range within which the unobserved response variable Y is
expected to lie. Other questions involve testing for independence between X and Y given
specific confounders Z or constructing a confidence interval for the conditional distribution of
E[Y |X]. The last two tasks are known to be impossible if X is continuous [Barber, 2020; Shah,
2018] without imposing assumptions on the underlying distribution or straightforward if X is
discrete with bounded values [Lee, 2021]. In this thesis, we are interested in prediction inference.

The setting is the following:

• We start with a training dataDm := {(Xi, Yi)}mi=1 drawn from a distribution P = PXPY |X .

• An algorithm A that takes the training data and return a model A(Dm) = µ̂, defined as

A : ∪m≥0(X × Y)m 7→ {measurable functions µ̂ : X → Y},

where µ̂(x) can be an estimator of the conditional expectation E[Y |X = x] or any quan-
tities related to Y |X = x including the conditional quantile or conditional density (in the
latter, A maps the data to real-valued function). The algorithm A is assumed to treat
training data points symmetrically, i.e.,

A
(
(Xπ(1), Yπ(1)), . . . , (Xπ(m), Yπ(m))

)
= A ((X1, Y1), . . . , (Xm, Ym)) ,

for all m ≥ 1 and any permutation π : {1, . . . , m} 7→ {1, . . . , m}.

• We are given a test point with an unseen output (X, Y ) also drawn from P

• We aim at constructing a Predictive Interval Ĉ(X) such that

P
{

Y ∈ Ĉ(X)
}
≥ 1− α for a given α.

• This guarantee should hold for any distribution P and any predictive algorithm A or model
µ̂ with finite-sample or non-asymptotically.



Conformal Prediction (CP) offers a principled approach to address the prediction problem, allow-
ing the construction of predictive intervals, which have finite-sample valid coverage guarantees
regardless of the underlying data distribution P and choice of the predictive algorithm A, under
the mild assumptions of exchangeability. Recent developments have extended the scope of CP
beyond exchangeability [Tibshirani, 2019; Barber, 2022; Gibbs, 2021; Zaffran, 2022b], and also
for non-symmetric algorithm A [Barber, 2022]. Conformal Prediction was initially introduced
by Vladimir Vovk and his collaborators Alexander Gammerman, Vladimir Vapnik, and others
between 1996-1999 [Gammerman, 1998; Saunders, 1999; Vovk, 1999]. It gained significant at-
tention and popularity due to the pioneering work by Jing Lei, Larry Wasserman, and their
colleagues [Lei, 2011; Lei, 2013; Póczos, 2013; Lei, 2016]. Since then, it has experienced a
surge in popularity, thanks to the remarkable contributions of prominent researchers such as
Rina Barber, Emmanuel Candès, Aaditya Ramdas, Ryan Tibshirani, Anastasios Angelopoulos,
Stephen Bates, Michael I. Jordan, Yaniv Romano, and numerous others [Angelopoulos, 2021a].

2.1 Foundations of Conformal Prediction

Conformal Prediction methods can be broadly divided into two categories: those that involve
retraining the model multiple times, such as full conformal [Vovk, 2005] or jackknife methods
[Barber, 2021], and those that use sample splitting, known as split conformal methods [Pa-
padopoulos, 2002; Lei, 2016]. The latter is more computationally feasible at the cost of splitting
the data. As a result, split conformal approaches are the most used due to their practicality.
In order to provide a simple introduction, we only present the split-conformal approach, as it is
easier to understand.

Let’s assume we have a calibration data set Dn = {(Xi, Yi)}ni=1, and a training set Dm =
{(Xi, Yi)}mi=1 used by algorithm A to generate a model µ̂ = A(Dm). The primary goal of CP
is to construct a predictive set Ĉ(·) that covers the unseen output Yn+1 given a new test input
Xn+1 satisfying the marginal coverage guarantees:

PP n+1

{
Xn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α, (1.5)

where the probability PP n+1 is taken under the joint distribution of the n+1 observations, which
corresponds to the calibration data and the test observation. α is a predefined miscoverage rate.

In this section, we first define and discuss some properties of exchangeable random variables,
which form the foundation of the Conformal Prediction framework. Next, we introduce the
Quantile Lemma [Vovk, 2005; Lei, 2016; Tibshirani, 2019], a crucial component that enables
the finite-sample marginal coverage guarantees of the Prediction Intervals (PI). Subsequently,
we introduce the split-conformal approach. We provide proofs for each result presented in this
section, to provide readers with a comprehensive presentation of Conformal Prediction. These
proofs are detailed versions of the succinct proofs found in [Tibshirani, 2019; Kuchibhotla, 2020].
Lastly, we delve into strategies for adapting the PI given by CP to address various contexts,
such as handling heteroscedastic data or classification problems.



Definition 2.1 (Exchangeability). A sequence of random variables Z1, . . . , Zn ∈ Z are ex-
changeable, if and only if, for any permutation π : {1, . . . , n} → {1, . . . , n}, and every measurable
set E ⊆ Zn, we have

PP n {(Z1, . . . , Zn) ∈ E} = PP n

{
(Zπ(1), . . . , Zπ(n)) ∈ E

}
. (1.6)

In other words, it means that (Z1, . . . , Zn) and (Zπ(1), . . . , Zπ(n)) have the same joint distribution
for any permutation π. It’s worth noting that if the variables are independent and identically
distributed (i.i.d.), then they are necessarily exchangeable, which further implies that they are
identically distributed.

A key consequence of exchangeability for real-valued random variables is that the ranks of
Z1, ..., Zn are uniformly distributed on {1, 2, ..., n}. This is crucial in proving the validity of the
PI given by CP.

Lemma 2.2. Let Z1, . . . , Zn ∈ Z be exchangeable random variables with no ties almost surely,
then their rank are uniformly distributed on {1, . . . , n}. The law of the ranks Rank(Zi) = Ri are

PP n(Ri = 1) = · · · = PP n(Ri = n) = 1
n

, for all i ∈ {1, . . . , n}. (1.7)

Proof. We denote Sn as the set of possible permutations on {1, . . . , n} and consider the set
Eπ = {(z1, . . . , zn) ∈ Zn : zπ(1) ≤ · · · ≤ zπ(n)} for π ∈ Sn. By construction, the sets Eπ are
disjoints and ∪π∈SnEπ = Zn, then we have

1 = PP n {∪π∈Sn {(Z1, . . . , Zn) ∈ Eπ}} =
∑

π∈Sn

PP n {(Z1, . . . , Zn) ∈ Eπ}

=
∑

π∈Sn

PP n

{
Zπ(1) ≤ · · · ≤ Zπ(n)

}
=
∑

π∈Sn

PP n {Z1 ≤ · · · ≤ Zn} .

Hence, for any permutation π : {1, . . . , n} → {1, . . . , n} we have

PP n

{
Zπ(1) ≤ · · · ≤ Zπ(n)

}
= PP n {Z1 ≤ · · · ≤ Zn} = 1

n! .

For all i, j ∈ {1, . . . , n}, the event {Ri = j} is equal to ⋃π:π(j)=i

{
Zπ(1) ≤ · · · ≤ Zπ(n)

}
, thereby

we have

PP n (Ri = j) =
∑

π:π(j)=i

PP n

{
Zπ(1) ≤ · · · ≤ Zπ(n)

}

= (n− 1)!
n!

= 1
n



The basic idea behind the theory of conformal prediction is the following simple result about
sample quantiles, often called quantile lemma. This lemma is the cornerstone of the proof of
the marginal coverage (Eq. 1.5) of the CP prediction intervals.

Lemma 2.3 (Quantile lemma [Vovk, 2005; Lei, 2016; Tibshirani, 2019]). If Z1, . . . , Zn+1 ∈ Z
are exchangeable random variables with no ties almost surely, then for all α ∈ (0, 1)

α ≤ PP n+1

{
Zn+1 ≤ Q

(
α; 1

n + 1

n∑
i=1

δZi + 1
n + 1δ+∞

)}
≤ α + 1

n + 1 , (1.8)

where Q(α; F ) represents the α−quantile of the distribution F .

Proof. Given a discrete distribution F = 1
n

∑n
i=1 δzi , with zi ∈ Z, i = 1, . . . , n, let us define

q = Q(α; F ) = z(⌈αn⌉). Notably, even if we change all values zi > q to arbitrary values strictly
larger than q, yielding a new distribution F̃ , we still have Q(α; F ) = Q(α; F̃ ). Using this fact,
we have

Zn+1 ≤ Q
(

α; 1
n + 1

n∑
i=1

δZi + 1
n + 1δZn+1

)
⇐⇒ Zn+1 ≤ Q

(
α; 1

n + 1

n∑
i=1

δZi + 1
n + 1δ+∞

)
.

In addition, we have

Zn+1 ≤ Q(α; 1
n + 1

n∑
i=1

δZi + 1
n + 1δZn+1)

⇐⇒ Zn+1 is among the ⌈α(n + 1)⌉-smallest of Z1, . . . , Zn+1.

By exchangeability of (Z1, . . . , Zn+1), Lemma 2.2 gives that Rank(Zn+1) = Rn+1 ∼ U{1, n + 1},

PP n+1

{
Zn+1 ≤ Q(α; 1

n + 1

n∑
i=1

δZi + 1
n + 1δ+∞)

}

= PP n+1

{
Zn+1 ≤ Q(α; 1

n + 1

n∑
i=1

δZi + 1
n + 1δZn+1)

}

=
⌈α(n+1)⌉∑

i=1
PP n+1 {Rn+1 = i}

= ⌈α(n + 1)⌉
n + 1

We conclude using a simple inequality of the ceiling function: α ≤ ⌈α(n+1)⌉
n+1 ≤ α + 1

n+1 .

Using this lemma as a foundation, we can now introduce one of the most popular methods
in conformal prediction, known as the split-conformal. Given a trained model µ̂ = A(Dm)
using algorithm A and training data Dm, we assume the availability of a calibration dataset
Dn = {(Xi, Yi)}ni=1 drawn exchangeably from P . We then compute the residuals of the model
on the calibration set, denoted as V1 = |Y1 − µ̂(X1)|, . . . , Vn = |Yn − µ̂(Xn)|.



The split-conformal method defines the Predictive Interval (PI) for the test point (Xn+1, Yn+1)
at level 1− α as follows:

Ĉ(Xn+1) =
{

y : |y − µ̂(Xn+1)| ≤ Q
(

1− α; 1
n + 1

n∑
i=1

δVi + 1
n + 1δ+∞

)}
. (1.9)

This predictive interval guarantees exact coverage in finite-sample, meaning that:

1− α ≤ PP n+1

{
Yn+1 ∈ Ĉ(Xn+1)

}
≤ 1− α + 1

n + 1 ,

where PP n+1 denotes that the probability is taken over the n+1 observations (X1, Y1), . . . , (Xn+1, Yn+1).
Indeed, we have:

Yn+1 ∈ Ĉ(Xn+1) ⇐⇒ Vn+1 ≤ Q
(

1− α; 1
n + 1

n∑
i=1

δVi + 1
n + 1δ+∞

)
(1.10)

As (X1, Y1), . . . , (Xn+1, Yn+1) are exchangeable, so are V1, . . . , Vn+1 and Lemma 2.3 gives the
result.

Above, we use the absolute residuals V (X, Y ) = |Y − µ̂(X)| in the construction of the PI.
However, we can generalize to any score function V , where larger scores V (X, Y ) encode worse
agreement between µ̂(X) and Y . V is usually called nonconformity or conformity score and
represents the error of the model on (X, Y ). Consequently, Ĉ can be defined as follows:

Ĉ(Xn+1) =
{

y : V (Xn+1, y) ≤ Q
(

1− α;
n∑

i=1

1
n + 1δV (Xi,Yi) + 1

n + 1δ+∞

)}
. (1.11)

Theorem 2.4 ([Vovk, 2005; Lei, 2016]). Assume that (X1, Y1), . . . , (Xn+1, Yn+1) are exchange-
able with no ties. For any nonconformity score V , and any α ∈ (0, 1), the PI defined in (1.11)
satisfies

1− α ≤ PP n+1

{
Yn+1 ∈ Ĉ(Xn+1)

}
≤ 1− α + 1

n + 1 . (1.12)

The strength of Theorem 2.4 lies in its guarantees of the finite-sample coverage 1 − α for any
nonconformity score function V , any model µ̂, any miscoverage rate α ∈ (0, 1), and any dataset
under the mild assumption of exchangeability. While being true for any nonconformity score
V , it is crucial to carefully select the nonconformity score, as it directly impacts the quality of
the predictive intervals. PIs that are overly large or vary weakly with the input, particularly
in the presence of heteroscedasticity, are not practically useful. To address heteroscedastic
data, we present two approaches: Conformalized Quantile Regression (CQR) [Romano, 2019]
and Locally-Weighted CP [Lei, 2016; Papadopoulos, 2008]. These approaches utilize different
nonconformity scores to handle heteroscedasticity. Additionally, we introduce an approach that
applies the split-conformal technique to classification problems. Instead of predictive intervals,
this approach generates predictive sets that consist of the most likely labels.



1. If the noise varies with X, e.g., Y = µ(X) + ϵ(X), where ϵ(X) represents heteroscedastic
noise and µ is the regression function, employing the absolute residuals V (Xi, Yi) = |µ̂(Xi)−Yi|
might not be optimal as it yields constant interval widths. To have varying interval widths, we
can scale the residuals inversely by an estimated error [Lei, 2016; Papadopoulos, 2008] as:

V (x, y) = |y − µ̂(x)|
σ̂(x) where σ̂ is an estimator of the error of the model µ̂

=⇒ Ĉ(Xn+1) = [µ̂(Xn+1)− σ̂(Xn+1) · Q(1− α; Fn); µ̂(Xn+1) + σ̂(Xn+1) · Q(1− α; Fn)] .

To simplify the notation, we represent the empirical distribution of the nonconformity scores
of the calibration data as Fn = ∑n

i=1
1

n+1δV (Xi,Yi) + 1
n+1δ+∞. In Figure 1.5, we compare the

intervals return by the absolute and rescaled residuals.

Figure 1.5: Comparison of interval lengths for absolute residuals V (x, y) = |y− µ̂(x)| (left panel)
and rescaled residuals V (x, y) = |y−µ̂(x)|

σ̂(x) (right panel).

2. If the shape of the distribution of Y |X changes with X, then centering Ĉ(Xn+1) at µ̂(Xn+1)
might not be the optimal strategy. Rather than approximating the conditional mean with µ̂(x) ≈
E[Y |X = x], we can employ quantile regression to estimate conditional quantiles q̂α/2(x) ≈
Q(α

2 ; FY |X=x) and q̂1−α/2(x) ≈ Q(1− α
2 ; FY |X=x) and use the following nonconformity score:

V (x, y) = max{q̂α/2(x)− y; y − q̂1−α/2(x)}
=⇒ Ĉ(Xn+1) =

[
q̂α/2(Xn+1)−Q(1− α; Fn); q̂1−α/2(Xn+1) +Q(1− α; Fn)

]
.

This approach is called Conformalized Quantile Regression (CQR) [Romano, 2019]. Figure 1.6
compares the interval of CQR with the absolute residuals.

Figure 1.6: Comparison of interval lengths for absolute residuals V (x, y) = |y− µ̂(x)| (left panel)
and quantile residuals V (x, y) = max{q̂α/2(x)− y; y − q̂1−α/2} (right panel) [Romano, 2019]



3. In the case where Y is discrete, consider a classification problem with X ∈ X , Y ∈ {1, . . . , k}.
Let µ̂ : X → [0, 1]k be a probabilistic predictive model, where µ̂(x)k ≈ P (Y = k|X = x). A
simple nonconformity score is

V (X, Y ) = 1− µ(X)Y =⇒ Ĉ(Xn+1) =
{
y : V (Xn+1, y) ≥ Q(1− α; Fn)

}
. (1.13)

This method is called LABEL [Sadinle, 2019], and Figure 1.7 shows an example of the predictive
sets on the ImageNet dataset [Deng, 2009]. This method generally results in small prediction
sets, but it tends to produce empty ones when the model is uncertain. Alternative nonconformity
scores have been proposed for binary and multilabel classification problems, including Top-K
[Angelopoulos, 2020], and Adaptive Predictions Sets [Romano, 2020b; Angelopoulos, 2020].

Figure 1.7: Predictive sets’s size reflecting the level of uncertainty [Angelopoulos, 2021a]

Besides the choice of the nonconformity score to enhance the predictive intervals, a natural
question is whether it is possible to enhance the statistical efficiency by using a single dataset
for both training and calibrating the model, instead of using two separate datasets as with split-
conformal. In fact, the first conformal prediction method introduced by [Vovk, 2005] uses a single
dataset. While this method guarantees finite-sample marginal coverage, it has a high computa-
tional cost. Specifically, a different model needs to be trained for each possible value of Yn+1 = y.
This computational burden limits the scalability and practicality of the method. However, in-
termediate solutions have been proposed to mitigate this issue by employing a leave-one-out
approach, such as jackknife+ and K-fold cross-validation [Barber, 2019a]. These approaches
strike a balance between computational and statistical efficiency.

To summarize, given any trained model µ̂ = A(Dm) and calibration data Dn = {(Xi, Yi)}ni=1,
the outline of the split-conformal approach is

1. Define a nonconformity score V (X, Y ), where larger scores encode worse agreement be-
tween µ̂(X) and Y .

2. Set q̂ as the ⌈(1 − α)(n + 1)⌉-largest calibration score among V1 = V (X1, Y1), . . . , Vn =
V (Xn, Yn)

3. Use the quantile q̂ to form the prediction sets given Xn+1 as

Ĉ(Xn+1) = {y : V (Xn+1, y) ≤ q̂} . (1.14)



2.2 Limitations of Conformal Prediction

While conformal prediction offers marginal coverage guarantees, it is important to acknowledge
three main limitations of the current CP framework:

1. The guarantee is on average over the calibration and test point.

2. The guarantee is on average over the test point Xn+1.

3. The assumption of exchangeability.

The guarantee is on average over the calibration and test point. In practical applica-
tions, what is of interest is the coverage rate on future test points based on a given calibration
set. The marginal coverage guarantee does not directly address this concern. Instead, it bounds
the coverage rate on average over all possible sets of calibration and test observations.

To address this limitation, the concept of training-conditional coverage has been introduced
[Vovk, 2012]. It ensures that with probability 1−δ over the calibration samples Dn, the resulting
coverage on future test observation is still above 1− α. Formally,

PP n

{
PP

{
Yn+1 ∈ Ĉ(Xn+1) | Dn

}
≥ 1− α

}
≥ 1− δ.

This style of guarantee is also known as “Probably Approximately Correct” (PAC) predictive
interval [Valiant, 1984]. The roots of this type of guarantee can be traced back to the earlier
works of [Wilks, 1941; Wald, 1943]. Despite the importance of training-conditional coverage
in practice, only a few methods have been proven to achieve it. [Vovk, 2012] was the first to
establish this result for split conformal methods, and recently [Bian, 2022] has shown that the
K-fold CV+ method also achieves it. However, no analogous results are currently known for
other CP methods, such as jackknife+ [Barber, 2021] and full-conformal [Vovk, 2005].

The guarantee is on average over the test point Xn+1. The marginal guarantee of CP
ensures coverage on average over the test points, but it does not guarantee coverage for each
specific observation. Formally, we say that Ĉ satisfies distribution-free conditional coverage at
level 1− α, if

P(Yn+1 ∈ Ĉ(Xn+1) |Xn+1 = x) ≥ 1− α, for all P = PXPY |X and almost all x, (1.15)

where for a given distribution P = PXPY |X , we write "almost all x" to mean that the set of
point x ∈ X where the bound is not true have a measure of zero under PX .

This can lead to unequal coverage rate across different communities of the data, raising fairness
issues [Romano, 2020a]. However, obtaining nontrivial distribution-free conditional coverage
(Equation 1.15) is proven to be impossible with a finite sample [Lei, 2014b; Vovk, 2012; Barber,
2019b].



Theorem 2.5 ([Lei, 2014b; Vovk, 2012; Barber, 2019b]). Let’s denote λ the Lebesgue measure,
and suppose Ĉ satisfies Equation (1.15), then for all distribution P ,

E[λ(Ĉ(x))] = +∞

at almost all nonatomic points x of PX .

Theorem 2.5 demonstrates that unless the predictive intervals produced by Ĉ have infinite
expected length under all non-discrete distributions P , it is not possible for Ĉ to satisfy Eq.
(1.15).

Despite this impossibility result, some approximate solutions have been proposed [Lei, 2014a;
Vovk, 2012; Barber, 2019b; Guan, 2022; Amoukou, 2023]. For example, one approach involves
finding a relevant partition X = ∪K

i=1Xi. For each group k, data points {(Xi, Yi) : Xi ∈ Xk} are
exchangeable, allowing the conformal prediction method to be applied separately to each group.

The assumption of exchangeability. In real-world scenarios, the assumption of exchange-
ability may not hold. Violation of these assumptions includes covariate shift, label shift, and time
series. Covariate shift refers to situations where the marginal distribution of the input variable
X differs between the calibration P cali and test data P test, while the conditional distribution
Y |X remains the same:

P cali = P cali
X × PY |X , P test = P test

X × PY |X . (1.16)

Covariate shift can occur when certain subpopulations are over or underrepresented in the
calibration data. If the shift w(x) such that dP test

X ∝ w(x)× dP cali
X is known or approximated,

we can still have marginal guarantee using a weighted version of the quantile lemma [Tibshirani,
2019; Hu, 2020]. A similar approach can be applied to address label shift [Podkopaev, 2021],
where the marginal distribution of the output variable Y differs between calibration and test
data, i.e., P cali = P cali

Y × PX|Y , P test = P test
Y × PX|Y .

The case of distribution shift, as encountered in time series data, is still an active area of re-
search. Most existing results focus on achieving asymptotic coverage guarantees under arbitrary
distribution drift [Gibbs, 2021; Zaffran, 2022a]. However, recent developments have started
addressing finite-sample results beyond the exchangeability assumption [Barber, 2022].

New research directions. Conformal prediction concepts have garnered interest in other
fields, extending beyond traditional applications. These areas include missing values [Zaffran,
2023; Gui, 2023], outlier detection [Bates, 2023], survival analysis [Candes, 2023], selective infer-
ence [Jin, 2022], risk controls [Bates, 2021; Angelopoulos, 2021b], federated learning [Plassier,
2023], fairness [Gibbs, 2023]. These endeavors demonstrate the versatility and potential of CP
in addressing a wide range of statistical and machine learning challenges across various domains.



Chapter 2
Accurate Shapley Values for explaining
tree-based models

Shapley Values (SV) are widely used in explainable AI, but their estimation and
interpretation can be challenging, leading to inaccurate inferences and explanations.
As a starting point, we recall an invariance principle for SV and derive the correct
approach for computing the SV of categorical variables that are particularly sensitive
to the encoding used. In the case of tree-based models, we introduce two estimators
of Shapley Values that exploit the tree structure efficiently and are more accurate
than state-of-the-art methods. Simulations and comparisons are performed with
state-of-the-art algorithms and show the practical gain of our approach. Finally, we
discuss the limitations of Shapley Values as a local explanation. These methods are
available as a Python package.

Abstract
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1 Introduction

The increasing use of Machine Learning (ML) models in industry, business, and society has
brought the explanations of the predictions of these models to the forefront of ML research. As
ML models are often considered as black-box models, there is a growing demand from scien-
tists, practitioners, and citizens for tools that can provide insights into important variables in
predictions or identify biases for specific individuals or subgroups. Standard global importance
measures, such as permutation importance measures [Breiman, 2001] are insufficient to explain
individual or local predictions, and new methodologies are being developed in the active field of
explainable AI.

In this context, various local explanations have been proposed, focusing on model-agnostic meth-
ods that can be applied to the most successful ML models, such as ensemble methods like
Random Forests and gradient boosted trees, as well as deep learning models. Some of the most
widely used methods are the Partial Dependence Plot [Friedman, 2001b], Individual Conditional
Expectation [Goldstein, 2015], and local feature attributions such as Local Surrogate (LIME)
[Ribeiro, 2016a]. These techniques aim to better understand the predictions made by a model for
individual cases, providing transparency and trust in the ML models’ decision-making processes.
To achieve the same objective, Shapley Values [Shapley, 1953], a concept developed primarily in
Cooperative Game Theory, has been adapted to evaluate the "fair" contribution of a variable-
value Xi = xi to a prediction f(x1, . . . , xp) [Strumbelj, 2010; Lundberg, 2017a]. Shapley Values
(SV) are widely used to identify important variables at both local and global levels. As remarked
by [Lundberg, 2020b; Covert, 2020b], many importance measures aim to analyze the behavior
of a prediction model f based on p features X1, . . . , Xp by removing variables and considering
reduced predictors. Typically, for any group of variables XS = (Xi)i∈S , with any subset S ⊆ [p]
and reference distribution QS,x, the reduced predictor is defined as:

fS(xS) ≜ EQS,x
[f (xS , X S̄)] , (2.1)

where QS,x represents the conditional distribution X S̄ |XS = xS . Other SV can be defined
with marginal probabilities, but their interpretation is different [Heskes, 2020; Janzing, 2020;
Chen, 2020]. There are still active debates on using or not conditional probabilities [Frye, 2020].
This work focuses only on conditional SV, as estimating them poses significant challenges. The
SV for explaining the prediction f(x) have been introduced in [Lundberg, 2017a] and are based
on a cooperative game with value function v(S) ≜ fS(xS). For any group of variables C ⊆ [p]
and k ∈ J1, p− |C|K, we denote the set Sk(C) =

{
S ⊆ [p]\C : |S| = k

}
and we introduce a

straightforward generalization of the SV for coalition C as

ϕxC (f) ≜ 1
p− |C|+ 1

p−|C|∑
k=0

1(p−|C|
k

) ∑
S∈Sk(C)

[
fS∪C(xS∪C)− fS(xS)

]
. (2.2)

This definition of the Shapley Value serves as a generalization of the classical SV for a single
variable. By considering the singleton C = {i} for i ∈ [p], we retrieve the standard definition for



feature-value Xi = xi. In the following Section, we show how this definition arises naturally when
measuring the impact of a group of variables XC = xC , particularly in the case of categorical
variables.

We propose solutions for computing and estimating the Shapley Values (SV). We focus solely
on tree-based models due to their reduced computational cost and easier statistical handling.
We demonstrate that the current state-of-the-art algorithm for tree-based models, TreeSHAP
[Lundberg, 2020b], is highly biased when features are dependent. Consequently, we introduce
statistically principled estimators to improve the estimation of the SV. Furthermore, we address
the theoretical computation of SV for categorical variables when using standard encodings,
which motivates the use of Equation (2.2). Specifically, we show that the true SV of a categorical
variable is different from the sum of SVs of encoded variables, as generally used. Moreover, using
the sum of encoded variables as the SV of a categorical variable provides incorrect estimates of
all SVs in the model and leads to spurious interpretations. This is currently the only way to
handle categorical variables with TreeSHAP. Therefore, we highlight the correct approach for
computing the SV of encoded categorical variables and implement it using our estimators. Our
contributions, which reduce bias in the estimation of SV, are implemented in a Python package.

The chapter is structured as follows. In the next Section, we derive invariance principles for SV
under reparametrization or encoding, which is particularly useful for dealing with categorical
variables. In Section 3, we introduce two estimators of reduced predictors and SV. In Section 4,
we highlight the improvement over dependent TreeSHAP. Finally, we discuss the reliability of
SV in providing local explanations.

2 Coalition and Invariance for Shapley Values

In this Section, we present a unifying property of invariance for the Shapley Values of continuous
and categorical variables. The property states that the explanation provided by a variable should
not depend on the way it is encoded in a model. This invariance property provides a natural
way to calculate the SV of categorical variables based on the notion of coalition and the general
definition given in Equation (2.2). This is especially useful in our case, as we are also interested
in the discretization of continuous variables to facilitate the estimation of Shapley Values and
enhance their stability, which we will discuss in Section 3.

2.1 Invariance under reparametrization for continuous variables

In Equation (2.2), there is no restriction on the dimension of Xi. We assume that the p vari-
ables are vector-valued, i.e., Xi ∈ Rpi where pi ≥ 1. We further assume that each variable Xi

is transformed with a diffeomorphism φi : Rpi −→ Rpi . We introduce the transformed variables
Ui ≜ φi(Xi) and the reparametrized model f̃ defined by f̃(U1, . . . , Up) = f(X1, . . . , Xp), i.e.,
f̃(U1, . . . , Up) = f ◦ φ(−1)(U) where φ = (φ1, . . . , φp). Generally, we cannot relate the pre-
dictor learned from the real dataset {(Xi, Yi)}ni=1 to the predictor learned from {(U i, Yi)}ni=1
where Y is the target to predict. Estimation procedures are not invariant with respect to
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reparametrization, which means we obtain different predictors after "diffeomorphic feature engi-
neering". Consequently, we focus only on the impact of reparametrization on explanations, and
we show below that the Shapley Values are invariant under reparametrization.

Proposition 2.1. Let f and f̃ = f ◦ φ(−1) its reparametrization, then we have for all i ∈ [p],
and u = φ(x):

ϕxi(f) = ϕui(f̃).

See the proof in the Appendix (1.1). This identity indicates that the information provided by
each feature Xi in the explanation is independent of any encoding, as mentioned by [Owen,
2017; Covert, 2020c]. The SV depends primarily on the dependence structure of the features.
Therefore, the Shapley Value of a feature Xi remains the same after diffeomorphic transformation
φ, we have ϕxi(f) = ϕui(f̃). Suppose a variable Xi is separated into C correlated variables X̃C =
(X̃i)i∈C , for instance, by discretizing the variable. As Xi and X̃C carry the same information,
we may ask whether the SV of the group of features X̃C is equal to the SV of Xi. In the next
Section, we provide an affirmative answer to this question, which allows for correct computation
of the SV of categorical variables after encoding.

2.2 Invariance for encoded categorical variable

In the remainder of the chapter, we use X to denote continuous predictive variables, Z to
denote categorical variables and Y to denote the output of interest. While there are numerous
encodings for a categorical variable Z with modalities {1, . . . , K}, we focus on two popular
methods: One-Hot Encoding (OHE) and Dummy Encoding (DE). These methods introduce
indicator variables Zk such that Zk = 1 if Z = k, 0 otherwise. In contrast to the continuous
case, introducing indicator variables changes the number of "players" in the game defined for
computing the Shapley Value. This change has significant consequences for calculating the SV
for all variables in the model. Hence, the widely adopted practice of summing the SV of indicator
variables Zk to compute the SV of Z is generally not justified and false. To benefit from a similar
invariance result as Proposition 2.1, we need to deal with the coalition of indicators and use
the general expression of SV introduced in Equation (2.2). For simplicity, we assume that the
model f uses only the two variables (X, Z), where X ∈ R and Z ∈ {1, . . . , K} is a categorical
variable. The efficiency property of SV for a given prediction f(x, z) gives the decomposition

f(x, z)− EP [f (X, Z)] = ϕx(f) + ϕz(f), (2.3)

where P denotes the law of (X, Z). To establish the link between the SV of the indicator
variables Zk and the SV of the variable Z, we introduce additional notations. We focus on
the Dummy Encoding (DE) φ : z 7→ (z1, . . . , zK−1) without loss of generality. The variables
(X, Z1:K−1) are defined on R×{0, 1}K−1, and their distribution P̃ is the image probability of P

induced by transformation φ. The initial predictor f : R×{1, . . . , K} −→ R is reparametrized as



a function f̃ : R× {0, 1}K−1 −→ R such that f(X, Z) ≜ f̃(X, Z1, . . . , ZK−1). The function f̃ is
not completely defined for all (z1 . . . , zK−1) ∈ {0, 1}K−1 and is only defined P̃ -almost everywhere
due to the deterministic dependence ∑K−1

k=1 Zk ≤ 1. Consequently, we need to extend f̃ to the
whole space X × {0, 1}K−1 by setting f̃(X, Z1, . . . ZK−1) = 0 as soon as ∑K−1

k=1 Zk > 1. For the
prediction f̃(x, z1, . . . , zK−1), we can compute the SV of x, z1, . . . , zK−1 and obtain the following
decomposition thank to the efficiency property

f̃(x, z1, . . . , zK−1)− EP̃

[
f̃ (X, , Z1, . . . , ZK−1)

]
= ϕx(f̃) +

K−1∑
k=1

ϕzk
(f̃) (2.4)

where ϕzk
(f̃) are the SV of the variable zk computed with distribution P̃ and model f̃ . As

f(x, z)− EP [f (X, Z)] = f̃(x, z1, . . . , zK−1)− EP̃

[
f̃ (X, , Z1, . . . , ZK−1)

]
, we have

ϕx(f) + ϕz(f) = ϕx(f̃) +
K−1∑
k=1

ϕzk
(f̃). (2.5)

In general, we have ϕz(f) ̸= ∑K−1
k=1 ϕzk

(f̃), because the SV depends on the number of variables
and they are not calculated using the same quantities. In the next proposition we show that
ϕz(f) = ϕz1:K−1(f̃), where ϕz1:K−1(f̃) is computed with Equation (2.2) and corresponds to the
Shapley Values of the coalition of variables (z1, ..., zK−1).

Proposition 2.2. Given a predictor f : R×{1, . . . , K} −→ R and its reparametrization f̃ using
Dummy Encoding f̃ : R× {0, 1}K−1 −→ R such that f(x, z) = f̃(x, z1, . . . , zK−1), we have

{
ϕz1:K−1(f̃) = ϕz(f)
ϕx(f̃ ; z1:K−1) = ϕx(f),

(2.6)

where ϕx(f̃ ; z1:K−1) is the SV of x when the variables (z1, ..., zK−1) are considered as a single
variable. We refer to Supplementary Material (2.1) for detailed derivations. In general, for
cooperative games, the SV of a coalition ϕzC (f̃) with C ⊆ {1, . . . , K − 1} is different from the
sum of individual SV ∑

k∈C ϕzk
(f̃). We note that we can compute two different SV for X when

we use the reparametrized predictor f̃ : ϕx(f̃) and ϕx(f̃ ; z1:K−1). These two SV are different
in general, as they involve different numbers of variables and different conditional expectations.
Proposition 2.2 shows that we should prefer ϕx(f̃ ; z1:k) as it is equal to the SV of x in the original
model ϕx(f).

2.3 Coalition or Sum: numerical comparisons

We give numerical examples that illustrate the differences between the use of coalition or sum
to calculate the SV for categorical variables. We consider a linear predictor f , with categorical
Z and 3 continuous variables X = (X1, X2, X3), defined as f(X, Z) = BZX with BZ ∈ R3,
X|Z = z ∼ N (µz, Σz) and P(Z = z) = πz, Z ∈ {a, b, c}. The values of the parameters used can
be found in the Supplementary Material (6.1). In Figure 2.1, we remark that the SV change



dramatically with respect to the encoding when we use the sum of the indicator variables as the
SV of the categorical variable. The sign changes given the encoding (DE or OHE) and is often
different from the sign of the true SV of Z without encoding. We also note important differences
in the SV of the quantitative variables X.

Figure 2.1: SV with and without encoding (OHE - DE) for a given observation (X1, X2, X3) =
[0.35,−1.61,−0.11], Z = a

.

To quantify the global difference of the different methods, we compute the relative absolute error
(R-AE) of the SV of each observation using DE or OHE encoding in comparison to the true SV
without encoding, which is defined as:

R-AE(f, f̃) =
p∑

i=1

|ϕxi(f)− ϕxi(f̃)|
|ϕxi(f)| . (2.7)

We compute the SV of 1000 new observations. We observe in Figure 2.2 that the differences can
be huge for almost all samples (DE is much worse than OHE in this example). Thus, we highly
recommend using the coalition as it is consistent with the true SV contrary to the sum. More
examples with real datasets can be found in the Supplementary Material (10).

Figure 2.2: R-AE distribution between the SV with and without encoding (OHE - DE).



3 Shapley Values for tree-based models

The computation of Shapley Values (SV) faces two main challenges: the combinatorial explo-
sion with 2p coalitions to consider and the estimation of the conditional expectation fS(xS) =
E [f(X)|XS = xS ] for any S ⊆ [p]. Current approaches rely on several approximations and sam-
pling procedures that assume independence of the features [Lundberg, 2017a; Covert, 2020a].
More recently, some methods propose to model the joint distribution of features with a gaussian
distribution or vine copula to draw samples from the conditional distributions [Aas, 2020; Aas,
2021]. Other methods, such as [Williamson, 2020], train one model for each selected subset S

of variables, which is accurate but computationally costly. However, their final objective differs
from ours since we are interested in local importances and exact computations, i.e., no sampling
of the subsets. To achieve this, we focus on tree-based models, as exploited by [Lundberg, 2020b]
for deriving an algorithm (TreeSHAP) for exact computation of SV, where we can compute all
the terms (no sampling of the subsets S ⊆ [p]) and the estimation of the conditional expec-
tations is simplified. After briefly presenting the limitations of TreeSHAP, we introduce two
new estimators that use the tree structure. For simplicity, we consider a single tree and not an
ensemble of trees (Random Forests, Gradient Tree Boosting, etc.), as extending our estimators
to these more complex models is straightforward through linearity.

3.1 Algorithms for computing Conditional Expectations and the Tree SHAP
algorithm

We consider a tree-based model f defined on Rp (categorical variables are one-hot encoded). We
have f(x) = ∑M

m=1 fm1Lm(x) where Lm represents a leaf. The leaves form a partition of the
input space, and each leaf can be written as Lm = ∏p

i=1 [am
i , bm

i ] with −∞ ≤ am
i < bm

i ≤ +∞.
Alternatively, we write the leaf with the decision path perspective: a leaf Lm is defined by a
sequence of decision based on dm variables XNm

k
, k = 1, . . . , dm, Nm

k ∈ {1, . . . , p}. For each node
k in the path of the leaf Lm, XNm

k
is the variable used to split, and the region Im

k defined by
the split value tm

k is either ]−∞, tm
k ] or ]tm

k , +∞[. The leaf can be rewritten as

Lm =
{

x ∈ Rp : xNm
1
∈ Im

1 , . . . , xNm
dm
∈ Im

dm

}
. (2.8)

The crucial point is to identify the set of leaves compatible with the condition XS = xS . We
can partition the leaf according to a coalition S as Lm = LS

m × LS̄
m with LS

m = ∏
i∈S [am

i , bm
i ]

and LS̄
m = ∏

i∈S̄ [am
i , bm

i ]. Thus, for each condition XS = xS the set of compatible leaves of
x = (xS , xS̄) is

C (S, x) =
{

m ∈ [1 . . . M ] : xS ∈ LS
m

}
=
{

m ∈ [1 . . . M ] : xNm
i
∈ Im

i , Nm
i ∈ S

}
and the reduced predictor fS(xS) has the simple expression

fS(xS) =
∑

m∈C(S,x)
fmPPX

(Lm|XS = xS)



where the probability is computed under the law of the features PX . If we have a model
for PX , we can derive the conditional law and directly evaluate the conditional probabili-
ties. For instance, when X ∼ N (µ, Σ), we can exactly compute the conditional probabilities
PPX

(Lm|XS = xS) = PPX

(∏dm
k=1 Im

k |XS = xS

)
. In general, deriving conditional probabilities

can be challenging, but assumptions about the factorization of the distribution can accelerate
the computation. In [Lundberg, 2018; Lundberg, 2020b], the authors introduce a recursive al-
gorithm (TreeSHAP with path-dependent feature perturbation, Algorithm 1) that assumes that
the probabilities for every compatible leaf Lm can be factored with the decision tree, which
simplifies the computation as

PP SHAP
X

 dm∏
k=1

Im
k

∣∣∣XS = xS

 = δS(Nm
1 )×

dm∏
i=2:Nm

i /∈S

P
(

XNm
i
∈ Im

i

∣∣∣ i∏
k=1

XNm
k−1
∈ Im

k−1

)
, (2.9)

with δS(N1) = P(XNm
1
∈ Im

1 ) if Nm
1 /∈ S, and 1 otherwise. The underlying assumption in Eq.

(2.9) is that we have a Markov property defined by the path of the tree, see the algorithm
description in the Supplementary Material (4). However, as we will demonstrate in our simula-
tions, this assumption is too strong and leads to a high estimation bias. We denote f̂SHAP

S and
ϕxi(f̂SHAP

S ) as the estimators of the reduced predictor and Shapley Values using the TreeSHAP
factorization. Therefore, we propose two estimators that do not rely on the factorization of PX .

3.2 Statistical Estimation of Conditional Expectations

Discrete case. To address the statistical problem of estimating the probabilities PPX
(Lm|XS =

xS) from a given dataset D = {Xi}ni=1, where Xi ∼ PX , without assuming any density or prior
knowledge about PX as in [Aas, 2020; Aas, 2021], we first consider the case where all variables are
discretes. This allows us to estimate PPX

(Lm |XS = xS ) directly. A straightforward estimation
is based on N(xS), which is the number of observations inD such that XS = xS , and N(Lm, xS),
which is the number of observations in leaf Lm of D that satisfy the condition XS = xS . A
consistent estimation of the conditional probability PPX

(Lm|XS = xS) can be obtained by
computing the ratio of these two terms as

P
P̂

(D)
X

(Lm |XS = xS ) = N(Lm, xS)
N(xS) . (2.10)

Estimating the conditional probabilities PPX
(Lm|XS = xS) becomes more challenging when

the variables XS are continuous. A common approach is to use kernel smoothing estimators
[Nadaraya, 1964]. However, this method has several drawbacks, such as a low convergence rate
in high dimensions and the need to derive and select appropriate bandwidths, which can add
complexity and instability to the estimation procedure. To address these issues, we propose a
simple approach based on quantile-discretization of the continuous variables. This technique is
commonly used to facilitate model explainability, particularly in tree-based models, as shown in
[Bénard, 2021d]. Binning observations can also help stabilize the reduced predictors and Shapley
Values, thus improving the robustness of the explanation [Alvarez-Melis, 2018].



In our experiments, we use a simple approach to discretize continuous variables into q quantiles,
where each feature Xi is encoded with indicator variables X

(r)
i , r ∈ {1, . . . , q}. Let q̂

(r)
i denote

the empirical ( r
q )-th quantile of feature Xi using dataset D, and let q̂

(0)
i = −∞ and q̂

(q)
i = +∞.

We define X
(r)
i = 1 if Xi falls in the interval [q̂(r−1)

i , q̂
(r)
i ). To compute the Shapley Values of

a given feature Xi, we use the coalition of its indicator variables
(
X

(1)
i , . . . , X

(q)
i

)
as defined in

Proposition 2.2. Then, we define the Discrete reduced predictor denoted by f̂D
S (xS) as

f̂D
S (xS) =

∑
m∈C(S,x)

fmP
P̂

(D)
X

(Lm|XS = xS) , (2.11)

and the corresponding estimator of the SV is denoted ϕxi(f̂D). Although the discretization of
continuous variables leads to some loss of information, it is often negligible in terms of per-
formance when using tree-based models, as shown in the Supplementary Material (5.1). With
only q = 10 quantiles, the input space is divided into a fine grid of p10 cells, which provides
a rich representation of the data. However, the computation of Shapley Values (SV) remains
exponential with respect to the number of variables using this estimator. Therefore, we propose
an alternative estimator that leverages the information from the decision tree’s leaves, allowing
for faster SV computation.

Continuous and mixed-case. Instead of discretizing the variables, we use the leaves of the
estimated trees. Essentially, we replace the condition {XS = xS} by

{
XS ∈ LS

m

}
. This change

introduces bias, but aims to improve the variance during estimation. We introduce the Leaf-
based estimator as

f̂
(Leaf)
S (xS) = 1

Z(S, x)
∑

m∈C(S,x)
fmP

P̂
(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
(2.12)

where P
P̂

(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
is an estimate of the conditional probability, and Z(S, x) is a

normalizing constant. The definition of every probability estimate is

P
P̂

(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
= N(Lm)

N(LS
m)

where N(Lm) is the number of observations of D in the leaf Lm, and N(LS
m) is the number of

observations of D satisfying the conditions xS ∈ LS
m. Another interpretation of this estimator is

that it projects the partition of the tree along the direction defined by the variables XS . This
results in a projected tree that only considers variables XS , which is then used to estimate the
conditional probability E[f(X)|XS = xS ]. It is important to note that the probability estimates
do not necessarily sum up to one as we are not conditioning on the same event, i.e.,

∑
m∈C(S,x)

P
P̂

(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
̸= 1.

Therefore, we introduce a normalizing constant to ensure that the probabilities are correctly
normalized. This normalizing constant is defined as Z(S, x) = ∑

m∈C(S,x)
N(Lm)
N(LS

m) . The Leaf-



based reduced predictor (2.12) can be computed for continuous and categorical variables, and
hence we can compare it with f̂

(D)
S in order to evaluate its bias. In both cases, the main challenge

is to compute C(S, x), for every coalition S. We show in the next Section how the computational
complexity of the SV ϕxi(f̂ (Leaf)) is drastically reduced using the Leaf estimator. Indeed, when
we consider the leaf Lm, we only have to compute the SV for dm variables and not for p variables.

Bias analysis. Before employing the two proposed estimators to calculate the Shapley Values,
we first analyze the bias of these estimators. When the variables are discrete, it is obvious that
the discrete estimator f̂

(D)
S is consistent. However, in the case of the Leaf estimator f̂

(Leaf)
S , we

analyze its bias with respect to the true reduced predictor fS(xS) below:

f̂
(Leaf)
S (xS)− fS(xS) =

∑
m∈C(S,x)

fmP
P̂

(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
−

∑
m∈C(S,x)

fmPPX
(Lm|XS = xS)

=
∑

m∈C(S,x)
fm

[
P

P̂
(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
− PPX

(
Lm

∣∣∣XS ∈ LS
m

)]
+

∑
m∈C(S,x)

fm

[
PPX

(
Lm

∣∣∣XS ∈ LS
m

)
− PPX

(Lm |XS = xS )
]

The control of the blue term is well established, and its rate of convergence is known. Re-
cently, [Margot, 2021] (Proposition 3.2) inspired by [Grunewalder, 2018] (Proposition 3.2)
shows that if 1

n

∑n
i=1 1Xi,S∈LS

m
≥ n−α, with α ∈ [0, 1/2), then

∣∣P
P̂

(Leaf)
X

(
Lm

∣∣∣XS ∈ LS
m

)
−

PPX

(
Lm

∣∣∣XS ∈ LS
m

) ∣∣ = OP (nα−1/2).

The second term depends on the quality of the partition obtained from the tree. The intuition
behind the effectiveness of tree-based models is that they group observations with similar con-
ditional laws in each cell. Indeed, one of the assumptions to prove the consistency of tree-based
models is that the variation of the conditional law is zero in each leaf, i.e., for all x ∈ Lm and
r ∈ R, we have supz∈Lm

|F (r|z) − F (r|x)| a.s→ 0 [Scornet, 2015; Meinshausen, 2006; Elie-Dit-
Cosaque, 2022], or alternatively, prove that the diameter of the leaves tends to 0 [Györfi, 2002].
The latter ensures that the probability PPX

(Lm|XS = xS) varies slightly as we move within a
given cell if X admits a continuous density. Therefore, if the diameter of the leaves tends to 0 as
generally assumed for partition-based estimator [Györfi, 2002], the leaf estimator is consistent.

3.3 Fast Algorithm for Shapley Values with the Leaf estimator

Here, we focus on the computational efficiency offered by the Leaf estimator. It is well-known
that the computation of the Shapley Values has exponential complexity, as we need to compute
2p different coalitions for each observation. However, with the Leaf estimator f̂

(Leaf)
S , we can

reduce the complexity to being exponential in the depth of the tree D in the worst case, instead
of being exponential in the total number of variables p. This is very interesting, as the depth
of the tree is rarely above 10 in practice, while p can be very large, spanning different orders of
magnitude. The idea is to split the original game into the sum of smaller games, as described
by the following proposition.



Proposition 3.1. Consider a tree-based model f(x) = ∑M
m=1 fm1Lm(x), and let Sm be the set

of variables used along the path of leaf Lm. For any observation x and variable-value Xi = xi,
we can decompose its Shapley value ϕxi(f (Leaf)) into the sum of cooperative games defined on
each compatible leaf of x, C(x) = {m ∈ {1, . . . , M} : ∃i ∈ [p], xi ∈ [am

i , bm
i ]} as follows

ϕxi

(
f (Leaf)

)
=

∑
m∈C(x)

ϕm
xi

(
f (Leaf)

)
(2.13)

where ϕm
xi

(
f (Leaf)

)
is a reweighted version of the Shapley Value of a cooperative game with

players Sm and value function v(f (Leaf), S) = PPX
(Lm|XS ∈ LS

m)1LS
m

(xS).

Proof. In the proposition, we consider the asymptotic version PPX
(Lm|XS ∈ LS

m) of the leaf
estimator P

P̂
(Leaf)
X

(Lm|XS ∈ LS
m), but the result is also true for the leaf estimator. By definition,

we have for the variable-value Xi = xi,

ϕxi(f (Leaf))

= 1
p

∑
S⊆[p]\{i}

(
p− 1
|S|

)−1(
f

(Leaf)
S∪i (xS∪i)− f

(Leaf)
S (xS)

)

= 1
p

∑
S⊆[p]\{i}

(
p− 1
|S|

)−1( ∑
m∈C(x)

fm

[
PPX

(Lm|XS∪i ∈ LS∪i
m )1LS∪i

m
(xS∪i)− PPX

(Lm|XS ∈ LS
m)1LS

m
(xS)

])

= 1
p

∑
m∈C(x)

∑
S′⊆Sm\{i}

[(
p− 1
|S′|

)−1

fm

[
PPX

(Lm|XS′∪i ∈ LS′∪i
m )1LS′∪i

m
(xS′∪i)− PPX

(Lm|XS′ ∈ LS′
m )1LS′

m
(xS′)

]

+
∑

Z ̸=∅,Z⊆ Sm∪i

(
p− 1
|Z|+ |S′|

)−1

fm

[
PPX

(Lm|XS′∪Z∪i ∈ LS′∪Z∪i
m )1LS′∪Z∪i

m
(xS′∪Z∪i)

− PPX
(Lm|XS′∪Z ∈ LS′∪Z

m )1LS′∪Z
m

(xS′∪Z)
]]

.

If Z ⊆ S̄m and S ⊆ Sm, we have

PPX
(Lm|XZ∪S ∈ LZ∪S

m ) = PPX
(Lm|XS ∈ LS

m). (2.14)

Therefore, ϕxi can be rewrite as follows:

ϕxi(f (Leaf))

= 1
p

∑
m∈C(x)

∑
S′⊆Sm\{i}

[(
p− 1
|S′|

)−1

+
∑

Z ̸=∅,Z⊆ Sm∪i

(
p− 1
|Z|+ |S′|

)−1]

× fm

[
PPX

(Lm|XS′∪i ∈ LS′∪i
m )1LS′∪i

m
(xS′∪i)− PPX

(Lm|XS′ ∈ LS′
m )1LS′

m
(xS′)

]
=

∑
m∈C(x)

ϕm
xi

(f (Leaf))



While in Proposition 3.1 we utilize the asymptotic version PPX
(Lm|XS ∈ LS

m) of the leaf estima-
tor, it is worth noting that we obtain the same result using the estimator P

P̂
(Leaf)
X

(Lm|XS ∈ LS
m).

Therefore, to compute the Shapley Values, we propose calculating them leaf by leaf using Equa-
tion (2.13). In this approach, the computation of the Shapley Values for the p variables is
performed by summing over the #C(x) cooperative games (compatible leaves), each having a
number of variables #Sm for m ∈ C(x), lower than or equal to D, which is the maximum depth
of the tree. As a result, the computational complexity is O(p×#C(x)× 2D) in the worst cases.
To improve computational efficiency, we introduce the Multi-Games algorithm which leverages
on Proposition 3.1. This algorithm is linear in the number of observations and can handle a large
number of variables. However, its complexity is still higher than that of TreeSHAP [Lundberg,
2020b], which is polynomial with O(M ×D2) where M is the number of leaves. The algorithm is
described in the following, and we use the notations N(L∅

m) = ∑M
m=1 N(Lm) and 1L∅

m
(x∅) = 1.

Algorithm 1: Multi-Games Algorithm
Inputs: x, f(x) = ∑M

m=0 fm1Lm(x);
p = length(x);
ϕ = zeros(p);
for m ∈ C(x) do

for i in [p] do
if i not in Sm then

continue ; /* skip to next variable */
end
for S ⊆ Sm do

ϕ[i] +=((p−1
|S|
)−1 +∑p−|Sm|

k=1
(p−|Sm|

k

)( p−1
k+|S|

)−1)
fm

(
1LS∪i

m
(xS∪i) N(Lm)

N(LS∪i
m ) − 1LS

m
(xS)N(Lm)

N(LS
m)

)
end

end
end
return ϕ

This algorithm is parallelizable, as it can be vectorized to compute the Shapley values for multiple
observations simultaneously.

Remark: A similar algorithm has been proposed to calculate Shapley values by [Bénard, 2021b],
which was published two months after the first version of this work [Amoukou, 2021c]. This
algorithm, called Projected Forest, first proposed in [Bénard, 2021e] (one month prior to our
first version), was specifically designed for Random Forest, in contrast to our algorithm, which
is applicable to any tree-based model. Although the Projected Forest algorithm offers a faster
computation of conditional expectations, it lacks the efficiency provided by the algorithm 1, and
its computational complexity increases exponentially with the number of variables.



4 Comparison of the estimators

To compare the different estimators, we need a model where conditional expectations can be
calculated exactly. If X ∼ N (µ, Σ) then XS̄ |XS is also a multivariate Gaussian with explicit
mean vector and covariance matrix. We do not include any comparisons with KernelSHAP as
our main goal is to improve upon TreeSHAP which is the state-of-the-art for tree-based models.
In addition, most implementations of KernelSHAP are based on the marginal distribution, as
its aim is to be model-agnostic.

Experiment 1. In the first experiment, we consider a dataset Dn = {Xi, Yi}ni=1 with n =
104 generated by a linear regression model with X ∈ Rp following a multivariate Gaussian
distribution with mean vector 0 and covariance matrix Σ = ρJp + (ρ − 1)Ip, where p = 5,
ρ = 0.7, Jp is the all-ones matrix and Ip is the identity matrix. The response variable is
Y = BtX, where B ∈ Rp. We trained a Random Forest f on Dn and obtained an MSE of 4.28.
The detailed parameters can be found in the Supplementary Material (6.2). Since the law of X

is known, we can compute the exact Shapley Values (SV) of f using a Monte Carlo estimator.

We aim to compare the true Shapley Value ϕxi(f) with the Shapley Value estimated by the
different methods ϕxi(f̂ (method)), where the method can be SHAP, Leaf, or D. To quantify the
differences between these estimators, we consider two evaluation metrics. First, we compute
the Relative Absolute Error (R-AE) as defined in Equation (2.7). Second, we measure the True
Positive Rate (TPR) to assess whether the ranking of the top k = 3 highest and lowest Shapley
Values is preserved across different estimators.

In Figure 2.3a, we compute the SV ϕxi(f̂SHAP ), ϕxi(f̂Leaf ) on a new dataset of size 1000
generated by the synthetic model. We observe that the estimator f̂Leaf is more accurate than
TreeSHAP f̂SHAP by a large margin. TreeSHAP has an average R-AE= 3.31 and TPR=
86%(±17%) while Leaf estimator gets R-AE= 0.90 and TPR= 94%(±12%).

(a) (b)

Figure 2.3: R-AE on 1000 new observations sampled from the synthetic model, p=5 using
continuous variables (a) and discretized variables (b).

In Figure 2.3b, we compare the SV of the Discrete unbiased estimator ϕxi

(
f̂ (D)

)
, TreeSHAP

ϕxi(f̂SHAP ) and Leaf estimator ϕxi

(
f̂ (Leaf)

)
with the True ϕxi(f), where the model f was trained



on the discretized version of Dn. As demonstrated in Figure 2.3b, the Discrete estimator also
outperforms TreeSHAP by a significant margin.

Experiment 2. Here, we investigate the impact of feature dependence on the performance
of the different estimators. We use the model of Experiment 1, but we vary the correlation
coefficient ρ from 0 to 0.99, representing increasing positive correlations among the features. As
shown in Figure 2.4, TreeSHAP performs well when the features are independent (ρ = 0), but
it is outperformed by Leaf estimator as the dependence between the features increases.

Figure 2.4: R-AE of the different estimators given the correlation coefficient ρ ∈ [0, 0.99]

Furthermore, we conduct a runtime comparison of computing SV with Leaf and TreeSHAP on
three datasets with different shapes: Boston (n = 506, p = 13), Adults (n = 32561, p = 12)
[Dua, 2017a], and a linear model (n = 10000, p = 500), where n is the number of observations
and p is the number of variables. We train XGBoost with default parameters on these datasets
and compute the SV of 1000 observations for Adults, the linear model, and 506 observations for
Boston. As expected, Table 2.1 shows that TreeSHAP is much faster than the Leaf estimator.
This difference in runtime can be partly explained by the Leaf estimator having to go through all
the data for each leaf, whereas TreeSHAP uses the information stored in the trees. However, the
Leaf estimator is not very affected by the dimension of the variables, as it succeeds in computing
the SV when p = 500 in a reasonable time.

Table 2.1: Run-time of TreeSHAP and Leaf estimator on Adults (A), Boston (B) and the toy
(T) datasets.

DataSETS Leaf Tree SHAP

A (p=12) 1 min 4 s ± 1.73 s 3.33 s ± 39.9 ms
B (p=13) 8.82 s ± 204 ms 129 ms ± 6.91 ms
t (p=500) 1min 5s ± 1.73 s 101 ms ± 4.54 ms



5 Discussion and Future works

We have demonstrated that the current implementation of Shapley Values can lead to unreliable
explanations due to biased estimators or inappropriate handling of categorical variables. To ad-
dress these issues, we have proposed new estimators and provided a correct method for handling
categorical variables. Our results show that even in simple models, the difference between the
state-of-the-art (TreeSHAP) and proposed methods can be significant. Despite growing interest
in trustworthy AI, the impact of these inaccuracies in explanations is not well understood. One
reason for this may be the difficulty in systematically and quantitatively evaluating the quality
of an explanation, as it depends on the law of the data, which can be difficult to approximate.
Furthermore, such analyses may be influenced by confirmation bias.

We also believe that the quality of the estimates is not the only drawback of SV. In fact, we
demonstrate in Proposition 5.1 that SV explanations are not local explanations, but remain
global, even in simple piecewise linear models.

Proposition 5.1. Let us assume that we have X ∈ Rp, X ∈ N (0, Ip) independent Gaussian
features, and a linear predictor f defined as:

f(X) = (a1X1 + a2X2)1X5≤0 + (a3X3 + a4X4)1X5>0. (2.15)

Even if we choose an observation x such that x5 ≤ 0 and the predictor only uses x1, x2, the SV
of ϕx3 , ϕx4 is not necessarily zero. Indeed, for all i ∈ {3, 4}

ϕxi = 1
p
P(X5 > 0)

∑
S⊆[p]\{i,5}

(
p− 1
|S|

)−1(
ai(xi − E[Xi])

)
= K

(
ai(xi − E[Xi])

)
,

where K is a constant. The proof is in the Supplementary Material. Proposition 5.1 highlights
that the SVs are not truly local measures, but rather have a global effect. This occurs because
when calculating the SV for X3 = x3 or X4 = x4, we also consider subsets S that do not contain
X5. By marginalizing and changing the sign of X5, we use the other linear model not used
for the given observation. Such findings pose significant challenges in the interpretation of SV,
and we believe that they are often overlooked due to the lack of precision and understanding of
Shapley Values in practice.



Chapter 3
Please stop using SHAP and LIME and use
Regional Explanations instead

In this chapter, we criticize the two most popular local attribution methods, namely
SHAP and LIME, which aim to quantify the contribution of a feature xi to a specific
prediction f(x1, . . . , xp). We present arguments demonstrating the inability of these
methods to detect the local important variables of a given prediction. Even in
an ideal scenario, where there are no dependencies between the variables and the
methods are computed exactly. Therefore, we propose an alternative approach called
Regional Explanations that is between local and global explanations. Our method
involves partitioning the input space into regions, wherein observations within the
same region exhibit similar local importance measures. Subsequently, we employ
global attribution methods within each region to determine the importance of each
feature, thus establishing the contributions of the features of an observation based on
its assigned group. The primary advantage of this approach is that it leverages the
well-established understanding of global attribution measures to define local/regional
attributions that have sound statistical properties.
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1 Introduction

Machine learning models are widely recognized for their predictive power, but often lack trans-
parency, making it difficult to understand the rationale behind their predictions. As these models
are increasingly used in sensitive areas such as medicine and justice, there is a growing demand
for tools that can elucidate the "why" behind their predictions. In response, the eXplainable AI
(XAI) community has emerged to develop tools that help explain machine learning models.

These tools can be categorized into local and global methods. Local explanations aim to provide
insights into individual predictions, while global explanations focus on understanding the overall
behavior of a model across the entire input space. Popular local methods, such as SHAP
[Lundberg, 2017b] and LIME [Ribeiro, 2016a], seek to create a local linear approximation of
the model within the vicinity of a given instance. In contrast, global methods primarily consist
of "leave-one-out" approaches [Lei, 2016; Rinaldo, 2019; Williamson, 2020; Covert, 2020c; Gan,
2022], which evaluate performance loss when a variable is removed.

This chapter focuses on local methods, particularly the widely-used SHAP and LIME, as they
are widely used and have limited theoretical understanding. The ideas behind these methods are
appealing, but the quantities they estimate are unclear. Apart from the linear or additive model
[Bordt, 2023; Garreau, 2020], no work demonstrates what quantities these methods compute.
The only theoretical study on LIME, by [Garreau, 2020], shows that in the case of a linear
model, the LIME coefficients are proportional to the partial derivatives. However, it also reveals
that the coefficient of important variables can vanish by simply changing a parameter of the
method. In addition to their lack of theoretical understanding, we demonstrate in this work
that these methods are ineffective in identifying important local variables, even in an ideal
scenario. In our analysis, we consider the variables to be independent to eliminate any potential
bias in detecting important variables when dependencies exist. We also assume no estimation
bias, meaning that the limitations we raise persist even with perfect knowledge of the data
distribution, the regression function and exact computation of the methods. Thus, the issues
that we highlight stem from the inherent nature of these methods.

In contrast, most global methods are supported by the existing literature on feature importance
[Breiman, 2001; Lei, 2016; Williamson, 2020] and global sensitivity analysis [Iooss, 2015], and
are backed by strong consistency and inference results. Our ultimate goal is to leverage global
methods to define local attributions for each individual while benefiting from the advantages of
global methods. Essentially, we aim to find a partition of the input space where observations in
each cell of the partition exhibit the same behavior concerning the local importance measure,
and by associating each observation with the global importance measure conditional on the cell
it belongs to, we can derive a local importance that possesses sound statistical properties.

Notations. Consider a dataset represented as Dn = {(Xi, Yi)}ni=1, where Xi = (Xi1, . . . , Xip) ∈
X ⊆ Rp denotes the input variables and Yi ∈ Y ⊆ R represents the output, and (Xi, Yi) are
i.i.d. observations of (X, Y ) ∼ P = PXPY |X . We use XS = (Xi)i∈S to denote the subset of
features, and [p] = {1, . . . , p}, and P(D) represents the power set of a set D.



2 Stop using Local Shapley Values

A cooperative game is a pair (D, v), where D = {X1, . . . , Xp} represents a set of p players, and
v : P({1, . . . , p}) → R denotes a value function that assigns a value to every possible coalition
of players, reflecting the worth of each group. Typically, the value function v is assumed to
be positive and increasing monotonically, which means that if A ⊆ B, then v(A) ≤ v(B).
Here, v(A) represents the value of XA. A key concept in the definition of Shapley Values is
the marginal contribution, denoted as ∆i(S) = v(S ∪ i) − v(S). The marginal contribution is
the improvement of the value of a coalition S when a given player i is added to the coalition.
The Shapley Value of Xi is the weighted average of the marginal contributions of Xi across all
subsets, expressed as:

ϕXi =
∑

S⊆D\{i}
w(S)∆i(S) = 1

p

∑
S⊆D\{i}

(
|D| − 1
|S|

)−1[
v(S ∪ i)− v(S)

]
. (3.1)

We can establish feature importance, by defining the value function. In the global sensitivity
literature, a frequently used value function is v(S) = V(E[Y |XS ])/V(Y ), which represents the
explained variance or the variance of the best approximation of Y given XS . This value function
is nonnegative and monotonically increasing, resulting in a positive global importance measure.
When features are independent, this Shapley Value is closely related to the functional ANOVA
decomposition [Efron, 1981; Hoeffding, 1948] and Sobol indices [Sobol, 1990; Chastaing, 2012;
Hooker, 2007]. The resulting Shapley Values are commonly referred to as Shapley Effects [Owen,
2014; Owen, 2017].

In contrast to the global Shapley Values (SV) approach, known as Shapley Effects, [Lundberg,
2017a; Lundberg, 2020a] adopts the game theory paradigm to explain a specific prediction
f(x1, . . . , xp) with players D = {X1 = x1, . . . , Xp = xp} using the value function v(S) =
E[f(x)|XS = xS ] or v(S) = E[f(xS , X S̄)]. Although debates continue over the choice between
these two value functions [Heskes, 2020; Janzing, 2020; Chen, 2020], we assume in this work
that the variables are independent, making these value functions equivalent. We refer to the
resulting Shapley Values in this context as Local Shapley Values (L-SV).

A key distinction between the global SV approach (Shapley Effects) and the local approach (L-
SV) hinges on the definitions of their respective value functions. While the global value function
v(S) = V(E[Y |XS ])/V(Y ) serves as an effective measure of the predictive power of variables XS

for the overall model, it is unclear whether the local value function v(S) = E[f(x)|XS = xS ]
genuinely represents the predictive power of XS = xS for the specific prediction f(x). In the
global case, a high value of v(S) = V(E[Y |XS ])/V(Y ) indicates a strong predictive power of XS ,
while the values taken by v(S) = E[f(x)|XS = xS ] in the local case do not have any intuitive
order, i.e., a high or low value of v(S) does not necessarily mean that XS = xS is important or
not for the specific prediction f(x).

Moreover, the value function of L-SV, v(S) = E
[
f(X)|XS = xS

]
, can be negative and does

not satisfy the monotonic property, which may result in negative L-SV. The interpretation of a



negative Shapley Value is unclear. One might assume that a negative Shapley Value indicates
that, on average, including this variable in a subset tends to lower the predictions. However,
in a regression problem, the model may take negative values, and the negative L-SV could
result from the model tending to produce negative values over numerous subsets. Additionally,
a canceling effect can occur, where a variable that influences the decision ends up with a zero
or low Shapley Value because the ∆i(S) values across all subsets cancel each other out. It is
important to note that Shapley Effects do not encounter the issues mentioned above, as they
satisfy the non-negativity criterion suggested for feature importance [Johnson, 2004; Grömping,
2007; Feldman, 2005]. In fact, [Feldman, 2005] emphasized that an importance measure should
be positive, as it evaluates the relative information a variable contributes to the model, and
information is inherently non-negative.

Another limitation of Local Shapley Values (L-SV) is the ambiguity surrounding the quantities
they estimate, which significantly impedes their interpretation. For instance, what does it mean
when an L-SV equals 5? If the L-SV of X1 = x1 is twice the one of X2 = x2, can we conclude
that X1 = x1 contributes twice as much as X2 = x2 to the prediction f(x1, . . . , xp) ? [Verdinelli,
2023] make similar arguments against Shapley Effects.

Lastly, there is no strong justification for calculating contributions across all possible subsets,
as some of these subsets might be poor predictors, thus introducing noise into the feature
importance. The average performance of a feature across all submodels may not be indicative
of the particular performance of that feature in the set of optimal submodels. Additionally,
averaging over all subsets tends to reduce the local aspect of the contribution. To demonstrate
this, let’s assume we have X ∈ Rp, such that X ∼ N (0, Ip), and a piece-wise linear predictor f

defined as:

f(X) = (a1X1 + a2X2)1X5≤0 + (a3X3 + a4X4)1X5>0. (3.2)

Even if we choose an observation x = (x1, . . . , xp) such that x5 ≤ 0 and the predictor only uses
x1, x2, the L-SV of ϕx3 , ϕx4 is not necessarily zero. Proposition 5.1 of Chapter 2 shows that for
all i ∈ {3, 4}

ϕxi = K
(
ai(xi − E[Xi])

)
,

where K is a constant. This highlights that the L-SV are not purely local measures but also
exhibit global influences. This occurs because when calculating the L-SV of X3 = x3 or X4 = x4,
we also consider subsets S that do not contain X5. By marginalizing and changing the sign of
X5, we use the other linear model not used for this observation. We can extend the result above
to show a similar issue with continuous piece-wise linear function.

Definition 2.1 ([Chua, 1988; Ovchinnikov, 2000; Chen, 2022]). A function f : X → Y is a
m−Continuous Piece-Wise Linear Function (m-CPWL) if there exists K finite set of disjoint
convex polytopes {Ak}mk=1 such that ∪m

k=1Ak = X and f restricted to the domain Ak, denoted
as f|Ak

: Ak ∋ x 7→ f(x) is affine for each k ∈ {1, . . . , m}.



Figure 3.1: Evolution of linear regions within a ReLU network for 2-dimensional input. Each
neuron in the first layer defines a linear boundary that partitions the input space into two
regions. Neurons in the second layer combine and split these linear boundaries into higher level
patterns of regions, and so on [Hanin, 2019a].

This class of functions is quite versatile, as it encompasses neural networks with piece-wise linear
activations such as ReLU or hard tanh which correspond to max(0, x) and max(−1, min(1, x))
respectively. Indeed, we can view feedforward neural networks as piece-wise linear functions that
divide the input space into multiple linear regions, where the network itself behaves as an affine
function within each region [Pascanu, 2013; Hanin, 2019a; Hanin, 2019b; Chen, 2022]. Figure
3.1 shows an example of the evolution of linear regions within a feedforward neural networks
with ReLU activation in 2 dimensions.

The important local variables of this model correspond to the coefficients of the linear model
associated with the region Ak to which the observation belongs. However, in the following, we
provide an impossibility result demonstrating that these explanations cannot be retrieved using
Local Shapley Values.

Theorem 2.2. Let f be a piecewise linear function with m components defined by the collection
{f|A1 , . . . , f|Ak

}, where ∪m
k=1Ak = X . The regions Ak are disjoint hyperrectangles, specifically

Ak = ⊗p
i=1 Ai,k, where Ai,k = [li,k, ri,k] with li,k, ri,k ∈ R. Each component f|Ak

is represented
as fk(X) = ∑p

i=1 ai,kXi + bk, where the coefficients ai,k and bk are real numbers. Consequently,
f is defined as:

f(X) =
m∑

k=1

( p∑
i=1

ai,kXi + bk

)
1Ak

(X).

Consider an observation x = (x1, . . . , xp) ∈ Ak⋆, where k⋆ ∈ {1, . . . , m}, sampled from a distri-
bution PX with independent covariates such that the model only used fk⋆(x) as f(x) = fk⋆(x)
on Ak⋆. The Local SV of a given feature-value Xl = xl is equal to

ϕxl
=

m∑
k=1

ϕk
xl

,



and ϕk
xl

is defined as

ϕk
xl

=
(

1Al,k
(xl)

P(Xl ∈ Al,k) − 1
) ∑

S⊆D\{l}
w(S)vk(S)

+ al,k

xl −
E
[
Xl1Al,k

(Xl)
]

P(Xl ∈ Al,k)

 ∑
S⊆D\{l}

w(S)×
∏

i∈S∪l

1Ai,k
(xi)

∏
j∈S

P(Xi ∈ Ai,k), (3.3)

where w(S) = 1
p

(|D|−1
|S|

)−1
and vk(S) = E[fk(X)1Ak

(X) | XS = xS ]. Equation (3.3) demon-
strates that even if the model only uses fk⋆(x) for a given observation x, the Local SV x may
depend on the coefficients of the unused linear models fk for k ∈ {1, . . . , m} \ {k⋆}.

See the proof in the Appendix (7). Theorem 2.2 demonstrated that SV also present difficulties
in expressing local importance measures for neural networks with piece-wise linear activation
layers and, more generally, for continuous piece-wise linear functions.

3 Stop using LIME

The main idea behind LIME [Ribeiro, 2016a] is to approximate a complex model using a simpler,
more interpretable model, such as a linear model, in the vicinity of a given input instance. Given
a model f , the local explanation ξ(x⋆) of an instance x⋆ is an interpretable model g ∈ G, where
G is the set of linear models, such that

ξ(x⋆) = arg min
g∈G
L(f, g, πh

x⋆) + Ω(g), (3.4)

where L(f, g, πh
x⋆) measure of how unfaithful g is in approximating f over πh

x⋆ , a measure of
locality around x⋆ with width h, and Ω(g) is a measure of complexity of the local model g. The
loss L is defined as

L(f, g, πh
x⋆) =

∑
x′∼P ′

[
f(x′)− g(x′)

]2
πh

x⋆(x′).

In the original implementation [Ribeiro, 2016a], πh
x⋆ is a Gaussian kernel, and the sum is taken

over samples x′ ∼ P ′ where P ′ = ∏
i PXi is the marginal law of the features.

A primary concern with LIME stems from its reliance on arbitrary heuristics in its definition.
Specifically, choosing the sampling distribution P ′ poses challenges, as the commonly used distri-
bution disregards feature dependencies, and there is no guarantee that the model’s local behavior
on P ′ will be consistent with that on the observed data. Another significant issue lies in defining
the neighborhood πh

x⋆ and tuning the kernel width h, especially in high-dimension. The stability
and sensitivity of LIME are heavily influenced by the selection of the perturbation sampling
distribution, the definition of proximity πh

x⋆ and the bandwidth h, which may result in varying
explanations for the same instance under slightly varying settings. To illustrate this issue, we
apply LIME on the piece-wise linear model defined in (3.2), with a1 = 0, a2 = 2, a3 = 0, a4 = 5.



(a) (b)

Figure 3.2: (a) LIME coefficients for X1 and X3 of the piece-wise linear model on observations
that have X5 ≤ 0, (b) Relative Absolute Error of LIME coefficients on German credit dataset.

In Figure 3.2a, the distribution of LIME coefficients for X1 and X3 among observations with
negative x5 values shows that LIME assigns a non-null score to both X1 and X3, although the
latter is not used locally for the displayed observations. Thus, LIME shares the same problem
as L-SV in the piece-wise linear model with independent variables. It is also important to
note that such discontinuities are not uncommon, as tabular data often contain discontinuities
with categorical variables, and the meaning of constructing a linear approximation in such
cases remains unclear. Besides this empirical evidence, we are currently working to compute
the theoretical quantity of LIME coefficient for continuous piece-wise-linear functions, yielding
impossible results similar to Thereom 2.2 for Local Shapley Values.

To demonstrate the sensitivity of LIME to bandwidth selection, we applied it to the German
credit dataset (n = 1000, p = 20) from UCI [Dua, 2017a]. We trained a RF on 80% of the dataset
and computed LIME coefficients on the remaining data using two bandwidths, h and h′, of the
proximity kernel πh

x⋆ . We set h using the median heuristic [Fukumizu, 2009; Flaxman, 2016; Gar-
reau, 2017], where h is the median of the pairwise distance of ||Xi−Xj ||2 and assigned h′ = 1

2h.
In Figure 3.2b, we compare the relative absolute error of the LIME coefficients for all variables
using the two bandwidths, i.e., (Łh

xi
− Lh′

xi
)/Lh

xi
, where Łh

xi
, Łh′

xi
represent the LIME coefficient

of the variable Xi using bandwith h, h′ respectively. It reveals that the difference between the
LIME coefficients could be much different after slightly modifying the bandwidth. Furthermore,
we observed that 20% of the coefficients also changed signs. In real-world scenarios, we lack
information about the true local importance, making the bandwidth selection process indefi-
nite. Moreover, LIME exhibits issues related to instability or irreproducibility. For example,
[Zhang, 2019; Zafar, 2019; Visani, 2020] have shown that repeated runs of the same setting of
the algorithm on the same model and data point can yield different results. This inconsistency
stems from the randomness introduced during the generation of the synthetic sample around the
input. Several works [Zafar, 2019; Zhou, 2021] attempt to address this issue, using asymptotic
analysis of the method to identify the minimum number of the sampled observations required
for stability. Another aspect of stability is related to input perturbations. [Alvarez-Melis, 2018]
show that nearby observations may have completely different LIME coefficients.



4 From Global Explanations to Regional Explanations

In this section, we follow the presentation of [Williamson, 2021], which introduces a general
framework for global variable importance. We consider a comprehensive class F of functions
mapping from X to Y, and F−j be the subset of F containing all functions that disregard
the variable Xj . The conformity score V (f(X), Y ) assesses the predictiveness of a prediction
function f ∈ F on the observation (X, Y ), where a high value implies high predictiveness. We
define the oracle predictor with respect to the conformity score V and distribution P = PXPY |X

as follows:

f0 = arg max
f∈F

EP

[
V
(
f(X), Y

)]
In a similar manner, we define f−j as the function maximizing EP [V (f(X), Y )] over all f ∈ F−j .
Subsequently, we define the population-level importance for the variable Xj as the decrease in
predictiveness when excluding Xj from X = (X1, . . . , Xp). This is commonly referred to as
the Leave Out COvariates (LOCO) importance in existing literature [Lei, 2016]. The LOCO
importance for Xj is defined as:

Ψj(P ) = EP

[
∆j(X, Y )

]
where ∆j(X, Y ) = V (f0(X), Y )− V (f−j(X), Y ) .

We can use any conformity score to measure variable importance, depending on the problem.
For regression tasks, we can use V (f(X), Y ) = 1− [Y −f(X)]2/σ2, where σ2 = EP

[
Y −EP [Y ]

]2
represents the variance of the target variable Y . This conformity score corresponds to the
traditional R2 score at the population level, i.e., R2 = EP [V (f(X), Y )]. Alternatively, for
binary classification problems, we can use V (f(X), Y ) = 1Y =f(X), which corresponds to the
accuracy score at the population-level. Regarding the choice of the conformity score, there
is no ground truth for variable importance as there are multiple definitions of what makes a
variable important [Hooker, 2019; Hama, 2022; Verdinelli, 2023]. Consequently, the choice of a
conformity score should be contingent upon the specific context and goals of the analysis.

Our approach aims to derive local explanations for a specific observation (X, Y ) from the
population-level importance Ψj(P ). This involves identifying a partition ∪iAi = X contain-
ing observations with similar explanations, which means VP (∆j(X, Y ) | X ∈ Ai) ≈ 0 for all
j ∈ {1, . . . , p} simultaneously. In other words, the observations within each partition have low
variance in their feature importance. As a result, we can use Ψj(PAi) = EPAi

[
∆j(X, Y )

]
=

EP

[
∆j(X, Y ) |X ∈ Ai

]
as local explanations for all observations in Ai, since the random vari-

able ∆j(X, Y ) exhibits low variance within Ai. Essentially, our approach involves identifying a
homogeneous group with respect to importance measure ∆j(X, Y ) and attributing the global
importance of this group as the local explanations of its members. Hence, it permits us to have
local explanations while benefiting from all the inference results available for global explanations.



4.1 Estimation and inference

To compute our local explanations, we need to compute two quantities: the LOCO importance
Ψj(P ) = EP

[
∆j(X, Y )

]
for any distribution P and the partition ∪iAi = X that group ob-

servations by their feature importance similarity. The former has been extensively studied in
[Williamson, 2021], where the authors proposed a nonparametric efficient estimation procedure
using the following plug-in estimator:

Ψ̂j(P̂ ) = E
P̂

[
∆̂j(X, Y )

]
where ∆̂j(X, Y ) = V

(
f̂0(X), Y

)
− V

(
f̂−j(X), Y

)
, (3.5)

P̂ = 1/n
∑n

i=1 δ(Xi,Yi) is the empirical distribution of P based on Dn = {(Xi, Yi)}ni=1 and
f̂0, f̂−j are estimators of the population minimizers f0 and f−j respectively. f̂0, f̂−j are obtained
by building a predictive model for Y using all features in X and after removing the variable
Xj respectively. This can be achieved using any machine learning algorithm. [Williamson,
2021] demonstrated that the estimator defined in Equation (3.5), is asymptotically efficient and
enables valid statistical inference under regularity conditions.

Having obtained a consistent estimator for Ψj(P ), we now propose a method to derive the
partition ∪iAi = X . The initial step involves creating a new representation for each obser-
vation Xi = (Xi1, . . . , Xip) in Dn using the conformity score V . This is expressed as X̃i =(
∆̂1(Xi, Yi), . . . , ∆̂p(Xi, Yi)

)
. Representing the data in the space of feature importance, rather

than the original covariate space, allows for the grouping of observations that exhibit consistent
behavior with respect to the importance measure ∆̂j(X, Y ) = V (f̂0(X), Y ) − V (f̂−j(X), Y )
across all variables j ∈ {1, . . . , p} simultaneously.

The subsequent step involves clustering similar observations based on their new representations
X̃. This can be achieved using any clustering algorithm, such as K-means, DBSCAN, or Affin-
ity Propagation, ultimately resulting in a partition of Dn into K sets C = {C1, . . . , CK}. A
comprehensive overview of these methods can be found in [Schaeffer, 2007].

The final step entails using the identified clusters C to define a partition of X . This is ac-
complished by assigning any new points x ∈ X to their nearest partition Ck with respect to a
similarity function d : X × X → R+. We can use any similarity function such as Euclidean or
Manhattan distance. More formally, we define the corresponding region Âk of cluster Ck as

Âk =

x ∈ X :
∑

(Xi,Yi)∈Ck

d(x, Xi) <
∑

(Xi,Yi)∈Cl

d(x, Xi) for all k ̸= l

 .

In order to establish a partition of X , we must also account for the set of "undecidable" obser-
vations, which are those that simultaneously belong to multiple groups. We define this set as
follows:

ÂK+1 =

x ∈ X : ∃k, l ∈ {1, . . . , K},
∑

(Xi,Yi)∈Ck

d(x, Xi) =
∑

(Xi,Yi)∈Cl

d(x, Xi)

 .



Hence, the local explanations of a given observation Xi that belongs to the region Âk can be
represented by the vector

(
Ψ̂1(P̂

Âk
), . . . , Ψ̂p(P̂

Âk
)
)
, where the contribution of the feature Xj ,

Ψ̂j(P̂
Âk

), is defined as follows:

Ψ̂j(P̂
Âk

) = E
P̂

Âk

[
∆̂j(X, Y )

]
(3.6)

= E
P̂

[
∆̂j(X, Y ) |X ∈ Âk

]
. (3.7)

=
∑

(Xi,Yi)∈Ck

∆̂j(Xi, Yi)
|Ck|

We called this approach Regional LOCO (R-LOCO) and its outline is the following:

1. Apply the transformation ∆̂j(X, Y ) to the features


X1,1 X1,2 . . . X1,p

X2,1 X2,2 . . . X2,p

...
... . . . ...

Xn,1 Xn,2 . . . Xn,p

 Apply ∆̂j(X,Y )−−−−−−−−−−→


∆̂1(X1, Y1) ∆̂2(X1, Y1) . . . ∆̂p(X1, Y1)
∆̂1(X2, Y2) ∆̂2(X2, Y2) . . . ∆̂p(X2, Y2)

...
... . . . ...

∆̂1(Xn, Yn) ∆̂2(Xn, Yn) . . . ∆̂p(Xn, Yn)


Instead of computing the LOCO importance by averaging the transformed features column-wise
as follows using Ψ̂j(P̂ ) = E

P̂

[
∆̂j(X, Y )

]
= ∑n

i=1
∆̂j(Xi,Yi)

n for all j ∈ {1, . . . , p}:


∆̂1(X1, Y1) ∆̂2(X1, Y1) . . . ∆̂p(X1, Y1)
∆̂1(X2, Y2) ∆̂2(X2, Y2) . . . ∆̂p(X2, Y2)

...
... . . . ...

∆̂1(Xn, Yn) ∆̂2(Xn, Yn) . . . ∆̂p(Xn, Yn)

 Average−−−−−−→
by column

∆̂1(X1, Y1) ∆̂2(X1, Y1) . . . ∆̂p(X1, Y1)
∆̂1(X2, Y2) ∆̂2(X2, Y2) . . . ∆̂p(X2, Y2)

...
... . . . ...

∆̂1(Xn, Yn) ∆̂2(Xn, Yn) . . . ∆̂p(Xn, Yn)
Ψ̂1(P̂ ) Ψ̂2(P̂ ) . . . Ψ̂p(P̂ )

2. We compute the average of the transformed features column-wise using the clusters ∪K+1
k=1 Ak =

X , Ψ̂j(P̂
Âk

) = ∑
(Xi,Yi)∈Ck

∆̂j(Xi,Yi)
|Ck| , j ∈ {1, . . . , p}, k ∈ {1, . . . , K} to have feature attributions

for each observation,

Âk ∆̂1(X1, Y1) ∆̂2(X1, Y1) . . . ∆̂p(X1, Y1)
Âk ∆̂1(X2, Y2) ∆̂2(X2, Y2) . . . ∆̂p(X2, Y2)
...

... . . . ...
Â3 ∆̂1(Xn, Yn) ∆̂2(Xn, Yn) . . . ∆̂p(Xn, Yn)

Assigned each observation−−−−−−−−−−−−−−−−−−−−−→
LOCO computed by its group Âk

Ψ̂1(P̂
Âk

), . . . , Ψ̂p(P̂
Âk

)
Ψ̂1(P̂

Âk
), . . . , Ψ̂p(P̂

Âk
)

...
Ψ̂1(P̂

Â3
), . . . , Ψ̂p(P̂

Â3
)



5 Experiments

In this section, we compare the regional feature attributions of our approach, Regional LOCO
(R-LOCO), with SHAP and LIME on models f for which we have knowledge of the local
important variables. To evaluate the effectiveness in detecting local important variables from
feature attributions, it is essential to establish a significance threshold for considering a variable
as important. The Shapley and LIME values lack a clear interpretation, making it challenging
to choose an appropriate threshold value. In contrast, R-LOCO provides a clear interpretation:
the drop in predictive performance when a variable is removed. This allows users to set a
threshold value based on an acceptable performance drop for the specific problem at hand.
However, to ensure a more objective analysis, we compare the methods by varying the thresholds
for each method. We begin by projecting the feature attributions of each observation onto
the simplex, by transforming the attribution of each method, m ∈ {SHAP, LIME, R-LOCO},
ϕm

xi
as ϕ̃m

xi
= |ϕm

xi
|/
∑p

j=1 |ϕm
xj
|. Subsequently, we use quantiles q ∈ {0.2, 0.3, 0.4, 0.5} of the

feature attributions of each observation as threshold values for each method m. We consider
a variable-value Xi = xi to be significative for the prediction f(x1, . . . , xp) by method m if
ϕ̃m

xi
≥ Q

(
q, {ϕ̃m

xi
}pj=1

)
, where Q

(
q, {ϕ̃m

xi
}pj=1

)
is the q−quantile of the values {ϕ̃m

xi
}pj=1. In all

our experiments, we have at least 50% of the variables that are considered important for each
prediction. As a result, we set q = 0.5 as the maximum quantile value to ensure that each method
can choose at least 50% of the variables. Our evaluation metrics are the True Discovery Rate
(TDR) and the False Discovery Rate (FDR), which assess the ability of each method to identify
the model’s local important variables. The TDR (higher is better) reflects the proportion of truly
important variables to which each method assigns a score higher than the threshold chosen using
the quantile q ∈ {0.2, 0.3, 0.4, 0.5}. Conversely, the FDR (lower is better) represents the fraction
of non-important local variables that incorrectly receive a score higher than the threshold by
each method.

The comparative analysis encompasses three distinct experiments in which the variables are
independent to eliminate any potential bias in detecting important variables when dependencies
exist. We generate a set of n samples, denoted as {Xi}ni=1, drawn from a distribution X ∼ PX =∏p

i=j PXj . By applying a function Y = f(X), we construct a dataset Dn = {(Xi, f(Xi))}ni=1.
Subsequently, SHAP and LIME received the model f to be explained and the data Dn as input.
On the other hand, R-LOCO exclusively receives the observed data Dn. For the R-LOCO
method, we used Affinity Propagation [Frey, 2007] implemented via scikit-learn [Pedregosa,
2011] to identify clusters ∪K+1

k=1 Âk that were subsequently used to calculate LOCO by region as
defined in Equation (3.6). All the regression functions used in our analysis are defined piece-wise,
with each piece involving different variables. Thus, the true clusters correspond to the regions
where each piece of the function is defined. It’s important to note that approximating these
regions using clustering methods presents challenges. Consequently, we computed R-LOCO
using the ground-truth clusters as well. This alternate approach, referred to as Regional LOCO
- Truth Cluster (R-LOCO - TC), serves as a benchmark to compare against R-LOCO with
approximated clusters.



Experiment 1: Piece-wise Linear Model. We propose a simple piece-wise linear model
where the local important variables can be read out as in a classical linear model. Let X =
(X1, . . . , X10) with each components being independent, and Xi ∼ U [−1, 1] for all i ∈ {1, . . . , 10}.
The predictor function is defined as

f(X) =

X1 + X2, if X10 ≤ 0

X5 + X6 otherwise

In Figure 3.3, the TDR and FDR scores remain constant across the observations for this example,
and all four methods successfully identify the local important variables for all thresholds q ∈
{0.2, 0.3, 0.4, 0.5}. However, SHAP and LIME exhibited a high False Discovery Rate (FDR) of
50 and 60 percent, respectively. This indicates that for each observation, among the variables
assigned score above the threshold, 50 to 60 percent are actually not important. Contrarily,
Regional-LOCO and Regional-LOCO Truth Cluster, detected all the significant variables with
an FDR of 0, demonstrating superior precision compared to SHAP and LIME.

Remark: The classic global importance measure, LOCO, can be calculated from R-LOCO as
follows Ψ̂j(P̂ ) = ∑K

k=1
|Ck|

n Ψ̂j(P̂
Âk

) where |Ck| represent the number of observations of Dn in
Âk. By calculating it, for this example, we observe unsurprisingly that the model considers all
the variables X1, X2, X5, X6 as important, showing the benefit of R-LOCO over LOCO that
enables to identify the two regimes of this model.

Figure 3.3: TDR and FDR of each method on the piece-wise linear model across 10000 obser-
vations of test set.



Experiment 2: High-order Interactions. Here, we use the independent variables of the
previous experiment on a more complex function having interactions, used in [Bénard, 2021b],
defined as follows:

f(X) = 3
√

3×X1X2 1X3>0 +
√

3×X4X51X3≤0 + 3×X6X7 1X8>0 + X9X10 1X8≤0.

Within this model, we discern four distinct regimes. The potentially locally important vari-
ables are {X1, X2}, {X4, X5}, {X6, X7}, or {X9, X10}, subject to the sign of {X3, X8}. The
ground-truth clusters are defined using the sign of {X3, X8}. As Figure 3.4 demonstrates, the
distribution of the TDR and FDR exhibits more variance between observations in this model.
For small values of the thresholds, q = 0.2 and 0.3, the Shapley Values successfully identify the
important variables. However, for q = 0.4 and 0.5, the Shapley Values struggle, as indicated by
the wider TDR interquartile varying between 50 − 75%. On the other hand, LIME fails to de-
tect all the important variables regardless of the threshold value, with the TDR varying between
50− 100% across the different thresholds. Conversely, the Regional LOCO method successfully
detects all important variables, with TDR= 100% for all q. The interquartile range of the False
Discovery Rate for R-LOCO, SHAP, and LIME falls within 40− 60%, 20− 40%, and 0− 20%,
respectively. In this example, we see a difference in performance between the R-LOCO and the
R-LOCO - TC. Unlike R-LOCO, the R-LOCO - TC cluster has an FDR of 0, thus showing the
importance of identifying the right clusters. Overall, our approach is much better than SHAP
and LIME for detecting local important variables.

Figure 3.4: TDR and FDR of each method on the model with interactions across 10000 obser-
vations of test set.



Experiment 3: Linear Tree. In our final experiment, we utilize a linear tree - a variant
of a decision tree where predictions are derived from a linear model in each leaf, in contrast
to averaging the outputs of the observations that belong to the leaf. This model has been
featured in several studies as an instrument to construct interpretable models [Künzel, 2022]
or enhance random forest or boosting tree [Friedberg, 2020; Athey, 2019]. We use the package
linear-tree and train a linear tree f on the California House Price dataset [Kelley Pace, 1997]
(n = 20640, p = 8). The learned tree is displayed in Figure 3.5.

Figure 3.5: Learned linear tree on California house price dataset. Each node of the tree displays
the loss, split variable, and the number of samples.

To mitigate any potential bias in detecting important variables when dependencies exist, we
shuffle each column of the dataset, generating new inputs with independent covariates. More pre-
cisely, assuming PX represents the distribution of the features, we generate new inputs {X◦

i }ni=1
using the marginal distribution of the features X◦

i ∼
∏p

i PXi , and then aim to explain the pre-
dictions {f(X◦

i )}ni=1. In this model, the local important variables are the non-null coefficients
of the linear model at the node where the observation is located. We evaluate the model’s
ability to discern the non-zero coefficients of the linear model of the leaf where the observation
belongs. Similar to the previous experiments, Figure 3.6 suggests that R-LOCO outperforms
SHAP, which in turn outshines LIME. However, R-LOCO with the truth cluster shows a slightly
superior performance to R-LOCO, underscoring the importance of finding the correct cluster.

https://github.com/cerlymarco/linear-tree


Figure 3.6: TDR and FDR of each method on the Linear Tree

6 Discussion

In this chapter, we have introduced a technique for identifying distinct influence zones of the
model under examination, which are employed to calculate overall importance on a regional
basis. These regions provide us with a more detailed understanding compared to global im-
portance measures, although they are not specific to each observation. This regional impor-
tance approach strikes a balance between the local and global approaches. The key chal-
lenge in this approach lies in accurately identifying the diverse zones of influence within the
model, which is no easy task. One potential improvement to enhance cluster identification is
by enriching our representation, denoted as X̃i =

(
∆̂1(Xi, Yi), . . . , ∆̂p(Xi, Yi)

)
, through the

addition of second-order interactions. This enriched representation would take the form of
X̃i =

(
∆̂1(Xi, Yi), . . . , ∆̂p(Xi, Yi), ∆̂1,1(Xi), ∆̂1,2(Xi), . . . , ∆̂p,p(Xi)

)
, and may even incorpo-

rate higher-order interactions. Another significant challenge is ensuring that each region contains
a minimum number of observations to guarantee stability. Overall, we propose this approach as
an alternative to other existing local explanation methods, such as SHAP and LIME, which are
unreliable for the detection of local important variables. We have demonstrated through sev-
eral examples with independent variables that R-LOCO outperforms these methods. Moreover,
this approach avoids extrapolation with out-of-distribution observations as it uses only observed
observations. Our objective was to show that SHAP and LIME do not work even when the
variables are independent and to propose an alternative. However, it would also be interesting
to see our method when the variables are dependent. We believe that the problems that arise
when the variables are dependent are independent of the choice of methodology. Independent
strategies should be used to correct them, such as grouping correlated variables, as explored by



[Verdinelli, 2023] in their analysis of LOCO. While the definition of a local contribution of a vari-
able Xi = xi to a prediction f(x1, . . . , xp) remains unclear, we suggest using this intermediate
approach between the local and global approaches, aiming to identify different model regimes.
However, from a more theoretical perspective, except for piece-wise functions, it is extremely
challenging to define these zones of influence, particularly for general continuous functions. The
existence and uniqueness of such partitions pose theoretical questions that we leave for future
studies. In the next chapter, we also introduce an approach called Sufficient Rules, which per-
mits finding partitions of observations based on their predictions. This method aims to identify
groups of observations with similar predictions, further expanding our understanding of the
model’s behavior.



Chapter 4
Beyond Features attributions: Sufficient
Explanations and Rules

To explain the decision of any regression and classification model, we extend the
concept of probabilistic sufficient explanations (P-SE). For each instance, this ap-
proach selects the minimal subset of features that is sufficient to yield the same
prediction with high probability while removing other features. The crux of P-SE is
to compute the conditional probability of maintaining the same prediction. There-
fore, we introduce an accurate and fast estimator of this probability via Random
Forest for any data and show its efficiency through a theoretical analysis of its con-
sistency. Consequently, we extend the P-SE to address regression problems and deal
with non-discrete features, without learning the distribution of input nor having the
model for making predictions. Finally, we introduce local rule-based explanations for
regression/classification based on the P-SE and compare our approaches with other
explainable AI methods. These methods are available as a Python package.
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1 Introduction

Many methods have been proposed to explain specific predictions of machine learning models
from different perspectives, such as feature attributions approaches [Lundberg, 2017b; Ribeiro,
2016a], decision rules [Ribeiro, 2018], counterfactual examples [Wachter, 2017] and logic-based
[Shih, 2018; Darwiche, 2020].

Among these categories, the most popular are feature attributions approaches, in particular
SHAP [Lundberg, 2017a], which is based on Shapley Values (SV) and aims at indicating the
importance of each feature in the decision. One of the main reasons for SHAP’s success is its
scalability, nice representations of the explanations, and game-theoretic foundations. However,
SV used in SHAP does not guarantee the truthfulness of the important variables involved in a
given decision. Indeed, it is possible to construct simple theoretical models with discontinuity for
which SV cannot distinguish between local important and nonimportant variables; see Chapter
3. Similar difficulties have also been highlighted by [Ghalebikesabi, 2021] for SHAP and LIME
[Ribeiro, 2016a]. This lack of guarantees is a major issue since the explanations may be used for
high-stakes decisions. Moreover, additive explanations are not suitable when interactions occur
in the model [Gosiewska, 2019].

An appealing solution to the problem above is to use decision rules [Ribeiro, 2018] or logic-based
explanations [Darwiche, 2020; Shih, 2018], which gives local explanations that take into account
interactions while ensuring minimality and guarantee on the outcome. However, these methods
are not currently available in the general case (e.g., regression model, continuous features).
Our objective is to extend these methods to more realistic cases by developing new consistent
algorithms.

In this paper, we generalize the concept of Probabilistic Sufficient Explanations (P-SE) intro-
duced by [Wang, 2020]. P-SE is a relaxation of logic-based explanation: it explains the classi-
fication of an example by choosing a minimal subset of features guaranteeing that, the model
makes the same prediction with high probability, whatever the values of the remaining features
under the data distribution. Such a subset is called a Sufficient Explanation (also known as
sufficient reason or prime implicant [Shih, 2018; Darwiche, 2020]).

We make several contributions. We extend the concept of Same Decision Probability (SDP)
to the regression setting so that we can extend Sufficient Explanations from classification to
regression. We introduce a fast and efficient estimator of the SDP based on Random Forests
and prove its uniform almost sure convergence. In contrast to [Wang, 2020], our approach can
deal with non-discrete features and does not need the estimation of the distribution of X. Our
method can explain the data generating process (X, Y ) directly or any learnt model (X, f(X)).
We introduce the probabilistic local explanatory importance which is the frequency of each
feature to be in the set of all Sufficient Explanations. In particular, this summarizes the diversity
of the Sufficient Explanations. We introduce local rule-based explanations for classification or
regression which are simultaneously minimal and sufficient. We compare our approaches with
other explainable AI methods and provide a Python package that computes all our methods.

https://github.com/salimamoukou/acv00


2 Motivations and Related works

The methods used to explain the local behavior of machine learning models can be organized
into 5 groups: features attributions, decision rules, instance-wise feature selection, logical rea-
soning approaches, data generation based or counterfactual examples. The benefits of feature
attribution-based explanations, e.g., SHAP [Lundberg, 2020a] or LIME [Ribeiro, 2016a] is that
they are easy to read, they can be applied to any model and are generally more scalable than
their alternatives. On the other hand, they are sensitive to perturbations [Ignatiev, 2019], or
can be fooled by adversarial attacks [Slack, 2020]. These downsides can be caused by the local
perturbations used, which make them inconsistent with the data distribution.

Quite differently, instance-wise feature selection such as L2X [Chen, 2018] or INVASE [Yoon,
2018] aims at finding the minimal subset of variables that are relevant for a given instance x and
its label y. Interactions can be captured in that way. In addition, the identification of a minimal
subset S(x) = S is well formalized and the objective is to find S such that FY |X=x ≈ FY |XS=xS

.
However, these methods are not reliable because they are prone to approximation errors due to
the training of several Neural Networks, and they do not provide any guarantees regarding the
fidelity of the explanations [Jethani, 2021]. A similar approach is also developed in [Dhurandhar,
2018] called Pertinent Positive.

Anchors [Ribeiro, 2018] are local rule-based explanations that propose a solution to the reliability
issue by providing an explanation with guarantees. It explains individual predictions of any
classification model by finding a decision rule that reaches a given accuracy for a high percentage
of the neighborhood of the instance. However, the method is only available for classification,
requires discretizing the variables, is unstable, and tends to use more variables than needed.

Logical Reasoning Approaches such as Sufficient Reasons [Shih, 2018; Darwiche, 2020] select
a minimal subset of features guaranteeing that, no matter what is observed for the remaining
features, the decision will stay the same. It can be seen as an instance-wise feature selection but
with guarantees of sufficiency and minimality (i.e., no subset of the set satisfies the sufficiency
condition). However, since the guarantees are deterministic, it is often necessary to include many
features into the explanation, making the explanation more complex, and thus less intelligible.
A relaxation of this method is Sufficient Explanations [Wang, 2020] that gives probabilistic
guarantees instead of deterministic guarantees, i.e., it requires that the prediction remain the
same with high probability. It gives a simple local explanation with guarantees while considering
feature interactions and the data distribution. However, it is limited to classification with
binary features and requires learning the distribution of the features. Moreover, the Sufficient
Explanations are not unique, which causes a selection problem as the whole set of explanations
is not interpretable.

In this work, we propose a consistent method that efficiently finds the Sufficient Explanations of
any data generating process (X, Y ) or any model (X, f(X)), without learning the distribution
of X. In particular, we don’t need to have access to the model f , we need only the predictions or
outputs, contrary to [Wang, 2020]. We propose local attributions that summarize the diversity of



the Sufficient Explanations. In addition, we propose local rule-based explanations for regression
and classification models based on Sufficient Explanations. To the best of our knowledge, it is
the first local rule-based explanations for regression tasks.

3 Probabilistic Sufficient Explanations for Regression

Let assume we have an i.i.d. samples Dn = {(Xi, Yi)}ni=1 such that (X, Y ) ∼ P = PXPY |X

where X ∈ X and Y ∈ R. We use [p] to represent the indices of the features, and for a given
subset S ⊆ [p], XS = (Xi)i∈S represents a subgroup of features, and we write x = (xS , xS̄).

We define as the explanations of an instance (x, y) the minimal subsets xS , S ⊆ [p] such that
given only those features, the model yields "almost" the same prediction y as on the complete
example with high probability, under the data distribution. The main probabilistic reasoning
tool that we use for our explanations is the Same Decision Probability (SDP) [Chen, 2012]. For
classification, it is defined as the probability that the classifier has the same output by ignoring
some variables. To also explain regression models, we propose the following definition of the
SDP.

Definition 3.1. (Same Decision Probability of a regressor). Given an instance (x, y),
the Same Decision Probability at level t of the subset S ⊆ [p], w.r.t x = (xS , xS̄) is

SDPS (y; x, t) = P
(
(Y − y)2 ≤ t |XS = xS

)
.

In a regression setting, the SDP gives the probability to stay close to the same prediction
y at level t, when we fix XS = xS or when X S̄ are missing. The higher the probability,
the better the explanation powered by S. Note that for classification, the SDP is defined as
SDPS (y; x) = P (Y = y |XS = xS ). Although we present all the methods with the SDP for
regression, they remain the same for classification, we only need to replace SDPS (y; x, t) by
SDPS (y; x). Now, we focus on the minimal subset of features such that the model makes the
same or almost the same decision with a given (high) probability π.

Definition 3.2. (Minimal Sufficient Explanations). Given an instance (x, y), Sπ(x) is
a Sufficient Explanation for probability π, if SDPSπ(x) (y; x, t) ≥ π, and no subset Z of Sπ(x)
satisfies SDPZ (y; x, t) ≥ π. Hence, a Minimal Sufficient Explanation is a Sufficient Explanation
with minimal size.

For a given instance, the Sufficient Explanation or Minimal Sufficient Explanation may not be
unique [Darwiche, 2020]. Furthermore, there may be significant differences among the Sufficient
Explanations or Minimal Sufficient Explanations. We denote SE as the set of all Sufficient
Explanations and M-SE as the set of Minimal Sufficient Explanations. Thus, the number and
the diversity of the explanations make the method less intelligible, as deriving one of them is
not informative enough, and all of them are too complex to interpret. Therefore, we propose
to compute the following local attributions that summarize the importance of each variable in
SE/M-SE:



Definition 3.3. (Local eXplanatory Importance - LXI). Given an instance (x, y) and its
SE or M-SE. The local explanatory importance of xi is how frequent xi is chosen in the SE or
M-SE.

Contrary to classical local feature attributions such as SHAP or LIME, the values of Local
eXplanatory Importance does not depend on the range of values of the predictions and are
interpretable by design. It corresponds to the frequency of apparition in the SE or M-SE, which
allows to reason about the relative difference between the attribution of each feature. Indeed, we
can easily discriminate between the importance of variables in terms of probabilities compared
to arbitrary values of SHAP or LIME that depend on the model and its predictions. In our
framework, a value equal to 1 means that this feature is present in all the SE/M-SE. Hence this
feature is necessary to maintain the prediction. Moreover, the attributions of the features are
sparse since they are based on the SE/M-SE.

Although Sufficient Explanations allow finding local relevant variables, we may want to know
the logical reasons relating input and output. In essence, explaining a decision means giving
the reasons that highlight why the decision has been made. Therefore, we propose to extend
the Sufficient Explanations into local rules. A rule is a simple IF-THEN statement, e.g., IF
the conditions on the features are met, THEN make a specific prediction. Recall that given an
instance x, a Sufficient Explanation is the minimal subset S ⊆ [p], such that fixing the values
XS = xS permits to maintain the prediction with high probability. The idea is to find the
largest rectangle LS(x) = ∏|S|

i=1[ai, bi], ai, bi ∈ R given the indexes of the Sufficient Explanation
S such that xS ∈ LS(x) and for all z ∼ PX with zS ∈ LS(x), SDPS(y; z, t) ≥ π.

Definition 3.4. (Minimal Sufficient Rule). Given an instance (x, y), S a Minimal Sufficient
Explanation, the rectangle LS(x) = ∏|S|

i=1[ai, bi], ai, bi ∈ R is a Minimal Sufficient Rule if LS(x) =
arg maxL V ol(L), xS ∈ LS(x) and for all z ∼ PX with zS ∈ LS(x), SDPS (y; z, t) ≥ π.

Intuitively, the Sufficient Rule is a generalization of the Sufficient Explanation, i.e., instead of
satisfying the minimality/sufficiency conditions of Definition 3.2 if we fixed the values XS = xS ,
we want to satisfy these conditions on all the elements of a rectangle LS(x) that contains xS .
We also want this rectangle to be of maximal volume such that it covers a large part of the
input space. Thus, the Sufficient Rule captures the local behavior of the model around x while
ensuring the minimality of the rule and guarantees on the outcome. Note that the volume of
the rectangle L can be defined as V ol(L) = P(XS ∈ L) or λ(L), with λ the Lebesgue measure.

While Sufficient Rules are similar to Anchors introduced by [Ribeiro, 2018], we emphasize two
major types of differences. The first is that our framework for constructing rules can address
regression problems, deal with continuous features without discretization, and do not need access
to the model f . Moreover, if we have a model f and an instance x, Anchors search the largest
rule (or rectangle) LS(x) such that PQ(f(x) = Y | XS ∈ LS(x)) ≥ π under an instrumental
distribution Q, typically the marginal law Q = ∏

i PXi . This is different from the Sufficient Rule
that requires the stability of the prediction for all the observations in the rectangle, i.e, for all
xS ∈ LS(x),P(f(x) = Y | XS = xS) ≥ π. The second major difference is that the Sufficient



Rule is based on the original distribution P as we use the conditional distribution Y |XS . In
contrast, anchors use local sampling perturbations (introducing another distribution Q). As we
discuss in the next section, the effective computation of these rules is very different. Anchors
use a heuristic approach to find the minimal rule, which might produce instable and suboptimal
minimal rules. The Sufficient Rules satisfy a minimality principle by definition, as they are
based on Sufficient Explanations.

4 SDP, Sufficient Explanations and Sufficient Rules via Random
Forest

In order to find the Sufficient Explanations Sπ(x) and the corresponding Sufficient Rules LSπ (x),
we need to compute the SDP for any subset S. However, the computation of the SDP is known
to be computationally hard; even for simple Naive Bayes model, the computation of SDP is
NP-hard [Chen, 2013]. Consequently, approximate criteria based on expectations instead of
probabilities have been introduced by [Wang, 2020]. They proposed to use a Probabilistic
Circuit [Choi, 2020] to model the distribution of the features X and compute a lower bound of
the SDP.

In this section, we propose a consistent estimator of the SDP for any distribution (X, Y ). It is
based on two ideas: Projected Forest [Bénard, 2021b; Bénard, 2021e] and Quantile Regression
Forest [Meinshausen, 2006]. The Projected Forest is an adaptation of the Random Forest algo-
rithm that estimates E[Y |XS = xS ] instead of E[Y |X = x], and the Quantile Regression Forest
uses the Random Forest algorithm to estimate the Conditional Distribution Function (CDF)
P(Y ≤ y|X = x). The first step is to write the SDP as

SDPS(y; x, t) = P((Y − y)2 ≤ t|XS = xS) = FS(y +
√

t |XS = xS)− FS(y −
√

t |XS = xS).
(4.1)

Equation (4.1) demonstrates that the primary challenge lies in estimating the Projected (or
Conditional) Cumulative Distribution Function (CDF) FS(y|XS = xS) = P(Y ≤ y|XS = xS).
The variation of the original Random Forest suggested by [Meinshausen, 2006], which estimates
the CDF F (y|X = x) = P(Y ≤ y|X = x), is not directly applicable to our objective as we
aim to estimate the Projected CDF FS(y|XS = xS) for any S. The recent works of [Bénard,
2021b; Bénard, 2021e] are more relevant as they permit the estimation of E[Y |XS = xS ] from
a classical Random Forest trained to predict E[Y |X = x]. The idea is to extract a new Forest
called Projected Forest from the original Forest, which is a projection of the original Forest along
the S-direction.

We propose to combine the ideas of Quantile Regression Forest and Projected Forest to estimate
the Projected CDF FS(y|XS = xS). In addition, we establish the consistency of this estimator.



4.1 Random Forest and Condition Distribution Function (CDF) Forest

A Random Forest (RF) is an ensemble of k randomized decision trees based on the CART
procedure [Breiman, 1984]. The algorithm works as follows. For each tree, data points are
drawn at random with replacement from the original data set of size n; then, at each cell, a
split variable is chosen by maximizing the CART criterion among a random subset of variables;
finally, the construction of every tree is stopped when the number of observations in each leaf
reaches a predefined value. For each new instance x, the prediction of the l-th tree is:

ml(x; Θl,Dn) =
n∑

i=1

Bn(Xi; Θl) 1Xi∈An(x; Θl)
Nn(x; Θl)

Yi, (4.2)

• Θl, l = 1, . . . , k are independent random vectors, distributed as a generic random vector
Θ = (Θ1, Θ2) independent of Dn. Θ1 contains indices of the bootstrap samples used to
build the tree, and Θ2 contains the splitting candidate variables at each node.

• An(x; Θl) is the leaf node containing x

• Nn(x; Θl) is the number of bootstrap elements that fall into An(x; Θl)

• Bn(Xi; Θl) is the bootstrap component i.e., the number of times the observation Xi has
been chosen from the original data for the l-th tree.

The trees are then averaged to give the prediction of the forest as:

m(x; Θ1:k,Dn) = 1
k

k∑
l=1

ml(x; Θl,Dn). (4.3)

The Random Forest estimator (Eq. 4.3) can also be seen as an adaptive neighborhood procedure
[Lin, 2006; Biau, 2010] or kernel methods [Breiman, 2000; Geurts, 2006; Scornet, 2016]. For
every instance x, the observations in Dn are weighted by wn,i(x), i = 1, . . . , n. The prediction
of Random Forests and the weights can be rewritten as

m(x; Θ1:k,Dn) =
n∑

i=1
wn,i(x)Yi, wn,i(x) = 1

k

k∑
l=1

Bn(Xi; Θl) 1Xi∈An(x; Θl)
Nn(x; Θl)

.

Viewing a Random Forest as an adaptive nearest neighbor predictor offers natural estimates of
more complex quantities such as cumulative hazard function [Ishwaran, 2008], treatment effect
[Wager, 2017; Jocteur, 2023], and conditional density [Du, 2021]. Therefore, just as E[Y |X = x]
is approximated by a weighted mean over the outputs Yi, E[1Y ≤y|X = x] is approximated by
the weighted mean over the 1Yi≤y using the same weights wn,i(x). The approximation is

F̂ (y|X = x; Θ1:k,Dn) =
n∑

i=1
wn,i(x)1Yi≤y. (4.4)

To simplify notations, we omit Θ1, . . . , Θk,Dn and we write F̂ (y|X = x).



4.2 Projected Forest and Projected CDF Forest

We describe the Projected Forest (PRF) and show how we combined it with the Quantile Re-
gression Forest to build the estimator of the Projected CDF. The PRF algorithm has been
introduced in [Bénard, 2021e; Bénard, 2021b]. The idea is to project the partition of each tree
of the forest on the subspace spanned by the variables in S, thus we can estimate E[Y |XS ] rather
than E[Y |X]. The computation of these partitions for each S can be computationally expensive
in high dimension. However, [Bénard, 2021b] proposes a simple algorithm to efficiently derive
the output of the Projected Forest without explicitly computing its partitions. To compute
the prediction of a tree projected along the S direction, the algorithm ignores splits that use
variables that are not contained in S. It works as follows: when an observation is dropped down
in the tree, and it encounters a split involving a variable i /∈ S , the observation is sent both to
the left and right children nodes. As a result, each observation falls in multiple terminal leaves
of the tree. Thus, to compute the prediction of an instance xS , we collect the set of terminal
leaves where it falls, and average the output Yi of the training observations which belong to
every terminal leaf of this collection. E[Y |XS = xS ] is estimated as the average outputs of the
training observations in the intersection of the leaves where xS falls.

The PRF algorithm is detailed in the Appendix (12) and the corresponding PRF is denoted
m(S)(xS) = ∑n

i=1 wn,i(xS)Y i where the weights are defined by

wn,i(xS) = 1
k

k∑
l=1

Bn(Xi; Θl) 1Xi∈A
(S)
n (xS ; Θl)

N
(S)
n (x; Θl)

, (4.5)

where A
(S)
n (xS ; Θl) is the leaf of the projected l-th tree given S where xS falls and N

(S)
n (x; Θl)

denoted the number of bootstrap observations that falls in A
(S)
n (xS ; Θl). Consequently, we

approximate the Projected CDF FS(y|XS = xS) = P(Y ≤ y|XS = xS) as in Eq. (4.4) by using
the weights of the Projected Forest defined in Eq. (4.5). The estimator of the Projected CDF
is defined as F̂S(y|XS = xS) = ∑n

i=1 wn,i(xS)1Yi≤y.

4.3 Consistency of the Projected CDF Forest

In this section, we state our main result, which is the uniform a.s. convergence of the estima-
tor F̂S(y|XS = xS) to FS(y|XS = xS). [Meinshausen, 2006] showed the uniform convergence
in probability of a simplified version of the estimator of the CDF defined in Eq. (4.4), where
the weights wn,i(xS) are in fact considered to be non-random while they are indeed random
variables depending on (Θl)l=1,...,k, Dn. Moreover, the bootstrap step was replaced by subsam-
pling without replacement as in most studies that analyze the asymptotic properties of Random
Forests [Scornet, 2015; Wager, 2017; Goehry, 2020]. However, [Elie-Dit-Cosaque, 2022] showed
the almost surely uniform convergence of both estimators (the simplified and the one defined
in Eq. 4.4) under mild assumptions with all the randomness and bootstrap samples. We follow
their works to prove the consistency of the PRF CDF F̂S(y|XS = xS) based on the following
assumptions.



Assumption 4.1. For all x ∈ Rd, the conditional cumulative distribution function F (y|X = x)
is continuous.

Assumption 4.1 is necessary to get uniform convergence of the estimator.

Assumption 4.2. For l ∈ [k], we assume that the variation of the conditional cumulative
distribution function within any cell goes to 0.

∀x ∈ Rd,∀y ∈ R, sup
z∈An(x; Θl)

|F (y|z)− F (y|x)| a.s−→
n→+∞

0

Assumption 4.2 allows to control the approximation error of the estimator. If for all y, F (y|.) is
continuous, Assumption 4.2 is satisfied provided that the diameter of the cell goes to zero. Note
that the vanishing of the diameter of the cell is a common condition used to prove the consistency
of general partitioning estimator (see chapter 4 in [Györfi, 2002]). [Scornet, 2015] show that
this is true when the data come from additive regression models [Stone, 1985b], and [Elie-Dit-
Cosaque, 2022] show that it holds for a more general class, such as product functions or sums of
product functions. The result is also valid for all regression functions, with a slightly modified
version of RF, where each child node contains at least a small fraction of the observations in the
parent node, and the probability that each variable j = 1, . . . , p is chosen for the split is positive
in each node. Under these small modifications, Lemma 2 from [Meinshausen, 2006] gives that
the diameter of each leaf node vanishes.

Assumption 4.3. Let k the number of trees and Nn(x; Θl) number of bootstrap observations
in a leaf node, and assume that k = O(nα), with α > 0, and for all x ∈ Rd, Nn(x; Θl) =
Ω1(
√

n(ln(n))β), with β > 1 a.s.

Assumption 4.3 allows us to control the estimation error and means that the cells should contain
a sufficiently large number of points so that averaging among the observations is effective.

To prove the consistency of the PRF CDF F̂S(y|XS = xS), we only need to verify the as-
sumptions 4.1, 4.2, 4.3 on the parameters of the Projected Forest and the Projected CDF
FS(y|XS = xS) = P(Y ≤ y|XS = xS).

Assumptions 4.1 and 4.2 are satisfied for the Projected CDF and the PRF Forest’s leaves. Since
by definition A

(S)
n (xS ; Θl) is included in An(x; Θl), if the diameter goes to zero within the

cells of the RF, it also vanishes in the Projected Forest. In addition, if the CDF F (y|X =
x) = F (y|XS = xS , X S̄ = xS̄) is continuous with respect to x, an analysis of parameter-
dependent integral shows that the Projected CDF FS(y|XS = xS) =

∫
F (y|XS = xS , X S̄ =

xS̄)P(xS̄ |xS)dxS̄ is also continuous. As we control the minimal number of observations in the
leaf of the Projected Forest by construction, Assumption 4.3 is also verified. Then, the PRF
CDF satisfies also Assumption 4.1-4.3 which ensures its consistency thanks to Theorem 4.4.

1f(n) = Ω(g(n)) ⇐⇒ ∃c > 0, ∃n0 > 0 | ∀n ≥ n0, |f(n)| ≥ c|g(n)|



Theorem 4.4. Consider a RF satisfying Assumptions 4.1 to 4.3. Then,

∀x ∈ Rd, sup
y∈R
|F̂S(y|XS = xS)− FS(y|XS = xS)| a.s−→

n→+∞
0

The proof and convergence simulations are detailed in the Appendix (8).

4.4 Estimation of SDP, Sufficient Explanations and Sufficient Rules

In this section, we show how we compute the SDP, Sufficient Explanations, and Sufficient Rules
using the PRF CDF estimator. We derive from the previous section the following consistent
estimator of any SDPS (y; x, t):

ŜDP S = F̂S(y +
√

t |XS = xS)− F̂S(y −
√

t |XS = xS).

Sufficient Explanations. Finding the SE/M-SE using a greedy algorithm is computationally
hard, since the number of subsets is exponential. Therefore, we propose to reduce the number
of variables by focusing only on the most influential variables. We search the Sufficient Expla-
nations in the subspace of the s = 10 variables frequently selected in the RF used to estimate
the SDP, reducing the complexity from 2p to 2s. This preselection procedure is already used in
[Strobl, 2007; Bénard, 2021d; Bénard, 2021b], and it is mainly based on Proposition 1 of [Scor-
net, 2015], which highlights the fact that RF naturally splits the most on influential variables.
However, any RF’s importance measure such as Sobol-MDA [Bénard, 2021e] can be used as the
RF algorithm is known to adapt to the intrinsic dimension [Scornet, 2015; Klusowski, 2020].
Therefore, the choice of s is directly driven by the computation power available to explore the
subsets. In practice, we have always found Sufficient Explanations with a probability above
π = 0.9 with s = 10 for many real-world datasets. Instead of exhaustively searching through
all 2s possible subsets, an alternative approach would involve sampling a sufficient number of
subsets, usually a few thousand, which are present in the decision paths of the trees of the Pro-
jected Forest. Due to their inherent construction, these subsets are likely to include influential
variables and interactions. This strategy was employed in [Basu, 2018; Bénard, 2021b].

Sufficient Rules. We utilized the SDP’s estimator ŜDP S to identify the Sufficient Rules.
As the PRF CDF estimator is a tree-based model, ŜDP S also partitions the input space in a
manner similar to a tree or a Random Forest. This allows us to avoid discretizing the input
space to find the rule satisfying Definition (3.4). Instead, we only need to locate the leaves that
are compatible with the conditions of the Sufficient Rule defined in (3.4).

Given a Minimal Sufficient Explanation S of an instance (x, y) at level π, we already have a
rectangle LS(x) defined by the PRF CDF or ŜDP S that is the largest rectangle such that
xS ∈ LS(x) and for all z with zS ∈ LS(x), ŜDP S(y; z, t) = ŜDP S(y; x, t) ≥ π. By definition,
it is the intersection of the leaves of the trees where xS falls, namely ∩k

l=1A
(S)
n (xS ; Θl). Thus,

starting from ∩k
l=1A

(S)
n (xS ; Θl), which is also a leaf of the Projected Forest, we only need to

find all the neighboring leaf that can be merged with it to obtain the rule satisfying (3.4).



An exhaustive search for compatible leaves is not feasible due to the exponential number of leaves
that a forest can possess. The number of leaves of a forest with k trees is bound by t1

n×· · ·× tk
n,

where tl
n, l ∈ [k] is the number of leaves of the l−th tree, as each input reaches exactly one leaf

in each tree. However, our focus lies on nonempty cells - leaves that contain at least one training
observation. Consequently, we can give each training sample of Dn to the forest and determine
the corresponding leaf it reaches in each tree. The intersection of these leaves corresponds to a
leaf of the forest. As multiple observations can fall into the same leaf, we can have a maximum
of n nonempty regions. We can further reduce the search space by only considering the leaves
of observations whose outputs are close to our target y. Then, we merge the compatible leaves
that satisfy Definition (3.4) with ∩k

l=1A
(S)
n (xS ; Θl) to find the Sufficient Rule. The utilization of

the leaves of the Projected Forest to identify the Sufficient Rule is a significant advantage of our
method. Discovering meaningful rules, especially in high-dimensional spaces, is a challenging
task. However, by leveraging the partition already learned by the PRF CDF, we simplify the
problem by directly focusing on the regions or leaves of PRF CDF where the observations are
located.

Nevertheless, the merging step poses a significant challenge. It involves identifying the largest
hyperrectangle in a collection of hyperrectangles, which may not necessarily be connected or
convex. This task is closely related to a well-known computational geometric problem that
consists of finding the minimal area axis-aligned rectangle that can encompass a given set of
points [Kaplan, 2019; Chan, 2021; Lin, 2018; Aggarwal, 1991; Eppstein, 1994; Datta, 1995].
An approximate solution to the Sufficient Rule entails locating the smallest hyperrectangle that
contains all the training points within the set of compatible leaves that meet the Definition (3.4).

A well-known variant of this problem is the largest empty hyperrectangle problem [Chan, 2023;
Abo-Alsabeh, 2023; Naamad, 1984]. Given a hyperrectangle R containing a set of points, the
objective is to find the largest hyperrectangle that can be embedded in R without containing any
of the points. While this problem has been extensively explored in lower dimensions, it remains
unsolvable in higher dimensions. Finding holes in one-dimensional datasets is an easy task, and
faster algorithms has been proposed for 2, and 3 dimensions [Aggarwal, 1987; Datta, 2000].
However, the problem turns out to be NP-hard when the dimension is above 4 [Backer, 2009;
Eckstein, 2002; Dumitrescu, 2013]. Consequently, we adopt an approximating procedure using
a Monte-Carlo based algorithm, specifically the simulated annealing algorithm, to compute the
Sufficient Rule. We leave the investigation of better algorithms for future work.

Let’s define the set of compatible leaves as C = {(l1, u1), . . . , (lm, um)} where the tuple (lm, um) ∈
Rp×Rp represent the lower and upper bound of the m−th compatible leaf. Hence, an observation
x falls into compatible leaf m if it satisfies lm ≤ x ≤ um elementwise, meaning lm,j ≤ xj ≤ um,j

for all j ∈ {1, . . . , p}. Similarly, we represent ∩k
l=1A

(S)
n (xS ; Θl) as (linters, uinters). We denote

vol(l, u) as the measure of a rule, it is either the number of observations that falls into the rule
or the Lebesgue measure. Algorithm 2 describes the merging step using simulated annealing to
find the maximal volume hyperrectangle approximating the Sufficient Rule, and the proposal
distribution of the simulated annealing is presented in Algorithm 3.



Algorithm 2: Merging step to generate Sufficient Rule
Input : (linters, uinters) = ∩k

l=1A
(S)
n (xS ; Θl), C = {(l1, u1), . . . , (lm, um)} set of

compatible leaves, Dn training data set, Din observations of Dn that fall into one
of the leaves in C, vol(l, u) represents the measure of a rule (l, u), maxIter max
number of iterations, p ∈ (0, 1) probability of proposing a rule larger than
(lcurrent, ucurrent) otherwise larger than (linters, uinters), T initial temperature, r
cooling rate.

Output: Approximation of the largest hyperrectangle (lbest, ubest) contained within the
union of rectangles in C and that contains (linters, uinters)

1: Initialize (lcurrent, ucurrent)← (linters, uinters), (lbest, ubest)← (linters, uinters)
2: for i from 1 to maxIter do
3: (lgen, ugen) = GenerateRule(lcurrent, ucurrent, linters, uinters, C,Dn,Din, maxIter, p) ;

/* Generate a valid rule larger than (lcurrent, ucurrent) with probability p.
Otherwise, generate a valid rule larger than (linters, uinters). */

4: Compute the volume difference ∆V = vol(lcurrent, ucurrent)− vol(lgen, ugen)
5: if ∆V < 0 or exp(−∆V/T ) > random(0, 1) then
6: Set (lcurrent, ucurrent)← (lgen, ugen) ; /* Accept the new hyperrectangle */
7: if vol(lbest, ubest) < vol(lcurrent, ucurrent) then
8: Set (lbest, ubest)← (lcurrent, ucurrent) ; /* Update the best hyperrectangle */
9: Decrease T by T = T ∗ r ; /* Cooling step */

10: return (lbest, ubest)

Algorithm 3: GenerateRule(lcurrent, ucurrent, C,Dn,Din, maxIter, p)
Input : (lcurrent, ucurrent), C = {(l1, u1), . . . , (lm, um)} set of compatible leaves, Dn

training data set, Din observations of Dn that fall into one of the leaves in C,
maxIter max number of iterations, p ∈ (0, 1) probability of proposing a rule
larger than (lcurrent, ucurrent) otherwise larger than (linters, uinters)

Output: New valid hyperrectangle (lprop, uprop)
1: Initialize (lgen, ugen)← (lcurrent, ucurrent), (lprop, uprop)← (lcurrent, ucurrent),

found = False, it = 0
2: while not found and it ≤ maxIter do
3: if random(0, 1) ≤ p then
4: for j from 1 to length(lgen) do
5: lgen

j ← sample uniformly from the set {li,j : i = 1, . . . , m and li,j ≤ lcurrent
j }

6: ugen
j ← sample uniformly from the set {ui,j : i = 1, . . . , m and ui,j ≥ ucurrent

j }
7: else
8: for j from 1 to length(lgen) do
9: lgen

j ← sample uniformly from the set {li,j : i = 1, . . . , m and li,j ≤ linters
j }

10: ugen
j ← sample uniformly from the set {ui,j : i = 1, . . . , m and ui,j ≥ uinters

j }
11: if no observation of Dn \ Din falls in the rule (lgen, ugen) then
12: found =True
13: (lprop, uprop) = (lgen, ugen)
14: it = it + 1
15: return (lprop, uprop)



How to choose the hyperparameters. The main hyperparameters are: π the minimal
probability of changing the decision and t which corresponds to the radius of the region center
at the prediction in the definition (3.1) of the SDP for regression problems.

We propose choosing π = 0.9 as it is an acceptable level of risk, but the user can increase or
decrease this probability depending on the use case.

The hyperparameter most challenging to choose is t; we recommend having an adaptive radius
t(x) using the quantile of the conditional distributions Y |X = x, which is a by-product of the
Quantile Regression Forest used for computing the SDP. For each observation, we choose the
region t(x) = [q̂α1(x), q̂1−α2(x)] with α1 +α2 = α where q̂1−α2 is an estimator of the α−quantile
of Y |X = x using the Quantile Regression Forest. This allows us to construct a predictive
interval with varying lengths but consistent confidence level. This positions our approach as
a natural extension of the SDP in the classification case, focusing on the model’s uncertainty
rather than predictions for the explanations. In that case, the Sufficient Explanation should be
read: "if XS = xS is fixed, then there is a probability at least π of having the same uncertainty
as with all the features, or so that Y ∈ [q̂α1(x), q̂1−α2(x)]. For this reason, we suggest fixing
α1 + α2 = α and π at standard level 1− α = π = 0.9 agreeing with acceptable level of risks.

5 Experiments

We conduct three experiments in this section. The first compares the Sufficient Explanations,
Sufficient Rules and Local eXplanatory Importance (LXI) with state-of-art (SOTA) local expla-
nations methods (SHAP, LIME, INVASE) in a simple high-dimensional regression model with
small relevant features. Although this model is simple, SOTA (SHAP, LIME) have been shown
to poorly detect the important variables of this model [Amoukou, 2021b; Ghalebikesabi, 2021] or
see Chapter 3. Then, we analyze the performance of the Sufficient Rules in a real-world regres-
sion problem. Finally, we highlight the advantages of the Sufficient Rules in comparison with
Anchors in real-world classification datasets. More experiments can be found in Appendix(10).

To effectively compare different explanation methods, we use synthetic data since the ground
truth is required. We use the following synthetic model: we have X ∈ Rp, X ∈ N (0, Σ),
Σ = 0.8Jp + 5Ip with p = 100, Ip is the identity matrix, Jp is all-ones matrix and a piece-wise
linear predictor defined as:

Y = (X1 + X2)1X5≤0 + (X3 + X4)1X5>0. (4.6)

The variables Xi for i = 6 . . . 100 are noise variables. We fit a RF with a data set of size n = 104,
k = 20 trees and the minimal number of samples by leaf node is set to ⌊

√
n× ln(n)1.5/250⌋ for

the original and the Projected Forest. The R2 = 99% on the test set of size 104. The RF is
used to compute the explanations of SHAP, LIME. The Projected Forest is also extracted from
the RF for the SDP approaches. We choose α1 = 0.05, α2 = 0.95 and π = 0.90. For INVASE,
we use Neural Networks with 3 hidden layers for the selector model and the predictor model



as in [Yoon, 2018]. Notice that for SHAP, LIME and the SDP approaches, we used the same
information (the learned RF) to retrieve the true explanation of the data. The performance of
INVASE and the RF is the same, both model perfectly fit the data with a R2 = 99%.

SDP approaches vs SOTA (SHAP, LIME, INVASE) on regression. Here, we analyze
the capacity of each method to discover the local important variables of the model defined in
Eq. (4.6). Indeed, Eq. (4.6) shows that if x5 ≤ 0, the model uses only the variables x1, x2

otherwise it uses the variables x3, x4. Thus, we try to find the top K = 3 relevant features for
each sample. Note that K is not a required input for SDP and INVASE, but K must be given for
SHAP and LIME. We select the top K variables that have the highest absolute values for SHAP
and LIME. We use the True Discovery Rate (TDR) (higher is better) and False Discovery Rate
(FDR) (lower is better) to measure the performance of the methods on discovery (i.e., discovering
which features are relevant). In addition, as one of the objectives of each method is to find the
minimal subset xS that is relevant for the corresponding target y, we also compute predictive
performance metrics that show how well the projected predictor E[Y |XS = xS ] selected by
each method is close to the predictor on the full set of features E[Y |X = x], under the data
distribution. Formally, we denote it as P-MSE = EZ

[(
E[Y |X = Z]− E[Y |XS = ZS(Z)]

)2
]

where
Z ∼ PX and S(Z) is the Sufficient Explanation of Z.

Table 4.1: Discovery metrics of Sufficient Explanation, INVASE, SHAP, LIME.

Methods TDR FDR P-MSE
Sufficient Explanation 100% 2% 0.02
INVASE 99% 87% 0.006
SHAP 73% 27% 0.79
LIME 50% 49% 5.01

In table 4.1, we observe that the Sufficient Explanation succeeds to find the top K relevant
variables and outperform the other methods by a significant margin. SHAP and LIME obtain
the worst discovery rate. INVASE succeeds in finding relevant variables, but has a high FDR
(87%), which means that we cannot distinguish between relevant and irrelevant variables since
87% of the selected variables are irrelevant. We also see that the P-MSE of INVASE is the
lowest, which is not surprising as it selects all relevant variables despite its high FDR. Indeed,
this metric is not much affected by the FDR. The P-MSE of Sufficient Explanations is also
almost zero, and as above, SHAP and LIME perform worse than the other methods. In Table
4.2, we compare the LXI and SHAP values on 1000 observations having x5 > 0. We compare
the mean absolute values of SHAP and average LXI on this sub-population. Notice that on this
model, these observations have a single Sufficient Explanation which is the variables X3, X4, X5.
Both models give null attributions to the noise variables, but SHAP gives higher importance to
the variables X1, X2 than the truly important variables X3, X4, X5. On the other hand, LXI
gives non null attributions only on the important variables. We refer to the Appendix (10.2) for
an additional comparison with SHAP in a case where there are several Sufficient Explanations.



Table 4.2: Global SHAP values (mean absolute) and average LXI on 1000 observations of the
test set having x5 > 0. Xnoises corresponds to the sum of the attributions of the noises variables
(Xi for i = 6 . . . 100).

Methods X1 X2 X3 X4 X5 Xnoises

LXI 0 0 1 1 1 0
SHAP 1.47 1.54 0.56 0.56 0.86 0.005

However, even if the Sufficient Explanation find effectively the top K relevant variables, it
cannot provide a complete understanding of the local behavior of the regression model (the
SOTA methods can’t do it either), i.e., that it’s the sign of x5 that matters. Thus, by ex-
tending the Sufficient Explanation into Sufficient Rule we can retrieve the complete story. We
choose an observation (x, y) such that its Sufficient Explanation found is S = [3, 4, 5], with
xS = [−3.64,−4.41, 0.68]. Although the Sufficient Explanation shows that fixing the value xS

permit to maintain the prediction with high probability, the Sufficient Rule gives the additional
information that we can also maintain the prediction within a small radius around y by satis-
fying the rule LS(x) = {X5 > 0 AND − 4.45 ≤ X4 ≤ −4.06 AND − 3.67 ≤ X3 ≤ −3.58}. The
Sufficient Rule LS(x) catches perfectly the local behaviour of the model which says that despite
the values of x3, x4, it’s the sign of x5 that matters.

SDP approaches on real world regression. We demonstrate the performance and flexi-
bility of the Sufficient Rules (SR) on a real-world regression dataset. Since there are no ground
truth explanations for real-world datasets, we use the predictive performance and simplicity
(number of variables used) of the SR as an indicator of the effectiveness of the explanations.
Indeed, we can build a global model by combining all the Sufficient Rules found for the observa-
tions in the training set, and we measure its performance on the test set. We set the output of
each rule as the majority class (resp. average values) for classification (resp. regression) of the
training observations that satisfy this rule. Note that some rules can overlap and an observation
can satisfy multiple rules. To resolve these conflicts, we use the output of the rule with the
best precision (AUC or MSE). We called this model Global-SR. We have experimented on Bike
Sharing data [Kaggle, 2015] that contains 10886 records and 15 variables about historical usage
patterns with weather data in order to forecast bike rental demand in Washington, D.C.

We split the data into train (75%) - test (25%) set and train a RF with k = 20 trees and maximal
depth = 14. It has mean absolute error MAE = 25 and R2 = 94% on test set. We use the RF
on the test set to generate the Sufficient Rules (SR). Although the Global-SR covers 78% of the
test set, we observe that it performs as well as the baseline model with MAE = 29, R2 = 90%,
while providing transparency in its decision-making process. Note that the rules of the SR on
Bike Sharing Demand are based on 4.5 variables in average. We present examples of the learned
rules: R1 = {If Workingday = True and Hours ∈ [5.5, 6.5] THEN Bike rental demand = 20},
R2 = {If Hours ∈ [8.5, 9] and Year ≤ 2011 and month ≥ 5 THEN Bike rental demand = 192}.
The number of observations satisfying rules R1 and R2 is 134 and 133, respectively, with mean
absolute errors of MAER1 = 12 and MAER2 = 30.



Anchors vs Sufficient Rules (SR). To compare our methods with respect to Anchors, we
have to consider a classification problem. We use three popular real-world datasets: Compas
(n = 6167, p = 14)[Washington, 2018], Nhanesi (n = 8593, p = 17) [CDC, 1999-2022], and
Employee Attrition (n = 1470, p = 27) [Kaggle, 2017] which we split into train (75%) -
test (25%) set, and train a RF with the parameters of the previous section. We use the RF
to generate the local rule-based explanations with Anchors and the SDP approach (Sufficient
Rules) to explain the RF’s predictions on the test set. We aim to evaluate the generalization
of each explanation across the population. Thus, we measure the following metrics, Coverage
(higher is better): what fraction of unseen instances fall in the rule and Accuracy (higher is
better): average number of unseen instances that satisfy the rule and has the same output
than the observation that generate the rule, Sparsity (lower is better): the mean, variance and
maximal size of the rule (number of variables on which it is based).

Table 4.3: Results of the Accuracy (Acc), Coverage (Cov), and Sparsity (Sprs) on Compas,
Nhanesi, ATTRITION of the Sufficient Rules (SR) and Anchors. The vector of Sprs (mean,
std, max) corresponds to the mean, variance, and max size of the rules.

COMPAS NHANESI ATTRITION
Acc Sprs Cov Acc Sprs Cov Acc Sprs Cov

SR 0.95 (1.6, 0.96, 7) 0.30 0.97 (1.3, 0.65, 7) 0.41 0.95 (1.15, 0.90, 9) 0.76
Anchors 0.92 (1.83, 1.89, 11) 0.23 0.96 (1.8, 3.91, 16) 0.31 0.95 (0.82, 4.24, 21) 0.74

In table 4.3, we observe that both model have a high accuracy in all datasets, but SR consistently
outperforms Anchors on all datasets.

On the other hand, Anchors uses many more features. Indeed, by sampling marginally (i.e.
assuming that the features are independent) Anchors succeed to find accurate and high coverage
rule, but at the cost of optimality. In fact, we observe in table 4.3 that Anchors tends to give
much longer rules. While the observed maximal size of SR is 9 in all dataset, Anchors can
provide a rule of size 12 (Compas), 16 (Nhanesi), 23 (Attrition). For instance, the size
distribution of Anchors on Nhanesi is represented with the following dictionary {size : count}:
{1 : 704, 2 : 127, 3 : 71, 4 : 21, 5 : 13, 6 : 10, 7 : 10, 8 : 9, 9 : 9, 10 : 4, 11 : 2, 12 :
4, 13 : 5, 14 : 1, 16 : 1}, and the corresponding distribution for the SR is {1 : 775, 2 : 145, 3 :
52, 4 : 9, 5 : 12, 7 : 4}. Note that this is a significant drawback of Anchors, as simplicity is an
essential desideratum for explanation methods. We give an additional experiment confirming
these results in the Appendix (10).

Another desirable property of explanation methods is stability, i.e., nearby observations must
have the same explanations. Here, we evaluate the stability of the methods with respect to
input perturbations. For each observation x, we compare its rule with the rules of 50 noisy
versions of x obtained by adding random Gaussian noises N (0, σ2 × I) to the values of the
features with σ2 = 0.1. The perturbation is small enough to not change the prediction. For
each dataset (Compas, Nhanesi, Attrition), we randomly perturb 100 observations of the
test set (50 times), and we observe in average 10 (std=76), 6.83 (std=139), 14 (std=58) different
rules for Anchors respectively, while we have 1.5 (std=0.25), 1.1 (std=1.9), 1.13 (std=0.13) for



SR, resp. It shows the large instability of Anchor compared to SR. Indeed, even when ϵ = 0,
Anchors gives different rules, e.g., on Compas its has 7 (std=70) different rules in average with
no perturbations. Results for other values of σ can be found in Appendix (10.3).

These experiments demonstrate that SR provides more interpretable and reliable rules than
Anchors. SR exhibits greater stability across perturbations, produces sparser rules, and achieves
larger coverage. We also conduct an additional experiment in the Appendix (10.1) to confirm
this claim in a setting where we know the ground truth.

6 Conclusion

In this work, we introduce a fast and consistent estimator of the Same Decision Probability
and propose a natural generalization of the SDP for regression problems. Then, we introduce
the first local rule-based explanations for regression. We give consistent estimates of three local
explanation methods: Minimal Sufficient Explanations, Local eXplanatory Importance, and
Minimal Sufficient Rules for any data. We prove that these methods considerably improve local
variable detection over state-of-the-art algorithms while ensuring minimality, sufficiency, and
stability. Our generalization of SDP and Minimal Sufficient Rules are tightly related. They are
linked by a Random Forest, which is a computationally and statistically efficient estimator of the
SDP and gives the partition that is translated into an interpretable rule. Therefore, our method
is principally suitable for datasets where tree-based models work well (e.g., tabular data). In
future works, we aim at improving the confidence of the Sufficient Rules by taking into account
uncertainty estimates of their predictions.



Chapter 5
Rethinking Counterfactual Explanations as
Local and Regional Counterfactual Policies

Counterfactual Explanations (CE) face several unresolved challenges, such as en-
suring stability, synthesizing multiple CEs, and providing plausibility and sparsity
guarantees. From a more practical point of view, recent studies [Pawelczyk, 2022]
show that the prescribed counterfactual recourses are often not implemented exactly
by individuals and demonstrate that most state-of-the-art CE algorithms are very
likely to fail in this noisy environment. To address these issues, we propose a proba-
bilistic framework that gives a sparse local counterfactual rule for each observation,
providing rules that give a range of values capable of changing decisions with high
probability. These rules serve as a summary of diverse counterfactual explanations
and yield robust recourses. We further aggregate these local rules into a regional
counterfactual rule, identifying shared recourses for subgroups of the data. Our lo-
cal and regional rules are derived from the Random Forest algorithm, which offers
statistical guarantees and fidelity to data distribution by selecting recourses in high-
density regions. Moreover, our rules are sparse as we first select the smallest set
of variables having a high probability of changing the decision. We have conducted
experiments to validate the effectiveness of our counterfactual rules in comparison
to standard CE and recent similar attempts. Our methods are available as a Python
package.
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1 Introduction

In recent years, many explanations methods have been developed for explaining machine learn-
ing models, with a strong focus on local analysis, i.e., generating explanations for individual
prediction, see [Molnar, 2022] for a survey. Among this plethora of methods, Counterfactual
Explanations [Wachter, 2017] have emerged as one of the most prominent and active techniques.
In contrast to popular local attribution methods such as SHAP [Lundberg, 2020b] and LIME
[Ribeiro, 2016a], which assign importance scores to each feature, Counterfactuals Explanations
(CE) describe the smallest modification to the feature values that changes the prediction to a
desired target. These modifications are often called recourses. While CE can be intuitive and
user-friendly, providing recourse in certain situations (e.g., loan applications), they have practi-
cal limitations. Most CE methods depend on gradient-based algorithms or heuristic approaches
[Karimi, 2020b], which can fail to identify the most natural modification and lack guarantees.
Most algorithms either do not ensure sparse counterfactuals (changes to the smallest number
of features) or fail to generate in-distribution samples (refer to [Verma, 2020; Chou, 2022] for
a survey on counterfactual methods). Several studies [Parmentier, 2021; Poyiadzi, 2019; Loov-
eren, 2019] attempt to address the plausibility and the sparsity issues by incorporating ad-hoc
constraints.

In another direction, numerous papers [Mothilal, 2020; Karimi, 2020a; Russell, 2019] encourage
the generation of diverse counterfactuals in order to find actionable recourse [Ustun, 2019a].
Actionability is a vital desideratum, as some features may be non-actionable, and generating
many counterfactuals increases the chance of getting actionable recourse. However, the diversity
of CE compromises the intelligibility of the explanation, and the synthesis of various CE or local
explanations, in general, remains an unsolved challenge [Lakkaraju, 2022]. Recently, [Pawelczyk,
2022] highlights a new problem of CE called: noisy responses to prescribed recourses. In real-
world scenarios, some individuals may not be able to implement exactly the prescribed recourses,
and they show that most CE methods fail in this noisy environment. Consequently, we propose
to reverse the usual way of explaining with counterfactual by computing Counterfactual rules.
We introduce a new line of counterfactuals, constructing interpretable policies for changing
a decision with a high probability while ensuring the stability of the derived recourse. These
policies are sparse, faithful to the data distribution and their computation comes with statistical
guarantees. Our proposal is to find a general policy or rule that permits changing the decision
while fixing some features instead of generating many counterfactual samples. One of the main
challenges is identifying the minimal set of features that provide the directions for changing the
decision to the desired output with high probability. Additionally, we show that this method



can be extended to create a common counterfactual policy for subgroups of the data, which aids
model debugging and bias detection. Notably, our approach is model-free, meaning it does not
need the model to make predictions or calculate other quantities, such as gradients. Instead,
it is an inferential approach and relies solely on historical data. As a result, our approach can
be applied not only to generate counterfactuals for a specific model but also directly for the
data-generating process. An example of the counterfactual rules we introduce is illustrated in
Figure 5.1.

Figure 5.1: Illustration of local and regional Counterfactual Rules for a fictitious dataset with
four variables: Age, Salary, Sex, and HoursPerWeek. Local rules change a single instance’s
decision, while regional rules apply to a sub-population. Blue indicates the suggested rules for
changing decisions.

2 Motivation and Related works

Most Counterfactuals Explanations methods are based on the approach of the seminal work of
[Wachter, 2017], where counterfactual samples are generated by cost optimization. This pro-
cedure does not account directly for the plausibility of the counterfactual examples, see Table
1 from [Verma, 2020] for a classification of CE methods. Indeed, a major shortcoming is that
the action suggested for obtaining the counterfactual sample is not designed to be feasible or
representative of the underlying data distribution. Several recent studies have suggested in-
corporating ad-hoc plausibility constraints into the optimization process. For instance, Local
Outlier Factor [Kanamori, 2020], Isolation Forest [Parmentier, 2021], and density-weighted met-
rics [Poyiadzi, 2019] have been employed to generate realistic samples. Alternatively, [Looveren,
2019] proposes the use of an autoencoder that penalizes out-of-distribution candidates. Instead
of relying on ad-hoc constraints, we propose CE that gives plausible explanations by design.
Our approach leverages the Random Forest (RF) algorithm, which helps identify high-density
regions and ensures counterfactual samples reside within these areas. To ensure sparsity, we
begin by identifying the smallest subset S of variables XS and associated value ranges for each
observation that have the highest probability of changing the prediction. We compute this prob-
ability with a consistent estimator of the conditional distribution Y |XS obtained from a RF.
As a consequence, the sparsity of the counterfactuals is not encouraged indirectly by adding
a penalty term (ℓ0 or ℓ1) as existing works [Mothilal, 2020]. Our method draws inspiration
from the concept of Same Decision Probability (SDP) [Chen, 2012], which is used to identify
the smallest feature subset that guarantees prediction stability with a high probability. This



minimal subset is called Sufficient Explanations. In [Amoukou, 2021a] or Chapter 4, it has been
shown that the SDP and the Sufficient Explanations can be estimated and computed efficiently
for identifying important local variables in any classification/regression models using RF. For
counterfactuals, we are interested in the dual set. We want the minimal subset of features that
allows for a high probability of changing the decision when the other features remain fixed.

Another limitation of the current CE is the multiplicity of the explanations produced. While
some papers [Mothilal, 2020; Karimi, 2020a; Russell, 2019] promote the generation of diverse
counterfactual samples to ensure actionable recourse, such diverse explanations should be sum-
marized to be intelligible [Lakkaraju, 2022], but the compilation of local explanations is often
a very difficult problem. To address this issue, instead of generating counterfactual samples,
we construct a rule called Local Counterfactual Rules (L-CR) from which counterfactual sam-
ples can be derived. In contrast to traditional CE that identify the nearest instances with a
desired output, we first determine the most effective rule (or group of similar observations) for
each observation that changes the prediction to the intended target. The L-CR can be seen
as a summary of the diverse counterfactual samples possible for a given instance. For exam-
ple, if x0 = {Age=20, Salary=35k, HoursWeek=25h, Sex=M, . . . } with Loan=False, fixing the
variables Age and Sex and modifying the Salary and HoursWeek change the decision. There-
fore, instead of giving multiples combination of Salary and HoursWeek (e.g., 35k and 40h or
40k and 55h, . . . ) that result in many samples, the counterfactual rule gives the range of val-
ues: C0 =

[
IF HoursWeek ∈ [35h, 50h], Salary ∈ [40k, 50k], and the remaining features are fixed

THEN Loan=True with high probability
]
. One can also have several observations with the same

predictions and almost the same counterfactual rules. For example, consider a second observa-
tion x1 = {Age=25, Salary=45k, HoursWeek=25h, Sex=M, . . . } with Loan = False, such that
x0, x1 are included in the following hyper-rectangle (or rule) R =

[
IF Salary ∈ [20k, 45k], Age ∈

[20, 30] THEN Loan=False
]

which may contain other observations. The local CR of x1 is C0 :=[
IF HoursWeek ∈ [40h, 45h], Salary ∈ [48k, 50k], and the remaining features are fixed THEN

Loan=True with high probability
]
. We observe that x0, x1 have nearly identical counterfactual

rules C0, C1. Hence, the global counterfactual rules enable summarizing such information into
a single rule that applies to multiple observations simultaneously. The Regional Counterfactual
Rule (R-CR) of the rule R could be CR := [IF HoursWeek ∈ [35h, 45h], Salary ∈ [40k, 50k], and
the remaining rules of R are fixed THEN Loan=True with high probability]. It shows that for
all observations that are in the hyperrectangle R, we can apply the same counterfactual rules to
change their predictions. These global rules allow us to have a global picture of the model to
detect certain patterns that may be used for fairness detection, among other applications. The
main difference between a local and a global CR is that the local CR explain a single instance
by fixing the remaining feature values (not used in the CR); while a regional CR is defined by
keeping the remaining variables in a given interval (not used in the regional CR). Moreover, by
giving ranges of values that guarantee a high probability of changing the decision, we partly
answer the problem of noisy responses to prescribed recourses [Pawelczyk, 2022]. We find that
the generated CE remain robust as long as the perturbations remain within the specified ranges.



While the Local Counterfactual Rule is a novel concept, the Regional Counterfactual Rule shares
similarities with some recent works. Indeed, [Rawal, 2020] proposed Actionable Recourse Sum-
maries (AReS), a framework that constructs global counterfactual recourses to have a global
insight into the model and detect unfair behavior. Despite similarities with the Regional Coun-
terfactual Rule, there are notable differences. Our methods can handle regression problems and
work directly with continuous features. AReS requires discretizing continuous features, leading
to a trade-off between speed and performance, as observed by [Ley, 2022]. Too few bins yield
unrealistic recourse, while too many bins result in excessive computation time. AReS employs
a greedy heuristic search approach to find global recourse, which may result in unstable and in-
accurate recourse. Our approaches overcome these limitations by leveraging on the informative
partitions obtained from a Random Forest, removing the need for an extensive search space,
and focusing on high-density regions for plausibility. Additionally, we prioritize changes to the
smallest number of features, utilizing a consistent estimator of the conditional distribution.

Another global CE framework has been introduced in [Kanamori, 2022] to ensure transparency.
The Counterfactual Explanation Tree (CET) partitions the input space with a decision tree and
assigns a suitable action for changing the decision of each subspace, providing a unique recourse
for multiple instances. In comparison, our approach offers greater flexibility in counterfactual
explanations by providing a range of possible values that guarantee a change with a given
probability for each subspace. We also propose a method to derive classic counterfactual samples
using the counterfactual rules. We do not make assumptions about the cost of changing the
feature or actionability. If such information is available, it can be incorporated as additional
post-processing.

3 Minimal Counterfactual Rules

Consider a dataset Dn = {(Xi, Yi)}ni=1 consisting of i.i.d observations of (X, Y ) ∼ PXPY |X ,
where X ∈ X (typically X ⊆ Rp) and Y ∈ Y. The output set Y can be either discrete or
continuous. We denote [p] = {1, . . . , p}, and for a given subset S ⊆ [p], XS = (Xi)i∈S represents
a subgroup of features, and we write x = (xS , xS̄).

For a given observation (x, y), we consider a target set Y ⋆ ⊂ Y, such that y /∈ Y ⋆. In the case of
a classification problem, Y ⋆ = {y⋆} is a singleton where y⋆ ∈ Y and y⋆ ̸= y. Unlike conventional
approaches, our definition of CE also accommodates regression problems by considering Y ⋆ =
[a, b] ⊂ R, and the definitions and computations remain the same for both classification and
regression. The classic CE problem, defined here only for classification, considers a predictor
f : X → Y, trained on datasetDn and search a function a : X → X , such that for all observations
x ∈ X , f(x) ̸= y⋆, we have f(a(x)) = y⋆. The function is defined point-wise by solving an
optimisation program. Most often a(·) is not a single-output function, as a(x) may be in fact
a collection of (random) values {xCF

1 , . . . , xCF
k }, which represent the counterfactual samples. A

more recent perspective, proposed by [Kanamori, 2022], defines a as a decision tree, where for
each leaf L, a common action is predicted for all instances x ∈ L to change their predictions.



Our approach diverges slightly from the traditional model-based definition of CE as we can
directly consider observation (X, Y ) rather than model prediction (X, f(X)). To illustrate the
concept, let’s consider a binary classification problem, where the input space can be divided
into two regions R0, R1. These correspond to the support of the distributions X|Y = 0 and
X|Y = 1. These regions may not be disjoint or convex spaces and can be represented as a union
of several sets. Given an observation x = (xS , xS̄) with label y = 0, our method consists of
finding the minimal subset of variables S ⊆ {1, . . . , p} to move x by modifying xS into a set
within the region R1. The objective is to move x to a high-density set with low variance with
respect to the target variable Y , while altering as few variables as possible.

Figure 5.2 provides a visual representation of our approach in the binary case. The first step
involves learning a tree-based model on our data, enabling us to partition the input space
based on the target variable Y . By examining the tree leaves, we can easily identify the optimal
direction S to modify the decision and the target region corresponding to the counterfactual rule.
Moreover, these leaves can serve not only as rules but also as a means to generate recourses.

Figure 5.2: Illustration of the 4-stages in our methodology for computing sparse counterfactuals

Our approach is different from the optimization approach for generating recourse, as it is model-
free, meaning it does not require the model to generate further predictions or compute gradients.
This flexibility allows us to apply our approach to generate recourse either for the predictions of
a given model (X, f(X)) or the data-generating process (X, Y ). A model-free approach was also
proposed by [Black, 2020; De Lara, 2021] under the name of transport-based counterfactuals.
It consists of finding a map T between the distribution of X|Y = 0 and X|Y = 1 such that
each observation of class Y = 0 is linked to the most similar observation of class Y = 1. [De
Lara, 2021] shows that it coincides with causal counterfactual under appropriate assumptions.
In the following discussion, we consider the data (X, Y ) for the presentation of the methods,
although they can also be applied to generate recourses for a model prediction (X, f(X)) as
well.

Our approach is hybrid, as we do not suggest a single action for each observation or subspace
of X but provide sets of possible perturbations. A Local Counterfactual Rule (L-CR) for target



Y ⋆ and observation (x, y) (with y /∈ Y ⋆) is a rectangle CS(x, Y ⋆) = ∏
i∈S [ai, bi], ai, bi ∈ R

such that for all counterfactual samples of x = (xS , xS̄) obtained as xCF = (zS , xS̄) with
zS ∈ CS(x, Y ⋆) and xCF an in-distribution sample, then yCF is in Y ⋆ with a high probability,
where yCF is the output of xCF given by the model f or the data-generating process. Similarly,
a Regional Counterfactual Rule (R-CR) CS(R, Y ⋆) is defined for target Y ⋆ and a rectangle
R = ∏d

i=1[ai, bi], ai, bi ∈ R, which represent a subspace of X of similar observations, if for
all observations x = (xS , xS̄) ∈ R, the countefactual samples obtained as xCF = (zS , xS̄)
with zS ∈ CS(R, Y ⋆) and xCF an in-distribution sample are such that yCF is in Y ⋆ with high
probability. Our approach constructs such rectangles in a sequential manner. Firstly, we identify
the minimal directions S ⊆ [p] that offer the highest probability of changing the decision. Next,
we determine the optimal intervals [ai, bi] for i ∈ S that change the decision to the desired target.
Additionally, we propose a method to derive traditional Counterfactual Explanations (CE) (i.e.,
actions that alter the decision) or recourses using our Counterfactual Rules. A central tool in
this approach is the Counterfactual Decision Probability presented below.

Definition 3.1. Counterfactual Decision Probability (CDP). The Counterfactual Deci-
sion Probability of the subset S ⊆ {1, . . . , p}, w.r.t x = (xS , xS̄), output y and the desired
target Y ⋆ (s.t. y /∈ Y ⋆) is

CDPS (x, Y ⋆) = P (Y ∈ Y ⋆ |X S̄ = xS̄ ) (5.1)

The CDP of the subset S is the probability that the decision changes to the desired target Y ⋆

by sampling the features XS given X S̄ = xS̄ . It is related to the Same Decision Probability
SDPS(Y ; x) = P (Y ∈ Y |XS = xS) used in [Amoukou, 2021a] for solving the dual problem of
selecting the most local important variables for obtaining and maintaining the decision Y ∈ Y ,
where Y ⊂ Y. The set S is called the Minimal Sufficient Explanation. Indeed, we have
CDPS(x, Y ⋆) = SDPS(x, Y ⋆). The computation of these probabilities is challenging and
discussed in Section 4. Next, we define the minimal subset of features S that allows changing
the decision to the target set with a given high probability π.

Definition 3.2. (Minimal Divergent Explanations). Given an instance (x, y) and a desired
target Y ⋆ ̸∋ y, S is a Divergent Explanation for probability π > 0 if

• CDPS (x, Y ⋆) ≥ π

• no subset Z of S satisfies CDPZ (x, Y ⋆) ≥ π.

Hence, a Minimal Divergent Explanation is a Divergent Explanation with the smallest size.

The set satisfying these properties is not unique, and we can have several Minimal Divergent
Explanations. Note that the probability π represents the minimum level required for a set to be
chosen for generating counterfactuals, and its value should be as high as possible and depends
on the use case. With these concepts established, we can now define our main criterion for
constructing a Local Counterfactual Rule (L-CR).



Definition 3.3. (Local Counterfactual Rule). Given an instance (x, y), a desired target
Y ⋆ ̸∋ y , a Minimal Divergent Explanation S, the rectangle CS(x, Y ⋆) = ∏

i∈S [ai, bi], ai, bi ∈ R
is a Local Counterfactual Rule with probability πC if

• CS(x, Y ⋆) = arg maxC PPX

(
XS ∈ C |X S̄ = xS̄

)
such that

• CRPS

(
x, Y ⋆

)
= P(Y ∈ Y ⋆ |XS ∈ CS(x, Y ⋆), X S̄ = xS̄) satisfies

CRPS

(
x, Y ⋆

)
≥ πC . (5.2)

PPX

(
XS ∈ CS(x, Y ⋆) |X S̄ = xS̄

)
represent the plausibility of the rule and by maximizing it, we

ensure that the rule lies in a high-density region. CRPS is the Counterfactual Rule Probability.
The higher the probability πC is, the better the relevance of the rule CS(x, Y ⋆) is for changing
the decision to the desired target.

In practice, we often observe that the Local CR CS(·, Y ⋆) for neighboring observations x and x′

are quite similar, as the Minimal Divergent Explanations tend to be alike, and the corresponding
hyperrectangles frequently overlap. This observation motivates a generalization of these Local
CRs to hyperrectangles R = ∏d

i=1[ai, bi], ai, bi ∈ R, which group together similar observations.
We denote supp(R) = {i : [ai, bi] ̸= R} as the support of the rectangle and extend the Local
CRs to Regional Counterfactual Rules (R-CR). To achieve this, we denote RS̄ = ∏

i∈S̄ [ai, bi] as
the rectangle with intervals of R in supp(R) ∩ S̄, and define the corresponding Counterfactual
Decision Probability (CDP) for rule R and subset S as CDPS(R, Y ⋆) = P (Y ∈ Y ⋆ |X S̄ ∈ RS̄ ).
Consequently, we can compute the Minimal Divergent Explanation for rule R using the corre-
sponding CDP for rules, following Definition (3.2). The Regional Counterfactual Rules (R-CR)
correspond to Definition (3.3) with the associated CDP for rules.

4 Estimation of the CDP and CRP

To compute the probabilities CDPS and CRPS for any S, we use a dedicated Random Forest
(RF) that learns to predict the output of the model or the data-generating process. Indeed, the
conditional probabilities CDPS and CRPS can be easily computed from a RF by combining the
Projected Forest algorithm [Bénard, 2021b] and the Quantile Regression Forest [Meinshausen,
2006]. As a result, we can estimate the probabilities CDPS(x, Y ⋆) consistently. This method
has been previously utilized by [Amoukou, 2021a] for calculating the Same Decision Probability
SDPS .

4.1 Projected Forest and CDPS

The estimator of the SDPS is based on the Random Forest [Breiman, 1984] algorithm. Assum-
ing that we have trained a RF m(·) using the dataset Dn, the model consists of a collection
of k randomized trees (for a detailed description of decision trees, see [Loh, 2011]). For each
instance x, the predicted value of the l-th tree is denoted as ml(x; Θl), where Θl represents



the resampling data mechanism in the j-th tree and the subsequent random splitting direc-
tions. The predictions of the individual trees are then averaged to produce the prediction
of the forest as m(x; Θ1, . . . , Θk) = 1

k

∑k
l=1 ml(x; Θl). The RF can also be interpreted as

an adaptive nearest neighbor predictor [Lin, 2006; Biau, 2010] or kernel methods [Breiman,
2000; Geurts, 2006; Scornet, 2016]. For every instance x, the observations in Dn are weighted
by wn,i(x), with i = 1, . . . , n. As a result, the prediction of the RF can be reformulated as
m(x; Θ1, . . . , Θk) = ∑n

i=1 wn,i(x)Yi. This emphasizes the central role played by the weights
in the RF’s algorithm. See [Meinshausen, 2006] or Chapter 4 for a detailed description of the
weights. Consequently, it naturally gives estimators for other quantities, e.g., cumulative hazard
function [Ishwaran, 2008], treatment effect [Wager, 2017; Jocteur, 2023], conditional density [Du,
2021]. For instance, [Meinshausen, 2006] showed that we can use the same weights to estimate the
conditional distribution function with the following estimator F̂ (y|X = x) = ∑n

i=1 wn,i(x)1Yi≤y.
In another direction, [Bénard, 2021b] introduced the Projected Forest algorithm [Bénard, 2021e;
Bénard, 2021b] that aims to estimate E[Y |XS ] by modifying the RF’s prediction algorithm.

Projected Forest: To estimate E[Y |XS = xS ] instead of E[Y |X = x] using a RF, [Bénard,
2021d] suggests to simply ignore the splits based on the variables not contained in S from the tree
predictions. More formally, it consists of projecting the partition of each tree of the forest on the
subspace spanned by the variables in S. The authors also introduced an algorithmic trick that
computes the output of the Projected Forest efficiently without modifying the initial tree struc-
tures. It consists of dropping the observations down in the initial trees, ignoring the splits which
use a variable not in S: when it encounters a split involving a variable i /∈ S, the observations are
sent both to the left and right children nodes. Therefore, each instance falls in multiple terminal
leaves of the tree. To compute the prediction of xS , we follow the same procedure, and gather
the set of terminal leaves where xS falls. Next, we collect the training observations which belong
to every terminal leaf of this collection, in other words, we keep only the observations that fall
in the intersection of the leaves where xS falls. Finally, we average their outputs Yi to generate
the estimation of E[Y |XS = xS ]. Notice that the authors show that this algorithm converges
asymptotically to the true projected conditional expectation E[Y |XS = xS ] under suitable as-
sumptions. As the RF, the Projected Forest (PRF) assigns a weight to each training observation.
The associated PRF is denoted m(S)(xS) = ∑n

i=1 wn,i(xS)Yi. Therefore, as the weights of the
original forest was used to estimate the CDF, [Amoukou, 2021a] used the weights of the Pro-
jected Forest Algorithm to estimate SDP as ŜDP S (x, Y ⋆) = ∑n

i=1 wn,i(xS)1Yi∈Y ⋆ . The idea
is essentially to replace Yi by 1Yi∈Y ⋆ in the Projected Forest equation defined above. [Amoukou,
2021a] also show that this estimator converges to the true SDPS under suitable assumptions and
works very well in practice. Especially for tabular data, where tree-based models are known to
perform well [Grinsztajn, 2022]. Similarly, we can estimate the CDP with statistical guarantees
[Amoukou, 2021a] using the following estimator ĈDP S (x, Y ⋆) = ∑n

i=1 wn,i(xS̄)1Yi∈Y ⋆ .

Remark: We only give the estimator of CDPS of an instance x. The estimator for CDPS of a
rule R will be discussed in the next section, as it is closely related to the estimator of the CRPS .



4.2 Regional RF and CRPS

Here, we focus on estimating the CRPS(x, Y ⋆) = P(Y ∈ Y ⋆ |XS ∈ CS(x, Y ⋆), X S̄ = xS̄) and
CRPS(R, Y ⋆) = P(Y ∈ Y ⋆ |XS ∈ CS(R; Y ⋆), X S̄ ∈ RS̄). For ease of reading, we remove the
dependency of the rectangles CS in Y ⋆. Based on the previous section, we already know that
the estimators using the RF will take the form of ĈRP S (x, Y ⋆) = ∑n

i=1 wR
n,i(x)1Yi∈Y ⋆ , so we

only need to determine the appropriate weighting. The main challenge lies in the fact that we
have a condition based on a region, e.g., XS ∈ CS(x) or X S̄ ∈ RS̄ (regional-based) instead of
a condition of type XS = xS (fixed value-based) as usual. However, we introduced a natural
extension of the RF algorithm to handle predictions when the conditions are both regional-based
and fixed value-based. As a result, cases with only regional-based conditions can be naturally
derived.

Regional RF to estimate CRPS(x, Y ⋆) = P(Y ∈ Y ⋆ | XS ∈ CS(x), X S̄ = xS̄). The
algorithm is based on a slight modification of RF and works as follows: we drop the observations
in the trees, if a split used variable i ∈ S̄, i.e., fixed value-based condition, we use the classic rules
of RF, if xi ≤ t, the observations go to the left children, otherwise the right children. However,
if a split used variable i ∈ S, i.e, regional-based condition, we use the rectangles CS(x) =∏|S|

i=1[ai, bi]. The observations are sent to the left children if bi ≤ t, right children if ai > t

and if t ∈ [ai, bi], the observations are sent both to the left and right children. Consequently,
we use the weights of the Regional RF algorithm wR

n,i(x) to estimate CRPS , the estimator is
ĈRP S(x, Y ⋆) = ∑n

i=1 wR
n,i(x)1Yi∈Y ⋆ . In addition, the number of observations at the leaves is

used as an estimate of P(XS ∈ CS(x) | X S̄ = xS̄). A more comprehensive description and
discussion of the algorithm are provided in the Appendix (13).

To estimate the CDP of a rule CDPS (R, Y ⋆) = P (Y ∈ Y ⋆ |X S̄ ∈ RS̄ ), we just have to apply
the Projected Forest algorithm to the Regional RF, i.e., when a split involving a variable outside
of S̄ is met, the observations are sent both to the left and right children nodes, otherwise we use
the Regional RF split rule, i.e., if an interval of RS̄ is below t, the observations go to the left
children, otherwise the right children and if t is in the interval, the observations go to the left and
right children. The estimator of the CRPS(R, Y ⋆) = P(Y ∈ Y ⋆ |XS ∈ CS(R; Y ⋆), X S̄ ∈ RS̄)
for rule R is also derived from the Regional RF. Indeed, it is a special case of the Regional RF
algorithm where there are only regional-based conditions.

5 Learning the Counterfactual Rules

The computation of the Local and Regional CR is performed using the estimators introduced
in the previous section. First, we determine the Minimal Divergent Explanation, akin to the
Minimal Sufficient Explanation [Amoukou, 2021a], by exploring the subsets obtained using the
K = 10 most frequently selected variables in the Random Forest estimator. K is a hyper-
parameter to choose according to the use case and computational power. We can also use any
importance measure. An alternative strategy to exhaustively searching through the 2K possible



subsets would be to sample a sufficient number of subsets, typically a few thousand, that are
present in the decision paths of the trees in the forest. By construction, these subsets are likely
to contain influential variables. A similar strategy was used in [Basu, 2018; Bénard, 2021b].

Given an instance x or rectangle R, target set Y ⋆ and their corresponding Minimal Divergent
Explanation S, our objective is to find the maximal rule CS(·) = ∏

i∈S [ai, bi] s.t. given X S̄ = xS̄

or X S̄ ∈ RS̄ , and XS ∈ CS(·), the probability that Y ∈ Y ⋆ is high. Formally, we want:
P(Y ∈ Y ⋆|XS ∈ CS(x), X S̄ = xS̄) or P(Y ∈ Y ⋆|XS ∈ CS(R), X S̄ ∈ RS̄) above πC .

The rectangles CS(·) = ∏
i∈S [ai, bi] defining the CR are derived from the RF. In fact, these

rectangles naturally arise from the partition learned by the RF. AReS [Rawal, 2020], on the
other hand, relies on binned variables to generate candidate rules, testing all possible rules
to select the optimal one. By leveraging the partition learned by the RF, we overcome both
the computational burden and the challenge of choosing the number of bins. Moreover, by
focusing only on the non-empty leaves containing training observations, we significantly reduce
the search space. This approach allows identifying high-density regions of the input space to
generate plausible counterfactual explanations.

(a) (b) (c)

Figure 5.3: (a) Partition of the Random Forest, (b) Partition of the Projected Random Forest
when we condition given X0, i.e., ignoring the splits on X1, (c) The optimal Counterfactual Rule
of x when we condition given X0 = x0 is the green region.

To illustrate the idea, we use a two-dimensional data (X0, X1) with binary label Y represented
as green and blue stars in Figure 5.3a. We fit a Random Forest to classify this dataset and
show its partition in Figure 5.3a. We consider an instance x (blue triangle), and our goal is
to change its classification from blue to green. From a visual analysis of cells/leaves of the
RF, we deduce that the Minimal Divergent Explanation of x is S = X1. In Figure 5.3b, we
observe the leaves of the Projected Forest when not conditioning on S = X1, thus projecting
the RF’s partition only on the subspace X0. It consists of ignoring all the splits in the other
directions (here the X1-axis), thus x falls in the projected leaf 2 (see Figure 5.3b) and its CDP

is CDPX1(green; x) = 10 green
10 green+17 blue = 0.58. To find the optimal rectangle CS(x) = [ai, bi] in

the direction of X1, such that the decision changes, we can utilize the leaves of the RF. By
looking at the leaves of the RF (Figure 5.3a) for observations belonging to the projected RF leaf
2 (Figure 5.3b) where x falls, we observe in Figure 5.3c that the optimal rectangle for changing



the decision, given X0 = x0 or being in the projected RF leaf 2, is the union of the intervals on
X1 of the leaf 3 and 4 of the RF (see the green region in Figure 5.3c).

Given an instance x and its Minimal Divergent Explanation S, the first step is to collect ob-
servations that belong to the leaf of the Projected Forest given S̄, where x falls. These ob-
servations correspond to those with positive weights in the computation of CDPS(x, Y ⋆) =∑n

i=1 wR
n,i(xS̄)1Yi∈Y ⋆ , i.e., {Xi : wR

n,i(xS̄) > 0}. Then we use the partition of the original forest
to find the possible leaves in the direction S. The possible leaves are among the RF’s leaves of the
collected observations {Xi : wR

n,i(xs̄) > 0}. Let denote L(Xi) the leaf of the observation Xi with
wn,i(xS̄) > 0. A possible leaf is a leaf L(Xi) s.t. P(Y ∈ Y ⋆|XS ∈ L(Xi)S , X S̄ = xS̄) ≥ πC .
Finally, we merge all the possible neighboring leaves to get the largest rectangle, and this maxi-
mal rectangle is the counterfactual rule. It is important to note that the union of possible leaves
is not necessarily a connected space, which may result in multiple disconnected counterfactual
rules.

We apply the same approach to find the regional CR. Given a rule R and its Minimal Divergent
Explanation S, we used the Projection given X S̄ ∈ RS̄ to identify compatible observations and
their leaves. We then combine the possible ones that satisfy CRPS(R, Y ⋆) ≥ πC to obtain the
regional CR. For instance, if we consider Leaf 5 of the original forest as a rule (i.e., if X ∈ Leaf
5, then predict blue), its Minimal Divergent Explanation is also S = X1. The Regional CR
would be the green region in Figure 5.3c. Indeed, satisfying the X0 condition of Leaf 5 and the
X1 condition of Leaves 3 and 4 would cause the decision to change to green.

6 Sampling CE using the CR

Our approaches cannot be directly compared with traditional CE methods, as they return coun-
terfactual samples, whereas we provide rules (ranges of vector values) that permit changing the
decision with high probability. In some applications, users might prefer recourse to CR. Hence,
we adapt the CR to generate counterfactual samples using a generative model. For example,
given an instance x = (xS , xS̄), target set Y ⋆ and its counterfactual rule CS(x, Y ⋆), we want
to find a sample xCF = (zS , xS̄) with zS ∈ CS(x, Y ⋆) such that xCF is a realistic sample and
yCF ∈ Y ⋆. Instead of using a complex conditional generative model as [Xu, 2019; Patki, 2016],
which can be difficult to calibrate, we use an energy-based generative approach [Grathwohl,
2020; Lecun, 2006]. The core idea is to find zS ∈ CS(x, Y ⋆) such that x⋆ maximizes a given
energy score, ensuring that x⋆ lies in a high-density region. We use the negative outlier score
of an Isolation Forest [Liu, 2008] and Simulated Annealing [Guilmeau, 2021] to maximize the
negative outlier score using the information of the counterfactual rules CS(x, Y ⋆). In fact, the
range values given by the CR CS(x, Y ⋆) reduce the search space for zS drastically. We used the
marginal law of X given XS ∈ CS(x, Y ⋆) as the proposal distribution, i.e., we draw a candidate
zS by independently sampling each variable using the marginal law zS ∼

∏
i∈S PXj |XS∈CS(x,Y ⋆)

until we find an observation xCF = (zS , xS̄) with high energy. The algorithm works similarly
for sampling CE with the Regional CR. The methodology is described below in Algorithm 4.



Algorithm 4: Simulated Annealing to generate counterfactual samples using the Counter-
factual Rules
Input : Observation x, Divergent Explanation S, counterfactual rule CS(x, Y ⋆), Dn

training data set, number of iterations maxIter, temperature T , cooling rate r
Output: Inlier sample xbest

1: Set xcurrent ← x, and xbest ← x
2: for j ∈ S do
3: xcurrent

j ← sample uniformly from the set {Xi,j : Xi ∈ Dn and Xi,S ∈ CS(x, Y ⋆)} ;
/* Generate xcurrent = (zS , xS̄) with zS drawn using zS ∼

∏
i∈S P̂Xj |XS∈CS(x,Y ⋆). */

4: xbest
j ← xcurrent

j ; /* Initialize xbest */
5: for it from 1 to maxIter do
6: xnew ← xcurrent

7: S′ ← sample uniformly from the set S
8: for j in S′ do
9: xnew

j ← sample uniformly from the set {Xi,j : Xi ∈ Dn and Xi,S ∈ CS′(x, Y ⋆)}
10: Compute the Outlier score difference ∆O between xnew and xcurrent

11: if ∆O < 0 or exp(−∆O/T ) > random(0, 1) then
12: Set xcurrent ← xnew

13: if Outlier score of xbest < Outlier score of xcurrent then
14: Set xbest ← xcurrent

15: Decrease T by T = T ∗ r
16: return xbest

7 Experiments

To demonstrate the performance of our framework, we conduct two experiments on real-world
datasets. In the first experiment, we showcase the utility of the Local Counterfactual Rules for
explaining a regression model. In the second experiment, we compare our approaches with two
baseline methods in the context of classification problems: (1) CET [Kanamori, 2022], which
partitions the input space using a decision tree and associates a vector perturbation for each leaf,
(2) AReS [Rawal, 2020] performs an exhaustive search for finding global counterfactual rules.
We use the implementation of [Kanamori, 2022] that adapts AReS for returning counterfactuals
samples instead of rules. We compare the methods only in classification problem as all prior
works do not deal with regression problems. In all experiments, we split our dataset into train
(75%) - test (25%), and we learn a model f , a LightGBM (estimators=50, nb leaves=8), on
the train set, which is the model we want to explain. We learn f ’s predictions on the train set
with a RF (estimators=20, max depth=10): that will be used to generate the CR with π = 0.9.
The parameters used for AReS, CET are max rules=8, bins=10 and max iterations=1000, max
leaf=8, bins=10 respectively. The other parameters are detailled in Appendix (14).

We evaluate the methods on test set using three metrics. The first, Accuracy, measures the aver-
age number of instances for which the prescribed action by each method changes the prediction
to the desired outcome. The second, Plausibility, measures the average number of inliers (pre-
dicted by an Isolation Forest) among the generated counterfactual samples. The third, Sparsity,
measures the average number of features that have been changed. For the global counterfactual



methods (AReS, R-CR), which do not guarantee to cover all instances, we compute the Coverage,
corresponding to the average number of observations for which they propose a recourse.

Local counterfactual rules for regression. We apply our approach to the California House
Price dataset (n=20640, p=8) [Kelley Pace, 1997], which contains information about each dis-
trict such as income, population, and location, and the goal is to predict the median house value
of each district. To demonstrate the effectiveness of our Local CR method, we focus on a subset
of the test set consisting of 1566 houses with prices lower than 100k. We aim to find recourse that
would increase house prices, bringing them within the target range Y ⋆ = [200k, 250k]. For each
instance x, we compute the Minimal Divergent Explanation S, the Local CR CS(x, [200k, 250k]),
and generate a counterfactual sample using the Simulated Annealing technique described earlier.
We succeed in changing the decision for all observations, achieving Accuracy = 100%. Further-
more, the majority of counterfactual samples passed the outlier test, with a Plausibility score of
0.92. Additionally, our Local CR method achieves high sparsity, with Sparsity = 4.45.

For instance, the Local CR for the observation x = [Longitude=-118.2, latitude=33.8, hous-
ing median age=26, total rooms=703, total bedrooms=202, population=757, households=212,
median income=2.52] is CS(x, [200k, 250k]) = [total room ∈ [2132, 3546], total bedrooms ∈
[214, 491]] with probability 0.97. This means that if the total number of rooms and total bed-
rooms satisfy the conditions in CS(x, [200k, 250k]), and the remaining features of x are fixed,
then the probability that the price falls within the target set Y ⋆ = [200k, 250k] is 0.97.

Comparisons of Local and Regional CR with baselines (AReS, CET). We evaluate
our framework on three real-world datasets: Diabetes (n=768, p=8) [Kaggle, 2016] aims to
predict whether a patient has diabetes or not, Breast Cancer Wisconsin (BCW, n=569, p=32)
[Dua, 2017a] aims to predict whether a tumor is benign or malignant, and Compas (n=6172,
p=12) [Washington, 2018] is used to predict criminal recidivism. Our evaluation reveals that
AReS and CET are highly sensitive to the number of bins and the maximal number of rules
or actions, as previously noted by [Ley, 2022]. Poor parameterization can result in completely
useless recourses. Furthermore, these methods require separate models for each target class,
while our framework only requires a single RF with good precision.

Table 5.1: Results of the Accuracy (Acc), Plausibility, and Sparsity (Sprs) of the different
methods. We compute each metric according to the positive (Pos) and negative (Neg) class.

COMPAS BCW Diabetes
Acc Psb Sps Acc Psb Sps Acc Psb Sps

Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg
L-CR 1 0.9 0.87 0.73 2 4 1 1 0.96 1 9 7 0.97 1 0.99 0.8 3 4
R-CR 0.9 0.98 0.74 0.93 2 3 0.89 0.9 0.94 0.93 9 9 0.99 0.99 0.9 0.87 3 4
AReS 0.98 1 0.8 0.61 1 1 0.63 0.34 0.83 0.80 4 3 0.73 0.60 0.77 0.86 1 1
CET 0.85 0.98 0.7 0 2 2 1 0.21 0.6 0.80 8 2 0.84 1 0.60 0.20 6 6

Table 5.1 demonstrates that the Local and Regional CR methods achieve high accuracy in
changing decisions on all datasets, surpassing AReS and CET by a significant margin on BCW
and Diabetes. Furthermore, the baselines struggle to simultaneously change both the positive
and negative classes, e.g., CET has Acc=1 in the positive class, and 0.21 for the negative class on



BCW or when they have a good Acc, the CE are not plausible. For instance, CET has Acc=0.98
and Psb=0 on Compas, meaning that all the counterfactual samples are outliers. Regarding the
coverage of the global CE, CET covers all the instances as it partitions the input space, but we
observe that AReS has a smaller Coverage= {0.43, 0.44, 0.81} compared to the Regional CR,
which has {1, 0.7, 1} for BCW, Diabetes, and Compas respectively.

Noisy responses robustness of Local CR: To assess the robustness of our approach against
noisy responses, we conduct an experiment inspired by [Pawelczyk, 2022]. We normalized the
datasets so that X ∈ [0, 1]p and added small Gaussian noises ϵ to the prescribed recourses, with
ϵ ∼ N (0, σ2), where σ2 took values of 0.01, 0.025, 0.05. We compute the Stability, which is the
fraction of unseen instances where the action and perturbed action lead to the same output,
for the Compas and Diabetes datasets. We used the simulated annealing approach of Section 6
with the Local CR to generate the actions. The Stability metrics for the different noise levels
were 0.98, 0.98, 0.98 for Compas and 0.96, 0.97, 0.96 for Diabetes.

In summary, our CR approach is easier to train, and provides more accurate and plausible rules
than the baseline methods. Furthermore, our resulting CE is robust against noisy responses.

8 Conclusion

We propose a novel approach that formulates CE as Counterfactual Rules. These rules are simple
policies that can change the decision of an individual or sub-population with a high probability.
Our method is designed to learn robust, plausible, and sparse adversarial regions that indicate
where observations should be moved to satisfy a desired outcome. Random Forests are central to
our approach, as they provide consistent estimates of the probabilities of interest and naturally
give rise to the counterfactual rules we seek. This also allows us to handle regression problems
and continuous features, making our method applicable to a wide range of data sets where tree-
based models perform well, such as tabular data [Grinsztajn, 2022]. An interesting avenue to
explore would be to incorporate the l1 cost into our approach. Currently, our method aims to
minimize the l0 distance between the query xobs and the counterfactual xCF by altering as few
features as possible. However, deriving a counterfactual observation within a counterfactual rule
that minimizes the l1 cost is straightforward with an explicit solution. Given the counterfactual
rules (hyperrectangles), represented as a box (l, r), with l, r ∈ Rp, the following optimization
problem xCF = argminxd(x, xobs) such that l ≤ x ≤ r has a closed form solution when the
distance is the l1 or l2 norm. The solution is xCF = max(l, min(r, xobs)) elementwise [Carreira-
Perpiñán, 2021]. In future work, we will incorporate the l1 constraint and assess the effectiveness
of our approach in terms of cost relative to other methods.



Chapter 6
Adaptive Conformal Prediction by
Reweighting Nonconformity Score

Despite attractive theoretical guarantees and practical successes, Predictive Interval
(PI) given by Conformal Prediction (CP) may not reflect the uncertainty of a given
model. This limitation arises from CP methods using a constant correction for all
test points, disregarding their individual epistemic uncertainties, to ensure coverage
properties. To address this issue, we propose using a Quantile Regression Forest
(QRF) to learn the distribution of nonconformity scores and utilizing the QRF’s
weights to assign more importance to samples with residuals similar to the test
point. This approach results in PI lengths that are more aligned with the model’s
uncertainty or the epistemic uncertainty. Further, the weights learnt by the QRF
provide a partition of the features space, allowing for more efficient computations
and improved adaptiveness of the PI through groupwise calibration. Our approach
enjoys an assumption-free finite-sample marginal and training-conditional or PAC
coverage, and under suitable assumptions, it also ensures asymptotic conditional
coverage. Our methods work for any nonconformity score and are available as a
Python package. We conduct experiments on simulated and real-world data that
demonstrate significant improvements compared to existing methods.

Abstract
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1 Motivations

Machine learning techniques offer single point predictions, such as mean estimates for regression
and class labels for classification, without providing any indication of uncertainty or reliability.
This can be a major concern in high-stakes applications where precision is vital.

Consider a training set Dm = {(Xi, Yi)}mi=1 with (Xi, Yi) ∈ X × Y drawn exchangeably from
P = PXPY |X , and an algorithm A that gives an estimate of the conditional mean or quantile
A(Dm) = µ̂(·). We consider the problem of constructing a predictive set Ĉ(·) for the unseen
response Yn+1 given a new feature Xn+1. Conformal Prediction is a universal framework that
constructs a prediction interval Ĉ(Xn+1) that covert Yn+1 with finite-sample coverage guarantee
without any assumption on P and µ̂. CP methods can be broadly divided into two categories:
those that involve retraining the model multiple times, such as full conformal [Vovk, 2005] or
jackknife methods [Barber, 2021], and those that use sample splitting, known as split conformal
methods [Papadopoulos, 2002; Lei, 2016]. The latter is more computationally feasible at the
cost of splitting the data. In this Chapter, we consider the split conformal approach (split-CP).

The foundation of the PI of the CP framework is the nonconformity score V̂ (X, Y ) that repre-
sents the error of the model µ̂ on (X, Y ). Given a calibration set Dn = {(Xi, Yi)}ni=1, training set
Dm = {(Xi, Yi)}mi=1 all drawn exchangeably from P = PXPY |X , and the scores V̂i := V̂ (Xi, Yi)
for all i ∈ Dn, the PI of Xn+1 at level 1− α given by the split-CP is:

Ĉ(Xn+1) =
{

y ∈ Y : V̂ (Xn+1, y) ≤ Q
(
1− α; F̂n+1

)}
, (6.1)

where Q(1−α; F ) denotes the (1−α)-quantile of any cumulative distribution function (c.d.f) F ,
and F̂n+1(·) is the empirical c.d.f of the samples V̂1:n∪∞ defined as F̂n+1(r) = ∑n

i=1
1

n+11V̂i≤r
+

1
n+11∞≤r. By exchangeability of the n + 1 data points (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1), we
have that the PI satisfies marginal coverage, i.e.,

PP n+1

{
Yn+1 ∈ Ĉ(Xn+1)

}
≥ 1− α.

PP n+1 denotes that the probability is taken with respect to the n + 1 data points and α ∈ (0, 1)
is a predefined miscoverage rate. However, despite the marginal guarantees, split-CP cannot
represent the variability of the model’s uncertainty given Xn+1. Indeed, it constructs the PI of
future test points Xn+1 through the uniform distribution over the calibration residuals F̂n+1(·)
that treat all the calibration residuals as the same regardless of Xn+1. To better illustrate the
issue, consider a simple example where the true distribution of Y is homoskedastic, meaning
that Y = µ(X) + ϵ, where X and ϵ are independent. In this case, the true residuals of the
calibration samples Vi := V (Xi, Yi) = |Yi − µ(Xi)| = |ϵ| are independent of Xi and Vi ∼ |ϵ| for
i ∈ Dn. Hence, we have FV (·) = FV |X=x(·). However, in practice, we only have the estimated
residuals, V̂i := V̂ (Xi, Yi) = |Yi− µ̂(Xi)| = |µ(Xi)− µ̂(Xi) + ϵ|, which do depend on Xi as the



accuracy of µ̂ can vary for different Xi. For example, if Xi is in a high density region with a
large amount of data, µ̂ is likely to be more accurate, while in a low density region with a small
amount of data, µ̂ is likely to be less accurate. In contrast of the true residual, the conditional
law of the estimated residuals V̂ |X = x is not equal to the marginal law of V̂ , thus using the
latter F

V̂
(·) as in split-CP to construct the PI of a given observation x may produce under/over

coverage PI as Q
(
1− α; F

V̂

)
may be greater or lower than Q

(
1− α; F

V̂ |X=x

)
.

Our goal is to construct Prediction Intervals (PIs) with valid coverage for the model of interest
µ̂, while adjusting the width of the intervals to help visualize and represent the uncertainty of
the model µ̂. In fact, the split-CP uses a constant correction term Q

(
1− α; F̂n+1

)
for all test

samples, while we aim to have an adaptive correction term that depends on the specific test
observation Xn+1. To achieve this, we propose to directly estimate the conditional distribution
of the nonconformity score given Xn+1 by re-weighting the distribution F̂n+1(·) in order to favor
the residuals {V̂i}i∈Dn closer to the residual of Xn+1. In Figure 6.1, we show the correction terms
of split-CP, our method, and the true error of the model µ̂ computed on California house price
dataset [Kelley Pace, 1997]. It shows that our corrections are more aligned with the true error
of the model.

Figure 6.1: Correction terms of SPLIT, Ours, and the true error on the California house price
dataset

We also aim to give PI with stronger coverage guarantee. Indeed, in practical applications,
what is of interest is the coverage rate on future test points based on a given calibration set.
However, the marginal coverage does not address this concern. It only bounds the coverage rate
on average over all possible sets of calibration and test observations. In contrast, the training-
conditional coverage ensures that with probability 1 − δ over the calibration samples Dn, the
resulting coverage on future test observation is still above 1− α. Formally,

PP n

{
PP

{
Yn+1 ∈ Ĉ(Xn+1) | Dn

}
≥ 1− α

}
≥ 1− δ.

This style of guarantee is also known as “Probably Approximately Correct” (PAC) predictive
interval [Valiant, 1984]. The roots of this type of guarantee can be traced back to the earlier
works of [Wilks, 1941; Wald, 1943]. Despite the importance of training-conditional coverage



in practice, only a few methods have been proven to achieve it. [Vovk, 2012] was the first to
establish this result for split conformal methods, and recently [Bian, 2022] has shown that the
K-fold CV+ method also achieves it. However, no analogous results are currently known for
other CP methods, such as jackknife+ [Barber, 2021] and full-conformal [Vovk, 2005]. Therefore,
we propose a further calibration step such that our proposed adaptive PI also achieves training-
conditional or PAC coverage.

There is another area of research that focuses on developing CP procedures for conditional
coverage P(Yn+1 ∈ Ĉ(Xn+1) |Xn+1 = xn+1) ≥ 1−α. It is well known that obtaining nontrivial
distribution-free conditional coverage is impossible with a finite sample size [Lei, 2014b; Vovk,
2012; Barber, 2019b]. Consequently, we prove under suitable assumptions that our methods
also achieve asymptotic conditional coverage.

2 Related works and contributions

For the sake of simplicity, we use the absolute residual as the nonconformity score V̂i :=
V̂ (Xi, Yi) = |Yi − µ̂(Xi)|, without loss of generality. As a result, the best (symmetric) PI
that can be constructed with µ̂(·) and the score V̂ (·) is C⋆(Xn+1) =

[
µ̂(Xn+1)± q⋆

1−α(Xn+1)
]

where q⋆
1−α(Xn+1) is the (1−α)-quantile of F

V̂n+1|Xn+1
. To construct adaptive PIs, we propose

focusing on the estimated residuals of the calibration samples {V̂i}i∈Dn , and approximate the
distribution of V̂ |X = x or identify the stable regions A where VP (V̂ (X, Y ) | X ∈ A) ≈ 0,
which would allow us to isolate the regions where there is high/low uncertainty of the model.

Recently, [Guan, 2022] proposed Localized Conformal Prediction (LCP) and [Han, 2022] inspired
by [Lin, 2021] proposed Split Localized Conformal Prediction (SLCP) which uses kernel-based
weights wh(x, Xi) or Nadaraya-Watson (NW) estimator [Nadaraya, 1964] to approximate the
conditional c.d.f of V̂ |X = x. Both methods differ in how they learn the NW estimator, SLCP
uses the training data Dm to learn the estimator F̂

(S)
h (r|X = x) = ∑

i∈Dm
wh(x, Xi)1V̂i≤r

, while
LCP uses the calibration dataDn to learn the estimator F̂

(L)
h (r|X = x) = ∑

i∈Dn
wh(x, Xi)1V̂i≤r

.
The calibration step of these two methods is also different. The PI of Xn+1 given by SLCP is:

CS(Xn+1) =
[
µ̂(Xn+1)±Q

(
1− α; F̂

(S)
h (·|X = Xn+1)

)
+ Q̂

]
where Q̂ is the split-CP correction term to achieve marginal coverage. In constrast, LCP does
not use split-CP but instead adapts the threshold α̃ = 1 − α in Q

(
1− α; F̂

(L)
h (·|Xn+1)

)
to

achieve the marginal coverage. LCP constructs the predictive interval for a new point Xn+1 as
follows:

CL(Xn+1) =
[
µ̂(Xn+1)±Q

(
α̃; F̂

(L)
h (·|X = Xn+1)

) ]
where α̃ is chosen to achieve the marginal coverage. However, while both LCP and SLCP address
the problem and guarantee marginal coverage, they have some limitations. A main limitation is
that they are based on kernel methods, which are known to be limited in high dimensions due



to the curse of dimensionality. Additionally, choosing the appropriate kernel bandwidth can be
challenging and it can be difficult to define kernels that handle both categorical and continuous
variables. Another limitation of SLCP is that it learns F̂

(S)
h (·|X = x) on the training data

Dm, which may result in overfitting and thus the calibration step using split-CP may produce
large intervals to attain the marginal coverage. In contrast, LCP learns F̂

(L)
h (·|X = x) on

the calibration data Dn, but the calibration step that consists of finding the adaptive α̃ is
computationally costly.

In this work, we propose to replace the Nadaraya-Watson (NW) estimator with the Quantile
Regression Forest (QRF) algorithm [Meinshausen, 2006] to estimate the distribution V̂ |X = x

and use the LCP approach to calibrate the PI. The QRF algorithm is an adaptation of the
Random Forest (RF) algorithm [Breiman, 1984], which can be seen as an adaptive neighbor-
hood procedure [Lin, 2006]. It estimates the conditional c.d.f of V̂ |X = x as F̂ (r|X = x) =∑

i wn(x, Xi)1V̂i≤r
where the weights correspond to the average number of times where Xi falls

in the same leaves of the RF as the observation x. Unlike kernel-based methods, the weights
given by the RF depend on both feature input Xi and the residual V̂i due to the splits. We
called this approach LCP-RF. This estimator has several advantages over the NW estimator.
First, it is known to perform well in practice, even in high dimensions. It can handle both
categorical and continuous variables. Additionally, it has interesting theoretical properties in
high dimensions; under certain assumptions, it can be shown to be consistent and to adapt to
the intrinsic dimension [Klusowski, 2021; Scornet, 2015]. To illustrate, we compute the PI of
these methods using a random forest fitted on a toy model with input X ∈ [0, 7]21, and the
target defined as Y = sin(X1)2 + 0.1 + 0.6× ϵ× sin(2X1), where ϵ ∼ N (0, 1), and Xi ∼ U(0, 7)
for all i ∈ [21]. As seen in Figure 6.2, the competitors LCP and SLCP fail to perform well even
on this very simple example with 1 active and 20 noise features, while our method benefits from
the power of the Random Forest algorithm on tabular data [Grinsztajn, 2022].

Figure 6.2: Predictive interval at level 1 − α of SLCP, LCP and LCP-RF of a random Forest
fitted on toy model (X, Y ), X ∈ [0, 7]21 and the target is defined as Y = sin(X1)2 + 0.1 + 0.6×
ϵ× sin(2X1) with ϵ ∼ N (0, 1), and Xi ∼ U(0, 7) for all i ∈ [21].

Additionally, we show that the learned weights of the RF can be used to create a relevant par-
tition or groups/clusters of the input space. This allows for a more efficient computation of the
LCP calibration and also allows for groupwise calibration to give a more adaptive PI. In practice,
it is often desirable to have a stronger coverage guarantee than marginal coverage. Consequently,



we propose a further calibration step such that our PI satisfies training-conditional coverage.
We also show that it achieves conditional coverage guarantee under suitable assumptions.

An active area of research involves using a better nonconformity score to provide an adaptive
prediction interval considering the variability of Y |X = x. Several methods have been proposed
such as Conformal Quantile Regression (CQR) [Romano, 2019], which uses score functions based
on estimated quantiles, Locally Adaptive Split Conformal methods [Lei, 2016] which use a scaled
residual, and [Izbicki, 2020] proposed using the estimated conditional density as the conformity
score. These methods incorporate different nonconformity scores V̂ (·) that are better suited for
handling the variability of Y . However, the extracted residuals V̂i of these nonconformity scores
still depend on and vary according to the input, and the split-CP makes a constant correction
for all observations. For instance, consider the CQR interval of the form: [q̂Y |X(αlo; x) −
Q̂; q̂Y |X(αhi; x) + Q̂], where q̂Y |X(·; x) is an estimator of Q(·; FY |X=x) and Q̂ is the split-CP
correction term computed using calibration data. The estimators q̂Y |X(αlo; x), q̂Y |X(αhi; x)
may exhibit varying precision across different regions of the input space. However, CQR doesn’t
account for this by inflating the interval using a constant, non-adaptive, Q̂ for all points. Our
aim is to address the epistemic uncertainty of the estimators used in CQR or any Split-CP
approach by proposing an adaptive correction: [q̂Y |X(αlo; x) − Q̂(x); q̂Y |X(αhi; x) + Q̂(x)] to
adapt to the estimation error of the quantile regressors or any estimator used in split-CP at
each input. Methods that give adaptive PI are not competing with the LCP-RF approach as it
can be applied to them to improve their PIs.

The main contributions of this Chapter are: (1) Developing an adaptive PI that better represents
the uncertainty of a given model µ̂ by using QRF to learn the conditional distribution of the
residuals V̂ (X, Y )|X = x, and utilizing the LCP framework to calibrate the resulting PI for
marginal coverage, (2) Introducing a calibration step to achieve training-conditional or PAC
coverage, (3) Exploiting the structure of the weights of the QRF to create groups for more
adaptive PI and efficient computation through groupwise calibration, (4) Showing that our
methods achieve asymptotic conditional coverage under suitable conditions, (5) Demonstrating
through simulations and real-world datasets that our methods outperform competitors LCP and
SLCP, and providing a Python package for the methods.

3 Random Forest Localizer

In this section, we present the RF Localizer for constructing adaptive PI that depends on
the test point Xn+1. The approach uses the learned weights of the RF and assigns higher
weights to calibration samples that have residuals V̂i similar to V̂n+1. This is based on the RF
algorithm’s ability to partition the input space by recursively splitting the data, resulting in
similar observations with respect to the target variable (here, residuals) within each leaf node
of the trees. The basic idea of the trees of the RF is to partition the input space into cells such
that VP (V̂ (X, Y ) |X ∈ A) ≈ 0 in each cell A. The weight of each calibration sample for Xn+1

is determined by the number of times it appears in the leaves of the trees where Xn+1 falls.

https://github.com/salimamoukou/ACPI


The Random Forest (RF) is an ensemble learning method that utilizes the bagging principle
[Breiman, 1996] to combine k randomized trees derived from the CART algorithm [Breiman,
1984]. Each tree is constructed using a random sample of the training data with replacement,
and the best split at every node is identified by optimizing the CART-criterion among a random
subset of variables. The predictions from all trees are then averaged to produce the final output
of the forest. The Random Forest estimator can also be seen as an adaptive neighborhood
procedure [Lin, 2006; Biau, 2010]. Let assume we have trained the RF on Dn, then for every
instance x, the observations in Dn are weighted by wRF

n (x, Xi), i = 1, . . . , n. Therefore, the
prediction of Random Forests and the weights can be rewritten as m(x; Θ1, . . . , Θk,Dn) =∑n

i=1 wRF
n (x, Xi)Yi and

wRF
n (x, Xi) = 1

k

k∑
l=1

Bn(Xi; Θl) 1Xi∈An(x; Θl)
Nn(An(x; Θl))

, (6.2)

where Θl, l = 1, . . . , k are independent random vectors that represent the observations that are
used to build each tree, i.e., the bootstrap samples, and the random subset of splitting candidate
variables used in each node. An(x; Θl) is the tree leaf (cell) containing x, Nn(An(x; Θl)) is
the number of bootstrap elements of Dn that fall into An(x; Θl), Bn(Xi; Θl) is the number
of times Xi has been chosen from the training data, and wRF

n (x, Xi) represents the average
number of times Xi appears in the same leaves as x.

Random Forests can be used to estimate more complex quantities, such as cumulative hazard
function [Ishwaran, 2008], treatment effect [Wager, 2017; Jocteur, 2023], and conditional density
[Du, 2021]. Quantile Regression Forests proposed by [Meinshausen, 2006] use the same weights
wRF

n (x, Xi) as Random Forests to approximate the c.d.f F (y|X = x) as ∑n
i=1 wRF

n (x, Xi)1Yi≤y.

Random Forest Localizer. To approximate the estimated residuals V̂ |X = x, we propose
to fit a Quantile Regression Forest F̂ (·|x) on the calibration data residuals D̂n = {(Xi, V̂i)}ni=1,
and the estimator is defined as

F̂ (r|x) =
n+1∑
i=1

wn(x, Xi)1V̂i≤r
, wn(x, Xi) = 1

k

k∑
l=1

Bn(Xi; Θl) 1Xi∈An(x; Θl)
Nn+1(An(x; Θl))

(6.3)

where V̂n+1 = +∞ unless specified and Nn+1(An(x; Θl)) = ∑n+1
i=1 Bn(Xi; Θl)1 [Xi ∈ An(x; Θl)]

with Bn(Xn+1; Θl) = 1 so that ∑n+1
i=1 wn(x, Xi) = 1. It’s worth noting that this estimator (6.3)

is slightly different from (6.2), as it includes the observation Xn+1 in the weighted sum, and for
any x, wn(x, Xi) is computed using {Xi}ni=1 and the test observation Xn+1. We will see later
that this addition would be essential to prove the marginal coverage property of our method.
Using this estimator, a natural PI for V̂n+1 is:

ĈV (Xn+1) =
{

v : v ≤ Q
(
1− α; F̂ (·|Xn+1)

)}
. (6.4)



Recall that we obtain the prediction interval Ĉ(Xn+1) for Yn+1 by inverting the nonconformity
score V̂ (Xn+1, ·) using ĈV (Xn+1) as in Equation (6.1). Thus, the real quantity of interest is
ĈV (Xn+1). The question at hand is whether the PI ĈV (Xn+1) defined in (6.4) satisfies the
marginal coverage. If wn(Xn+1, Xi) = 1

n+1 , we have Q
(
1− α; F̂ (·|Xn+1)

)
= V̂(⌈(1−α)(n+1)⌉)

and thanks to the quantile lemma (Chapter 1, Lemma 2.3) and exchangeability of the V̂i, we
have the marginal coverage. However, If F̂ (·|Xn+1) gives non-equal weights to the calibration
samples, it is no longer the case. Recent methods have been proposed by [Tibshirani, 2019] and
[Barber, 2022] that achieve marginal coverage when using reweighting. However, these methods
cannot be applied to calibrate our PI, as they work under different assumptions. The method
introduced by [Barber, 2022] assumes that the weights do not depend on the data, while the
method proposed by [Tibshirani, 2019] handles data-dependent weights but assumes a covariate
shift, where the training and test data have different input distributions but the same conditional
distribution PY |X .

To calibrate our PI, we use the Localized Conformal Prediction (LCP) framework [Guan, 2022]
to select an appropriate level α̃ of the quantile used in the PI (6.4) to ensure marginal coverage
at level 1− α. Hence, the PI becomes

ĈV (Xn+1) =
{

v : v ≤ Q
(
α̃; F̂ (·|Xn+1)

)}
. (6.5)

4 Weighted Conformal Prediction

In this section, we give a comprehensive overview of the LCP framework of [Guan, 2022] with the
Random Forest Localizer for completeness. Additionally, we describe our calibration approach
that guarantees training-conditional or PAC coverage, and how we leverage the weights of the
RF to improve the LCP calibration process and produce more adaptive prediction intervals. For
ease of reading, we follow [Guan, 2022] and introduce Fi = F̂ (·|Xi) = ∑n

j=1 wn(Xi, Xj)1
V̂j≤· +

wn(Xi, Xn+1)1
V̂n+1≤· as the estimated c.d.f of V̂ given Xi by the RF Localizer. As V̂n+1 is

not observed and we need to consider the possible values of V̂n+1 for constructing the PI, we
introduce the additional notations Fv

i for the estimated c.d.f Fi when V̂n+1 = v if v is finite,
and F∞

n+1 if V̂n+1 = +∞.

4.1 Localized Conformal Prediction [Guan, 2022]

The following lemma is the cornerstone of the LCP framework. It shows how to achieve marginal
coverage by properly selecting the level α̃ of the quantile of the localizer.

Lemma 4.1. Let α̃ be the smallest value in Γ =
{∑k

j=1 wn(Xi, Xj) : i, k ∈ {1, . . . , n + 1}
}

such
that

n+1∑
i=1

1
n + 11V̂i≤Q(α̃; Fi)

≥ 1− α, (6.6)

then PP n+1

{
V̂n+1 ≤ Q(α̃; Fn+1)

}
≥ 1−α, or equivalently PP n+1

{
V̂n+1 ≤ Q(α̃; F∞

n+1)
}
≥ 1−α.



Proof. Recall that both α̃ and Fn+1 depend on D̂n = {(Xi, V̂i)}ni=1 and (Xn+1, V̂n+1), but we
won’t specify them for clarity. Let us define the event En+1 =

{
Ẑ1 = ẑ1, . . . , Ẑn+1 = ẑn+1

}
where Ẑi = (Xi, V̂i) and ẑi = (xi, v̂i) ∈ X ×Y. The exchangeability of the residuals implies that
V̂n+1|En+1 is uniform on the set {v̂1, . . . , v̂n+1}, and

PP n+1

{
V̂n+1 ≤ Q (α̃; Fn+1)

∣∣∣ En+1
}

=
n+1∑
i=1

PP n+1(V̂n+1 = v̂i | En+1)1v̂i≤Q(α̃; Fi)

=
n+1∑
i=1

1
n + 11v̂i≤Q(α̃; Fi) ≥ 1− α (By Equation 6.6)

The formulation V̂n+1|En+1 aims to provide another way to represent the uniformity of ranks
when variables are exchangeable. It corresponds to a scenario where we had observed an un-
ordered set of variables En+1 =

{
Ẑ1 = ẑ1, . . . , Ẑn+1 = ẑn+1

}
and have forgotten which value vi

each random variable Vj is associated with. By leveraging the uniformity of ranks of exchange-
able random variables (see Chapter 1, Lemma 2.2), we establish that P (Vj = vi|En+1) = 1

n+1 .

By marginalizing over the event En+1, we have PP n+1

{
V̂n+1 ≤ Q(α̃; Fn+1)

}
≥ 1−α. In addition,

we can remove the dependence on the unknown residuals V̂n+1 using the well-known fact that
V̂n+1 ≤ Q(α̃; Fn+1) ⇐⇒ V̂n+1 ≤ Q(α̃; F∞

n+1) (Chapter 1, proof of Lemma 2.3). Thus, we also
have PP n+1

{
V̂n+1 ≤ Q(α̃; F∞

n+1)
}
≥ 1− α.

Now, we can use Lemma 4.1 to test H0 : V̂n+1 = v for each v ∈ R under exchangeability, then
invert the test to construct the PI. ĈV (Xn+1) consists of all values v that are not rejected by
this test. The resulting PI has marginal coverage as shown in the following theorem.

Theorem 4.2. Given V̂n+1 = v, let define α̃(v) that depends on D̂n and (Xn+1, v) to be the
smallest value α̃(v) ∈ Γ =

{∑k
j=1 wn(Xi, Xj) : i, k ∈ {1, . . . , n + 1}

}
such that

n+1∑
i=1

1
n + 11V̂i≤Q(α̃(v); Fv

i ) ≥ 1− α. (6.7)

Set ĈV (Xn+1) =
{
v : v ≤ Q

(
α̃(v); F∞

n+1
)}

, Ĉ(Xn+1) =
{

y : v ≤ Q
(
α̃(v); F∞

n+1
)

, v = V̂ (Xn+1, y)
}

,
then by construction, Lemma 4.1 gives

PP n+1

{
Yn+1 ∈ Ĉ(Xn+1)

}
= PP n+1

{
V̂n+1 ∈ ĈV (Xn+1)

}
= PP n+1

{
V̂n+1 ≤ Q

(
α̃; F∞

n+1
)}
≥ 1−α.

At this point, the LCP method is not practical as it requires computing α̃(v) for every possible
value of v ∈ [0,∞] in order to construct the prediction interval. This process can be extremely
time-consuming and computationally intensive. However, [Guan, 2022] shows that the compu-
tation of ĈV (Xn+1) can be done efficiently thanks to its interesting properties. Specifically,
if v is accepted in ĈV (Xn+1), all v′ ≤ v are also accepted, as Q(α̃; Fv

i ) is non-decreasing in
both α̃ and v. Hence, it is sufficient to find the largest accepted value v⋆. Additionally, as



Q(α̃(v); Fv
i ) is monotone and piece-wise constant in v, with value changes only occurring at

different v = V̂i, i ∈ [n + 1], it can be proven that the largest value is attained by one of the
residuals V̂k⋆ with k⋆ ∈ [n + 1]. Therefore, the closure C̄V (Xn+1) of ĈV (Xn+1) is given by
C̄V (Xn+1) =

{
v : v ≤ V̂k⋆

}
for some k⋆ ∈ [n + 1]. The following Lemma shows how to find Vk⋆ .

Lemma 4.3. We denote V̂(1), . . . , V̂(n) the order statistics of the nonconformity score of the
calibration samples, set V̂(0) = −∞, and V̂(n+1) = +∞, and θ̃k = ∑n

i=1 wn(Xn+1, Xi)1V̂i<V̂(k)
.

Let k⋆ ∈ {1, . . . , n + 1} the largest index such that

S(k) :=
n∑

i=1

1
n + 11V̂i≤Q

(
θ̃k; F

V̂(k−1)
i

) < α. (6.8)

Then, C̄V (Xn+1) =
{

v : v ≤ V̂(k⋆)
}

is the closure of ĈV (Xn+1).

[Guan, 2022] also proposed an algorithm that computed S(k) in O(n log(n)) time. The descrip-
tion of the algorithm can be found in the original paper.

4.2 Training-Conditional coverage for LCP-RF

In this section, we consider training-conditional coverage or PAC predictive interval guaran-
tees for the LCP-RF. We define the coverage rate given a calibration set Dn as cov(Dn) =
PP

{
V̂n+1 ∈ ĈV (Xn+1) | Dn

}
where the probability is taken with respect to the test observa-

tion (Xn+1, V̂n+1). The PAC predictive interval ensures that for most draws of the calibration
samples Dn ∼ P n, we have cov(Dn) ≥ 1− α. Formally, ∃δ such that

PP n {cov(Dn) ≥ 1− α} ≥ 1− δ.

We use a two-step approach to ensure training-conditional coverage for the LCP-RF. First,
we use a portion of the calibration samples to ensure marginal coverage by applying the LCP
approach. Next, we use a separate portion of the calibration samples to learn a correction
term, which is then added to the LCP-RF approach to ensure training-conditional coverage.
This approach is similar to the one used in [Kivaranovic, 2020]. We split the calibration set
D̂n into two sets D̂i

ni
=
{

(Xi
1, V̂ i

1 ), . . . , (Xi
ni

, V̂ i
ni

)
}

for i = 1, 2 with n1 + n2 = n. We train
the Quantile Regression Forest on D̂1

n1 , and compute PI for the observations in the second
set D̂2

n2 using the LCP-RF. The PI of each i ∈ D̂2
n2 is ĈV (X2

i ) =
{

v : v ≤ Q(α̃(X2
i ); F2,∞

i )
}

,
where α̃(X2

i ) is the adapted level α̃ to have marginal coverage if X2
i is the test point and

F2,∞
i = ∑n1+1

j=1 wn(X2
i , X1

j )1
V̂ 1

j ≤· is the estimated residual distribution learn on D1
n1 evalued on

X2
i where we set X1

n1+1 = X2
i and V̂ 1

n1+1 = +∞. In this context, for a given test point of
interest Xn+1, F∞

n+1 = ∑n1+1
j=1 wn(Xn+1, X1

j )1
V̂ 1

j ≤· with X1
n1+1 = Xn+1 and V̂ 1

n1+1 = +∞ as

the QRF is trained on D̂1
n1 .

The following lemma shows how we can correct the corresponding α̃(Xn+1) by adding a correc-
tion term α̂ to ensure PAC coverage.



Theorem 4.4. Suppose that all observations are i.i.d. drawn from the distribution P . For
any given ϵ > 0 and α − ϵ > 0, let α̂ be the smallest value in the uniform grid T = {α1 =
1
K , . . . , αK = 1} of size K such that

n2∑
i=1

1
n2
1

V̂ 2
i ≤Q(1∧(α̃(X2

i )+α̂); F2,∞
i ) ≥ 1− α. (6.9)

Then, we have
PP n1 {cov(Dn1) ≥ 1− α− ϵ} ≥ 1− δ, (6.10)

with δ = K exp(−2n2ϵ2) and cov(Dn1) = PP

{
V̂n+1 ≤ Q

(
1 ∧ (α̃(Xn+1) + α̂); F∞

n+1
) ∣∣∣ Dn1

}
.

Remark. This result is valid under the i.i.d assumption and not under exchangeability as the
previous results of this chapter. We suggest choosing a grid T ⊂ [0, α] as we have observed in
most practical scenarios that α̃(Xn+1) ≈ 1 − α. In our experiments, a grid of size K=10 was
effective. However, the central idea remains unaltered - to select a grid that enables transitioning
from α̃(Xn+1) to 1. Additionally, as α̃(Xn+1) + α̂ may be above 1, we use 1 ∧ (α̃(Xn+1) + α̂)
to ensure that it does not exceed 1.

4.3 Clustering using the weights of LCP-RF

In this section, we analyze the weights of the Random Forest Localizer and show that it offers
several benefits compared to traditional kernel-based localizer. These benefits include faster
computation and more adaptive PIs. One key difference between the RF localizer and kernel-
based localizer is that the RF localizer’s weights are sparse, i.e., many weights being zero. For
a given test point Xn+1, if wn(Xn+1, Xi) = 0, then the estimated c.d.f Fi does not depend on
the value of V̂n+1. Thus, it may not be necessary to use Fi in the LCP’s marginal calibration
(Eq. (6.8) in Lemma 4.3).

The weights defined by the Random Forest Localizer have a structure that can be utilized to
group similar observations together before applying the calibration steps. Indeed, we can view
the weights of the RF on the calibration set as a transition matrix or a weighted adjacency matrix
G where Gi,j = wn(Xi, Xj), and ∀j ∈ [n], we have ∑n

i=1 wn(Xj , Xi) = ∑n
i=1 wn(Xi, Xj) = 1.

To exploit this structure, we propose to group observations that are connected to each other
and separate observations that are not connected. This can be done by considering the con-
nected components of the graph represented by the matrix G. Assume that G has L connected
components represented by the disjoint sets of vertices G1, . . . , GL, defined such that for any
Xi, Xj ∈ Gl, there is a path from Xi to Xj , and they are connected to no other vertices outside
the vertices in Gl. This leads to the existence of a partition of the input space ∪L

i=1Ri = X ,
where ∀k, l ∈ [L], Rl ∩ Rq = ∅, and for all Xi ∈ Rp, Xj ∈ Rq, we have wn(Xi, Xj) = 0.
The regions Ri is defined as Ri =

{
x ∈ X : ∃X ∈ Gi, wn(x, X) > 0 and ∀X ′ ∈ Gk, k ̸=

l, wn(x, X ′) = 0
}
. By definition of the weights, we can also define Ri using the leaves of

the RF as Ri = ⋃
Xi∈Gi

[
∪k

l=1 An(Xi, Θl)
]
. This shows that the Ri are connected space.

Hence, we can apply the calibration steps separately on each group and use only the obser-



vations that are connected to the test point. By using the calibration by group, we reduce
the computation of S(k) in Lemma 4.3 needed for the computation of the PI from O(n log(n))
to O

(∣∣R(Xn+1)
∣∣ log

∣∣R(Xn+1)
∣∣), where R(Xn+1) represents the region containing Xn+1, and

|R(Xn+1)| denotes the number of observations within R(Xn+1). Indeed, we only need to use
the observations in the region where Xn+1 belongs in the calibration step. This results in a
more accurate and efficient PI. In addition, no coverage guarantees are lost as the Ri forms a
partition. We prove the marginal coverage of the group-wise LCP-RF in the Appendix (18).

In some cases, the graph may have a single connected component. Consequently, we propose to
regroup calibration observations by (non-overlapping) communities using the weights of the RF.
This involves grouping the nodes (calibration samples) of the graph into communities such that
nodes within the same community are strongly connected to each other and weakly connected
to nodes in other groups. Various methods exist for detecting communities in graphs, such
as hierarchical clustering, spectral clustering, random walk, label propagation, and modularity
maximization. A comprehensive overview of these methods can be found in [Schaeffer, 2007].
Nonetheless, it is challenging to determine the most suitable approach as the selection depends
on the particular problem and characteristics of the graph. In our experiments, we found that the
popular Louvain-Leiden [Traag, 2019] method coupled with Markov Stability [Delvenne, 2010]
is effective in detecting communities of the learned weights of the Random Forest. However, any
clustering method can be used depending on the specific application and dataset.

Let’s assume a graph-clustering algorithm that returns L disjoint clusters C(Dn) = {C1, . . . , CL}.
Note that contrary to connected components, we can have X ∈ Ci, X ′ ∈ Cj and wn(X, X ′) ̸= 0,
therefore it’s more difficult to define the associated regions R1, . . . RL that form a partition of
X s.t. for any X ∈ Ci, then X ∈ Ri. We define Ri as the set of points x that assigns the
highest weights to the observations in cluster Ci. As w can be interpreted as a transition matrix,
we define Ri as the set of X such that PG(X ∈ Ci) > PG(X ∈ Ck) for all k ̸= i, where the
probability is computed using the weights of the forest represented by the graph G. Formally,
PG(X ∈ Ci) = ∑

Xj∈Ci
wn(X, Xj) and Ri can be represented as

Ri =

x ∈ X :
∑

Xj∈Ci

wn(x, Xj) >
∑

Xj∈Ck

wn(x, Xj), k ̸= i

 .

However, we also need to define another set for observations that are "undecidable", i.e., belong
to several groups at the same time. We define this set as

R̄ =

x ∈ X : ∃k, l ∈ [L],
∑

Xj∈Cl

wn(x, Xj) =
∑

Xj∈Ck

wn(x, Xj)

 .

As the groups R1, . . . , RL and R̄ induced by the clusters form a partition of the input space, we
get marginal/PAC coverage similar to the connected components case by applying the calibration
step by group.



5 Asymptotic conditional coverage

Here, we study the conditional coverage of LCP-RF. It is widely recognized that obtaining
meaningful distribution-free conditional coverage is impossible with a finite sample size [Lei,
2014b; Vovk, 2012]. Below, we demonstrate the asymptotic conditional coverage of LCP-RF
while making weaker assumptions than the original LCP based on kernel [Guan, 2022].

Assumption 5.1. For all r ∈ R, the c.d.f x 7→ F (r|X = x) is continuous.

Assumption 5.1 is necessary to get uniform convergence of the RF estimator.

Assumption 5.2. For any l ∈ [k], the variation of the conditional cumulative distribution
function within any cell goes to 0, i.e., ∀x ∈ Rd,∀r ∈ R, supz∈An(x; Θl) |F (r|z)−F (r|x)| a.s−→

n→+∞
0.

Assumption 5.2 allows to control the approximation error of the estimator. If for all y, F (y|.) is
continuous, Assumption 4.2 is satisfied provided that the diameter of the cell goes to zero. Note
that the vanishing of the diameter of the cell is a common condition used to prove the consistency
of general partitioning estimator (see chapter 4 in [Györfi, 2002]). [Scornet, 2015] show that
this is true when the data come from additive regression models [Stone, 1985b], and [Elie-Dit-
Cosaque, 2022] show that it holds for a more general class, such as product functions or sums of
product functions. The result is also valid for all regression functions, with a slightly modified
version of RF, where each child node contains at least a small fraction of the observations in the
parent node, and the probability that each variable j = 1, . . . , p is chosen for splitting is positive
for every node. Under these small modifications, Lemma 2 from [Meinshausen, 2006] gives that
the diameter of each leaf node vanishes. Therefore, we do not need to assume that for all r,
F (r|.) is Lipschitz, as required in LCP [Guan, 2022], which is a much stronger assumption.

Assumption 5.3. Let k and the number of bootstrap observations in a leaf node Nn(An(x; Θl)),
s.t. there exists k = O(nα), with α > 0, and ∀x ∈ Rd, Nn(An(x; Θl)) = Ω1(

√
n ln(n)β), with

β > 1 a.s.

Assumption 5.3 allows us to control the estimation error and means that the cells should contain
a sufficiently large number of points so that averaging among the observations is effective. It
can be enforced by adjusting the hyperparameters of the RF.

Under these assumptions, we prove that the selected α̃(v) when V̂n+1 = v given by the LCP-RF
converges to 1− α, and the resulting PI achieves the target level 1− α.

Theorem 5.4. Suppose that all observations are i.i.d. drawn from the distribution P and let
α̃(v) and ĈV (Xn+1) define as in Theorem 4.2. Under assumptions 5.1-5.3, we have for all ϵ > 0
and any nonatomic points xn+1 of PX ,

lim
n→∞

P
{

V̂n+1 ∈ ĈV (Xn+1) |Xn+1 = xn+1
}

= 1− α and

lim
n→∞

P
{

max
v
|α̃(v)− (1− α)| < ϵ |Xn+1 = xn+1

}
= 1.

1f(n) = Ω(g(n)) ⇐⇒ ∃c > 0, ∃n0 > 0 | ∀n ≥ n0, |f(n)| ≥ c|g(n + 1)|.



The proof of Theorem 5.4 can be found in Appendix (19).

6 Experiments

We evaluate the performance of our proposed methods: LCP-RF (Random Forest Localizer with
marginal and training-conditional calibration), LCP-RF-G (LCP-RF with groupwise calibration)
and QRF-TC (Random Forest Localizer with only training-conditional calibration) against their
competitors SPLIT (split-CP), SLCP and LCP. We used the original implementation of SLCP
and LCP and tuned the kernel widths as described in their respective papers. We test the
methods on simulated data with heterogeneous output and 3 real-world datasets from UCI
[Dua, 2017a]: bike sharing demand (bike, n = 10886, p = 12), California house price (cali,
n = 20640, p = 8), and community crime (commu, n = 1993, p = 128). The datasets are divided
into three sets, namely the training set (40%), calibration set (40%), and the test set (20%). To
ensure that the model’s error is not constant across all observations, we created a hole in the
data by removing all observations from the training set whose output exceeds the 0.7-quantile
of the training outputs. The PI is computed on the test sets at a level of 1− α = 0.9.

We consider two nonconformity scores: mean score V̂ (X, Y ) = |Y − µ̂(X)| where µ̂ is mean esti-
mate, and quantile score V̂ Q(X, Y ) = max

{
q̂α/2(X)− Y, Y − q̂1−α/2(X)

}
where {q̂α/2, q̂1−α/2}

are quantile estimates at level α/2 and 1 − α/2 respectively. We use XGBoost [Chen, 2016]
of scikit-learn [Pedregosa, 2011] with default parameters as the mean estimate µ̂ in our experi-
ments. We leave the analysis of different models and the quantile score for the Appendix (20).
We denote Cm(Xn+1) =

[
µ̂(Xn+1) ± qm(Xn+1)

]
the PI of each method m, and the oracle PI

as C⋆(Xn+1) = [µ̂(Xn+1)± q⋆(Xn+1)] where q⋆(Xn+1) = Q
(
1− α; F

V̂n+1|Xn+1

)
.

(a) sim (lengths) (b) bike (lengths) (c) cali (lengths) (d) commu (lengths)

(e) sim (errn+1) (f) bike (êrrn+1) (g) cali (êrrn+1) (h) commu (êrrn+1)

Figure 6.3: PI lengths and errors of the different methods with the mean score. The training-
conditional coverages are at the top of the figure.

The simulated data (sim) is defined as: X ∈ [0, 1]50, Xi ∼ U([0, 1]) for all i ∈ [50] and Y = X1+
ϵ×X1/(1 + X1) where ϵ ∼ N (0, 1). In Figure 6.3e, we compute the absolute relative distance
between the PI of each method and the oracle PI as errn+1 = |qm(Xn+1)−q⋆(Xn+1)|/q⋆(Xn+1)
showing that our methods are much closer to the oracle PI than its competitors. SLCP and



SPLIT are close, but they are less accurate than LCP. Figure 6.3a shows that most methods
provide training-conditional coverage or empirical coverage over the test points at nearly 90%.
Figure 6.3a also shows that our methods give varied intervals while the others have almost
constant intervals.

The analysis of real-world data is more challenging because we don’t have the oracle PI. To
evaluate the effectiveness of the methods, we compare the length of the PI qm(Xn+1) to the
true error of the model V̂n+1 = V̂ (Xn+1, Yn+1). Indeed, a larger error of the model should result
in a larger PI. Note that if Yn+1|Xn+1 does not vary too much then V̂n+1 ≈ q⋆(Xn+1). We
denote êrrn+1 = |qm(Xn+1) − V̂n+1|/V̂n+1 as the model’s fidelity errors. We also introduce a
new method (SPLIT-G), corresponding to groupwise split-CP using the groups defined by the
RF’s weights.

Figure 6.3 summarizes the results on the 3 real-world datasets. Starting with average coverage
(top of the figure), most methods have empirical coverage at nearly exact nominal levels for all
datasets. Our methods are slightly lower, which could be explained by the sample splitting used
for the PAC interval calibration. Indeed, the bound in Theorem 4.4 depends on the size of the
data and as we split the calibration set in two, we lose a bit in statistical efficiency.

The top figures (6.3b-6.3d) display the distribution of the lengths of the PI, while the four
figures at the bottom (6.3f-6.3h) show the distribution of fidelity errors of the model êrrn+1.
Overall, our methods significantly outperform the others in terms of the model’s uncertainty
fidelity and adaptiveness of lengths. SLCP fails to provide any significant improvement over the
standard split-CP. This could be due to the fact that it learns the localizer on the residuals of
the training set, which may not represent the residuals of the calibration data, thereby leading
to overfitting. While LCP-RF-G and QRF-TC are faster than LCP-RF, their performance are
similar. In these datasets, we suspect that the RF localizer is so accurate that it is difficult
to distinguish between the groupwise LCP-RF and the LCP-RF. However, we observe that by
using the groups defined by the RF with the split-CP (SPLIT-G), we were able to improve the
PI of split-CP. This demonstrates how our methods can improve the performance of any CP
approach by just utilizing the groups established by the RF.

7 Conclusion

In this work, we have significantly enhanced the applicability of the Localized Conformal Predic-
tion framework, which previously only worked on simple models with fewer than five variables, by
adapting it for high-dimensional scenarios, accommodating categorical variables, and providing
a PAC coverage guarantee. Our reweighting strategy based on the Random Forest algorithm can
improve the PI computed using any nonconformity score. This results in more adaptive PI with
marginal, training-conditional, and conditional coverage, making Conformal Predictive Intervals
more similar to those produced by traditional statistics. This may ease their interpretation in
terms of risks and give a clearer relationship between the length of the PI and the uncertainties
of a given model µ̂, thereby allowing for a better understanding of the limitations of a model µ̂.



Chapter 7
Future works

In this chapter, we present two ongoing works. The first explores the application
of conformal prediction to enable models to abstain from making predictions in
situations of high uncertainty. The second also leverages conformal prediction to
generate plausible counterfactual explanations.

Abstract

Contents
1 Prediction with reject option using conformal p-value . . . . . . . . . . . . . . 115
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1 Prediction with reject option using conformal p-value

Machine learning model provides prediction, even when it is likely to be inaccurate. This
behavior should be avoided in many decision support applications, where mistakes can have
severe consequences. In this context, it may be beneficial to allow the model to abstain from
predicting if the model is least confident.

Consider a training set Dm = {(Xi, Yi)}mi=1 with (Xi, Yi) ∈ X × Y drawn exchangeably from
P = PXPY |X , and an algorithm A that gives a predictive model µ̂(·) = A(Dm). We consider
the problem of prediction with reject option where one is allowed to abstain from predicting
if the error of the model is too important for a given observation. In the following discussion,
we consider both regression and classification tasks. We define σ(X, Y ) as the residual of the
model, which is a measure of how closely µ̂(X) aligns with the true output Y . Given a maximum
tolerable residual score, denoted as σ⋆, our objective is to approximate the oracle predictor with
reject option Γ⋆

µ̂
defined as:

Γ⋆
µ̂
(x) =

µ̂(X) if σ(X, Y ) ≤ σ⋆

∅ otherwise.
(7.1)

The primary obstacle is that we need the target variable Y to compute σ(X, Y ). As a re-
sult, we lack the value of σ(X, Y ) for any new observations X or for the test set Dtest =
{(Xm+j , Ym+j)}nj=1. Our goal is to propose an approach to approximate Γ⋆

µ̂
on the test set by

utilizing an estimator σ̂ of σ, while simultaneously ensuring finite-sample guarantees over the
rejection set R = {j ∈ {1, . . . , n} : σ(Xm+j , Ym+j) > σ⋆}.

The starting point of our solution is the interpretation of approximating Γ⋆
µ̂

as a multiple
hypothesis testing problem. Indeed, the prediction with reject option on a given test set
Dtest = {(Xm+j , Ym+j)}nj=1 defined by Equation (7.1) is equivalent to testing for the follow-
ing set of null hypotheses:

H0,j : σ(Xm+j , Ym+j) ≤ σ⋆ for all j ∈ {1, . . . , n}. (7.2)

Our objective now is to determine a valid p-value for each hypothesis and establish a procedure
that maintains control over the False Discovery Rate (FDR) while maximizing statistical power.
Let S ⊆ {1, . . . , n} represent the set of rejected observations from a given procedure, the FDR
is defined as the expected value of the False Discovery Proportion (FDP):

FDR = EP n [FDP], FDP =
∑n

j=1 1{j ∈ S, σ(Xm+j , Ym+j) ≤ σ⋆}
1 ∨ |S| .

The statistical power (Power), on the other hand, represents the number of valid rejections we



have correctly identified, and is defined as:

Power = EP n

[∑n
j=1 1{j ∈ S, σ(Xm+j , Ym+j) > σ⋆}∑n

j=1 1{σ(Xm+j , Ym+j) > σ⋆}

]
.

Despite the lack of knowledge regarding the value of residual σ(Xm+j , Ym+j) on the test set,
we can generate valid p-values for these null hypotheses without any assumptions about the
data distribution or the model µ̂. This can be achieved by using an estimator σ̂ of σ and
leveraging the conformal inference framework. Our proposal is inspired by [Balasubramanian,
2014; Bates, 2021; Bates, 2023]. It involves many-to-one comparisons of the estimated residual
σ̂ of the individual test point against the estimated residuals of a control sample containing
exclusively accepted observations, i.e., satisfying σ(Xi, Yi) ≤ σ⋆. Given a calibration data
Dcal

l = {(Xm+n+k, Ym+n+k) : σ(Xm+n+k, Ym+n+k) ≤ σ⋆, k = 1, . . . , l}, we opt to reject each
test point (Xm+j , Ym+j), j = 1, . . . , n if its estimated residual σ̂(Xm+j) significantly exceeds the
estimated residuals of the calibration data σ̂(Xm+n+k) for k = 1, . . . , l. The rank of σ̂(Xm+j)
among the estimated residuals of the calibration data σ̂(Xm+n+k) for k = 1, . . . , l is used to
generate a valid p-value for each hypothesis H0,j : σ(Xm+j , Ym+j) ≤ σ⋆, j = 1, . . . , n.

In addition, we are interested in ensuring conditional control of the False Discovery Proportion
(FDP) instead of its marginal control, i.e., control of the FDR. The control we currently have
using a method such as Benjamini-Hochberg (BH) [Benjamini, 1995] is FDR = EP l+n [FDP] ≤ α,
where the expectation is taken under the calibration and test sets. Our objective is to develop
a procedure that allows for control conditionally on a specific calibration set. More formally,
we want PAC-type guarantees, i.e., given calibration data Dcal

l , we aim that with probability
1− δ, δ ∈ (0, 1), our procedure will ensure FDP ≤ α.

2 Conformal Protection Layers for Counterfactual Explanations

The main challenge in generating counterfactual explanations is finding plausible modifications
to the original observation. Several techniques attempt to assure this plausibility by integrating
constraint based on outlier scores into the underlying optimization problem. For instance, Lo-
cal Outlier Factor [Kanamori, 2020], Isolation Forest [Parmentier, 2021], and density-weighted
metrics [Poyiadzi, 2019] have been employed to generate realistic samples. However, these tech-
niques don’t necessarily ensure that the resulting counterfactual examples are actually inliers.
Therefore, we are presently exploring the use of conformal prediction as a means to statistically
validate that the generated observations are not outliers. This approach mirrors the one we de-
veloped above; it involves comparing the outlier scores of the newly generated observations with
the outlier scores of the original observations. If these scores significantly deviate from the out-
lier scores of the inlier observations, we reject the observation. Thanks to the exchangeability
or approximate exchangeability [Tibshirani, 2019] property of the observations, we can effec-
tively control the Type I error. This methodology was recently employed for outlier detection
in [Bates, 2023; Jin, 2022; Marandon, 2022].



Conclusion

The first contribution of this thesis is providing a detailed and theoretical analysis demonstrating
the limitations of the most used method for analyzing predictions of machine learning models,
namely Shapley Values. In Chapter 2, we show that the TreeSHAP algorithm, used to compute
Shapley Values for tree-based models, is biased when variables are dependent. We also show that
the commonly used approach to compute Shapley Values in the presence of categorical variables
is incorrect. As a consequence, we propose a better estimation of Shapley values and highlight
how to compute these values in the presence of categorical variables. Chapter 3 extends this
analysis by demonstrating that, in addition to these estimation problems, Local Shapley Values
(SHAP) and the LIME method are not reliable in detecting local important variables.

Subsequently, our goal is to propose better alternatives for local explanations of models. Beyond
capturing the local behavior of the model accurately, we aim for methods that satisfy certain
desirable properties. In all the methods we propose, we strive to be model-free. This means
that we do not need access to the prediction function f(·), which is particularly useful when the
model is private or unavailable, or when the cost of a prediction is high. Thus, we can explain
the observed values {(Xi, f(Xi))}ni=1 without making new predictions using f(·) or directly
explaining the observed data outputs {(Xi, Yi)}ni=1. Additionally, our methods do not require
generating new observations, avoiding the problem of extrapolation found in most approaches
that evaluate the model on impossible observations that do not respect the data distribution,
thereby compromising reliability. Our approaches solely utilize the observed data. Furthermore,
the quantities sought by the proposed methods are clearly specified and are accompanied by
consistency results.

In this thesis, we present different forms of explanations, such as importance measures, R-LOCO
(Chapter 3), LXI (Chapter 4), selection of important local variables, Sufficient Explanations
(Chapter 4), Decision Rules (Chapter 4), Counterfactual actions (Chapter 5), and Counterfactual
Rules (Chapter 5). These diverse explanations address a variety of questions and allow for
personalizing the discourse based on the intended recipient of the explanation. The various
stakeholders in AI, such as the client, the auditor, the data scientist, and the business, have
different needs, and certain explanations may resonate more with each of them. For example,
for a client wanting to understand why his credit application was not accepted, counterfactual
actions would be more relevant. For an auditor interested in determining whether the model
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uses protected attributes to make decisions, the selection of local variables, decision rules or
counterfactual rules provide a more explicit summary of the model’s behavior. As our approach
does not require new predictions, and we can directly use historical data to generate explanations,
a data scientist might utilize importance measures directly on residuals Yi − f(Xi) to attempt
model improvement.

In the second part of the thesis, we focus on constructing predictive intervals, which enable
handling the uncertainty associated with predictions. This tool proves to be powerful for decision
support or the automation of machine learning models. We specifically investigate conformal
prediction, which provides non-asymptotic coverage guarantees with minimal assumptions, i.e.,
without assuming anything about the model and assuming data exchangeability. We identify a
limitation in the construction of these predictive intervals, as they are inherently non-adaptive
to the considered observation. Although it is possible to obtain adaptative intervals by adjusting
the nonconformity score, the calculated correction to calibrate these intervals does not depend
on the considered observation and is constant. Our solution is to learn the nonconformity score
using a Random Forest, which introduces weighting on the calibration set and allows for an
adaptive correction. While the often-highlighted guarantee in the conformal prediction literature
is the marginal coverage rate, in practice, it is useful to ensure the coverage rate conditionally
on a given calibration set. Thus, we propose a method to ensure that our approach satisfies this
conditional coverage property with respect to the given calibration set. Finally, our approach
is general and improves the predictive intervals returned by conformal prediction, regardless of
the nonconformity score used.

In our future perspectives, we plan to merge the two aspects of this thesis. Specifically, we aim
to use conformal prediction to provide non-asymptotic guarantees regarding the explanations
we propose. Additionally, we intend to utilize explanation techniques to discern the variables
that influence the predictive intervals. We have started exploration of these concepts in Chapter
7. There, we present an approach that employs conformal prediction as a filter to identify
counterfactual examples that are implausible with statistical guarantees. Moreover, we propose
a method for automating the handling of uncertainty associated with predictions, known as
prediction with rejection. This approach allows the model to abstain from making a prediction if
the uncertainty associated with that prediction exceeds a threshold defined by the user, utilizing
conformal prediction to provide statistical guarantees.

Overall, this thesis sheds light on the limitations of existing methods, proposes novel and various
techniques for local explanations with theoretical guarantees, and paves the way for future
research to integrate explanation and uncertainty management in machine learning models.



Bibliographie

[Aas, 2020] Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predictions when features
are dependent: More accurate approximations to Shapley values. 2020. arXiv: 1903.10464 [stat.ML] (cit. on
pp. 23, 42, 43).

[Aas, 2021] Kjersti Aas, Thomas Nagler, Martin Jullum, and Anders Løland. “Explaining predictive models
using Shapley values and non-parametric vine copulas”. arXiv preprint arXiv:2102.06416 (2021) (cit. on pp. 23,
42, 43).

[Abo-Alsabeh, 2023] Rewayda Razaq Abo-Alsabeh, Hajem Ati Daham, and Abdellah Salhi. “On the maximum
empty hyper-rectangle problem”. Journal of Algorithms & Computational Technology 17 (2023), p. 17483026221151197
(cit. on p. 77).

[ACPR, 2022] Banque de France ACPR. Techsprint sur l’explicabilité. 2022 (cit. on p. 10).
[Adadi, 2018] Amina Adadi and Mohammed Berrada. “Peeking inside the black-box: a survey on explainable

artificial intelligence (XAI)”. IEEE access 6 (2018), pp. 52138–52160 (cit. on p. 5).
[Agarwal, 2022] Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, Chandan Singh, and Bin Yu. “Hierarchical

Shrinkage: Improving the accuracy and interpretability of tree-based models.” Proceedings of the 39th Inter-
national Conference on Machine Learning. Ed. by Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022,
pp. 111–135 (cit. on p. 19).

[Aggarwal, 1991] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. “Finding k points with mini-
mum diameter and related problems”. Journal of Algorithms 12.1 (1991), pp. 38–56 (cit. on p. 77).

[Aggarwal, 1987] Alok Aggarwal and Subhash Suri. “Fast algorithms for computing the largest empty rectangle”.
Proceedings of the third annual symposium on Computational geometry. 1987, pp. 278–290 (cit. on p. 77).

[Alvarez-Melis, 2018] David Alvarez-Melis and Tommi S Jaakkola. “On the robustness of interpretability meth-
ods”. arXiv preprint arXiv:1806.08049 (2018) (cit. on pp. 15, 24, 43, 57).

[Amoukou, 2021a] Salim I Amoukou and Nicolas JB Brunel. “Consistent Sufficient Explanations and Minimal
Local Rules for explaining regression and classification models”. arXiv preprint arXiv:2111.04658 (2021) (cit.
on pp. 8, 87, 90–93).

[Amoukou, 2022a] Salim I Amoukou and Nicolas JB Brunel. “Rethinking Counterfactual Explanations as Local
and Regional Counterfactual Policies”. arXiv preprint arXiv:2209.14568 (2022) (cit. on p. 8).

[Amoukou, 2023] Salim I Amoukou and Nicolas JB Brunel. “Adaptive Conformal Prediction by Reweighting
Nonconformity Score”. arXiv preprint arXiv:2303.12695 (2023) (cit. on pp. 8, 35).

[Amoukou, 2021b] Salim I Amoukou, Nicolas JB Brunel, and Tangi Salaün. “Accurate and robust Shapley
Values for explaining predictions and focusing on local important variables”. arXiv preprint arXiv:2106.03820
(2021) (cit. on pp. 23, 79).

[Amoukou, 2021c] Salim I Amoukou, Nicolas JB Brunel, and Tangi Salaün. “The shapley value of coalition of
variables provides better explanations”. arXiv preprint arXiv:2103.13342 (2021) (cit. on p. 47).

[Amoukou, 2022b] Salim I. Amoukou, Tangi Salaün, and Nicolas Brunel. “Accurate Shapley Values for explain-
ing tree-based models”. Proceedings of The 25th International Conference on Artificial Intelligence and Statis-
tics. Ed. by Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera. Vol. 151. Proceedings of Machine
Learning Research. PMLR, 2022, pp. 2448–2465 (cit. on p. 8).

119

https://arxiv.org/abs/1903.10464


[Angelopoulos, 2020] Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. “Uncer-
tainty sets for image classifiers using conformal prediction”. arXiv preprint arXiv:2009.14193 (2020) (cit. on
p. 33).

[Angelopoulos, 2021a] Anastasios N Angelopoulos and Stephen Bates. “A gentle introduction to conformal
prediction and distribution-free uncertainty quantification”. arXiv preprint arXiv:2107.07511 (2021) (cit. on
pp. 28, 33).

[Angelopoulos, 2021b] Anastasios N Angelopoulos, Stephen Bates, Emmanuel J Candès, Michael I Jordan,
and Lihua Lei. “Learn then test: Calibrating predictive algorithms to achieve risk control”. arXiv preprint
arXiv:2110.01052 (2021) (cit. on p. 35).

[Apley, 2020] Daniel W Apley and Jingyu Zhu. “Visualizing the effects of predictor variables in black box
supervised learning models”. Journal of the Royal Statistical Society Series B: Statistical Methodology 82.4
(2020), pp. 1059–1086 (cit. on pp. 20, 21).

[Arenal-Gutiérrez, 1996] Eusebio Arenal-Gutiérrez, Carlos Matrán, and Juan Antonio Cuesta-Albertos. “Uncon-
ditional Glivenko-Cantelli-type theorems and weak laws of large numbers for bootstrap”. Statistics & Probability
Letters 26 (1996), pp. 365–375 (cit. on p. 152).

[Athey, 2019] Susan Athey, Julie Tibshirani, and Stefan Wager. “Generalized random forests” (2019) (cit. on
p. 64).

[Bach, 2008] Francis R Bach. “Bolasso: model consistent lasso estimation through the bootstrap”. Proceedings
of the 25th international conference on Machine learning. 2008, pp. 33–40 (cit. on p. 16).

[Backer, 2009] Jonathan Backer and J Mark Keil. “The Bichromatic Rectangle Problem in High Dimensions.”
CCCG. 2009, pp. 157–160 (cit. on p. 77).

[Balasubramanian, 2014] Vineeth Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk. Conformal prediction
for reliable machine learning: theory, adaptations and applications. Newnes, 2014 (cit. on p. 116).

[Barber, 2020] Rina Foygel Barber. “Is distribution-free inference possible for binary regression?” Electronic
Journal of Statistics 14.2 (2020), pp. 3487–3524 (cit. on p. 27).

[Barber, 2019a] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. “Predictive
inference with the jackknife+”. arXiv preprint arXiv:1905.02928 (2019) (cit. on p. 33).

[Barber, 2021] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. “Predictive
inference with the jackknife+”. The Annals of Statistics 49.1 (2021), pp. 486–507 (cit. on pp. 28, 34, 100, 102).

[Barber, 2022] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. “Conformal
prediction beyond exchangeability”. arXiv preprint arXiv:2202.13415 (2022) (cit. on pp. 28, 35, 106).

[Barber, 2019b] Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. “The
limits of distribution-free conditional predictive inference”. Information and Inference 10 (2 2019), pp. 455–482
(cit. on pp. 34, 35, 102).

[Barocas, 2020] Solon Barocas, Andrew D Selbst, and Manish Raghavan. “The hidden assumptions behind coun-
terfactual explanations and principal reasons”. Proceedings of the 2020 conference on fairness, accountability,
and transparency. 2020, pp. 80–89 (cit. on p. 26).

[Basu, 2018] Sumanta Basu, Karl Kumbier, James B Brown, and Bin Yu. “Iterative random forests to discover
predictive and stable high-order interactions”. Proceedings of the National Academy of Sciences 115.8 (2018),
pp. 1943–1948 (cit. on pp. 76, 94).

[Bates, 2021] Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan. “Distribution-
free, risk-controlling prediction sets”. Journal of the ACM (JACM) 68.6 (2021), pp. 1–34 (cit. on pp. 35, 116).

[Bates, 2023] Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. “Testing for
outliers with conformal p-values”. The Annals of Statistics 51.1 (2023), pp. 149–178 (cit. on pp. 13, 35, 116).

[Beery, 2018] Sara Beery, Grant Van Horn, and Pietro Perona. “Recognition in terra incognita”. Proceedings of
the European conference on computer vision (ECCV). 2018, pp. 456–473 (cit. on p. 4).

[Bellucci, 2021] Matthieu Bellucci, Nicolas Delestre, Nicolas Malandain, and Cecilia Zanni-Merk. “Towards a
terminology for a fully contextualized XAI”. Procedia Computer Science 192 (2021), pp. 241–250 (cit. on p. 5).

[Bénard, 2021a] Clément Bénard. “Forêts aléatoires et interprétabilité des algorithmes d’apprentissage”. PhD
thesis. Sorbonne université, 2021 (cit. on p. 15).

[Bénard, 2021b] Clément Bénard, Gérard Biau, Sébastien Da Veiga, and Erwan Scornet. “SHAFF: Fast and
consistent SHApley eFfect estimates via random Forests”. arXiv preprint arXiv:2105.11724 (2021) (cit. on
pp. 23, 47, 63, 72, 74, 76, 91, 92, 94).



[Bénard, 2021c] Clément Bénard, Gérard Biau, Sébastien Da Veiga, and Erwan Scornet. “Sirus: Stable and
interpretable rule set for classification”. Electronic Journal of Statistics 15.1 (2021), pp. 427–505 (cit. on pp. 19,
140).

[Bénard, 2021d] Clément Bénard, Gérard Biau, Sébastien Veiga, and Erwan Scornet. “Interpretable random
forests via rule extraction”. International Conference on Artificial Intelligence and Statistics. PMLR. 2021,
pp. 937–945 (cit. on pp. 43, 76, 92).

[Bénard, 2021e] Clément Bénard, Sébastien Da Veiga, and Erwan Scornet. “MDA for random forests: inconsis-
tency, and a practical solution via the Sobol-MDA”. arXiv preprint arXiv:2102.13347 (2021) (cit. on pp. 47,
72, 74, 76, 92).

[Benjamini, 1995] Yoav Benjamini and Yosef Hochberg. “Controlling the false discovery rate: a practical and
powerful approach to multiple testing”. Journal of the Royal statistical society: series B (Methodological) 57.1
(1995), pp. 289–300 (cit. on p. 116).

[Bian, 2022] Michael Bian and Rina Foygel Barber. “Training-conditional coverage for distribution-free predic-
tive inference”. arXiv preprint arXiv:2205.03647 (2022) (cit. on pp. 34, 102).

[Biau, 2010] Gérard Biau and Luc Devroye. “On the layered nearest neighbour estimate, the bagged nearest
neighbour estimate and the random forest method in regression and classification”. Journal of Multivariate
Analysis 101.10 (2010), pp. 2499–2518 (cit. on pp. 73, 92, 105).

[Black, 2020] Emily Black, Samuel Yeom, and Matt Fredrikson. “Fliptest: fairness testing via optimal transport”.
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. 2020, pp. 111–121 (cit. on
pp. 26, 89).

[Bloniarz, 2016] Adam Bloniarz, Ameet Talwalkar, Bin Yu, and Christopher Wu. “Supervised Neighborhoods
for Distributed Nonparametric Regression”. Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics. Ed. by Arthur Gretton and Christian C. Robert. Vol. 51. Proceedings of Machine
Learning Research. Cadiz, Spain: PMLR, 2016, pp. 1450–1459 (cit. on p. 19).

[Bordt, 2023] Sebastian Bordt and Ulrike von Luxburg. “From Shapley values to generalized additive models
and back”. International Conference on Artificial Intelligence and Statistics. PMLR. 2023, pp. 709–745 (cit. on
p. 52).

[Bousquet, 2002] Olivier Bousquet and André Elisseeff. “Stability and generalization”. The Journal of Machine
Learning Research 2 (2002), pp. 499–526 (cit. on p. 15).

[Breiman, 1996] L Breiman. “Bagging predictors’, Machine Learning24, 123–140”. Google Scholar Google Scholar
Digital Library Digital Library (1996) (cit. on p. 105).

[Breiman, 1976] L. Breiman and William S. Meisel. “General Estimates of the Intrinsic Variability of Data in
Nonlinear Regression Models”. Journal of the American Statistical Association 71 (1976), pp. 301–307 (cit. on
p. 19).

[Breiman, 2000] Leo Breiman. Some infinity theory for predictor ensembles. Tech. rep. Citeseer, 2000 (cit. on
pp. 73, 92).

[Breiman, 2001] Leo Breiman. “Random forests”. Machine learning 45.1 (2001), pp. 5–32 (cit. on pp. 6, 10, 11,
37, 52).

[Breiman, 1984] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. “Classification and re-
gression trees. Wadsworth Int”. Group 37.15 (1984), pp. 237–251 (cit. on pp. 17, 73, 91, 103, 105).

[Buja, 1989] Andreas Buja, Trevor Hastie, and Robert Tibshirani. “Linear smoothers and additive models”. The
Annals of Statistics (1989), pp. 453–510 (cit. on p. 17).

[Candes, 2023] Emmanuel Candes, Lihua Lei, and Zhimei Ren. “Conformalized survival analysis”. Journal of
the Royal Statistical Society Series B: Statistical Methodology 85.1 (2023), pp. 24–45 (cit. on p. 35).

[Carreira-Perpiñán, 2021] Miguel Á Carreira-Perpiñán and Suryabhan Singh Hada. “Counterfactual explana-
tions for oblique decision trees: Exact, efficient algorithms”. Proceedings of the AAAI conference on artificial
intelligence. Vol. 35. 8. 2021, pp. 6903–6911 (cit. on p. 98).

[CDC, 1999-2022] CDC. National Health and Nutrition Examination Survey. 1999-2022 (cit. on pp. 82, 163).
[Chan, 2023] Timothy M Chan. “Faster algorithms for largest empty rectangles and boxes”. Discrete & Com-

putational Geometry (2023), pp. 1–21 (cit. on p. 77).
[Chan, 2021] Timothy M Chan and Sariel Har-Peled. “Smallest k-enclosing rectangle revisited”. Discrete &

Computational Geometry 66.2 (2021), pp. 769–791 (cit. on p. 77).



[Chastaing, 2012] Gaëlle Chastaing, Fabrice Gamboa, and Clémentine Prieur. “Generalized hoeffding-sobol de-
composition for dependent variables-application to sensitivity analysis” (2012) (cit. on pp. 22, 53).

[Chen, 2020] Hugh Chen, Joseph D Janizek, Scott Lundberg, and Su-In Lee. “True to the Model or True to the
Data?” arXiv preprint arXiv:2006.16234 (2020) (cit. on pp. 22, 37, 53).

[Chen, 2018] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. “Learning to Explain: An
Information-Theoretic Perspective on Model Interpretation”. Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by Jennifer
G. Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 882–891
(cit. on p. 69).

[Chen, 2022] Kuan-Lin Chen, Harinath Garudadri, and Bhaskar D Rao. “Improved Bounds on Neural Com-
plexity for Representing Piecewise Linear Functions”. arXiv preprint arXiv:2210.07236 (2022) (cit. on pp. 54,
55).

[Chen, 2012] S. Chen, Arthur Choi, and Adnan Darwiche. “The Same-Decision Probability: A New Tool for
Decision Making”. 2012 (cit. on pp. 70, 86).

[Chen, 2013] Suming Chen, Arthur Choi, and Adnan Darwiche. “An Exact Algorithm for Computing the Same-
Decision Probability”. IJCAI ’13. Beijing, China: AAAI Press, 2013, pp. 2525–2531 (cit. on p. 72).

[Chen, 2016] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. 2016, pp. 785–794 (cit. on
pp. 10, 112).

[Chernozhukov, 2010] Victor Chernozhukov, Iván Fernández-Val, and Alfred Galichon. “Quantile and probabil-
ity curves without crossing”. Econometrica 78.3 (2010), pp. 1093–1125 (cit. on p. 175).

[Choi, 2020] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying frame-
work for tractable probabilistic models. Tech. rep. Technical report, 2020 (cit. on p. 72).

[Chou, 2022] Yu-Liang Chou, Catarina Moreira, Peter Bruza, Chun Ouyang, and Joaquim Jorge. “Counterfac-
tuals and causability in explainable artificial intelligence: Theory, algorithms, and applications”. Information
Fusion 81 (2022), pp. 59–83 (cit. on p. 85).

[Chua, 1988] Leon O Chua and A-C Deng. “Canonical piecewise-linear representation”. IEEE Transactions on
Circuits and Systems 35.1 (1988), pp. 101–111 (cit. on p. 54).

[Cohen, 1995] William W Cohen. “Fast effective rule induction”. Machine learning proceedings 1995. Elsevier,
1995, pp. 115–123 (cit. on p. 17).

[Cohen, 1999] William W Cohen and Yoram Singer. “A simple, fast, and effective rule learner”. AAAI/IAAI
99.335-342 (1999), p. 3 (cit. on p. 18).

[Corbett-Davies, 2018] Sam Corbett-Davies and Sharad Goel. “The Measure and Mismeasure of Fairness: A
Critical Review of Fair Machine Learning”. ArXiv abs/1808.00023 (2018) (cit. on p. 4).

[Covert, 2020a] Ian Covert and Su-In Lee. “Improving KernelSHAP: Practical Shapley Value Estimation via
Linear Regression”. CoRR abs/2012.01536 (2020). arXiv: 2012.01536 (cit. on p. 42).

[Covert, 2020b] Ian Covert, Scott Lundberg, and Su-In Lee. “Explaining by Removing: A Unified Framework
for Model Explanation”. arXiv preprint arXiv:2011.14878 (2020) (cit. on p. 37).

[Covert, 2020c] Ian Covert, Scott Lundberg, and Su-In Lee. “Understanding Global Feature Contributions
Through Additive Importance Measures”. CoRR abs/2004.00668 (2020). arXiv: 2004.00668 (cit. on pp. 23,
39, 52).

[Covert, 2020d] Ian Covert, Scott M Lundberg, and Su-In Lee. “Understanding global feature contributions with
additive importance measures”. Advances in Neural Information Processing Systems 33 (2020), pp. 17212–17223
(cit. on p. 22).

[Covert, 2021] Ian C Covert, Scott Lundberg, and Su-In Lee. “Explaining by removing: A unified framework for
model explanation”. The Journal of Machine Learning Research 22.1 (2021), pp. 9477–9566 (cit. on p. 6).

[Da Veiga, 2021] Sébastien Da Veiga, Fabrice Gamboa, Bertrand Iooss, and Clémentine Prieur. Basics and
trends in sensitivity analysis: theory and practice in R. SIAM, 2021 (cit. on p. 5).

[Darwiche, 2020] Adnan Darwiche and Auguste Hirth. “On the reasons behind decisions”. arXiv preprint arXiv:2002.09284
(2020) (cit. on pp. 68–70).

[Dastin, 2018] Jeffrey Dastin. “Amazon scraps secret AI recruiting tool that showed bias against women”. Ethics
of data and analytics. Auerbach Publications, 2018, pp. 296–299 (cit. on p. 1).

https://arxiv.org/abs/2012.01536
https://arxiv.org/abs/2004.00668


[Datta, 1995] A. Datta, H.P. Lenhof, C. Schwarz, and M. Smid. “Static and Dynamic Algorithms for k-Point
Clustering Problems”. Journal of Algorithms 19.3 (1995), pp. 474–503 (cit. on p. 77).

[Datta, 2000] Amitava Datta and Subbiah Soundaralakshmi. “An efficient algorithm for computing the maxi-
mum empty rectangle in three dimensions”. Information Sciences 128.1-2 (2000), pp. 43–65 (cit. on p. 77).

[Dawid, 1982] A Philip Dawid. “The well-calibrated Bayesian”. Journal of the American Statistical Association
77.379 (1982), pp. 605–610 (cit. on p. 7).

[De Lara, 2021] Lucas De Lara, Alberto González-Sanz, Nicholas Asher, and Jean-Michel Loubes. “Transport-
based counterfactual models”. arXiv preprint arXiv:2108.13025 (2021) (cit. on pp. 26, 89).

[DeGrave, 2021] Alex J DeGrave, Joseph D Janizek, and Su-In Lee. “AI for radiographic COVID-19 detection
selects shortcuts over signal”. Nature Machine Intelligence 3.7 (2021), pp. 610–619 (cit. on p. 4).

[Delvenne, 2010] J-C Delvenne, Sophia N Yaliraki, and Mauricio Barahona. “Stability of graph communities
across time scales”. Proceedings of the national academy of sciences 107.29 (2010), pp. 12755–12760 (cit. on
p. 110).

[Deng, 2009] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A large-scale
hierarchical image database”. 2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255 (cit. on p. 33).

[Dhurandhar, 2018] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan
Shanmugam, et al. “Explanations based on the missing: Towards contrastive explanations with pertinent neg-
atives”. Advances in neural information processing systems 31 (2018) (cit. on p. 69).

[Doshi-Velez, 2017] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable machine
learning”. arXiv preprint arXiv:1702.08608 (2017) (cit. on p. 5).

[Du, 2021] Qiming Du, Gérard Biau, François Petit, and Raphaël Porcher. “Wasserstein Random Forests and
Applications in Heterogeneous Treatment Effects”. International Conference on Artificial Intelligence and
Statistics. PMLR. 2021, pp. 1729–1737 (cit. on pp. 73, 92, 105).

[Dua, 2017a] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017 (cit. on pp. 49, 57, 97, 112,
140, 160, 175).

[Dua, 2017b] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017 (cit. on p. 140).
[Dumitrescu, 2013] Adrian Dumitrescu and Minghui Jiang. “On the largest empty axis-parallel box amidst n

points”. Algorithmica 66.2 (2013), pp. 225–248 (cit. on p. 77).
[EBA, 2020] EBA. Guidelines on Loan Origination and Monitoring. 2020 (cit. on p. 3).
[Eckstein, 2002] Jonathan Eckstein, Peter L Hammer, Ying Liu, Mikhail Nediak, and Bruno Simeone. “The

maximum box problem and its application to data analysis”. Computational Optimization and Applications
23.3 (2002), pp. 285–298 (cit. on p. 77).

[Efron, 1981] Bradley Efron and Charles Stein. “The jackknife estimate of variance”. The Annals of Statistics
(1981), pp. 586–596 (cit. on p. 53).

[Elie-Dit-Cosaque, 2022] Kevin Elie-Dit-Cosaque and Véronique Maume-Deschamps. “Random forest estimation
of conditional distribution functions and conditional quantiles”. Electronic Journal of Statistics 16.2 (2022),
pp. 6553–6583 (cit. on pp. 45, 74, 75, 111, 145, 146, 148, 168).

[Eppstein, 1994] David Eppstein and Jeff Erickson. “Iterated nearest neighbors and finding minimal polytopes”.
Discrete & Computational Geometry 11.1 (1994), pp. 321–350 (cit. on p. 77).

[Feldman, 2005] Barry E Feldman. “Relative importance and value”. Available at SSRN 2255827 (2005) (cit. on
pp. 22, 54).

[FICO, 2018] FICO. FICO. Explainable machine learning challenge. 2018 (cit. on p. 163).
[Flaxman, 2016] Seth Flaxman, Dino Sejdinovic, John P Cunningham, and Sarah Filippi. “Bayesian learning of

kernel embeddings”. arXiv preprint arXiv:1603.02160 (2016) (cit. on p. 57).
[Fraser, 2011] Donald AS Fraser. “Is Bayes posterior just quick and dirty confidence?” (2011) (cit. on p. 7).
[Frey, 2007] Brendan J Frey and Delbert Dueck. “Clustering by passing messages between data points”. science

315.5814 (2007), pp. 972–976 (cit. on p. 61).
[Friedberg, 2020] Rina Friedberg, Julie Tibshirani, Susan Athey, and Stefan Wager. “Local linear forests”. Jour-

nal of Computational and Graphical Statistics 30.2 (2020), pp. 503–517 (cit. on pp. 19, 64).
[Friedman, 2001a] Jerome H Friedman. “Greedy function approximation: a gradient boosting machine”. Annals

of statistics (2001), pp. 1189–1232 (cit. on p. 20).



[Friedman, 2008] Jerome H Friedman and Bogdan E Popescu. “Predictive learning via rule ensembles”. The
annals of applied statistics (2008), pp. 916–954 (cit. on p. 18).

[Friedman, 2001b] Jerome H. Friedman. “Greedy function approximation: A gradient boosting machine.” Ann.
Statist. 29.5 (2001), pp. 1189–1232 (cit. on p. 37).

[Frye, 2020] Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and Ilya
Feige. “Shapley explainability on the data manifold”. arXiv preprint arXiv:2006.01272 (2020) (cit. on p. 37).

[Fukumizu, 2009] Kenji Fukumizu, Arthur Gretton, Gert Lanckriet, Bernhard Schölkopf, and Bharath K Sripe-
rumbudur. “Kernel choice and classifiability for RKHS embeddings of probability distributions”. Advances in
neural information processing systems 22 (2009) (cit. on p. 57).

[Fürnkranz, 2015] Johannes Fürnkranz and Tomáš Kliegr. “A brief overview of rule learning”. Rule Technologies:
Foundations, Tools, and Applications: 9th International Symposium, RuleML 2015, Berlin, Germany, August
2-5, 2015, Proceedings 9. Springer. 2015, pp. 54–69 (cit. on p. 18).

[Gammerman, 1998] A. Gammerman, V. Vovk, and V. Vapnik. “Learning by Transduction”. Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence. UAI’98. Madison, Wisconsin: Morgan Kauf-
mann Publishers Inc., 1998, pp. 148–155 (cit. on p. 28).

[Gan, 2022] Luqin Gan, Lili Zheng, and Genevera I Allen. “Inference for Interpretable Machine Learning: Fast,
Model-Agnostic Confidence Intervals for Feature Importance”. arXiv preprint arXiv:2206.02088 (2022) (cit. on
p. 52).

[Garreau, 2017] Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. “Large sample analysis of
the median heuristic”. arXiv preprint arXiv:1707.07269 (2017) (cit. on p. 57).

[Garreau, 2020] Damien Garreau and Ulrike Luxburg. “Explaining the explainer: A first theoretical analysis of
LIME”. International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 1287–1296 (cit. on
pp. 23, 52).

[Geurts, 2006] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized trees”. Machine
learning 63 (2006), pp. 3–42 (cit. on pp. 73, 92).

[Ghalebikesabi, 2021] Sahra Ghalebikesabi, Lucile Ter-Minassian, Karla Diaz-Ordaz, and Chris Holmes. “On
Locality of Local Explanation Models”. arXiv preprint arXiv:2106.14648 (2021) (cit. on pp. 68, 79).

[Gibbs, 2021] Isaac Gibbs and Emmanuel Candes. “Adaptive conformal inference under distribution shift”.
Advances in Neural Information Processing Systems 34 (2021), pp. 1660–1672 (cit. on pp. 28, 35).

[Gibbs, 2023] Isaac Gibbs, John J Cherian, and Emmanuel J Candès. “Conformal Prediction With Conditional
Guarantees”. arXiv preprint arXiv:2305.12616 (2023) (cit. on p. 35).

[Goehry, 2020] Benjamin Goehry. “Random forests for time-dependent processes”. ESAIM: Probability and
Statistics 24 (2020), pp. 801–826 (cit. on pp. 74, 168).

[Goldstein, 2015] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. “Peeking inside the black
box: Visualizing statistical learning with plots of individual conditional expectation”. Journal of Computational
and Graphical Statistics 24.1 (2015), pp. 44–65 (cit. on p. 37).

[Goodfellow, 2014] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing
adversarial examples”. arXiv preprint arXiv:1412.6572 (2014) (cit. on p. 24).

[Goodman, 2017] Bryce Goodman and Seth Flaxman. “European Union regulations on algorithmic decision-
making and a “right to explanation””. AI magazine 38.3 (2017), pp. 50–57 (cit. on p. 3).

[Gosiewska, 2019] Alicja Gosiewska and P. Biecek. “Do Not Trust Additive Explanations”. arXiv: Learning
(2019) (cit. on p. 68).

[Gou, 2021] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. “Knowledge distillation: A
survey”. International Journal of Computer Vision 129 (2021), pp. 1789–1819 (cit. on p. 15).

[Grathwohl, 2020] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. “Your classifier is secretly an energy based model and you should treat it like
one”. International Conference on Learning Representations. 2020 (cit. on p. 95).

[Grinsztajn, 2022] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. “Why do tree-based models still
outperform deep learning on typical tabular data?” Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track. 2022 (cit. on pp. 10, 92, 98, 103).

[Grömping, 2007] Ulrike Grömping. “Estimators of relative importance in linear regression based on variance
decomposition”. The American Statistician 61.2 (2007), pp. 139–147 (cit. on p. 54).



[Grömping, 2020] Ulrike Grömping. “Model-agnostic effects plots for interpreting machine learning models”.
Reports in Mathematics, Physics and Chemistry, Department II, Beuth University of Applied Sciences Berlin
Report 1 (2020), p. 2020 (cit. on p. 21).

[Grunewalder, 2018] Steffen Grunewalder. “Plug-in estimators for conditional expectations and probabilities”.
International Conference on Artificial Intelligence and Statistics. PMLR. 2018, pp. 1513–1521 (cit. on p. 45).

[Guan, 2022] Leying Guan. “Localized conformal prediction: a generalized inference framework for conformal
prediction”. Biometrika (2022). eprint: https://academic.oup.com/biomet/advance-article-pdf/doi/10.
1093/biomet/asac040/45911782/asac040.pdf (cit. on pp. 35, 102, 106–108, 111, 166, 167, 171).

[Gui, 2023] Yu Gui, Rina Foygel Barber, and Cong Ma. “Conformalized matrix completion”. arXiv preprint
arXiv:2305.10637 (2023) (cit. on p. 35).

[Guilmeau, 2021] Thomas Guilmeau, Emilie Chouzenoux, and Víctor Elvira. “Simulated Annealing: a Review
and a New Scheme”. 2021, pp. 101–105 (cit. on p. 95).

[Györfi, 2002] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A distribution-free theory of
nonparametric regression. Vol. 1. Springer, 2002 (cit. on pp. 45, 75, 111, 145).

[Hama, 2022] Naofumi Hama, Masayoshi Mase, and Art B Owen. “Model free Shapley values for high dimen-
sional data”. arXiv preprint arXiv:2211.08414 (2022) (cit. on p. 58).

[Han, 2022] Xing Han, Ziyang Tang, Joydeep Ghosh, and Qiang Liu. “Split Localized Conformal Prediction”.
arXiv preprint arXiv:2206.13092 (2022) (cit. on p. 102).

[Hanin, 2019a] Boris Hanin and David Rolnick. “Complexity of linear regions in deep networks”. International
Conference on Machine Learning. PMLR. 2019, pp. 2596–2604 (cit. on p. 55).

[Hanin, 2019b] Boris Hanin and David Rolnick. “Deep relu networks have surprisingly few activation patterns”.
Advances in neural information processing systems 32 (2019) (cit. on p. 55).

[Hastie, 1987] Trevor Hastie and Robert Tibshirani. “Generalized additive models: some applications”. Journal
of the American Statistical Association 82.398 (1987), pp. 371–386 (cit. on p. 16).

[Hastie, 2015] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the
lasso and generalizations. CRC press, 2015 (cit. on p. 16).

[He, 1997] Xuming He. “Quantile curves without crossing”. The American Statistician 51.2 (1997), pp. 186–192
(cit. on p. 175).

[Hebiri, 2012] Mohamed Hebiri and Johannes Lederer. “How correlations influence lasso prediction”. IEEE
Transactions on Information Theory 59.3 (2012), pp. 1846–1854 (cit. on p. 16).

[Herin, 2022] Margot Herin, Marouane Il Idrissi, Vincent Chabridon, and Bertrand Iooss. “Proportional marginal
effects for global sensitivity analysis”. arXiv preprint arXiv:2210.13065 (2022) (cit. on p. 22).

[Heskes, 2020] Tom Heskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. “Causal Shapley Values: Exploit-
ing Causal Knowledge to Explain Individual Predictions of Complex Models”. Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin. 2020 (cit. on pp. 22, 37, 53).

[Hinton, 2015] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural network”.
arXiv preprint arXiv:1503.02531 (2015) (cit. on p. 15).

[Hoeffding, 1948] Wassily Hoeffding. “A Class of Statistics with Asymptotically Normal Distribution”. Annals
of Mathematical Statistics 19 (1948), pp. 308–334 (cit. on pp. 22, 53).

[Hooker, 2007] Giles Hooker. “Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of
Dependent Variables”. Journal of Computational and Graphical Statistics 16 (2007), pp. 709–732 (cit. on p. 53).

[Hooker, 2019] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. “A benchmark for inter-
pretability methods in deep neural networks”. Advances in neural information processing systems 32 (2019)
(cit. on p. 58).

[Hu, 2020] Xiaoyu Hu and Jing Lei. “A distribution-free test of covariate shift using conformal prediction”.
arXiv preprint arXiv:2010.07147 (2020) (cit. on p. 35).

[Hu, 2019] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. “Optimal sparse decision trees”. Advances in Neural
Information Processing Systems 32 (2019) (cit. on p. 18).

[Ignatiev, 2019] Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. “On validating, repairing and re-
fining heuristic ML explanations”. arXiv preprint arXiv:1907.02509 (2019) (cit. on p. 69).

https://academic.oup.com/biomet/advance-article-pdf/doi/10.1093/biomet/asac040/45911782/asac040.pdf
https://academic.oup.com/biomet/advance-article-pdf/doi/10.1093/biomet/asac040/45911782/asac040.pdf


[Iooss, 2015] Bertrand Iooss and Paul Lemaitre. “A review on global sensitivity analysis methods”. Uncertainty
management in simulation-optimization of complex systems: algorithms and applications (2015), pp. 101–122
(cit. on p. 52).

[Ishwaran, 2008] Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer. “Random
survival forests”. The annals of applied statistics 2.3 (2008), pp. 841–860 (cit. on pp. 73, 92, 105).

[Izbicki, 2020] Rafael Izbicki, Gilson Shimizu, and Rafael Stern. “Flexible distribution-free conditional predic-
tive bands using density estimators”. Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine
Learning Research. PMLR, 2020, pp. 3068–3077 (cit. on p. 104).

[Janzing, 2020] Dominik Janzing, Lenon Minorics, and Patrick Blöbaum. “Feature relevance quantification in
explainable AI: A causal problem”. International Conference on Artificial Intelligence and Statistics. PMLR.
2020, pp. 2907–2916 (cit. on pp. 22, 37, 53).

[Jethani, 2021] Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, and Rajesh Ranganath. “Have
We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpreta-
tions.” International Conference on Artificial Intelligence and Statistics. PMLR. 2021, pp. 1459–1467 (cit. on
p. 69).

[Jin, 2022] Ying Jin and Emmanuel J Candès. “Selection by Prediction with Conformal p-values”. arXiv preprint
arXiv:2210.01408 (2022) (cit. on pp. 13, 35, 116).

[Jocteur, 2023] Bérénice-Alexia Jocteur, Véronique Maume-Deschamps, and Pierre Ribereau. “Heterogeneous
Treatment Effect based Random Forest: HTERF” (2023) (cit. on pp. 73, 92, 105).

[Johnson, 2004] Jeff W Johnson and James M LeBreton. “History and use of relative importance indices in
organizational research”. Organizational research methods 7.3 (2004), pp. 238–257 (cit. on p. 54).

[Joshi, 2019] Shalmali Joshi, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joydeep Ghosh. “To-
wards realistic individual recourse and actionable explanations in black-box decision making systems”. arXiv
preprint arXiv:1907.09615 (2019) (cit. on p. 25).

[Kaggle, 2015] Kaggle. Bike Sharing Demand. 2015 (cit. on pp. 20, 81).
[Kaggle, 2016] Kaggle. Pima Indians Diabetes Database. 2016 (cit. on pp. 97, 160).
[Kaggle, 2017] Kaggle. IBM HR Analytics Employee Attrition Performance. 2017 (cit. on p. 82).
[Kanamori, 2020] Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. “DACE: Distribution-

Aware Counterfactual Explanation by Mixed-Integer Linear Optimization”. IJCAI. 2020 (cit. on pp. 25, 86,
116).

[Kanamori, 2022] Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike. “Counterfactual Expla-
nation Trees: Transparent and Consistent Actionable Recourse with Decision Trees”. Proceedings of The 25th
International Conference on Artificial Intelligence and Statistics, PMLR 151:1846-1870. 2022 (cit. on pp. 88,
96).

[Kaplan, 2019] Haim Kaplan, Sasanka Roy, and Micha Sharir. “Finding axis-parallel rectangles of fixed perime-
ter or area containing the largest number of points”. Computational Geometry 81 (2019), pp. 1–11 (cit. on
p. 77).

[Karimi, 2020a] Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. “Model-Agnostic Counter-
factual Explanations for Consequential Decisions”. ArXiv abs/1905.11190 (2020) (cit. on pp. 85, 87).

[Karimi, 2020b] Amir-Hossein Karimi, Gilles Barthe, Bernhard Schölkopf, and Isabel Valera. “A survey of al-
gorithmic recourse: definitions, formulations, solutions, and prospects”. CoRR abs/2010.04050 (2020). arXiv:
2010.04050 (cit. on pp. 25, 85).

[Karimi, 2021] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. “Algorithmic recourse: from coun-
terfactual explanations to interventions”. Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency. 2021, pp. 353–362 (cit. on pp. 25, 26).

[Kelley Pace, 1997] R. Kelley Pace and Ronald Barry. “Sparse spatial autoregressions”. Statistics, Probability
Letters 33.3 (1997), pp. 291–297 (cit. on pp. 64, 97, 101).

[Kivaranovic, 2020] Danijel Kivaranovic, Kory D Johnson, and Hannes Leeb. “Adaptive, distribution-free pre-
diction intervals for deep networks”. International Conference on Artificial Intelligence and Statistics. PMLR.
2020, pp. 4346–4356 (cit. on p. 108).

[Klusowski, 2020] Jason Klusowski. “Sparse learning with CART”. Advances in Neural Information Processing
Systems 33 (2020), pp. 11612–11622 (cit. on p. 76).

https://arxiv.org/abs/2010.04050


[Klusowski, 2021] Jason M Klusowski. “Universal consistency of decision trees in high dimensions”. arXiv
preprint arXiv:2104.13881 (2021) (cit. on p. 103).

[Koenker, 2001] Roger Koenker and Kevin F Hallock. “Quantile regression”. Journal of economic perspectives
15.4 (2001), pp. 143–156 (cit. on p. 7).

[König, 2021] Gunnar König, Timo Freiesleben, and Moritz Grosse-Wentrup. “A causal perspective on mean-
ingful and robust algorithmic recourse”. arXiv preprint arXiv:2107.07853 (2021) (cit. on p. 26).

[König, 2023] Gunnar König, Timo Freiesleben, and Moritz Grosse-Wentrup. “Improvement-focused causal re-
course (ICR)”. Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37. 10. 2023, pp. 11847–
11855 (cit. on p. 26).

[Kovács, 2022] László Kovács. “Feature selection algorithms in generalized additive models under concurvity”.
Computational Statistics (2022), pp. 1–33 (cit. on p. 17).

[Kuchibhotla, 2020] Arun Kumar Kuchibhotla. “Exchangeability, conformal prediction, and rank tests”. arXiv
preprint arXiv:2005.06095 (2020) (cit. on p. 28).

[Künzel, 2022] Sören R Künzel, Theo F Saarinen, Edward W Liu, and Jasjeet S Sekhon. “Linear aggregation
in tree-based estimators”. Journal of Computational and Graphical Statistics 31.3 (2022), pp. 917–934 (cit. on
pp. 19, 64).

[Kusner, 2017] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. “Counterfactual fairness”. Ad-
vances in neural information processing systems 30 (2017) (cit. on p. 25).

[Lakkaraju, 2022] Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer Singh. “Re-
thinking Explainability as a Dialogue: A Practitioner’s Perspective”. CoRR abs/2202.01875 (2022). arXiv:
2202.01875 (cit. on pp. 25, 85, 87).

[Laurent, 1976] Hyafil Laurent and Ronald L Rivest. “Constructing optimal binary decision trees is NP-complete”.
Information processing letters 5.1 (1976), pp. 15–17 (cit. on p. 18).

[Lecun, 2006] Yann Lecun, Sumit Chopra, and Raia Hadsell. “A tutorial on energy-based learning”. 2006 (cit. on
p. 95).

[Lee, 2021] Yonghoon Lee and Rina Barber. “Distribution-free inference for regression: discrete, continuous, and
in between”. Advances in Neural Information Processing Systems 34 (2021), pp. 7448–7459 (cit. on p. 27).

[Lei, 2016] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry A. Wasserman. “Distribution-
Free Predictive Inference for Regression”. Journal of the American Statistical Association 113 (2016), pp. 1094–
1111 (cit. on pp. 7, 28, 30–32, 52, 58, 100, 104).

[Lei, 2011] Jing Lei, James Robins, and Larry Wasserman. “Efficient nonparametric conformal prediction re-
gions”. arXiv preprint arXiv:1111.1418 (2011) (cit. on p. 28).

[Lei, 2013] Jing Lei, James Robins, and Larry Wasserman. “Distribution-free prediction sets”. Journal of the
American Statistical Association 108.501 (2013), pp. 278–287 (cit. on p. 28).

[Lei, 2014a] Jing Lei and Larry Wasserman. “Distribution-free prediction bands for non-parametric regression”.
Journal of the Royal Statistical Society: Series B: Statistical Methodology (2014), pp. 71–96 (cit. on p. 35).

[Lei, 2014b] Jing Lei and Larry A. Wasserman. “Distribution-free prediction bands for non-parametric regres-
sion”. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76 (2014) (cit. on pp. 34, 35,
102, 111).

[Lewis, 1973] David Lewis. “Causation”. The journal of philosophy 70.17 (1973), pp. 556–567 (cit. on p. 25).
[Ley, 2022] Dan Ley, Saumitra Mishra, and Daniele Magazzeni. Global Counterfactual Explanations: Investiga-

tions, Implementations and Improvements. 2022 (cit. on pp. 88, 97).
[Lim, 2016] Chinghway Lim and Bin Yu. “Estimation stability with cross-validation (ESCV)”. Journal of Com-

putational and Graphical Statistics 25.2 (2016), pp. 464–492 (cit. on p. 16).
[Lin, 2020] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. “Generalized and scalable

optimal sparse decision trees”. International Conference on Machine Learning. PMLR. 2020, pp. 6150–6160
(cit. on p. 18).

[Lin, 2006] Yi Lin and Yongho Jeon. “Random forests and adaptive nearest neighbors”. Journal of the American
Statistical Association 101.474 (2006), pp. 578–590 (cit. on pp. 73, 92, 103, 105).

[Lin, 2018] Yin-Ting Lin and Jing-Sin Liu. “Revisit of minimum-area enclosing rectangle of a convex polygon”.
2018 5th international conference on control, decision and information technologies (CoDIT). IEEE. 2018,
pp. 1051–1056 (cit. on p. 77).

https://arxiv.org/abs/2202.01875


[Lin, 2021] Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. “Locally valid and discriminative prediction intervals
for deep learning models”. Advances in Neural Information Processing Systems 34 (2021), pp. 8378–8391 (cit.
on p. 102).

[Liu, 2008] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. 2008 eighth ieee international
conference on data mining. IEEE. 2008, pp. 413–422 (cit. on p. 95).

[Loh, 2011] Wei-Yin Loh. “Classification and regression trees”. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 1 (2011) (cit. on p. 91).

[Looveren, 2019] Arnaud Van Looveren and Janis Klaise. “Interpretable Counterfactual Explanations Guided
by Prototypes”. CoRR abs/1907.02584 (2019). arXiv: 1907.02584 (cit. on pp. 85, 86).

[Lopardo, 2023] Gianluigi Lopardo, Frederic Precioso, and Damien Garreau. “A Sea of Words: An In-Depth
Analysis of Anchors for Text Data”. Proceedings of The 26th International Conference on Artificial Intelligence
and Statistics. Ed. by Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent. Vol. 206. Proceedings of
Machine Learning Research. PMLR, 2023, pp. 4848–4879 (cit. on p. 24).

[Lou, 2013] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. “Accurate intelligible models with
pairwise interactions”. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining. 2013, pp. 623–631 (cit. on p. 16).

[Lundberg, 2020a] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala
Nair, et al. “From local explanations to global understanding with explainable AI for trees”. Nature machine
intelligence 2.1 (2020), pp. 56–67 (cit. on pp. 53, 69).

[Lundberg, 2018] Scott M Lundberg, Gabriel G Erion, and Su-In Lee. “Consistent individualized feature attri-
bution for tree ensembles”. arXiv preprint arXiv:1802.03888 (2018) (cit. on pp. 43, 138).

[Lundberg, 2017a] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”.
Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, et al. 2017, pp. 4765–4774 (cit. on pp. 8, 9, 21, 22, 37, 42, 53, 68).

[Lundberg, 2017b] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predictions”.
Advances in neural information processing systems 30 (2017) (cit. on pp. 52, 68).

[Lundberg, 2020b] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala
Nair, et al. “From local explanations to global understanding with explainable AI for trees”. Nature Machine
Intelligence 2.1 (2020), pp. 2522–5839 (cit. on pp. 10, 23, 37, 38, 42, 43, 47, 85, 138).

[Mahajan, 2019] Divyat Mahajan, Chenhao Tan, and Amit Sharma. “Preserving causal constraints in counter-
factual explanations for machine learning classifiers”. arXiv preprint arXiv:1912.03277 (2019) (cit. on p. 25).

[Malle, 2006] Bertram F Malle. How the mind explains behavior: Folk explanations, meaning, and social inter-
action. MIT press, 2006 (cit. on p. 5).

[Marandon, 2022] Ariane Marandon, Lihua Lei, David Mary, and Etienne Roquain. “Machine learning meets
false discovery rate”. arXiv preprint arXiv:2208.06685 (2022) (cit. on p. 116).

[Margot, 2021] Vincent Margot, Jean-Patrick Baudry, Frederic Guilloux, and Olivier Wintenberger. “Consistent
regression using data-dependent coverings”. Electronic Journal of Statistics 15.1 (2021), pp. 1743–1782 (cit. on
p. 45).

[Massart, 1990] Pascal Massart. “The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality”. The annals
of Probability (1990), pp. 1269–1283 (cit. on p. 173).

[Meinshausen, 2010a] Nicolai Meinshausen. “Node harvest”. The Annals of Applied Statistics (2010), pp. 2049–
2072 (cit. on p. 18).

[Meinshausen, 2010b] Nicolai Meinshausen and Peter Bühlmann. “Stability selection”. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 72.4 (2010), pp. 417–473 (cit. on p. 16).

[Meinshausen, 2006] Nicolai Meinshausen and Greg Ridgeway. “Quantile regression forests.” Journal of Machine
Learning Research 7.6 (2006) (cit. on pp. 45, 72, 74, 75, 91, 92, 103, 105, 111, 145).

[Miller, 2019] Tim Miller. “Explanation in artificial intelligence: Insights from the social sciences”. Artificial
intelligence 267 (2019), pp. 1–38 (cit. on pp. 5, 6, 25).

[Molnar, 2022] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black Box Models Ex-
plainable. 2nd ed. 2022 (cit. on pp. 15, 85).

[Mothilal, 2020] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. “Explaining Machine Learning
Classifiers through Diverse Counterfactual Explanations”. Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency. FAT* ’20. Barcelona, Spain: Association for Computing Machinery, 2020,
pp. 607–617 (cit. on pp. 85–87).

https://arxiv.org/abs/1907.02584


[Murdoch, 2019] W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. “Inter-
pretable machine learning: definitions, methods, and applications”. arXiv preprint arXiv:1901.04592 (2019)
(cit. on p. 15).

[Naamad, 1984] Amnon Naamad, DT Lee, and W-L Hsu. “On the maximum empty rectangle problem”. Discrete
Applied Mathematics 8.3 (1984), pp. 267–277 (cit. on p. 77).

[Nadaraya, 1964] Elizbar A Nadaraya. “On estimating regression”. Theory of Probability & Its Applications 9.1
(1964), pp. 141–142 (cit. on pp. 43, 102).

[Nori, 2019] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. “InterpretML: A Unified Framework
for Machine Learning Interpretability”. arXiv preprint arXiv:1909.09223 (2019) (cit. on pp. 9, 16).

[OpenAI, 2023] OpenAI. “GPT-4 Technical Report”. ArXiv abs/2303.08774 (2023) (cit. on p. 4).
[Osborne, 1994] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994 (cit. on

p. 21).
[Ovchinnikov, 2000] Sergei Ovchinnikov. “Max-min representation of piecewise linear functions”. arXiv preprint

math/0009026 (2000) (cit. on p. 54).
[Owen, 2014] Art B Owen. “Sobol’indices and Shapley value”. SIAM/ASA Journal on Uncertainty Quantifica-

tion 2.1 (2014), pp. 245–251 (cit. on pp. 22, 53).
[Owen, 2017] Art B Owen and Clémentine Prieur. “On Shapley value for measuring importance of dependent

inputs”. SIAM/ASA Journal on Uncertainty Quantification 5.1 (2017), pp. 986–1002 (cit. on pp. 22, 39, 53).
[Papadopoulos, 2008] Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. “Normalized nonconformity

measures for regression conformal prediction”. Proceedings of the IASTED International Conference on Artifi-
cial Intelligence and Applications (AIA 2008). 2008, pp. 64–69 (cit. on pp. 31, 32).

[Papadopoulos, 2002] Harris Papadopoulos, Kostas Proedrou, Vladimir Vovk, and Alexander Gammerman. “In-
ductive Confidence Machines for Regression”. European Conference on Machine Learning. 2002 (cit. on pp. 28,
100).

[Parmentier, 2021] Axel Parmentier and Thibaut Vidal. “Optimal Counterfactual Explanations in Tree Ensem-
bles”. CoRR abs/2106.06631 (2021). arXiv: 2106.06631 (cit. on pp. 25, 85, 86, 116).

[Pascanu, 2013] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. “On the number of response regions of
deep feed forward networks with piece-wise linear activations”. arXiv preprint arXiv:1312.6098 (2013) (cit. on
p. 55).

[Patki, 2016] N. Patki, R. Wedge, and K. Veeramachaneni. “The Synthetic Data Vault”. 2016 IEEE Interna-
tional Conference on Data Science and Advanced Analytics (DSAA). 2016, pp. 399–410 (cit. on p. 95).

[Pawelczyk, 2022] Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu
Lakkaraju. Algorithmic Recourse in the Face of Noisy Human Responses. 2022 (cit. on pp. 26, 84, 85, 87, 98).

[Pearl, 1994] Judea Pearl. “A probabilistic calculus of actions”. Uncertainty Proceedings 1994. Elsevier, 1994,
pp. 454–462 (cit. on p. 26).

[Pearl, 2000] Judea Pearl et al. “Models, reasoning and inference”. Cambridge, UK: CambridgeUniversityPress
19.2 (2000), p. 3 (cit. on p. 26).

[Pearl, 2009] Judea Pearl. Causality. Cambridge university press, 2009 (cit. on p. 25).
[Pedregosa, 2011] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al. “Scikit-

learn: Machine Learning in Python”. Journal of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on
pp. 61, 112, 161).

[Pessach, 2022] Dana Pessach and Erez Shmueli. “A Review on Fairness in Machine Learning”. ACM Computing
Surveys (CSUR) 55 (2022), pp. 1–44 (cit. on p. 4).

[Plassier, 2023] Vincent Plassier, Mehdi Makni, Aleksandr Rubashevskii, Eric Moulines, and Maxim Panov.
Conformal Prediction for Federated Uncertainty Quantification Under Label Shift. 2023. arXiv: 2306.05131
[stat.ML] (cit. on p. 35).

[Póczos, 2013] Barnabás Póczos, Aarti Singh, Alessandro Rinaldo, and Larry Wasserman. “Distribution-free
distribution regression”. artificial intelligence and statistics. PMLR. 2013, pp. 507–515 (cit. on p. 28).

[Podkopaev, 2021] Aleksandr Podkopaev and Aaditya Ramdas. “Distribution-free uncertainty quantification for
classification under label shift”. Uncertainty in Artificial Intelligence. PMLR. 2021, pp. 844–853 (cit. on p. 35).

[Poyiadzi, 2019] Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodriguez, Tijl De Bie, and Peter A. Flach. “FACE:
Feasible and Actionable Counterfactual Explanations”. CoRR abs/1909.09369 (2019). arXiv: 1909.09369 (cit.
on pp. 25, 85, 86, 116).

https://arxiv.org/abs/2106.06631
https://arxiv.org/abs/2306.05131
https://arxiv.org/abs/2306.05131
https://arxiv.org/abs/1909.09369


[Quinlan, 2014] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014 (cit. on p. 17).
[Quinlan, 1986] J. Ross Quinlan. “Induction of decision trees”. Machine learning 1 (1986), pp. 81–106 (cit. on

p. 17).
[Ramsay, 2003] Timothy O Ramsay, Richard T Burnett, and Daniel Krewski. “The effect of concurvity in

generalized additive models linking mortality to ambient particulate matter”. Epidemiology 14.1 (2003), pp. 18–
23 (cit. on p. 17).

[Rawal, 2020] Kaivalya Rawal and Himabindu Lakkaraju. “Beyond individualized recourse: Interpretable and
interactive summaries of actionable recourses”. Advances in Neural Information Processing Systems 33 (2020),
pp. 12187–12198 (cit. on pp. 88, 94, 96).

[Razavi, 2021] Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele
Borgonovo, et al. “The future of sensitivity analysis: An essential discipline for systems modeling and policy
support”. Environmental Modelling & Software 137 (2021), p. 104954 (cit. on p. 5).

[Ribeiro, 2016a] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i trust you?" Ex-
plaining the predictions of any classifier”. Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. 2016, pp. 1135–1144 (cit. on pp. 8, 10, 23, 37, 52, 56, 68, 69, 85).

[Ribeiro, 2016b] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust You?": Ex-
plaining the Predictions of Any Classifier”. Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016. 2016, pp. 1135–1144
(cit. on p. 9).

[Ribeiro, 2018] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-precision model-
agnostic explanations”. Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018 (cit.
on pp. 24, 68, 69, 71).

[Rinaldo, 2019] Alessandro Rinaldo, Larry Wasserman, and Max G’Sell. “Bootstrapping and sample splitting
for high-dimensional, assumption-lean inference” (2019) (cit. on p. 52).

[Rivest, 1987] Ronald L Rivest. “Learning decision lists”. Machine learning 2 (1987), pp. 229–246 (cit. on p. 18).
[Romano, 2020a] Yaniv Romano, Rina Foygel Barber, Chiara Sabatti, and Emmanuel Candès. “With malice

toward none: Assessing uncertainty via equalized coverage”. Harvard Data Science Review 2.2 (2020), p. 4
(cit. on p. 34).

[Romano, 2019] Yaniv Romano, Evan Patterson, and Emmanuel Candes. “Conformalized quantile regression”.
Advances in neural information processing systems 32 (2019) (cit. on pp. 31, 32, 104, 175).

[Romano, 2020b] Yaniv Romano, Matteo Sesia, and Emmanuel Candes. “Classification with valid and adaptive
coverage”. Advances in Neural Information Processing Systems 33 (2020), pp. 3581–3591 (cit. on p. 33).

[Russell, 2019] Chris Russell. “Efficient Search for Diverse Coherent Explanations”. Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency. FAT* ’19. Atlanta, GA, USA: Association for Computing
Machinery, 2019, pp. 20–28 (cit. on pp. 85, 87).

[Sadinle, 2019] Mauricio Sadinle, Jing Lei, and Larry Wasserman. “Least ambiguous set-valued classifiers with
bounded error levels”. Journal of the American Statistical Association 114.525 (2019), pp. 223–234 (cit. on
p. 33).

[Saleh, 2021] Resve A Saleh and AK Saleh. “Solution to the Non-Monotonicity and Crossing Problems in Quan-
tile Regression”. arXiv preprint arXiv:2111.04805 (2021) (cit. on p. 175).

[Salmon, 2006] Wesley C Salmon. Four decades of scientific explanation. University of Pittsburgh press, 2006
(cit. on p. 5).

[Saltelli, 2008] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora
Gatelli, et al. Global sensitivity analysis: the primer. John Wiley & Sons, 2008 (cit. on p. 5).

[Saunders, 1999] Craig Saunders, Alexander Gammerman, and Volodya Vovk. “Transduction with confidence
and credibility” (1999) (cit. on p. 28).

[Schaeffer, 2007] Satu Elisa Schaeffer. “Survey Graph clustering”. 2007 (cit. on pp. 59, 110).
[Scornet, 2016] Erwan Scornet. “Random forests and kernel methods”. IEEE Transactions on Information The-

ory 62.3 (2016), pp. 1485–1500 (cit. on pp. 73, 92).
[Scornet, 2015] Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. “Consistency of random forests”. The

Annals of Statistics 43.4 (2015), pp. 1716–1741 (cit. on pp. 45, 74–76, 103, 111, 145, 168).
[Shah, 2018] Rajen Dinesh Shah and J. Peters. “The hardness of conditional independence testing and the

generalised covariance measure”. The Annals of Statistics (2018) (cit. on p. 27).



[Shapley, 1953] Lloyd S Shapley. “Greedy function approximation: A gradient boosting machine.” Contribution
to the Theory of Games 2 (1953), pp. 307–317 (cit. on pp. 21, 22, 37).

[Shih, 2018] Andy Shih, Arthur Choi, and Adnan Darwiche. “A symbolic approach to explaining bayesian net-
work classifiers”. arXiv preprint arXiv:1805.03364 (2018) (cit. on pp. 68, 69).

[Siems, 2023] Julien Siems, Konstantin Ditschuneit, Winfried Ripken, Alma Lindborg, Maximilian Schambach,
Johannes S Otterbach, et al. “Curve Your Enthusiasm: Concurvity Regularization in Differentiable Generalized
Additive Models”. arXiv preprint arXiv:2305.11475 (2023) (cit. on p. 17).

[Singh, 2021] Chandan Singh, Keyan Nasseri, Yan Shuo Tan, Tiffany Tang, and Bin Yu. “imodels: a python
package for fitting interpretable models”. Journal of Open Source Software 6.61 (2021), p. 3192 (cit. on pp. 9,
17, 19, 161).

[Slack, 2020] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. “Fooling lime
and shap: Adversarial attacks on post hoc explanation methods”. Proceedings of the AAAI/ACM Conference
on AI, Ethics, and Society. 2020, pp. 180–186 (cit. on p. 69).

[Sobol, 1990] Il’ya Meerovich Sobol’. “On sensitivity estimation for nonlinear mathematical models”. Matem-
aticheskoe modelirovanie 2.1 (1990), pp. 112–118 (cit. on pp. 22, 53).

[Song, 2016] Eunhye Song, Barry L Nelson, and Jeremy Staum. “Shapley effects for global sensitivity analysis:
Theory and computation”. SIAM/ASA Journal on Uncertainty Quantification 4.1 (2016), pp. 1060–1083 (cit.
on pp. 22, 23).

[Spooner, 2021] Thomas Spooner, Danial Dervovic, Jason Long, Jon Shepard, Jiahao Chen, and Daniele Mag-
azzeni. “Counterfactual Explanations for Arbitrary Regression Models”. ArXiv abs/2106.15212 (2021) (cit. on
p. 25).

[Stone, 1985a] Charles J Stone. “Additive regression and other nonparametric models”. The annals of Statistics
13.2 (1985), pp. 689–705 (cit. on p. 16).

[Stone, 1985b] Charles J. Stone. “Additive Regression and Other Nonparametric Models”. The Annals of Statis-
tics 13.2 (1985), pp. 689–705 (cit. on pp. 75, 111, 145).

[Strobl, 2007] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. “Bias in random
forest variable importance measures: Illustrations, sources and a solution”. BMC bioinformatics 8.1 (2007),
pp. 1–21 (cit. on p. 76).

[Strumbelj, 2010] Erik Strumbelj and Igor Kononenko. “An Efficient Explanation of Individual Classifications
using Game Theory”. Journal of Machine Learning Research 11 (2010), pp. 1–18 (cit. on p. 37).

[Tan, 2022] Yan Shuo Tan, Chandan Singh, Keyan Nasseri, Abhineet Agarwal, and Bin Yu. “Fast interpretable
greedy-tree sums (FIGS)”. arXiv preprint arXiv:2201.11931 (2022) (cit. on p. 19).

[Tibshirani, 1996] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. Journal of the Royal
Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288 (cit. on pp. 16, 19).

[Tibshirani, 2019] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. “Conformal
prediction under covariate shift”. Advances in neural information processing systems 32 (2019) (cit. on pp. 28,
30, 35, 106, 116).

[Traag, 2019] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. “From Louvain to Leiden: guaranteeing
well-connected communities”. Scientific reports 9.1 (2019), pp. 1–12 (cit. on p. 110).

[Ustun, 2019a] Berk Ustun, Alexander Spangher, and Yang Liu. “Actionable Recourse in Linear Classification”.
Proceedings of the Conference on Fairness, Accountability, and Transparency (2019) (cit. on p. 85).

[Ustun, 2019b] Berk Ustun, Alexander Spangher, and Yang Liu. “Actionable recourse in linear classification”.
Proceedings of the conference on fairness, accountability, and transparency. 2019, pp. 10–19 (cit. on p. 26).

[Valiant, 1984] Leslie G Valiant. “A theory of the learnable”. Communications of the ACM 27.11 (1984),
pp. 1134–1142 (cit. on pp. 12, 34, 101).

[Vapnik, 1971] Vladimir Naumovich Vapnik. “Chervonenkis: On the uniform convergence of relative frequencies
of events to their probabilities”. 1971 (cit. on pp. 149, 153).

[Verdinelli, 2023] Isabella Verdinelli and Larry Wasserman. “Feature Importance: A Closer Look at Shapley
Values and LOCO”. arXiv preprint arXiv:2303.05981 (2023) (cit. on pp. 22, 54, 58, 66).

[Verma, 2020] Sahil Verma, John P. Dickerson, and Keegan Hines. “Counterfactual Explanations for Machine
Learning: A Review”. CoRR abs/2010.10596 (2020). arXiv: 2010.10596 (cit. on pp. 85, 86).

[Visani, 2020] Giorgio Visani, Enrico Bagli, and Federico Chesani. “OptiLIME: Optimized LIME Explanations
for Diagnostic Computer Algorithms”. ArXiv abs/2006.05714 (2020) (cit. on p. 57).

https://arxiv.org/abs/2010.10596


[Vovk, 2012] Vladimir Vovk. “Conditional validity of inductive conformal predictors”. Asian conference on ma-
chine learning. PMLR. 2012, pp. 475–490 (cit. on pp. 34, 35, 102, 111).

[Vovk, 2005] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random
world. Springer Science & Business Media, 2005 (cit. on pp. 7, 28, 30, 31, 33, 34, 100, 102).

[Vovk, 1999] Volodya Vovk, Alexander Gammerman, and Craig Saunders. “Machine-learning applications of
algorithmic randomness” (1999) (cit. on p. 28).

[Wachter, 2017] Sandra Wachter, Brent Daniel Mittelstadt, and Chris Russell. “Counterfactual Explanations
Without Opening the Black Box: Automated Decisions and the GDPR”. Cybersecurity (2017) (cit. on pp. 24,
26, 68, 85, 86).

[Wager, 2017] Stefan Wager and Susan Athey. Estimation and Inference of Heterogeneous Treatment Effects
using Random Forests. 2017. arXiv: 1510.04342 [stat.ME] (cit. on pp. 73, 74, 92, 105, 146, 168).

[Wahba, 1990] Grace Wahba. Spline models for observational data. SIAM, 1990 (cit. on p. 16).
[Wald, 1943] Abraham Wald. “An extension of Wilks’ method for setting tolerance limits”. The Annals of

Mathematical Statistics 14.1 (1943), pp. 45–55 (cit. on pp. 34, 101).
[Wang, 2020] Eric Wang, Pasha Khosravi, and Guy Van den Broeck. “Towards Probabilistic Sufficient Expla-

nations”. Extending Explainable AI Beyond Deep Models and Classifiers Workshop at ICML (XXAI). 2020
(cit. on pp. 68, 69, 72).

[Washington, 2018] Anne L Washington. “How to argue with an algorithm: Lessons from the COMPAS-ProPublica
debate”. Colo. Tech. LJ 17 (2018), p. 131 (cit. on pp. 4, 82, 97).

[Wei, 2015] Pengfei Wei, Zhenzhou Lu, and Jingwen Song. “Variable importance analysis: a comprehensive
review”. Reliability Engineering & System Safety 142 (2015), pp. 399–432 (cit. on p. 5).

[Wilks, 1941] Samuel S Wilks. “Determination of sample sizes for setting tolerance limits”. The Annals of Math-
ematical Statistics 12.1 (1941), pp. 91–96 (cit. on pp. 34, 101).

[Williamson, 2021] Brian D Williamson, Peter B Gilbert, Noah R Simon, and Marco Carone. “A general frame-
work for inference on algorithm-agnostic variable importance”. Journal of the American Statistical Association
(2021), pp. 1–14 (cit. on pp. 58, 59).

[Williamson, 2020] Brian D. Williamson and Jean Feng. Efficient nonparametric statistical inference on popu-
lation feature importance using Shapley values. 2020. arXiv: 2006.09481 [stat.ME] (cit. on pp. 23, 42, 52).

[Xu, 2019] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. “Modeling Tabular
data using Conditional GAN”. NeurIPS. 2019 (cit. on p. 95).

[Yoon, 2018] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. “INVASE: Instance-wise variable se-
lection using neural networks”. International Conference on Learning Representations. 2018 (cit. on pp. 69,
80).

[Yu, 2013] Bin Yu. “Stability” (2013) (cit. on p. 15).
[Yu, 2002] Chong Ho Yu. “Resampling methods: concepts, applications, and justification”. Practical Assessment,

Research, and Evaluation 8.1 (2002), p. 19 (cit. on p. 7).
[Zafar, 2019] Muhammad Rehman Zafar and Naimul Mefraz Khan. “DLIME: A Deterministic Local Inter-

pretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems”. ArXiv abs/1906.10263
(2019) (cit. on p. 57).

[Zaffran, 2023] Margaux Zaffran, Aymeric Dieuleveut, Julie Josse, and Yaniv Romano. “Conformal Prediction
with Missing Values”. arXiv preprint arXiv:2306.02732 (2023) (cit. on p. 35).

[Zaffran, 2022a] Margaux Zaffran, Olivier Feron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. “Adaptive
Conformal Predictions for Time Series”. Proceedings of the 39th International Conference on Machine Learn-
ing. Ed. by Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato.
Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022, pp. 25834–25866 (cit. on p. 35).

[Zaffran, 2022b] Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. “Adaptive
conformal predictions for time series”. International Conference on Machine Learning. PMLR. 2022, pp. 25834–
25866 (cit. on p. 28).

[Zhang, 2022] Rui Zhang, Rui Xin, Margo Seltzer, and Cynthia Rudin. “Optimal Sparse Regression Trees”.
arXiv preprint arXiv:2211.14980 (2022) (cit. on p. 18).

[Zhang, 2019] Yujia Zhang, Kuangyan Song, Yiming Sun, Sarah Tan, and Madeleine Udell. “" Why Should You
Trust My Explanation?" Understanding Uncertainty in LIME Explanations”. arXiv preprint arXiv:1904.12991
(2019) (cit. on p. 57).

https://arxiv.org/abs/1510.04342
https://arxiv.org/abs/2006.09481


[Zhou, 2023] Yichen Zhou, Zhengze Zhou, and Giles Hooker. “Approximation trees: statistical reproducibility
in model distillation”. Data Mining and Knowledge Discovery (2023), pp. 1–39 (cit. on p. 15).

[Zhou, 2021] Zhengze Zhou, Giles Hooker, and Fei Wang. “S-LIME: Stabilized-LIME for Model Explanation”.
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021) (cit. on
p. 57).

[Zou, 2005] Hui Zou and Trevor Hastie. “Regularization and variable selection via the elastic net”. Journal of
the Royal Statistical Society Series B: Statistical Methodology 67.2 (2005), pp. 301–320 (cit. on p. 16).



Appendix for Chapter 2

1 Proof of SV invariance for transformed continuous variables

Proposition 1.1. Let f and f̃ = f ◦ φ(−1) its reparametrization, then we have for all i ∈ [p],
and u = φ(x):

ϕxi(f) = ϕui(f̃).

Proof. It is a direct application of the change of variables formula. If g(x) is the joint density
of X1, . . . , Xp, the transformed variable U = φ(X) = (φ1(X1), . . . , φp(Xp)) has density g̃(u) =
g◦φ(−1)(u)×∏p

i=1 |J(φ(−1)
i )(ui)| where |J(φ(−1)

i )(ui)| represents the determinant of the Jacobian
of φ

(−1)
i evaluated at ui. We have

g̃(uS̄ |uS) = g̃(uS̄ , uS)
g̃S(uS) = g

(
φ

(−1)
S̄

(uS̄)|φ(−1)
S (uS)

)
×
∏
i∈S̄

|J(φ(−1)
i )(ui)|.

The computation of the reduced predictor is straightforward

E [f(X)|XS = xS ] =
∫

f(xS , xS̄)g(xS̄ |xS)dxS̄

=
∫

f
(
φ

(−1)
S ◦ φS(xS), φ

(−1)
S̄
◦ φS̄(xS̄)

)
g(xS̄ |xS)dxS̄

=
∫

f̃(uS , uS̄)g
(
φ

(−1)
S̄

(uS̄)|φ(−1)
S (uS)

)∏
i∈S̄

∣∣∣Jφ(−1)(ui)
∣∣∣ duS̄

= E
[
f̃(US , U S̄)|US = uS

]
.

The equality of Shapley Values directly results from the equality of the reduced predictors.

2 Proof of SV invariance for encoded categorical variables

Proposition 2.1. Given a predictor f : R×{1, . . . , K} −→ R and its reparametrization f̃ using
Dummy Encoding defined as f̃ : R× {0, 1}K−1 −→ R such that f(X, Z) ≜ f̃(X, Z1, . . . , ZK−1),
we have {

ϕz1:K−1(f̃) = ϕz(f)
ϕx(f̃ ; z1:K−1) = ϕx(f).

(3)
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We recall the expression of the SV of the two variables X ∈ R and Z ∈ {1, . . . , K} in Equation
(4). The roles of the variables X, Z are symmetric, and the categorical or quantitative nature of
the variable does not have any impact on the computation of the SV, as demonstrated below.
Let’s consider an observation x = (x, z), then{

ϕx(f) = 1
2 (E [f(X, Z) | X = x]− E [f (X, Z)]) + 1

2 (f (x, z)− E [f (X, Z) | Z = z])
ϕz(f) = 1

2 (E [f(X, Z) | Z = z]− E [f (X, Z)]) + 1
2 (f (x, z)− E [f (X, Z) | X = x])

(4)

Proof. Let us consider the Dummy Encoding (DE) φ : z 7→ (z1, . . . , zK−1) without loss of
generality, then the observation (x, z) is reparametrized as (x, z1:K−1), and by construction of
φ, ∃!z ∈ {1, . . . , K} such that φ(z) = z1:K−1. By taking the coalition of z1:K−1 or considering
them as a single variable, we have

ϕz1:K−1(f̃) = 1
2
(
EP̃

[
f̃(X, Z1:K−1) | Z1:K−1 = z1:K−1

]
− EP̃

[
f̃(X, Z1:K−1)

])
+ 1

2
(
EP̃

[
f̃(X, Z1:K−1) | X = x, Z1:K−1 = z1:K−1

]
− EP̃

[
f̃(X, Z1:K−1) | X = x

])
. (5)

Recall that for any z ∈ {1, . . . , K}, and φ(z) = z1:K−1, we have P(Z = z) = P(Z1:K−1 =
z1:K−1). We denote P the measure law of (X, Z) and P̃ the pushforward measure of P under
the transformation φ, then we have

EP̃

[
f̃(X, Z1:K−1) | Z1:K−1 = z1:K−1

]
=
∫

f̃(x, z1:K−1) P̃ (dx, z1:K−1)
P(Z1:K−1 = z1:K−1)

=
∫

f̃(x, φ(z)) P̃ (dx, φ(z))
P(Z1:K−1 = z1:K−1)

=
∫

f(x, z) P (dx, z)
P(Z = z)

= E [f(X, Z) | Z = z] .

As a result, we have

EP̃

[
f̃(X, Z1:K−1) | Z1:K−1 = z1:K−1

]
− EP̃

[
f̃(X, Z1:K−1)

]
= EP

[
f̃ (X, φ (Z)) | Z = z

]
− EP

[
f̃ (X, φ (Z))

]
= EP [f (X, Z) | Z = z]− EP [f (X, Z)] .



We also have

EP̃

[
f̃(X, Z1:K−1) | X = x, Z1:K−1 = z1:K−1

]
− EP̃

[
f̃(X, Z1:K−1) | X = x

]
= f̃(x, z1:K−1)− EP

[
f̃(X, φ (Z)) | X = x

]
= f̃(x, φ (z))− EP

[
f̃(X, φ (Z)) | X = x

]
= f(x, z)− EP [f(X, Z) | X = x] .

Consequently, we have

ϕz1:K−1(f̃) = 1
2 (EP [f (X, Z) | Z = z]− EP [f (X, Z)]) + 1

2 (f(x, z)− EP [f(X, z) | X = x])

= ϕz(f).

Similarly, we can derive that ϕx(f̃ ; z1:K−1) = ϕx(f).

Proposition 2.2. If X ∼ N (µ, Σ), then XS̄ | XS = xS is also multivariate gaussian with mean
µS̄ | S and covariance matrix ΣS̄ | S equal:

µS̄ | S = µS̄ + ΣS̄,SΣ−1
S,S(xS − µS) and ΣS̄ | S = ΣS̄S̄ − ΣS̄SΣ−1

SSΣS,S̄ .

3 Proof of the limitation of SV as local explanation

Proposition 3.1. Let us assume that we have X ∈ Rp, X ∈ N (0, Ip) and a piece-wise linear
predictor f defined as:

f(X) = (a1X1 + a2X2)1X5≤0 + (a3X3 + a4X4)1X5>0. (6)

Even if we choose an observation x such that x5 ≤ 0 and the predictor only uses x1, x2, the SV
of ϕx3 , ϕx4 is not necessarily zero.

Proof.

ϕx3 = 1
p

∑
S⊆[p]\{3}

(
p− 1
|S|

)−1(
fS∪3(xS∪3)− fS(xS)

)

= 1
p

∑
S⊆[p]\{3,5}

(
p− 1
|S|

)−1(
fS∪3(xS∪3)− fS(xS)

)

+ 1
p

∑
S⊆[p]\{3,5}

(
p− 1
|S|+ 1

)−1(
fS∪{3,5}(xS∪{3,5})− fS∪5(xS∪5)

)
.

(7)

The second term is zero. Indeed, ∀S ⊆ [p] \ {3, 5}

fS∪{3,5}(xS∪{3,5})− fS∪5(xS∪5) = 0



Because, if we condition on the event {X5 = x5} with x5 ≤ 0

fS∪{3,5}(xS∪{3,5}) = E
[
(a1X1 + a2X2)1X5≤0 + (a3X3 + a4X4)1X5>0 | XS∪{3,5} = xS∪{3,5}

]
= E

[
(a1X1 + a2X2)1X5≤0 | XS∪{3,5} = xS∪{3,5}

]
(because x5 ≤ 0)

= E [(a1X1 + a2X2) | XS∪5 = xS∪5] (because the quantites are ⊥⊥ of X3)
= fS∪5(xS∪5)

The first term of (7) is the classic marginal contribution of SV in the linear model. For all
S ⊆ [p] \ {3, 5}

fS∪3(xS∪3) = E [a1X1 + a2X2 |XS∪3 = xS∪3]P(X5 ≤ 0 |XS∪3 = xS∪3)
+ E [a3X3 + a4X4 |XS∪3 = xS∪3]P(X5 > 0 | XS∪3 = xS∪3)

= E [a1X1 + a2X2 | XS = xS ]P(X5 ≤ 0) + (E [a4X4 | XS = xS ] + a3x3)P(X5 > 0)

= fS(xS) + P(X5 > 0)
(
a3(x3 − E[X3])

)

Therefore,

ϕx3 = 1
p

∑
S⊆[p]\{3,5}

(
p− 1
|S|

)−1

P(X5 > 0)
(
a3(x3 − E[X3])

)
= K

(
a3(x3 − E[X3])

)
,

where K is a constant. The computation of ϕx4 is obtained similarly by symmetry.



4 Relation between the Algorithm 1 (TreeSHAP with path-
dependent) and f̂SHAP

In section 3.1, we claim that the recursive Algorithm 1 introduced in [Lundberg, 2018; Lundberg,
2020b] and shown in Figure 1 assumes that the probabilities can be factored using the path of
the decision tree as follows:

PP SHAP
X

 dm∏
k=1

Im
k

∣∣∣XS = xS

 = δS(Nm
1 )×

dm∏
i=2:Nm

i /∈S

P
(

XNm
i
∈ Im

i

∣∣∣ i∏
k=1

XNm
k−1
∈ Im

k−1

)
(8)

with δS(Nm
1 ) = P(XNm

1
∈ Im

1 ) if Nm
1 /∈ S, and 1 otherwise.

Figure 1: Algorithm 1 (path-dependent Tree SHAP) in [Lundberg, 2018; Lundberg, 2020b],
where v is a vector of node values, which takes the value internal for internal nodes. The
vectors a and b represent the left and right node indexes for each internal node. The root node
has index 0. The vector t contains the thresholds for each internal node, and d is a vector of
indexes of the features used for splitting in internal nodes. The vector r represents the cover
of each node (i.e., how many data samples fall in that sub-tree). The weight w measures what
proportion of the training samples matching the conditioning set S fall into each leaf.

To show the link between between f̂SHAP and Algorithm 1 (path-dependent TreeSHAP), we
choose an observation x = (x0, x1, x2, x3) = (2, 3, 0.5,−1) and aim to compute E[f(X) | x0 =
2, x2 = 0.5] where f is the tree presented in Figure 2 using f̂ (SHAP ). x is comptatible with Leaf
6, 7, 11, 13, 14, we denote f6, f7, f11, f13, f14 the value of each leaf respectively.

The algorithm’s steps and output are outlined below for this observation. Using Equation (8),
we observe f̂ (SHAP ) gives the same output. Let’s denote P̂ the empirical distribution of Dn,
and S = [0, 2] with xS = (2, 0.5), then we have



Figure 2: An example of decision tree used to illustrate the link between f̂ (SHAP ) and Algorithm
1 (path-dependent TreeSHAP)

f̂
(SHAP )
S (xS)
= P

P̂
(X1 ≤ 0.305)× P

P̂
(X1 ≤ −0.536 | X2 > −0.048, X1 ≤ 0.305)× f6

+ P
P̂

(X1 ≤ 0.305)× P
P̂

(X1 > −0.536 | X2 > −0.048, X1 ≤ 0.305)× f7

+ P
P̂

(X1 > 0.305)× P
P̂

(X3 ≤ 0.207 | X1 > 0.305)× f11

+ P
P̂

(X1 > 0.305)× P
P̂

(X3 > 0.207 | X1 > 0.305)× P
P̂

(X1 ≤ 1.585 | X3 > 0.207, X1 > 0.305)× f13

+ P
P̂

(X1 > 0.305)× P
P̂

(X3 > 0.207 | X1 > 0.305)× P
P̂

(X1 > 1.585 | X3 > 0.207, X1 > 0.305)× f14

= (202/335)× (51/97)× (−51.85) + (202/335)× (46/97)× (50.713) + (133/335)× (82/133)× (73.971)
+ (133/335)× (51/133)× (44/51)× (145.955) + (133/335)× (51/133)× (7/51)× (318.125)

= 41.98

Step Calculus
0 G(0, 1)
1 G(1, 202/335) + G(8, 133/335)
2 G(5, 202/335) + G(9, 88/335) + G(12, 51/335)
3 G(6, (202/335)× (51/97)) + G(7, (202/335)× (46/97)) + G(11, 82/335) + G(13, 44/335)

+G(14, 7/335)
4 −(202/335)× (51/97)× 51, 85 + (202/335)× (46/97)× 50, 713 + (82/335)× 73, 971

+(44/335)× 145, 955 + (7/335)× 318, 126
5 = 41.98



5 Additional experiments

5.1 Impact of quantile discretization

The table below shows the impact of discretization on the performance of a Random Forest on
UCI datasets.

Dataset Breiman’s RF q=2 q=5 q=10 q=20

Authentification 0.0002 0.08 0.002 0.0005 0.0004
Diabetes 0.17 0.23 0.18 0.18 0.18
Haberman 0.32 0.35 0.30 0.32 0.30
Heart Statlog 0.10 0.10 0.10 0.10 0.10
Hepastitis 0.13 0.15 0.14 0.14 0.13
Ionosphere 0.02 0.07 0.03 0.02 0.02
Liver Disorders 0.23 0.32 0.27 0.25 0.24
Sonar 0.07 0.09 0.07 0.07 0.07
Spambase 0.01 0.14 0.03 0.02 0.01
Titanic 0.13 0.15 0.14 0.14 0.13
Wilt 0.007 0.15 0.03 0.02 0.02

Table 1: Accuracy, measured by 1-AUC on UCI datasets [Dua, 2017a], for two algorithms:
Breiman’s random forests and random forests with splits limited to q-quantiles, for q ∈
{2, 5, 10, 20}. Table 5 in [Bénard, 2021c].

5.2 The differences between Coalition and sum on Census Data

We use the UCI Adult Census Dataset [Dua, 2017b]. We keep only four highly predictive
categorical variables: Marital Status, Workclass, Race, Education and use a Random Forest
which has a test accuracy of 86%. We compare the Global SV by taking the coalition or sum of
the OHE modalities. Global SV for a feature Xj are defined as Ij = ∑N

i=0 |ϕxi,j |/N , where N is
the number of observations.

Figure 3: Difference between the global absolute value of SV: sum (left) vs coalition (right) of
dummies of individual with modalities: Married, local gov, others, 1rst-4th.



In Figure 3, we see differences between the global SV with coalition and sum with N=5000. The
ranking of the variables changes, e.g. Education goes from important with sum to not important
with the coalition. We also compute the proportion of order inversion over the 5000 observations
that are chosen randomly. The ranking of variables is changed in 10% of the cases. Note that
this difference may increase or decrease depending on the data.

6 Experiments setting

6.1 Parameters of the model from Section 2.3

Recall that the model is a linear predictor f , with categorical Z and 3 continuous variables
X = (X1, X2, X3), defined as f(X, Z) = BZX with BZ ∈ R3, X|Z = z ∼ N (µz, Σz) and
P(Z = z) = πz, Z ∈ {a, b, c}.
For the experiments in Figure 2.1 and 2.2, we set πz = 1

3 , µz = 0 for all z ∈ {a, b, c}. We gen-
erated random matrices from Wishart distribution for the covariance matrices, and the values
used are:

Σa =


0.41871254 −0.790061361 0.46956991
−0.79006136 1.90865098 −0.82571655
0.46956991 −0.82571655 0.95835472

 , Σb =


0.55326081 0.11811951 −0.70677924]
0.11811951 2.73312979 −2.94400196
−0.70677924 −2.94400196 4.22105088

,

Σc =


9.2859966 1.12872646 2.4224434
1.12872646 0.92891237 −0.14373393
2.4224434 −0.14373393 1.81601676

 for y ∈ {a, b, c} respectively.

The coefficients are Ba = [1, 3, 5], Bb = [−5,−10,−8], Bc = [6, 1, 0], and the selected observation
in Figure 2.1 is x = [0.35,−1.61,−0.11, 1., 0., 0.].

6.2 Parameters of the model from Section 4

The data D = (Xi, Yi)1≤i≤n are generated from a linear regression Y = BtX with n = 104, X ∈
Rp, X ∈ N (0, Σ), Σ = ρJp +(ρ−1)Ip with p = 5, ρ = 0.7, Ip is the identity matrix, Jp is all-ones
matrix and a linear predictor Y = BtX. The coefficient B = [6.49,−2.44,−2.11,−4.29, 3.46]
for the continuous case and d=3, B = [6.49,−2.44, 0] for the discrete case.

We used the decision tree of scikit-learn trained on D with the defaults parameters. The Mean
Squared Error (MSE) are MSE = 4.39 for the continuous case and MSE = 2.88 for the discrete
case.



Appendix for Chapter 3

7 Proof of Theorem 2.2

Theorem 7.1. Let f be a piecewise linear function with m components defined by the collection
{f|A1 , . . . , f|Ak

}, where ∪m
k=1Ak = X . The regions Ak are disjoint hyperrectangles, specifically

Ak = ⊗p
i=1 Ai,k, where Ai,k = [li,k, ri,k] with li,k, ri,k ∈ R. Each component f|Ak

is represented
as fk(X) = ∑p

i=1 ai,kXi + bk, where the coefficients ai,k and bk are real numbers. Consequently,
f is defined as:

f(X) =
m∑

k=1

( p∑
i=1

ai,kXi + bk

)
1Ak

(X).

Consider an observation x = (x1, . . . , xp) ∈ Ak⋆, where k⋆ ∈ {1, . . . , m}, sampled from a distri-
bution PX with independent covariates such that the model only used fk⋆(x) as f(x) = fk⋆(x)
on Ak⋆. The Local SV of a given feature-value Xl = xl is equal to

ϕxl
=

m∑
k=1

ϕk
xl

,

and ϕk
xl

is defined as

ϕk
xl

=
(

1Al,k
(xl)

P(Xl ∈ Al,k) − 1
) ∑

S⊆D\{l}
w(S)vk(S)

+ al,k

xl −
E
[
Xl1Al,k

(Xl)
]

P(Xl ∈ Al,k)

 ∑
S⊆D\{l}

w(S)×
∏

i∈S∪l

1Ai,k
(xi)

∏
j∈S

P(Xi ∈ Ai,k), (9)

where w(S) = 1
p

(|D|−1
|S|

)−1
and vk(S) = E[fk(X)1Ak

(X) |XS = xS ]. Equation (9) demonstrates
that even if the model only uses fk⋆(x) for a given observation x, the Local SV x may depend
on the coefficients of the unused linear models fk for k ∈ {1, . . . , m} \ {k⋆}.

Proof. Let’s assume that ∏p
i=1 P(Xi ∈ Ai,k) > 0 and intercepts bk = 0 for all k = 1, . . . , m

without loss of generality. Given an observation x = (x1, . . . , xp), we consider the Shapley Value
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of a feature-value Xl = xl defined as

ϕxl
=

∑
S⊆D\{l}

w(S)
[
∆l(S)

]
,

where w(S) = 1
p

(|D|−1
|S|

)−1
, ∆l(S) = v(S ∪ l) − v(S) represent the marginal contribution, and

v(S) = E [f(X)|XS = xS ]. Note that we can decompose v(S) into m separate terms as following:

v(S) = E
[

m∑
k=1

( p∑
i=1

ai,kXi

)
1Ak

(X) |XS = xS

]

=
m∑

k=1
E
[( p∑

i=1
ai,kXi

)
1Ak

(X) |XS = xS

]

=
m∑

k=1
vk(S)

Hence, we can decompose the Shapley Value of ϕxl
due to the linearity property of SV as

ϕxl
=

m∑
k=1

ϕk
xl

,

where ϕk
xl

corresponds to the SV compute using the value function vk(S). Therefore, we only
need to prove that ϕk

xl
for k ̸= k⋆ is not necessarily null to prove the Theorem. We have

vk(S) = E
[( p∑

i=1
ai,kXi

)
1Ak

(X) |XS = xS

]

= E

∑
i∈S

ai,kXi +
∑
i∈S̄

ai,kXi

 p∏
j=1

1Aj,k
(Xj) |XS = xS


=
(∑

i∈S

ai,kxi

)∏
j∈S

1Aj,k
(xj)

∏
j∈S̄

P(Xj ∈ Aj,k)

+
∑
i∈S̄

ai,kE
[
Xi1Ai,k

(Xi)
] ∏

j∈S̄:j ̸=i

P(Xj ∈ Aj,k)
∏
j∈S

1Aj,k
(xj).



Similarly, we can write v(S ∪ l) as:

vk(S ∪ l) =

 ∑
i∈S∪l

ai,kxi

 ∏
j∈S∪l

1Aj,k
(xj)

∏
j∈S∪l

P(Xj ∈ Aj,k)

+
∑

i∈S∪l

ai,kE
[
Xi1Ai,k

(Xi)
] ∏

j∈S∪l:j ̸=i

P(Xj ∈ Aj,k)
∏

j∈S∪l

1Aj,k
(xj)

=
(∑

i∈S

ai,kxi

)∏
j∈S

1Aj,k
(xj)

∏
j∈S

P(Xj ∈ Aj,k)×
1Al,k

(xl)
P(Xl ∈ Al,k)

+ al,kxl

∏
j∈S

1Aj,k
(xj)

∏
j∈S

P(Xj ∈ Aj,k)×
1Al,k

(xl)
P(Xl ∈ Al,k)

+
∑
i∈S

ai,kE
[
Xi1Ai,k

(Xi)
] ∏

j∈S:j ̸=i

P(Xj ∈ Aj,k)
∏
j∈S

1Aj,k
(xj)×

1Al,k
(xl)

P(Xl ∈ Al,k)

− al,kE
[
Xl1Al,k

(Xl)
] ∏

j∈S:j ̸=l

P(Xj ∈ Aj,k)
∏
j∈S

1Aj,k
(xj)×

1Al,k
(xl)

P(Xl ∈ Al,k)

The terms highlighted in red and teal respectively represent the negative and positive contribu-
tions of the variable Xl = xl in vk(S ∪ l), the other terms will be put together to form vk(S) as
follows

vk(S ∪ l) =
1Al,k

(xl)
P(Xl ∈ Al,k)vk(S)

+ 1
P(Xl ∈ Al,k)

∏
j∈S∪l

1Aj,k
(xj)

∏
j∈S

P(Xj ∈ Aj,k)× al,k

xl −
E
[
Xl1Al,k

(Xl)
]

P(Xl ∈ Al,k)

 .

Hence, the marginal contribution of coalition S of the SV ϕk
xl

is equal to:

∆k
l (S) = vk(S ∪ l)− vk(S)

= vk(S)
(

1Al,k
(xl)

P(Xl ∈ Al,k) − 1
)

+
∏

j∈S∪l

1Aj,k
(xj)

∏
j∈S

P(Xj ∈ Aj,k)× al,k

xl −
E
[
Xl1Al,k

(Xl)
]

P(Xl ∈ Al,k)


Finally, we have

ϕk
xl

=
(

1Al,k
(xl)

P(Xl ∈ Al,k) − 1
) ∑

S⊆D\{l}
w(S)vk(S)

+ al,k

xl −
E
[
Xl1Al,k

(Xl)
]

P(Xl ∈ Al,k)

 ∑
S⊆D\{l}

w(S)×
∏

j∈S∪l

1Aj,k
(xj)

∏
j∈S

P(Xj ∈ Aj,k)



Appendix for Chapter 4

8 Proof of the Projected CDF Forest consistency

Here, we prove the main result of this chapter, Theorem 4.4, which is the uniform a.s. consistency
of the PRF CDF F̂S(y|XS = xS) to the Projected CDF FS(y|XS = xS).

8.1 Main assumptions

We recall the main assumptions (4.1, 4.2, 4.3) for the sake of clarity.

Assumption 8.1. For all x ∈ Rd, the conditional cumulative distribution function F (y|X = x)
is continuous.

Assumption 8.1 is necessary to get the uniform convergence of the estimator.

Assumption 8.2. For any tree l ∈ [k], we assume that the variation of the conditional cumu-
lative distribution function within any cell goes to 0.

∀x ∈ Rd,∀y ∈ R, sup
z∈An(x;Θl)

|F (y|z)− F (y|x)| a.s−→
n→+∞

0

Assumption 8.2 allows to control the approximation error of the estimator. If for all y, F (y|.) is
continuous, Assumption 8.2 is satisfied provided that the diameter of the cell goes to zero. Note
that the vanishing of the diameter of the cell is a common condition used to prove the consistency
of general partitioning estimator (see chapter 4 in [Györfi, 2002]). [Scornet, 2015] show that
this is true when the data come from additive regression models [Stone, 1985b], and [Elie-Dit-
Cosaque, 2022] show that it holds for a more general class, such as product functions or sums of
product functions. This result is also valid for all regression functions, with a slightly modified
version of RF, where each child node contains at least a small fraction of the observations in
the parent node, and the probability that each variable j = 1, . . . , p is chosen for the split is
positive for every node. Under these small modifications, Lemma 2 from [Meinshausen, 2006]
shows that the diameter of each leaf node vanishes.

Assumption 8.3. Let k the number of trees and Nn(x; Θl) number of bootstrap observations in
the leaf node where x falls, and assume that k = O(nα) with α > 0, and ∀x ∈ Rd, Nn(x; Θl) =
Ω1(
√

n(ln(n))β), with β > 1 a.s.
1f(n) = Ω(g(n)) ⇐⇒ ∃c > 0, ∃n0 > 0 | ∀n ≥ n0, |f(n)| ≥ c|g(n)|
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Assumption 8.3 allows us to control the estimation error and means that the cells should contain
a sufficiently large number of points so that averaging among the observations is effective.

To prove the consistency of the PRF CDF F̂S(y|XS = xS), we only need to verify the as-
sumptions 8.1, 8.2, 8.3 on the parameters of the Projected Forest and the Projected CDF
FS(y|XS = xS) = P(Y ≤ y|XS = xS).

Assumptions 8.1 and 8.2 are satisfied for the Projected CDF and the PRF Forest’s leaves. Since
by definition A

(S)
n (xS ; Θl) is included in An(x; Θl), if the diameter goes to zero within the cells

of the RF, it also vanishes in the Projected Forest. In addition, if the CDF F (y|X = x) =
F (y|XS = xS , X S̄ = xS̄) is continuous, by analysis of parameter-dependent integral we have
that the Projected CDF FS(y|XS = xS) =

∫
F (y|XS = xS , X S̄ = xS̄)P(xS̄ |xS)dxS̄ is also

continuous. As we control the minimal number of observations in each leaf of the Projected
Forest by construction, Assumption 8.3 is also verified. Then, the PRF CDF satisfies also
Assumption 8.1-8.3 which ensures its consistency thanks to Theorem 4.4.

8.2 Proof of Theorem 4.4

Theorem 8.4. Consider a random forest which satisfies Assumtions 8.1 to 8.3. Then,

∀x ∈ Rd, sup
y∈R
|F̂S(y|XS = xS)− FS(y|XS = xS)| a.s−→

n→+∞
0 (10)

To prove this Theorem, we essentially follow [Elie-Dit-Cosaque, 2022]. The idea is first to prove
the result for a honest forest [Wager, 2017], then demonstrate that the original forest and the
Honest Forest are close a.s.

Let us assume we have a honest forest [Wager, 2017], which is a random forest that grows using
Dn but uses another independent sample D⋄

n = {(X⋄
i , Y ⋄

i )}ni=1 (independent of Dn and Θ) to
estimate the weights and predictions. From this, we extract a projected CDF honest forest
defined as follows:

F ⋄
S(y|XS = xS) =

n∑
i=1

w⋄
n,i(xS)1Y ⋄

i ≤y where w⋄
n,i(xS) = 1

k

k∑
l=1

1
X⋄

i ∈A
(S)
n (xS ; Θl)

N
⋄(S)
n (xS ; Θl)

,

and N
⋄(S)
n (xS ; Θl) is the number of observation of {X⋄

i }ni=1 that fall into A
(S)
n (xS ; Θl). Note

that F ⋄
S(y|XS = xS) depends on Θ1, . . . , Θk,Dn, X⋄

1, . . . , X⋄
n, but we will not specify them to

ease notations. Consequently, we have for all x ∈ Rd, y ∈ R,

∣∣F̂S(y|XS = xS)− FS(y|XS = xS)
∣∣ ≤ ∣∣F̂S(y|XS = xS)− F ⋄

S(y|XS = xS)
∣∣

+
∣∣F ⋄

S(y|XS = xS)− FS(y|XS = xS)
∣∣.

The convergence of the two right-hand terms is handled separately into the following Proposition
8.5 and Lemma 8.6 respectively.



Proposition 8.5. Consider a random forest which satisfies Assumtions 8.1 to 8.3. Then,

∀x ∈ Rd,∀y ∈ R, F ⋄
S(y|XS = xS) a.s−→

n→+∞
FS(y|XS = xS) (11)

Proposition 8.5 shows that the Projected CDF honest forest is consistent and Lemma 8.6 shows
that the honest and the original forest are close.

Lemma 8.6. Consider a random forest which satisfies Assumtions 8.1 to 8.3. Then,

∀x ∈ Rd,∀y ∈ R, |F ⋄
S(y|XS = xS)− F̂S(y|XS = xS |

a.s−→
n→+∞

0 (12)

Hence, according to Proposition 8.5 and Lemma 8.6, we get

∀x ∈ Rd,∀y ∈ R, F̂S(y|XS = xS) a.s−→
n→+∞

FS(y|XS = xS) (13)

We use Dini’s second Theorem to have the almost sure uniform convergence relative to y of the
Projected CDF honest forest. Indeed, {Y ⋄

i ≤ y} = {Ui ≤ FS(y|XS = X⋄
i,S)}, where Ui, i =

1, . . . , n are i.i.d uniform random variables. Let si = FS(y|XS = X⋄
i,S) and s = FS(y|XS = xS),

we have

F̂S(y|XS = xS) =
n∑

i=1
wn,i(xS)1{Ui≤si}

=
n∑

i=1
wn,i(xS)1{Ũi≤s},

where Ũi ∼ U(s− si, s− si + 1), i = 1, . . . , n are independent uniform random variables. Then,
Equation 13 is equivalent to:

∀x ∈ Rd,∀s ∈ [0, 1],
n∑

i=1
wn,i(xS)1{Ũi≤s}

a.s−→
n→+∞

s. (14)

Equation (14) states that, ∀s ∈ [0, 1], ∃Ns ⊂ Ω,P(Ns) = 0 such that

∀ω ∈ N c
s ,

n∑
i=1

wn,i(xS)1{Ũi(ω)≤s} −→n→+∞
s. (15)

wn,i(xS) is also random but we do not write wn,i(xS)(w) to lightend the notations. Hence, we
need to find a set N that does not depend on s, which satisfies Equation (15) to get the uniform
convergence with Dini’s second Theorem. To that aim, we will use the density of Q in R as in
the proof of the Glivenko-Cantelli Theorem.



Since the countable union of null sets is a null set, ∃N ⊂ Ω,P(N) = 0 such that

∀s ∈ [0, 1] ∩Q, ∀ω ∈ N c,
n∑

i=1
wn,i(xS)1{Ũi(ω)≤s} −→n→+∞

s. (16)

In fact, Equation (16) is also true for all s ∈ [0, 1]. let s ∈ [0, 1], ϵ > 0, w ∈ N c,∃p, q ∈ Q such
that s− ϵ ≤ p ≤ s ≤ q ≤ s + ϵ, since s→

∑n
i=1 wn,i(xS)1{Ũi(w)≤s} is increasing, we have:

n∑
i=1

wn,i(xS)1{Ũi(ω)≤p} ≤
n∑

i=1
wn,i(xS)1{Ũi(ω)≤s} ≤

n∑
i=1

wn,i(xS)1{Ũi(ω)≤q}. (17)

Thus,

s− ϵ ≤ lim inf
n∑

i=1
wn,i(xS)1{Ũi(ω)≤s} ≤ lim sup

n∑
i=1

wn,i(xS)1{Ũi(ω)≤s} ≤ s + ϵ. (18)

So we have shown that ∃N ⊂ Ω,P(N) = 0,∀ω ∈ N c

• s→
∑n

i=1 wn,i(xS)1{Ũi(w)≤s} is increasing for all n ∈ N⋆

• ∀s ∈ [0, 1], ∑n
i=1 wn,i(xS)1{Ũi(w)≤s} −→n→+∞

s and s→ s is continuous

Then the Dini’s second Theorem states that we have the almost sure uniform convergence
proving Theorem 4.4. Now, we turn to the proof of Proposition 8.5 and Lemma 8.6. To that
aim, we need the following lemma based on Vapnik-Chervonenkis classes.

Lemma 8.7 ([Elie-Dit-Cosaque, 2022]). Consider Dn,D⋄
n, two independent datasets of n i.i.d

samples of (X, Y ) ∼ P = PXPY |X and a tree build using Dn with bootstrap and bagging procedure
driven by Θ. As before, Nn(xS ; Θl) is the number of bootstrap observations of Dn that fall into
A

(S)
n (xS ; Θl) and N

⋄(S)
n (xS ; Θl) is the number of observations of D⋄

n that fall into A
(S)
n (xS ; Θl).

Then:

∀ϵ > 0, P
{∣∣∣Nn(xS ; Θl)−N⋄(S)

n (xS ; Θl)
∣∣∣ > ϵ

}
≤ 24(n + 1)2|S|e−ϵ2/288n. (19)



Proof.

P
{∣∣∣Nn(xS ; Θl)−N⋄(S)

n (xS ; Θl)
∣∣∣ > ϵ

}
≤ P

{∣∣∣∣∣Nn(xS ; Θl)
n

− 1
n

n∑
i=1

1
Xi,S∈A

(S)
n (xS ;Θl)

∣∣∣∣∣ >
ϵ

3n

}

+ P
{∣∣∣∣∣ 1n

n∑
i=1

1
Xi,S∈A

(S)
n (xS ;Θl)

− PPX

{
XS ∈ A(S)

n (xS ; Θl)
}∣∣∣∣∣ >

ϵ

3n

}

+ P
{∣∣∣∣∣N⋄(S)(xS ; Θl)

n
− PPX

{
XS ∈ A(S)

n (xS ; Θl)
}∣∣∣∣∣ >

ϵ

3n

}

≤ P
{

sup
A∈BS

∣∣∣∣∣ 1n
n∑

i=1
Bn(Xi; Θl)1Xi,S∈A −

1
n

n∑
i=1

1Xi,S∈A

∣∣∣∣∣ >
ϵ

3n

}

+ P
{

sup
A∈BS

∣∣∣∣∣ 1n
n∑

i=1
1Xi,S∈A − PPX

{XS ∈ A}
∣∣∣∣∣ >

ϵ

3n

}

+ P
{

sup
A∈BS

∣∣∣∣∣ 1n
n∑

i=1
1X⋄

i,S∈A − PPX
{XS ∈ A}

∣∣∣∣∣ >
ϵ

3n

}
,

where BS =
{∏

i∈S [ai, bi] : ai, bi ∈ R
}

is the set of hyperrectangles. The last two terms are han-
dled thanks to Theorem 2 in [Vapnik, 1971] which bounds the difference between the frequencies
of events to their probabilities over the entire class BS whose VC dimension is 2|S|. Hence,

P
{

sup
A∈BS

∣∣∣∣∣ 1n
n∑

i=1
1Xi,S∈A − PPX

{XS ∈ A}
∣∣∣∣∣ >

ϵ

3n

}
+ P

{
sup

A∈BS

∣∣∣∣∣ 1n
n∑

i=1
1X⋄

i,S∈A − PPX
{XS ∈ A}

∣∣∣∣∣ >
ϵ

3n

}

≤ 2P
{

sup
A∈BS

∣∣∣∣∣ 1n
n∑

i=1
1X⋄

i,S∈A − PPX
{XS ∈ A}

∣∣∣∣∣ >
ϵ

3n

}
≤ 16(n + 1)2|S|e−ϵ2/288n.

The first term is also handled using Theorem 2 in [Vapnik, 1971], but conditionally on Dn.
Recall that {Bn(Xi; Θl)}ni=1 is a multinomial random variable M(n; 1

n , . . . , 1
n) given Dn, thus

E
[

1
n

n∑
i=1

Bn(Xi; Θl)1Xi,S∈A

∣∣∣ Dn

]
= 1

n

n∑
i=1

1Xi,S∈A.

Therefore, we can apply Vapnik’s Theorem 2 to control the first term conditionally on Dn as
following

P
{

sup
A∈BS

∣∣∣∣∣ 1n
n∑

i=1
Bn(Xi; Θl)1Xi,S∈A −

1
n

n∑
i=1

1Xi,S∈A

∣∣∣∣∣ >
ϵ

3n

}

≤ E
[
P
{

sup
A∈BS

∣∣∣∣∣ 1n
n∑

i=1
Bn(Xi; Θl)1Xi,S∈A − E

[
1
n

n∑
i=1

Bn(Xi; Θl)1Xi,S∈A

∣∣∣ Dn

]∣∣∣∣∣ >
ϵ

3n

∣∣∣ Dn

}]
≤ 8(n + 1)2|S|e−ϵ2/288n.



Proof of proposition 8.5.

We want to show that:

∀x ∈ Rd,∀y ∈ R, F ⋄
S(y|XS = xS) a.s−→

n→+∞
FS(y|XS = xS)

For all x ∈ Rd, y ∈ R, we have:

∣∣F ⋄
S(y|XS = xS)− FS(y|XS = xS)

∣∣ ≤ ∣∣∣∣∣
n∑

i=1
w⋄

n,i(xS)
(
1{Y ⋄

i ≤y} − FS(y|XS = X⋄
i,S)
)∣∣∣∣∣

+
∣∣∣∣∣

n∑
i=1

w⋄
n,i(xS)

(
FS(y|XS = X⋄

i,S)− FS(y|XS = xS)
)∣∣∣∣∣

We define Wn = ∑n
i=1 w⋄

n,i(xS)
(
1{Y ⋄

i ≤y}−FS(y|XS = X⋄
i,S)
)

and Vn = ∑n
i=1 w⋄

n,i(xS)
(
FS(y|XS =

X⋄
i,S)− FS(y|XS = xS)

)
and treat each term separately.

Let us prove that |Wn|
a.s−→

n→+∞
0. We can rewrite Wn as Wn = ∑n

i=1 w⋄
n,i(xS)H⋄

i where H⋄
i is

bounded by 1 and E[H⋄
i |X⋄

i,S ] = 0. Then,

P(Wn > ϵ) ≤ e−tϵ E[etWn ]

≤ e−tϵ E
[

n∏
i=1

E
[
etw⋄

n,i(xS)H⋄
i |Θ1, . . . , Θk,Dn, X⋄

1,S , . . . , X⋄
n,S

]]

≤ e−tϵ E
[

n∏
i=1

e
t2
2 w⋄

n,i(xS)2
]

The last inequality comes from the fact that w⋄
n,i(xS) is constant given Θ1, . . . , Θk,Dn, X⋄

1,S , . . . , X⋄
n,S ,

and as H⋄
i is bounded by 1 with E[H⋄

i |X⋄
i,S ] = 0, we used the following inequality: If |X| ≤ 1

a.s and E[X] = 0, then E[etX ] ≤ e
t2
2 . Indeed, by using the convexity of exponential, we have

E
[
etX

]
≤ E

[
1−X

2

]
e−t + E

[
1+X

2

]
et ≤ cosh(t) ≤ e

t2
2 .

Using Assumption 8.2, let K > 0 be such that for all l ∈ [k], Nn(xS ; Θl) ≥ K
√

n ln(n)β a.s., then
we have Γ(l) =

{
N

⋄(S)
n (xS ; Θl) < K

√
n ln(n)β

2

}
⊂
{
|Nn(xS ; Θl)−N

⋄(S)
n (xS ; Θl)| > K

√
n ln(n)β

2

}
.

Thus, using Lemma 8.7, we have that P(Γ(l)) ≤ 24(n + 1)2|S| exp(−−K2(ln(n)2β)
1152 ).

We have

n∑
i=1

w⋄
n,i(xS)2 =

n∑
i=1

w⋄
n,i(xS)× 1

k

(
k∑

l=1

1
X⋄

i ∈A
(S)
n (xS ;Θl)

N
⋄(S)
n (xS ; Θl)

(1{Γ(l)} + 1{Γ(l)c})
)

≤
n∑

i=1
w⋄

n,i(xS)
(

2
K
√

n ln(n)β
+ 1

k

k∑
l=1

1
X⋄

i ∈A
(S)
n (xS ;Θl)

1{Γ(l)}

)



and

P(Wn > ϵ) ≤ exp(−tϵ + t2

K
√

n ln(n)β
)E
(

exp
(

t2

2 1∪k
l=1Γ(l)

))

≤ exp(−tϵ + t2

K
√

n ln(n)β
)×

(
1 + e

t2
2

k∑
l=1

P(Γ(l))
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We obtain the same bound for P(Wn ≤ −ϵ) = P(−Wn > ϵ), then by using the assumption 8.2,
that is, k = O(nα) so that the right term is finite, we conclude by Borel cantelli that |Wn| goes
to 0 a.s.

Lastly, we show that |Vn|
a.s−→

n→+∞
0.
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Using assumption 8.1, that is, variation of the Projected CDF within the cell of the Projected
tree vanishes, we conclude that |Vn|

a.s−→
n→+∞

0 ending the proof of Proposition 8.5.

Proof of Lemma 8.6. Here, we show that:

∀x ∈ Rd, ∀y ∈ R,
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We have
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As in [Arenal-Gutiérrez, 1996], we replace the boostrap component with Z1, . . . , Zn where Zi =
(Zi,1, Zi,2) is distributed as Z = (Z1, Z2) which follows uniform distribution over the set Dn =
{(X1, Y 1), . . . , (Xn, Y n)} and Zi,1, Zi,2 corresponds to the input and output, respectively.
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Therefore, Lemma 8.6 is equivalent to show that for all l ∈ [k], |G1
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As the right hand is summable, we have |G1
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0 by Borel-Cantelli. Now, we treat the term

|G2
l |. Let’s define B =

{∏|S|
i=1[ai, bi]× [−∞, y] : ai, bi ∈ R̄

}
, then for all ϵ > 0,

P(|G2
l | > ϵ) = P

(∣∣∣∣∣ 1n
n∑

i=1
1{X⋄

i ∈A
(S)
n (xS ; Θl), Y ⋄

i ≤y} −
1
n

n∑
i=1

1{Zi,1∈A
(S)
n (xS ; Θl), Zi,2≤y}

∣∣∣∣∣ >
ϵN

(S)
n (xS ; Θl)

n

)

≤ P
(

sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1
1{(X⋄

i ,Y ⋄
i )∈A − P ((X, Y ) ∈ A)

∣∣∣∣∣ >
ϵ K
√

n ln(n)β

3n

)

+ P
(

sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1
1{(Xi,Yi)∈A − P ((X, Y ) ∈ A)

∣∣∣∣∣ >
ϵ K
√

n ln(n)β

3n

)

+ P
(

sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1
1{(Zi,1,Zi,2)∈A −

n∑
i=1

1{(Xi,Yi)∈A

∣∣∣∣∣ >
ϵ K
√

n ln(n)β

3n

)

≤ 2P
(

sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1
1{(Xi,Yi)∈A − P ((X, Y ) ∈ A)

∣∣∣∣∣ >
ϵ K
√

n ln(n)β

3n

)

+ P
(

sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1
1{(Zi,1,Zi,2)∈A −

n∑
i=1

1{(Xi,Yi)∈A

∣∣∣∣∣ >
ϵ K
√

n ln(n)β

3n

)

As above, the first term are handled thanks to a direct application of the Theorem 2 in [Vapnik,
1971] that bounds the difference between the frequencies of events to their probabilities over the
entire class B. As a result, we have
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To handle the last term, we apply the Theorem 2 in [Vapnik, 1971] under the conditional



distribution given Dn,
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Finally, we get the overall upper bound,

P(|G2
l | > ϵ) ≤ 24(n + 1)2|S|+1 exp(−ϵ2 ln(n)2β

288 )

By Borel-Cantelli, we conclude that |G2
l |

a.s−→
n→+∞

0.

This concludes the proof of Lemma 8.6, thus the proof of Theorem4.4.

9 Empirical evaluations of the estimator F̂S

In order to compare the PRF CDF F̂S(y|XS = xS) and FS(y|XS = xS), we use a Monte Carlo
approach to effectively compute FS(y|XS = xS). We use the synthetic dataset of Section 5:
X ∈ Rp, X ∈ N (0, Σ), Σ = 0.8Jp + 5Ip with p = 100, Ip is the identity matrix, Jp is all-ones
matrix and a piece-wise linear predictor defined as:

Y = (X1 + X2)1X5≤0 + (X3 + X4)1X5>0. (20)

The variables Xi for i = 6 . . . 100 are noise variables. We fit a RF with a sample size n = 104,
k = 20 trees and the minimal number of samples by leaf node is set to tn = ⌊

√
n× ln(n)1.5/250⌋

for the original and the Projected Forest.

Figure 4: Comparison of F̂S(y|XS = xS) and FS(y|XS = xS) with S = [1, 2, 5] and xS =
[−0.13, 1.29,−1.31]



We chose a randomly chosen point xS = [−0.13, 1.29,−1.31] with S = [1, 2, 5] from the test set.
The experiment is replicated 100 times. Figure 4 shows that the estimator works well for almost
all points y ∈ R.

We also compute two global metrics. For a given S, we compute the average Kolmogorov-
Smirnov MKS = 1

n

∑n
i=1 supy∈R |F̂S(y|XS = xS,i) − FS(y|XS = xS,i)| and the average mean

absolute deviation MAD = 1
n

∑n
i=1

∫
R |F̂S(y|XS = xS,i)− FS(y|XS = xS,i)|dy.

We have MAD = 0.008 and the MKS=0.26 on all the observations with S = [1, 2, 3, 5] showing
the estimator’s efficiency. We also compute them with small S = [0, 4], it works even better
with MAD=0.068, MKS=0.0098.

10 Additional experiments

10.1 Local rules of Anchors and Sufficient Rules with ground truth explana-
tions

In this section, we compare Anchors and Sufficient Rules using a synthetic dataset with strong
dependencies between the important features. In this case, we can evaluate their capacity of
providing the ground truth minimal rules since we know the distribution of the data. We use the
moon dataset (X1, X2, Y ) ∈ R2 × {0, 1}, see Figure 5, and we add gaussian features Z ∈ R100

with the µ, Σ of the previous section so that the final data is (X1, X2, Z, Y ). Also, if Z1 > 0, we
flip the label Y of the observations.

Figure 5: Explanations of x, x̃ by the two Sufficient Rules, the horizontal/vertical rectangle
is associate with S⋆

1 = [x1, z1], S⋆
2 = [x2, z1] respectively. The background samples are the

observations with z1 > 0.

We train a RF with the parameters of the previous section. It has AUC=99% on the test set
of 104 observations. We use Anchors with threshold τ = 0.95, tolerance δ = 0.05, and the
Minimal Sufficient Rules with π = 0.95 to explain 1000 observations of the test set. We observe
that on average Anchors tend to give much longer rules. The mean size for Sufficient Rules
is 2, and for Anchors it is 10. In addition, the Minimal Sufficient Explanations detect local
relevant variables more accurately. It has FDR=3%, TDR=100% and Anchors has FDR=48%,



TDR=80%. Finally, we qualitatively observe the rules on a given example x (black star in
Figure 5). We also assess the stability of the explanations by comparing the rules of x and
x̃ a nearby observation such that maxi∈{1,2} |xi − x̃i| ≤ 0.05 (yellow star in Figure 5). The
rules given by Anchors for x, x̃ are LAnchors(x) = {X1 > −0.03 AND Z1 > 0.01 AND Z9 >

−1.66 AND Z44 > 1.66 AND Z32 ≤ −1.57} and LAnchors(x̃) = {X1 > 1.04 AND X2 ≤
−0.20 AND Z1 > 0.01 AND Z28 > 0.01 AND Z45 ≤ −1.57}. The rules given by Anchors
are very different, showing instability. Moreover, we also note that Anchors is very sensitive to
random seed.

In contrast, the SDP approach gives the same explanations for x, x̃. The observations have two
Minimal Sufficient Explanations S⋆

1 = [X1, Z1], S⋆
2 = [X2, Z1]. These explanations lead to two

Sufficient Rules, which, when visualized along the X1 and X2 axes (as illustrated in Figure 5),
effectively elucidated the model’s predictions. Nevertheless, the vertical rule could be slightly
more to the left. We think this imprecision comes from the estimation of the RF, which is not
perfect.

As these observations have multiple explanations, we provide additional insight about the im-
portant variables by computing their Local eXplanatory Importances (LXI). The LXI of x, x̃

are
[
x1 = 0.5, x2 = 0.5, z1 = 1, z2 = 0, . . . , z100 = 0

]
. It shows that the variables {Zi}i∈J2,100K

are irrelevant for these observations. The relevant variables are X1, X2, Z1 and especially Z1 is
the most important. It is a necessary feature as it appears in every Sufficient Explanations.

Comparison of Shapley Values and LXI on Moon Data: In Figure 6 - 7, we compare
the Shapley Values and LXI of an observation with Z1 > 0 (the green star). We observe that
the LXI gives non-null values only on the active variable (X2, Z1), while the SV gives non-null
values also on noise variables. Moreover, SV gives a non-negligible value to the feature X1 that
is not important for this prediction. Indeed, by analyzing Figure 5, we observe that whatever
the value of X1, if we fix X2 and the sign of Z1, the prediction will not change.

Figure 6: LXI of the green star Figure 7: Shapley Values of the green star

We also compute the mean importance score across the population in Figure 8 - 9. For the SV,
we take the mean absolute values as it may have negative contributions. The three important
values that come out for both methods are X1, X2, Z1. However, as in the local case, SV assign
values to the noise variables.



Figure 8: Mean LXI Figure 9: Mean absolute SHAP

10.2 Shapley Values and Local eXplanatory importance (LXI) on LUCAS
dataset

In this section, we want to highlight a case where the LXI permit to drastically simplify the
diversity of the possible explanations. We use a semi-synthetic dataset LUCAS (LUng CAncer
Simple set), a dataset generated by causal Bayesian networks with 12 binary variables. The
causal graph is drawn in Figure 10a and the probability table in Figure 10b .

(a) (b)

Figure 10: (a): Bayesian network that represents the causal relationships between variables and
(b): Probabilities table used to generate the data.

https://www.causality.inf.ethz.ch/data/LUCAS.html


In Figure 11, we observe the different explanations of an observation chosen randomly, its fea-
tures values are

{
Smoking = True, Yellow Fingers = True, Anxiety = False,

Peer Pressure = False, Genetic = False, Attention Disorder = True, Born an Even Day =
False, Car Accident = True, Fatigue = True, Allergy = False, Coughing = True

}
and

its label is True. We see in the left of Figure 11 that it has many Sufficient Explanations. There-
fore, as seen in the right of Figure 11, the LXI permit to synthesize all the different explanations
in a single feature contributions that exhibits the local importance of the variables. Each value
corresponds to the frequency of apparition of the corresponding feature in the set of all the
sufficient explanations.

Figure 11: Screenshot of a web-app developed in https://github.com/salimamoukou/acv00
showing the Sufficient Explanations (upper left) and LXI (upper right) of an observation chosen
randomly

At the bottom of Figure 11, we observe the rule associated with the first Sufficient Explanation
which is

{
Smoking = True, Coughing = True

}
. Note that this rule is very powerful as it

has a coverage of 46% and an accuracy of 93%.

Comparison of Shapley Values and LXI on LUCAS: We can also compare the Shapley
Values and LXI on this data set. In Figure 12, we observe that it is the value of Coughing that
is really important for this observation. Indeed, it appears in several Sufficient Explanations
(80%). On the other side, in Figure 13, SHAP associates values to many more variables, and
it has difficulties to discriminate between the important values. It is difficult to deduce from
the values of Smoking, Coughing, Fatigue, Allergy which is the most important variable with
Shapley Values.



Figure 12: Sufficient Explanations and Local Explanatory Importance

Figure 13: Shapley Values

10.3 Stability of Anchors and Sufficient Rules

Here, we run the last experiment of Section 5 on the stability of the local rules (Anchors,
Sufficient Rules). The objective was to evaluate how these methods handle input perturbations.
To do this, we compared the rules generated by each method against the rules derived from 50
noisy versions of a given observation x. The noise was introduced by adding random Gaussian
perturbations N (0, ϵ× I) to the feature values, with two different values of ϵ = 0.01, 0.001.

Figure 15 illustrates the distribution of the number of different rules obtained from this experi-
ment. We observed that Anchors tend to produce a larger variety of rules when the observation
is slightly modified, whereas Sufficient Rules exhibit higher stability.



Figure 14: Number of different rules of Anchors (left) and Sufficient Rules (right) when ϵ = 0.001

Figure 15: Number of different rules of Anchors (left) and Sufficient Rules (right) when ϵ = 0.01

11 From Sufficient Rules to Global Interpretable model

In this section, we investigate the capacity to transform the Sufficient Rules explanations into a
global competitive model. Indeed, we can build a global model by combining all the Sufficient
Rules found for the observations in the training set. We set the output of each rule as the majority
class (resp. average values) for classification (resp. regression) of the training observations that
satisfy this rule. Note that some rules can overlap, and an observation can satisfy multiple rules.
To resolve these conflicts, we use the output of the rule with the best precision such as accuracy
or R2 for classification or regression respectively. We have experimented on 2 real-world datasets:
Diabetes [Kaggle, 2016] contains diagnostic measurements and aims to predict whether or not
a patient has diabetes, Breast Cancer Wisconsin (BCW) [Dua, 2017a] consists of predicting if a
tumor is benign or not using the characteristic of the cell nuclei. Thus, we perform comparisons
between the global model induced by the Sufficient Rules (G-SR) and SOTA global rule-based



models as baseline. We use the package imodel [Singh, 2021] for RuleFit, Skoped Rule (SkR)
and scikit-learn [Pedregosa, 2011] for Decision Tree (DT), and Random Forest (RF). In table 2,
we observe that the G-SR performs as well as the best baseline models while being transparent
in its decision process. These experiments increase the trustworthiness of our explanations
because we derive an interpretable (by-design) global model without paying a high trade-off
with performance. As a by-product, SR can be used as a new way of building glass-box models,
but this line of research is beyond the scope of the current work.

Table 2: Accuracy of the different models on Diabetes and Breast Cancer Wisconsin dataset
(BCW). For G-SR, we add the coverage of the model on the test-set in brackets.

Data set G-SR RuleFit SkR DT RF

Diabetes 0.98 (81%) 0.76 0.71 0.90 0.92
BCW 0.95 (92%) 0.95 0.93 0.95 0.96

12 Projected Forest CDF algorithm

Algorithm 5: Projected Forest CDF: F̂S

Input : A random forest fit with Dn, a query point xS , y, min_nodes_size
Output: F̂ (y|XS = xS)

1: for all trees in the forest do
2: initialize nodes_level as a list of nodes containing only the root node;
3: initialize nodes_child as an empty list of child nodes;
4: initialize samples as the list of observation indices of the full training data of the tree;
5: for all levels in the tree do
6: for all nodes in nodes_level: do
7: if the node splits on a variable in S then
8: compute whether xS falls in the left or right child node;
9: append the child node to nodes_child;

10: set samples_child as the observations in samples which satisfy the split;
11: else
12: append both the left and right children nodes to nodes_child;
13: set samples = samples_child;
14: if the size of samples_child is lower than min_node_size then
15: break the loop through the tree levels;
16: else
17: set samples = samples_child;
18: set nodes_level = nodes_child;
19: compute the tree prediction as the average of 1Yi≤y for all i in samples;
20: return average the prediction of all trees;
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13 Regional RF detailed

In this section, we give a simple application of the Regional RF algorithm to better understand
how it works. Recall that the Regional RF is a generalization of the RF’s algorithm to give
prediction even when we condition given a region, e.g., to estimate E(f(X) |XS ∈ CS(x), X S̄ =
xS̄) with CS(x) = ∏|S|

i=1[ai, bi], ai, bi ∈ R̄ a hyperrectangle. The algorithm works as follows: we
drop the observations in the initial trees, if a split used variable i ∈ S̄, a fixed value-based
condition, we used the classic rules, i.e., if xi ≤ t, the observations go to the left children,
otherwise the right children. However, if a split used variable i ∈ S, regional-based condition,
we used the hyperrectangle CS(x) = ∏|S|

i=1[ai, bi]. The observations are sent to the left children
if bi ≤ t, right children if ai > t and if t ∈ [ai, bi] the observations are sent both to the left and
right children.

To illustrate how it works, we use a two dimensional variables X = (X0, X1) ∈ R2, a simple
decision tree f represented in Figure 16, and want to compute for x = [1.5, 1.9], E(f(X) | X1 ∈
[2, 3.5], X0 = 1.5). We assume that P(X1 ∈ [2, 3.5] | X0 = 1.5) > 0 and denoted T1 as the set
of the values of the splits based on variables X1 of the decision tree. One way of estimating this
conditional mean is by using Monte Carlo sampling. Therefore, there are two cases :

Figure 16: Representation of a simple decision tree (right Figure) and its associated partition
(left Figure). The gray part in the partition corresponds to the region [2, 3.5]× [1, 2]
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• If ∀t ∈ T1, t ≤ 2 or t > 3.5, then all the observations sampled s.t. X̃i ∼ PX | X1∈[2, 3.5],X0=1.5

follow the same path and fall in the same leaf. The Monte Carlo estimator of the decision
tree E(f(X)|X1 ∈ [2, 3.5], X0 = 1.5) is equal to the output of the Regional RF algorithm.

– For instance, a special case of the case above is: if ∀t ∈ T1, t ≤ 2, and we sample
using PX | X1∈[2, 3.5],X0=1.5, then all the observations go to the right children when
they encounters a node using X1 and fall in the same leaf.

• If ∃t ∈ T1 and t ∈ [2, 3.5], then the observations sampled s.t. X̃i ∼ PX | X1∈[2, 3.5],X0=1.5

can fall in multiple terminal leaf depending on if their coordinates x1 is lower than t.
Following our example, if we generate samples using PX | X1∈[2, 3.5],X0=1.5, the observations
will fall in the gray region of Figure 16, and thus can fall in node 4 or 5. Therefore, the
true estimate is:

E(f(X) | X1 ∈ [2, 3.5], X0 = 1.5) = P(X1 ≤ 2.9 |X0 = 1.5)× E[f(X) |X ∈ L4]

+ P(X1 > 2.9 |X0 = 1.5)× E[f(X) |X ∈ L5] (21)

Concerning the last case (t ∈ [2, 3.5]), we need to estimate the different probabilities P(X1 ≤
2.9 | X0 = 1.5),P(X1 > 2.9 | X0 = 1.5) to compute E(f(X) | X1 ∈ [2, 3.5], X0 = 1.5), but these
probabilities are difficult to estimate in practice. However, we argue that we can ignore these
splits, and thus do no need to fragment the query region using the leaves of the tree. Indeed, as
we are no longer interest in a point estimate but regional (population mean) we do not need to
go to the level of the leaves. We propose to ignore the splits of the leaves that divide the query
region. For instance, the leaves 4 and 5 split the region [2, 3.5] in two cells, by ignoring these
splits we estimate the mean of the gray region by taking the average output of the leaves 4 and
5 instead of computing the mean weighted by the probabilities as in Equation (21). Roughly,
it consists to follow the classic rules of a decision tree (if the region is above or below a split)
and ignore the splits that are in the query region, i.e., we average the output of all the leaves
that are compatible with the condition X1 ∈ [2, 3.5], X0 = 1.5. We think it leads to a better
estimation for two reasons. First, we observe that the case where t is in the region and thus
divides the query region does not occur often. Moreover, the leaves of the trees are very small
in practice, and taking the mean of observations that fall into the union of leaves that belong
to the query region is more reasonable than computing the weighted mean and thus trying to
estimate the different probabilities P(X1 ≤ 2.9 |X0 = 1.5),P(X1 > 2.9 |X0 = 1.5).

14 Additional experiments

In table 3, we compare the Accuracy (Acc), Plausibility (Psb), and Sparsity (Sprs) of the different
methods on additonal real-world datasets: FICO [FICO, 2018], NHANESI [CDC, 1999-2022].

We observe that the L-CR, and R-CR outperform the baseline methods by a large margin on
Accuracy and Plausibility. The baseline methods still struggle to change at the same time the
positive and negative class. AReS and CET give better sparsity, but their counterfactual samples



are less plausible than the ones generated by the CR.

Table 3: Results of the Accuracy (Acc), Plausibility, and Sparsity (Sprs) of the different methods.
We compute each metric according to the positive (Pos) and negative (Neg) class.

FICO NHANESI
Acc Psb Sps Acc Psb Sps

Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg
L-CR 0.98 0.94 0.98 0.99 5 5 0.99 0.98 0.98 0.97 5 6
R-CR 0.90 0.94 0.98 0.99 9 8.43 0.86 0.95 0.96 0.99 7 7
AReS 0.34 0.01 0.85 0.86 2 1 0.06 1 0.87 0.92 1 1
CET 0.76 0 0.76 0.60 2 2 0 0.40 0.82 0.56 0 5

15 Parameters detailed

In this section, we give the different parameters of each method. For all methods and datasets,
we first used a greedy search given a set of parameters. For AReS, we use the following set of
parameters:

• max rule = {4, 6, 8}, max rule length = {4, 8}, max change num = {2, 4, 6},

• minimal support = 0.05, discretization bins = {10, 20},

• λacc = λcov = λcst = 1.

For CET, we search in the following set of parameters:

• max iterations = {500, 1000},

• max leaf size = {4, 6, 8,−1},

• λ = 0.01, γ = 1.

Lastly, for the Counterfactual Rules, we used the following parameters:

• nb estimators = {20, 50}, max depth= {8, 10, 12},

• π = 0.9, πC = 0.9.

We obtained the same optimal parameters for all datasets:

• AReS: max rule = 4, max rule length= 4, max change num = 4, minimal support = 0.05,
discretization bins = 10, λacc = λcov = λcst = 1

• CET: max iterations = 1000, max leaf size = −1, λ = 0.01, γ = 1

• CR: nb estimators= 20, max depth= 10, π = 0.9, πC = 0.9
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16 Proof of Lemma 4.1

The Lemma 4.1, which is the cornerstone of the LCP framework, shows how to achieve marginal
coverage by properly selecting the level α̃ of the quantile of the localizer.

Lemma 16.1. Let α̃ be the smallest value in Γ =
{∑k

j=1 wn(Xi, Xj) : i, k ∈ [n + 1]
}

such that

n+1∑
i=1

1
n + 11V̂i≤Q(α̃; Fi)

≥ 1− α, (22)

then PP n+1

{
V̂n+1 ≤ Q(α̃; Fn+1)

}
≥ 1− α, or equivalently PP n+1

{
V̂n+1 ≤ Q(α̃; F∞

n+1)
}
≥ 1− α.

It is important to keep in mind that both α̃ and Fn+1 depends on D̂n =
{

Ẑ1, . . . , Ẑn

}
and

(Xn+1, V̂n+1) where Ẑi = (Xi, V̂i), but we will not specify them for ease of reading.

Proof. Let define the event En+1 =
{

Ẑ1 = ẑ1, . . . , Ẑn+1 = ẑn+1
}

where Ẑi = (Xi, V̂i) and ẑi =
(xi, v̂i) ∈ X ×R. The exchangeability of the residuals implies that V̂n+1|En+1 is uniform on the
set {v̂1, . . . , v̂n+1}, and

PP n+1

{
V̂n+1 ≤ Q (α̃; Fn+1)

∣∣∣ En+1
}

=
n+1∑
i=1

PP n+1

{
V̂n+1 = v̂i | En+1

}
1v̂i≤Q(α̃; Fi)

=
n+1∑
i=1

1
n + 11v̂i≤Q(α̃; Fi) ≥ 1− α. (by Eq. 22)

The formulation V̂n+1|En+1 aims to provide another way to represent the uniformity of ranks
when variables are exchangeable. It corresponds to a scenario where we had observed an un-
ordered set of variables En+1 =

{
Ẑ1 = ẑ1, . . . , Ẑn+1 = ẑn+1

}
and have forgotten which value vi

each random variable Vj is associated with. By leveraging the uniformity of ranks of exchange-
able random variables (see Chapter 1, Lemma 2.2), we establish that P (Vj = vi|En+1) = 1

n+1 .

By marginalizing over the event En+1, we have PP n+1

{
V̂n+1 ≤ Q(α̃; Fn+1)

}
≥ 1− α. Addition-

ally, we can remove the dependence on the unknown residuals V̂n+1 using the well-known fact
that V̂n+1 ≤ Q(α̃; Fn+1) ⇐⇒ V̂n+1 ≤ Q(α̃; F∞

n+1) (see Chapter 1, Lemma 2.3). Thus, we also
have PP n+1

{
V̂n+1 ≤ Q(α̃; F∞

n+1)
}
≥ 1− α.
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We refer to the original paper [Guan, 2022] for the proof of Theorem 4.2 and Lemma 4.3.

17 Proof of Theorem 4.4: Training-conditional of LCP-RF

In this section, we prove Theorem 4.4 that shows how to adapt the LCP-RF approach to have
training-conditional or PAC coverage.

Theorem 17.1. Suppose that all observations are i.i.d. drawn from the distribution P . For
any given ϵ > 0 and α − ϵ > 0, let α̂ be the smallest value in the uniform grid T = {α1 =
1
K , . . . , αK = 1} of size K such that

n2∑
i=1

1
n2
1

V̂ 2
i ≤Q(1∧(α̃(X2

i )+α̂); F2,∞
i ) ≥ 1− α. (23)

Then, we have

PP n1

{
cov(Dn1) ≥ 1− α− ϵ

}
≥ 1− δ, (24)

with δ = K exp(−2n2ϵ2) and cov(Dn1) = PP

{
V̂n+1 ≤ Q

(
1 ∧ (α̃(Xn+1) + α̂); F∞

n+1
) ∣∣∣ Dn1

}
.

Remark. This result is valid under the i.i.d assumption and not under exchangeability as the
other results of this chapter. We suggest choosing a grid with K = 10, T ⊂ [0, α] as we have
observed in most practical scenarios that α̃(Xn+1) ≈ 1− α. However, the central idea remains
unaltered - to select a grid that enables transitioning from α̃(Xn+1) to 1. Additionally, as
α̃(Xn+1) + α̂ may be above 1, we use 1 ∧ (α̃(Xn+1) + α̂) to ensure that it does not exceed 1.

Proof. Recall that α̃, α̂ and F∞
n+1 is a function of D̂n1 =

{
Ẑ1, . . . , Ẑn1

}
and Xn+1 as the RF

has been trained on D̂n1 , but we will not specify D̂n1 for ease of reading. We also assume that
α̃(Xn+1) + α ≤ 1 for all α ∈ T without loss of generality to lighten the notations.

PP n1

{
PP

{
V̂n+1 ≤ Q

(
α̃(Xn+1) + α̂; F∞

n+1
) ∣∣∣Dn1

}
≤ 1− α− ϵ

}

≤ PP n1

{
PP

{
V̂n+1 ≤ Q

(
α̃(Xn+1) + α̂; F∞

n+1
) ∣∣∣Dn1

}
≤

n2∑
i=1

1
n2
1

V̂ 2
i ≤Q(α̃(X2

i )+α̂; F2,∞
i ) − ϵ

}

= E
[
PP n1

{
PP

{
V̂n+1 ≤ Q

(
α̃(Xn+1) + α̂; F∞

n+1
) ∣∣∣Dn1

}
≤

n2∑
i=1

1
n2
1

V̂ 2
i ≤Q(α̃(X2

i )+α̂; F2,∞
i ) − ϵ

}∣∣∣∣∣Dn1

}]

≤
∑
α∈T

E
[
PP n1

{
PP

{
V̂n+1 ≤ Q

(
α̃(Xn+1) + α; F∞

n+1
) ∣∣∣Dn1

}
≤

n2∑
i=1

1
n2
1

V̂ 2
i ≤Q(α̃(X2

i )+α; F2,∞
i ) − ϵ

}∣∣∣∣∣Dn1

}]

Note that conditionally on Dn1 , ∑n2
i=1

1
n2
1

V̂ 2
i ≤Q(α̃(X2

i )+α; F2,∞
i ) is the average of n2 bernoulli-trial

with mean PP

{
V̂n+1 ≤ Q

(
α̃(Xn+1) + α; F∞

n+1
) ∣∣∣Dn1

}
, therefore we can bound the conditional

probability using Hoeffding’s inequality. Finally, we have



PP n1

{
PP

{
V̂n+1 ≤ Q

(
α̃(Xn+1) + α̂; F∞

n+1
) ∣∣∣Dn1

}
≤ 1− α− ϵ

}

≤
∑
α∈T

E
[
PP n1

{
PP

{
V̂n+1 ≤ Q

(
α̃(Xn+1) + α; F∞

n+1
) ∣∣∣Dn1

}
≤

n2∑
i=1

1
n2
1

V̂ 2
i ≤Q(α̃(X2

i )+α; F2,∞
i ) − ϵ

}∣∣∣∣∣Dn1

}]

≤ K exp(−2ϵ2n2).

18 Proof of marginal coverage of groupwise LCP-RF

Here, we show that there is no loss in coverage guarantee when calibrating by group. We demon-
strate the case of marginal coverage, the groupwise training-conditional is obtained similarly.

Theorem 18.1. Given a partition of the calibration data Dn in G1, . . . , GL and their associated
regions R = {R1, . . . , RL} defined by the weighted adjacency matrix G with Gi,j = wn(Xi, Xj)
of the RF. We denote R(X) ∈ R the region where X falls and |R(X)| the number of obser-
vations in R(X). At V̂n+1 = v, let define α̃(v, R(Xn+1)) to be the smallest value α̃ ∈ Γ ={∑k

j=1 wn(Xi, Xj) : i = 1, . . . , n + 1; k = 1, . . . , n + 1
}

such that

∑
i : Xi∈R(Xn+1)

1
|R(Xn+1)|+ 11V̂i≤Q(α̃(v,R(Xn+1)); Fv

i ) ≥ 1− α. (25)

If CV (Xn+1) =
{
v : v ≤ Q

(
α̃ (v, R(Xn+1)) ; F∞

n+1
)}

, then PP n+1

{
V̂n+1 ∈ CV (Xn+1)

}
≥ 1−α.

Proof.

PP n+1

{
V̂n+1 ∈ CV (Xn+1)

}
= PP n+1

{
V̂n+1 ≤ Q

(
α̃(V̂n+1, R(Xn+1)); F∞

n+1)
)}

=
L∑

l=1
P(Rl) PP n+1

{
V̂n+1 ≤ Q

(
α̃(V̂n+1, R(Xn+1); F∞

n+1

) ∣∣ Xn+1 ∈ Rl

}

≥
L∑

l=1
P(Rl)(1− α) (by Eq. 25)

≥ 1− α.

19 Proof of Theorem 5.4: asymptotic conditional coverage

Here, we prove the asymptotic conditional coverage of the LCP-RF approach or Theorem 5.4.
Our primary contribution is Lemma 19.3, which enables us to control the weights of the RF
and, subsequently, to proceed with [Guan, 2022]’s proof.



Theorem 19.1. Suppose that all observations are i.i.d. and let α̃(v) and ĈV (Xn+1) define
as in Theorem 4.2, i.e., α̃(v) is the smallest value in Γ =

{∑k
j=1 wn(Xi, Xj) : i, k ∈ [n + 1]

}
such that

∑n+1
i=1

1
n+11V̂i≤Q(α̃(v); Fv

i ) ≥ 1 − α and ĈV (Xn+1) =
{
v : v ≤ Q

(
α̃(v); F∞

n+1
)}

. Under
assumptions 5.1-5.3, we have for all ϵ > 0 and any nonatomic points xn+1 of PX ,

lim
n→∞

P
(
V̂n+1 ∈ CV (Xn+1) |Xn+1 = xn+1

)
= 1− α and

lim
n→∞

P
(
max

v
|α̃(v)− (1− α)| < ϵ |Xn+1 = xn+1

)
= 1.

The bootstrap step in Random Forest makes its theoretical analysis difficult, which is why it has
been replaced by subsampling without replacement in most studies that investigate the asymp-
totic properties of Random Forests [Scornet, 2015; Wager, 2017; Goehry, 2020]. To circumvent
this difficulty, we will use Honest Forest [Wager, 2017] as a theoretical surrogate. Honest Forest
is a variation of random forest that is simpler to analyze, and [Elie-Dit-Cosaque, 2022] have
shown that asymptotically, the original forest and the Honest Forest are close a.s. (see Chapiter
4, Lemma 8.6), thus we can extend the results from the Honest Forest to the original forest.

The main idea is to use a second independent sample D⋄
n = {(X⋄

i , Y ⋄
i )}ni=1. We assume that we

have a Honest Forest, which is a random forest that is grown using Dn, but uses another sample
D⋄

n (independent of Dn and Θ1:k) to estimate the weights and the prediction. Consequently,
akin to the approach detailed in Section 3, the Honest version of the RF Localizer is defined as
follows:

F̂ ⋄(r|X = x, Θ1, . . . , Θk,Dn, X⋄
1, . . . , X⋄

n+1) =
n+1∑
j=1

w⋄
n(x, X⋄

j )1V ⋄
j ≤r

where X⋄
n+1 = Xn+1 = xn+1 is the test observation, V̂ ⋄

n+1 = +∞ unless specified, and

w⋄
n(x, X⋄

j ) = 1
k

k∑
l=1

1X⋄
i ∈An(x; Θl)

N⋄
n+1(An(x; Θl))

.

N⋄
n+1(An(x; Θl)) is the number of observation of {X⋄

1 , . . . , X⋄
n}∪{Xn+1} that fall into An(x; Θl).

To ease the notations, we do not write Θ1, . . . , Θk,Dn, X⋄
1, . . . , X⋄

n+1 if not necessary, thus we
write F̂ ⋄(r|x) instead of F̂ ⋄(r|X = x, Θ1, . . . , Θk,Dn, X⋄

1, . . . , X⋄
n+1). The following Lemma

19.2 allows for control of the weights of the Honest Forest.

Lemma 19.2. Consider Dn,D⋄
n, two independent datasets of independent n samples of (X, Y )

and a tree build using Dn with bootstrap and bagging procedure driven by Θ. If Nn+1(An(x; Θl))
is the number of bootstrap observations of {Xi}ni=1 ∪ {Xn+1} that fall into An(x; Θl) and
N⋄

n+1(An(x; Θl)) is the number of observations of {X⋄
i }

n
i=1 ∪ {Xn+1} that fall into An(x; Θl),

∀ϵ > 0, P
(∣∣Nn+1(An(x; Θl))−N⋄

n+1(An(x; Θl))
∣∣ > ϵ

)
≤ 24(n + 2)2pe−ϵ2/288(n+1). (26)

This lemma is a minor adjustment of Lemma 8.7 from Chapter 4, including an additional
observation in the training set when computing the forest weights. See the proof here (8.7).



The following Lemma is the key element to prove Theorem 19.1 for Honest RF Localizer.

Lemma 19.3. Let define for all i = 1, . . . , n + 1,

Ri =
n∑

j=1
w⋄

n(Xi, X⋄
j )
(
1

V̂ ⋄
j <V̂i

− F (V̂i|X⋄
j )
)

and Ii =
n∑

j=1
w⋄

n(Xi, X⋄
j )F (V̂i|X⋄

j ),

where F (v|x) = P(V̂ ≤ v|X = x). For any ϵ > 0, under assumptions 5.1-5.3, we have

P(|Ri| > ϵ) ≤ 2(1 + 24k(n + 2)2p) exp
(

K ln(n + 1)β

576
√

n + 1
− ϵK ln(n + 1)β

24

)

Ii ∈
[
F (V̂i|Xi)− r(n)− 1

K
√

n + 1 ln(n + 1)β
, F (V̂i|Xi) + r(n) + 1

K
√

n + 1 ln(n + 1)β

]
a.s.

where r(n) is a sequence s.t. r(n) −−−→
n→∞

0.

Proof. First, let’s rewrite Ri as

Ri =
n∑

j=1
w⋄

n(Xi, X⋄
j )
(
1

V̂ ⋄
j <V̂i

− F (V̂i|X⋄
j )
)

=
n∑

j=1
w⋄

n(Xi, X⋄
j )H⋄

j

where H⋄
j is bounded by 1 and E[H⋄

j |X⋄
j ,Dn] = 0. Then, for all ϵ > 0

P(Ri > ϵ) ≤ e−tϵ E[etRi ]

≤ e−tϵ E

 n∏
j=1

E
[
etw⋄

n(Xi,X
⋄
j )H⋄

j |Θ1, . . . , Θk,Dn, X⋄
1 . . . , X⋄

n

]
≤ e−tϵ E

 n∏
j=1

e
t2
2 w⋄

n(Xi,X
⋄
j )2


The last inequality comes from w⋄

n(Xi, X⋄
j ) being constant given Θ1, . . . , Θk,Dn, X⋄

i . . . , X⋄
n,

and as H⋄
j is bounded by 1 with E[H⋄

j |X⋄
j ,Dn] = 0, we leverage the subsequent inequality: If

|X| ≤ 1 a.s and E[X] = 0, then E[etX ] ≤ e
t2
2 . Indeed, by using the convexity of exponential, we

have E
[
etX

]
≤ E

[
1−X

2

]
e−t + E

[
1+X

2

]
et ≤ cosh(t) ≤ e

t2
2 .

Using assumption 5.3, there exists K > 0 such that for all l ∈ [k], Nn+1(An(Xi; Θl)) ≥
Nn(An(Xi; Θl)) ≥ K

√
n + 1 ln(n+1)β a.s., then we have the event Υ(l) = {N⋄

n+1(An(Xi; Θl)) <
K

√
n+1 ln(n+1)β

2 } ⊂ {|Nn+1(An(Xi; Θl)) − N⋄
n+1(An(Xi; Θl))| > K

√
n+1 ln(n+1)β

2 }. Thus, using
Lemma 19.2, we have that P(Υ(l)) ≤ 24(n + 2)2p exp(−K2(ln(n+1)2β)

1152 ). We have

n∑
j=1

w⋄
n(Xi, X⋄

j )2 =
n∑

j=1
w⋄

n(Xi, X⋄
j )× 1

k

(
k∑

l=1

1X⋄
j ∈An(Xi;Θl)

N⋄
n+1(An(Xi; Θl))

(1{Υ(l)c} + 1{Υ(l)})
)

≤
n∑

j=1
w⋄

n(Xi, X⋄
j )
(

2
K
√

n + 1 ln(n + 1)β
+ 1

k

k∑
l=1

1X⋄
j ∈An(Xi;Θl,Dm)1{Υ(l)}

)
.



So that,

P(Ri > ϵ) ≤ exp(−tϵ + t2

K
√

n + 1 ln(n + 1)β
)E
[
exp

(
t2

2 1∪k
l=1Υ(l)

)]

≤ exp(−tϵ + t2

K
√

n + 1 ln(n + 1)β
)×

(
1 + e

t2
2

k∑
l=1

P(Υ(l))
)

≤ exp(−tϵ + t2

K
√

n + 1 ln(n + 1)β
)×

(
1 + 24k(n + 2)2p exp

(
t2

2 −
K2 ln(n + 1)2β

1152

))
.

Taking t2 = K2 ln(n+1)2β

576 leads to

P(Ri > ϵ) ≤ (1 + 24k(n + 2)2p) exp
(

K ln(n + 1)β

576
√

n + 1
− ϵK ln(n + 1)β

24

)
.

We obtain the same bound for P(Ri ≤ −ϵ) = P(−Ri > ϵ), then by using assumption 5.2, there
exists k = O(nα) so that the right term is finite, we conclude by Borel-Cantelli that |Ri| goes
to 0 a.s. Finally, we have

P(|Ri| > ϵ) ≤ 2(1 + 24k(n + 2)2p) exp
(

K ln(n + 1)β

576
√

n + 1
− ϵK ln(n + 1)β

24

)
.

Now, we consider Ii. By assumption 5.2, we have ∀x ∈ Rd, ∀r ∈ R, supz∈An(x; Θl) |F (r|z) −
F (r|x)| a.s−→

n→+∞
0, then we can assume that there exists a sequence r(n)→ 0 s.t.

∀x ∈ Rd, ∀r ∈ R, sup
z∈An(x; Θl)

|F (r|z)− F (r|x)| ≤ r(n) a.s. (27)

Consequently,

|Ii − F (V̂i|Xi)| =
∣∣ n+1∑

j=1
w⋄

n(Xi, X⋄
j )
(
F (V̂i|X⋄

j )− F (V̂i|Xi)
)
− w⋄

n(Xi, Xn+1)F (V̂i|X⋄
n+1)

∣∣
≤

n+1∑
j=1

w⋄
n(Xi, X⋄

j )
∣∣∣F (V̂i|X⋄

j )− F (V̂i|Xi)
∣∣∣+ w⋄

n(Xi, Xn+1)

≤
n+1∑
j=1

w⋄
n(Xi, X⋄

j ) sup
z∈An(Xi;Θl)

∣∣∣F (V̂i|z)− F (V̂i|Xi)
∣∣∣+ 1

K
√

n + 1 ln(n + 1)β

≤ r(n) + 1
K
√

n + 1 ln(n + 1)β

We use the fact that by assumption 5.3, we can lower bound the weights of the forest since
Nn+1(An(Xi; Θl)) ≥ K

√
n + 1 ln(n+1)β for all l ∈ [k], thus we have w⋄

n(Xi, Xn+1) ≤ 1
K

√
n+1 ln(n+1)β .



19.1 Proof of Theorem 19.1

As in [Guan, 2022], we first prove that α̃(v)→ 1−α for any v and then show that the resulting
PI of the Honest RF Localizer has a coverage rate with the desired level 1− α.

Proof. Let consider Ri = ∑n
j=1 w⋄

n(Xi, X⋄
j )
(
1

V̂ ⋄
j <V̂i

− F (V̂i|X⋄
j )
)

, Ii = ∑n
j=1 w⋄

n(Xi, X⋄
j )F (V̂i|X⋄

j )

and F⋄v
i = F̂ ⋄(·|X⋄

i ) = ∑n
j=1 w⋄

n(Xi, X⋄
j )1

V̂ ⋄
j ≤· + wn(Xi, X⋄

n+1)1
V̂ ⋄

n+1≤· when V̂ ⋄
n+1 = v, with

v ∈ [0,∞], for all i = 1, . . . , n + 1. For any α̃ and v, we have

Ji(v, α̃) :=
{

V̂i ≤ Q(α̃; F⋄v
i )
}

=

α̃ >
∑

j≤n:V̂ ⋄
j <V̂i

w⋄
n(Xi, X⋄

j ) + w⋄
n(Xi, X⋄

n+1)1
v<V̂i


which is the event in the sum defined in Equation (6.7) of Theorem 4.2 using the weights of the
Honest Forest. Let consider the right-hand term in the definition of the set Ji(v, α̃), we have

Ri + Ii − w⋄
n(Xi, X⋄

n+1) ≤ Ri + Ii ≤
∑

j≤n:V̂ ⋄
j <Vi

w⋄
n(Xi, X⋄

j ) + w⋄
n(Xi, X⋄

n+1)1
v<V̂i

≤ Ri + Ii + w⋄
n(Xi, X⋄

n+1). (28)

Let ϵ > 0, and denote G = {i ∈ {1, . . . , n} : |Ri| ≤ ϵ}. By Lemma 19.3, we have Ii ∈
[
F (V̂i|Xi)−

r(n)− 1
K

√
n+1 ln(n+1)β , F (V̂i|Xi)+r(n)+ 1

K
√

n+1 ln(n+1)β

]
a.s. Using the upper bound of Equa-

tion (28), for any i ∈ G, we have

Jdown
i (α̃) :=

{
α̃ > F (V̂i|Xi) + ϵ + r(n) + 2

K
√

n + 1 ln(n + 1)β

}
⊆ Ji(v, α̃) (29)

and similary with the lower bound of Equation (28), we have

Jup
i (α̃) :=

{
α̃ > F (V̂i|Xi)− ϵ− r(n)− 2

K
√

n + 1 ln(n + 1)β

}
⊇ Ji(v, α̃). (30)

Hence, we can upper and lower bound the left side of Equation (6.7) in Theorem 4.2, i.e.,
1

n+1
∑n+1

i=1 1 [Ji(v, α̃)], using Jup
i (α̃) and Jdown

i (α̃) as follows,

1
n + 1

n+1∑
i=1

1 [Ji(v, α̃)] ≤ 1
n + 1 + 1

n + 1
∑
i∈G

1 [Jup
i (α̃)] + |Ḡ|

n + 1 , (31)

1
n + 1

n+1∑
i=1

1 [Ji(v, α̃)] ≥ 1
n + 1

∑
i∈G

1
[
Jdown

i (α̃)
]

, (32)

where 1 [J ] is 1 if the event J is true, and 0 otherwise. Note that Wi = F (V̂i|Xi) is an i.i.d.
uniform distribution as V̂ |Xi is a continuous random variable. Consequently, on the event {|Ḡ| =
0}, if α̃ satistfy the marginal coverage of Equation (6.7) of Theorem 4.2 using the weights of the



Honest RF Localizer, i.e., α̃ is the smallest value in Γ⋄ =
{∑k

j=1 w⋄
n(X⋄

i , X⋄
j ) : i, k ∈ [n + 1]

}
s.t. 1

n+1
∑n+1

i=1 1 [Ji(v, α̃)] ≥ 1− α, then

• By Equation (31), we must have

1
n + 1

(
1 +

n∑
i=1

1 [Jup
i (α̃)]

)
≥ 1− α

=⇒ α̃ ≥ Q
(

n + 1
n

(1− α)− 1
n

; 1
n

n∑
i=1

Wi

)
− ϵ− r(n)− 2

K
√

n + 1 ln(n + 1)β
. (33)

The implication cames from the fact that 1
n+1 (1 +∑n

i=1 1 [Jup
i (α̃)]) ≥ 1−α implies that at

least ⌈(n+1)(1−α)⌉−1 of the events Jup
i (α̃) :=

{
α̃ > F (V̂i|Xi)− ϵ− r(n)− 2

K
√

n+1 ln(n+1)β

}
are true. Assuming Jup

i (α̃) is true, and replacing Wi = F (V̂i|Xi) then the order statistics
W(⌈(n+1)(1−α)⌉−1) should also satisfy the condition by definition.

Note that Q
(

n+1
n (1− α)− 1

n ; 1
n

∑n
i=1 Wi

)
= W(⌈(n+1)(1−α)⌉−1).

• Similary, with Equation (32), α̃ satistfy the marginal coverage of Equation (6.7) of Theorem
4.2 using the Honest RF Localizer’s weight as described above, as long as

1
n + 1

n∑
i=1

1
[
Jdown

i (α̃)
]
≥ 1− α

=⇒ α̃ ≥ Q
(

n + 1
n

(1− α); 1
n

n∑
i=1

Wi

)
+ ϵ + r(n) + 2

K
√

n + 1 ln(n + 1)β
.

As α̃ is the smallest value in Γ⋄ =
{∑k

j=1 w⋄
n(X⋄

i , X⋄
j ) : i, k ∈ [n + 1]

}
that makes Eq. (6.7) of

Theorem 4.2 holds using the weights of the Honest Forest and the maximal deviation between
two adjacent weights of the forest is 1

K
√

n+1 ln(n+1)β , there exists C such that α̃ is upper bounded
by

α̃ ≤ Q
(

n + 1
n

(1− α); 1
n

n∑
i=1

Wi

)
+ ϵ + r(n) + 2C

K
√

n + 1 ln(n + 1)β
. (34)

In addition, even if α̃ satisfies Equation (6.7) of Theorem 4.2 and not 1
n+1

∑n
i=1 1

[
Jdown

i (α̃)
]
≥

1− α, we systematically have α̃ ≤ Q
(

n+1
n (1− α); 1

n

∑n
i=1 Wi

)
+ ϵ + r(n) + 2

K
√

n+1 ln(n+1)β .

Therefore, on the event {|Ḡ| = 0}, we have

Q
(

n + 1
n

(1− α)− 1
n

; 1
n

n∑
i=1

Wi

)
− ϵ− r(n)− 2

K
√

n + 1 ln(n + 1)β
≤ α̃

≤ Q
(

n + 1
n

(1− α); 1
n

n∑
i=1

Wi

)
+ ϵ + r(n) + 2C

K
√

n + 1 ln(n + 1)β
.



In addition, let ϵ′ > 0 and consider the event H =
{

supt |Q(t; 1
n

∑n
i=1 Wi)− t| ≤ ϵ′

}
, on this

even we have

(1− α) + 1
n

(1− α)− 1
n
− ϵ′ − ϵ− r(n)− 2

K
√

n + 1 ln(n + 1)β
≤ α̃

≤ (1− α) + 1
n

(1− α) + ϵ′ + ϵ + r(n) + 2C

K
√

n + 1 ln(n + 1)β
. (35)

Then, there exists C and ϵ s.t.

(1− α)− ϵ− r(n)− 2C

K
√

n + 1 ln(n + 1)β
≤ α̃ ≤ (1− α) + ϵ + r(n) + 2C

K
√

n + 1 ln(n + 1)β

We can simplify the previous Equation as

|α̃− (1− α)| ≤ ϵ + r(n) + 2C

K
√

n + 1 ln(n + 1)β
. (36)

Finally, we have

P
(
|α̃− (1− α)| > ϵ + r(n) + 2C

K
√

n + 1 ln(n + 1)β

)
≤ P(Ḡ) + P(H̄).

Using DKW inequality [Massart, 1990] for H̄, and union bound for Ḡ, we have

P(H̄) = P(sup
t
|Q(t; 1

n

n∑
i=1

Wi)− t| > ϵ′) ≤ 2 exp(−2nϵ′2)

P(Ḡ) = P(∃i ∈ {1, . . . , n} : |Ri| > ϵ) ≤ n× 2(1 + 24k(n + 2)2p) exp
(

K ln(n + 1)β

576
√

n + 1
− ϵK ln(n + 1)β

24

)
.

Consequently, we have for any V̂n+1 = v, if α̃(v) is the smallest value in Γ⋄ s.t. 1
n+1

∑n+1
i=1 1 [Ji(v, α̃)] ≥

1−α, then P
(
|α̃(v)− (1− α)| > ϵ + r(n) + 2C

K
√

n+1 ln(n+1)β

)
−−−→
n→∞

0 with ϵ+r(n)+ 2C
K

√
n+1 ln(n+1)β −−−→n→∞

0 which conclude the first part of the proof.

Now, let’s prove that limn→∞ P
(
V̂n+1 ∈ CV (Xn+1) |Xn+1 = xn+1

)
= 1 − α at almost any

nonatomic points of PX . By definition, we have

V̂n+1 ≤ Q(α̃; F∞
n+1) ⇐⇒

n∑
j=1

w⋄
n(Xn+1, X⋄

j )1
V̂ ⋄

j <V̂n+1
= In+1 + Rn+1 < α̃. (37)

Let’s denote G = {|Rn+1| ≤ ϵ} with ϵ = 1
n . On the event G, we can lower and upper bound the

left side of Equation (37) using Lemma 19.3 as above. As a result, we have:

In+1 + Rn+1 ≤ F (V̂n+1|Xn+1) + r(n) + 2C

K
√

n + 1 ln(n + 1)β
+ ϵ (38)

In+1 + Rn+1 ≥ F (V̂n+1|Xn+1)− r(n)− 2C

K
√

n + 1 ln(n + 1)β
− ϵ (39)



Since F (V̂n+1|Xn+1 = xn+1) is an uniform distribution, and P(Ḡ)→ 0, we have

P(In+1 + Rn+1 < α̃ |Xn+1 = xn+1) ≤ α̃ + r(n) + 2C

K
√

n + 1 ln(n + 1)β
+ ϵ + P(Ḡ)→ α̃ (40)

P(In+1 + Rn+1 < α̃ |Xn+1 = xn+1) ≥ α̃− r(n)− 2C

K
√

n + 1 ln(n + 1)β
− ϵ→ α̃. (41)

Therefore, we have

P
(
V̂n+1 ≤ Q(α̃; F∞

n+1) |Xn+1 = xn+1
)

= P (In+1 + Rn+1 < α̃ |Xn+1 = xn+1)→ α̃

As we have shown that α̃ = α̃(v) → 1 − α for any v, the LCP-RF achieve the asymptotic
conditional coverage at level 1− α.



20 Additional experiments

In this section, we present additional experiments on real-world datasets. First, we show the
lengths and residuals of the PI when µ̂ is a linear model with V̂ (X, Y ) = |Y − µ̂(X)| on bike
sharing demand from UCI [Dua, 2017a].

(a) bike (lengths) (b) bike (êrrn+1)

Now, we run the experiment above on star and bike dataset using quantile score V (X, Y, {q̂α/2, q̂1−α/2}) =
max

(
q̂α/2(X)− Y, Y − q̂1−α/2(X)

)
. We first estimate {q̂α/2, q̂1−α/2} using quantile linear re-

gression [Chernozhukov, 2010] (QLR), then we use Quantile Regression Forest (QRF). Note that
in this case, split-CP corresponds to Conformalized Quantile Regression [Romano, 2019].

(a) star (lengths) -
QLR

(b) star (residuals) -
QLR

(c) bike (lengths) -
QLR

(d) bike (residuals) -
QLR

Figure 18: Lengths and errors distribution of quantile score using Quantile Linear Regression

In figure 18c-18d, we observe that QLR gives negative interval lengths. Indeed, this stems from
the fact that unlike Quantile Regression Forests, linear quantile regression can face a problem
known as "crossed quantile" or "non-motonoticity" [Saleh, 2021; He, 1997] where q̂α1(X) <

q̂α2(X) even if α1 > α2. This leads to negative intervals in our calculations.

We also compute the quantile score using Quantile Regression Forest in the figure below.

(a) star (lengths) -
QRF

(b) star (residuals) -
QRF

(c) bike (lengths) -
QRF

(d) bike (residuals) -
QRF

Figure 19: Lengths and errors distribution of quantile score using Quantile Random Forest

All these figures show that the RF Localizer performs much better than the other methods.
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