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1 Introduction

1.1 Motivation

Earth Observation (EO) satellites play a critical role in monitoring and understanding
the dynamics of our planet. They provide invaluable data for numerous applications,
including but not limited to, weather forecasting, disaster management, environmental
monitoring, and urban planning [CVTGC+11, LKC15]. However, the efficacy of these
applications is often limited by the resolution of the satellite imagery [YLXC15]. This is
where super-resolution (SR) comes into play.

As an image processing technique, SR permits to overcome some limitations of low-
resolution satellite imagery by enhancing fine image details and structures that are barely
visible in the original images. This augmentation of resolution improves the accuracy of
object detection, segmentation, classification, or refining land cover mapping and change
detection processes [SVE19,TAH06].

So, why is this application of SR crucial? The answer lies in the inherent challenges faced
in remote sensing. Several factors influence the spatial resolution of satellite images. The
Point Spread Function (PSF) denotes the system’s blurring effect, impacted by factors like
diffraction and lens aberrations [AdFF19]. Noise, stemming from factors such as system
calibration errors, defective sensors, or other types of noise including photonic, thermal,
electronic contribute to image degradation. Even atmospheric conditions can influence
the image quality, causing scattering and absorption of electromagnetic radiation.

In addition, there exists a notable correlation between the satellite’s aperture size and
the image resolution. Enlarging the aperture can help to mitigate diffraction effects and
subsequently boost the maximum attainable resolution. More light reaches the sensor
with a larger aperture, improving the signal-to-noise ratio. However, the advantages of
a larger aperture come with increased size, weight, and overall cost of the satellite. This
introduces significant complexities and costs in deploying new high-resolution satellites.
While such satellites (e.g., GeoEye-1, WorldView-3) do exist, access to their data is often
expensive and limited.

Alternatively, SR techniques present a more economically viable option. They improve the
resolution of images from existing satellites (Planet SkySat, Satellogic Aleph-1, Sentinel-
2) [MSS+14, AEdFF20]. By leveraging the data we already possess, SR optimizes the
return on investment in satellite technology.

Nowadays, the demand for high-resolution (HR) satellite images is continually on the
rise, driven by the need for detailed and accurate information across various fields. From
urban planning to environmental monitoring, HR images are integral for precise analyses.
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Chapter 1. Introduction

SR, by enhancing the resolution of these images, bridges this gap between necessity and
limitation.

Recognizing these immense possibilities, this thesis explores the application of deep learn-
ing for advancing super-resolution of EO satellite imagery. By harnessing the capabilities
of these complex and efficient processing methods, we seek to enhance the quality and
cost-effectiveness of satellite technology. The work presented in this thesis endeavors to
make a valuable contribution to the field of remote sensing and beyond.

1.2 About optical satellite imaging

Optical satellite imaging has significantly evolved since its inception (see Figure 1.1),
providing an increasingly comprehensive view of Earth’s terrestrial phenomena.

In the 1970s, spaceborne remote sensing was dominated by across-track or whisk-broom
scanners, exemplified by the Return Beam Vidicon (RBV) on Landsat 1 (1972) and the
Advanced Very High Resolution Radiometer (AVHRR) on NOAA’s Polar Operational En-
vironmental Satellites (POES) launched in 1978. These systems relied on a mechanically
rotating mirror, scanning one pixel at a time to assemble the image line by line. However,
the short exposure time for each pixel led to limited light-gathering capacity, and contin-
uous mirror movements resulted in mechanical wear. These issues catalyzed a transition
towards more efficient push-broom imaging technology by the late 1980s.

Push-broom or along-track scanning is adopted by satellites like the French SPOT series
(1986 onwards), the European Space Agency’s PROBA-V (2013) and Sentinel-2 (2015),
and commercial satellites such as IKONOS (1999), QuickBird (2001), GeoEye-1 (2008),
and the WorldView series (from 2007). This technique uses an array of detectors arranged
in a line, capturing a swath of Earth’s surface as the satellite moves along its orbital path.
The resultant image exhibits enhanced quality, thanks to the increased dwell time of the
scene on the sensor. However, the push-broom technique demands advanced satellite
stabilization systems to prevent image smearing and distortions from platform vibrations
or fluctuations in satellite’s attitude or altitude.

The advent of the 2010s witnessed the emergence of push-frame imaging, epitomized
by small, cost-effective satellites like Planet’s SkySat (first launched in 2013) and Satel-
logic’s Aleph-1 (2016). These CubeSats use two-dimensional Complementary Metal-
Oxide-Semiconductor (CMOS) sensors, capturing a full frame or two-dimensional array
of pixels at each shot, creating a series of overlapping images. This overlap not only
allows for redundancy against minor errors but also facilitates advanced computational
imaging techniques such as burst denoising and super-resolution, despite the need for
high-bandwidth data links and complex computational processing.

Processing optical satellite imagery stands in stark contrast consumer cameras due to
the unique challenges from data acquisition to the global-scale analysis. Initially, data
correction is required, a stage where high-altitude imaging demands mitigating sensor
noise, atmospheric distortions, and misalignments due to Earth’s curvature. These issues
are rarely encountered for consumer cameras. Subsequently, orthorectification and image
registration take place. Orthorectification counters perspective and terrain distortions to
simulate a nadir viewpoint, while image registration aligns different spectral bands from
the same scene, a step not required for typical cameras with Bayer sensors. The con-
cluding phase involves post-processing to amplify image quality for later analysis. Unlike
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Figure 1.1: A depiction of different satellite imaging technologies, each illustrating the
detector of one spectral band: from whisk-broom (1.1a) scanning pixel by pixel through
push-broom (1.1b) scanning line by line to push-frame (1.1c) scanning frame by frame.

enhancing consumer images that often prioritize aesthetics, satellite image post-processing
is directed towards scientific interpretability.

This thesis engages with multiple image super-resolution (MISR) and single image super-
resolution (SISR) using data from a variety of satellites, each presenting unique challenges.
We utilize push-frame SkySat for burst SR, push-broom PROBA-V for multi-date SR, and
Sentinel-2 for SISR, noting an increasing degree of complexity across these tasks. While
SkySat Burst SR benefits from multiple quick-succession images, PROBA-V Multi-date
SR faces more variability due to time-lapse between images. Sentinel-2 SISR, though
typically an ill-posed problem, is mitigated slightly due to each spectral band viewing the
scene from different perspectives prior to registration, introducing a MISR-like component
with varying spectral content. By addressing these nuances, we strive to enhance satellite
image super-resolution methodologies.

1.3 About image super-resolution

Based on the number of input images, super-resolution techniques can be broadly cate-
gorized into two groups: Multi-Image Super-Resolution (MISR) and Single-Image Super-
Resolution (SISR).

1.3.1 Multi-image super-resolution (MISR)

MISR is a technique that merges information from multiple aliased LR images ILRt , t ∈
[1, . . . ,K] of the same scene to yield a HR output IHR [FREM04b]. These LR images may
exhibit slight shifts, or alterations in exposure times, capturing the object from various
perspectives or at different instances.

The image formation model can be mathematically described using a pinhole camera [HZ03]
along with the processes of geometric transformation, blurring, downsampling, and noise
degradation [Mil17]:

ILRt = Π((I ◦ Ft) ∗ k) + nt, t ∈ [1, . . . ,K], (1.1)

where I denotes the infinite-resolution ideal image, k is the Point Spread Function (PSF)
that jointly models optical blur and pixel integration, Ft represents the motion corre-
sponding to frame t, Π is the bi-dimensional sampling operator due to the sensor array
that introduces aliasing, and nt models the image noise.
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Chapter 1. Introduction

We can frame multi-image super-resolution as an inverse problem, employing a mathe-
matical model to understand and invert the image formation process (1.1). Given a set
of aliased and noisy LR images, MISR works to recover an HR image which is compatible
with the observed LR images.

In the absence of noise, and with sufficient LR images related by translational motions
Ft, the problem can be analyzed in the context of sampling theory and shown to be
well-posed [Tsa84,FP02,Alm02] (assuming the motions Ft are known), and k ∗ I can be
recovered. Thus the filter k determines the frequencies from the original image I that can
be ultimately recovered. In particular, if the LR images are well-sampled (i.e. k is such
that no aliasing occurs when subsampling with Π) then the super-resolved image k ∗ I
will not contain any frequency components other than those already present in the LR
images. Optical satellite systems often leave certain amount of alias, which can then be
exploited for super-resolution. We refer to [Alm02] for a thorough theoretical analysis of
the relation of sampling alias and the stability of the inversion of (1.1).

In practice however, acquired images are always contaminated by noise. This case can be
addressed by solving an optimization problem:

IHR = argmin
u

K∑
t=1

∥∥∥Warp↓((u ∗ k), Ft)− ILRt

∥∥∥
p
, (1.2)

where p = 1 or 2, Warp↓(., Ft) warps and downsamples a HR image with a factor z ≥ 1,
according to the motion Ft:

Warp↓(u, Ft)(x) = u(x+ zFt(x)), (1.3)

where an interpolation scheme is required as x + zFt(x) lies outside the HR pixel grid.
This expression results from assuming that the blur kernel commutes with the motion
Ft, which is a reasonable approximation if the motion is roughly translational within the
filter’s support. In practice however, the sampling provided by the LR images is not dense
enough or degenerated and the problem becomes ill-posed: there are many high-frequency
recontructions compatible with the available observations. In these cases, some prior or
regularization is used to select one among all the possible reconstructions [MO08,ACHR06,
FAAC09,PJ07].

MISR techniques can be broadly divided into two main categories: classical methods,
which primarily rely on mathematical models and optimization, and more recent ap-
proaches based on deep learning.

Classical methods: The existing literature on classical super-resolution methods is
vast, encompassing a multitude of strategies. These include frequency domain approaches
[KBV90,NM00,RK99] and spatial domain approaches [FREM04a,MSS+14,MN07,TMPE09,
WGDE+19,TOS92,AEdFF20].

Shift-and-Add Methods: These works build a HR image by registering multiple LR im-
ages and integrating their pixel-level information into the HR grid [KPB88, FREM04a,
MSS+14,MN07]. Once registration is completed, every LR pixel is assigned to its nearest
HR neighbor or “splatted” across an area of HR pixels according to some interpolation
methods, such as bilinear or bicubic. Following this, a final step typically involves weighted
aggregation, with the weights correlating to the interpolation used in the preceding step.
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1.3. About image super-resolution

For an upscaling factor z ≥ 1, this process can be mathematically expressed as:

Warp↑(ILRt , Ft) =
∑
n∈Z2

ILRt δn+zFt(n),

JHR
t = Warp↑(ILRt , Ft) ∗ K,

WHR
t = Warp↑(1LR, Ft) ∗ K,

IHR =

∑K
t=1 J

HR
t∑K

t=1W
HR
t

.

(1.4)

Here Warp↑(ILRt , Ft) registers frame ILRt onto the HR grid using motion Ft. Since this
motion might be sub-pixel, this warped image is represented as an irregular Dirac’s comb.
K denotes the interpolation kernel in the HR space, which “splats” the Dirac’s pixels
onto the integer HR grid, and WHR

t are the aggregation weights used for normalization,
computed by “splatting” an image of ones 1LR. The last division is meant element-wise.

In [FREM04c] the authors point out that the shift-and-add algorithm can be seen as the
solution of a weighted least squares problem, where the weights are given by splatting
kernel K. Based on this observation, they derive a robust version that handles outliers by
minizing a sum of absolute errors. This result in an algorithm which computes weighted
medians across pixels [FREM04c]. Note that these direct methods can leave holes in the
output if the samples are insufficient or degenerate [KPB88]. To deal with potential gaps
and outliers, regularizers based on Total Variation (TV) are often incorporated into an
energy minimization post-processing step [FREM04a]. It should be noted that the HR
output obtained at this stage is inherently blurred due to the impact of the Point Spread
Function (PSF) and pixel integration (denoted as k) [MSS+14]. To rectify this, a final
deblurring step is routinely performed. This can be achieved by solving the following
optimization problem:

IHR
sharp = argmin

u

∥∥u ∗ k − IHR
∥∥
p
+R(u), (1.5)

where R is a regularization function, which can include Total Variation (TV), Tikhonov
regularization, or a combination of both. The norm p is typically set to either 1 or 2,
adapting to the specific characteristics of the blur and the desired sharpness level in the
output.

Shift-and-add techniques are among the earliest super-resolution techniques, with results
that are far away from the current state-of-the-art. Yet, they still remain relevant due to
their simplicity and interpretability. These characteristics, together with the fact that it is
a differentiable operation, allow for their seamless integration into deep learning models,
something that we leverage in our work.

Deep-learning methods: The field of MISR has experienced a significant transforma-
tion with the advent of deep learning techniques. These new methods, emerging from
diverse sources such as video and burst denoising, deblurring, and super-resolution, carry
great potential [TDV20,MBC+18,SDW+17,TGL+17,SVB18,CWY+21].

Deep learning MISR methods fall broadly into two categories. The first group tends to
favor the development of complex architectures, often sacrificing interpretability in the pro-
cess [SCH+16,KLNK18,JWOKJK18,LLTMK19a,DKG+20,LHD+19,MVFM19,SMKC20,
AMSC+20]. These techniques typically process a stack of low-resolution images as in-
put and generate a high-resolution output, without explicit motion estimation [SCH+16,
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JWOKJK18,KLNK18,LLTMK19a,LHD+19,DKG+20,AMSC+20,IJG+20a]. Despite their
proven effectiveness, the lack of interpretability makes it challenging to understand why
they work and how to adapt them for specific use-cases [CWY+21].

The second category of methods incorporates more transparent and explicit operations,
providing clearer insights into their approach [TGL+17,HSU19,BRE19,KBP+19,LPM21,
CLK21, LPME22, SJC+22]. While these techniques are more complex and challenging
to develop, they often yield superior results due to their explicit incorporation of well-
understood principles such as shift-and-add [TGL+17,KBP+19], plug-and-play [VBW13,
BRE19, LPM21, LPME22], wavelet transform [CLK21], or optimal transport [PC+19,
SJC+22]. These techniques usually require explicit motion estimation, a computationally
intensive task. However in the context of satellite imaging, the high-altitude perspective
and simplicity of scene dynamics often render this task more tractable.

Our work falls into the second category, with an aim to blend the advanced neural networks
with the interpretability and differentiability of the traditional Shift-and-Add method.
This combination allows us to harness the benefits of modern deep learning techniques
while preserving the simplicity and robustness of classical methods [FREM04c].

The type of loss is a key element in training MISR methods. Deep learning MISR methods
primarily use pixel-based distorion loss functions such as Mean Squared Error (MSE), L1

loss, and Charbonnier loss, which penalize the difference between the network prediction
and the high resolution sharp image I [KYDK16,TGL+17,SVB18,CBFAB97,MVFM19,
DKG+20,CWY+21,LCF+22,ZGFK16]. These losses are well understood in terms of the
posterior distribution p(I|ILR1 , ..., ILRK ), which can be thought as the set of high resolution
images that are consistent with the observations. For example, a network trained with
the MSE loss will approximate the mean of the posterior distribution, and an L1 loss
will prefer the (pixel-wise) median of such distribution. For difficult super-resolution
problems in which there is large loss of information, either because of insufficient number
of LR images, high levels of noise, or not enough aliasing due to a strong low-pass filter
k, these loss functions suffer from a “regression to the mean” problem [BM18]: there
are many high-res images consistent with the observations (the posterior distribution is
too broad), and their details are averaged out computing their mean (MSE) or median
(L1). In these scenarios, a combination of Generative Adversarial Network (GAN) loss
and perceptual loss may be employed to generate more visually pleasing and detailed
results [CXLT18,LLTMK19a]. However, one should bear in mind that the utilization of
these generative approaches can lead to the hallucination of textures and details that are
not present in the ground truth, thereby negatively impacting the reconstruction of true
details due to the perception-distortion tradeoff [BM18].

1.3.2 Single-image super-resolution (SISR)

SISR is inherently an ill-posed problem since there are multiple HR images that can
correspond to a single LR image. The main goal in SISR is to generate high-frequency
details that are plausible and convincing to human observers. SISR is widely used in
a variety of fields, such as medical imaging [Gre09], surveillance [ZZSL10], and remote
sensing [HFBP+18]. In the next section, we provide a brief overview of classical SISR
approaches and discuss the recent transition towards deep learning SISR methodologies.

Classical methods: Classical SISR methods can be broadly classified into four main
groups: interpolation-based, example-based, sparse representation-based, and variational
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methods. These techniques are rooted in the same mathematical model as MISR (Eq. (1.1)
with K = 1), but since they rely on a single image, priors are indispensable to mitigate
the ill-posedness of the problem.

Interpolation-based techniques, such as bilinear and bicubic interpolation, are straightfor-
ward in their approach, using predefined mathematical functions to fill in the gaps between
pixels [LGZ13]. Example-based methods, on the other hand, elevate image quality by iden-
tifying similar patches within a database or the image itself, then using these to enhance
resolution [FJP02, GBI09, HSA15]. Taking a different approach, sparse representation-
based methods operate on the presumption that image patches can be expressed as sparse
linear combinations of elements from an over-complete dictionary [YWHM10, ZEP12,
MBP+09]. Variational methods present SISR as an optimization problem, applying vari-
ational inference to find the most plausible solution [MO08,UPWB10,CDL18].

Notwithstanding the array of available methods, each one bears its own set of limitations.
The overall quality of results can be significantly hampered by the priors imposed, and
the true high-frequency details are often difficult, if not impossible, to accurately restore
from the aliased ones.

Deep-learning methods: The state-of-the-art in SISR is largely dominated by deep
learning-based methods. These approaches leverage the power of neural networks, trained
on extensive datasets, to model the complex mapping from LR to HR images. Unlike
traditional methods, which often rely on handcrafted features and priors, DL methods
are capable of automatically learning hierarchical features from data, making them more
flexible and powerful in capturing complex image patterns and structures.

The architectural evolution of SISR networks has been fast-paced and transformative.
Starting from the simple three-layered SRCNN model [DLHT14], we have seen the adop-
tion of advanced structures that enhance model performance and training efficiency. Resid-
ual learning was one such impactful innovation, bypassing the vanishing gradient problem
to enable the training of much deeper networks [HZRS16,KKLML16,LSK+17]. Another
significant development was the introduction of dense connections, facilitating the ex-
traction of richer hierarchical features and more effective information flow across the
network layers [HLVDMW17, TLLG17, ZTK+18]. Most notably, the advent of GANs
[LTH+17,WYW+19] and transformer architectures [YYF+20,LCS+21] marked a turning
point, offering unique capabilities like the generation of perceptually pleasing images and
the ability to model long-range dependencies, respectively.

In terms of training losses, the quality of super-resolution outputs is influenced by the
chosen objective function. While traditional loss functions like L1, L2, and Charbonnier
loss are often utilized, the introduction of GANs has fundamentally shifted the approach
in SISR. The adversarial setting of GANs, with a generator producing HR images and a
discriminator discerning between real and generated images, has become the mainstream
approach in SISR. This paradigm, exemplified by models like SRGAN [LTH+17] and
ESRGAN [WYW+19], emphasizes generating HR images that are perceptually closer to
real images, focusing less on pixel-wise accuracy and more on superior visual quality. This
approach is particularly relevant and effective for most use cases.

However, in satellite image super-resolution, the primary aim is typically to restore true
high-frequency details rather than achieving visually pleasing results. Consequently, de-
spite the mainstream success of GANs in image super-resolution, their application is not
as suitable for our specific context. Therefore, we choose not to use GANs in our SISR
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framework. Satellite images, uniquely, possess certain advantageous characteristics for
SISR. Specifically, the offset between spectral detectors on satellites ensures each spectral
band views the scene from a slightly different perspective, thereby containing additional
information, much like in MISR. In our work, we demonstrate the feasibility of applying
SISR to recover true high-frequency details in Sentinel-2 multi-spectral images without
resorting to GANs, effectively leveraging these distinctive properties of satellite imagery.

1.4 About self-supervised super-resolution

The performance of a deep learning model is heavily dependent on the quality and abun-
dance of training data. In the context of supervised learning for super-resolution algo-
rithms, the necessity for training with realistic data cannot be overstated. As exemplified
in the study by Cai et al. [CZY+19], models trained on a dataset comprised of real pairs
of low-resolution (LR) and high-resolution (HR) images outperformed those trained on
synthetic data [AT17]. This underscores the importance of using genuine datasets that
faithfully represent the nuances of real-world scenarios.

However, the creation and use of real-world, large-scale datasets come with their own set of
challenges. Existing datasets for multi-image super-resolution (MISR) such as RBSR [BD-
VGT21] for smartphone raw burst super-resolution, WorldStrat [COK22] for Sentinel-2
multi-date super-resolution, and the dataset by Martens et al. [MIKC19] for PROBA-
V multi-date super-resolution, all necessitate laborious dataset creation and meticulous
preprocessing. Ensuring alignment in spatial and spectral content can be particularly
demanding and time-consuming.

Having highlighted these considerations, we now turn our attention to self-supervised
learning. In contrast to supervised learning, self-supervised learning techniques eliminate
the need for ground truth labels, potentially sidestepping some of the issues related to data
preprocessing and annotation. In the following sections, we will study some foundational
self-supervised methods that underpin our work.

Self-supervised image restoration methods are generally divided into two categories: Intra-
image learning methods and inter-image learning methods.

Intra-image learning methods are grounded in the concept of cross-scale internal redun-
dancies and self-similarity inherent within a single image. These methods hinge on the
principle that patterns within a single image often exhibit significant resemblance or rep-
etition. Such self-similarity within the image is exploited for tasks like denoising or super-
resolution. Traditional denoising methods like Non-Local Means (NLM) [BCM05] and
BM3D (Block-Matching and 3D filtering) [DFKE07], as well as example-based super-
resolution [FJP02], fall into this category. Recent deep learning approaches such as
Noise2Self [BR19] and ZSSR (Zero-Shot Super-Resolution) [SCI18] also belong to this
category as they learn from a single noisy or LR image to deduce the clean output.

Inter-image learning methods, on the other hand, utilize two or several observations of the
same scene as the target to guide the learning process. These observations could be various
degraded versions of the same image or different views of the same scene. In contexts such
as burst and video restoration, these observations often contain geometric transformations,
but still share a common underlying content. A groundbreaking contribution to this
category is the Noise2Noise image denoising method [LMH+18], which learns to denoise
an image by comparing two noisy realizations of the same scene. It is important to note
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that in inter-image learning methods, the reconstruction network must not have access to
the degraded target to avoid trivial solutions.

To the best of our knowledge all existing self-supervised super-resolution techniques [YLZ+18,
SCI18,BKSI19,KJK20,EPC21,BP22] fall within the realm of intra-image learning. These
approaches typically use the input image as the target for the super-resolution of its de-
graded LR counterpart. However, this approach is not devoid of limitations. The most
pressing concern is that the input image itself may contain aliasing, making it less than
ideal to be used as the target for super-resolution. Moreover, the LR version of the input
image may exhibit different noise, blur, and particularly aliasing patterns, compared to the
original input image. This discrepancy could significantly impact the model’s learning per-
formance. Additionally, this approach only uses internal information from the LR input,
overlooking a substantial amount of external information. This results in their struggle to
separate and accurately recover high-frequency details from aliased ones. Therefore, our
focus pivots to inter-image learning methods. In the subsequent paragraphs, we study the
two self-supervised denoising methods that inspire our work: Noise2noise [LMH+18] and
Frame-to-frame [EDM+19] methods.

In Noise2noise [LMH+18] Lehtinen et al. showed that an image denoising network can be
trained from pairs of noisy versions N and N ′ of the same image I with independent noise
realizations, by minimizing the following noise-to-noise (N2N) risk:

RN2N(Net) =
∑
j

ℓ(Net(Nj), N
′
j). (1.6)

Intuitively, since the noise realizations are independent, the noise in N ′ cannot be predicted
from N . Hence, the loss is minimized by estimating the clean image. The optimal estima-
tors for the N2N risk are given by E{N ′|N} for the MSE loss, and median{N ′|N} for the L1

loss. It can be shown that if the noise in N ′ preserves the mean, then E{N ′|N} = E{I|N},
i.e. training with the supervision by the noisy images is equivalent to the one supervised
by the clean ones. It was also empirically observed that a similar property holds for the
L1 loss if the noise in N ′ preserves the median.

While Noise2Noise provides a robust way of denoising still images, its application broadens
when considered in the context of video or burst images. Here, a neighboring frame can
serve as a noisy target once properly aligned. This concept underpins the frame-to-frame
method [EDM+19], which aims to fine-tune a network Net to output a single denoised
frame Ît from a noisy frame t using one or more noisy frames around t.

In this setup, we describe the set of input frames as the input stack St = [It−m, ..., It+m],
with 2m + 1 being the total number of input frames. Prior to computing Îr, the target
frame Ir is excluded from the stack St. The network training then proceeds by minimizing
the frame-to-frame loss:

ℓMF2F
p

(
Net(St\r), Ir

)
= ∥Ot→r.(Warpt→r(Net(St\r))− Ir)∥pp. (1.7)

In this equation, p ∈ {1, 2}, “.” denotes the element-wise product, Warpt→r aligns frame
t to r using the estimated motion from r to t, and Ot→r is a misalignment mask removing
regions from the loss that are not correctly aligned. Misalignments might occur due
to factors such as occlusions, illumination changes, or errors in the optical flow. A core
assumption of this framework is that neighboring frames share clean image content subject
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to a geometric transformation:

Ir = Warpt→r(Ît) + nr, (1.8)

where Ît is the desired output frame and nr models the noise.

The frame-to-frame concept can also extend to other video and burst restoration tasks. For
instance, joint burst demosaicing and denoising can be effectively managed by including an
additional moisaicking operator in the F2F loss [EDAF19]. Similarly, video denoising tasks
can be greatly enhanced by harnessing the potential of the inter-image learning [DAD+21,
YPPJ20]. This wide applicability makes it a promising tool in the continuing quest for
higher-quality image and video processing.

1.5 A short outline of the thesis

This thesis is divided into two parts, each dedicated to a distinct type of super-resolution:
multi-image and single-image. The contributions of this thesis primarily revolve around
the development and application of self-supervised super-resolution techniques for satellite
imagery. It starts with the present introductory chapter that presents the motivation for
this research and provides a general background in the field.

Part I, titled “Multi-image super-resolution in satellite imagery”, begins by evaluating
and refining the PROBA-V multi-date super-resolution dataset, resulting in the practi-
cal PROBA-V-REF variant. It proceeds to introduce a novel self-supervised multi-image
super-resolution approach, adept at processing bursts of satellite images without the need
for high-resolution ground truth. To amplify the utility and resilience of this approach,
subsequent chapters provide enhancements such as detail-preserving control, outlier de-
tection and a pioneering extension to multi-exposure sequences.

In Part II, “Single-image super-resolution in satellite imagery”, the discourse turns to
single-image super-resolution (SISR). The section opens with an analysis of the SwinIR
method, currently leading in SISR, and its potential applications to satellite imagery.
Next, the focus narrows on harnessing Sentinel-2’s unique sensor specifications for deep
learning-based super-resolution. Lastly, the thesis presents L1BSR, a self-supervised deep
learning method developed for SISR and band alignment of Sentinel-2 L1B 10m bands,
leveraging overlapping areas in L1B images to eliminate the need for high-resolution
ground truth.

Concluding the thesis, a final chapter synthesizes the presented research and considers
potential avenues for future explorations, offering a springboard for continued advancement
in this promising field.

The next sections provide a brief overview for each chapter in this thesis.

Chapter 3: Repurposing the Proba-V challenge for reference-aware super-
resolution

This chapter takes a fresh look at the 2019 PROBA-V satellite multi-temporal image
super-resolution challenge. The PROBA-V dataset comprises series of LR images, each
captured on a different date and exhibiting significant variations, and their HR target
counterparts for supervised training. Notably, one of the LR images corresponds to the
HR image capture time; however, this reference frame’s identity is not provided, posing a
challenge for the training.
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Given the significance of reference-aware multi-image super-resolution, we question the
seemingly random assignment of reference frames in this challenge. We posit that this lack
of transparency could introduce bias and noise into the benchmarking results. To address
this concern, we propose the PROBA-V-REF, a variant of the PROBA-V dataset, that
explicitly provides the true LR references. This eliminates the need for heuristic guesswork
in the reference selection, thereby offering a more efficient approach to super-resolution
(See Figure 1.2).

High-resolution target Low-resolution input frames

...

...

PROBA-V
PROBA-V-REF

,

Figure 1.2: The top row presents a LR sequence from the PROBA-V dataset, where
the reference frame remains unknown. In contrast, our proposed PROBA-V-REF dataset,
shown in the second row, clearly identifies the reference frame, optimizing super-resolution
applications.

This chapter outlines a simple method to identify the LR reference for each training
sequence. This is done by aligning the LR frames with the downscaled HR and computing
the pixel-wise root-mean-square errors (RMSE) between them. The LR image with the
smallest RMSE, indicating the highest similarity to the HR, is chosen as the true reference.
The reference selection can be mathematically represented as follows:

ref = argmin
t=1,...,K

∥Register(ILRt , IHR ↓)− IHR ↓∥2 (1.9)

where IHR ↓ is the downsampled version of the HR target, and Register aligns each LR
frame to the downscaled HR.

Interestingly, upon training these methods on the PROBA-V-REF dataset, we observe a
reversal in their original ranking. This change underscores the crucial role of the correct
reference image selection and its significant impact on method ranking, influenced largely
by the reference choice heuristic. Importantly, both quantitative and qualitative evalua-
tions demonstrate that models trained on PROBA-V-REF outperform those trained on
PROBA-V, providing a more robust and practical solution for real-world applications.

Chapter 4: Self-supervised multi-image super-resolution for push-frame
satellite

In this chapter, we shift our focus to the unique challenges and opportunities offered by
MISR from push-frame satellite sensors such as the SkySat constellation from Planet.
While these sensors provide an ideal setting for MISR, leveraging their potential is a
complex task inasmuch as the ground truth HR targets are not available.
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Real large-scale MISR datasets are scarce, with the exception of the PROBA-V dataset
we discussed in the previous chapter. However, the PROBA-V images exhibit significant
content and illumination changes over time due to their multi-date nature, which makes
them unsuitable for training SR algorithms for image bursts captured in quick succession.
Therefore, most current burst SR and VSR algorithms end up relying on simulated data,
which leads to sub-optimal performance when applied in real-world scenarios.

In light of these challenges, we propose a framework for self-supervised training of MISR
networks without requiring high-resolution ground truth images. We also introduce a
novel MISR architecture, named Deep Shift-and-Add (DSA), which incorporates a shift-
and-add fusion in the feature space. Moreover, DSA is permutation-invariant and capable
of handling a variable number of frames.

Within this framework, we randomly select a frame from the input burst St to serve as
the reference frame ILRr . We compute the motions between the reference and other frames
to perform fusion. The HR output is directly aligned to the reference frame, allowing us
to train the model using a self-supervised loss, defined as follows:

ℓDSA (
Net(St\r), Ir

)
= ∥Net(St\r) ↓ −ILRr )∥1. (1.10)

(a) L1A frame (b) L1B (c) DSA

Figure 1.3: Super-resolution from a sequence of 15 real low-resolution SkySat L1A frames.
(a) Reference L1A frame, (b) Planet L1B product (×1.25), (c) Proposed method (×2).

The efficacy of our self-supervised learning strategy and DSA network is evidenced by
experiments on synthetic data, where the results attained compete with those achieved
through supervised training. The true potential of this approach is demonstrated in its
performance on a public dataset of real image bursts from SkySat satellites. The DSA
network effectively reduces noise and adeptly handles degenerate samplings, producing
more resolved and less noisy images compared to the L1B product from Planet (See
Figure 1.3).

Chapter 5: Adding detail-preserving control and outlier detection

This chapter extends our exploration of MISR within the context of push-frame satel-
lites. Our primary objective is to enhance the process of robust joint super-resolution and
denoising, whilst introducing effective strategies for outlier management.
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While super-resolution is usually coupled with denoising, this process can potentially
interfere with high-frequency detail retrieval. We address this challenge by considering an
additional self-supervised loss function specifically designed for detail recovery:

ℓLAV(Net(St)) =
1

K

K∑
t=1

∣∣∣(Warp↓(Net(St), Ft→r)
)
− ILRt

∣∣∣ , (1.11)

Balancing the trade-off between detail-preservation and denoising, we employ a noise-detail
map as a network parameter. This map is also incorporated into the total training loss to
equilibrate between the denoising effect by ℓDSA (1.10) and detail-preservation effect by
ℓLAV (1.11).

In order to manage outliers, we deploy a network, termed as MaskNet, which produces a
weight mask Ot for each frame t. These masks are utilized in the weighted fusion module.
From an intuitive perspective, an outlier in any frame can create residual traces post-
fusion. Therefore, to minimize the loss, MaskNet should assign smaller weights to these
outliers. Figure 1.4 showcases the efficacy of our outlier detection module in the case of a
moving car.

(a) L1B (b) DSA (c) DSA + MaskNet

Figure 1.4: Super-resolution from a sequence of 15 real low-resolution SkySat L1A frames.
(a) L1B from Planet, (b) DSA, (c) Our improvement with an additional CNN to detect
the outliers.

Chapter 6: Extension to multi-exposure sequences and improved feature
fusion

This chapter elaborates on the extension of the DSA framework for handling multi-
exposure sequences, with the aim of jointly performing super-resolution and High Dynamic
Range (HDR) processing from a time series of bracketed satellite images.

Addressing this task presents a unique set of challenges: First, the noise in images is
signal-dependent, and second, the exposure times reported by small push-frame satellites
can be unreliable with estimated errors reaching up to 20%. To tackle these issues, we
utilize a noise-level-aware encoder network and adopt a base-detail decomposition strategy,
respectively.
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The base-detail decomposition provides a robust way to handle inaccuracies in exposure
times. The detail components, robust to exposure time errors, is pertinent for super-
resolution, while the base components, devoid of high-frequency information, can be up-
scaled without the risk from aliasing. The final output is simply the sum of the upsampled
base and detail components. This can be briefly summarized by:

BLR
t = ILRt ∗G,

DLR
t = ILRt −BLR

i , t = 1, . . . ,K

BHR
r = Zoom({BLR

t })
DHR

r = Net({DLR
t })

IHR
r = BHR

r +DHR
r

(1.12)

Here G is a Gaussian kernel of standard deviation 1 and {BLR
t } designates a weighted

average of {BLR
t } for t = 1, . . . ,K.

Additionally, we introduce a novel temporal pooling fusion strategy, surpassing the per-
formance of the Feature Shift-and-Add (FS&A) in the DSA. Through quantitative and
qualitative experiments (see Figure 1.5), we demonstrate that our method delivers state-
of-the-art performance in satellite MISR.

The base-detail framework proposed in this chapter allowed the adaptation of the hand-
held burst super-resolution algorithm by [WGDE+19, LNFE23] to satellite images (see
Figure 1.6), which improved the handling of motion and occlusion in the multi-exposure
bursts.

LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LR9 LR10

ME S&A Planet L1B
[MSS+14]

BD-ACT
[AEdFF20]

DSA [NAD+21b] Our HDR-DSP

Figure 1.5: Super-resolution from a real multi-exposure sequence of 10 SkySat images. Top
row: Bracketed LR sequence. Bottom row: Reconstructions from five methods, including
ours trained with self-supervision (right).

Chapter 7: A brief analysis of the SwinIR super-resolution method

In Chapter 7, we take a fresh look at SwinIR, a state-of-the-art image restoration model
based on the Swin Transformer architecture. Unlike traditional convolutional neural net-
works, SwinIR adeptly captures intricate attention patterns among image patches, leading
to superior results.

Central to our discussion is SwinIR’s proficiency in single image super-resolution. We
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Alignment

Detail
Accumulation

Base
Merge

Kernel
Regression

Robustness
Maps

Base/Detail
Decomposition

LR Multi Exposure Burst HR product

Figure 1.6: An overview of Handheld-SR-Satellite [LNFE23]. In this study, we augment
the original handheld burst super-resolution algorithm by [WGDE+19] with base-detail
decomposition to manage multi-exposure satellite images.

conduct an insightful examination of the self-attention mechanism’s impact, particularly
in the context of self-similarity, an important factor in image restoration.

Leveraging the Urban100 dataset, abundant with auto-similar structures, we illuminate
the merit of SwinIR’s self-attention mechanism in exploiting these similarities to boost
super-resolution reconstruction, particularly in low-contrast or aliased areas (Figure 1.7).
However, when applied to satellite imagery, the model’s performance diminishes due to
domain-specific challenges.

Chapter 8: On the role of alias and band-shift for super-resolution of
L1C products

Contrary to conventional SISR methods that depend on perceptual restoration or GANs
to tackle the ill-posedness of SISR, this chapter unveils the potential for genuine high-
frequency detail recovery in Sentinel-2 imagery. This success is thanks to Sentinel-2’s
distinct characteristics, specifically aliasing and inter-band shift.

Aliasing arises from a low spatial sampling relative to the instrument’s modulation transfer
function, while inter-band shifts are attributed to time delays in the acquisition lines of
different spectral bands. The synergistic effect of these characteristics transforms the SISR
problem into a better-posed scenario (like MISR), paving the way for actual high-frequency
information recovery.

Our study is corroborated through experiments involving both synthetic and real data,
with the latter utilizing PlanetScope for supervision of Sentinel-2’s super-resolution. The
performance on real Sentinel-2 L1C data is shown in Figure 1.8.

Chapter 9: Exploiting detector overlap for self-supervised super-resolution
of L1B products

The previous chapter revealed the potential of SISR for Sentinel-2 Level 1C (L1C) im-
ages. This chapter introduces a unique approach for self-supervised joint SISR and band-
alignment of Sentinel-2 Level 1B (L1B) products. The focus transitions from L1C products
to the raw, early stage L1B products, primarily due to an inherent feature of Sentinel-2’s
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LR 078 RCAN ESRT SwinIR_R SwinIR_C HR 078

LR 044 RCAN ESRT SwinIR_R SwinIR_C HR 044

LR 073 RCAN ESRT SwinIR_R SwinIR_C HR 073

Figure 1.7: Qualitative comparison between the two SwinIR models, RCAN, and ESRT
on the Urban100 dataset. Super-resolution by factor of 4.

Sentinel-2 L1C Super-resolution x2 PlanetScope
Figure 1.8: SISR results obtained with the L1 loss. We argue that the characteristic alias
and band-shift are key for x2 SR of Sentinel-2 imagery.

sensor design - detector overlap.

This detector overlap results in overlapping L1B images, which enables us to train our
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network through self-supervised learning. The strategy is simple yet effective: one over-
lapping image is used as input and another as the target; the network is tasked to output
a band-aligned high-resolution (HR) image such that, after warping and downsampling, it
matches the hidden target. Mathematically, this strategy is equivalent to minimizing the
self-supervised loss as expressed in the equation:

ℓL1BSR(Net(ILR0 ), ILR1 ) =
∥∥∥Warp↓(Net(ILR0 ), F1→0)− ILR1

∥∥∥
1
. (1.13)

Nevertheless, L1B products present their own set of challenges: they contain significant
misalignment between their spectral bands, which complicates the computation of the
motion between the two overlapping images (i.e., F1→0 in (1.13)). To address this, we
introduce a novel cross-spectral registration (CSR) module, which is also trained with self-
supervision. It is important to note that the CSR module is instrumental to our framework,
but only used during training to guide the reconstruction. At the inference stage, our
network directly produces a band-aligned HR output from a band misaligned L1B image.
In the experimental section, we conduct comprehensive experiments to demonstrate the

Figure 1.9: L1BSR produces a 5m high-resolution (HR) output with all bands correctly
registered from a single 10m low-resolution (LR) Sentinel-2 L1B image with misaligned
bands. Note that our method is trained on real data with self-supervision, i.e. without
any ground truth HR targets.

effectiveness of our self-supervised framework. We also show that the performance of
various modules within our framework are on par with those of the supervised ones, both
quantitatively and qualitatively. Figure 1.9 presents the HR reconstruction by our method
on real L1B images.
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2 Introduction (en français)

2.1 Motivation

Les satellites d’Observation de la Terre (OT) jouent un rôle crucial dans la surveil-
lance et la compréhension de la dynamique de notre planète. Ils fournissent des don-
nées inestimables pour de nombreuses applications, incluant mais ne se limitant pas à, la
prévision météorologique, la gestion des catastrophes, la surveillance environnementale et
l’urbanisme [CVTGC+11,LKC15]. Cependant, l’efficacité de ces applications est souvent
limitée par la résolution des images satellite [YLXC15]. C’est ici que la super-résolution
(SR) entre en jeu.

En tant que technique de traitement d’image, la SR permet de surmonter certaines limi-
tations des images satellites à basse résolution en améliorant les détails et les structures
d’image fines qui sont à peine visibles dans les images originales. Cette augmentation
de résolution améliore la précision de la détection d’objets, la segmentation, la classifica-
tion ou le raffinement des processus de cartographie et de détection des changements de
couverture terrestre [SVE19,TAH06].

Alors, pourquoi cette application de la SR est-elle cruciale? La réponse réside dans les
défis inhérents auxquels la télédétection est confrontée. Plusieurs facteurs influencent
la résolution spatiale des images satellites. La fonction d’étalement du point (ou PSF en
anglais) dénote l’effet de flou du système, impacté par des facteurs tels que la diffraction et
les aberrations de l’objectif [AdFF19]. Le bruit, provenant de facteurs tels que les erreurs
de calibration du système, les capteurs défectueux, ou d’autres types de bruit incluant
photonique, thermique, électronique contribue à la dégradation de l’image. Même les
conditions atmosphériques peuvent influencer la qualité de l’image, provoquant la diffusion
et l’absorption du rayonnement électromagnétique.

En outre, il existe une corrélation notable entre la taille de l’ouverture du satellite et la
résolution de l’image. Agrandir l’ouverture peut aider à atténuer les effets de diffraction
et ainsi à augmenter la résolution maximale atteignable. Plus de lumière atteint le cap-
teur avec une ouverture plus grande, améliorant le rapport signal/bruit. Cependant, les
avantages d’une ouverture plus grande s’accompagnent d’une augmentation de la taille,
du poids, et du coût global du satellite. Cela introduit des complexités et des coûts
significatifs dans le déploiement de nouveaux satellites haute résolution. Alors que de
tels satellites (par exemple, GeoEye-1, WorldView-3) existent, l’accès à leurs données est
souvent coûteux et limité.

En revanche, les techniques de SR présentent une option plus économiquement viable.
Elles améliorent la résolution des images provenant de satellites existants (Planet SkySat,
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Satellogic Aleph-1, Sentinel-2) [MSS+14,AEdFF20]. En exploitant les données que nous
possédons déjà, la SR optimise le retour sur investissement dans la technologie satellitaire.

De nos jours, la demande pour des images haute résolution ne cesse de croître, poussée
par le besoin d’informations détaillées et précises dans divers domaines. De l’urbanisme
à la surveillance environnementale, les images haute résolution sont essentielles pour des
analyses précises. La SR, en améliorant la résolution de ces images, comble ce fossé entre
nécessité et limitation.

Reconnaissant ces immenses possibilités, cette thèse explore l’application de l’apprentissage
profond pour faire avancer la super-résolution des images de satellites OT. En exploitant les
capacités de ces méthodes de traitement complexes et efficaces, nous cherchons à améliorer
la qualité et le rapport coût-efficacité de la technologie satellite. Le travail présenté dans
cette thèse s’efforce d’apporter une contribution précieuse au domaine de la télédétection
et au-delà.

2.2 À propos de l’imagerie satellite optique

L’imagerie satellite optique a considérablement évolué depuis sa création (voir Figure 2.1),
offrant une vue de plus en plus complète des phénomènes terrestres de la Terre.

Dans les années 1970, la télédétection spatiale était dominée par les scanners across-track
ou whisk-broom, illustrés par le Return Beam Vidicon (RBV) sur Landsat 1 (1972) et
l’Advanced Very High Resolution Radiometer (AVHRR) sur les Polar Operational Envi-
ronmental Satellites (POES) de NOAA lancés en 1978. Ces systèmes reposaient sur un
miroir rotatif mécanique, balayant un pixel à la fois pour assembler l’image ligne par ligne.
Cependant, le court temps d’exposition pour chaque pixel a conduit à une capacité de col-
lecte de lumière limitée, et les mouvements continus du miroir ont entraîné une usure
mécanique. Ces problèmes ont catalysé une transition vers une technologie d’imagerie
push-broom plus efficace à la fin des années 1980.

Le balayage push-broom ou along-track est adopté par des satellites comme la série
SPOT française (à partir de 1986), PROBA-V de l’Agence spatiale européenne (2013)
et Sentinel-2 (2015), et des satellites commerciaux tels qu’IKONOS (1999), QuickBird
(2001), GeoEye-1 (2008), et la série WorldView (à partir de 2007). Cette technique utilise
un réseau de détecteurs disposés en ligne, capturant une bande de la surface de la Terre
alors que le satellite se déplace le long de sa trajectoire orbitale. L’image résultante
présente une qualité améliorée, grâce au temps de séjour accru de la scène sur le cap-
teur. Cependant, la technique push-broom nécessite des systèmes de stabilisation satellite
avancés pour prévenir le flou d’image et les distorsions causées par les vibrations de la
plateforme ou les fluctuations de l’attitude ou de l’altitude du satellite.

L’avènement des années 2010 a vu l’émergence de l’imagerie push-frame, incarnée par de
petits satellites rentables comme le SkySat de Planet (lancé pour la première fois en 2013)
et l’Aleph-1 de Satellogic (2016). Ces CubeSats utilisent des capteurs Complementary
Metal-Oxide-Semiconductor (CMOS) bidimensionnels, capturant un cadre complet ou un
tableau bidimensionnel de pixels à chaque prise, créant une série d’images superposées.
Cette superposition permet non seulement une redondance contre les erreurs mineures,
mais facilite également des techniques d’imagerie computationnelles avancées telles que le
débruitage en rafale et la super-résolution, malgré la nécessité de liaisons de données à
large bande et de traitements computationnels complexes.
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Figure 2.1: Une représentation des différentes technologies d’imagerie satellite, chacune
illustrant le détecteur d’une bande spectrale: du balayage pixel par pixel avec la technologie
"whisk-broom" (2.1a), au balayage ligne par ligne avec la technologie "push-broom" (2.1b),
jusqu’au balayage image par image avec la technologie "push-frame" (2.1c).

Le traitement de l’imagerie satellite optique contraste fortement avec les appareils photo
grand public en raison des défis uniques de l’acquisition de données à l’analyse à l’échelle
mondiale. Initialement, une correction des données est requise, une étape où l’imagerie en
haute altitude exige la mitigation du bruit du capteur, des distorsions atmosphériques et
des désalignements dus à la courbure de la Terre. Ces problèmes sont rarement rencon-
trés pour les appareils photo grand public. Par la suite, l’orthorectification et le recalage
d’images ont lieu. L’orthorectification contrebalance les distorsions de perspective et de
terrain pour simuler un point de vue nadir, tandis que le recalage d’images aligne dif-
férentes bandes spectrales de la même scène, une étape non nécessaire pour les appareils
photo typiques avec des capteurs Bayer. La phase finale implique un post-traitement pour
amplifier la qualité de l’image pour une analyse ultérieure. Contrairement à l’amélioration
des images grand public qui privilégie souvent l’esthétique, le post-traitement des images
satellite est orienté vers l’interprétabilité scientifique.

Cette thèse s’engage avec la super-résolution multi-image (MISR) et la super-résolution
single-image (SISR) en utilisant des données provenant de divers satellites, chacun présen-
tant des défis uniques. Nous utilisons le SkySat en mode push-frame pour la SR en rafal,
le PROBA-V en mode push-broom pour la SR multi-date, et Sentinel-2 pour la SISR,
notant un degré croissant de complexité à travers ces tâches. Alors que la SR en rafale de
SkySat bénéficie de plusieurs images en succession rapide, la SR multi-dates de PROBA-V
est confrontée à plus de variabilité en raison du laps de temps entre les images. La SISR
de Sentinel-2, bien qu’étant généralement un problème mal posé, est légèrement atténuée
car chaque bande spectrale visualise la scène sous différents angles avant le recalage, intro-
duisant un composant de type MISR avec un contenu spectral variable. En abordant ces
nuances, nous nous efforçons d’améliorer les méthodologies de super-résolution d’images
satellites.

2.3 À propos de la super-résolution

Selon le nombre d’images en entrée, les techniques de super-résolution peuvent être large-
ment catégorisées en deux groupes: Super-Résolution Multi-Image (MISR) et Super-
Résolution Single-Image (SISR).
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2.3.1 Super-résolution multi-image (MISR)

La MISR est une technique qui fusionne des informations provenant de multiples images
à basse résolution ILRt , t ∈ [1, . . . ,K] de la même scène pour produire une sortie à haute
résolution IHR [FREM04b]. Ces images à basse résolution peuvent présenter de légères
décalages, ou des modifications dans les temps d’exposition, capturant l’objet sous diverses
perspectives ou à différents moments.

Le modèle de formation d’image peut être mathématiquement décrit en utilisant une
caméra à sténopé [HZ03] avec les processus de transformation géométrique, de flou, de
sous-échantillonnage et de dégradation par le bruit [Mil17]:

ILRt = Π((I ◦ Ft) ∗ k) + nt, t ∈ [1, . . . ,K], (2.1)

où I désigne l’image idéale à résolution infinie, k est la Point Spread Function (PSF)
qui modélise conjointement le flou optique et l’intégration des pixels, Ft représente le
mouvement correspondant au cadre t, Π est l’opérateur d’échantillonnage bidimensionnel
dû au réseau de capteurs qui introduit l’aliasing, et nt modélise le bruit de l’image.

Nous pouvons présenter la super-résolution multi-image comme un problème inverse, en
utilisant un modèle mathématique pour comprendre et inverser le processus de formation
de l’image (2.1). Étant donné un ensemble d’images à basse résolution, aliasées et bruitées,
la MISR s’efforce de récupérer une image à haute résolution qui est compatible avec les
images à basse résolution observées.

En l’absence de bruit, et avec suffisamment d’images LR reliées par des mouvements de
translation Ft, le problème peut être analysé dans le contexte de la théorie de l’échantillonnage
et démontré comme bien posé [Tsa84,FP02,Alm02] (en supposant que les mouvements Ft

sont connus), et k ∗ I peut être récupéré. Ainsi, le filtre k détermine les fréquences de
l’image originale I qui peuvent finalement être récupérées. En particulier, si les images
LR sont bien échantillonnées (c’est-à-dire que k est tel qu’aucun aliasing ne se produit lors
de la sous-échantillonnage avec Π), alors l’image super-résolue k ∗ I ne contiendra aucune
composante de fréquence autre que celles déjà présentes dans les images LR. Les systèmes
satellitaires optiques laissent souvent une certaine quantité d’alias, qui peut ensuite être
exploitée pour la super-résolution.

Nous renvoyons à [Alm02] pour une analyse théorique approfondie de la relation entre
l’alias d’échantillonnage et la stabilité de l’inversion de (2.1).

Cependant, en pratique, les images acquises sont toujours contaminées par le bruit. Ce
cas peut être traité en résolvant un problème d’optimisation :

IHR = argmin
u

K∑
t=1

∥∥∥Warp↓((u ∗ k), Ft)− ILRt

∥∥∥
p
, (2.2)

où p = 1 ou 2, Warp↓(., Ft) déforme et sous-échantillonne une image HR avec un facteur
z ≥ 1, selon le mouvement Ft :

Warp↓(u, Ft)(x) = u(x+ zFt(x)), (2.3)

où un schéma d’interpolation est nécessaire car x + zFt(x) se situe en dehors de la grille
de pixels HR. Cette expression résulte de l’hypothèse que le noyau de flou commute
avec le mouvement Ft, ce qui est une approximation raisonnable si le mouvement est
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approximativement translationnel dans le support du filtre. Cependant, en pratique,
l’échantillonnage fourni par les images LR n’est pas assez dense ou est dégénéré et le
problème devient mal posé : il peut y avoir de nombreuses recontructions de haute
fréquence compatibles avec les observations disponibles. Dans ces cas, une priorisation
ou une régularisation est utilisée pour sélectionner une parmi toutes les reconstructions
possibles [MO08,ACHR06,FAAC09,PJ07].

Les techniques de MISR peuvent être largement divisées en deux grandes catégories: les
méthodes classiques, qui s’appuient principalement sur des modèles mathématiques et
l’optimisation, et des approches plus récentes basées sur l’apprentissage profond.

Méthodes classiques: La littérature existante sur les méthodes classiques de super-
résolution est vaste, englobant une multitude de stratégies. Celles-ci incluent des approches
dans le domaine fréquentiel [KBV90,NM00,RK99] et des approches dans le domaine spatial
[FREM04a,MSS+14,MN07,TMPE09,WGDE+19,TOS92,AEdFF20].

Méthodes Shift-and-Add: Ces travaux construisent une image HR en enregistrant plusieurs
images LR et en intégrant leurs informations au niveau des pixels dans la grille HR
[KPB88,FREM04a,MSS+14,MN07]. Une fois l’enregistrement terminé, chaque pixel LR
est attribué à son voisin HR le plus proche ou "éclaboussé" sur une zone de pixels HR
selon certaines méthodes d’interpolation, telles que bilinéaire ou bicubique. Après cela,
une dernière étape implique généralement une agrégation pondérée, les poids étant corrélés
à l’interpolation utilisée à l’étape précédente.

Pour un facteur d’agrandissement z ≥ 1, ce processus peut être mathématiquement ex-
primé comme suit:

Warp↑(ILRt , Ft) =
∑
n∈Z2

ILRt δn+zFt(n),

JHR
t = Warp↑(ILRt , Ft) ∗ K,

WHR
t = Warp↑(1LR, Ft) ∗ K,

IHR =

∑K
t=1 J

HR
t∑K

t=1W
HR
t

.

(2.4)

Ici Warp↑(ILRt , Ft) enregistre l’image ILRt sur la grille HR en utilisant le mouvement
Ft. Comme ce mouvement peut être sous-pixel, cette image déformée est représentée
comme un peigne de Dirac irrégulier. K désigne le noyau d’interpolation dans l’espace
HR, qui "éclabousse" les pixels de Dirac sur la grille HR entière, et WHR

t sont les poids
d’agrégation utilisés pour la normalisation, calculés en "éclaboussant" une image de uns
1LR. La dernière division est censée être élément par élément.

Dans [FREM04c] les auteurs soulignent que l’algorithme shift-and-add peut être vu comme
la solution d’un problème de moindres carrés pondérés, où les poids sont donnés par le
noyau d’éclaboussement K. Sur la base de cette observation, ils dérivent une version
robuste qui gère les valeurs aberrantes en minimisant une somme d’erreurs absolues. Cela
aboutit à un algorithme qui calcule les médianes pondérées à travers les pixels [FREM04c].
Notez que ces méthodes directes peuvent laisser des trous dans la sortie si les échantillons
sont insuffisants ou dégénérés [KPB88]. Pour faire face aux éventuels écarts et valeurs
aberrantes, des régularisateurs basés sur la Variation Totale (TV) sont souvent incorporés
dans une étape de post-traitement de minimisation de l’énergie [FREM04a]. Il faut noter
que le résultat HR obtenu à ce stade est intrinsèquement flou en raison de l’impact de la
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Fonction de Point d’Étalement (PSF) et de l’intégration de pixels (dénommée k) [MSS+14].
Pour rectifier cela, une dernière étape de défloutage est régulièrement effectuée. Cela peut
être réalisé en résolvant le problème d’optimisation suivant:

IHR
sharp = argmin

u

∥∥u ∗ k − IHR
∥∥
p
+R(u), (2.5)

où R est une fonction de régularisation, qui peut inclure la Variation Totale (TV), la
régularisation de Tikhonov, ou une combinaison des deux. La norme p est généralement
fixée à 1 ou 2, s’adaptant aux caractéristiques spécifiques du flou et au niveau de netteté
souhaité dans la sortie.

Les techniques Shift-and-Add sont parmi les plus anciennes techniques de super-résolution,
avec des résultats qui sont loin de l’état actuel de l’art. Pourtant, elles restent pertinentes
en raison de leur simplicité et de leur interprétabilité. Ces caractéristiques, associées au
fait qu’il s’agit d’une opération différentiable, permettent leur intégration transparente
dans les modèles d’apprentissage profond, ce que nous exploitons dans notre travail.

Méthodes d’apprentissage profond: Le domaine du MISR a connu une transfor-
mation significative avec l’avènement des techniques d’apprentissage profond. Ces nou-
velles méthodes, émanant de diverses sources telles que la débruisation vidéo et en rafale,
le défloutage et la super-résolution, présentent un grand potentiel [TDV20, MBC+18,
SDW+17,TGL+17,SVB18,CWY+21].

Les méthodes d’apprentissage profond pour le MISR se divisent en deux grandes catégories.
Le premier groupe a tendance à favoriser le développement d’architectures complexes et de
nouvelles méthodologies, sacrifiant souvent l’interprétabilité dans le processus [SCH+16,
KLNK18, JWOKJK18, LLTMK19a, DKG+20, LHD+19, MVFM19, SMKC20, AMSC+20].
Ces techniques traitent généralement une pile d’images à basse résolution en entrée et
génèrent une sortie à haute résolution, sans estimation explicite du mouvement [SCH+16,
JWOKJK18, KLNK18, LLTMK19a, LHD+19, DKG+20, AMSC+20, IJG+20a] ou d’autres
techniques traditionnelles [MVFM19,SMKC20]. Malgré leur efficacité prouvée, le manque
d’interprétabilité rend difficile de comprendre pourquoi elles fonctionnent et comment les
adapter pour des cas d’utilisation spécifiques [CWY+21].

La seconde catégorie de méthodes intègre des opérations plus transparentes et explicites,
offrant une meilleure compréhension de leur approche [TGL+17,HSU19,BRE19,KBP+19,
LPM21,CLK21,LPME22,SJC+22]. Bien que ces techniques soient plus complexes et diffi-
ciles à développer, elles donnent souvent de meilleurs résultats en raison de leur incorpora-
tion explicite de principes bien compris tels que le shift-and-add [TGL+17,KBP+19], plug-
and-play [VBW13,BRE19,LPM21,LPME22], la transformation en ondelettes [CLK21], ou
le transport optimal [PC+19,SJC+22]. Ces techniques nécessitent généralement une esti-
mation explicite du mouvement, une tâche informatiquement intensive. Cependant, dans
le contexte de l’imagerie par satellite, la perspective en haute altitude et la simplicité de
la dynamique de la scène rendent souvent cette tâche plus gérable.

Notre travail s’inscrit dans la seconde catégorie, avec pour objectif de combiner les réseaux
neuronaux avancés avec l’interprétabilité et la différentiabilité de la méthode traditionnelle
Shift-and-Add. Cette combinaison nous permet de tirer parti des avantages des techniques
modernes d’apprentissage profond tout en préservant la simplicité et la robustesse des
méthodes classiques [FREM04c].
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Le type de perte est un élément clé dans l’entraînement des méthodes MISR. Les méth-
odes d’apprentissage profond pour le MISR s’appuient principalement sur des fonctions
de perte basées sur les pixels comme l’erreur quadratique moyenne (MSE), la perte L1,
et la perte de Charbonnier pour l’optimisation [KYDK16, TGL+17, SVB18, CBFAB97,
MVFM19,DKG+20,CWY+21,LCF+22,ZGFK16]. Ces fonctions objectif guident efficace-
ment l’apprentissage des reconstructions haute résolution mais leurs tendances intrinsèques
à la moyenne peuvent entraîner un effet de flou. Cependant, le degré de ce flou dépend
fortement de la présence d’aliasing dans les images LR: lorsque les images LR sont forte-
ment aliasé, l’information haute fréquence peut être mieux conservée et ainsi une image
HR plus nette peut être récupérée. Dans des scénarios où l’aliasing est minimal et les
détails haute fréquence ne sont pas bien conservés, une combinaison de perte de réseau
antagoniste génératif (GAN) et de perte perceptive peut être utilisée pour générer des ré-
sultats plus visuellement agréables et détaillés [CXLT18,LLTMK19a]. Cependant, il faut
garder à l’esprit que l’utilisation de ces pertes peut conduire à l’hallucination de textures
et de détails qui ne sont pas présents dans la vérité terrain, impactant négativement la
reconstruction des vrais détails en raison du compromis perception-distorsion [BM18].

2.3.2 super-résolution single-image (SISR)

La SISR est intrinsèquement un problème mal posé car il peut y avoir plusieurs images HR
qui correspondent à une seule image LR. L’objectif principal en SISR est de générer des
détails haute fréquence qui sont plausibles et convaincants pour les observateurs humains.
La SISR est largement utilisée dans divers domaines, tels que l’imagerie médicale [Gre09],
la surveillance [ZZSL10], et la télédétection [HFBP+18]. Dans la section suivante, nous
donnons un bref aperçu des approches classiques de SISR et discutons de la transition
récente vers les méthodologies de SISR basées sur l’apprentissage profond.

Méthodes classiques: Les méthodes classiques de SISR peuvent être largement classées
en quatre groupes principaux: les méthodes basées sur l’interpolation, les méthodes basées
sur des exemples, les méthodes basées sur une représentation sparse, et les méthodes
variationnelles. Ces techniques sont ancrées dans le même modèle mathématique que le
MISR (eq. (2.1) avec K = 1), mais comme elles s’appuient sur une seule image, des a
priori sont indispensables pour atténuer le caractère mal posé du problème.

Les techniques basées sur l’interpolation, telles que l’interpolation bilinéaire et bicubique,
sont simples dans leur approche, utilisant des fonctions mathématiques prédéfinies pour
combler les lacunes entre les pixels [LGZ13]. Les méthodes basées sur des exemples,
en revanche, améliorent la qualité de l’image en identifiant des patches similaires dans
une base de données ou l’image elle-même, puis en les utilisant pour améliorer la résolu-
tion [FJP02,GBI09,HSA15]. Prenant une approche différente, les méthodes basées sur une
représentation sparse fonctionnent sur la présomption que les patches d’images peuvent
être exprimés comme des combinaisons linéaires sparse d’éléments provenant d’un dictio-
nnaire surcomplet [YWHM10,ZEP12,MBP+09]. Les méthodes variationnelles présentent
le SISR comme un problème d’optimisation, appliquant l’inférence variationnelle pour
trouver la solution la plus plausible [MO08,UPWB10,CDL18].

Nonobstant la panoplie de méthodes disponibles, chacune a ses propres limites. La qualité
globale des résultats peut être significativement entravée par les a priori imposés, et les
vrais détails haute fréquence sont souvent difficiles, voire impossibles, à restaurer avec
précision à partir de ceux aliasé.
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Méthodes d’apprentissage profond: L’état de l’art en SISR est largement dominé
par les méthodes basées sur l’apprentissage profond. Ces approches exploitent la puis-
sance des réseaux neuronaux, formés sur des jeux de données volumineux, pour modéliser
le mappage complexe des images LR vers HR. Contrairement aux méthodes tradition-
nelles, qui reposent souvent sur des caractéristiques et des a priori fabriqués à la main, les
méthodes d’apprentissage profond sont capables d’apprendre automatiquement des carac-
téristiques hiérarchiques à partir de données, les rendant plus flexibles et puissantes pour
capturer des modèles et des structures d’images complexes.

L’évolution architecturale des réseaux SISR a été rapide et transformative. À partir du
simple modèle SRCNN à trois couches [DLHT14], nous avons vu l’adoption de struc-
tures avancées qui améliorent la performance du modèle et l’efficacité de la formation.
L’apprentissage résiduel a été une innovation marquante, contournant le problème du gra-
dient évanescent pour permettre la formation de réseaux beaucoup plus profonds [HZRS16,
KKLML16, LSK+17]. Un autre développement significatif a été l’introduction de con-
nexions denses, facilitant l’extraction de caractéristiques hiérarchiques plus riches et un
flux d’information plus efficace à travers les couches du réseau [HLVDMW17, TLLG17,
ZTK+18]. Plus particulièrement, l’avènement des GAN [LTH+17,WYW+19] et des archi-
tectures de transformer [YYF+20, LCS+21] a marqué un tournant, offrant des capacités
uniques comme la génération d’images perceptuellement agréables et la capacité de mod-
éliser des dépendances à longue distance, respectivement.

Le type de perte est un élément clé dans la formation des méthodes MISR. Les méthodes
MISR d’apprentissage profond utilisent principalement des fonctions de perte de distor-
sion basées sur les pixels telles que l’erreur quadratique moyenne (MSE), la perte L1 et la
perte de Charbonnier, qui pénalisent la différence entre la prédiction du réseau et l’image
nette de haute résolution I [KYDK16, TGL+17, SVB18, CBFAB97, MVFM19, DKG+20,
CWY+21,LCF+22,ZGFK16]. Ces pertes sont bien comprises en termes de la distribution
a posteriori p(I|ILR1 , ..., ILRK ), qui peut être considérée comme l’ensemble des images de
haute résolution qui sont cohérentes avec les observations. Par exemple, un réseau formé
avec la perte MSE approximera la moyenne de la distribution a posteriori, et une perte L1

préférera la médiane (pixel par pixel) de cette distribution. Pour les problèmes de super-
résolution difficiles dans lesquels il y a une grande perte d’information, soit à cause d’un
nombre insuffisant d’images LR, de niveaux élevés de bruit, ou d’un manque d’aliasing dû
à un filtre passe-bas fort k, ces fonctions de perte souffrent d’un problème de “régression
vers la moyenne” [BM18] : il y a beaucoup d’images haute résolution cohérentes avec les
observations (la distribution a posteriori est trop large), et leurs détails sont moyennés en
calculant leur moyenne (MSE) ou médiane (L1). Dans ces scénarios, une combinaison de
perte de réseau antagoniste génératif (GAN) et de perte perceptuelle peut être employée
pour générer des résultats plus visuellement agréables et détaillés [CXLT18,LLTMK19a].
Cependant, il faut garder à l’esprit que l’utilisation de ces approches génératives peut
conduire à l’hallucination de textures et de détails qui ne sont pas présents dans la vérité
terrain, impactant ainsi négativement la reconstruction de vrais détails en raison du com-
promis perception-distorsion [BM18].

Cependant, en super-résolution d’images satellites, l’objectif principal est généralement
de restaurer les vrais détails haute fréquence plutôt que d’obtenir des résultats visuelle-
ment plaisants. Par conséquent, malgré le succès généralisé des GAN en super-résolution
d’images, leur application n’est pas aussi appropriée pour notre contexte spécifique. Nous
choisissons donc de ne pas utiliser de GAN dans notre cadre SISR. Les images satellites
possèdent certaines caractéristiques avantageuses pour le SISR. Plus précisément, le dé-
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calage entre les détecteurs spectraux sur les satellites garantit que chaque bande spectrale
visualise la scène sous un angle légèrement différent, contenant ainsi des informations
supplémentaires, à l’instar du MISR. Dans notre travail, nous démontrons la faisabil-
ité d’appliquer le SISR pour récupérer de vrais détails haute fréquence dans les images
multispectrales Sentinel-2 sans recourir aux GAN, exploitant efficacement ces propriétés
distinctives de l’imagerie satellite.

2.4 À propos de la super-résolution auto-supervisée

La performance d’un modèle d’apprentissage profond dépend fortement de la qualité et de
l’abondance de l’ensemble de données d’entraînement. Dans le contexte de l’apprentissage
supervisé pour les algorithmes de super-résolution, la nécessité de s’entraîner avec des
données réalistes ne saurait être trop soulignée. Comme l’a montré l’étude de Cai et
al. [CZY+19], les modèles formés sur un jeu de données composé de vraies paires d’images
à basse résolution (LR) et haute résolution (HR) ont surpassé ceux formés sur des don-
nées synthétiques [AT17]. Cela souligne l’importance d’utiliser de véritables ensembles de
données qui représentent fidèlement les nuances des scénarios du monde réel.

Cependant, la création et l’utilisation de jeux de données à grande échelle du monde réel
comportent leur propre ensemble de défis. Les jeux de données existants pour la super-
résolution multi-image (MISR) tels que RBSR [BDVGT21] pour la super-résolution de
rafales brutes de smartphones, WorldStrat [COK22] pour la super-résolution multi-dates
de Sentinel-2, et le jeu de données de Martens et al. [MIKC19] pour la super-résolution
multi-dates de PROBA-V, nécessitent tous une création de jeu de données laborieuse et
un prétraitement méticuleux. Assurer l’alignement du contenu spatial et spectral peut
être particulièrement exigeant et chronophage.

Après avoir souligné ces considérations, nous nous tournons maintenant vers l’apprentissage
auto-supervisé. Contrairement à l’apprentissage supervisé, les techniques d’apprentissage
auto-supervisé éliminent le besoin d’étiquettes de vérité terrain, contournant potentielle-
ment certains des problèmes liés au prétraitement et à l’annotation des données. Dans
les sections suivantes, nous étudierons certaines méthodes auto-supervisées fondamentales
qui sous-tendent notre travail.

Les méthodes de restauration d’images auto-supervisées sont généralement divisées en
deux catégories: les méthodes d’apprentissage intra-image et les méthodes d’apprentissage
inter-image.

Les méthodes d’apprentissage intra-image sont basées sur le concept de redondances in-
ternes à l’échelle croisée et l’auto-similarité inhérente à une seule image. Ces méthodes
reposent sur le principe que les motifs dans une seule image présentent souvent une ressem-
blance ou une répétition significative. Cette auto-similarité au sein de l’image est exploitée
pour des tâches comme le débruitage ou la super-résolution. Des méthodes de débruitage
traditionnelles comme les moyennes non locales (NLM) [BCM05] et BM3D (Bloc-Matching
et filtrage 3D) [DFKE07], ainsi que la super-résolution basée sur des exemples [FJP02],
entrent dans cette catégorie. Des approches récentes d’apprentissage profond comme
Noise2Self [BR19] et ZSSR (Zero-Shot Super-Resolution) [SCI18] appartiennent égale-
ment à cette catégorie car elles apprennent à partir d’une seule image bruyante ou LR
pour déduire la sortie propre.

D’autre part, les méthodes d’apprentissage inter-image utilisent deux ou plusieurs obser-
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vations de la même scène comme cible pour guider le processus d’apprentissage. Ces obser-
vations pourraient être diverses versions dégradées de la même image ou différentes vues
de la même scène. Dans des contextes tels que la restauration de rafales et de vidéos, ces
observations contiennent souvent des transformations géométriques, mais partagent tou-
jours un contenu sous-jacent commun. Une contribution révolutionnaire à cette catégorie
est la méthode de débruitage d’image Noise2Noise [LMH+18], qui apprend à débruiter
une image en comparant deux réalisations bruyantes de la même scène. Il est important
de noter que dans les méthodes d’apprentissage inter-image, le réseau de reconstruction
ne doit pas avoir accès à la cible dégradée pour éviter des solutions triviales.

À notre connaissance, toutes les techniques existantes de super-résolution auto-supervisée
[YLZ+18, SCI18, BKSI19, KJK20, EPC21, BP22] relèvent de l’apprentissage intra-image.
Ces approches utilisent généralement l’image d’entrée comme cible pour la super-résolution
de son équivalent LR dégradé. Cependant, cette approche n’est pas dénuée de limites.
La préoccupation la plus pressante est que l’image d’entrée elle-même peut contenir de
l’aliasing, ce qui la rend moins qu’idéale pour être utilisée comme cible pour la super-
résolution. De plus, la version LR de l’image d’entrée peut présenter différents bruits,
flous, et en particulier des motifs d’aliasing, par rapport à l’image d’entrée originale.
Cette différence pourrait avoir un impact significatif sur les performances d’apprentissage
du modèle. De plus, cette approche n’utilise que des informations internes de l’entrée LR,
négligeant une grande quantité d’informations externes. Cela se traduit par leur difficulté
à séparer et à récupérer avec précision les détails de haute fréquence des aliasés. Par
conséquent, notre attention se tourne vers les méthodes d’apprentissage inter-image. Dans
les paragraphes suivants, nous étudions les deux méthodes de débruitage auto-supervisées
qui inspirent notre travail: Noise2noise [LMH+18] et les méthodes de trame à trame
[EDM+19].

Dans Noise2noise [LMH+18], Lehtinen et al. ont montré qu’un réseau de débruitage
d’images peut être formé à partir de paires de versions bruyantes N et N ′ de la même
image I avec des réalisations de bruit indépendantes, en minimisant le risque suivant de
bruit à bruit (N2N):

RN2N(Net) =
∑
j

ℓ(Net(Nj), N
′
j). (2.6)

Intuitivement, puisque les réalisations du bruit sont indépendantes, le bruit dans N ′ ne
peut être prédit à partir de N . Par conséquent, la perte est minimisée en estimant l’image
propre. Les estimateurs optimaux pour le risque N2N sont donnés par EN ′|N pour la
perte MSE, et médianeN ′|N pour la perte L1. Il peut être montré que si le bruit dans N ′

préserve la moyenne, alors EN ′|N = EI|N , c’est-à-dire l’entraînement avec la supervision
par les images bruyantes est équivalent à celui supervisé par les images propres. Il a
également été observé empiriquement qu’une propriété similaire s’applique à la perte L1

si le bruit dans N ′ préserve la médiane.

Bien que Noise2Noise offre une manière robuste de débruiter les images fixes, son applica-
tion se généralise lorsqu’on la considère dans le contexte de vidéos ou d’images en rafale.
Ici, une trame voisine peut servir de cible bruyante une fois correctement alignée. Ce con-
cept sous-tend la méthode de trame à trame [EDM+19], qui vise à affiner un réseau Net
pour produire une seule trame débruitée Ît à partir d’une trame bruyante t en utilisant
une ou plusieurs trames bruyantes autour de t.

Dans cette configuration, nous décrivons l’ensemble des trames d’entrée comme la pile
d’entrée St = [It−m, ..., It+m], avec 2m+1 étant le nombre total de trames d’entrée. Avant
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de calculer Îr, la trame cible Ir est exclue de la pile St. L’entraînement du réseau se
poursuit alors en minimisant la perte de trame à trame:

ℓMF2F
p

(
Net(St\r), Ir

)
= ∥Ot→r.(Warpt→r(Net(St\r))− Ir)∥pp. (2.7)

Dans cette équation, p ∈ 1, 2, " . " désigne le produit terme à terme, Warpt → r aligne
la trame t sur r en utilisant le mouvement estimé de r à t, et Ot → r est un masque de
désalignement qui élimine les régions de la perte qui ne sont pas correctement alignées.
Des désalignements peuvent se produire en raison de facteurs tels que les occlusions, les
changements d’éclairage ou les erreurs dans le flux optique. Une hypothèse fondamentale
de ce cadre est que les trames voisines partagent le contenu de l’image propre soumis à
une transformation géométrique:

Ir = Warpt → r(Ît) + nr, (2.8)

où Ît est la trame de sortie souhaitée et nr modélise le bruit.

Le concept de trame à trame peut également être étendu à d’autres tâches de restauration
de vidéos et d’images en rafale. Par exemple, le démosaïcage et le débruitage de rafales
conjointes peuvent être efficacement gérés en incluant un opérateur de mosaïque supplé-
mentaire dans la perte F2F [EDAF19]. De même, les tâches de débruitage de vidéos
peuvent être grandement améliorées en exploitant le potentiel de l’apprentissage inter-
image [DAD+21,YPPJ20]. Cette large applicabilité en fait un outil prometteur dans la
quête continue d’une meilleure qualité de traitement des images et des vidéos.

2.5 Un bref aperçu de la thèse

Cette thèse est divisée en deux parties, chacune consacrée à un type distinct de super-
résolution: multi-image et mono-image. Les contributions de cette thèse tournent princi-
palement autour du développement et de l’application de techniques de super-résolution
auto-supervisées pour l’imagerie satellite. Elle commence par le présent chapitre d’introduction
qui présente la motivation de cette recherche et fournit un contexte général dans le do-
maine.

La première partie, intitulée “Super-résolution multi-image de l’imagerie satellite”, com-
mence par évaluer et affiner l’ensemble de données de super-résolution multi-dates PROBA-
V, aboutissant à la variante pratique PROBA-V-REF. Elle continue à introduire une
nouvelle approche de super-résolution multi-image auto-supervisée, capable de traiter des
rafales d’images satellites sans avoir besoin de vérité terrain en haute résolution. Pour
amplifier l’utilité et la résilience de cette approche, les chapitres suivants proposent des
améliorations telles que le contrôle préservant les détails, la détection des valeurs aber-
rantes et une extension pionnière aux séquences à exposition multiple.

Dans la deuxième partie, intitulée “super-résolution single-image de l’imagerie satellite”, le
discours se tourne vers la super-résolution single-image (SISR). Cette section commence
par une analyse de la méthode SwinIR, actuellement leader en SISR, et de ses applications
potentielles à l’imagerie satellite. Ensuite, l’accent est mis sur l’exploitation des spécifi-
cations uniques du capteur Sentinel-2 pour la super-résolution basée sur l’apprentissage
profond. Enfin, la thèse présente L1BSR, une méthode d’apprentissage profond auto-
supervisée développée pour le SISR et l’alignement de bandes de Sentinel-2 L1B 10m, en
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exploitant les zones de chevauchement dans les images L1B pour éliminer le besoin d’une
vérité terrain en haute résolution.

En conclusion de la thèse, un dernier chapitre synthétise la recherche présentée et envisage
des voies potentielles pour de futures explorations, offrant un tremplin pour une avancée
continue dans ce domaine prometteur.

Dans la section suivante, je fournirai un bref aperçu de chaque chapitre de cette thèse.

Chapitre 3: Réutilisation du défi Proba-V pour la super-résolution avec
référence

Ce chapitre jette un regard neuf sur le défi de super-résolution d’images multi-temporelles
du satellite PROBA-V de 2019. L’ensemble de données PROBA-V comprend des séries
d’images LR, chacune capturée à une date différente et présentant des variations significa-
tives, et leurs homologues HR cibles pour l’entraînement supervisé. Notamment, une des
images LR correspond au moment de la capture de l’image HR ; cependant, l’identité de
cette image de référence n’est pas fournie, ce qui pose un défi pour l’entraînement.

Étant donné l’importance de la super-résolution multi-image avec référence, nous remet-
tons en question l’attribution apparemment aléatoire des images de référence dans ce défi.
Nous supposons que ce manque de transparence pourrait introduire un biais et du bruit
dans les résultats de l’évaluation. Pour répondre à cette préoccupation, nous proposons le
PROBA-V-REF, une variante de l’ensemble de données PROBA-V, qui fournit explicite-
ment les véritables références LR. Cela élimine le besoin de devinettes heuristiques dans
la sélection des références, offrant ainsi une approche plus efficace pour la super-résolution
(voir Figure 2.2).

High-resolution target Low-resolution input frames

...

...

PROBA-V
PROBA-V-REF

,

Figure 2.2: La rangée du haut présente une séquence LR du jeu de données PROBA-V, où
le cadre de référence reste inconnu. En revanche, notre jeu de données proposé PROBA-
V-REF, présenté dans la deuxième rangée, identifie clairement le cadre de référence, opti-
misant les applications de super-résolution.

Ce chapitre décrit une méthode simple pour identifier la référence LR de chaque séquence
d’entraînement. Ceci est réalisé en alignant les images LR avec la version réduite de l’image
HR et en calculant les erreurs quadratiques moyennes pixel par pixel entre elles. L’image
LR avec la plus petite erreur quadratique moyenne, indiquant la plus grande similarité
avec l’image HR, est choisie comme référence véritable. La sélection de la référence peut
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être représentée mathématiquement comme suit:

ref = argmin
t=1,...,K

∥Register(ILRt , IHR ↓)− IHR ↓∥2 (2.9)

où IHR ↓ est la version sous-échantillonnée de la cible HR, et Register aligne chaque
image LR sur la HR sous-échantillonnée.

De façon intéressante, lors de l’entraînement de ces méthodes sur le jeu de données
PROBA-V-REF, nous observons une inversion dans leur classement original. Ce change-
ment souligne le rôle crucial de la bonne sélection de l’image de référence et son impact
significatif sur le classement des méthodes, largement influencé par l’heuristique de choix
de la référence. Il est important de noter que tant les évaluations quantitatives que qual-
itatives montrent que les modèles formés sur PROBA-V-REF surpassent ceux formés sur
PROBA-V, offrant une solution plus robuste et pratique pour des applications en condi-
tions réelles.

Chapitre 4: Super-résolution multi-image auto-supervisée pour satellite
push-frame

Dans ce chapitre, nous orientons notre attention vers les défis et opportunités uniques
offerts par la MISR à partir de capteurs satellites push-frame tels que la constellation
SkySat de Planet. Bien que ces capteurs fournissent un cadre idéal pour la MISR, exploiter
leur potentiel est une tâche complexe dans la mesure où les cibles HR de vérité terrain ne
sont pas disponibles.

Les ensembles de données MISR à grande échelle réels sont rares, à l’exception de l’ensemble
de données PROBA-V dont nous avons discuté dans le chapitre précédent. Cependant,
les images PROBA-V présentent des variations significatives de contenu et d’éclairage au
fil du temps en raison de leur nature multi-dates, ce qui les rend inadaptées à la for-
mation d’algorithmes SR pour des rafales d’images capturées en succession rapide. Par
conséquent, la plupart des algorithmes actuels de SR et VSR en rafale finissent par se re-
poser sur des données simulées, ce qui conduit à des performances sous-optimales lorsqu’ils
sont appliqués dans des scénarios réels.

Compte tenu de ces défis, nous proposons un cadre pour la formation auto-supervisée de
réseaux MISR sans nécessiter d’images de vérité terrain à haute résolution. Nous intro-
duisons également une nouvelle architecture MISR, nommée Deep Shift-and-Add (DSA),
qui incorpore une fusion shift-and-add dans l’espace des caractéristiques. De plus, DSA
est invariante à la permutation et capable de gérer un nombre variable de cadres.

Dans ce cadre, nous sélectionnons aléatoirement un cadre de la rafale d’entrée St pour
servir de cadre de référence ILRr . Nous calculons les mouvements entre la référence et les
autres cadres pour effectuer la fusion. La sortie HR est directement alignée sur le cadre
de référence, ce qui nous permet de former le modèle à l’aide d’une perte auto-supervisée,
définie comme suit:

ℓDSA (
Net(St\r), Ir

)
= ∥Net(St\r) ↓ −ILRr )∥1. (2.10)

L’efficacité de notre stratégie d’apprentissage auto-supervisée et du réseau DSA est mise
en évidence par des expériences sur des données synthétiques, où les résultats obtenus sont
en concurrence avec ceux obtenus par une formation supervisée. Le véritable potentiel de
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(a) L1A (b) L1B (c) DSA

Figure 2.3: Super-résolution à partir d’une séquence de 15 trames SkySat L1A de basse
résolution. (a) Trame L1A, (b) Planet L1B product (×1.25), (c) Méthode proposé (×2).

cette approche est démontré par sa performance sur un ensemble de données publiques de
vraies rafales d’images provenant de satellites SkySat. Le réseau DSA réduit efficacement
le bruit et gère habilement les échantillonnages dégénérés, produisant des images plus
résolues et moins bruitées par rapport au produit L1B de Planet (Voir Figure 2.3).

Chapitre 5: Ajout de contrôle de préservation des détails et détection
d’outliers

Ce chapitre prolonge notre exploration de la MISR dans le contexte des satellites push-
frame. Notre objectif principal est d’améliorer le processus de super-résolution et de
débruitage conjoints robustes, tout en introduisant des stratégies efficaces pour la gestion
des outliers.

Bien que la super-résolution soit généralement couplée au débruitage, ce processus peut
potentiellement interférer avec la récupération des détails à haute fréquence. Nous relevons
ce défi en considérant une fonction de perte auto-supervisée supplémentaire spécifiquement
conçue pour la récupération des détails:

ℓLAV(Net(St)) =
1

K

K∑
t=1

∣∣∣(Warp↓(Net(St), Ft→r)
)
− ILRt

∣∣∣ , (2.11)

Pour équilibrer le compromis entre la préservation des détails et le débruitage, nous em-
ployons une carte de détail-bruit comme paramètre de réseau. Cette carte est également
incorporée à la perte totale d’entraînement pour équilibrer entre l’effet de débruitage par
ℓDSA(2.10) et l’effet de préservation des détails par ℓLAV(2.11).

Afin de gérer les outliers, nous déployons un réseau, appelé MaskNet, qui produit un
masque de poids Ot pour chaque cadre t. Ces masques sont utilisés dans le module de
fusion pondérée. D’un point de vue intuitif, un outlier dans n’importe quel cadre peut créer
des traces résiduelles après la fusion. Par conséquent, pour minimiser la perte, MaskNet
devrait attribuer des poids plus petits à ces outliers. La Figure 2.4 montre l’efficacité de
notre module de détection d’outliers dans le cas d’une voiture en mouvement.
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(a) L1B (b) DSA (c) DSA + MaskNet

Figure 2.4: Super-résolution à partir d’une séquence de 15 trames SkySat L1A. (a) L1B
de Planet, (b) DSA, (c) Notre méthode avec réseau à détecter les outliers.

Chapitre 6: Extension aux séquences multi-expositions et amélioration
de la fusion des caractéristiques

Ce chapitre détaille l’extension du cadre DSA pour traiter les séquences multi-expositions,
dans le but d’effectuer conjointement la super-résolution et le traitement Haute Gamme
Dynamique (HDR) à partir d’une série temporelle d’images de satellites avec différentes
expositions.

Ce travail présente un ensemble unique de défis: Tout d’abord, le bruit dans les images
dépend du signal, et ensuite, les temps d’exposition rapportés par les petits satellites
push-frame peuvent être peu fiables avec des erreurs pouvant atteindre jusqu’à 20

La décomposition base-détail fournit une manière robuste de gérer les imprécisions dans les
temps d’exposition. Les composantes de détail, robustes aux erreurs de temps d’exposition,
sont pertinentes pour la super-résolution, tandis que les composantes de base, dépourvues
d’informations à haute fréquence, peuvent être mises à l’échelle sans risque d’aliasing.
La sortie finale est simplement la somme des composantes de base et de détail mises à
l’échelle. Cela peut être brièvement résumé par:

BLR
t = ILRt ∗G,

DLR
t = ILRt −BLR

i , t = 1, . . . ,K

BHR
r = Zoom({BLR

t })
DHR

r = Net({DLR
t })

IHR
r = BHR

r +DHR
r

(2.12)

Ici G est un noyau Gaussien de déviation standard 1 et BLR
t désigne une moyenne pondérée

de BLR
t pour t = 1, . . . ,K.

De plus, nous introduisons une nouvelle stratégie de fusion par regroupement temporel,
surpassant les performances du Feature Shift-and-Add (FS&A) dans le DSA. À travers
des expériences quantitatives et qualitatives (voir Figure 2.5), nous démontrons que notre
méthode offre des performances de pointe en MISR satellite.
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LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LR9 LR10

ME S&A Planet L1B
[MSS+14]

BD-ACT
[AEdFF20]

DSA [NAD+21b] Our HDR-DSP

Figure 2.5: Super-résolution à partir d’une séquence multi-expositions de 10 images
SkySat. Rangée supérieure: séquence LR avec différentes expositions. Rangée inférieure:
Reconstructions à partir de cinq méthodes, y compris la nôtre formée avec auto-supervision
(à droite).

Chapitre 7: Une brève analyse de la méthode de super-résolution SwinIR

Dans le Chapitre 7, nous jetons un regard neuf sur SwinIR, un modèle de restauration
d’image de pointe basé sur l’architecture Swin Transformer. Contrairement aux réseaux
neuronaux convolutionnels traditionnels, SwinIR capte habilement les motifs d’attention
complexes parmi les patches d’image, ce qui donne des résultats supérieurs.

Au centre de notre discussion se trouve la compétence de SwinIR en matière de super-
résolution single-image. Nous menons une analyse approfondie de l’impact du mécanisme
d’auto-attention, notamment dans le contexte de l’auto-similarité, un facteur important
dans la restauration d’image.

En utilisant le dataset Urban100, abondant en structures auto-similaires, nous mettons
en lumière le mérite du mécanisme d’auto-attention de SwinIR à exploiter ces similarités
pour améliorer la reconstruction de super-résolution, en particulier dans les zones à faible
contraste ou aliasées (Figure 2.6). Cependant, lorsque le modèle est appliqué à l’imagerie
satellitaire, ses performances diminuent en raison de défis spécifiques au domaine.

Chapitre 8: Sur le rôle de l’alias et du décalage de bande pour la super-
résolution des produits L1C

Contrairement aux méthodes SISR conventionnelles qui dépendent de la restauration per-
ceptive ou des GANs pour faire face à l’ill-posedness de SISR, ce chapitre dévoile le po-
tentiel de récupération réelle de détails à haute fréquence dans l’imagerie Sentinel-2. Ce
succès est dû aux caractéristiques distinctes de Sentinel-2, spécifiquement l’aliasing et le
décalage inter-bandes.

L’aliasing résulte d’un échantillonnage spatial faible par rapport à la fonction de transfert
de modulation de l’instrument, tandis que les décalages inter-bandes sont attribués aux
retards temporels dans les lignes d’acquisition de différentes bandes spectrales. L’effet
synergique de ces caractéristiques transforme le problème SISR en un scénario mieux
posé (comme MISR), ouvrant la voie à une véritable récupération d’informations à haute
fréquence.
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LR 078 RCAN ESRT SwinIR_R SwinIR_C HR 078

LR 044 RCAN ESRT SwinIR_R SwinIR_C HR 044

LR 073 RCAN ESRT SwinIR_R SwinIR_C HR 073

Figure 2.6: Comparaison qualitative entre les deux modèles SwinIR, RCAN, et ESRT sur
le dataset Urban100. Super-résolution par un facteur de 4.

Sentinel-2 L1C Super-resolution x2 PlanetScope
Figure 2.7: Résultats SISR obtenus avec la perte L1. Nous soutenons que l’alias carac-
téristique et le décalage de bande sont clés pour la SR x2 de l’imagerie Sentinel-2.

Notre étude est corroborée par des expériences impliquant à la fois des données syn-
thétiques et réelles, ces dernières utilisant PlanetScope pour la supervision de la super-

41



Chapter 2. Introduction (en français)

résolution de Sentinel-2. Les performances sur les vraies données L1C de Sentinel-2 sont
présentées à la Figure 2.7.

Chapitre 9: Exploiter le chevauchement des détecteurs pour une super-
résolution auto-supervisée des produits L1B

Le chapitre précédent a révélé le potentiel de SISR pour les images de niveau 1C (L1C)
de Sentinel-2. Ce chapitre présente une approche unique pour l’alignement conjoint auto-
supervisé SISR et de bande des produits de niveau 1B (L1B) de Sentinel-2. L’accent passe
des produits L1C aux produits L1B bruts, de stade précoce, principalement en raison d’une
caractéristique inhérente à la conception du capteur de Sentinel-2 - le chevauchement des
détecteurs.

Ce chevauchement de détecteurs entraîne des images L1B qui se chevauchent, ce qui nous
permet d’entraîner notre réseau par apprentissage auto-supervisé. La stratégie est simple
mais efficace: une image chevauchante est utilisée comme entrée et une autre comme cible
; le réseau a pour tâche de produire une image à haute résolution (HR) alignée en bande
de telle sorte que, après déformation et sous-échantillonnage, elle corresponde à la cible
cachée. Mathématiquement, cette stratégie équivaut à minimiser la perte auto-supervisée
telle qu’exprimée dans l’équation:

ℓL1BSR(Net(ILR0 ), ILR1 ) =
∥∥∥Warp↓(Net(ILR0 ), F1→0)− ILR1

∥∥∥
1
, (2.13)

Néanmoins, les produits L1B présentent leur propre ensemble de défis: ils contiennent
un désalignement significatif entre leurs bandes spectrales, ce qui complique le calcul du
mouvement entre les deux images qui se chevauchent (c’est-à-dire F1→0 dans (2.13)).
Pour y remédier, nous introduisons un nouveau module d’enregistrement spectral croisé
(CSR), qui est également formé avec auto-supervision. Il est important de noter que le
module CSR est essentiel à notre cadre, mais n’est utilisé que pendant l’entraînement
pour guider la reconstruction. Au stade de l’inférence, notre réseau produit directement
une sortie HR alignée en bande à partir d’une image L1B mal alignée en bande. Dans la

Figure 2.8: L1BSR produit une sortie à haute résolution (HR) de 5m avec toutes les bandes
correctement enregistrées à partir d’une seule image L1B Sentinel-2 à basse résolution (LR)
de 10m avec des bandes mal alignées. Notez que notre méthode est formée sur des données
réelles avec auto-supervision, c’est-à-dire sans aucune cible HR.

section expérimentale, nous menons des expériences complètes pour démontrer l’efficacité
de notre cadre auto-supervisé. Nous montrons également que les performances de divers
modules au sein de notre cadre sont à égalité avec celles des modules supervisés, à la fois
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quantitativement et qualitativement. La Figure 2.8 présente la reconstruction HR par
notre méthode sur de vraies images L1B.
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Multi-image super-resolution in
satellite imagery

45





3 Repurposing the Proba-V challenge for reference-
aware super-resolution

The PROBA-V Super-Resolution challenge aims to advance research on Multi-Image
Super Resolution (MISR) for satellite images by providing real low-resolution image
series and corresponding high-resolution targets. However, a crucial piece of infor-
mation is missing in the PROBA-V dataset—the identification of the low-resolution
image that corresponds to the high-resolution target. This absence leads to a ranking
of proposed methods that heavily relies on the heuristics used to determine which
image in the series is most similar to the high-resolution target. In this chapter, we
demonstrate the significance of this issue by achieving performance improvements for
the two challenge winners through the use of a different reference image determined
by a simple heuristic. To address this limitation, we propose PROBA-V-REF, a vari-
ant of the PROBA-V dataset where the reference image in the low-resolution series is
explicitly identified. By providing the reference image, we observe a notable change
in the ranking between different methods, highlighting the importance of reference-
aware MISR. This variant better aligns with practical use cases of MISR, where the
objective is to super-resolve a specific image from the series with a known reference.
PROBA-V-REF serves as a valuable resource for evaluating the performance of vari-
ous methods in tackling the reference-aware MISR problem in real-world scenarios.

3.1 Introduction

In 2019, the Advanced Concepts Team of the European Space Agency (ESA) organized a
challenge [MIKC19] to super-resolve multi-temporal images from the PROBA-V satellite.
This novel challenge was instrumental in enabling the training of deep learning MISR
methods on real-world data, leveraging the unique capabilities of the PROBA-V satellite.
This satellite is equipped with two types of cameras that capture images with different
resolutions and revisit times, a setup that presents a special opportunity for supervising
MISR methods on real-world data.

The challenge dataset consists of sets of LR images captured within a one-month time
window over various sites. For each site, a high-resolution target image (HR) is provided.
In each sequence, one of the LR images corresponds to the HR image, which we refer to as
the true reference. However, the identity of the true reference images is not provided, a key
limitation that hampers the full potential of the dataset. Knowledge of the LR reference
can aid in producing results that better match the HR image, as significant changes may
occur between images taken at different dates.

Traditional MISR methods, such as shift-and-add, kernel regression [TFM07], and poly-
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MISR
Output TargetInput

MISR
Output TargetInputREF

Figure 3.1: The PROBA-V dataset (top) does not make any distinction between the
LR images. One of them was acquired at the same time as the target HR image which
is used for training and evaluation. The MISR methods need to determine a reference
without knowing which is the one corresponding to the target. We propose PROBA-V-
REF (bottom), a version of PROBA-V where the identity of true reference is known.

nomial fitting [AEdFF20] all need a LR reference image. They start by registering all LR
images to a common domain, often chosen to be the domain of a specific LR image in the
series, typically the one targeted for super-resolution. The two top-performing methods
in the Proba-V challenge, DeepSUM [MVFM19] and HighRes-net [DKG+20], also select a
specific LR image as a reference for reconstruction. DeepSUM chooses the LR image with
the highest clarity as the reference for the registration step, while HighRes-net selects the
median of the nine clearest LR images as the reference in the fusion step.

Numerous teams have participated in the challenge, and a "post-mortem" contest con-
tinues to benchmark new MISR methods. All these works attempt to solve the problem
without knowledge of the reference images. We believe that the problem of MISR without
a reference image is interesting and holds several applications. However, in such cases,
the reference image should be completely random, which is not the case in the PROBA-V
challenge. For example, a cloud-free LR image has a higher chance of being the reference
than a cloudy LR image. This bias introduces noise into the resulting benchmark, and a
method’s performance may be influenced not by a more suitable architecture or training
but by a better heuristic for guessing the reference image.

On the other hand, reference-aware MISR is a relevant problem in its own right. In many
practical scenarios, the goal is to super-resolve a specific image from the sequence, such
as one corresponding to a specific date. While this problem is considerably easier, it is
far from being solved. In other domains, such as video super-resolution or burst image
super-resolution, the standard definition of MISR includes the reference image. Therefore,
we believe that a variant of the PROBA-V dataset with the true reference images would
be valuable for the computer vision community.

In this chapter, we first demonstrate the impact of the heuristic used to select the reference
LR image in the PROBA-V challenge. By simply changing the reference images of the
two winning methods with a different one chosen through a simple heuristic, we observe
improved performance. We also highlight that the true reference image can be obtained in
the training and validation splits of the dataset by comparing with the HR target. Con-
sequently, we propose PROBA-V-REF, a version of the PROBA-V dataset that includes
the true LR references. Finally, we retrain the top two methods from the challenge on the
PROBA-V-REF dataset and show that the ranking between them becomes inverted.
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3.2 Recovering the true LR reference image

The PROBA-V dataset comprises 566 scenes from the NIR spectral band and 594 scenes
from the RED band. Each scene consists of a single HR image of size 384 x 384 pixels
and multiple LR images (ranging from 9 to 35) captured over a period of one month, with
dimensions of 128 x 128 pixels. The LR images within a set can exhibit variations due to
changes in illumination, presence of clouds, shadows, or ice/snow covering.

A status map is provided for each LR image to indicate the reliability of the pixels for
fusion. The “clearance score” measures the percentage of clear pixels in the status map.
The dataset is carefully curated to ensure that the LR images have a clearance score of
at least 60% and the HR image has a clearance score of at least 75%. If multiple HR
images meet this clearance criterion within a 30-day period, only the one with the highest
clearance score is selected as the target HR image. Since the PROBA-V dataset does not
distinguish between the LR images, MISR methods are required to produce an average
SR image. However, to accurately recover the true details in the SR image, knowledge of
the true LR reference image is essential (see Figure 3.1).

To determine the true LR reference for each element in the training set, a comparison is
made between the LR images and the HR image. A filtered and subsampled version of the
HR image is computed, and the LR frames are aligned with the downsampled HR image
using the inverse compositional algorithm [BM01]. Pixel-wise root-mean-square errors
are then calculated between the LR images and the downsampled HR image. The true
reference image is identified as the LR image with the minimum error. The computed
indexes of the true references for the PROBA-V dataset can be found at the following
link: https://github.com/centreborelli/PROBAVref.

3.3 Experiments

In this section, we emphasize the significance of the reference image in the super-resolution
process and highlight its impact on the overall technique performance. Additionally, we
illustrate and discuss the advantages of utilizing the PROBA-V-REF dataset for real-world
applications.

To evaluate the quality of the reconstructions, we employ the “corrected clear” PSNR
(cPSNR) metric introduced during the PROBA-V challenge [MIKC19]. This metric is
particularly relevant as it incorporates the status map of the ground truth HR image,
enabling the consideration of intensity biases and small pixel translations between the
super-resolved image and the target. By utilizing the cPSNR metric, we can assess the
reconstruction quality more accurately and account for potential discrepancies caused by
variations in pixel intensity and minor pixel-misalignments.

3.3.1 Experimental Settings

As mentioned earlier, the top two competitors in the PROBA-V challenge, DeepSUM and
HighRes-net, rely on specific LR images as anchor references.

DeepSUM [MVFM19] — The winner of the challenge, DeepSUM uses the LR image with
the highest clearance as the reference. A registration step aligns all other images to this
reference.

HighRes-net [DKG+20] — HighRes-net achieved the second place in the challenge. It
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Table 3.1: Average cPSNR (dB) over the validation dataset for DeepSUM and HighRes-
net. The original performance is highlighted in orange and the best performances are
highlighted in blue

Methods Training Evaluation ref.
ref. Simil. Clearance Median Heuristic

DeepSUM Clearance 47.99 47.75 47.62 47.87
HighRes-net Median 47.77 47.26 47.48 47.57

selects the median of the nine images with the highest clearance as a shared representation
for multiple LR images. Each LR image is jointly embedded with this reference image
before being recursively fused.

To demonstrate that the choices of reference images by DeepSUM and HighRes-net may
not be optimal, we retrain these models from scratch using the true LR references (as
described in Section 3.2). We refer to these adjusted methods as DeepSUM-ref and
HighRes-net-ref, respectively. Furthermore, we compare the performance of these MISR
methods with a single-image super-resolution (SISR) algorithm trained on the true LR ref-
erences. We introduce DeepSUM-SI, which is a modified version of DeepSUM designed
for SISR by replacing all input images with the true references.

Tables 3.1 and 3.2 present the performance of these methods on the validation set for the
NIR spectral band, which consists of 170 scenes.

We explore different approaches for selecting the reference image on the validation set:

Similarity — This approach uses the true reference image computed in Section 3.2.

Highest clearance — The LR image with the highest clearance score is chosen as the
reference, following the method used in [MVFM19].

Median — The reference image is determined as the median of the nine clearest LR
observations, following the approach in [DKG+20].

Heuristic — In the absence of ground truth HR images in the test set, a heuristic is em-
ployed to predict the reference images. This is accomplished by minimizing the objective
function:

iheur = argmini

{
∥MaskLR

i − Downscale(MaskHR)∥1

+ α |median(LRi)− median(LRset)|

+ β clearance(LRi)
}
,

(3.1)

where Mask designates the status map of an image, LRset is the set of input LR images,
clearance is the sum of all clear pixels of a LR, we manage to guess the true references in
more than 50% of scenes in the training set. We set α = 0.1, β = 0.3 in our experiments.
Figure 3.2 provides a visual comparison between different heuristics.

3.3.2 Discussion

Upon analyzing the results presented in Table 3.1, we observe that the performance of
the top competitors in the PROBA-V challenge is influenced by the choice of reference
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(a) Downsampled HR image (b) Our reference (Similarity)

(c) DeepSUM reference (Clearance) (d) HighRes-net reference (Median)

Figure 3.2: Visual comparision between different heuristics.

Table 3.2: Average cPSNR (dB) over the validation dataset for DeepSUM-SI, DeepSUM-
ref and HighRes-net-ref. For each methods, the best performance is highlighted in blue.

Methods Training Evaluation ref.
ref. Simil. Clearance Median Heuristic

DeepSUM-ref Similarity 50.24 46.38 46.69 49.10
HighRes-net-ref Similarity 50.49 46.35 46.47 49.29
DeepSUM-SI Similarity 49.05 45.57 45.85 47.96
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images. Without retraining, utilizing the true references or even the “heuristic references”
consistently improves the results, with DeepSUM outperforming HighRes-net in this sce-
nario.

After retraining the models with the true references (as shown in Table 3.2), DeepSUM-ref
and HighRes-net-ref exhibit significantly superior performance compared to the original
DeepSUM and HighRes-net, achieving a large margin of improvement (2.49 and 3.01 dB,
respectively). Even with the “heuristic references”, the adjusted methods still outperform
the original approaches, with improvements of 1.35 dB for DeepSUM-ref and 1.81 dB for
HighRes-net-ref. It should be noted that using MaskHR in this context deviates from the
contest rules. Nevertheless, as a proof of concept, we submitted the results of HighRes-net-
ref with the "heuristic references" to the official post-mortem PROBA-V challenge1, where
it currently holds the second-place position in the leaderboard, surpassing the performance
of the original DeepSUM and HighRes-net methods. Although this heuristic approach
relies on the mask of the HR image, it demonstrates the substantial impact that the
choice of reference image can have on the results.

Furthermore, when the true references are provided, HighRes-net-ref performs better than
DeepSUM-ref. This indicates that the design of the challenge strongly influences its out-
come and highlights the importance of the reference image selection.

On the other hand, the SISR algorithm DeepSUM-SI achieves significantly better results
compared to the MISR algorithm DeepSUM. This can be attributed to the temporal
variability among the LR observations. In the absence of knowledge about the reference
image, networks trained on MISR tasks are required to simultaneously guess the reference
image and super-resolve that specific image using information from other images in the set.
As a result, the network tends to predict an average SR image. Incorporating information
about the reference image allows the networks to focus solely on the SR problem, leading
to improved performance.

Overall, these findings emphasize the crucial role of reference image selection in SR tasks
and highlight the potential for significant performance gains by incorporating true refer-
ences or employing effective heuristics for their estimation.

In order to assess the impact of the reference image on the results of DeepSUM and
DeepSUM-ref, we carefully select three LR images captured on different days as the refer-
ence images (refer to Figure 3.3). Notably, DeepSUM-ref consistently produces SR images
that accurately recover fine details corresponding to the references. In contrast, the veg-
etation representation in the outputs of DeepSUM does not align well with that of the
references. This indicates that the reconstructions of DeepSUM lack the desired correla-
tion with the reference images. As a result, DeepSUM-ref proves to be more suitable for
practical super-resolution applications where the objective is to enhance a specific image
within a time series.

3.4 Chapter summary

This chapter underscores that the evaluation of the PROBA-V challenge is not solely based
on the MISR performance of the methods, but also heavily influenced by the selection of
LR reference images. However, in many practical applications, the choice of the reference
image is predetermined by the specific requirements of the task at hand. To address this

1https://kelvins.esa.int/PROBA-v-super-resolution-postmortem
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(a) Frame 1 (b) DeepSUM-ref (c) DeepSUM

(d) Frame 2 (e) DeepSUM-ref (f) DeepSUM

(g) Frame 3 (h) DeepSUM-ref (i) DeepSUM

Figure 3.3: Examples of reconstruction by DeepSUM-ref and DeepSUM with different
references. The first column corresponds to crops of three different LR images in a set.
The second and the third column show the reconstruction by DeepSUM-ref and DeepSUM
respectively when using each of these three LR as the reference image.
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use case, we introduced PROBA-V-REF, a modified version of the dataset that includes
the true LR reference images in the training and validation splits. These reference images
were determined by comparing the LR images with a downscaled version of the ground
truth HR image. By providing the true LR references, we enable future methods to
leverage this unique real-world dataset and focus on the fundamental challenge of MISR,
which is effectively utilizing the complementary information in the LR images.

This concept of reference-aware super-resolution emerges as a cornerstone of this thesis.
All MISR techniques developed and discussed in this thesis underline the importance of
a reference frame. From the methods developed within this work to those we benchmark
against in our evaluations, the reference frame takes precedence. This initial foray into
reference-aware super-resolution sets the stage for the ensuing chapters, establishing a
foundation for our exploration of this crucial aspect of satellite image super-resolution.

54



4 Self-supervised multi-image super-resolution
for push-frame satellite

Recent constellations of optical satellites are adopting multi-image super-resolution
(MISR) from bursts of push-frame images as a way to increase the resolution and
reduce the noise of their products while maintaining a lower cost of operation. Most
MISR techniques are currently based on the aggregation of samples from registered
low resolution images. A promising research trend aimed at incorporating natural
image priors in MISR consists in using data-driven neural networks. However, due
to the unavailability of ground truth high resolution data, these networks cannot be
trained on real satellite images. In this chapter, we present a framework for training
MISR algorithms from bursts of satellite images without requiring high resolution
ground truth. This is achieved by adapting the recently proposed frame-to-frame
framework to process bursts of satellite images. In addition we propose an architecture
based on feature aggregation that allows to fuse a variable number of frames and is
capable of handling degenerate samplings while also reducing noise. On synthetic
datasets, the proposed self-supervision strategy attains results on par with those
obtained with a supervised training. We applied our framework to real SkySat satellite
image bursts leading to results that are more resolved and less noisy than the L1B
product from Planet.

4.1 Introduction

High resolution satellite imagery is key for applications such as monitoring human activity
or disaster relief. In recent years, computational super-resolution is being adopted as
a cost-effective solution to increase the spatial resolution of satellite images [MSS+14,
AEdFF20].

Super-resolution approaches can be broadly classified into single-image (SISR) and multi-
image (MISR). SISR is a severely ill-posed problem. In fact, during the acquisition of the
low-resolution (LR) images, some high-frequency components are lost or aliased, hinder-
ing their correct reconstruction. As a consequence, SISR methods attempt to generate
plausible reconstructions compatible with the LR image, rather than to recover the real
high resolution (HR) image. In contrast, MISR aims at exploiting the alias to retrieve the
true details in the super-resolved image (SR) by combining the non-redundant information
from multiple LR observations.

In this chapter, we focus on MISR from push-frame satellite sensors such as the SkySat
constellation from Planet. The SkySat satellites [MSS+14] contain a full-frame sensor
capable of capturing bursts of overlapping frames. So the same point on the ground is
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(a) L1A frame (b) L1B (c) Proposed

Figure 4.1: Super-resolution from a sequence of 15 real low-resolution SkySat L1A frames.
(a) Reference L1A frame, (b) Planet L1B product (×1.25), (c) Proposed method (×2).

seen in several consecutive images. Furthermore, thanks to the design of its optical system,
the images are aliased, which is an ideal setting for MISR.

In the context of satellite imaging, since the sensor is far from the ground, it is often
assumed that the observed scene lies on a plane at infinity. This allows to consider a
simplified1 model [AEdFF20] for the formation of the low-resolution images ILRt

ILRt = ΠAt(I ∗ k) + nt, (4.1)

where I denotes the infinite-resolution ideal image, k is the Point Spread Function (PSF)
modeling jointly optical blur and pixel integration, At is a homographic transformation
(often approximated by an affine one [AEdFF20]), Π is the bi-dimensional sampling op-
erator due to the sensor array, and nt models the image noise. Because of the spectral
decay imposed by the pixel integration and optical blur (k), the image Ibl := I ∗ k is
band limited. For SkySat, the frequency cutoff is at about twice the sampling rate of
the LR images. This implies that there is no usable high frequency information beyond
the 2× zoom factor. Our goal in this work is to increase the resolution by a factor of
2, by estimating IHR, a non-aliased sampling of Ibl from several discrete observations
ILRt . A sharper super-resolved image can also be recovered by partially deconvolving k.
Aggregating many frames is also interesting as it allows to greatly reduce the noise.

Lately, deep learning algorithms have proven a success in super-resolution. Data-driven
methods can incorporate realistic image priors leading to improved restoration using fewer
input images. However, these methods are data-hungry and they heavily rely on the size
and quality of the training dataset. The importance of training SISR algorithms with
realistic data was highlighted in [CZY+19], where it was shown that models trained on
synthetic data [AT17] generalized poorly to a dataset of real pairs of LR/HR images.

MISR datasets with real data are usually small and can only be used as test sets for
benchmarking (for example the MDSP dataset [MDS]). An exception is the PROBA-
V dataset, proposed in [MIKC19], which allows to train supervised deep-learning MISR

1The model should write (AtI) ∗ k, but in the specific case of rigid transformations, assuming that k
is an isotropic kernel, At and k commute.
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methods on real-world satellite images. This is a rare case as the PROBA-V satellite is
equipped with two cameras with different resolutions. However, the images in the PROBA-
V datasets are unsuitable for training MISR methods for image bursts acquired at a high
frame rate, as the LR image sequences are multi-date and present significant content and
illumination changes.

Due to this lack of datasets with real LR/HR images, most deep learning MISR algo-
rithms are trained on simulated data [WGDE+19,MBH20]. Good results in denoising of
real images have been obtained using synthetic datasets [BMX+19, ZAK+20]. However,
this requires a careful modeling of the imaging systems, which is not straightforward for
complex satellite sensors.

A similar problem affects other video restoration problems. Recent works [EDM+19,
EDAF19, DAD+21, YPPJ20] have proposed to train video denoising and demosaicking
networks with self-supervised learning by exploiting the temporal redundancy in videos.
In these works, the network is trained to predict a frame of a noisy sequence using its
neighboring frames, eliminating the need for ground truth.

Contributions. In this chapter, we proposed a framework for self-supervised training
of MISR networks without requiring high resolution ground truth images.

Our framework (Section 4.3) can be applied to neural networks that include an explicit
motion compensation module. One of the LR frames is set as reference. During training,
the reference is only viewed by the motion compensation module (to align the rest of the
LR frames) but is withheld from the rest of the network. The network is tasked to predict
a super-resolved image which, when downsampled, coincides with the withheld reference
frame.

As an additional contribution, we propose a novel MISR architecture, Deep Shift-and-
Add (DSA), consisting of a shift-and-add fusion of features. Our DSA network accepts a
variable number of input frames and is invariant to their order. This allows us to use all
available LR frames at test time (including the reference LR frame), which improves the
performance.

Experiments conducted on synthetic data (Sections 4.4 and 4.5) show that our DSA net-
work trained with the proposed self-supervision strategy attains state-of-the-art results on
par with those obtained with a supervised training. To the best of our knowledge, this is
the first method that trains a MISR CNN without supervision. In addition, the proposed
method reduces noise, successfully handles degenerate samplings and can integrate the
final deconvolution step.

We demonstrate this by training our DSA network on a novel public dataset of real image
bursts from SkySat satellites. In a qualitative comparison, we see that the obtained results
are more resolved and less noisy than the L1B product from Planet (see Figure 4.1).

4.2 Related works

Video and burst super-resolution. There is a long history of MISR techniques from
bursts of images and videos (see [NM14,YSL+16] for more comprehensive reviews). Most
MISR methods are based on two steps: subpixel registration between the LR images and
fusion into the super-resolved image. Several fusion strategies have been proposed: local
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kernel regression [WGDE+19, TFM07], variational formulations [TK95, MO08, FAAC09,
RF18], and fusion in transformed domains [KBV90,LR00,NM00,AEdFF20].

One of the simplest classical strategies is the shift-and-add method, in which the pixel
values of the low resolution image are shifted according to an estimated motion with
respect to a common reference and accumulated in a high resolution image [KPB88]. We
incorporate a feature shift-and-add module inspired from these methods.

Currently, the state of the art in MISR is dominated by neural networks. Existing
approaches can be classified based on the motion compensation strategy. Approaches
based on explicit motion compensation estimate the motion field between pairs of LR
frames and use it to register them. Most methods use backward warping (or pullback)
to obtain the registered frames, which requires interpolating the LR frame to be regis-
tered [SVB18,XCW+19,DZL20]. Instead, our DSA architecture uses forward warping (or
push forward), where the LR pixels are aggregated into the high resolution grid. A similar
approach is followed in [TGL+17], except that the forward warping is applied to the input
frames, while we apply it to a feature representation.

Since the motion estimation might be prone to errors, especially with optical flow methods
for video, some approaches avoid to explicitly represent motion. Different strategies have
been proposed for implicit motion compensation: dynamic upsampling filters [JWOKJK18],
deformable convolutions [WCY+19], progressive fusion residual blocks [YWJ+19]. Other
approaches do not compensate for motion at all and simply present the data to a network,
hoping that the motion compensation will be learnt through training [FGT19, IJG+20a].

Super-resolution for satellite images. Most MISR methods for satellite images are
still based on classic model-based techniques [LR00, MN07, MSS+14, AEdFF20, AEF21].
Obtaining realistic databases with ground truth is the main challenge for training data-
driven MISR methods for satellite imagery, as all existing approaches rely on supervised
training.

In the case of SISR, some methods resort to simulating realistic data [ZTS+20] or to com-
bine images acquired from different satellites with different resolutions [PLPD18,SRMV20]
so as to avoid the synthetic downsampling.

To the best of our knowledge, the only dataset with real LR and HR satellite images
is the PROBA-V dataset [MIKC19]. This dataset and the associated challenge have
triggered research in MISR of satellite imagery [DKG+20,SMKC20,MVFM19,MVFM20].
In the PROBA-V dataset, the LR reference (the LR image associated to the HR target) is
unknown. This last point was analyzed in Chapter 3, where PROBA-V-ref was proposed,
an alternative version of the PROBA-V challenge where the identity of the reference image
is provided, a setting which is more relevant to our application.

Learning without ground truth. Lehtinen et al. [LMH+18] showed that an image
denoising network can be trained from pairs of noisy versions N and N ′ of the same image
I with independent noise realizations, by minimizing the following noise-to-noise (N2N)
risk:

RN2N(Net) =
∑
j

ℓ(Net(Nj), N
′
j). (4.2)

Intuitively, since the noise realizations are independent, the noise in N ′ cannot be predicted
from N . Hence, the loss is minimized by estimating the clean image. The optimal estima-

58



4.3. Self-supervised multi-image SR

Motion
Estimator

(Reference frame)

Motion
Estimator

Encoder

Encoder

Averaging

SPMC

SPMC

FS&A block

Decoder

Downsampling

Self-supervision Loss

(a) Overview of our architecture and framework
(b) Illustration of the SPMC
layer

Figure 4.2: (a) Overview of our proposed self-supervised MISR framework at training
time. The depicted loss represents the self-supervision term ℓself , for simplicity the losses
concerning the motion estimation module are not illustrated. Note that at inference time
the frame ILR0 is also encoded and fed to the FS&A block. (b) SPMC ×2 layer [TGL+17]:
Splatting LR features onto the HR domain using the flow Ft→0.

tors for the N2N risk are given by E{N ′|N} for the MSE loss, and median{N ′|N} for the L1

loss. It can be shown that if the noise in N ′ preserves the mean, then E{N ′|N} = E{I|N},
i.e. training with the supervision of the noisy images is equivalent to the one supervised
by the clean ones. It was also empirically observed that a similar property holds for
the L1 loss if the noise in N ′ preserves the median. Noise-to-noise has inspired several
works in self-supervised training of denoising networks. For still images, [KBJ19,BR19]
train a network to predict noisy pixels from their surroundings, thus eliminating the need
for the second noisy observation, albeit with a penalty in the quality of the results. In
the context of video or bursts of images, the situation is more favorable as a neighbor-
ing frame can be used as noisy target (after proper alignment). The frame-to-frame
method [EDM+19] applied this idea to fine-tune a single frame denoising (and/or demo-
saicking [EDAF19]) network requiring only a single noisy video or burst. Extensions were
proposed in [DAD+21, YPPJ20] for multi-frame denoising networks by withholding the
target frame from the inputs to the network. Our self-supervised training draws inspira-
tion from frame-to-frame approaches [EDM+19,EDAF19,DAD+21].

Other self-supervision strategies were also explored for SISR. In [SCI18], an algorithm
that exploits the internal recurrence of information across scales inside a single image
is proposed. The authors of [YLZ+18, KPL+20] propose to use cycle-consistency and
adversarial losses to train a SISR neural network without supervision using unpaired LR
and HR images. In [LLTMK19b], an extension of the Deep Image Prior [UVL18] is applied
to fine-tune a SISR network on a single image.

4.3 Self-supervised multi-image SR

We first present an overview of our proposed Deep Shift-and-Add in Section 4.3.1. Then
we describe our framework for self-supervised MISR training in Section 4.3.2, and in
Section 4.3.3 we provide details about the training.
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4.3.1 Architecture

Our neural network (illustrated in Figure 4.2a) takes as input a sequence of LR images
{ILRt }Tt=0 and produces one super-resolved image ÎSR0 . The architecture draws inspira-
tion from the traditional shift-and-add MISR algorithms, especially those that perform
a weighted average of the aligned LR image samples depending on their subpixel posi-
tions [FH02,MN07,GCLK08,ABHY00,Jia12].

To this aim, the motion fields between all the LR frames in the burst and a reference one
ILR0 are first estimated with a trainable motion estimation module. Then, the frames are
upscaled and aligned by compensating the motion using a Subpixel Motion Compensa-
tion [TGL+17] layer (SPMC). The SPMC layer was originally proposed to feed motion
compensated frames into a video SR network. However, in our case, we apply it to convolu-
tional features JLR

t extracted from the frames ILRt as it has been shown that deep feature
representations encode at each pixel a rich description of the local neighborhood [BD-
VGT21,DKG+20,XNC+20]. The upscaled and aligned features JHR

t are then averaged in
a high resolution feature map JHR. The SR image is then obtained by decoding JHR. In
summary, the action of the network can be described in three steps: encoding, temporal
feature aggregation, and decoding. The temporal aggregation is done simply by feature
averaging, via a feature shift-and-add block. This schema allows to aggregate an arbitrary
number of frames and is permutation invariant. We will exploit these properties later in
Section 4.3.2.

The trainable modules of the proposed architecture (shown in red in Figure 4.2a) include
the Motion Estimator, the Encoder and the Decoder.

Motion Estimator. We follow the work of [SVB18] to build the network ME used to
estimate the optical flows between each LR frame {ILRt }Tt=1 and the reference frame ILR0

Ft→0 = ME(ILRt , ILR0 ; ΘME) ∈ [−R,R]H×W×2. (4.3)

The parameters of the Motion Estimator are denoted ΘME. A small Gaussian filter
(σ = 1) is applied to the input images to reduce the alias [VSVV07]. This network will
be trained with a maximum range of motions [−R,R]2 (in this chapter, R = 5 pixels).

The ME network follows a simple hourglass style architecture (4 scales with 32, 64, 128
and 256 features, 2 convolutions blocks per scale [SVB18]). More complex methods can
be adopted, but since in our application, the apparent motion is mainly caused by the
motion of the satellite, a smooth motion estimate suffices.

Encoder. The Encoder module generates relevant features (JLR
t )Tt=1 for each LR image

in the sequence
JLR
t = Encoder(ILRt ; ΘE) ∈ RH×W×N , (4.4)

where ΘE is the set of parameters of the encoder and N = 64 is the number of produced
features. The network comprises 2 convolutional layers at the two ends of a series of 4
residual blocks with 64 features per layer.

Feature Shift-and-Add. A shift-and-add process is used to map and aggregate feature
pixels to their positions in the HR grid using the corresponding optical flows. We separate
the process in two: first the features of each frame are upscaled by introducing zeros
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between samples and motion compensated with the SPMC module [TGL+17], then a
weighted average is computed.

The SPMC module uses the flow Ft→0 to compute the positions of the samples from JLR
t

in the HR grid
JHR
t = SPMC(JLR

t , {Ft→0}) ∈ RrH×rW×N , (4.5)

where r is the upscaling factor (r = 2 in our case). As in [TGL+17], every LR pixel
is “splatted” on a neighborhood of the computed HR position using bilinear weights (see
Figure 4.2b). In this way, the operation is differentiable with respect to both the intensities
and the optical flows. We perform a weighted aggregation of JHR

t

JHR = (
∑

t J
HR
t )(

∑
tW

HR
t )−1, (4.6)

where WHR
t = SPMC(1, {Ft→0}) are the sum of the bilinear weights affecting every pixel.

Note that the feature shift-and-add does not have any trainable parameters.

Decoder. The Decoder network reconstructs the SR image ÎSR0 from the fused features

ÎSR0 = Decoder(JHR; ΘD) ∈ RrH×rW , (4.7)

where ΘD denotes the set of parameters of the decoder. Our decoder comprises 2 convo-
lutional layers at the two ends of a series of 10 residual blocks with 64 features.

4.3.2 Self-supervised learning

The proposed self-supervised training relies on the minimization of a reconstruction loss
in the LR domain plus a motion estimation loss to ensure accurate alignment. Each loss
is detailed in the following paragraphs.

Self-supervised SR loss. From the formation model in (4.1), we see that the LR images
ILRt and the target high resolution image IHR capture the same underlying image Ibl, only
the sampling and noise differs.

During self-supervised training, LR sequences are randomly selected and for every sequence
one frame is set apart as the reference ILR0 . Then, all other LR images in each sequence
are registered against ILR0 . Assuming that the registration is perfect, the registered LR
images correspond to noisy samples of Ibl. Thus, ignoring the noise, ILR0 could be used as
target for the fraction of pixels it contains. More specifically, the proposed self-supervised
loss writes

ℓself (Î
SR
0 , ILR0 ) = ∥D2(Î

SR
0 )− ILR0 ∥1, (4.8)

where ÎSR0 = Net({ILRt , }Tt=1, I
LR
0 ) is the network output and D2 is the subsampling oper-

ator that takes one pixel over two in each direction. That is, the proposed self-supervised
loss aims at training the network to produce an image such that when subsampled, it coin-
cides with the target ILR0 . Following noise-to-noise [LMH+18], if the noise in the LR frames
is independent, the network is unable to predict the noise in ILR0 and it learns to output
a noise-free image. The use of the L1 norm in the loss is adapted for frame-independent
median preserving noise, as shown in the noise-to-noise framework [LMH+18,EDM+19].

Note that in the proposed architecture, the image ILR0 is also an input of Net as the
super-resolved image ÎSR0 has to be aligned with ILR0 . Usually in self-supervised learning,
the target is excluded from the network inputs during training in order to avoid trivial
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solutions [BR19,DAD+21]. In our case, the network could achieve zero loss by learning
to copy the reference LR frame ILR0 in the subsampled pixels of the super-resolved image
D2(Î

SR
0 ). However, this is not a problem in our framework since the reference ILR0 is only

used to estimate the flows and does not enter the encoder path, thus the encoder and the
decoder must learn to reproduce ILR0 without having access to it. At test time, since the
network has been trained to handle a variable number of input LR frames, the reference
frame can be added to the inputs together with the rest of the LR frames.

In conclusion, as long as the network architecture contains an explicit motion estimation
module that is decoupled from the fusion module, our framework can be applied to provide
self-supervised training.

Motion estimation loss. To ensure a good alignment of the LR frames, we use a
motion estimation loss consisting in a photo-consistency term and a regularization term,
as the ones used for unsupervised training of optical flow [YHD16]. The loss is computed
for each flow Ft→0 = ME(ILR0 , ILRt ,ΘME) estimated by the ME module:

ℓme({Ft→0}Tt=1) =
∑

t ∥ILRt − Pullback(ILR0 , Ft→0)∥1 + λ1TV (Ft→0), (4.9)

where Pullback computes a bicubic warping of ILR0 according to a flow, TV is the finite
difference discretization classic Total Variation [ROF92] regularizer, and λ1 is a hyperpa-
rameter controlling the regularization strength. A small Gaussian filter (σ = 1) is also
applied to the images ILR0 , ILRt to reduce the alias.

4.3.3 Training details

We first pre-train the motion estimator on our dataset, and then train the whole system
end-to-end. While this is not strictly necessary, it stabilizes the training and accelerates
the convergence [TGL+17]. As a result, we separate the training into two phases.

To pre-train the motion estimation network we use the motion estimation loss (4.9). We
initialize the weights of the motion estimator with Xavier’s initialization [GB10]. In our
experiments, we set λ1 to 0.01 and batch size to 64, then use Adam [KB14] with the
default Pytorch parameters and a learning rate of 10−4 to optimize the loss. The pre-
training converges after 20k iterations and takes about 5 hours on one NVIDIA V100
GPU.

We then train the entire system end-to-end using the complete loss:

loss = ℓself + λ2ℓme. (4.10)

We set λ2 = 10 in our experiments. The initial weights are set using He initializa-
tion [HZRS15], except for the motion estimator whose initial weights are the pre-trained
ones.

For our experiments with simulated data, we also train a supervised model which is used
as a reference (see Section 4.4.2). In that case, we replace ℓself in (4.10) by

ℓsupervised(Î
SR
0 , IHR) = ∥ÎSR0 − IHR∥1, (4.11)

which uses supervision from the high resolution target IHR.

We train both supervised and self-supervised models on LR crops of size 64 × 64 pixels
and validate on LR images of size 256 × 256 pixels. During training, our network is fed
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with a random number of LR input images (from 5 to 30) in each sequence. We set the
batch size to 16 and optimize the loss using the Adam optimizer with default parameters.
Our learning rates are initialized to 10−4 and scaled by a factor of 0.3 when the validation
loss plateaus for more than 30 epochs. The training converges after 300 epochs and it
takes about 18 hours on one NVIDIA V100 GPU.

4.4 Experiments

In our experiments, we use real push-frame images acquired by satellites from the SkySat
constellation [MSS+14]. These images are also used to create a simulated dataset used for
a quantitative evaluation.

4.4.1 Datasets

SkySat imagery. The SkySat satellites contain a full-frame sensor capable of capturing
40 frames per second and is mainly operated in a push-frame mode with significant overlap
between the frames. As a result, the same point on the ground is seen in at least 15
consecutive images. The individual low-resolution frames are called L1A products. Planet
also provides a super-resolved product (called L1B) that corresponds to a ×1.25 zoom of
the L1A images and has a resolution between 50 to 70 cm/pixel at nadir. It is important
to note that the L1B product has also undergone an unknown sharpening, so it is not
easily comparable to the L1A images.

Simulated dataset. A part of our experiments will be conducted on a simulated dataset
generated from a set of crops of L1B products. For a given crop B, the ground truth HR
image IHR is computed by filtering B with a small Gaussian kernel with σ = 0.3 so as
to simulate a small optical blur. Random shifts (sampled uniformly on a disk) and a ×2
subsampling are then applied to IHR to obtain the set of LR images

ILR0 = D2(I
HR) + n0,

ILRt = D2(Shift∆t(I
HR)) + nt, t = 1, . . . , T,

(4.12)

where D2 is the subsampling operator, Shift∆t applies a subpixel translation of ∆t with
Fourier interpolation (∥∆t∥1 ≤ 2) to the image and nt models the noise.

Our simulated data was generated from 370 L1B images of size 3200 × 1350 pixels. We
use 320 images for training and 50 for validation. From each image, random crops are
extracted to generate bursts of 30 noisy LR frames with additive white Gaussian noise of
standard deviation 3/255. The size of the crops in the training set is 64 × 64 pixels and
in the validation set is 256× 256 pixels.

The relative position of the samples of the set of LR images is a critical aspect of the
MISR problem. When the random shifts are drawn uniformly the restoration problem is
usually well-posed. But, due to the motion of the satellite, real sampling configuration can
be degenerated, i.e. with all the shifts aligned along the same direction. This is a critical
situation for many traditional MISR algorithms that require additional regularization as
the problem becomes ill-posed. Ignoring these degenerate configurations during training
can result in poor performance in similar cases. Thus, in our main simulated dataset,
we simulate a mixture of 80% uniform sampled sequences and 20% degenerate sampled
sequences, in which the samples are allocated in a narrow ellipse as shown in Figure 4.3.
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(a) Uniform sampling (b) Degenerate sampling

Figure 4.3: Uniform and degenerate sampling. The vectors represent the global shifts be-
tween the LR frames in a simulated sequence. (a) In the uniform sampling these shifts are
uniformly distributed in a disk. (b) In the degenerate sampling these shifts are distributed
in a narrow ellipse.

Table 4.1: Average PSNR (dB) over the validation dataset for different methods with
different number of input images per sequence. Our solutions are highlighted in bold.

Method
Shift-a

nd-Add

HighRes-n
et

ACT-Spline

DSA-Self-n
oref

DSA-Self

DSA

T = 5 42.99 45.63 45.54 45.70 45.75 45.82
T = 16 47.72 48.17 48.38 49.18 49.27 49.33
T = 30 49.95 49.05 50.15 50.38 50.45 50.50

We also generate datasets with 100% uniform and 100% degenerate samplings. We refer
to them as mixed, uniform, and degenerate.

Dataset of real images. For our experiments on real data, we selected 48 reference
SkySat L1A images, and 15 frames overlapping each reference. The stacks of L1A images
are pre-aligned to each reference with a discrete translation avoiding any resampling. From
each reference image, we randomly crop 20 blocks of size 256 × 256 pixels, yielding 960
stacks of 15 frames in total, including 60 stacks for the validation set.2 For each stack, the
L1B product from Planet is also extracted, which will only be used for visual comparison
as we do not know which sharpening was used.

4.4.2 Super-resolution on simulated data

We evaluate the performance of our super-resolution network on the simulated dataset
described in Section 4.4.1 and compare against three methods from the literature: Shift-
and-Add, ACT-Spline and HighRes-net. The classical Shift-and-Add with bilinear splatting
will serve as baseline [MN07,GCLK08,ABHY00, Jia12]. ACT-Spline is a state-of-the-art
method based on spline fitting [AEdFF20]. In Shift-and-Add and ACT-Spline, the LR
images are aligned using the inverse compositional method [BM01,BFS18]. HighRes-net
is a MISR CNN with implicit motion estimation trained originally for the PROBA-V
challenge [DKG+20]. Here we use a variant that was shown in Chapter 3 to have a better
performance on the PROBA-V-ref dataset.

2This dataset can be downloaded from the project webpage.
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Figure 4.4: PSNR of different methods over our main validation set with 16 input frames
per sequence.

Table 4.2: Evaluation of the impact of training the proposed DSA network with a variable
number of input images (rows variable or a fixed (16) number of inputs) and considering
degenerate sampling configurations or not (rows mixed or uniform datasets).

Train Test/mixed dataset Test/uniform dataset Test/degenerate dataset

Number Train Number of images Number of images Number of images
of images dataset 5 16 30 5 16 30 5 16 30

Variable Mixed 45.82 49.33 50.50 45.77 49.26 50.41 45.40 48.75 49.81
Variable Uniform 45.78 49.27 50.43 45.79 49.31 50.39 45.34 48.68 49.74
Fixed (16) Mixed 45.55 49.29 50.52 45.52 49.23 50.43 45.15 48.71 49.83
Fixed (16) Uniform 45.32 49.16 50.52 45.37 49.20 50.49 44.94 48.59 49.81

Table 4.1 shows the results of the three methods plus our DSA network (with both su-
pervised and self-supervised training) on the simulated validation set using 5, 16 and
30 input frames. Figure 4.4 breaks down the performance of the different methods over
the mixed validation dataset for the case with 16 input frames. Our supervised network
ranks first, with a significant 0.95dB gain (T = 16) over ACT-Spline which was hand-
tuned [AEdFF20] on a dataset of SkySat images. HighRes-net performs 0.23dB worse
than ACT-Spline and this gap grows to 1.1dB for T = 30. The outputs of HighRes-net
are noiseless but tend to be over-smoothed. It seems that for longer bursts, HighRes-net
has problems fusing the complementary information of the LR frames. Note that HighRes-
net was also trained by varying the number of LR frames. The DSA-Self-noref column
shows the performance of our self-supervised network when the reference LR image ILR0

is excluded from the fusion step at test time. In this case, we add an additional LR image
to maintain the total number of LR images for a fair comparison. This shows that a small
gain can be obtained by including ILR0 .

Figure 4.5 presents a qualitative comparison between Shift-and-Add, HighRes-net, ACT-
Spline and the proposed DSA-Self on a sequence of 16 frames from the validation set with
uniform sampling of the shifts. The output of our supervised DSA (49.93dB) was not
included as it was indistinguishable from the DSA-Self result. In this example, DSA-Self
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LR frame Shift&Add (48.17dB) HighRes-net (48.36dB)

ACT-Spline (48.81dB) DSA-Self (49.86dB) Ground truth

Figure 4.5: Comparison with other methods in the case of a uniform sequence with 16 LR
frames.

(a) HighRes-net (b) DSA-Self (c) Ground truth

Figure 4.6: HighRes-net reconstruction from a degenerate sequence of 16 frames presents
strong aliasing artifacts.
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(a) L1A frame (b) Planet L1B (×1.25) (c) DSA-Self (×2)

Figure 4.7: Super-resolution from a sequence of 15 SkySat L1A frames. (c) was obtained
using Eq. (4.13) as reconstruction loss with deconvolution.

Table 4.3: Fusion in feature space: Average PSNR (dB) over the main validation dataset
for our supervised DSA networks with and without Encoder.

DSA Number of images
5 16 30

With encoder 45.82 49.33 50.50
Without encoder 45.60 49.33 50.51

outperforms the other methods by more than 1dB. On the zoomed area, we can see that
our method recovers faithfully the details on the ground. We remark that our network has
never seen any ground truth HR image during training. It is optimized only by penalizing
the loss between the downsampled version of the output and the noisy LR reference frame
over a training dataset. On the other hand, the outputs of Shift-and-Add and ACT-Spline
are noisy while the one produced by HighRes-net is too blurry and the black spots are
barely distinguishable on the field.

Reproducing the same experiment but with the degenerate samplings, we observe that
HighRes-net fails to remove aliasing artifacts of the LR frames (see Figure 4.6), despite
being trained with such configurations. We argue that the network was not able to exploit
the alias in the images failing at increasing the resolution.

4.4.3 Super-resolution trained on real data

We applied our framework to train our DSA-Self network on the dataset of real SkySat
L1A bursts. Since there is no ground truth we conduct a qualitative evaluation comparing
with the L1B product from Planet. We recall that our method estimates a high-resolution
(but blurry) image sampled from Ibl := I ∗ k, while the L1B product has undergone an
unknown sharpening step.

As we do not know the optical characteristics of the SkySat satellites, following [AEdFF20]
we consider a blur kernel k′ such that when inverted, the reconstruction is visually well-
contrasted. We model our blur kernel in the frequency domain as k̂′(ω) = (5|ω| + 1)−1.
The sharp image could then be obtained by solving a variational non-blind deconvolution
problem [ADF19,KF09] as in [AEdFF20]. Instead, we opt for incorporating the deconvo-
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Table 4.4: Quantitative comparison with the SISR method SRGAN. T is the number of
imput images.

Methods SRGAN (T = 1) DSA (T = 5) DSA (T = 16) DSA (T = 30)

PSNR(dB) 43.92 45.82 49.33 50.50

(a) LR (b) SRGAN 43.97dB (c) DSA-Self 49.86dB (d) Ground truth

Figure 4.8: Visual comparison with the SISR method SRGAN. In this example, SRGAN
confuses the black spots on the field with noise, and thus cannot recover correctly these
details.

lution in the self-supervision loss

ℓself (Î
SR
0 , ILR0 ) = ∥D2(Î

SR
0 ∗ k′)− ILR0 ∥1. (4.13)

By embedding a deconvolution into the training, the network produces directly a sharp
SR image without introducing unwanted high-frequency artifacts (see the supplementary
material for a comparison of both techniques).

Figure 4.1 and 4.7 show side-by-side comparisons of results obtained on the validation
dataset. As we can see, L1B products present strong stair-casing artifacts. The fine
details like the vehicle in the Figure 4.1 and the vertical bars in the Figure 4.7 are much
sharper in the proposed method.

At inference time, our proposed method takes 0.6 seconds to produce a ×2 super-resolved
image from a sequence of 15 L1A images (256× 256 pixels).

4.4.4 Comparison with single-image super-resolution approaches

In this section, we conduct a comprehensive comparison between our MISR method and
a popular SISR method, namely SRGAN [LTH+17]. To ensure a fair evaluation, we
retrained the SRGAN model using our simulated dataset.

It is important to note the Nyquist-Shannon sampling theorem, which states that high-
frequency details cannot be fully recovered from a single aliased LR image. Consequently,
SISR techniques often introduce “hallucinations” or spurious details during the recon-
struction process, which are inappropriate for accurate remote sensing analysis. On the
other hand, the fundamental goal of MISR methods is to genuinely increase the optical
resolution of the SR images, enabling more reliable and precise analysis.

Quantitative results in Table 4.4 shows that our MISR method consistently outperforms
the SISR approach by a large margin. The improved performance can be attributed to
the utilization of multiple LR input images, which provide complementary information for
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(a) LR (b) SRGAN 39.25dB (c) DSA-Self 44.50dB (d) Ground truth

Figure 4.9: Visual comparison with the SISR method SRGAN. In this example, SRGAN
fails to remove the alias present in the LR image.

(a) Blurry SR result (b) Variational deconvolution (c) Loss-based deconvolution

Figure 4.10: Loss-based result contains less noise and no ringing artifacts (on the top of
the building).

more accurate and faithful SR image reconstruction. Furthermore, the qualitative visual
comparisons in Figures 4.8 and 4.9 vividly illustrate the superiority of our MISR method in
preserving important details, minimizing artifacts, and delivering more visually appealing
SR images.

These compelling results reinforce the suitability of our MISR method for remote sensing
applications, as it effectively increases the true optical resolution of SR images without
introducing misleading or artificial features.

4.4.5 Image sharpening: comparison with a variational method

In this section, we delve into a detailed examination of two formulas for the self-supervision
loss, namely Equation (4.8) and Equation (4.13). These formulas play a crucial role in
our approach and enable a comparison with a variational method for image sharpening.

Equation (4.8) represents the self-supervision loss used to train the network. The objective
is to produce an SR image, ÎSR0 , that, after subsampling, matches the corresponding LR
reference image, ILR0 . Following our image formation model, the output of the network is
a high-resolution image that is inherently blurry due to the image restoration process.

Using the network trained with the loss (4.8), we can subsequently restore a sharp im-
age, denoted as I, from the blurry SR output, ÎSR0 . This involves solving a non-blind
deconvolution problem, expressed as:
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(a) Blurry SR result (b) Variational deconvolution (c) Loss-based deconvolution

Figure 4.11: Even with a regularization term, variational method has unwanted high-
frequency artifacts. Our loss-based method produces a clean, sharp image without the
need of any explicit regularization.

argmin
I

|I ∗ k − ÎSR0 |22 + λ|∇I|1, (4.14)

where the blur kernel k is defined in the Fourier domain as k̂(ω) = (5|ω|+1)−1 [AEdFF20].
The regularization weight, λ, can be set to a very low value due to the low noise level
in the SR results. An efficient solution to this inverse problem can be achieved using a
half-quadratic splitting method, similar to prior works [KF09,ADF19].

Alternatively, instead of relying on the variational method described above, we can inte-
grate the deconvolution step (with the same blur kernel k) directly into the self-supervision
loss, as indicated in Equation (4.13). In this scenario, the network is trained to produce
a sharp SR image directly, such that when blurred, it aligns with the observed blurry
samples.

To provide a visual comparison between our loss-based method and the variational method,
we present Figures 4.10 and 4.11. Figures 4.10a and 4.11a showcase the outputs of the net-
work trained with the self-supervision loss in Equation (4.8), which are inherently blurry.
Meanwhile, Figures 4.10b and 4.11b depict the deconvolved results obtained from these
blurry images using the variational method. Lastly, Figures 4.10c and 4.11c represent
the outputs of the network trained with the self-supervision loss (4.13). Notably, the
loss-based results exhibit sharpness comparable to the variational approach while avoid-
ing unwanted high-frequency artifacts and demonstrating reduced noise. Moreover, our
loss-based method is simple, efficient, and does not necessitate additional regularization
techniques.

These findings highlight the effectiveness of our loss-based approach for image sharpening,
offering a viable alternative to the more complex variational methods.

4.5 Ablation Study

To thoroughly investigate the significance of different elements within the proposed archi-
tecture, we conducted a series of experiments in a supervised setting. Our analysis focused
on three key aspects: the role of the encoder, the impact of the number of features gener-
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ated by the encoder, and the influence of training with a variable number of input images
and considering degenerate sampling configurations.

Role of the encoder Firstly, we examined the role of the encoder in the DSA ar-
chitecture. By comparing the performance of two methods – one with the encoder and
one without – we sought to evaluate the effect of feature fusion versus pixel fusion. Our
findings indicate that the network utilizing feature fusion demonstrates superior noise re-
duction capabilities in the SR image. This advantage becomes particularly pronounced
when working with a limited number of LR input images. Notably, when using only five
input images, the network with the encoder outperformed the one without by 0.22dB
(refer to Table 4.3).

Impact of number of features Continuing our investigation, we delved into the in-
fluence of the number of features generated by the encoder. In a supervised setting, we
re-trained our DSA architecture using three different numbers of features: 4, 16, and 64.
Subsequently, we evaluated these models on 50 validation sequences, each comprising 16
images. The results revealed that employing 64 features yielded the best outcomes with
the best high-frequency reconstruction, while an increase in the number of features beyond
this threshold led to diminishing returns. This observation underscores the importance
of selecting an appropriate number of features for optimal performance in terms of noise
reduction and detail recovery in the SR image.

Variable number of input images and degenerate sampling Lastly, we inves-
tigated the impact of training with a variable number of input images and considering
degenerate sampling configurations. By analyzing the networks trained under different
conditions – including variable or fixed (16) number of input images and the use of mixed
or uniform datasets – we sought to understand the network’s resilience to fewer input
frames and its ability to handle degenerate sampling. Our evaluations were conducted on
the uniform, degenerate, and mixed test datasets, using different numbers of input images
(5, 16, 30). The results in Table 4.2 demonstrated that training with a variable number
of input images and a mixed dataset led to a network that exhibited greater resilience
when faced with fewer input frames and could effectively handle degenerate sampling
configurations.

Overall, our experimental findings highlight the significance of feature extraction within
the DSA architecture. The presence of the encoder, along with the appropriate selection of
the number of features, contributes to improved performance in terms of noise reduction
and detail recovery in the SR image. Furthermore, training with a variable number of
input images and considering degenerate sampling can enhance the network’s robustness
and adaptability in practical scenarios.

4.6 Chapter summary

In this chapter, we presented a framework for the self-supervised training of multi-image
super-resolution networks without requiring ground truth. For our framework to be ap-
plicable, the networks need an explicit motion compensation module. In addition, we
proposed DSA, a novel MISR architecture consisting of a shift-and-add fusion of features.
Our experiments on simulated data showed that the proposed self-supervision strategy
attains state-of-the-art results, on par with those obtained with a supervised training. As
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our framework makes it possible to train a network solely from datasets of real LR images,
we trained DSA on real SkySat satellite image bursts, leading to results that are more
resolved and less noisy than the L1B product from Planet.

In Chapter 5, we will enhance the detail preservation and introduce outlier management
mechanisms, enriching the functionality of DSA. Chapter 6 will further explore exten-
sions of DSA to multi-exposure sequences and improved temporal fusion, highlighting our
ongoing endeavour to optimise the performance and utility of our self-supervised MISR
architecture.
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5 Adding detail-preserving control and out-
lier detection

Utilizing self-supervised training, we continue to advance the application of deep-
learning methods for multi-image super-resolution in satellite imagery. In this chap-
ter, we introduce two substantial enhancements to our previously proposed Deep
Shift-and-Add (DSA) method. The first improvement extends the self-supervised
loss of DSA, adding a spatially varying parameter that empowers users to strike a
balance between detail preservation and noise reduction during testing. In the second
improvement, we equip the DSA architecture with a module that handles outliers,
such as those caused by dead pixels, reflections, or registration errors. These devel-
opments further strengthen the flexibility and adaptability of the DSA method in
handling challenges in satellite multi-image super-resolution.

5.1 Introduction

As we have established earlier in this thesis, multi-image super-resolution (MISR) has
recently emerged as an essential technique for enhancing the resolution of push-frame
satellites [MSS+14, AEdFF20]. This approach leverages high framerate, low-resolution
acquisitions to enable low-cost satellite constellations to compete effectively against tra-
ditional high-cost satellites.

Inherent noise in satellite imagery frequently presents complications [MSS+14]. This noise,
a result of a myriad of factors such as system calibration errors, defective sensors, faulty
channels, and various types of photonic and thermal noise, is generally viewed as an
unwelcome interference and is consequently targeted for removal. However, the act of
eliminating this noise invariably brings forth the possibility of also discarding critical
detail, a risk we must attentively manage. As we have discussed in earlier chapters,
our central objective within this research is to execute a robust joint super-resolution
and denoising process from a series of satellite images, thereby carefully balancing the
elimination of noise and preservation of vital detail.

The focus of our study is on push-frame satellites, particularly the SkySat constellation
from Planet, which is capable of capturing burst of images for each scene. Despite the
burgeoning attention that MISR for push-frame satellite images has received, the ma-
jority of these methods still rely heavily on classical model-based techniques [MSS+14,
AEdFF20,AEF21]. For instance, Anger et al. [AEdFF20] propose solving a least-squares
problem fitting spline polynomials to the observed samples, which they termed as ACT.
Furthermore, Farsiu et al. [FREM04c] proposed a variational method that extends the
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classic shift-and-add MISR to be robust to outliers, which amounts to applying pixel-wise
medians.

Recently, there has been a surge of significant advancements in the field of deep learning-
based methods for image and video processing. However, training a supervised MISR for
remote sensing application is challenging due to the lack of ground truth high-resolution
(HR) data. In light of these challenges, in the previous chapter (Chapter 4), we proposed
a novel self-supervised deep learning approach named Deep Shift-and-Add (DSA) (Chap-
ter 4). The innovative feature of DSA is its ability to train on satellite image bursts without
the need for ground truth HR data. DSA performs joint denoising and super-resolution
and it can handle variable number of frames.

Notwithstanding its advantages, DSA also carries certain limitations. First, like many
deep-learning-based image restoration algorithms, DSA tends to smooth out textures or
details that have a lower contrast relative to the noise level [BM18]. This is a known
problem for restoration methods based on minimizing a distortion measure (such as the
MSE or L1 loss) [BM18]. As these results have a bad perceptual quality, several works
combine distortion losses with adversarial losses that aim at reducing the distance between
the distribution of restored images and that of real HR images [LTH+17,BM18]. However,
this requires the network to “invent” plausible information in the regions where the original
content cannot be recovered. This behavior is desired for applications where the goal is
to create an aesthetically pleasing natural looking image, but it is unacceptable in cases
where critical decisions are made based on the data.

The second drawback of DSA is that it does not handle outliers, which are particularly
prevalent and problematic in the realm of satellite imagery. Among these outliers, moving
object misregistrations can create double imaging or ghosting artifacts due to discrep-
ancies in the expected and actual positions of moving objects across different frames.
Reflections, caused by sunlight bouncing off bodies of water or metallic surfaces, can gen-
erate unexpected intensities that may skew the SR results. Additionally, sensor issues
such as dead pixels consistently generate incorrect readings, introducing additional noise
into the dataset. These anomalies, if not accurately handled, can negatively affect the
quality of the resulting SR images, underscoring an area of potential improvement for the
DSA framework.

To address the limitations inherent in DSA, in this chapter we offer two significant con-
tributions:

• A data-fitting term that allows for controlling the amount of detail in the solution via
a spatially varying map provided to the network as input during testing. By doing so,
users can manage the trade-off between noise reduction and detail preservation based
on the specific application. This concept was inspired by a common photography
trick to recover low contrast details lost to image denoising, which involves adding
back to the output a fraction of the noisy input image.

• A more robust version of DSA achieved through the introduction of outlier masks
computed by a neural network (see Figure 5.1). Our proposed framework contains
DSA, ACT and ACT-robust (a robust variant of the ACT method formulated as an
L1 fitting) as particular cases (without the need to solve a computationally complex
optimization problem at test time) and yields state-of-the-art results.

The first part of this chapter elucidates our proposed enhancements to DSA. We will delve
into the mechanisms that enable adaptive noise reduction without compromising intricate
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(a) L1B (b) DSA (c) DSA + MaskNet

Figure 5.1: Super-resolution from a sequence of 15 real low-resolution SkySat L1A frames.
(a) L1B from Planet, (b) DSA (Chapter 4), (c) Our improvement with an additional CNN
to detect the outliers.

detail preservation and explain how we bolster the model’s resilience against outliers in
the satellite imagery.

The second part of the chapter is dedicated to empirical validation. Through rigorous tests
and comparisons against existing methods, we will showcase the marked improvements our
enhancements bring to the DSA framework.

5.2 Proposed method

Our network (Figure 5.2) is built upon the Deep Shift-and-Add (DSA) architecture (Chap-
ter 4) with four major modules: Motion Estimator, Encoder, Feature Shift-and-Add block
(FS&A) and Decoder. The self-supervised DSA loss (Chapter 4) drives the network to
produce a super-resolved image ÎHR such that when subsampled, it coincides with the
reference frame ILR0

DSA loss =
∥∥∥Π2(Î

HR)− ILR0

∥∥∥
1
, (5.1)

where ÎHR is the network output and Π2 is the subsampling operator. Since the reference
frame is withheld from fusion during training, the network cannot learn to reproduce the
noise in the reference. Thus the training converges to produce a noise-free high-resolution
images. This self-supervised loss is based on the minimization of a distortion measure
with respect to a target. It is a known fact that these type of losses tend to smooth fine
details whose magnitude is comparable with that of the noise [BM18].

We propose a loss that permits to control the trade-off between noise reduction and detail
preservation. For that we incorporate a multi-frame data fitting term controlled by a
spatial map D (Section 5.2.1). In addition we introduce in the DSA network architecture
MaskNet, a new trainable module (Figure 5.2), whose purpose is to produce outlier masks
O that indicate the presence of outliers (Section 5.2.2).
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Encoder

Decoder

Motion
Estimator

Weighted 
FS&A
 block

Outlier
Detection 

(a) Our architecture

...

...

Median MaskNet

(b) Outlier detection block

Figure 5.2: Overview of our method, which builds upon the Deep Shift-and-Add (DSA)
architecture (Chapter 4).

5.2.1 Noise reduction – detail preservation trade-off

The self-supervised DSA loss imposes a data-driven prior that favors smooth reconstruc-
tion in regions with lower contrast. The cost of producing a noiseless image is that some
details might be lost. To counteract this, we add the following loss, which corresponds to
ACT [AEdFF20,FGS+95] when p = 2:

LLp loss =
1

T

T∑
i=1

∥∥∥Π2

(
Warp(ÎHR, 2Fi→0)

)
− ILRi

∥∥∥p
p
, (5.2)

with 1 ≤ p ≤ 2 (in this work we only consider p = 1 and p = 2) and where Warp is an
operator that warps its input according to the estimated motion field Fi→0 (see Chap-
ter 4 for details). This loss corresponds to the likelihood of the data under a generalized
Gaussian noise model [FREM04c].

To understand the rationale behind this loss, consider a case in which the images can be
aligned with an integer shift (so that no interpolation is needed). Then the minimizer of
the LLp loss is obtained by aligning and aggregating the LR images on the HR grid. For
p = 2 the aggregation is the average, and for p = 1 is the median. For Gaussian noise,
these solutions are unbiased estimators of the high-resolution image. Thus no details are
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lost and the noise is reduced via the temporal aggregation. Of course some noise will
remain, with variance depending on the number of images in the sequence. Note that
these solutions do not require any data-driven learning: i.e. they do not depend on any
priors learned from the data; they only depend on the set of LR images. This is because
the target frames ILRi are all part of the input.

Since the least-squares (LS) solution (p = 2) is sensitive to outliers [FREM04c], we propose
using the p = 1, which we call least absolute value (LAV) loss.

Complete training loss. Most of the time, our priority is to produce a noise-free HR
image. Nevertheless keeping details might be preferred when we have few images or when
we want to detect very high-frequency objects such as crosswalks, solar panels, etc. To
control the trade-off between noise removal and detail conservation, we introduce a noise-
detail map (denoted D) as a parameter to balance the losses (5.1) and (5.2). This map
is spatially varying and takes values between 0 and 1. Values closer to 1 indicate that
we want to keep details (and noise), whereas small values imply that the corresponding
region should be denoised. The training loss is defined as the balance between the DSA
and the LAV loss per pixel

loss =
∥∥∥(Π2(Î

HR)− ILR0

)
· (1−Π2(D))

∥∥∥
1
+

1

T

T∑
i=1

∥∥∥(Π2(Warp(ÎHR, 2Fi→0))− ILRi

)
·Π2(D)

∥∥∥
1
, (5.3)

where ÎHR = Net(ILRi=1,...,T ,D) is the network output and “·” denotes the element-wise
multiplication. To simplify, we assume that D is smooth and that the images are coarsely
pre-aligned so that the D does not have to be warped in the loss.

5.2.2 Outlier handling

In DSA (Chapter 4), the features computed by the encoder are averaged by the Feature
Shift-and-Add module. Because of this averaging, outliers have a strong impact that
the decoder cannot entirely mitigate. For this reason, we propose removing them from
the averaging by incorporating a submodule MaskNet to the DSA architecture to predict
outlier masks. We take inspiration from a video denoising application [MHL+21] where a
similar mask predicting network is used for removing misaligned areas in a recursive frame
fusion method. We define outliers as regions that are inconsistent with the majority of
frames in the sequence, and masks allow to exclude them from fusion. To estimate such
masks, we first approximate a low-resolution outlier-free image using a temporal median
of the LR frames aligned to the reference, which we denote by MLR. Then the absolute
difference [MHL+21] between the warped median image and each image is used as input
for MaskNet

Oi = MaskNet
(
|Warp(MLR, Fi→0)− ILRi |

)
. (5.4)

We also impose the smoothness of the produced masks by adding a TV regularization
term in the loss. The outlier masks are then used as weights in the weighted FS&A block

JHR =

∑T
i=1 SPMC(JLR

i · Oi, Fi→0)∑T
i=1Max(SPMC(Oi, Fi→0), ϵ)

, (5.5)

where ϵ is a threshold to avoid division by 0, {JLR
i } are the features computed by the

Encoder, {Fi→0} are the optical flows estimated by the Motion Estimator, and the SPMC
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D = 0 D = 1 with mixed map Mixed map

D = 0 D = 1 with mixed map HR

Figure 5.3: Super-resolution from a stack of 4 (first row) and 14 (second row) noisy syn-
thetic images. From left to right: Reconstruction with D = 0 (without detail preservation),
with D = 1, and with a mixed D map.

module [TGL+17,NAD+21b] maps the LR features onto a common HR grid. The outliers
will be assigned negligible weights in the outlier masks so that they do not contribute in
the fusion.

5.3 Experiments

In our experiments, we first demonstrate the trade-off between denoising and detail restora-
tion using the noise-detail map. Then we justify our choice of architecture and losses in
order to handle outliers.

5.3.1 Examining detail preservation map D

In order to train the network, we prepare sets of training input data {ILRi=0,...,T ;D}. The
random spatially-varying noise-detail maps D are generated first by thresholding a filtered
Gaussian noise image (σ = 40) (the filter itself is a Gaussian filter with σ = 28), then the
resulting binary image is then smoothed with a small Gaussian filter (σ = 3).

Figure 5.3 illustrates the trade-off between noise reduction and detail preservation when
we change D for the cases of 4 and 14 input frames. As expected, with D = 0 the network
removes noise while smoothing out the textures as it cannot distinguish high frequencies
from noise. On the other hand, with D = 1 the output is noisier but it better preserves the
high frequency details. The difference between the two behaviors is particularly noticeable
when using few input frames. Moreover, we can use a spatially varying map to reduce
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ILR
0 ILR

1 ILR
2 ILR

3 ILR
4 ILR

5 ILR
6

LS loss, with Mask LAV loss, w/o Mask LAV loss, with Mask

Figure 5.4: Effect of the architecture and the loss in robustness to outliers. First line:
7 LR images with outliers. Second line: Reconstruction with the LS or LAV loss, with
and without MaskNet.

Table 5.1: Average PSNR on the synthetic test set with outliers.

D = 1 D = 0 (D = 1) + Mask (D = 0) + Mask

T = 4 31.10 36.87 32.65 37.16
T = 14 36.52 40.45 37.25 40.77

noise in uniform regions and preserve details in textured regions as shown in Figure 5.3.
Since the map D is a network input provided at test time, it lends itself to applications
where a user interactively edits the map.

5.3.2 Robustness to outliers

To train MaskNet we add synthetic outliers in the LR images during training. To this
aim, we first generate random blobs in an image and then substitute the pixels of these
regions with data from a different stack.

As the LLp loss optimization is not data-driven, it is strongly affected by outliers. Here,
we justify two key features in our framework that enable its robustness to outliers: The
MaskNet and the L1 norm in the LAV loss.

The authors of [FREM04c] show that the optimal solution of the LS (resp. LAV) problem
is the pixelwise average (resp. median) of the LR images. Consequently, the LS problem
is not robust to outliers. We experimentally observed (Figure 5.4) that using the L2 norm,
MaskNet learns to produce only constant maps and the network produces artifacts in the
SR result. Conversely, with the L1 norm, the MaskNet is able to detect outliers in the LR
images and impose a negligible weight to these regions.

SR on synthetic data with outliers. Table 5.1 highlights the usefulness of the MaskNet
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when the image stacks contain outliers. We can notice that with few or many frames, both
for D = 0 or D = 1, MaskNet helps to increase significantly the PSNR by 0.3 - 1.5dB.

SR on real satellite data with moving objects. Moving objects that are not correctly
aligned can be considered as outliers. Figure 5.1 illustrates how our architecture with
and without MaskNet handles moving objects. As expected, the motion estimator of
L1B [MSS+14] and DSA predicts smooth optical flows and ignores small moving objects.
Consequently, without MaskNet we observe a blur trait on the highway. On the other
hand, when we use MaskNet, the network is able to filter out the motion of the car,
leading to a better reconstruction.

5.4 Chapter summary

In this chapter, we presented an extension to the self-supervised DSA method (Chap-
ter 4) by providing a spatially varying parameter to control the trade-off between detail
preservation and noise removal at test time. In addition we endow the DSA architecture
with a mechanism that enables the network to be robust to outliers produced for example
by dead pixels, reflections or registration errors. All within a self-supervised framework.
These improvements lead to state-of-the-art results.

We posited that outliers are elements inconsistently visible in the majority of frames.
Nevertheless, there may be a need to preserve the content of the reference image, which
might require additional modifications.

In the next chapter, we’ll discuss extensions to multi-exposure sequences, highlighting a
parallel evolution and optimization of our MISR system.
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6 Extension to multi-exposure sequences and
improved feature fusion

Modern Earth observation satellites capture multi-exposure bursts of push-frame im-
ages, offering a new frontier for computational super-resolution. This chapter builds
on our previous research with the Deep Shift-and-Add (DSA) method and introduces
a super-resolution approach designed explicitly for multi-exposure sequences—a prob-
lem relatively unexplored in the existing literature. Our proposed method not only
handles signal-dependent noise effectively but also accommodates sequences of any
length and compensates for inaccuracies in exposure times. Most significantly, it
can be trained end-to-end in a self-supervised manner, negating the need for ground
truth high-resolution frames, and is thus well-suited for real data applications. Key to
our method are three critical contributions: i) a base-detail decomposition to handle
exposure time errors, ii) a noise-level-aware feature encoding to enhance the fusion
of frames with varying signal-to-noise ratio, and iii) a permutation invariant fusion
strategy via temporal pooling operators. Evaluations on both synthetic and real data
reveal that our method substantially outperforms existing single-exposure approaches
when adapted to the multi-exposure scenario. This advancement marks a significant
step forward in the realm of multi-exposure super-resolution processing of satellite
imagery.

6.1 Introduction

LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LR9 LR10

ME S&A Planet L1B
[MSS+14]

BD-ACT
[AEdFF20]

DSA [NAD+21b] Our HDR-DSP

Figure 6.1: Super-resolution from a real multi-exposure sequence of 10 SkySat images.
Top row: Original low resolution images with different exposures. Bottom row: Recon-
structions from five methods, including ours trained with self-supervision (right).
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High-resolution (HR) satellite imagery is vital for a plethora of applications, such as human
activity monitoring and disaster relief. Recent trends in the remote sensing industry
(Planet SkySat, Satellogic Aleph-1) point towards the adoption of computational super-
resolution techniques [MSS+14, AEdFF20], enabling low-cost satellite constellations to
compete effectively with their high-cost counterparts.

In order to capture the full dynamic range of the scene, some satellites use exposure brack-
eting, resulting in sequences with varying exposures. While several works have addressed
multi-image super-resolution (MISR) of single-exposure sequences, almost no previous
work considers the multi-exposure case.

MISR techniques utilize the aliasing present across multiple low-resolution (LR) captures
to reconstruct a HR image, though the final resolution is inherently limited by the spectral
decay of the system’s blur kernel. On the other hand, frame aggregation offers significant
noise reduction and, when working with bracketed exposures, the potential to create super-
resolved high dynamic range (HDR) images. Long exposures have higher signal-to-noise
ratio (SNR) which helps reduce the noise in dark regions, whereas short exposures provide
information in bright regions which can cause saturation with longer exposure times.

In this chapter, we build on our previous work (Chapter 4), which presented the Deep
Shift-and-Add (DSA) method—a self-supervised approach for MISR of single-exposure
satellite image bursts. Our focus now turns to a more complex scenario: performing joint
super-resolution and denoising from a time series of bracketed satellite images. While we
concentrate on push-frame satellite sensors like the SkySat constellation from Planet, our
technique is versatile and applies to a broad range of cameras capable of multi-exposure
burst or video acquisition. We increase the resolution by a factor of two, which is the
frequency cutoff of the combined optical and sensor’s imaging system.

Several methods have addressed either MISR or HDR imaging from multiple exposures,
but their combination has received little attention. Existing works consider an ideal
setup in which frames can be aligned with an affinity [TA14, AEdFF20] or a homogra-
phy [VSR18], and the number of acquisitions is large enough to render the problem an
overdetermined system of equations. Such motion models are good approximations for
satellite bursts, but ignore parallax [AEF21], which can be particularly prominent for
mountains and tall buildings.

In the case of satellite imaging, push-frame cameras capable of capturing multi-exposure
bursts are relatively recent, which explains why all previous works on MISR focus on
the single-exposure case [MVFM20,DKG+20,AEdFF20,NAD+21b], except for SkySat’s
proprietary method [MSS+14] producing the L1B product, whose details are not public.
While deep learning methods generally outperform traditional model-based approaches,
they are often challenged by the need for large, realistic datasets with ground truth for
training, since methods trained on synthetic data often fail to generalize to real images.
Such remote sensing data are usually not available.

A promising direction is to use self-supervised learning techniques, which have been applied
to video restoration tasks such as denoising and demosaicing [EDM+19,EDAF19,DAD+21,
YPPJ20,SMV+21], and recently to MISR (Chapter 4). These techniques benefit from the
temporal redundancy in videos. Instead of using ground truth labels, one of the degraded
frames in the input sequence is withheld from the network and used as label.

In this chapter, we explore this path further, extending our DSA framework to handle
multi-exposure bursts. By exploiting frame redundancy, we aim to perform joint MISR
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and HDR processing of multi-exposure bursts, pushing the boundaries of what is achievable
in the realm of satellite imagery processing.

Contributions. In this chapter, we propose High Dynamic Range Deep Shift-and-Pool ,
HDR-DSP a self-supervised method for joint super-resolution and denoising of bracketed
satellite imagery. The method is able to handle time-series with a variable number of
frames and is robust to errors in the exposure times, as the ones provided in the metadata
are often inaccurate. This makes our method directly applicable to real image data (see
Figure 6.1). This is, to the best of our knowledge, the first multi-exposure MISR method
for satellite imaging, and beyond satellite imagery, it is the first approach based on deep-
learning.

Our contributions are the following:

Feature Shift-and-Pool. We propose a shift-and-pool module that merges features (com-
puted by an encoder network on each input LR frame) into a HR feature map by temporal
pooling using permutation invariant statistics: average, maximum, and standard devia-
tion. This gives a rich fused representation which yields a substantial improvement over
the average [NAD+21b], in both single and multiple exposure cases.

Robustness to inaccurate exposure times via base-detail decomposition. We propose nor-
malizing the input frames and decomposing them into base and detail. The errors caused
by the inaccurate exposure times affect mainly the base, whereas the detail containing
the aliasing required for super-resolution can be safely processed by the network. Note
that vignetting and stray light can also cause exposure issues that affect single and multi-
exposure MISR alike.

Noise-level-aware detail encodings. The noise present in the LR images is signal-dependent,
its variance being an affine function of the intensity. To deal with such noise, we provide the
un-normalized LR images to the encoder in addition to the normalized detail components.
This gives the encoder information about the noise level of each pixel, necessary for an
optimal fusion.

Self-supervised loss with grid shifting. We validate our contributions with an ablation
study on a synthetic dataset (Section 6.5.3), designed to model the main characteristics
of real bracketed SkySat sequences. Since there are no previous works on multi-exposure
MISR, we compare against state-of-the-art single-exposure MISR methods which we adapt
and retrain to (Section 6.5.4).

We also introduce a dataset of 2500 multi-exposure real SkySat bursts (Section 6.5.5).
The dataset only consists of noisy LR images, but we can nevertheless train our network
on it, since it is self-supervised. Both on synthetic and real data, the proposed HDR-DSP
method attains the best results by a significant margin even though it is trained without
high resolution ground truth data. The dataset is available on the project website.

6.2 Related work

Most works on video and burst super-resolution focus on the single-exposure case [LPM21,
BDVGT21, SVB18,TGL+17,AEdFF20,DKG+20,MVFM19,NAD+21b]. The problem of
super-resolution from multi-exposure sequences has received much less attention. In [TA14]
it is modeled as an overdetermined system and solved via a non regularized least-squares
approach. An affine motion model and exact knowledge of the exposure times are assumed.
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Figure 6.2: Overview of our proposed multi-exposure super-resolution network architecture
HDR-DSP at inference time.

The authors in [VSR18] address the case in which the images have motion blur due to
the camera shake. They also consider a static scene and do not consider noise. A related
method for HDR imaging uses dual exposure sensors, which interlace two exposures in
even and odd columns of the image [HST+14,ÇBM+20]. This can be seen as horizontally
super-resolving the video.

Other works perform a related task: joint super-resolution and reverse tone-mapping [KK18,
KOK19, KOK20]. The difference with our problem is that the input video is a single-
exposure LR video, and the goal is to artificially increase its dynamic range to adapt it to
HDR screens.

Methods for HDR imaging from multiple exposures need to deal with the noise. Granados
et al. [GAW+10] address the case of signal-dependent noise and propose a fixed point
iteration of the MLE estimator which is close to the Cramer-Rao bound [ADGM14]. In
these works, the denoising comes only from the temporal fusion. In [ADGM13,AAD+17],
this is incorporated in into spatio-temporal patch-based denoisers.

Our work can also be related to burst and video joint denoising and demosaicing [HSG+16,
WGDE+19,EDAF19], as demosaicing can be regarded as a super-resolution problem.

6.3 Observation model

We denote by It a dynamic infinite-resolution ideal scene. The camera on the satellite
captures a sequence of m low resolution images ĪLRi with different exposures. For the i−th
acquisition, the dynamic scene It is integrated during an exposure time ei centered at ti.
Even if satellites travel at a very high speed relative to the ground, precise electro-optical
image stabilization systems (with piezo-electric actuators [KRV,KSD+20] or steering mir-
rors [RDL+]) assure that the observed scene It is mostly constant during the exposure
time (∼2ms), which allows us to approximate the temporal integration with a product in
our observation model

ĪLRi = eiΠ1 (Iti ∗ k ) + ni = eiILR
i + ni. (6.1)

Here k is the Point Spread Function (PSF) modeling jointly optical blur and pixel inte-
gration, Π1 is the bi-dimensional sampling operator due to the sensor array, ILR

i is the
clean low-resolution image corresponding to an exposure of 1 unit of time and ni denotes
the noise. Throughout the text, calligraphic fonts Ii denote noise-free images and regular
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fonts Ii noisy ones. A bar Īi = eiIi indicates that the image is multiplied by its exposure
time (i.e. as it is acquired by the sensor), while its absence denotes images normalized to
an exposure time of 1. We consider the r-th image ĪLRr in the time series as the reference,
and without loss of generality we assume its exposure time to be one, er = 1.

We model the noise as spatially independent, additive Gaussian noise with zero mean and
signal-dependent variance ni(x) ∼ N (0, σ2(ĪLR

i (x))), where

σ2(ĪLR
i (x)) = aeiILR

i (x) + b, (6.2)

is an approximation of the Poisson shot noise plus Gaussian readout noise [PLZ+07,
FTKE08], with parameters a and b.

Because of the spectral decay imposed by the pixel integration and optical blur (k), the
images Iti ∗ k are band limited with a cutoff at about twice the sampling rate of the
LR images for SkySat. Our goal is to increase the resolution by a factor 2 by estimating
ÎHR
r , a non-aliased sampling of Itr ∗ k from several LR observations {ĪLRi }mi=1 with vary-

ing exposures {ei}mi=1. A sharp super-resolved image can then be recovered by partially
deconvolving k.

In order for the method to be applicable in practice, it needs to handle time series with a
variable number of frames m, and to be robust to inaccuracies in the exposure times ei,
as the exposure times in the image metadata are only a coarse approximation of the real
ones.

6.4 Proposed method

Our method builds upon the DSA method for MISR introduced in Chapter 4, which
can be regarded as a trainable generalization of the traditional shift-and-add (S&A) al-
gorithms [FH02,MN07,GCLK08,ABHY00, Jia12]. A feature S&A is used to fuse feature
representations produced from the LR images by an encoder network. A motion estima-
tion network computes the optical flows between each input LR frame and the reference
frame. The output of the feature S&A is a high-resolution aggregated feature map, which
is then decoded by another network to produce the output image.

The DSA method could be extended to multi-exposure sequences by applying it to the
normalized images ILRi = ĪLRi /ei. This approach however is sub-optimal because it ne-
glects the fact that the normalization alters the noise variance model, and fails if the
reported exposure times are inaccurate, which is the case in practice.

To better exploit multiple exposures, we propose two modifications: (1) A base-detail
decomposition, which provides robustness to errors in the exposure times; (2) An encoding
of the images that is made dependent on the noise variance, which allows the encoder to
weight different contributions according to their signal-to-noise ratio. In addition, we also
propose a new feature pooling fusion intended to capture a richer picture of the encoded
features, leading to a substantial improvement in reconstruction quality, both for single
and multiple exposure cases. The resulting network can be trained end-to-end with self-
supervision, i.e. without requiring ground truth.

6.4.1 Architecture

Figure 6.2 shows a diagram of our proposed architecture which takes as input a sequence
of multi-exposed LR images {ĪLRi }mi=1 along with the corresponding exposure times ei and
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produces one super-resolved image ÎHR
r . The input LR images are first normalized to

unit exposure time. The normalized LR images {ILRi }mi=1 are then decomposed into base
{BLR

i } and detail {DLR
i } components. The bases contain the low frequencies. We align

and average them to reduce the low frequency noise and upsample the result using bilinear
zooming to produce the HR base component. The LR detail images are fed to a shared
convolutional Encoder network that outputs a feature representation of each LR image.
The features are then merged into a HR feature map by our shift-and-pool block (FSP),
which aligns the LR features into the HR grid of the reference frame, and applies different
pooling operations. The pooled features are then concatenated and fed to a Decoder CNN
module that produces the HR detail image. The final HR image is obtained by adding
the HR base and detail ÎHR

r = B̂HR
r + D̂HR

r .

The trainable modules of the proposed architecture (shown in red in Figure 6.2) include
the Motion Estimator, the Encoder, and the Decoder.

Base-Detail decomposition. As mentioned above, normalizing a sequence of the
frames ĪLRi by their reported exposures ei does not result in stable intensity levels across
the sequence. This can be due to small errors in ei. However, uncorrected vignetting or
stray light also contribute the same effect, even in single-exposure imagery.

The nature of the super-resolution task makes it very sensitive to these exposure fluc-
tuations. The shift-and-add operation would merge the LR features into an incoherent
high-resolution feature map, making the task of the decoder more difficult, resulting in
loss of details or high-frequency artifacts (see Figure 6.3). Refining the initial ei could
limit this problem. But this entails its own challenges, especially if one also considers
vignetting and stray light sources.

Instead, in this paper we propose a more robust and simple alternative, which is based on
a base-detail decomposition [OABB85] of the normalized LR images defined as follows

BLR
i = ILRi ∗G, DLR

i = ILRi −BLR
i , (6.3)

for i = 1, . . . ,m. Here G is a Gaussian kernel of standard deviation 1. We then process
independently the details {DLR

i } and the bases {BLR
i } to produce the corresponding high

resolution estimates D̂HR
r and B̂HR

r . This decomposition is linear and does not affect the
super-resolution since the alias is preserved in the detail components {DLR

i }.

As the detail images span a smaller intensity range than the complete image ILRi , an error
δ in the exposure time results in a small deviation in the detail and a large one in the base:
δ BLR

i +δ DLR
i = δ ILRi . The small error in the detail can be handled by a super-resolution

method.

On the other hand, the base images do not need to be super-resolved, but still need to
be denoised. In this chapter we propose a simple processing that aligns and averages the
bases and upsamples the result. To fully exploit the high signal-to-noise ratio of longer
exposures, the average is weighted by the exposure times ei

BHR = Zoom

(∑
i eiWarp(BLR

i )∑
i ei

)
. (6.4)

This weighting is an approximation of the ML estimator of Granados et al. [GAW+10]
(details in the supplementary material).
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DSA [NAD+21b] (without BD) Our HDR-DSP (with BD)

Figure 6.3: High frequency artifacts in a reconstruction from a real SkySat sequence (using
DSA [NAD+21b]) with exposure time errors (left). HDR-DSP with the proposed base-
detail (BD) decomposition does not present artifacts (right).

Base and detail decompositions have been used in super-resolution networks [KOK19,
IJG+20b] to focus the network capacity on the details. In our case, the decomposition
also provides robustness to errors in the radiometric normalization.

Motion Estimator. We follow the works of [SVB18,NAD+21b] to build a network (with
the same hourglass architecture) that estimates the optical flows between the normalized
LR frames {ILRi }mi=1 and the normalized reference frame ILRr

Fi→r=MotionEst(ILRi , ILRr ; ΘM)∈ [−R,R]H×W×2, (6.5)

where ΘM denotes the network parameters. A small Gaussian filter (σ = 1) is applied to
the input images to reduce the alias [VSVV07,NAD+21b]. The network is trained with
a maximum motion range of [−R,R]2 (with R = 5 pixels). The training was adapted to
better handle the noise difference due to the multi-exposure setting (see Section 6.4.2).

Noise-level-aware detail encodings. The Encoder module generates relevant features
JLR
i for each normalized LR detail image DLR

i in the sequence

JLR
i = Encoder(DLR

i , ĪLRi ; ΘE) ∈ RH×W×N , (6.6)

where ΘE is the set of parameters of the encoder and N = 64 is the number of produced
features. The network architecture is detailed in the supplementary material.

The un-normalized low resolution frames ĪLRi are also fed to the encoder. This is motivated
by the fact that the maximum likelihood fusion of noisy acquisitions into a (HDR) image
is a weighted average, where the weights are the inverse of the noise variances [GAW+10,
ADGM14]. In the proposed architecture, the normalized details DLR

i are fused to produce
a high resolution detail D̂HR

r . The noisy un-normalized images are unbiased estimators of
an affine function of the noise variances σ2(ĨLRi )/a−b/a, thus they provide to the encoder
the information required to compute the optimal fusion weights. The resulting features
JLR
i are then aggregated via a set of pooling operations, without any particular handling

related to different source exposures.

Feature Pooling. We propose the Feature Shift-and-Pool block (FSP) which maps the
LR features into their positions on the reference HR grid and pools them. First the features
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are “splatted” bilinearly onto the HR grid by the SPMC module [TGL+17]. Each LR frame
is upscaled by introducing zeros between samples and motion compensated following the
flows Fi→r. This is differentiable with respect to the intensities and the optical flows.
Each splatted pixel is assigned a bilinear weight depending on the fractional part of its
position in the HR grid. See [TGL+17,NAD+21b] for details.

This results in a set of aligned sparse HR feature maps

JHR
i = SPMC(JLR

i , {Fi→r}) ∈ RsH×sW×N , (6.7)

and the corresponding bilinear splatting weights WHR
i = SPMC(1, {Fi→r}). The upscal-

ing factor s is set to 2.

As in Chapter 4, we use a weighted average pooling in the temporal direction (6.8). In
addition, we propose computing the standard deviation and the max (6.9):

JHR
A = (

∑
i

JHR
i )(

∑
i

WHR
i )−1, (6.8)

JHR
M = max

i
JHR
i , JHR

S = std
i
JHR
i . (6.9)

Note that this block does not have any trainable parameters, a trainable layer may at-
tain a similar performance at a much higher computational cost (see the supplementary
material).

These feature pooling operations render the architecture invariant to permutations of the
input frames [AD18]. The key idea is that through end-to-end training, the encoder
network will learn to output features for which the pooling is meaningful. Therefore, it is
essential that the pooling operation is capable of passing all the necessary information to
the decoder. Indeed, average pooling captures a consensus of the features, which amounts
to a temporal denoising. But in aliased image sequences, it is common to come across
features that are only visible in a single frame. Thus, the idea of the max-pooling operation
is to preserve these unique features that would otherwise be lost in the average. The
standard deviation pooling completes the picture by measuring the point-wise variability
of the features.

The pooled features are independent of the number of processed frames. But this informa-
tion is important as the decoder may interpret features resulting from aggregating many
images differently than those resulting from just a few. For this reason, the aggregation
weights WHR =

∑
iW

HR
i are also concatenated with the pooled features. As we will see

in Section 6.5.3, incorporating WHR improves the network ability to handle a variable
number of input frames.

Decoder. The Decoder network reconstructs the HR detail image D̂HR
r from the pooled

features
D̂HR

r =Decoder(JHR
A , JHR

M , JHR
S ,WHR; ΘD)∈RsH×sW , (6.10)

where ΘD denotes the set of parameters of the decoder. The architecture is detailed in
the supplementary material.

6.4.2 Self-supervised learning

To train the HDR-DSP detail fusion network, we adapt the fully self-supervised framework
of DSA, which requires no ground truth HR images. During training, the LR frames
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are randomly selected and for every sequence, one frame is set apart as the reference
ILRr . Then, all the other LR images in each sequence are registered against the reference
using the MotionEst network yielding the flows Fi→r. The reference frame serves as
the target for the self-supervised training similarly to noise-to-noise [LMH+18,EDM+19].
The procedure relies on the minimization of a reconstruction loss in the LR domain plus
a motion estimation loss to ensure accurate alignment of the frames. The losses and the
proposed adaptations are detailed in the following paragraphs.

Self-supervised SR loss. The self-supervised loss forces the network to produce an HR
detail D̂HR

r such that when subsampled, it coincides (modulo the noise) with the withheld
target detail DLR

r

ℓself (D̂HR
r , DLR

r ) = ∥Π2(D̂HR
r ∗ k)−DLR

r ∥1, (6.11)

where D̂HR
r = Net({DLR

i }i ̸=r, {ĪLRi }mi=1) is the SR output, and Π2 is the subsampling
operator that takes one pixel over two in each direction. As in Chapter 4 we include the
convolution kernel k in the loss. This forces the network to produce a deconvolved HR
image that once convolved with k and subsampled matches the optical blur present in
DLR

r .

During training, the LR reference is only used in the motion estimator to compute the
optical flows, but it is not fused into the HR result to avoid unwanted trivial solu-
tions [BR19, DAD+21, NAD+21b]. At inference time we use the reference as this leads
to improved results [NAD+21b].

Grid shifting. The self-supervised loss (6.11) downsamples the super-resolved detail
to compare it with the reference LR detail. But since the downsampling is fixed, only
the sampled positions intervene in the loss, which breaks the translation equivariance of
the method. To avoid this issue, during training we augment the data by adding to the
estimated optical flows a random shift of 0.5ϵ in each dimension (ϵ ∈ {0, 1}). As a result,
the super-resolved image is shifted by ϵ, which is easily compensated before computing
the loss. This yields an improvement in PSNR of 0.2dB.

Motion estimation loss. The motion estimator is trained with unsupervised learning
as in [YHD16]. The loss consists of a warping term and a regularization term. We observed
that the optical flow is very sensitive to the intensity fluctuations between frames (as in
our normalized LR frames ILRi ), which result in imprecise alignments. To prevent this
issue we compute the warping loss on the details rather than on the images, which is
common in traditional optical flow [SVB18,LLKX19] . The loss is computed for each flow
Fi→r estimated by the MotionEst module

ℓme({Fi→r}mi=1) = λ1TV (Fi→r) +
∑

i ∥Detail
(
ILRi − Pullback(ILRr , Fi→r)

)
∥1, (6.12)

where Pullback computes a bicubic warping of ILRr according to a flow, Detail applies
a high-pass filter, TV is the finite difference discretization of the classic Total Variation
regularizer [ROF92], and λ1 = 0.003 is a hyperparameter controlling the regularization
strength.

Training details. The self-supervised training of HDR-DSP is done in two stages. We
first pretrain the motion estimator, then we train the entire system end-to-end.

Training the motion estimator for multi-exposure images poses a significant challenge. To
ensure accurate flow estimations, we first pretrain the motion estimator using a simulated
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dataset. The quality of the estimations is monitored by comparing them with ground
truth flows until an average error of 0.05 pixels is achieved.

Initially, our approach was to employ the L1 distance between the reference image and the
radiometrically corrected warped image as the training objective for the motion estimator.
However, this resulted in unacceptable flow estimations with errors exceeding 0.1 pixels.
The imprecise alignments were primarily due to the sensitivity of motion estimation to
intensity fluctuations between the normalized LR frames ILRi .

To address this issue, we compute the warping loss on the details rather than on the images,
following the approach commonly employed in traditional optical flow methods [SVB18,
LLKX19]. The loss is computed for each flow Fi→r estimated by the MotionEst module:

ℓme({Fi→r}mi=1) =
∑

i ∥Detail(ILRi )− Detail
(
Pullback(ILRr , Fi→r)

)
∥1 + λ1TV (Fi→r),

(6.13)
where λ1 = 0.003 is a hyperparameter controlling the regularization strength.

We set the batch size to 32 and use Adam [KB14] with the default Pytorch parameters
and a initialized learning rate of 10−4 to optimize the loss. The pre-training converges
after 50k iterations and takes about 3 hours on one NVIDIA V100 GPU.

In the next phase, we utilize the pretrained motion estimator and train the entire system
end-to-end using the total loss defined in Eq (6.14):

loss = ℓself + λ2ℓme. (6.14)

In our experiments, we set λ2 = 3. Additionally, to mitigate boundary issues, the loss
computation excludes values within a 2-pixel distance from the frame borders.

During training, LR crops of size 64 × 64 pixels are used, while validation is performed
on LR images of size 256 × 256 pixels. The network receives a random number of LR
input images ranging from 4 to 14 in each sequence. We employ a batch size of 16 and
optimize the loss using the Adam optimizer with default parameters. The learning rates
are initialized at 10−4 and scaled by 0.3 every 400 epochs. The training process completes
in approximately 20 hours (1200 epochs) using a single NVIDIA V100 GPU.

6.5 Experiments

For our experiments, we use real multi-exposure push-frame images (L1A) acquired by
SkySat satellites [MSS+14]. For the quantitative evaluations we also simulated a multi-
exposure and a single-exposure datasets from L1B products (super-resolved products by
Planet with a factor of 1.25).

6.5.1 Exposure error analysis

We observed a discrepancy between the reported exposure times provided by Planet and
the correct normalization ratios. This discrepancy can be attributed to measurement im-
precision, as the quantities involved are in the sub-millisecond range, or local illumination
effects like vignetting. In order to estimate the accurate exposure ratio for a given pair
of images, we employed phase correlation for image registration, masked saturated pixels,
and computed the spatial median of the ratio between the two frames. Visual valida-
tion confirmed that these estimated exposure ratios were more precise than the reported
exposure times, as they exhibited reduced flickering.
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Figure 6.4: Normalized estimated exposure ratio with respect to provided exposure time.

Figure 6.4 illustrates the relationship between the reported ratio and the estimated ratio.
We observed that errors typically ranged from a few percent, but occasionally larger errors
were present. The nominal exposure times spanned from 0.4ms to 4.5ms. It is important to
note that the absolute error in exposure time measurements is likely constant regardless
of the exposure time itself. However, when computing the ratio of two exposures with
errors, this can result in a substantial divergence of the ratio, especially if the exposure in
the denominator is relatively short.

For the proposed super-resolution method, it is worth mentioning that we utilized the
imprecise reported exposure times instead of the estimated ones. This decision was made
due to the potential failure of the estimation method itself.

Additionally, it is important to clarify that the inaccuracy mentioned, such as a 20%
discrepancy, indicates that the error measurements are approximately 20 with respect to
the exposure time of the reference image (er is always set to 1). In our measurements, we
have already determined the actual values of the exposure time and observed an error of
up to ±0.26 after normalization.

6.5.2 Simulated multi-exposure dataset

The two simulated datasets were generated from 1371 crops of L1B products (1096 train,
200 test, 75 val). First, we generate the noise-free LR images normalized to an exposure
time of 1. Random subpixel translations of {∆i}mi=1 are applied to the ground truth
followed by ×2 subsampling

ILR
r = Π2(IHR),

ILR
i = Π2(Shift∆i(IHR)), i ̸= r

(6.15)

where Π2 is the subsampling operator. The exposure times are simulated as ei = αci , where
ci ∈ {−5, .., 5}, and α = uniform(1.2, 1.4). The noises ni =

√
aeiILR

i + bN (0, 1) are
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Table 6.1: Handling of multi-exposure sequences with base-detail decomposition (BD) and
using the un-normalized LR frames ILRi as an additional encoder input.

Methods (all HDR-DSP ) full w/o BD w/o BD (trained SE) w/o LR

PSNR(dB) ME 54.70 53.76 52.91 53.94
PSNR(dB) SE 54.72 54.16 54.54 54.16

Table 6.2: Feature pooling choice. Using average (A), maximum (M), and standard devi-
ation (S) pooling improves the results.

Features AMS (HDR-DSP ) AS AM A

PSNR(dB) ME 54.70 54.46 54.44 54.17
PSNR(dB) SE 54.72 54.47 54.48 54.20

then added to all the un-normalized frames to produce the noisy multi-exposure sequence
ĪLRi = eiILR

i + ni. The constants a = 0.119, b = 12.050 were estimated from real SkySat
images with the Ponomarenko noise curve estimation method [CB13,PLZ+07]. The single-
exposure dataset is generated in the same manner but with all ei = 1. To simulate the
exposure inaccuracies, during training and testing the ei values are contaminated with
noise within a range of 5%.

We use a PSNR score in our evaluation. The SkySat L1A images have a dynamic range of
12 bits, but we observed that the peak signal is at about 3400 DN. Therefore, our PSNR
is normalized with a peak of 3400. We denote PSNR ME (resp. PSNR SE) as the average
PSNRs computed on all the multi-exposure (resp. single-exposure) test sequences.

6.5.3 Ablation study

We study in Table 6.1 the importance of the base-detail decomposition. We consider simu-
lated multi-exposure (ME) and single-exposure (SE) sequences presenting small exposure
errors that match the ones observed in real sequences. If we train HDR-DSP without the
proposed base-detail (w/o BD), the performance drops noticeably, which is also visible on
real sequences (Figure 6.3). Even when training specifically for a single-exposure setting,
as with DSA, the performance with base-detail is superior. In addition, we can see that
removing the un-normalized LR frame from the encoder inputs (w/o LR) leads to a large
performance drop for both single- and multi-exposure.

The experiment shown in Table 6.2 studies the impact of using multiple feature pooling
strategies: average, maximum, and standard deviation. It shows that using the three
greatly improves the results: about 0.5dB with respect to just using average. We observed
that not including the average among the pooling strategies yields much worse results.

The aggregation weight feature WHR was added to improve the handling by the decoder
of sequences with variable number of input frames. The results in Table 6.3 confirm the
importance of providing these weights. We also compare with networks trained for a fixed
number of frames (HDR-DSP 4 and 14) and observe that in this case the performance
drops even when testing for those specific configurations. We conclude that the weights
become useless if the training does not consider a variable number of frames.

Lastly, removing the grid shifting (Section 6.4.2) from the training also reduces the PSNR
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Table 6.3: Handling variable number of frames (PSNR ME (dB)).

Methods (all HDR-DSP ) full w/o WHR HDR-DSP 4 HDR-DSP 14

4 frames 52.81 52.60 52.69 51.31
14 frames 55.85 55.59 54.26 55.53
variable n frames 54.70 54.45 53.85 54.07

Table 6.4: PSNR ME (dB) over the synthetic test set with 15 images in the case of 0%,
5% and 20% exposure time errors.

Methods RAMS ME S&A HR-net BD-ACT DSA HDR-DSP

0% exp. error 52.05 53.33 54.30 54.24 55.55 56.00
5% exp. error 51.84 52.43 54.22 54.23 54.99 55.99
20% exp. error 49.95 49.19 53.82 54.20 54.30 55.90

ME: from 54.70 to 54.49dB.

6.5.4 Comparison with the state-of-the-art

We compare our self-supervised network on the simulated dataset against state-of-the-art
MISR methods for satellite images: DSA [NAD+21b], HighRes-net (HR-net) [DKG+20],
RAMS [SMKC20], and ACT [AEdFF20]. A weighted Shift-and-add [MN07] with bicubic
splatting adapted to multi-exposure sequences (ME S&A) serves as the baseline. HR-net
and RAMS are two supervised networks designed to perform super-resolution of multi-
temporal PROBA-V satellite images. In the context of push-frame satellites, we use
the reference-aware version (Chapter 3) of HR-net and RAMS rather than the original
approaches, as they achieve higher quality results. DSA and ACT are two state-of-the-art
super-resolution methods for SkySat imagery. ACT also serves as a proxy for comparison
with other interpolation-based methods from the literature [WGDE+19].

We adapt these methods to multi-exposure sequences. The deep learning approaches
are fed with the normalized input images, whereas for ACT method we apply the same
base-detail decomposition described in Section 6.4.1 and use ACT to restore the details
(denoted BD-ACT). The registration step of ME S&A, BD-ACT, and RAMS are done
with the inverse compositional algorithm [BM01, BFS18], which is robust to noise and
brightness changes. The motion estimator of DSA is also trained with the loss on the
details (Section 6.4.2).

Table 6.4 shows a quantitative comparison of the methods over the test set in the case
of adding exposure time errors of 5% (as during training) and 20%. These errors are
estimated from SkySat data (exposures ranging from 0.5 to 4.5 ms); see the supplementary
material for details. Note that even with exact exposure times (row 0%), vignetting or
stray light effects still justify the use of the proposed base-detail decomposition. Our
self-supervised network ranks first in all cases with a significant gain of more than 1dB
over all others (see Figure 6.5). Interestingly, the performance of most methods degrades
quickly for large inaccuracy in exposure times. Only the methods using the base-detail
decomposition (BD-ACT and ours) are robust to these inaccuracies. Note that HDR-DSP
has never seen errors of 20% during training.
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LR ME S&A 43.16dB RAMS 42.99dB HR-net 43.58dB

BD-ACT 43.59dB DSA 45.95dB HDR-DSP 49.32dB HR

Figure 6.5: Super-resolution from a synthetic multi-exposure sequence (5% exp. error) of
15 aliased LR images. Methods are trained on a synthetic dataset and receive as inputs
the normalized ME images except BD-ACT and HDR-DSP, which use the base-detail
decomposition.

94



6.5. Experiments

LR e = 1.5 LR e = 1.1 LR e = 0.7 LR e = 0.5

Planet L1B DSA BD-ACT Our HDR-DSP

Figure 6.6: Super-resolution from a real multi-exposure sequence of 9 SkySat images. The
first line corresponds to 4 normalized LR images in that sequence with different exposure
times. The second line shows the reconstructions by Planet (L1B), DSA, BD-ACT and
our method HDR-DSP .
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Table 6.5: Execution time (s) on 200 sequences of size 15× 256× 256 pixels.

Methods RAMS ME S&A HR-net BD-ACT DSA HDR-DSP

Time (s) 93 276 22 555 82 97

6.5.5 Results on real data

The proposed self-supervised training allows to train HDR-DSP on real multi-exposure
sequences taken from SkySat satellites. From the L1A product of Planet SkySat, we
extracted 2500 sequences (128 × 128 pixels) pre-registered up-to an integer translation.
Out of 2500 sequences, 300 are used for testing. Each sequence contains from 4 to 15
frames. In about 75% of the sequences the exposure time varies within each sequence and
we used the exposure time information provided in the metadata.

Figure 6.6 compares HDR-DSP against Planet L1B, DSA, and BD-ACT. The top row
shows four normalized frames of the sequence, where we can notice the dependence of
the noise level on the exposure time. The method used in the Planet L1B product is
unknown. It super-resolves by a factor of 1.25 but contains noticeable artifacts and lacks
fine details. The result from DSA exhibits a high-frequency pattern due to the imprecise
exposure times. BD-ACT is able to cope with the exposure changes thanks to the base-
detail decomposition, but the result is still very noisy. In contrast, HDR-DSP shows a
clean and detailed reconstruction.

Figure 6.1 also shows a multi-exposure LR sequence along with the results from ME S&A,
Planet L1B, ACT, DSA and HDR-DSP. Comparing HDR-DSP with DSA, we see that the
former provides a cleaner result thanks to the base-detail decomposition and the proposed
improvements over the DSA architecture and training procedure, which is also observed
in the synthetic experiments.

6.5.6 Execution time

Table 6.5 presents the execution times of the methods evaluated on the synthetic multi-
exposure dataset. Among the methods, HighRes-net demonstrates the fastest performance
owing to its convolutional architecture. Comparatively, HDR-DSP is slightly more com-
putationally expensive than DSA due to its feature pooling process and the requirement
to fuse the bases together. ME S&A and BD-ACT are both executed on the CPU, with
the latter incurring higher computational costs due to the linear spline system inversion
it performs.

6.6 Chapter summary

The proposed HDR-DSP method is able to reconstruct high-quality results from multi-
exposure bursts, providing fine details, low-noise, and high dynamic range. The proposed
base-detail processing allows robustness to errors in the exposure time that are common
in practice. In addition, a significant performance improvement is obtained by making the
image encoding dependent on the noise variance, and using a new feature pooling designed
to capture richer representations. Thanks to its fully self-supervised training, the method
requires no ground truth and can thus be applied on real data. We show its effectiveness
by training a model that super-resolves multi-exposure SkySat L1A acquisitions, leading
to a substantial resolution gain with respect to the state-of-the-art.
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However, it’s important to acknowledge limitations within this remote sensing context.
For instance, our assumptions do not cater to the challenging photon-limited noise regime,
nor do they fully handle complexities related to motion and occlusions. In preliminary
work [LFE23], efforts were made to better manage motion and occlusion. This involved
the adaptation of the base-detail framework proposed in this chapter to the handheld burst
super-resolution algorithm by [WGDE+19, LNFE23] for application to multi-exposure
satellite images.

The journey we’ve embarked on through MISR has prepared us for the subsequent explo-
ration into SISR, a domain that exhibits a distinct, yet equally intricate, set of challenges.
It’s important to note that satellite multi-spectral SISR shares similarities with MISR,
considering that each spectral band views the scene from a unique angle, hence capturing
additional information. As we progress to the next part of the thesis, these common-
alities will become increasingly evident, particularly in Chapter 9. There, we develop a
self-supervised SISR method specifically for Sentinel-2 L1B data. The inspiration for this
method comes from the DSA MISR framework discussed in Chapter 4, demonstrating
the continuity in our super-resolution research journey and the interconnectedness of the
concepts within.

6.7 Appendix

6.7.1 Weights for the base fusion

Since the base component only contains low frequencies and cannot be super-resolved, we
propose a simple pipeline consisting of i) alignment of the LR base components Bi to the
reference, ii) temporal fusion via weighted average to attenuate noise, iii) upscaling using
bilinear interpolation. For the temporal fusion the weights in the weighted average are
simply the exposure times:

BLR(x) =

∑
i eiWarp(BLR

i (x))∑
i ei

. (6.16)

In this section we will provide a justification for this choice, which is based on two ap-
proximations.

Approximate noise model for the base. The base results from the convolution with
a Gaussian kernel G. At pixel x we have

BLR
i (x) =

∑
h

G(h)ILRi (x+ h).

Assuming the signal-dependent Gaussian noise model of Eq (6.2), we have that BLR
i (x)

also follows a Gaussian distribution with the following mean and variance:

E{BLR
i (x)} =

∑
h

G(h)ILR
i (x+ h)

V{BLR
i (x)} =

a

ei

∑
h

G2(h)ILR
i (x+ h) +

b

e2i

∑
h

G2(h).

We are going to assume that the clean LR image ILR
i varies smoothly in the filter support,

and thus

E{BLR
i (x)} ≈ ILR

i (x), V{BLR
i (x)} ≈ αeiILR

i (x) + β

e2i
. (6.17)
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where α = a
∑

hG
2(h) and β = b

∑
hG

2(h). This rough approximation allows us to use
a signal-dependent Gaussian noise model like (6.2). The approximation is only valid in
regions where the image is smooth (away from edges, textures, etc.). However, these are
the regions in which we are mainly interested, since it is where the low frequency noise
present in the base becomes more noticeable.

Approximate MLE estimator for the weights. After alignment, for a given pixel
x we have different values acquired with varying exposure times, which we are going to
denote as zi = Warp(BLR

i (x)) to simplify notation. We also have the corresponding clean
LR base images BLR

i , and we are going to assume that they coincide after alignment,
i.e. y = Warp(BLR

i )(x) for i = 1, ...,m. We would like to estimate y from the series of
observations

zi ∼ N
(
y, σ2

i (y)
)
, σ2

i (y) =
αeiy + β

e2i
.

This problem occurs in HDR imaging, when estimating the unknown irradiance given noisy
acquisitions with varying exposure times [GAW+10, ADGM14]. Each zi is an unbiased
estimator of y. Therefore, if the variances were known, we can minimize the MSE with
the following weighted average, where the weights are the inverse of the variances:

ŷ =

∑
iwizi∑
iwi

, wi =
e2i

αeiy + β
. (6.18)

The problem is that the weights depend on the unknown y. In [GAW+10] Granados et
al. solve this problem with an iterative weighted average:

w0
i =

e2i
αeizi + β

.

wk
i =

e2i
αeiŷk + β

, ŷk+1 =

∑
iw

k
i zi∑

iw
k
i

, k = 1, 2, ...

It can be shown that this converges to the maximum likelihood estimate.

In our case, we are going to simplify expression (6.18) by assuming that αeiy ≫ β, and
therefore wi ≈ ei

αy . Under this assumption, we obtain

ŷ =

∑
i eizi∑
i ei

. (6.19)

This assumption holds for brighter pixels and well exposed images [ADGM14].

6.7.2 Alternative exposure weighting strategies

As discussed in the main paper, the LRs with longer exposure time should contribute
more to the reconstruction because of their high signal-to-noise ratio. In our proposed
method, we use the un-normalized LR images as additional input to the Encoder so as
that the Encoder perceives the noise level in each LR image. Subsequently, the Encoder
can decide which features are more important.

We also evaluated an alternative strategy to weight the features (WF) based on the ex-
posure times. This simply consists in weighting the features JLR

i by the corresponding
exposure time in the SPMC module. Actually, this was inspired from the ME S&A method.

98



6.7. Appendix

This strategy leads to slightly worse yet adequate feature encodings (-0.08dB) as shown
in Table 6.6. Moreover, using both feature weighting and LRs encoding (third column)
leads to the same performance as only using LRs encoding. This implies that the En-
coder already encodes the necessary information about the signal-dependent noise on the
features.

Table 6.6: Handling of the signal-dependent noise

Methods HDR-DSP DSP (+WF - LR) DSP (+WF)

PSNR(dB) ME 54.70 54.62 54.70

6.7.3 Adaptation of existing methods to multi-exposure sequences

We detail here the adaptations to the algorithms we used in the comparisons.

ME S&A. Multi-exposure Shift-and-add is a weighted version of the classic shift-and-
add method [FH02,MN07,GCLK08,Jia12] designed for multi-exposure sequences. Usually,
S&A produces the HR image by registering the LR images onto the HR grid using the
corresponding optical flows. After the registration step, the intensities of the LR images
are splatted to the neighborhood integer-coordinate pixels using some kernel interpolation.
Finally, pixel-wised aggregation is done to obtain the HR output image. Therefore a
naive method consists of using the classic S&A method on the normalized LR images.
However this ignores the different signal-to-noise ratios in the normalized images and fails
to greatly reduce the noise. Using the same arguments as in the Section 6.7.1, we propose
the weighted S&A for multi-exposure sequence

ÎHR =

∑m
i=1 Register(ĪLRi )∑m

i=1 ei
, (6.20)

where Register maps and splats the un-normalized images ĪLRi onto the HR grid.

Base-detail ACT (BD ACT). ACT [AEdFF20] is a traditional multi-image super-
resolution method developed for Planet SkySat single-exposure sequences. It formulates
the reconstruction as an inverse problem and solves it by an iterative optimization method.
BD ACT extends ACT to support multi-exposure images by adopting the same base-detail
strategy as proposed in HDR-DSP : the details of the images are fused by ACT, and the
base is reconstructed by the upsampled average of the bases of the input images.

HighRes-net (HR-net) and RAMS. HighRes-net [DKG+20] and RAMS [SMKC20]
are two super-resolution methods for multi-temporal PROBA-V satellite images. How-
ever in the PROBA-V dataset, the identity of the LR reference image is unavailable. This
hinders the true potential of the methods trained on this dataset. As a result we use the
reference-aware super-resolution (Chapter 3) of HighRes-net and RAMS. In HighRes-net,
the reference image is used as a shared representation for all LR images. Each LR image
is embedded jointly with this reference before being recursively fused. In RAMS, each LR
image is aligned to the reference image before being input to the residual attention block.
The registration step of RAMS is done with inverse compositional algorithm [BFS18],
which is robust to noise and brightness change. As HighRes-net and RAMS are super-
vised methods, we also use a radiometric correction on the output before computing the
loss [DKG+20].
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LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8 LR9

ME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSP

ME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSP

Figure 6.7: Super-resolution from a real multi-exposure sequence of 9 SkySat images. Top
row: Original low resolution images with different exposures. Middle row: Reconstructions
from five methods, including ours trained with self-supervision (right). Bottom row: Zoom
on a detail of the results.

DSA. Deep shift-and-add [NAD+21b] DSA is a self-supervised method for super-resolution
of push-frame single-exposure satellite images. We adapt DSA to multi-exposure case by
using the normalized LR images as input. We also use the loss on the details to train the
motion estimator in DSA.

6.7.4 Additional comparisons using real SkySat sequences

Figure 6.7 presents results obtained on real multi-exposure SkySat images using 9 frames.
This is a challenging sequence as it contains moving vehicles. Note how the road markings
are better seen in the HDR-DSP result. However, since HDR-DSP does not account for
moving objects (the motion estimator only predicts smooth motion within a range of 5
pixels) the cars are blurry.

Figure 6.8 shows another example of reconstruction on a real sequence of 7 SkySat images.
Even though there are only 7 images in this sequence and most of them are very noisy,
HDR-DSP is able to produce a clean image. The fine details are well restored.
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LR1 LR2 LR3 LR4 LR5 LR6 LR7

ME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSP

ME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSPME S&A Planet L1B [MSS+14] BD-ACT [AEdFF20] DSA [NAD+21b] Our HDR-DSP

Figure 6.8: Super-resolution from a real multi-exposure sequence of 7 SkySat images. Top
row: Original low resolution images with different exposures. Middle row: Reconstructions
from five methods, including ours trained with self-supervision (right). Bottom row: Zoom
on a detail of the results.
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Part II

Single-image super-resolution in
satellite imagery
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7 A brief analysis of the SwinIR super-resolution
method

SwinIR, utilizing the innovative Swin Transformer architecture, presents a significant
advancement in the domain of image restoration. Unlike traditional convolutional
neural networks, SwinIR’s capacity to capture intricate relationships between im-
age patches results in exceptional outcomes. This chapter studies the application of
SwinIR for single-image super-resolution, scrutinizing the distinct characteristics of
its architecture. Furthermore, our discussion extends beyond theoretical exposition.
To put the efficacy of SwinIR into perspective, we conduct rigorous experiments on
satellite images. We contrast its performance against other prevalent deep learning
methodologies, offering an insightful comparison that highlights the potential and the
limitation of SwinIR in the realm of super-resolution in satellite imagery.

7.1 Introduction

Single image super-resolution (SISR) is a fundamental problem in computer vision that
aims to obtain a high resolution (HR) output from its degraded low-resolution (LR) coun-
terpart. Recently, deep-learning methods have outperformed traditional SISR algorithms
by a huge margin in both quantitative and qualitative results. As a matter of fact, SISR
can be seen as an interpolation problem since SISR tries to recover pixels in the HR from
their neighboring pixels in the LR image. Being a local problem, SISR has been dominated
by convolutional neural networks (CNN). In particular, [ZZGZ17] uses dilated convolution
to increase the receptive field over twice and get better result. RDN [ZTK+18] proposes
a residual dense network to exploit the hierarchical features from the convolutional lay-
ers. RCAN [ZLL+18] adds an attention mechanism inside the CNN framework to exploit
better feature representation produced by the channels.

On the other side of deep-learning, Transformer is the backbone of natural language pro-
cessing (NLP). Since its invention in 2017, Transformer with its powerful self-attention
mechanism has refreshed and dominated all modern architectures in NLP. The question
we all wanted to ask is whether Transformer could be applicable to computer vision. One
naive approach is to consider image pixels as tokens and put all of them into the self-
attention mechanism. However, this approach is intractable due to enormous amount of
pixels in natural images. To this aim, Dosovitskiy et al. [DBK+20] introduce the Vision
Transformer (ViT) which applies Transformer directly on non-overlapping image patches.
Achieving state-of-the-art performance in image classification, ViT is very promising in
computer vision. Notwithstanding its great potential, the limitation of the ViT resides in
its quadratic computational complexity on image size, which makes it unscalable to higher-
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Figure 7.1: SwinIR architecture

resolution images. Another related work IPT [CWG+21] uses a pretrained Transformer
model to perform image processing tasks. Like other Vision Transformer-based models,
IPT is computationally intensive and requires a large training dataset. Liu et al. [LLC+21]
propose the Swin Transformer to overcome the main drawbacks of the Vision Transformer
and achieve state-of-the-art results in image classification, object detection, and seman-
tic segmentation. The Swin Transformer alleviates the computational burden of the ViT
by computing self-attention only locally, but also models long-range dependency by us-
ing the shifted window scheme. The Swin Transformer is used in many state-of-the-art
super-resolution methods, including stereo image super-resolution [JWY+22] and burst
raw super-resolution [LLC+22].

Recently, Liang et al. [LCS+21] proposed SwinIR, an excellent baseline for image restora-
tion based on the Swin Transformer. SwinIR is actually a hybrid model with two CNN
modules (shallow feature extraction and high-quality image reconstruction) at the two
ends, and specially a Swin Transformer-based module (deep feature extraction) as the
crucial component of the method. SwinIR is proven to achieve state-of-the-art perfor-
mance on single image super-resolution, image denoising, and JPEG artifact removal with
a reasonable number of parameters.

In this study, we not only analyze the performance of SwinIR on SISR, investigating the
role of long-range information captured by the Transformer in addressing local problems,
but also extend our exploration to the application of SwinIR for satellite imagery. We
scrutinize its potential and limitations within this unique context, illuminating its viability
and areas for potential enhancement when deployed for earth observation data.

7.2 Method

7.2.1 SwinIR architecture

As shown in Figure 7.1, SwinIR has a hybrid architecture consisting of three modules:
shallow feature extraction (CNN), deep feature extraction (Swin Transformer), and high
quality image reconstruction (CNN). In this project, we focus on two SwinIR networks:
classical SR and realistic SR. The classical model is a medium-sized network designed
and trained for quantitative measurement. The realistic model is larger and is trained to
perform real-world super-resolution.
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Shallow feature extraction The shallow feature extraction can be considered a pre-
processing step, which serves to map the LR image ILR ∈ RH×W×3 to a richer dimensional
feature space with C feature channels. The shallow feature extraction is a convolutional
layer HSF with kernel size 3× 3

F0 = HSF (ILR), (7.1)

where F0 ∈ RH×W×C is the shallow extracted feature. Applying an early small convolu-
tional layer at the beginning of the Vision Transformer was reported to help the training
to stabilize and converge faster [XSM+21]. The embedded dimension C is set to 180 for
the classical model and 240 for the realistic model.

Deep feature extraction The deep feature extraction, composed of K residual Swin
Transformer blocks (RSTB) and a CNN, comes after the shallow layer HSF . K is set to
6 in the classical model and 9 in the realistic model. Concretely, first these blocks RSTB
compute the transitional features F1, F2, . . . , FK sequentially

Fi = HRSTBi(Fi−1), i = 1, 2, . . . ,K, (7.2)

where HRSTBi denotes the i−th RSTB. And then a small CNN HCONV at the end extracts
the output deep feature FDF

FDF = HCONV (FK). (7.3)

This CNN is presumed to introduce the image domain-specific inductive biases into the
Transformer. The CNN in the classical model is just a simple convolutional layer that
keeps the embedded dimension C = 180. For the realistic model, it is an hourglass-shaped
CNN with 3 convolutional layers and hidden dimension 60 in order to save parameters
and memory.

High resolution image reconstruction Finally, the reconstruction module HREC

produces the high resolution output from the computed shallow and deep features,

IHR = HREC(F0 + FDF ). (7.4)

The shallow features and the deep features contain mainly the low-frequency and the high-
frequency information, respectively. While the former is pretty simple to extract with a
convolutional layer, the latter is much more sophisticated to reconstruct. Hence, a long
skip connection from F0 up to FDF is used to help the deep feature extraction focus on
recovering the high frequency details. The reconstruction module HREC is built from an
upsample operator (pixel shuffle [SCH+16] in the classical model, and nearest-neighbor
interpolation in the realistic model) and several convolution layers.

7.2.2 Residual Swin Transformer block

Each residual Swin Transformer block (RSTB) is composed of L (L = 6 for the two models)
Swin Transformer Layers (STL) followed by a CNN (Figure 7.1a). More specifically, given
the input feature Fi,0 of the i−th RSTB, the intermediate features Fi,1, . . . , Fi,L by L STL
are computed as

Fi,j = HSTLi,j (Fi,j−1), j = 1, 2, . . . , L, (7.5)

where HSTLi,j is the j−th STL of the i−th RSTB. Then a CNN is applied to enhance the
translation equivariance of the Swin Transformer just before the residual connection

Fi,out = HCONVi(Fi,L) + Fi,0, (7.6)
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where HCONVi is the CNN in the i−th RSTB. Note that this CNN has the same architec-
ture as the HCONV in (7.3). The residual connection stabilizes the training and allows
the accumulation of the features at different depths. It is worth noticing that unlike the
original Swin Transformer architecture, in the RSTB there is no patch-merging opera-
tion (i.e., combine 2 × 2 image patches into a larger patch) between STL. Moreover, the
embedded dimension is kept constant through the layers.

Swin Transformer layer The Swin Transformer Layer (Figure 7.1b) has the same
structure as in [LLC+21]. Basically, first the input features of a STL are partitioned into
non-overlapping M×M local windows (M = 8 pixels). Then the standard multi-head self-
attention (MSA) is computed for the patches in each window. The number of heads h is
fixed to 6 in the classical model and 8 in the realistic model. Next a multi-layer perceptron
(MLP) with 2 connected layers (the hidden dimension is double the embedded dimension
C) and GELU non-linarity is used for further feature transformation. LayerNorm (LN)
is applied before both MSA and MLP, and the residual connection is applied after both
modules. The whole process is then repeated but with the shifted window mechanism
(that is, by cyclic shifting the windows by M

2 in each direction) to enable cross-window
connections.

7.3 Training details

7.3.1 Training set

For the classical model, the authors use two datasets DIV2K (800 images), and DIV2K +
Flickr2K (2650 images), with bicubic downsampling to create training sets. They observe
that the model trained with more data has better PSNR performance (+0.3dB) when
tested on the dataset Manga109. On the other hand, a large collection of diverse datasets
(DIV2K +Flickr2K + OST (10324 images, nature) + WED(4744 images) + FFHQ (first
2000 images, face) + Manga109 (manga) + SCUT-CTW1500 (first 100 images, texts))
are used to train the realistic model. Furthermore, a sophisticated degradation model
from [ZLVGT21] is adopted to simulate real-world scenarios.

7.3.2 Training loss and optimization

The classical model is trained with a simple L1 loss, while the realistic model is trained
with a combination of L1 loss, GAN loss, and perceptual loss to obtain better visual
quality. The two models are both trained 106 epochs on 8 GPUs. They are optimized
using Adam solver (initial learning rate = 1e−4) and MultiStepLR learning rate scheduler
with 5 steps and γ = 0.5. The batch size is set to 32 and the LR image size is 64 × 64
pixels.

7.4 Experiments

In the demo, we fix the super-resolution factor to 4 since the authors only provide the x4
pretrained model for the realistic SwinIR.

7.4.1 Real-world super-resolution

This section presents the qualitative performance of the realistic model on real-world
images. Note that the realistic model is trained to perform not only super-resolution but
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also image denoising and JPEG artifacts removal, which makes it particularly suitable to
restore old pictures or to enhance the quality of natural images. Figure 7.2 shows the
super-resolution reconstruction of the realistic model on real images. Generally, SwinIR
excelled at removing noise, JPEG artifacts, and producing plausible high-frequency details.
But we also notice that when dealing with highly compressed or very noisy images, SwinIR
may present unwanted artifacts such as residual noise or cartooned textures, respectively.

(a) Lincoln LR (b) Landscape LR (c) House LR

(d) Lincoln SR (e) Landscape SR (f) House SR

Figure 7.2: Visual quality of SwinIR super-resolution on real-world images. Top line
corresponds to the LR input. Bottom line shows the x4 SR reconstruction of SwinIR.

7.4.2 Auto-similarity and single image super-resolution

We know that SISR is a local problem per se. In this experiment, we want to study the
impact of self-attention in the Swin Transformer in the Urban100 dataset. We choose
this dataset because it contains a lot of auto-similar structures. The importance of
auto-similarity in image restoration was first exploited in the Non-Local Means denoising
method [BCM11]. The authors of [BCM11] demonstrate that we can reduce the noise of
an image patch by aggregating its similar patches, which are not necessarily spatially close
to the patch of interest. Since this chapter, auto-similarity has become more and more
popular in image processing. Recently, ESRT [LLL+22] exploits auto-similarity to train
a Transformer network for single-image super-resolution. It is arguable that Transformer
(and Swin Transformer) can make use of attention in similar patches to get a better SR
reconstruction, especially in the low-contrast or aliased regions. We also compare these
Transformer networks with RCAN [ZLL+18], a classic CNN for SISR.

We use bicubic interpolation to create low-resolution images from the Urban100 dataset.
Note that we do not include recent GAN-based state-of-the-art methods in this study
since they will hallucinate low-contrast details. Both ESRT and RCAN are trained with
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L1 loss on the DIV2K dataset with bicubic degradation. The classic Swin Transformer
model is trained with L1 loss but on the DIV2K + Flickr2K dataset.

Figure 7.3 shows the comparison between the two SwinIR models, RCAN and ESRT on
the Urban100 dataset. First, we observe that the SwinIR realistic model is not reliable for
recovering the true details due to its generative nature (Figure 7.3d). Second, we expected
ESRT to perform better on this particular test set using global attention (compare for
example, Figure 7.3b and Figure 7.3c). Maybe the performance of ESRT is restricted
by its capacity (ESRT is a lightweight network). Finally, the classical SwinIR network
recovers genuinely the low-contrast and aliased textures and achieves the best results.
Unfortunately, we could not claim whether this boost of performance comes from the
long-range dependency mechanism. First, the window size of SwinIR is really small (8
pixels), which makes SwinIR a rather local network. Second, the classical SwinIR is
trained on a larger dataset. Finally, this gain in performance may be due to the advance
in network design (i.e., large kernel size, GELU activation, Layer norm, etc) rather than
the superiority of Transformer over traditional CNN [LMW+22]. In conclusion, SwinIR is
a promising and powerful method for SISR, but we still need to carry out more experiments
to fully understand its competence.

(a) LR 078 (b) RCAN (c) ESRT (d) SwinIR_R (e) SwinIR_C (f) HR 078

(g) LR 044 (h) RCAN (i) ESRT (j) SwinIR_R (k) SwinIR_C (l) HR 044

(m) LR 073 (n) RCAN (o) ESRT (p) SwinIR_R (q) SwinIR_C (r) HR 073

Figure 7.3: Qualitative comparison between the two SwinIR models, RCAN, and ESRT
on the Urban100 dataset. Super-resolution by factor of 4.

7.4.3 Application to satellite imagery

We use the realistic SwinIR SISR model to super-resolve actual satellite images from
this thesis, including those from PROBA-V, SkySat, and Sentinel-2 (L1C and L1B). A
visual representation of the results can be found in Figure 7.4, providing a comparative
insight into the performance of the methodologies proposed throughout this chapter. These
methodologies include DeepSUM-ref for multi-date SR of PROBA-V (Chapter 3); DSA
for SkySat burst SR (Chapter 4); L1CSR for SISR of Sentinel-2 L1C (Chapter 8); and
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PROBA-V SkySat Sentinel-2 L1C Sentinel-2 L1B

SwinIR SISR (x4) SwinIR SISR (x4) SwinIR SISR (x4) SwinIR SISR (x4)

Multi-date SR (x2) Burst SR (x2) SISR (x2) SISR (x2)

Figure 7.4: Top row: Real LR satellite images used in this thesis. Middle row: SISR
reconstruction (x4) by the realistic SwinIR model. Bottom row: SR reconstruction (x2)
obtained using the methodologies proposed in this thesis.

L1BSR for SISR of Sentinel-2 L1B (Chapter 8).

As expected, SwinIR doesn’t excel on these satellite images. This is likely due to the
model being trained on different types of data, thus leading to a domain gap problem.
While no definitive judgments can be made about SwinIR’s overall performance given
these constraints, this experimentation yields important insights into the complexities
and limitations of applying GANs for satellite image super-resolution. Notably, severe
hallucination artifacts are visible in the SwinIR reconstruction of SkySat and Sentinel-2
images.

We argue that the use of GANs for SISR in satellite imagery deserves careful scrutiny,
and we should avoid it when retrieving true high-frequency details is feasible (Chapter 8).
We also propose that self-supervision may offer a solution to the domain-gap problem
(Chapter 9).
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7.5 Chapter Summary

In this chapter, we examined SwinIR, a Swin Transformer network applied to image super-
resolution. We explored how Transformers can leverage auto-similarity in natural images
to enhance SISR performance. While SwinIR achieves outstanding results with both
synthetic and real-world imagery, becoming an increasingly popular backbone in computer
vision, its performance with satellite data is not without complications. Domain-gap
problems and hallucination artifacts induced by GANs limit the effectiveness of SwinIR
for satellite imagery super-resolution. However, as we will reveal in the next chapter,
the application of GANs may not be indispensable for Sentinel-2’s SISR problem. The
sufficient information available makes it plausible to recover true high-frequency details
without resorting to GANs, marking a promising avenue for our continuing investigation.
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8 On the role of alias and band-shift for
super-resolution of L1C products

This chapter takes a focused look at the single-image super-resolution (SISR) of
Sentinel-2 imagery, an integral part of our overall exploration on improving satel-
lite image resolution. We discover that due to Sentinel-2’s distinct sensor specifica-
tions, specifically the inter-band shift and alias, deep learning methods can effectively
recover fine details. By employing a simple L1 loss for training a model, we can ob-
tain results that are devoid of hallucinated details—a crucial element in our ongoing
investigation. We construct a dataset of paired images from Sentinel-2 and Plan-
etScope to train and assess our super-resolution model, underlining our commitment
to grounded, real-world applicability in our approach.

8.1 Introduction

The use of satellite imagery has become increasingly prevalent in a variety of fields, from
environmental monitoring to urban planning. One such satellite is the Sentinel-2 constel-
lation, which provides recurrent 10m/pixel resolution optical imagery. The high frequency
revisit of Sentinel-2 makes it useful for monitoring temporal changes, such as the growth
of crops or the spread of urban development. However, the relatively low spatial resolution
can be a limitation for certain applications, such as identifying small objects.

In this chapter, we propose a deep learning approach for SISR of Sentinel-2 imagery. Unlike
previous methods that aim for a x4 increase in spatial resolution, our work focuses on a x2
increase, which we argue is a more reasonable and practical choice. Additionally, we avoid
using generative adversarial networks (GANs) in our method, as they have been known to
introduce hallucinations and artifacts that can be undesirable for sensitive applications.
Instead, we use an L1 cost function, which has been shown to effectively preserve image
details while minimizing distortion [BM18] (see Figure 8.1).

This study focuses on understanding what makes SISR of Sentinel-2 imagery possible. To
this aim, we explore two unique characteristics of Sentinel-2: the alias and the inter-band
shift and find that they enable the reconstruction of fine structures. It is worth noting that
super-resolving the 10m bands of Sentinel-2 is a relatively new problem, and while we do
not aim to achieve the best possible results, we analyze the specific features of Sentinel-2
imagery relevant for SR.
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Sentinel-2 L1C Super-resolution x2 PlanetScope
Figure 8.1: SISR results obtained with the L1 loss. We argue that the characteristic alias
and band-shift are key for x2 SR of Sentinel-2 imagery.
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(a) S2 (input)

29.42 dB

(b) Bicubic

31.30 dB

(c) L1 (per channel)

31.01 dB

(d) GAN loss

33.76 dB

(e) L1 loss (f) PS (ground-truth)

Figure 8.2: SR results from different models. The per-channel result corresponds to one
model per channel trained independently. The GAN and the L1 loss are able to restore
similar details.

8.2 Related work

Early research on SISR of Sentinel-2 images focuses on pan-sharpening the lower-resolution
(20m and 60m) bands to complete a uniform 10m GSD data cube [LBDG+18,GMG+19].
Recent trends are super-resolving the 10m bands of Sentinel-2 using other relevant very
high-resolution satellites. For example, [PAB20] generates low-resolution/high-resolution
(LR-HR) image pairs from the PeruSat-1 satellite (2.8m GSD) to train a x4 SR model and
use it to reconstruct fine textures in the Sentinel-2 10m bands. However, these techniques
use a pre-determined degradation model, like bicubic downsampling, to create LR from
HR. So when the input deviates from the pre-defined degradation model, the performance
may drop substantially. To fill the gap between simulated and real-world remote sensing
images, real HR satellites such as PlanetScope [GSA+20,ZB22], VENµS [MVSIH22], and
WorldView [SRMV20] are used directly to supervise the SR of Sentinel-2. Perceptual
losses, such as GAN or high-level feature matching, are used in these works to produce
sharp outputs.

Besides focusing on perceptual restoration, most past studies do not justify why the re-
construction of actual high-frequency details is feasible from a single multi-band image.
Results reported in Chapter 4 suggest that alias and displacement between frames are
crucial for exploiting complementary information in different frames (or different spectral
bands in our case) and obtaining up-to-par SR performance.
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no shift fixed shift random shift no shift fixed shift random shift ground-truth
no alias alias

Figure 8.3: Synthetic dataset. The top row shows simulated LR images corresponding
to the six acquisition configurations, and the bottom row shows the SR results obtained
with networks trained on these specific synthetic datasets. The bottom-right image is the
ground-truth HR.

8.3 Method

Our method is specifically designed for x2 SR of Sentinel-2 images. It is based on the
ESRGAN architecture [WYW+19], adapted for a smaller network and a single-term loss.
The model is trained on pairs of Sentinel-2 and PlanetScope images, suitable for x2 SR,
as described in Section 8.4.

Architecture. Given that ESRGAN was developed for a x4 SR factor, we propose some
adjustments for a factor of 2. We found that using only 8 RRDB blocks instead of 23
RRDB blocks [WYW+19] was enough to obtain satisfactory results while significantly
reducing the training and inference time.

Cost function. The ESRGAN model [WYW+19], was initially trained on a set of HR
natural images from the DIV2K dataset [AT17]. It uses a base model trained with an L1

loss, followed by a second training phase using a cost function that includes a relativistic
discriminator loss [JM18], a perceptual loss [JAFF16], and the L1 loss. However, when
adapting the model for Sentinel-2 SR, we found that training the model on Sentinel-
2/PlanetScope image pairs using only the L1 loss instead of the complete loss function
with perceptual terms resulted in a similar detail reconstruction (second row in Figure 8.2).
This suggests that, thanks to the alias and inter-band shift present in Sentinel-2 imagery,
the problem is better posed. Hence the L1 loss is sufficient for successful x2 SR. This is
further explored in Section 8.5.

8.4 S2/PS dataset

For this study, we built a dataset of Sentinel-2 L1C and PlanetScope image pairs, referred
to as the S2/PS dataset. The Sentinel-2 L1C images have a spatial resolution of 10m/px,
while the PlanetScope images have a resolution of 3m/px. The latter were resampled to
5m/px and registered with the S2 coordinate system with bicubic interpolation. Since
PlanetScope images tend to be well-sampled [AdFF19], the resampling step does not
introduce a significant loss of information. The pairs are from images taken on the same
day, a few hours apart, to minimize changes due to vegetation or human activity. The
remaining changes in the images include the presence of clouds, differences in satellite
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Table 8.1: Shift and alias influence. Best PSNR in bold and second best underlined.

PSNR (dB)
Test set Train set Val set

no
al

ia
s no shift 46.69 47.13 47.35

fixed shift 47.20 47.38 47.57
random shift 46.87 47.15 47.37

al
ia

s no shift 46.67 47.29 47.51
fixed shift 49.30 49.25 49.54
random shift 48.12 48.44 48.73

perspective, and shadows. In this work, we use the PlanetScope images acquired with the
PS2 instrument (Dove Classic), so we restrict our study to the three visible bands (blue,
green, and red).

To prepare this dataset, we performed equalization of the mean and standard deviation
for each band from each PlanetScope image to the corresponding Sentinel-2 image. The
residual spatial shift between the downsampled PlanetScope image and the Sentinel-2
one is estimated using the phase correlation algorithm. Then, the PlanetScope image is
resampled using a third-order spline interpolation and introducing zeros where information
was missing. Pairs with a phase correlation score below 0.55 were removed from the
dataset.

We used 380 full-scene images and extracted up to 20 LR crops of size 200×200 from each
image. The test set consists of 65 of these scenes (or 693 crops) and is geospatially disjoint
from the train set (3680 crops). The validation set (406 crops) is selected from different
dates. Figure 8.1 shows zoom-in crops from the dataset, where alias and inter-band shift
are clearly visible in the S2 images.

8.5 Experiments

This section presents experiments that empirically show that Sentinel-2 imagery is well-
suited for the problem of SISR.

A surprisingly performant L1 loss. We compare two models: one trained with the L1

loss and one trained with the original ESRGAN loss, with the relativistic discriminator and
feature similarity terms. Quantitatively, the average PSNR (over 12 bits) computed over
the test set yields 42.21dB for the L1 loss and 37.29dB for the ESRGAN loss. Visually,
we observe that the results obtained with the L1 loss are slightly smoother than those
obtained with the ESRGAN loss, but do not contain any color artifacts. This can be seen
in the second row of Figure 8.2. In addition, the details in the images generated by the L1

model are much better than those obtained through bicubic interpolation. Overall, these
experiments suggest that, in the case of Sentinel-2, the L1 loss is an effective solution
to increase the resolution by a factor 2 without risking the introduction of hallucinated
details [BM18].

Additional results using the L1 model on the test set are shown in Figure 8.1. We find
that the network is able to resolve aliased patterns into high-frequency details, with strong
fidelity to the ground-truth PlanetScope images. Given that the L1 loss minimizes distor-
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tion [BM18], one can be confident that there are few hallucinated details. In ambiguous
cases, the network will likely favor a blurry result instead of sharp, but potentially wrong
details.

Cross-spectral information. We claim that our network exploits cross-spectral infor-
mation to increase spatial resolution. To validate this hypothesis, we perform the following
experiment: from the S2/PS dataset, we train three networks, each dedicated to super-
resolving one specific spectral band, and only this band is given as input. On the test set,
we observe a drop of 0.88dB in the PSNR, and we observe visually that the network is no
longer able to resolve fine structures such as very high-frequency patterns. Even though
the LR signal is aliased in each spectral band, the network no longer has the ability to per-
form a consistent, joint reconstruction of the signal. This can be observed in the top-right
image of Figure 8.2. A related observation was reported in [GSA+20] in which a network
trained with both RGB and NIR bands performed better than just with RGB bands.

Aliasing and band-shift influence. We argue that the model described in Section 8.3
is able to exploit specific characteristics of the Sentinel-2 sensor, namely the presence of
alias in each band and the inter-band shifts. The alias is due to a low spatial sampling
with respect to the modulation transfer function of the instrument [GBT+17], and the
inter-band shifts originate from time delays between the acquisition of the lines of the
different spectral bands [GBT+17]. Combined, these two aspects yield a configuration
that is better-posed than standard SISR, and real information can be recovered under
these acquisition specificities.

Next, we provide experimental evidence that the acquisition configuration of Sentinel-2 is
indeed favorable to SISR. To this aim, we construct synthetic datasets using six different
acquisition configurations: with and without alias, and with and without fix/random
inter-band shifts. In each configuration, we use the PlanetScope images as ground-truth
and we synthesize LR images according to each configuration. The presence of alias is
controlled by the amount of blur introduced before downsampling. The shifts are +/-1
offsets applied to the bands before downsampling and then compensated by 0.5 offsets on
the LR images. In each configuration, 0.1% Gaussian noise was added to match Sentinel-2
noise level. The first row of Figure 8.3 shows the effects of these configurations over the
generated LR images. The configuration with alias and random inter-band shift is the
most faithful simulation of Sentinel-2 imagery.

We train one network per scenario according to the same training details as in Section 8.5.
Table 8.1 shows the PSNR (over 12 bits) over the train, validation and test sets for the
different settings, and the bottom row of Figure 8.3 shows SR results. These results
highlight that the combined presence of the inter-band shift and the alias allows the
network to retrieve significant information from the signal. In contrast to the usual SISR
scenario where little alias and no inter-band shift are present, our experiments assert that
Sentinel-2 imagery is well-suited for SISR.

8.6 Chapter Summary

In this chapter, our focus was on the contributing factors that enable the Single Image
Super-Resolution (SISR) of Sentinel-2 L1C imagery. We found that the network’s capacity
to leverage Sentinel-2’s specific characteristics—alias and inter-band shift—underpins the
gains in resolution. We substantiated these insights through extensive experiments on
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meticulously assembled synthetic datasets. By using a straightforward L1 loss in training
our model, we’ve demonstrated successful enhancement of Sentinel-2’s spatial resolution
from 10m to 5m GSD, whilst curbing distortion and preventing the formation of false
details. As we progress, we will carry forward these insights into the next chapter, where
our goal will be to conduct a novel self-supervised SISR study, but this time on Sentinel-2’s
L1B data.
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9 Exploiting detector overlap for self-supervised
super-resolution of L1B products

Building upon our investigation into Single Image Super-Resolution (SISR) of Sentinel-
2 imagery in previous chapters, this chapter addresses the lack of reliable high-
resolution (HR) ground truth target. We introduce L1BSR, a self-supervised deep
learning method designed to super-resolve and align bands of Sentinel-2 L1B 10m
images. Training directly on real L1B data, our method leverages overlapping ar-
eas in images produced by adjacent CMOS detectors, circumventing the need for HR
ground truth. The method utilizes a novel Cross-Spectral Registration network (CSR)
to enforce correct band alignment in the super-resolved output. The CSR network is
also trained with self-supervision using an innovative Anchor-Consistency loss, which
we also introduce in this chapter. Our method’s performance, evaluated on both
synthetic and real L1B data, proves to be on par with supervised approaches, demon-
strating the potency of self-supervised learning for satellite imagery super-resolution.

9.1 Introduction

Earth observation (EO) satellites play a crucial role in our understanding of the Earth
systems including climate, natural resources, ecosystems, and natural and human-induced
disasters. The Sentinel-2 mission, which is a part of the Copernicus Programme by the
European Space Agency (ESA), is considered a significant EO effort alongside other mis-
sions such as Landsat. Sentinel-2 provides optical images of Earth’s surface in 13 spectral
bands, 4 bands at 10m resolution, 6 bands at 20m, and 3 bands at 60m. The blue (B),
green (G), red (R), and near-infrared (N) bands at a ground sample distance (GSD) of
10m/pixel are particularly useful for a variety of applications, including land cover clas-
sification, vegetation monitoring, and urban mapping [DDBC+12]. However, for certain
tasks, such as identifying small objects or analyzing fine-scale features, this spatial reso-
lution is still inadequate. To address this limitation, super-resolution (SR) techniques can
be used to achieve a GSD better than 10m for the RGBN bands.

SR approaches can be broadly classified into multi-image super-resolution (MISR) and
single-image super-resolution (SISR). MISR aims at reconstructing a high-resolution (HR)
image from a set of low-resolution (LR) images, typically captured with different view-
points [AEdFF20,NAD+21b,NAD+22b,LNFE23] or at different satellite passes [MIKC19,
AMSC+20]. If the LR images contain alias and sub-pixel misalignment, they present a
perfect scenario for MISR to leverage complementary information in different frames and
to recover the true details in the HR output [NAD+21b]. SISR, on the other hand, is
often considered an ill-posed problem due to the potential loss or corruption of high-
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Figure 9.1: L1BSR produces a 5m high-resolution (HR) output with all bands correctly
registered from a single 10m low-resolution (LR) Sentinel-2 L1B image with misaligned
bands. Note that our method is trained on real data with self-supervision, i.e. without
any ground truth HR targets.

frequency information caused by factors such as noise, blur, or compression. Nonetheless,
our study in Chapter 8 demonstrates the possibility of SISR for Sentinel-2 10m bands
thanks to its unique sensor specifications, namely the inter-band shift and aliasing. The
misaligned bands sample the ground at different positions. Since they are correlated each
band obtains complementary information from the other bands, in a situation similar to
a demosaicing problem.

Deep learning (DL) SISR methods currently outperform traditional model-based approaches
by a large margin [WCH20]. To date, all learning-based methods for SISR of Sentinel-2
10m bands have used supervised training, which penalizes a loss between the HR im-
age predicted by the network and a ground truth HR image. Some studies attempt to
train a SISR model on a simulated dataset where LR images are generated using a pre-
defined degradation model [PAB20]. However, the performance may drop substantially
if the real low-resolution input deviates from the simulated degradation model. Other
works use real HR images acquired by other satellites to directly supervise the SR of
Sentinel-2 [GSA+20,NAR+23]. However, obtaining the HR ground truth images can be
costly. In addition, the use of HR images from different satellites introduces challenges
such as spectral response discrepancies, and acquisition viewpoint and time differences,
which complicate the process of dataset creation and negatively impact performance.

A promising direction is to use self-supervised learning techniques, which have been applied
to multi-image restoration tasks such as video/burst denoising and demosaicing [EDM+19,
EDAF19,DAD+21,YPPJ20,SMV+21], and recently to MISR in the context of push-frame
satellites [NAD+21b,NAD+22b] that acquire bursts of images at high frame rate. These
techniques exploit redundant information from multiple observations: one of the degraded
frames in the input sequence is withheld from the network and used as label instead of
the ground truth. As a consequence they require at least two degraded observations from
the same HR signal.

In this chapter we leverage a unique feature of the Sentinel-2 hardware design that en-
ables self-supervised training of single-image super-resolution (Figure 9.1). Sentinel-2 is
equipped with a MultiSpectral Instrument (MSI) that has 12 detectors capturing infor-
mation in the visible and near infrared (VNIR) wavelength range.These detectors operate
in a push-broom fashion, scanning the image line-by-line as the satellite moves over the
ground (as illustrated in Figure 9.2). Of note, adjacent detectors share a 2 km overlap
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Satellite direction

Figure 9.2: Sensor layout of the Sentinel-2 MSI (figure adapted from [GBT+17]). The
push-broom acquisition is done in the vertical direction. The overlap between detectors
provides two near-simultaneous observations of the scene.

area across the track (120 to 200 pixels), which offers opportunities for self-supervised
image restoration techniques.

These overlapping regions are only available in early products in the Sentinel-2 processing
pipeline, such as the level-1B (L1B) products, which present a significant inter-band par-
allax due to the hardware design of the detectors. This parallax, while beneficial for the
super-resolution task, is undesirable for human interpreters, which is why it is removed
later in the pipeline (e.g. L1C products) using camera calibration information to align the
different bands.

Contributions. In this chapter we propose L1BSR, a novel self-supervised method for
SISR and band alignment of Sentinel-2 L1B RGBN bands. The method is trained directly
on real L1B data using image crops contained in the detector overlap regions. One of the
overlapping L1B crops is given as input to our network, and the other is used as target
in the loss. The network is tasked to generate a super-resolved image such that, when
properly aligned and downsampled, matches the target 10m LR crop (Chapter 4). It
should be noted that once trained, as a SISR method, our network has the capability to
produce 5m HR images throughout the image domain, rather than just at the overlapping
regions.

Our self-supervised loss is designed to enforce the super-resolution network to output an
HR image with the bands correctly aligned. This is achieved by aligning all bands of the
target image with the green channel of the super-resolved output.

To that aim, as a second contribution of our work, we present a novel cross-spectral regis-
tration (CSR) method which allows to compute an optical flow between images of differ-
ent spectral bands. To train the CSR network we propose Anchor-Consistency, a simple
yet effective self-supervised loss for cross-spectral registration. Our self-supervised cross-
spectral registration simultaneously learns to handle all possible band combinations. We
use our CSR network only during training of the SR network as part of the self-supervised
loss. Once the reconstruction network is trained, the cross-spectral registration network is
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no longer required. The reconstruction network can directly generate high-quality HR im-
ages with correctly registered bands (as shown in Figure 9.1) without requiring an explicit
alignment step, nor calibration information.

We validate our contributions with an empirical study on a synthetic dataset obtained
from L1C products (Section 9.4), designed to model the main characteristics of Sentinel-2
L1B data. We show that our L1BSR network as well as our cross-spectral registration
module trained with the proposed self-supervision strategy attain performance on par with
those obtained with supervised training.

We train our self-supervised method on a dataset of 3740 pairs of L1B RGBN overlapping
crops (Section 9.4.4) and compare with our supervised method designed for Sentinel-2
L1C (Chapter 8) in Section 9.4.5. It is worth noting that our training dataset, which can
find applications in various image restoration and cross-spectral registration tasks, will be
soon available on our project website.

9.2 Related work

SISR for Sentinel-2 Early research on SISR of Sentinel-2 images primarily focused on
pan-sharpening the lower-resolution (20m and 60m) bands to create a uniform 10m GSD
data cube [LBDG+18,GMG+19]. Recent years have seen an increased interest in enhanc-
ing the resolution of the Sentinel-2 10m bands. Some studies [PAB20] generated synthetic
LR-HR pairs to train SISR models, but these models tend to suffer from generalization
issues [CZY+19]. Another trending approach is to directly supervise the SISR of Sentinel-
2 using another high-resolution satellite such as PlanetScope [NAR+23,GSA+20, ZB22],
VENµS [MVSIH22], or WorldView [SRMV20]. However, creating the training dataset for
these approaches requires significant engineering work due to the radiometric and geomet-
ric differences between the two constellations.

Self-supervised SR Self-supervised and unsupervised learning are promising approaches
to avoid the need for large labeled datasets in SR tasks. ZSSR [SCI18] and MZSR [SCC20]
have been proposed to model image-specific LR-HR relations during the testing phase us-
ing example pairs generated from the LR test image and its degraded version. Although the
idea is interesting, it may not be practical to train on each test image. Another approach
is to use cycle-consistency and adversarial losses [YLZ+18,KPL+20,LDT19,WZYW21] to
train a neural network without requiring pairs of LR-HR images. However, these GAN-
based models are prone to producing hallucinations, which may not be acceptable for
certain applications.

Our SISR method is both fully self-supervised and free from hallucinations. We drew
inspiration from the Noise2Noise framework [LMH+18], which introduced a pioneering
approach to train a neural network for image denoising task using pairs of noisy images
instead of pairs of noisy-clean images. The key idea behind Noise2Noise is that when
comparing pairs of noisy images with independent noise realizations, the network learns
to identify the underlying patterns in the noise and removes them accordingly. Similarly by
comparing pairs of overlapping L1B images, our network can learn to recognize the aliasing
patterns in each LR image and leverage them to recover the high-frequency details in the
HR. The closest work to ours is the DSA framework (Chapter 4), which addresses MISR
for SkySat imagery. During training, DSA hides the LR reference image and asks the
network to produce a HR image from the other n−1 images such that after downsampling,
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it coincides with the reference image. Our work can be seen as the SISR version of DSA.
However, our network also learns to perform implicit cross-spectral registration at inference
time, which is a challenging and compelling task by itself.

Cross-spectral registration Cross-spectral registration refers to the process of aligning
two or more images that are captured using different sensors or imaging modalities. Cross-
spectral registration has become increasingly important in various fields such as remote
sensing [YSBS17,PWÖ+20], medical imaging [LHS+09], and computer vision [AGD+20] as
it allows for the integration of information from different spectral bands, thereby yielding
richer scene representations. While increasing efforts have been made in the past few years
to improve the performance of cross-spectral registration, this still remains an open prob-
lem [JMX+21]. Feature-based methods [YSBS17,LAZW18] involve identifying distinctive
features, such as edges or corners, in both images and then matching them to establish
correspondences. Intensity-based methods [CSCL20, ZZH+18] rely on the similarity of
the pixel values in both images. Examples of intensity-based methods include normal-
ized cross-correlation, mutual information, and phase correlation. In recent years, deep
learning-based methods have also been explored and achieved state-of-the-art (SOTA)
performance. Most DL studies including [PWÖ+20,AGD+20,WMJB21,XMY+22] have
employed image-to-image translation [IZZE17] techniques to map two images to the same
image space and then register them accordingly. However, these methods require exten-
sive work in designing models and sophisticated training losses. In contrast, we propose
Anchor-Consistency a novel and straightforward loss for training a cross-modal registra-
tion network. Notwithstanding its simplicity, our method provides a strong baseline for
the task. In addition, our loss can also be easily integrated into existing frameworks to im-
prove consistency or used as a quantitative metric for evaluating cross-modal registration
quality.

9.3 Proposed Method

Our primary aim is to leverage detector overlaps in Sentinel-2 L1B images to learn to
recover high-frequency details hidden in its misaligned bands. Note that the maximum
attainable resolution is capped by the spectral decay of the blur kernel resulting from the
sensor’s pixel integration and the camera optics, which imposes a frequency cutoff beyond
which there is no usable high frequency information [BK02]. For this reason, our aim in
this chapter is to increase the resolution by a factor 2. In this section, we first present an
overview of our proposed L1BSR framework (Section 9.3.1). Then, we describe our self-
supervised losses in Section 9.3.2 and provide details about the training in Section 9.3.3.

Throughout the text, we denote by It, t ∈ {0, 1} the two 4-channel overlapping images.
We refer to I0 as the input (or reference image) for the SR task and I1 as the target for
our self-supervised losses, which are explained in more detail in Section 9.3.2. It,i is the
grayscale image extracted from the channel i of It, where i ∈ {b, g, r, n} and b, g, r, and
n stand for the blue, green, red, and near-infrared channels, respectively.

9.3.1 Architecture

Our proposed L1BSR framework (Figure 9.3) consists of two main components: a cross-
spectral registration network (CSR) and a reconstruction network (REC). The CSR
module computes dense correspondences between I0,g and all the bands of I1. By utilizing
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these motion fields during training, the REC network learns to produce a HR output ÎHR
0

with all four channels aligned with I0,g. Of note, the CSR module is not used at test time.
Instead, the REC network performs cross-channel registration implicitly.

Reconstruction Network Our REC network is built on the Residual Channel Atten-
tion Networks (RCAN) architecture [ZLL+18], which has been shown to achieve state-of-
the-art performance on many image restoration tasks. We chose this architecture mainly
due to its channel attention mechanism, which can be viewed as a weighting function
that enables REC to selectively focus on informative channels in the feature space and
disregard irrelevant ones.

The reconstruction network takes a LR image I0 ∈ RH×W×4 with misaligned bands as
input and produces a super-resolved output by a factor of two ÎHR

0 with all four bands
aligned with the green channel of the input image

ÎHR
0 = REC(I0; ΘREC) ∈ R2H×2W×4, (9.1)

where ΘREC denotes the network parameters. We opt for the default RCAN configu-
ration to strike a balance between computational efficiency and performance. Overall,
the REC network contains 10 residual groups, each with 20 residual channel attention
blocks (RCAB), and a global skip connection. Each RCAB is a combination of a residual
block and a channel attention layer implemented using a “squeeze-and-excitation" tech-
nique [HSS18]. The number of feature channels is fixed to 64 across all layers.

It is important to highlight that the task our REC network must accomplish is particularly
challenging, as it involves both super-resolution and cross-spectral registration at the same
time. To tackle this problem, we incorporate a dedicated CSR module into the training
process, which enables the REC network to learn efficiently the task in a self-supervised
way.

Cross-Spectral Registration Network The CSR module is instrumental during
training. We use it to train the REC network to produce an HR output where all bands
are aligned to the green one (as justified in Section 9.4.2). By having to align the channels,
it becomes easier for the REC network to learn inter-band correlations, and thereby to
leverage the complementary information in each band.

The cross-spectral registration network takes any two spectral bands of Sentinel-2 L1B
images I·,i and I·,j , with i, j ∈ {b, r, g, n} as input and produces a dense correspondence
between them

FI·,j→I·,i = CSR(Ī·,i, Ī·,j ; ΘCSR) ∈ [−R,R]H×W×2, (9.2)

where ΘCSR denotes the parameters of CSR, and Ī is the normalization of image I
according to its mean and standard deviation. The network is trained with a maximum
motion range of [−R,R]2 (with R = 10 pixels). Note that I·,i and I·,j should represent
the same scene and be extracted either from the same image or from two overlapping
images. The CSR follows a simple U-Net architecture [RFB15] with 4 scales to increase
the receptive field of the convolutions.

9.3.2 Self-supervised learning

Our framework is trained in a fully self-supervised manner, i.e. without requiring ground
truth. In this section, we describe our self-supervised losses that are used to train the
REC and the CSR modules.
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Figure 9.3: Overview of our proposed self-supervised L1BSR framework for Sentinel-2
L1B at training time. The depicted loss represents the self-supervision term ℓSelf-SR (9.3).
Note that at inference time, only one input and the reconstruction module are required.
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Figure 9.4: Training setup of our proposed cross-spectral registration (CSR) module.
The motion from I0,i to I1,i via the anchor It,j should represent the direct motion between
them. The depicted loss represents the Anchor-Consistency loss (9.7).
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Self-SR Loss By utilizing the motion fields between the green band of I0 and all bands
of I1 computed by CSR, REC can produce a HR output ÎHR

0 with all bands correctly
registered to I0,g. We achieve this by minimizing the Self-SR loss:

ℓSelf-SR = ∥Π2ω2(Î
HR
0 , FI1→I0,g)− I1∥1, (9.3)

where Π2 denotes the subsampling operator and ω2(−, F ) computes a bicubic sampling
(Pullback) in the HR domain using the LR flow F . F denotes actually 4 optical flows,
one for each band in I1. The operator ω2 is equivalent to a backward warping with an
upscaled version of the flow 2F .

The Self-SR loss forces ω2(Î
HR
0 , FI1→I0,g) to be aligned to I1, resulting in the requirement

that all bands of the output ÎHR
0 be registered with I0,g. Following the work on DSA in

Chapter 4, we can also incorporate a blur kernel k into the Self-SR loss to directly produce
a sharp HR image

ℓ∗Self-SR = ∥Π2ω2(Î
HR
0 ∗ k, FI1→I0,g)− I1∥1. (9.4)

During training, we randomly choose the reference and the target between the two overlap-
ping images. At inference time, we only need one single LR input and the REC network
to obtain a high-quality HR output.

Anchor-Consistency Loss The CSR network is trained with self-supervision. Fig-
ure 9.4 illustrates our training setup for the CSR. For that we need 3 images I0,i, It,j ,
and I1,i. The image It,j serves as an anchor image extracted from either the I0 or I1 (i.e.
t ∈ {0, 1}) but may come from different spectral band than the two other images (i.e.
j ̸= i). We compute the motion fields between these 3 images in two steps:

FIt,j→I0,i = CSR(Ī0,i, Īt,j),

FI1,i→It,j = CSR(Īt,j , Ī1,i).
(9.5)

These two motion fields should be consistent in such a way that their composition enables
alignment between I0,i and I1,i:

F̂I1,i→I0,i = FI1,i→It,j ◦ FIt,j→I0,i . (9.6)

The Anchor-Consistency loss constrains that the motion from I0,i to I1,i via the anchor
should represent the direct motion between them.

ℓAnchor-Consistency = ∥ω(I0,i, F̂I1,i→I0,i)− I1,i∥1, (9.7)

where ω is the classic pullback operator.

During training, we randomly choose the reference and the target between the two overlap-
ping images. The spectra i and j are also picked arbitrarily in {b, r, g, n}. It is important
to note that the case where i and j are identical is also considered for CSR to learn to
register images of the same band.

9.3.3 Training details

We train first the CSR network, as it is important to ensure that the CSR output can be
effectively utilized by the REC network. We employ the Anchor-Consistency loss (9.7)
to train the network, with weights initialized using Xavier’s initialization [GB10]. We set
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the batch size to 64 and used Adam [KB14] with the default PyTorch parameters and a
learning rate of 5e − 5 to optimize the loss. The training converged after 200k iterations
and took approximately 24 hours on a single NVIDIA V100 GPU.

The second phase consists of training the REC network using the Self-SR loss (9.3) and
the trained CSR. We train REC on LR crops of size 96 × 96 × 4 pixels and validate on
LR images of size 256 × 256 × 4 pixels. We set the batch size to 16 and optimize the
loss using the Adam optimizer with default parameters. Our learning rate is initialized to
5e − 5 and decayed by a factor of 0.6 every 12k iterations. The training converges after
60k iterations and takes about 20 hours to complete on a single NVIDIA V100 GPU. We
apply data augmentation (DA) techniques such as flips and rotations. The CSR network
is fixed during the training of the REC network.

9.4 Experiments

In this section, we present experimental results that demonstrate the effectiveness of our
fully self-supervised approach for Sentinel-2 SISR. To this aim, we conduct experiments on
both real Sentinel-2 L1B data and a simulated dataset that we generated from Sentinel-2
L1C products. Through extensive ablation studies and quantitative analyses, we aim to
demonstrate the efficacy of our method in addressing the challenges posed by the cross-
spectral registration and SISR tasks in Sentinel-2 imagery. Additionally, we compare our
self-supervised approach to a state-of-the-art supervised SISR method.

9.4.1 Simulated dataset

The simulated dataset used in our experiments was generated from 20 Sentinel-2 L1C
products, with 18 used for training and 2 for testing. The products were extracted from
5 different continents in both summer and winter seasons to ensure geographic and ra-
diometric diversity. For the training set, we selected 6,998 crops, each with a size of
512× 512× 4 pixels. For the testing set, we selected 184 crops of the same size. Provided
that Sentinel-2 imagery contains significant alias (Chapter 8) which is unsuitable to use as
ground truth HR, we first applied a Gaussian kernel with σ = 0.7 to each crop to remove
some aliasing, approximating the effect of an optical blur. The ground truth images IHR

0

and IHR
1 were then generated by applying 2 random homography transformations H0 and

H1 to the blurred HR image (denoted as BHR). These ground truth HR should be aligned
to I0,g and I1,g, respectively. We also simulated band-misalignment in the LR by applying
a small homography transformation, where the translation component is dominant. Addi-
tionally, a little Gaussian noise (0.1%) was added to the LR to match the Sentinel-2 noise
level. Overall, the simulation process can be summarized as follows:

IHR
t = Ht(B

HR), t ∈ {0, 1}
It,g = Π2(I

HR
t,g ) + ng,

It,i = Π2

(
(Ht,i ◦ Ht)(B

HR
i )

)
+ ni, i ̸= g,

(9.8)

where Ht,i (i ∈ {b, r, n}) is a translation-dominant homography modeling the band-
misalignment between It,g and It,i. ni models the noise in the Sentinel-2 L1B. The largest
distortion between 2 bands of 2 images can be up to 10 pixels. To enable diverse ablation
studies for both the CSR and the REC networks, the homographies are stored as ground
truth flows.
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Table 9.1: Cross-spectral registration error (in pixel) of our self-supervised and supervised
CSR networks over the synthetic test set (184 × 256 × 256 × 4 pixels). The score of
same-band registration is highlighted in bold.

Target bands

Ref. bands B G R N

Se
lf-

su
pe

rv
is

ed B 0.026 0.035 0.039 0.106
G 0.034 0.026 0.038 0.092
R 0.035 0.037 0.026 0.104
N 0.100 0.086 0.098 0.027

Su
pe

rv
is

ed

B 0.016 0.028 0.029 0.088
G 0.027 0.014 0.027 0.076
R 0.029 0.027 0.017 0.090
N 0.083 0.072 0.081 0.017

The Sentinel-2 L1C products are derived from the L1B products by the Ground Segment.
During this process, the bands are aligned and resampled using camera altitude and ge-
ometric models. However, due to imperfect parameter estimation, there may be residual
shifts between the bands. These shifts are typically less than 0.3 pixels [GBT+17].

9.4.2 Cross-spectral registration

Table 9.1 reports the mean absolute pixel error of the self-supervised and supervised CSR
networks on our test set when aligning the reference bands I0,i to the target bands I1,j with
i, j ∈ {b, g, r, n}. The first half of the table shows the performance of the self-supervised
CSR network, where the diagonal entries correspond to the same-band registration. The
self-supervised CSR network performs exceptionally well for the RGB bands, in particular
for the green band, exhibiting low mis-registration (less than 0.04 pixel), indicating a high
correlation between the RGB bands. However, the registration between NIR and RGB is
much more challenging, with an error around 0.1 pixel, which is twice as large as that of
the RGB bands, suggesting a much lower correlation between NIR and RGB bands.

To validate the effectiveness of our self-supervised approach, we also performed supervised
training of CSR on the same training set, where we penalized the error between the
output flows and the ground truth flows obtained from the homographies. The second
half of Table 9.1 presents the results of the supervised model over the test set. The table
shows a small gap between the performance of the two models, with a maximum mean
error of 0.03 pixels for RGB and 0.09 pixels for NIR in the supervised setting, compared to
0.04 pixels and 0.11 pixels for self-supervision. Overall, the self-supervised CSR approach
performs well for many applications, without requiring any ground truth flows, knowledge
of the optical instrument or scene modeling.

9.4.3 Multi-band super-resolution

We conducted ablation experiments using the proposed synthetic L1C dataset to evaluate
the performance of our self-supervised reconstruction network. We found that the residual
misalignment in the L1C product affects PSNR measurements: a super-resolved result
with well-aligned bands will be slightly misaligned with respect to the ground truth. To
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LR (Green) G 42.90dB BG 46.71dB BGR 48.24dB BGRN 49.42dB HR (Green)

LR (Green) G 40.62dB BG 44.20dB BGR 45.85dB BGRN 46.77dB HR (Green)

Figure 9.5: SR reconstruction of the green band when trained jointly with different input
spectral bands. We observe that the other bands (B, R, N) provide valuable information
for improving the reconstruction of the green band.

avoid this, we align each band of the ground truth to the corresponding band of the super-
resolved output before computing the PSNR (note that this alignment is between images
of the same band). We use a classical TV-L1 optical flow [PMLF13], setting the weight of
the data attachment term to 0.3. The PSNRs shown in Tables 9.2 and 9.3 were computed
in this way.

First, we studied the impact of the number of input bands on the reconstruction quality.
Table 9.2 shows the PSNR results for four different networks trained with different input
bands. We observed a significant improvement in performance as we increased the number
of bands provided to the REC network, consistent with previous findings (Chapter 8).

Furthermore, Figure 9.5 illustrates the performance improvements in restoring the G band
by providing different bands as input. As more bands are used, the network is able to
restore aliased patterns into the true pattern and reach higher signal-to-noise ratio.

Secondly, we compared the performance of our self-supervised framework against a super-
vised training approach using the synthetic L1C dataset. The supervised training mini-
mized an L1 loss between the restoration and the ground truth HR image. Table 9.3 shows
the per-band mean PSNRs over the test set. We observe a significant PSNR gap in favour
of the proposed self-supervised L1BSR method (0.7dB for the visible bands and 0.3 for the
near-infrared). This is rather unexpected. Self-supervised training is at best equivalent to
supervised training [LMH+18,EDM+19,DAD+21,NAD+21b]. The worse performance of
the supervised method can be explained by the residual misalignment of the L1C images
(see Section 9.4.1) used as ground truth during training, resulting in blurry super-resolved
images. The self-supervised method does not suffer from this problem: during training
each band of the target image is aligned to the green band of the super-resolved image by
the CSR module. It should be possible to compensate the misalignment of the ground
truth in a supervised setting by aligning the ground truth bands to the super-resolved
prediction (see for example [DKG+20]). We did not explore this approach here as our
interest lies mainly in the self-supervised training.
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Table 9.2: Multi-band super-resolution with the Green band being the reference. PSNRs
obtained after aligning GT bands to SR bands. Best PSNR in bold.

Testing bands

Training bands B G R N

G 46.39
BG 50.87 49.77
BGR 51.62 51.09 48.51
BGRN 51.80 51.67 48.82 41.34

Table 9.3: Comparison with supervised training. PSNRs obtained after aligning GT bands
to SR bands. Best PSNR in bold.

Testing bands

Methods B G R N

Supervised 50.90 51.04 48.14 40.98
L1BSR 51.80 51.67 48.82 41.34

9.4.4 Real L1B dataset

The Sentinel-2 MSI includes 12 detectors for the VNIR bands arranged on a focal plane.
The L1B product is composed of individual rasters, one per detector and per band. By
design, two successive detectors acquire the scene with significant overlap, i.e. 120-200
pixels for the RGBN bands, which allows us to train our model on real L1B data.

However, due to the sensor layout, there is a noticeable vertical offset between consecutive
detectors. To prepare the training and testing datasets, we pre-register the bands from
different detectors using an integer translation. This process involves estimating a coarse
translation between detectors using a SIFT-based matching method, refining the offset for
each crop using an optical flow method, and regressing an integer translation. Since the
bands of a given detector are acquired almost simultaneously, it is possible to ensure a
registration precision up to a few pixels. For overlaps, registration is less precise due to
the time delay, induced parallax and viewpoint changes, but typically remains less than
10 pixels. Overall, a refined registration is not required for our framework since the CSR
network accurately captures residual shifts.

We used only two Sentinel-2 L1B products in this work due to their current scarcity, and
extracted training data around overlaps, consisting of 3740 pairs of height 400 pixels and
width depending on the overlap width between detectors for RGBN bands.1 For testing
we extracted crops outside of the overlapping regions, typically near the center of the
detectors.

9.4.5 Qualitative analysis

We train the CSR and REC networks sequentially as described in Section 9.3 on the L1B
dataset. For REC, the ℓ∗Self-SR loss is used. The reconstruction results over the images of

1Note that L1B products will be systematically available through the Copernicus Data Space Ecosystem
starting October 2023.
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(a) L1B (b) L1BSR

(c) L1C (d) L1C-based SR (Chapter 8)

Figure 9.6: SR (x2) reconstruction by our proposed method (b) using L1B and the method
in Chapter 8 (d) using L1C imagery. (a) and (c) are from the same acquisition.

the test set are shown in Figure 9.1. The REC network is able to successfully restore a
high-quality HR image with aligned bands and fine details recovered.

To evaluate our self-supervised method, we compare it against our ×2 SISR method in
Chapter 8. The method in Chapter 8 relies on ground truth data obtained from Plan-
etScope imagery. It is trained with a L1 loss, and is designed to work with Sentinel-2 L1C
products. For comparison, we identified the L1C products from the same acquisition as
the L1B samples and extracted the corresponding crops. Figure 9.6 shows the SR results of
the proposed methods on L1B, and ours on L1C (Chapter 8). We found that the recovered
details are very similar, yet our approach does not suffer from the gap between Sentinel-2
and PlanetScope images, which results in radiometric and geometric degradation by the
network.

9.5 Chapter summary

This chapter presents a novel self-supervised method, L1BSR, for single-image super-
resolution of Sentinel-2 L1B 10m bands. Leveraging the unique hardware design of
Sentinel-2, the proposed method achieves remarkable performance without the need for
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HR ground truth images. By training a cross-spectral registration module using an inno-
vative self-supervised loss, Anchor-Consistency, L1BSR is capable of reconstructing high-
resolution outputs with all bands correctly registered. To the best of our knowledge, our
work is the first to explore the overlapping regions between detectors of Sentinel-2 and
their potential for self-supervised SISR. Through an ablation study on a synthetic dataset
and comparison with other supervised SISR methods for Sentinel-2 L1C images, we have
demonstrated that L1BSR achieves performance on par with that of supervised training.
The availability of our training dataset on the project website makes it a valuable re-
source for various image restoration and cross-spectral registration tasks.2 As we move
into the concluding discussions of this thesis, the advancements made in this chapter set
a strong precedent for the further development and refinement of self-supervised methods
in satellite image super-resolution.

2https://centreborelli.github.io/L1BSR/
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10 Conclusion

Synopsis of thesis and key contributions

This thesis revolves around the use of self-supervised techniques for multi-image and single-
image super-resolution in satellite imagery. Each chapter uncovers a different facet, un-
ravels a unique challenge, and showcases a novel solution.

Our models in this thesis, though rooted in deep-learning, lean on principles of signal
processing. This balance between neural networks and fundamental mathematics forms
the crux of our models.

In Part I, “Multi-image super-resolution in satellite imagery”, we commenced by examining
the multi-date PROBA-V super-resolution dataset. The inherent challenges posed by
this dataset led us to propose a more practical variant known as PROBA-V-REF. This
improved dataset explicitly identifies the reference frame that corresponds to the HR target
image, thereby more meaningful for most real-world applications.

Our exploration continued with the development of the Deep Shift-and-Add (DSA) frame-
work, specifically designed for push-frame satellite sensors like the SkySat constellation
by Planet. DSA stands as the pioneering self-supervised MISR methodology. The unique
amalgamation of shift-and-add fusion and self-supervised learning in DSA enables effective
training in the absence of high-resolution ground truth. Especially, the shift-and-add fu-
sion allows DSA to retain permutation-invariance and efficiently handle a variable number
of frames - qualities not often found in other deep learning techniques. Achieving the state-
of-the-art in MISR for satellite imagery, DSA forms part of an extensive super-resolution
toolbox developed in this thesis.

We improved DSA with detail-preserving control, which refines super-resolved images
by retaining vital details often lost in traditional super-resolution methods. An outlier
detection feature was integrated, bolstering DSA’s ability to process input images with
substantial discrepancies and enhancing the robustness of the super-resolution process.

We further extended the potential of the DSA framework with HDR-DSP, to tackle multi-
exposure sequences in remote sensing. HDR-DSP is the first integrated solution for joint
super-resolution and High Dynamic Range (HDR) imaging. Uniquely, it is capable of
handling signal-dependent noise and significant inaccuracies in reported exposure time.
HDR-DSP not only improves the performance of DSA, but also extends its applicability
to a broader array of real-world scenarios, enhancing its practical utility.

As we shifted our focus to "Single-image super-resolution in satellite imagery" in the
second part of this thesis, we first engaged with the state-of-the-art image restoration
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model, SwinIR. With perceptual loss, SwinIR was effective on most real-world images.
However we found it to have limitations with satellite imagery. This opened our eyes to
the importance of crafting domain-specific strategies for the genuine super-resolution of
satellite data.

In our pursuit of these strategies, we identified a hidden potential within the distinct char-
acteristics of Sentinel-2. Rather than perceiving aliasing and inter-band shift as hurdles,
we leveraged them for true high-frequency detail recovery. This redefining approach tran-
sitioned SISR problem towards a more favourable scenario, akin to MISR, with promising
experimental results.

Further deepening our exploration, we proposed an innovative approach for self-supervised
joint SISR and band-alignment of Sentinel-2 Level 1B (L1B) products. This novel method
took advantage of the unique detector overlap feature inherent in Sentinel-2’s sensor de-
sign. Despite the complex band misalignment challenges presented by L1B products, our
self-supervised framework demonstrated a performance comparable to supervised meth-
ods. The introduction of an innovative cross-spectral registration (CSR) module proved
instrumental in overcoming these challenges and offered a unique contribution to our
super-resolution toolbox.

Potential impact

The potential implications of this thesis span both academic and practical dimensions,
contributing to the progress of remote sensing research and enhancing the capabilities of
satellite imagery utilization.

For the academic landscape, the techniques and methodologies proposed in this thesis offer
a new perspective on super-resolution applications for satellite imagery, particularly with
the introduction of the DSA, HDR-DSP, and L1BSR frameworks. These self-supervised
learning mechanisms can serve as robust foundations for future research, facilitating ad-
ditional developments and innovations in the field.

From a practical standpoint, the improved quality of satellite imagery achievable through
the techniques discussed in this thesis can significantly enhance the level of detail and
accuracy in data obtained for a variety of applications. In particular, the super-resolution
of Sentinel-2 L1C by PlanetScope, as discussed in Chapter 8, is currently in production
at Kayrros and has shown great potential in improving labeling and object detection.

In climate change studies, more precise satellite data can provide an increased level of
detail, facilitating more accurate monitoring and modelling of environmental changes,
from polar ice melt to deforestation rates.

For agricultural applications, the implications are similarly profound. Precision farming,
for instance, could benefit immensely from enhanced satellite imagery. Detailed informa-
tion regarding crop health, soil conditions, and irrigation requirements could all be made
more readily available, aiding in optimizing farming operations.

Urban planning and development could also see significant advantages. High-resolution
satellite imagery can assist planners in accurately tracking city growth, monitoring land
use changes, and making informed infrastructure development decisions.

Importantly, these techniques are not just relevant for end-users of satellite data. Satellite
data providers, such as Planet, could also potentially integrate our methods to improve
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their own images, leading to better product offerings. As an example, in our research, we’ve
observed that the quality of Planet’s SkySat L1B could be considerably improved using
our DSA and HDR-DSP methods, as discussed in Chapter 4, Chapter 5, and Chapter 6.

Beyond these specific applications, the potential impact extends to disaster management,
military surveillance, archaeology, and many more areas where improved satellite imagery
could provide considerable benefits. While the advancements presented in this thesis are
significant, they represent potential pathways for continued progress and innovation in the
world of satellite imagery and super-resolution.

Future research directions

This thesis has sought to extend the boundaries of super-resolution techniques in satellite
imagery. However, the journey doesn’t end here. The principles, methodologies, and
algorithms developed can act as stepping stones for an array of intriguing future research
directions. Here are a few potential pathways to be explored.

• MISR for Satellogic’s Aleph-1: Aleph-1 is another push-frame satellite. Each Aleph-
1 frame is multi-spectral with inherent band misalignment. Therefore, the L1BSR
method (Chapter 9) could be initially applied for band-registration, followed by the
use of the DSA framework (Chapter 4) for MISR.

• Complete super-resolution of Sentinel-2: The potential for L1BSR to super-resolve
all 13 bands of Sentinel-2 Level 1B is discussed. This process involves a recursive
fusion approach: first, 60m bands are enhanced to 20m GSD. These are then incor-
porated with existing 20m bands and upscaled to 10m. The final step is to uniformly
super-resolve all 10m bands to 5m resolution. In each phase, higher-resolution bands
also guide the lower-resolution bands’ super-resolution, akin to pan-sharpening.

• Transfer learning from L1BSR to L1C: The orthorectified nature of Sentinel-2 L1C
products makes them better suited for global analysis when compared to L1B prod-
ucts. Given this advantage, it’s crucial to consider extending the super-resolution
methodologies of L1BSR, initially developed for L1B images, to Sentinel-2’s L1C
products.

• Extension of CSR applications: The Cross-Spectral Registration (CSR) module,
introduced within the L1BSR framework in Chapter 9, showcases an ability to re-
fine band-alignment in various commercial satellites, even without fine-tuning. This
suggests a promising avenue for the expansion of CSR for broader cross-modal reg-
istration applications. This includes, but is not limited to, SAR/optical registration
and medical image registration.

• Optical flow improvement: Satellite imagery benefits from simple motion, with mini-
mal occlusion and parallax. However, extending the methodologies presented in this
thesis to real-world data such as video super-resolution or raw burst super-resolution
requires dealing with more complex motion. Future research should focus on the de-
velopment or adoption of more sophisticated optical flow models to handle these
scenarios.
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Final Remarks

The journey undertaken in this thesis has offered a fresh perspective on satellite imagery
super-resolution, interlinking deep-learning and signal processing principles to push the
boundaries of the field. We have dissected the challenges and potentials of satellite imagery,
providing a robust platform for future investigation.

Yet, the work here is just the beginning. As satellite technology progresses and new data
streams continually emerge, so too will the landscape of super-resolution evolve. The
hope is that this thesis will serve as a launchpad for more research, fostering continuous
innovation in this dynamic field.

To the readers, my colleagues, and future researchers, I extend my deepest gratitude for
your interest in this work. I hope this work proves insightful, inspires innovation, and lays
the groundwork for future advancements in super-resolution methodologies.
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Titre : Définition Haute-Précision d’en Haut : Avancement de la Super-Résolution des Images Sa-
tellitaires via Auto-Supervision

Mots clés : super-résolution, télédétection, restoration d’image, apprentissage auto-supervisé

Résumé : Cette thèse contribue au domaine
de l’observation de la Terre (OT) en faisant pro-
gresser les techniques de super-résolution dans
l’imagerie satellitaire, en abordant à la fois les
défis de l’imagerie multi-image et single-image.
L’accent est mis sur la surmontée d’un problème
prévalent dans la télédétection : l’absence de
données de vérité terrain en haute résolution.
Nous adressons cela à travers des méthodes
innovantes d’apprentissage auto-supervisé, qui
permettent l’entraı̂nement de modèles sans
cibles conventionnelles en haute résolution.
Dans la super-résolution multi-image, notre
cadre Deep Shift-and-Add (DSA), conçu pour
les capteurs SkySat, illustre une approche auto-
supervisée nouvelle. Il combine efficacement la
fusion shift-and-add avec l’apprentissage auto-

supervisé pour gérer l’absence de données en
haute résolution, établissant une nouvelle norme
dans le domaine.
Pour la super-résolution single-image, nous ex-
ploitons les propriétés uniques de l’image-
rie Sentinel-2 pour développer des techniques
auto-supervisées spécialisées. Ces méthodes
améliorent la récupération des détails, dépassant
la résolution intrinsèque du capteur.
Notre recherche aborde non seulement des défis
spécifiques dans la super-résolution d’images
satellitaires, mais suggère également l’applicabi-
lité plus large de nos méthodes à diverses plate-
formes satellitaires et types de données, offrant
une direction prometteuse pour les futures explo-
rations dans le traitement d’images satellitaires
et les technologies OT.

Title : High-Definition from Above: Advancing Satellite Imagery Super-Resolution via Self-
Supervision

Keywords : super-resolution, remote sensing, image restoration, self-supervised learning

Abstract : This thesis contributes to the field
of Earth Observation (EO) by advancing super-
resolution techniques in satellite imagery, ta-
ckling both multi-image and single-image chal-
lenges. A key focus is overcoming the pre-
valent issue in remote sensing: the absence of
high-resolution ground truth. We address this
through innovative self-supervised learning me-
thods, which allow for model training without
conventional high-resolution targets.
In multi-image super-resolution, our Deep Shift-
and-Add (DSA) framework, designed for SkySat
sensors, exemplifies a novel self-supervised ap-
proach. It effectively combines shift-and-add fu-
sion with self-supervised learning to handle the

absence of high-resolution data, setting a new
standard in the field.
For single-image super-resolution, we leverage
the unique properties of Sentinel-2 imagery to
develop specialized self-supervised techniques.
These methods enhance detail recovery, excee-
ding the sensor’s inherent resolution.
Our research not only addresses specific chal-
lenges in satellite imagery super-resolution but
also hints at the broader applicability of our me-
thods across various satellite platforms and data
types, offering a promising direction for future ex-
ploration in satellite image processing and EO
technologies.
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